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Preface

Unix is not so much an operating system as an oral history.

—Neal Stephenson

There is a vast difference between knowledge and expertise. Knowledge lets you de-
duce the right thing to do; expertise makes the right thing a reflex, hardly requiring
conscious thought at all.

This book has a lot of knowledge in it, but it is mainly about expertise. It is going
to try to teach you the things about Unix development that Unix experts know,
but aren’t aware that they know. It is therefore less about technicalia and more
about shared culture than most Unix books—both explicit and implicit culture,
both conscious and unconscious traditions. It is not a ‘how-to’ book, it is a
‘why-to’ book.

The why-to has great practical importance, because far too much software is
poorly designed. Much of it suffers from bloat, is exceedingly hard to maintain,
and is too difficult to port to new platforms or extend in ways the original
programmers didn’t anticipate. These problems are symptoms of bad design. We hope
that readers of this book will learn something of what Unix has to teach
about good design.

This book is divided into four parts: Context, Design, Tools, and Community. The
first part (Context) is philosophy and history, to help provide foundation and motivation
for what follows. The second part (Design) unfolds the principles of the Unix
philosophy into more specific advice about design and implementation. The third part
(Tools) focuses on the software Unix provides for helping you solve problems. The
fourth part (Community) is about the human-to-human transactions and agreements
that make the Unix culture so effective at what it does.

Because this is a book about shared culture, I never planned to write it alone. You
will notice that the text includes guest appearances by prominent Unix developers,
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the shapers of the Unix tradition. The book went through an extended public review
process during which I invited these luminaries to comment on and argue with the
text. Rather than submerging the results of that review process in the final version,
these guests were encouraged to speak with their own voices, amplifying and
developing and even disagreeing with the main line of the text.

In this book, when I use the editorial ‘we’ it is not to pretend omniscience but to
reflect the fact that it attempts to articulate the expertise of an entire community.

Because this book is aimed at transmitting culture, it includes much more in the
way of history and folklore and asides than is normal for a technical book. Enjoy;
these things, too, are part of your education as a Unix programmer. No single one of
the historical details is vital, but the gestalt of them all is important. We think it makes
a more interesting story this way. More importantly, understanding where Unix came
from and how it got the way it is will help you develop an intuitive feel for the
Unix style.

For the same reason, we refuse to write as if history is over. You will find an un-
usually large number of references to the time of writing in this book. We do not wish
to pretend that current practice reflects some sort of timeless and perfectly logical
outcome of preordained destiny. References to time of writing are meant as an alert
to the reader two or three or five years hence that the associated statements of fact
may have become dated and should be double-checked.

Other things this book is not is neither a C tutorial, nor a guide to the Unix com-
mands and API. It is not a reference for sed or yacc or Perl or Python. It’s not a network
programming primer, nor an exhaustive guide to the mysteries of X. It’s not a tour of
Unix’s internals and architecture, either. Other books cover these specifics better, and
this book points you at them as appropriate.

Beyond all these technical specifics, the Unix culture has an unwritten
engineering tradition that has developed over literally millions of man-years1 of
skilled effort. This book is written in the belief that understanding that tradition,
and adding its design patterns to your toolkit, will help you become a better program-
mer and designer.

Cultures consist of people, and the traditional way to learn Unix culture is from
other people and through the folklore, by osmosis. This book is not a substitute for
person-to-person acculturation, but it can help accelerate the process by allowing you
to tap the experience of others.

1. The three and a half decades between 1969 and 2003 is a long time. Going by the historical
trend curve in number of Unix sites during that period, probably somewhere upwards of fifty
million man-years have been plowed into Unix development worldwide.
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Who Should Read This Book

You should read this book if you are an experienced Unix programmer who is often
in the position of either educating novice programmers or debating partisans of other
operating systems, and you find it hard to articulate the benefits of the Unix approach.

You should read this book if you are a C, C++, or Java programmer with experience
on other operating systems and you are about to start a Unix-based project.

You should read this book if you are a Unix user with novice-level up to middle-
level skills in the operating system, but little development experience, and want to
learn how to design software effectively under Unix.

You should read this book if you are a non-Unix programmer who has figured out
that the Unix tradition might have something to teach you. We believe you’re right,
and that the Unix philosophy can be exported to other operating systems. So we will
pay more attention to non-Unix environments (especially Microsoft operating systems)
than is usual in a Unix book; and when tools and case studies are portable, we say so.

You should read this book if you are an application architect considering platforms
or implementation strategies for a major general-market or vertical application. It will
help you understand the strengths of Unix as a development platform, and of the Unix
tradition of open source as a development method.

You should not read this book if what you are looking for is the details of C coding
or how to use the Unix kernel API. There are many good books on these topics; Ad-
vanced Programming in the Unix Environment [Stevens92] is classic among explo-
rations of the Unix API, and The Practice of Programming [Kernighan-Pike99] is
recommended reading for all C programmers (indeed for all programmers in
any language).

How to Use This Book

This book is both practical and philosophical. Some parts are aphoristic and general,
others will examine specific case studies in Unix development. We will precede or
follow general principles and aphorisms with examples that illustrate them: examples
drawn not from toy demonstration programs but rather from real working code that
is in use every day.

We have deliberately avoided filling the book with lots of code or specification-
file examples, even though in many places this might have made it easier to write
(and in some places perhaps easier to read!). Most books about programming give
too many low-level details and examples, but fail at giving the reader a high-level feel
for what is really going on. In this book, we prefer to err in the opposite direction.
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Therefore, while you will often be invited to read code and specification files, re-
latively few are actually included in the book. Instead, we point you at examples on
the Web.

Absorbing these examples will help solidify the principles you learn into semi-
instinctive working knowledge. Ideally, you should read this book near the console
of a running Unix system, with a Web browser handy. Any Unix will do, but the
software case studies are more likely to be preinstalled and immediately available for
inspection on a Linux system. The pointers in the book are invitations to browse and
experiment. Introduction of these pointers is paced so that wandering off to explore
for a while won’t break up exposition that has to be continuous.

Note: While we have made every effort to cite URLs that should remain stable
and usable, there is no way we can guarantee this. If you find that a cited link has
gone stale, use common sense and do a phrase search with your favorite Web search
engine. Where possible we suggest ways to do this near the URLs we cite.

Most abbreviations used in this book are expanded at first use. For convenience,
we have also provided a glossary in an appendix.

References are usually by author name. Numbered footnotes are for URLs that
would intrude on the text or that we suspect might be perishable; also for asides, war
stories, and jokes.2

To make this book more accessible to less technical readers, we invited some non-
programmers to read it and identify terms that seemed both obscure and necessary to
the flow of exposition. We also use footnotes for definitions of elementary terms that
an experienced programmer is unlikely to need.

Related References

Some famous papers and a few books by Unix’s early developers have mined this
territory before. Kernighan and Pike’s The Unix Programming Environment
[Kernighan-Pike84] stands out among these and is rightly considered a classic. But
today it shows its age a bit; it doesn’t cover the Internet, and the World Wide Web or
the new wave of interpreted languages like Perl, Tcl, and Python.

About halfway into the composition of this book, we learned of Mike Gancarz’s
The Unix Philosophy [Gancarz]. This book is excellent within its range, but did not
attempt to cover the full spectrum of topics we felt needed to be addressed.
Nevertheless we are grateful to the author for the reminder that the very simplest Unix
design patterns have been the most persistent and successful ones.

2. This particular footnote is dedicated to Terry Pratchett, whose use of footnotes is
quite...inspiring.
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The Pragmatic Programmer [Hunt-Thomas] is a witty and wise disquisition on
good design practice pitched at a slightly different level of the software-design craft
(more about coding, less about higher-level partitioning of problems) than this book.
The authors’ philosophy is an outgrowth of Unix experience, and it is an excellent
complement to this book.

The Practice of Programming [Kernighan-Pike99] covers some of the same ground
as The Pragmatic Programmer from a position deep within the Unix tradition.

Finally (and with admitted intent to provoke) we recommend Zen Flesh, Zen Bones
[Reps-Senzaki], an important collection of Zen Buddhist primary sources. References
to Zen are scattered throughout this book. They are included because Zen provides a
vocabulary for addressing some ideas that turn out to be very important for software
design but are otherwise very difficult to hold in the mind. Readers with religious
attachments are invited to consider Zen not as a religion but as a therapeutic form of
mental discipline—which, in its purest non-theistic forms, is exactly what Zen is.

Conventions Used in This Book

The term “UNIX” is technically and legally a trademark of The Open Group, and
should formally be used only for operating systems which are certified to have passed
The Open Group’s elaborate standards-conformance tests. In this book we use “Unix”
in the looser sense widely current among programmers, to refer to any operating
system (whether formally Unix-branded or not) that is either genetically descended
from Bell Labs’s ancestral Unix code or written in close imitation of its descendants.
In particular, Linux (from which we draw most of our examples) is a Unix under
this definition.

This book employs the Unix manual page convention of tagging Unix facilities
with a following manual section in parentheses, usually on first introduction when
we want to emphasize that this is a Unix command. Thus, for example, read
“munger(1)” as “the ‘munger’ program, which will be documented in section 1 (user
tools) of the Unix manual pages, if it’s present on your system”. Section 2 is C system
calls, section 3 is C library calls, section 5 is file formats and protocols, section 8 is
system administration tools. Other sections vary among Unixes but are not cited in
this book. For more, type man 1 man at your Unix shell prompt (older System V
Unixes may require man -s 1 man).

Sometimes we mention a Unix application (such as Emacs), without a manual-
section suffix and capitalized. This is a clue that the name actually represents a well-
established family of Unix programs with essentially the same function, and we are
discussing generic properties of all of them. Emacs, for example, includes xemacs.

At various points later in this book we refer to ‘old school’ and ‘new school’
methods. As with rap music, new-school starts about 1990. In this context, it’s
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associated with the rise of scripting languages, GUIs, open-source Unixes, and the
Web. Old-school refers to the pre-1990 (and especially pre-1985) world of expensive
(shared) computers, proprietary Unixes, scripting in shell, and C everywhere. This
difference is worth pointing out because cheaper and less memory-constrained ma-
chines have wrought some significant changes on the Unix programming style.

Our Case Studies

A lot of books on programming rely on toy examples constructed specifically to prove
a point. This one won’t. Our case studies will be real, pre-existing pieces of software
that are in production use every day. Here are some of the major ones:

cdrtools/xcdroast
These two separate projects are usually used together. The cdrtools package
is a set of CLI tools for writing CD-ROMs; Web search for “cdrtools”. The
xcdroast application is a GUI front end for cdrtools; see the xcdroast project
site <http://www.xcdroast.org/>.

fetchmail
The fetchmail program retrieves mail from remote-mail servers using the
POP3 or IMAP post-office protocols. See the fetchmail home page
<http://www.catb.org/~esr/fetchmail> (or search for “fetchmail”
on the Web).

GIMP
The GIMP (GNU Image Manipulation Program) is a full-featured paint, draw,
and image-manipulation program that can edit a huge variety of graphical
formats in sophisticated ways. Sources are available from the GIMP home page
<http://www.gimp.org/> (or search for “GIMP” on the Web).

mutt
The mutt mail user agent is the current best-of-breed among text-based Unix
electronic mail agents, with notably good support for MIME (Multipurpose In-
ternet Mail Extensions) and the use of privacy aids such as PGP (Pretty Good
Privacy) and GPG (GNU Privacy Guard). Source code and executable binaries
are available at the Mutt project site <http://www.mutt.org>.

xmlto
The xmlto command renders DocBook and other XML documents in various
output formats, including HTML and text and PostScript. For sources and
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documentation, see the xmlto project site <http://cyberelk.net/
tim/xmlto/>.

To minimize the amount of code the user needs to read to understand the examples,
we have tried to choose case studies that can be used more than once, ideally to illus-
trate several different design principles and practices. For this same reason, many of
the examples are from my projects. No claim that these are the best possible ones is
implied, merely that I find them sufficiently familiar to be useful for multiple exposi-
tory purposes.

Author’s Acknowledgements

The guest contributors (Ken Arnold, Steven M. Bellovin, Stuart Feldman, Jim Gettys,
Steve Johnson, Brian Kernighan, David Korn, Mike Lesk, Doug McIlroy, Marshall
Kirk McKusick, Keith Packard, Henry Spencer, and Ken Thompson) added a great
deal of value to this book. Doug McIlroy, in particular, went far beyond the call of
duty in the thoroughness of his critique and the depth of his contributions, displaying
the same care and dedication to excellence which he brought to managing the original
Unix research group thirty years ago.

Special thanks go to Rob Landley and to my wife Catherine Raymond, both of
whom delivered intensive line-by-line critiques of manuscript drafts. Rob’s insightful
and attentive commentary actually inspired more than one entire chapter in the final
manuscript, and he had a lot to do with its present organization and range; if he had
written all the text he pushed me to improve, I would have to call him a co-author.
Cathy was my test audience representing non-technical readers; to the extent this
book is accessible to people who aren’t already programmers, that’s largely her doing.

This book benefited from discussions with many other people over the five years
it took me to write it. Mark M. Miller helped me achieve enlightenment about threads.
John Cowan supplied some insights about interface design patterns and drafted the
case studies of wily and VM/CMS, and Jef Raskin showed me where the Rule of Least
Surprise comes from. The UIUC System Architecture Group contributed useful
feedback on early chapters. The sections on What Unix Gets Wrong and Flexibility
in Depth were directly inspired by their review. Russell J. Nelson contributed the
material on Bernstein chaining in Chapter 7. Jay Maynard contributed most of the
material in the MVS case study in Chapter 3. Les Hatton provided many helpful
comments on the Languages chapter and motivated the portion of Chapter 4 on Optimal
Module Size. David A. Wheeler contributed many perceptive criticisms and some
case-study material, especially in the Design part. Russ Cox helped develop the survey
of Plan 9. Dennis Ritchie corrected me on some historical points about C.
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Hundreds of Unix programmers, far too many to list here, contributed advice and
comments during the book’s public review period between January and June of 2003.
As always, I found the process of open peer review over the Web both intensely
challenging and intensely rewarding. Also as always, responsibility for any errors in
the resulting work remains my own.

The expository style and some of the concerns of this book have been influenced
by the design patterns movement; indeed, I flirted with the idea of titling the book
Unix Design Patterns. I didn’t, because I disagree with some of the implicit central
dogmas of the movement and don’t feel the need to use all its formal apparatus or
accept its cultural baggage. Nevertheless, my approach has certainly been influenced
by Christopher Alexander’s work3 (especially The Timeless Way of Building and
A Pattern Language), and I owe the Gang of Four and other members of their school
a large debt of gratitude for showing me how it is possible to use Alexander’s insights
to talk about software design at a high level without merely uttering vague and useless
generalities. Interested readers should see Design Patterns: Elements of Reusable
Object-Oriented Software [GangOfFour] for an introduction to design patterns.

The title of this book is, of course, a reference to Donald Knuth’s The Art of
Computer Programming. While not specifically associated with the Unix tradition,
Knuth has been an influence on us all.

Editors with vision and imagination aren’t as common as they should be. Mark
Taub is one; he saw merit in a stalled project and skillfully nudged me into finishing
it. Copy editors with a good ear for prose style and enough ability to improve writing
that isn’t like theirs are even less common, but Mary Lou Nohr makes that grade.
Jerry Votta seized on my concept for the cover and made it look better than I had
imagined. The whole crew at Addison-Wesley gets high marks for making the edito-
rial and production process as painless as possible, and for cheerfully accommodating
my control-freak tendencies not just over the text but deep into the details of the
book’s visual design, art, and marketing.

3. An appreciation of Alexander’s work, with links to on-line versions of significant portions,
may be found at Some Notes on Christopher Alexander <http://www.math.utsa.edu/
sphere/salingar/Chris.text.html>.
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1

Philosophy:
Philosophy Matters

Those who do not understand Unix are condemned to reinvent it, poorly.

Usenet signature, November 1987
—Henry Spencer

Culture? What Culture?1.1

This is a book about Unix programming, but in it we’re going to toss around the words
‘culture’, ‘art’, and ‘philosophy’ a lot. If you are not a programmer, or you are a pro-
grammer who has had little contact with the Unix world, this may seem strange. But
Unix has a culture; it has a distinctive art of programming; and it carries with it a
powerful design philosophy. Understanding these traditions will help you build better
software, even if you’re developing for a non-Unix platform.

Every branch of engineering and design has technical cultures. In most kinds of
engineering, the unwritten traditions of the field are parts of a working practitioner’s
education as important as (and, as experience grows, often more important than) the
official handbooks and textbooks. Senior engineers develop huge bodies of implicit
knowledge, which they pass to their juniors by (as Zen Buddhists put it) “a special
transmission, outside the scriptures”.

Software engineering is generally an exception to this rule; technology has changed
so rapidly, software environments have come and gone so quickly, that technical
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cultures have been weak and ephemeral. There are, however, exceptions to this
exception. A very few software technologies have proved durable enough to evolve
strong technical cultures, distinctive arts, and an associated design philosophy trans-
mitted across generations of engineers.

The Unix culture is one of these. The Internet culture is another—or, in the twenty-
first century, arguably the same one. The two have grown increasingly difficult to
separate since the early 1980s, and in this book we won’t try particularly hard.

The Durability of Unix1.2

Unix was born in 1969 and has been in continuous production use ever since. That’s
several geologic eras by computer-industry standards—older than the PC or worksta-
tions or microprocessors or even video display terminals, and contemporaneous with
the first semiconductor memories. Of all production timesharing systems today, only
IBM’s VM/CMS can claim to have existed longer, and Unix machines have provided
hundreds of thousands of times more service hours; indeed, Unix has probably sup-
ported more computing than all other timesharing systems put together.

Unix has found use on a wider variety of machines than any other operating system
can claim. From supercomputers to handhelds and embedded networking hardware,
through workstations and servers and PCs and minicomputers, Unix has probably
seen more architectures and more odd hardware than any three other operating
systems combined.

Unix has supported a mind-bogglingly wide spectrum of uses. No other operating
system has shone simultaneously as a research vehicle, a friendly host for technical
custom applications, a platform for commercial-off-the-shelf business software, and
a vital component technology of the Internet.

Confident predictions that Unix would wither away, or be crowded out by other
operating systems, have been made yearly since its infancy. And yet Unix, in its
present-day avatars as Linux and BSD and Solaris and MacOS X and half a dozen
other variants, seems stronger than ever today.

Robert Metcalf [the inventor of Ethernet] says that if something comes along to
replace Ethernet, it will be called “Ethernet”, so therefore Ethernet will never die.1

Unix has already undergone several such transformations.

—Ken Thompson

1. In fact, Ethernet has already been replaced by a different technology with the same
name—twice. Once when coax was replaced with twisted pair, and a second time when gigabit
Ethernet came in.
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At least one of Unix’s central technologies—the C language—has been widely
naturalized elsewhere. Indeed it is now hard to imagine doing software engineering
without C as a ubiquitous common language of systems programming. Unix also in-
troduced both the now-ubiquitous tree-shaped file namespace with directory nodes
and the pipeline for connecting programs.

Unix’s durability and adaptability have been nothing short of astonishing. Other
technologies have come and gone like mayflies. Machines have increased a thousand-
fold in power, languages have mutated, industry practice has gone through multiple
revolutions—and Unix hangs in there, still producing, still paying the bills, and still
commanding loyalty from many of the best and brightest software technologists on
the planet.

One of the many consequences of the exponential power-versus-time curve in
computing, and the corresponding pace of software development, is that 50% of what
one knows becomes obsolete over every 18 months. Unix does not abolish this phe-
nomenon, but does do a good job of containing it. There’s a bedrock of unchanging
basics—languages, system calls, and tool invocations—that one can actually keep
using for years, even decades. Elsewhere it is impossible to predict what will be stable;
even entire operating systems cycle out of use. Under Unix, there is a fairly sharp
distinction between transient knowledge and lasting knowledge, and one can know
ahead of time (with about 90% certainty) which category something is likely to fall
in when one learns it. Thus the loyalty Unix commands.

Much of Unix’s stability and success has to be attributed to its inherent strengths,
to design decisions Ken Thompson, Dennis Ritchie, Brian Kernighan, Doug McIlroy,
Rob Pike and other early Unix developers made back at the beginning; decisions that
have been proven sound over and over. But just as much is due to the design
philosophy, art of programming, and technical culture that grew up around Unix in
the early days. This tradition has continuously and successfully propagated itself in
symbiosis with Unix ever since.

The Case against Learning Unix Culture1.3

Unix’s durability and its technical culture are certainly of interest to people who already
like Unix, and perhaps to historians of technology. But Unix’s original application as
a general-purpose timesharing system for mid-sized and larger computers is rapidly
receding into the mists of history, killed off by personal workstations. And there is
certainly room for doubt that it will ever achieve success in the mainstream business-
desktop market now dominated by Microsoft.

Outsiders have frequently dismissed Unix as an academic toy or a hacker’s sandbox.
One well-known polemic, the Unix Hater’s Handbook [Garfinkel], follows an antag-
onistic line nearly as old as Unix itself in writing its devotees off as a cult religion of
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freaks and losers. Certainly the colossal and repeated blunders of AT&T, Sun, Novell,
and other commercial vendors and standards consortia in mispositioning and mis-
marketing Unix have become legendary.

Even from within the Unix world, Unix has seemed to be teetering on the brink
of universality for so long as to raise the suspicion that it will never actually
get there. A skeptical outside observer’s conclusion might be that Unix is too useful
to die but too awkward to break out of the back room; a perpetual niche operat-
ing system.

What confounds the skeptics’ case is, more than anything else, the rise of Linux
and other open-source Unixes (such as the modern BSD variants). Unix’s culture
proved too vital to be smothered even by a decade of vendor mismanagement. Today
the Unix community itself has taken control of the technology and marketing, and is
rapidly and visibly solving Unix’s problems (in ways we’ll examine in more detail
in Chapter 20).

What Unix Gets Wrong1.4

For a design that dates from 1969, it is remarkably difficult to identify design choices
in Unix that are unequivocally wrong. There are several popular candidates, but each
is still a subject of spirited debate not merely among Unix fans but across the wider
community of people who think about and design operating systems.

Unix files have no structure above byte level. File deletion is irrevocable. The Unix
security model is arguably too primitive. Job control is botched. There are too many
different kinds of names for things. Having a file system at all may have been the
wrong choice. We will discuss these technical issues in Chapter 20.

But perhaps the most enduring objections to Unix are consequences of a feature
of its philosophy first made explicit by the designers of the X windowing system.
X strives to provide “mechanism, not policy”, supporting an extremely general
set of graphics operations and deferring decisions about toolkits and interface
look-and-feel (the policy) up to application level. Unix’s other system-level
services display similar tendencies; final choices about behavior are pushed
as far toward the user as possible. Unix users can choose among multiple shells.
Unix programs normally provide many behavior options and sport elaborate prefer-
ence facilities.

This tendency reflects Unix’s heritage as an operating system designed primarily
for technical users, and a consequent belief that users know better than operating-
system designers what their own needs are.
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This tenet was firmly established at Bell Labs by Dick Hamming2 who insisted in
the 1950s when computers were rare and expensive, that open-shop computing,
where customers wrote their own programs, was imperative, because “it is better
to solve the right problem the wrong way than the wrong problem the right way”.

—Doug McIlroy

But the cost of the mechanism-not-policy approach is that when the user can set
policy, the user must set policy. Nontechnical end-users frequently find Unix’s profu-
sion of options and interface styles overwhelming and retreat to systems that at least
pretend to offer them simplicity.

In the short term, Unix’s laissez-faire approach may lose it a good many nontech-
nical users. In the long term, however, it may turn out that this ‘mistake’ confers a
critical advantage—because policy tends to have a short lifetime, mechanism a long
one. Today’s fashion in interface look-and-feel too often becomes tomorrow’s evolu-
tionary dead end (as people using obsolete X toolkits will tell you with some feeling!).
So the flip side of the flip side is that the “mechanism, not policy” philosophy may
enable Unix to renew its relevance long after competitors more tied to one set of
policy or interface choices have faded from view.3

What Unix Gets Right1.5

The explosive recent growth of Linux, and the increasing importance of the Internet,
give us good reasons to suppose that the skeptics’ case is wrong. But even supposing
the skeptical assessment is true, Unix culture is worth learning because there are some
things that Unix and its surrounding culture clearly do better than any competitors.

Open-Source Software1.5.1

Though the term “open source” and the Open Source Definition were not invented
until 1998, peer-review-intensive development of freely shared source code was a key
feature of the Unix culture from its beginnings.

2. Yes, the Hamming of ‘Hamming distance’ and ‘Hamming code’.

3. Jim Gettys, one of the architects of X (and a contributor to this book), has meditated in
depth on how X’s laissez-faire style might be productively carried forward in The Two-Edged
Sword [Gettys]. This essay is well worth reading, both for its specific proposals and for its
expression of the Unix mindset.

71.5 What Unix Gets Right



ptg

For its first ten years AT&T’s original Unix, and its primary variant Berkeley Unix,
were normally distributed with source code. This enabled most of the other good
things that follow here.

Cross-Platform Portability and Open Standards1.5.2

Unix is still the only operating system that can present a consistent, documented ap-
plication programming interface (API) across a heterogeneous mix of computers,
vendors, and special-purpose hardware. It is the only operating system that can scale
from embedded chips and handhelds, up through desktop machines, through
servers, and all the way to special-purpose number-crunching behemoths and database
back ends.

The Unix API is the closest thing to a hardware-independent standard for writing
truly portable software that exists. It is no accident that what the IEEE originally
called the Portable Operating System Standard quickly got a suffix added to its
acronym and became POSIX. A Unix-equivalent API was the only credible model
for such a standard.

Binary-only applications for other operating systems die with their birth environ-
ments, but Unix sources are forever. Forever, at least, given a Unix technical culture
that polishes and maintains them across decades.

The Internet and the World Wide Web1.5.3

The Defense Department’s contract for the first production TCP/IP stack went to a
Unix development group because the Unix in question was largely open source. Be-
sides TCP/IP, Unix has become the one indispensable core technology of the Internet
Service Provider industry. Ever since the demise of the TOPS family of operating
systems in the mid-1980s, most Internet server machines (and effectively all above
the PC level) have relied on Unix.

Not even Microsoft’s awesome marketing clout has been able to dent Unix’s lock
on the Internet. While the TCP/IP standards (on which the Internet is based) evolved
under TOPS-10 and are theoretically separable from Unix, attempts to make them
work on other operating systems have been bedeviled by incompatibilities, instabilities,
and bugs. The theory and specifications are available to anyone, but the engineering
tradition to make them into a solid and working reality exists only in the Unix world.4

4. Other operating systems have generally copied or cloned Unix TCP/IP implementations.
It is their loss that they have not generally adopted the robust tradition of peer review that goes
with it, exemplified by documents like RFC 1025 (TCP and IP Bake Off).
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The Internet technical culture and the Unix culture began to merge in the early
1980s, and are now inseparably symbiotic. The design of the World Wide Web, the
modern face of the Internet, owes as much to Unix as it does to the ancestral
ARPANET. In particular, the concept of the Uniform Resource Locator (URL) so
central to the Web is a generalization of the Unix idea of one uniform file namespace
everywhere. To function effectively as an Internet expert, an understanding of Unix
and its culture are indispensable.

The Open-Source Community1.5.4

The community that originally formed around the early Unix source distributions
never went away—after the great Internet explosion of the early 1990s, it recruited
an entire new generation of eager hackers on home machines.

Today, that community is a powerful support group for all kinds of software
development. High-quality open-source development tools abound in the Unix world
(we’ll examine many in this book). Open-source Unix applications are usually equal
to, and are often superior to, their proprietary equivalents [Fuzz]. Entire Unix operating
systems, with complete toolkits and basic applications suites, are available for free
over the Internet. Why code from scratch when you can adapt, reuse, recycle, and
save yourself 90% of the work?

This tradition of code-sharing depends heavily on hard-won expertise about how
to make programs cooperative and reusable. And not by abstract theory, but through
a lot of engineering practice—unobvious design rules that allow programs to function
not just as isolated one-shot solutions but as synergistic parts of a toolkit. A major
purpose of this book is to elucidate those rules.

Today, a burgeoning open-source movement is bringing new vitality, new technical
approaches, and an entire generation of bright young programmers into the Unix tra-
dition. Open-source projects including the Linux operating system and symbionts
such as Apache and Mozilla have brought the Unix tradition an unprecedented level
of mainstream visibility and success. The open-source movement seems on the verge
of winning its bid to define the computing infrastructure of tomorrow—and the core
of that infrastructure will be Unix machines running on the Internet.

Flexibility All the Way Down1.5.5

Many operating systems touted as more ‘modern’ or ‘user friendly’ than Unix achieve
their surface glossiness by locking users and developers into one interface policy, and
offer an application-programming interface that for all its elaborateness is rather
narrow and rigid. On such systems, tasks the designers have anticipated are very
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easy—but tasks they have not anticipated are often impossible or at best extreme-
ly painful.

Unix, on the other hand, has flexibility in depth. The many ways Unix provides
to glue together programs mean that components of its basic toolkit can be combined
to produce useful effects that the designers of the individual toolkit parts never
anticipated.

Unix’s support of multiple styles of program interface (often seen as a weakness
because it increases the perceived complexity of the system to end users) also con-
tributes to flexibility; no program that wants to be a simple piece of data plumbing is
forced to carry the complexity overhead of an elaborate GUI.

Unix tradition lays heavy emphasis on keeping programming interfaces relatively
small, clean, and orthogonal—another trait that produces flexibility in depth.
Throughout a Unix system, easy things are easy and hard things are at least possible.

Unix Is Fun to Hack1.5.6

People who pontificate about Unix’s technical superiority often don’t mention what
may ultimately be its most important strength, the one that underlies all its successes.
Unix is fun to hack.

Unix boosters seem almost ashamed to acknowledge this sometimes, as though
admitting they’re having fun might damage their legitimacy somehow. But it’s true;
Unix is fun to play with and develop for, and always has been.

There are not many operating systems that anyone has ever described as ‘fun’.
Indeed, the friction and labor of development under most other environments has
been aptly compared to kicking a dead whale down the beach.5 The kindest adjectives
one normally hears are on the order of “tolerable” or “not too painful”. In the Unix
world, by contrast, the operating system rewards effort rather than frustrating it.
People programming under Unix usually come to see it not as an adversary to be
clubbed into doing one’s bidding by main effort but rather as an actual positive help.

This has real economic significance. The fun factor started a virtuous circle early
in Unix’s history. People liked Unix, so they built more programs for it that made it
nicer to use. Today people build entire, production-quality open-source Unix systems
as a hobby. To understand how remarkable this is, ask yourself when you last heard
of anybody cloning OS/360 or VAX/VMS or Microsoft Windows for fun.

The ‘fun’ factor is not trivial from a design point of view, either. The kind of people
who become programmers and developers have ‘fun’ when the effort they have to put
out to do a task challenges them, but is just within their capabilities. ‘Fun’ is therefore

5. This was originally said of the IBM MVS TSO facility by Stephen C. Johnson, perhaps
better known as the author of yacc.
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a sign of peak efficiency. Painful development environments waste labor and
creativity; they extract huge hidden costs in time, money, and opportunity.

If Unix were a failure in every other way, the Unix engineering culture would be
worth studying for the ways it keeps the fun in development—because that fun is a
sign that it makes developers efficient, effective, and productive.

The Lessons of Unix Can Be Applied Elsewhere1.5.7

Unix programmers have accumulated decades of experience while pioneering operat-
ing-system features we now take for granted. Even non-Unix programmers can benefit
from studying that Unix experience. Because Unix makes it relatively easy to apply
good design principles and development methods, it is an excellent place to learn them.

Other operating systems generally make good practice rather more difficult, but
even so some of the Unix culture’s lessons can transfer. Much Unix code (including
all its filters, its major scripting languages, and many of its code generators) will port
directly to any operating system supporting ANSI C (for the excellent reason that C
itself was a Unix invention and the ANSI C library embodies a substantial chunk of
Unix’s services!).

Basics of the Unix Philosophy1.6

The ‘Unix philosophy’ originated with Ken Thompson’s early meditations on how to
design a small but capable operating system with a clean service interface. It grew as
the Unix culture learned things about how to get maximum leverage out of Thompson’s
design. It absorbed lessons from many sources along the way.

The Unix philosophy is not a formal design method. It wasn’t handed down from
the high fastnesses of theoretical computer science as a way to produce theoretically
perfect software. Nor is it that perennial executive’s mirage, some way to magically
extract innovative but reliable software on too short a deadline from unmotivated,
badly managed, and underpaid programmers.

The Unix philosophy (like successful folk traditions in other engineering disci-
plines) is bottom-up, not top-down. It is pragmatic and grounded in experience. It is
not to be found in official methods and standards, but rather in the implicit half-
reflexive knowledge, the expertise that the Unix culture transmits. It encourages a
sense of proportion and skepticism—and shows both by having a sense of (often
subversive) humor.

Doug McIlroy, the inventor of Unix pipes and one of the founders of the Unix
tradition, had this to say at the time [McIlroy78]:
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(i) Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new features.

(ii) Expect the output of every program to become the input to another, as yet un-
known, program. Don’t clutter output with extraneous information. Avoid stringently
columnar or binary input formats. Don’t insist on interactive input.

(iii) Design and build software, even operating systems, to be tried early, ideally
within weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

(iv) Use tools in preference to unskilled help to lighten a programming task, even
if you have to detour to build the tools and expect to throw some of them out after
you’ve finished using them.

He later summarized it this way (quoted in A Quarter Century of Unix [Salus]):

This is the Unix philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that is
a universal interface.

Rob Pike, who became one of the great masters of C, offers a slightly different
angle in Notes on C Programming [Pike]:

Rule 1. You can’t tell where a program is going to spend its time. Bottlenecks occur
in surprising places, so don’t try to second guess and put in a speed hack until
you’ve proven that’s where the bottleneck is.

Rule 2. Measure. Don’t tune for speed until you’ve measured, and even then don’t
unless one part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow when n is small, and n is usually small. Fancy
algorithms have big constants. Until you know that n is frequently going to be big,
don’t get fancy. (Even if n does get big, use Rule 2 first.)

Rule 4. Fancy algorithms are buggier than simple ones, and they’re much harder
to implement. Use simple algorithms as well as simple data structures.

Rule 5. Data dominates. If you’ve chosen the right data structures and organized
things well, the algorithms will almost always be self-evident. Data structures, not
algorithms, are central to programming.6

6. Pike’s original adds “(See Brooks p. 102.)” here. The reference is to an early edition of The
Mythical Man-Month [Brooks]; the quote is “Show me your flow charts and conceal your tables
and I shall continue to be mystified, show me your tables and I won’t usually need your flow
charts; they’ll be obvious”.
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Rule 6. There is no Rule 6.

Ken Thompson, the man who designed and implemented the first Unix, reinforced
Pike’s rule 4 with a gnomic maxim worthy of a Zen patriarch:

When in doubt, use brute force.

More of the Unix philosophy was implied not by what these elders said but by
what they did and the example Unix itself set. Looking at the whole, we can abstract
the following ideas:

1. Rule of Modularity: Write simple parts connected by clean interfaces.

2. Rule of Clarity: Clarity is better than cleverness.

3. Rule of Composition: Design programs to be connected to other programs.

4. Rule of Separation: Separate policy from mechanism; separate interfaces
from engines.

5. Rule of Simplicity: Design for simplicity; add complexity only where you must.

6. Rule of Parsimony: Write a big program only when it is clear by demonstration
that nothing else will do.

7. Rule of Transparency: Design for visibility to make inspection and debug-
ging easier.

8. Rule of Robustness: Robustness is the child of transparency and simplicity.

9. Rule of Representation: Fold knowledge into data so program logic can be
stupid and robust.

10. Rule of Least Surprise: In interface design, always do the least surprising thing.

11. Rule of Silence: When a program has nothing surprising to say, it should
say nothing.

12. Rule of Repair: When you must fail, fail noisily and as soon as possible.

13. Rule of Economy: Programmer time is expensive; conserve it in preference to
machine time.

14. Rule of Generation: Avoid hand-hacking; write programs to write programs
when you can.
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15. Rule of Optimization: Prototype before polishing. Get it working before you
optimize it.

16. Rule of Diversity: Distrust all claims for “one true way”.

17. Rule of Extensibility: Design for the future, because it will be here sooner than
you think.

If you’re new to Unix, these principles are worth some meditation. Software-engi-
neering texts recommend most of them; but most other operating systems lack the
right tools and traditions to turn them into practice, so most programmers can’t apply
them with any consistency. They come to accept blunt tools, bad designs, overwork,
and bloated code as normal—and then wonder what Unix fans are so annoyed about.

Rule of Modularity: Write simple parts connected by clean
interfaces.

1.6.1

As Brian Kernighan once observed, “Controlling complexity is the essence of com-
puter programming” [Kernighan-Plauger]. Debugging dominates development time,
and getting a working system out the door is usually less a result of brilliant design
than it is of managing not to trip over your own feet too many times.

Assemblers, compilers, flowcharting, procedural programming, structured program-
ming, “artificial intelligence”, fourth-generation languages, object orientation, and
software-development methodologies without number have been touted and sold as
a cure for this problem. All have failed as cures, if only because they ‘succeeded’ by
escalating the normal level of program complexity to the point where (once again)
human brains could barely cope. As Fred Brooks famously observed [Brooks], there
is no silver bullet.

The only way to write complex software that won’t fall on its face is to hold its
global complexity down—to build it out of simple parts connected by well-defined
interfaces, so that most problems are local and you can have some hope of upgrading
a part without breaking the whole.

Rule of Clarity: Clarity is better than cleverness.1.6.2

Because maintenance is so important and so expensive, write programs as if the most
important communication they do is not to the computer that executes them but to
the human beings who will read and maintain the source code in the future (includ-
ing yourself).

In the Unix tradition, the implications of this advice go beyond just commenting
your code. Good Unix practice also embraces choosing your algorithms and imple-
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mentations for future maintainability. Buying a small increase in performance with
a large increase in the complexity and obscurity of your technique is a bad
trade—not merely because complex code is more likely to harbor bugs, but also be-
cause complex code will be harder to read for future maintainers.

Code that is graceful and clear, on the other hand, is less likely to break—and
more likely to be instantly comprehended by the next person to have to change it.
This is important, especially when that next person might be yourself some years
down the road.

Never struggle to decipher subtle code three times. Once might be a one-shot fluke,
but if you find yourself having to figure it out a second time—because the first was
too long ago and you’ve forgotten details—it is time to comment the code so that
the third time will be relatively painless.

—Henry Spencer

Rule of Composition: Design programs to be connected
with other programs.

1.6.3

It’s hard to avoid programming overcomplicated monoliths if none of your programs
can talk to each other.

Unix tradition strongly encourages writing programs that read and write simple,
textual, stream-oriented, device-independent formats. Under classic Unix, as many
programs as possible are written as simple filters, which take a simple text stream on
input and process it into another simple text stream on output.

Despite popular mythology, this practice is favored not because Unix programmers
hate graphical user interfaces. It’s because if you don’t write programs that accept
and emit simple text streams, it’s much more difficult to hook the programs together.

Text streams are to Unix tools as messages are to objects in an object-oriented
setting. The simplicity of the text-stream interface enforces the encapsulation of the
tools. More elaborate forms of inter-process communication, such as remote procedure
calls, show a tendency to involve programs with each others’ internals too much.

To make programs composable, make them independent. A program on one end
of a text stream should care as little as possible about the program on the other end.
It should be made easy to replace one end with a completely different implementation
without disturbing the other.

GUIs can be a very good thing. Complex binary data formats are sometimes
unavoidable by any reasonable means. But before writing a GUI, it’s wise to ask if
the tricky interactive parts of your program can be segregated into one piece and the
workhorse algorithms into another, with a simple command stream or application
protocol connecting the two. Before devising a tricky binary format to pass data
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around, it’s worth experimenting to see if you can make a simple textual format work
and accept a little parsing overhead in return for being able to hack the data stream
with general-purpose tools.

When a serialized, protocol-like interface is not natural for the application, proper
Unix design is to at least organize as many of the application primitives as possible
into a library with a well-defined API. This opens up the possibility that the application
can be called by linkage, or that multiple interfaces can be glued on it for differ-
ent tasks.

(We discuss these issues in detail in Chapter 7.)

Rule of Separation: Separate policy from mechanism;
separate interfaces from engines.

1.6.4

In our discussion of what Unix gets wrong, we observed that the designers of X made
a basic decision to implement “mechanism, not policy”—to make X a generic
graphics engine and leave decisions about user-interface style to toolkits and other
levels of the system. We justified this by pointing out that policy and mechanism tend
to mutate on different timescales, with policy changing much faster than mechanism.
Fashions in the look and feel of GUI toolkits may come and go, but raster operations
and compositing are forever.

Thus, hardwiring policy and mechanism together has two bad effects: It makes
policy rigid and harder to change in response to user requirements, and it means that
trying to change policy has a strong tendency to destabilize the mechanisms.

On the other hand, by separating the two we make it possible to experiment with
new policy without breaking mechanisms. We also make it much easier to write good
tests for the mechanism (policy, because it ages so quickly, often does not justify
the investment).

This design rule has wide application outside the GUI context. In general, it implies
that we should look for ways to separate interfaces from engines.

One way to effect that separation is, for example, to write your application as a
library of C service routines that are driven by an embedded scripting language, with
the application flow of control written in the scripting language rather than C.
A classic example of this pattern is the Emacs editor, which uses an embedded Lisp
interpreter to control editing primitives written in C. We discuss this style of design
in Chapter 11.

Another way is to separate your application into cooperating front-end and back-
end processes communicating through a specialized application protocol over sockets;
we discuss this kind of design in Chapter 5 and Chapter 7. The front end implements
policy; the back end, mechanism. The global complexity of the pair will often be far
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lower than that of a single-process monolith implementing the same functions, reducing
your vulnerability to bugs and lowering life-cycle costs.

Rule of Simplicity: Design for simplicity; add complexity
only where you must.

1.6.5

Many pressures tend to make programs more complicated (and therefore more
expensive and buggy). One such pressure is technical machismo. Programmers are
bright people who are (often justly) proud of their ability to handle complexity and
juggle abstractions. Often they compete with their peers to see who can build the most
intricate and beautiful complexities. Just as often, their ability to design outstrips their
ability to implement and debug, and the result is expensive failure.

The notion of “intricate and beautiful complexities” is almost an oxymoron. Unix
programmers vie with each other for “simple and beautiful” honors — a point
that’s implicit in these rules, but is well worth making overt.

—Doug McIlroy

Even more often (at least in the commercial software world) excessive complexity
comes from project requirements that are based on the marketing fad of the month
rather than the reality of what customers want or software can actually deliver. Many
a good design has been smothered under marketing’s pile of “checklist features” —
features that, often, no customer will ever use. And a vicious circle operates; the
competition thinks it has to compete with chrome by adding more chrome. Pretty
soon, massive bloat is the industry standard and everyone is using huge, buggy pro-
grams not even their developers can love.

Either way, everybody loses in the end.
The only way to avoid these traps is to encourage a software culture that knows

that small is beautiful, that actively resists bloat and complexity: an engineering tra-
dition that puts a high value on simple solutions, that looks for ways to break program
systems up into small cooperating pieces, and that reflexively fights attempts to gussy
up programs with a lot of chrome (or, even worse, to design programs around
the chrome).

That would be a culture a lot like Unix’s.
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Rule of Parsimony: Write a big program only when it is clear
by demonstration that nothing else will do.

1.6.6

‘Big’ here has the sense both of large in volume of code and of internal complexity.
Allowing programs to get large hurts maintainability. Because people are reluctant
to throw away the visible product of lots of work, large programs invite overinvestment
in approaches that are failed or suboptimal.

(We’ll examine the issue of the right size of software in more detail in Chapter 13.)

Rule of Transparency: Design for visibility to make
inspection and debugging easier.

1.6.7

Because debugging often occupies three-quarters or more of development time, work
done early to ease debugging can be a very good investment. A particularly effective
way to ease debugging is to design for transparency and discoverability.

A software system is transparent when you can look at it and immediately under-
stand what it is doing and how. It is discoverable when it has facilities for monitoring
and display of internal state so that your program not only functions well but can be
seen to function well.

Designing for these qualities will have implications throughout a project. At min-
imum, it implies that debugging options should not be minimal afterthoughts. Rather,
they should be designed in from the beginning—from the point of view that the pro-
gram should be able to both demonstrate its own correctness and communicate to
future developers the original developer’s mental model of the problem it solves.

For a program to demonstrate its own correctness, it needs to be using input and
output formats sufficiently simple so that the proper relationship between valid input
and correct output is easy to check.

The objective of designing for transparency and discoverability should also encour-
age simple interfaces that can easily be manipulated by other programs—in particular,
test and monitoring harnesses and debugging scripts.

Rule of Robustness: Robustness is the child
of transparency and simplicity.

1.6.8

Software is said to be robust when it performs well under unexpected conditions
which stress the designer’s assumptions, as well as under normal conditions.

Most software is fragile and buggy because most programs are too complicated
for a human brain to understand all at once. When you can’t reason correctly about
the guts of a program, you can’t be sure it’s correct, and you can’t fix it if it’s broken.
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It follows that the way to make robust programs is to make their internals easy for
human beings to reason about. There are two main ways to do that: transparency
and simplicity.

For robustness, designing in tolerance for unusual or extremely bulky inputs is also
important. Bearing in mind the Rule of Composition helps; input generated by
other programs is notorious for stress-testing software (e.g., the original Unix C
compiler reportedly needed small upgrades to cope well with Yacc output). The
forms involved often seem useless to humans. For example, accepting empty
lists/strings/etc., even in places where a human would seldom or never supply an
empty string, avoids having to special-case such situations when generating the
input mechanically.

—Henry Spencer

One very important tactic for being robust under odd inputs is to avoid having
special cases in your code. Bugs often lurk in the code for handling special cases, and
in the interactions among parts of the code intended to handle different special cases.

We observed above that software is transparent when you can look at it and imme-
diately see what is going on. It is simple when what is going on is uncomplicated
enough for a human brain to reason about all the potential cases without strain. The
more your programs have both of these qualities, the more robust they will be.

Modularity (simple parts, clean interfaces) is a way to organize programs to make
them simpler. There are other ways to fight for simplicity. Here’s another one.

Rule of Representation: Fold knowledge into data,
so program logic can be stupid and robust.

1.6.9

Even the simplest procedural logic is hard for humans to verify, but quite complex
data structures are fairly easy to model and reason about. To see this, compare the
expressiveness and explanatory power of a diagram of (say) a fifty-node pointer tree
with a flowchart of a fifty-line program. Or, compare an array initializer expressing
a conversion table with an equivalent switch statement. The difference in transparency
and clarity is dramatic. See Rob Pike’s Rule 5.

Data is more tractable than program logic. It follows that where you see a choice
between complexity in data structures and complexity in code, choose the former.
More: in evolving a design, you should actively seek ways to shift complexity from
code to data.

The Unix community did not originate this insight, but a lot of Unix code displays
its influence. The C language’s facility at manipulating pointers, in particular, has
encouraged the use of dynamically-modified reference structures at all levels of coding
from the kernel upward. Simple pointer chases in such structures frequently do duties
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that implementations in other languages would instead have to embody in more
elaborate procedures.

(We also cover these techniques in Chapter 9.)

Rule of Least Surprise: In interface design, always do
the least surprising thing.

1.6.10

(This is also widely known as the Principle of Least Astonishment.)
The easiest programs to use are those that demand the least new learning from the

user—or, to put it another way, the easiest programs to use are those that most effec-
tively connect to the user’s pre-existing knowledge.

Therefore, avoid gratuitous novelty and excessive cleverness in interface design.
If you’re writing a calculator program, ‘+’ should always mean addition! When de-
signing an interface, model it on the interfaces of functionally similar or analogous
programs with which your users are likely to be familiar.

Pay attention to your expected audience. They may be end users, they may be
other programmers, or they may be system administrators. What is least surprising
can differ among these groups.

Pay attention to tradition. The Unix world has rather well-developed conventions
about things like the format of configuration and run-control files, command-line
switches, and the like. These traditions exist for a good reason: to tame the learning
curve. Learn and use them.

(We’ll cover many of these traditions in Chapter 5 and Chapter 10.)

The flip side of the Rule of Least Surprise is to avoid making things superficially
similar but really a little bit different. This is extremely treacherous because the
seeming familiarity raises false expectations. It’s often better to make things dis-
tinctly different than to make them almost the same.

—Henry Spencer

Rule of Silence: When a program has nothing surprising
to say, it should say nothing.

1.6.11

One of Unix’s oldest and most persistent design rules is that when a program has
nothing interesting or surprising to say, it should shut up. Well-behaved Unix programs
do their jobs unobtrusively, with a minimum of fuss and bother. Silence is golden.

This “silence is golden” rule evolved originally because Unix predates video dis-
plays. On the slow printing terminals of 1969, each line of unnecessary output was a
serious drain on the user’s time. That constraint is gone, but excellent reasons for
terseness remain.
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I think that the terseness of Unix programs is a central feature of the style. When
your program’s output becomes another’s input, it should be easy to pick out the
needed bits. And for people it is a human-factors necessity—important information
should not be mixed in with verbosity about internal program behavior. If all
displayed information is important, important information is easy to find.

—Ken Arnold

Well-designed programs treat the user’s attention and concentration as a precious
and limited resource, only to be claimed when necessary.

(We’ll discuss the Rule of Silence and the reasons for it in more detail at the end
of Chapter 11.)

Rule of Repair: Repair what you can—but when you must
fail, fail noisily and as soon as possible.

1.6.12

Software should be transparent in the way that it fails, as well as in normal operation.
It’s best when software can cope with unexpected conditions by adapting to them,
but the worst kinds of bugs are those in which the repair doesn’t succeed and the
problem quietly causes corruption that doesn’t show up until much later.

Therefore, write your software to cope with incorrect inputs and its own execution
errors as gracefully as possible. But when it cannot, make it fail in a way that makes
diagnosis of the problem as easy as possible.

Consider also Postel’s Prescription:7 “Be liberal in what you accept, and con-
servative in what you send”. Postel was speaking of network service programs, but
the underlying idea is more general. Well-designed programs cooperate with other
programs by making as much sense as they can from ill-formed inputs; they either
fail noisily or pass strictly clean and correct data to the next program in the chain.

However, heed also this warning:

The original HTML documents recommended “be generous in what you accept”,
and it has bedeviled us ever since because each browser accepts a different superset
of the specifications. It is the specifications that should be generous, not their inter-
pretation.

—Doug McIlroy

7. Jonathan Postel was the first editor of the Internet RFC series of standards, and one of
the principal architects of the Internet. A tribute page <http://www.postel.org/
postel.html> is maintained by the Postel Center for Experimental Networking.
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McIlroy adjures us to design for generosity rather than compensating for inadequate
standards with permissive implementations. Otherwise, as he rightly points out, it’s
all too easy to end up in tag soup.

Rule of Economy: Programmer time is expensive; conserve
it in preference to machine time.

1.6.13

In the early minicomputer days of Unix, this was still a fairly radical idea (machines
were a great deal slower and more expensive then). Nowadays, with every development
shop and most users (apart from the few modeling nuclear explosions or doing 3D
movie animation) awash in cheap machine cycles, it may seem too obvious to
need saying.

Somehow, though, practice doesn’t seem to have quite caught up with reality. If
we took this maxim really seriously throughout software development, most applica-
tions would be written in higher-level languages like Perl, Tcl, Python, Java, Lisp and
even shell—languages that ease the programmer’s burden by doing their own memory
management (see [Ravenbrook]).

And indeed this is happening within the Unix world, though outside it most appli-
cations shops still seem stuck with the old-school Unix strategy of coding in C
(or C++). Later in this book we’ll discuss this strategy and its tradeoffs in detail.

One other obvious way to conserve programmer time is to teach machines how to
do more of the low-level work of programming. This leads to...

Rule of Generation: Avoid hand-hacking; write programs
to write programs when you can.

1.6.14

Human beings are notoriously bad at sweating the details. Accordingly, any kind of
hand-hacking of programs is a rich source of delays and errors. The simpler and more
abstracted your program specification can be, the more likely it is that the human
designer will have gotten it right. Generated code (at every level) is almost always
cheaper and more reliable than hand-hacked.

We all know this is true (it’s why we have compilers and interpreters, after all) but
we often don’t think about the implications. High-level-language code that’s repetitive
and mind-numbing for humans to write is just as productive a target for a code
generator as machine code. It pays to use code generators when they can raise the
level of abstraction—that is, when the specification language for the generator is
simpler than the generated code, and the code doesn’t have to be hand-hacked
afterwards.
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In the Unix tradition, code generators are heavily used to automate error-prone
detail work. Parser/lexer generators are the classic examples; makefile generators and
GUI interface builders are newer ones.

(We cover these techniques in Chapter 9.)

Rule of Optimization: Prototype before polishing. Get it
working before you optimize it.

1.6.15

The most basic argument for prototyping first is Kernighan & Plauger’s; “90% of the
functionality delivered now is better than 100% of it delivered never”. Prototyping
first may help keep you from investing far too much time for marginal gains.

For slightly different reasons, Donald Knuth (author of The Art of Computer
Programming, one of the field’s few true classics) popularized the observation that
“Premature optimization is the root of all evil”.8 And he was right.

Rushing to optimize before the bottlenecks are known may be the only error to
have ruined more designs than feature creep. From tortured code to incomprehensible
data layouts, the results of obsessing about speed or memory or disk usage at the
expense of transparency and simplicity are everywhere. They spawn innumerable
bugs and cost millions of man-hours—often, just to get marginal gains in the use of
some resource much less expensive than debugging time.

Disturbingly often, premature local optimization actually hinders global optimiza-
tion (and hence reduces overall performance). A prematurely optimized portion of
a design frequently interferes with changes that would have much higher payoffs
across the whole design, so you end up with both inferior performance and excessively
complex code.

In the Unix world there is a long-established and very explicit tradition (exemplified
by Rob Pike’s comments above and Ken Thompson’s maxim about brute force) that
says: Prototype, then polish. Get it working before you optimize it. Or: Make it work
first, then make it work fast. ‘Extreme programming’ guru Kent Beck, operating in a
different culture, has usefully amplified this to: “Make it run, then make it right, then
make it fast”.

The thrust of all these quotes is the same: get your design right with an un-opti-
mized, slow, memory-intensive implementation before you try to tune. Then, tune
systematically, looking for the places where you can buy big performance wins with
the smallest possible increases in local complexity.

8. In full: “We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil”. Knuth himself attributes the remark to C. A. R. Hoare.
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Prototyping is important for system design as well as optimization—it is much
easier to judge whether a prototype does what you want than it is to read a long
specification. I remember one development manager at Bellcore who fought against
the “requirements” culture years before anybody talked about “rapid prototyping”
or “agile development”. He wouldn’t issue long specifications; he’d lash together
some combination of shell scripts and awk code that did roughly what was needed,
tell the customers to send him some clerks for a few days, and then have the cus-
tomers come in and look at their clerks using the prototype and tell him whether
or not they liked it. If they did, he would say “you can have it industrial strength
so-many-months from now at such-and-such cost”. His estimates tended to be
accurate, but he lost out in the culture to managers who believed that requirements
writers should be in control of everything.

—Mike Lesk

Using prototyping to learn which features you don’t have to implement helps
optimization for performance; you don’t have to optimize what you don’t write. The
most powerful optimization tool in existence may be the delete key.

One of my most productive days was throwing away 1000 lines of code.

—Ken Thompson

(We’ll go into a bit more depth about related ideas in Chapter 12.)

Rule of Diversity: Distrust all claims for “one true way”.1.6.16

Even the best software tools tend to be limited by the imaginations of their designers.
Nobody is smart enough to optimize for everything, nor to anticipate all the uses to
which their software might be put. Designing rigid, closed software that won’t talk
to the rest of the world is an unhealthy form of arrogance.

Therefore, the Unix tradition includes a healthy mistrust of “one true way” ap-
proaches to software design or implementation. It embraces multiple languages, open
extensible systems, and customization hooks everywhere.

Rule of Extensibility: Design for the future, because it will
be here sooner than you think.

1.6.17

If it is unwise to trust other people’s claims for “one true way”, it’s even more foolish
to believe them about your own designs. Never assume you have the final answer.
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Therefore, leave room for your data formats and code to grow; otherwise, you will
often find that you are locked into unwise early choices because you cannot change
them while maintaining backward compatibility.

When you design protocols or file formats, make them sufficiently self-describing
to be extensible. Always, always either include a version number, or compose the
format from self-contained, self-describing clauses in such a way that new clauses
can be readily added and old ones dropped without confusing format-reading code.
Unix experience tells us that the marginal extra overhead of making data layouts self-
describing is paid back a thousandfold by the ability to evolve them forward without
breaking things.

When you design code, organize it so future developers will be able to plug new
functions into the architecture without having to scrap and rebuild the architecture.
This rule is not a license to add features you don’t yet need; it’s advice to write your
code so that adding features later when you do need them is easy. Make the joints
flexible, and put “If you ever need to...” comments in your code. You owe this grace
to people who will use and maintain your code after you.

You’ll be there in the future too, maintaining code you may have half forgotten
under the press of more recent projects. When you design for the future, the sanity
you save may be your own.

The Unix Philosophy in One Lesson1.7

All the philosophy really boils down to one iron law, the hallowed ‘KISS principle’
of master engineers everywhere:

K.I.S.S.
Keep It Simple, Stupid!

Unix gives you an excellent base for applying the KISS principle. The remainder
of this book will help you learn how.
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Applying the Unix Philosophy1.8

These philosophical principles aren’t just vague generalities. In the Unix world they
come straight from experience and lead to specific prescriptions, some of which we’ve
already developed above. Here’s a by no means exhaustive list:

• Everything that can be a source- and destination-independent filter should be one.

• Data streams should if at all possible be textual (so they can be viewed and
filtered with standard tools).

• Database layouts and application protocols should if at all possible be textual
(human-readable and human-editable).

• Complex front ends (user interfaces) should be cleanly separated from complex
back ends.

• Whenever possible, prototype in an interpreted language before coding C.

• Mixing languages is better than writing everything in one, if and only if using
only that one is likely to overcomplicate the program.

• Be generous in what you accept, rigorous in what you emit.

• When filtering, never throw away information you don’t need to.

• Small is beautiful. Write programs that do as little as is consistent with getting
the job done.

We’ll see the Unix design rules, and the prescriptions that derive from them, applied
over and over again in the remainder of this book. Unsurprisingly, they tend to converge
with the very best practices from software engineering in other traditions.9

Attitude Matters Too1.9

When you see the right thing, do it—this may look like more work in the short term,
but it’s the path of least effort in the long run. If you don’t know what the right thing

9. One notable example is Butler Lampson’s Hints for Computer System Design [Lampson],
which I discovered late in the preparation of this book. It not only expresses a number of Unix
dicta in forms that were clearly discovered independently, but uses many of the same tag lines
to illustrate them.
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is, do the minimum necessary to get the job done, at least until you figure out what
the right thing is.

To do the Unix philosophy right, you have to be loyal to excellence. You have to
believe that software design is a craft worth all the intelligence, creativity, and passion
you can muster. Otherwise you won’t look past the easy, stereotyped ways of approach-
ing design and implementation; you’ll rush into coding when you should be thinking.
You’ll carelessly complicate when you should be relentlessly simplifying—and then
you’ll wonder why your code bloats and debugging is so hard.

To do the Unix philosophy right, you have to value your own time enough never
to waste it. If someone has already solved a problem once, don’t let pride or politics
suck you into solving it a second time rather than re-using. And never work harder
than you have to; work smarter instead, and save the extra effort for when you need
it. Lean on your tools and automate everything you can.

Software design and implementation should be a joyous art, a kind of high-level
play. If this attitude seems preposterous or vaguely embarrassing to you, stop and
think; ask yourself what you’ve forgotten. Why do you design software instead of
doing something else to make money or pass the time? You must have thought software
was worthy of your passion once....

To do the Unix philosophy right, you need to have (or recover) that attitude. You
need to care. You need to play. You need to be willing to explore.

We hope you’ll bring this attitude to the rest of this book. Or, at least, that this
book will help you rediscover it.
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2

History:
A Tale of Two Cultures

Those who cannot remember the past are condemned to repeat it.

The Life of Reason (1905)
—George Santayana

The past informs practice. Unix has a long and colorful history, much of which is still
live as folklore, assumptions, and (too often) battle scars in the collective memory of
Unix programmers. In this chapter we’ll survey the history of Unix, with an eye to
explaining why, in 2003, today’s Unix culture looks the way it does.

Origins and History of Unix, 1969–19952.1

A notorious ‘second-system effect‘ often afflicts the successors of small experimental
prototypes. The urge to add everything that was left out the first time around all too
frequently leads to huge and overcomplicated design. Less well known, because less
common, is the ‘third-system effect’; sometimes, after the second system has collapsed
of its own weight, there is a chance to go back to simplicity and get it really right.

The original Unix was a third system. Its grandfather was the small and simple
Compatible Time-Sharing System (CTSS), either the first or second timesharing
system ever deployed (depending on some definitional questions we are going to de-
terminedly ignore). Its father was the pioneering Multics project, an attempt to create
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a feature-packed ‘information utility’ that would gracefully support interactive
timesharing of mainframe computers by large communities of users. Multics, alas,
did collapse of its own weight. But Unix was born from that collapse.

Genesis: 1969–19712.1.1

Unix was born in 1969 out of the mind of a computer scientist at Bell Laboratories,
Ken Thompson. Thompson had been a researcher on the Multics project, an experience
which spoiled him for the primitive batch computing that was the rule almost every-
where else. But the concept of timesharing was still a novel one in the late 1960s; the
first speculations on it had been uttered barely ten years earlier by computer scientist
John McCarthy (also the inventor of the Lisp language), the first actual deployment
had been in 1962, seven years earlier, and timesharing operating systems were still
experimental and temperamental beasts.

Computer hardware was at that time more primitive than even people who were
there to see it can now easily recall. The most powerful machines of the day had less
computing power and internal memory than a typical cellphone of today.1 Video dis-
play terminals were in their infancy and would not be widely deployed for another
six years. The standard interactive device on the earliest timesharing systems was the
ASR-33 teletype—a slow, noisy device that printed upper-case-only on big rolls of
yellow paper. The ASR-33 was the natural parent of the Unix tradition of terse com-
mands and sparse responses.

When Bell Labs withdrew from the Multics research consortium, Ken Thompson
was left with some Multics-inspired ideas about how to build a file system. He was
also left without a machine on which to play a game he had written called Space
Travel, a science-fiction simulation that involved navigating a rocket through the solar
system. Unix began its life on a scavenged PDP-7 minicomputer2 like the one shown
in Figure 2.1, as a platform for the Space Travel game and a testbed for Thompson’s
ideas about operating system design.

The full origin story is told in [Ritchie79] from the point of view of Thompson’s
first collaborator, Dennis Ritchie, the man who would become known as the co-
inventor of Unix and the inventor of the C language. Dennis Ritchie, Doug McIlroy,
and a few colleagues had become used to interactive computing under Multics and

1. Ken Thompson reminded me that today’s cellphones have more RAM than the PDP-7 had
RAM and disk storage combined; a large disk, in those days, was less than a megabyte
of storage.

2. There is a Web FAQ on the PDP computers <http://www.faqs.org/faqs/dec-faq/
pdp8/> that explains the otherwise extremely obscure PDP-7’s place in history.
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Figure 2.1: The PDP-7.

did not want to lose that capability. Thompson’s PDP-7 operating system offered them
a lifeline.

Ritchie observes: “What we wanted to preserve was not just a good environment
in which to do programming, but a system around which a fellowship could form.
We knew from experience that the essence of communal computing, as supplied by
remote-access, time-shared machines, is not just to type programs into a terminal in-
stead of a keypunch, but to encourage close communication”. The theme of computers
being viewed not merely as logic devices but as the nuclei of communities was in the
air; 1969 was also the year the ARPANET (the direct ancestor of today’s Internet)
was invented. The theme of “fellowship” would resonate all through Unix’s subse-
quent history.

Thompson and Ritchie’s Space Travel implementation attracted notice. At first,
the PDP-7’s software had to be cross-compiled on a GE mainframe. The utility pro-
grams that Thompson and Ritchie wrote to support hosting game development on the
PDP-7 itself became the core of Unix—though the name did not attach itself until
1970. The original spelling was “UNICS” (UNiplexed Information and Computing
Service), which Ritchie later described as “a somewhat treacherous pun on Multics”,
which stood for MULTiplexed Information and Computing Service.
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Even at its earliest stages, PDP-7 Unix bore a strong resemblance to today’s Unixes
and provided a rather more pleasant programming environment than was available
anywhere else in those days of card-fed batch mainframes. Unix was very close to
being the first system under which a programmer could sit down directly at a machine
and compose programs on the fly, exploring possibilities and testing while composing.
All through its lifetime Unix has had a pattern of growing more capabilities by attract-
ing highly skilled volunteer efforts from programmers impatient with the limitations
of other operating systems. This pattern was set early, within Bell Labs itself.

The Unix tradition of lightweight development and informal methods also began
at its beginning. Where Multics had been a large project with thousands of pages of
technical specifications written before the hardware arrived, the first running Unix
code was brainstormed by three people and implemented by Ken Thompson in two
days—on an obsolete machine that had been designed to be a graphics terminal for
a ‘real’ computer.

Unix’s first real job, in 1971, was to support what would now be called word pro-
cessing for the Bell Labs patent department; the first Unix application was the ancestor
of the nroff(1) text formatter. This project justified the purchase of a PDP-11, a much
more capable minicomputer. Management remained blissfully unaware that the word-
processing system that Thompson and colleagues were building was incubating an
operating system. Operating systems were not in the Bell Labs plan—AT&T had
joined the Multics consortium precisely to avoid doing an operating system on its
own. Nevertheless, the completed system was a rousing success. It established Unix
as a permanent and valued part of the computing ecology at Bell Labs, and began
another theme in Unix’s history—a close association with document-formatting,
typesetting, and communications tools. The 1972 manual claimed 10 installations.

Later, Doug McIlroy would write of this period [McIlroy91]: “Peer pressure and
simple pride in workmanship caused gobs of code to be rewritten or discarded as
better or more basic ideas emerged. Professional rivalry and protection of turf were
practically unknown: so many good things were happening that nobody needed to be
proprietary about innovations”. But it would take another quarter century for all the
implications of that observation to come home.

Exodus: 1971–19802.1.2

The original Unix operating system was written in assembler, and the applications in
a mix of assembler and an interpreted language called B, which had the virtue that it
was small enough to run on the PDP-7. But B was not powerful enough for systems
programming, so Dennis Ritchie added data types and structures to it. The resulting
C language evolved from B beginning in 1971; in 1973 Thompson and Ritchie finally
succeeded in rewriting Unix in their new language. This was quite an audacious move;
at the time, system programming was done in assembler in order to extract maximum
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performance from the hardware, and the very concept of a portable operating system
was barely a gleam in anyone’s eye. As late as 1979, Ritchie could write: “It seems
certain that much of the success of Unix follows from the readability, modifiability,
and portability of its software that in turn follows from its expression in high-level
languages”, in the knowledge that this was a point that still needed making.

A 1974 paper in Communications of the ACM [Ritchie-Thompson] gave Unix its
first public exposure. In that paper, its authors described the unprecedentedly simple
design of Unix, and reported over 600 Unix installations. All were on machines un-
derpowered even by the standards of that day, but (as Ritchie and Thompson wrote)
“constraint has encouraged not only economy, but also a certain elegance of design”.

After the CACM paper, research labs and universities all over the world clamored
for the chance to try out Unix themselves. Under a 1958 consent decree in settlement
of an antitrust case, AT&T (the parent organization of Bell Labs) had been forbidden
from entering the computer business. Unix could not, therefore, be turned into a
product; indeed, under the terms of the consent decree, Bell Labs was required to li-
cense its nontelephone technology to anyone who asked. Ken Thompson quietly began
answering requests by shipping out tapes and disk packs—each, according to legend,
with a note signed “love, ken”.

This was years before personal computers. Not only was the hardware needed to
run Unix too expensive to be within an individual’s reach, but nobody imagined that
would change in the foreseeable future. So Unix machines were only available by the
grace of big organizations with big budgets: corporations, universities, government
agencies. But use of these minicomputers was less regulated than the even-bigger
mainframes, and Unix development rapidly took on a countercultural air. It was the
early 1970s; the pioneering Unix programmers were shaggy hippies and hippie-
wannabes. They delighted in playing with an operating system that not only offered
them fascinating challenges at the leading edge of computer science, but also
subverted all the technical assumptions and business practices that went with Big
Computing. Card punches, COBOL, business suits, and batch IBM mainframes were
the despised old wave; Unix hackers reveled in the sense that they were simultaneously
building the future and flipping a finger at the system.

The excitement of those days is captured in this quote from Douglas Comer: “Many
universities contributed to UNIX. At the University of Toronto, the department acquired
a 200-dot-per-inch printer/plotter and built software that used the printer to simulate
a phototypesetter. At Yale University, students and computer scientists modified the
UNIX shell. At Purdue University, the Electrical Engineering Department made major
improvements in performance, producing a version of UNIX that supported a larger
number of users. Purdue also developed one of the first UNIX computer networks.
At the University of California at Berkeley, students developed a new shell and dozens
of smaller utilities. By the late 1970s, when Bell Labs released Version 7 UNIX, it
was clear that the system solved the computing problems of many departments, and
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Ken (seated) and Dennis (standing) at a PDP-11 in 1972.

that it incorporated many of the ideas that had arisen in universities. The end result
was a strengthened system. A tide of ideas had started a new cycle, flowing from
academia to an industrial laboratory, back to academia, and finally moving on to a
growing number of commercial sites” [Comer].

The first Unix of which it can be said that essentially all of it would be recognizable
to a modern Unix programmer was the Version 7 release in 1979.3 The first Unix user
group had formed the previous year. By this time Unix was in use for operations
support all through the Bell System [Hauben], and had spread to universities as far
away as Australia, where John Lions’s 1976 notes [Lions] on the Version 6 source
code became the first serious documentation of the Unix kernel internals. Many senior
Unix hackers still treasure a copy.

The Lions book was a samizdat publishing sensation. Because of copyright infringe-
ment or some such it couldn’t be published in the U.S., so copies of copies seeped
everywhere. I still have my copy, which was at least 6th generation. Back then you
couldn’t be a kernel hacker without a Lions.

—Ken Arnold

3. The version 7 manuals can be browsed on-line at http://plan9.bell-labs.com/
7thEdMan/index.html.
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The beginnings of a Unix industry were coalescing as well. The first Unix company
(the Santa Cruz Operation, SCO) began operations in 1978, and the first commercial
C compiler (Whitesmiths) sold that same year. By 1980 an obscure software company
in Seattle was also getting into the Unix game, shipping a port of the AT&T version
for microcomputers called XENIX. But Microsoft’s affection for Unix as a product
was not to last very long (though Unix would continue to be used for most internal
development work at the company until after 1990).

TCP/IP and the Unix Wars: 1980–19902.1.3

The Berkeley campus of the University of California emerged early as the single most
important academic hot-spot in Unix development. Unix research had begun there in
1974, and was given a substantial impetus when Ken Thompson taught at the
University during a 1975–76 sabbatical. The first BSD release had been in 1977 from
a lab run by a then-unknown grad student named Bill Joy. By 1980 Berkeley was the
hub of a sub-network of universities actively contributing to their variant of Unix.
Ideas and code from Berkeley Unix (including the vi(1) editor) were feeding back
from Berkeley to Bell Labs.

Then, in 1980, the Defense Advanced Research Projects Agency needed a team
to implement its brand-new TCP/IP protocol stack on the VAX under Unix. The
PDP-10s that powered the ARPANET at that time were aging, and indications that
DEC might be forced to cancel the 10 in order to support the VAX were already in
the air. DARPA considered contracting DEC to implement TCP/IP, but rejected that
idea because they were concerned that DEC might not be responsive to requests for
changes in their proprietary VAX/VMS operating system [Libes-Ressler]. Instead,
DARPA chose Berkeley Unix as a platform—explicitly because its source code was
available and unencumbered [Leonard].

Berkeley’s Computer Science Research Group was in the right place at the right
time with the strongest development tools; the result became arguably the most critical
turning point in Unix’s history since its invention.

Until the TCP/IP implementation was released with Berkeley 4.2 in 1983, Unix
had had only the weakest networking support. Early experiments with Ethernet were
unsatisfactory. An ugly but serviceable facility called UUCP (Unix to Unix Copy
Program) had been developed at Bell Labs for distributing software over conventional
telephone lines via modem.4 UUCP could forward Unix mail between widely separated
machines, and (after Usenet was invented in 1981) supported Usenet, a distributed
bulletin-board facility that allowed users to broadcast text messages to anywhere that
had phone lines and Unix systems.

4. UUCP was hot stuff when a fast modem was 300 baud.
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Still, the few Unix users aware of the bright lights of the ARPANET felt like they
were stuck in a backwater. No FTP, no telnet, only the most restricted remote job
execution, and painfully slow links. Before TCP/IP, the Internet and Unix cultures
did not mix. Dennis Ritchie’s vision of computers as a way to “encourage close
communication” was one of collegial communities clustered around individual time-
sharing machines or in the same computing center; it didn’t extend to the continent-
wide distributed ‘network nation’ that ARPA users had started to form in the mid-
1970s. Early ARPANETters, for their part, considered Unix a crude makeshift limping
along on risibly weak hardware.

After TCP/IP, everything changed. The ARPANET and Unix cultures began to
merge at the edges, a development that would eventually save both from destruction.
But there would be hell to pay first as the result of two unrelated disasters; the rise of
Microsoft and the AT&T divestiture.

In 1981, Microsoft made its historic deal with IBM over the new IBM PC. Bill
Gates bought QDOS (Quick and Dirty Operating System), a clone of CP/M that its
programmer Tim Paterson had thrown together in six weeks, from Paterson’s employer
Seattle Computer Products. Gates, concealing the IBM deal from Paterson and SCP,
bought the rights for $50,000. He then talked IBM into allowing Microsoft to market
MS-DOS separately from the PC hardware. Over the next decade, leveraging code
he didn’t write made Bill Gates a multibillionaire, and business tactics even sharper
than the original deal gained Microsoft a monopoly lock on desktop computing.
XENIX as a product was rapidly deep-sixed, and eventually sold to SCO.

It was not apparent at the time how successful (or how destructive) Microsoft was
going to be. Since the IBM PC-1 didn’t have the hardware capacity to run Unix, Unix
people barely noticed it at all (though, ironically enough, DOS 2.0 eclipsed CP/M
largely because Microsoft’s co-founder Paul Allen merged in Unix features including
subdirectories and pipes). There were things that seemed much more interesting going
on—like the 1982 launching of Sun Microsystems.

Sun Microsystems founders Bill Joy, Andreas Bechtolsheim, and Vinod Khosla
set out to build a dream Unix machine with built-in networking capability. They
combined hardware designed at Stanford with the Unix developed at Berkeley to
produce a smashing success, and founded the workstation industry. At the time, nobody
much minded watching source-code access to one branch of the Unix tree gradually
dry up as Sun began to behave less like a freewheeling startup and more like a
conventional firm. Berkeley was still distributing BSD with source code. Officially,
System III source licenses cost $40,000 each; but Bell Labs was turning a blind eye
to the number of bootleg Bell Labs Unix tapes in circulation, the universities were
still swapping code with Bell Labs, and it looked like Sun’s commercialization of
Unix might just be the best thing to happen to it yet.

1982 was also the year that C first showed signs of establishing itself outside the
Unix world as the systems-programming language of choice. It would only take about
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five years for C to drive machine assemblers almost completely out of use. By the
early 1990s C and C++ would dominate not only systems but application programming;
by the late 1990s all other conventional compiled languages would be effec-
tively obsolete.

When DEC canceled development on the PDP-10’s successor machine (Jupiter)
in 1983, VAXes running Unix began to take over as the dominant Internet machines,
a position they would hold until being displaced by Sun workstations. By 1985, about
25% of all VAXes would be running Unix despite DEC’s stiff opposition. But the
longest-term effect of the Jupiter cancellation was a less obvious one; the death of
the MIT AI Lab’s PDP-10-centered hacker culture motivated a programmer named
Richard Stallman to begin writing GNU, a complete free clone of Unix.

By 1983 there were no fewer than six Unix-workalike operating systems for the
IBM-PC: uNETix, Venix, Coherent, QNX, Idris, and the port hosted on the Sritek PC
daughtercard. There was still no port of Unix in either the System V or BSD versions;
both groups considered the 8086 microprocessor woefully underpowered and wouldn’t
go near it. None of the Unix-workalikes were significant as commercial successes,
but they indicated a significant demand for Unix on cheap hardware that the major
vendors were not supplying. No individual could afford to meet it, either, not with
the $40,000 price-tag on a source-code license.

Sun was already a success (with imitators!) when, in 1983, the U.S. Department
of Justice won its second antitrust case against AT&T and broke up the Bell System.
This relieved AT&T from the 1958 consent decree that had prevented them from
turning Unix into a product. AT&T promptly rushed to commercialize Unix
System V—a move that nearly killed Unix.

So true. But their marketing did spread Unix internationally.

—Ken Thompson

Most Unix boosters thought that the divestiture was great news. We thought we
saw in the post-divestiture AT&T, Sun Microsystems, and Sun’s smaller imitators the
nucleus of a healthy Unix industry—one that, using inexpensive 68000-based work-
stations, would challenge and eventually break the oppressive monopoly that then
loomed over the computer industry—IBM’s.

What none of us realized at the time was that the productization of Unix would
destroy the free exchanges of source code that had nurtured so much of the system’s
early vitality. Knowing no other model than secrecy for collecting profits from software
and no other model than centralized control for developing a commercial product,
AT&T clamped down hard on source-code distribution. Bootleg Unix tapes became
far less interesting in the knowledge that the threat of lawsuit might come with them.
Contributions from universities began to dry up.
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To make matters worse, the big new players in the Unix market promptly committed
major strategic blunders. One was to seek advantage by product differentiation—a
tactic which resulted in the interfaces of different Unixes diverging. This threw away
cross-platform compatibility and fragmented the Unix market.

The other, subtler error was to behave as if personal computers and Microsoft were
irrelevant to Unix’s prospects. Sun Microsystems failed to see that commoditized PCs
would inevitably become an attack on its workstation market from below. AT&T,
fixated on minicomputers and mainframes, tried several different strategies to become
a major player in computers, and badly botched all of them. A dozen small companies
formed to support Unix on PCs; all were underfunded, focused on selling to
developers and engineers, and never aimed at the business and home market that Mi-
crosoft was targeting.

In fact, for years after divestiture the Unix community was preoccupied with the
first phase of the Unix wars — an internal dispute, the rivalry between System V Unix
and BSD Unix. The dispute had several levels, some technical (sockets vs. streams,
BSD tty vs. System V termio) and some cultural. The divide was roughly between
longhairs and shorthairs; programmers and technical people tended to line up with
Berkeley and BSD, more business-oriented types with AT&T and System V. The
longhairs, repeating a theme from Unix’s early days ten years before, liked to see
themselves as rebels against a corporate empire; one of the small companies put out
a poster showing an X-wing-like space fighter marked “BSD” speeding away from a
huge AT&T ‘death star’ logo left broken and in flames. Thus we fiddled while
Rome burned.

But something else happened in the year of the AT&T divestiture that would have
more long-term importance for Unix. A programmer/linguist named Larry Wall qui-
etly invented the patch(1) utility. The patch program, a simple tool that applies
changebars generated by diff(1) to a base file, meant that Unix developers could co-
operate by passing around patch sets—incremental changes to code—rather than entire
code files. This was important not only because patches are less bulky than full files,
but because patches would often apply cleanly even if much of the base file had
changed since the patch-sender fetched his copy. With this tool, streams of development
on a common source-code base could diverge, run in parallel, and re-converge. The
patch program did more than any other single tool to enable collaborative development
over the Internet—a method that would revitalize Unix after 1990.

In 1985 Intel shipped the first 386 chip, capable of addressing 4 gigabytes of
memory with a flat address space. The clumsy segment addressing of the 8086 and
286 became immediately obsolete. This was big news, because it meant that for the
first time, a microprocessor in the dominant Intel family had the capability to run
Unix without painful compromises. The handwriting was on the wall for Sun and the
other workstation makers. They failed to see it.
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1985 was also the year that Richard Stallman issued the GNU manifesto [Stallman]
and launched the Free Software Foundation. Very few people took him or his GNU
project seriously, a judgment that turned out to be seriously mistaken. In an unrelated
development of the same year, the originators of the X window system released it as
source code without royalties, restrictions, or license code. As a direct result of this
decision, it became a safe neutral area for collaboration between Unix vendors, and
defeated proprietary contenders to become Unix’s graphics engine.

Serious standardization efforts aimed at reconciling the System V and Berkeley
APIs also began in 1983 with the /usr/group standard. This was followed in 1985 by
the POSIX standards, an effort backed by the IEEE. These described the intersection
set of the BSD and SVR3 (System V Release 3) calls, with the superior Berkeley
signal handling and job control but with SVR3 terminal control. All later Unix stan-
dards would incorporate POSIX at their core, and later Unixes would adhere to it
closely. The only major addition to the modern Unix kernel API to come afterwards
was BSD sockets.

In 1986 Larry Wall, previously the inventor of patch(1), began work on Perl, which
would become the first and most widely used of the open-source scripting languages.
In early 1987 the first version of the GNU C compiler  appeared, and by the end of
1987 the core of the GNU toolset was falling into place: editor, compiler, debugger,
and other basic development tools. Meanwhile, the X windowing system was beginning
to show up on relatively inexpensive workstations. Together, these would provide the
armature for the open-source Unix developments of the 1990s.

1986 was also the year that PC technology broke free of IBM’s grip. IBM, still
trying to preserve a price-vs.-power curve across its product line that would favor its
high-margin mainframe business, rejected the 386 for most of its new line of PS/2
computers in favor of the weaker 286. The PS/2 series, designed around a proprietary
bus architecture to lock out clonemakers, became a colossally expensive failure.5

Compaq, the most aggressive of the clonemakers, trumped IBM’s move by releasing
the first 386 machine. Even with a clock speed of a mere 16 MHz, the 386 made a
tolerable Unix machine. It was the first PC of which that could be said.

It was beginning to be possible to imagine that Stallman’s GNU project might
mate with 386 machines to produce Unix workstations almost an order of magnitude
less costly than anyone was offering. Curiously, no one seems to have actually got
this far in their thinking. Most Unix programmers, coming from the minicomputer
and workstation worlds, continued to disdain cheap 80x86 machines in favor of more
elegant 68000-based designs. And, though a lot of programmers contributed to the

5. The PS/2 did, however, leave one mark on later PCs—they made the mouse a standard pe-
ripheral, which is why the mouse connector on the back of your chassis is called a “PS/2 port”.
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GNU project, among Unix people it tended to be considered a quixotic gesture that
was unlikely to have near-term practical consequences.

The Unix community had never lost its rebel streak. But in retrospect, we were
nearly as blind to the future bearing down on us as IBM or AT&T. Not even Richard
Stallman, who had declared a moral crusade against proprietary software a few years
before, really understood how badly the productization of Unix had damaged the
community around it; his concerns were with more abstract and long-term issues.
The rest of us kept hoping that some clever variation on the corporate formula would
solve the problems of fragmentation, wretched marketing, and strategic drift, and re-
deem Unix’s pre-divestiture promise. But worse was still to come.

1988 was the year Ken Olsen (CEO of DEC) famously described Unix as “snake
oil”. DEC had been shipping its own variant of Unix on PDP-11s since 1982, but re-
ally wanted the business to go to its proprietary VMS operating system. DEC and the
minicomputer industry were in deep trouble, swamped by waves of powerful low-
cost machines coming out of Sun Microsystems and the rest of the workstation vendors.
Most of those workstations ran Unix.

But the Unix industry’s own problems were growing more severe. In 1988 AT&T
took a 20% stake in Sun Microsystems. These two companies, the leaders in the Unix
market, were beginning to wake up to the threat posed by PCs, IBM, and Microsoft,
and to realize that the preceding five years of bloodletting had gained them little. The
AT&T/Sun alliance and the development of technical standards around POSIX
eventually healed the breach between the System V and BSD Unix lines. But the
second phase of the Unix wars began when the second-tier vendors (IBM, DEC,
Hewlett-Packard, and others) formed the Open Software Foundation and lined up
against the AT&T/Sun axis (represented by Unix International). More rounds of Unix
fighting Unix ensued.

Meanwhile, Microsoft was making billions in the home and small-business markets
that the warring Unix factions had never found the will to address. The 1990 release
of Windows 3.0—the first successful graphical operating system from Redmond—ce-
mented Microsoft’s dominance, and created the conditions that would allow them to
flatten and monopolize the market for desktop applications in the 1990s.

The years from 1989 to 1993 were the darkest in Unix’s history. It appeared then
that all the Unix community’s dreams had failed. Internecine warfare had reduced the
proprietary Unix industry to a squabbling shambles that never summoned either the
determination or the capability to challenge Microsoft. The elegant Motorola chips
favored by most Unix programmers had lost out to Intel’s ugly but inexpensive pro-
cessors. The GNU project failed to produce the free Unix kernel it had been promising
since 1985, and after years of excuses its credibility was beginning to wear thin. PC
technology was being relentlessly corporatized. The pioneering Unix hackers of the
1970s were hitting middle age and slowing down. Hardware was getting cheaper, but
Unix was still too expensive. We were belatedly becoming aware that the old monopoly
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of IBM had yielded to a newer monopoly of Microsoft, and Microsoft’s mal-engineered
software was rising around us like a tide of sewage.

Blows against the Empire: 1991–19952.1.4

The first glimmer of light in the darkness was the 1990 effort by William Jolitz to
port BSD onto a 386 box, publicized by a series of magazine articles beginning in
1991. The 386BSD port was possible because, partly influenced by Stallman, Berkeley
hacker Keith Bostic had begun an effort to clean AT&T proprietary code out of the
BSD sources in 1988. But the 386BSD project took a severe blow when, near the end
of 1991, Jolitz walked away from it and destroyed his own work. There are conflicting
explanations, but a common thread in all is that Jolitz wanted his code to be released
as unencumbered source and was upset when the corporate sponsors of the project
opted for a more proprietary licensing model.

In August 1991 Linus Torvalds, then an unknown university student from Finland,
announced the Linux project. Torvalds is on record that one of his main motivations
was the high cost of Sun’s Unix at his university. Torvalds has also said that he would
have joined the BSD effort had he known of it, rather than founding his own. But
386BSD was not shipped until early 1992, some months after the first Linux release.

The importance of both these projects became clear only in retrospect. At the time,
they attracted little notice even within the Internet hacker culture—let alone in the
wider Unix community, which was still fixated on more capable machines than PCs,
and on trying to reconcile the special properties of Unix with the conventional propri-
etary model of a software business.

It would take another two years and the great Internet explosion of 1993–1994
before the true importance of Linux and the open-source BSD distributions became
evident to the rest of the Unix world. Unfortunately for the BSDers, an AT&T lawsuit
against BSDI (the startup company that had backed the Jolitz port) consumed much
of that time and motivated some key Berkeley developers to switch to Linux.

Code copying and theft of trade secrets was alleged. The actual infringing code
was not identified for nearly two years. The lawsuit could have dragged on for
much longer but for the fact that Novell bought USL from AT&T and sought a
settlement. In the end, three files were removed from the 18,000 that made up the
distribution, and a number of minor changes were made to other files. In addition,
the University agreed to add USL copyrights to about 70 files, with the stipulation
that those files continued to be freely redistributed.

—Marshall Kirk McKusick
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The settlement set an important precedent by freeing an entire working Unix from
proprietary control, but its effects on BSD itself were dire. Matters were not helped
when, in 1992–1994, the Computer Science Research Group at Berkeley shut down;
afterwards, factional warfare within the BSD community split it into three competing
development efforts. As a result, the BSD lineage lagged behind Linux at a crucial
time and lost to it the lead position in the Unix community.

The Linux and BSD development efforts were native to the Internet in a way
previous Unixes had not been. They relied on distributed development and Larry
Wall’s patch(1) tool, and recruited developers via email and through Usenet news-
groups. Accordingly, they got a tremendous boost when Internet Service Provider
businesses began to proliferate in 1993, enabled by changes in telecomm technology
and the privatization of the Internet backbone that are outside the scope of this history.
The demand for cheap Internet was created by something else: the 1991 invention of
the World Wide Web. The Web was the “killer app” of the Internet, the graphical user
interface technology that made it irresistible to a huge population of nontechnical
end users.

The mass-marketing of the Internet both increased the pool of potential developers
and lowered the transaction costs of distributed development. The results were
reflected in efforts like XFree86, which used the Internet-centric model to build a
more effective development organization than that of the official X Consortium. The
first XFree86 in 1992 gave Linux and the BSDs the graphical-user-interface engine
they had been missing. Over the next decade XFree86 would lead in X development,
and an increasing portion of the X Consortium’s activity would come to consist of
funneling innovations originated in the XFree86 community back to the Consortium’s
industrial sponsors.

By late 1993, Linux had both Internet capability and X. The entire GNU toolkit
had been hosted on it from the beginning, providing high-quality development tools.
Beyond GNU tools, Linux acted as a basin of attraction, collecting and concentrating
twenty years of open-source software that had previously been scattered across a
dozen different proprietary Unix platforms. Though the Linux kernel was still officially
in beta (at 0.99 level), it was remarkably crash-free. The breadth and quality
of the software in Linux distributions was already that of a production-ready
operating system.

A few of the more flexible-minded among old-school Unix developers began to
notice that the long-awaited dream of a cheap Unix system for everybody had snuck
up on them from an unexpected direction. It didn’t come from AT&T or Sun or any
of the traditional vendors. Nor did it rise out of an organized effort in academia. It
was a bricolage that bubbled up out of the Internet by what seemed like spontaneous
generation, appropriating and recombining elements of the Unix tradition in
surprising ways.
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Elsewhere, corporate maneuvering continued. AT&T divested its interest in Sun
in 1992; then sold its Unix Systems Laboratories to Novell in 1993; Novell handed
off the Unix trademark to the X/Open standards group in 1994; AT&T and Novell
joined OSF in 1994, finally ending the Unix wars. In 1995 SCO bought UnixWare
(and the rights to the original Unix sources) from Novell. In 1996, X/Open and OSF
merged, creating one big Unix standards group.

But the conventional Unix vendors and the wreckage of their wars came to seem
steadily less and less relevant. The action and energy in the Unix community were
shifting to Linux and BSD and the open-source developers. By the time IBM, Intel,
and SCO announced the Monterey project in 1998—a last-gasp attempt to merge One
Big System out of all the proprietary Unixes left standing—developers and the trade
press reacted with amusement, and the project was abruptly canceled in 2001 after
three years of going nowhere.

The industry transition could not be said to have completed until 2000, when SCO
sold UnixWare and the original Unix source-code base to Caldera—a Linux distributor.
But after 1995, the story of Unix became the story of the open-source movement.
There’s another side to that story; to tell it, we’ll need to return to 1961 and the origins
of the Internet hacker culture.

Origins and History of the Hackers, 1961–19952.2

The Unix tradition is an implicit culture that has always carried with it more than just
a bag of technical tricks. It transmits a set of values about beauty and good design; it
has legends and folk heroes. Intertwined with the history of the Unix tradition is an-
other implicit culture that is more difficult to label neatly. It has its own values and
legends and folk heroes, partly overlapping with those of the Unix tradition and
partly derived from other sources. It has most often been called the “hacker culture”,
and since 1998 has largely coincided with what the computer trade press calls “the
open source movement”.

The relationships between the Unix tradition, the hacker culture, and the open-
source movement are subtle and complex. They are not simplified by the fact that all
three implicit cultures have frequently been expressed in the behaviors of the same
human beings. But since 1990 the story of Unix is largely the story of how the open-
source hackers changed the rules and seized the initiative from the old-line proprietary
Unix vendors. Therefore, the other half of the history behind today’s Unix is the his-
tory of the hackers.
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At Play in the Groves of Academe: 1961–19802.2.1

The roots of the hacker culture can be traced back to 1961, the year MIT took delivery
of its first PDP-1 minicomputer. The PDP-1 was one of the earliest interactive com-
puters, and (unlike other machines) of the day was inexpensive enough that time on
it did not have to be rigidly scheduled. It attracted a group of curious students from
the Tech Model Railroad Club who experimented with it in a spirit of fun. Hackers:
Heroes of the Computer Revolution [Levy] entertainingly describes the early days of
the club. Their most famous achievement was SPACEWAR, a game of dueling
rocketships loosely inspired by the Lensman space operas of E.E. “Doc” Smith.6

Several of the TMRC experimenters later went on to become core members of the
MIT Artificial Intelligence Lab, which in the 1960s and 1970s became one of the
world centers of cutting-edge computer science. They took some of TMRC’s slang
and in-jokes with them, including a tradition of elaborate (but harmless) pranks called
“hacks”. The AI Lab programmers appear to have been the first to describe themselves
as “hackers”.

After 1969 the MIT AI Lab was connected, via the early ARPANET, to other
leading computer science research laboratories at Stanford, Bolt Beranek & Newman,
Carnegie-Mellon University and elsewhere. Researchers and students got the first
foretaste of the way fast network access abolishes geography, often making it easier
to collaborate and form friendships with distant people on the net than it would be to
do likewise with colleagues closer-by but less connected.

Software, ideas, slang, and a good deal of humor flowed over the experimental
ARPANET links. Something like a shared culture began to form. One of its earliest
and most enduring artifacts was the Jargon File, a list of shared slang terms that
originated at Stanford in 1973 and went through several revisions at MIT after 1976.
Along the way it accumulated slang from CMU, Yale, and other ARPANET sites.

Technically, the early hacker culture was largely hosted on PDP-10 minicomputers.
They used a variety of operating systems that have since passed into history: TOPS-
10, TOPS-20, Multics, ITS, SAIL. They programmed in assembler and dialects of
Lisp. PDP-10 hackers took over running the ARPANET itself because nobody else
wanted the job. Later, they became the founding cadre of the Internet Engineering
Task Force (IETF) and originated the tradition of standardization through Requests
For Comment (RFCs).

Socially, they were young, exceptionally bright, almost entirely male, dedicated
to programming to the point of addiction, and tended to have streaks of stubborn
nonconformism—what years later would be called ‘geeks’. They, too, tended to be

6. SPACEWAR was not related to Ken Thompson’s Space Travel game, other than by the fact
that both appealed to science-fiction fans.
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shaggy hippies and hippie-wannabes. They, too, had a vision of computers as commu-
nity-building devices. They read Robert Heinlein and J. R. R. Tolkien, played in the
Society for Creative Anachronism, and tended to have a weakness for puns. Despite
their quirks (or perhaps because of them!) many of them were among the brightest
programmers in the world.

They were not Unix programmers. The early Unix community was drawn largely
from the same pool of geeks in academia and government or commercial research
laboratories, but the two cultures differed in important ways. One that we’ve already
touched on is the weak networking of early Unix. There was effectively no Unix-
based ARPANET access until after 1980, and it was uncommon for any individual to
have a foot in both camps.

Collaborative development and the sharing of source code was a valued tactic for
Unix programmers. To the early ARPANET hackers, on the other hand, it was more
than a tactic: it was something rather closer to a shared religion, partly arising from
the academic “publish or perish” imperative and (in its more extreme versions)
developing into an almost Chardinist idealism about networked communities of minds.
The most famous of these hackers, Richard M. Stallman, became the ascetic saint of
that religion.

Internet Fusion and the Free Software Movement:
1981–1991

2.2.2

After 1983 and the BSD port of TCP/IP, the Unix and ARPANET cultures began to
fuse together. This was a natural development once the communication links were in
place, since both cultures were composed of the same kind of people (indeed, in a
few but significant cases the same people). ARPANET hackers learned C and began
to speak the jargon of pipes, filters, and shells; Unix programmers learned TCP/IP
and started to call each other “hackers”. The process of fusion was accelerated after
the Project Jupiter cancellation in 1983 killed the PDP-10’s future. By 1987 the two
cultures had merged so completely that most hackers programmed in C and casually
used slang terms that went back to the Tech Model Railroad Club of twenty-five
years earlier.

(In 1979 I was unusual in having strong ties to both the Unix and ARPANET cul-
tures. In 1985 that was no longer unusual. By the time I expanded the old ARPANET
Jargon File into the New Hacker’s Dictionary [Raymond96] in 1991, the two cultures
had effectively fused. The Jargon File, born on the ARPANET but revised on Usenet,
aptly symbolized the merger.)

But TCP/IP networking and slang were not the only things the post-1980 hacker
culture inherited from its ARPANET roots. It also got Richard Stallman, and Stallman’s
moral crusade.
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Richard M. Stallman (generally known by his login name, RMS) had already
proved by the late 1970s that he was one of the most able programmers alive. Among
his many inventions was the Emacs editor. For RMS, the Jupiter cancellation in 1983
only finished off a disintegration of the MIT AI Lab culture that had begun a few
years earlier as many of its best went off to help run competing Lisp-machine compa-
nies. RMS felt ejected from a hacker Eden, and decided that proprietary software was
to blame.

In 1983 Stallman founded the GNU project, aimed at writing an entire free oper-
ating system. Though Stallman was not and had never been a Unix programmer, under
post-1980 conditions implementing a Unix-like operating system became the obvious
strategy to pursue. Most of RMS’s early contributors were old-time ARPANET hackers
newly decanted into Unix-land, in whom the ethos of code-sharing ran rather stronger
than it did among those with a more Unix-centered background.

In 1985, RMS published the GNU Manifesto. In it he consciously created an ide-
ology out of the values of the pre-1980 ARPANET hackers—complete with a novel
ethico-political claim, a self-contained and characteristic discourse, and an activist
plan for change. RMS aimed to knit the diffuse post-1980 community of hackers into
a coherent social machine for achieving a single revolutionary purpose. His behavior
and rhetoric half-consciously echoed Karl Marx’s attempts to mobilize the industrial
proletariat against the alienation of their work.

RMS’s manifesto ignited a debate that is still live in the hacker culture today. His
program went way beyond maintaining a codebase, and essentially implied the aboli-
tion of intellectual-property rights in software. In pursuit of this goal, RMS popularized
the term “free software”, which was the first attempt to label the product of the entire
hacker culture. He wrote the General Public License (GPL), which was to become
both a rallying point and a focus of great controversy, for reasons we will examine
in Chapter 16. You can learn more about RMS’s position and the Free Software
Foundation at the GNU website <http://www.gnu.org>.

The term “free software” was partly a description and partly an attempt to define
a cultural identity for hackers. On one level, it was quite successful. Before RMS,
people in the hacker culture recognized each other as fellow-travelers and used the
same slang, but nobody bothered arguing about what a ‘hacker’ is or should be. After
him, the hacker culture became much more self-conscious; value disputes (often
framed in RMS’s language even by those who opposed his conclusions) became a
normal feature of debate. RMS, a charismatic and polarizing figure, himself became
so much a culture hero that by the year 2000 he could hardly be distinguished from
his legend. Free as in Freedom [Williams] gives us an excellent portrait.

RMS’s arguments influenced the behavior even of many hackers who remained
skeptical of his theories. In 1987, he persuaded the caretakers of BSD Unix that
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cleaning out AT&T’s proprietary code so they could release an unencumbered version
would be a good idea. However, despite his determined efforts over more than fifteen
years, the post-1980 hacker culture never unified around his ideological vision.

Other hackers were rediscovering open, collaborative development without secrets
for more pragmatic, less ideological reasons. A few buildings away from Richard
Stallman’s 9th-floor office at MIT, the X development team thrived during the late
1980s. It was funded by Unix vendors who had argued each other to a draw over the
control and intellectual-property-rights issues surrounding the X windowing system,
and saw no better alternative than to leave it free to everyone. In 1987–1988 the X
development prefigured the really huge distributed communities that would redefine
the leading edge of Unix five years later.

X was one of the first large-scale open-source projects to be developed by a dis-
parate team of individuals working for different organizations spread across the
globe. E-mail allowed ideas to move rapidly among the group so that issues could
be resolved as quickly as necessary, and each individual could contribute in
whatever capacity suited them best. Software updates could be distributed in a
matter of hours, enabling every site to act in a concerted manner during develop-
ment. The net changed the way software could be developed.

—Keith Packard

The X developers were no partisans of the GNU master plan, but they weren’t
actively opposed to it, either. Before 1995 the most serious opposition to the GNU
plan came from the BSD developers. The BSD people, who remembered that they
had been writing freely redistributable and modifiable software years before RMS’s
manifesto, rejected GNU’s claim to historical and ideological primacy. They
specifically objected to the infectious or “viral” property of the GPL, holding out the
BSD license as being “more free” because it placed fewer restrictions on the reuse
of code.

It did not help RMS’s case that, although his Free Software Foundation had pro-
duced most of the rest of a full software toolkit, it failed to deliver the central piece.
Ten years after the founding of the GNU project, there was still no GNU kernel. While
individual tools like Emacs and GCC proved tremendously useful, GNU without a
kernel neither threatened the hegemony of proprietary Unixes nor offered an effective
counter to the rising problem of the Microsoft monopoly.

After 1995 the debate over RMS’s ideology took a somewhat different turn. Oppo-
sition to it became closely associated with both Linus Torvalds and the author of
this book.
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Linux and the Pragmatist Reaction: 1991–19982.2.3

Even as the HURD (the GNU kernel) effort was stalling, new possibilities were
opening up. In the early 1990s the combination of cheap, powerful PCs with easy
Internet access proved a powerful lure for a new generation of young programmers
looking for challenges to test their mettle. The user-space toolkit written by the Free
Software Foundation suggested a way forward that was free of the high cost of pro-
prietary software development tools. Ideology followed economics rather than leading
the charge; some of the newbies signed up with RMS’s crusade and adopted the GPL
as their banner, and others identified more with the Unix tradition as a whole and
joined the anti-GPL camp, but most dismissed the whole dispute as a distraction and
just wrote code.

Linus Torvalds neatly straddled the GPL/anti-GPL divide by using the GNU
toolkit to surround the Linux kernel he had invented and the GPL’s infectious properties
to protect it, but rejecting the ideological program that went with RMS’s license.
Torvalds affirmed that he thought free software better in general but occasionally used
proprietary programs. His refusal to be a zealot even in his own cause made him
tremendously attractive to the majority of hackers who had been uncomfortable with
RMS’s rhetoric, but had lacked any focus or convincing spokesperson for their
skepticism.

Torvalds’s cheerful pragmatism and adept but low-key style catalyzed an astonishing
string of victories for the hacker culture in the years 1993–1997, including not merely
technical successes but the solid beginnings of a distribution, service, and support
industry around the Linux operating system. As a result his prestige and influence
skyrocketed. Torvalds became a hero on Internet time; by 1995, he had achieved in
just four years the kind of culture-wide eminence that RMS had required fifteen years
to earn—and far exceeded Stallman’s record at selling “free software” to the outside
world. By contrast with Torvalds, RMS’s rhetoric began to seem both strident and
unsuccessful.

Between 1991 and 1995 Linux went from a proof-of-concept surrounding an 0.1
prototype kernel to an operating system that could compete on features and perfor-
mance with proprietary Unixes, and beat most of them on important statistics like
continuous uptime. In 1995, Linux found its killer app: Apache, the open-source
webserver. Like Linux, Apache proved remarkably stable and efficient. Linux machines
running Apache quickly became the platform of choice for ISPs worldwide; Apache
captured about 60% of websites,7 handily beating out both of its major proprietary
competitors.

7. Current and historical webserver share figures are available at the monthly Netcraft Web
Server Survey <http://www.netcraft.com/survey/>.
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The one thing Torvalds did not offer was a new ideology—a new rationale or
generative myth of hacking, and a positive discourse to replace RMS’s hostility to
intellectual property with a program more attractive to people both within and outside
the hacker culture. I inadvertently supplied this lack in 1997 as a result of trying to
understand why Linux’s development had not collapsed in confusion years before.
The technical conclusions of my published papers [Raymond01] will be summarized
in Chapter 19. For this historical sketch, it will be sufficient to note the impact of the
first one’s central formula: “Given a sufficiently large number of eyeballs, all bugs
are shallow”.

This observation implied something nobody in the hacker culture had dared to
really believe in the preceding quarter-century: that its methods could reliably produce
software that was not just more elegant but more reliable and better than our proprietary
competitors’ code. This consequence, quite unexpectedly, turned out to present
exactly the direct challenge to the discourse of “free software” that Torvalds himself
had never been interested in mounting. For most hackers and almost all nonhackers,
“Free software because it works better” easily trumped “Free software because all
software should be free”.

The paper’s contrast between ‘cathedral’ (centralized, closed, controlled, secretive)
and ‘bazaar’ (decentralized, open, peer-review-intensive) modes of development be-
came a central metaphor in the new thinking. In an important sense this was merely
a return to Unix’s pre-divestiture roots—it is continuous with McIlroy’s 1991 ob-
servations about the positive effects of peer pressure on Unix development in the
early 1970s and Dennis Ritchie’s 1979 reflections on fellowship, cross-fertilized with
the early ARPANET’s academic tradition of peer review and with its idealism about
distributed communities of mind.

In early 1998, the new thinking helped motivate Netscape Communications to re-
lease the source code of its Mozilla browser. The press attention surrounding that
event took Linux to Wall Street, helped drive the technology-stock boom of 1999–2001,
and proved to be a turning point in both the history of the hacker culture and of Unix.

The Open-Source Movement: 1998 and Onward2.3

By the time of the Mozilla release in 1998, the hacker community could best be ana-
lyzed as a loose collection of factions or tribes that included Richard Stallman’s Free
Software Movement, the Linux community, the Perl community, the Apache commu-
nity, the BSD community, the X developers, the Internet Engineering Task Force
(IETF), and at least a dozen others. These factions overlap, and an individual
developer would be quite likely to be affiliated with two or more.

A tribe might be grouped around a particular codebase that they maintain, or around
one or more charismatic influence leaders, or around a language or development tool,
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or around a particular software license, or around a technical standard, or around a
caretaker organization for some part of the infrastructure. Prestige tends to correlate
with longevity and historical contribution as well as more obvious drivers like current
market-share and mind-share; thus, perhaps the most universally respected of the
tribes is the IETF, which can claim continuity back to the beginnings of the ARPANET
in 1969. The BSD community, with continuous traditions back to the late 1970s,
commands considerable prestige despite having a much lower installation count than
Linux. Stallman’s Free Software Movement, dating back to the early 1980s, ranks
among the senior tribes both on historical contribution and as the maintainer of
several of the software tools in heaviest day-to-day use.

After 1995 Linux acquired a special role as both the unifying platform for most
of the community’s other software and the hackers’ most publicly recognizable brand
name. The Linux community showed a corresponding tendency to absorb other sub-
tribes—and, for that matter, to co-opt and absorb the hacker factions associated with
proprietary Unixes. The hacker culture as a whole began to draw together around a
common mission: push Linux and the bazaar development model as far as it could go.

Because the post-1980 hacker culture had become so deeply rooted in Unix, the
new mission was implicitly a brief for the triumph of the Unix tradition. Many of the
hacker community’s senior leaders were also Unix old-timers, still bearing scars from
the post-divestiture civil wars of the 1980s and getting behind Linux as the last, best
hope to fulfill the rebel dreams of the early Unix days.

The Mozilla release helped further concentrate opinions. In March of 1998 an
unprecedented summit meeting of community influence leaders representing almost
all of the major tribes convened to consider common goals and tactics. That meeting
adopted a new label for the common development method of all the factions:
open source.

Within six months almost all the tribes in the hacker community would accept
“open source” as its new banner. Older groups like IETF and the BSD developers
would begin to apply it retrospectively to what they had been doing all along. In fact,
by 2000 the rhetoric of open source would not just unify the hacker culture’s present
practice and plans for the future, but re-color its view of its own past.

The galvanizing effect of the Netscape announcement, and of the new prominence
of Linux, reached well beyond the Unix community and the hacker culture. Beginning
in 1995, developers from various platforms in the path of Microsoft’s Windows jug-
gernaut (MacOS; Amiga; OS/2; DOS; CP/M; the weaker proprietary Unixes; various
mainframe, minicomputer, and obsolete microcomputer operating systems) had
banded together around Sun Microsystems’s Java language. Many disgruntled Windows
developers joined them in hopes of maintaining at least some nominal independence
from Microsoft. But Sun’s handling of Java was (as we discuss in Chapter 14) clumsy
and alienating on several levels. Many Java developers liked what they saw in the
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nascent open-source movement, and followed Netscape’s lead into Linux and open
source just as they had previously followed Netscape into Java.

Open-source activists welcomed the surge of immigrants from everywhere. The
old Unix hands began to share the new immigrants’ dreams of not merely passively
out-enduring the Microsoft monopoly, but actually reclaiming key markets from it.
The open-source community as a whole prepared a major push for mainstream re-
spectability, and began to welcome alliances with major corporations that increasingly
feared losing control of their own businesses as Microsoft’s lock-in tactics grew
ever bolder.

There was one exception: Richard Stallman and the Free Software Movement.
“Open source” was explicitly intended to replace Stallman’s preferred “free software”
with a public label that was ideologically neutral, acceptable both to historically op-
posed groups like the BSD hackers and those who did not wish to take a position in
the GPL/anti-GPL debate. Stallman flirted with adopting the term, then rejected it on
the grounds that it failed to represent the moral position that was central to his thinking.
The Free Software Movement has since insisted on its separateness from “open
source”, creating perhaps the most significant political fissure in the hacker culture
of 2003.

The other (and more important) intention behind “open source” was to present the
hacker community’s methods to the rest of the world (especially the business main-
stream) in a more market-friendly, less confrontational way. In this role, fortunately,
it proved an unqualified success—and led to a revival of interest in the Unix tradition
from which it sprang.

The Lessons of Unix History2.4

The largest-scale pattern in the history of Unix is this: when and where Unix has ad-
hered most closely to open-source practices, it has prospered. Attempts to proprietarize
it have invariably resulted in stagnation and decline.

In retrospect, this should probably have become obvious much sooner than it did.
We lost ten years after 1984 learning our lesson, and it would probably serve us very
ill to ever again forget it.

Being smarter than anyone else about important but narrow issues of software
design didn’t prevent us from being almost completely blind about the consequences
of interactions between technology and economics that were happening right under
our noses. Even the most perceptive and forward-looking thinkers in the Unix com-
munity were at best half-sighted. The lesson for the future is that over-committing to
any one technology or business model would be a mistake—and maintaining the
adaptive flexibility of our software and the design tradition that goes with it is corre-
spondingly imperative.
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Another lesson is this: Never bet against the cheap plastic solution. Or,
equivalently, the low-end/high-volume hardware technology almost always ends up
climbing the power curve and winning. The economist Clayton Christensen calls this
disruptive technology and showed in The Innovator’s Dilemma [Christensen] how
this happened with disk drives, steam shovels, and motorcycles. We saw it happen as
minicomputers displaced mainframes, workstations and servers replaced minis, and
commodity Intel machines replaced workstations and servers. The open-source
movement is winning by commoditizing software. To prosper, Unix needs to maintain
the knack of co-opting the cheap plastic solution rather than trying to fight it.

Finally, the old-school Unix community failed in its efforts to be “professional”
by welcoming in all the command machinery of conventional corporate organization,
finance, and marketing. We had to be rescued from our folly by a rebel alliance of
obsessive geeks and creative misfits—who then proceeded to show us that profession-
alism and dedication really meant what we had been doing before we succumbed to
the mundane persuasions of “sound business practices”.

The application of these lessons with respect to software technologies other than
Unix is left as an easy exercise for the reader.
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3

Contrasts:
Comparing the Unix Philosophy
with Others

If you have any trouble sounding condescending, find a Unix user to show you
how it’s done.

Dilbert newsletter 3.0, 1994
—Scott Adams

The design of operating systems conditions the style of software development under
them in many ways both obvious and subtle. Much of this book traces connections
between the design of the Unix operating system and the philosophy of program design
that has evolved around it. For contrast, it will therefore be instructive to compare the
classic Unix way with the styles of design and programming native to other major
operating systems.

The Elements of Operating-System Style3.1

Before we can start discussing specific operating systems, we’ll need an organizing
framework for the ways that operating-system design can affect programming style
for good or ill.
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Overall, the design and programming styles associated with different operating
systems seem to derive from three different sources: (a) the intentions of the operating-
system designers, (b) uniformities forced on designs by costs and limitations in the
programming environment, and (c) random cultural drift, early practices becoming
traditional simply because they were there first.

Even if we take it as given that there is some random cultural drift in every operat-
ing-system community, considering the intentions of the designers and the costs and
limitations of the results does reveal some interesting patterns that can help us under-
stand the Unix style better by contrast. We can make the patterns explicit by analyzing
some of the most important ways that operating systems differ.

What Is the Operating System’s Unifying Idea?3.1.1

Unix has a couple of unifying ideas or metaphors that shape its APIs and the develop-
ment style that proceeds from them. The most important of these are probably the
“everything is a file” model and the pipe metaphor1 built on top of it. In general,
development style under any given operating system is strongly conditioned by the
unifying ideas baked into the system by its designers—they percolate upwards into
applications programming from the models provided by system tools and APIs.

Accordingly, the most basic question to ask in contrasting Unix with another op-
erating system is: Does it have unifying ideas that shape its development, and if so
how do they differ from Unix’s?

To design the perfect anti-Unix, have no unifying idea at all, just an incoherent
pile of ad-hoc features.

Multitasking Capability3.1.2

One of the most basic ways operating systems can differ is in the extent to which they
can support multiple concurrent processes. At the lowest end (such as DOS or CP/M)
the operating system is basically a sequential program loader with no capacity to
multitask at all. Operating systems of this kind are no longer competitive on general-
purpose computers.

At the next level up, an operating system may have cooperative multitasking. Such
systems can support multiple processes, but a process has to voluntarily give up its
hold on the processor before the next one can run (thus, simple programming errors
can readily freeze the machine). This style of operating system was a transient

1. For readers without Unix experience, a pipe is a way of connecting the output of one program
to the input of another. We’ll explore the ways this idea can be used to help programs cooperate
in Chapter 7.
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adaptation to hardware that was powerful enough for concurrency but lacked either
a periodic clock interrupt2 or a memory-management unit or both; it, too, is obsolete
and no longer competitive.

Unix has preemptive multitasking, in which timeslices are allocated by a scheduler
which routinely interrupts or pre-empts the running process in order to hand control
to the next one. Almost all modern operating systems support preemption.

Note that “multitasking” is not the same as “multiuser”. An operating system can
be multitasking but single-user, in which case the facility is used to support a single
console and multiple background processes. True multiuser support requires multiple
user privilege domains, a feature we’ll cover in the discussion of internal boundaries
a bit further on.

To design the perfect anti-Unix, don’t support multitasking at all—or, support
multitasking but cripple it by surrounding process management with a lot of restric-
tions, limitations, and special cases that mean it’s quite difficult to get any actual use
out of multitasking.

Cooperating Processes3.1.3

In the Unix experience, inexpensive process-spawning and easy inter-process commu-
nication (IPC) makes a whole ecology of small tools, pipes, and filters possible. We’ll
explore this ecology in Chapter 7; here, we need to point out some consequences of
expensive process-spawning and IPC.

The pipe was technically trivial, but profound in its effect. However, it would not
have been trivial without the fundamental unifying notion of the process as an au-
tonomous unit of computation, with process control being programmable. As in
Multics, a shell was just another process; process control did not come from God
inscribed in JCL.

—Doug McIlroy

If an operating system makes spawning new processes expensive and/or
process control is difficult and inflexible, you’ll usually see all of the following
consequences:

2. A periodic clock interrupt from the hardware is useful as a sort of heartbeat for a timesharing
system; each time it fires, it tells the system that it may be time to switch to another task,
defining the size of the unit timeslice. In 2003 Unixes usually set the heartbeat to either 60 or
100 times a second.
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• Monster monoliths become a more natural way of programming.

• Lots of policy has to be expressed within those monoliths. This encourages C++
and elaborately layered internal code organization, rather than C and relatively
flat internal hierarchies.

• When processes can’t avoid a need to communicate, they do so through mecha-
nisms that are either clumsy, inefficient, and insecure (such as temporary files)
or by knowing far too much about each others’ implementations.

• Multithreading is extensively used for tasks that Unix would handle with multiple
communicating lightweight processes.

• Learning and using asynchronous I/O is a must.

These are examples of common stylistic traits (even in applications programming)
being driven by a limitation in the OS environment.

A subtle but important property of pipes and the other classic Unix IPC methods
is that they require communication between programs to be held down to a level of
simplicity that encourages separation of function. Conversely, the result of having no
equivalent of the pipe is that programs can only be designed to cooperate by building
in full knowledge of each others’ internals.

In operating systems without flexible IPC and a strong tradition of using it, pro-
grams communicate by sharing elaborate data structures. Because the communication
problem has to be solved anew for all programs every time another is added to the
set, the complexity of this solution rises as the square of the number of cooperating
programs. Worse than that, any change in one of the exposed data structures can induce
subtle bugs in an arbitrarily large number of other programs.

Word and Excel and PowerPoint and other Microsoft programs have intimate—one
might say promiscuous—knowledge of each others’ internals. In Unix, one tries
to design programs to operate not specifically with each other, but with programs
as yet unthought of.

—Doug McIlroy

We’ll return to this theme in Chapter 7.
To design the perfect anti-Unix, make process-spawning very expensive, make

process control difficult and inflexible, and leave IPC as an unsupported or half-sup-
ported afterthought.
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Internal Boundaries3.1.4

Unix has wired into it an assumption that the programmer knows best. It doesn’t stop
you or request confirmation when you do dangerous things with your own data, like
issuing rm -rf *. On the other hand, Unix is rather careful about not letting you
step on other people’s data. In fact, Unix encourages you to have multiple accounts,
each with its own attached and possibly differing privileges, to help you protect
yourself from misbehaving programs.3 System programs often have their own pseudo-
user accounts to confer access to special system files without requiring unlimited (or
superuser) access.

Unix has at least three levels of internal boundaries that guard against malicious
users or buggy programs. One is memory management; Unix uses its hardware’s
memory management unit (MMU) to ensure that separate processes are prevented
from intruding on the others’ memory-address spaces. A second is the presence of
true privilege groups for multiple users—an ordinary (nonroot) user’s processes cannot
alter or read another user’s files without permission. A third is the confinement of
security-critical functions to the smallest possible pieces of trusted code. Under Unix,
even the shell (the system command interpreter) is not a privileged program.

The strength of an operating system’s internal boundaries is not merely an abstract
issue of design: It has important practical consequences for the security of the system.

To design the perfect anti-Unix, discard or bypass memory management so that a
runaway process can crash, subvert, or corrupt any running program. Have weak or
nonexistent privilege groups, so users can readily alter each others’ files and the sys-
tem’s critical data (e.g., a macro virus, having seized control of your word processor,
can format your hard drive). And trust large volumes of code, like the entire shell and
GUI, so that any bug or successful attack on that code becomes a threat to the
entire system.

File Attributes and Record Structures3.1.5

Unix files have neither record structure nor attributes. In some operating systems,
files have an associated record structure; the operating system (or its service libraries)
knows about files with a fixed record length, or about text line termination and whether
CR/LF is to be read as a single logical character.

In other operating systems, files and directories can have name/attribute pairs as-
sociated with them—out-of-band data used (for example) to associate a document
file with an application that understands it. (The classic Unix way to handle these

3. The modern buzzword for this is role-based security.
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associations is to have applications recognize ‘magic numbers’, or other type data
within the file itself.)

OS-level record structures are generally an optimization hack, and do little more
than complicate APIs and programmers’ lives. They encourage the use of opaque
record-oriented file formats that generic tools like text editors cannot read properly.

File attributes can be useful, but (as we will see in Chapter 20) can raise some
awkward semantic issues in a world of byte-stream-oriented tools and pipes. When
file attributes are supported at the operating-system level, they predispose programmers
to use opaque formats and lean on the file attributes to tie them to the specific appli-
cations that interpret them.

To design the perfect anti-Unix, have a cumbersome set of record structures that
make it a hit-or-miss proposition whether any given tool will be able to even read a
file as the writer intended it. Add file attributes and have the system depend on them
heavily, so that the semantics of a file will not be determinable by looking at the data
within it.

Binary File Formats3.1.6

If your operating system uses binary formats for critical data (such as user-account
records) it is likely that no tradition of readable textual formats for applications will
develop. We explain in more detail why this is a problem in Chapter 5. For now it’s
sufficient to note the following consequences:

• Even if a command-line interface, scripting, and pipes are supported, very few
filters will evolve.

• Data files will be accessible only through dedicated tools. Developers will think
of the tools rather than the data files as central. Thus, different versions of file
formats will tend to be incompatible.

To design the perfect anti-Unix, make all file formats binary and opaque, and require
heavyweight tools to read and edit them.

Preferred User Interface Style3.1.7

In Chapter 11 we will develop in some detail the consequences of the differences
between command-line interfaces (CLIs) and graphical user interfaces (GUIs). Which
kind an operating system’s designers choose as its normal mode of presentation will
affect many aspects of the design, from process scheduling and memory management
on up to the application programming interfaces (APIs) presented for applications
to use.
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It has been enough years since the first Macintosh that very few people need to be
convinced that weak GUI facilities in an operating system are a problem. The Unix
lesson is the opposite: that weak CLI facilities are a less obvious but equally
severe deficit.

If the CLI facilities of an operating system are weak or nonexistent, you’ll also
see the following consequences:

• Programs will not be designed to cooperate with each other in unexpected
ways—because they can’t be. Outputs aren’t usable as inputs.

• Remote system administration will be sparsely supported, more difficult to use,
and more network-intensive.4

• Even simple noninteractive programs will incur the overhead of a GUI or elab-
orate scripting interface.

• Servers, daemons, and background processes will probably be impossible or at
least rather difficult, to program in any graceful way.

To design the perfect anti-Unix, have no CLI and no capability to script pro-
grams—or, important facilities that the CLI cannot drive.

Intended Audience3.1.8

The design of operating systems varies in response to the expected audience for the
system. Some operating systems are intended for back rooms, some for desktops.
Some are designed for technical users, others for end users. Some are intended to
work standalone in real-time control applications, others for an environment of
timesharing and pervasive networking.

One important distinction is client vs. server. ‘Client’ translates as: being light-
weight, suppporting only a single user, able to run on small machines, designed to be
switched on when needed and off when the user is done, lacking pre-emptive multi-
tasking, optimized for low latency, and putting a lot of its resources into fancy user
interfaces. ‘Server’ translates as: being heavyweight, capable of running continuously,
optimized for throughput, fully pre-emptively multitasking to handle multiple sessions.
In origin all operating systems were server operating systems; the concept of a client
operating system only emerged in the late 1970s with inexpensive but underpowered
PC hardware. Client operating systems are more focused on a visually attractive user
experience than on 24/7 uptime.

4. This problem was considered quite serious by Microsoft itself during their rebuild of Hotmail.
See [BrooksD].
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All these variables have an effect on development style. One of the most obvious
is the level of interface complexity the target audience will tolerate, and how it tends
to weight perceived complexity against other variables like cost and capability. Unix
is often said to have been written by programmers for programmers—an audience
that is notoriously tolerant of interface complexity.

This is a consequence rather than a goal. I abhor a system designed for the “user”,
if that word is a coded pejorative meaning “stupid and unsophisticated”.

—Ken Thompson

To design the perfect anti-Unix, write an operating system that thinks it knows
what you’re doing better than you do. And then adds injury to insult by getting
it wrong.

Entry Barriers to Development3.1.9

Another important dimension along which operating systems differ is the height of
the barrier that separates mere users from becoming developers. There are two impor-
tant cost drivers here. One is the monetary cost of development tools, the other is the
time cost of gaining proficiency as a developer. Some development cultures evolve
social barriers to entry, but these are usually an effect of the underlying technology
costs, not a primary cause.

Expensive development tools and complex, opaque APIs produce small and elitist
programming cultures. In those cultures, programming projects are large, serious
endeavors—they have to be in order to offer a payoff that justifies the cost of both
hard and soft (human) capital invested. Large, serious projects tend to produce large,
serious programs (and, far too often, large expensive failures).

Inexpensive tools and simple interfaces support casual programming, hobbyist
cultures, and exploration. Programming projects can be small (often, formal project
structure is plain unnecessary), and failure is not a catastrophe. This changes the style
in which people develop code; among other things, they show less tendency to
over-commit to failed approaches.

Casual programming tends to produce lots of small programs and a self-reinforcing,
expanding community of knowledge. In a world of cheap hardware, the presence or
absence of such a community is an increasingly important factor in whether an oper-
ating system is long-term viable at all.

Unix pioneered casual programming. One of the things Unix was first at doing
was shipping with a compiler and scripting tools as part of the default installation
available to all users, supporting a hobbyist software-development culture that spanned
multiple installations. Many people who write code under Unix do not think of it as
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writing code—they think of it as writing scripts to automate common tasks, or as
customizing their environment.

To design the perfect anti-Unix, make casual programming impossible.

Operating-System Comparisons3.2

The logic of Unix’s design choice stands out more clearly when we contrast it with
other operating systems. Here we will attempt only a design overview; for detailed
discussion of the technical features of different operating systems.5

Figure 3.1 indicates the genetic relationships among the timesharing operating
systems we’ll survey. A few other operating systems (marked in gray, and not neces-
sarily timesharing) are included for context. Sytems in solid boxes are still live. The
‘birth’ are dates of first shipment;6 the ‘death’ dates are generally when the system
was end-of-lifed by its vendor.

Solid arrows indicate a genetic relationship or very strong design influence (e.g.,
a later system with an API deliberately reverse-engineered to match an earlier one).
Dashed lines indicate significant design influence. Dotted lines indicate weak design
influence. Not all the genetic relationships are acknowledged by the developers; indeed,
some have been officially denied for legal or corporate-strategy reasons but are open
secrets in the industry.

The ‘Unix’ box includes all proprietary Unixes, including both AT&T and early
Berkeley versions. The ‘Linux’ box includes the open-source Unixes, all of which
launched in 1991. They have genetic inheritance from early Unix through code that
was freed from AT&T proprietary control by the settlement of a 1993 lawsuit.7

VMS3.2.1

VMS is the proprietary operating system originally developed for the VAX minicom-
puter from Digital Equipment Corporation. It was first released in 1978, was an im-
portant production operating system in the 1980s and early 1990s, and continued
to be maintained when DEC was acquired by Compaq and Compaq was acquired
by Hewlett-Packard. It is still sold and supported in mid-2003, though little new

5. See the OSData website <http://www.osdata.com/>.

6. Except for Multics which exerted most of its influence between the time its specifications
were published in 1965 and when it actually shipped in 1969.

7. For details on the lawsuit, see Marshall Kirk McKusick’s paper in [OpenSources].
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1960

1965

1970

1975

1980

1985

1990

1995

Unix DEC CP/M MacOS IBM

CTSS
(1961-1965)

MULTICS
(1965-1996)

Unix
(1969-)

Linux
(1991-)

TOPS-10
(1964-1983)

VMS
(1978-)

Win/NT
(1993-)

MacOS
(1984-2003)

BeOS
(1993-2001)

CP/M
(1976-1988)

MS-DOS
(1981-2001)

Windows
(1991-2002)

OS/360
(1966-1972)

MVS
(1972-)

VM/CMS
(1972-)

OS/2
(1987-2002)

Figure 3.1: Schematic history of timesharing.
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development goes on in it today.8 VMS is surveyed here to show the contrast between
Unix and other CLI-oriented operating systems from the minicomputer era.

VMS has full preemptive multitasking, but makes process-spawning very expensive.
The VMS file system has an elaborate notion of record types (though not attributes).
These traits have all the consequences we outlined earlier on, especially (in VMS’s
case) the tendency for programs to be huge, clunky monoliths.

VMS features long, readable COBOL-like system commands and command op-
tions. It has very comprehensive on-line help (not for APIs, but for the executable
programs and command-line syntax). In fact, the VMS CLI and its help system are
the organizing metaphor of VMS. Though X windows has been retrofitted onto the
system, the verbose CLI remains the most important stylistic influence on program
design. This has the following major implications:

• The frequency with which people use command-line functions—the more
voluminously you have to type, the less you want to do it.

• The size of programs—people want to type less, so they want to use fewer pro-
grams, and write larger ones with more bundled functions.

• The number and types of options your program accepts—they must conform to
the syntactic constraints imposed by the help system.

• The ease of using the help system—it’s very complete, but search and discovery
tools for it are absent and it has poor indexing. This makes acquiring broad
knowledge difficult, encourages specialization, and discourages casual
programming.

VMS has a respectable system of internal boundaries. It was designed for true
multiuser operation and fully employs the hardware MMU to protect processes from
each other. The system command interpreter is privileged, but the encapsulation of
critical functions is otherwise reasonably good. Security cracks against VMS have
been rare.

VMS tools were initially expensive, and its interfaces are complex. Enormous
volumes of VMS programmer documentation are only available in paper form, so
looking up anything is a time-consuming, high-overhead operation. This has tended
to discourage exploratory programming and learning a large toolkit. Only since being
nearly abandoned by its vendor has VMS developed casual programming and a hob-
byist culture, and that culture is not particularly strong.

Like Unix, VMS predated the client/server distinction. It was successful in its day
as a general-purpose timesharing operating system. The intended audience was

8. More information is available at the OpenVMS.org site <http://www.openvms.org>.
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primarily technical users and software-intensive businesses, implying a moderate
tolerance for complexity.

MacOS3.2.2

The Macintosh operating system was designed at Apple in the early 1980s, inspired
by pioneering work on GUIs done earlier at Xerox’s Palo Alto Research Center. It
saw its debut with the Macintosh in 1984. MacOS has gone through two significant
design transitions since, and is undergoing a third. The first transition was the shift
from supporting only a single application at a time to being able to cooperatively
multitask multiple applications (MultiFinder); the second was the shift from 68000
to PowerPC processors, which both preserved backward binary compatibility with
68K applications and brought in an advanced shared library management system for
PowerPC applications, replacing the original 68K trap instruction-based code-sharing
system. The third was the merger of MacOS design ideas with a Unix-derived infras-
tructure in MacOS X. Except where specifically noted, the discussion here applies to
pre-OS-X versions.

MacOS has a very strong unifying idea that is very different from Unix’s: the Mac
Interface Guidelines. These specify in great detail what an application GUI should
look like and how it should behave. The consistency of the Guidelines influenced the
culture of Mac users in significant ways. Not infrequently, simple-minded ports of
DOS or Unix programs that did not follow the Guidelines have been summarily re-
jected by the Mac user base and failed in the marketplace.

One key idea of the Guidelines is that things stay where you put them. Documents,
directories, and other objects have persistent locations on the desktop that the system
doesn’t mess with, and the desktop context persists through reboots.

The Macintosh’s unifying idea is so strong that most of the other design choices
we discussed above are either forced by it or invisible. All programs have GUIs. There
is no CLI at all. Scripting facilities are present but much less commonly used than
under Unix; many Mac programmers never learn them. MacOS’s captive-interface
GUI metaphor (organized around a single main event loop) leads to a weak scheduler
without preemption. The weak scheduler, and the fact that all MultiFinder applications
run in a single large address space, implies that it is not practical to use separated
processes or even threads rather than polling.

MacOS applications are not, however, invariably monster monoliths. The system’s
GUI support code, which is partly implemented in a ROM shipped with the hardware
and partly implemented in shared libraries, communicates with MacOS programs
through an event interface that has been quite stable since its beginnings. Thus, the
design of the operating system encourages a relatively clean separation between ap-
plication engine and GUI interface.
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MacOS also has strong support for isolating application metadata like menu
structures from the engine code. MacOS files have both a ‘data fork’ (a Unix-style
bag of bytes that contains a document or program code) and a ‘resource fork’ (a set
of user-definable file attributes). Mac applications tend to be designed so that (for
example) the images and sound used in them are stored in the resource fork and can
be modified separately from the application code.

The MacOS system of internal boundaries is very weak. There is a wired-in as-
sumption that there is but a single user, so there are no per-user privilege groups.
Multitasking is cooperative, not pre-emptive. All MultiFinder applications run in the
same address space, so bad code in any application can corrupt anything outside the
operating system’s low-level kernel. Security cracks against MacOS machines are
very easy to write; the OS has been spared an epidemic mainly because very few
people are motivated to crack it.

Mac programmers tend to design in the opposite direction from Unix programmers;
that is, they work from the interface inward, rather than from the engine outward
(we’ll discuss some of the implications of this choice in Chapter 20). Everything in
the design of the MacOS conspires to encourage this.

The intended role for the Macintosh was as a client operating system for nontech-
nical end users, implying a very low tolerance for interface complexity. Developers
in the Macintosh culture became very, very good at designing simple interfaces.

The incremental cost of becoming a developer, assuming you have a Macintosh
already, has never been high. Thus, despite rather complex interfaces, the Mac
developed a strong hobbyist culture early on. There is a vigorous tradition of small
tools, shareware, and user-supported software.

Classic MacOS has been end-of-lifed. Most of its facilities have been imported
into MacOS X, which mates them to a Unix infrastructure derived from the Berkeley
tradition.9 At the same time, leading-edge Unixes such as Linux are beginning to
borrow ideas like file attributes (a generalization of the resource fork) from MacOS.

OS/23.2.3

OS/2 began life as an IBM development project called ADOS (‘Advanced DOS’),
one of three competitors to become DOS 4. At that time, IBM and Microsoft were
formally collaborating to develop a next-generation operating system for the PC. OS/2
1.0 was first released in 1987 for the 286, but was unsuccessful. The 2.0 version
for the 386 came out in 1992, but by that time the IBM/Microsoft alliance had
already fractured. Microsoft went in a different (and more lucrative) direction with

9. MacOS X actually consists of two proprietary layers (ports of the OpenStep and Classic
Mac GUIs) layered over an open-source Unix core (Darwin).

653.2 Operating-System Comparisons



ptg

Windows 3.0. OS/2 attracted a loyal minority following, but never attracted a critical
mass of developers and users. It remained third in the desktop market, behind the
Macintosh, until being subsumed into IBM’s Java initiative after 1996. The last released
version was 4.0 in 1996. Early versions found their way into embedded systems and
still, as of mid-2003, run inside many of the world’s automated teller machines.

Like Unix, OS/2 was built to be preemptively multitasking and would not run on
a machine without an MMU (early versions simulated an MMU using the 286’s
memory segmentation). Unlike Unix, OS/2 was never built to be a multiuser system.
Process-spawning was relatively cheap, but IPC was difficult and brittle. Networking
was initially focused on LAN protocols, but a TCP/IP stack was added in later versions.
There were no programs analogous to Unix service daemons, so OS/2 never handled
multi-function networking very well.

OS/2 had both a CLI and GUI. Most of the positive legendry around OS/2 was
about the Workplace Shell (WPS), the OS/2 desktop. Some of this technology was
licensed from the developers of the AmigaOS Workbench,10 a pioneering GUI desktop
that still as of 2003 has a loyal fan base in Europe. This is the one area of the design
in which OS/2 achieved a level of capability which Unix arguably has not yet matched.
The WPS was a clean, powerful, object-oriented design with understandable behavior
and good extensibility. Years later it would become a model for Linux’s
GNOME project.

The class-hierarchy design of WPS was one of OS/2’s unifying ideas. The other
was multithreading. OS/2 programmers used threading heavily as a partial substitute
for IPC between peer processes. No tradition of cooperating program toolkits
developed.

OS/2 had the internal boundaries one would expect in a single-user OS. Running
processes were protected from each other, and kernel space was protected from user
space, but there were no per-user privilege groups. This meant the file system had no
protection against malicious code. Another consequence was that there was no analog
of a home directory; application data tended to be scattered all over the system.

A further consequence of the lack of multiuser capability was that there could be
no privilege distinctions in userspace. Thus, developers tended to trust only kernel
code. Many system tasks that in Unix would be handled by user-space daemons were
jammed into the kernel or the WPS. Both bloated as a result.

OS/2 had a text vs. binary mode (that is, a mode in which CR/LF was read as a
single end-of-line, versus one in which no such interpretation was performed), but
no other file record structure. It supported file attributes, which were used for desktop

10. In return for some Amiga technology, IBM gave Commodore a license for its REXX
scripting language. The deal is described at http://www.os2bbs.com/os2news/
OS2Warp.html.
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persistence after the manner of the Macintosh. System databases were mostly in
binary formats.

The preferred UI style was through the WPS. User interfaces tended to be ergo-
nomically better than Windows, though not up to Macintosh standards (OS/2’s most
active period was relatively early in the history of MacOS Classic). Like Unix and
Windows, OS/2’s user interface was themed around multiple, independent per-task
groups of windows, rather than capturing the desktop for the running application.

The intended audience for OS/2 was business and nontechnical end users, implying
a low tolerance for interface complexity. It was used both as a client operating system
and as a file and print server.

In the early 1990s, developers in the OS/2 community began to migrate to a Unix-
inspired environment called EMX that emulated POSIX interfaces. Ports of Unix
software started routinely showing up under OS/2 in the latter half of the 1990s.

Anyone could download EMX, which included the GNU Compiler Collection and
other open-source development tools. IBM intermittently gave away copies of the
system documentation in the OS/2 developer’s toolkit, which was posted on many
BBSs and FTP sites. Because of this, the “Hobbes” FTP archive of user-developed
OS/2 software had already grown to over a gigabyte in size by 1995. A very vigorous
tradition of small tools, exploratory programming, and shareware developed and re-
tained a loyal following for some years after OS/2 itself was clearly headed for the
dustbin of history.

After the release of Windows 95 the OS/2 community, feeling beleaguered by
Microsoft and encouraged by IBM, became increasingly interested in Java. After the
Netscape source code release in early 1998, the direction of migration changed (rather
suddenly), toward Linux.

OS/2 is interesting as a case study in how far a multitasking but single-user oper-
ating-system design can be pushed. Most of the observations in this case study would
apply well to other operating systems of the same general type, notably AmigaOS11

and GEM.12 A wealth of OS/2 material is still available on the Web in 2003, including
some good histories.13

11. AmigaOS Portal <http://os.amiga.com/>.

12. The GEM Operating System <http://www.geocities.com/SiliconValley/
Vista/6148/gem.html>.

13.  See, for example, the OS Voice <http://www.os2voice.org/> and OS/2 BBS.COM
<http://www.os2bbs.com/> sites.

673.2 Operating-System Comparisons

http://os.amiga.com/
http://www.geocities.com/SiliconValley/Vista/6148/gem.html
http://www.geocities.com/SiliconValley/Vista/6148/gem.html
http://www.os2voice.org/
http://www.os2bbs.com/


ptg

Windows NT3.2.4

Windows NT (New Technology) is Microsoft’s operating system for high-end personal
and server use; it is shipped in several variants that can all be considered the same
for our purposes. All of Microsoft’s operating systems since the demise of Windows
ME in 2000 have been NT-based; Windows 2000 was NT 5, and Windows XP (current
in 2003) is NT 5.1. NT is genetically descended from VMS, with which it shares
some important characteristics.

NT has grown by accretion, and lacks a unifying metaphor corresponding to Unix’s
“everything is a file” or the MacOS desktop.14 Because core technologies are not an-
chored in a small set of persistent central metaphors, they become obsolete every few
years. Each of the technology generations—DOS (1981), Windows 3.1 (1992), Win-
dows 95 (1995), Windows NT 4 (1996), Windows 2000 (2000), Windows XP (2002),
and Windows Server 2003 (2003)—has required that developers relearn fundamental
things in a different way, with the old way declared obsolete and no longer
well supported.

There are other consequences as well:

• The GUI facilities coexist uneasily with the weak, remnant command-line in-
terface inherited from DOS and VMS.

• Socket programming has no unifying data object analogous to the Unix every-
thing-is-a-file-handle, so multiprogramming and network applications that are
simple in Unix require several more fundamental concepts in NT.

NT has file attributes in some of its file system types. They are used in a restricted
way, to implement access-control lists on some file systems, and don’t affect develop-
ment style very much. It also has a record-type distinction, between text and binary
files, that produces occasional annoyances (both NT and OS/2 inherited this misfeature
from DOS).

Though pre-emptive multitasking is supported, process-spawning is expensive—not
as expensive as in VMS, but (at about 0.1 seconds per spawn) up to an order of mag-
nitude more so than on a modern Unix. Scripting facilities are weak, and the OS
makes extensive use of binary file formats. In addition to the expected consequences
we outlined earlier are these:

• Most programs cannot be scripted at all. Programs rely on complex, fragile
remote procedure call (RPC) methods to communicate with each other, a rich
source of bugs.

14. Perhaps. It has been argued that the unifying metaphor of all Microsoft operating systems
is “the customer must be locked in”.
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• There are no generic tools at all. Documents and databases can’t be read or
edited without special-purpose programs.

• Over time, the CLI has become more and more neglected because the environ-
ment there is so sparse. The problems associated with a weak CLI have gotten
progressively worse rather than better. (Windows Server 2003 attempts to reverse
this trend somewhat.)

System and user configuration data are centralized in a central properties registry
rather than being scattered through numerous dotfiles and system data files as in Unix.
This also has consequences throughout the design:

• The registry makes the system completely non-orthogonal. Single-point failures
in applications can corrupt the registry, frequently making the entire operating
system unusable and requiring a reinstall.

• The registry creep phenomenon: as the registry grows, rising access costs slow
down all programs.

NT systems on the Internet are notoriously vulnerable to worms, viruses, deface-
ments, and cracks of all kinds. There are many reasons for this, some more fundamental
than others. The most fundamental is that NT’s internal boundaries are extreme-
ly porous.

NT has access control lists that can be used to implement per-user privilege groups,
but a great deal of legacy code ignores them, and the operating system permits this
in order not to break backward compatibility. There are no security controls on message
traffic between GUI clients, either,15 and adding them would also break backward
compatibility.

While NT will use an MMU, NT versions after 3.5 have the system GUI wired
into the same address space as the privileged kernel for performance reasons. Recent
versions even wire the webserver into kernel space in an attempt to match the speed
of Unix-based webservers.

These holes in the boundaries have the synergistic effect of making actual security
on NT systems effectively impossible.16 If an intruder can get code run as any user
at all (e.g., through the Outlook email-macro feature), that code can forge messages
through the window system to any other running application. And any buffer overrun
or crack in the GUI or webserver can be exploited to take control of the entire system.

15. http://security.tombom.co.uk/shatter.html

16. Microsoft actually admitted publicly that NT security is impossible in March 2003.
See http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/security/bulletin/MS03-010.asp.
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Because Windows does not handle library versioning properly, it suffers from a
chronic configuration problem called “DLL hell”, in which installing new programs
can randomly upgrade (or even downgrade!) the libraries on which existing programs
depend. This applies to the vendor-supplied system libraries as well as to application-
specific ones: it is not uncommon for an application to ship with specific versions of
system libraries, and break silently when it does not have them.17

On the bright side, NT provides sufficient facilities to host Cygwin, which is a
compatibility layer implementing Unix at both the utilities and the API level, with
remarkably few compromises.18 Cygwin permits C programs to make use of both the
Unix and the native APIs, and is the first thing many Unix hackers install on such
Windows systems as they are compelled by circumstances to make use of.

The intended audience for the NT operating systems is primarily nontechnical end
users, implying a very low tolerance for interface complexity. It is used in both client
and server roles.

Early in its history Microsoft relied on third-party development to supply applica-
tions. They originally published full documentation for the Windows APIs, and kept
the price of development tools low. But over time, and as competitors collapsed, Mi-
crosoft’s strategy shifted to favor in-house development, they began hiding APIs from
the outside world, and development tools grew more expensive. As early as Windows
95, Microsoft was requiring nondisclosure agreements as a condition for purchasing
professional-quality development tools.

The hobbyist and casual-developer culture that had grown up around DOS and
earlier Windows versions was large enough to be self-sustaining even in the face of
increasing efforts by Microsoft to lock them out (including such measures as certifi-
cation programs designed to delegitimize amateurs). Shareware never went away, and
Microsoft’s policy began to reverse somewhat after 2000 under market pressure from
open-source operating systems and Java. However, Windows interfaces for ‘profes-
sional’ programming continued to grow more complex over time, presenting an in-
creasing barrier to casual (or serious!) coding.

The result of this history is a sharp dichotomy between the design styles practiced
by amateur and professional NT developers—the two groups barely communicate.
While the hobbyist culture of small tools and shareware is very much alive,

17. The DLL hell problem is somewhat mitigated by the .NET development framework, which
handles library versioning—but as of 2003 .NET only ships on the highest-end server versions
of NT.

18. Cygwin is largely compliant with the Single Unix Specification, but programs requiring
direct hardware access run into limitations in the Windows kernel that hosts it. Ethernet cards
are notoriously problematic.
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professional NT projects tend to produce monster monoliths even bulkier than those
characteristic of ‘elitist’ operating systems like VMS.

Unix-like shell facilities, command sets, and library APIs are available under
Windows through third-party libraries including UWIN, Interix, and the open-source
Cygwin.

BeOS3.2.5

Be, Inc. was founded in 1989 as a hardware vendor, building pioneering multiprocess-
ing machines around the PowerPC chip. BeOS was Be’s attempt to add value to the
hardware by inventing a new, network-ready operating system model incorporating
the lessons of both Unix and the MacOS family, without being either. The result was
a tasteful, clean, and exciting design with excellent performance in its chosen role as
a multimedia platform.

BeOS’s unifying ideas were ‘pervasive threading’, multimedia flows, and the file
system as database. BeOS was designed to minimize latency in the kernel, making it
well-suited for processing large volumes of data such as audio and video streams in
real time. BeOS ‘threads’ were actually lightweight processes in Unix terminology,
since they supported thread-local storage and therefore did not necessarily share all
address spaces. IPC via shared memory was fast and efficient.

BeOS followed the Unix model in having no file structure above the byte level.
Like the MacOS, it supported and used file attributes. In fact, the BeOS file system
was actually a database that could be indexed by any attribute.

One of the things BeOS took from Unix was intelligent design of internal bound-
aries. It made full use of an MMU, and sealed running processes off from each other
effectively. While it presented as a single-user operating system (no login), it supported
Unix-like privilege groups in the file system and elsewhere in the OS internals. These
were used to protect system-critical files from being touched by untrusted code; in
Unix terms, the user was logged in as an anonymous guest at boot time, with the only
other ‘user’ being root. Full multiuser operation would have been a small change to
the upper levels of the system, and there was in fact a BeLogin utility.

BeOS tended to use binary file formats and the native database built into the file
system, rather than Unix-like textual formats.

The preferred UI style of BeOS was GUI, and it leaned heavily on MacOS experi-
ence in interface design. CLI and scripting were, however, also fully supported. The
command-line shell of BeOS was a port of bash(1), the dominant open-source Unix
shell, running through a POSIX compatibility library. Porting of Unix CLI software
was, by design, trivially easy. Infrastructure to support the full panoply of scripting,
filters, and service daemons that goes with the Unix model was in place.

BeOS’s intended role was as a client operating system specialized for near-real-
time multimedia processing (especially sound and video manipulation). Its intended
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audience included technical and business end users, implying a moderate tolerance
for interface complexity.

Entry barriers to BeOS development were low; though the operating system was
proprietary, development tools were inexpensive and full documentation was readily
available. The BeOS effort began as part of one of the efforts to unseat Intel’s hardware
with RISC technology, and was continued as a software-only effort after the Internet
explosion. Its strategists were paying attention during Linux’s formative period in the
early 1990s, and were fully aware of the value of a large casual-developer base. In
fact they succeeded in attracting an intensely loyal following; as of 2003 no fewer
than five separate projects are attempting to resurrect BeOS in open source.

Unfortunately, the business strategy surrounding BeOS was not as astute as the
technical design. The BeOS software was originally bundled with dedicated hardware,
and marketed with only vague hints about intended applications. Later (1998) BeOS
was ported to generic PCs and more closely focused on multimedia applications, but
never attracted a critical mass of applications or users. BeOS finally succumbed in
2001 to a combination of anticompetitive maneuvering by Microsoft (lawsuit in
progress as of 2003) and competition from variants of Linux that had been adapted
for multimedia handling.

MVS3.2.6

MVS (Multiple Virtual Storage) is IBM’s flagship operating system for its mainframe
computers. Its roots stretch back to OS/360, which began life in the mid-1960s as the
operating system IBM wanted its customers to use on the then-new System/360
computer systems. Descendants of this code remain at the heart of today’s IBM
mainframe operating systems. Though the code has been almost entirely rewritten,
the basic design is largely untouched; backward compatibility has been religiously
maintained, to the point that applications written for OS/360 run unmodified on the
MVS of 64-bit z/Series mainframe computers three architectural generations later.

Of all the operating systems surveyed here, MVS is the only one that could be
considered older than Unix (the ambiguity stems from the degree to which it has
evolved over time). It is also the least influenced by Unix concepts and technology,
and represents the strongest design contrast with Unix. The unifying idea of MVS is
that all work is batch; the system is designed to make the most efficient possible use
of the machine for batch processing of huge amounts of data, with minimal concessions
to interaction with human users.

Native MVS terminals (the 3270 series) operate only in block mode. The user is
presented with a screen that he fills in, modifying local storage in the terminal. No
interrupt is presented to the mainframe until the user presses the send key. Charac-
ter-level interaction, in the manner of Unix’s raw mode, is impossible.
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TSO, the closest equivalent to the Unix interactive environment, is limited in native
capabilities. Each TSO user is represented to the rest of the system as a simulated
batch job. The facility is expensive—so much so that its use is typically limited to
programmers and support staff. Ordinary users who need to merely run applications
from a terminal almost never use TSO. Instead, they work through transaction monitors,
a kind of multiuser application server that does cooperative multitasking and supports
asynchronous I/O. In effect, each kind of transaction monitor is a specialized time-
sharing plugin (almost, but not entirely unlike a webserver running CGI).

Another consequence of the batch-oriented architecture is that process spawning
is a slow operation. The I/O system deliberately trades high setup cost (and associated
latency) for better throughput. These choices are a good match for batch operation,
but deadly to interactive response. A predictable result is that TSO users nowadays
spend almost all their time inside a dialog-driven interactive environment, ISPF. It is
rare for a programmer to do anything inside native TSO except start up an instance
of ISPF. This does away with process-spawn overhead, at the cost of introducing a
very large program that does everything but start the machine room coffeepot.

MVS uses the machine MMU; processes have separate address spaces. Interprocess
communication is supported only through shared memory. There are facilities for
threading (which MVS calls “subtasking”), but they are lightly used, mainly because
the facility is only easily accessible from programs written in assembler. Instead, the
typical batch application is a short series of heavyweight program invocations glued
together by JCL (Job Control Language) which provides scripting, though in a noto-
riously difficult and inflexible way. Programs in a job communicate through temporary
files; filters and the like are nearly impossible to do in a usable manner.

Every file has a record format, sometimes implied (inline input files in JCL are
implied to have an 80-byte fixed-length record format inherited from punched cards,
for example), but more often explicitly specified. Many system configuration files are
in text format, but application files are usually in binary formats specific to the appli-
cation. Some general tools for examining files have evolved out of sheer necessity,
but it is still not an easy problem to solve.

File system security was an afterthought in the original design. However, when
security was found to be necessary, IBM added it in an inspired fashion: They defined
a generic security API, then made all file access requests pass by that interface before
being processed. As a result, there are at least three competing security packages with
differing design philosophies—and all of them are quite good, with no known cracks
against them between 1980 and mid-2003. This variety allows an installation to select
the package that best suits local security policy.

Networking facilities are another afterthought. There is no concept of one interface
for both network connections and local files; their programming interfaces are separate
and quite different. This did allow TCP/IP to supplant IBM’s native SNA (Systems
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Network Architecture) as the network protocol of choice fairly seamlessly. It is still
common in 2003 to see both in use at a given installation, but SNA is dying out.

Casual programming for MVS is almost nonexistent except within the community
of large enterprises that run MVS. This is not due so much to the cost of the tools
themselves as it is to the cost of the environment—when one must spend several
million dollars on the computer system, a few hundred dollars a month for a compiler
is almost incidental. Within that community, however, there is a thriving culture of
freely available software, mainly programming and system-administration tools. The
first computer user’s group, SHARE, was founded in 1955 by IBM users, and is still
going strong today.

Considering the vast architectural differences, it is a remarkable fact that MVS
was the first non-System-V operating system to meet the Single Unix Specification
(there is less to this than meets the eye, however, as ports of Unix software from
elsewhere have a strong tendency to founder on ASCII-vs.-EBCDIC character-set is-
sues). It’s possible to start a Unix shell from TSO; Unix file systems are specially
formatted MVS data sets. The MVS Unix character set is a special EBCDIC codepage
with newline and linefeed swapped (so that what appears as linefeed to Unix appears
like newline to MVS), but the system calls are real system calls implemented in the
MVS kernel.

As the cost of the environment drops into the hobbyist range, there is a small but
growing group of users of the last public-domain version of MVS (3.8, dating from
1979). This system, as well as development tools and the emulator to run them, are
all available for the cost of a CD.19

The intended role of MVS has always been in the back office. Like VMS and Unix
itself, MVS predates the server/client distinction. Interface complexity for back-office
users is not only tolerated but expected, in the name of making the computer spend
fewer expensive resources on interfaces and more on the work it’s there to get done.

VM/CMS3.2.7

VM/CMS is IBM’s other mainframe operating system. Historically speaking, it is
Unix’s uncle: the common ancestor is the CTSS system, developed at MIT around
1963 and running on the IBM 7094 mainframe. The group that developed CTSS then
went on to write Multics, the immediate ancestor of Unix. IBM established a group
in Cambridge to write a timesharing system for the IBM 360/40, a modified 360
with (for the first time on an IBM system) a paging MMU.20 The MIT and IBM

19. http://www.cbttape.org/cdrom.htm

20. The development machine and initial target was a 40 with customized microcode, but it
proved insufficiently powerful; production deployment was on the 360/67.
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programmers continued to interact for many years thereafter, and the new system got
a user interface that was very CTSS-like, complete with a shell named EXEC and a
large supply of utilities analogous to those used on Multics and later on Unix.

In another sense, VM/CMS and Unix are funhouse mirror images of one another.
The unifying idea of the system, provided by the VM component, is virtual machines,
each of which looks exactly like the underlying physical machine. They are preemp-
tively multitasked, and run either the single-user operating system CMS or a complete
multitasking operating system (typically MVS, Linux, or another instance of VM it-
self). Virtual machines correspond to Unix processes, daemons, and emulators, and
communication between them is accomplished by connecting the virtual card punch
of one machine to the virtual card reader of another. In addition, a layered tools
environment called CMS Pipelines is provided within CMS, directly modeled on
Unix’s pipes but architecturally extended to support multiple inputs and outputs.

When communication between them has not been explicitly set up, virtual machines
are completely isolated from each other. The operating system has the same high re-
liability, scalability, and security as MVS, and has far greater flexibility and is much
easier to use. In addition, the kernel-like portions of CMS do not need to be trusted
by the VM component, which is maintained completely separately.

Although CMS is record-oriented, the records are essentially equivalent to the
lines that Unix textual tools use. Databases are much better integrated into CMS
Pipelines than is typically the case on Unix, where most databases are quite separate
from the operating system. In recent years, CMS has been augmented to fully support
the Single Unix Specification.

The UI style of CMS is interactive and conversational, very unlike MVS but like
VMS and Unix. A full-screen editor called XEDIT is heavily used.

VM/CMS predates the client/server distinction, and is nowadays used almost en-
tirely as a server operating system with emulated IBM terminals. Before Windows
came to dominate the desktop so completely, VM/CMS provided word-processing
services and email both internally to IBM and between mainframe customer
sites—indeed, many VM systems were installed exclusively to run those applications
because of VM’s ready scalability to tens of thousands of users.

A scripting language called REXX supports programming in a style not unlike
shell, awk, Perl, or Python. Consequently, casual programming (especially by system
administrators) is very important on VM/CMS. Free cycles permitting, admins often
prefer to run production MVS in a virtual machine rather than directly on the bare
iron, so that CMS is also available and its flexibility can be taken advantage of. (There
are CMS tools that permit access to MVS file systems.)

There are even striking parallels between the history of VM/CMS within IBM and
Unix within Digital Equipment Corporation (which made the hardware that Unix first
ran on). It took IBM years to understand the strategic importance of its unofficial
timesharing system, and during that time a community of VM/CMS programmers
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arose that was closely analogous in behavior to the early Unix community. They
shared ideas, shared discoveries about the system, and above all shared source code
for utilities. No matter how often IBM tried to declare VM/CMS dead, the communi-
ty—which included IBM’s own MVS system developers!—insisted on keeping it
alive. VM/CMS even went through the same cycle of de facto open source to closed
source back to open source, though not as thoroughly as Unix did.

What VM/CMS lacks, however, is any real analog to C. Both VM and CMS were
written in assembler and have remained so implemented. The nearest equivalent to
C was various cut-down versions of PL/I that IBM used for systems programming,
but did not share with its customers. Therefore, the operating system remains trapped
on its original architectural line, though it has grown and expanded as the 360 archi-
tecture became the 370 series, the XA series, and finally the current z/Series.

Since the year 2000, IBM has been promoting VM/CMS on mainframes to an
unprecedented degree—as ways to host thousands of virtual Linux machines at once.

Linux3.2.8

Linux, originated by Linus Torvalds in 1991, leads the pack of new-school open-
source Unixes that have emerged since 1990 (also including FreeBSD, NetBSD,
OpenBSD, and Darwin), and is representative of the design direction being taken by
the group as a whole. The trends in it can be taken as typical for this entire group.

Linux does not include any code from the original Unix source tree, but it was
designed from Unix standards to behave like a Unix. In the rest of this book, we em-
phasize the continuity between Unix and Linux. That continuity is extremely strong,
both in terms of technology and key developers—but here we emphasize some direc-
tions Linux is taking that mark a departure from ‘classical’ Unix tradition.

Many developers and activists in the Linux community have ambitions to win a
substantial share of end-user desktops. This makes Linux’s intended audience quite
a bit broader than was ever the case for the old-school Unixes, which have primarily
aimed at the server and technical-workstation markets. This has implications for the
way Linux hackers design software.

The most obvious change is a shift in preferred interface styles. Unix was originally
designed for use on teletypes and slow printing terminals. Through much of its lifetime
it was strongly associated with character-cell video-display terminals lacking either
graphics or color capabilities. Most Unix programmers stayed firmly wedded to the
command line long after large end-user applications had migrated to X-based GUIs,
and the design of both Unix operating systems and their applications have continued
to reflect this fact.

Linux users and developers, on the other hand, have been adapting themselves to
address the nontechnical user’s fear of CLIs. They have moved to building GUIs and
GUI tools much more intensively than was the case in old-school Unix, or even in
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contemporary proprietary Unixes. To a lesser but significant extent, this is true of the
other open-source Unixes as well.

The desire to reach end users has also made Linux developers much more concerned
with smoothness of installation and software distribution issues than is typically the
case under proprietary Unix systems. One consequence is that Linux features binary-
package systems far more sophisticated than any analogs in proprietary Unixes, with
interfaces designed (as of 2003, with only mixed success) to be palatable to nontech-
nical end users.

The Linux community wants, more than the old-school Unixes ever did, to turn
their software into a sort of universal pipefitting for connecting together other envi-
ronments. Thus, Linux features support for reading and (often) writing the file system
formats and networking methods native to other operating systems. It also supports
multiple-booting with them on the same hardware, and simulating them in software
inside Linux itself. The long-term goal is subsumption; Linux emulates so it
can absorb.21

The goal of subsuming the competition, combined with the drive to reach the end-
user, has motivated Linux developers to adopt design ideas from non-Unix operating
systems to a degree that makes traditional Unixes look rather insular. Linux applica-
tions using Windows .INI format files for configuration is a minor example we’ll
cover in Chapter 10; Linux 2.5’s incorporation of extended file attributes, which
among other things can be used to emulate the semantics of the Macintosh resource
fork, is a recent major one at time of writing.

But the day Linux gives the Mac diagnostic that you can’t open a file because you
don’t have the application is the day Linux becomes non-Unix.

—Doug McIlroy

The remaining proprietary Unixes (such as Solaris, HP-UX, AIX, etc.) are designed
to be big products for big IT budgets. Their economic niche encourages designs opti-
mized for maximum power on high-end, leading-edge hardware. Because Linux has
part of its roots among PC hobbyists, it emphasizes doing more with less. Where
proprietary Unixes are tuned for multiprocessor and server-cluster operation at the
expense of performance on low-end hardware, core Linux developers have explicitly
chosen not to accept more complexity and overhead on low-end machines for marginal
performance gains on high-end hardware.

21. The results of Linux’s emulate-and-subsume strategy differ noticeably from the embrace-
and-extend practiced by some of its competitors. For starters, Linux does not break compati-
bility with what it is emulating in order to lock customers into the “extended” version.
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Indeed, a substantial fraction of the Linux user community is understood to be
wringing usefulness out of hardware as technically obsolete today as Ken Thompson’s
PDP-7 was in 1969. As a consequence, Linux applications are under pressure to stay
lean and mean that their counterparts under proprietary Unix do not experience.

These trends have implications for the future of Unix as a whole, a topic we’ll return
to in Chapter 20.

What Goes Around, Comes Around3.3

We attempted to select for comparison timesharing systems that either are now or
have in the past been competitive with Unix. The field of plausible candidates is not
wide. Most (Multics, ITS, DTSS, TOPS-10, TOPS-20, MTS, GCOS, MPE, and perhaps
a dozen others) are so long dead that they are fading from the collective memory of
the computing field. Of those we surveyed, VMS and OS/2 are moribund, and MacOS
has been subsumed by a Unix derivative. MVS and VM/CMS were limited to a single
proprietary mainframe line. Only Microsoft Windows remains as a viable competitor
independent of the Unix tradition.

We pointed out Unix’s strengths in Chapter 1, and they are certainly part of the
explanation. But it’s actually more instructive to look at the obverse of that answer
and ask which weaknesses in Unix’s competitors did them in.

The most obvious shared problem is nonportability. Most of Unix’s pre-1980
competitors were tied to a single hardware platform, and died with that platform. One
reason VMS survived long enough to merit inclusion here as a case study is that it
was successfully ported from its original VAX hardware to the Alpha processor (and
in 2003 is being ported from Alpha to Itanium). MacOS successfully made the jump
from the Motorola 68000 to PowerPC chips in the late 1980s. Microsoft Windows
escaped this problem by being in the right place when commoditization flattened the
market for general-purpose computers into a PC monoculture.

From 1980 on, another particular weakness continually reemerges as a theme in
different systems that Unix either steamrollered or outlasted: an inability to support
networking gracefully.

In a world of pervasive networking, even an operating system designed for single-
user use needs multiuser capability (multiple privilege groups)—because without
that, any network transaction that can trick a user into running malicious code will
subvert the entire system (Windows macro viruses are only the tip of this iceberg).
Without strong multitasking, the ability of an operating system to handle network
traffic and run user programs at the same time will be impaired. The operating system
also needs efficient IPC so that its network programs can communicate with each
other and with the user’s foreground applications.
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Windows gets away with having severe deficiencies in these areas only by virtue
of having developed a monopoly position before networking became really important,
and by having a user population that has been conditioned to accept a shocking fre-
quency of crashes and security breaches as normal. This is not a stable situation, and
it is one that partisans of Linux have successfully (in 2003) exploited to make major
inroads in the server-operating-system market.

Around 1980, during the early heyday of personal computers, operating-system
designers dismissed Unix and traditional timesharing as heavyweight, cumbersome,
and inappropriate for the brave new world of single-user personal machines—despite
the fact that GUI interfaces tended to demand the reinvention of multitasking to cope
with threads of execution bound to different windows and widgets. The trend toward
client operating systems was so intense that server operating systems were at times
dismissed as steam-powered relics of a bygone age.

But as the designers of BeOS noticed, the requirements of pervasive networking
cannot be met without implementing something very close to general-purpose time-
sharing. Single-user client operating systems cannot thrive in an Internetted world.

This problem drove the reconvergence of client and server operating systems. The
first, pre-Internet attempts at peer-to-peer networking over LANs, in the late 1980s,
began to expose the inadequacy of the client-OS design model. Data on a network
has to have rendezvous points in order to be shared; thus, we can’t do without servers.
At the same time, experience with the Macintosh and Windows client operating
systems raised the bar on the minimum quality of user experience customers
would tolerate.

With non-Unix models for timesharing effectively dead by 1990, there were not
many possible responses client operating-system designers could mount to this
challenge. They could co-opt Unix (as MacOS X has done), re-invent roughly
equivalent features a patch at a time (as Windows has done), or attempt to reinvent
the entire world (as BeOS tried and failed to do). But meanwhile, open-source
Unixes were growing client-like capabilities to use GUIs and run on inexpensive
personal machines.

These pressures turned out, however, not to be as symmetrically balanced as the
above description might imply. Retrofitting server-operating-system features like
multiple privilege classes and full multitasking onto a client operating system is very
difficult, quite likely to break compatibility with older versions of the client, and
generally produces a fragile and unsatisfactory result rife with stability and security
problems. Retrofitting a GUI onto a server operating system, on the other hand, raises
problems that can largely be finessed by a combination of cleverness and throwing
ever-more-inexpensive hardware resources at the problem. As with buildings, it’s
easier to repair superstructure on top of a solid foundation than it is to replace the
foundations without trashing the superstructure.
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Besides having the native architectural strengths of a server operating system,
Unix was always agnostic about its intended audience. Its designers and implementers
never assumed they knew all potential uses the system would be put to.

Thus, the Unix design proved more capable of reinventing itself as a client than
any of its client-operating-system competitors were of reinventing themselves as
servers. While many other factors of technology and economics contributed to the
Unix resurgence of the 1990s, this is one that really foregrounds itself in any discussion
of operating-system design style.
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4

Modularity:
Keeping It Clean,
Keeping It Simple

There are two ways of constructing a software design. One is to make it so simple
that there are obviously no deficiencies; the other is to make it so complicated that
there are no obvious deficiencies. The first method is far more difficult.

The Emperor’s Old Clothes, CACM February 1981
— C. A. R. Hoare

There is a natural hierarchy of code-partitioning methods that has evolved as program-
mers have had to manage ever-increasing levels of complexity. In the beginning,
everything was one big lump of machine code. The earliest procedural languages
brought in the notion of partition by subroutine. Then we invented service libraries
to share common utility functions among multiple programs. Next, we invented sep-
arated address spaces and communicating processes. Today we routinely distribute
program systems across multiple hosts separated by thousands of miles of
network cable.

The early developers of Unix were among the pioneers in software modularity.
Before them, the Rule of Modularity was computer-science theory but not engineering
practice. In Design Rules [Baldwin-Clark], a path-breaking study of the economics
of modularity in engineering design, the authors use the development of the computer
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industry as a case study and argue that the Unix community was in fact the first to
systematically apply modular decomposition to production software, as opposed to
hardware. Modularity of hardware has of course been one of the foundations of engi-
neering since the adoption of standard screw threads in the late 1800s.

The Rule of Modularity bears amplification here: The only way to write complex
software that won’t fall on its face is to build it out of simple modules connected by
well-defined interfaces, so that most problems are local and you can have some hope
of fixing or optimizing a part without breaking the whole.

The tradition of being careful about modularity and of paying close attention to
issues like orthogonality and compactness are still much deeper in the bone among
Unix programmers than elsewhere.

Early Unix programmers became good at modularity because they had to be. An
OS is one of the most complicated pieces of code around. If it is not well structured,
it will fall apart. There were a couple of early failures at building Unix that were
scrapped. One can blame the early (structureless) C for this, but basically it was
because the OS was too complicated to write. We needed both refinements in tools
(like C structures) and good practice in using them (like Rob Pike’s rules for pro-
gramming) before we could tame that complexity.

—Ken Thompson

Early Unix hackers struggled with this in many ways. In the languages of 1970
function calls were expensive, either because call semantics were complicated
(PL/1, Algol) or because the compiler was optimizing for other things like fast inner
loops at the expense of call time. Thus, code tended to be written in big lumps. Ken
and several of the other early Unix developers knew modularity was a good idea, but
they remembered PL/1 and were reluctant to write small functions lest performance
go to hell.

Dennis Ritchie encouraged modularity by telling all and sundry that function calls
were really, really cheap in C. Everybody started writing small functions and
modularizing. Years later we found out that function calls were still expensive on
the PDP-11, and VAX code was often spending 50% of its time in the CALLS in-
struction. Dennis had lied to us! But it was too late; we were all hooked...

—Steve Johnson

All programmers today, Unix natives or not, are taught to modularize at the sub-
routine level within programs. Some learn the art of doing this at the module or ab-
stract-data-type level and call that ‘good design’. The design-patterns movement is
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making a noble effort to push up a level from there and discover successful design
abstractions that can be applied to organize the large-scale structure of programs.

Getting better at all these kinds of problem partitioning is a worthy goal, and many
excellent treatments of them are available elsewhere. We shall not attempt to cover
all the issues relating to modularity within programs in too much detail: first, because
that is a subject for an entire volume (or several volumes) in itself; and second, because
this is a book about the art of Unix programming.

What we will do here is examine more specifically what the Unix tradition teaches
us about how to follow the Rule of Modularity. In this chapter, our examples will live
within process units. Later, in Chapter 7, we’ll examine the circumstances under
which partitioning programs into multiple cooperating processes is a good idea, and
discuss more specific techniques for doing that partitioning.

Encapsulation and Optimal Module Size4.1

The first and most important quality of modular code is encapsulation. Well-encapsu-
lated modules don’t expose their internals to each other. They don’t call into the
middle of each others’ implementations, and they don’t promiscuously share global
data. They communicate using application programming interfaces (APIs)—narrow,
well-defined sets of procedure calls and data structures. This is what the Rule of
Modularity is about.

The APIs between modules have a dual role. On the implementation level, they
function as choke points between the modules, preventing the internals of each from
leaking into its neighbors. On the design level, it is the APIs (not the bits of implemen-
tation between them) that really define your architecture.

One good test for whether an API is well designed is this one: if you try to write
a description of it in purely human language (with no source-code extracts allowed),
does it make sense? It is a very good idea to get into the habit of writing informal
descriptions of your APIs before you code them. Indeed, some of the most able
developers start by defining their interfaces, writing brief comments to describe them,
and then writing the code—since the process of writing the comment clarifies what
the code must do. Such descriptions help you organize your thoughts, they make
useful module comments, and eventually you might want to turn them into a roadmap
document for future readers of the code.

As you push module decomposition harder, the pieces get smaller and the definition
of the APIs gets more important. Global complexity, and consequent vulnerability to
bugs, decreases. It has been received wisdom in computer science since the 1970s
(exemplified in papers such as [Parnas]) that you ought to design your software systems
as hierarchies of nested modules, with the grain size of the modules at each level held
to a minimum.
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Figure 4.1: Qualitative plot of defect count and density vs. module size.

It is possible, however, to push this kind of decomposition too hard and make your
modules too small. There is evidence [Hatton97] that when one plots defect density
versus module size, the curve is U-shaped and concave upwards (see Figure 4.1).
Very small and very large modules are associated with more bugs than those of inter-
mediate size. A different way of viewing the same data is to plot lines of code per
module versus total bugs. The curve looks roughly logarithmic up to a ‘sweet spot’
where it flattens (corresponding to the minimum in the defect density curve), after
which it goes up as the square of the number of the lines of code (which is what one
might intuitively expect for the whole curve, following Brooks’s Law1).

This unexpectedly increasing incidence of bugs at small module sizes holds across
a wide variety of systems implemented in different languages. Hatton has proposed

1. Brooks’s Law predicts that adding programmers to a late project makes it later. More gen-
erally, it predicts that costs and error rates rise as the square of the number of programmers
on a project.
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a model relating this nonlinearity to the chunk size of human short-term memory.2

Another way to interpret the nonlinearity is that at small module grain sizes, the in-
creasing complexity of the interfaces becomes the dominating term; it’s difficult to
read the code because you have to understand everything before you can understand
anything. In Chapter 7 we’ll examine more advanced forms of program partitioning;
there, too, the complexity of interface protocols comes to dominate the total complexity
of the system as the component processes get smaller.

In nonmathematical terms, Hatton’s empirical results imply a sweet spot between
200 and 400 logical lines of code that minimizes probable defect density, all other
factors (such as programmer skill) being equal. This size is independent of the language
being used—an observation which strongly reinforces the advice given elsewhere in
this book to program with the most powerful languages and tools you can. Beware
of taking these numbers too literally however. Methods for counting lines of code
vary considerably according to what the analyst considers a logical line, and other
biases (such as whether comments are stripped). Hatton himself suggests as a rule of
thumb a 2x conversion between logical and physical lines, suggesting an optimal
range of 400–800 physical lines.

Compactness and Orthogonality4.2

Code is not the only sort of thing with an optimal chunk size. Languages and APIs
(such as sets of library or system calls) run up against the same sorts of human cogni-
tive constraints that produce Hatton’s U-curve.

Accordingly, Unix programmers have learned to think very hard about two other
properties when designing APIs, command sets, protocols, and other ways to make
computers do tricks: compactness and orthogonality.

Compactness4.2.1

Compactness is the property that a design can fit inside a human being’s head. A good
practical test for compactness is this: Does an experienced user normally need a
manual? If not, then the design (or at least the subset of it that covers normal use)
is compact.

2. In Hatton’s model, small differences in the maximum chunk size a programmer can hold
in short-term memory have a large multiplicative effect on the programmer’s efficiency. This
might be a major contributor to the order-of-magnitude (or larger) variations in effectiveness
observed by Fred Brooks and others.
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Compact software tools have all the virtues of physical tools that fit well in the
hand. They feel pleasant to use, they don’t obtrude themselves between your mind
and your work, they make you more productive—and they are much less likely than
unwieldy tools to turn in your hand and injure you.

Compact is not equivalent to ‘weak’. A design can have a great deal of power and
flexibility and still be compact if it is built on abstractions that are easy to think about
and fit together well. Nor is compact equivalent to ‘easily learned’; some compact
designs are quite difficult to understand until you have mastered an underlying con-
ceptual model that is tricky, at which point your view of the world changes and compact
becomes simple. For a lot of people, the Lisp language is a classic example of this.

Nor does compact mean ‘small’. If a well-designed system is predictable and
‘obvious’ to the experienced user, it might have quite a few pieces.

—Ken Arnold

Very few software designs are compact in an absolute sense, but many are compact
in a slightly looser sense of the term. They have a compact working set, a subset of
capabilities that suffices for 80% or more of what expert users normally do with them.
Practically speaking, such designs normally need a reference card or cheat sheet but
not a manual. We’ll call such designs semi-compact, as opposed to strictly compact.

The concept is perhaps best illustrated by examples. The Unix system call API is
semi-compact, but the standard C library is not compact in any sense. While Unix
programmers easily keep a subset of the system calls sufficient for most applications
programming (file system operations, signals, and process control) in their heads, the
C library on modern Unixes includes many hundreds of entry points, e.g., mathemat-
ical functions, that won’t all fit inside a single programmer’s cranium.

The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
for Processing Information [Miller] is one of the foundation papers in cognitive psy-
chology (and, incidentally, the specific reason that U.S. local telephone numbers have
seven digits). It showed that the number of discrete items of information human beings
can hold in short-term memory is seven, plus or minus two. This gives us a good
rule of thumb for evaluating the compactness of APIs: Does a programmer have to
remember more than seven entry points? Anything larger than this is unlikely to be
strictly compact.

Among Unix tools, make(1) is compact; autoconf(1) and automake(1) are not.
Among markup languages, HTML is semi-compact, but DocBook (a documentation
markup language we shall discuss in Chapter 18) is not. The man(7) macros are
compact, but troff(1) markup is not.

Among general-purpose programming languages, C and Python are semi-compact;
Perl, Java, Emacs Lisp, and shell are not (especially since serious shell programming
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requires you to know half-a-dozen other tools like sed(1) and awk(1)). C++ is anti-
compact—the language’s designer has admitted that he doesn’t expect any one pro-
grammer to ever understand it all.

Some designs that are not compact have enough internal redundancy of features
that individual programmers end up carving out compact dialects sufficient for that
80% of common tasks by choosing a working subset of the language. Perl has this
kind of pseudo-compactness, for example. Such designs have a built-in trap; when
two programmers try to communicate about a project, they may find that differences
in their working subsets are a significant barrier to understanding and modifying
the code.

Noncompact designs are not automatically doomed or bad, however. Some problem
domains are simply too complex for a compact design to span them. Sometimes it’s
necessary to trade away compactness for some other virtue, like raw power and range.
Troff markup is a good example of this. So is the BSD sockets API. The purpose of
emphasizing compactness as a virtue is not to condition you to treat compactness as
an absolute requirement, but to teach you to do what Unix programmers do: value
compactness properly, design for it whenever possible, and not throw it away casually.

Orthogonality4.2.2

Orthogonality is one of the most important properties that can help make even complex
designs compact. In a purely orthogonal design, operations do not have side effects;
each action (whether it’s an API call, a macro invocation, or a language operation)
changes just one thing without affecting others. There is one and only one way to
change each property of whatever system you are controlling.

Your monitor has orthogonal controls. You can change the brightness independently
of the contrast level, and (if the monitor has one) the color balance control will be
independent of both. Imagine how much more difficult it would be to adjust a monitor
on which the brightness knob affected the color balance: you’d have to compensate
by tweaking the color balance every time after you changed the brightness. Worse,
imagine if the contrast control also affected the color balance; then, you’d have to
adjust both knobs simultaneously in exactly the right way to change either contrast
or color balance alone while holding the other constant.

Far too many software designs are non-orthogonal. One common class of design
mistake, for example, occurs in code that reads and parses data from one (source)
format to another (target) format. A designer who thinks of the source format as
always being stored in a disk file may write the conversion function to open and read
from a named file. Usually the input could just as well have been any file handle. If
the conversion routine were designed orthogonally, e.g., without the side effect of
opening a file, it could save work later when the conversion has to be done on a data
stream supplied from standard input, a network socket, or any other source.
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Doug McIlroy’s advice to “Do one thing well” is usually interpreted as being about
simplicity. But it’s also, implicitly and at least as importantly, about orthogonality.

It’s not a problem for a program to do one thing well and other things as side
effects, provided supporting those other things doesn’t raise the complexity of the
program and its vulnerability to bugs. In Chapter 9 we’ll examine a program called
ascii that prints synonyms for the names of ASCII characters, including hex, octal,
and binary values; as a side effect, it can serve as a quick base converter for numbers
in the range 0–255. This second use is not an orthogonality violation because the
features that support it are all necessary to the primary function; they do not make
the program more difficult to document or maintain.

The problems with non-orthogonality arise when side effects complicate a pro-
grammer’s or user’s mental model, and beg to be forgotten, with results ranging from
inconvenient to dire. Even when you do not forget the side effects, you’re often forced
to do extra work to suppress them or work around them.

There is an excellent discussion of orthogonality and how to achieve it in The
Pragmatic Programmer [Hunt-Thomas]. As they point out, orthogonality reduces test
and development time, because it’s easier to verify code that neither causes side effects
nor depends on side effects from other code—there are fewer combinations to test.
If it breaks, orthogonal code is more easily replaced without disturbance to the rest
of the system. Finally, orthogonal code is easier to document and reuse.

The concept of refactoring, which first emerged as an explicit idea from the ‘Ex-
treme Programming’ school, is closely related to orthogonality. To refactor code is
to change its structure and organization without changing its observable behavior.
Software engineers have been doing this since the birth of the field, of course, but
naming the practice and identifying a stock set of refactoring techniques has helped
concentrate peoples’ thinking in useful ways. Because these fit so well with the central
concerns of the Unix design tradition, Unix developers have quickly coopted the ter-
minology and ideas of refactoring.3

The basic Unix APIs were designed for orthogonality with imperfect but consider-
able success. We take for granted being able to open a file for write access without
exclusive-locking it for write, for example; not all operating systems are so graceful.
Old-style (System III) signals were non-orthogonal, because signal receipt had the
side-effect of resetting the signal handler to the default die-on-receipt. There are large
non-orthogonal patches like the BSD sockets API and very large ones like the X
windowing system’s drawing libraries.

3. In the foundation text on this topic, Refactoring [Fowler], the author comes very close to
stating that the principal goal of refactoring is to improve orthogonality. But lacking the concept,
he can only approximate this idea from several different directions: eliminating code duplication
and various other “bad smells” many of which are some sort of orthogonality violation.
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But on the whole the Unix API is a good example: Otherwise it not only would
not but could not be so widely imitated by C libraries on other operating systems.
This is also a reason that the Unix API repays study even if you are not a Unix pro-
grammer; it has lessons about orthogonality to teach.

The SPOT Rule4.2.3

The Pragmatic Programmer articulates a rule for one particular kind of orthogonality
that is especially important. Their “Don’t Repeat Yourself” rule is: every piece of
knowledge must have a single, unambiguous, authoritative representation within a
system. In this book we prefer, following a suggestion by Brian Kernighan, to call
this the Single Point Of Truth or SPOT rule.

Repetition leads to inconsistency and code that is subtly broken, because you
changed only some repetitions when you needed to change all of them. Often, it also
means that you haven’t properly thought through the organization of your code.

Constants, tables, and metadata should be declared and initialized once and import-
ed elsewhere. Any time you see duplicate code, that’s a danger sign. Complexity is a
cost; don’t pay it twice.

Often it’s possible to remove code duplication by refactoring; that is, changing
the organization of your code without changing the core algorithms. Data duplication
sometimes appears to be forced on you. But when you see it, here are some valuable
questions to ask:

• If you have duplicated data in your code because it has to have two different
representations in two different places, can you write a function, tool or code
generator to make one representation from the other, or both from a common
source?

• If your documentation duplicates knowledge in your code, can you generate
parts of the documentation from parts of the code, or vice-versa, or both from
a common higher-level representation?

• If your header files and interface declarations duplicate knowledge in your im-
plementation code, is there a way you can generate the header files and interface
declarations from the code?

There is an analog of the SPOT rule for data structures: “No junk, no confusion”.
“No junk” says that the data structure (the model) should be minimal, e.g., not made
so general that it can represent situations which cannot exist. “No confusion” says
that states which must be kept distinct in the real-world problem must be kept distinct
in the model. In short, the SPOT rule advocates seeking a data structure whose states
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have a one-to-one correspondence with the states of the real-world system to be
modeled.

From deeper within the Unix tradition, we can add some of our own corollaries
of the SPOT rule:

• Are you duplicating data because you’re caching intermediate results of some
computation or lookup? Consider carefully whether this is premature optimiza-
tion; stale caches (and the layers of code needed to keep caches synchronized)
are a fertile source of bugs,4 and can even slow down overall performance if (as
often happens) the cache-management overhead is higher than you expected.

• If you see lots of duplicative boilerplate code, can you generate all of it from a
single higher-level representation, twiddling a few knobs to generate the
different cases?

The reader should begin to see a pattern emerging here.
In the Unix world, the SPOT Rule as a unifying idea has seldom been explicit—but

heavy use of code generators to implement particular kinds of SPOT are very much
part of the tradition. We’ll survey these techniques in Chapter 9.

Compactness and the Strong Single Center4.2.4

One subtle but powerful way to promote compactness in a design is to organize it
around a strong core algorithm addressing a clear formal definition of the problem,
avoiding heuristics and fudging.

Formalization often clarifies a task spectacularly. It is not enough for a programmer
to recognize that bits of his task fall within standard computer-science categories—a
little depth-first search here and a quicksort there. The best results occur when the
nub of the task can be formalized, and a clear model of the job at hand can be
constructed. It is not necessary that ultimate users comprehend the model. The
very existence of a unifying core will provide a comfortable feel, unencumbered
with the why-in-hell-did-they-do-that moments that are so prevalent in using Swiss-
army-knife programs.

—Doug McIlroy

4. An archetypal example of bad caching is the rehash directive in csh(1); type man 1
csh for details. See Section 12.4.3 for another example.
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This is an often-overlooked strength of the Unix tradition. Many of its most
effective tools are thin wrappers around a direct translation of some single powerful
algorithm.

Perhaps the clearest example of this is diff(1), the Unix tool for reporting differences
between related files. This tool and its dual, patch(1), have become central to the
network-distributed development style of modern Unix. A valuable property of diff
is that it seldom surprises anyone. It doesn’t have special cases or painful edge condi-
tions, because it uses a simple, mathematically sound method of sequence comparison.
This has consequences:

By virtue of a mathematical model and a solid algorithm, Unix diff contrasts
markedly with its imitators. First, the central engine is solid, small, and has never
needed one line of maintenance. Second, the results are clear and consistent, un-
marred by surprises where heuristics fail.

—Doug McIlroy

Thus, people who use diff can develop an intuitive feel for what it will do in any
given situation without necessarily understanding the central algorithm perfectly.
Other well-known examples of this special kind of clarity achieved through a strong
central algorithm abound in Unix:

• The grep(1) utility for selecting lines out of files by pattern matching is a simple
wrapper around a formal algebra of regular-expression patterns (see Section 8.2.2
for discussion). If it had lacked this consistent mathematical model, it would
probably look like the design of the original glob(1) facility in the oldest Unixes,
a handful of ad-hoc wildcards that can’t be combined.

• The yacc(1) utility for generating language parsers is a thin wrapper around the
formal theory of LR(1) grammars. Its partner, the lexical analyzer generator
lex(1), is a similarly thin wrapper around the theory of nondeterministic finite-
state automata.

All three of these programs are so bug-free that their correct functioning is taken
utterly for granted, and compact enough to fit easily in a programmer’s hand. Only a
part of these good qualities are due to the polishing that comes with a long service
life and frequent use; most of it is that, having been constructed around a strong and
provably correct algorithmic core, they never needed much polishing in the first place.

The opposite of a formal approach is using heuristics—rules of thumb leading
toward a solution that is probabilistically, but not certainly, correct. Sometimes we
use heuristics because a deterministically correct solution is impossible. Think of
spam filtering, for example; an algorithmically perfect spam filter would need a full
solution to the problem of understanding natural language as a module. Other times,
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we use heuristics because known formally correct methods are impossibly expensive.
Virtual-memory management is an example of this; there are near-perfect solutions,
but they require so much runtime instrumentation that their overhead would swamp
any theoretical gain over heuristics.

The trouble with heuristics is that they proliferate special cases and edge cases. If
nothing else, you usually have to backstop a heuristic with some sort of recovery
mechanism when it fails. All the usual problems with escalating complexity follow.
To manage the resulting tradeoffs, you have to start by being aware of them. Always
ask if a heuristic actually pays off in performance what it costs in code complexi-
ty—and don’t guess at the performance difference, actually measure it before making
a decision.

The Value of Detachment4.2.5

We began this book with a reference to Zen: “a special transmission, outside the
scriptures”. This was not mere exoticism for stylistic effect; the core concepts of Unix
have always had a spare, Zen-like simplicity that continues to shine through the layers
of historical accidents that have accreted around them. This quality is reflected in the
cornerstone documents of Unix, like The C Programming Language [Kernighan-
Ritchie] and the 1974 CACM paper that introduced Unix to the world; one of the
famous quotes from that paper observes “...constraint has encouraged not only econ-
omy, but also a certain elegance of design”. That simplicity came from trying to think
not about how much a language or operating system could do, but of how little it
could do—not by carrying assumptions but by starting from zero (what in Zen is
called “beginner’s mind” or “empty mind”).

To design for compactness and orthogonality, start from zero. Zen teaches that
attachment leads to suffering; experience with software design teaches that attachment
to unnoticed assumptions leads to non-orthogonality, noncompact designs, and projects
that fail or become maintenance nightmares.

To achieve enlightenment and surcease from suffering, Zen teaches detachment.
The Unix tradition teaches the value of detachment from the particular, accidental
conditions under which a design problem was posed. Abstract. Simplify. Generalize.
Because we write software to solve problems, we cannot completely detach from the
problems—but it is well worth the mental effort to see how many preconceptions you
can throw away, and whether the design becomes more compact and orthogonal as
you do that. Possibilities for code reuse often result.

Jokes about the relationship between Unix and Zen are a live part of the Unix
tradition as well.5 This is not an accident.

5. For a recent example of Unix/Zen crossover, see Appendix D.
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Software Is a Many-Layered Thing4.3

Broadly speaking, there are two directions one can go in designing a hierarchy of
functions or objects. Which direction you choose, and when, has a profound effect
on the layering of your code.

Top-Down versus Bottom-Up4.3.1

One direction is bottom-up, from concrete to abstract—working up from the specific
operations in the problem domain that you know you will need to perform. For
example, if one is designing firmware for a disk drive, some of the bottom-level
primitives might be ‘seek head to physical block’, ‘read physical block’, ‘write
physical block’, ‘toggle drive LED’, etc.

The other direction is top-down, abstract to concrete—from the highest-level
specification describing the project as a whole, or the application logic, downwards
to individual operations. Thus, if one is designing software for a mass-storage controller
that might drive several different sorts of media, one might start with abstract opera-
tions like ‘seek logical block’, ‘read logical block’, ‘write logical block’, ‘toggle ac-
tivity indication’. These would differ from the similarly named hardware-level oper-
ations above in that they’re intended to be generic across different kinds of
physical devices.

These two examples could be two ways of approaching design for the same collec-
tion of hardware. Your choice, in cases like this, is one of these: either abstract the
hardware (so the objects encapsulate the real things out there and the program is
merely a list of manipulations on those things), or organize around some behavioral
model (and then embed the actual hardware manipulations that carry it out in the flow
of the behavioral logic).

An analogous choice shows up in a lot of different contexts. Suppose you’re writing
MIDI sequencer software. You could organize that code around its top level (sequenc-
ing tracks) or around its bottom level (switching patches or samples and driving
wave generators).

A very concrete way to think about this difference is to ask whether the design is
organized around its main event loop (which tends to have the high-level application
logic close to it) or around a service library of all the operations that the main loop
can invoke. A designer working from the top down will start by thinking about the
program’s main event loop, and plug in specific events later. A designer working from
the bottom up will start by thinking about encapsulating specific tasks and glue them
together into some kind of coherent order later on.

For a larger example, consider the design of a Web browser. The top-level design
of a Web browser is a specification of the expected behavior of the browser: what
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types of URL (like http: or ftp: or file:) it interprets, what kinds of images
it is expected to be able to render, whether and with what limitations it will accept
Java or JavaScript, etc. The layer of the implementation that corresponds to this top-
level view is its main event loop; each time around, the loop waits for, collects,
and dispatches on a user action (such as clicking a Web link or typing a character
into a field).

But the Web browser has to call a large set of domain primitives to do its job. One
group of these is concerned with establishing network connections, sending data over
them, and receiving responses. Another set is the operations of the GUI toolkit the
browser will use. Yet a third set might be concerned with the mechanics of parsing
retrieved HTML from text into a document object tree.

Which end of the stack you start with matters a lot, because the layer at the other
end is quite likely to be constrained by your initial choices. In particular, if you pro-
gram purely from the top down, you may find yourself in the uncomfortable position
that the domain primitives your application logic wants don’t match the ones you can
actually implement. On the other hand, if you program purely from the bottom up,
you may find yourself doing a lot of work that is irrelevant to the application logic—or
merely designing a pile of bricks when you were trying to build a house.

Ever since the structured-programming controversies of the 1960s, novice program-
mers have generally been taught that the correct approach is the top-down one: stepwise
refinement, where you specify what your program is to do at an abstract level and
gradually fill in the blanks of implementation until you have concrete working code.
Top-down tends to be good practice when three preconditions are true: (a) you can
specify in advance precisely what the program is to do, (b) the specification is unlikely
to change significantly during implementation, and (c) you have a lot of freedom in
choosing, at a low level, how the program is to get that job done.

These conditions tend to be fulfilled most often in programs relatively close to the
user and high in the software stack—applications programming. But even there those
preconditions often fail. You can’t count on knowing what the ‘right’ way for a word
processor or a drawing program to behave is until the user interface has had end-user
testing. Purely top-down programming often has the effect of overinvesting effort
in code that has to be scrapped and rebuilt because the interface doesn’t pass a
reality check.

In self-defense against this, programmers try to do both things—express the abstract
specification as top-down application logic, and capture a lot of low-level domain
primitives in functions or libraries, so they can be reused when the high-level
design changes.

Unix programmers inherit a tradition that is centered in systems programming,
where the low-level primitives are hardware-level operations that are fixed in character
and extremely important. They therefore lean, by learned instinct, more toward bottom-
up programming.
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Whether you’re a systems programmer or not, bottom-up can also look more at-
tractive when you are programming in an exploratory way, trying to get a grasp on
hardware or software or real-world phenomena you don’t yet completely understand.
Bottom-up programming gives you time and room to refine a vague specification.
Bottom-up also appeals to programmers’ natural human laziness—when you have to
scrap and rebuild code, you tend to have to throw away larger pieces if you’re working
top-down than you do if you’re working bottom-up.

Real code, therefore tends to be programmed both top-down and bottom-up. Often,
top-down and bottom-up code will be part of the same project. That’s where ‘glue’
enters the picture.

Glue Layers4.3.2

When the top-down and bottom-up drives collide, the result is often a mess. The top
layer of application logic and the bottom layer of domain primitives have to be
impedance-matched by a layer of glue logic.

One of the lessons Unix programmers have learned over decades is that glue is
nasty stuff and that it is vitally important to keep glue layers as thin as possible. Glue
should stick things together, but should not be used to hide cracks and unevenness in
the layers.

In the Web-browser example, the glue would include the rendering code that maps
a document object parsed from incoming HTML into a flattened visual representation
as a bitmap in a display buffer, using GUI domain primitives to do the painting. This
rendering code is notoriously the most bug-prone part of a browser. It attracts into itself
kluges to address problems that originate both in the HTML parsing (because there
is a lot of ill-formed markup out there) and the GUI toolkit (which may not have quite
the primitives that are really needed).

A Web browser’s glue layer has to mediate not merely between specification and
domain primitives, but between several different external specifications: the network
behavior standardized in HTTP, HTML document structure, and various graphics
and multimedia formats as well as the users’ behavioral expectations from the GUI.

And one single bug-prone glue layer is not the worst fate that can befall a design.
A designer who is aware that the glue layer exists, and tries to organize it into a middle
layer around its own set of data structures or objects, can end up with two layers of
glue—one above the midlayer and one below. Programmers who are bright but
unseasoned are particularly apt to fall into this trap; they’ll get each fundamental set
of classes (application logic, midlayer, and domain primitives) right and make them
look like the textbook examples, only to flounder as the multiple layers of glue
needed to integrate all that pretty code get thicker and thicker.

The thin-glue principle can be viewed as a refinement of the Rule of Separation.
Policy (the application logic) should be cleanly separated from mechanism (the domain
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primitives), but if there is a lot of code that is neither policy nor mechanism, chances
are that it is accomplishing very little besides adding global complexity to the system.

Case Study: C Considered as Thin Glue4.3.3

The C language itself is a good example of the effectiveness of thin glue.
In the late 1990s, Gerrit Blaauw and Fred Brooks observed in Computer Architec-

ture: Concepts and Evolution [BlaauwBrooks] that the architectures in every generation
of computers, from early mainframes through minicomputers through workstations
through PCs, had tended to converge. The later a design was in its technology gener-
ation, the more closely it approximated what Blaauw & Brooks called the “classical
architecture”: binary representation, flat address space, a distinction between memory
and working store (registers), general-purpose registers, address resolution to fixed-
length bytes, two-address instructions, big-endianness,6 and data types a consistent
set with sizes a multiple of either 4 or 6 bits (the 6-bit families are now extinct).

Thompson and Ritchie designed C to be a sort of structured assembler for an ide-
alized processor and memory architecture that they expected could be efficiently
modeled on most conventional computers. By happy accident, their model for the
idealized processor was the PDP-11, a particularly mature and elegant minicomputer
design that closely approximated Blaauw & Brooks’s classical architecture. By good
judgment, Thompson and Ritchie declined to wire into their language most of the
few traits (such as little-endian byte order) where the PDP-11 didn’t match it.7

The PDP-11 became an important model for the following generations of micro-
processor architectures. The basic abstractions of C turned out to capture the classical
architecture rather neatly. Thus, C started out as a good fit for microprocessors and,
rather than becoming irrelevant as its assumptions fell out of date, actually became
a better fit as hardware converged more closely on the classical architecture. One
notable example of this convergence was when Intel’s 386, with its large flat memory-
address space, replaced the 286’s awkward segmented-memory addressing after 1985;
pure C was actually a better fit for the 386 than it had been for the 286.

It is not a coincidence that the experimental era in computer architectures ended
in the mid-1980s at the same time that C (and its close descendant C++) were

6. The terms big-endian and little-endian refer to architectural choices about the order in
which bits are interpreted within a machine word. Though it has no canonical location, a Web
search for On Holy Wars and a Plea for Peace should turn up a classic and entertaining paper
on this subject.

7. The widespread belief that the autoincrement and autodecrement features entered C because
they represented PDP-11 machine instructions is a myth. According to Dennis Ritchie, these
operations were present in the ancestral B language before the PDP-11 existed.

Chapter 4 Modularity98



ptg

sweeping all before them as general-purpose programming languages. C, designed
as a thin but flexible layer over the classical architecture, looks with two decades’
additional perspective like almost the best possible design for the structured-assembler
niche it was intended to fill. In addition to compactness, orthogonality, and detachment
(from the machine architecture on which it was originally designed), it also has the
important quality of transparency that we will discuss in Chapter 6. The few language
designs since that are arguably better have needed to make large changes (like intro-
ducing garbage collection) in order to get enough functional distance from C not to
be swamped by it.

This history is worth recalling and understanding because C shows us how
powerful a clean, minimalist design can be. If Thompson and Ritchie had been less
wise, they would have designed a language that did much more, relied on stronger
assumptions, never ported satisfactorily off its original hardware platform, and withered
away as the world changed out from under it. Instead, C has flourished—and the
example Thompson and Ritchie set has influenced the style of Unix development ever
since. As the writer, adventurer, artist, and aeronautical engineer Antoine de Saint-
Exupéry once put it, writing about the design of airplanes: “La perfection est atteinte
non quand il ne reste rien à ajouter, mais quand il ne reste rien à enlever”. (“Perfection
is attained not when there is nothing more to add, but when there is nothing more
to remove”.)

Ritchie and Thompson lived by this maxim. Long after the resource constraints
on early Unix software had eased, they worked at keeping C as thin a layer over the
hardware as possible.

Dennis used to say to me, when I would ask for some particularly extravagant
feature in C, “If you want PL/1, you know where to get it”. He didn’t have to deal
with some marketer saying “But we need a check in the box on the sales
viewgraph!”

—Mike Lesk

The history of C is also a lesson in the value of having a working reference imple-
mentation before you standardize. We’ll return to this point in Chapter 17 when we
discuss the evolution of C and Unix standards.

Libraries4.4

One consequence of the emphasis that the Unix programming style put on modularity
and well-defined APIs is a strong tendency to factor programs into bits of glue
connecting collections of libraries, especially shared libraries (the equivalents of
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what are called dynamically-linked libraries or DLLs under Windows and other
operating systems).

If you are careful and clever about design, it is often possible to partition a program
so that it consists of a user-interface-handling main section (policy) and a collection
of service routines (mechanism) with effectively no glue at all. This approach is espe-
cially appropriate when the program has to do a lot of very specific manipulations of
data structures like graphic images, network-protocol packets, or control blocks for
a hardware interface. Some good general architectural advice from within the Unix
tradition, particularly applicable to the resource-management challenges of this sort
of library is collected in The Discipline and Method Architecture for Reusable
Libraries [Vo].

Under Unix, it is normal practice to make this layering explicit, with the service
routines collected in a library that is separately documented. In such programs, the
front end gets to specialize in user-interface considerations and high-level protocol.
With a little more care in design, it may be possible to detach the original front end
and replace it with others adapted for different purposes. Some other advantages
should become evident from our case study.

There is a flip side to this. In the Unix world, libraries which are delivered as
libraries should come with exerciser programs.

APIs should come with programs, and vice versa. An API that you must write C
code to use, which cannot be invoked easily from the command line, is harder to
learn and use. And contrariwise, it’s a royal pain to have interfaces whose only
open, documented form is a program, so you cannot invoke them easily from a C
program—for example, route(1) in older Linuxes.

—Henry Spencer

Besides easing the learning curve, library exercisers often make excellent test
frameworks. Experienced Unix programmers therefore see them not just as a form
of thoughtfulness to the library’s users but as an indication that the code has probably
been well tested.

An important form of library layering is the plugin, a library with a set of known
entry points that is dynamically loaded after startup time to perform a specialized
task. For plugins to work, the calling program has to be organized largely as a docu-
mented service library that the plugin can call back into.

Case Study: GIMP Plugins4.4.1

The GIMP (GNU Image Manipulation program) is a graphics editor designed to
be driven through an interactive GUI. But GIMP is built as a library of image-
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Figure 4.2: Caller/callee relationships in GIMP with a plugin loaded.

manipulation and housekeeping routines called by a relatively thin layer of control
code. The driver code knows about the GUI, but not directly about image formats;
the library routines reverse this by knowing about image formats and operations but
not about the GUI.

The library layer is documented (and, in fact shipped as “libgimp” for use by
other programs). This means that C programs called “plugins” can be dynamically
loaded by GIMP and call the library to do image manipulation, effectively taking over
control at the same level as the GUI (see Figure 4.2).

Plugins are used to perform lots of special-purpose transformations such as col-
ormap hacking, blurring and despeckling; also for reading and writing file formats
not native to the GIMP core; for extensions like editing animations and window
manager themes; and for lots of other sorts of image-hacking that can be automated
by scripting the image-hacking logic in the GIMP core. A registry of GIMP plugins
is available on the World Wide Web.

Though most GIMP plugins are small, simple C programs, it is also possible to
write a plugin that exposes the library API to a scripting language; we’ll discuss this
possibility in Chapter 11 when we examine the ‘polyvalent program’ pattern.

Unix and Object-Oriented Languages4.5

Since the mid-1980s most new language designs have included native support for
object-oriented programming (OO). Recall that in object-oriented programming, the
functions that act on a particular data structure are encapsulated with the data in an
object that can be treated as a unit. By contrast, modules in non-OO languages make
the association between data and the functions that act on it rather accidental, and
modules frequently leak data or bits of their internals into each other.

The OO design concept initially proved valuable in the design of graphics systems,
graphical user interfaces, and certain kinds of simulation. To the surprise and gradual
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disillusionment of many, it has proven difficult to demonstrate significant benefits of
OO outside those areas. It’s worth trying to understand why.

There is some tension and conflict between the Unix tradition of modularity and
the usage patterns that have developed around OO languages. Unix programmers
have always tended to be a bit more skeptical about OO than their counterparts
elsewhere. Part of this is because of the Rule of Diversity; OO has far too often been
promoted as the One True Solution to the software-complexity problem. But there is
something else behind it as well, an issue which is worth exploring as background
before we evaluate specific OO (object-oriented) languages in Chapter 14. It will also
help throw some characteristics of the Unix style of non-OO programming into
sharper relief.

We observed above that the Unix tradition of modularity is one of thin glue, a
minimalist approach with few layers of abstraction between the hardware and the top-
level objects of a program. Part of this is the influence of C. It takes serious effort to
simulate true objects in C. Because that’s so, piling up abstraction layers is an
exhausting thing to do. Thus, object hierarchies in C tend to be relatively flat and
transparent. Even when Unix programmers use other languages, they tend to want to
carry over the thin-glue/shallow-layering style that Unix models have taught them.

OO languages make abstraction easy—perhaps too easy. They encourage architec-
tures with thick glue and elaborate layers. This can be good when the problem domain
is truly complex and demands a lot of abstraction, but it can backfire badly if coders
end up doing simple things in complex ways just because they can.

All OO languages show some tendency to suck programmers into the trap of
excessive layering. Object frameworks and object browsers are not a substitute for
good design or documentation, but they often get treated as one. Too many layers
destroy transparency: It becomes too difficult to see down through them and mentally
model what the code is actually doing. The Rules of Simplicity, Clarity, and Trans-
parency get violated wholesale, and the result is code full of obscure bugs and contin-
uing maintenance problems.

This tendency is probably exacerbated because a lot of programming courses teach
thick layering as a way to satisfy the Rule of Representation. In this view, having lots
of classes is equated with embedding knowledge in your data. The problem with this
is that too often, the ‘smart data’ in the glue layers is not actually about any natural
entity in whatever the program is manipulating—it’s just about being glue. (One sure
sign of this is a proliferation of abstract subclasses or ‘mixins’.)

Another side effect of OO abstraction is that opportunities for optimization tend
to disappear. For example, a + a + a + a can become a * 4 and even a << 2 if a is an
integer. But if one creates a class with operators, there is nothing to indicate if they
are commutative, distributive, or associative. Since one isn’t supposed to look inside
the object, it’s not possible to know which of two equivalent expressions is more
efficient. This isn’t in itself a good reason to avoid using OO techniques on new
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projects; that would be premature optimization. But it is reason to think twice before
transforming non-OO code into a class hierarchy.

Unix programmers tend to share an instinctive sense of these problems. This ten-
dency appears to be one of the reasons that, under Unix, OO languages have failed
to displace non-OO workhorses like C, Perl (which actually has OO facilities, but
they’re not heavily used), and shell. There is more vocal criticism of OO in the Unix
world than orthodoxy permits elsewhere; Unix programmers know when not to use
OO; and when they do use OO languages, they spend more effort on trying to keep
their object designs uncluttered. As the author of The Elements of Networking Style
once observed in a slightly different context [Padlipsky]: “If you know what you’re
doing, three layers is enough; if you don’t, even seventeen levels won’t help”.

One reason that OO has succeeded most where it has (GUIs, simulation, graphics)
may be because it’s relatively difficult to get the ontology of types wrong in those
domains. In GUIs and graphics, for example, there is generally a rather natural mapping
between manipulable visual objects and classes. If you find yourself proliferating
classes that have no obvious mapping to what goes on in the display, it is correspond-
ingly easy to notice that the glue has gotten too thick.

One of the central challenges of design in the Unix style is how to combine the
virtue of detachment (simplifying and generalizing problems from their original
context) with the virtue of thin glue and shallow, flat, transparent hierarchies of code
and design.

We’ll return to some of these points and apply them when we discuss object-
oriented languages in Chapter 14.

Coding for Modularity4.6

Modularity is expressed in good code, but it primarily comes from good design. Here
are some questions to ask about any code you work on that might help you improve
its modularity:

• How many global variables does it have? Global variables are modularity poison,
an easy way for components to leak information to each other in careless and
promiscuous ways.8

• Is the size of your individual modules in Hatton’s sweet spot? If your answer is
“No, many are larger”, you may have a long-term maintenance problem. Do
you know what your own sweet spot is? Do you know what it is for other

8. Globals also mean your code cannot be reentrant; that is, multiple instances in the same
process are likely to step on each other.
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programmers you are cooperating with? If not, best be conservative and stick
to sizes near the low end of Hatton’s range.

• Are the individual functions in your modules too large? This is not so much a
matter of line count as it is of internal complexity. If you can’t informally describe
a function’s contract with its callers in one line, the function is probably
too large.9

Personally I tend to break up a subprogram when there are too many local variables.
Another clue is [too many] levels of indentation. I rarely look at length.

—Ken Thompson

• Does your code have internal APIs—that is, collections of function calls and
data structures that you can describe to others as units, each sealing off some
layer of function from the rest of the code? A good API makes sense and is un-
derstandable without looking at the implementation behind it. The classic test
is this: Try to describe it to another programmer over the phone. If you fail, it
is very probably too complex, and poorly designed.

• Do any of your APIs have more than seven entry points? Do any of your classes
have more than seven methods each? Do your data structures have more than
seven members?

• What is the distribution of the number of entry points per module across the
project?10 Does it seem uneven? Do the modules with lots of entry points really
need that many? Module complexity tends to rise as the square of the number
of entry points, too—yet another reason simple APIs are better than complicat-
ed ones.

You might find it instructive to compare these with our checklist of questions about
transparency, and discoverability in Chapter 6.

9. Many years ago, I learned from Kernighan & Plauger’s The Elements of Programming Style
a useful rule. Write that one-line comment immediately after the prototype of your function.
For every function, without exception.

10. A cheap way to collect this information is to analyze the tags files generated by a utility
like etags(1) or ctags(1).
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5

Textuality:
Good Protocols Make
Good Practice

It’s a well-known fact that computing devices such as the abacus were invented
thousands of years ago. But it’s not well known that the first use of a common
computer protocol occurred in the Old Testament. This, of course, was when Moses
aborted the Egyptians’ process with a control-sea.

rec.arts.comics, February 1992
—Tom Galloway

In this chapter, we’ll look at what the Unix tradition has to tell us about two different
kinds of design that are closely related: the design of file formats for retaining appli-
cation data in permanent storage, and the design of application protocols for passing
data and commands between cooperating programs, possibly over a network.

What unifies these two kinds of design is that they both involve the serialization
of in-memory data structures. For the internal operation of computer programs, the
most convenient representation of a complex data structure is one in which all fields
have the machine’s native data format (e.g. two’s-complement binary for integers)
and all pointers are actual memory addresses (as opposed, say, to being named refer-
ences). But these representations are not well suited to storage and transmission;
memory addresses in the data structure lose their meaning outside memory, and
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emitting raw native data formats causes interoperability problems passing data between
machines with different conventions (big- vs. little-endian, say, or 32-bit vs. 64-bit).

For transmission and storage, the traversable, quasi-spatial layout of data structures
like linked lists needs to be flattened or serialized into a byte-stream representation
from which the structure can later be recovered. The serialization (save) operation is
sometimes called marshaling and its inverse (load) operation unmarshaling. These
terms are usually applied with respect to objects in an OO language like C++ or
Python or Java, but could be used with equal justice of operations like loading a
graphics file into the internal storage of a graphics editor and saving it out after
modifications.

A significant percentage of what C and C++ programmers maintain is ad-hoc code
for marshaling and unmarshaling operations—even when the serialized representation
chosen is as simple as a binary structure dump (a common technique under non-Unix
environments). Modern languages like Python and Java tend to have built-in unmarshal
and marshal functions that can be applied to any object or byte-stream representing
an object, and that reduce this labor substantially.

But these naïve methods are often unsatisfactory for various reasons, including
both the machine-interoperability problems we mentioned above and the negative
trait of being opaque to other tools. When the application is a network protocol,
economy may demand that an internal data structure (such as, say, a message with
source and destination addresses) be serialized not into a single blob of data but into
a series of attempted transactions or messages which the receiving machine may reject
(so that, for example, a large message can be rejected if the destination address
is invalid).

Interoperability, transparency, extensibility, and storage or transaction economy:
these are the important themes in designing file formats and application protocols.
Interoperability and transparency demand that we focus such designs on clean data
representations, rather than putting convenience of implementation or highest possible
performance first. Extensibility also favors textual protocols, since binary ones are
often harder to extend or subset cleanly. Transaction economy sometimes pushes in
the opposite direction—but we shall see that putting that criterion first is a form of
premature optimization that it is often wise to resist.

Finally, we must note a difference between data file formats and the run-control
files that are often used to set the startup options of Unix programs. The most basic
difference is that (with sporadic exceptions like GNU Emacs’s configuration interface)
programs don’t normally modify their own run-control files—the information flow
is one-way, from file read at startup time to application settings. Data-file formats, on
the other hand, associate properties with named resources and are both read and
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written by their applications. Configuration files are generally hand-edited and small,
whereas data files are program-generated and can become arbitrarily large.

Historically, Unix has related but different sets of conventions for these two kinds
of representation. The conventions for run control files are surveyed in Chapter 10;
only conventions for data files are examined in this chapter.

The Importance of Being Textual5.1

Pipes and sockets will pass binary data as well as text. But there are good reasons the
examples we’ll see in Chapter 7 are textual: reasons that hark back to Doug McIlroy’s
advice quoted in Chapter 1. Text streams are a valuable universal format because
they’re easy for human beings to read, write, and edit without specialized tools. These
formats are (or can be designed to be) transparent.

Also, the very limitations of text streams help enforce encapsulation. By discour-
aging elaborate representations with rich, densely encoded structure, text streams also
discourage programs from being promiscuous with each other about their internal
states and help enforce encapsulation. We’ll return to this point at the end of Chapter 7
when we discuss RPC.

When you feel the urge to design a complex binary file format, or a complex binary
application protocol, it is generally wise to lie down until the feeling passes. If perfor-
mance is what you’re worried about, implementing compression on the text protocol
stream either at some level below or above the application protocol will give you a
cleaner and perhaps better-performing design than a binary protocol (text compresses
well, and quickly).

A bad example of binary formats in Unix history was the way device-independent
troff read a binary file containing device information, supposedly for speed. The
initial implementation generated that binary file from a text description in a
somewhat unportable way. Faced with a need to port ditroff quickly to a new ma-
chine, rather than reinvent the binary goo, I ripped it out and just had ditroff read
the text file. With carefully crafted file-reading code, the speed penalty was negli-
gible.

—Henry Spencer

Designing a textual protocol tends to future-proof your system. One specific reason
is that ranges on numeric fields aren’t implied by the format itself. Binary formats
usually specify the number of bits allocated to a given value, and extending them is
difficult. For example, IPv4 only allows 32 bits for an address. To extend address size
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to 128 bits (as done by IPv6) requires a major revamping.1 In contrast, if you need a
larger value in a text format, just write it. It may be that a given program can’t receive
values in that range, but it’s usually easier to modify the program than to modify all
the data stored in that format.

The only good justification for a binary protocol is if you’re going to be manipu-
lating large enough data sets that you’re genuinely worried about getting the most
bit-density out of your media, or if you’re very concerned about the time or instruction
budget required to interpret the data into an in-core structure. Formats for large images
and multimedia are sometimes an example of the former, and network protocols with
hard latency requirements sometimes an example of the latter.

The reciprocal problem with SMTP or HTTP-like text protocols is that they tend
to be expensive in bandwidth and slow to parse. The smallest X request is 4 bytes:
the smallest HTTP request is about 100 bytes. X requests, including amortized
overhead of transport, can be executed in the order of 100 instructions; at one point,
an Apache [web server] developer proudly indicated they were down to 7000 in-
structions. For graphics, bandwidth becomes everything on output; hardware is
designed such that these days the graphics-card bus is the bottleneck for small
operations, so any protocol had better be very tight if it is not to be a worse bottle-
neck. This is the extreme case.

—Jim Gettys

These concerns are valid in other extreme cases as well as in X—for example, in
the design of graphics file formats intended to hold very large images. But they are
usually just another case of premature-optimization fever. Textual formats don’t nec-
essarily have much lower bit density than binary ones; they do after all use seven out
of eight bits per byte. And what you gain by not having to parse text, you generally
lose the first time you need to generate a test load, or to eyeball a program-generated
example of your format and figure out what’s in there.

In addition, the kind of thinking that goes into designing tight binary formats
tends to fall down on making them cleanly extensible. The X designers experi-
enced this:

Against the current X framework is the fact we didn’t design enough of a structure
to make it easier to ignore trivial extensions to the protocol; we can do this some
of the time, but a bit better framework would have been good.

—Jim Gettys

1. There is a legend that some early airline reservation systems allocated exactly one byte for
a plane’s passenger count. Supposedly they became very confused by the arrival of the
Boeing 747, the first plane that could carry more than 255 passengers.
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When you think you have an extreme case that justifies a binary file format or
protocol, you need to think very carefully about extensibility and leaving room in the
design for growth.

Case Study: Unix Password File Format5.1.1

On many operating systems, the per-user data required to validate logins and start a
user’s session is an opaque binary database. Under Unix, by contrast, it’s a text file
with records one per line and colon-separated fields.

Example 5.1 consists of some randomly-chosen example lines:

Example 5.1: Password file example.

games:*:12:100:games:/usr/games:
gopher:*:13:30:gopher:/usr/lib/gopher-data:
ftp:*:14:50:FTP User:/home/ftp:
esr:0SmFuPnH5JlNs:23:23:Eric S. Raymond:/home/esr:
nobody:*:99:99:Nobody:/:

Without even knowing anything about the semantics of the fields, we can notice
that it would be hard to pack the data much tighter in a binary format. The colon
sentinel characters would have to have functional equivalents taking at least as much
space (usually either count bytes or NULs). The per-user records would either have
to have terminators (which could hardly be shorter than a single newline) or else be
wastefully padded out to a fixed length.

Actually the prospects for saving space through binary encoding pretty much
vanish if you know the actual semantics of the data. The numeric user ID (3rd) and
group ID (4th) fields are integers, thus on most machines a binary representation
would be at least 4 bytes, and longer than the text for values up to 999. But let’s agree
to ignore this for now and suppose the best case that the numeric fields have a
0–255 range.

We could tighten up the numeric fields (3rd and 4th) by collapsing the numerics
to single bytes, and the password strings (2nd) to an 8-bit encoding. On this example,
that would give about an 8% size decrease.

That 8% of putative inefficiency buys us a lot. It avoids putting an arbitrary limit
on the range of the numeric fields. It gives us the ability to modify the password file
with any old text editor of our choice, rather than having to build a specialized tool
to edit a binary format (though in the case of the password file itself, we have to be
extra careful about concurrent edits). And it gives us the ability to do ad-hoc searches
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and filters and reports on the user account information with text-stream tools such
as grep(1).

We do have to be a bit careful about not embedding a colon in any of the textual
fields. Good practice is to tell the file write code to precede embedded colons with
an escape character, and then to tell the file read code to interpret it. Unix tradition
favors backslash for this use.

The fact that structural information is conveyed by field position rather than an
explicit tag makes this format faster to read and write, but a bit rigid. If the set of
properties associated with a key is expected to change with any frequency, one of the
tagged formats described below might be a better choice.

Economy is not a major issue with password files to begin with, as they’re normally
read seldom2 and infrequently modified. Interoperability is not an issue, since various
data in the file (notably user and group numbers) are not portable off the originating
machine. For password files, it’s therefore quite clear that going where the transparency
criterion leads was the right thing.

Case Study: .newsrc Format5.1.2

Usenet news is a worldwide distributed bulletin-board system that anticipated today’s
P2P networking by two decades. It uses a message format very similar to that of
RFC 822 electronic-mail messages, except that instead of being directed to personal
recipients messages are sent to topic groups. Articles posted at any participating site
are broadcast to each site that it has registered as a neighbor, and eventually flood-fill
to all news sites.

Almost all Usenet news readers understand the .newsrc file, which records
which Usenet messages have been seen by the calling user. Though it is named like
a run-control file, it is not only read at startup but typically updated at the end of the
newsreader run. The .newsrc format has been fixed since the first newsreaders
around 1980. Section 5.1.2 is a representative section from a .newsrc file.

Each line sets properties for the newsgroup named in the first field. The name is
immediately followed by a character that indicates whether the owning user is currently
subscribed to the group or not; a colon indicates subscription, and an exclamation
mark indicates nonsubscription. The remainder of the line is a sequence of comma-
separated article numbers or ranges of article numbers, indicating which articles the
user has seen.

Non-Unix programmers might have automatically tried to design a fast binary
format in which each newsgroup status was described by either a long but fixed-length

2. Password files are normally read once per user session at login time, and after that occasion-
ally by file-system utilities like ls(1) that must map from numeric user and group IDs to names.
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binary record, or a sequence of self-describing binary packets with internal length
fields. The main point of such a binary representation would be to express ranges with
binary data in paired word-length fields, in order to avoid the overhead of parsing all
the range expressions at startup.

Example 5.2: A .newsrc example.

rec.arts.sf.misc! 1-14774,14786,14789
rec.arts.sf.reviews! 1-2534
rec.arts.sf.written: 1-876513
news.answers! 1-199359,213516,215735
news.announce.newusers! 1-4399
news.newusers.questions! 1-645661
news.groups.questions! 1-32676
news.software.readers! 1-95504,137265,137274,140059,140091,140117
alt.test! 1-1441498

Such a layout could be read and written faster than a textual format, but it would
have other problems. A naïve implementation in fixed-length records would have
placed artificial length limits on newsgroup names and (more seriously) on the maxi-
mum number of ranges of seen-article numbers. A more sophisticated binary-packet
format would avoid the length limits, but could not be edited with the user’s eyeballs
and fingers—a capability that can be quite useful when you want to reset just some
of the read bits in an individual newsgroup. Also, it would not necessarily be portable
to different machine types.

The designers of the original newsreader chose transparency and interoperability
over economy. The case for going in the other direction was not completely ridiculous;
.newsrc files can get very large, and one modern reader (GNOME’s Pan) uses a
speed-optimized private format to avoid startup lag. But to other implementers,
textual representation looked like a good tradeoff in 1980, and has looked better as
machines increased in speed and storage dropped in price.

Case Study: The PNG Graphics File Format5.1.3

PNG (Portable Network Graphics) is a file format for bitmap graphics. It is like GIF,
and unlike JPEG, in that it uses lossless compression and is optimized for applications
such as line art and icons rather than photographic images. Documentation and open-
source reference libraries of high quality are available at the Portable Network
Graphics website <http://www.libpng.org/pub/png/>.
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PNG is an excellent example of a thoughtfully designed binary format. A binary
format is appropriate since graphics files may contain very large amounts of data,
such that storage size and Internet download time would go up significantly if the
pixel data were stored textually. Transaction economy was the prime consideration,
with transparency sacrificed.3 The designers were, however, careful about interoper-
ability; PNG specifies byte orders, integer word lengths, endianness, and (lack of)
padding between fields.

A PNG file consists of a sequence of chunks, each in a self-describing format
beginning with the chunk type name and the chunk length. Because of this organiza-
tion, PNG does not need a release number. New chunk types can be added at any
time; the case of the first letter in the chunk type name informs PNG-using software
whether or not each chunk can be safely ignored.

The PNG file header also repays study. It has been cleverly designed to make
various common kinds of file corruption (e.g., by 7-bit transmission links, or mangling
of CR and LF characters) easy to detect.

The PNG standard is precise, comprehensive, and well written. It could serve as
a model for how to write file format standards.

Data File Metaformats5.2

A data file metaformat is a set of syntactic and lexical conventions that is either for-
mally standardized or sufficiently well established by practice that there are standard
service libraries to handle marshaling and unmarshaling it.

Unix has evolved or adopted metaformats suitable for a wide range of applications.
It is good practice to use one of these (rather than an idiosyncratic custom format)
wherever possible. The benefits begin with the amount of custom parsing and gener-
ation code that you may be able to avoid writing by using a service library. But the
most important benefit is that developers and even many users will instantly recognize
these formats and feel comfortable with them, which reduces the friction costs of
learning new programs.

In the following discussion, when we refer to “traditional Unix tools” we are in-
tending the combination of grep(1), sed(1), awk(1), tr(1), and cut(1) for doing text
searches and transformations. Perl and other scripting languages tend to have good
native support for parsing the line-oriented formats that these tools encourage.

Here, then, are the standard formats that can serve you as models.

3. Confusingly, PNG supports a different kind of transparency—transparent pixels in the
PNG image.
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DSV Style5.2.1

DSV stands for Delimiter-Separated Values. Our first case study in textual metaformats
was the /etc/passwd file, which is a DSV format with colon as the value separator.
Under Unix, colon is the default separator for DSV formats in which the field values
may contain whitespace.

/etc/passwd format (one record per line, colon-separated fields) is very tradi-
tional under Unix and frequently used for tabular data. Other classic examples include
the /etc/group file describing security groups and the /etc/inittab file used
to control startup and shutdown of Unix service programs at different run levels of
the operating system.

Data files in this style are expected to support inclusion of colons in the data fields
by backslash escaping. More generally, code that reads them is expected to support
record continuation by ignoring backslash-escaped newlines, and to allow embedding
nonprintable character data by C-style backslash escapes.

This format is most appropriate when the data is tabular, keyed by a name (in the
first field), and records are typically short (less than 80 characters long). It works well
with traditional Unix tools.

One occasionally sees field separators other than the colon, such as the pipe char-
acter | or even an ASCII NUL. Old-school Unix practice used to favor tabs, a preference
reflected in the defaults for cut(1) and paste(1); but this has gradually changed as
format designers became aware of the many small irritations that ensue from the fact
that tabs and spaces are not visually distinguishable.

This format is to Unix what CSV (comma-separated value) format is under Mi-
crosoft Windows and elsewhere outside the Unix world. CSV (fields separated by
commas, double quotes used to escape commas, no continuation lines) is rarely found
under Unix.

In fact, the Microsoft version of CSV is a textbook example of how not to design
a textual file format. Its problems begin with the case in which the separator character
(in this case, a comma) is found inside a field. The Unix way would be to simply escape
the separator with a backslash, and have a double escape represent a literal backslash.
This design gives us a single special case (the escape character) to check for when
parsing the file, and only a single action when the escape is found (treat the following
character as a literal). The latter conveniently not only handles the separator character,
but gives us a way to handle the escape character and newlines for free. CSV, on the
other hand, encloses the entire field in double quotes if it contains the separator. If
the field contains double quotes, it must also be enclosed in double quotes, and the
individual double quotes in the field must themselves be repeated twice to indicate
that they don’t end the field.

The bad results of proliferating special cases are twofold. First, the complexity of
the parser (and its vulnerability to bugs) is increased. Second, because the format
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rules are complex and underspecified, different implementations diverge in their
handling of edge cases. Sometimes continuation lines are supported, by starting the
last field of the line with an unterminated double quote—but only in some products!
Microsoft has incompatible versions of CSV files between its own applications, and
in some cases between different versions of the same application (Excel being the
obvious example here).

RFC 822 Format5.2.2

The RFC 822 metaformat derives from the textual format of Internet electronic mail
messages; RFC 822 is the principal Internet RFC describing this format (since super-
seded by RFC 2822). MIME (Multipurpose Internet Media Extension) provides a
way to embed typed binary data within RFC-822-format messages. (Web searches
on either of these names will turn up the relevant standards.)

In this metaformat, record attributes are stored one per line, named by tokens re-
sembling mail header-field names and terminated with a colon followed by whitespace.
Field names do not contain whitespace; conventionally a dash is substituted instead.
The attribute value is the entire remainder of the line, exclusive of trailing whitespace
and newline. A physical line that begins with tab or whitespace is interpreted as a
continuation of the current logical line. A blank line may be interpreted either as a
record terminator or as an indication that unstructured text follows.

Under Unix, this is the traditional and preferred textual metaformat for attributed
messages or anything that can be closely analogized to electronic mail. More gener-
ally, it’s appropriate for records with a varying set of fields in which the hierarchy of
data is flat (no recursion or tree structure).

Usenet news uses it; so do the HTTP 1.1 (and later) formats used by the World
Wide Web. It is very convenient for editing by humans. Traditional Unix search tools
are still good for attribute searches, though finding record boundaries will be a little
more work than in a record-per-line format.

One weakness of RFC 822 format is that when more than one RFC 822 message
or record is put in a file, the record boundaries may not be obvious—how is a poor
literal-minded computer to know where the unstructured text body of a message ends
and the next header begins? Historically, there have been several different conventions
for delimiting messages in mailboxes. The oldest and most widely supported, leading
each message with a line that begins with the string "From " and sender information,
is not appropriate for other kinds of records; it also requires that lines in message text
beginning with "From " be escaped (typically with >)—a practice which not infre-
quently leads to confusion.

Some mail systems use delimiter lines consisting of control characters unlikely to
appear in messages, such as several ASCII 01 (control-A) characters in succession.
The MIME standard gets around the problem by including an explicit message length
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in the header, but this is a fragile solution which is very likely to break if messages
are ever manually edited. For a somewhat better solution, see the record-jar style
described later in this chapter.

For examples of RFC 822 format, look in your mailbox.

Cookie-Jar Format5.2.3

Cookie-jar format is used by the fortune(1) program for its database of random quotes.
It is appropriate for records that are just bags of unstructured text. It simply uses
newline followed by %% (or sometimes newline followed by %) as a record separator.
Example 5.3 is an example section from a file of email signature quotes:

Example 5.3: A fortune file example.

"Among the many misdeeds of British rule in India, history will look
upon the Act depriving a whole nation of arms as the blackest."
        -- Mohandas Gandhi, "An Autobiography", pg 446
%
The people of the various provinces are strictly forbidden to have 
in their possession any swords, short swords, bows, spears, firearms,
or other types of arms. The possession of unnecessary implements 
makes difficult the collection of taxes and dues and tends to foment 
uprisings.
        -- Toyotomi Hideyoshi, dictator of Japan, August 1588
%
"One of the ordinary modes, by which tyrants accomplish their 
purposes without resistance, is, by disarming the people, and making 
it an offense to keep arms."
        -- Supreme Court Justice Joseph Story, 1840

It is good practice to accept whitespace after % when looking for record delimiters.
This helps cope with human editing mistakes. It’s even better practice to use %%, and
ignore all text from %% to end-of-line.

The cookie-jar separator was originally %%\n. I wanted something a bit more
visible than % would have been. In fact, any stuff after the %% is treated as a com-
ment (or at least that’s how I wrote it).

—Ken Arnold
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Simple cookie-jar format is appropriate for pieces of text that have no natural or-
dering, distinguishable structure above word level, or search keys other than their
text context.

Record-Jar Format5.2.4

Cookie-jar record separators combine well with the RFC 822 metaformat for records,
yielding a format we’ll call ‘record-jar’. If you need a textual format that will support
multiple records with a variable repertoire of explicit fieldnames, one of the least
surprising and human-friendliest ways to do it would look like Example 5.4.

Example 5.4: Basic data for three planets in a record-jar format.

Planet: Mercury
Orbital-Radius: 57,910,000 km
Diameter: 4,880 km
Mass: 3.30e23 kg
%%
Planet: Venus
Orbital-Radius: 108,200,000 km
Diameter: 12,103.6 km
Mass: 4.869e24 kg
%%
Planet: Earth
Orbital-Radius: 149,600,000 km
Diameter: 12,756.3 km
Mass: 5.972e24 kg
Moons: Luna

Of course, the record delimiter could be a blank line, but a line consisting of
“%%\n” is more explicit and less likely to be introduced by accident during editing
(two printable characters are better than one because it can’t be generated by a single-
character typo). In a format like this it is good practice to simply ignore blank lines.

If your records have an unstructured text part, your record-jar format is closely
approaching a mailbox format. In this case, it’s important that you have a well-defined
way to escape the record delimiter so it can appear in text; otherwise, your record
reader is going to choke on an ill-formed text part someday. Some technique analogous
to byte-stuffing (described later in this chapter) is indicated.
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Record-jar format is appropriate for sets of field-attribute associations that are like
DSV files, but have a variable repertoire of fields, and possibly unstructured text as-
sociated with them.

XML5.2.5

XML is a very simple syntax resembling HTML—angle-bracketed tags and amper-
sand-led literal sequences. It is about as simple as a plain-text markup can be and yet
express recursively nested data structures. XML is just a low-level syntax; it requires
a document type definition (such as XHTML) and associated application logic to give
it semantics.

XML is well suited for complex data formats (the sort of things for which the old-
school Unix tradition would use an RFC-822-like stanza format) though overkill for
simpler ones. It is especially appropriate for formats that have a complex nested or
recursive structure of the sort that the RFC 822 metaformat does not handle well. For
a good introduction to the format, see XML in a Nutshell [Harold-Means].

Among the hardest things to get right in designing any text file format are issues
of quoting, whitespace and other low-level syntax details. Custom file formats often
suffer from slightly broken syntax that doesn’t quite match other similar formats.
Using a standard format such as XML, which is verifiable and parsed by a standard
library, eliminates most of these issues.

—Keith Packard

Example 5.5 is a simple example of an XML-based configuration file. It is part of
the kdeprint tool shipped with the open-source KDE office suite hosted under Linux.
It describes options for an image-to-PostScript filtering operation, and how to map
them into arguments for a filter command. For another instructive example, see the
discussion of Glade in Chapter 8.

One advantage of XML is that it is often possible to detect ill-formed, corrupted,
or incorrectly generated data through a syntax check, without knowing the semantics
of the data.

The most serious problem with XML is that it doesn’t play well with traditional
Unix tools. Software that wants to read an XML format needs an XML parser; this
means bulky, complicated programs. Also, XML is itself rather bulky; it can be difficult
to see the data amidst all the markup.

One application area in which XML is clearly winning is in markup formats for
document files (we’ll have more to say about this in Chapter 18). Tagging in such
documents tends to be relatively sparse among large blocks of plain text; thus, tradi-
tional Unix tools still work fairly well for simple text searches and transformations.
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Example 5.5: An XML example.

<?xml version="1.0"?>
<kprintfilter name="imagetops">
    <filtercommand 
           data="imagetops %filterargs %filterinput %filteroutput" />
    <filterargs>
        <filterarg name="center" 
                   description="Image centering" 
                   format="-nocenter" type="bool" default="true">
            <value name="true" description="Yes" />
            <value name="false" description="No" />
        </filterarg>
        <filterarg name="turn" 
                   description="Image rotation" 
                   format="-%value" type="list" default="auto">
            <value name="auto" description="Automatic" />
            <value name="noturn" description="None" />
            <value name="turn" description="90 deg" />
        </filterarg>
        <filterarg name="scale" 
                   description="Image scale" 
                   format="-scale %value" 
                   type="float" 
                        min="0.0" max="1.0" default="1.000" />
        <filterarg name="dpi" 
                   description="Image resolution" 
                   format="-dpi %value" 
                   type="int" min="72" max="1200" default="300" />
    </filterargs>
    <filterinput>
        <filterarg name="file" format="%in" />
        <filterarg name="pipe" format="" />
    </filterinput>
    <filteroutput>
        <filterarg name="file" format="> %out" />
        <filterarg name="pipe" format="" />
    </filteroutput>
</kprintfilter>

One interesting bridge between these worlds is PYX format—a line-oriented
translation of XML that can be hacked with traditional line-oriented Unix text tools
and then losslessly translated back to XML. A Web search for “Pyxie” will turn up
resources. The xmltk toolkit takes the opposite tack, providing stream-oriented tools
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analogous to grep(1) and sort(1) for filtering XML documents; Web search for “xmltk”
to find it.

XML can be a simplifying choice or a complicating one. There is a lot of hype
surrounding it, but don’t become a fashion victim by either adopting or rejecting it
uncritically. Choose carefully and bear the KISS principle in mind.

Windows INI Format5.2.6

Many Microsoft Windows programs use a textual data format that looks like Exam-
ple 5.6. This example associates optional resources named account, directory,
numeric_id, and developer with named projects python, sng, fetchmail,
and py-howto. The DEFAULT entry supplies values that will be used when a named
entry fails to supply them.

Example 5.6: A .INI file example.

[DEFAULT]
account = esr

[python]
directory = /home/esr/cvs/python/
developer = 1

[sng]
directory = /home/esr/WWW/sng/
numeric_id = 1012
developer = 1

[fetchmail]
numeric_id = 18364

[py-howto]
account = eric
directory = /home/esr/cvs/py-howto/
developer = 1

This style of data-file format is not native to Unix, but some Linux programs
(notably Samba, the suite of tools for accessing Windows file shares from Linux)
support it under Windows’s influence. This format is readable and not badly designed,
but like XML it doesn’t play well with grep(1) or conventional Unix scripting tools.
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The .INI format is appropriate if your data naturally falls into its two-level
organization of name-attribute pairs clustered under named records or sections. It’s
not good for data with a fully recursive treelike structure (XML is more appropriate
for that), and it would be overkill for a simple list of name-value associations (use
DSV format for that).

Unix Textual File Format Conventions5.2.7

There are long-standing Unix traditions about how textual data formats ought to look.
Most of these derive from one or more of the standard Unix metaformats we’ve just
described. It is wise to follow these conventions unless you have strong and specific
reasons to do otherwise.

In Chapter 10 we will discuss a different set of conventions used for program run-
control files, but you should notice that it will share some of these same rules (espe-
cially about the lexical level, the rules by which characters are assembled into tokens).

• One record per newline-terminated line, if possible. This makes it easy to extract
records with text-stream tools. For data interchange with other operating systems,
it’s wise to make your file-format parser indifferent to whether the line ending
is LF or CR-LF. It’s also conventional to ignore trailing whitespace in such for-
mats; this protects against common editor bobbles.

• Less than 80 characters per line, if possible. This makes the format browseable
in an ordinary-sized terminal window. If many records must be longer than 80
characters, consider a stanza format (see below).

• Use # as an introducer for comments. It is good to have a way to embed anno-
tations and comments in data files. It’s best if they’re actually part of the file
structure, and so will be preserved by tools that know its format. For comments
that are not preserved during parsing, # is the conventional start character.

• Support the backslash convention. The least surprising way to support embedding
nonprintable control characters is by parsing C-like backslash escapes—\n for
a newline, \r for a carriage return, \t for a tab, \b for backspace, \f for
formfeed,\e for ASCII escape (27), \nnn or \onnn or \0nnn for the character
with octal value nnn,\xnn for the character with hexadecimal value nn,\dnnn
for the character with decimal value nnn, \\ for a literal backslash. A newer
convention, but one worth following, is the use of \unnnn for a hexadecimal
Unicode literal.

• In one-record-per-line formats, use colon or any run of whitespace as a field
separator. The colon convention seems to have originated with the Unix password
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file. If your fields must contain instances of the separator(s), use a backslash as
the prefix to escape them.

• Do not allow the distinction between tab and whitespace to be significant. This
is a recipe for serious headaches when the tab settings on your users’ editors are
different; more generally, it’s confusing to the eye. Using tab alone as a field
separator is especially likely to cause problems; allowing any run of tabs and
spaces to be a field separator, on the other hand, works well.

• Favor hex over octal. Hex-digit pairs and quads are easier to eyeball-map into
bytes and today’s 32- and 64-bit words than octal digits of three bits each; also
marginally more efficient. This rule needs emphasizing because some older
Unix tools such as od(1) violate it; that’s a legacy from the instruction field sizes
in the machine languages of older PDP minicomputers.

• For complex records, use a ‘stanza’ format: multiple lines per record, with a
record separator line of %%\n or %\n. The separators make useful visual
boundaries for human beings eyeballing the file.

• In stanza formats, either have one record field per line or use a record format
resembling RFC 822 electronic-mail headers, with colon-terminated field-name
keywords leading fields. The second choice is appropriate when fields are often
either absent or longer than 80 characters, or when records are sparse (e.g., often
with empty fields).

• In stanza formats, support line continuation. When interpreting the file, either
discard backslash followed by whitespace or interpret newline followed by
whitespace equivalently to a single space, so that a long logical line can be
folded into short (easily editable!) physical lines. It’s also conventional to ignore
trailing whitespace in these formats; this convention protects against common
editor bobbles.

• Either include a version number or design the format as self-describing chunks
independent of each other. If there is even the faintest possibility that the format
will have to be changed or extended, include a version number so your code can
conditionally do the right thing on all versions. Alternatively, design the format
as self-describing chunks so that you can add new chunk types without instantly
breaking old code.

• Beware of floating-point round-off problems. Conversion of floating-point
numbers from binary to text format and back can lose precision, depending on
the quality of the conversion library you are using. If the structure you are mar-
shaling/unmarshaling contains floating point, you should test the conversion in
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both directions. If it looks like conversion in either direction is subject to
roundoff errors, be prepared to dump the floating-point field as raw binary in-
stead, or a string encoding thereof. If you’re coding in C or some language that
has access to C printf/scanf, the C99 %a specifier may solve this problem.

• Don’t bother compressing or binary-encoding just part of the file. See below...

The Pros and Cons of File Compression5.2.8

Many modern Unix projects, such as OpenOffice.org and AbiWord, now use XML
compressed with zip(1) or gzip(1) as a data file format. Compressed XML combines
space economy with some of the advantages of a textual format—notably, it avoids
the problem that binary formats must often allocate space for information that may
not be used in particular cases (e.g., for unusual options or large ranges). But there
is some dispute about this, dispute which turns on some of the central tradeoffs dis-
cussed in this chapter.

On the one hand, experiments have shown that documents in a compressed XML
file are usually significantly smaller than the Microsoft Word’s native file format, a
binary format that one might imagine would take less space. The reason relates to a
fundamental of the Unix philosophy: Do one thing well. Creating a single tool to do
the compression job well is more effective than ad-hoc compression on parts of the
file, because the tool can look across all the data and exploit all repetition in the
information.

Also, by separating the representation design from the particular compression
method used, you leave open the possibility of using different compression methods
in the future with no more than minimal changes to the actual file parsing—perhaps,
with no changes at all.

On the other hand, compression does some damage to transparency. While a human
being can estimate from context whether uncompressing the file is likely to show him
anything useful, tools such as file(1) cannot as of mid-2003 see through the wrapping.

Some would advocate a less structured compression format—straight
gzip(1)-compressed XML data, say, without the internal structure and self-identifying
header chunk provided by zip(1). While using a format similar to that of zip(1) solves
the identification problem, it means that decoding such files will be tricky for programs
written in the simpler scripting languages.

Any of these solutions (straight text, straight binary, or compressed text) may be
optimal depending on the relative weight you give to storage economy, discoverabil-
ity, or making browsing tools as simple as possible to write. The point of the preceding
discussion is not to advocate any one of these approaches over the others, but rather
to suggest how you can think about the options and design tradeoffs clearly.
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This having been said, the truly Unixy solution would probably be to fix file(1) to
see file prefixes through the compression—and, failing that, to write a shellscript
wrapper around file(1) that would interpret compression as a direction to apply
gunzip(1) and take a second look.

Application Protocol Design5.3

In Chapter 7, we’ll discuss the advantages of breaking complicated applications up
into cooperating processes speaking an application-specific command set or protocol
with each other. All the good reasons for data file formats to be textual apply to these
application-specific protocols as well.

When your application protocol is textual and easily parsed by eyeball, many good
things become easier. Transaction dumps become much easier to interpret. Test loads
become easier to write.

Server processes are often invoked by harness programs such as inetd(8) in such
a way that the server sees commands on standard input and ships responses to standard
output. We describe this “CLI server” pattern in more detail in Chapter 11.

A CLI server with a command set that is designed for simplicity has the valuable
property that a human tester will be able to type commands direct to the server process
to probe the software’s behavior.

Another issue to bear in mind is the end-to-end design principle. Every protocol
designer should read the classic  End-to-End Arguments in System Design [Saltzer].
There are often serious questions about which level of the protocol stack should
handle features like security and authentication; this paper provides some good con-
ceptual tools for thinking about them. Yet a third issue is designing application proto-
cols for good performance. We’ll cover that issue in more detail in Chapter 12.

The traditions of Internet application protocol design evolved separately from Unix
before 1980.4 But since the 1980s these traditions have become thoroughly naturalized
into Unix practice.

We’ll illustrate the Internet style by looking at three application protocols that are
both among the most heavily used, and are widely regarded among Internet hackers
as paradigmatic: SMTP, POP3, and IMAP. All three address different aspects of mail
transport (one of the net’s two most important applications, along with the World
Wide Web), but the problems they address (passing messages, setting remote state,
indicating error conditions) are generic to non-email application protocols as well
and are normally addressed using similar techniques.

4. One relic of this pre-Unix history is that Internet protocols normally use CR-LF as a line
terminator rather than Unix’s bare LF.
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Case Study: SMTP, the Simple Mail Transfer Protocol5.3.1

Example 5.7 is an example transaction in SMTP (Simple Mail Transfer Protocol),
which is described by RFC 2821. In the example, C: lines are sent by a mail transport
agent (MTA) sending mail, and S: lines are returned by the MTA receiving it. Text
emphasized like this is comments, not part of the actual transaction.

Example 5.7: An SMTP session example.

C: <client connects to service port 25>
C: HELO snark.thyrsus.com sending host identifies self
S: 250 OK Hello snark, glad to meet you receiver acknowledges
C: MAIL FROM: <esr@thyrsus.com> identify sending user
S: 250 <esr@thyrsus.com>... Sender ok receiver acknowledges
C: RCPT TO: cor@cpmy.com identify target user
S: 250 root... Recipient ok receiver acknowledges
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Scratch called.  He wants to share
C: a room with us at Balticon.
C: . end of multiline send
S: 250 WAA01865 Message accepted for delivery
C: QUIT sender signs off
S: 221 cpmy.com closing connection receiver disconnects
C: <client hangs up>

This is how mail is passed among Internet machines. Note the following features:
command-argument format of the requests, responses consisting of a status code fol-
lowed by an informational message, the fact that the payload of the DATA command
is terminated by a line consisting of a single dot.

SMTP is one of the two or three oldest application protocols still in use on the
Internet. It is simple, effective, and has withstood the test of time. The traits we have
called out here are tropes that recur frequently in other Internet protocols. If there is
any single archetype of what a well-designed Internet application protocol looks like,
SMTP is it.

Case Study: POP3, the Post Office Protocol5.3.2

Another one of the classic Internet protocols is POP3, the Post Office Protocol. It is
also used for mail transport, but where SMTP is a ‘push’ protocol with transactions
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initiated by the mail sender, POP3 is a ‘pull’ protocol with transactions initiated by
the mail receiver. Internet users with intermittent access (like dial-up connections)
can let their mail pile up on a mail-drop machine, then use a POP3 connection to pull
mail up the wire to their personal machines.

Example 5.8 is an example POP3 session. In the example, C: lines are sent by the
client, and S: lines by the mail server. Observe the many similarities with SMTP. This
protocol is also textual and line-oriented, sends payload message sections terminated
by a line consisting of a single dot followed by line terminator, and even uses the
same exit command, QUIT. Like SMTP, each client operation is acknowledged by a
reply line that begins with a status code and includes an informational message meant
for human eyes.

Example 5.8: A POP3 example session.

C: <client connects to service port 110> 
S: +OK POP3 server ready <1896.6971@mailgate.dobbs.org>
C: USER bob
S: +OK bob
C: PASS redqueen
S: +OK bob's maildrop has 2 messages (320 octets)
C: STAT
S: +OK 2 320
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends the text of message 1>
S: .
C: DELE 1
S: +OK message 1 deleted
C: RETR 2
S: +OK 200 octets
S: <the POP3 server sends the text of message 2>
S: .
C: DELE 2
S: +OK message 2 deleted
C: QUIT
S: +OK dewey POP3 server signing off (maildrop empty)
C: <client hangs up>
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There are a few differences. The most obvious one is that POP3 uses status tokens
rather than SMTP’s 3-digit status codes. Of course the requests have different seman-
tics. But the family resemblance (one we’ll have more to say about when we discuss
the generic Internet metaprotocol later in this chapter) is clear.

Case Study: IMAP, the Internet Message Access Protocol5.3.3

To complete our triptych of Internet application protocol examples, we’ll look at
IMAP, another post office protocol designed in a slightly different style. See Exam-
ple 5.9; as before, C: lines are sent by the client, and S: lines by the mail server. Text
emphasized like this is comments, not part of the actual transaction.

Example 5.9: An IMAP session example.

C: <client connects to service port 143>
S: * OK example.com IMAP4rev1 v12.264 server ready
C: A0001 USER "frobozz" "xyzzy"
S: * OK User frobozz authenticated
C: A0002 SELECT INBOX
S: * 1 EXISTS
S: * 1 RECENT
S: * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
S: * OK [UNSEEN 1] first unseen message in /var/spool/mail/esr
S: A0002 OK [READ-WRITE] SELECT completed
C: A0003 FETCH 1 RFC822.SIZE Get message sizes
S: * 1 FETCH (RFC822.SIZE 2545)
S: A0003 OK FETCH completed
C: A0004 FETCH 1 BODY[HEADER] Get first message header
S: * 1 FETCH (RFC822.HEADER {1425}
<server sends 1425 octets of message payload>
S: )
S: A0004 OK FETCH completed
C: A0005 FETCH 1 BODY[TEXT] Get first message body
S: * 1 FETCH (BODY[TEXT] {1120}
<server sends 1120 octets of message payload>
S: )
S: * 1 FETCH (FLAGS (\Recent \Seen))
S: A0005 OK FETCH completed
C: A0006 LOGOUT
S: * BYE example.com IMAP4rev1 server terminating connection
S: A0006 OK LOGOUT completed
C: <client hangs up>
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IMAP delimits payloads in a slightly different way. Instead of ending the payload
with a dot, the payload length is sent just before it. This increases the burden on the
server a little bit (messages have to be composed ahead of time, they can’t just be
streamed up after the send initiation) but makes life easier for the client, which can
tell in advance how much storage it will need to allocate to buffer the message for
processing as a whole.

Also, notice that each response is tagged with a sequence label supplied by the
request; in this example they have the form A000n, but the client could have generated
any token into that slot. This feature makes it possible for IMAP commands to be
streamed to the server without waiting for the responses; a state machine in the client
can then simply interpret the responses and payloads as they come back. This technique
cuts down on latency.

IMAP (which was designed to replace POP3) is an excellent example of a mature
and powerful Internet application protocol design, one well worth study and emulation.

Application Protocol Metaformats5.4

Just as data file metaformats have evolved to simplify serialization for storage, appli-
cation protocol metaformats have evolved to simplify serialization for transactions
across networks. The tradeoffs are a little different in this case; because network
bandwidth is more expensive than storage, there is more of a premium on transaction
economy. Still, the transparency and interoperability benefits of textual formats are
sufficiently strong that most designers have resisted the temptation to optimize for
performance at the cost of readability.

The Classical Internet Application Metaprotocol5.4.1

Marshall Rose’s RFC 3117, On the Design of Application Protocols,5 provides an
excellent overview of the design issues in Internet application protocols. It makes
explicit several of the tropes in classical Internet application protocols that we observed
in our examination of SMTP, POP, and IMAP, and provides an instructive taxonomy
of such protocols. It is recommended reading.

The classical Internet metaprotocol is textual. It uses single-line requests and re-
sponses, except for payloads which may be multiline. Payloads are shipped either
with a preceding length in octets or with a terminator that is the line ".\r\n". In
the latter case the payload is byte-stuffed; all lines that start with a period get another

5. See RFC 3117 <ftp://ftp.rfc-editor.org/in-notes/rfc3117.txt>.
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period prepended, and the receiver side is responsible for both recognizing the termi-
nation and stripping away the stuffing. Response lines consist of a status code followed
by a human-readable message.

One final advantage of this classical style is that it is readily extensible. The parsing
and state-machine framework doesn’t need to change much to accommodate new re-
quests, and it is easy to code implementations so that they can parse unknown requests
and return an error or simply ignore them. SMTP, POP3, and IMAP have all been
extended in minor ways fairly often during their lifetimes, with minimal interoperabil-
ity problems. Naïvely designed binary protocols are, by contrast, notoriously brittle.

HTTP as a Universal Application Protocol5.4.2

Ever since the World Wide Web reached critical mass around 1993, application pro-
tocol designers have shown an increasing tendency to layer their special-purpose
protocols on top of HTTP, using web servers as generic service platforms.

This is a viable option because, at the transaction layer, HTTP is very simple and
general. An HTTP request is a message in an RFC-822/MIME-like format; typically,
the headers contain identification and authentication information, and the first line is
a method call on some resource specified by a Universal Resource Indicator (URI).
The most important methods are GET (fetch the resource), PUT (modify the resource)
and POST (ship data to a form or back-end process). The most important form of
URI is a URL or Uniform Resource Locator, which identifies the resource by service
type, host name, and a location on the host. An HTTP response is simply an
RFC-822/MIME message and can contain arbitrary content to be interpreted by
the client.

Web servers handle the transport and request-multiplexing layers of HTTP, as well
as standard service types like http and ftp. It is relatively easy to write web server
plugins that will handle custom service types, and to dispatch on other elements of
the URI format.

Besides avoiding a lot of lower-level details, this method means the application
protocol will tunnel through the standard HTTP service port and not need a TCP/IP
service port of its own. This can be a distinct advantage; most firewalls leave port 80
open, but trying to punch another hole through can be fraught with both technical and
political difficulties.

With this advantage comes a risk. It means that your web server and its plugins
grow more complex, and cracks in any of that code can have large security implica-
tions. It may become more difficult to isolate and shut down problem services. The
usual tradeoffs between security and convenience apply.
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RFC 3205, On the Use of HTTP As a Substrate,6 has good design advice for anyone
considering using HTTP as the underlayer of an application protocol, including a
summary of the tradeoffs and problems involved.

Case Study: The CDDB/freedb.org Database5.4.2.1

Audio CDs consist of a sequence of music tracks in a digital format called
CDDA-WAV. They were designed to be played by very simple consumer-electronics
devices a few years before general-purpose computers developed enough raw speed
and sound capability to decode them on the fly. Because of this, there is no provision
in the format for even simple metainformation such as the album and track titles. But
modern computer-hosted CD players want this information so the user can assemble
and edit play lists.

Enter the Internet. There are (at least two) repositories that provide a mapping
between a hash code computed from the track-length table on a CD and artist/album-
title/track-title records. The original was cddb.org, but another site called
freedb.org which is probably now more complete and widely used. Both sites
rely on their users for the enormous task of keeping the database current as new CDs
come out; freedb.org arose from a developer revolt after CDDB elected to take
all that user-contributed information proprietary .

Queries to these services could have been implemented as a custom application
protocol on top of TCP/IP, but that would have required steps such as getting a new
TCP/IP port number assigned and fighting to get a hole for it punched through thou-
sands of firewalls. Instead, the service is implemented over HTTP as a simple CGI
query (as if the CD’s hash code had been supplied by a user filling in a Web form).

This choice makes all the existing infrastructure of HTTP and Web-access libraries
in various programming languages available to support programs for querying and
updating this database. As a result, adding such support to a software CD player is
nearly trivial, and effectively every software CD player knows how to use them.

Case Study: Internet Printing Protocol5.4.2.2

Internet Printing Protocol (IPP) is a successful, widely implemented standard for the
control of network-accessible printers. Pointers to RFCs, implementations, and
much other related material are available at the IETF’s Printer Working Group
<http://www.pwg.org/ipp/> site.

IPP uses HTTP 1.1 as a transport layer. All IPP requests are passed via an HTTP
POST method call; responses are ordinary HTTP responses. (Section 4.2 of RFC 2568,
Rationale for the Structure of the Model and Protocol for the Internet Printing

6. See RFC 3205 <http://www.faqs.org/rfcs/rfc3205.html>.
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Protocol, does an excellent job of explaining this choice; it repays study by anyone
considering writing a new application protocol.)

From the software side, HTTP 1.1 is widely deployed. It already solves many of
the transport-level problems that would otherwise distract protocol developers and
implementers from concentrating on the domain semantics of printing. It is cleanly
extensible, so there is room for IPP to grow. The CGI programming model for handling
the POST requests is well understood and development tools are widely available.

Most network-aware printers already embed a web server, because that’s the natural
way to make the status of the printer remotely queryable by human beings. Thus, the
incremental cost of adding IPP service to the printer firmware is not large. (This is
an argument that could be applied to a remarkably wide range of other network-aware
hardware, including vending machines and coffee makers7 and hot tubs!)

About the only serious drawback of layering IPP over HTTP is that the protocol
is completely driven by client requests. Thus there is no space in the model for printers
to ship asynchronous alert messages back to clients. (However, smarter clients could
run a trivial HTTP server to receive such alerts formatted as HTTP requests from
the printer.)

BEEP: Blocks Extensible Exchange Protocol5.4.3

BEEP (formerly BXXP) is a generic protocol machine that competes with HTTP for
the role of universal underlayer for application protocols. There is a niche open because
there is not as yet any other more established metaprotocol that is appropriate for
truly peer-to-peer applications, as opposed to the client-server applications that HTTP
handles well. A project website <http://www.beepcore.org/beepcore/
docs/sl-beep.jsp> provides access to standards and open-source implementa-
tions in several languages.

BEEP has features to support both client-server and peer-to-peer modes. The authors
designed the BEEP protocol and support library so that picking the right options ab-
stracts away messy issues like data encoding, flow control, congestion-handling,
support of end-to-end encryption, and assembling a large response composed of
multiple transmissions,

Internally, BEEP peers exchange sequences of self-describing binary packets not
unlike chunk types in PNG. The design is tuned more for economy and less for
transparency than the classical Internet protocols or HTTP, and might be a better
choice when data volumes are large. BEEP also avoids the HTTP problem that all

7. See RFC 2324 <http://www.ietf.org/rfc/rfc2324.txt> and RFC 2325
<http://www.ietf.org/rfc/rfc2325.txt>.
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requests have to be client-initiated; it would be better in situations in which a server
needs to send asynchronous status messages back to the client.

BEEP is still new technology in mid-2003, and has only a few demonstration
projects. But the BEEP papers are good analytical surveys of best practice in protocol
design; even if BEEP itself fails to gain widespread adoption, the papers will retain
considerable tutorial value.

XML-RPC, SOAP, and Jabber5.4.4

There is a developing trend in application protocol design toward using XML within
MIME to structure requests and payloads. BEEP peers use this format for channel
negotiations. Three major protocols are going the XML route throughout: XML-RPC
and SOAP (Simple Object Access Protocol) for remote procedure calls, and Jabber
for instant messaging and presence. All three are XML document types.

XML-RPC is very much in the Unix spirit (its author observes that he learned how
to program in the 1970s by reading the original source code for Unix). It’s deliberately
minimalist but nevertheless quite powerful, offering a way for the vast majority of
RPC applications that can get by on passing around scalar boolean/integer/float/string
datatypes to do their thing in a way that is lightweight and easy to understand and
monitor. XML-RPC’s type ontology is richer than that of a text stream, but still
simple and portable enough to act as a valuable check on interface complexity.
Open-source implementations are available. An excellent XML-RPC home page
<http://www.xmlrpc.com/> points to specifications and multiple open-source
implementations.

SOAP is a more heavyweight RPC protocol with a richer type ontology that in-
cludes arrays and C-like structs. It was inspired by XML-RPC, but has been plausibly
accused of being an overdesigned victim of the second-system effect. As of mid-2003
the SOAP standard is still a work in progress, but a trial implementation in Apache
is tracking the drafts. Open-source client modules in Perl, Python, Tcl, and Java are
readily discoverable by a Web search. The W3C draft specification is available on the
Web <http://www.w3.org/TR/SOAP/>.

XML-RPC and SOAP, considered as remote procedure call methods, have some
associated risks that we discuss at the end of Chapter 7.

Jabber is a peer-to-peer protocol designed to support instant messaging and pres-
ence. What makes it interesting as an application protocol is that it supports passing
around XML forms and live documents. Specifications, documentation, and
open-source implementations are available at the Jabber Software Foundation
<http://www.jabber.org/about/overview.html> site.
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6

Transparency:
Let There Be Light

Beauty is more important in computing than anywhere else in technology because
software is so complicated. Beauty is the ultimate defense against complexity.

Machine Beauty: Elegance and the Heart of Technology (1998)
—David Gelernter

In the previous chapter we discussed the importance of textual data formats and ap-
plication protocols, representations that are easy for human beings to examine and
interact with. These promote qualities in design that are much valued in the Unix
tradition but seldom if ever talked about explicitly: transparency and discoverability.

Software systems are transparent when they don’t have murky corners or hidden
depths. Transparency is a passive quality. A program is transparent when it is possible
to form a simple mental model of its behavior that is actually predictive for all or
most cases, because you can see through the machinery to what is actually going on.

Software systems are discoverable when they include features that are designed
to help you build in your mind a correct mental model of what they do and how they
work. So, for example, good documentation helps discoverability to a user. Good
choice of variable and function names helps discoverability to a programmer.
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Discoverability is an active quality. To achieve it in your software you cannot merely
fail to be obscure, you have to go out of your way to be helpful.1

Transparency and discoverability are important for both users and software
developers. But they’re important in different ways. Users like these properties in a
UI because they mean an easier learning curve. UI transparency and discoverability
are a large part of what people mean when they say a UI is ‘intuitive’; most of the
rest is the Rule of Least Surprise. We’ll examine the properties that make user in-
terfaces pleasant and effective in more depth in Chapter 11.

Software developers like these qualities in the code itself (the part users don’t see)
because they so often need to understand it well enough to modify and debug it. Also,
a program designed so that its internal data flows are readily comprehensible is more
likely to be one that does not fail because of bad interactions that the designer didn’t
notice, and more likely to be able to evolve forward gracefully (including accommo-
dating change when new maintainers pick up the baton).

Transparency is a major component of what David Gelernter refers to as “beauty”
in this chapter’s epigraph. Unix programmers, borrowing from mathematicians, often
use the more specific term “elegance” for the quality Gelernter speaks of. Elegance
is a combination of power and simplicity. Elegant code does much with little. Elegant
code is not only correct but visibly, transparently correct. It does not merely commu-
nicate an algorithm to a computer, but also conveys insight and assurance to the mind
of a human that reads it. By seeking elegance in our code, we build better code.
Learning to write transparent code is a first, long step toward learning how to write
elegant code—and taking care to make code discoverable helps us learn how to make
it transparent. Elegant code is both transparent and discoverable.

It may be easier to appreciate the difference between transparency and discover-
ability with a pair of extreme examples. The Linux kernel source is remarkably
transparent (given the intrinsic complexity of what it does) but not at all discover-
able—acquiring the minimum knowledge needed to live in the code and understand
the idiom of the developers is difficult, but once you do the whole makes sense.2 On
the other hand, the Emacs Lisp libraries are discoverable but not transparent. It’s easy
to acquire enough knowledge to tweak just one thing, but quite difficult to comprehend
the whole system.

1. An economically-minded friend comments: “Discoverability is about reducing barriers to
entry; transparency is about reducing the cost of living in the code”.

2. The Linux kernel makes a number of attempts at discoverability, including the Documentation
subdirectory in the Linux kernel source tarball and quite a number of tutorial websites and
books. These attempts are frustrated by the speed at which the kernel changes; the documen-
tation has a chronic tendency to fall behind.
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In this chapter, we’ll examine features of Unix designs that promote transparency
and discoverability not just in UIs but in the parts users don’t normally see. We’ll
develop some useful rules you can apply to your coding and development practice.
Later on, in Chapter 19 we’ll see how good release-engineering practices (like having
a README file with appropriate content) can make your source code as discoverable
as your design.

If you need a practical reminder why these qualities are important, remember that
the sanity you save by writing transparent, discoverable systems may well be that of
your own future self.

Studying Cases6.1

Normal practice in this book has been to intersperse case studies with philosophy.
But in this chapter we’ll begin by looking at several Unix designs that exhibit trans-
parency and discoverability, and attempt to draw lessons from them only after all have
been presented. Each major point of the analysis in the latter half of this chapter draws
on several of these, and the arrangement avoids forward references to case studies
the reader hasn’t seen yet.

Case Study: audacity6.1.1

First, we’ll look at an example of transparency in UI design. It is audacity, an open-
source editor for sound files that runs on Unix systems, Mac OS X, and Windows.
Sources, downloadable binaries, documentation, and screen shots are available at the
project site <http://audacity.sourceforge.net/>.

This program supports cutting, pasting, and editing of audio samples. It supports
multitrack editing and mixing. The UI is superbly simple; the sound waveforms are
shown in the audacity window. The image of the waveform can be cut and pasted;
operations on that image are directly reflected in the audio sample as soon as they
are performed.

Multitrack editing is supported in the simplest possible way; the screen splits into
multiple per-track displays in a spatial relationship that conveys their concurrency
and makes it easy to match features by inspection. Tracks can be dragged right or left
with the mouse to change their relative timing.

Several features of this UI are subtly excellent and worthy of emulation: the large,
easily visible and clickable operation buttons with distinguishing colors, the presence
of an undo command that removes most of the risk from experimentation, the volume
slider that makes softness/loudness visually obvious in its shape.
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Figure 6.1: Screen shot of audacity.

But these are details. The central virtue of this program is that it has a superbly
transparent and natural user interface, one that erects as few barriers between the user
and the sound file as possible.

Case Study: fetchmail ’s -v option6.1.2

fetchmail is a network gateway program. Its main purpose is to translate between
POP3 or IMAP remote-mail protocols and the Internet’s native SMTP protocol for
email exchange. It is in extremely widespread use on Unix machines that use intermit-
tent SLIP or PPP connections to Internet service providers, and as such probably
touches an appreciable fraction of the Internet’s mail traffic.

fetchmail has no fewer than 60 command-line options (which, as we’ll establish
later in this book, is probably too many), and a number of other options that are settable
from the run-control file but not from the command line. Of all these, the most impor-
tant—by far—is -v, the verbose option.
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When-v is on, fetchmail dumps each one of its POP, IMAP, and SMTP transactions
to standard output as they happen. A developer can actually see the code doing protocol
with remote mailservers and the mail transport program it forwards to, in real time.
Users can send session transcripts with their bug reports. Example 6.1 shows a repre-
sentative session transcript.

Example 6.1: An example fetchmail -v transcript.

fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP) 
       at Mon, 09 Dec 2002 08:41:37 -0500 (EST): poll started
fetchmail: running ssh %h /usr/sbin/imapd 
       (host hurkle.thyrsus.com service imap)
fetchmail: IMAP< * PREAUTH [42.42.1.0] IMAP4rev1 v12.264 server ready
fetchmail: IMAP> A0001 CAPABILITY
fetchmail: IMAP< * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE SCAN 
       SORT MAILBOX-REFERRALS LOGIN-REFERRALS AUTH=LOGIN 
       THREAD=ORDEREDSUBJECT
fetchmail: IMAP< A0001 OK CAPABILITY completed
fetchmail: IMAP> A0002 SELECT "INBOX"
fetchmail: IMAP< * 2 EXISTS
fetchmail: IMAP< * 1 RECENT
fetchmail: IMAP< * OK [UIDVALIDITY 1039260713] UID validity status
fetchmail: IMAP< * OK [UIDNEXT 23982] Predicted next UID
fetchmail: IMAP< * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
fetchmail: IMAP< * OK [PERMANENTFLAGS 
        (\* \Answered \Flagged \Deleted \Draft \Seen)] 
        Permanent flags
fetchmail: IMAP< * OK [UNSEEN 2] first unseen in /var/spool/mail/esr
fetchmail: IMAP< A0002 OK [READ-WRITE] SELECT completed
fetchmail: IMAP> A0003 EXPUNGE
fetchmail: IMAP< A0003 OK Mailbox checkpointed, no messages expunged
fetchmail: IMAP> A0004 SEARCH UNSEEN
fetchmail: IMAP< * SEARCH 2
fetchmail: IMAP< A0004 OK SEARCH completed
2 messages (1 seen) for esr at hurkle.thyrsus.com.
fetchmail: IMAP> A0005 FETCH 1:2 RFC822.SIZE
fetchmail: IMAP< * 1 FETCH (RFC822.SIZE 2545)
fetchmail: IMAP< * 2 FETCH (RFC822.SIZE 8328)
fetchmail: IMAP< A0005 OK FETCH completed
skipping message esr@hurkle.thyrsus.com:1 (2545 octets) not flushed
fetchmail: IMAP> A0006 FETCH 2 RFC822.HEADER
fetchmail: IMAP< * 2 FETCH (RFC822.HEADER {1586}
reading message esr@hurkle.thyrsus.com:2 of 2 (1586 header octets)
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fetchmail: SMTP< 220 snark.thyrsus.com ESMTP Sendmail 8.12.5/8.12.5; 
        Mon, 9 Dec
2002 08:41:41 -0500
fetchmail: SMTP> EHLO localhost
fetchmail: SMTP< 250-snark.thyrsus.com 
        Hello localhost [127.0.0.1], pleased to meet you
fetchmail: SMTP< 250-ENHANCEDSTATUSCODES
fetchmail: SMTP< 250-8BITMIME
fetchmail: SMTP< 250-SIZE
fetchmail: SMTP> MAIL FROM:<mutt-dev-owner@mutt.org> SIZE=8328
fetchmail: SMTP< 250 2.1.0 <mutt-dev-owner@mutt.org>... Sender ok
fetchmail: SMTP> RCPT TO:<esr@localhost>
fetchmail: SMTP< 250 2.1.5 <esr@localhost>... Recipient ok
fetchmail: SMTP> DATA
fetchmail: SMTP< 354 Enter mail, end with "." on a line by itself
#
fetchmail: IMAP< )
fetchmail: IMAP< A0006 OK FETCH completed
fetchmail: IMAP> A0007 FETCH 2 BODY.PEEK[TEXT]
fetchmail: IMAP< * 2 FETCH (BODY[TEXT] {6742}
 (6742 body octets) *********************.**************************.
********************************.************************.***********
**********.***********************.***************
fetchmail: IMAP< )
fetchmail: IMAP< A0007 OK FETCH completed
fetchmail: SMTP>. (EOM)
fetchmail: SMTP< 250 2.0.0 gB9ffWo08245 Message accepted for delivery
 flushed
fetchmail: IMAP> A0008 STORE 2 +FLAGS (\Seen \Deleted)
fetchmail: IMAP< * 2 FETCH (FLAGS (\Recent \Seen \Deleted))
fetchmail: IMAP< A0008 OK STORE completed
fetchmail: IMAP> A0009 EXPUNGE
fetchmail: IMAP< * 2 EXPUNGE
fetchmail: IMAP< * 1 EXISTS
fetchmail: IMAP< * 0 RECENT
fetchmail: IMAP< A0009 OK Expunged 1 messages
fetchmail: IMAP> A0010 LOGOUT
fetchmail: IMAP< * BYE hurkle IMAP4rev1 server terminating connection
fetchmail: IMAP< A0010 OK LOGOUT completed
fetchmail: 6.1.0 querying hurkle.thyrsus.com (protocol IMAP) 
        at Mon, 09 Dec 2002 08:41:42 -0500: poll completed
fetchmail: SMTP> QUIT
fetchmail: SMTP< 221 2.0.0 snark.thyrsus.com closing connection
fetchmail: normal termination, status 0
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The -v option makes what fetchmail is doing discoverable (by letting you see the
protocol exchanges). This is immensely useful. I considered it so important that I
wrote special code to mask account passwords out of -v transaction dumps so that
they could be passed around and posted without anyone having to remember to edit
sensitive information out of them.

This turned out to be a good call. At least eight out of ten problems reported get
diagnosed within seconds of a knowledgeable person’s eyes seeing a session transcript.
There are several knowledgeable people on the fetchmail mailing list—in fact, because
most bugs are easy to diagnose, I seldom have to handle them myself.

Over the years, fetchmail has acquired a reputation as a rather bulletproof program.
It can be misconfigured, but it very seldom outright breaks. Betting that this has
nothing to do with the fact that the exact circumstances of eight out of ten bugs are
rapidly discoverable would not be smart.

We can learn from this example. The lesson is this: Don’t let your debugging tools
be mere afterthoughts or treat them as throwaways. They are your windows into the
code; don’t just knock crude holes in the walls, finish and glaze them. If you plan to
keep the code maintained, you’re always going to need to let light into it.

Case Study: GCC6.1.3

GCC, the GNU C compiler used on most modern Unixes, is perhaps an even better
example of engineering for transparency. GCC is organized as a sequence of processing
stages knit together by a driver program. The stages are: preprocessor, parser, code
generator, assembler, and linker.

Each of the first three stages takes in a readable textual format and emits a readable
textual format (the assembler has to emit and the linker to accept binary formats,
pretty much by definition). With various command-line options of the gcc(1) driver,
you can see not just the results after C preprocessing, after assembly generation, and
after object code generation—but you can also monitor the results of many interme-
diate steps in parsing and code generation.

This is exactly the structure of cc, the first (PDP-11) C compiler.

—Ken Thompson

There are many benefits of this organization. One that is particularly important
for GCC is regression testing.3 Because most of the various intermediate formats are

3. Regression testing is a method for detecting bugs introduced as software is modified. It
consists of periodically checking the output of the changing software for some fixed test input
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textual, deviations from expected results in a regression test are easily spotted and
analyzed using simple textual diff operations on the intermediate results; there is no
need for specialist dump-analysis tools that may well harbor their own bugs, and in
any case would represent an additional maintenance burden.

The design pattern to extract from this example is that the driver program has
monitoring switches that merely (but sufficiently) expose the textual data flows among
the components. As with fetchmail’s -v option, these options are not afterthoughts;
they are designed in for discoverability.

Case Study: kmail6.1.4

kmail is the GUI mailreader distributed with the KDE environment. The kmail UI is
tastefully and well designed, with many good features including automatic display
of enclosed images in a MIME multipart and support for PGP key encryption/decryp-
tion. It is friendly to end-users—my beloved but nontechie wife uses and enjoys it.

Many mail user agents make one gesture in the direction of discoverability by
having a command that toggles display of all the mail headers, as opposed to a select
few like From and Subject. The UI of kmail takes this a long step further.

A running kmail displays status notifications in a one-line subwindow at the bottom
of its window, in small type over a steel-gray background clearly modeled on the
Netscape/Mozilla status bar. When you open a mailbox, for example, the status bar
displays counts of total and unread messages. The visual presentation is unobtrusive;
it is easy to ignore the notifications, but also easy to focus on them if you want to.

The kmail GUI is good user-interface design. It’s informative, but not distracting;
it gets around the reason we adduce in Chapter 11 that the best policy for Unix tools
operating normally is usually silence. The authors showed excellent taste in borrowing
the look and feel of the browser status bar.

But the extent of the kmail developers’ tastefulness will not become clear until
you have to troubleshoot an installation that is having trouble sending mail. If you
watch closely during the send, you will observe that each line of the SMTP transaction
with the remote mail transport is echoed into the kmail status bar as it happens.

The kmail developers neatly avoid a trap that often makes GUI programs like kmail
a terrible pain in a troubleshooter’s fundament. Most design teams with kmail’s ob-
jectives would have suppressed those messages entirely, fearing that they would give
Aunt Tillie a touch of the vapors that would drive her back to the meretricious pseudo-
simplicity of a Windows box.

against a snapshot of output captured at an earlier stage of the process and known (or assumed)
to be correct.
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Figure 6.2: Screen shot of kmail.

Instead, they designed for transparency—they made the transaction messages
show, but also made them visually easy to ignore. By getting the presentation right,
they managed to please both Aunt Tillie and her geeky nephew Melvin who fixes her
computer problems. This was brilliant; it’s a technique other GUI interfaces could
and should emulate.

Ultimately, of course, the visibility of those messages is good for Aunt Tillie, be-
cause they mean Melvin is far less likely to throw up his hands in frustration while
trying to solve her email problems.
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The lesson here is clear. Dumbing down your UI is only the half-smart thing to
do. The really smart thing is to find a way to leave the details accessible, but make
them unobtrusive.

Case Study: SNG6.1.5

The program sng translates between PNG format and an all-text representation of it
(SNG or Scriptable Network Graphics format) that can be examined and modified
with an ordinary text editor. Run on a PNG file, it produces an SNG file; run on an
SNG file, it recovers the equivalent PNG. The transformation is 100% faithful and
lossless in both directions.

In syntactic style, SNG resembles CSS (Cascading Style Sheets), another language
for controlling presentation of graphics; this makes at least a gesture in the direction
of the Rule of Least Surprise. Here is a test example:

Example 6.2: An SNG Example.

#SNG: This is a synthetic SNG test file

# Our first test is a paletted (type 3) image.
IHDR: {
 width: 16;
 height: 19;
 bitdepth: 8;
 using color: palette; 
 with interlace;
}

# Sample bit depth chunk
sBIT: {
  red: 8;
  green: 8;
  blue: 8;
}

# An example palette: three colors, one of which 
# we will render transparent 
PLTE: {
   (0,     0, 255)
   (255,   0,   0)
   "dark slate gray",
}
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# Suggested palette
sPLT {
   name: "A random suggested palette";
   depth: 8;
   (0,     0, 255), 255, 7;
   (255,   0,   0), 255, 5;
   ( 70,  70,  70), 255, 3;
}

# The viewer will actually use this...
IMAGE: {
   pixels base64
2222222222222222
2222222222222222
0000001111100000
0000011111110000
0000111001111000
0001110000111100
0001110000111100
0000110001111000
0000000011110000
0000000111100000
0000001111000000
0000001111000000
0000000000000000
0000000110000000
0000001111000000
0000001111000000
0000000110000000
2222222222222222
2222222222222222
}

tEXt: {    # Ordinary text chunk
  keyword: "Title";
  text: "Sample SNG script";
}

# Test file ends here

The point of this tool is to enable users to edit various obscure PNG chunk types
that are not necessarily supported by conventional graphics editors. Rather than
writing special-purpose code to grovel through the PNG binary format, the user can
simply flip an image into an all-text representation, edit that, and massage it back.
Another potential application is in making images amenable to version control; under

1436.1 Studying Cases



ptg

most version-control systems, text files are much easier to manage than binary blobs,
and diff operations on SNG representations actually have some possibility of yielding
useful information.

The gains here go beyond the time not spent writing special-purpose code for
manipulating binary PNGs, however. The code of the sng program itself is not espe-
cially transparent, but it promotes transparency in larger systems of programs by
making the entire contents of PNGs discoverable.

Case Study: The Terminfo Database6.1.6

The terminfo database is a collection of descriptions of video-display terminals. Each
entry describes the escape sequences that perform various manipulations on the ter-
minal screen, such as inserting or deleting lines, erasing from the cursor position to
end of line or screen, or beginning and ending screen highlights such as reverse video,
underline, or blink.

The terminfo database is primarily used by the curses(3) libraries. These underlie
the “roguelike” interface style we discuss in Chapter 11, and some very widely used
programs such as mutt(1), lynx(1), and slrn(1). Though the terminal emulators such
as xterm(1) that run on today’s bitmapped displays all have capabilities that are minor
variations on those of the ANSI X3.64 standard and the venerable VT100 terminal,
there is still enough variation that hardwiring ANSI capabilities into applications
would be a bad idea. Terminfo is also worth studying because problems that are logi-
cally similar to the one it addressed arise constantly in managing other kinds of pe-
ripheral hardware that doesn’t have a standard way to report their own capabilities.

The design of terminfo benefits from experience with an earlier capability format
called termcap. The database of termcap descriptions lived in a textual format in one
big file, /etc/termcap; though this format is now obsolete, your Unix system al-
most certainly includes a copy.

Normally, the key used to look up your terminal type entry is the environment
variable TERM, which for purposes of this case study is set by magic.4 Applications
that use terminfo (or termcap) pay a small penalty in startup lag; when the curses(3)
library initializes itself, it has to look up the entry corresponding to TERM and load
the entry into memory.

Experience with termcap showed that the startup penalty was dominated by the
time required to parse the textual representation of capabilities. Accordingly, terminfo
entries are binary structure dumps that can be marshaled and unmarshaled more

4. Actually, TERM is set by the system at login time. For actual terminals on serial lines, the
mapping from tty lines to TERM values is set from a system configuration file at boot time;
the details vary among Unixes. Terminal emulators like xterm(1) set this variable themselves.
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quickly. There is a master textual format for the entire database, the terminfo capabil-
ity file. That file (or individual entries) can be compiled to binary form with the ter-
minfo compiler tic(1); binary entries can be decompiled to the editable text format
by infocmp(1).

The design superficially contradicts the advice we gave in Chapter 5 against binary
caches, but this is actually the extreme case in which that’s a good tactic. Edits to the
text masters are very rare—in fact, Unixes normally ship with the terminfo database
precompiled and the text master serving primarily as documentation. Thus, the
synchronization and inconsistency problems that would normally militate against this
approach almost never arise.

The designers of terminfo could have optimized for speed in a second way. The
entire database of binary entries could have been put in some kind of big opaque
database file. What they actually did instead was more clever and more in the Unix
spirit. Terminfo entries live in a directory hierarchy, usually on modern Unixes under
/usr/share/terminfo. Consult the terminfo(5) man page to find the location
on your system.

If you look in the terminfo directory, you’ll see subdirectories named by single
printable characters. Under each of these are the entries for each terminal type that
has a name beginning with that letter. The goal of this organization was to avoid
having to do a linear search of a very large directory; under more modern Unix file
systems, which represent directories with B-trees or other structures optimized for
fast lookup, the subdirectories won’t be necessary.

I found that even on a fairly modern Unix, splitting a big directory up into subdi-
rectories can improve performance substantially. It was tens of thousands of files,
an authorized-user database for a big educational institution, on a late-model DEC
Alpha running DEC’s Unix. (Subdirectories named by first and last letter of
name—e.g., “johnson” would be in directory “j_n”—worked best of the schemes
we tested. Using the first two letters wasn’t nearly as good, because there were a
lot of systematically-generated names which differed only toward the end.) This
may just say that sophisticated directory indexing is still not as common as it should
be... but even so, that makes an organization which works well without it more
portable than one which requires it.

—Henry Spencer

Thus, the cost of opening a terminfo entry is two file system lookups and a file
open. But since mining the same entry from one big database would have required a
lookup and open for the database, the incremental cost for terminfo’s organization is
at most one file system lookup. Actually, it’s less than that; it’s the cost difference
between one file system lookup and whatever retrieval method the one big database
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would have used. This is probably marginal, and quite tolerable once per application
at startup time.

Terminfo uses the file system itself as a simple hierarchical database. This is a
superb bit of constructive laziness, obeying the Rule of Economy and the Rule of
Transparency. It means that all the ordinary tools for navigating, examining and
modifying the file system can be used to navigate, examine, and modify the terminfo
database; no special ones (other than tic(1) and infocmp(1) for packing and unpacking
the individual records) need to be written and debugged. It also means that work on
speeding up database access would be work on speeding up the file system itself,
tuning that would benefit many more applications than just users of curses(3).

There is one additional advantage of this organization that doesn’t come up in the
terminfo case; you get to use Unix’s permissions mechanism rather than having to
invent your own access-control layer with its own bugs. This falls out as a consequence
of adopting the “everything is a file” philosophy of Unix rather than trying to fight it.

The terminfo directory layout is rather space-inefficient on most Unix file systems.
The entries are usually between 400 and 1400 bytes long, but file systems normally
allocate a minimum of 4K for every nonempty disk file. The designers accepted this
cost for the same reason they chose a packed binary format, to cut the startup latency
of terminfo-using programs to a minimum. Disk capacity for constant price has
exploded over a thousandfold since, tending to vindicate that decision.

The contrast with the formats used by the Microsoft Windows  registry files is in-
structive. Registries are property databases used by both Windows itself and applica-
tions. Each registry lives in one big file. Registries contain a mix of text and binary
data that requires specialized editing tools. The one-big-file approach leads, among
other things, to the notorious ‘registry creep’ phenomenon; average access time rises
without bound as new entries are added. Because there is no standard API for editing
the registry provided by the system, applications use ad-hoc code to edit it themselves,
making it notoriously subject to corruption that can lock up the entire system.

Using the Unix file system as a database is a tactic other applications with simple
database requirements might do well to emulate. Good reasons not to do it are more
likely to have to do with the database keys not naturally looking like filenames than
they are with any performance problems. In any case, it’s the sort of good fast hack
that can be very useful in prototyping.

Case Study: Freeciv Data Files6.1.7

Freeciv is an open-source strategy game inspired by Sid Meier’s classic Civilization II.
In it, each player begins with a wandering band of neolithic nomads and builds a
civilization. Player civilizations may explore and colonize the world, fight wars,
engage in trade, and research technological advances. Some players may actually be
artificial intelligences; solitaire play against these can be challenging. One wins either
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by conquering the world or by being the first player to reach a technology level
sufficient to get a starship to Alpha Centauri. Sources and documentation are available
at the project site <http://www.freeciv.org/>.

In Chapter 7 we’ll exhibit the Freeciv strategy game as an example of client-server
partitioning, with the server maintaining shared state and the client concentrating on
GUI presentation. But this game has another notable architectural feature; much of
the game’s fixed data, rather than being wired into the server code, is expressed in a
property registry read in by the game server at startup time.

The game’s registry files are written in a textual data-file format that assembles
text strings (with associated text and numeric properties) into various internal lists of
important data (such as nations and unit types) in the game server. The minilanguage
has an include directive, so game data can be broken up into semantic units (different
files) that are each separately editable. This design choice has been carried through
to such an extent that it’s possible to define new nations and new unit types simply
by creating new declarations in the data files, without touching the server code at all.

The Freeciv server’s startup parsing has an interesting feature that creates something
of a conflict between two of Unix’s design rules, and is therefore worth closer exam-
ination. The server ignores property names it doesn’t know how to use. This makes
it possible to declare properties that the server doesn’t yet use without breaking the
startup parsing. It means that development of the game data (policy) and the server
engine (mechanism) can be cleanly separated. On the other hand, it also means startup
parsing won’t catch simple misspellings of attribute names. This quiet failure seems
to violate the Rule of Repair.

To resolve this conflict, notice that it’s the server’s job to use the registry data, but
the task of carefully error-checking that data could be handed off to another program
to be run by human editors each time the registry is modified. One Unix solution
would be a separate auditing program that analyzes either a machine-readable
specification of the ruleset format or the source of the server code to determine the
set of properties it uses, parses the Freeciv registry to determine the set of properties
it provides, and prepares a difference report.5

The aggregate of all Freeciv data files is functionally similar to a Windows registry,
and even uses a syntax resembling the textual portions of registries. But the creep and
corruption problems we noted with the Windows registry don’t crop up here because
no program (either within or outside the Freeciv suite) writes to these files. It’s a read-
only registry edited only by the game’s maintainers.

5. The ur-ancestor of such validator programs under Unix was lint, a validator for C code
separate from the C compiler. Though GCC has absorbed its functions, old Unix hands are
still apt to refer to the process of running a validator as ‘linting’, and the name survives in
utilities such as xmllint.
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Figure 6.3: Main window of a Freeciv game.

The performance impact of data-file parsing is minimized because for each file
the operation is performed only once, at either client or server startup time.

Designing for Transparency and Discoverability6.2

To design for transparency and discoverability, you need to apply every tactic for
keeping your code simple, and also concentrate on the ways in which your code is a
communication to other human beings. The first questions to ask, after “Will this design
work?” are “Will it be readable to other people? Is it elegant?” We hope it is clear by
now that these questions are not fluff and that elegance is not a luxury. These qualities
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in the human reaction to software are essential for reducing its bugginess and increasing
its long-term maintainability.

The Zen of Transparency6.2.1

One pattern that emerges from the examples we’ve examined so far in this chapter is
this: If you want transparent code, the most effective route is simply not to layer too
much abstraction over what you are manipulating with the code.

In Chapter 4’s section on the value of detachment, our advice was to abstract and
simplify and generalize, to try and detach from the particular, accidental conditions
under which a design problem was posed. The advice to abstract does not actually
contradict the advice against excessive abstractions we’re developing here, because
there is a difference between getting free of assumptions and forgetting the problem
you’re trying to solve. This is part of what we were driving at when we developed the
idea that glue layers need to be kept thin.

One of the main lessons of Zen is that we ordinarily see the world through a haze
of preconceptions and fixed ideas that proceed from our desires. To achieve enlight-
enment, we must follow the Zen teaching not merely to let go of desire and attachment,
but to experience reality exactly as it is—without the preconceptions and the fixed
ideas getting in the way.

This is excellent pragmatic advice for software designers. It’s part of what’s im-
plicit in the classic Unix advice to be minimalist. Software designers are clever people
who form ideas (abstractions) about the application domains they deal with. They
organize the software they write around those ideas. Then, when debugging, they often
find they have great trouble seeing through those ideas to what is actually going on.

Any Zen master would recognize this problem instantly, yell “Three pounds of
flax!”, and probably clout the student a good one.6 Consciously designing for trans-
parency is a slightly less mystical way of addressing it.

In Chapter 4 we criticized object-oriented programming in terms likely to prove
a bit shocking to programmers who were raised on the 1990s gospel of OO. Object-
oriented design doesn’t have to be over-complicated design, but we’ve observed that
too often it is. Too many OO designs are spaghetti-like tangles of is-a and has-a rela-
tionships, or feature thick layers of glue in which many of the objects seem to exist
simply to hold places in a steep-sided pyramid of abstractions. Such designs are the
opposite of transparent; they are (notoriously) opaque and difficult to debug.

As we’ve previously noted, Unix programmers are the original zealots about
modularity, but tend to go about it in a quieter way. Keeping glue layers thin is part

6. See the koan called Tozan’s Three Pounds in the Gateless Gate [Mumon].
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of it; more generally, our tradition teaches us to build lower, hugging the ground with
algorithms and structures that are designed to be simple and transparent.

As with Zen art, the simplicity of good Unix code depends on exacting
self-discipline and a high level of craft, neither of which are necessarily apparent on
casual inspection. Transparency is hard work, but worth the effort for more than
merely artistic reasons. Unlike Zen art, software requires debugging—and usually
needs continuing maintenance, forward-porting, and adaptation throughout its lifetime.
Transparency is therefore more than an esthetic triumph; it is a victory that will be
reflected in lower costs throughout the software’s life cycle.

Coding for Transparency and Discoverability6.2.2

Transparency and discoverability, like modularity, are primarily properties of designs,
not code. It is not sufficient to get right the low-level elements of style, such as indent-
ing code in a clear and consistent way or having good variable-naming conventions.
These qualities have much more to do with code properties that are less obvious to
inspection. Here are a few to think about:

• What is the maximum static depth of your procedure-call hierarchy? That is,
leaving out recursions, how many levels of call might a human have to model
mentally to understand the operation of the code? Hint: If it’s more than
four, beware.

• Does the code have invariant properties7 that are both strong and visible?
Invariant properties help human beings reason about code and detect
problem cases.

• Are the function calls in your APIs individually orthogonal, or do they have too
many magic flags and mode bits that have a single call doing multiple tasks?
Avoiding mode flags entirely can lead to a cluttered API with too many nigh-
identical functions, but the obverse error (lots of easily-forgotten and confusable
mode flags) is even more common.

• Are there a handful of prominent data structures or a single global scoreboard
that captures the high-level state of the system? Is this state easy to visualize

7. An invariant is a property of a software design that is preserved by every operation in it.
For example, in most databases it is an invariant that no two records may have the same key.
In a C program that correctly manipulates strings, every string buffer must contain a terminating
NUL byte on exit from each string function. In an inventory system, no parts count can hold
a number less than zero.
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and inspect, or is it diffused among many individual global variables or objects
that are hard to find?

• Is there a clean, one-to-one mapping between data structures or classes in your
program and the entities in the world that they represent?

• Is it easy to find the portion of the code responsible for any given function? How
much attention have you paid to the readability not just of individual functions
and modules but of the whole codebase?

• Does the code proliferate special cases or avoid them? Every special case could
interact with every other special case; all those potential collisions are bugs
waiting to happen. But even more importantly, special cases make the code
harder to understand.

• How many magic numbers (unexplained constants) does the code have in it? Is
it easy to discover the implementation’s limits (such as critical buffer sizes)
by inspection?

It’s best for code to be simple. But if it answers these sorts of questions well, it
can be very complex without putting an impossible cognitive burden on a human
maintainer.

The reader might find it instructive to compare these with our checklist questions
about modularity in Chapter 4.

Transparency and Avoiding Overprotectiveness6.2.3

Close kin to the programmer tendency to build overelaborate castles of abstractions
is a tendency to overprotect others from the low-level details. While it’s not bad
practice to hide those details in the program’s normal mode of operation (fetchmail’s
-v switch is off by default), they should be discoverable. There’s an important
difference between hiding them and making them inaccessible.

Programs that cannot reveal what they are doing make troubleshooting far more
difficult. Thus, experienced Unix users actually take the presence of debugging and
instrumentation switches as a good sign, and their absence as possibly a bad one.
Absence suggests an inexperienced or careless developer; presence suggests one with
enough wisdom to follow the Rule of Transparency.

The temptation to overprotect is especially strong in GUI applications targeted for
end users, like mail readers. One reason Unix developers have been cool toward GUI
interfaces is that, in their designers’ haste to make them ‘user-friendly’ each one often
becomes frustratingly opaque to anyone who has to solve user problems—or,
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indeed, interact with it anywhere outside the narrow range predicted by the user-
interface designer.

Worse, programs that are opaque about what they are doing tend to have a lot of
assumptions baked into them, and to be frustrating or brittle or both in any use case
not anticipated by the designer. Tools that look glossy but shatter under stress are not
good long-term value.

Unix tradition pushes for programs that are flexible for a broader range of uses
and troubleshooting situations, including the ability to present as much state and ac-
tivity information to the user as the user indicates he is willing to handle. This is good
for troubleshooting; it is also good for growing smarter, more self-reliant users.

Transparency and Editable Representations6.2.4

Another theme that emerges from these examples is the value of programs that flip a
problem out of a domain in which transparency is hard into one in which it is easy.
Audacity, sng(1) and the tic(1)/infocmp(1) pair all have this property. The objects they
manipulate are not readily conformable to the hand and eye; audio files are not visual
objects, and although images expressed in PNG format are visual, the complexities
of PNG annotation chunks are not. All three applications turn manipulation of their
binary file formats into a problem to which human beings can more readily apply in-
tuition and competences gained from everyday experience.

A rule all these examples follow is that they degrade the representation as little as
possible—in fact, they translate it reversibly and losslessly. This property is very im-
portant, and worth implementing even if there is no obvious application demand for
that kind of 100% fidelity. It gives potential users confidence that they can experiment
without degrading their data.

All the advantages of textual data-file formats that we discussed in Chapter 5 also
apply to the textual formats that sng(1), infocmp(1) and their kin generate. One impor-
tant application for sng(1) is robotic generation of PNG image annotations by
scripts—because sng(1) exists, such scripts are easier to write.

Whenever you face a design problem that involves editing some kind of complex
binary object, the Unix tradition encourages asking first off whether you can write a
tool analogous to sng(1) or the tic(1)/infocmp(1) pair that can do a lossless mapping
to an editable textual format and back. There is no established term for programs of
this kind, but we’ll call them textualizers.

If the binary object is dynamically generated or very large, then it may not be
practical or possible to capture all the state with a textualizer. In that case, the
equivalent task is to write a browser. The paradigm example is fsdb(1), the file-system
debugger supported under various Unixes; there is a Linux equivalent called debugfs(1).
The psql(1) used to browse PostgreSQL databases, and the smbclient(1) program that
can be used to query Windows file shares on a SAMBA-equipped Linux machine,
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are two more. All five are simple CLI programs that could be driven by scripts and
test harnesses.

Writing a textualizer or browser is a valuable exercise for at least four reasons:

• You gain an excellent learning experience. There may be other ways that are as
good to learn about the structure of the object, but none that are obviously better.

• You gain the ability to dump the contents of the structure for inspection and
debugging. Because such a tool makes dumping easy, you’ll do it more. You’ll
get more information, probably leading to more insight.

• You gain the ability to easily generate test loads and unusual cases. This means
you are more likely to probe the odd corners of the object’s state space—and to
break the associated software, so you can fix it before your users break it.

• You gain code you may be able to reuse. If you’re careful about how you write
the browser/textualizer and keep the CLI interpreter properly separated from
the marshaling/unmarshaling library, you may find you have code that can be
reused for your actual application.

After you’ve done this, you may well discover that it’s possible to apply the “sep-
arated engine and interface” pattern (see Chapter 11) using your textualizer/debugger
as the engine. All the usual benefits of this pattern will apply.

It is desirable, although often difficult, for a textualizer to be able to read and write
even a damaged binary object. For one thing, it lets you generate damaged test
cases to stress-test software; for another, it can make emergency repairs a whole
lot easier. It may be hard to handle cases in which the structure of the object is
messed up, but at least you should handle cases in which the content of the structure
is nonsense, e.g., by showing nonsense values in hex and converting the hex back
to the values.

—Henry Spencer

Transparency, Fault Diagnosis, and Fault Recovery6.2.5

Yet another benefit of transparency, related to ease of debugging, is that transparent
systems are easier to perform recovery actions on after a bug bites—and, often, more
resistant to damage from bugs in the first place.

In comparing the terminfo database with Windows registries we noted that registries
are notoriously subject to being corrupted by buggy application code. This can make
the entire system unusable. Even if it doesn’t, recovery can be difficult if the corruption
confuses the specialized registry-editing tools.
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Our Unix case studies illustrate ways that designing for transparency can prevent
this class of problem. Because the terminfo database is not one big file, botching one
terminfo entry does not make the whole terminfo data set unusable. Fully textual one-
big-file formats like termcap are usually parsed with methods which (unlike block
reads of binary structure dumps) can recover from single-point errors. Syntax errors
in an SNG file can be corrected by hand without requiring specialized editors that
might refuse to load a damaged PNG image.

Going back to the kmail case study, that program makes fault diagnosis easier be-
cause it obeys the Rule of Repair: SMTP failures are noisy, usefully so. You don’t
have to decode a layer of obfuscatory messages generated by kmail itself to see what
the interaction with the SMTP server looks like. All you have to do is look in the right
place, because kmail is being transparent and not throwing away information about
the error state. (It helps that SMTP itself is textual and includes human-readable status
messages in its transactions.)

Discoverability tools like textualizers and browsers also make fault diagnosis
easier. We’ve already touched on one reason: they make inspecting the state of the
system easier. But there is another effect at work as well; textualized versions of data
tend to have useful redundancies (such as using whitespace for visual separation as
well as explicit delimiters for parsing). These are present to make them easier to read
for humans, but also have the effect of making them more resistant to being irreparably
trashed by point failures. A corrupted chunk in a PNG file is seldom recoverable, but
the human capacity for pattern recognition and reasoning from context might be able
to repair the equivalent SNG form.

Over and over again, the Rule of Robustness is clear. Simplicity plus transparency
lowers costs, reduces everybody’s stress, and frees people to concentrate on new
problems rather than cleaning up after old mistakes.

Designing for Maintainability6.3

Software is maintainable to the extent that people who are not its author can success-
fully understand and modify it. Maintainability demands more than code that works;
it demands code that follows the Rule of Clarity and communicates successfully to
human beings as well as the computer.

Unix programmers have a lot of implicit knowledge available to them about what
makes for maintainable code, because Unix hosts source code that goes back decades.
For reasons we’ll discuss in Chapter 17, Unix programmers learn a tendency to scrap
and rebuild rather than patching grubby code (see Rob Pike’s meditation on this subject
in Chapter 1). Thus, any sources that have survived more than a decade of evolutionary
pressure have been selected for maintainability. These old, successful, well-established
projects with maintainable code are the community’s models for practice.
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A question Unix programmers—and especially Unix programmers in the open-
source world—learn to ask about tools they are evaluating for use is: “Is this code
live, dormant, or dead?” Live code has an active developer community attached to it.
Dormant code has often become dormant because the pain of maintaining it exceeded
its utility to its originators. Dead code has been dormant for so long that it would be
easier to reimplement an equivalent from scratch. If you want your code to live,
investing effort to make it maintainable (and therefore attractive to future maintainers)
will be one of the most effective ways you can spend your time.

Code that is designed to be both transparent and discoverable has gone a long way
toward being maintainable. But there are other practices we can observe in the model
projects in this chapter that are worth emulating.

One very important practice is an application of the Rule of Clarity: choosing
simple algorithms. In Chapter 1 we quoted Ken Thompson: “When in doubt, use brute
force”. Thompson understood the full cost of complicated algorithms—not just that
they’re more bug-prone when initially implemented, but that they’re harder for
maintainers down the line to understand.

Another important practice is the inclusion of hacker’s guides. It has always been
highly approved behavior for source code distributions to include guide documents
informally describing the key data structures and algorithms in the code. In fact, Unix
programmers have often been better about producing hacker’s guides than they are
about writing end-user documentation.

The open-source community has seized on and elaborated this custom. Besides
being advice to future maintainers, hacker’s guides for open-source projects are also
designed to make it easy for casual contributors to add features or fix bugs. The Design
Notes file shipped with fetchmail is representative. The Linux kernel sources include
literally dozens of these.

In Chapter 19 we’ll describe conventions that Unix developers have evolved for
making source code distributions easy to examine and easy to build running code
from. These practices, too, promote maintainability.
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7

Multiprogramming:
Separating Processes
to Separate Function

If we believe in data structures, we must believe in independent (hence
simultaneous) processing. For why else would we collect items within a structure?
Why do we tolerate languages that give us the one without the other?

Epigrams in Programming, in ACM SIGPLAN (Vol 17 #9, 1982)
—Alan Perlis

The most characteristic program-modularization technique of Unix is splitting large
programs into multiple cooperating processes. This has usually been called ‘multipro-
cessing’ in the Unix world, but in this book we revive the older term ‘multiprogram-
ming’ to avoid confusion with multiprocessor hardware implementations.

Multiprogramming is a particularly murky area of design, one in which there are
few guidelines to good practice. Many programmers with excellent judgment about
how to break up code into subroutines nevertheless wind up writing whole applications
as monster single-process monoliths that founder on their own internal complexity.

The Unix style of design applies the do-one-thing-well approach at the level of
cooperating programs as well as cooperating routines within a program, emphasizing
small programs connected by well-defined interprocess communication or by shared
files. Accordingly, the Unix operating system encourages us to break our programs
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into simpler subprocesses, and to concentrate on the interfaces between these subpro-
cesses. It does this in at least three fundamental ways:

• by making process-spawning cheap;

• by providing methods (shellouts, I/O redirection, pipes, message-passing, and
sockets) that make it relatively easy for processes to communicate;

• by encouraging the use of simple, transparent, textual data formats that can be
passed through pipes and sockets.

Inexpensive process-spawning and easy process control are critical enablers for
the Unix style of programming. On an operating system such as VAX VMS, where
starting processes is expensive and slow and requires special privileges, one must
build monster monoliths because one has no choice. Fortunately the trend in the Unix
family has been toward lower fork(2) overhead rather than higher. Linux, in particular,
is famously efficient this way, with a process-spawn faster than thread-spawning on
many other operating systems.1

Historically, many Unix programmers have been encouraged to think in terms of
multiple cooperating processes by experience with shell programming. Shell makes
it relatively easy to set up groups of multiple processes connected by pipes, running
either in background or foreground or a mix of the two.

In the remainder of this chapter, we’ll look at the implications of cheap process-
spawning and discuss how and when to apply pipes, sockets, and other interprocess
communication (IPC) methods to partition your design into cooperating processes.
(In the next chapter, we’ll apply the same separation-of-functions philosophy to in-
terface design.)

While the benefit of breaking programs up into cooperating processes is a reduction
in global complexity, the cost is that we have to pay more attention to the design of
the protocols which are used to pass information and commands between processes.
(In software systems of all kinds, bugs collect at interfaces.)

In Chapter 5 we looked at the lower level of this design problem—how to lay out
application protocols that are transparent, flexible and extensible. But there is a second,
higher level to the problem which we blithely ignored. That is the problem of designing
state machines for each side of the communication.

It is not hard to apply good style to the syntax of application protocols, given
models like SMTP or BEEP or XML-RPC. The real challenge is not protocol syntax
but protocol logic—designing a protocol that is both sufficiently expressive and

1. See, for example, the results quoted in Improving Context Switching Performance of Idle
Tasks under Linux [Appleton].
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deadlock-free. Almost as importantly, the protocol has to be seen to be expressive
and deadlock-free; human beings attempting to model the behavior of the communi-
cating programs in their heads and verify its correctness must be able to do so.

In our discussion, therefore, we will focus on the kinds of protocol logic one
naturally uses with each kind of interprocess communication.

Separating Complexity Control from Performance Tuning7.1

First, though, we need to dispose of a few red herrings. Our discussion is not going
to be about using concurrency to improve performance. Putting that concern before
developing a clean architecture that minimizes global complexity is premature opti-
mization, the root of all evil (see Chapter 12 for further discussion).

A closely related red herring is threads (that is, multiple concurrent processes
sharing the same memory-address space). Threading is a performance hack. To avoid
a long diversion here, we’ll examine threads in more detail at the end of this chapter;
the summary is that they do not reduce global complexity but rather increase it, and
should therefore be avoided save under dire necessity.

Respecting the Rule of Modularity, on the other hand, is not a red herring; doing
so can make your programs—and your life—simpler. All the reasons for process
partitioning are continuous with the reasons for module partitioning that we developed
in Chapter 4.

Another important reason for breaking up programs into cooperating processes is
for better security. Under Unix, programs that must be run by ordinary users, but must
have write access to security-critical system resources, get that access through a feature
called the setuid bit.2 Executable files are the smallest unit of code that can hold a
setuid bit; thus, every line of code in a setuid executable must be trusted. (Well-written
setuid programs, however, take all necessary privileged actions first and then drop
their privileges back to user level for the remainder of their existence.)

Usually a setuid program only needs its privileges for one or a small handful of
operations. It is often possible to break up such a program into cooperating processes,
a smaller one that needs setuid and a larger one that does not. When we can do this,
only the code in the smaller program has to be trusted. It is in significant part because

2. A setuid program runs not with the privileges of the user calling it, but with the privileges
of the owner of the executable. This feature can be used to give restricted, program-controlled
access to things like the password file that nonadministrators should not be allowed to
modify directly.
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this kind of partitioning and delegation is possible that Unix has a better security track
record3 than its competitors.

Taxonomy of Unix IPC Methods7.2

As in single-process program architectures, the simplest organization is the best. The
remainder of this chapter will present IPC techniques roughly in order of escalating
complexity of programming them. Before using a later, more complex technique, you
should prove by demonstration—with prototypes and benchmark results—that no
earlier and simpler technique will do. Often you will surprise yourself.

Handing off Tasks to Specialist Programs7.2.1

In the simplest form of interprogram cooperation enabled by inexpensive process
spawning, a program runs another to accomplish a specialized task. Because the called
program is often specified as a Unix shell command through the system(3) call, this
is often called shelling out to the called program. The called program inherits the user’s
keyboard and display and runs to completion. When it exits, the calling program re-
sumes control of the keyboard and display and resumes execution.4 Because the
calling program does not communicate with the called program during the callee’s
execution, protocol design is not an issue in this kind of cooperation, except in the
trivial sense that the caller may pass command-line arguments to the callee to change
its behavior.

The classic Unix case of shelling out is calling an editor from within a mail or
news program. In the Unix tradition one does not bundle purpose-built editors into
programs that require general text-edited input. Instead, one allows the user to specify
an editor of his or her choice to be called when editing needs to be done.

The specialist program usually communicates with its parent through the file sys-
tem, by reading or modifying file(s) with specified location(s); this is how editor or
mailer shellouts work.

In a common variant of this pattern, the specialist program may accept input on
its standard input, and be called with the C library entry point popen(..., "w")
or as part of a shellscript. Or it may send output to its standard output, and be called

3. That is, a better record measured in security breaches per total machine hours of Internet
exposure.

4. A common error in programming shellouts is to forget to block signals in the parent while
the subprocess runs. Without this precaution, an interrupt typed to the subprocess can have
unwanted side effects on the parent process.
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with popen(..., "r") or as part of a shellscript. (If it both reads from standard
input and writes to standard output, it does so in a batch mode, completing all reads
before doing any writes.) This kind of child process is not usually referred to as a
shellout; there is no standard jargon for it, but it might well be called a ‘bolt-on’.

They key point about all these cases is that the specialist programs don’t handshake
with the parent while they are running. They have an associated protocol only in the
trivial sense that whichever program (master or slave) is accepting input from the
other has to be able to parse it.

Case Study: The mutt  Mail User Agent7.2.1.1

The mutt mail user agent is the modern representative of the most important design
tradition in Unix email programs. It has a simple screen-oriented interface with single-
keystroke commands for browsing and reading mail.

When you use mutt as a mail composer (either by calling it with an address as a
command-line argument or by using one of the reply commands), it examines the
process environment variable EDITOR, and then generates a temporary file name.
The value of the EDITOR variable is called as a command with the tempfile name as
an argument.5 When that command terminates, mutt resumes on the assumption that
the temporary file contains the desired mail text.

Almost all Unix mail- and netnews-composition programs observe the same
convention. Because they do, composer implementers don’t need to write a hundred
inevitably diverging editors, and users don’t need to learn a hundred divergent in-
terfaces. Instead, users can carry their chosen editors with them.

An important variant of this strategy shells out to a small proxy program that
passes the specialist job to an already-running instance of a big program, like an editor
or a Web browser. Thus, developers who normally have an instance of emacs running
on their X display can set EDITOR=emacsclient, and have a buffer pop open in
their emacs when they request editing in mutt. The point of this is not really to save
memory or other resources, it’s to enable the user to unify all editing in a single emacs
process (so that, for example, cut and paste among buffers can carry along internal
emacs state information like font highlighting).

Pipes, Redirection, and Filters7.2.2

After Ken Thompson and Dennis Ritchie, the single most important formative figure
of early Unix was probably Doug McIlroy. His invention of the pipe construct

5. Actually, the above is a slight oversimplification. See the discussion of EDITOR and VISUAL
in Chapter 10 for the rest of the story.
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reverberated through the design of Unix, encouraging its nascent do-one-thing-well
philosophy and inspiring most of the later forms of IPC in the Unix design (in partic-
ular, the socket abstraction used for networking).

Pipes depend on the convention that every program has initially available to it (at
least) two I/O data streams: standard input and standard output (numeric file descriptors
0 and 1 respectively). Many programs can be written as filters, which read sequentially
from standard input and write only to standard output.

Normally these streams are connected to the user’s keyboard and display, respec-
tively. But Unix shells universally support redirection operations which connect these
standard input and output streams to files. Thus, typing

ls >foo

sends the output of the directory lister ls(1) to a file named ‘foo’. On the other
hand, typing:

wc <foo

causes the word-count utility wc(1) to take its standard input from the file ‘foo’, and
deliver a character/word/line count to standard output.

The pipe operation connects the standard output of one program to the standard
input of another. A chain of programs connected in this way is called a pipeline. If
we write

ls | wc

we’ll see a character/word/line count for the current directory listing. (In this case,
only the line count is really likely to be useful.)

One favorite pipeline was “bc | speak”—a talking desk calculator. It knew
number names up to a vigintillion.

—Doug McIlroy

It’s important to note that all the stages in a pipeline run concurrently. Each stage
waits for input on the output of the previous one, but no stage has to exit before the
next can run. This property will be important later on when we look at interactive
uses of pipelines, like sending the lengthy output of a command to more(1).

It’s easy to underestimate the power of combining pipes and redirection. As an
instructive example, The Unix Shell As a 4GL [Schaffer-Wolf] shows that with these
facilities as a framework, a handful of simple utilities can be combined to support
creating and manipulating relational databases expressed as simple textual tables.
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The major weakness of pipes is that they are unidirectional. It’s not possible for
a pipeline component to pass control information back up the pipe other than by ter-
minating (in which case the previous stage will get a SIGPIPE signal on the next
write). Accordingly, the protocol for passing data is simply the receiver’s input format.

So far, we have discussed anonymous pipes created by the shell. There is a variant
called a named pipe which is a special kind of file. If two programs open the file, one
for reading and the other for writing, a named pipe acts like a pipe-fitting between
them. Named pipes are a bit of a historical relic; they have been largely displaced
from use by named sockets, which we’ll discuss below. (For more on the history of
this relic, see the discussion of System V IPC below.)

Case Study: Piping to a Pager7.2.2.1

Pipelines have many uses. For one example, Unix’s process lister ps(1) lists processes
to standard output without caring that a long listing might scroll off the top of the
user’s display too quickly for the user to see it. Unix has another program, more(1),
which displays its standard input in screen-sized chunks, prompting for a user keystroke
after displaying each screenful.

Thus, if the user types “ps | more”, piping the output of ps(1) to the input of
more(1), successive page-sized pieces of the list of processes will be displayed after
each keystroke.

The ability to combine programs like this can be extremely useful. But the real
win here is not cute combinations; it’s that because both pipes and more(1) exist,
other programs can be simpler. Pipes mean that programs like ls(1) (and other pro-
grams that write to standard out) don’t have to grow their own pagers—and we’re
saved from a world of a thousand built-in pagers (each, naturally, with its own divergent
look and feel). Code bloat is avoided and global complexity reduced.

As a bonus, if anyone needs to customize pager behavior, it can be done in one
place, by changing one program. Indeed, multiple pagers can exist, and will all be
useful with every application that writes to standard output.

In fact, this has actually happened. On modern Unixes, more(1) has been largely
replaced by less(1), which adds the capability to scroll back in the displayed file rather
than just forward.6 Because less(1) is decoupled from the programs that use it, it’s
possible to simply alias ‘more’ to ‘less’ in your shell, set the environment variable
PAGER to ‘less’ (see Chapter 10), and get all the benefits of a better pager with all
properly-written Unix programs.

6. The less(1) man page explains the name by observing “Less is more”.
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Case Study: Making Word Lists7.2.2.2

A more interesting example is one in which pipelined programs cooperate to do some
kind of data transformation for which, in less flexible environments, one would have
to write custom code.

Consider the pipeline

tr -c '[:alnum:]' '[\n*]' | sort -iu | grep -v '^[0-9]*$'

The first command translates non-alphanumerics on standard input to newlines on
standard output. The second sorts lines on standard input and writes the sorted data
to standard output, discarding all but one copy of spans of adjacent identical lines.
The third discards all lines consisting solely of digits. Together, these generate a
sorted wordlist to standard output from text on standard input.

Case Study: pic2graph7.2.2.3

Shell source code for the program pic2graph(1) ships with the groff suite of
text-formatting tools from the Free Software Foundation. It translates diagrams written
in the PIC language to bitmap images. Section 7.2.2.3 shows the pipeline at the heart
of this code.

Example 7.1: The pic2graph pipeline.

(echo ".EQ"; echo $eqndelim; echo ".EN"; echo ".PS";cat;echo ".PE")|\
     groff -e -p $groffpic_opts -Tps >${tmp}.ps \
     && convert -crop 0x0 $convert_opts ${tmp}.ps ${tmp}.${format} \
     && cat ${tmp}.${format}

The pic2graph(1) implementation illustrates how much one pipeline can do purely
by calling preexisting tools. It starts by massaging its input into an appropriate form,
continues by feeding it through groff(1) to produce PostScript, and finishes by
converting the PostScript to a bitmap. All these details are hidden from the user, who
simply sees PIC source go in one end and a bitmap ready for inclusion in a Web page
come out the other.

This is an interesting example because it illustrates how pipes and filtering can
adapt programs to unexpected uses. The program that interprets PIC, pic(1), was
originally designed only to be used for embedding diagrams in typeset documents.
Most of the other programs in the toolchain it was part of are now semiobsolescent.
But PIC remains handy for new uses, such as describing diagrams to be embedded
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in HTML. It gets a renewed lease on life because tools like pic2graph(1) can bundle
together all the machinery needed to convert the output of pic(1) into a more
modern format.

We’ll examine pic(1) more closely, as a minilanguage design, in Chapter 8.

Case Study: bc (1) and dc (1)7.2.2.4

Part of the classic Unix toolkit dating back to Version 7 is a pair of calculator programs.
The dc(1) program is a simple calculator that accepts text lines consisting of
reverse-Polish notation (RPN) on standard input and emits calculated answers to
standard output. The bc(1) program accepts a more elaborate infix syntax resembling
conventional algebraic notation; it includes as well the ability to set and read variables
and define functions for elaborate formulas.

While the modern GNU implementation of bc(1) is standalone, the classic version
passed commands to dc(1) over a pipe. In this division of labor, bc(1) does variable
substitution and function expansion and translates infix notation into reverse-Pol-
ish—but doesn’t actually do calculation itself, instead passing RPN translations of
input expressions to dc(1) for evaluation.

There are clear advantages to this separation of function. It means that users get
to choose their preferred notation, but the logic for arbitrary-precision numeric calcu-
lation (which is moderately tricky) does not have to be duplicated. Each of the pair
of programs can be less complex than one calculator with a choice of notations would
be. The two components can be debugged and mentally modeled independently of
each other.

In Chapter 8 we will reexamine these programs from a slightly different example,
as examples of domain-specific minilanguages.

Anti-Case Study: Why Isn’t fetchmail  a Pipeline?7.2.2.5

In Unix terms, fetchmail is an uncomfortably large program that bristles with options.
Thinking about the way mail transport works, one might think it would be possible
to decompose it into a pipeline. Suppose for a moment it were broken up into several
programs: a couple of fetch programs to get mail from POP3 and IMAP sites, and a
local SMTP injector. The pipeline could pass Unix mailbox format. The present
elaborate fetchmail configuration could be replaced by a shellscript containing com-
mand lines. One could even insert filters in the pipeline to block spam.

#!/bin/sh
imap jrandom@imap.ccil.org | spamblocker | smtp jrandom
imap jrandom@imap.netaxs.com | smtp jrandom
# pop ed@pop.tems.com | smtp jrandom
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This would be very elegant and Unixy. Unfortunately, it can’t work. We touched
on the reason earlier; pipelines are unidirectional.

One of the things the fetcher program (imap or pop) would have to do is decide
whether to send a delete request for each message it fetches. In fetchmail’s present
organization, it can delay sending that request to the POP or IMAP server until it
knows that the local SMTP listener has accepted responsibility for the message. The
pipelined, small-component version would lose that property.

Consider, for example, what would happen if the smtp injector fails because the
SMTP listener reports a disk-full condition. If the fetcher has already deleted the mail,
we lose. This means the fetcher cannot delete mail until it is notified to do so by the
smtp injector. This in turn raises a host of questions. How would they communicate?
What message, exactly, would the injector pass back? The global complexity of the
resulting system, and its vulnerability to subtle bugs, would almost certainly be
higher than that of a monolithic program.

Pipelines are a marvelous tool, but not a universal one.

Wrappers7.2.3

The opposite of a shellout is a wrapper. A wrapper creates a new interface for a called
program, or specializes it. Often, wrappers are used to hide the details of elaborate
shell pipelines. We’ll discuss interface wrappers in Chapter 11. Most specialization
wrappers are quite simple, but nevertheless very useful.

As with shellouts, there is no associated protocol because the programs do not
communicate during the execution of the callee; but the wrapper usually exists to
specify arguments that modify the callee’s behavior.

Case Study: Backup Scripts7.2.3.1

Specialization wrappers are a classic use of the Unix shell and other scripting lan-
guages. One kind of specialization wrapper that is both common and representative
is a backup script. It may be a one-liner as simple as this:

tar -czvf /dev/st0 "$@"

This is a wrapper for the tar(1) tape archiver utility which simply supplies one
fixed argument (the tape device /dev/st0) and passes to tar all the other arguments
supplied by the user (“$@”).7

7. A common error is to use $* rather than “$@”. This does bad things when handed a filename
with embedded spaces.
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Security Wrappers and Bernstein Chaining7.2.4

One common use of wrapper scripts is as security wrappers. A security script may
call a gatekeeper program to check some sort of credential, then conditionally execute
another based on the status value returned by the gatekeeper.

Bernstein chaining is a specialized security-wrapper technique first invented by
Daniel J. Bernstein, who has employed it in a number of his packages. (A similar
pattern appears in commands like nohup(1) and su(1), but the conditionality is absent.)
Conceptually, a Bernstein chain is like a pipeline, but each successive stage replaces
the previous one rather than running concurrently with it.

The usual application is to confine security-privileged applications to some sort
of gatekeeper program, which can then hand state to a less privileged one. The tech-
nique pastes several programs together using execs, or possibly a combination of
forks and execs. The programs are all named on one command line. Each program
performs some function and (if successful) runs exec(2) on the rest of its command line.

Bernstein’s rblsmtpd package is a prototypical example. It serves to look up a host
in the antispam DNS zone of the Mail Abuse Prevention System. It does this by doing
a DNS query on the IP address passed into it in the TCPREMOTEIP environment
variable. If the query is successful, then rblsmtpd runs its own SMTP that discards
the mail. Otherwise the remaining command-line arguments are presumed to constitute
a mail transport agent that knows the SMTP protocol, and are handed to exec(2)
to be run.

Another example can be found in Bernstein’s qmail package. It contains a program
called condredirect. The first parameter is an email address, and the remainder a
gatekeeper program and arguments. condredirect forks and execs the gatekeeper with
its arguments. If the gatekeeper exits successfully, condredirect forwards the email
pending on stdin to the specified email address. In this case, opposite to that of
rblsmtpd, the security decision is made by the child; this case is a bit more like a
classical shellout.

A more elaborate example is the qmail POP3 server. It consists of three programs,
qmail-popup, checkpassword, and qmail-pop3d. Checkpassword comes from a separate
package cleverly called checkpassword, and unsurprisingly it checks the password.
The POP3 protocol has an authentication phase and mailbox phase; once you enter
the mailbox phase you cannot go back to the authentication phase. This is a perfect
application for Bernstein chaining.

The first parameter of qmail-popup is the hostname to use in the POP3 prompts.
The rest of its parameters are forked and passed to exec(2), after the POP3 username
and password have been fetched. If the program returns failure, the password
must be wrong, so qmail-popup reports that and waits for a different password.
Otherwise, the program is presumed to have finished the POP3 conversation, so
qmail-popup exits.
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The program named on qmail-popup’s command line is expected to read three
null-terminated strings from file descriptor 3.8 These are the username, password,
and response to a cryptographic challenge, if any. This time it’s checkpassword which
accepts as parameters the name of qmail-pop3d and its parameters. The checkpassword
program exits with failure if the password does not match; otherwise it changes to
the user’s uid, gid, and home directory, and executes the rest of its command line on
behalf of that user.

Bernstein chaining is useful for situations in which the application needs setuid
or setgid privileges to initialize a connection, or to acquire some credential, and then
drop those privileges so that following code does not have to be trusted. Following
the exec, the child program cannot set its real user ID back to root. It’s also more
flexible than a single process, because you can modify the behavior of the system by
inserting another program into the chain.

For example, rblsmtpd (mentioned above) can be inserted into a Bernstein chain,
in between tcpserver (from the ucspi-tcp package) and the real SMTP server, typically
qmail-smtpd. However, it works with inetd(8) and sendmail -bs as well.

Slave Processes7.2.5

Occasionally, child programs both accept data from and return data to their callers
through pipes connected to standard input and output, interactively. Unlike simple
shellouts and what we have called ‘bolt-ons’ above, both master and slave processes
need to have internal state machines to handle a protocol between them without
deadlocking or racing. This is a drastically more complex and more difficult-to-debug
organization than a simple shellout.

Unix’s popen(3) call can set up either an input pipe or an output pipe for a shellout,
but not both for a slave process—this seems intended to encourage simpler program-
ming. And, in fact, interactive master-slave communication is tricky enough that it is
normally only used when either (a) the implied protocol is utterly trivial, or (b) the
slave process has been designed to speak an application protocol along the lines we
discussed in Chapter 5. We’ll return to this issue, and ways to cope with it,
in Chapter 8.

When writing a master/slave pair, it is good practice for the master to support a
command-line switch or environment variable that allows callers to set their own
slave command. Among other things, this is useful for debugging; you will often find

8. qmail-popup’s standard input and standard output are the socket, and standard error (which
will be file descriptor 2) goes to a log file. File descriptor 3 is guaranteed to be the next to be
allocated. As an infamous kernel comment once observed: “You are not expected to under-
stand this”.
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it handy during development to invoke the real slave process from within a harness
that monitors and logs transactions between slave and master.

If you find that master/slave interactions in your program are becoming nontrivial,
it may be time to think about going the rest of the way to a more peer-to-peer
organization, using techniques like sockets or shared memory.

Case Study: scp  and ssh7.2.5.1

One common case in which the implied protocol really is trivial is progress meters.
The scp(1) secure-copy command calls ssh(1) as a slave process, intercepting enough
information from ssh’s standard output to reformat the reports as an ASCII animation
of a progress bar.9

Peer-to-Peer Inter-Process Communication7.2.6

All the communication methods we’ve discussed so far have a sort of implicit hierarchy
about them, with one program effectively controlling or driving another and zero or
limited feedback passing in the opposite direction. In communications and networking
we frequently need channels that are peer-to-peer, usually (but not necessarily) with
data flowing freely in both directions. We’ll survey peer-to-peer communications
methods under Unix here, and develop some case studies in later chapters.

Tempfiles7.2.6.1

The use of tempfiles as communications drops between cooperating programs is the
oldest IPC technique there is. Despite drawbacks, it’s still useful in shellscripts, and
in one-off programs where a more elaborate and coordinated method of communication
would be overkill.

The most obvious problem with using tempfiles as an IPC technique is that it tends
to leave garbage lying around if processing is interrupted before the tempfile can be
deleted. A less obvious risk is that of collisions between multiple instances of a pro-
gram using the same name for a tempfile. This is why it is conventional for shellscripts
that make tempfiles to include $$ in their names; this shell variable expands to the
process-ID of the enclosing shell and effectively guarantees that the filename will be
unique (the same trick is supported in Perl).

9. The friend who suggested this case study comments: “Yes, you can get away with this
technique...if there are just a few easily-recognizable nuggets of information coming back
from the slave process, and you have tongs and a radiation suit”.
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Finally, if an attacker knows the location to which a tempfile will be written, it
can overwrite on that name and possibly either read the producer’s data or spoof the
consumer process by inserting modified or spurious data into the file.10 This is a secu-
rity risk. If the processes involved have root privileges, this is a very serious risk. It
can be mitigated by setting the permissions on the tempfile directory carefully, but
such arrangements are notoriously likely to spring leaks.

All these problems aside, tempfiles still have a niche because they’re easy to set
up, they’re flexible, and they’re less vulnerable to deadlocks or race conditions than
more elaborate methods. And sometimes, nothing else will do. The calling conventions
of your child process may require that it be handed a file to operate on. Our first
example of a shellout to an editor demonstrates this perfectly.

Signals7.2.6.2

The simplest and crudest way for two processes on the same machine to communicate
with each other is for one to send the other a signal. Unix signals are a form of soft
interrupt; each one has a default effect on the receiving process (usually to kill
it). A process can declare a signal handler that overrides the default action for the
signal; the handler is a function that is executed asynchronously when the signal
is received.

Signals were originally designed into Unix as a way for the operating system to
notify programs of certain errors and critical events, not as an IPC facility. The
SIGHUP signal, for example, is sent to every program started from a given terminal
session when that session is terminated. The SIGINT signal is sent to whatever process
is currently attached to the keyboard when the user enters the currently-defined inter-
rupt character (often control-C). Nevertheless, signals can be useful for some IPC
situations (and the POSIX-standard signal set includes two signals, SIGUSR1 and
SIGUSR2, intended for this use). They are often employed as a control channel for
daemons (programs that run constantly, invisibly, in background), a way for an oper-
ator or another program to tell a daemon that it needs to either reinitialize itself, wake
up to do work, or write internal-state/debugging information to a known location.

I insisted SIGUSR1 and SIGUSR2 be invented for BSD. People were grabbing
system signals to mean what they needed them to mean for IPC, so that (for
example) some programs that segfaulted would not coredump because SIGSEGV
had been hijacked.

10.  A particularly nasty variant of this attack is to drop in a named Unix-domain socket where
the producer and consumer programs are expecting the tempfile to be.
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This is a general principle—people will want to hijack any tools you build, so you
have to design them to either be un-hijackable or to be hijacked cleanly. Those are
your only choices. Except, of course, for being ignored—a highly reliable way to
remain unsullied, but less satisfying than might at first appear.

—Ken Arnold

A technique often used with signal IPC is the so-called pidfile. Programs that will
need to be signaled will write a small file to a known location (often in /var/run
or the invoking user’s home directory) containing their process ID or PID. Other
programs can read that file to discover that PID. The pidfile may also function as an
implicit lock file in cases where no more than one instance of the daemon should be
running simultaneously.

There are actually two different flavors of signals. In the older implementations
(notably V7, System III, and early System V), the handler for a given signal is reset
to the default for that signal whenever the handler fires. The result of sending two of
the same signal in quick succession is therefore usually to kill the process, no matter
what handler was set.

The BSD 4.x  versions of Unix changed to “reliable” signals, which do not reset
unless the user explicitly requests it. They also introduced primitives to block or
temporarily suspend processing of a given set of signals. Modern Unixes support both
styles. You should use the BSD-style nonresetting entry points for new code, but
program defensively in case your code is ever ported to an implementation that does
not support them.

Receiving N signals does not necessarily invoke the signal handler N times. Under
the older System V signal model, two or more signals spaced very closely together
(that is, within a single timeslice of the target process) can result in various race
conditions11 or anomalies. Depending on what variant of signals semantics the system
supports, the second and later instances may be ignored, may cause an unexpected
process kill, or may have their delivery delayed until earlier instances have been pro-
cessed (on modern Unixes the last is most likely).

The modern signals API is portable across all recent Unix versions, but not to
Windows or classic (pre-OS X) MacOS.

11. A ‘race condition’ is a class of problem in which correct behavior of the system relies on
two independent events happening in the right order, but there is no mechanism for ensuring
that they actually will. Race conditions produce intermittent, timing-dependent problems that
can be devilishly difficult to debug.
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System Daemons and Conventional Signals7.2.6.3

Many well-known system daemons accept SIGHUP (originally the signal sent to
programs on a serial-line drop, such as was produced by hanging up a modem connec-
tion) as a signal to reinitialize (that is, reload their configuration files); examples in-
clude Apache and the Linux implementations of bootpd(8), gated(8), inetd(8),
mountd(8), named(8), nfsd(8), and ypbind(8). In a few cases, SIGHUP is accepted in
its original sense of a session-shutdown signal (notably in Linux pppd(8)), but that
role nowadays generally goes to SIGTERM.

SIGTERM (‘terminate’) is often accepted as a graceful-shutdown signal (this is
as distinct from SIGKILL, which does an immediate process kill and cannot be
blocked or handled). SIGTERM actions often involve cleaning up tempfiles, flushing
final updates out to databases, and the like.

When writing daemons, follow the Rule of Least Surprise: use these conventions,
and read the manual pages to look for existing models.

Case Study: fetchmail’s  Use of Signals7.2.6.4

The fetchmail utility is normally set up to run as a daemon in background, periodically
collecting mail from all remote sites defined in its run-control file and passing the
mail to the local SMTP listener on port 25 without user intervention. fetchmail sleeps
for a user-defined interval (defaulting to 15 minutes) between collection attempts, so
as to avoid constantly loading the network.

When you invoke fetchmail with no arguments, it checks to see if you have a
fetchmail daemon already running (it does this by looking for a pidfile). If no daemon
is running, fetchmail starts up normally using whatever control information has been
specified in its run-control file. If a daemon is running, on the other hand, the new
fetchmail instance just signals the old one to wake up and collect mail immediately;
then the new instance terminates. In addition, fetchmail -q sends a termination
signal to any running fetchmail daemon.

Thus, typing fetchmail means, in effect, “poll now and leave a daemon running
to poll later; don’t bother me with the detail of whether a daemon was already running
or not”. Observe that the detail of which particular signals are used for wakeup and
termination is something the user doesn’t have to know.

Sockets7.2.6.5

Sockets were developed in the BSD lineage of Unix as a way to encapsulate access
to data networks. Two programs communicating over a socket typically see a bidirec-
tional byte stream (there are other socket modes and transmission methods, but they
are of only minor importance). The byte stream is both sequenced (that is, even single
bytes will be received in the same order sent) and reliable (socket users are guaranteed
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that the underlying network will do error detection and retry to ensure delivery).
Socket descriptors, once obtained, behave essentially like file descriptors.

Sockets differ from read/write in one important case. If the bytes you send arrive,
but the receiving machine fails to ACK, the sending machine’s TCP/IP stack will
time out. So getting an error does not necessarily mean that the bytes didn’t arrive;
the receiver may be using them. This problem has profound consequences for the
design of reliable protocols, because you have to be able to work properly when
you don’t know what was received in the past. Local I/O is ‘yes/no’. Socket I/O
is ‘yes/no/maybe’. And nothing can ensure delivery—the remote machine might
have been destroyed by a comet.

—Ken Arnold

At the time a socket is created, you specify a protocol family which tells the network
layer how the name of the socket is interpreted. Sockets are usually thought of in
connection with the Internet, as a way of passing data between programs running on
different hosts; this is the AF_INET socket family, in which addresses are interpreted
as host-address and service-number pairs. However, the AF_UNIX (aka AF_LOCAL)
protocol family supports the same socket abstraction for communication between two
processes on the same machine (names are interpreted as the locations of special files
analogous to bidirectional named pipes). As an example, client programs and servers
using the X windowing system typically use AF_LOCAL sockets to communicate.

All modern Unixes support BSD-style sockets, and as a matter of design they are
usually the right thing to use for bidirectional IPC no matter where your cooperating
processes are located. Performance pressure may push you to use shared memory or
tempfiles or other techniques that make stronger locality assumptions, but under
modern conditions it is best to assume that your code will need to be scaled up to
distributed operation. More importantly, those locality assumptions may mean that
portions of your system get chummier with each others’ internals than ought to be
the case in a good design. The separation of address spaces that sockets enforce is a
feature, not a bug.

To use sockets gracefully, in the Unix tradition, start by designing an application
protocol for use between them—a set of requests and responses which expresses the
semantics of what your programs will be communicating about in a succinct way.
We’ve already discussed the some major issues in the design of application protocols
in Chapter 5.

Sockets are supported in all recent Unixes, under Windows, and under classic
MacOS as well.
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Case Study: PostgreSQL7.2.6.5.1

PostgreSQL is an open-source database program. Had it been implemented as a
monster monolith, it would be a single program with an interactive interface that
manipulates database files on disk directly. Interface would be welded together with
implementation, and two instances of the program attempting to manipulate the same
database at the same time would have serious contention and locking issues.

Instead, the PostgreSQL suite includes a server called postmaster and at least three
client applications. One postmaster server process per machine runs in background
and has exclusive access to the database files. It accepts requests in the SQL query
minilanguage through TCP/IP sockets, and returns answers in a textual format as
well. When the user runs a PostgreSQL client, that client opens a session to postmaster
and does SQL transactions with it. The server can handle several client sessions at
once, and sequences requests so that they don’t interfere with each other.

Because the front end and back end are separate, the server doesn’t need to know
anything except how to interpret SQL requests from a client and send SQL reports
back to it. The clients, on the other hand, don’t need to know anything about how the
database is stored. Clients can be specialized for different needs and have different
user interfaces.

This organization is quite typical for Unix databases—so much so that it is often
possible to mix and match SQL clients and SQL servers. The interoperability issues
are the SQL server’s TCP/IP port number, and whether client and server support the
same dialect of SQL.

Case Study: Freeciv7.2.6.5.2

In Chapter 6, we introduced Freeciv as an example of transparent data formats. But
more critical to the way it supports multiplayer gaming is the client/server partitioning
of the code. This is a representative example of a program in which the application
needs to be distributed over a wide-area network and handles communication through
TCP/IP sockets.

The state of a running Freeciv game is maintained by a server process, the game
engine. Players run GUI clients which exchange information and commands with the
server through a packet protocol. All game logic is handled in the server. The details
of GUI are handled in the client; different clients support different interface styles.

This is a very typical organization for a multiplayer online game. The packet pro-
tocol uses TCP/IP as a transport, so one server can handle clients running on different
Internet hosts. Other games that are more like real-time simulations (notably first-
person shooters) use raw Internet datagram protocol (UDP) and trade lower latency
for some uncertainty about whether any given packet will be delivered. In such
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games, users tend to be issuing control actions continuously, so sporadic dropouts are
tolerable, but lag is fatal.

Shared Memory7.2.6.6

Whereas two processes using sockets to communicate may live on different machines
(and, in fact, be separated by an Internet connection spanning half the globe), shared
memory requires producers and consumers to be co-resident on the same hardware.
But, if your communicating processes can get access to the same physical memory,
shared memory will be the fastest way to pass information between them.

Shared memory may be disguised under different APIs, but on modern Unixes the
implementation normally depends on the use of mmap(2) to map files into memory
that can be shared between processes. POSIX defines a shm_open(3) facility with an
API that supports using files as shared memory; this is mostly a hint to the operating
system that it need not flush the pseudofile data to disk.

Because access to shared memory is not automatically serialized by a discipline
resembling read and write calls, programs doing the sharing must handle contention
and deadlock issues themselves, typically by using semaphore variables located in
the shared segment. The issues here resemble those in multithreading (see the end of
this chapter for discussion) but are more manageable because default is not to share
memory. Thus, problems are better contained.

On systems where it is available and reliable, the Apache web server’s scoreboard
facility uses shared memory for communication between an Apache master process
and the load-sharing pool of Apache images that it manages. Modern X implementa-
tions also use shared memory, to pass large images between client and server when
they are resident on the same machine, to avoid the overhead of socket communication.
Both uses are performance hacks justified by experience and testing, rather than being
architectural choices.

The mmap(2) call is supported under all modern Unixes, including Linux and the
open-source BSD versions; this is described in the Single Unix Specification. It will
not normally be available under Windows, MacOS classic, and other operating systems.

Before purpose-built mmap(2) was available, a common way for two processes to
communicate was for them to open the same file, and then delete that file. The file
wouldn’t go away until all open filehandles were closed, but some old Unixes took
the link count falling to zero as a hint that they could stop updating the on-disk copy
of the file. The downside was that your backing store was the file system rather than
a swap device, the file system the deleted file lived on couldn’t be unmounted until
the programs using it closed, and attaching new processes to an existing shared
memory segment faked up in this way was tricky at best.
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After Version 7 and the split between the BSD and System V lineages, the evolution
of Unix interprocess communication took two different directions. The BSD direction
led to sockets. The AT&T lineage, on the other hand, developed named pipes (as
previously discussed) and an IPC facility, specifically designed for passing binary
data and based on shared-memory bidirectional message queues. This is called
‘System V IPC’—or, among old timers, ‘Indian Hill’ IPC after the AT&T facility
where it was first written.

The upper, message-passing layer of System V IPC has largely fallen out of use.
The lower layer, which consists of shared memory and semaphores, still has significant
applications under circumstances in which one needs to do mutual-exclusion locking
and some global data sharing among processes running on the same machine. These
System V shared memory facilities evolved into the POSIX shared-memory API,
supported under Linux, the BSDs, MacOS X and Windows, but not classic MacOS.

By using these shared-memory and semaphore facilities (shmget(2), semget(2),
and friends) one can avoid the overhead of copying data through the network stack.
Large commercial databases (including Oracle, DB2, Sybase, and Informix) use this
technique heavily.

Problems and Methods to Avoid7.3

While BSD-style sockets over TCP/IP have become the dominant IPC method under
Unix, there are still live controversies over the right way to partition by multiprogram-
ming. Some obsolete methods have not yet completely died, and some techniques of
questionable utility have been imported from other operating systems (often in asso-
ciation with graphics or GUI programming). We’ll be touring some dangerous swamps
here; beware the crocodiles.

Obsolescent Unix IPC Methods7.3.1

Unix (born 1969) long predates TCP/IP (born 1980) and the ubiquitous networking
of the 1990s and later. Anonymous pipes, redirection, and shellout have been in Unix
since very early days, but the history of Unix is littered with the corpses of APIs tied
to obsolescent IPC and networking models, beginning with the mx() facility that
appeared in Version 6 (1976) and was dropped before Version 7 (1979).

Eventually BSD sockets won out as IPC was unified with networking. But this
didn’t happen until after fifteen years of experimentation that left a number of relics
behind. It’s useful to know about these because there are likely to be references to
them in your Unix documentation that might give the misleading impression that
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they’re still in use. These obsolete methods are described in more detail in Unix
Network Programming [Stevens90].

The real explanation for all the dead IPC facilities in old AT&T Unixes was politics.
The Unix Support Group was headed by a low-level manager, while some projects
that used Unix were headed by vice presidents. They had ways to make irresistible
requests, and would not brook the objection that most IPC mechanisms are inter-
changeable.

—Doug McIlroy

System V IPC7.3.1.1

The System V IPC facilities are message-passing facilities based on the System V
shared memory facility we described earlier.

Programs that cooperate using System V IPC usually define shared protocols based
on exchanging short (up to 8K) binary messages. The relevant manual pages are
msgctl(2) and friends. As this style has been largely superseded by text protocols
passed between sockets, we do not give an example here.

The System V IPC facilities are present in Linux and other modern Unixes.
However, as they are a legacy feature, they are not exercised very often. The Linux
version is still known to have bugs as of mid-2003. Nobody seems to care enough to
fix them.

Streams7.3.1.2

Streams networking was invented for Unix Version 8 (1985) by Dennis Ritchie. A re-
implementation called STREAMS (yes, it is all-capitals in the documentation) first
became available in the 3.0 release of System V Unix (1986). The STREAMS facility
provided a full-duplex interface (functionally not unlike a BSD socket, and like sockets,
accessible through normal read(2) and write(2) operations after initial setup) between
a user process and a specified device driver in the kernel. The device driver might be
hardware such as a serial or network card, or it might be a software-only pseudodevice
set up to pass data between user processes.

An interesting feature of both streams and STREAMS12 is that it is possible to
push protocol-translation modules into the kernel’s processing path, so that the device
the user process ‘sees’ through the full-duplex channel is actually filtered. This capa-
bility could be used, for example, to implement a line-editing protocol for a terminal

12. STREAMS was much more complex. Dennis Ritchie is reputed to have said “Streams
means something different when shouted”.
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device. Or one could implement protocols such as IP or TCP without wiring them
directly into the kernel.

Streams originated as an attempt to clean up a messy feature of the kernel called
‘line disciplines’—alternative modes of processing character streams coming from
serial terminals and early local-area networks. But as serial terminals faded from
view, Ethernet LANs became ubiquitous, and TCP/IP drove out other protocol stacks
and migrated into Unix kernels, the extra flexibility provided by STREAMS had less
and less utility. In 2003, System V Unix still supports STREAMS, as do some System
V/BSD hybrids such as Digital Unix and Sun Microsystems’ Solaris.

Linux and other open-source Unixes have effectively discarded STREAMS. Linux
kernel modules and libraries are available from the LiS <http://www.gcom.com/
home/linux/lis/> project, but (as of mid-2003) are not integrated into the stock
Linux kernel. They will not be supported under non-Unix operating systems.

Remote Procedure Calls7.3.2

Despite occasional exceptions such as NFS (Network File System) and the GNOME
project, attempts to import CORBA, ASN.1, and other forms of remote-procedure-
call interface have largely failed—these technologies have not been naturalized into
the Unix culture.

There seem to be several underlying reasons for this. One is that RPC interfaces
are not readily discoverable; that is, it is difficult to query these interfaces for their
capabilities, and difficult to monitor them in action without building single-use tools
as complex as the programs being monitored (we examined some of the reasons for
this in Chapter 6). They have the same version skew problems as libraries, but those
problems are harder to track because they’re distributed and not generally obvious at
link time.

As a related issue, interfaces that have richer type signatures also tend to be more
complex, therefore more brittle. Over time, they tend to succumb to ontology creep
as the inventory of types that get passed across interfaces grows steadily larger and
the individual types more elaborate. Ontology creep is a problem because structs are
more likely to mismatch than strings; if the ontologies of the programs on each side
don’t exactly match, it can be very hard to teach them to communicate at all, and
fiendishly difficult to resolve bugs. The most successful RPC applications, such as
the Network File System, are those in which the application domain naturally has
only a few simple data types.

The usual argument for RPC is that it permits “richer” interfaces than methods
like text streams—that is, interfaces with a more elaborate and application-specific
ontology of data types. But the Rule of Simplicity applies! We observed in Chapter 4
that one of the functions of interfaces is as choke points that prevent the implementation
details of modules from leaking into each other. Therefore, the main argument in
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favor of RPC is also an argument that it increases global complexity rather than
minimizing it.

With classical RPC, it’s too easy to do things in a complicated and obscure way
instead of keeping them simple. RPC seems to encourage the production of large,
baroque, over-engineered systems with obfuscated interfaces, high global complexity,
and serious version-skew and reliability problems—a perfect example of thick glue
layers run amok.

Windows COM and DCOM are perhaps the archetypal examples of how bad this
can get, but there are plenty of others. Apple abandoned OpenDoc, and both CORBA
and the once wildly hyped Java RMI have receded from view in the Unix world as
people have gained field experience with them. This may well be because these
methods don’t actually solve more problems than they cause.

Andrew S. Tanenbaum and Robbert van Renesse have given us a detailed analysis
of the general problem in A Critique of the Remote Procedure Call Paradigm
[Tanenbaum-VanRenesse], a paper which should serve as a strong cautionary note
to anyone considering an architecture based on RPC.

All these problems may predict long-term difficulties for the relatively few Unix
projects that use RPC. Of these projects, perhaps the best known is the GNOME
desktop effort.13 These problems also contribute to the notorious security vulnerabil-
ities of exposing NFS servers.

Unix tradition, on the other hand, strongly favors transparent and discoverable in-
terfaces. This is one of the forces behind the Unix culture’s continuing attachment to
IPC through textual protocols. It is often argued that the parsing overhead of textual
protocols is a performance problem relative to binary RPCs—but RPC interfaces tend
to have latency problems that are far worse, because (a) you can’t readily anticipate
how much data marshaling and unmarshaling a given call will involve, and (b) the
RPC model tends to encourage programmers to treat network transactions as cost-
free. Adding even one additional round trip to a transaction interface tends to add
enough network latency to swamp any overhead from parsing or marshaling.

Even if text streams were less efficient than RPC, the performance loss would be
marginal and linear, the kind better addressed by upgrading your hardware than by
expending development time or adding architectural complexity. Anything you might
lose in performance by using text streams, you gain back in the ability to design sys-
tems that are simpler—easier to monitor, to model, and to understand.

Today, RPC and the Unix attachment to text streams are converging in an interesting
way, through protocols like XML-RPC and SOAP. These, being textual and transpar-
ent, are more palatable to Unix programmers than the ugly and heavyweight binary

13. GNOME’s main competitor, KDE, started with CORBA but abandoned it in their
2.0 release. They have been on a quest for lighter-weight IPC methods ever since.
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serialization formats they replace. While they don’t solve all the more general problems
pointed out by Tanenbaum and van Renesse, they do in some ways combine the
advantages of both text-stream and RPC worlds.

Threads—Threat or Menace?7.3.3

Though Unix developers have long been comfortable with computation by multiple
cooperating processes, they do not have a native tradition of using threads (processes
that share their entire address spaces). These are a recent import from elsewhere, and
the fact that Unix programmers generally dislike them is not merely accident or his-
torical contingency.

From a complexity-control point of view, threads are a bad substitute for lightweight
processes with their own address spaces; the idea of threads is native to operating
systems with expensive process-spawning and weak IPC facilities.

By definition, though daughter threads of a process typically have separate local-
variable stacks, they share the same global memory. The task of managing contentions
and critical regions in this shared address space is quite difficult and a fertile source
of global complexity and bugs. It can be done, but as the complexity of one’s locking
regime rises, the chance of races and deadlocks due to unanticipated interactions rises
correspondingly.

Threads are a fertile source of bugs because they can too easily know too much
about each others’ internal states. There is no automatic encapsulation, as there would
be between processes with separate address spaces that must do explicit IPC to com-
municate. Thus, threaded programs suffer from not just ordinary contention problems,
but from entire new categories of timing-dependent bugs that are excruciatingly
difficult to even reproduce, let alone fix.

Thread developers have been waking up to this problem. Recent thread implemen-
tations and standards show an increasing concern with providing thread-local storage,
which is intended to limit problems arising from the shared global address space. As
threading APIs move in this direction, thread programming starts to look more and
more like a controlled use of shared memory.

Threads often prevent abstraction. In order to prevent deadlock, you often need to
know how and if the library you are using uses threads in order to avoid deadlock
problems. Similarly, the use of threads in a library could be affected by the use of
threads at the application layer.

—David Korn

To add insult to injury, threading has performance costs that erode its advantages
over conventional process partitioning. While threading can get rid of some of the
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overhead of rapidly switching process contexts, locking shared data structures so
threads won’t step on each other can be just as expensive.

The X server, able to execute literally millions of ops/second, is not threaded; it
uses a poll/select loop. Various efforts to make a multithreaded implementation
have come to no good result. The costs of locking and unlocking get too high for
something as performance-sensitive as graphics servers.

—Jim Gettys

This problem is fundamental, and has also been a continuing issue in the design
of Unix kernels for symmetric multiprocessing. As your resource-locking gets fin-
er-grained, latency due to locking overhead can increase fast enough to swamp the
gains from locking less core memory.

One final difficulty with threads is that threading standards still tend to be weak
and underspecified as of mid-2003. Theoretically conforming libraries for Unix
standards such as POSIX threads (1003.1c) can nevertheless exhibit alarming differ-
ences in behavior across platforms, especially with respect to signals, interactions
with other IPC methods, and resource cleanup times. Windows and classic MacOS
have native threading models and interrupt facilities quite different from those of
Unix and will often require considerable porting effort even for simple threading
cases. The upshot is that you cannot count on threaded programs to be portable.

For more discussion and a lucid contrast with event-driven programming, see Why
Threads Are a Bad Idea [Ousterhout96].

Process Partitioning at the Design Level7.4

Now that we have all these methods, what should we do with them?
The first thing to notice is that tempfiles, the more interactive sort of master/slave

process relationship, sockets, RPC, and all other methods of bidirectional IPC are at
some level equivalent—they’re all just ways for programs to exchange data during
their lifetimes. Much of what we do in a sophisticated way using sockets or shared
memory we could do in a primitive way using tempfiles as mailboxes and signals for
notification. The differences are at the edges, in how programs establish communica-
tion, where and when one does the marshalling and unmarshalling of messages, in
what sorts of buffering problems you may have, and atomicity guarantees you get on
the messages (that is, to what extent you can know that the result of a single send
action from one side will show up as a single receive event on the other).

We’ve seen from the PostgreSQL study that one effective way to hold down com-
plexity is to break an application into a client/server pair. The PostgreSQL client and
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server communicate through an application protocol over sockets, but very little about
the design pattern would change if they used any other bidirectional IPC method.

This kind of partitioning is particularly effective in situations where multiple in-
stances of the application must manage access to resources that are shared among all.
A single server process may manage all resource contention, or cooperating peers
may each take responsibility for some critical resource.

Client-server partitioning can also help distribute cycle-hungry applications across
multiple hosts. Or it may make them suitable for distributed computing across the
Internet (as with Freeciv). We’ll discuss the related CLI server pattern in Chapter 11.

Because all these peer-to-peer IPC techniques are alike at some level, we should
evaluate them mainly on the amount of program-complexity overhead they incur, and
how much opacity they introduce into our designs. This, ultimately, is why BSD
sockets have won over other Unix IPC methods, and why RPC has generally failed
to get much traction.

Threads are fundamentally different. Rather than supporting communication among
different programs, they support a sort of timesharing within an instance of a single
program. Rather than being a way to partition a big program into smaller ones with
simpler behavior, threading is strictly a performance hack. It has all the problems
normally associated with performance hacks, and a few special ones of its own.

Accordingly, while we should seek ways to break up large programs into simpler
cooperating processes, the use of threads within processes should be a last resort
rather than a first. Often, you may find you can avoid them. If you can use limited
shared memory and semaphores, asynchronous I/O using SIGIO, or poll(2)/select(2)
rather than threading, do it that way. Keep it simple; use techniques earlier on this list
and lower on the complexity scale in preference to later ones.

The combination of threads, remote-procedure-call interfaces, and heavyweight
object-oriented design is especially dangerous. Used sparingly and tastefully, any of
these techniques can be valuable—but if you are ever invited onto a project that is
supposed to feature all three, fleeing in terror might well be an appropriate reaction.

We have previously observed that programming in the real world is all about
managing complexity. Tools to manage complexity are good things. But when the
effect of those tools is to proliferate complexity rather than to control it, we would
be better off throwing them away and starting from zero. An important part of the
Unix wisdom is to never forget this.
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8

Minilanguages:
Finding a Notation That Sings

A good notation has a subtlety and suggestiveness which at times makes it almost
seem like a live teacher.

The World of Mathematics (1956)
—Bertrand Russell

One of the most consistent results from large-scale studies of error patterns in software
is that programmer error rates in defects per hundreds of lines are largely independent
of the language in which the programmers are coding.1 Higher-level languages, which
allow you to get more done in fewer lines, mean fewer bugs as well.

Unix has a long tradition of hosting little languages specialized for a particular
application domain, languages that can enable you to drastically reduce the line count
of your programs. Domain-specific language examples include the numerous Unix
typesetting languages (troff, eqn, tbl, pic, grap), shell utilities (awk, sed, dc, bc), and
software development tools (make, yacc, lex). There is a fuzzy boundary between
domain-specific languages and the more flexible sort of application run-control file
(sendmail, BIND, X); another with data-file formats; and another with scripting lan-
guages (which we’ll survey in Chapter 14).

1. Les Hatton reports by email on the analysis in his book in preparation, Software Failure:
“Provided you use executable line counts for the density measure, the injected defect densities
vary less between languages than they do between engineers by about a factor of 10”.
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Historically, domain-specific languages of this kind have been called ‘little lan-
guages’ or ‘minilanguages’ in the Unix world, because early examples were small
and low in complexity relative to general-purpose languages (all three terms for the
category are in common use). But if the application domain is complex (in that it has
lots of different primitive operations or involves manipulation of intricate data struc-
tures), an application language for it may have to be rather more complex than some
general-purpose languages. We’ll keep the traditional term ‘minilanguage’ to emphasize
that the wise course is usually to keep these designs as small and simple as possible.

The domain-specific little language is an extremely powerful design idea. It allows
you to define your own higher-level language to specify the appropriate methods,
rules, and algorithms for the task at hand, reducing global complexity relative to a
design that uses hardwired lower-level code for the same ends. You can get to a
minilanguage design in at least three ways, two of them good and one of
them dangerous.

One right way to get there is to realize up front that you can use a minilanguage
design to push a given specification of a programming problem up a level, into a no-
tation that is more compact and expressive than you could support in a general-purpose
language. As with code generation and data-driven programming, a minilanguage lets
you take practical advantage of the fact that the defect rate in your software will be
largely independent of the level of the language you are using; more expressive lan-
guages mean shorter programs and fewer bugs.

The second right way to get to a minilanguage design is to notice that one of your
specification file formats is looking more and more like a minilanguage—that is, it
is developing complex structures and implying actions in the application you are
controlling. Is it trying to describe control flow as well as data layouts? If so, it may
be time to promote that control flow from being implicit to being explicit in your
specification language.

The wrong way to get to a minilanguage design is to extend your way to it, one
patch and crufty added feature at a time. On this path, your specification file keeps
sprouting more implied control flow and more tangled special-purpose structures
until it has become an ad-hoc language without your noticing it. Some legendary
nightmares have been spawned this way; the example every Unix guru will think of
(and shudder over) is the sendmail.cf configuration file associated with the
sendmail mail transport.

Sadly, most people do their first minilanguage the wrong way, and only realize
later what a mess it is. Then the question is: how to clean it up? Sometimes the answer
implies rethinking the entire application design. Another notorious example of lan-
guage-by-feature creep was the editor TECO, which grew first macros and then loops
and conditionals as programmers wanted to use it to package increasingly complex
editing routines. The resulting ugliness was eventually fixed by a redesign of the entire
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editor to be based on an intentional language; this is how Emacs Lisp (which we’ll
survey below) evolved.

All sufficiently complicated specification files aspire to the condition of minilan-
guages. Therefore, it will often be the case that your only defense against designing
a bad minilanguage is knowing how to design a good one. This need not be a huge
step or involve knowing a lot of formal language theory; with modern tools, learning
a few relatively simple techniques and bearing good examples in mind as you design
should be sufficient.

In this chapter we’ll examine all the kinds of minilanguages normally supported
under Unix, and try to identify the kinds of situation in which each of them represents
an effective design solution. This chapter is not meant to be an exhaustive catalog of
Unix languages, but rather to bring out the design principles involved in structuring
an application around a minilanguage. We’ll have much more to say about languages
for general-purpose programming in Chapter 14.

We’ll need to start by doing a little taxonomy, so we’ll know what we’re talking
about later on.

Understanding the Taxonomy of Languages8.1

All the languages in Section 8.1 are described in case studies, either in this chapter
or elsewhere in this book. For the general-purpose interpreters near the right-hand
side, see Chapter 14.

In Chapter 5 we looked at Unix conventions for data files. There’s a spectrum of
complexity in these. At the low end are files that make simple associations between
names and properties; the /etc/passwd and .newsrc formats are good examples.
Further up the scale we start to get formats that marshal or serialize data structures;
the PNG and SNG formats are (equivalent) good examples of this.

A structured data-file format starts to border on being a minilanguage when it
expresses not just structure but actions performed on some interpretive context (that
is, memory that is outside the data file itself). XML markups tend to straddle this
border; the example we’ll look at here is Glade, a code generator for building GUI
interfaces. Formats that are both designed to be read and written by humans (rather
than just programs) and are used to generate code, are firmly in the realm of minilan-
guages. yacc and lex are the classic examples. We’ll discuss glade, yacc and lex in
Chapter 9.

The Unix macro processor, m4, is another very simple declarative minilanguage
(that is, one in which the program is expressed as a set of desired relationships or
constraints rather than explicit actions). It has often been used as a preprocessing
stage for other minilanguages.
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Figure 8.1: Taxonomy of languages.

Unix makefiles, which are designed to automate build processes, express depen-
dency relationships between source and derived files2 and the commands required to
make each derived file from its sources. When you run make, it uses those declarations
to walk the implied tree of dependencies, doing the least work necessary to bring your
build up to date. Like yacc and lex specifications, makefiles are a declarative minilan-
guage; they set up constraints that imply actions performed on an interpretive context
(in this case, the portion of the file system where the source and generated files live).
We’ll return to makefiles in Chapter 15.

XSLT, the language used to describe transformations of XML, is at the high end
of complexity for declarative minilanguages. It’s complex enough that it’s not normally
thought of as a minilanguage at all, but it shares some important characteristic of such
languages which we’ll examine when we look at it in more detail below.

The spectrum of minilanguages ranges from declarative (with implicit actions) to
imperative (with explicit actions). The run-control syntax of fetchmail(1) can be
viewed as either a very weak imperative language or a declarative language with im-
plied control flow. The troff and PostScript typesetting languages are imperative lan-
guages with a lot of special-purpose domain expertise baked into them.

Some task-specific imperative minilanguages start to border on being
general-purpose interpreters. They reach this level when they are explicitly

2. For less technical readers: the compiled form of a C program is derived from its C source
form by compilation and linkage. The PostScript version of a troff document is derived from
the troff source; the command to make the former from the latter is a troff invocation. There
are many other kinds of derivation; makefiles can express almost all of them.
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Turing-complete—that is, they can do both conditionals and loops (or recursion)3

with features that are designed to be used as control structures. Some languages, by
contrast, are only accidentally Turing-complete—they have features that can be used
to implement control structures as a sort of side effect of what they are actually de-
signed to do.

The bc(1) and dc(1) interpreters we looked at in Chapter 7 are good examples of
specialized imperative minilanguages that are explicitly Turing-complete.

We are over the border into general-purpose interpreters when we reach languages
like Emacs Lisp and JavaScript that are designed to be full programming languages
run in specialized contexts. We’ll have more to say about these when we discuss em-
bedded scripting languages later on.

The spectrum in interpreters is one of increasing generality; the flip side of this is
that a more general-purpose interpreter embodies fewer assumptions about the context
in which it runs. With increasing generality there usually comes a richer ontology of
data types. Shell and Tcl have relatively simple ontologies; Perl, Python, and Java
more complex ones. We’ll return to these general-purpose languages in Chapter 14.

Applying Minilanguages8.2

Designing with minilanguages involves two distinct challenges. One is having existing
minilanguages handy in your toolkit, and recognizing when they can be applied as-
is. The other is knowing when it is appropriate to design a custom minilanguage for
an application. To help you develop both aspects of your design sense, about half of
this chapter will consist of case studies.

Case Study: sng8.2.1

In Chapter 6 we looked at sng(1), which translates between PNG and an editable all-
text representation of the same bits. The SNG data-file format is worth reexamining
for contrast here because it is not quite a domain-specific minilanguage. It describes
a data layout, but doesn’t associate any implied sequence of actions with the data.

SNG does, however, share one important characteristic with domain-specific
minilanguages that binary structured data formats like PNG do not—transparency.
Structured data files make it possible for editing, conversion, and generation tools to

3. Any Turing-complete language could theoretically be used for general-purpose programming,
and is theoretically exactly as powerful as any other Turing-complete language. In practice,
some Turing-complete languages would be far too painful to use for anything outside a specified
and narrow problem domain.
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cooperate without knowing about each others’ design assumptions other than through
the medium of the minilanguage. What SNG adds is that, like a domain-specific
minilanguage, it’s designed to be easy to parse by eyeball and edit with general-
purpose tools.

Case Study: Regular Expressions8.2.2

A kind of specification that turns up repeatedly in Unix tools and scripting languages
is the regular expression (‘regexp’ for short). We consider it here as a declarative
minilanguage for describing text patterns; it is often embedded in other minilanguages.
Regexps are so ubiquitous that the are hardly thought of as a minilanguage, but they
replace what would otherwise be huge volumes of code implementing different (and
incompatible) search capabilities.

This introduction skates over some details like POSIX  extensions, back-references,
and internationalization features; for a more complete treatment, see Mastering Regular
Expressions [Friedl].

Regular expressions describe patterns that may either match or fail to match against
strings. The simplest regular-expression tool is grep(1), a filter that passes through to
its output every line in its input matching a specified regexp. Regexp notation is
summarized in Table 8.1.

There are a number of minor variants of regexp notation:

1. Glob expressions. This is the limited set of wildcard conventions used by early
Unix shells for filename matching. There are only three wildcards: *, which
matches any sequence of characters (like .* in the other variants); ?, which
matches any single character (like . in the other variants); and [...], which
matches a character class just as in the other variants. Some shells (csh,
bash, zsh) later added {} for alternation. Thus, x{a,b}c matches xac or
xbc but not xc. Some shells further extend globs in the direction of extended
regular expressions.

2. Basic regular expressions.  This is the notation accepted by the original grep(1)
utility for extracting lines matching a given regexp from a file. The line editor
ed(1), the stream editor sed(1), also use these. Old Unix hands think of these as
the basic or ‘vanilla’ flavor of regexp; people first exposed to the more modern
tools tend to assume the extended form described next.

3. Extended regular expressions. This is the notation accepted by the extended
grep utility egrep(1) for extracting lines matching a given regexp from a
file. Regular expressions in Lex and the Emacs editor are very close to the
egrep flavor.
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Table 8.1: Regular-expression examples.

MatchesRegexp

x followed by any character followed by y."x.y"
x followed by a literal period followed by y."x\.y"
x followed by at most one z followed by y; thus, "xy" or "xzy"
but not "xz" or "xdy".

"xz?y"

x followed by any number of instances of z, followed by y; thus,
"xy" or "xzy" or "xzzzy" but not "xz" or "xdy".

"xz*y"

x followed by one or more instances of z, followed by y; thus,
"xzy" or "xzzy" but not "xy" or "xz" or "xdy".

"xz+y"

s followed by any of the characters x or y or z, followed by t;
thus, "sxt" or "syt" or "szt" but not "st" or "sat".

"s[xyz]t"

a followed by either x or characters in the range 0–9, followed by
b; thus, "axb" or "a0b" or "a4b" but not "ab" or "aab".

"a[x0-9]b"

s followed by any character that is not x or y or z, followed by t;
thus, "sdt" or "set" but not "sxt" or "syt" or "szt".

"s[^xyz]t"

s followed by any character that is not x or in the range 0–9, fol-
lowed by t; thus, "slt" or "smt" but not "sxt" or "s0t" or
"s4t".

"s[^x0-9]t"

x at the beginning of a string; thus, "xzy" or "xzzy" but not
"yzy" or "yxy".

"^x"

x at the end of a string; thus, "yzx" or "yx" but not "yxz" or
"zxy".

"x$"

4. Perl regular expressions. This is the notation accepted by Perl and Python regexp
functions. These are quite a bit more powerful than the egrep flavor.

Now that we’ve looked at some motivating examples, Table 8.2 is a summary of
the standard regular-expression wildcards. Note: we’re not including the glob variant
in this table, so a value of “All” implies only all three of the basic, extended/Emacs,
and Perl/Python variants.4

Design practice in new languages with regexp support has stabilized on the
Perl/Python variant. It is more transparent than the others, notably because backlash

4. The POSIX standard for regular expressions introduces some symbolic ranges like
[[:lower;;]] and [[:digit:]], and some specific tools have extra wildcards not
covered here, but these will suffice to interpret most regexps.
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Table 8.2: Introduction to regular-expression operations.

MatchesSupported inWildcard

Escape next character. Toggles whether
following punctuation is treated as a
wildcard or not. Following letters or
digits are interpreted in various differ-
ent ways depending on the program.

All\

Any character.All.
Beginning of lineAll^
End of lineAll$
Any of the characters between the
brackets

All[...]

Any characters except those between
the brackets.

All[^...]

Accept any number of instances of the
previous element.

All*

Accept zero or one instances of the
previous element.

egrep/Emacs,
Perl/Python

?

Accept one or more instances of the
previous element.

egrep/Emacs,
Perl/Python

+

Accept exactly n repetitions of the pre-
vious element. Not supported by some
older regexp engines.

egrep, Perl/Python;
as \{n\} in Emacs

{n}

Accept n or more repetitions of the
previous element. Not supported by
some older regexp engines.

egrep, Perl/Python;
as \{n,\} in Emacs

{n,}

Accept at least m and at most n repeti-
tions of the previous element. Not sup-
ported by some older regexp engines.

egrep, Perl/Python;
as \{m,n\} in Emacs

{m,n}

Accept the element to the left or the el-
ement to the right. This is usually used
with some form of pattern-grouping
delimiters.

egrep, Perl/Python;
as \| in Emacs

|

Treat this pattern as a group (in newer
regexp engines like Perl and Python’s).
Older regexp engines such as those in
Emacs and grep require \(...\).

Perl/Python;
as \(...\) in older
versions.

(...)
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before a non-alphanumeric character always means that character as a literal, so there
is much less confusion about how to quote elements of regexps.

Regular expressions are an extreme example of how concise a minilanguage can
be. Simple regular expressions express recognition behavior that would otherwise
have to be implenented with hundreds of lines of fussy, bug-prone code.

Case Study: Glade8.2.3

Glade is an interface builder for the open-source GTK toolkit library for X.5 Glade
allows you to develop a GUI interface by interactively picking, placing, and modifying
widgets on an interface panel. The GUI editor produces an XML file describing the
interface; this, in turn, can be fed to one of several code generators that will actually
grind out C, C++, Python or Perl code for the interface. The generated code then calls
functions you write to supply behavior to the interface.

Glade’s XML format for describing GUIs is a good example of a simple domain-
specific minilanguage. See Example 8.1 for a “Hello, world!” GUI in Glade format.

A valid specification in Glade format implies a repertoire of actions by the GUI
in response to user behavior. The Glade GUI treats these specifications as structured
data files; Glade code generators, on the other hand, use them to write programs im-
plementing a GUI. For some languages (including Python), there are runtime libraries
that allow you to skip the code-generation step and simply instantiate the GUI directly
at runtime from the XML specification (interpreting Glade markup, rather than com-
piling it to the host language). Thus, you get the choice of trading space efficiency
for startup speed or vice versa.

Once you get past the verbosity of XML, Glade markup is a fairly simple language.
It does just two things: declare GUI-widget hierarchies and associate properties with
widgets. You don’t actually have to know a lot about how glade works to read the
specification above. In fact, if you have any experience programming in GUI toolkits,
reading it will immediately give you a fairly good visualization of what glade does
with the specification. (Hands up everyone who predicted that this particular specifi-
cation will give you a single button widget in a window frame.)

This kind of transparency and simplicity is the mark of a good minilanguage design.
The mapping between the notation and domain objects is very clear. The relationships

5. For non-Unix programmers, an X toolkit is a graphics library that supplies GUI widgets
(like labels, buttons, and pull-down menus) to the programs that link to it. Under most other
graphical operating systems, the OS supplies one toolkit that everyone uses. Unix and X support
multiple toolkits; this is part of the separation of policy from mechanism that we called out
as a design goal of X in Chapter 1. GTK and Qt are the two most popular open-source
X toolkits.
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Example 8.1: Glade “Hello, World”.

<?xml version="1.0"?>
<GTK-Interface>

<widget>
  <class>GtkWindow</class>
  <name>HelloWindow</name>
  <border_width>5</border_width>
  <Signal>
    <name>destroy</name>
    <handler>gtk_main_quit</handler>
  </Signal>
  <title>Hello</title>
  <type>GTK_WINDOW_TOPLEVEL</type>
  <position>GTK_WIN_POS_NONE</position>
  <allow_shrink>True</allow_shrink>
  <allow_grow>True</allow_grow>
  <auto_shrink>False</auto_shrink>

  <widget>
    <class>GtkButton</class>
    <name>Hello World</name>
    <can_focus>True</can_focus>
    <Signal>
      <name>clicked</name>
      <handler>gtk_widget_destroy</handler>
      <object>HelloWindow</object>
    </Signal>
    <label>Hello World</label>
  </widget>
</widget>

</GTK-Interface>

between objects are expressed directly, rather than through name references or some
other sort of indirection that you have to think to follow.

The ultimate functional test of a minilanguage like this one is simple: can I hack
it without reading the manual? For a significant range of cases, the Glade answer is
yes. For example, if you know the C-level constants that GTK uses to describe window-
positioning hints, you’ll recognize GTK_WIN_POS_NONE as one and instantly be
able to change the positioning hint associated with this GUI.

The advantage of using Glade should be clear. It specializes in code generation
so you don’t have to. That’s one less routine task you have to hand-code, and one
fewer source of hand-coded bugs.
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More information, including source code and documentation and links to
sample applications, is available at the Glade project page <http://glade.
gnome.org/>. Glade has been ported to Windows.

Case Study: m48.2.4

The m4(1) macro processor interprets a declarative minilanguage for describing
transformations of text. An m4 program is a set of macros that specifies ways to expand
text strings into other strings. Applying those declarations to an input text with m4
performs macro expansion and yields an output text. (The C preprocessor performs
similar services for C compilers, though in a rather different style.)

Example 8.2 shows an m4 macro that directs m4 to expand each occurrence of the
string “OS” in its input into the string “operating system” on output. This is a trivial
example; m4 supports macros with arguments that can be used to do more than
transform one fixed string into another. Typing info m4 at your shell prompt will
probably display on-line documentation for this language.

Example 8.2: A sample m4 macro.

define(`OS', `operating system')

The m4 macro language supports conditionals and recursion. The combination
can be used to implement loops, and this was intended; m4 is deliberately Turing-
complete. But actually trying to use m4 as a general-purpose language would be
deeply perverse.

The m4 macro processor is usually employed as a preprocessor for minilanguages
that lack a built-in notion of named procedures or a built-in file-inclusion feature. It’s
an easy way to extend the syntax of the base language so the combination with m4
supports both these features.

One well-known use of m4 has been to clean up (or at least effectively hide) another
minilanguage design that was called out as a bad example earlier in this chapter. Most
system administrators now generate their sendmail.cf configuration files using
an m4 macro package supplied with the sendmail distribution. The macros start from
feature names (or name/value pairs) and generate the corresponding (much uglier)
strings in the sendmail configuration language.
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Use m4 with caution, however. Unix experience has taught minilanguage designers
to be wary of macro expansion,6 for reasons we’ll discuss later in the chapter.

Case Study: XSLT8.2.5

XSLT, like m4 macros, is a language for describing transformations of a text stream.
But it does much more than simple macro substitution; it describes transformations
of XML data, including query and report generation. It is the language used to write
XML stylesheets. For practical applications, see the description of XML document
processing in Chapter 18. XSLT is described by a World Wide Web Consortium
standard and has several open-source implementations.

XSLT and m4 macros are both purely declarative and Turing-complete, but XSLT
supports only recursions and not loops. It is quite complex, certainly the most difficult
language to master of any in this chapter’s case studies—and probably the most
difficult of any language mentioned in this book.7

Despite its complexity, XSLT really is a minilanguage. It shares important (though
not universal) characteristics of the breed:

• A restricted ontology of types, with (in particular) no analog of record structures
or arrays.

• Restricted interface to the rest of the world. XSLT processors are designed to
filter standard input to standard output, with a limited ability to read and write
files. They can’t open sockets or run subcommands.

The program in Example 8.3 transforms an XML document so that each attribute
of every element is transformed into a new tag pair directly enclosed by that element,
with the attribute value as the tag pair’s content.

We’ve included a glance at XSLT here partly to illustrate the point that ‘declarative’
does not imply either ‘simple’ or ‘weak’, and mostly because if you have to work
with XML documents, you will someday have to face the challenge that is XSLT.

XSLT: Mastering XML Transformations [Tidwell] is a good introduction to the
language. A brief tutorial with examples is available on the Web.8

6. Whether or not “macro expansion” should be spelled “macroexpansion” is a matter for
some dispute. The latter is found mainly among Lisp programmers.

7. It is not clear that XSLT could be any simpler and still do its job, however, so we cannot
characterize it as a bad design.

8. XSL Concepts and Practical Use <http://nwalsh.com/docs/tutorials/xsl/
xsl/slides.html>.
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Example 8.3: A sample XSLT program.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
                version="1.0">
  <xsl:output method="xml"/>
  <xsl:template match="*">
    <xsl:element name="{name()}">
      <xsl:for-each select="@*">
        <xsl:element name="{name()}">
          <xsl:value-of select="."/>
        </xsl:element>
      </xsl:for-each>
      <xsl:apply-templates select="*|text()"/>
    </xsl:element>
  </xsl:template> 
</xsl:stylesheet>

Case Study: The Documenter’s Workbench Tools8.2.6

The troff(1) typesetting formatter was, as we noted in Chapter 2, Unix’s original killer
application. troff is the center of a suite of formatting tools (collectively called Docu-
menter’s Workbench or DWB), all of which are domain-specific minilanguages of
various kinds. Most are either preprocessors or postprocessors for troff markup. Open-
source Unixes host an enhanced implementation of Documenter’s Workbench called
groff(1), from the Free Software Foundation.

We’ll examine troff in more detail in Chapter 18; for now, it’s sufficient to note
that it is a good example of an imperative minilanguage that borders on being a full-
fledged interpreter (it has conditionals and recursion but not loops; it is accidentally
Turing-complete).

The postprocessors (‘drivers’ in DWB terminology) are normally not visible to
troff users. The original troff emitted codes for the particular typesetter the Unix
development group had available in 1970; later in the 1970s these were cleaned up
into a device-independent minilanguage for placing text and simple graphics on a
page. The postprocessors translate this language (called “ditroff” for “device-indepen-
dent troff”) into something modern imaging printers can actually accept—the most
important of these (and the modern default) is PostScript.

The preprocessors are more interesting, because they actually add capabilities to
the troff language. There are three common ones: tbl(1) for making tables, eqn(1) for
typesetting mathematical equations, and pic(1) for drawing diagrams. Less used, but
still live, are grn(1) for graphics, and refer(1) and bib(1) for formatting bibliographies.
Open-source equivalents of all of these ship with groff. The grap(1) preprocessor
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provided a rather versatile plotting facility; there is an open-source implementation
separate from groff.

Some other preprocessors have no open-source implementation and are no longer
in common use. Best known of these was ideal(1), for graphics. A younger sibling
of the family, chem(1), draws chemical structural formulas; it is available as part of
Bell Labs’s netlib code.9

Each of these preprocessors is a little program that accepts a minilanguage and
compiles it into troff requests. Each one recognizes the markup it is supposed to inter-
pret by looking for a unique start and end request, and passes through unaltered any
markup outside those (tbl looks for .TS/.TE, pic looks for .PS/.PE, etc.). Thus,
most of the preprocessors can normally be run in any order without stepping on each
other. There are some exceptions: in particular, chem and grap both issue pic com-
mands, and so must come before it in the pipeline.

cat thesis.ms | chem | tbl | refer | grap | pic | eqn \
                                             | groff -Tps >thesis.ps

The preceding is a full-Monty example of a Documenter’s Workbench processing
pipeline, for a hypothetical thesis incorporating chemical formulas, mathematical
equations, tables, bibliographies, plots, and diagrams. (The cat(1) command simply
copies its input or a file argument to its output; we use it here to emphasize the order
of operations.) In practice modern troff implementations tend to support command-
line options that can invoke at least tbl(1), eqn(1) and pic(1), so it isn’t necessary to
write such an elaborate pipeline. Even if it were, these sorts of build recipes are nor-
mally composed just once and stashed away in a makefile or shellscript wrapper for
repeated use.

The document markup of Documenter’s Workbench is in some ways obsolete, but
the range of problems these preprocessors address gives some indication of the power
of the minilanguage model—it would be extremely difficult to embed equivalent
knowledge into a WYSIWYG word processor. There are some ways in which modern
XML-based document markups and toolchains are still, in 2003, playing catch-up
with capabilities that Documenter’s Workbench had in 1979. We’ll discuss these issues
in more detail in Chapter 18.

The design themes that gave Documenter’s Workbench so much power should by
now be familiar ones; all the tools share a common text-stream representation of
documents, and the formatting system is broken up into independent components that
can be debugged and improved separately. The pipeline architecture supports plugging
in new, experimental preprocessors and postprocessors without disturbing old ones.
It is modular and extensible.

9. http://www.netlib.org/
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The architecture of Documenter’s Workbench as a whole teaches us some things
about how to fit multiple specialist minilanguages into a cooperating system. One
preprocessor can build on another. Indeed, the Documenter’s Workbench tools were
an early exemplar of the power of pipes, filtering, and minilanguages that influenced
a lot of later Unix design by example. The design of the individual preprocessors has
more lessons to teach about what effective minilanguage designs look like.

One of these lessons is negative. Sometimes users writing descriptions in the
minilanguages do unclean things with low-level troff markup inserted by hand. This
can produce interactions and bugs that are hard to diagnose, because the generated
troff coming out of the pipeline is not visible—and would not be readable if it were.
This is analogous to the sorts of bugs that happen in code that mixes C with snippets
of in-line assembler. It might have been better to separate the language layers more
completely, if that were possible. Minilanguage designers should take note of this.

All the preprocessor languages (though not troff markup itself) have relatively
clean, shell-like syntaxes that follow many of the conventions we described in Chap-
ter 5 for the design of data-file formats. There are a few embarrassing exceptions;
notably, tbl(1) defaults to using a tab as a field separator between table columns,
replicating an infamous botch in the design of make(1) and causing annoying bugs
when editors or other tools invisibly change the composition of whitespace.

While troff itself is a specialized imperative language, one theme that runs through
at least three of the Documenter’s Workbench minilanguages is declarative semantics:
doing layout from constraints. This is an idea that shows up in modern GUI toolkits
as well—that, instead of giving pixel coordinates for graphical objects, what you re-
ally want to do is declare spatial relationships among them (“widget A is above widget
B, which is to the left of widget C”) and have your software compute a best-fit layout
for A, B, and C according to those constraints.

The pic(1) program uses this approach to lay out elements for diagrams. The lan-
guage taxonomy diagram at Section 8.1 was produced with the pic source code in
Example 8.410 run through pic2graph, one of our case studies in Chapter 7.

This is a very typical Unix minilanguage design, and as such has some points of
interest even on the purely syntactic level. Notice how much it looks like a shell pro-
gram: # leads comments, and the syntax is obviously token-oriented with the simplest
possible convention for strings. The designer of pic(1) knew that Unix programmers
expect minilanguage syntaxes to look like this unless there is a strong and specific
reason they should not. The Rule of Least Surprise is in full operation here.

It probably doesn’t take a lot of effort to discern that the first line of code is a
macro definition; the later references to smallellipse() encapsulate a repeated

10. It is also quite traditional for Unix books that describe pic(1) to include their own
illustrations as coding examples.
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Example 8.4: Taxonomy of languages—the pic source.

# Minilanguage taxonomy
#
# Base ellipses
define smallellipse {ellipse width 3.0 height 1.5}
M: ellipse width 3.0 height 1.8 fill 0.2
line from M.n to M.s dashed
D: smallellipse() with .e at M.w + (0.8, 0)
line from D.n to D.s dashed
I: smallellipse() with .w at M.e - (0.8, 0)
#
# Captions
"" "Data formats" at D.s
"" "Minilanguages" at M.s
"" "Interpreters" at I.s
#
# Heads
arrow from D.w + (0.4, 0.8) to D.e + (-0.4, 0.8)
"flat to structured" "" at last arrow.c
arrow from M.w + (0.4, 1.0) to M.e + (-0.4, 1.0)
"declarative to imperative" "" at last arrow.c
arrow from I.w + (0.4, 0.8) to I.e + (-0.4, 0.8)
"less to more general" "" at last arrow.c
#
# The arrow of loopiness
arrow from D.w + (0, 1.2) to I.e + (0, 1.2)
"increasing loopiness" "" at last arrow.c
#
# Flat data files
"/etc/passwd" ".newsrc" at 0.5 between D.c and D.w
# Structured data files
"SNG" at 0.5 between D.c and M.w
# Datafile/minilanguage borderline cases
"regexps" "Glade" at 0.5 between M.w and D.e
# Declarative minilanguages
"m4" "Yacc" "Lex" "make" "XSLT" "pic" "tbl" "eqn" \
   at 0.5 between M.c and D.e
# Imperative minilanguages
"fetchmail" "awk" "troff" "Postscript" at 0.5 between M.c and I.w
# Minilanguage/interpreter borderline cases
"dc" "bc" at 0.5 between I.w and M.e
# Interpreters
"Emacs Lisp" "JavaScript" at 0.25 between M.e and I.e
"sh" "tcl" at 0.55 between M.e and I.e
"Perl" "Python" "Java" at 0.8 between M.e and I.e
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design element of the diagram. Nor will it take much scrutiny to deduce that box
invis declares a box with invisible borders, actually just a frame for text to be
stacked inside. The arrow command is equally obvious.

With these as clues and one eye on the actual diagram, the meaning of the remaining
pieces of the syntax (position references like M.s and constructions like last arrow
or at 0.25 between M.e and I.e or the addition of vector offsets to a loca-
tion) should become rapidly apparent. As with Glade markup and m4, an example
like this one can teach a good bit of the language without any reference to a manual
(a compactness property troff(1) markup, unfortunately, does not have).

The example of pic(1) reflects a common design theme in minilanguages, which
we also saw reflected in Glade—the use of a minilanguage interpreter to encapsulate
some form of constraint-based reasoning and turn it into actions. We could actually
choose to view pic(1) as an imperative language rather than a declarative one; it has
elements of both, and the dispute would quickly grow theological.

The combination of macros with constraint-based layout gives pic(1) the ability
to express the structure of diagrams in a way that more modern vector-based markups
like SVG cannot. It is therefore fortunate that one effect of the Documenter’s Work-
bench design is to make it relatively easy to keep pic(1) useful outside the DWB
context. The pic2graph script we used as a case study in Chapter 7 was an ad-hoc
way to accomplish this, using the retrofitted PostScript capability of groff(1) as a half-
way step to a modern bitmap format.

A cleaner solution is the pic2plot(1) utility distributed with the GNU plotutils
package, which exploited the internal modularity of the GNU pic(1) code. The code
was split into a parsing front end and a back end that generated troff markup, the two
communicating through a layer of drawing primitives. Because this design obeyed
the Rule of Modularity, pic2plot(1) implementers were able to split off the GNU pic
parsing stage and reimplement the drawing primitives using a modern plotting library.
Their solution has the disadvantage, however, that text in the output is generated with
fonts built into pic2plot that won’t match those of troff.

Case Study: fetchmail  Run-Control Syntax8.2.7

See Example 8.5 for an example.
This run-control file can be viewed as an imperative minilanguage. There is an

implied flow of execution: cycle through the list of poll commands repeatedly
(sleeping for a while at the end of each cycle), and for each site entry collect mail for
each associated user in sequence. It is far from being general-purpose; all it can do
is sequence the program’s polling behavior.

As with pic(1), one could choose to view this minilanguage as either declarations
or a very weak imperative language, and argue endlessly over the distinction. On the
one hand, it has neither conditionals nor recursion nor loops; in fact, it has no
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Example 8.5: Synthetic example of a fetchmailrc.

# Poll this site first each cycle.
poll pop.provider.net proto pop3
    user "jsmith" with pass "secret1" is "smith" here
    user jones with pass "secret2" is "jjones" here with options keep

# Poll this site second, unless Lord Voldemort zaps us first.
poll billywig.hogwarts.com with proto imap:
    user harry_potter with pass "floo" is harry_potter here

# Poll this site third in the cycle.
# Password will be fetched from ~/.netrc
poll mailhost.net with proto imap:
    user esr is esr here

explicit control structures at all. On the other hand, it does describe actions rather
than just relationships, which distinguishes it from a purely declarative syntax like
Glade GUI descriptions.

Run-control minilanguages for complex programs often straddle this border. We’re
making a point of this fact because not having explicit control structures in an im-
perative minilanguage can be a tremendous simplification if the problem domain lets
you get away with it.

One notable feature of .fetchmailrc syntax is the use of optional noise
keywords that are supported simply in order to make the specifications read a bit more
like English. The ‘with’ keywords and single occurrence of ‘options’ in the example
aren’t actually necessary, but they help make the declarations easier to read at a glance.

The traditional term for this sort of thing is syntactic sugar; the maxim that goes
with this is a famous quip that “syntactic sugar causes cancer of the semicolon”.11

Indeed, syntactic sugar needs to be used sparingly lest it obscure more than help.
In Chapter 9 we’ll see how data-driven programming helps provide an elegant

solution to the problem of editing fetchmail run-control files through a GUI.

Case Study: awk8.2.8

The awk minilanguage is an old-school Unix tool, formerly much used in shellscripts.
Like m4, it’s intended for writing small but expressive programs to transform textual

11. The line is owed to Alan Perlis, who did some of the pioneering work in software modu-
larity around 1970. The semicolon in question was the statement separator or terminator in
various Algol-descended languages, including Pascal and C.
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input into textual output. Versions ship with all Unixes, several in open source; the
command info gawk at your Unix shell prompt is quite likely to take you to on-
line documentation.

Programs in awk consist of pattern/action pairs. Each pattern is a regular expression,
a concept we’ll describe in detail in Chapter 9. When an awk program is run, it steps
through each line of the input file. Each line is checked against every pattern/action
pair in order. If the pattern matches the line, the associated action is performed.

Each action is coded in a language resembling a subset of C, with variables and
conditionals and loops and an ontology of types including integers, strings, and
(unlike C) dictionaries.12

The awk action language is Turing-complete, and can read and write files. In some
versions it can open and use network sockets. But awk has primarily seen use as a
report generator, especially for interpreting and reducing tabular data. It is seldom
used standalone, but rather embedded in scripts. There is an example awk program
in the case study on HTML generation included in Chapter 9.

A case study of awk is included to point out that it is not a model for emulation;
in fact, since 1990 it has largely fallen out of use. It has been superseded by new-
school scripting languages—notably Perl, which was explicitly designed to be an awk
killer. The reasons are worthy of examination, because they constitute a bit of a cau-
tionary tale for minilanguage designers.

The awk language was originally designed to be a small, expressive special-purpose
language for report generation. Unfortunately, it turns out to have been designed at a
bad spot on the complexity-vs.-power curve. The action language is noncompact, but
the pattern-driven framework it sits inside keeps it from being generally applica-
ble—that’s the worst of both worlds. And the new-school scripting languages
can do anything awk can; their equivalent programs are usually just as readable, if
not more so.

Awk has also fallen out of use because more modern shells have floating point
arithmetic, associative arrays, RE pattern matching, and substring capabilities, so
that equivalents of small awk scripts can be done without the overhead of process
creation.

—David Korn

For a few years after the release of Perl in 1987, awk remained competitive simply
because it had a smaller, faster implementation. But as the cost of compute cycles

12. For those who have never programmed in a modern scripting language, a dictionary is a
lookup table of key-to-value associations, often implemented through a hash table. C program-
mers spend a lot of their coding time implementing dictionaries in various elaborate ways.
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and memory dropped, the economic reasons for favoring a special-purpose language
that was relatively thrifty with both lost their force. Programmers increasingly chose
to do awklike things with Perl or (later) Python, rather than keep two different
scripting languages in their heads.13 By the year 2000 awk had become little more
than a memory for most old-school Unix hackers, and not a particularly nostalgic one.

Falling costs have changed the tradeoffs in minilanguage design. Restricting your
design’s capabilities to buy compactness may still be a good idea, but doing so to
economize on machine resources is a bad one. Machine resources get cheaper over
time, but space in programmers’ heads only gets more expensive. Modern minilan-
guages can either be general but noncompact, or specialized but very compact; spe-
cialized but noncompact simply won’t compete.

Case Study: PostScript8.2.9

PostScript is a minilanguage specialized for describing typeset text and graphics to
imaging devices. It is an import into Unix, based on design work done at the legendary
Xerox Palo Alto Research Center along with the earliest laser printers. For years after
its first commercial release in 1984, it was available only as a proprietary product
from Adobe, Inc., and was primarily associated with Apple computers. It was cloned
under license terms very close to open-source in 1988, and has since become the de-
facto standard for printer control under Unix. A fully open-source version is shipped
with most most modern Unixes.14 A good technical introduction to PostScript is
also available.15

PostScript bears some functional resemblance to troff markup; both are intended
to control printers and other imaging devices, and both are normally generated by
programs or macro packages rather than being hand-written by humans. But where
troff requests are a jumped-up set of format-control codes with some language features
tacked on as an afterthought, PostScript was designed from the ground up as a language
and is far more expressive and powerful. The main thing that makes PostScript useful
is that algorithmic descriptions of images written in it are far smaller than the bitmaps
they render to, and so take up less storage and communication bandwidth.

PostScript is explicitly Turing-complete, supporting conditionals and loops and
recursion and named procedures. The ontology of types includes integers, reals,
strings, and arrays (each element of an array may be of any type) but no equivalent

13. I was at one time an awk wizard, but I had to be reminded by someone else that the language
was applicable to the HTML-generation problem where this book’s only awk example occurs.

14. There is a GhostScript Project site <http://www.cs.wisc.edu/~ghost/>.

15. A First Guide To PostScript <http://www.cs.indiana.edu/docproject/
programming/postscript/postscript.html>.
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of structures. Technically, PostScript is a stack-based language; arguments of
PostScript’s primitive procedures (operators) are normally popped off a push-down
stack of arguments, and the result(s) are pushed back onto it.

There are about 40 basic operators out of a total of around 400. The one that does
most of the work is show, which draws a string onto the page. Others set the current
font, change the gray level or color, draw lines or arcs or Bezier curves, fill closed
regions, set clipping regions, etc. A PostScript interpreter is supposed to be able to
interpret these commands into bitmaps to be thrown on a display or print medium.

Other PostScript operators implement arithmetic, control structures, and procedures.
These allow repetitive or stereotyped images (such as text, which is composed of re-
peated letterforms) to be expressed as programs that combine images. Part of the
utility of PostScript comes from the fact that PostScript programs to print text or
simple vector graphics are much less bulky than the bitmaps the text or vectors render
to, are device-resolution independent, and travel more quickly over a network cable
or serial line.

Historically, PostScript’s stack-based interpretation resembles a language called
FORTH, originally designed to control telescope motors in real time, which was
briefly popular in the 1980s. Stack-based languages are famous for supporting
extremely tight, economical coding and infamous for being difficult to read. PostScript
shares both traits.

PostScript is often implemented as firmware built into a printer. The open-source
implementation Ghostscript can translate PostScript to various graphics formats and
(weaker) printer-control languages. Most other software treats PostScript as a final
output format, meant to be handed to a PostScript-capable imaging device but not
edited or eyeballed.

PostScript (either in the original or the trivial variant EPSF, with a bounding box
declared around it so it can be embedded in other graphics) is a very well designed
example of a special-purpose control language and deserves careful study as a model.
It is a component of other standards such as PDF, the Portable Document Format.

Case Study: bc  and dc8.2.10

We first examined bc(1) and dc(1) in Chapter 7 as a case study in shellouts. They are
examples of domain-specific minilanguages of the imperative type.

dc is the oldest language on Unix; it was written on the PDP-7 and ported to the
PDP-11 before Unix [itself] was ported.

—Ken Thompson
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The domain of these two languages is unlimited-precision arithmetic. Other pro-
grams can use them to do such calculations without having to worry about the special
techniques needed to do those calculations.

In fact, the original motivation for dc had nothing to do with providing a general-
purpose interactive calculator, which could have been done with a simple floating-
point program. The motivation was Bell Labs’ long interest in numerical analysis:
calculating constants for numerical algorithms, accurately is greatly aided by being
able to work to much higher precision than the algorithm itself will use. Hence
dc’s arbitrary-precision arithmetic.

—Henry Spencer

Like SNG and Glade markup, one of the strengths of both of these languages is
their simplicity. Once you know that dc(1) is a reverse-Polish-notation calculator and
bc(1) an algebraic-notation calculator, very little about interactive use of either of
these languages is going to be novel. We’ll return to the importance of the Rule of
Least Surprise in interfaces in Chapter 11.

These minilanguages have both conditionals and loops; they are Turing-complete,
but have a very restricted ontology of types including only unlimited-precision integers
and strings. This puts them in the borderland between interpreted minilanguages and
full scripting languages. The programming features have been designed not to intrude
on the common use as a calculator; indeed, most dc/bc users are probably unaware
of them.

Normally, dc/bc are used conversationally, but their capacity to support libraries
of user-defined procedures gives them an additional kind of utility—programmability.
This is actually the most important advantage of imperative minilanguages, one that
we observed in the case study of the Documenter’s Workbench tools to be very
powerful whether or not a program’s normal mode is conversational; you can use
them to write high-level programs that embody task-specific intelligence.

Because the interface of dc/bc is so simple (send a line containing an expression,
get back a line containing a value) other programs and scripts can easily get access
to all these capabilities by calling these programs as slave processes. Example 8.6 is
one famous example, an implementation of the Rivest-Shamir-Adelman public-key

Example 8.6: RSA implementation using dc.

print pack"C*",split/\D+/,`echo "16iII*o\U@{$/=$z;[(pop,pop,unpack
"H*",<>)]}\EsMsKsN0[lN*1lK[d2%Sa2/d0<X+d*lMLa^*lN%0]dsXx++\
lMlN/dsM0<J]dsJxp"|dc`
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cipher in Perl that was widely published in signature blocks and on T-shirts as a protest
against U.S. export retrictions on cryptography, c. 1995; it shells out to dc to do the
unlimited-precision arithmetic required.

Case Study: Emacs Lisp8.2.11

Rather than merely being run as a slave process to accomplish specific tasks, a special-
purpose interpreted language can become the core of an entire architecture; we’ll
consider the advantages and disadvantages of this approach in Chapter 13. troff re-
quests were an early example; today, the Emacs editor is one of the best-known and
most powerful modern ones. It’s built around a dialect of Lisp with primitives for
both describing actions on editing buffers and controlling slave processes.

The fact that Emacs is built around a powerful language for describing editing
actions or front ends for other programs means that it can be used for many other
things besides ordinary editing. We’ll examine the applications of Emacs’s task-specific
intelligence for day-to-day program development (compilation, debugging, version
control) in Chapter 15. Emacs ‘modes’ are user-defined libraries—programs written
in Emacs Lisp that specialize the editor for a particular job—usually, but not neces-
sarily, one related to editing.

Thus there are specialized modes that know the syntax of a large number of pro-
gramming languages, and of markup languages like SGML, XML, and HTML. But
many people also use Emacs modes to send and receive email (these use Unix system
mail utilities as slaves) or Usenet news. Emacs can browse the web, or act as a front-
end for various chat programs. There is also a calendaring package, Emacs’s own
calculator program, and even a fairly wide selection of games written as Emacs Lisp
modes (including a descendant of the famous ELIZA program that simulates a
Rogersian psychiatrist).16

Case Study: JavaScript8.2.12

JavaScript is an open-source language designed to be embedded in C programs.
Though it is also embedded in web servers, its original and best-known manifestation
is client-side JavaScript, which allows you to embed executable code in Web pages
to be run by any JavaScript-capable browser. That is the version we will survey here.

JavaScript is a fully Turing-complete interpreted language with integers, real
numbers, booleans, strings, and lightweight dictionary-based objects resembling those

16. One of the silliest things you can do with a modern Unix machine is run the Eliza
mode of Emacs against random quotes from Zippy the Pinhead. M-x psychoana-
lyze-pinhead; type control-G when you’ve had enough.
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of Python. Values are typed, but variables can hold any type; conversions between
types are automatic in many contexts. Syntactically JavaScript resembles Java with
some influence from Perl, and features Perl-like regular expressions.

Despite all these features, client-side JavaScript is not quite a general-purpose
language. Its capabilities are severely restricted to prevent attacks on the browser user
through Web pages containing JavaScript code. It can accept input from the user and
generate or modify Web pages, but it cannot directly alter the contents of disk files
and cannot open its own network connections.

Over time, the JavaScript language has become more general and less bound to
its client-side environment. This is something that can be expected to happen to any
successful specialized language as its possibilities unfold in the minds of developers
and users. Client JavaScript now interacts with its environment by reading and writing
values in a single special object called the browser DOM (Document Object Model).
The language still has some legacy APIs to the browser that don’t go through the
DOM, but these are deprecated, not present in the ECMA-262 standard for JavaScript,
and may not be supported in future versions.

The standard reference for JavaScript is JavaScript: The Definitive Guide [Flana-
ganJavaScript]. Source code is downloadable.17 JavaScript makes an interesting study
for two reasons. First, it’s about as close to being a general-purpose language as one
can get without actually being there. Second, the binding between client-side JavaScript
and its browser environment via a single DOM object is well designed, and could
serve as a model for other embedding situations.

Designing Minilanguages8.3

When is designing a minilanguage appropriate? We’ve observed that minilanguages
offer a way to push problem specifications to a higher level, and seen how this operates
in several case studies. The flip side of this observation is that a minilanguage is likely
to be a good approach whenever the domain primitives in your application area are
simple and stereotyped, but the ways in which users are likely to want to apply them
are fluid and varying.

For some related ideas, find a description of the Alternate Hard And Soft Layers
<http://www.c2.com/cgi/wiki?AlternateHardAndSoftLayers>
and Scripted Components <http://www.doc.ic.ac.uk/~np2/patterns/
scripting/scripting.html> design patterns.

17. Open-source JavaScript implementations in C and Java are available <http://
www.mozilla.org/js/>.
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An interesting survey of design styles and techniques in minilanguages is Notable
Design Patterns for Domain-Specific Languages [Spinellis].

Choosing the Right Complexity Level8.3.1

The first important thing to bear in mind when designing a minilanguage is, as usual,
to keep it as simple as possible. The taxonomy diagram we used to organize the case
studies implies a hierarchy of complexity; you want to keep your design as far toward
the left-hand edge as possible. If you can get away with designing a structured data
file rather than a minilanguage that is going to modify external data when it’s inter-
preted, by all means do so.

One very pragmatic reason to stick with structured data rather than a minilanguage
is that in a networked world, embedded minilanguage facilities are subject to abuses
that can be inconvenient or even dangerous. JavaScript is a prime example in the ‘in-
convenient’ category; its designers didn’t anticipate that it would be used for pop-up
advertisements so obnoxious as to create a demand for browser features that suppress
JavaScript interpretation.

Microsoft Word macro viruses show how this sort of thing can become actively
dangerous, a security hole that costs billions of dollars in downtime and lost produc-
tivity annually. It is instructive to note that despite the existence of at least twenty
million Unix users worldwide18 there has never been any Unix equivalent of Windows’s
frequent macro-virus outbreaks. There are a number of reasons for this, including the
fundamentally better security design of Unix; but at least one is the fact that Unix
mail agents do not default to executing live content in any document that the
user views.19

If there is any way that your application’s users might end up running programs
from untrusted sources, risky features of your application minilanguage might end
up having to be suppressed. Languages like Java and JavaScript are explicitly
sandboxed—that is, they have limited access to their environment not merely to sim-
plify their design but to try to prevent potentially destructive operations by buggy or
malicious code.

On the other hand, a lot of bad designs have been botched by designers who failed
to face up to the fact that they really needed a minilanguage rather than a data-file
format. Too often, language-like features get pasted on as an afterthought. The two

18. 20M is a conservative estimate based on mid-2003 figures from the Linux Counter
and elsewhere.

19. Kmail, which we looked at in Chapter 6, won’t even chase off-site links in HTML for
this reason.
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most common symptoms of this problem are weak, ad-hoc control structures and
poor or nonexistent facilities for declaring procedures.

It’s risky to design minilanguages that are only accidentally Turing-complete. If
you do this the odds are good that, sometime in the future, some clever fellow is going
to think he needs to press your language into doing loops and conditionals for him.
Because these are only available in an obfuscated way, he’ll produce obfuscated code.
The results may be serviceable in the short term, but are likely to be a nightmare for
those who come after him.

Minilanguage design is both powerful and esthetically rewarding, but it’s also full
of similar traps. There are kinds of design in which it is appropriate to take the bottom-
up approach of pasting together a bunch of low-level services and worrying about
their organization after you have explored the problem domain for a while. One of
the virtues of minilanguages is that they can help you get a good design out of bottom-
up programming by allowing you to defer some top-down decisions into the control
flow of programs in your minilanguage. But if you take a bottom-up approach to the
minilanguage design itself, you are likely to end up with an ugly syntax reflecting a
weak language and a poorly-thought-out implementation.

There are many places in a minilanguage design where small choices make a large
difference in the useability and ease of the tool:

As a language designer, it is a good principle to consider the alternatives to giving
an error message. When there is true ambiguity in the intent of the programmer
an error message is appropriate, but in many cases the intent is clear, and making
the language silently do the right thing is a great boon. A good example is C ac-
commodating an extra comma at the end of an array initializer list, which makes
both editing and machine generation of array initializers much easier. Anti-examples
are the pickiness of various HTML readers, especially their habit of silently dis-
carding parts of your document because of trivial nesting errors.

—Steve Johnson

On this issue, as elsewhere, there is no substitute for good taste and engineering
judgment. If you’re going to design a minilanguage, don’t do it halfway. Declarative
minilanguages should have a clear, consistent language-like syntax designed to be
readable by humans. Imperative ones should add a full range of control structures
adapted from language models you can expect your users to be familiar with. Think
about the language as a language; ask yourself esthetic questions like “Will this be
comfortable to program in?” and even “Will it be pleasant to look at?” Here, as
elsewhere in software design, David Gelernter’s maxim is apt: beauty is the ultimate
defense against complexity.
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Extending and Embedding Languages8.3.2

One fundamentally important question is whether you can implement your minilan-
guage by extending or embedding an existing scripting language. This is often the
right way to go for an imperative minilanguage, but much less appropriate for a
declarative one.

Sometimes it’s possible to write your imperative language simply by coding service
functions in an interpreted language, which we’ll call the ‘host’ language for purposes
of this discussion. Your minilanguage programs are then just scripts that load your
service library and use the host language’s control structures and other facilities as a
framework. Every facility the host language supplies is one you don’t have to write.

This is the easiest way to write a minilanguage. Old-school Lisp programmers
(including me) love this technique and use it heavily. It underlies the design of the
Emacs editor, and has been rediscovered in the new-school scripting languages like
Tcl, Python, and Perl. There are drawbacks to it, however.

Your host language may be unable to interface to a code library that you need. Or,
internally, its ontology of data types may be inadequate for the kind of computation
you need to do. Or, after measuring the performance of a prototype, you discover that
it’s too slow. When any of these things happen, your solution is usually going to
involve coding in C (or C++) and integrating the results into your minilanguage.

The option of extending a scripting language with C code, or of embedding a
scripting language in a C program, relies on the existence of scripting languages de-
signed for it. You extend a scripting language by telling it to dynamically load a C li-
brary or module in such a way that the C entry points become visible as functions in
the extended language. You embed a scripting language in a C program by sending
commands to an instance of the interpreter and receiving the results back as values in C.

Both techniques also rely on the ability to move data between the type ontology
of C and the type ontology of your scripting language. Some scripting languages are
designed from the ground up to support this. One such is Tcl, which we’ll cover in
Chapter 14. Another is Guile, an open-source dialect of the Lisp variant Scheme.
Guile is shipped as a library and specifically designed to be embedded in C programs.

It is possible (though in 2003 still rather painful and difficult) to extend or embed
Perl. It is very easy to extend Python and only slightly more difficult to embed it;
C extension is especially heavily used in the Python world. Java has an interface to
call ‘native methods’ in C, though the practice is explicitly discouraged because it
tends to break portability. Most versions of shell are not designed for embeddability
and extension, but the Korn shell (ksh93 and later versions) is a notable exception.

There are lots of bad reasons not to piggyback your imperative minilanguage on
an existing scripting language. One of the few good ones is that you actually want to
implement your own custom grammar for error checking. If that’s the case, then see
the advice about yacc and lex below.

2098.3 Designing Minilanguages



ptg

Writing a Custom Grammar8.3.3

For declarative minilanguages, one major question is whether or not you should use
XML as a base syntax and specify your grammar as an XML document type. This
may well be the right thing for elaborately structured declarative minilanguages, but
the same caveats we noted in Chapter 5 about the design of data-file formats ap-
ply—XML might be overkill. If you don’t use XML, follow the Rule of Least Surprise
by supporting the Unix conventions we described for data files (simple token-oriented
syntax, supporting C backslash conventions, etc.).

If you do need a custom grammar, yacc and lex (or their local equivalent in the
language you’re using) should probably be your best friends, unless the grammar of
your language is so simple that hand-coding a recursive-descent parser is trivial. Even
then, yacc may give you better error recovery, and a yacc specification will be easier
to modify as the language syntax evolves. See Chapter 9 for a look at the yacc- and
lex-derived tools available in different implementation languages.

Even if you decide you must implement your own syntax, consider what mileage
you can get from reusing existing tools. If you need a macro facility, consider whether
preprocessing with m4(1) might be the right answer—but consider the cautions in the
next section first.

Macros—Beware!8.3.4

Macro expansion facilities were a favored tactic for language designers in early Unix;
the C language has one, of course, and we have seen them show up in some of the
more complex special-purpose minilanguages like pic(1). The m4 preprocessor
provides a generic tool for implementing macro-expanding preprocessors.

Macro expansion is easy to specify and implement, and you can do a lot of cute
tricks with it. Those early designers appear to have been influenced by experience
with assemblers, in which macro facilities were often the only device available for
structuring programs.

The strength of macro expansion is that it knows nothing about the underlying
syntax of the base language, and can be used to extend that syntax. Unfortunately,
this power is very easily abused to produce code that is opaque, surprising, and a
fertile source of hard-to-characterize bugs.

In C, the classic example of this sort of problem is a macro such as this:

#define max(x, y)       x > y ? x : y

There are at least two problems with this macro. One is that it can produce surpris-
ing results if either of the arguments is an expression including an operator of lower
precedence than > or ?:. Consider the expression max(a = b, ++c). If the
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programmer has forgotten that max is a macro, he will be expecting the assignment
a = b and the preincrement operation on c to be executed before the resulting values
are passed as arguments to max.

But that’s not what will happen. Instead, the preprocessor will expand this
expression to a = b > ++c ? a = b : ++c, which the C compiler’s precedence
rules make it interpret as a = (b > ++c ? a = b : ++c). The effect will be
to assign to a!

This sort of bad interaction can be headed off by coding the macro definition more
defensively.

#define max(x, y)       ((x) > (y) ? (x) : (y))

With this definition, the expansion would be ((a = b) > (++c) ?
(a = b) : (++c)). This solves one problem—but notice that c may be incre-
mented twice! There are subtler versions of this trap, such as passing the macro a
function-call with side effects.

In general, interactions between macros and expressions with side effects
can lead to unfortunate results that are hard to diagnose. C’s macro processor is a
deliberately lightweight and simple one; more powerful ones can actually get you in
worse trouble.

The TEX formatting language (see Chapter 18) well illustrates the general problem.
TEX is intentionally Turing-complete (it has conditionals, loops, and recursion), but
while it can be made to do amazing things, TEX code tends to be unreadable and
painful to debug. The sources for LATEX, the the most widely used TEX macro package,
are an instructive example: they’re in very good TEX style, but even so are extremely
difficult to follow.

A minor problem, compared to this one, is that macro expansion tends to screw
up error diagnostics. The base language processor generates its error reports relative
to the macro expanded text, not the original the programmer is looking at. If the rela-
tionship between the two has been obfuscated by macro expansion, the emitted diag-
nostic can be very difficult to associate with the actual location of the error.

This is especially a problem with preprocessors and macros that can have multiline
expansions, conditionally include or exclude text, or otherwise change line numbers
in the expanded text.

Macro expansion stages that are built into a language can do their own compensa-
tion, fiddling line numbers to refer back to the preexpanded text. The macro facility
in pic(1) does this, for example. This problem is more difficult to solve when the
macro expansion is done by a preprocessor.

The C preprocessor addresses this problem by emitting #line directives whenever
it does an inclusion or multiline expansion. The C compiler is expected to interpret
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these and adjust the line numbers in its error reports accordingly. Unfortunately, m4
has no such facility.

These are reasons to use macro expansion with extreme caution. One of the
long-term lessons of the Unix experience is that macros tend to create more problems
than they solve. Modern language and minilanguage designs have moved away
from them.

Language or Application Protocol?8.3.5

Another important question you need to ask is whether your minilanguage engine
will be called interactively by other programs, as a slave process. If so, your design
should probably look less like a conversational language for human interaction and
more like the kind of application protocols we looked at in Chapter 5.

The main difference is how carefully marked the boundaries of transactions are.
Human beings are good at spotting where conversational output from a CLI ends,
and where the prompt for the next input is. They can use context to tell what’s signifi-
cant and what should be ignored. Computer programs have much more trouble with
this. Without either unambiguous end markers on output or advance knowledge of
the length of the output, they can’t tell when to stop reading.

Even worse is when a program’s input is buffered (often inadvertently, as by stdio).
A program that stops overtly reading at the right place can nonetheless eat past it.

— Doug McIlroy

Programs in which master processes are trying to do interactive things with slaved
minilanguages that are not carefully designed around this problem are prone to
deadlock as the master and slave fall out of synchronization (a problem we first noted
in Chapter 7).

There are workarounds for driving minilanguages that are not so carefully designed.
The prototype for most of them is the Tcl expect package. This package assists
conversation with CLIs. It’s built around the following operation: read from slave
until either a given regular-expression pattern is matched or a specified timeout
elapses. With this (and, of course, a send-to-slave operation) it’s often possible to
construct master programs to do reliable dialogues with slave processes even when
the latter have not been tailored for the role.

Workalikes of the expect package in other languages are available; a Web search
for the name of your favorite language with the added keywords “Tcl expect” is quite
likely to turn up something useful. As a minilanguage designer, however, you would
be unwise to assume that all your users will be expect gurus. Even if they are, this is
an extra glue layer and a place for things to go wrong.
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Be aware of this issue when designing your minilanguage. It may be a good idea
to add an option that changes its conversational behavior to make it respond more
like an application protocol, with unambiguous end-of-output delimiters and an analog
of byte stuffing.
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9

Generation:
Pushing the Specification Level
Upwards

The programmer at wit’s end ... can often do best by disentangling himself from
his code, rearing back, and contemplating his data. Representation is the essence
of programming.

The Mythical Man-Month, Anniversary Edition (1975–1995), p. 103
—Fred Brooks

In Chapter 1 we observed that human beings are better at visualizing data than they
are at reasoning about control flow. We recapitulate: To see this, compare the expres-
siveness and explanatory power of a diagram of a fifty-node pointer tree with a
flowchart of a fifty-line program. Or (better) of an array initializer expressing a
conversion table with an equivalent switch statement. The difference in transparency
and clarity is dramatic.1

Data is more tractable than program logic. That’s true whether the data is an ordi-
nary table, a declarative markup language, a templating system, or a set of macros
that will expand to program logic. It’s good practice to move as much of the complexity
in your design as possible away from procedural code and into data, and good practice
to pick data representations that are convenient for humans to maintain and manipulate.

1. For further development of this point see [Bentley].
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Translating those representations into forms that are convenient for machines to process
is another job for machines, not for humans.

Another important advantage of higher-level, more declarative notations is that
they lend themselves better to compile-time checking. Procedural notations
inherently have complex runtime behavior which is difficult to analyze at compile
time. Declarative notations give the implementation much more leverage for
finding mistakes, by permitting much more thorough understanding of the
intended behavior.

—Henry Spencer

These insights ground in theory a set of practices that have always been an impor-
tant part of the Unix programmer’s toolkit—very high-level languages, data-driven
programming, code generators, and domain-specific minilanguages. What unifies
these is that they are all ways of lifting the generation of code up some levels, so that
specifications can be smaller. We’ve previously noted that defect densities tend to be
nearly constant across programming languages; all these practices mean that whatever
malign forces generate our bugs will get fewer lines to wreak their havoc on.

In Chapter 8 we discussed the uses of domain-specific minilanguages. In Chapter 14
we’ll make the argument for very-high-level languages. In this chapter we’ll look at
some design studies in data-driven programming and a few examples of ad-hoc code
generation; we’ll look at some code-generation tools in Chapter 15. As with minilan-
guages, these methods can enable you to drastically cut the line count of your pro-
grams, and correspondingly lower debugging time and maintenance costs.

Data-Driven Programming9.1

When doing data-driven programming, one clearly distinguishes code from the data
structures on which it acts, and designs both so that one can make changes to the
logic of the program by editing not the code but the data structure.

Data-driven programming is sometimes confused with object orientation, another
style in which data organization is supposed to be central. There are at least two
differences. One is that in data-driven programming, the data is not merely the state
of some object, but actually defines the control flow of the program. Where the primary
concern in OO is encapsulation, the primary concern in data-driven programming is
writing as little fixed code as possible. Unix has a stronger tradition of data-driven
programming than of OO.

Programming data-driven style is also sometimes confused with writing state
machines. It is in fact possible to express the logic of a state machine as a table or
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data structure, but hand-coded state machines are usually rigid blocks of code that
are far harder to modify than a table.

An important rule when doing any kind of code generation or data-driven program-
ming is this: always push problems upstream. Don’t hack the generated code or any
intermediate representations by hand—instead, think of a way to improve or replace
your translation tool. Otherwise you’re likely to find that hand-patching bits which
should have been generated correctly by machine will have turned into an infinite
time sink.

At the upper end of its complexity scale, data-driven programming merges into
writing interpreters for p-code or simple minilanguages of the kind we surveyed in
Chapter 8. At other edges, it merges into code generation and state-machine program-
ming. The distinctions are not actually that important; the important part is moving
program logic away from hardwired control structures and into data.

Case Study: ascii9.1.1

I maintain a program called ascii, a very simple little utility that tries to interpret its
command-line arguments as names of ASCII (American Standard Code for Information
Interchange) characters and report all the equivalent names. Code and documentation
for the tool are available from the project page <http://www.catb.org/
~esr/ascii>. Here is an illustrative screenshot:

esr@snark:~/WWW/writings/taoup$ ascii 10

ASCII 1/0 is decimal 016, hex 10, octal 020, bits 00010000: called ^P, DLE

Official name: Data Link Escape

ASCII 0/10 is decimal 010, hex 0a, octal 012, bits 00001010: called ^J, LF, NL

Official name: Line Feed

C escape: '\n'

Other names: Newline

ASCII 0/8 is decimal 008, hex 08, octal 010, bits 00001000: called ^H, BS

Official name: Backspace

C escape: '\b'

Other names:

ASCII 0/2 is decimal 002, hex 02, octal 002, bits 00000010: called ^B, STX

Official name: Start of Text

One indication that this program was a good idea is the fact that it has an
unexpected use—as a quick CLI aid to converting between decimal, hex, octal, and
binary representations of bytes.

2179.1 Data-Driven Programming

http://www.catb.org/~esr/ascii
http://www.catb.org/~esr/ascii


ptg

The main logic of this program could have been coded as a 128-branch case
statement. This would, however, have made the code bulky and difficult to maintain.
It would also have tangled parts that change relatively rapidly (like the list of slang
names for characters) with parts that change slowly or not at all (like the official
names), putting them both in the same legend string and making errors during editing
much more likely to touch data that ought to be stable.

Instead, we apply data-driven programming. All the character name strings live
in a table structure that is quite a bit larger than any of the functions in the code (indeed,
counted in lines it is larger than any three of the functions in the program). The code
merely navigates the table and does low-level tasks like radix conversions. The initial-
izer actually lives in the file nametable.h, which is generated in a way we’ll de-
scribe later in this chapter.

This organization makes it easy to add new character names, change existing ones,
or delete old names by simply editing the table, without disturbing the code.

(The way the program is built is good Unix style, but the output format is question-
able. It’s hard to see how the output could usefully become the input of any other
program, so it does not play well with others.)

Case Study: Statistical Spam Filtering9.1.2

One interesting case of data-driven programming is statistical learning algorithms for
detecting spam (unsolicited bulk email). A whole class of mail filter programs (those
easily findable by Web search include popfile, spambayes, and bogofilter) use a
database of word correlations to replace the elaborate pattern-matching conditional
logic of pattern-matching spam filters.

Programs like these became common on the Internet very rapidly following Paul
Graham’s landmark paper A Plan for Spam [Graham] in 2002. While the explosion
was triggered by the increasing cost of the pattern-matching arms race, the statistical-
filtering idea was adopted first and fastest by Unix shops. In part, this was certainly
because almost all the Internet service providers (who are most burdened by spam,
and thus had most incentive to adopt effective new techniques) are Unix shops—but
undoubtedly the harmony with some traditional themes in Unix software design
helped as well.

Conventional spam filters require that a system administrator, or some other re-
sponsible party, maintain information on patterns of text found in spam—names of
sites that emit nothing but spam, come-on phrases often used by pornography sites
or Internet scam artists, and the like. In his paper, Graham noted accurately that
computer programmers like the idea of pattern-matching filters, and sometimes have
difficulty seeing past that approach, because it offers them so many opportunities
to be clever.
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Statistical spam filters, on the other hand, work by collecting feedback about what
the user judges to be spam versus nonspam. That feedback is processed into
databases of statistical correlation coefficients or weights connecting words or
phrases to the user’s spam/nonspam classification. The most popular algorithms use
minor variants of Bayes’s Theorem on conditional probabilities, but other techniques
(including various sorts of polynomial hashing) are also employed.

In all these programs, the correlation check is a relatively trivial mathematical
formula. The weights fed into the formula along with the message being checked
serve as implicit control structure for the filtering algorithm.

The problem with conventional pattern-matching spam filters is that they are brittle.
Spammers are constantly gaming against the filter-rule databases, forcing the filter
maintainers to constantly reprogram their filters to stay ahead in the arms race. Statis-
tical spam filters generate their own filter rules from the user feedback.

In fact, experience with statistical filters seems to show that the particular learning
algorithm used is far less important than the quality of the spam and nonspam data
sets from which the learning algorithm computes its weights. So the results of statis-
tical filters really are driven more by the shape of the data than by the algorithm.

A Plan for Spam was something of a bombshell because its author argued
convincingly that a simple, even crude, statistical approach gave a lower rate of non-
spam being erroneously classified as spam than either elaborate pattern-matching
techniques or the human eyeball could manage. For Unix programmers, seeing past
the lure of clever pattern-matching was far easier than in other programming cultures
without as strong an attachment to “Keep It Simple, Stupid!”

Case Study: Metaclass Hacking in fetchmailconf9.1.3

The fetchmailconf(1) dotfile configurator shipped with fetchmail(1) contains an in-
structive example of advanced data-driven programming in a very high-level, object-
oriented language.

In October 1997 a series of questions on the fetchmail-friends mailing list made
it clear that end-users were having increasing troubles generating configuration files
for fetchmail. The file uses a simple, classically-Unixy free-format syntax, but can
become forbiddingly complicated when a user has POP3 and IMAP accounts at
multiple sites. See Example 9.1 for a somewhat simplified version of the fetchmail
author’s configuration file.

The design objective of fetchmailconf was to completely hide the control file syntax
behind a fashionable, ergonomically-correct GUI replete with selection buttons,
slider bars and fill-out forms. But the beta design had a problem: it could easily gen-
erate configuration files from the user’s GUI actions, but could not read and edit
existing ones.
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Example 9.1: Example of fetchmailrc syntax.

set postmaster "esr"
set daemon 300

poll imap.ccil.org with proto IMAP and options no dns
    aka snark.thyrsus.com locke.ccil.org ccil.org
       user esr there is esr here 
            options fetchall dropstatus warnings 3600

poll imap.netaxs.com with proto IMAP
       user "esr" there is esr here options dropstatus warnings 3600

The parser for fetchmail’s configuration file syntax is rather elaborate. It’s actually
written in yacc and lex, the two classic Unix tools for generating language-parsing
code in C. For fetchmailconf to be able to edit existing configuration files, it at first
appeared that it would be necessary to replicate that elaborate parser in fetchmailconf’s
implementation language—Python.

This tactic seemed doomed. Even leaving aside the amount of duplicative work
implied, it is notoriously hard to be certain that two parsers in two different languages
accept the same grammar. Keeping them synchronized as the configuration language
evolved bid fair to be a maintenance nightmare. It would have violated the SPOT rule
we discussed in Chapter 4 wholesale.

This problem stumped me for a while. The insight that cracked it was that
fetchmailconf could use fetchmail’s own parser as a filter! I added a --configdump
option to fetchmail that would parse .fetchmailrc and dump the result to standard
output in the format of a Python initializer. For the file above, the result would look
roughly like Example 9.2 (to save space, some data not relevant to the example
is omitted).

The major hurdle had been leapt. The Python interpreter could then evaluate the
fetchmail--configdump output and read the configuration available to fetchmailconf
as the value of the variable ‘fetchmail’.

But this wasn’t quite the last obstacle in the race. What was really needed
wasn’t just for fetchmailconf to have the existing configuration, but to turn it
into a linked tree of live objects. There would be three kinds of objects in this tree:
Configuration (the top-level object representing the entire configuration), Site
(representing one of the servers to be polled), and User (representing user data at-
tached to a site). The example file describes three site objects, each with one user
object attached to it.
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The three object classes already existed in fetchmailconf. Each had a method that
caused it to pop up a GUI edit panel to modify its instance data. The last remaining
problem was to somehow transform the static data in this Python initializer into
live objects.

Example 9.2: Python structure dump of a fetchmail configuration.

fetchmailrc = {
    'poll_interval':300,
    "logfile":None,
    "postmaster":"esr",
    'bouncemail':TRUE,
    "properties":None,
    'invisible':FALSE,
    'syslog':FALSE,
    # List of server entries begins here
    'servers': [
        # Entry for site `imap.ccil.org' begins:
        {
            "pollname":"imap.ccil.org",
            'active':TRUE,
            "via":None,
            "protocol":"IMAP",
            'port':0,
            'timeout':300,
            'dns':FALSE,
            "aka":["snark.thyrsus.com","locke.ccil.org","ccil.org"],
            'users': [
                {
                    "remote":"esr",
                    "password":"masked_one",
                    'localnames':["esr"],
                    'fetchall':TRUE,
                    'keep':FALSE,
                    'flush':FALSE,
                    "mda":None,
                    'limit':0,
                    'warnings':3600,
                }
                ,            ]
        }
        ,
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        # Entry for site `imap.netaxs.com' begins:
        {
            "pollname":"imap.netaxs.com",
            'active':TRUE,
            "via":None,
            "protocol":"IMAP",
            'port':0,
            'timeout':300,
            'dns':TRUE,
            "aka":None,
            'users': [
                {
                    "remote":"esr",
                    "password":"masked_two",
                    'localnames':["esr"],
                    'fetchall':FALSE,
                    'keep':FALSE,
                    'flush':FALSE,
                    "mda":None,
                    'limit':0,
                    'warnings':3600,
                }
                ,            ]
        }
        ,
    ]
}

I considered writing a glue layer that would explicitly know about the structure
of all three classes and use that knowledge to grovel through the initializer creating
matching objects, but rejected that idea because new class members were likely to be
added over time as the configuration language grew new features. If the object-creation
code were written in the obvious way, it would once again be fragile and tend to fall
out of synchronization when either the class definitions or the initializer structure
dumped by the --configdump report generator changed. Again, a recipe for
endless bugs.

The better way would be data-driven programming—code that would analyze the
shape and members of the initializer, query the class definitions themselves about
their members, and then impedance-match the two sets.

Lisp and Java programmers call this introspection; in some other object-oriented
languages it’s called metaclass hacking and is generally considered fearsomely eso-
teric, deep black magic. Most object-oriented languages don’t support it at all; in
those that do (Perl and Java among them), it tends to be a complicated and fragile
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undertaking. But Python’s facilities for introspection and metaclass hacking are un-
usually accessible.

See Example 9.3 for the solution code, from near line 1895 of the 1.43 version.

Example 9.3: copy_instance metaclass code.

def copy_instance(toclass, fromdict):
# Make a class object of given type from a conformant dictionary.
    class_sig = toclass.__dict__.keys(); class_sig.sort()
    dict_keys = fromdict.keys(); dict_keys.sort()
    common = set_intersection(class_sig, dict_keys)
    if 'typemap' in class_sig: 
        class_sig.remove('typemap')
    if tuple(class_sig) != tuple(dict_keys):
        print "Conformability error"
#       print "Class signature: " + `class_sig`
#       print "Dictionary keys: " + `dict_keys`
        print "Not matched in class signature: "+ \
                                        `set_diff(class_sig, common)`
        print "Not matched in dictionary keys: "+ \
                                        `set_diff(dict_keys, common)`
        sys.exit(1)
    else:
        for x in dict_keys:
            setattr(toclass, x, fromdict[x])

Most of this code is error-checking against the possibility that the class members
and --configdump report generation have drifted out of synchronization. It ensures
that if the code breaks, the breakage will be detected early—an implementation of
the Rule of Repair. The heart of this function is the last two lines, which set attributes
in the class from corresponding members in the dictionary. They’re equivalent to this:

def copy_instance(toclass, fromdict):
        for x in fromdict.keys():
                setattr(toclass, x, fromdict[x])

When your code is this simple, it is far more likely to be right. See Example 9.4
for the code that calls it.

The key point to extract from this code is that it traverses the three levels of the
initializer (configuration/server/user), instantiating the correct objects at each level
into lists contained in the next object up. Because copy_instance is data-driven
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and completely generic, it can be used on all three levels for three different
object types.

This is a new-school sort of example; Python was not even invented until 1990.
But it reflects themes that go back to 1969 in the Unix tradition. If meditating on Unix
programming as practiced by his predecessors had not taught me constructive lazi-
ness—insisting on reuse, and refusing to write duplicative glue code in accordance
with the SPOT rule—I might have rushed into coding a parser in Python. The first
key insight that fetchmail itself could be made into fetchmailconf’s configuration
parser might never have happened.

Example 9.4: Calling context for copy_instance.

    # The tricky part - initializing objects from the `configuration' 
    # global.  `Configuration' is the top level of the object tree 
    # we're going to mung 
    Configuration = Controls()
    copy_instance(Configuration, configuration)
    Configuration.servers = [];
    for server in configuration['servers']:
        Newsite = Server()
        copy_instance(Newsite, server)
        Configuration.servers.append(Newsite)
        Newsite.users = [];
        for user in server['users']:
            Newuser = User()
            copy_instance(Newuser, user)
            Newsite.users.append(Newuser)

The second insight (that copy_instance could be generic) proceeded from
the Unix tradition of looking assiduously for ways to avoid hand-hacking. But more
specifically, Unix programmers are very used to writing parser specifications to gen-
erate parsers for processing language-like markups; from there it was a short step to
believing that the rest of the job could be done by some kind of generic tree-walk of
the configuration structure. Two separate stages of data-driven programming, one
building on the other, were needed to solve the design problem cleanly.

Insights like this can be extraordinarily powerful. The code we have been looking
at was written in about ninety minutes, worked the first time it was run, and has been
stable in the years since (the only time it has ever broken is when it threw an exception
in the presence of genuine version skew). It’s less than forty lines and beautifully
simple. There is no way that the naïve approach of building an entire second parser
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could possibly have produced this kind of maintainability, reliability or compactness.
Reuse, simplification, generalization, orthogonality: this is the  Zen of Unix in action.

In Chapter 10, we’ll examine the run-control syntax of fetchmail as an example
of the standard shell-like metaformat for run-control files. In Chapter 14 we’ll use
fetchmailconf as an example of Python’s strength in rapidly building GUIs.

Ad-hoc Code Generation9.2

Unix comes equipped with some powerful special-purpose code generators for pur-
poses like building lexical analyzers (tokenizers) and parsers; we’ll survey these in
Chapter 15. But there are much simpler, lighter-weight sorts of code generation we
can use to make life easier without having to know any compiler theory or write
(error-prone) procedural logic.

Here are a couple of simple case studies to illustrate this point:

Case Study: Generating Code for the ascii  Displays9.2.1

Called without arguments, ascii generates a usage screen that looks like Example 9.5.
This screen is carefully designed to fit in 23 rows and 79 columns, so that it will

fit in a 24×80 terminal window.
This table could be generated at runtime, on the fly. Grinding out the decimal and

hex columns would be easy enough. But between wrapping the table at the right places
and knowing when to print mnemonics like NUL rather than characters, there would
have been enough odd corner cases to make the code distinctly unpleasant. Further-
more, the columns had to be unevenly spaced to make the table fit in 79 columns. But
any Unix programmer would reflexively express it as a block of data before finding
out these things.

The most naïve way to generate the usage screen would have been to put each line
into a C initializer in the ascii.c source code, and then have all lines be written
out by code that steps through the initializer. The problem with this method is that
the extra data in the C initializer format (trailing newline, string quotes, comma)
would make the lines longer than 79 characters, causing them to wrap and making it
rather difficult to map the appearance of the code to the appearance of the output.
This, in turn, would make the display difficult to edit, which was annoying when I
was tinkering it to fit in 24×80 screen cells.

A more sophisticated method using the string-pasting behavior of the ANSI C
preprocessor collided with a variant of the same problem. Essentially, any way of in-
lining the usage screen explicitly would involve punctuation at start and end of line
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Example 9.5: ascii usage screen.

Usage: ascii [-dxohv] [-t] [char-alias...]

   -t = one-line output  -d = Decimal table  -o = octal table  -x = hex table

   -h = This help screen -v = version information

Prints all aliases of an ASCII character. Args may be chars, C \-escapes,

English names, ^-escapes, ASCII mnemonics, or numerics in decimal/octal/hex.

Dec Hex    Dec Hex    Dec Hex  Dec Hex  Dec Hex  Dec Hex   Dec Hex   Dec Hex

  0 00 NUL  16 10 DLE  32 20    48 30 0  64 40 @  80 50 P   96 60 `  112 70 p

  1 01 SOH  17 11 DC1  33 21 !  49 31 1  65 41 A  81 51 Q   97 61 a  113 71 q

  2 02 STX  18 12 DC2  34 22 "  50 32 2  66 42 B  82 52 R   98 62 b  114 72 r

  3 03 ETX  19 13 DC3  35 23 #  51 33 3  67 43 C  83 53 S   99 63 c  115 73 s

  4 04 EOT  20 14 DC4  36 24 $  52 34 4  68 44 D  84 54 T  100 64 d  116 74 t

  5 05 ENQ  21 15 NAK  37 25 %  53 35 5  69 45 E  85 55 U  101 65 e  117 75 u

  6 06 ACK  22 16 SYN  38 26 &  54 36 6  70 46 F  86 56 V  102 66 f  118 76 v

  7 07 BEL  23 17 ETB  39 27 '  55 37 7  71 47 G  87 57 W  103 67 g  119 77 w

  8 08 BS   24 18 CAN  40 28 (  56 38 8  72 48 H  88 58 X  104 68 h  120 78 x

  9 09 HT   25 19 EM   41 29 )  57 39 9  73 49 I  89 59 Y  105 69 i  121 79 y

 10 0A LF   26 1A SUB  42 2A *  58 3A :  74 4A J  90 5A Z  106 6A j  122 7A z

 11 0B VT   27 1B ESC  43 2B +  59 3B ;  75 4B K  91 5B [  107 6B k  123 7B {

 12 0C FF   28 1C FS   44 2C ,  60 3C <  76 4C L  92 5C \  108 6C l  124 7C |

 13 0D CR   29 1D GS   45 2D -  61 3D =  77 4D M  93 5D ]  109 6D m  125 7D }

 14 0E SO   30 1E RS   46 2E .  62 3E >  78 4E N  94 5E ^  110 6E n  126 7E ~

 15 0F SI   31 1F US   47 2F /  63 3F ?  79 4F O  95 5F _  111 6F o  127 7F DEL

that there’s no room for.2 And copying the table to the screen from a file at runtime
seemed like a fragile expedient; after all, the file could get lost.

Here’s the solution. The source distribution contains a file that just contains the
usage screen, exactly as listed above and named splashscreen. The C source
contains the following function:

void
showHelp(FILE *out, char *progname) 
{
  fprintf(out,"Usage: %s [-dxohv] [-t] [char-alias...]\n", progname);
#include "splashscreen.h"

  exit(0);
}

2. Scripting languages tend to solve this problem more elegantly than C does. Investigate the
shell’s here documents and Python’s triple-quote construct to find out how.
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And splashscreen.h is generated by a makefile production:

splashscreen.h: splashscreen
        sed <splashscreen >splashscreen.h \
            -e 's/\\/\\\\/g' -e 's/"/\\"/' -e 's/.*/puts("&");/' 

So when the program is built, the splashscreen file is automatically massaged
into a series of output function calls, which are then included by the C preprocessor
in the right function.

By generating the code from data, we get to keep the editable version of the usage
screen identical to its display appearance. This promotes transparency. Furthermore,
we could modify the usage screen at will without touching the C code at all, and the
right thing would automatically happen on the next build.

For similar reasons, the initializer that holds the name synonym strings is also
generated via a sed script in the makefile, from a file called nametable in the ascii
source distribution. Most of nametable is simply copied into the C initializer. But
the generation process would make it easy to adapt this tool for other 8-bit character
sets such as the ISO-8859 series (Latin-1 and friends).

This is an almost trivial example, but it nevertheless illustrates the advantages of
even simple and ad-hoc code generation. Similar techniques could be applied to larger
programs with correspondingly greater benefits.

Case Study: Generating HTML Code for a Tabular List9.2.2

Let’s suppose that we want to put a page of tabular data on a Web page. We want the
first few lines to look like Example 9.6.

Example 9.6: Desired output format for the star table.

Aalat         David Weber                The Armageddon Inheritance
Aelmos        Alan Dean Foster           The Man who Used the Universe 
Aedryr        Steve Miller/Sharon Lee    Scout's Progress 
Aergistal     Gerard Klein               The Overlords of War 
Afdiar        L. Neil Smith              Tom Paine Maru 
Agandar       Donald Kingsbury           Psychohistorical Crisis 
Aghirnamirr   Jo Clayton                 Shadowkill 

The thick-as-a-plank way to handle this would be to hand-write HTML table code
for the desired appearance. Then, each time we want to add a name, we’d have to
hand-write another set of <tr> and <td> tags for the entry. This would get very
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tedious very quickly. But what’s worse, changing the format of the list would require
hand-hacking every entry.

The superficially clever way to handle this would be to make this data a three-
column relation in a database, then use some fancy CGI3 technique or a database-ca-
pable templating engine like PHP to generate the page on the fly. But suppose we
know that the list will not change very often, don’t want to run a database server just
to be able to display this list, and don’t want to load the server with unnecessary
CGI traffic?

There’s a better solution. We put the data in a tabular flat-file format like
Example 9.7.

Example 9.7: Master form of the star table.

Aalat        :David Weber               :The Armageddon Inheritance
Aelmos       :Alan Dean Foster          :The Man who Used the Universe 
Aedryr       :Steve Miller/Sharon Lee   :Scout's Progress 
Aergistal    :Gerard Klein              :The Overlords of War 
Afdiar       :L. Neil Smith             :Tom Paine Maru 
Agandar      :Donald Kingsbury          :Psychohistorical Crisis 
Aghirnamirr  :Jo Clayton                :Shadowkill 

We could in a pinch have done without the explicit colon field delimiters, using
the pattern consisting of two or more spaces as a delimiter, but the explicit delimiter
protects us in case we press spacebar twice while editing a field value and fail to
notice it.

We then write a script in shell, Perl, Python, or Tcl that massages this file into an
HTML table, and run that each time we add an entry. The old-school Unix way would
revolve around the following nigh-unreadable sed(1) invocation

sed -e 's,^,<tr><td>,' -e 's,$,</td></tr>,' -e 's,:,</td><td>,g'

or this perhaps slightly more scrutable awk(1) program:

awk -F: '{printf("<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n", \
                 $1, $2, $3)}'

3. Here, CGI refers not to Computer Graphic Imagery but to the Common Gateway Interface
used for live Web content.
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(If either of these examples interests but mystifies, read the documentation for sed(1)
or awk(1). We explained in Chapter 8 that the latter has largely fallen out of use. The
former is still an important Unix tool that we haven’t examined in detail because (a)
Unix programmers already know it, and (b) it’s easy for non-Unix programmers to
pick up from the manual page once they grasp the basic ideas about pipelines and
redirection.)

A new-school solution might center on this Python code, or on equivalent Perl:

for row in map(lambda x:x.rstrip().split(':'),sys.stdin.readlines()):
    print "<tr><td>" + "</td><td>".join(row) + "</td></tr>"

These scripts took about five minutes each to write and debug, certainly less time
than would have been required to either hand-hack the initial HTML or create and
verify the database. The combination of the table and this code will be much simpler
to maintain than either the under-engineered hand-hacked HTML or the over-engi-
neered database.

A further advantage of this way of solving the problem is that the master file stays
easy to search and modify with an ordinary text editor. Another is that we can exper-
iment with different table-to-HTML transformations by tweaking the generator script,
or easily make a subset of the report by putting a grep(1) filter before it.

I actually use this technique to maintain the Web page that lists fetchmail test sites;
the example above is science-fictional only because publishing the real data would
reveal account usernames and passwords.

This was a somewhat less trivial example than the previous one. What we’ve actu-
ally designed here is a separation between content and formatting, with the generator
script acting as a stylesheet. (This is yet another mechanism-vs.-policy separation.)

The lesson in all these cases is the same. Do as little work as possible. Let the data
shape the code. Lean on your tools. Separate mechanism from policy. Expert Unix
programmers learn to see possibilities like these quickly and automatically. Construc-
tive laziness is one of the cardinal virtues of the master programmer.
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10

Configuration:
Starting on the Right Foot

Let us watch well our beginnings, and results will manage themselves.

—Alexander Clark

Under Unix, programs can communicate with their environment in a rich variety of
ways. It’s convenient to divide these into (a) startup-environment queries and (b) in-
teractive channels. In this chapter, we’ll focus primarily on startup-environment
queries. The next chapter will discuss interactive channels.

What Should Be Configurable?10.1

Before plunging into the details of different kinds of program configuration, we should
ask a high-level question: What things should be configurable?

The gut-level Unix answer is “everything”. The Rule of Separation that we dis-
cussed in Chapter 1 encourages Unix programmers to build mechanism and defer
policy decisions outward toward the user wherever possible. While this tends to pro-
duce programs that are powerful and rewarding for expert users, it also tends to produce
interfaces that overwhelm novices and casual users with a surfeit of choices, and with
configuration files sprouting like weeds.

Unix programmers aren’t going to be cured of their tendency to design for their
peers and the most sophisticated users any time soon (we’ll grapple a bit with the
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question of whether such a change would actually be desirable in Chapter 20). So it’s
perhaps more useful to invert the question and ask “What things should not be
configurable?” Unix practice does offer some guidelines on this.

First, don’t provide configuration switches for what you can reliably detect auto-
matically. This is a surprisingly common mistake. Instead, look for ways to eliminate
configuration switches by autodetection, or by trying alternative methods at runtime
until one succeeds. If this strikes you as inelegant or too expensive, ask yourself if
you haven’t fallen into premature optimization.

One of the nicest examples of autodetection I experienced was when Dennis Ritchie
and I were porting Unix to the Interdata 8/32. This was a big-endian machine, and
we had to generate data for that machine on a PDP-11, write a magnetic tape, and
then load the magnetic tape on the Interdata. A common error was to forget to
twiddle the byte order; a checksum error showed you that you had to unmount,
remount again on the PDP-11, regenerate the tape, unmount, and remount. Then
one day Dennis hacked the Interdata tape reader program so that if it got a checksum
error it rewound the tape, toggled ‘byte flip’ switch and reread it. A second check-
sum error would kill the load, but 99% of the time it just read the tape and did the
right thing. Our productivity shot up, and we pretty much ignored tape byte order
from that point on.

—Steve Johnson

A good rule of thumb is this: Be adaptive unless doing so costs you 0.7 seconds
or more of latency. 0.7 seconds is a magic number because, as Jef Raskin discovered
while designing the Canon Cat, humans are almost incapable of noticing startup latency
shorter than that; it gets lost in the mental overhead of changing the focus of attention.

Second, users should not see optimization switches. As a designer, it’s your job to
make the program run economically, not the user’s. The marginal gains in performance
that a user might collect from optimization switches are usually not worth the interface-
complexity cost.

File-format nonsense (record length, blocking factor, etc) was blessedly eschewed
by Unix, but the same kind of thing has roared back in excess configuration goo.
KISS became MICAHI: make it complicated and hide it.

—Doug McIlroy

Finally, don’t do with a configuration switch what can be done with a script
wrapper or a trivial pipeline. Don’t put complexity inside your program when you
can easily enlist other programs to help get the work done. (Recall our discussion in
Chapter 7 of why ls(1) does not have a built-in pager, or an option to invoke it).

Chapter 10 Configuration232



ptg

Here are some more general questions to consider whenever you find yourself
thinking about adding a configuration option:

• Can I leave this feature out? Why am I fattening the manual and burdening
the user?

• Could the program’s normal behavior be changed in an innocuous way that
would make the option unnecessary?

• Is this option merely cosmetic? Should I be thinking less about how to make
the user interface configurable and more about how to make it right?

• Should the behavior enabled by this option be a separate program instead?

Proliferating unnecessary options has many bad effects. One of the subtlest but
most serious is what it will do to your test coverage.

Unless it is done very carefully, the addition of an on/off configuration option can
lead to a need to double the amount of testing. Since in practice one never does
double the amount of testing, the practical effect is to reduce the amount of testing
that any given configuration receives. Ten options leads to 1024 times as much
testing, and pretty soon you are talking real reliability problems.

—Steve Johnson

Where Configurations Live10.2

Classically, a Unix program can look for control information in five places in its
startup-time environment:

• Run-control files under /etc (or at fixed location elsewhere in systemland).

• System-set environment variables.

• Run-control files (or ‘dotfiles’) in the user’s home directory. (See Chapter 3 for
a discussion of this important concept, if it is unfamiliar.)

• User-set environment variables.

• Switches and arguments passed to the program on the command line that
invoked it.
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These queries are usually done in the order listed above. That way, later (more
local) settings override earlier (more global) ones. Settings found earlier can help the
program compute locations for later retrievals of configuration data.

When thinking about which mechanism to use to pass configuration data to a
program, bear in mind that good Unix practice demands using whichever one most
closely matches the expected lifetime of the preference. Thus: for preferences which
are very likely to change between invocations, use command-line switches. For pref-
erences which change seldom, but that should be under individual user control, use
a run-control file in the user’s home directory. For preference information that needs
to be set site-wide by a system administrator and not changed by users, use a run-
control file in system space.

We’ll discuss each of these places in more detail, then examine some case studies.

Run-Control Files10.3

A run-control file is a file of declarations or commands associated with a program
that it interprets on startup. If a program has site-specific configuration shared by all
users at a site, it will often have a run-control file under the .net/etc directory.
(Some Unixes have an /etc/conf subdirectory that collects such data.)

User-specific configuration information is often carried in a hidden run-control
file in the user’s home directory. Such files are often called ‘dotfiles’ because they
exploit the Unix convention that a filename beginning with a dot is normally invisible
to directory-listing tools.1

Programs can also have run-control or dot directories. These group together
several configuration files that are related to the program, but that are most
conveniently treated separately (perhaps because they relate to different subsystems
of the program, or have differing syntaxes).

Whether file or directory, convention now dictates that the location of the run-
control information has the same basename as the executable that reads it. An older
convention still common among system programs uses the executable’s name with
the suffix ‘rc’ for ‘run control’.2 Thus, if you write a program called ‘seekstuff’ that
has both site-wide and user-specific configuration, an experienced Unix user would
expect to find the former at /etc/seekstuff and the latter at .seekstuff in
the user’s home directory; but it would be unsurprising if the locations were

1. To make dotfiles visible, use the -a option of ls(1).

2. The ‘rc’ suffix goes back to Unix’s grandparent, CTSS. It had a command-script feature
called “runcom”. Early Unixes used ‘rc’ for the name of the operating system’s boot script,
as a tribute to CTSS runcom.
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/etc/seekstuffrc and .seekstuffrc, especially if seekstuff were a system
utility of some sort.

In Chapter 5 we described a somewhat different set of design rules for textual data-
file formats, and discussed how to optimize for different weightings of interoperabil-
ity, transparency and transaction economy. Run-control files are typically only read
once at program startup and not written; economy is therefore usually not a major
concern. Interoperability and transparency both push us toward textual formats de-
signed to be read by human beings and modified with an ordinary text editor.

While the semantics of run-control files are of course completely program depen-
dent, there are some design rules about run-control syntax that are widely observed.
We’ll describe those next; but first we’ll describe an important exception.

If the program is an interpreter for a language, then it is expected to be simply a
file of commands in the syntax of that language, to be executed at startup. This is an
important rule, because Unix tradition strongly encourages the design of all kinds of
programs as special-purpose languages and minilanguages. Well-known examples
with dotfiles of this kind include the various Unix command shells and the Emacs
programmable editor.

(One reason for this design rule is the belief that special cases are bad news—thus,
that any switch that changes the behavior of a language should be settable from
within the language. If as a language designer you find that you cannot express all
the startup settings of a language in the the language itself, a Unix programmer would
say you have a design problem—which is what you should be fixing, rather than
devising a special-case run-control syntax.)

This exception aside, here are the normal style rules for run-control syntaxes.
Historically, they are patterned on the syntax of Unix shells:

1. Support explanatory comments, and lead them with #. The syntax should also
ignore whitespace before #, so that comments on the same line as configuration
directives are supported.

2. Don’t make insidious whitespace distinctions. That is, treat runs of spaces and
tabs, syntactically the same as a single space. If your directive format is line-
oriented, it is good form to ignore trailing spaces and tabs on lines. The metarule
is that the interpretation of the file should not depend on distinctions a human
eye can’t see.

3. Treat multiple blank lines and comment lines as a single blank line. If the input
format uses blank lines as separators between records, you probably want to
ensure that a comment line does not end a record.
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4. Lexically treat the file as a simple sequence of whitespace-separated tokens, or
lines of tokens. Complicated lexical rules are hard to learn, hard to remember,
and hard for humans to parse. Avoid them.

5. But, support a string syntax for tokens with embedded whitespace. Use single
quote or double quote as balanced delimiters. If you support both, beware of
giving them different semantics as they have in shell; this is a well-known source
of confusion.

6. Support a backslash syntax for embedding unprintable and special characters
in strings. The standard pattern for this is the backslash-escape syntax supported
by C compilers. Thus, for example, it would be quite surprising if the string
"a\tb" were not interpreted as a character ‘a’, followed by a tab, followed by
the character ‘b’.

Some aspects of shell syntax, on the other hand, should not be emulated in run-
control syntaxes—at least not without a good and specific reason. The shell’s baroque
quoting and bracketing rules, and its special metacharacters for wildcards and variable
substitution, both fall into this category.

It bears repeating that the point of these conventions is to reduce the amount of
novelty that users have to cope with when they read and edit the run-control file for
a program they have never seen before. Therefore, if you have to break the conventions,
try to do so in a way that makes it visually obvious that you have done so, document
your syntax with particular care, and (most importantly) design it so it’s easy to pick
up by example.

These standard style rules only describe conventions about tokenizing and com-
ments. The names of run-control files, their higher-level syntax, and the semantic in-
terpretation of the syntax are usually application-specific. There are a very few
exceptions to this rule, however; one is dotfiles which have become ‘well-known’ in
the sense that they routinely carry information used by a whole class of applications.
Sharing run-control file formats in this way reduces the amount of novelty users have
to cope with.

Of these, probably the best established is the .netrc file. Internet client programs
that must track host/password pairs for a user can usually get them from the .netrc
file, if it exists.

Case Study: The .netrc File10.3.1

The .netrc file is a good example of the standard rules in action. An example, with
the passwords changed to protect the innocent, is in Section 10.3.1.
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Example 10.1: A .netrc example.

# FTP access to my Web host
machine unix1.netaxs.com
        login esr
        password joesatriani

# My main mailserver at Netaxs
machine imap.netaxs.com
        login esr
        password jeffbeck

# Auxiliary IMAP maildrop at CCIL
machine imap.ccil.org
    login esr
    password marcbonilla

# Auxiliary POP maildrop at CCIL
machine pop3.ccil.org
    login esr
    password ericjohnson

# Shell account at CCIL
machine locke.ccil.org
    login esr
    password stevemorse

Observe that this format is easy to parse by eyeball even if you’ve never seen it
before; it’s a set of machine/login/password triples, each of which describes an account
on a remote host. This kind of transparency is important—much more important, ac-
tually, than the time economy of faster interpretation or the space economy of a more
compact and cryptic file format. It economizes the far more valuable resource that is
human time, by making it likely that a human being will be able to read and modify
the format without having to read a manual or use a tool less familiar than a plain old
text editor.

Observe also that this format is used to supply information for multiple services—an
advantage, because it means sensitive password information need only be stored in
one place. The .netrc format was designed for the original Unix FTP client program.
It’s used by all FTP clients, and also understood by some telnet clients, and by the
smbclient(1) command-line tool, and by the fetchmail program. If you are writing an
Internet client that must do password authentication through remote logins, the Rule
of Least Surprise demands that it use the contents of .netrc as defaults.
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Portability to Other Operating Systems10.3.2

Systemwide run-control files are a design tactic that can be used on almost any oper-
ating system, but dotfiles are rather more difficult to map to a non-Unix environment.
The critical thing missing from most non-Unix operating systems is true multiuser
capability and the notion of a per-user home directory. DOS and Windows versions
up to ME (including 95 and 98), for example, completely lack any such notion; all
configuration information has to be stored either in systemwide run-control files at a
fixed location, the Windows registry, or configuration files in the same directory a
program is run from. Windows NT has some notion of per-user home directories
(which made its way into Windows 2000 and XP), but it is only poorly supported by
the system tools.

Environment Variables10.4

When a Unix program starts up, the environment accessible to it includes a set of
name to value associations (names and values are both strings). Some of these are set
manually by the user; others are set by the system at login time, or by your shell or
terminal emulator (if you’re running one). Under Unix, environment variables tend
to carry information about file search paths, system defaults, the current user ID and
process number, and other key bits of information about the runtime einvironment of
programs. At a shell prompt, typing set followed by a newline will list all currently
defined shell variables.

In C and C++ these values can be queried with the library function getenv(3). Perl
and Python initialize environment-dictionary objects at startup. Other languages
generally follow one of these two models.

System Environment Variables10.4.1

There are a number of well-known environment variables you can expect to find
defined on startup of a program from the Unix shell. These (especially HOME) will
often need to be evaluated before you read a local dotfile.

USER
Login name of the account under which this session is logged in (BSD
convention).

LOGNAME
Login name of the account under which this session is logged in (System V
convention).
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HOME
Home directory of the user running this session.

COLUMNS
The number of character-cell columns on the controlling terminal or terminal-
emulator window.

LINES
The number of character-cell rows on the controlling terminal or terminal-
emulator window.

SHELL
The name of the user’s command shell (often used by shellout commands).

PATH
The list of directories that the shell searches when looking for executable
commands to match a name.

TERM
Name of the terminal type of the session console or terminal emulator window
(see the terminfo case study in Chapter 6 for background). TERM is special in
that programs to create remote sessions over the network (such as telnet and ssh)
are expected to pass it through and set it in the remote session.

(This list is representative, but not exhaustive.)
The HOME variable is especially important, because many programs use it to find

the calling user’s dotfiles (others call some functions in the C runtime library to get
the calling user’s home directory).

Note that some or all of these system environment variables may not be set when
a program is started by some other method than a shell spawn. In particular, daemon
listeners on a TCP/IP socket often don’t have these variables set—and if they do, the
values are unlikely to be useful.

Finally, note that there is a tradition (exemplified by the PATH variable) of using
a colon as a separator when an environment variable must contain multiple fields,
especially when the fields can be interpreted as a search path of some sort. Note that
some shells (notably bash and ksh) always interpret colon-separated fields in an
environment variable as filenames, which means in particular that they expand ~ in
these fields to the user’s home directory.
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User Environment Variables10.4.2

Although applications are free to interpret environment variables outside the system-
defined set, it is nowadays fairly unusual to actually do so. Environment values are
not really suitable for passing structured information into a program (though it can
in principle be done via parsing of the values). Instead, modern Unix applications
tend to use run-control files and dotfiles.

There are, however, some design patterns in which user-defined environment
variables can be useful:

Application-independent preferences that need to be shared by a large number of
different programs. This set of ‘standard’ preferences changes only slowly, because
lots of different programs need to recognize each one before it becomes useful.3 Here
are the standard ones:

EDITOR
The name of the user’s preferred editor (often used by shellout commands).4

MAILER
The name of the user’s preferred mail user agent (often used by shellout com-
mands).

PAGER
The name of the user’s preferred program for browsing plaintext.

BROWSER
The name of the user’s preferred program for browsing Web URLs. This one,
as of 2003, is still very new and not yet widely implemented.

When to Use Environment Variables10.4.3

What both user and system environment variables have in common is that it would
be annoying to have to replicate the information they contain in a large number of
application run-control files, and extremely annoying to have to change that information

3. Nobody knows a really graceful way to represent this sort of distributed preference data;
environment variables probably are not it, but all the known alternatives have equally
nasty problems.

4. Actually, most Unix programs first check VISUAL, and only if that’s not set will they
consult EDITOR. That’s a relic from the days when people had different preferences for line-
oriented editors and visual editors.
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everywhere when your preference changes. Typically, the user sets these variables in
his or her shell session startup file.

A value varies across several contexts that share dotfiles, or a parent needs to pass
information to multiple child processes. Some pieces of start-up information are
expected to vary across several contexts in which the calling user would share common
run-control files and dotfiles. For a system-level example, consider several shell ses-
sions open through terminal emulator windows on an X desktop. They will all see
the same dotfiles, but might have different values of COLUMNS, LINES, and TERM.
(Old-school shell programming used this method extensively; makefiles still do.)

A value varies too often for dotfiles, but doesn’t change on every startup.
A user-defined environment variable may (for example) be used to pass a file system
or Internet location that is the root of a tree of files that the program should play with.
The CVS version-control system interprets the variable CVSROOT this way, for
example. Several newsreader clients that fetch news from servers using the NNTP
protocol interpret the variable NNTPSERVER as the location of the server to query.

A process-unique override needs to be expressed in a way that doesn’t require the
command-line invocation to be changed. A user-defined environment variable can be
useful for situations in which, for whatever reason, it would be inconvenient to have
to change an application dotfile or supply command-line options (perhaps it is
expected that the application will normally be used inside a shell wrapper or within
a makefile). A particularly important context for this sort of use is debugging. Under
Linux, for example, manipulating the variable LD_LIBRARY_PATH associated with
the ld(1) linking loader enables you to change where libraries are loaded from—per-
haps to pick up versions that do buffer-overflow checking or profiling.

In general, a user-defined environment variable can be an effective design choice
when the value changes often enough to make editing a dotfile each time inconvenient,
but not necessarily every time (so always setting the location with a command-line
option would also be inconvenient). Such variables should typically be evaluated after
a local dotfile and be permitted to override settings in it.

There is one traditional Unix design pattern that we do not recommend for new
programs. Sometimes, user-set environment variables are used as a lightweight sub-
stitute for expressing a program preference in a run-control file. The venerable
nethack(1) dungeon-crawling game, for example, reads a NETHACKOPTIONS envi-
ronment variable for user preferences. This is an old-school technique; modern practice
would lean toward parsing them from a .nethack or .nethackrc run-control
file.

The problem with the older style is that it makes tracking where your preference
information lives more difficult than it would be if you knew the program had a run-
control file under your home directory. Environment variables can be set anywhere
in several different shell run-control files—under Linux these are likely to include
.profile,.bash_profile, and .bashrc at least. These files are cluttered and
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fragile things, so as the code overhead of having an option-parser has come to seem
less significant preference information has tended to migrate out of environment
variables into dotfiles.

Portability to Other Operating Systems10.4.4

Environment variables have only very limited portability off Unix. Microsoft operating
systems have an environment-variable feature modeled on that of Unix, and use a
PATH variable as Unix does to set the binary search path, but most of other variables
that Unix shell programmers take for granted (such as process ID or current working
directory) are not supported. Other operating systems (including classic MacOS)
generally do not have any local equivalent of environment variables.

Command-Line Options10.5

Unix tradition encourages the use of command-line switches to control programs, so
that options can be specified from scripts. This is especially important for programs
that function as pipes or filters. Three conventions for how to distinguish command-
line options from ordinary arguments exist; the original Unix style, the GNU style,
and the X toolkit style.

In the original Unix tradition, command-line options are single letters preceded
by a single hyphen. Mode-flag options that do not take following arguments can be
ganged together; thus, if -a and -b are mode options, -ab or -ba is also correct
and enables both. The argument to an option, if any, follows it (optionally separated
by whitespace). In this style, lowercase options are preferred to uppercase. When you
use uppercase options, it’s good form for them to be special variants of the
lowercase option.

The original Unix style evolved on slow ASR-33 teletypes that made terseness a
virtue; thus the single-letter options. Holding down the shift key required actual effort;
thus the preference for lower case, and the use of “–” (rather than the perhaps more
logical “+”) to enable options.

The GNU style uses option keywords (rather than keyword letters) preceded by
two hyphens. It evolved years later when some of the rather elaborate GNU utilities
began to run out of single-letter option keys (this constituted a patch for the symptom,
not a cure for the underlying disease). It remains popular because GNU options are
easier to read than the alphabet soup of older styles. GNU-style options cannot be
ganged together without separating whitespace. An option argument (if any) can be
separated by either whitespace or a single “=” (equal sign) character.
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The GNU double-hyphen option leader was chosen so that traditional single-letter
options and GNU-style keyword options could be unambiguously mixed on the same
command line. Thus, if your initial design has few and simple options, you can use
the Unix style without worrying about causing an incompatible ‘flag day’ if you need
to switch to GNU style later on. On the other hand, if you are using the GNU style,
it is good practice to support single-letter equivalents for at least the most
common options.

The X toolkit style, confusingly, uses a single hyphen and keyword options.
It is interpreted by X toolkits that filter out and process certain options (such as
-geometry and -display) before handing the filtered command line to the appli-
cation logic for interpretation. The X toolkit style is not properly compatible with either
the classic Unix or GNU styles, and should not be used in new programs unless the
value of being compatible with older X conventions seems very high.

Many tools accept a bare hyphen, not associated with any option letter, as a pseudo-
filename directing the application to read from standard input. It is also conventional
to recognize a double hyphen as a signal to stop option interpretation and treat all
following arguments literally.

Most Unix programming languages offer libraries that will parse a command line
for you in either classic-Unix or GNU style (interpreting the double-hyphen convention
as well).

The -a to -z of Command-Line Options10.5.1

Over time, frequently-used options in well-known Unix programs have established
a loose sort of semantic standard for what various flags might be expected to mean.
The following is a list of options and meanings that should prove usefully unsurprising
to an experienced Unix user:

-a
All (without argument). If there is a GNU-style --all option, for -a to be
anything but a synonym for it would be quite surprising. Examples: fuser(1),
fetchmail(1).

Append, as in tar(1). This is often paired with -d for delete.

-b
Buffer or block size (with argument). Set a critical buffer size, or (in a program
having to do with archiving or managing storage media) set a block size. Exam-
ples: du(1), df(1), tar(1).

Batch. If the program is naturally interactive, -b may be used to suppress
prompts or set other options appropriate to accepting input from a file rather
than a human operator. Example: flex(1).
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-c
Command (with argument). If the program is an interpreter that normally takes
commands from standard input, it is expected that the option of a -c argument
will be passed to it as a single line of input. This convention is particularly strong
for shells and shell-like interpreters. Examples: sh(1), ash(1), bsh(1), ksh(1),
python(1). Compare -e below.

Check (without argument). Check the correctness of the file argument(s) to
the command, but don’t actually perform normal processing. Frequently used
as a syntax-check option by programs that do interpretation of command files.
Examples: getty(1), perl(1).

-d
Debug (with or without argument). Set the level of debugging messages. This
one is very common.

Occasionally -d has the sense of ‘delete’ or ‘directory’.

-D
Define (with argument). Set the value of some symbol in an interpreter, compiler,
or (especially) macro-processor-like application. The model is the use of -D by
the C compiler’s macro preprocessor. This is a strong association for most Unix
programmers; don’t try to fight it.

-e
Execute (with argument). Programs that are wrappers, or that can be used as
wrappers, often allow -e to set the program they hand off control to. Examples:
xterm(1), perl(1).

Edit. A program that can open a resource in either a read-only or editable
mode may allow -e to specify opening in the editable mode. Examples:
crontab(1), and the get(1) utility of the SCCS version-control system.

Occasionally -e has the sense of ‘exclude’ or ‘expression’.

-f
File (with argument). Very often used with an argument to specify an input (or,
less frequently, output) file for programs that need to randomly access their input
or output (so that redirection via < or > won’t suffice). The classic example is
tar(1); others abound. It is also used to indicate that arguments normally taken
from the command line should be taken from a file instead; see awk(1) and
egrep(1) for classic examples. Compare -o below; often, -f is the input-side
analog of -o.

Force (typically without argument). Force some operation (such as a file lock
or unlock) that is normally performed conditionally. This is less common.
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Daemons often use -f in a way that combines these two meanings, to force
processing of a configuration file from a nondefault location. Examples: ssh(1),
httpd(1), and many other daemons.

-h
Headers (typically without argument). Enable, suppress, or modify headers on
a tabular report generated by the program. Examples: pr(1), ps(1).

Help. This is actually less common than one might expect offhand—for much
of Unix’s early history developers tended to think of on-line help as memory-
footprint overhead they couldn’t afford. Instead they wrote manual pages (this
shaped the man-page style in ways we’ll discuss in Chapter 18).

-i
Initialize (usually without argument). Set some critical resource or database as-
sociated with the program to an initial or empty state. Example: ci(1) in RCS.

Interactive (usually without argument). Force a program that does not normally
query for confirmation to do so. There are classical examples (rm(1), mv(1)) but
this use is not common.

-I
Include (with argument). Add a file or directory name to those searched for re-
sources by the application. All Unix compilers with any equivalent of source-
file inclusion in their languages use -I in this sense. It would be extremely sur-
prising to see this option letter used in any other way.

-k
Keep (without argument). Suppress the normal deletion of some file, message,
or resource. Examples: passwd(1), bzip(1), and fetchmail(1).

Occasionally -k has the sense of ‘kill’.

-l
List (without argument). If the program is an archiver or interpreter/player for
some kind of directory or archive format, it would be quite surprising for -l to
do anything but request an item listing. Examples: arc(1), binhex(1), unzip(1).
(However, tar(1) and cpio(1) are exceptions.)

In programs that are already report generators, -l almost invariably means
“long” and triggers some kind of long-format display revealing more detail than
the default mode. Examples: ls(1), ps(1).

Load (with argument). If the program is a linker or a language interpreter,
-l invariably loads a library, in some appropriate sense. Examples: gcc(1),
f77(1), emacs(1).
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Login. In programs such as rlogin(1) and ssh(1) that need to specify a network
identity, -l is how you do it.

Occasionally -l has the sense of ‘length’ or ‘lock’.

-m
Message (with argument). Used with an argument, -m passes it in as a message
string for some logging or announcement purpose. Examples: ci(1), cvs(1).

Occasionally -m has the sense of ‘mail’, ‘mode’, or ‘modification-time’.

-n
Number (with argument). Used, for example, for page number ranges in programs
such as head(1), tail(1), nroff(1), and troff(1). Some networking tools that nor-
mally display DNS names accept -n as an option that causes them to display
the raw IP addresses instead; ifconfig(1) and tcpdump(1) are the archetypal
examples.

Not (without argument). Used to suppress normal actions in programs such
as make(1).

-o
Output (with argument). When a program needs to specify an output file or
device by name on the command line, the -o option does it. Examples: as(1),
cc(1), sort(1). On anything with a compiler-like interface, it would be extremely
surprising to see this option used in any other way. Programs that support -o
often (like gcc) have logic that allows it to be recognized after ordinary arguments
as well as before.

-p
Port (with argument). Especially used for options that specify TCP/IP port
numbers. Examples: cvs(1), the PostgreSQL tools, the smbclient(1),
snmpd(1), ssh(1).

Protocol (with argument). Examples: fetchmail(1), snmpnetstat(1).

-q
Quiet (usually without argument). Suppress normal result or diagnostic output.
This is very common. Examples: ci(1), co(1), make(1). See also the ‘silent’
sense of -s.

-r (also -R)
Recurse (without argument). If the program operates on a directory, then this
option might tell it to recurse on all subdirectories. Any other use in a utility that
operated on directories would be quite surprising. The classic example is, of
course, cp(1).
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Reverse (without argument). Examples: ls(1), sort(1). A filter might use this
to reverse its normal translation action (compare -d).

-s
Silent (without argument). Suppress normal diagnostic or result output (similar
to -q; when both are supported, q means ‘quiet’ but -s means ‘utterly silent’).
Examples: csplit(1), ex(1), fetchmail(1).

Subject (with argument). Always used with this meaning on commands that
send or manipulate mail or news messages. It is extremely important to support
this, as programs that send mail expect it. Examples: mail(1), elm(1), mutt(1).

Occasionally -s has the sense of ‘size’.

-t
Tag (with argument). Name a location or give a string for a program to use as a
retrieval key. Especially used with text editors and viewers. Examples: cvs(1),
ex(1), less(1), vi(1).

-u
User (with argument). Specify a user, by name or numeric UID. Examples:
crontab(1), emacs(1), fetchmail(1), fuser(1), ps(1).

-v
Verbose (with or without argument). Used to enable transaction-monitoring,
more voluminous listings, or debugging output. Examples: cat(1), cp(1), flex(1),
tar(1), many others.

Version (without argument). Display program’s version on standard output
and exit. Examples: cvs(1), chattr(1), patch(1), uucp(1). More usually this action
is invoked by -V.

-V
Version (without argument). Display program’s version on standard output and
exit (often also prints compiled-in configuration details as well). Examples:
gcc(1), flex(1), hostname(1), many others. It would be quite surprising for this
switch to be used in any other way.

-w
Width (with argument). Especially used for specifying widths in output formats.
Examples: faces(1), grops(1), od(1), pr(1), shar(1).

Warning (without argument). Enable warning diagnostics, or suppress them.
Examples: fetchmail(1), flex(1), nsgmls(1).

-x
Enable debugging (with or without argument). Like -d. Examples: sh(1), uucp(1).
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Extract (with argument). List files to be extracted from an archive or working
set. Examples: tar(1), zip(1).

-y
Yes (without argument). Authorize potentially destructive actions for which the
program would normally require confirmation. Examples: fsck(1), rz(1).

-z
Enable compression (without argument). Archiving and backup programs often
use this. Examples: bzip(1), GNU tar(1), zcat(1), zip(1), cvs(1).

The preceding examples are taken from the Linux toolset, but should be good on
most modern Unixes.

When you’re choosing command-line option letters for your program, look at the
manual pages for similar tools. Try to use the same option letters they use for the
analogous functions of your program. Note that some particular application areas that
have particularly strong conventions about command-line switches which you violate
at your peril—compilers, mailers, text filters, network utilities and X software are all
notable for this. Anybody who wrote a mail agent that used -s as anything but a
Subject switch, for example, would have scorn rightly heaped upon the choice.

The GNU project recommends conventional meanings for a few double-dash op-
tions in the GNU coding standards.5 It also lists long options which, though not
standardized, are used in many GNU programs. If you are using GNU-style options,
and some option you need has a function similar to one of those listed, by all means
obey the Rule of Least Surprise and reuse the name.

Portability to Other Operating Systems10.5.2

To have command-line options, you have to have a command line. The MS-DOS
family does, of course, though in Windows it’s hidden by a GUI and its use is discour-
aged; the fact that the option character is normally ‘/’ rather than ‘-’ is merely a detail.
MacOS classic and other pure GUI environments have no close equivalent of
command-line options.

How to Choose among the Methods10.6

We’ve looked in turn at system and user run-control files, at environment variables,
and at command-line arguments. Observe the progression from least easily changed

5. See the Gnu Coding Standards <http://www.gnu.org/prep/standards.html>.
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to most easily changed. There is a strong convention that well-behaved Unix programs
that use more than one of these places should look at them in the order given, allowing
later settings to override earlier ones (there are specific exceptions, such as command-
line options that specify where a dotfile should be found).

In particular, environment settings usually override dotfile settings, but can be
overridden by command-line options. It is good practice to provide a command-line
option like the -e of make(1) that can override environment settings or declarations
in run-control files; that way the program can be scripted with well-defined behavior
regardless of the way the run-control files look or environment variables are set.

Which of these places you choose to look at depends on how much persistent
configuration state your program needs to keep around between invocations. Programs
designed mainly to be used in a batch mode (as generators or filters in pipelines, for
example) are usually completely configured with command-line options. Good
examples of this pattern include ls(1), grep(1) and sort(1). At the other extreme, large
programs with complicated interactive behavior may rely entirely on run-control files
and environment variables, and normal use involves few command-line options or
none at all. Most X window managers are a good example of this pattern.

(Unix has the capability for the same file to have multiple names or ‘links’. At
startup time, every program has available to it the filename through which it was
called. One other way to signal to a program that has several modes of operation
which one it should come up in is to give it a link for each mode, have it find out
which link it was called through, and change its behavior accordingly. But this tech-
nique is generally considered unclean and seldom used.)

Let’s look at a couple of programs that gather configuration data from all three
places. It will be instructive to consider why, for each given piece of configuration
data, it is collected as it is.

Case Study: fetchmail10.6.1

The fetchmail program uses only two environment variables, USER and HOME. These
variables are in the predefined set initialized by the system; many programs use them.

The value of HOME is used to find the dotfile .fetchmailrc, which contains
configuration information in a fairly elaborate syntax obeying the shell-like lexical
rules described above. This is appropriate because, once it has been initially set up,
Fetchmail’s configuration will change only infrequently.

There is neither an /etc/fetchmailrc nor any other systemwide file specific
to fetchmail. Normally such files hold configuration that’s not specific to an individual
user. fetchmail does use a small set of properties with this kind of scope—specifically,
the name of the local postmaster, and a few switches and values describing the local
mail transport setup (such as the port number of the local SMTP listener). In practice,
however, these are seldom changed from their compiled-in default values. When they
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are changed, they tend to be modified in user-specific ways. Thus, there has been no
demand for a systemwide fetchmail run-control file.

Fetchmail can retrieve host/login/password triples from a .netrc file. Thus, it
gets authenticator information in the least surprising way.

Fetchmail has an elaborate set of command-line options, which nearly but do not
entirely replicate what the .fetchmailrc can express. The set was not originally
large, but grew over time as new constructs were added to the .fetchmailrc
minilanguage and parallel command-line options for them were added more or
less reflexively.

The intent of supporting all these options was to make fetchmail easier to script
by allowing users to override bits of its run control from the command line. But it
turns out that outside of a few options like --fetchall and --verbose there is
little demand for this—and none that can’t be satisfied with a shellscript that creates
a temporary run-control file on the fly and then feeds it to fetchmail using the
-f option.

Thus, most of the command-line options are never used, and in retrospect including
them was probably a mistake; they bulk up the fetchmail code a bit without accom-
plishing anything very useful.

If bulking up the code were the only problem, nobody would care, except for a
couple of maintainers. However, options increase the chances of error in code,
particularly due to unforeseen interactions among rarely used options. Worse, they
bulk up the manual, which is a burden on everybody.

—Doug McIlroy

There is a lesson here; had I thought carefully enough about fetchmail’s usage
pattern and been a little less ad-hoc about adding features, the extra complexity might
have been avoided.

An alternative way of dealing with such situations, which doesn’t clutter up either
the code or the manual much, is to have a “set option variable” option, such as the
-O option of sendmail, which lets you specify an option name and value, and sets
that name to that value as if such a setting had been given in a configuration file.
A more powerful variant of this is what ssh does with its -o option: the argument
to -o is treated as if it were a line appended to the configuration file, with the full
config-file syntax available. Either of these approaches gives people with unusual
requirements a way to override configuration from the command line, without re-
quiring you to provide a separate option for each bit of configuration that might
be overridden.

—Henry Spencer
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Case Study: The XFree86 Server10.6.2

The X windowing system is the engine that supports bitmapped displays on Unix
machines. Unix applications running through a client machine with a bitmapped display
get their input events through X and send screen-painting requests to it. Confusingly,
X ‘servers’ actually run on the client machine—they exist to serve requests to interact
with the client machine’s display device. The applications sending those requests to
the X server are called ‘X clients’, even though they may be running on a server
machine. And no, there is no way to explain this inverted terminology that is
not confusing.

X servers have a forbiddingly complex interface to their environment. This is not
surprising, as they have to deal with a wide range of complex hardware and user
preferences. The environment queries common to all X servers, documented on the
X(1) and Xserver(1) pages, therefore make a useful example for study. The implemen-
tation we examine here is XFree86, the X implementation used under Linux and
several other open-source Unixes.

At startup, the XFree86 server examines a systemwide run-control file; the exact
pathname varies between X builds on different platforms, but the basename is
XF86Config. The XF86Config file has a shell-like syntax as described above. Exam-
ple 10.2 is a sample section of an XF86Config file.

Example 10.2: X configuration example.

# The 16-color VGA server

Section "Screen"
    Driver      "vga16"
    Device      "Generic VGA"
    Monitor     "LCD Panel 1024x768"
    Subsection  "Display"
        Modes       "640x480" "800x600"
        ViewPort    0 0
    EndSubsection
EndSection

The XF86Config file describes the host machine’s display hardware (graphics
card, monitor), keyboard, and pointing device (mouse/trackball/glidepad). It’s appro-
priate for this information to live in a systemwide run-control file, because it applies
to all users of the machine.
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Once X has acquired its hardware configuration from the run control file, it uses
the value of the environment variable HOME to find two dotfiles in the calling user’s
home directory. These files are .Xdefaults and .xinitrc.6

The .Xdefaults file specifies per-user, application-specific resources relevant
to X (trivial examples of these might include font and foreground/background colors
for a terminal emulator). The phrase ‘relevant to X’ indicates a design problem,
however. Collecting all these resource declarations in one place is convenient for in-
specting and editing them, but it is not always clear what should be declared in
.Xdefaults and what belongs in an application-specific dotfile. The .xinitrc
file specifies the commands that should be run to initialize the user’s X desktop just
after server startup. These programs will almost always include a window or
session manager.

X servers have a large set of command-line options. Some of these, such as the
-fp (font path) option, override the XF86Config. Some are intended to help track
server bugs, such as the -audit option; if these are used at all, they are likely to
vary quite frequently between test runs and are therefore poor candidates to be included
in a run-control file. A very important option is the one that sets the server’s display
number. Multiple servers may run on a host provided each has a unique display
number, but all instances share the same run-control file(s); thus, the display number
cannot be derived solely from those files.

On Breaking These Rules10.7

The conventions described in this chapter are not absolute, but violating them will
increase friction costs for users and developers in the future. Break them if you
must—but be sure you know exactly why you are doing so before you do it. And if
you do break them, make sure that attempts to do things in conventional ways break
noisily, giving proper error feedback in accordance with the Rule of Repair.

6. The .xinitrc is analogous to a Startup folder on Windows and other operating systems.
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11

Interfaces:
User-Interface Design Patterns
in the Unix Environment

All our knowledge has its origins in our perceptions.

—Leonardo Da Vinci

The interface of a program is the sum of all the ways that it communicates with human
users and other programs. In Chapter 10, we discussed the use of environment vari-
ables, switches, run-control files and other parts of start-up-time interfaces. In this
chapter, we’ll untangle the history and explain the pragmatics of Unix interfaces after
startup time. Because user-interface code normally consumes 40% or more of devel-
opment time, knowing good design patterns is especially important here in order to
avoid a lot of false starts and time-intensive rewrites.

In the Unix tradition of interface design, we encounter two themes over and over
again. One is anticipatory design for communication with other programs; the other
is the Rule of Least Surprise.

Unix programs can give you extra power from being used in synergistic combina-
tions; we discussed various methods for hooking together such combinations in
Chapter 7. The ‘other programs’ part of Unix interface design is not an afterthought
or a marginal case as it is under many other operating systems. Rather, it is a central
challenge that has to be balanced and integrated carefully with the demands of interface
design for human users.
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Much of Unix-community tradition about program interface design may seem odd
and arbitrary—or even, in the age of the GUI, downright regressive—when you en-
counter that tradition for the first time. But in spite of various blemishes and irregu-
larities, that tradition has an inner logic to it which is worth learning and understanding.
It reflects heuristics accumulated over Unix’s long history about ways to do effective
communication both with human beings and with other programs. And it includes a
set of conventions which create commonalities between programs—it defines ‘least
surprising’ alternatives for a wide range of common interface-design problems.

After startup, programs normally get input or commands from the following
sources:

• Data and commands presented on the program’s standard input.

• Inputs passed through IPC, such as X server events and network messages.

• Files and devices in known locations (such as a data file name passed to or
computed by the program).

Programs can emit results in all the same ways (with output going to stan-
dard output).

Some Unix programs are graphical, some have screen-oriented character interfaces,
and some use a starkly simple text-filter design unchanged from the days of mechan-
ical teletypes. To the uninitiated, it is often far from obvious why any given program
uses the style it does—or, indeed, why Unix supports such a plethora of interface
styles at all.

Unix has several competing interface styles. All are still alive for a reason; they’re
optimized for different situations. By understanding the fit between task and interface
style, you will learn how to choose the right styles for the jobs you need to do.

Applying the Rule of Least Surprise11.1

The Rule of Least Surprise is a general principle in the design of all kinds of interfaces,
not just software: “Do the least surprising thing”. It’s a consequence of the fact that
human beings can only pay attention to one thing at one time (see The Humane Inter-
face [Raskin]). Surprises in the interface focus that single locus of attention on the
interface, rather than on the task where it belongs.

Thus, to design usable interfaces, it’s best when possible not to design an entire
new interface model. Novelty is a barrier to entry; it puts a learning burden on the
user, so minimize it. Instead, think carefully about the experience and knowledge of
your user base. Try to find functional similarities between your program and programs
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they are likely to already know about. Then mimic the relevant parts of the
existing interfaces.

The Rule of Least Surprise should not be interpreted as a call for mechanical
conservatism in design. Novelty raises the cost of a user’s first few interactions with
an interface, but poor design will make the interface needlessly painful forever. As in
other sorts of design, rules are not a substitute for good taste and engineering judgment.
Consider your tradeoffs carefully—and consider them from the user’s point of view.
The bias implied by the Rule of Least Surprise is a good one to hold consciously,
mainly because interface designers (like other programmers) have an unconscious
tendency to be too clever for the user’s good.

One implication of the Rule of Least Surprise is this: Wherever possible, allow
the user to delegate interface functions to a familiar program. We already observed
in Chapter 7 that, if your program requires the user to edit significant amounts of text,
you should write it to call an editor (specifiable by the user) rather than building in
your own integrated editor. This will enable the users, who know their preferences
better than you, to choose the least surprising alternative.

Elsewhere in this book we have advocated symbiosis and delegation as tactics for
promoting code reuse and minimizing complexity. The point here is that when users
can intercept the delegation, and direct it to an agent of their own choice, these tech-
niques become not merely economical for the developer but actively empowering
to users.

Further: When you can’t delegate, emulate. The purpose of the Rule of Least
Surprise is to reduce the amount of complexity a user must absorb to use an interface.
Continuing the editor example, this means that if you must implement an embedded
editor, it’s best if the editor commands are a subset of those for a well-known general-
purpose editor. (Or more than one. Both bash and ksh have command-line editors
that allow the user to choose between vi and Emacs editing styles.)

Under the Unix versions of the Netscape and Mozilla Web browsers, for example,
fill-in fields in forms recognize a subset of the default bindings for the Emacs editor.
Control-A goes to start of line, Control-D deletes the next character, and so forth.
This choice helps people who know Emacs, and leaves others no worse off than an
arbitrary, idiosyncratic command set would have. The only way it could have been
bettered was by choosing key bindings associated with some editor significantly more
widely used than Emacs; and among Netscape’s original user population there was
no such animal.

These principles can be applied in many other areas of interface design. They
suggest, for example, that it is deeply foolish to create novel document formats for
an on-line help system when users are comfortable with an HTML Web browser. Or
even that if you are designing an arcade-style game, it is wise to look at the gesture
sets of previous games to see if you can give new users a feeling of comfort by allowing
them to transfer joystick skills learned in other games.
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History of Interface Design on Unix11.2

Unix predates the modern graphics-intensive style of software interface design. For
over a decade after the first Unix in 1969, command-line interfaces (CLIs) on teletypes
and dumb text-mode terminals were the norm. Most of the basic Unix toolset (programs
like ls(1), cat(1), and grep(1)) still reflect this heritage.

Gradually, after 1980, Unix evolved support for screen-painting on character-cell
terminals. Programs began to mix command-line and visual interfaces, with common
commands often bound to keystrokes that would not be echoed to the screen. Some
of the early programs written in this style (often called ‘curses’ programs, after the
screen-painting cursor-control library normally used to implement them, or ‘roguelike’
after the first application to use curses) are still used today; notable examples include
the dungeon-crawling game rogue(1), the vi(1) text editor, and (from a few years later)
the elm(1) mailer and its modern descendant mutt(1).

A few years later in the mid-1980s, the computing world as a whole began to as-
similate the results of the pioneering work on graphical user interfaces (GUIs) that
had been going on at Xerox’s Palo Alto Research Center since the early 1970s. On
personal computers, the Xerox PARC work inspired the Apple Macintosh interface
and through that the design of Microsoft Windows. Unix’s adaptation of these ideas
took a rather more complicated path.

Around 1987 the X windowing system outcompeted several early contenders and
prototype efforts to become the standard graphical-interface facility for Unix. Whether
this was a good or a bad thing has remained a topic of debate ever since; some of the
other contenders (notably Sun’s Network Window System or NeWS) were arguably
rather more powerful and elegant. X, however, had one overriding virtue; it was open
source. The code had been developed at MIT by a research group more interested in
exploring the problem space than in creating a product, and it remained freely redis-
tributable and modifiable. It was thus able to attract support from a wide range of
developers and sponsoring corporations who would have been reluctant to line up
behind a single vendor’s closed product. (This, of course, prefigured an important
theme in the breakout of the Linux operating system ten years later.)

The designers of X decided early on that X would support “mechanism, not policy”.
Their objective was to make X as flexible and portable across platforms as possible,
while putting as few constraints on the look and feel of X programs as they could
manage. Look and feel, they decided, would be handled by ‘toolkits’—libraries calling
X services linked to user programs. X would also be designed to support multiple
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window managers,1 and would not require a window manager to have any special
privileges or uniquely close integration with X’s machinery.

This approach was the polar opposite of that taken by the Macintosh and Windows
commercial products, which enforced particular look-and-feel policies by designing
them right into the system. The difference in approach ensured that X would have a
long-run evolutionary advantage by remaining adaptable as new discoveries were
made about the human factors in interface design—but it also ensured that the X
world would be divided by multiple toolkits, a profusion of window managers, and
many experiments in look and feel.

Since the mid-1990s X has become ubiquitous even on the lowest-end personal
Unix machines. Use of Unix from text-mode terminals, as opposed to graphics-capable
computer consoles, has sharply declined and seems headed for extinction. Accordingly,
the use of curses-style interfaces for new applications is also in decline; most new
applications that would formerly have been designed in that style now use an X
toolkit. It is instructive to note that Unix’s older CLI design tradition is still quite
vigorous and successfully competes with X in many areas.

It is also instructive to note that there are a few specific application areas in which
curses-style (or ‘roguelike’) character-cell interfaces remain the norm—especially
text editors and interactive communications programs such as mailers, newsreaders,
and chat clients.

For historical reasons, then, there is a wide range of interface styles in Unix pro-
grams. Line-oriented, character-cell screen-oriented, and X-based—with the X-based
world somewhat balkanized by the competition between multiple X toolkits and
window managers (though this is less an issue in 2003 than was the case five or even
three years ago).

Evaluating Interface Designs11.3

All these interface styles survive because they are adapted for different jobs. When
making design decisions about a project, it’s important to know how to pick a style
(or combine styles) that will be appropriate to your application and your user
population.

We will use five basic metrics to categorize interface styles: concision, expressive-
ness, ease, transparency, and scriptability. We’ve already used some of these terms
earlier in this book in ways that were preparation for defining them here. They are

1. A window manager handles associations between windows on the screen and running tasks.
Window managers handle behaviors like title bars, placement, minimizing, maximizing,
moving, resizing, and shading windows.
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comparatives, not absolutes; they have to be evaluated with respect to a particular
problem domain and with some knowledge of the users’ skill base. Nevertheless, they
will help organize our thinking in useful ways.

A program interface is ‘concise’ when the length and complexity of actions required
to do a transaction with it has a low upper bound (the measurement might be in
keystrokes, gestures, or seconds of attention required). Concise interfaces pack a lot
of leverage into a relatively few bits or state changes.

Interfaces are ‘expressive’ when they can readily be used to command a wide
variety of actions. The most expressive interfaces can command combinations of ac-
tions not anticipated by the designer of the program, but which nevertheless give the
user useful and consistent results.

The difference between concision and expressiveness is an important one. Consider
two different ways of entering text: from a keyboard, or by picking characters from
a screen display with mouse clicks. These have equal expressiveness, but the keyboard
is more concise (as we can easily verify by comparing average text-entry speeds). On
the other hand, consider two dialects of the same programming language, one with a
complex-number type and one not. Within the problem domain they have in common,
their concision will be identical; but for a mathematician or electrical engineer, the
dialect with complex numbers will be much more expressive.

The ‘ease’ of an interface is inversely proportional to the mnemonic load it puts
on the user—how many things (commands, gestures, primitive concepts) the user has
to remember specifically to support using that interface. Programming languages have
a high mnemonic load and low ease; menus and well-labeled on-screen buttons
are simpler.

Recall that we devoted an entire earlier chapter to ‘transparency’. In that chapter
we touched on the idea of interface transparency, and gave the audacity audio editor
as one superb example of it. But we were then much more interested in transparency
of a different kind, one that relates to the structure of code rather than of user interfaces.
We therefore described UI transparency in terms of its effect (nothing obtrudes between
the user and the problem domain) rather than the specific features of design that pro-
duce it. Now it’s time to zero in on these.

The ‘transparency’ of an interface is how few things the user has to remember
about the state of his problem, his data, or his program while using the interface. An
interface has high transparency when it naturally presents intermediate results, useful
feedback, and error notifications on the effects of a user’s actions. So-called WYSI-
WYG (What You See Is What You Get) interfaces are intended to maximize trans-
parency, but sometimes backfire—especially by presenting an over-simplified view
of the domain.

The related concept of discoverability applies to interface design, as well. A dis-
coverable interface provides the user with assistance in learning it, such as a greeting
message pointing to context-sensitive help, or explanatory balloon popups. Though
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discoverability has to be implemented in rather different ways for each of the interface
styles we shall consider, the degree to which it is achievable is largely independent
of interface style. Thus, we shall not use it as a metric in this discussion.

Note that transparency of code and design does not automatically imply trans-
parency of interface, or vice versa! It is all too easy to point to code that has one but
not the other.

The ‘scriptability’ of an interface is the ease with which it can be manipulated by
other programs (e.g., through the IPC mechanisms discussed in Chapter 7). Scriptable
programs are readily usable as components by other programs, reducing the need for
costly custom coding and making it relatively easy to automate repetitive tasks.

That last point—automating repetitive tasks—deserves more attention than it
usually gets. Unix programmers, administrators, and users develop a habit of thinking
through the routine procedures they use, then packaging them so they no longer have
to manually execute or even think about them any more. This habit depends on
scriptable interfaces. It is a quiet but tremendous productivity booster not available
in most other software environments.

It will be useful to bear in mind that humans and computer programs have very
different cost functions with respect to these metrics. So do novice and expert human
users in a particular problem domain. We’ll explore how the tradeoffs between them
change for different user populations.

Tradeoffs between CLI and Visual Interfaces11.4

The CLI style of early Unix has retained its utility long after the demise of teletypes
for two reasons. One is that command-line and command-language interfaces are
more expressive than visual interfaces, especially for complex tasks. The other is that
CLI interfaces are highly scriptable—they readily support the combining of programs,
as we discussed in detail in Chapter 7. Usually (though not always) CLIs have an
advantage in concision as well.

The disadvantage of the CLI style, of course, is that it almost always has high
mnemonic load (low ease), and usually has low transparency. Most people (especially
non-technical end users) find such interfaces relatively cryptic and difficult to learn.

On the other hand, the ‘user-friendly’ GUIs of other operating systems have their
own problems. Finding the right buttons to push is like playing Adventure: the
interfaces are just as burdensome as any Unix command line interface, save that
one can in theory find the treasure by sufficient exploration. In Unix, one needs
the manual.

—Brian Kernighan
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Database queries are a good example of the kind of interface for which pushing
buttons is not just burdensome but extremely limiting. Neither keystroke commands
to a full-screen character interface nor GUI gestures on a graphic display can express
typical actions in the problem domain as expressively or concisely as typing SQL
direct to a server. And it is certainly easier to make a client program utter SQL queries
than it would be to have it simulate a user clicking a GUI!

On the other hand, many non-technical database users are so resistant to having
to remember SQL syntax that they prefer a less concise and less expressive full-screen
or GUI interface.

SQL is a good example for illustrating another point. The most powerful CLIs are
not ad-hoc collections of commands, but imperative minilanguages designed along
the lines we described in Chapter 8. These minilanguages are the highest-power,
highest-complexity end of the CLI spectrum; they maximize expressiveness, but
minimize ease. They are difficult to use and generally need to be discreetly veiled
from ordinary end-users, but unbeatable when the capability and flexibility of the in-
terface is the most important thing. When properly designed, they also score high
on scriptability.

Some applications, unlike database queries, are naturally visual. Paint programs,
Web browsers, and presentation software make three excellent examples. What these
application domains have in common is that (a) transparency is extremely valuable,
and (b) the primitive actions in the problem domain are themselves visual: “draw
this”, “show me what I’m pointing at”, “put this here”.

The flip side of paint programs is that it is difficult to capture relationships within
the pictures they are manipulating. It takes careful, thoughtful design to give the user
any handle on the structure of images with repeated elements, for example. This is a
general design problem with visual interfaces.

In Chapter 6 we looked at the Audacity sound file editor. Its interface design suc-
ceeds because it does a particularly clean job of mapping its audio application domain
onto a simple set of visual representations (borrowed from equalizer displays on
stereos). It does this by thoroughly following through the consequences of a single
translation: sounds to waveform images. The visual operations are not a mere grab-
bag of low-level tweaks; they are all tied to that translation.

In applications that are not naturally visual, however, visual interfaces are most
appropriate for simple one-shot or infrequent tasks performed by novice users (a point
the database example illustrates).

Resistance to CLI interfaces tends to decrease as users become more expert. In
many problem domains, users (especially frequent users) reach a crossover point at
which the concision and expressiveness of CLI becomes more valuable than avoiding
its mnemonic load. Thus, for example, computing novices prefer the ease of GUI
desktops, but experienced users often gradually discover that they prefer typing
commands to a shell.
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CLIs also tend to gain utility as problems scale up and involve more in the way of
canned, procedural and repetitive actions. Thus, for example, a WYSIWYG desktop-
publishing program is usually the easiest route to composing relatively small and
unstructured documents such as business letters. But for complex book-sized docu-
ments that are assembled from sections and may require many global format changes
or structural manipulation during composition, a minilanguage formatter such as troff,
TeX, or some XML-markup processor is usually a more effective choice (see Chap-
ter 18 for more discussion of this tradeoff).

Even in domains that are naturally visual, scaling up the problem size tends to tilt
the tradeoff toward a CLI. If you need to fetch and save one Web page from a given
URL, point and click (or type and click) is fine. But for Web forms, you’re going to
use a keyboard. And if you need to fetch and save the pages corresponding to a given
list of fifty URLs, a CLI client that can read URLs from standard input or the command
line can save you a lot of unnecessary motion.

As another example, consider modifying the color table in a graphic image. If you
want to change one color (say, to lighten it by an amount you will only know is right
when you see it) a visual dialogue with a color-picker widget is almost mandatory.
But suppose you need to replace the entire table with a set of specified RGB values,
or to create and index large numbers of thumbnails. These are operations that GUIs
usually lack the expressive power to specify. Even when they do, invoking a properly
designed CLI or filter program will do the job far more concisely.

Finally (as we observed earlier on) CLIs are important in facilitating using programs
from other programs. A GUI graphics editor that can handle making a batch of
thumbnails for a list of files probably does it with a plugin written in a scripting lan-
guage, calling an internal CLI of the graphics editor (as in the GIMP’s script-fu
facility). Unix environments bring the value of CLIs into sharper relief precisely be-
cause their IPC facilities are rich, have low overhead, and are easily accessible from
user programs.

The explosion of interest in GUIs since 1984 has had the unfortunate effect of
obscuring the virtues of CLIs. The design of consumer software, in particular, has
become heavily skewed toward GUIs. While this is a good choice for the novice and
casual users that constitute most of the consumer market, it also exacts hidden costs
on more expert users as they run up against the expressiveness limits of GUIs—costs
which steadily increase as the users take on more demanding problems. Most of these
costs derive from the fact that GUIs are simply not scriptable at all—every interaction
with them has to be human-driven.

Gentner & Nielsen sum up the tradeoff very well in The Anti-Mac Interface
[Gentner-Nielsen]: “[Visual interfaces] work well for simple actions with a small
number of objects, but as the number of actions or objects increases, direct manipula-
tion quickly becomes repetitive drudgery. The dark side of a direct manipulation in-
terface is that you have to manipulate everything. Instead of an executive who gives
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high-level instructions, the user is reduced to an assembly-line worker who must
carry out the same task over and over”. Noted science-fiction writer Neal Stephenson
made the same point, less directly but more entertainingly, in his brilliant and discursive
essay In the Beginning Was the Command Line [Stephenson].

A typical Unix old hand’s take on this problem is rather less theoretical:

The commercial world generally goes for the novice mode because (a) purchase
decisions are often made on the basis of 30 seconds trial, and (b) it minimizes the
demands on customer support to have only a dumbed-down GUI. I find many non-
Unix systems very frustrating because, for example, they will provide no way to
do something on a hundred or a thousand files; I want to write a script, and there’s
no support for it. The basic problem is that they’ve assumed all users are novices
all the time, and then they bash Unix because it doesn’t cater to that model.

—Mike Lesk

For the long haul, then—for serving both casual and expert users, for cooperating
with other computer programs, and whether the problem domain is naturally visual
or not—support for both CLI and visual interfaces is important. Unix’s history posi-
tions it well to meet both sets of needs. After presenting an indicative case study, we
will examine the characteristic design patterns that the Unix tradition has evolved to
meet them.

Case Study: Two Ways to Write a Calculator Program11.4.1

To be more concrete, let us contrast how the GUI and CLI styles can be usefully ap-
plied to the design of a simple interactive program: a desk calculator. Our examples
for contrast are dc(1)/bc(1) and xcalc(1).

The original Unix desk calculator program, first distributed with Version 7, was
dc(1)—a reverse-Polish-notation calculator that could handle unlimited-precision
arithmetic. Later, an algebraic (infix notation) calculator language, bc(1), was imple-
mented on top of dc (we used the relationship between these programs as a case study
in Chapter 7, and again in Chapter 8). Both of these programs use a CLI. You type an
expression on standard input, you press enter, and the value of the expression is
printed on standard output.

The xcalc(1) program, on the other hand, visually simulates a simple calculator,
with clickable buttons and a calculator-style display.

The xcalc(1) approach is simpler to describe because it mimics an interface with
which novice users will be familiar; the man page says, in fact, “The numbered keys,
the +/– key, and the +, –, *, /, and = keys all do exactly what you would expect them
to”. All the capabilities of the program are conveyed by the visible button labels. This
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Figure 11.1: The xcalc GUI.

is the Rule of Least Surprise in its strongest form, and a real advantage for infrequent
and novice users who will never have to read a man page to use the program.

However, xcalc also inherits the almost complete non-transparency of a calculator;
when evaluating a complex expression, you don’t get to see and sanity-check your
keystrokes—which can be a problem if, say, you misplace a decimal point in an
expression like (2.51 + 4.6) * 0.3. There’s no history, so you can’t check. You’ll get
a result, but it won’t be the result of the calculation you intended.

With the dc(1) and bc(1) programs, on the other hand, you can edit mistakes out
of the expression as you build it. Their interface is more transparent, because you can
see the calculation that is being performed at every stage. It is more expressive because
the dc/bc interpreter, not being limited to what fits on a reasonably-sized visual
mockup of a calculator, can include a much larger repertoire of functions (and facilities
such as if/then/else, stored variables, and iteration). It also incurs, of course, a higher
mnemonic load.

Concision is more of a toss-up; good typists will find the CLI more concise, while
poor ones may find it faster to point and click. Scriptability is not a toss-up; dc/bc can
easily be used as a filter, but xcalc can’t be scripted at all.
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The tradeoff between ease for novices and utility for expert users is very clear
here. For casual use in situations where a mental-arithmetic error check is not hard,
xcalc wins. For more complex calculations where the steps must not only be correct
but must be seen to be correct, or in which they are most conveniently generated by
another program, dc/bc wins.

Transparency, Expressiveness, and Configurability11.5

Unix programmers inherit a strong bias toward making interfaces expressive and
configurable. Like programmers from other traditions, they think about how to match
their interfaces to the target audience—but they differ in how they deal with uncertainty
about that target audience. Software developers whose experience is primarily with
client operating systems default toward making interfaces simple; they are willing to
sacrifice expressiveness to gain ease. Unix programmers default toward making in-
terfaces expressive and transparent, and are more willing to sacrifice ease to get
these qualities.

The results of this attitude have often been described as interfaces written “by
programmers, for programmers”. But this oversimplifies the matter in an important
way. When a Unix programmer opts for configurability and expressiveness over ease,
he is not necessarily thinking of his audience as consisting solely of other program-
mers; rather, he is often acting on a gut-level instinct that in the absence of knowledge
about end-users’ intentions it is best not to patronize or second-guess them.

The downside of this attitude (which is a close cousin to “mechanism, not policy”)
is a tendency to assume that when the highly configurable and expressive interface
is done, the job is finished... even if the result is almost impossible for anyone else
to use without lengthy study. The flip side of configurability is an urgent need for
good defaults and an easy way to set everything to the default. The flip side of
expressivity is a need for guidance—be it in the program or the documentation—on
where to get started and how to achieve the most commonly-desired results.

—Henry Spencer

The Rule of Transparency also has an influence. When a Unix programmer is
writing to meet an RFC or other standard that defines a set of control options, he tends
to assume that his job is to provide a complete and transparent interface to all of those
options; whether or not he thinks any given one will actually be used is secondary.
His job is mechanism; policy belongs to the user.

This mindset leads to a much stricter attitude about what constitutes standards
conformance, one in which incomplete support is much less tolerable. In cases where
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a Macintosh or Windows developer would say “We don’t need to support that feature
of the standard; most users won’t care, and it’s too complicated for them”, a Unix
developer is likely to say “We don’t know that nobody will ever want this feature or
option, therefore we must support it”.

These attitudes can lead to clashes when a Unix programmer is working with
others, who are likely to interpret his design choices as a blithe willingness to burden
users with technical details that are obscure, pointless, and even frightening. Mac or
Windows programmers fear scaring away the many to serve the advanced needs
of the few.

The Unix programmer, on the other hand, is likely to see defaulting away from
expressiveness as a sort of cop-out or even betrayal of future users, who will know
their own requirements better than the present implementer. Ironically, though the
Unix attitude is often construed as a sort of programmer arrogance, it is actually a
form of humility—one often acquired along with years of battle scars.

The extent to which the Unix attitude is appropriate varies. Whichever side of this
divide you the reader are on, it is wise to learn to listen to the other, and wise to un-
derstand the premises behind the opposing point of view. Rather than falling into the
trap of either intimidating users or condescending to them, it may be possible to build
transparent interfaces in which the advanced features are present but inconspicuous.
The audacity and kmail case studies in Chapter 6 are good examples to follow.

Finally, a note about user-interface design for nontechnical end-users. This is a
demanding art, and Unix programmers don’t have a tradition of being very good at
it. But with the ideas we’ve developed from examining the Unix tradition, it is possible
to make one strong and useful statement about it. That is: when people say a user in-
terface is intuitive, what they mean is that it (a) is discoverable, (b) is transparent in
use, and (c) obeys the Rule of Least Surprise.2 Of these three rules, Least Surprise is
the least binding; initial surprises can be coped with if discoverability and transparency
make longer-term use rewarding.

The user interfaces of today’s cellphones (for example) have relatively high
mnemonic load in that you have to maintain at least a rough mental map of the interface
menus to use them rapidly without constantly having to spend attention on checking
where you are in the hierarchy. But the better-designed ones rapidly become ‘intuitive‘
for their users anyway, because they have these three qualities.

Intuitiveness is not quite the same quality as ease, because (as the cellphone
example shows) people can develop what they think of as ‘intuitions‘ about transparent
interfaces that have fairly high mnemonic load, as long as simple operations are easy

2. This insight comes to us from a nontechnical end-user who just happens to be the author’s
wife Catherine Raymond.
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and there is a discovery path that allows them to assimilate the interface’s more difficult
corners one step at a time.

Unix Interface Design Patterns11.6

In the Unix tradition, the tradeoffs we described above are met by well-established
interface design patterns. Here is a bestiary of these patterns, with analyses and
examples. We’ll follow it with a discussion of how to apply them.

Note that this bestiary does not include GUI design patterns (though it includes a
design pattern that can use a GUI as a component). There are no design patterns in
graphical user interfaces themselves that are specifically native to Unix. A promising
beginning of a discussion of GUI design patterns in general can be found at Experi-
ences—A Pattern Language for User Interface Design [Coram-Lee].

Also note that programs may have modes that fit more than one interface pattern.
A program that has a compiler-like interface, for example, may behave as a filter when
no file arguments are specified on the command line (many format converters behave
like this).

The Filter Pattern11.6.1

The interface-design pattern most classically associated with Unix is the filter. A filter
program takes data on standard input, transforms it in some fashion, and sends the
result to standard output. Filters are not interactive; they may query their startup
environment, and are typically controlled by command-line options, but they do not
require feedback or commands from the user in their input stream.

Two classic examples of filters are tr(1) and grep(1). The tr(1) program is a utility
that translates data on standard input to results on standard output using a translation
specification given on the command line. The grep(1) program selects lines from
standard input according to a match expression specified on the command line; the
resulting selected lines go to standard output. A third is the sort(1) utility, which sorts
lines in input according to criteria specified on the command line and issues the
sorted result to standard output.

Both grep(1) and sort(1) (but not tr(1)) can alternatively take data input from a
file (or files) named on the command line, in which case they do not read standard
input but act instead as though that input were the catenation of the named files read
in the order they appear. (In this case it is also expected that specifying “-” as a
filename on the command line will direct the program explicitly to read from standard
input.) The archetype of such ‘catlike’ filters is cat(1), and filters are expected to behave
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this way unless there are application-specific reasons to treat files named on the
command line differently.

When designing filters, it is well to bear in mind some additional rules, partly
developed in Chapter 1:

1. Remember Postel’s Prescription: Be generous in what you accept, rigorous in
what you emit. That is, try to accept as loose and sloppy an input format as you
can and emit as well-structured and tight an output format as you can. Doing
the former reduces the odds that the filter will be brittle in the face of
unexpected inputs, and break in someone’s hand (or in the middle of someone’s
toolchain). Doing the latter increases the odds that your filter will someday be
useful as an input to other programs.

2. When filtering, never throw away information you don’t need to. This, too, in-
creases the odds that your filter will someday be useful as an input to other
programs. Information you discard is information that no later stage in a pipeline
can use.

3. When filtering, never add noise. Avoid adding nonessential information, and
avoid reformatting in ways that might make the output more difficult for down-
stream programs to parse. The most common offenders are cosmetic touches
like headers, footers, blank/ruler lines, summaries and conversions like adding
aligned columns, or writing a factor of “1.5” as “150%”. Times and dates are a
particular bother because they’re hard for downstream programs to parse. Any
such additions should be optional and controlled by switches. If your program
emits dates, it’s good practice to have a switch that can force them into ISO8601
YYYY-MM-DD and hh:mm:ss formats—or, better yet, use those by default.

The term “filter” for this pattern is long-established Unix jargon.

“Filter” is indeed long-established. It came into use on day one of pipes. The term
was a natural transferral from electrical-engineering usage: data flowed from source
through filters to sink. Source or sink could be either process or file. The collective
EE term, “circuit”, was never considered, since the plumbing metaphor for data
flow was already well established.

—Doug McIlroy

Some programs have interface design patterns like the filter, but even simpler (and,
importantly, even easier to script). They are cantrips, sources, and sinks.
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The Cantrip Pattern11.6.2

The cantrip interface design pattern is the simplest of all. No input, no output, just an
invocation and a numeric exit status. A cantrip’s behavior is controlled only by startup
conditions. Programs don’t get any more scriptable than this.

Thus, the cantrip design pattern is an excellent default when the program doesn’t
require any runtime interaction with the user other than fairly simple setup of initial
conditions or control information.

Indeed, because scriptability is important, Unix designers learn to resist the
temptation to write more interactive programs when cantrips will do. A collection of
cantrips can always be driven from an interactive wrapper or shell program, but inter-
active programs are harder to script. Good style therefore demands that you try to
find a cantrip design for your tool before giving in to the temptation to write an inter-
active interface that will be harder to script. And when interactivity seems necessary,
remember the characteristic Unix design pattern of separating the engine from the
interface; often, the right thing is an interactive wrapper written in some scripting
language that calls a cantrip to do the real work.

The console utility clear(1), which simply clears your screen, is the purest possible
cantrip; it doesn’t even take command-line options. Other classic simple examples
are rm(1) and touch(1). The startx(1) program used to launch X is a complex example,
typical of a whole class of daemon-summoning cantrips.

This interface design pattern, though fairly common, has not traditionally been
named; the term “cantrip” is my invention. (In origin, it’s a Scots-dialect word for a
magic spell, which has been picked up by a popular fantasy-role-playing game to tag
a spell that can be cast instantly, with minimal or no preparation.)

The Source Pattern11.6.3

A source is a filter-like program that requires no input; its output is controllecld only
by startup conditions. The paradigmatic example would be ls(1), the Unix directory
lister. Other classic examples include who(1) and ps(1).

Under Unix, report generators like ls(1), ps(1), and who(1) tend strongly to obey
the source pattern, so their output can be filtered with standard tools.

The term ‘source’ is, as Doug McIlroy noted, very traditional. It is less common
than it might be because ‘source’ has other important meanings.
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The Sink Pattern11.6.4

A sink is a filter-like program that consumes standard input but emits nothing to
standard output. Again, its actions on the input data are controlled only by startup
conditions.

This interface pattern is unusual, and there are few well-known examples. One is
lpr(1), the Unix print spooler. It will queue text passed to it on standard input for
printing. Like many sink programs, it will also process files named to it on the com-
mand line. Another example is mail(1) in its mail-sending mode.

Many programs that might appear at first glance to be sinks take control information
as well as data on standard input and are actually instances of something like the ed
pattern (see below).

The term sponge is sometimes applied specifically to sink programs like sort(1)
that must read their entire input before they can process any of it.

The term ‘sink’ is traditional and common.

The Compiler Pattern11.6.5

Compiler-like programs use neither standard output nor standard input; they may issue
error messages to standard error, however. Instead, a compiler-like program takes file
or resource names from the command line, transforms the names of those resources
in some way, and emits output under the transformed names. Like cantrips, compil-
er-like programs do not require user interaction after startup time.

This pattern is so named because its paradigm is the C compiler, cc(1) (or, under
Linux and many other modern Unixes, gcc(1)). But it is also widely used for programs
that do (for example) graphics file conversions or compression/decompression.

A good example of the former is the gif2png(1) program used to convert GIF
(Graphic Interchange Format) to PNG (Portable Network Graphics).3 Good examples
of the latter are the gzip(1) and gunzip(1) GNU compression utilities, almost certainly
shipped with your Unix system.

In general, the compiler interface design pattern is a good model when your pro-
gram often needs to operate on multiple named resources and can be written to have
low interactivity (with its control information supplied at startup time). Compiler-like
programs are readily scriptable.

The term “compiler-like interface” for this pattern is well-understood in the
Unix community.

3. Sources for this program, and other converters with similar interfaces, are available at the
PNG website <http://www.cdrom.com/pub/png/>.
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The ed  pattern11.6.6

All the previous patterns have very low interactivity; they use only control information
passed in at startup time, and separate from the data. Many programs, of course, need
to be driven by a continuing dialog with the user after startup time.

In the Unix tradition, the simplest interactive design pattern is exemplified by
ed(1), the Unix line editor. Other classic examples of this pattern include ftp(1) and
sh(1), the Unix shell. The ed(1) program takes a filename argument; it modifies that
file. On its input, it accepts command lines. Some of the commands result in output
to standard output, which is intended to be seen immediately by the user as part of
the dialog with the program.

An actual sample ed(1) session will be included in Chapter 13.
Many browserlike and editorlike programs under Unix obey this pattern, even

when the named resource they edit is something other than a text file. Consider gdb(1),
the GNU symbolic debugger, as an example.

Programs obeying the ed interface design pattern are not quite so scriptable as
would be the simpler interface types resembling filters. You can feed them commands
on standard input, but it is trickier to generate sequences of commands (and interpret
any output they might ship back) than it is to just set environment variables and
command-line options. If the action of the commands is not so predictable that they
can be run blind (e.g., with a here-document as input and ignoring output), driving
ed-like programs requires a protocol, and a corresponding state machine in the calling
process. This raises the problems we noted in Chapter 7 during the discussion of slave
process control.

Nevertheless, this is the simplest and most scriptable pattern that supports fully
interactive programs. Accordingly, it is still quite useful as a component of the “sepa-
rated engine and interface” pattern we’ll describe below.

The Roguelike Pattern11.6.7

The roguelike pattern is so named because its first example was the dungeon-crawling
game rogue(1) (see Figure 11.2) under BSD; the adjective “roguelike” for this pattern
is widely recognized in Unix tradition. Roguelike programs are designed to be run
on a system console, an X terminal emulator, or a video display terminal. They use
the full screen and support a visual interface style, but with character-cell display
rather than graphics and a mouse.

Commands are typically single keystrokes not echoed to the user (as opposed to
the command lines of the ed pattern), though some will open a command window
(often, though not always, the last line of the screen) on which more elaborate
invocations can be typed. The command architecture often makes heavy use of the
arrow keys to select screen locations or lines on which to operate.
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                                                a) some food

                                                b) +1 ring mail [4] being worn

-----------------------              ########## c) a +1,+2 mace in hand 

|                     +###############          d) a +1,+0 short bow

|                     |                         e) 28 +0,+0 arrows

---------------+-------                         f) a short bow

               #                                i) a magnesium wand

               #                                g) a magnesium wand

             ###               ---------------- j) a potion of detect things

     --------+----------       |                l) a scroll of teleportation

     |                 |      #+                --press space to continue--

     |                 |      #|                 |             #

     |                 +#######|                 |            ##

     |                 |       |                 +##############

     --------+----------       -------------------             #

        ######                                                 #

  ------+----------                                            ######

  |...........@..!|                                                 #

  |...........%...|                 ----------------                #

  |...............|                #+              |          #######

  |...............+#################|              |          #

  |...............|                 |              +###########

  -----------------                 ----------------

Level: 3  Gold: 73     Hp: 36(36)   Str: 14(16) Arm: 4  Exp: 4/78

Figure 11.2: Screen shot of the original Rogue game.

Programs written in this pattern tend to model themselves on either vi(1) or
emacs(1) and (obeying the Rule of Least Surprise) use their command sequences for
common operations such as getting help or terminating the program. Thus, for
example, one can expect one of the commands ‘x’, ‘q’, or ‘C-x C-c’ to terminate a
program written to this pattern.

Some other interface tropes associated with this pattern include: (a) the use of one-
item-per-line menus, with the currently-selected item indicated by bold or reverse-
video highlighting, and (b) ‘mode lines’—program status summaries carried on a
highlighted screen line, often near the bottom or at the top of the screen.

The roguelike pattern evolved in a world of video display terminals; many of these
didn’t have arrow or function keys. In a world of graphics-capable personal computers,
with character-cell terminals a fading memory, it’s easy to forget what an influence
this pattern exerted on design; but the early exemplars of the roguelike pattern were
designed a few years before IBM standardized the PC keyboard in 1981. As a result,
a traditional but now archaic part of the roguelike pattern is the use of the h, j, k, and
l as cursor keys whenever they are not being interpreted as self-inserting characters

27111.6 Unix Interface Design Patterns



ptg

in an edit window; invariably k is up, j is down, h is left, and l is right. This history
also explains why older Unix programs tend not to use the ALT keys and to use
function keys in a limited way if at all.

Programs obeying this pattern are legion: The vi(1) text editor in all its variants,
and the emacs(1) editor; elm(1), pine(1), mutt(1), and most other Unix mail readers;
tin(1), slrn(1), and other Usenet newsreaders; the lynx(1) Web browser; and many
others. Most Unix programmers spend most of their time driving programs with in-
terfaces like these.

The roguelike pattern is hard to script; indeed scripting it is seldom even attempted.
Among other things, this pattern uses raw-mode character-by-character input, which
is inconvenient for scripting. It’s also quite hard to interpret the output programmati-
cally, because it usually consists of sequences of incremental screen-painting actions.

Nor does this pattern have the visual slickness of a mouse-driven full GUI. While
the point of using the full screen interface is to support simple kinds of direct-manip-
ulation and menu interfaces, roguelike programs still require users to learn a command
repertoire. Indeed, interfaces built on the roguelike pattern show a tendency to
degenerate into a sort of cluttered wilderness of modes and meta-shift-cokebottle
commands that only hard-core hackers can love. It would seem that this pattern has
the worst of both worlds, being neither scriptable nor conforming to recent fashions
in design for end-users.

But there must be some value in this pattern. Roguelike mailers, newsreaders, ed-
itors, and other programs remain extremely popular even among people who invariably
run them through terminal emulators on an X display that supports GUI competitors.
Moreover, the roguelike pattern is so pervasive that under Unix even GUI programs
often emulate it, adding mouse and graphics support to a command and display in-
terface that still looks rather roguelike. The X mode of emacs(1), and the xchat(1)
client are good examples of such adaptation. What accounts for the pattern’s
continuing popularity?

Efficiency, and perceived efficiency, seem to be important factors. Roguelike pro-
grams tend to be fast and lightweight relative to their nearest GUI competitors. For
startup and runtime speed, running a roguelike program in an Xterm may be preferable
to invoking a GUI that will chew up substantial resources setting up its displays and
respond more slowly afterwards. Also, programs with a roguelike design pattern can
be used over telnet links or low-speed dialup lines for which X is not an option.

Touch-typists often prefer roguelike programs because they can avoid taking their
hands off the keyboard to move a mouse. Given a choice, touch-typists will prefer
interfaces that minimize keystrokes far off the home row; this may account for a sig-
nificant percentage of vi(1)’s popularity.

Perhaps more importantly, roguelike interfaces are predictable and sparing in their
use of screen real estate on an X display; they do not clutter the display with multiple
windows, frame widgets, dialog boxes, or other GUI impedimenta. This makes the
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pattern well suited for use in programs that must frequently share the user’s attention
with other programs (as is especially the case with editors, mailers, newsreaders, chat
clients, and other communication programs).

Finally (and probably most importantly) the roguelike pattern tends to appeal more
than GUIs to people who value the concision and expressiveness of a command set
enough to tolerate the added mnemonic load. We saw above that there are good reasons
for this preference to become more common as task complexity, use frequency, and
user experience rise. The roguelike pattern meets this preference while also supporting
GUI-like elements of direct manipulation as an ed-pattern program cannot. Thus, far
from having only the worst of both worlds, the roguelike interface design pattern can
capture some of the best.

The ‘Separated Engine and Interface’ Pattern11.6.8

In Chapter 7 we argued against building monster single-process monoliths, and that
it is often possible to lower the global complexity of programs by splitting them into
communicating pieces. In the Unix world, this tactic is frequently applied by separating
the ‘engine’ part of the program (core algorithms and logic specific to its application
domain) from the ‘interface’ part (which accepts user commands, displays results,
and may provide services such as interactive help or command history). In fact, this
separated-engine-and-interface pattern is probably the one most characteristic interface
design pattern of Unix.

(The other, more obvious candidate for that distinction would be filters. But filters
are more often found in non-Unix environments than engine/interface pairs with
bidirectional traffic between them. Simulating pipelines is easy; the more sophisticated
IPC mechanisms required for engine/interface pairs are hard.)

Owen Taylor, maintainer of the GTK+ library widely used for writing user in-
terfaces under X, beautifully brings out the engineering benefits of this kind of parti-
tioning at the end of his note Why GTK_MODULES is not a security hole
<http://www.gtk.org/setuid.html>; he finishes by writing “[T]he secure
setuid program is a 500 line program that does only what it needs to, rather than a
500,000 line library whose essential task is user interfaces”.

This is not a new idea. Xerox PARC’s early research into graphical user interfaces
led them to propose the “model-view-controller” pattern as an archetype for GUIs.

• The “model” is what in the Unix world is usually called an “engine”. The
model contains the domain-specific data structures and logic for your application.
Database servers are archetypal examples of models.

• The “view” part is what renders your domain objects into a visible form. In a
really well-separated model/view/controller application, the view component is
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notified of updates to the model and responds on its own, rather than being
driven synchronously by the controller or by explicit requests for a refresh.

• The “controller” processes user requests and passes them as commands to
the model.

In practice, the view and controller parts tend to be more closely bound together
than either is to the model. Most GUIs, for example, combine view and controller
behavior. They tend to be separated only when the application demands multiple
views of the model.

Under Unix, application of the model/view/controller pattern is far more common
than elsewhere precisely because there is a strong “do one thing well” tradition, and
IPC methods are both easy and flexible.

An especially powerful form of this technique couples a policy interface (often a
GUI combining view and controller functions) with an engine (model) that contains
an interpreter for a domain-specific minilanguage. We examined this pattern in
Chapter 8, focusing on minilanguage design; now it’s time to look at the different
ways that such engines can form components of larger systems of code.

There are several major variants of this pattern.

Configurator/Actor Pair11.6.8.1

In a configurator/actor pair, the interface part controls the startup environment of a
filter or daemon-like program which then runs without requiring user commands.

The programs fetchmail(1) and fetchmailconf(1) (which we’ve already used as
case studies in discoverability and data-driven programming and will encounter again
as language case studies in Chapter 14) are a good example of a configurator/actor
pair. fetchmailconf is the interactive dotfile configurator that ships with fetchmail.
fetchmailconf can also serve as a GUI wrapper that runs fetchmail in either foreground
or background mode.

This design pattern enables both fetchmail and fetchmailconf to specialize in what
they do well, and indeed to be written in different languages appropriate to their task
domains. Fetchmail, which usually runs in background as a daemon, need not be
bloated with GUI code. Conversely, fetchmailconf can specialize in elaborate GUIness
without exacting size and complexity costs from fetchmail. Finally, because the infor-
mation channels between them are narrow and well-defined, it remains possible to
drive fetchmail from the command line and from scripts other than fetchmailconf.

The term “configurator/actor” is my invention.
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Spooler/Daemon Pair11.6.8.2

A slight variant of the configurator/actor pair can be useful in situations that require
serialized access to a shared resource in a batch mode; that is, when a well-defined
job stream or sequence of requests requires some shared resource, but no individual
job requires user interaction.

In this spooler/daemon pattern, the spooler or front end simply drops job requests
and data in a spool area. The job requests and data are simply files; the spool area is
typically just a directory. The location of the directory and the format of the job re-
quests are agreed on by the spooler and daemon.

The daemon runs forever in background, polling the spool directory, looking there
for work to do. When it finds a job request, it tries to process the associated data. If
it succeeds, the job request and data are deleted out of the spool area.

The classic example of this pattern is the Unix print spooler system, lpr(1)/lpd(1).
The front end is lpr(1); it simply drops files to be printed in a spool area periodically
scanned by lpd. lpd’s job is simply to serialize access to the printer devices.

Another classic example is the pair at(1)/atd(1), which schedules commands for
execution at specified times. A third example, historically important though no longer
in wide use, was UUCP—the Unix-to-Unix Copy Program commonly used as a mail
transport over dial-up lines before the Internet explosion of the early 1990s.

The spooler/daemon pattern remains important in mail-transport programs (which
are batchy by nature). The front ends of mail transports such as sendmail(1) and
qmail(1) usually make one try at delivering mail immediately, through SMTP over
an outbound Internet connection. If that attempt fails, the mail will fall into a spool
area; a daemon version or mode of the mail transport will retry the delivery later.

Typically, a spooler/daemon system has four parts: a job launcher, a queue lister,
a job-cancellation utility, and a spooling daemon, In fact, the presence of the first
three parts is a sure clue that there is a spooler daemon behind them somewhere.

The terms “spooler” and “daemon” are well-established Unix jargon. (‘Spooler’
actually dates back to early mainframe days.)

Driver/Engine Pair11.6.8.3

In this pattern, unlike a configurator/actor or spooler/server pair, the interface part
supplies commands to and interprets output from an engine after startup; the engine
has a simpler interface pattern. The IPC method used is an implementation detail; the
engine may be a slave process of the driver (in the sense we discussed in Chapter 7)
or the engine and driver may communicate through sockets, or shared memory, or
any other IPC method. The key points are (a) the interactivity of the pair, and (b) the
ability of the engine to run standalone with its own interface.
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Such pairs are trickier to write than configurator/actor pairs because they are more
tightly and intricately coupled; the driver must have knowledge not merely about the
engine’s expected startup environment but about its command set and response
formats as well.

When the engine has been designed for scriptability, however, it is not uncommon
for the driver part to be written by someone other than the engine author, or for more
than one driver to front-end a given engine. An excellent example of both is provided
by the programs gv(1) and ghostview(1), which are drivers for gs(1), the Ghostscript
interpreter. GhostScript renders PostScript to various graphics formats and lower-level
printer-control languages. The gv and ghostview programs provide GUI wrappers for
GhostScript’s rather idiosyncratic invocation switches and command syntax.

Another excellent example of this pattern is the xcdroast/cdrtools combi-
nation. The cdrtools distribution provides a program cdrecord(1) with a command-
line interface. The cdrecord code specializes in knowing everything about talking to
CD-ROM hardware. xcdroast is a GUI; it specializes in providing a pleasant user
experience. The xcdroast(1) program calls cdrecord(1) to do most of its work.

xcdroast also calls other CLI tools: cdda2wav(1) (a sound file converter) and
mkisofs(1) (a tool for creating ISO-9660 CD-ROM file system images from a list of
files). The details of how these tools are invoked are hidden from the user, who can
think in terms centered on the task of making CDs rather than having to know directly
about the arcana of sound-file conversion or file-system structure. Equally important,
the implementers of each of these tools can concentrate on their domain-specific
expertise without having to be user-interface experts.

A key pitfall of driver/engine organization is that frequently the driver must under-
stand the state of the engine in order to reflect it to the user. If the engine action is
practically instantaneous, it’s not a problem, but if the engine can take a long time
(e.g., when accessing many URLs) the lack of feedback can be a significant issue.
A similar problem is responding to errors. For example, the traditional (although
not very Unix-like) confirmation question about whether it’s OK to overwrite a
file that already exists is kind of painful to write in the driver/engine world; the
engine, which detects the problem, has to ask the driver to do the confirmation
prompting.

—Steve Johnson

It’s important to design the engine so that it not only does the right thing, but also
notifies the driver about what it’s doing so the driver can present a graceful interface
with appropriate feedback.

The terms “driver” and “engine” are uncommon but established in the Unix
community.
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Figure 11.3: The Xcdroast GUI.

Client/Server Pair11.6.8.4

A client/server pair is like a driver/engine pair, except that the engine part is a daemon
running in background which is not expected to be run interactively, and does not
have its own user interface. Usually, the daemon is designed to mediate access to
some sort of shared resource—a database, or a transaction stream, or specialized
shared hardware such as a sound device. Another reason for such a daemon may be
to avoid performing expensive startup actions each time the program is invoked.

Yesterday’s paradigmatic example was the ftp(1)/ftpd(1) pair that implements FTP,
the File Transfer Protocol; or perhaps two instances of sendmail(1), sender in
foreground and listener in background, passing Internet email. Today’s would have
to be any browser/web server pair.

However, this pattern is not limited to communication programs; another important
case is in databases, such as the psql(1)/postmaster(1) pair. In this one, psql serializes
access to a shared database managed by the postgres daemon, passing it SQL requests
and presenting data sent back as responses.
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These examples illustrate an important property of such pairs, which is that the
cleanliness of the protocol that serializes communication between them is all-important.
If it is well-defined and described by an open standard, it can become a tremendous
opportunity for leverage by insulating client programs from the details of how the
server’s resource is managed, and allowing clients and servers to evolve semi-inde-
pendently. All separated-engine-and-interface programs potentially get this kind of
benefit from clean separation of function, but in the client/server case the payoffs for
getting it right tend to be particularly high exactly because managing shared resources
is intrinsically difficult.

Message queues and pairs of named pipes can be and have been used for front-
end/back-end communication, but the benefits of being able to run the server on a
different machine from the client are so great that nowadays almost all modern client-
server pairs use TCP/IP sockets.

The CLI Server Pattern11.6.9

It’s normal in the Unix world for server processes to be invoked by harness programs4

such as inetd(8) in such a way that the server sees commands on standard input and
ships responses to standard output; the harness program then takes care of ensuring
that the server’s stdin and stdout are connected to a specified TCP/IP service port.
One benefit of this division of labor is that the harness program can act as a single
security gatekeeper for all of the servers it launches.

One of the classic interface patterns is therefore a CLI server. This is a program
which, when invoked in a foreground mode, has a simple CLI interface reading from
standard input and writing to standard output. When backgrounded, the server detects
this and connects its standard input and standard output to a specified TCP/IP
service port.

In some variants of this pattern, the server backgrounds itself by default, and has
to be told with a command-line switch when it should stay in foreground. This is a
detail; the essential point is that most of the code neither knows nor cares whether it
is running in foreground or a TCP/IP harness.

POP, IMAP, SMTP, and HTTP servers normally obey this pattern. It can be com-
bined with any of the server/client patterns described earlier in this chapter. An HTTP
server can also act as a harness program; the CGI scripts that supply most live content
on the Web run in a special environment provided by the server where they can take

4. A harness program is a wrapper whose job it is to make some special sort of resource
available to the program(s) it calls. The term is most often used for test harnesses, which make
available test loads and (often) examples of correct output for the actual output to be
checked against.
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input (form arguments) from standard input, and write the generated HTML that is
their result to standard output.

Though this pattern is quite traditional, the term “CLI server” is my invention.

Language-Based Interface Patterns11.6.10

In Chapter 8 we examined domain-specific minilanguages as a means of pushing
program specification up a level, gaining flexibility, and minimizing bugs. These
virtues make the language-based CLI an important style of Unix interface—one
exemplified by the Unix shell itself.

The strengths of this pattern are well illustrated by the case study earlier in the
chapter comparing dc(1)/bc(1) with xcalc(1). The advantages that we observed earlier
(the gain in expressiveness and scriptability) are typical of minilanguages; they gen-
eralize to other situations in which you routinely have to sequence complex operations
in a specialized problem domain. Often, unlike the calculator case, minilanguages
also have a clear advantage in concision.

One of the most potent Unix design patterns is the combination of a GUI front
end with a CLI minilanguage back end. Well-designed examples of this type are
necessarily rather complex, but often a great deal simpler and more flexible than the
amount of ad-hoc code that would be necessary to cover even a fraction of what the
minilanguage can do.

This general pattern is not, of course, unique to Unix. Modern database suites
everywhere normally consist of one or more GUI front ends and report generators,
all of which talk to a common back-end using a query language such as SQL. But
this pattern mainly evolved under Unix and is still much better understood and more
widely applied there than elsewhere.

When the front and back ends of a system fulfilling this design pattern are combined
in a single program, that program is often said to have an ‘embedded scripting lan-
guage’. In the Unix world, Emacs is one of the best-known exemplars of this pattern;
refer to our discussion of it in Chapter 8 for some advantages.

The script-fu facility of GIMP is another good example. GIMP is a powerful open-
source graphics editor. It has a GUI resembling that of Adobe Photoshop. Script-fu
allows GIMP to be scripted using Scheme (a dialect of Lisp); scripting through Tcl,
or Perl or Python is also available. Programs written in any of these languages can
call GIMP internals through its plugin interface. The demonstration application for
this facility is a Web page5 which allows people to construct simple logos and

5. Script-Fu page <http://www.xcf.berkeley.edu/~gimp/script-fu/script-
fu.html>.
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graphic buttons through a CGI interface that passes a generated Scheme program to
an instance of GIMP, and returns a finished image.

Applying Unix Interface-Design Patterns11.7

To facilitate scripting and pipelining (see Chapter 7) it is wise to choose the simplest
interface pattern possible—that is, the pattern with the fewest channels to the environ-
ment and the least interactivity.

In many of the single-component patterns described above, it is emphasized that
the pattern does not require user interaction after startup time. When the ‘user’ is often
expected to be another program (and thus to lack the range and flexibility of a human
brain) this is a very valuable feature, maximizing scriptability.

We’ve seen that different interface design patterns optimize for traits valuable in
differing circumstances. In particular, there is a strong and inherent tension between
the GUIs and design patterns appropriate for novice and nontechnical end-users (on
the one hand) and those which serve expert users and maximize scriptability
(on the other).

One way around this dilemma is to make programs with modes that exhibit more
than one pattern. An excellent example is the Web browser lynx(1). It normally has
a roguelike interface for interactive use, but can be called with a -dump option that
makes it into a source, formatting a specified Web page to text dumped on
standard output.

Such dual-mode interfaces, however, are not normally attempted when the program
has to have a true GUI. The reasons for this are partly historical, but mostly have to
do with controlling global complexity. GUIs tend to require complex startup
configurations and large volumes of specialized code; these features coexist uneasily
with the simpler patterns. In the worst case, a dual-mode GUI/non-GUI program could
require two separate command-interpreter loops, with all that implies in the way of
code bloat and potential inconsistencies.

Thus, when “choose the simplest pattern” conflicts with a requirement to produce
a GUI, the Unix way is to split the program in two, applying the ‘separated engine
and interface’ design pattern.

In fact, by combining a theme from Chapter 7 with this idea, we can perhaps name
a new design pattern emerging under Linux and other modern, open-source Unixes
where GUIs are not merely a reluctant add-on but an active focus of lots of develop-
ment effort.

Chapter 11 Interfaces280



ptg

The Polyvalent-Program Pattern11.7.1

A polyvalent program has the following traits:

1. The program’s application-domain logic lives in a library with a documented
API, which can be linked to other programs. The program’s interface logic to
the rest of the world is a thin layer over the library. Or perhaps there are several
layers with different UI styles, any of which the library can be linked to.

2. One UI mode is a cantrip, compiler-like or CLI pattern that executes its interac-
tive commands in batch mode.

3. One UI mode is a GUI, either linked directly to the core library or acting as as
a separate process driving the CLI interface.

4. One UI mode is a scripting interface using a modern general-purpose scripting
language like Perl, Python, or Tcl.

5. Optional extra: One UI mode is a roguelike interface using curses(3).

Notably, the GIMP actually fulfills this pattern.

The Web Browser as a Universal Front End11.8

Separating your CLI back end from a GUI interface has become an even more attractive
strategy since the transformation of computing by the World Wide Web in the mid-
1990s. For a large class of applications, it makes increasing sense not to write a custom
GUI front end at all, but rather to press Web browsers into service in that role.

This approach has many advantages. The most obvious is that you don’t have to
write procedural GUI code—instead, you can describe the GUI you want in languages
(HTML and JavaScript) that are specialized for it. This avoids a lot of expensive and
complex single-purpose coding and often more than halves the total project effort.
Another is that it makes your application instantly Internet-ready; the front end may
be on the same host as the back end, or may be a thousand miles away. Yet another
is that all the minor presentation details of the application (such as fonts and color)
are no longer your back end’s problem, and indeed can be customized by users to
their own tastes through mechanisms like browser preferences and cascading style
sheets. Finally, the uniform elements of the Web interface substantially ease the user’s
learning task.

There are disadvantages. The two most important are (a) the batch style of interac-
tion that the Web enforces, and (b) the difficulties of managing persistent sessions
using a stateless protocol. Though these are not exclusively Unix issues, we’ll discuss
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Figure 11.4: Caller/callee relationships in a polyvalent program.

them here—because it’s very important to think clearly on the design level about
when it’s worthwhile to accept or work around these constraints.

CGI, the Common Gateway Interface through which a browser can invoke a pro-
gram on the server host, does not support fine-grained interactivity well. Nor do the
templating systems, application servers, and embedded server scripts that are gradu-
ally replacing it (in a mild abuse of language, we will use CGI for all of these in
this section).

You can’t do character-by-character or GUI-gesture-by-GUI-gesture I/O through
a CGI gateway; instead, you have to fill out an HTML form and click a submit button
that sends the form contents to a CGI script. The CGI script then runs and the server
hands you back a page of HTML that it generated (which may itself be another
CGI form).

This is essentially a batch style of interaction, not that far removed in concept from
dropping punched cards in an input hopper and getting back a printout. It can be made
more palatable by using JavaScript to interact with the user, batching up transactions
into messages to be shipped to the server.

Java applets can open up their own character-stream connections back to the server
to support smoother interactivivity. But Java has technical problems (it can only use
a fixed display area on the page, and can’t change the portion of the display outside

Chapter 11 Interfaces282



ptg

that rectangle) and much worse political ones (proprietary licensing from Sun has
stalled Java deployment and made others reluctant to commit to it; you can’t count
on every user’s browser to support it).

Both Java and JavaScript can run into browser incompatibilities, as well. Microsoft’s
resistance to implementing JDK 1.2 and Swing on Internet Explorer is a serious
problem for Java applets, and differing Javascript version levels can also break your
application (though Javascript bugs are easier to fix). Nevertheless, it is frequently
less effort to work around these problems than it would be to write and deploy a
custom front end. A problem harder to work around is that a growing number of so-
phisticated users routinely disable Java and even JavaScript in their browsers because
of security problems and interface abuses.

As an independent issue, it is tricky to maintain session information across multiple
CGI forms. The server doesn’t keep any state about client sessions between CGI
transactions, so you can’t rely on it to connect later form submissions with earlier
ones by the same user. There are two standard dodges around this: chained forms and
browser cookies.

When you chain forms, you arrange for the CGI for the first form to generate a
unique ID in an invisible field of the second form, and for the second and all subsequent
forms to pass that ID to their successors. Cookies give a similar effect in a less direct
way analogous to environment variables (see any of the hundreds of books on CGI
design for details). In either case, your CGI has to use the ID as a session index (or
cookies to cache state directly) and to handle multiplexing the sessions explicitly.

It is often possible to live with these restrictions. Many nontrivial applications can
fit into a single form and response, evading both problems. Even when this isn’t true
and the application requires multiple forms, the complexity and cost savings from
not having to build and distribute a specialized front end are so large that they can
easily pay for the effort required to write CGIs smart enough to do their own
session tracking.

The session management problem can be addressed with application servers like
Zope or Enhydra which provide a session abstraction, and services like user authenti-
cation to programs embedded inside them. The drawback of these programs is identical
to their advantage: the fact that they make it easier to keep per-user state on the server.
That per-user state can be a problem; it eats resources, and it has to be timed out, be-
cause between transactions there is no way to know that the user is still on the other
end of the wire.

As usual, the best advice is to choose the simplest pattern possible. Resist the
temptation to do a heavyweight design relying on Java or an application server when
simple CGIs and cookies will do the job.

One problem with the browser-as-universal-front-end approach is that CGI
back ends aren’t readily separable from the browser environment, so it can be hard
to script or automate transactions to the back end. The Unix answer is a three-tier
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architecture—Web forms calling CGIs which call commands. The automation interface
is the commands.

The way that browsers decouple front and back ends has larger implications. On
the Web, locking in consumers to closed, proprietary protocols and APIs has become
more difficult and less attractive as this trend has advanced. The economics of software
development are therefore tilting toward HTML, XML, and other open, text-based
Internet standards. This trend synergizes in interesting ways with the evolution of the
open-source development model, which we’ll survey in Chapter 19. In the world that
the Web is creating, Unix’s design tradition—including the approaches to interface
design we’ve surveyed in this chapter—looks more at home than ever before.

Silence Is Golden11.9

We cannot leave the subject of interactive user interfaces without exploring one of
the oldest and most persistent design tropes of Unix, the Rule of Silence. We observed
in Chapter 1 that well-designed Unix programs with nothing interesting or surprising
to say should shut up, and suggested there are good reasons for this that have long
outlasted the slow teletypes on which Unix was born.

Here’s one: Programs that babble don’t tend to play well with other programs. If
your CLI program emits status messages to standard output, then programs that try
to interpret that output will be put to the trouble of interpreting or discarding those
messages (even if nothing went wrong!). Better to send only real errors to standard
error and not to emit unrequested data at all.

Here’s another: The user’s vertical screen space is precious. Every line of junk
your program emits is one less line of context still available on the user’s display.

Here’s a third: Junk messages are a careless waste of the human user’s bandwidth.
They’re one more source of distracting motion on a screen display that may be medi-
ating for more important foreground tasks, such as communication with other humans.

Go ahead and give your GUIs progress bars for long operations. That’s good
style—it helps the user time-share his brain efficiently by cuing him that he can go
off and read mail or do other things while waiting for completion. But don’t clutter
GUI interfaces with confirmation popups except when you have to guard operations
that might lose or trash data—and even then, hide them when the parent window
is minimized, and bury them unless the parent window has focus.6 Your job as an
interface designer is to assist the user, not to gratuitously get in his face.

6. If your windowing system supports translucent popups that intrude less between the user
and the application, use them.
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In general, it’s bad style to tell the user things he already knows (“Program <foo>
is starting up...”, or “Program <foo> is exiting” are two classic offenders). Your in-
terface design as a whole should obey the Rule of Least Surprise, but the content of
messages should obey a Rule of Most Surprise—be chatty only about things that
deviate from what’s normally expected.

This rule has even greater force for confirmation prompts. Constantly asking for
confirmation where the answer is almost always “yes” conditions the user to press
“yes” without thinking about it, a habit that can have very unfortunate consequences.
Programs should request confirmation only when there is good reason to suspect that
the answer might be “no no no!” A confirmation request that is not a surprise is a
strong hint of bad design. Any confirmation prompts at all may be a sign that what
your interface really needs is an undo command.

If you want chatty progress messages for debugging purposes, disable them by
default with a verbosity switch. Before releasing for production, relegate as many of
the normal messages as possible to being displayed only when the verbosity
switch is on.
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12

Optimization

Premature optimization is the root of all evil.

— C. A. R. Hoare

This is going to be a very short chapter, because the main thing Unix experience
teaches us about optimizing for performance is how to know when not to do it. A
secondary lesson is that the most effective optimization tactics are usually things we
do for other reasons, such as cleanness of design.

Don’t Just Do Something, Stand There!12.1

The most powerful optimization technique in any programmer’s toolbox is to do
nothing.

This very Zen advice is true for several reasons. One is the exponential effect of
Moore’s Law—the smartest, cheapest, and often fastest way to collect performance
gains is to wait a few months for your target hardware to become more capable. Given
the cost ratio between hardware and programmer time, there are almost always better
things to do with your time than to optimize a working system.

We can get mathematically specific about this. It is almost never worth doing op-
timizations that reduce resource use by merely a constant factor; it’s smarter to con-
centrate effort on cases in which you can reduce average-case running time or space
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use from O(n2) to O(n) or O(n log n),1 or similarly reduce from a higher order. Linear
performance gains tend to be rapidly swamped by Moore’s Law.2

Another very constructive form of doing nothing is to not write code. The program
can’t be slowed down by code that isn’t there. It can be slowed down by code that is
there but less efficient than it could be—but that’s a different matter.

Measure before Optimizing12.2

When you have real-world evidence that your application is too slow, then (and only
then) is the time to think about optimizing the code. But before you do more than
think about optimizing, measure.

Recall Rob Pike’s six rules in Chapter 1. One of the lessons that the original Unix
programmers learned early is that intuition is a poor guide to where the bottlenecks
are, even for one who knows the code in question intimately. Unixes, unlike most
other operating systems, usually come with profilers; use them.

Reading profiler results is something of an art. There are a couple of recurring
problems: one is instrumentation noise, another is the effect of imposed external la-
tencies, and a third is overweighting of upper nodes in the call graph.

The instrumentation-noise problem is fundamental. Profilers work by inserting
instructions that report execution time at the entry and exit points of subroutines, also
at fixed intervals within the inline code of routines. These instructions themselves
take time to execute. The effect is to reduce the dispersion of call times: very short
subroutines tend to look more expensive than they are, with a lot of noise in their
comparative call times, while for longer ones the instrumentation overhead is invisible.

1. For readers unfamiliar with O notation, it is a way of indicating how the average running
time of an algorithm changes with the size of its inputs. An O(1) algorithm runs in constant
time. An O(n) algorithm runs in a time that is predicted by An + C, where A is some unknown
constant of proportionality and C is an unknown constant representing setup time. Linear
search of a list for a specified value is O(n). An O(n2) algorithm runs in time An2 plus
lower-order terms (which might be linear, or logarithmic, of any other function lower than a
quadratic). Checking a list for duplicate values (by the naïve method, not sorting it) is O(n2).
Similarly, O(n3) algorithms have an average run time predicted by the cube of problem size;
these tend to be too slow for practical use. O(log n) is typical of tree searches. Intelligent
choice of algorithm can often reduce running time from O(n2) to O(log n). Sometimes when
we are interested in predicting an algorithm’s memory utilization, we may notice that it varies
as O(1) or O(n) or O(n2); in general, algorithms with O(n2) or higher memory utilization are
not practical either.

2. The eighteen-month doubling time usually quoted for Moore’s Law implies that you can
collect a 26% performance gain just by buying new hardware in six months.
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Bearing instrumentation noise in mind, it’s wise to assume that the times listed
for the fastest, shortest subroutines are going to have a lot of froth and air in them.
They can still be eating a lot of time if they are called very frequently, however, so
pay particular attention to their call-count statistics.

The external-latency problem is also fundamental. There are various sorts of delay
and distortion that can happen behind the profiler’s back. The simplest is overhead
from operations with unpredictable latency—disk and network accesses, cache fills,
process-context switches, and the like. The problem is not so much that these overheads
happen—they may actually be what you’re trying to measure, especially if you’re
focusing on whole-system performance rather than just tuning a critical inner loop.
The problem is that they have a random component that means the results from any
individual profiling run may not be very useful.

One way to minimize the effects of these noise sources, and get a better picture
of where the time is going in the average case, is to add together the results from a
lot of profiling runs. There are a lot of good reasons to build test harnesses and test
loads for your programs before you get to optimizing; the most important reason,
usually far more important than performance tuning, is so you can regression-test
your program for correctness as you change it. Once you’ve done this, being able to
profile repeated tests under load is a nice side effect that will often give you better
information than a few runs by hand.

Various effects tend to allocate time spent to calling routines rather than callees,
overweighting upper modes in the call graph. Function-call overhead, for example,
is often charged to the calling routine (whether or not this is true depends partly on
your machine architecture and where the profiler is allowed to insert probes). Macros
and inline functions, if your compiler supports them, won’t show up in the profiling
report at all; every bit of their time gets charged to the calling function.

More importantly, many time-reporting tools give a display in which time spent
in subroutines is charged to the caller. (The gprof(1) profiler distributed with open-
source Unixes has this trait.) Naïvely subtracting callee time from caller time won’t
give you a useful result if the same routine can have more than one caller—the effect
would be to artificially deflate both callers’ times. Especially nasty is the common
case of a utility function with multiple call sites, some of which make lots of trivial
calls and others of which make a few complicated ones.

To get more transparent results, factor your code so that upper-level routines consist
as much as possible of calls to lower-level routines, rather than in-line code. If you
keep the overhead of upper-level control logic to a minimum, the call structure of the
code will tend to organize the profile report in a way that is relatively easy to read.

You’ll get more insight from using profilers if you think of them less as ways to
collect individual performance numbers, and more as ways to learn how performance
varies as a function of interesting parameters (e.g., problem size, CPU speed, disc
speed, memory size, compiler optimization, or whatever else is relevant). Try fitting
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those numbers to a model, using open-source software like R or a good-quality pro-
prietary tool like MATLAB.

The natural smoothing of the data that results from model fitting tends to focus on
the big effects and cover up the small, noisy ones. For example, by fitting a cubic
to the matrix inversion routine in MATLAB on random matrices from 10 × 10 to
1000 × 1000, it is clear that we actually have three cubics, with clearly defined
boundaries, that correspond roughly to “in cache”, “in memory but out of cache”,
and “out of memory”. The data shows us this effect even if weren’t looking for it,
just by looking at the deviations from the best fit.

—Steve Johnson

Nonlocality Considered Harmful12.3

The most effective way to optimize your code is to keep it small and simple. We’ve
been through lots of good reasons to keep it small and simple earlier in this book.
Here’s a new one: you want the central data structures and the time-critical loops in
your code never to fall out of cache.

Consider your target machine as a hierarchy of memory types arranged by distance
from the processor. There are the processor’s own registers; its instruction pipeline;
the level-one (L1) cache; the level-two (L2) cache; possibly a level-three (L3) cache;
main memory (what Unix old hands still quaintly call ‘core’); and the disk drives
where swap space lives. Technologies like SMP, shared-memory clusters, and non-
uniform memory access (NUMA) add more layers to the picture but only widen the
overall spread.

Every kind of access to that stack is getting faster. Processor cycles are almost
free, outside of a few demanding applications like modeling nuclear explosions or
real-time video compression. But what’s also happening is that the speed ratios between
layers in the storage hierarchy are all increasing as processor speeds go up. Thus, the
relative cost of a cache miss is increasing.

So we have an interesting paradox. As the cost of machine resources plummet, the
expected cost of large data structures falls—but because the cost spread between ad-
jacent cache levels is also going up, the performance impact of being just large enough
to break a cache boundary is also rising.

“Small is beautiful” is therefore better advice than ever, particularly with regard
to central data structures that must live in the fastest possible cache. The advice applies
to code as well; the average instruction spends more time being loaded than it
does executing.
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This turns some traditional advice on its head. Compiler optimizations like loop
unrolling, which get rid of relatively expensive machine instructions in return for an
increase in total code size, may no longer be worth doing. Another example is precom-
puting small tables—for example, a table of sin(x) by degree for optimizing rotations
in a 3D graphics engine will take 365 × 4 bytes on a modern machine. Before proces-
sors got enough faster than memory to demand caching, this was an obvious speed
optimization. Nowadays it may be faster to recompute each time rather than pay for
the percentage of additional cache misses caused by the table.

But in the future, this might turn around again as caches grow larger. More gener-
ally, many optimizations are temporary and can easily turn into pessimizations as cost
ratios change. The only way to know is to measure and see.

Throughput vs. Latency12.4

Another effect of fast processors is that performance is usually bounded by the cost
of I/O and—especially with programs that use the Internet—network transactions.
It’s therefore valuable to know how to design network protocols for good performance.

The most important issue is avoiding protocol round trips as much as possible.
Every protocol transaction that requires a handshake turns any latency in the connection
into a potentially serious slowdown. Avoiding such handshakes is not specifically a
Unix-tradition practice, but it’s one that needs mention here because so many protocol
designs lose huge amounts of performance to them.

I cannot say enough about latency. X11 went well beyond X10 in avoiding round
trip requests: the Render extension goes even further. X (and these days, HTTP/1.1)
is a streaming protocol. For example, on my laptop, I can execute over 4 million
1×1 rectangle requests (8 million no-op requests) per second. But round trips are
hundreds or thousands of times more expensive. Anytime you can get a client to
do something without having to contact the server, you have a tremendous win.

—Jim Gettys

In fact, a good rule of thumb is to design for the lowest possible latency and ignore
bandwidth costs until your profiling tells you otherwise. Bandwidth problems can be
solved later in development by tricks like compressing a protocol stream on the fly;
but getting rid of high latency baked into an existing design is much, much harder
(often, effectively impossible).

While this effect shows up most clearly in network protocol design, throughput
vs. latency tradeoffs are a much more general phenomenon. In writing applications,
you will sometimes face a choice between doing an expensive computation once in
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anticipation that it will be used several times, or computing only when actually
needed (even if that means you will often recompute results). In most cases where
you face a tradeoff like this, the right thing to do is bias toward low latency. That is,
don’t try to precompute expensive operations unless you have a throughput requirement
and know by actual measurement that the throughput you are getting is too low. Pre-
computation may seem efficient because it minimizes total use of processor cycles,
but processor cycles are cheap. Unless you are doing one of a handful of monstrously
compute-intensive applications like data mining, animation rendering, or the afore-
mentioned bomb simulations, it is usually better to opt for short startup times and
quick response.

In Unix’s early days this advice might have been considered heretical. Processors
were much slower and cost ratios were very different then; also, the pattern of Unix
use was tilted rather more strongly toward server operations. The point about the value
of low latency needs to be made partly because even newer Unix developers sometimes
inherit an old-time cultural prejudice toward optimizing for throughput. But times
have changed.

Three general strategies for reducing latency are (a) batching transactions that can
share startup costs, (b) allowing transactions to overlap, and (c) caching.

Batching Operations12.4.1

Graphics APIs are frequently written on the assumption that the fixed setup cost for
a physical screen update is large. Consequently, the write operations actually modify
an internal buffer. It is up to the programmer to decide when enough of these updates
have been batched and to issue the call that turns them into a physical screen update.
Picking the right spacing of physical updates can make a great deal of difference to
the feel of the graphics client. Both the X server and the curses(3) library used by
roguelike programs are organized in this way.

Persistent service daemons are a more Unix-specific example of batching. There
are two reasons, one obvious and one subtle, to write persistent daemons (as opposed
to CLI servers that are started up fresh for each session). The obvious reason is to
manage updates to a shared resource. The less obvious reason, which obtains even
for daemons that don’t handle updates, is to amortize the cost of reading in the dae-
mon’s database across multiple requests. A perfect example of this is the DNS service
daemon named(8), which must sometimes handle thousands of requests per second,
each one of which may actually be blocking a user’s Web page load. One of the tactics
that makes named(8) fast is that it replaces parses of expensive on-disk text files
describing DNS zones with accesses to a cache held in memory.
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Overlapping Operations12.4.2

In Chapter 5 we compared the POP3 and IMAP protocols for querying remote-mail
servers. We noted that IMAP requests (unlike POP3 requests) are tagged with a request
identifier generated by the client; the server, when it ships back a response, includes
the tag of the request it pertains to.

POP3 requests have to be processed in lockstep by both client and server; the client
sends a request, waits for the response to that request, and only then can prepare and
ship the next one. IMAP requests, on the other hand, are are tagged so they can be
overlapped. If an IMAP client knows that it wants to fetch multiple messages, it can
stream several fetch requests (each with a different tag) to the IMAP server, without
waiting for responses between them. Responses, each tagged, will come back when
the server is ready; responses to early requests may come in while the client is still
shipping later ones.

This strategy is general to more areas than network protocols. If you want to cut
latency, blocking or waiting on intermediate results is deadly.

Caching Operation Results12.4.3

Sometimes you can get the best of both worlds (low latency and good throughput)
by computing expensive results as needed and caching them for later use. Earlier we
mentioned that named reduces latency by batching; it also reduces latency by caching
the results of previous network transactions with other DNS servers.

Caching has its own problems and tradeoffs, which are well illustrated by one
application: the use of binary caches to eliminate parsing overhead associated with
text database files. Some variants of Unix have used this technique to speed up access
to their password information (the usual motivation was to cut latency on logins at
very large sites).

To make this work, all code that looks at the binary cache has to know that it should
check the timestamps on both files and regenerate the cache if the text master is newer.
Alternatively, all changes to the textual master must be made through a wrapper that
will update the binary format.

While this approach can be made to work, it has all the disadvantages that the
SPOT rule would lead us to expect. The duplication of data means that it doesn’t yield
any economy of storage—it’s purely a speed optimization. But the real problem with
it is that the code to ensure coherency between cache and master is notoriously leaky
and bug-prone. Very frequently updated cache files can lead to subtle race conditions
simply because of the 1-second resolution of timestamps.

Coherency can be guaranteed in simple cases. One such is the Python interpreter,
which compiles and deposits on disk a p-code file with extension .pyc when a Python
library file is first imported. On subsequent runs the cached copy of the p-code is
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loaded unless the source has since changed (this avoids reparsing the library source
code on every run). Emacs Lisp uses a similar technique with .el and .elc files.
This technique works because both read and write accesses to the cache go through
a single program.

When the update pattern of the master is more complex, however, the synchroniza-
tion code tends to spring leaks. The Unix variants that used this technique to speed
up access to critical system databases were infamous for spawning system-adminis-
trator horror stories that reflected this.

In general, binary cache files are a brittle technique and probably best avoided.
The work that went into implementing a special-purpose hack to reduce latency in
this one case would have been better spent improving the application design so it
doesn’t have a bottleneck there—or even on tuning to improve the speed of the file
system or the virtual-memory implementation.

When you think you are in a situation that demands caching, it is wise to look one
level deeper and ask why the caching is necessary. It may well be no more difficult
to solve that problem than it would be to get all the edge cases in the caching
software right.
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13

Complexity:
As Simple As Possible,
but No Simpler

Everything should be made as simple as possible, but no simpler.

—Albert Einstein

At the end of Chapter 1, we summarized the Unix philosophy as “Keep It Simple,
Stupid!” Throughout the Design section, one of the continuing themes has been the
importance of keeping designs and implementations as simple as possible. But what
is “as simple as possible”? How do you tell?

We’ve held off on addressing this question until now because understanding sim-
plicity is complicated. It needs some of the ideas we developed earlier in the Design
section, especially in Chapter 4 and Chapter 11, as background.

The large questions in this chapter are central preoccupations of the Unix tradition,
some of them motivating holy wars that have simmered for decades. This chapter
starts from established Unix practice and vocabulary, then goes a bit further beyond
it than we do in the rest of the book. We don’t try to develop simple answers to these
questions, because there aren’t any—but we can hope that you will walk away with
better conceptual tools for developing your own answers.
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Speaking of Complexity13.1

As with previous issues about modularity and interface design, Unix programmers
react to a set of distinctions they have often learned from experience without knowing
how to articulate. Therefore we’ll need to start by developing some terminology.

We will start by defining what software complexity is. We will make some hori-
zontal distinctions between different flavors of complexity, which sometimes have to
be traded off against each other. We will finish by making some even more important
vertical distinctions, between the kinds of complexity we must live with and the kinds
we have the option to eliminate.

The Three Sources of Complexity13.1.1

Questions about simplicity, complexity, and the right size of software arouse a lot of
passion in the Unix world. Unix programmers have learned a view of the world in
which simplicity is beauty is elegance is good, and in which complexity is ugliness
is grotesquery is evil.

Underlying the Unix programmer’s passion for simplicity is a pragmatic fact:
complexity costs. Complex software is harder to think about, harder to test, harder to
debug, and harder to maintain—and above all, harder to learn and use. The costs of
complexity, rough as they are during development, bite hardest after deployment.
Complexity creates places for bugs to nest, from which they will emerge to trouble
the world through the entire lifetime of their software.

All kinds of pressures tend to drag programmers into a swamp of complexity
nevertheless. We’ve examined a rogue’s gallery of these in earlier chapters; feature
creep and premature optimization are the two most notorious. Traditionally, Unix
programmers push back against these tendencies by proclaiming with religious fervor
a rhetoric that condemns all complexity as bad.

So what exactly do we mean by ‘complexity’? This point is worth pinning down,
because it varies by observer.

Unix programmers (like other programmers) tend to focus on implementation
complexity—basically, the degree of difficulty a programmer will experience in at-
tempting to understand a program so he or she can mentally model or debug it.

Customers and users, on the other hand, tend to see complexity in terms of the
program’s interface complexity. In Chapter 11 we discussed the quality of ease and
its inverse, mnemonic load. To a user, complexity correlates closely with mnemonic
load. Poor expressiveness and concision can matter too, if a weak interface forces the
user to perform lots of error-prone or merely tedious low-level operations rather than
a few high-level ones.
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Driven by both of these is a third measure that is much simpler: the total number
of lines of code in the system, its codebase size. In terms of life-cycle costs, this is
usually the most important measure. The reasons go back to perhaps the most important
empirical result in software engineering, one we’ve cited before: the defect density
of code, bugs per hundred lines, tends to be a constant independent of implementation
language. More lines of code means more bugs, and debugging is the most expensive
and time-consuming part of development.

Codebase size, interface complexity and implementation complexity may all rise
together. That is the usual result of feature creep, and why programmers especially
dread it. Premature optimization doesn’t tend to raise interface complexity, but it has
bad effects (often severely bad) on implementation complexity and codebase size.
But those sorts of arguments against complexity are relatively easy to win; the difficult
ones begin when these three measures have to be traded off against each other.

We’ve already mentioned one situation in which two measures vary in opposite
directions: a user interface that has been designed primarily to preserve implementation
simplicity, or keep codebase size down, may simply dump low-level tasks on the user.
(A crude example of this, barely imaginable to a Unix programmer but all too common
elsewhere, might be an editor that lacked a global-replace feature.) Though this sort
of design failure is all too common, it does not traditionally have a name. We’ll call
it a manularity trap.

Pressure to keep the codebase size down by using extremely dense and complicated
implementation techniques can cause a cascade of implementation complexity in the
system, leading to an un-debuggable mess. This used to happen frequently when fitting
programs onto very small systems demanded assembler programming or tricks like
self-modifying code; nowadays it is uncommon except in embedded systems, and
rapidly becoming rare even there. This kind of design failure doesn’t have a traditional
name, but one might call it a blivet trap, after an old Army term for the results of at-
tempting to stuff ten pounds of horse manure into a five-pound bag.

The blivet trap won’t appear in our case studies, but we’ve defined it for contrast
with its opposite. It can happen that the designers of a project are so wary of imple-
mentation complexity that they reject a complex but unified way to solve a whole
class of problems in favor of lots of duplicative, ad-hoc code that solves each individ-
ual one in turn. The result is bloat in the size of the codebase, and maintainability
problems more severe than if the unified method had been accepted. For example, a
Web project that really needs a centralized relational database behind its pages might
instead spawn several different keyed data files containing information that has to be
reintegrated at page generation time. This sort of failure is all too common. It doesn’t
have a traditional name; we’ll call it an adhocity trap.
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These are the three faces of complexity, and some of the traps designers fall into
in attempts to avoid them.1 We’ll see more examples when we get to the case studies
later in the chapter.

Tradeoffs between Interface and Implementation
Complexity

13.1.2

One of the most perceptive observations ever made about the Unix tradition by
someone standing outside it was contained in Richard Gabriel’s paper called Lisp:
Good News, Bad News, and How to Win Big [Gabriel]. Gabriel is a long-time leader
of the Lisp community, and the paper was primarily an argument for a particular style
of Lisp design, but the author himself acknowledges that it is now remembered pri-
marily for the section called ‘The Rise of Worse Is Better’.

The paper argued that Unix and C have the characteristics of viruses, and that in
the evolutionary struggle among software designs traits like implementation simplic-
ity and portability which lead to rapid propagation (infectiousness) are more effective
than correctness and completeness of the design. Gabriel came so close to anticipating
the ‘many-eyeballs’ effect on open-source software that the open-source community
retrospectively adopted him as one of its theorists after 1997.

Less remembered is that the Gabriel’s central argument was about a very specific
tradeoff between implementation and interface complexity, one which rather exactly
fits the categories we have examined in this chapter. Gabriel contrasts an ‘MIT’
philosophy most valuing interface simplicity with a ‘New Jersey’ philosophy most
valuing implementation simplicity. He then proposes that although the MIT philosophy
leads to software that is better in the abstract, the (worse) New Jersey model has better
propagation characteristics. Over time, people pay more attention to software written
in the New Jersey style, so it improves faster. Worse becomes better.

In fact, the MIT and New Jersey philosophies have analogs as conflicting tendencies
within the Unix design tradition itself. One strain of Unix thinking emphasizes small
sharp tools, starting designs from zero, and interfaces that are simple and consistent.
This point of view has been most famously championed by Doug McIlroy. Another
strain emphasizes doing simple implementations that work, and that ship quickly,
even if the methods are brute-force and some edge cases have to be punted. Ken
Thompson’s code and his maxims about programming have often seemed to lean in
this direction.

The tension between these approaches arises precisely because one can sometimes
get a simpler interface if one is willing to pay implementation complexity for it, or

1. The terms we have invented for these design traps, unlikely as they may sound, come from
established hacker jargon described in [Raymond96].
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vice versa. Gabriel’s original example, about how system calls that do long operations
handle interrupts they cannot hold or mask, is still one of the best. Under the MIT
philosophy, the right thing to do would be to back out of the system call and automat-
ically resume it once the interrupt has been handled; this is harder to implement but
leads to a simpler interface. Under the New Jersey philosophy, the system call would
return an error indicating that it has been interrupted and the user must re-execute;
this can be implemented far more simply, but leads to a programming interface that
is more difficult to use.

Both approaches have been tried. Old Unix hands will instantly think of System-
V-style vs. BSD-style handling of software signals; the latter follows the MIT
philosophy, while the former hails from New Jersey. Underlying the choice between
them is a pressing question that has nothing directly to do with the software’s infec-
tiousness: if your goal is to hold down total global complexity, where are you most
willing to pay to do that? Where should you be most willing to pay?

One epochal example not mentioned in Gabriel’s paper is from distributed hypertext
systems. Early distributed-hypertext projects such as NLS and Xanadu were severely
constrained by the MIT-philosophy assumption that dangling links were an unaccept-
able breakdown in the user interface; this constrained the systems to either browsing
only a controlled, closed set of documents (such as on a single CD-ROM) or imple-
menting various increasingly elaborate replication, caching, and indexing methods
in an attempt to prevent documents from randomly disappearing. Tim Berners-Lee
cut through this Gordian knot by punting the problem in classic New Jersey style.
The simplicity of implementation he bought by allowing “404: Not Found” as a re-
sponse was what made the World Wide Web lightweight enough to propagate
and succeed.

Gabriel himself, while sticking with the observation that ‘worse’ is more infectious
and tends to win in the end, has publicly changed his mind several times about the
underlying complexity-related question of whether or not this is actually a good
thing. His uncertainty mirrors a lot of ongoing design debates within the Unix
community.

We cannot offer a one-size-fits-all answer. As with most of the large questions in
this chapter, good taste and engineering judgement will demand different answers in
different situations. The important thing is to develop the habit of thinking carefully
about this issue on each and every one of your designs. As we have observed
before in discussing software modularity, complexity is a cost you must budget
very carefully.

Essential, Optional, and Accidental Complexity13.1.3

In an ideal world, Unix programmers would craft only small, perfect gems of software,
each minimal, each elegant, each perfect. But one of the unfortunate things about
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reality is that it often poses complex problems that demand complex solutions. You
can’t control a jetliner with an elegant ten-line procedure. There are too many pieces
of equipment, too many channels and interfaces, too many different processors—too
many different subsystems defined by independently operating human beings who
often don’t agree even on fundamental conventions. Even if you are successful at
making all the individual software parts of an avionics system elegant, integration is
likely to produce a large, complex, and grubby body of code with (one hopes) the
single virtue that it will actually work.

Jetliners have essential complexity. There is a rather sharp point past which it’s
not possible to trade away features for simplicity, because the plane has to stay in the
air. Because of that very fact, avionics control systems do not tend to spawn religious
wars about complexity—and Unix programmers tend to stay away from them.

Jetliners are certainly not immune from system failures due to overcomplexity.
But the design issues are easier to discern and think about in software for which the
requirements are more flexible, in which it is easy to trade off between anticipated
features and complexity. (Here, and in the rest of this chapter, we will use ‘feature’
in a very general sense that includes things like performance gains or overall degree
of interface polish.)

To sharpen our vision, we need to begin by noticing a difference between accidental
complexity and optional complexity.2 Accidental complexity happens because someone
didn’t find the simplest way to implement a specified set of features. Accidental
complexity can be eliminated by good design, or good redesign. Optional complexity,
on the other hand, is tied to some desirable feature. Optional complexity can be
eliminated only by changing the project’s objectives.

When we fail to distinguish between optional and accidental complexity, design
debates become seriously confused. Questions about what a project’s objectives are
get confused with questions about the aesthetics of simplicity, and whether people
have been sufficiently clever.

Mapping Complexity13.1.4

So far, we’ve developed two different scales for thinking about complexity. These
scales are actually orthogonal to each other. Section 13.1.1 may help clarify the rela-
tionships. Each of the nine boxes of the figure lists a common source of a particular
kind of complexity.

2. The distinction between accidental and optional complexity means that the categories we’re
discussing here are not the same as essence and accident in Fred Brooks’s essay No Silver
Bullet [Brooks], but they have common ancestry in philosophy.
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Figure 13.1: Sources and kinds of complexity.

We’ve touched on some of these varieties of complexity earlier in this book, espe-
cially the accidental ones. In Chapter 4 we saw that accidental interface complexity
often comes from non-orthogonality in the interface design—that is, failing to carefully
factor the interface operations so that each does exactly one thing. Accidental code
complexity (making code more complicated than it needs to be to get the job done)
often results from premature optimization. Accidental codebase bloat often results
from violating the SPOT rule, duplicating code or organizing it poorly so that oppor-
tunities for reuse aren’t recognized.

Essential interface complexity usually can’t be cut without trimming the basic
functional requirements for the software (a theme we’ll develop further in this chapter’s
case studies). Essential codebase size is related to choice of development tools because,
if the feature list is held constant, the most important factor in codebase size is prob-
ably the choice of implementation language (as we implied in Chapter 8).

Sources of optional complexity are the most difficult to make useful generalizations
about, because they so often depend on delicate judgments about which features it is
worth paying the complexity cost for. Optional interface complexity often comes from
adding convenience features that make life easier for users but aren’t essential to the
function of the program. Optional increases in codebase size (supposing the user-vis-
ible features and the algorithms used are held constant) can often come from various
sorts of practices intended to make it more maintainable—adding mode comments,
using long variable names, and so forth. Optional implementation complexity tends
to be driven by everything that touches a project.

The sources of complexity have to be grappled with in different ways. Codebase
size can be attacked with better tools. Implementation complexity can be addressed
with better choice of algorithms. Interface complexity has to be addressed with better
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interaction design, a skill involving considerations of ergonomics and user psychology.
This skill is less common (and possibly more difficult) than writing code.

Attacking the kinds of complexity, on the other hand, has to be done more with
insight than with methods. You cut accidental complexity by noticing that there is a
simpler way to do things. You cut optional complexity by making context-dependent
judgments about what features are worthwhile. You can only cut essential complexity
by having an epiphany, fundamentally redefining the problem you are addressing.

When Simplicity Is Not Enough13.1.5

The failure mode that goes with the Unix tradition’s insistence on simplicity is that
Unix programmers often talk (and sometimes even behave) as though all optional
complexity is accidental. More than this, there is a strong bias in the Unix tradition
toward removing features rather than accepting optional complexity.

The case for this attitude is easy to make (indeed, we spend much of this book
making it). Clean minimalism makes us feel virtuous on many levels, and designing
for it is a valuable counter to the natural tendency of software systems to develop
ever-more-elaborate encrustations of ill-considered features. But computing resources
and human thinking time, like wealth, find their justification not in being hoarded but
in being spent. As with other forms of asceticism, one has to ask when design mini-
malism stops being a valuable form of self-discipline and starts being a mere hair
shirt—a way to indulge those feelings of virtue at the expense of actually using that
wealth to get work done.

This is a perilous question, all too easily turned into an argument for abandoning
good design discipline altogether. Unix old hands often shy away from it, fearing that
failing to hold the hardest possible line against complexity and bloat will lead us
inexorably to damnation. But it’s also a necessary question. We’ll tackle it directly
when analyzing this chapter’s case studies.

A Tale of Five Editors13.2

Now we’re going to use five different Unix editors as case studies. It will be helpful
to bear in mind a set of benchmark tasks as we examine these designs:

• Plain-text editing. Manipulating plain ASCII (or, in this internationalized age,
perhaps Unicode) files with no structure known to the editor above byte level,
or perhaps line level.
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• Rich-text editing. Editing of text with attributes; these might include font changes,
color, or other sorts of properties of text spans (such as being a hyperlink). Editors
that can do this have to be able to translate between some presentation of the
attributes in the user interface and some on-disk representation of the data (such
as HTML, XML, or other rich-text formats.)

• Syntax awareness. An editor that is syntax-aware knows that input events have
a grammar, and does things like automatically changing the indent level when
it recognizes the beginning or end of a block scope in a programming language.
Editors that are syntax-aware also commonly highlight syntax with colors or
distinguished fonts.

• Output parsing of batch command output. The commonest case of this in the
Unix world is running a C compilation from inside the editor, trapping the error
messages, and then being able to step through the error locations without leaving
the editor.

• Interaction with helper subprocesses that persist and maintain state between
editor commands. This capability, when present, has powerful consequences:

• It’s possible to drive a version-control system from inside the editor, per-
forming file checkins and checkouts without dropping out to a shell window
or separate utility.

• It’s possible to front-end a symbolic debugger inside the editor, such that
(for example) when the run stops on a breakpoint the appropriate file and
line is automatically visited.

• It’s possible to edit remote files within the editor, by having it recognize
when a filename refers to another host (recognizing some syntax like
/user@host:/path/to-file). Provided you have the right access,
such an editor can automatically run a utility like scp(1) or ftp(1) to fetch
a local copy, then automatically copy the edited version back to the remote
location at file-save time.

All our case studies can edit plain text. (The reader should not take this capability
for granted—there are many things called editors, such as ‘word processors’ that are
too specialized to do this!) We begin seeing variable degrees of optional complexity
in how they handle the more complex tasks.

30313.2 A Tale of Five Editors



ptg

ed13.2.1

ed(1) is the truly Unix-minimalist way of plain-text editing. It dates from the days of
teletypes.3 It has a simple, austere CLI, and there is no screen display. In the following
listing, computer output is emphasized.

ed sample.txt
sample.txt: No such file or directory
# This is a comment line, not a command.
# The message above warns that the sample.txt file is newly created.
a
the quick brown fox
jumped over the lazy dog
.
# That was an append command, which added text to the file.
# The dot on a line by itself terminated the append.
1s/f[a-z]x/dragon/
# On line 1, replace the first substring matching an f followed by a
# lowercase alphabetic followed by x with ‘dragon’.  The
# substitute command accepts basic regular expressions.
1,$p
the quick brown dragon
jumped over the lazy dog
# Print all lines from 1 to the last.
w
51
# That wrote the file to disk. The ‘q’ command ends the
# editing session.
q

Unbelievable as it may seem to a modern reader, most of Unix’s original code was
written with this editor. The reader with DOS experience may recognize here the
original on which EDLIN was (crudely) modeled.

If one defines the job of an editor simply as enabling the user to create and modify
plain text files, ed(1) is entirely sufficient for the job. Importantly to the Unix view
of design correctness, it does nothing else. Many old-school Unix programmers
half-seriously maintain that all editors with more features than ed has are simply
bloated—and a few still who seriously believe this.

Appropriately, ed was Ken Thompson’s deliberate simplification of the earlier
qed[RitchieQED] editor — which was very similar (and the first editor to use regular
expressions in the characteristic Unix way) but had multiple-buffer capability that
Ken deliberately discarded. He judged it not worth the additional complexity.

3. Younger readers may not be aware that terminals used to print. On paper. Very slowly.
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A notable characteristic of ed(1) and all its descendants is the object-operation
format of its commands (the session example shows an explicit range on the ‘p’
command). There is a relatively powerful syntax for specifying line ranges, either
numerically, or by regular-expression pattern match, or by special shorthands for the
current and last line. Most editor operations can be applied to any range. This is a
good example of orthogonality.

Nowadays, ed(1) is primarily used as a program-driven editing tool in scripts—a
role to which editors with more elaborate modes of interactivity are unsuited. There
is a close variant called ex(1) which adds a few useful interactivity features such as
command prompts; it is occasionally useful in rare cases when editing must be done
over a slow serial line, or in certain unusual crash-recovery situations where the library
support needed to run other editors is not accessible. For these reasons, every Unix
includes an ed implementation and most include ex as well.

The sed(1) stream editor mentioned in Chapter 9 is also closely related to ed; many
of the basic commands are the same, though designed to be invoked through command-
line switches rather than from standard input.

Almost all Unix programmers have strayed from the path of austerity and minimal-
ist virtue enough to normally use editors that at least present a roguelike, screen-ori-
ented interface. However, the fact that the religion of ed persists4 says a great deal
that is worth noting about the Unix mindset.

vi13.2.2

The original vi(1) editor was the first attempt to bolt a visual, roguelike interface onto
the command set of ed(1). Like ed, its commands are generally single keystrokes,
and it is particularly well suited to use by touch-typists.

The original vi didn’t have mouse support, editing menus, macros, assignable key
bindings, or any form of user customization. In line with the religion of ed, vi’s parti-
sans considered the lack of these features a virtue. On this view, one of vi’s most im-
portant virtues is that you can start editing immediately on a new Unix system without
having to carry along your customizations or worrying that the default command
bindings will be dangerously different from what you’re used to.

One characteristic of vi that beginners tend to find frustrating is a result of its terse
single-keystroke commands. It has a moded interface—you are either in command
mode or in text-insertion mode. In text-insertion mode, the only commands that work

4. The religion of ed is exemplified by a famous Usenet posting which the reader may be able
to find with a Web search for “Ed is the standard editor”. While it is clearly intended as parody,
it is by no means clear that the author was entirely joking. Most Unix hackers would read it
as an example of “Ha ha, only serious”.
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are the ESC key for mode exit and (on newer versions) the cursor-movement keys.
In command mode, typing text will be interpreted as commands and do odd (and
probably destructive) things to your content.

On the other hand, one property of the command set that vi fans particularly tout
is the object-operation format it inherited from ed. Most of the extended commands
also operate in a natural way on any line range.

Over the years, vi has bulked up considerably. Modern versions add mouse support,
editing menus, unlimited undo (the original vi could only undo the last command),
multiple files in separate buffers, and customization with a run-control file. However,
the use of run-control files is still unusual, and in contrast to Emacs, the use of embed-
ded general-purpose scripting has never caught on. Instead, vi implementations have
grown individual capabilities to do things, like syntax awareness of C code and output
parsing of C compiler error messages, by adding C code to vi itself. Subprocess inter-
action is not supported.

Sam13.2.3

The Sam editor5 was written by Rob Pike at Bell Labs in the mid-1980s. Sam was
designed for the Plan 9 operating system, which we’ll survey in Chapter 20. While
the Sam editor is not widely known outside the Labs, it’s favored by many of the
original Unix developers who went on to work on Plan 9, including Ken
Thompson himself.

Sam is a fairly straightforward descendant of ed, remaining much closer to its
parent than vi. Sam incorporates only two new concepts: a curses-style text display
and text selection with the mouse.

Each Sam session has exactly one command window, and one or more text win-
dows. Text windows edit text, and command windows accept ed-style editing com-
mands. The mouse is used to move between windows, and to select text regions
within text windows. This is a clean, orthogonal, modeless design that discards most
of the interface complexity of vi.

Most commands operate by default on a select region that can be painted with a
mouse drag operation. The select region for a command can also be set by specifying
a line range in the fashion of ed, but Sam gains considerable power from the fact that
the user can select at finer granularity than a line range. Because the mouse is available
to do selections and rapidly change focus between buffers (including the command
buffer), Sam needs no equivalent of the default (command) mode of vi. The hundreds
of extended vi commands are unnecessary and, therefore, omitted. Overall, Sam adds

5. http://plan9.bell-labs.com/sys/doc/sam/sam.html
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only about a dozen commands to the seventeen or so in the ed set, for a total of
about thirty.

Four of the new commands in Sam join two inherited from ed(1) and vi(1), as
ways to apply regular expressions to the task of selecting files and file regions to op-
erate on. These provide limited but effective loop and conditional facilities to the
command language. There is, however, no way to name or parameterize command-
language procedures. Nor can the language do interactive control of a subprocess.

An interesting feature of Sam is that it’s split into two parts. separating a back end
that manipulates files and does searches from a front end that handles the screen in-
terface. This instance of the “separated engine and interface” chapter has the immediate
practical benefit that, though the program has a GUI, it can run easily over a low-
bandwidth connection to edit files on a remote server. Also, the front and back ends
can be retargeted relatively easily.

Sam, like recent versions of vi, has infinite undo. By design, it supports neither
rich-text editing, nor output parsing, nor subprocess interaction.

Emacs13.2.4

Emacs is undoubtedly the most powerful programmer’s editor in existence. It’s a big,
feature-laden program with a great deal of flexibility and customizability. As we ob-
served in the Chapter 14 section on Emacs Lisp, Emacs has an entire programming
language inside it that can be used to write arbitrarily powerful editor functions.

Unlike vi, Emacs doesn’t have interface modes; instead, commands are normally
control characters or prefixed with an ESC. However, in Emacs it is possible to bind
just about any key sequence to any command, and commands can be stock or cus-
tomized Lisp programs.

Emacs can edit multiple files, each in a separate buffer, and supports moving text
among the buffers. Versions running under X have native mouse support.

The Lisp programs bound to Emacs keystrokes can perform arbitrary text transfor-
mations on a buffer. This capability is heavily used, among other things to define
syntax-aware and rich-text editing modes for dozens of different languages and markup
formats (beginning with support and color highlighting of C code as in vi, but going
way beyond that). Each mode is simply a library file of Lisp code that is loaded
on demand.

Emacs Lisp programs can also interactively control arbitrary subprocesses. Some
notable consequences of this capability were listed earlier, including the ability to
serve as a front end for version-control systems, debuggers, and the like.
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The designers of Emacs6 built a programmable editor that could have task-related
intelligence customized into it for hundreds of different specialized editing jobs. They
then gave it the ability to drive other tools. As a result, Emacs supports dealing with
all things textual in one shared context—files, mail, news, debugger symbols. It can
serve as a customizable front end to any command with an interactive textual interface.

It is a common joke, both among fans and detractors of Emacs, to describe it as
an operating system masquerading as an editor. That overstates the case, but Emacs
certainly does fulfill the role occupied by integrated development environments (IDEs)
under non-Unix operating systems (a theme to which we shall return in Chapter 15).

This power comes at a price in complexity. To use a customized Emacs you have
to carry around the Lisp files that define your personal Emacs preferences. Learning
how to customize Emacs is an entire art in itself. Emacs is correspondingly harder to
learn than vi.

Wily13.2.5

The wily editor7 is a clone of the Plan 9 editor acme.8 It shares some facilities with
Sam, but is intended to provide a fundamentally different user experience. Although
Wily probably sees the least widespread use of any of these editors, it is interesting
because it illustrates a different and arguably more Unixy way of implementing an
Emacs-like programmable editor.

Wily could be described as a minimalist IDE, an implementation of Emacs-style
extensibility without the decades of accompanying cruft. In Wily, even global search
and replace, that sine qua non of Unix editors, is supplied by an external program.
The built-in commands relate almost exclusively to windowing operations. Wily is
designed from the ground up to use the mouse as much, and as well, as possible.

Wily attempts to replace not only conventional editors but conventional terminal
windows such as xterm(1) as well. In Wily, any piece of text within the main window
(which contains multiple non-overlapping Wily windows) can be an action or a search
expression. The left mouse button is used to select text, the middle button to execute

6. The designers of Emacs were Richard M. Stallman, Bernie Greenberg, and
Richard M. Stallman. The original Emacs was Stallman’s invention, the first version with an
embedded Lisp was Greenberg’s, and the now-definitive version is Stallman’s derived from
Greenberg’s. No complete account of the design history has been written in 2003, but Green-
berg’s Multics Emacs: The History, Design, and Implementation is illuminating and readily
discoverable via keyword search on the Web.

7. http://www.cs.yorku.ca/~oz/wily

8.  http://plan9.bell-labs.com/sys/doc/acme/acme.html
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text as a command (either built-in or external), and the right button to search either
Wily’s buffers or the file system for text. No permanent or popup menus are required.

In Wily, the keyboard is used only to enter text. Shortcuts are achieved not by
special use of the keyboard, but by holding down more than one mouse button at the
same time. These shortcuts are always equivalent to using the middle button on some
built-in command.

Wily can also be used as the front end for C, Python, or Perl programs, reporting
to them whenever a window is changed or an execute or search command is performed
with the mouse. These plugins function analogously to Emacs modes, but don’t run
in the same address space with Wily; instead, they communicate with it via a very
simple set of remote procedure calls. Wily comes packaged with an xterm analog and
a mail tool which uses it as the editing front end.

Because Wily depends on the mouse so heavily, it cannot be used on a charac-
ter-cell-only console display; nor can it be used over a remote link without X
forwarding. As an editor, Wily is designed for editing plain text; it has only two fonts
(one proportional and one fixed-width) and has no mechanism that could support rich-
text editing or syntax awareness.

The Right Size for an Editor13.3

Now let us examine our case studies using the complexity categories we developed
at the beginning of this chapter.

Identifying the Complexity Problems13.3.1

Every text editor has a certain amount of essential complexity. At minimum, it has
to maintain an internal buffer copy of the file or files the user is editing. Functions to
import and export file data are a minimum requirement (usually from and to disk,
though the stream editor sed(1) is an interesting exception). Some way to modify the
buffer must be supported, though we cannot specify what way without describing
specific features that are optional. Our four examples show widely varying levels of
optional and accidental complexity beyond this.

Of all of these, ed(1) has the least complexity. Almost the only non-orthogonal
feature in its command set is the fact that many of its commands can take a ‘p’ or ‘l’
suffix to print or list command results. Even after three decades of feature additions
there are fewer than thirty editing commands, and the normal working set for most
users will be less than a dozen. There is not much in the way of optional complexity
that could be removed here, and it’s hard to identify any accidental complexity at all.
The user interface of ed is strictly compact.
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On the flip side, the ed interface is not really suitable for editing tasks even as basic
as rapidly flipping through a text file. One has to limit one’s objectives pretty sharply
for ed to become an acceptable solution for interactive editing.

Suppose, then, that we add “support visual browsing and editing of multiple files”
as an objective? Then Sam seems not very far from being the minimal ed extension
that could achieve this. The fact that the designers did not change the semantics of
the inherited ed commands is notable; they kept an existing, orthogonal set and added
a relatively small set of capabilities that are themselves orthogonal.

One large increase in optional (implementation) complexity is Sam’s infinite-undo
capability. Another significant one is the new regular-expression-based loop and iter-
ation facility in the command language. These, and the fact that the mouse can be
used as a selection device, are about all that distinguish Sam from a hypothetical ed
with a mouse-and-windows interface.

Without a thorough code audit it’s difficult to be sure, but at the design level it’s
hard to identify any accidental complexity in Sam. The interface is at least semi-
compact and arguably strictly compact. This editor lives up to the very highest stan-
dards of Unix design—unsurprisingly, given its provenance.

By contrast, vi looks rather bloated and flabby. There are hundreds of commands,
many of them duplicative. These are at best optional complexity, and perhaps acciden-
tal. At a guess, most users don’t know more than 5% of the command set. With the
example of Sam before us, it’s fair to wonder why the interface complexity of vi
is so high.

In Chapter 11 we described the effect of the absence of standard arrow keys on
early roguelike programs; vi was one of these. When vi was built, its author knew
that many of his users would need to be able to use the cursor motion keys traditional
on Unix glass teletypes. This made a modal interface inevitable. Once the hjkl keys
had mode-dependent meanings in an edit buffer, it was all too easy to fall into the
habit of adding new commands in an ad-hoc way.

Sam, designed as it is to depend on a bitmapped display with both arrow keys and
a mouse, can be much cleaner. And it is.

But the clutter of vi commands is a relatively superficial problem. It’s interface
complexity, yes, but of a kind most users can and do ignore (the interface is semi-
compact in the sense we developed in Chapter 4). The deeper problem is an adhocity
trap. Over the years, vi has had progressively more and more special-purpose C code
bolted onto it to perform tasks that Sam refuses to do and that Emacs would attack
with Lisp code modules and subprocess control. The extensions are not, as in Emacs,
libraries loaded as needed; users pay the overhead for the resulting code bloat all the
time. As a result, the size difference between a modern vi and a modern Emacs is not
nearly as great as one might expect; in mid-2003 on an Intel-architecture machine,
it’s 1500KB for GNU Emacs versus 900KB for vim. There is a whole lot of both op-
tional and accidental complexity in that 900KB.
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For vi partisans, not having an embedded scripting language—not being
Emacs—has become an identity issue, a central part of the shared myth that vi is a
lightweight editor. While vi fans like to talk about filtering buffers with external pro-
grams and scripts to do what Emacs’s embedded scripting does, the reality is that vi’s
“!” command cannot filter regions of an edit buffer selected at finer granularity than
a range of lines (Sam and Wily, though they have no more subprocess management
than vi does, can at least filter arbitrary text ranges, not just line ranges). All knowledge
of file formats and syntaxes that vary at a finer granularity (and most do) has to be
built in to C code if vi is going to have it available at all. There is thus little prospect
that the codebase-size ratio between Emacs and vi will improve in favor of vi; indeed,
it seems likely to get worse.

Emacs is sufficiently large, and has a sufficiently tangled history, to make separating
its optional from its accidental complexity quite a challenge. We can at least begin
by trying to separate the dispensable accidents of the Emacs design from its indispens-
able essentials.

Perhaps the most conspicuously dispensable part of the Emacs design is Emacs
Lisp. It is essential to what Emacs does that it features what we nowadays call an
embedded scripting language, but Emacs would be little different in capability if that
language had been Python or Java or Perl. At the time Emacs was designed in the
1970s, however, Lisp was about the only language that had the characteristics (includ-
ing unlimited-extent types and garbage collection) to fit it to the job.

Much in the particulars of the way emacs handles event processing and drives a
bitmapped display (including the support for internationalization) is accidental as
well. The one great schism in its history (the GNU Emacs/XEmacs fork) was over
these issues, and demonstrates that nothing in the rest of the design prefers or requires
any one event model.

On the other hand, the ability to bind arbitrary event sequences to arbitrary built-
in or user-defined functions is indispensable. The scripting language could change
and the event model could change, but without the anything-goes polymorphism in
the way they are connected, the Emacs design would be both unrecognizable and
crippled. Extension modes would have to fight each other for ownership of a limited
event set, and activating multiple cooperating modes on the same buffer would be
difficult or impossible.

The huge library of extension modes shipped with Emacs is accidental as well.
The ability to construct such extensions may be essential, but the particular set we
have is a product of history and chance. They could all be different or replaced; the
result would still, recognizably, be Emacs.

But subprocess interaction is indispensable. Without it, Emacs modes could not
perform the expected IDE-like integration and front-ending of many different tools.

Experience with small editors that clone the default keybindings and appearance
of Emacs without emulating its extensibility is instructive. There have been several

31113.3 The Right Size for an Editor



ptg

such clones, of which the best known are probably MicroEmacs and pico, but none
have ever acquired significant mindshare.

Having identified accident and essence in the Emacs design helps us get a handle
on which of its complexity is optional and which accidental. But, more importantly,
they help us see past the superficial differences between Emacs and the previous three
editors we have considered, to the really critical difference: the fact that the objectives
of the Emacs design are far more broad. Emacs wants to be a unified interface to all
tools that operate on text.

Wily makes an interesting contrast with Emacs. As with Sam, the amount of op-
tional complexity is low; the Wily user interface can be succinctly but effectively de-
scribed in a single page.

But this elegance comes with a price; it is not possible to bind functions to any
keystrokes or input gestures other than a restricted set of mouse chords. Instead, every
editor function other than very basic text insertion and deletion has to be implemented
with a program outboard of the editor, either a standalone script or a specialized
symbiont process listening to Wily input events. (The former technique relies on
outboard program startups being fast enough not to produce noticeable interface lag,
something which was emphatically not the case in either Emacs’s natal environment
or under the Unixes it was first ported to.)

Optional complexity which Emacs would implement in Lisp extension modes is
instead distributed through specialized symbionts; each has to know the special Wily
messaging interface. An advantage of this approach is that such symbionts can be
written in any language the user chooses. In addition, the symbionts (because they
run outboard) cannot adversely affect each other or the Wily core (which is not true
of Emacs modes). A disadvantage is that Wily itself cannot directly do subprocess
interaction with ordinary Unix tools at all.

In this and other ways, wily’s distributed scripting is not as powerful as the embed-
ded scripting of Emacs. The scope of Wily’s objectives is correspondingly narrower;
the authors disclaim any interest in syntax-aware editing, or rich text, for example,
and neither Wily nor its Plan 9 ancestor acme can do these things.

This brings us to another, and sharper way of posing the central question of this
chapter: When do large objectives justify a large program?

Compromise Doesn’t Work13.3.2

The comparison between Sam and vi suggests strongly that, at least where editors
are concerned, attempts to compromise between the minimalism of ed and the all-
singing-all-dancing comprehensiveness of Emacs don’t work very well; vi attempts
this, and ends up with neither virtue. Instead, it falls into an adhocity trap. Wily avoids
the adhocity trap, but cannot match the power of Emacs and must demand a custom
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process interface from each of its interactive symbionts in order to come
anywhere close.

Evidently something about editors tends to push them in the direction of increasing
complexity. In the case of vi, that something is not hard to identify; it’s the desire for
convenience. While ed may be theoretically adequate, very few people (other than
perhaps Ken Thompson himself) would forgo screen-oriented editing to make a
statement about software bloat.

More generally, programs that mediate between the user and the rest of the universe
notoriously attract features. This includes not just editors but Web browsers, mail and
newsgroup readers, and other communications programs. All tend to evolve in accor-
dance with the Law of Software Envelopment, aka Zawinski’s Law: “Every program
attempts to expand until it can read mail. Those programs which cannot so expand
are replaced by ones which can”.

Jamie Zawinski, inventor of the Law (and one of the principal authors of the
Netscape and Mozilla Web browsers), maintains more generally that all really useful
programs tend to turn into Swiss Army knives. The commercial success of large,
integrated application suites outside the Unix world tends to confirm this, and directly
challenges the Unix philosophy of minimalism.

To the extent Zawinski’s Law is correct, it suggests that some things want to be
small and some want to be large, but the middle ground is unstable. The superficial
problems with vi can be put down to history, but the deeper ones trace back to the
combination of steady pressure to add features with refusal to embed the scripting
and subprocess-control features that vi partisans associate with excessive size. On a
different level, accepting that there would be two modes in the interface (insertion
versus character-motion) opened a can of worms—it became far too easy to add new
commands without thinking about their complexity impact on the overall design.

The examples of Emacs and Wily further suggest why some things want to be
large: so that several related tasks can share context. Editing and version control (or
editing and mail, editing and symbolic debugging, etc.) are separate tasks from the
point of view of the implementers—but users would often prefer to have one big
environment that lets them point at pieces of text, rather than spend time and attention
ping-ponging between several programs that each have to have the same filename or
the contents of some cut buffer handed to them.

More generally, let’s suppose we view the entire Unix environment as a single
work of design by community. Then the religion of “small, sharp tools”, the pressure
to keep interface complexity and codebase size down, may lead right to a manularity
trap—the user has to maintain all the shared context himself, because the tools won’t
do it for him.

Returning to the specific context of editors, Sam shows us that vi is the wrong
thing. Wily is a valiant effort to avoid the vastness of Emacs that falls short because
it can’t be syntax-aware. But Wily, or some realization of the Emacs design ideas
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cleaned up and stripped of historical baggage, might be the right thing. The value of
optional complexity depends on the objectives you choose, and the ability to share
context among all the text-oriented tools related to a task is valuable.

Is Emacs an Argument against the Unix Tradition?13.3.3

The traditional Unix view of the world, however, is so attached to minimalism that it
isn’t very good at distinguishing between the adhocity-trap problems of vi and the
optional complexity of Emacs.

The reason that vi and emacs never caught on among old-school Unix programmers
is that they are ugly. This complaint may be “old Unix” speaking, but had it not
been for the singular taste of old Unix, “new Unix” would not exist.

—Doug McIlroy

Attacks on Emacs by vi users—along with attacks on vi by the hard-core old-
school types still attached to ed—are episodes in a larger argument, a contest between
the exuberance of wealth and the virtues of austerity. This argument correlates with
the tension between the old-school and new-school styles of Unix.

The “singular taste of old Unix” was partly a consequence of poverty in exactly
the same way that Japanese minimalism was—one learns to do more with less most
effectively when having more is not an option. But Emacs (and new-school Unix,
reinvented on powerful PCs and fast networks) is a child of wealth.

As, in a different way, was old-school Unix. Bell Labs had enough resources so
that Ken was not confined by demands to have a product yesterday. Recall Pascal’s
apology for writing a long letter because he didn’t have enough time to write a
short one.

—Doug McIlroy

Ever since, Unix programmers have maintained a tradition that exalts the elegant
over the excessive.

The vastness of Emacs, on the other hand, did not originate under Unix, but was
invented by Richard M. Stallman within a very different culture that flourished at the
MIT Artificial Intelligence Lab in the 1970s. The MIT AI lab was one of the wealthiest
corners of computer-science academia; people learned to treat computing resources
as cheap, anticipating an attitude that would not be viable elsewhere until fifteen years
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later. Stallman was unconcerned with minimalism; he sought the maximum power
and scope for his code.

The central tension in the Unix tradition has always been between doing more
with less and doing more with more. It recurs in a lot of different contexts, often as
a struggle between designs that have the quality of clean minimalism and others that
choose expressive range and power even at the cost of high complexity. For both sides,
the arguments for or against Emacs have exemplified this tension since it was first
ported to Unix in the early 1980s.

Programs that are both as useful and as large as Emacs make Unix programmers
uncomfortable precisely because they force us to face the tension. They suggest that
old-school Unix minimalism is valuable as a discipline, but that we may have fallen
into the error of dogmatism.

There are two ways Unix programmers can address this problem. One is to deny
that large is actually large. The other is to develop a way of thinking about complexity
that is not a dogma.

Our thought experiment with replacing Lisp and the extension libraries gives us
a new perspective on the oft-heard charge that Emacs is bloated because its extension
library is so large. Perhaps this is as unfair as charging that /bin/sh is bloated because
the collection of all shellscripts on a system is large. Emacs could be considered a
virtual machine or framework around a collection of small, sharp tools (the modes)
that happen to be written in Lisp.

On this view, the main difference between the shell and Emacs is that Unix dis-
tributors don’t ship all the world’s shellscripts along with the shell. Objecting to Emacs
because having a general-purpose language in it feels like bloat is approximately as
silly as refusing to use shellscripts because shell has conditionals and for loops. Just
as one doesn’t have to learn shell to use shellscripts, one doesn’t have to learn Lisp
to use Emacs. If Emacs has a design problem, it’s not so much the Lisp interpreter
(the framework part) as the fact that the mode library is an untidy heap of historical
accretions—but that’s a source of complexity users can ignore, because they won’t
be affected by what they don’t use.

This mode of argument is very comforting. It can be applied to other tool-
integration frameworks, such as the (uncomfortably large) GNOME and KDE desktop
projects. There is some force to it. And yet, we should be suspicious of any ‘perspec-
tive’ that offers to resolve all our doubts so neatly; it might be a rationalization, not
a rationale.

Therefore, let’s avoid the possibility of falling into denial and accept that Emacs
is both useful and large—that it is an argument against Unix minimalism. What does
our analysis of the kinds of complexity in it, and the motives for it, suggest beyond
that? And is there reason to believe that those lessons generalize?
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The Right Size of Software13.4

There is a hidden dual of the Unix gospel of small, sharp tools; a background so im-
plicit that many Unix practitioners do not notice it, any more than fish notice the water
they swim in. It is the presence of frameworks.

Small, sharp tools in the Unix style have trouble sharing data, unless they live inside
a framework that makes communication among them easy. Emacs is such a framework,
and unified management of shared context is what the optional complexity of Emacs
is buying. The practical impact of unified management of shared context is that the
user is not burdened with low-level naming and resource-management issues.

In old-school Unix, the only framework was pipelines, redirection, and the shell;
the integration was done with scripts, and the shared context was (essentially) the file
system itself. But that was not the end of evolution.

Emacs unifies the file system with a world of text buffers and helper processes,
largely leaving the shell framework behind. Wily is also about buffers and helpers,
but incorporates the shell framework into itself. Modern desktop environments provide
a communication framework for GUIs, also leaving the shell framework behind. Each
framework has strengths and weaknesses of its own. Frameworks become homes to
ecologies of tools—the shell to shellscripts, Emacs to Lisp modes, and desktop envi-
ronments to flocks of GUIs communicating both via drag and drop and by more eso-
teric means such as object brokers.

This suggests a Rule of Minimality: Choose the shared context you want to manage,
and build your programs as small as those boundaries will allow. This is “as simple
as possible, but no simpler”, but it focuses attention on the choice of shared context.
It applies not just to frameworks, but to applications and program systems.

It is, however, all too easy to get sloppy about how large your shared context needs
to be. The pressure behind Zawinski’s Law is the tendency of applications to want to
share context for convenience. It’s easy to end up carrying around too much weight,
too many assumptions, and to write programs that are over-complex, bloated, and
huge. The paradigmatic example in the 1990s was the way that the mailto: URL
induced the growth of huge mail clients embedded in Web browsers.

The corrective to this tendency comes straight from the old-school Unix hymnbook.
It is the Rule of Parsimony: Write a big program only when it is clear by demonstration
that nothing else will do—that is, when attempts to partition the problem have been
made and failed. This maxim implies an astringent skepticism about large programs,
and a strategy for avoiding them: look for the small-program solution first. If a single
small program won’t do the job, try building a toolkit of cooperating small programs
within an existing framework to attack it. Only if both approaches fail are you free
(in the Unix tradition) to build a large program (or a new framework) without feeling
you have failed the design challenge.

Chapter 13 Complexity316



ptg

When you do write a framework, remember the Rule of Separation. Frameworks
should be mechanism, and have as little policy as possible. In most cases, that is no
policy at all. Factor as much behavior as possible into modules that use the framework.
One of the benefits of writing or reusing a framework is that it can help you separate
what would otherwise be big lumps of policy into separate modules, modes, or
tools—pieces that can be usefully recombined with others.

These rules are valuable heuristics, but the tension at the heart of the Unix tradition
does not resolve neatly into a set of a-priori prescriptions for optimal size of any
given project. Circumstances alter cases, and exercising good judgment and good
taste is what software designers are for. As in Soto Zen, the journey is the destination;
enlightenment has to be rediscovered in every day of practice.
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14

Languages:
To C or Not To C?

The limits of my language are the limits of my world.

Tractatus Logico-Philosophicus 5.6, 1918
—Ludwig Wittgenstein

Unix’s Cornucopia of Languages14.1

Unix supports a wider variety of application languages than does any other single
operating system; indeed, it may well have hosted more different languages than every
other operating system in the history of computing combined.1

There are at least two excellent reasons for this huge diversity. One is the wide
use of Unix as a research and teaching platform. The other (far more relevant for
working programmers) is the fact that matching your application design with the
proper implementation language(s) can make an immense difference in your produc-
tivity. Therefore the Unix tradition encourages the design of domain-specific languages
(as we mentioned in Chapter 7 and Chapter 9) and what are now generally called
scripting languages—those designed specifically to glue together other applications
and tools.

1. See the Free Compiler and Interpreter List <ftp://ftp.idiom.com/pub/
compilers-list/free-compilers> for details.
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The term “scripting language” probably derives from the term “script” that was
applied to a potted input for a normally interactive program, in particular sh or
ed—a much more felicitous term than the “runcom” we inherited from Unix’s an-
cestor CTSS. “Script” appears in the V7 manual (1979). I don’t recall who coined
the name.

—Doug McIlroy

In truth, the term ‘scripting language’ is a somewhat awkward one. Many of the
the major languages usually so described (Perl, Tcl, Python, etc.) have outgrown the
group’s scripting origins and are now standalone general-purpose programming lan-
guages of considerable power. The term tends to obscure strong similarities in style
with other languages that are not usually lumped in with this group, notably Lisp and
Java. The only argument for continuing to use it is that nobody has yet invented a
better term.

Part of the reason all these can be lumped together under the rubric of ‘scripting
language’ is that they all have pretty much the same ontogeny. Having a runtime to
do interpretation also makes it relatively easy to automate dynamic storage manage-
ment. Automating dynamic storage management almost requires using references
(opaque memory addresses that you can’t do arithmetic on) rather than passing value
copies or explicit pointers around. Using references makes runtime polymorphism
and OO an easy next step. Voila: the modern scripting language!

To apply the Unix philosophy effectively, you’ll need to have more than just C in
your toolkit. You’ll need to learn how to use some of Unix’s other languages (espe-
cially the scripting languages), and how to be comfortable mixing multiple languages
in specialist roles within large program systems.

In this chapter we’ll survey C and its most important alternatives, discussing their
strengths and weaknesses and the sorts of tasks to which they are best matched. The
languages covered will be C, C++, shell, Perl, Tcl, Python, Java, and Emacs Lisp.
Each survey section will include case studies on applications written using these
languages, and references to other examples and tutorial material. High-quality imple-
mentations of all these languages are available in open source on the Internet.

Warning: Choice of application language is one of the archetypal religious issues
in the Internet/Unix world. People get very attached to these tools and will sometimes
defend them past all reason. If this chapter achieves its aim, zealots of all stripes may
be offended by this chapter, but everyone else will learn from it.
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Why Not C?14.2

C is the native language of Unix. Since the early 1980s it has come to dominate systems
programming almost everywhere in the computer industry. Outside of Fortran’s
dwindling niche in scientific and engineering computing, and excluding the vast
invisible dark mass of COBOL financial applications at banks and insurance compa-
nies, C and its offspring C++ have now (in 2003) dominated applications programming
almost completely for more than a decade.

It may therefore seem perverse to assert that C and C++ are nowadays almost
always the wrong vehicle for beginning new applications development. But it’s true;
C and C++ optimize for machine efficiency at the expense of increased implementation
and (especially) debugging time. While it still makes sense to write system programs
and time-critical kernels of applications in C or C++, the world has changed a great
deal since these languages came to prominence in the 1980s. In 2003, processors are
a thousand times faster, memories are a thousand times larger, and disks are a factor
of ten thousand larger, for roughly constant dollars.2

These plunging costs change the economics of programming in a fundamental
way. Under most circumstances it no longer makes sense to try to be as sparing of
machine resources as C permits. Instead, the economically optimal choice is to mini-
mize debugging time and maximize the long-term maintainability of the code by human
beings. Most sorts of implementation (including application prototyping) are therefore
better served by the newer generation of interpreted and scripting languages. This
transition exactly parallels the conditions that, last time around the wheel, led to the
rise of C/C++ and the eclipse of assembler programming.

The central problem of C and C++ is that they require programmers to do their
own memory management—to declare variables, to explicitly manage pointer-chained
lists, to dimension buffers, to detect or prevent buffer overruns, and to allocate and
deallocate dynamic storage. Some of this task can be automated away by unnatural
acts like retrofitting C with a garbage collector such as the Boehm-Weiser implemen-
tation, but the design of C is such that this cannot be a complete solution.

C memory management is an enormous source of complication and error. One
study (cited in [Boehm]) estimates that 30% or 40% of development time is devoted
to storage management for programs that manipulate complex data structures. This
did not even include the impact on debugging cost. While hard figures are lacking,
many experienced programmers believe that memory-management bugs are the single

2. Outside the Unix world, this three-orders-of-magnitude improvement in hardware perfor-
mance has been masked to a significant extent by a corresponding drop in software performance.
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largest source of persistent errors in real-world code.3 Buffer overruns are a common
cause of crashes and security holes. Dynamic-memory management is particularly
notorious for spawning insidious and hard-to-track bugs, such as memory leaks and
stale-pointer problems.

Not so long ago, manual memory management made sense anyway. But there are
no ‘small systems’ any more, not in mainstream applications programming. Under
today’s conditions, an implementation language that automates away memory man-
agement (and buys an order of magnitude decrease in bugs at the expense of using a
bit more cycles and core) makes a lot more sense.

A recent paper [Prechelt] musters an impressive array of statistical evidence for a
claim that programmers with experience in both worlds will find very plausible: pro-
grammers are just about twice as productive in scripting languages as they are in C
or C++. This accords well with the 30%–40% penalty estimate noted earlier, plus
debugging overhead. The performance penalty of using a scripting language is very
often insignificant for real-world programs, because real-world programs tend to be
limited by waits for I/O events, network latency, and cache-line fills rather than by
the efficiency with which they use the CPU itself.

The Unix world has been slowly coming around to this point of view in practice,
especially since 1990 or so, as is shown by the increasing popularity of Perl and other
scripting languages. But the evolution of practice has not yet (as of mid-2003) led to
a wholesale change in conscious attitudes; many Unix programmers are still absorbing
the lesson Perl and Python have been teaching.

We can see the same trend happening, albeit more slowly, outside the Unix
world—for example, in the continuing shift from C++ to Visual BASIC evident in
applications development under Microsoft Windows and NT, and the move toward
Java in the mainframe world.

The arguments against C and C++ apply with equal force to other conventional
compiled languages such as Pascal, Algol, PL/I, FORTRAN, and compiled BASIC
dialects. Despite occasional heroic efforts such as Ada, the differences between
conventional languages remain superficial when set against their basic design decision
to leave memory management to the programmer. Though high-quality open-source
implementations of most languages ever written are available under Unix, no other
conventional languages remain in widespread use in the Unix or Windows worlds;

3. The severity of this problem is attested to by the rich slang Unix programmers have developed
for describing different varieties: ‘aliasing bug’, ‘arena corruption’, ‘memory leak’, ‘buffer
overflow’, ‘stack smash’, ‘fandango on core’, ‘stale pointer’, ‘heap trashing’, and the rightly
dreaded ‘secondary damage’. See the Jargon File <http://www.catb.org/~esr/jargon>
for elucidation.
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they have been abandoned in favor of C and C++. Accordingly we will not survey
them here.

Interpreted Languages and Mixed Strategies14.3

Languages that avoid manual memory management do it by having a memory man-
ager built into their runtime executable somewhere. Typically, runtime environments
in these languages are split into a program part (the running script itself) and the in-
terpreter part, with the interpreter managing dynamic storage. On Unixes (and other
modern operating systems) the interpreter core can be shared by multiple program
parts, reducing the effective overhead for each one.

Scripting is nowhere near a new idea in the Unix world. As far back as the mid-
1970s, in an era of far smaller machines, the Unix shell (the interpreter for commands
typed to a Unix console) was designed as a full interpreted programming language.
It was common even then to write programs entirely in shell, or to use the shell to
write glue logic that knit together canned utilities and custom programs in C into
wholes greater than the sum of their parts. Classical introductions to the Unix envi-
ronment (such as The Unix Programming Environment [Kernighan-Pike84]) have
dwelt heavily on this tactic, and with good reason: it was one of Unix’s most important
innovations.

Advanced shell programming mixes languages freely, employing both binaries
and interpreted elements from half a dozen or more other languages for subtasks.
Each language does what it does best, each component is a module with narrow in-
terfaces to the others, and the global complexity of the whole is much lower than it
would be had it been coded as a single monster monolith in a general-purpose
language.

Language Evaluations14.4

Mixing languages is a knowledge-intensive (rather than coding-intensive) style of
programming. To make it work, you have to have both working knowledge of a suitable
variety of languages and expertise about what they’re best at and how to fit them to-
gether. In this section, we will try to point you at references to help you with the first
and an overview to convey the second. For each language surveyed we will include
case studies of successful programs that exemplify its strengths.
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C14.4.1

Despite the memory-management problem, there are some application niches for
which C is still king. Programs that require maximum speed, have real-time require-
ments, or are tightly coupled to the OS kernel are good candidates for C.

Programs that must be portable across multiple operating systems may also be
good candidates for C. Some of the alternatives to C that we shall discuss below are,
however, increasingly penetrating major non-Unix operating systems; in the near future,
portability may be less a distinguishing advantage of C.

Sometimes the leverage to be gained from existing programs like parser generators
or GUI builders that generate C code is so great that it justifies C coding of the rest
of a small application.

And, of course, C proved indispensable to the developers of all its alternatives.
Dig down through enough implementation layers under any of the other languages
surveyed here and you will find a core implemented in pure, portable C. These lan-
guages inherit many of the advantages of C.

Under modern conditions, it’s perhaps best to think of C as a high-level assembler
for the Unix virtual machine (recall the discussion of the success of C as a case study
in Chapter 4). C standards have exported many of the facilities of this virtual machine,
such as the standard I/O library, to other operating systems. C is where you go when
you want to get as close as possible to the bare metal but stay portable.

One good reason to learn C, even if your programming needs are satisfied by a
higher-level language, is that it can help you learn to think at hardware-architecture
level. The best reference and tutorial on C for people who are already programmers
is still The C Programming Language [Kernighan-Ritchie].

Porting C code between Unix variants is almost always possible and usually easy,
but specific areas of variation (like signals and process control) can be tricky to get
right. We highlight some of these issues in Chapter 17. Differing C bindings on other
operating systems can of course cause C portability problems, although Windows NT
at least theoretically supports an ANSI/POSIX-compliant C API.

High-quality C compilers are available as open-source software over the Internet;
the best-known and most widely used is the Free Software Foundation’s GNU C
compiler (part of GCC, the GNU Compiler Collection), which has become the native
C of all open-source Unix systems and many even in the closed-source world. GCC
ports are even available for Microsoft’s family of operating systems. GCC sources
are available at the FSF’s FTP site <ftp://ftp.gnu.org/pub/gnu>.

Summing up: C’s best side is resource efficiency and closeness to the machine.
Its worst side is that programming in it is a resource-management hell.
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C Case Study: fetchmail14.4.1.1

The best case study for C is the Unix kernel itself, for which a language that naturally
supports hardware-level operations is actually a strong advantage. But fetchmail is a
good example of the kind of user-land utility that is still best coded in C.

fetchmail does only the simplest kind of dynamic-memory management; its only
complex data structure is a singly-linked list of per-mailserver control blocks built
just once, at startup time, and changed only in fairly trivial ways afterwards. This
substantially erodes the case against using C by sidestepping C’s greatest weakness.

On the other hand, these control blocks are fairly complex (including all of string,
flag, and numeric data) and would be difficult to handle as coherent fast-access objects
in an implementation language without an equivalent of the C struct feature. Most of
the alternatives to C are weaker than C in this respect (Python and Java being notable
exceptions).

Finally, fetchmail requires the ability to parse a fairly complex specification syntax
for per-mail-server control information. In the Unix world this sort of thing is classi-
cally handled by using C code generators that grind out source code for a tokenizer
and grammar parser from declarative specifications. The existence of yacc and lex
was a point in favor of C.

fetchmail might reasonably have been coded in Python, albeit with possibly sig-
nificant loss of performance. Its size and data-structure complexity would have
excluded shell and Tcl right off and strongly counterindicated Perl, and the application
domain is outside the natural scope of Emacs Lisp. A Java implementation wouldn’t
have been an unreasonable path, but Java’s object-oriented style and garbage collection
would have offered little purchase on fetchmail’s specific problems over what C already
yields. Nor could C++ have done much to simplify the relatively simple internal
logic of fetchmail.

However, the real reason fetchmail is a C program is that it evolved by gradual
mutation from an ancestor already written in C. The existing implementation has been
extensively tested on many different platforms and against many odd and quirky
servers. Carrying all that implicit knowledge through to a re-implementation in a
different language would be messy and difficult. Furthermore, fetchmail depends on
imported code for functions (like NTLM authentication) that don’t seem to be available
above C level.

fetchmail’s interactive configurator, which did not have a C legacy problem, is
written in Python; we’ll discuss that case along with that language.

C++14.4.2

When C++ was first released to the world in the mid-1980s object-oriented (OO)
languages were being widely touted as the silver bullet for the software-complexity
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problem. C++’s OO features appeared to be an overwhelming advantage over
the ancestral C, and partisans expected that it would rapidly make the older
language obsolete.

This has not happened. Part of the fault can be laid to problems in C++ itself; the
requirement that it be backward-compatible with C forced a great many compromises
on the design. Among other things, that requirement prevented C++ from going to
fully automatic dynamic-memory management and addressing C’s most serious
problem. Later, feature arms races between different compiler implementers, uncon-
strained by a weak and premature standardization effort, pushed C++ to become rather
baroque and excessively complicated.

Another part of the fault must be laid to the failure of OO itself to live up to
expectations. We examined this problem in Chapter 4, observing the tendency of OO
methods to lead to thick glue layers and maintenance problems. Today (2003), inspec-
tion of open-source archives (in which choice of language reflects developers’ judg-
ments rather than corporate mandates) reveals that C++ usage is still heavily concen-
trated in GUIs, multimedia toolkits and games (the major success areas for OO design),
and little used elsewhere.

It may be that C++’s realization of OO is particularly problem-prone. There is
some evidence that C++ programs have higher life-cycle costs than equivalents in C,
FORTRAN, or Ada. Whether this is a problem with OO or specifically with C++
or both remains unclear, though there is reason to suspect both are implicated
[Hatton98].

In recent years, C++ has incorporated some important non-OO ideas. It has
exceptions similar to those in Lisp; that is, it is possible to throw an object or value
up the call stack until it is caught by a handler. STL (Standard Template Library)
provides generic programming; that is, it is possible to code algorithms that are inde-
pendent of the type signature of their data and have them compiled to do the right
thing at runtime. (Only languages that do compile-time static type-checking need
this; more dynamic languages simply pass around typeless references and support
type identification at runtime.)

Efficient compiled language; upward-compatible with C; object-oriented platform;
vehicle for cutting-edge techniques like STL and generics—C++ tries to be all things
to all people, but the cost is more complexity than the mind of any individual program-
mer can handle. As we noted in Chapter 4, the language’s principal designer has
conceded that he doesn’t expect any one programmer to grasp it all. Unix hackers do
not react well to this; one anonymous but famous characterization is “C++: an octopus
made by nailing extra legs onto a dog”.

When all is said and done, however, C++’s most fundamental problem is that it is
basically just another conventional language. It confines the memory-management
problem better than it did before the invention of the Standard Template Library, and
a lot better than C does, but the confinement is brittle; it breaks unless your code uses
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objects and only objects. For many types of application its OO features are not signifi-
cant, and simply add complexity to C without yielding much advantage. Open-source
C++ compilers are available; if C++ were unequivocally superior to C it would
now dominate.

Summing up: C++’s best side is its combination of compiled efficiency with
facilities for OO and generic programming. Its worst side is that it is baroque and
complex, and tends to encourage over-complex designs.

Consider using C++ if an existing C++ toolkit or service library offers powerful
leverage for your application, or if you’re in one of the application areas mentioned
above for which an OO language is known to be a large win.

The classic C++ reference is Stroustrup’s The C++ Programming Language
[Stroustrup]. You will find an excellent beginner’s tutorial on C++ and basic OO
methods in C++: A Dialog [Heller]. C++ Annotations [Brokken] is a condensed in-
troduction to C++ for expert C programmers.

The GNU Compiler Collection includes a C++ compiler. The language is therefore
universally available on Unix and on Microsoft operating systems; comments made
under C above also apply here. Strong collections of open-source support libraries
<http://www.boost.org/> are available. However, portability is compromised
by the fact that (as of mid-2003) actual C++ implementations implement widely
varying subsets of the draft ISO standard now in preparation.4

C++ Case Study: The Qt Toolkit14.4.2.1

The Qt interface toolkit is one of the notable C++ success stories in today’s open-
source world. It provides a widget set and API for writing graphical user interfaces
under X, one deliberately (and rather effectively) designed to emulate the visual look
and feel of Motif, MacOS Platinum, or the Microsoft Windows interface. Qt actually
provides more than just GUI services; it also provides a portable application layer,
with classes for XML, file access, sockets, threads, timers, time/date handling, database
access, various abstract data types, and Unicode.

The Qt toolkit is a critical and visible component of the KDE project, the senior
of the open-source world’s two efforts to produce a competitive GUI and integrated
set of desktop productivity tools.

Qt’s C++ implementation exhibits the strengths of an OO language for encapsulat-
ing user-interface components. In a language supporting objects, a visual hierarchy
of interface widgets can be cleanly expressed in the code by a hierarchy of class in-
stances. While this sort of thing can be simulated in C with explicit indirection through

4. The last C++ standard, dating from 1998, was widely implemented but weak, especially in
the area of libraries.
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hand-rolled method tables, such code is much cleaner in C++. Comparison with the
notoriously baroque C API of Motif is instructive.

The Qt source code and reference documentation are available at the Trolltech site
<http://www.trolltech.com/>.

Shell14.4.3

The ‘Bourne shell’ (sh) of Version 7 Unix was Unix’s first (and for many years its
only) portable interpreted language. Today the ancestral Bourne shell has largely been
displaced by variants of the upward-compatible Korn shell (ksh); the single most
important of these is the Bourne Again Shell, bash.

A few other shells exist and are used interactively, but are not significant as pro-
gramming languages; of these, the best known is probably the C shell csh, which is
notoriously5 unsuitable for writing scripts.

Simple shell programs are extremely easy and natural to write. The Unix tradition
of rapid prototyping in interpretive languages began with shell.

I wrote the very first version of netnews as a 150-line shellscript. It had multiple
newsgroups and cross-posting; newsgroups were directories and cross-posting was
implemented as multiple links to the article. It was far too slow to use for produc-
tion, but the flexibility permitted endless experimentation with the protocol design.

—Steven M. Bellovin

As program sizes get larger, however, they tend to become rather ad-hoc. Some
parts of shell syntax (notably its quoting and statement-syntax rules) can be very
confusing. These drawbacks generally relate to compromises in the programming-
language part of the shell’s design made to preserve its utility as an interactive com-
mand-line interpreter.

Programs are described as being ‘in shell’ even when they are not pure shell but
include heavy use of C filters like sort(1) and of standard text-processing minilan-
guages like sed(1) or awk(1). This sort of programming has been in decline for some
years, however; nowadays such elaborate glue logic is generally written in Perl or
Python, with shell being reserved for the simplest kinds of wrappers (for which these
languages would be overkill) and system boot-time initialization scripts (which cannot
assume they are available).

5. See Tom Christiansen’s essay Csh Programming Considered Harmful, which should be
readily findable via Web search.
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Such basic shell programming should be adequately covered in any introductory
Unix book. The Unix Programming Environment [Kernighan-Pike84] remains one
of the best sources on intermediate and advanced shell programming. Korn shell im-
plementations or clones are present on every Unix.

Complex shellscripts often have portability problems, not so much because of the
shell itself but because they make assumptions about what other programs are available
as components. While Bourne and Korn-shell clones have been sporadically available
on non-Unix operating systems, shell programs are not (practically speaking) at all
portable off Unix.

Summing up: shell’s best side is that it is very natural and quick for small scripts.
Its worst side is that large shellscripts depend on lots of auxiliary commands that
aren’t necessarily identically behaved nor even present on all target machines. Nor is
it easy to analyze the dependencies in a large shellscript.

It is almost never necessary to build or install a shell, since all Unix systems and
Unix emulators come equipped with them. The standard shell on Linux and other
leading-edge Unix variants is now bash.

Case Study: xmlto14.4.3.1

xmlto is a driver script that calls all the commands needed to render an XML-Doc-
Book document as HTML, PostScript, plain text, or in any one of several other formats
(we’ll take a closer look at DocBook in Chapter 18). It is written in bash.

xmlto handles the details of calling an XSLT engine with appropriate stylesheet,
then handing off the result to a postprocessor. For HTML and XHTML the XSLT
transformation does the entire job. For plain text, the XML is also processed into
HTML, but then handed to a postprocessor—lynx(1) in its -dump mode, which renders
HTML to flat text. For PostScript, the XML is transformed to XSL FO (formatting
objects) which a postprocessor then massages into TEX macros, to DVI format via
tex(1), and then finally to PostScript via the well-known dvi2ps(1) tool.

xmlto consists of a single front-end shellscript. It calls any one of several script
plugins, each named after the target format. Each plugin is a shellscript. Depending
on how it’s called, it either supplies a stylesheet for the front end to apply, or calls the
appropriate postprocessor(s) with various canned arguments.

This architecture means that all the information about a given output format lives
in one place (the corresponding script plugin), so adding new output types can be
done without disturbing the front-end code at all.

xmlto is a good example of a medium-sized shell application. Neither C nor C++
would have made sense because they are awkward for scripting. Any of the other
scripting languages in this chapter could have been used for this job; but it’s all simple
command dispatching, with no internal data structures or complex logic, so shell is
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good enough. Shell has the significant advantage of being ubiquitous on the intended
target systems.

In theory this script could run on any system supporting bash. The real constraint
is the requirement for one of the XSLT engines and all the postprocessors needed to
be present on the system. In practice, this script is not likely to run anywhere but under
one of the modern open-source Unixes.

Case Study: Sorcery Linux14.4.3.2

Sorcerer GNU/Linux is a Linux distribution that you install as a small, bootable
foothold system just powerful enough to run bash(1) and a couple of download utilities.
With this code in place, you can invoke Sorcery, the Sorcerer package system.

Sorcery handles installing, removing, and integrity-checking software packages.
When you “cast spells”, Sorcery downloads the source code, compiles it, installs it,
and saves a list of files that were installed (along with a build log and checksums for
all the files). Installed packages can be “dispelled” or removed. Package listing and
integrity checks are also available. More details are available at the Sorcery project
site <http://sorcerer.wox.org>.

The Sorcery system is written entirely in shell. Program installation procedures
tend to be small, simple programs for which shell is appropriate. In this particular
application, the main drawback of shell is neutralized because Sorcery’s authors can
guarantee that the helper programs they need will be present in the foothold system.

Perl14.4.4

Perl is shell on steroids. It was specifically designed to replace awk(1), and expanded
to replace shell as the ‘glue’ for mixed-language script programming. It was first re-
leased in 1987.

Perl’s strongest point is its extremely powerful built-in facilities for pattern-directed
processing of textual, line-oriented data formats; it is unsurpassed at this. It also in-
cludes far stronger data structures than shell, including dynamic arrays of mixed ele-
ment types and a ‘hash’ or ‘dictionary’ type that supports convenient and fast lookup
of name-value pairs.

Additionally, Perl includes a rather complete and well-thought-out internal binding
of virtually the entire Unix API, drastically reducing the need for C and making
it suitable for jobs like simple TCP/IP clients and even servers. Another strong
advantage of Perl is that a large and vigorous open-source community has
grown up around it. Its home on the net is the Comprehensive Perl Archive Network
<http://www.cpan.org>. Dedicated Perl hackers have written hundreds of
freely reusable Perl modules for many different programming tasks. These include
everything from structure-walking of directory trees through X toolkits for GUI
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building, through excellent canned facilities for supporting HTTP robots and CGI
programming.

Perl’s main drawback is that parts of it are irredeemably ugly, complicated, and
must be used with caution and in stereotyped ways lest they bite (its argument-passing
conventions for functions are a good example of all three problems). It is harder to
get started in Perl than it is in shell. Though small programs in Perl can be extremely
powerful, careful discipline is required to maintain modularity and keep a design under
control as program size increases. Because some limiting design decisions early in
Perl’s history could not be reversed, many of the more advanced features have a
fragile, klugey feel about them.

The definitive reference on Perl is Programming Perl [Wall2000]. This book has
nearly everything you will ever need to know in it, but is notoriously badly organized;
you will have to dig to find what you want. A more introductory and narrative treatment
is available in Learning Perl [Schwartz-Christiansen].

Perl is universal on Unix systems. Perl scripts at the same major release level tend
to be readily portable between Unixes (provided they don’t use extension modules).
Perl implementations are available (and even well documented) for the Microsoft
family of operating systems and on MacOS as well. Perl/Tk provides cross-platform
GUI capability.

Summing up: Perl’s best side is as a power tool for small glue scripts involving a
lot of regular-expression grinding. Its worst side is that it is ugly, spiky, and nigh-
unmaintainable in large volumes.

A Small Perl Case Study: blq14.4.4.1

The blq script is a tool for querying block lists (lists of Internet sites that have been
identified as habitual sources of unsolicited bulk email, aka spam). You can find current
sources at the blq project page <http://www.unicom.com/sw/blq/>.

blq is a good example of a small Perl script, illustrating both the strengths and
weaknesses of the language. It makes intensive use of regular-expression matching.
On the other hand, the Net::DNS Perl extension module it uses has to be conditionally
included, because it is not guaranteed to be present in any given Perl installation.

blq is exceptionally clean and disciplined as Perl code goes, and I recommend it
as an example of good style (the other Perl tools referenced from the blq
project page are good examples as well). But parts of the code are unreadable
unless you are familiar with very specific Perl idioms—the very first line of code,
$0 =~ s!.*/!!;, is an example. While all languages have some of this kind of
opacity, Perl has it worse than most.

Tcl and Python are both good for small scripts of this type, but both lack the Perl
convenience features for regular-expression matching that blq uses heavily; an im-
plementation in either would have been reasonable, but probably less compact and
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expressive. An Emacs Lisp implementation would have been even faster to write and
more compact than the Perl one, but probably painfully slow to use.

A Large Perl Case Study: keeper14.4.4.2

keeper is the tool used to file incoming packages and maintain both FTP and
WWW index files for the huge Linux free-software archives at ibiblio. You can find
sources and documentation in the search tools subdirectory of the ibiblio archive
<http://www.ibiblio.org>.

keeper is a good example of a medium-to-large interactive Perl application. The
command-line interface is line-oriented and patterned after a specialized shell or di-
rectory editor; note the embedded help facilities. The working parts make heavy use
of file and directory handling, pattern matching, and pattern-directed editing. Note
the ease with which keeper generates Web pages and electronic-mail notifications
from programmatic templates. Note also the use of a canned Perl module to automate
walking various functions over directory trees.

At about 3300 lines, this application is probably pushing the size and complexity
limit of what one should attempt in a single Perl program. Nevertheless, most of it
was written in a period of six days. In C, C++, or Java it would have taken a minimum
of six weeks and been extremely difficult to debug or modify after the fact. It is way
too large for pure Tcl. A Python version would probably be structurally cleaner, more
readable, and more maintainable—but also more verbose (especially near the pattern-
matching parts). An Emacs Lisp mode could readily do the job, but Emacs is not well
suited for use over a telnet link that is often slowed to a crawl by server congestion.

Tcl14.4.5

Tcl (Tool Command Language) is a small language interpreter designed to link with
compiled C libraries, providing scripted control of C code (extended scripts). Its
original application was to control libraries for electronic simulators (SPICE-like
applications). Tcl is also suitable for embedded scripts—that is, scripts called from
within C programs and returning values to those programs. Tcl had its first general
public release in 1990.

Some facilities built on top of Tcl have achieved wide use outside the Tcl commu-
nity itself. The two most important of these are:

• The Tk toolkit, a kinder and gentler X interface that makes it easy to rapidly
build buttons, dialog boxes, menu trees, and scrolling text widgets and collect
input from them.
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• Expect, a language that makes it relatively easy to script fully interactive
programs with widely variable responses.

The Tk toolkit is so important that the language is often referred to as Tcl/Tk.
Tk is also frequently used with Perl and Python.

The main advantage of Tcl itself is that it is extremely flexible and radically simple.
The syntax is very odd (based on a positional parser) but totally consistent. There are
no reserved words, and there is no syntactic distinction between a function call and
‘built in’ syntax; thus the Tcl language interpreter itself can be effectively redefined
from within Tcl (which is what makes projects like Expect reasonable).

The main drawback of Tcl is that the pure language has only weak facilities for
namespace control and modularity, and two of them (upvar and uplevel) are
rather dangerous if not used with great caution. Also, there are no data structures
other than association lists. Tcl therefore scales up very poorly—it is difficult to
organize and debug pure Tcl programs of even moderate size (more than a few hundred
lines) without tripping over your own feet. In practice, almost all large Tcl programs
use one of several OO extensions to the language.

The oddities of the syntax can at first be a problem as well; the distinction between
string quotes and braces will probably give you headaches for a while, and the rules
for when things need to be quoted or braced are a bit tricky.

Pure Tcl only provides access to a relatively small and commonly used part of the
Unix API (essentially just file handling, process-spawning, and sockets). Indeed, Tcl
has the flavor of an experiment in seeing how small a scripting language can get and
still be useful. Tcl extensions (similar to Perl modules) provide a richer set of capabil-
ities, but are (like CPAN modules) not guaranteed to be installed everywhere.

The original Tcl reference is Tcl and the Tk Toolkit [Ousterhout94], but that book
has been largely superseded by Practical Programming in Tcl and Tk [Welch]. Brian
Kernighan has written a description of a real-world Tcl project [Kernighan95] that
summarizes Tcl’s strengths and weaknesses as a rapid-prototyping and production
tool; his contrast with Microsoft Visual BASIC is particularly balanced and instructive.

The Tcl world doesn’t have one central repository run by a core group analogous
to Perl’s or Python’s, but several excellent websites both point to each other and cover
most Tcl tool and extension development. Look at the Tcl Developer Xchange
<http://www.tcltk.com> first; among other things, it offers Tcl sources
of an interactive Tcl tutorial. There is also a Tcl foundry at SourceForge
<http://sourceforge.net/foundry/tcl-foundry/>.

Tcl scripts have portability problems similar to those of shell scripts; the language
itself is highly portable, but the components it calls may not be. Tcl implementations
exist for the Microsoft family of operating systems, MacOS, and many other platforms.
Tcl/Tk scripts will run on any platform with GUI capabilities.
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Summing up: Tcl’s best side is its spare, compact design and the extensibility of
the Tcl interpreter. Its worst side is the odd positional parser and the weakness of its
data structures and namespace controls; the latter defect makes it scale poorly for
large projects.

Case Study: TkMan14.4.5.1

TkMan is a browser for Unix man pages and Texinfo documents. At roughly 1200
lines, it is quite large to be written in pure Tcl, but the code is unusually well-
modularized and mature. It uses Tk to provide a GUI interface quite a bit nicer than
either the stock man(1) or xman(1) utilities support.

TkMan makes a good case study because it exhibits almost the full gamut of Tcl
techniques. Highlights include Tk integration, scripted control of other Unix applica-
tions (such as the Glimpse search engine), and the use of Tcl to parse Texinfo markup.

Any of the other languages would have made for a less direct interface to the Tk
GUI that constitutes most of this code.

A Web search for “TkMan” should turn up sources and documentation.

Moodss: A Large Tcl Case Study14.4.5.2

The Moodss system is a graphical monitoring application for system administrators.
It can watch logs and gather statistics for MySQL, Linux, SNMP networks, and
Apache, and presents a digested view of them through spreadsheet-like GUI panels
called ‘dashboards’. Monitoring modules can be written in Python or Perl as well as
Tcl. The code is polished, mature, and considered an exemplar in the Tcl community.
There is a project website <http://jfontain.free.fr/moodss/>.

The Moodss core consists of about 18,000 lines of Tcl. It uses several Tcl extensions
including a custom object system; the Moodss author admits that without these
“writing such a big application would not have been possible”.

Again, any of the other languages would have made for a less direct interface to
the Tk GUI that constitutes most of this code.

Python14.4.6

Python is a scripting language designed for close integration with C. It can both import
data from and export data to dynamically loaded C libraries, and can be called as an
embedded scripting language from C. Its syntax is rather like a cross between that of
C and the Modula family, but has the unusual feature that block structure is actually
controlled by indentation (there is no analog of explicit begin/end or C curly brackets).
Python was first publicly released in 1991.
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The Python language is a very clean, elegant design with excellent modularity
features. It offers designers the option to write in an object-oriented style but does
not force that choice (it can be coded in a more classically procedural C-like way).
It has a type system comparable in expressive power to Perl’s, including dynamic
container objects and association lists, but less idiosyncratic (actually, it is a matter
of record that Perl’s object system was built in imitation of Python’s). It even pleases
Lisp hackers with anonymous lambdas (function-valued objects that can be passed
around and used by iterators). Python ships with the Tk toolkit, which can be used to
easily build GUI interfaces.

The standard Python distribution includes client classes for most of the important
Internet protocols (SMTP, FTP, POP3, IMAP, HTTP) and generator classes for HTML.
It is therefore very well suited to building protocol robots and network administrative
plumbing. It is also excellent for Web CGI work, and competes successfully with Perl
at the high-complexity end of that application area.

Of all the interpreted languages we describe, Python and Java are the two most
clearly suited for scaling up to large complex projects with many cooperating
developers. In many ways Python is simpler than Java, and its friendliness to rapid
prototyping may give it an edge over Java for standalone use in applications that are
neither hugely complex nor speed critical. An implementation of Python in Java, de-
signed to facilitate mixed use of these two languages, is available and in production
use; it is called Jython.

Python cannot compete with C or C++ on raw execution speed (though using a
mixed-language strategy on today’s fast processors probably makes that relatively
unimportant). In fact it’s generally thought to be the least efficient and slowest of the
major scripting languages, a price it pays for runtime type polymorphism. Beware of
rejecting Python on these grounds, however; most applications do not actually need
better performance than Python offers, and even those that appear to are generally
limited by external latencies such as network or disk waits that entirely swamp the
effects of Python’s interpretive overhead. Also, by way of compensation, Python is
exceptionally easy to combine with C, so performance-critical Python modules can
be readily translated into that language for substantial speed gains.

Python loses in expressiveness to Perl for small projects and glue scripts heavily
dependent on regular-expression capability. It would be overkill for tiny projects, to
which shell or Tcl might be better suited.

Like Perl, Python has a well-established development community with a central
website <http://www.python.org> carrying a great many useful Python im-
plementations, tools and extension modules.

The definitive Python reference is Programming Python [Lutz]. Extensive on-line
documentation on Python extensions is also available at the Python website.

Python programs tend to be quite portable between Unixes and even across other
operating systems; the standard library is powerful enough to significantly cut the use
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of nonportable helper programs. Python implementations are available for Microsoft
operating systems and for MacOS. Cross-platform GUI development is possible with
either Tk or two other toolkits. Python/C applications can be ‘frozen’, quasi-compiled
into pure C sources that should be portable to systems with no Python installed.

Summing up: Python’s best side is that it encourages clean, readable code and
combines accessibility with scaling up well to large projects. Its worst side is ineffi-
ciency and slowness, not just relative to compiled languages but relative to other
scripting languages as well.

A Small Python Case Study: imgsizer14.4.6.1

Imgsizer is a utility that rewrites WWW pages so that image-inclusion tags get the
right image size parameters automatically plugged in (this speeds up page loading
on many browsers). You can find sources and documentation in the URL WWW tools
subdirectory of the ibiblio archive <http://www.ibiblio.org>.

imgsizer was originally written in Perl, and was a nearly ideal example of the
sort of small, pattern-driven text-processing tool at which Perl excels. It was later
translated to Python to take advantage of Python’s library support for HTTP fetching;
this eliminated a dependency on an external page-fetching utility. Observe the use of
file(1) and ImageMagick identify(1) as specialist tools for extracting the pixel sizes
of images.

The dynamic string handling and sophisticated regular-expression matching re-
quired would have made imgsizer quite painful to write in C or C++; that version
would also have been much larger and harder to read. Java would have solved the
implicit memory-management problem, but is hardly more expressive than C or C++
at text pattern matching.

A Medium-Sized Python Case Study: fetchmailconf14.4.6.2

In Chapter 11 we examined the fetchmail/fetchmailconf pair as an example of one
way to separate implementation from interface. Python’s strengths are well illustrated
by fetchmailconf.

fetchmailconf uses the Tk toolkit to implement a multi-panel GUI configuration
editor (Python bindings also exist for GTK+ and other toolkits, but Tk bindings ship
with every Python interpreter).

In expert mode, the GUI supports editing of about sixty attributes divided among
three panel levels. Attribute widgets include a mix of checkboxes, radio buttons, text
fields, and scrolling listboxes. Despite this complexity, the first fully-functional version
of the configurator took me less than a week to design and code, counting the four
days it took to learn Python and Tk.
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Python excels at rapid prototyping of GUI interfaces, and (as fetchmailconf illus-
trates) such prototypes are often deliverable. Perl and Tcl have similar strengths in
this area (including the Tk toolkit, which was written for Tcl) but are hard to control
at the complexity level (approximately 1400 lines) of fetchmailconf. Emacs Lisp is
not suited for GUI programming. Choosing Java would have increased the complexity
overhead of this programming task without delivering significant benefits for this
nonspeed-intensive application.

A Large Python Case Study: PIL14.4.6.3

PIL, the Python Imaging Library, supports the manipulation of bitmap graphics. It
supports many popular formats, including PNG, JPEG, BMP, TIFF, PPM, XBM, and
GIF. Python programs can use it to convert and transform images; supported transfor-
mations include cropping, rotation, scaling, and shearing. Pixel editing, image
convolution, and color-space conversions are also supported. The PIL distribution
includes Python programs that make these library facilities available from the command
line. Thus PIL can be used either for batch-mode image transformation or as a strong
toolkit over which to implement program-driven image processing of bitmaps.

The implementation of PIL illustrates the way Python can be readily augmented
with loadable object-code extensions to the Python interpreter. The library core, im-
plementing fundamental operations on bitmap objects, is written in C for speed. The
upper levels and sequencing logic are in Python, slower but much easier to read and
modify and extend.

The analogous toolkit would be difficult or impossible to write in Emacs Lisp or
shell, which don’t have or don’t document a C extension interface at all. Tcl has a
good C extension facility, but PIL would be an uncomfortably large project in Tcl.
Perl has such facilities (Perl XS), but they are ad-hoc, poorly documented, complex,
and unstable by comparison to Python’s and use of them is rare. Java’s Native Method
Interface appears to provide a facility roughly comparable to Python’s; PIL would
probably have made a reasonable Java project.

The PIL code and documentation is available at the project website
<http://www.pythonware.com/products/pil/>.

Java14.4.7

The Java programming language was designed to be “write once, run anywhere” and
to support embedding interactive programs (or applets) in Web pages that would be
runnable from any browser. Thanks to a series of technical and strategic blunders by
its owner, Sun Microsystems, it has failed in both its original objectives. But it is still
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sufficiently strong at both systems and applications programming to be seriously
challenging C and C++. Java was announced in 1995.

Java is cleverly designed to capture the huge benefit of automatic memory manage-
ment and the lesser but not insignificant benefit of supporting OO design, while being
far smaller and simpler than C++. It retains a broadly C-like syntax that most program-
mers will find comfortable. It includes support for callouts to dynamically-loaded C
and calling Java as an embedded language from C. Nor is it trivial that Sun has done
an excellent job of making good Java documentation available on the Web.

Against Java, we can say that (compared to, say, Python) some parts of it appear
over-complex and others deficient. Java’s class-visibility and implicit-scoping rules
are baroque. The interface facility avoids complex problems with multiple inheritance
at the cost of being only slightly less difficult to understand and use in itself. Features
like inner and anonymous classes can lead to very confusing code. The absence of
reliable destructor methods means that it is difficult to ensure proper management of
resources other than memory, such as mutexes and file locks. Significant parts of the
Unix operating-system facilities are not accessible from stock Java, including signals,
poll, and select. While Java’s I/O facilities are very powerful, simple reading of text
files is not simple.

There is a particularly invidious problem, resembling Windows DLL hell, with
libraries. Java has no method to manage different library versions. This can create
huge problems in environments like application servers, where the server might
come equipped with one version of (say) an XML library, but the application ships
with a different (usually newer) version. The only handle on such problems is the
CLASSPATH environment variable, a source of chronic deployment problems.

Furthermore, Sun’s handling of the Java language has been both politically and
technically obtuse. Java’s first GUI toolkit, AWT, was a mess that had to be essentially
replaced. Withdrawing the language from ECMA/ISO standardization further nettled
many developers already upset by features of the Sun Community Source License
(SCSL). Restrictions in the SCSL continue to hamper open-source implementations
of Java 1.2 and their J2EE (Java 2 Enterprise Edition) specification. This compromises
Java’s original objective of universal portability.

Sadly, browser applets are dead. Microsoft’s decision not to support Java 1.2 in
Internet Explorer effectively killed them. However, Java seems to have found a secure
niche in the computing ecology, for ‘servlets’ running within Web application servers.
It has also become commonly used for a lot of in-house corporate programming not
directly tied to databases or webservers. It has become major competition for both
Microsoft’s ASP/COM platform and Perl CGIs. Finally, it is in widespread and in-
creasing use as a language for teaching introductory programming (a role for which
it is extremely well suited).
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Overall, we can fairly judge Java to be superior to C++ (which is both far more
complex and does less to attack the memory-management problem) for all but systems
programming and the most speed-critical applications. Experience seems to show
that Java programmers are somewhat less likely to fall into the trap of excessive OO
layering than are C++ programmers, though this remains a significant problem.

How Java will fare in equilibrium with the other languages we describe here is
unclear as yet, and may depend largely on project scale. We may expect its proper
niche to resemble Python’s. Like Python, it cannot compete with C or C++ on raw
execution speed, nor against Perl on small projects that use pattern-driven editing
heavily. It is (more definitely than Python) overkill for small projects. We may guess
that Python will have an edge in smaller projects and Java in larger ones, but the
verdict of experience is not yet in.

The best single reference on paper is probably Java In A Nutshell [FlanaganJava],
but this is not the best tutorial introduction; that would probably be Thinking in Java
[Eckel]. Trails to all the world’s Java websites begin at Sun’s Java site
<http://java.sun.com>, which also has complete HTML documentation
available for download for free. The Open Directory Java Page <http://
dmoz.org/Computers/Programming/Languages/Java/> also collects
useful Java links.

Java implementations are available for all Unixes, for Microsoft operating systems,
MacOS, and many other platforms.

Sources for Kaffe, an open-source Java implementation with class libraries con-
forming to most of JDK 1.1 and portions of JDK 1.2, are available at the Kaffe project
site <http://www.kaffe.org/>.

There is a Java front end for GCC. GCJ can compile Java code to either Java
bytecode or native code, and can compile Java bytecode to native code as well. It
comes packaged with open-source class libraries that implement most of JDK 1.2,
and a Java bytecode interpreter called gij. Details are at the GCJ project page
<http://gcc.gnu.org/java/>.

There is a Java IDE for Emacs at the JDEE project site <http://jdee.
sunsite.dk/>.

Java portability is excellent at the language level. Incomplete library implementa-
tions (especially older JDK 1.1 versions that don’t support the newer JDK 1.2) can
be an issue.

Java’s best side is that it comes close enough to achieving write-once-run-anywhere
to be useful as an OS-independent environment of its own. Its worst side is that the
Java 1/Java 2 split compromises that goal in deeply frustrating ways.
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Case Study: FreeNet14.4.7.1

Freenet is a peer-to-peer networking project that is intended to make censorship
and content suppression impossible.6 Freenet developers envision the following
applications:

• Uncensorable dissemination of controversial information: Freenet protects
freedom of speech by enabling anonymous and uncensorable publication of
material ranging from grassroots alternative journalism to banned exposés.

• Efficient distribution of high-bandwidth content: Freenet’s adaptive caching and
mirroring is being used to distribute Debian Linux software updates.

• Universal personal publishing: Freenet enables anyone to have a website, without
space restrictions or compulsory advertising, even if the would-be webmaster
doesn’t own a computer.

Freenet addresses these goals by providing a virtual space in which to publish
documents that is not tied to any specific machine. Published information and Freenet’s
own internal data indexes are replicated and distributed across the network in such a
way that even Freenet administrators don’t know at any given time where all the
physical copies are located. Privacy for people browsing or submitting to Freenet is
protected by strong cryptography.

Java was a good choice for this project for at least two reasons. First: the goals of
the project put a heavy premium on having compatible implementations on the widest
possible variety of machines, so Java’s high portability is a dominating advantage.
Second: the nature of the project is such that the network API is important, and Java
has a strong one built in.

C is traditional for infrastructure projects of this kind that have high performance
demands, but the lack of a standardized network API would have made porting a
significant difficulty. C++ would have had the same difficulty. Tcl, Perl, or Python
might have reduced the porting burden, but at a greater cost in performance. Emacs
Lisp would have been painfully slow and totally inappropriate.

Emacs Lisp14.4.8

Emacs Lisp is a scripting language used to program the behavior of the Emacs text
editor. Its first public release was in 1984.

Emacs Lisp is not a general-purpose language in quite the same way as the others
surveyed in this chapter; while it is powerful enough to theoretically be used as such,

6. There is a Freenet project website <http://freenetproject.org>.
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it is traditionally employed only to write control programs for the Emacs editor itself
and does not communicate as fluently with other software as would a modern
scripting language.

Nevertheless, there is a significant range of applications in which Emacs Lisp is
more effective than anything else. Many of these have to do with providing a front-
end for development tools such as the C compiler and linker, make(1), version-control
systems, and symbolic debuggers; we’ll discuss these in Chapter 15.

More generally, Emacs is to pattern- or syntax-directed interactive editing what
Perl is to pattern-directed batch editing. Any application that involves interactively
hacking a special file format or text database is an excellent candidate to be prototyped
(and possibly delivered) as an Emacs mode (an Emacs Lisp program that specializes
the editor’s behavior).

Emacs Lisp is also valuable for building applications that have to be closely
integrated with a text editor, or that function primarily as text browsers with some
editing capability. User agents for email and Usenet news fall in this category. So do
certain kinds of database front ends.

Emacs Lisp is a Lisp. It follows as the night the day that it manages memory auto-
matically and is far more elegant and powerful than most conventional languages, or
indeed most unconventional languages; it can compete with Java or Python on this
level and laugh at C or C++, Perl, shell or Tcl. Lisp’s perennial problem of lacking a
standardized OS binding for portability is solved by the Emacs core, which in effect
is its OS binding.

Lisp’s other perennial problem—being a resource hog—is no longer a real issue
on modern machines. Parody expansions like ‘Emacs Makes A Computer Slow’ and
‘Eventually Munches All Computer Storage’ used to be common (in fact the Emacs
distribution itself includes a list of them). But many other commonly used categories
of programs (such as Web browsers) have nowadays grown larger and more complex
than Emacs, which has come to appear rather moderate by comparison.

The definitive Emacs Lisp reference is The GNU Emacs Lisp Reference Manual,
which may be browseable through your Emacs’s ‘info’ help system. If not, it can be
downloaded from the FSF FTP site <ftp://ftp.gnu.org/pub/gnu>. If you
find that impenetrable, Writing GNU Emacs Extensions [Glickstein] may help.

Portability of Emacs Lisp programs is excellent. Emacs implementations are
available for all Unixes, the Microsoft operating systems, and Mac OS.

Summing up: Emacs Lisp’s best point is that it combines an excellent base lan-
guage, Lisp, with powerful domain primitives for text manipulation. Its worst point
is poor performance and difficulties using it in communication with other programs.

For more information, see the discussion of Emacs under editors in the next chapter.
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Trends for the Future14.5

Table 14.1 gives a rough indication of today’s distribution of language usage. We give
figures from both SourceForge7 and Freshmeat,8 the two most important new-release
sites, as of March 2003.

The SourceForge figures are soft in several ways: Notably, SourceForge’s query
interface doesn’t permit filtering on OS and language simultaneously, so some of
these numbers represent MacOS and Windows projects. The effect is probably to
exaggerate C++ and Java’s share considerably. However, Unix-based projects dominate
sufficiently (by about a 3:1 ratio) so that the effect on the figures for languages other
than these is probably not too distorting.

The Freshmeat sample is smaller, but the site hosts only Unix-based releases—and
it counts actual releases, not the huge clutter of failed and inactive SourceForge pro-
jects. It is thus interesting that the population figures track SourceForge’s by about a
1:2 ratio except in precisely the cases (C++ and Java) where we would expect them
to be out of proportion because of the absence of Windows projects.

This chapter was first drafted in 1997; at time of writing it is mid-2003. That is a
long enough time base that the relative positions of the languages we surveyed above
have changed somewhat since first writing, indicating adoption trends that may suggest
what their futures will be like. (Community size is an important predictor of the
quality and amount of work that will go into improving the most-used
open-source implementations of these languages; both growth and decline tend to be
self-reinforcing.)

Broadly speaking, C and C++ and Emacs Lisp have remained stable across the
1997–2003 time period, appealing to much the same constituencies in 2003 as they
did in 1997. C has gained slowly at the expense of older conventional languages such
as FORTRAN; C++, on the other hand, has lost some ground to Java.

Perl usage has grown respectably, but the language itself has been stagnant for
some time. Perl’s internals are notoriously grubby; it’s been understood for years that
the language’s implementation needs to be rewritten from scratch, but an attempt in
1999 failed and another seems presently stalled in mid-2003. Nevertheless, Perl is
still the 800-pound gorilla of scripting languages, and dominates Web scripting
and CGI.

Tcl has been in a period of relative decline, or at least of diminishing visibility. In
1996 a widely-reported and plausible estimate of community sizes held that for every
Python hacker there were five Tcl hackers and twelve Perl hackers. Today the

7. Query for statistics <http://sourceforge.net/softwaremap/trove_list.php?
form_cat=160>.

8. Query for statistics <http://freshmeat.net/browse/160/?topic_id=160>.
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Table 14.1: Language choices.

FreshmeatSourceForgeLanguage

484510296C
2098_9880C++
_487_1058Shell
2508_4394Perl
_328__649Tcl
_948_2222Python
1900_8032Java
__31?Emacs Lisp

SourceForge figures suggest those ratios are about 3:1:7. However, Tcl is reported to
be very widely used for scripting of specialized components in several industries, in-
cluding electronic design automation, radio and television broadcasting, and the
film industry.

Python has risen in popularity as rapidly as Tcl has fallen. Though the Perl com-
munity is still twice the size of Python’s, a visible tendency of the brightest Perl
hackers to migrate to Python has been rather ominous for the former language—espe-
cially as there is no migration at all in the opposite direction.

Java has become widely used at sites already invested in Sun Microsystems tech-
nology and is in increasing deployment as an instructional language in undergraduate
computer science curricula. Elsewhere, however, it is only marginally more popular
than it was in 1997. Sun’s determination to stick to a proprietary licensing model has
prevented the major breakout many observers then predicted; under Linux and in the
wider open-source community Java has not made the headway against C that it
has elsewhere.

No new general-purpose language has emerged to seriously challenge those we’ve
surveyed here. PHP is making inroads in Web development, challenging Perl CGIs
(as well as ASP and server-side Java) but is almost never used for standalone program-
ming. Non-Emacs Lisp dialects, a once-promising area that seemed headed for a re-
naissance in the mid-1990s, have continued to fade. Recent efforts such as Ruby (a
sort of Python-Perl-Smalltalk cross developed in Japan) and Squeak (an open-source
Smalltalk port) look promising, but have so far neither attracted hackers far outside
their development groups nor demonstrated staying power.
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Choosing an X Toolkit14.6

An issue related to choice of language is choice of X toolkit for GUI programming.
Recall the discussion in Chapter 1 of how X separates mechanism from policy. Each
possible choice of toolkit will give you a slightly different look and feel.

Your choice of X toolkit will be connected to your choice of application language
in two ways: first, because some languages ship with a binding to a preferred toolkit,
and second because some toolkits only have bindings to a limited set of languages.

Java, of course, has its own cross-platform toolkits built in, so your choice will be
between AWT (universally deployed) and Swing (more capable, more complex, slower,
and only in JDK 1.2/Java 2). The remainder of this section focuses on the other lan-
guages we have surveyed. Similarly, if you’re using Tcl, Tk comes bundled. There
probably is not a lot of point in evaluating alternatives.

The once-ubiquitous Motif toolkit is effectively dead. It couldn’t keep up with the
newer toolkits distributed without license fees or restrictions. These attracted more
developer effort until they surged past closed-source toolkits in capability and features;
nowadays, the competition is all in open source.

The four toolkits to consider seriously in 2003 are Tk, GTK, Qt, and wxWindows,
with GTK and Qt being the clear front runners. All four have ports on MacOS and
Windows, so any choice will give you the capability to do cross-platform development.

The Tk toolkit is the oldest of the four and has the advantage of incumbency; it’s
native in Tcl and bindings to it are shipped with the stock version of Python. Libraries
to provide language bindings to Tk are generally available for C and C++. Unfortu-
nately, Tk also shows its age in that its standard widget set is both limited and rather
ugly. On the other hand, the Tk Canvas widget has capabilities that other toolkits still
match only with difficulty.

GTK began life as a replacement for Motif, and was invented to support the GIMP.
It is now the preferred toolkit of the GNOME project and is used by hundreds of
GNOME applications. The native API is C; bindings are available for C++, Perl, and
Python, but do not ship with the stock language distributions. It’s the only one of
these four with a native C binding.

Qt is a toolkit associated with the KDE project. It is natively a C++ library; bindings
are available for Python and Perl but do not ship with the stock interpreters. Qt has a
reputation for having the best-designed and most expressive API of these four, but
adoption was initially hindered by controversy over early versions of the Qt license
and was further slowed down by the fact that a C binding was slow in coming.

wxWindows is also natively C++ with bindings available in Perl and Python. The
wxWindows developers emphasize their support for cross-platform development
heavily and appear to regard it as the main selling point of the toolkit. Another selling
point is that wxWindows is actually a wrapper around the native (GTK, Windows,
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Table 14.2: Summary of X toolkits.

BindingsShipped withNativeToolkit

PythonTclPerlC++Clanguage

YYYYYTcl, PythonTclTk
YYYYYGnomeCGTK
YYYYYKDEC++Qt
YYYY——C++wxWindows

and MacOS 9) widgets on each platform, so applications written using it retain a
native look and feel.

As of mid-2003 few detailed comparisons have been written, but a Web search for
“X toolkit comparison” may turn up some useful hits. Table 14.2 summarizes the
state of play.

Architecturally, these libraries are all written at about the same abstraction level.
GTK and Qt use a slot-and-signal apparatus for event-handling so similar that ports
between them have been reported to be almost trivial. Your choice among them will
probably be conditioned more by the availability of bindings to your chosen develop-
ment language than anything else.
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15

Tools:
The Tactics of Development

Unix is user-friendly—it’s just choosy about who its friends are.

—Anonymous

A Developer-Friendly Operating System15.1

Unix has a long-established reputation as a good environment to develop under. It’s
well equipped with tools written by programmers for programmers. These automate
away many of the grubby little tasks that would otherwise distract you from concen-
trating on the most important (and most enjoyable!) aspect of development—
your design.

While all the tools you’ll need are there and individually well documented, they’re
not knit together by an integrated development environment (IDE). Finding and
assembling them into a kit that suits your needs has traditionally taken consider-
able effort.

If you’re used to a good IDE—the kind of GUI-driven combination of editor,
configuration-manager, compiler, and debugger now common on Macintosh and
Windows systems—the Unix approach may seem casual, murky, and primitive. But
there’s actually method in it.

IDEs make a lot of sense for single-language programming in a tool-poor environ-
ment. If what you’re doing is confined to grinding out C or C++ code by hand and
the yard, they’re quite appropriate. Under Unix, however, your languages and
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implementation options are a lot more varied. It’s common to use multiple code gen-
erators, custom configurators, and many other standard and custom tools.

IDEs do exist under Unix (there are several good open-source ones, including
emulations of the major Macintosh and Windows IDEs). But it’s difficult to control
an open-ended variety of programming tools with them, and they’re not much used.
Unix encourages a more flexible style, one less exclusively centered on the
edit/compile/debug loop.

In this chapter we introduce you to the tactics of development under
Unix—building code, managing code configurations, profiling, debugging, and au-
tomating away a lot of the drudgery associated with these tasks so you can concentrate
on the fun parts. As usual, the exposition focuses more on the architectural picture
than the how-to details. When you want how-to details, most of the tools in this
chapter are well described in Programming with GNU Software [Loukides-Oram].

Many of these tools automate things that you could do yourself by hand, albeit
more slowly and with a higher error rate. The one-time cost of climbing the learning
curve should be more than paid off by the ability to write programs more efficiently,
and spend less attention on low-level details and more on design.

Unix programmers traditionally learn how to use these tools by osmosis from
other programmers, and by exploration over a period of years. If you’re a novice, pay
careful attention; we’re going to try to jump you over a big section of the Unix
learning curve by showing you what is possible right at the outset. If you are an
experienced Unix programmer in a hurry, you can skip this chapter—but maybe you
shouldn’t. There might just be some bit of useful lore here that even you don’t know.

Choosing an Editor15.2

The first and most basic tool of development is a text editor suitable for modifying
and writing programs.

Literally dozens of text editors are available under Unix; writing one seems to be
one of the standard finger exercises for budding open-source hackers. Most of these
are ephemera, not suitable for extended use by anyone other than their authors. A few
are emulations of non-Unix editors, useful as transition aids for programmers used
to other operating systems. You can browse through a wide variety at SourceForge or
ibiblio or any other major open-source archive.

For serious editing work, two editors completely dominate the Unix programming
scene. Each is available in a couple of minor variant implementations, but has a
standard version you can rely on finding on any modern Unix system. These two ed-
itors are vi and Emacs. We discussed them in Chapter 13 as part of our discussion of
the right size of software.
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As we noted in Chapter 13, these two editors express sharply contrasting design
philosophies, but both are extremely popular and command great loyalty from iden-
tifiable core user populations. Surveys of Unix programmers consistently indicate
about a 50/50 split between them, with all other editors barely registering.

In our earlier examinations of vi and Emacs, we were primarily concerned with
their optional complexity and the surrounding design-philosophy issues. Many other
things are worth knowing about these editors, both as a matter of practicality and of
Unix cultural literacy.

Useful Things to Know about vi15.2.1

The name of vi is an abbreviation for “visual editor” and is pronounced /vee eye/ (not
/vie/ and definitely not /siks/!).

vi was not quite the earliest screen-oriented editor; that palm goes to the Rand
editor, re, that ran on Version 6 Unix in the 1970s. But vi is the longest-lived screen-
oriented editor built for Unix that is still in use, and is a hallowed part of Unix tradition.

The original vi was the version present in the earliest BSD software distributions
beginning in 1976; it is now obsolete. Its replacement was ‘new vi’ which shipped
with 4.4BSD and is found on modern 4.4BSD variants such as BSD/OS, FreeBSD,
and NetBSD systems. There are several variants with extended features, notably vim,
vile, elvis, and xvi; of these vim is probably the most popular and is found on many
Linux systems. All the variants are rather similar and share a core command set un-
changed from the original vi.

Ports of vi are available for the Windows operating systems and MacOS.
Most introductory Unix books include a chapter describing basic vi usage. One

place a vi FAQ is available is the Editor FAQ/vi <http://www.faqs.org/
faqs/editor-faq/vi/>; you can find many other copies with a WWW keyword
search for page titles including “vi” and “FAQ”.

Useful Things to Know about Emacs15.2.2

Emacs stands for ‘EDiting MACroS’ (pronounce it /ee´·maks/). It was originally
written in the late 1970s as a set of macros in an editor called TECO, then reimple-
mented several times in different ways. In an amusing twist, modern Emacs imple-
mentations include a TECO emulation mode.

In our earlier discussion of editors and optional complexity, we noted that many
people consider Emacs excessively heavyweight. However, investing the time to learn
it can yield rich rewards in productivity. Emacs supports many powerful editing modes
that offer help with the syntax of various programming languages and markups. We’ll
see later in this chapter how Emacs can be used in combination with other development
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tools to give capabilities comparable to (and in many ways surpassing) those of
conventional IDEs.

The standard Emacs, universally available on modern Unixes, is GNU Emacs; this
is what generally runs if you type emacs to a Unix shell prompt. GNU Emacs sources
and documentation are available at the Free Software Foundation archive site
<ftp://gnu.org/pub/gnu>.

The only major variant is called XEmacs; it has a better X interface but otherwise
quite similar capabilities (it forked from Emacs 19). XEmacs has a home page
<http://www.xemacs.org>. Emacs (and Emacs Lisp) is universally available
under modern Unixes. It has been ported to MS-DOS (where it works poorly) and
Windows 95 and NT (where it is said to work reasonably well).

Emacs includes its own interactive tutorial and very complete on-line documenta-
tion; you’ll find instructions on how to invoke both on the default Emacs startup
screen. A good introduction on paper is Learning GNU Emacs [Cameron].

The keystroke commands used in the Unix ports of Netscape/Mozilla and Internet
Explorer text windows (in forms and the mailer) are copied from the stock Emacs
bindings for basic text editing. These bindings are the closest thing to a cross-platform
standard for editor keystrokes.

The Antireligious Choice: Using Both15.2.3

Many people who regularly use both vi and Emacs tend to use them for different
things, and find it valuable to know both.

In general, vi is best for small jobs—quick replies to mail, simple tweaks to system
configuration, and the like. It is especially useful when you’re using a new system
(or a remote one over a network) and don’t have your Emacs customization files handy.

Emacs comes into its own for extended editing sessions in which you have to
handle complex tasks, modify multiple files, and use results from other programs
during the session. For programmers using X on their console (which is typical on
modern Unixes), it’s normal to start up Emacs shortly after login time in a large
window and leave it running forever, possibly visiting dozens of files and even running
programs in multiple Emacs subwindows.

Special-Purpose Code Generators15.3

Unix has a long-standing tradition of hosting tools that are specifically designed to
generate code for various special purposes. The venerable monuments of this tradition,
which go back to Version 7 and earlier days, and were actually used to write the
original Portable C Compiler back in the 1970s, are lex(1) and yacc(1) Their modern,
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upward-compatible successors are flex(1) and bison(1), part of the GNU toolkit and
still heavily used today. These programs have set an example that is carried forward
in projects like GNOME’s Glade interface builder.

yacc  and lex15.3.1

yacc and lex are tools for generating language parsers. We observed in Chapter 8 that
your first minilanguage is all too likely to be an accident rather than a design. That
accident is likely to have a hand-coded parser that costs you far too much maintenance
and debugging time—especially if you have not realized it is a parser, and have thus
failed to properly separate it from the remainder of your application code. Parser
generators are tools for doing better than an accidental, ad-hoc implementation; they
don’t just let you express your grammar specification at a higher level, they also wall
off all the parser’s implementation complexity from the rest of your code.

If you reach a point where you are planning to implement a minilanguage from
scratch, rather than by extending or embedding an existing scripting language or
parsing XML, yacc and lex will probably be your most important tools after your
C compiler.

lex and yacc each generate code for a single function—respectively, “get a token
from the input stream” and “parse a sequence of tokens to see if it matches a grammar”.
Usually, the yacc-generated parser function calls a Lex-generated tokenizer function
each time it wants to get another token. If there are no user-written C callbacks at all
in the yacc-generated parser, all it will do is a syntax check; the value returned will
tell the caller if the input matched the grammar it was expecting.

More usually, the user’s C code, embedded in the generated parser, populates some
runtime data structures as a side-effect of parsing the input. If the minilanguage is
declarative, your application can use these runtime data structures directly. If your
design was an imperative minilanguage, the data structures might include a parse tree
which is immediately fed to some kind of evaluation function.

yacc has a rather ugly interface, through exported global variables with the name
prefix yy_. This is because it predates structs in C; in fact, yacc predates C itself; the
first implementation was written in C’s predecessor B. The crude though effective
algorithm yacc-generated parsers use to try to recover from parse errors (pop tokens
until an explicit error production is matched) can also lead to problems, including
memory leaks.

If you are building parse trees, using malloc to make nodes, and you start popping
things off the stack in error recovery, you don’t get to recover (free) the storage.
In general, Yacc can’t do it, since it doesn’t know enough about what’s on the stack.
If the yacc parser were in C++, it could assume that the values were classes
and “destruct” them. In “real” compilers, parse tree nodes are generated using an
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arena-based allocator, so the nodes don’t leak, but there is a logical leak anyway
that needs to be thought about to make industrial-strength error recovery.

—Steve Johnson

lex is a lexical analyzer generator. It’s a member of the same functional family as
grep(1) and awk(1), but more powerful because it enables you to arrange for arbitrary
C code to be executed on each match. It accepts a declarative minilanguage and emits
skeleton C code.

A crude but useful way to think about what a lex-generated tokenizer does is as a
sort of inverse grep(1). Where grep(1) takes a single regular expression and returns
a list of matches in the incoming data stream, each call to a lex-generated tokenizer
takes a list of regular expressions and indicates which expression occurs next in
the datastream.

Splitting input analysis into tokenizing input and parsing the token stream is a
useful tactic even if you’re not using Yacc and Lex and your “tokens” are nothing
like the usual ones in a compiler. More than once I’ve found that splitting input
handling into two levels made the code much simpler and easier to understand,
despite the complexity added by the split itself.

—Henry Spencer

lex was written to automate the task of generating lexical analyzers (tokenizers)
for compilers. It turned out to have a surprisingly wide range of uses for other kinds
of pattern recognition, and has since been described as “the Swiss-army knife of Unix
programming”.1

If you are attacking any kind of pattern-recognition or state-machine problem in
which all the possible input stimuli will fit in a byte, lex may enable you to generate
code that will be more efficient and reliable than a hand-crafted state machine.

John Jarvis at Holmdel [an AT&T laboratory] used lex to find faults in circuit
boards, by scanning the board, using a chain-encoding technique to represent the
edges of areas on the board, and then using Lex to define patterns that would catch
common fabrication errors.

—Mike Lesk

Most importantly, the lex specification minilanguage is much higher-level and
more compact than equivalent handcrafted C. Modules are available to use flex, the

1. The common latter-day description of Perl as a “Swiss-army chainsaw” is derivative.
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open-source version, with Perl (find them with a Web search for “lex perl”), and a
work-alike implementation is part of PLY in Python.

lex generates parsers that are up to an order of magnitude slower than hand-coded
parsers. This is not a good reason to hand-code, however; it’s an argument for proto-
typing with lex and hand-hacking only if prototyping reveals an actual bottleneck.

yacc is a parser generator. It, too, was written to automate part of the job of writing
compilers. It takes as input a grammar specification in a declarative minilanguage
resembling BNF (Backus-Naur Form) with C code associated with each element of
the grammar. It generates code for a parser function that, when called, accepts text
matching the grammar from an input stream. As each grammar element is recognized,
the parser function runs the associated C code.

The combination of lex and yacc is very effective for writing language interpreters
of all kinds. Though most Unix programmers never get to do the kind of general-
purpose compiler-building that these tools were meant to assist, they’re extremely
useful for writing parsers for run-control file syntaxes and domain-specific
minilanguages.

lex-generated tokenizers are very fast at recognizing low-level patterns in input
streams, but the regular-expression minilanguage that lex knows is not good at
counting things, or recognizing recursively nested structures. For parsing those, you
want yacc. On the other hand, while you theoretically could write a yacc grammar to
do its own token-gathering, the grammar to specify that would be hugely bloated and
the parser extremely slow. For tokenizing input, you want lex. Thus, these tools
are symbiotic.

If you can implement your parser in a higher-level language than C (which we
recommend you do; see Chapter 14 for discussion), then look for equivalent facilities
like Python’s PLY (which covers both lex and yacc)2 or Perl’s PY and Parse::Yapp
modules, or Java’s CUP,3 Jack,4 or Yacc/M5 packages.

As with macro processors, one of the problems with code generators and prepro-
cessors is that compile-time errors in the generated code may carry line numbers that
are relative to the generated code (which you don’t want to edit) rather than the gen-
erator input (which is where you need to make corrections). yacc and lex address this
by generating the same #line constructs that the C preprocessor does; these set the

2. PLY is downloadable <http://systems.cs.uchicago.edu/ply/>.

3. CUP is downloadable <http://www.cs.princeton.edu/~appel/modern/
java/CUP/>.

4. Jack is downloadable <http://www.javaworld.com/javaworld/jw-12-1996/
jw-12-jack.html>.

5. Yacc/M is downloadable <http://david.tribble.com/yaccm.html>.
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current line number for error reporting so the numbers will come out right. Any pro-
gram that generates C or C++ should do likewise.

More generally, well-designed procedural-code generators should never require
the user to hand-alter or even look at the generated parts. Getting those right is the
code generator’s job.

Case Study: The fetchmailrc Grammar15.3.1.1

The canonical demonstration example that seems to have appeared in every lex and
yacc tutorial ever written is a toy interactive calculator program that parses and
evaluates arithmetic expressions entered by the user. We will spare you yet another
repetition of this cliche; if you are interested, consult the source code of the bc(1) and
dc(1) calculator implementations from the GNU project, or the paradigm example
‘hoc’6 from [Kernighan-Pike84].

Instead, the grammar of fetchmail’s run-control-file parser provides a good medium-
sized case study in lex and yacc usage. There are a couple of points of interest here.

The lex specification, in rcfile_l.l, is a very typical implementation of a
shell-like syntax. Note how two complementary rules support either single or double-
quoted strings; this is a good idea in general. The rules for accepting (possibly signed)
integer literals and discarding comments are also pretty generic.

The yacc specification, in rcfile_y.y, is long but straightforward. It does not
perform any fetchmail actions, just sets bits in a list of internal control blocks. After
startup, fetchmail’s normal mode of operation is just to repeatedly walk that list,
using each record to drive a retrieval session with a remote site.

Case Study: Glade15.3.2

We looked at Glade in Chapter 8 as a good example of a declarative minilanguage.
We also noted that its back end produces a result by generating code in any one of
several languages.

Glade is a good modern example of an application-code generator. What makes
it Unixy in spirit are the following features, which most GUI builders (especially most
proprietary GUI builders) don’t have:

• Rather than being glued together as one monster monolith, the Glade GUI and
Glade code generator obey the Rule of Separation (following the “separated
engine and interface” design pattern).

6. http://cm.bell-labs.com/cm/cs/upe/
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• The GUI and code generator are connected by an (XML-based) textual data file
format that can be read and modified by other tools.

• Multiple target languages (as opposed to just C or C++) are supported. More
could easily be added.

The design implies that it should also be possible to replace the Glade GUI editor
component, should that ever become desirable.

make : Automating Your Recipes15.4

Program sources by themselves don’t make an application. The way you put them
together and package them for distribution matters, too. Unix provides a tool for semi-
automating these processes; make(1). Make is covered in most introductory Unix
books. For a really thorough reference, you can consult Managing Projects with Make
[Oram-Talbot]. If you’re using GNU make (the most advanced make, and the one
normally shipped with open-source Unixes) the treatment in Programming with GNU
Software [Loukides-Oram] may be better in some respects. Most Unixes that carry
GNU make will also support GNU Emacs; if yours does you will probably find a
complete make manual on-line through Emacs’s info documentation system.

Ports of GNU make to DOS and Windows are available from the FSF.

Basic Theory of make15.4.1

If you’re developing in C or C++, an important part of the recipe for building your
application will be the collection of compilation and linkage commands needed to
get from your sources to working binaries. Entering these commands is a lot of tedious
detail work, and most modern development environments include a way to put them
in command files or databases that can automatically be re-executed to build your
application.

Unix’s make(1) program, the original of all these facilities, was designed specifi-
cally to help C programmers manage these recipes. It lets you write down the depen-
dencies between files in a project in one or more ‘makefiles’. Each makefile consists
of a series of productions; each one tells make that some given target file depends on
some set of source files, and says what to do if any of the sources are newer than the
target. You don’t actually have to write down all dependencies, as the make program
can deduce a lot of the obvious ones from filenames and extensions.

For example: You might put in a makefile that the binary myprog depends on
three object files myprog.o, helper.o, and stuff.o. If you have source files
myprog.c, helper.c, and stuff.c, make will know without being told that
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each .o file depends on the corresponding .c file, and supply its own standard recipe
for building a .o file from a .c file.

Make originated with a visit from Steve Johnson (author of yacc, etc.), storming
into my office, cursing the Fates that had caused him to waste a morning debugging
a correct program (bug had been fixed, file hadn’t been compiled, cc *.o was
therefore unaffected). As I had spent a part of the previous evening coping with
the same disaster on a project I was working on, the idea of a tool to solve it came
up. It began with an elaborate idea of a dependency analyzer, boiled down to
something much simpler, and turned into Make that weekend. Use of tools that
were still wet was part of the culture. Makefiles were text files, not magically en-
coded binaries, because that was the Unix ethos: printable, debuggable, understand-
able stuff.

—Stuart Feldman

When you run make in a project directory, the make program looks at all produc-
tions and timestamps and does the minimum amount of work necessary to make sure
derived files are up to date.

You can read a good example of a moderately complex makefile in the sources for
fetchmail. In the subsections below we’ll refer to it again.

Very complex makefiles, especially when they call subsidiary makefiles, can be-
come a source of complications rather than simplifying the build process. A now-
classic warning is issued in Recursive Make Considered Harmful.7 The argument in
this paper has become widely accepted since it was written in 1997, and has come
near to reversing previous community practice.

No discussion of make(1) would be complete without an acknowledgement that
it includes one of the worst design botches in the history of Unix. The use of tab
characters as a required leader for command lines associated with a production means
that the interpretation of a makefile can change drastically on the basis of invisible
differences in whitespace.

Why the tab in column 1? Yacc was new, Lex was brand new. I hadn’t tried either,
so I figured this would be a good excuse to learn. After getting myself snarled up
with my first stab at Lex, I just did something simple with the pattern newline-tab.
It worked, it stayed. And then a few weeks later I had a user population of about
a dozen, most of them friends, and I didn’t want to screw up my embedded base.
The rest, sadly, is history.

—Stuart Feldman

7. Available on the Web <http://www.tip.net.au/~millerp/rmch/
recu-make-cons-harm.html>.
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make  in Non-C/C++ Development15.4.2

make is not just useful for C/C++ recipes, however. Scripting languages like those
we described in Chapter 14 may not require conventional compilation and link steps,
but there are often other kinds of dependencies that make(1) can help you with.

Suppose, for example, that you actually generate part of your code from a
specification file, using one of the techniques from Chapter 9. You can use make to
tie the spec file and the generated source together. This will ensure that whenever you
change the spec and remake, the generated code will automatically be rebuilt.

It’s quite common to use makefile productions to express recipes for making doc-
umentation as well as code. You’ll often see this approach used to automatically
generate PostScript or other derived documentation from masters written in some
markup language (like HTML or one of the Unix document-macro languages we’ll
survey in Chapter 18). In fact, this sort of use is so common that it’s worth illustrating
with a case study.

Case Study: make  for Document-File Translation15.4.2.1

In the fetchmail makefile, for example, you’ll see three productions that relate files
named FAQ, FEATURES, and NOTES to HTML sources fetchmail-FAQ.html,
fetchmail-features.html, and design-notes.html.

The HTML files are meant to be accessible on the fetchmail Web page, but all the
HTML markup makes them uncomfortable to look at unless you’re using a browser.
So the FAQ, FEATURES, and NOTES are flat-text files meant to be flipped through
quickly with an editor or pager program by someone reading the fetchmail sources
themselves (or, perhaps, distributed to FTP sites that don’t support Web access).

The flat-text forms can be made from their HTML masters by using the common
open-source program lynx(1). lynx is a Web browser for text-only displays; but when
invoked with the -dump option it functions reasonably well as an HTML-
to-ASCII formatter.

With the productions in place, the developer can edit the HTML masters without
having to remember to manually rebuild the flat-text forms afterwards, secure in the
knowledge that FAQ, FEATURES, and NOTES will be properly rebuilt whenever they
are needed.

Utility Productions15.4.3

Some of the most heavily used productions in typical makefiles don’t express file
dependencies at all. They’re ways to bundle up little procedures that a developer wants
to mechanize, like making a distribution package or removing all object files in order
to do a build from scratch.
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Non-file productions were intentional and in there from day one. ‘Make all’ and
‘clean’ were my own conventions from earliest days. One of the older Unix jokes
is “Make love” which results in “Don’t know how to make love”.

—Stuart Feldman

There is a well-developed set of conventions about what utility productions should
be present and how they should be named. Following these will make your makefile
much easier to understand and use.

all
Your all production should make every executable of your project. Usually the
all production doesn’t have an explicit rule; instead it refers to all of your project’s
top-level targets (and, not accidentally, documents what those are). Convention-
ally, this should be the first production in your makefile, so it will be the one
executed when the developer types make with no argument.

test
Run the program’s automated test suite, typically consisting of a set of unit tests8

to find regressions, bugs, or other deviations from expected behavior during the
development process. The ‘test’ production can also be used by end-users of the
software to ensure that their installation is functioning correctly.

clean
Remove all files (such as binary executables and object files) that are normally
created when you make all. A make clean should reset the process of
building the software to a good initial state.

dist
Make a source archive (usually with the tar(1) program) that can be shipped as
a unit and used to rebuild the program on another machine. This target should
do the equivalent of depending on all so that a make dist automatically
rebuilds the whole project before making the distribution archive—this is a good
way to avoid last-minute embarrassments, like not shipping derived files that

8. A unit test is test code attached to a module to verify correct performance. Use of the term
‘unit test’ suggests that the test is written concurrently with the code by the developer of the
code, and implies a discipline in which module releases aren’t considered complete until they
have attached test code. The term and the concept originated in the “Extreme Programming”
methodology popularized by Kent Beck, but has gained wide acceptance among Unix program-
mers since about 2001.
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are actually needed (like the flat-text README in fetchmail, which is actually
generated from an HTML source).

distclean
Throw away everything but what you would include if you were bundling up
the source with make dist. This may be the the same as make clean but
should be included as a production of its own anyway, to document what’s going
on. When it’s different, it usually differs by throwing away local configuration
files that aren’t part of the normal make all build sequence (such as those
generated by autoconf(1); we’ll talk about autoconf(1) in Chapter 17).

realclean
Throw away everything you can rebuild using the makefile. This may be the
same as make distclean, but should be included as a production of its own
anyway, to document what’s going on. When it’s different, it usually differs by
throwing away files that are derived but (for whatever reason) shipped with the
project sources anyway.

install
Install the project’s executables and documentation in system directories so they
will be accessible to general users (this typically requires root privileges). Initial-
ize or update any databases or libraries that the executables require in order
to function.

uninstall
Remove files installed in system directories by make install (this typically
requires root privileges). This should completely and perfectly reverse a make
install. The presence of an uninstall production implies a kind of humility
that experienced Unix hands look for as a sign of thoughtful design; conversely,
not having an uninstall production is at best careless, and (when, for example,
an installation creates large database files) can be quite rude and thoughtless.

Working examples of all the standard targets are available for inspection in the
fetchmail makefile. By studying all of them together you will see a pattern emerge,
and (not incidentally) learn much about the fetchmail package’s structure. One of the
benefits of using these standard productions is that they form an implicit roadmap of
their project.

But you need not limit yourself to these utility productions. Once you master make,
you’ll find yourself more and more often using the makefile machinery to automate
little tasks that depend on your project file state. Your makefile is a convenient central
place to put these; using it makes them readily available for inspection and avoids
cluttering up your workspace with trivial little scripts.
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Generating Makefiles15.4.4

One of the subtle advantages of Unix make over the dependency databases built into
many IDEs is that makefiles are simple text files—files that can be generated
by programs.

In the mid-1980s it was fairly common for large Unix program distributions to
include elaborate custom shellscripts that would probe their environment and use the
information they gathered to construct custom makefiles. These custom configurators
reached absurd sizes. I wrote one once that was 3000 lines of shell, about twice as
large as any single module in the program it was configuring—and this was
not unusual.

The community eventually said “Enough!” and various people set out to write
tools that would automate away part or all of the process of maintaining makefiles.
These tools generally tried to address two issues:

One issue is portability. Makefile generators are commonly built to run on many
different hardware platforms and Unix variants. They generally try to deduce things
about the local system (including everything from machine word size up to which
tools, languages, service libraries, and even document formatters it has available).
They then try to use those deductions to write makefiles that exploit the local system’s
facilities and compensate for its quirks.

The other issue is dependency derivation. It’s possible to deduce a great deal about
the dependencies of a collection of C sources by analyzing the sources themselves
(especially by looking at what include files they use and share). Many makefile gen-
erators do this in order to mechanically generate make dependencies.

Each different makefile generator tackles these objectives in a slightly different
way. Probably a dozen or more generators have been attempted, but most proved in-
adequate or too difficult to drive or both, and only a few are still in live use. We’ll
survey the major ones here. All are available as open-source software on the Internet.

makedepend15.4.4.1

Several small tools have tackled the rule automation part of the problem exclusively.
This one, distributed along with the X windowing system from MIT, is the fastest
and most useful and comes preinstalled under all modern Unixes, including all Linuxes.

makedepend takes a collection of C sources and generates dependencies for the
corresponding .o files from their #include directives. These can be appended di-
rectly to a makefile, and in fact makedepend is defined to do exactly that.

makedepend is useless for anything but C projects. It doesn’t try to solve more
than one piece of the makefile-generation problem. But what it does it does quite well.

Chapter 15 Tools362



ptg

makedepend is sufficiently documented by its manual page. If you type man
makedepend at a terminal window you will quickly learn what you need to know
about invoking it.

Imake15.4.4.2

Imake was written in an attempt to mechanize makefile generation for the X window
system. It builds on makedepend to tackle both the dependency-derivation and
portability problems.

Imake system effectively replaces conventional makefiles with Imakefiles. These
are written in a more compact and powerful notation which is (effectively) compiled
into makefiles. The compilation uses a rules file which is system-specific and includes
a lot of information about the local environment.

Imake is well suited to X’s particular portability and configuration challenges and
universally used in projects that are part of the X distribution. However, it has not
achieved much popularity outside the X developer community. It’s hard to learn, hard
to use, hard to extend, and produces generated makefiles of mind-numbing size
and complexity.

The Imake tools will be available on any Unix that supports X, including Linux.
There has been one heroic effort [DuBois] to make the mysteries of Imake compre-
hensible to non-X-programming mortals. These are worth learning if you are going
to do X programming.

autoconf15.4.4.3

autoconf was written by people who had seen and rejected the Imake approach. It
generates per-project configure shellscripts that are like the old-fashioned custom
script configurators. These configure scripts can generate makefiles (among other
things).

Autoconf is focused on portability and does no built-in dependency derivation at
all. Although it is probably as complex as Imake, it is much more flexible and easier
to extend. Rather than relying on a per-system database of rules, it generates
configure shell code that goes out and searches your system for things.

Each configure shellscript is built from a per-project template that you have
to write, called configure.in. Once generated, though, the configure script
will be self-contained and can configure your project on systems that don’t carry
autoconf(1) itself.

The autoconf approach to makefile generation is like imake’s in that you start by
writing a makefile template for your project. But autoconf’s Makefile.in files are
basically just makefiles with placeholders in them for simple text substitution; there’s
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no second notation to learn. If you want dependency derivation, you must take
explicit steps to call makedepend(1) or some similar tool—or use automake(1).

autoconf is documented by an on-line manual in the GNU info format. The source
scripts of autoconf are available from the FSF archive site, but are also preinstalled
on many Unix and Linux versions. You should be able to browse this manual through
your Emacs’s help system.

Despite its lack of direct support for dependency derivation, and despite its gener-
ally ad-hoc approach, in mid-2003 autoconf is clearly the most popular of the makefile
generators, and has been for some years. It has eclipsed Imake and driven at least one
major competitor (metaconfig) out of use.

A reference, GNU Autoconf, Automake and Libtool is available [Vaughan]. We’ll
have more to say about autoconf, from a slightly different angle, in Chapter 17.

automake15.4.4.4

automake is an attempt to add Imake-like dependency derivation as a layer on top of
autoconf(1). You write Makefile.am templates in a broadly Imake-like notation;
automake(1) compiles them to Makefile.in files, which autoconf’s configure
scripts then operate on.

automake is still relatively new technology in mid-2003. It is used in several FSF
projects but has not yet been widely adopted elsewhere. While its general approach
looks promising, it is as yet rather brittle—it works when used in stereotyped ways
but tends to break badly if you try to do anything unusual with it.

Complete on-line documentation is shipped with automake, which can be down-
loaded from the FSF archive site.

Version-Control Systems15.5

Code evolves. As a project moves from first-cut prototype to deliverable, it goes
through multiple cycles in which you explore new ground, debug, and then stabilize
what you’ve accomplished. And this evolution doesn’t stop when you first deliver for
production. Most projects will need to be maintained and enhanced past the 1.0 stage,
and will be released multiple times. Tracking all that detail is just the sort of thing
computers are good at and humans are not.

Why Version Control?15.5.1

Code evolution raises several practical problems that can be major sources of friction
and drudgery—thus a serious drain on productivity. Every moment spent on these
problems is a moment not spent on getting the design and function of your project right.
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Perhaps the most important problem is reversion. If you make a change, and dis-
cover it’s not viable, how can you revert to a code version that is known good? If
reversion is difficult or unreliable, it’s hard to risk making changes at all (you could
trash the whole project, or make many hours of painful work for yourself).

Almost as important is change tracking. You know your code has changed; do you
know why? It’s easy to forget the reasons for changes and step on them later. If you
have collaborators on a project, how do you know what they have changed while you
weren’t looking, and who was responsible for each change?

Amazingly often, it is useful to ask what you have changed since the last known-
good version, even if you have no collaborators. This often uncovers unwanted
changes, such as forgotten debugging code. I now do this routinely before checking
in a set of changes.

—Henry Spencer

Another issue is bug tracking. It’s quite common to get new bug reports for a
particular version after the code has mutated away from it considerably. Sometimes
you can recognize immediately that the bug has already been stomped, but often you
can’t. Suppose it doesn’t reproduce under the new version. How do you get back the
state of the code for the old version in order to reproduce and understand it?

To address these problems, you need procedures for keeping a history of your
project, and annotating it with comments that explain the history. If your project has
more than one developer, you also need mechanisms for making sure developers don’t
overwrite each others’ versions.

Version Control by Hand15.5.2

The most primitive (but still very common) method is all hand-hacking. You snapshot
the project periodically by manually copying everything in it to a backup. You include
history comments in source files. You make verbal or email arrangements with other
developers to keep their hands off certain files while you hack them.

The hidden costs of this hand-hacking method are high, especially when (as fre-
quently happens) it breaks down. The procedures take time and concentration; they’re
prone to error, and tend to get slipped under pressure or when the project is in trou-
ble—that is, exactly when they are most needed.

As with most hand-hacking, this method does not scale well. It restricts the gran-
ularity of change tracking, and tends to lose metadata details such as the order of
changes, who did them, and why. Reverting just a part of a large change can be tedious
and time consuming, and often developers are forced to back up farther than they’d
like after trying something that doesn’t work.
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Automated Version Control15.5.3

To avoid these problems, you can use a version-control system (VCS), a suite of pro-
grams that automates away most of the drudgery involved in keeping an annotated
history of your project and avoiding modification conflicts.

Most VCSs share the same basic logic. To use one, you start by registering a col-
lection of source files—that is, telling your VCS to start archive files describing their
change histories. Thereafter, when you want to edit one of these files, you have to
check out the file—assert an exclusive lock on it. When you’re done, you check in the
file, adding your changes to the archive, releasing the lock, and entering a change
comment explaining what you did.

The history of the project is not necessarily linear. All VCSs in common use actu-
ally allow you to maintain a tree of variant versions (for ports to different machines,
say) with tools for merging branches back into the main “trunk” version. This feature
becomes important as the size and dispersion of the development group increases. It
needs to be used with care, however; multiple active variants of the code base can be
very confusing (just associated bug reports to the right version are not necessarily
easy), and automated merging of branches does not guaranteed that the combined
code works.

Most of the rest of what a VCS does is convenience: labeling, and reporting features
surrounding these basic operations, and tools which allow you to view differences
between versions, or to group a given set of versions of files as a named release that
can be examined or reverted to at any time without losing later changes.

VCSs have their problems. The biggest one is that using a VCS involves extra
steps every time you want to edit a file, steps that developers in a hurry tend to want
to skip if they have to be done by hand. Near the end of this chapter we’ll discuss a
way to solve this problem.

Another problem is that some kinds of natural operations tend to confuse VCSs.
Renaming files is a notorious trouble spot; it’s not easy to automatically ensure that
a file’s version history will be carried along with it when it is renamed. Renaming
problems are particularly difficult to resolve when the VCS supports branching.

Despite these difficulties, VCSs are a huge boon to productivity and code quality
in many ways, even for small single-developer projects. They automate away many
procedures that are just tedious work. They help a lot in recovering from mistakes.
Perhaps most importantly, they free programmers to experiment by guaranteeing that
reversion to a known-good state will always be easy.

(VCSs, by the way, are not merely good for program code; the manuscript of this
book was maintained as a collection of files under RCS while it was being written.)
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Unix Tools for Version Control15.5.4

Historically, three VCSs have been of major significance in the Unix world, and we’ll
survey them here. For an extended introduction and tutorial, consult Applying RCS
and SCCS [Bolinger-Bronson].

Source Code Control System (SCCS)15.5.4.1

The first was SCCS, the original Source Code Control System developed by Bell Labs
around 1980 and featured in System III Unix. SCCS seems to have been the first serious
attempt at a unified source-code management system; concepts that it pioneered are
still found at some level in all later ones, including commercial Unix and Windows
products such as ClearCase.

SCCS itself is, however, now obsolete; it was proprietary Bell Labs software. Su-
perior open-source alternatives have since been developed, and most of the Unix
world has converted to those. SCCS is still in use to manage old projects at some
commercial vendors, but can no longer be recommended for new projects.

No complete open-source implementation of SCCS exists. A clone called CSSC
(Compatibly Stupid Source Control) is in development under the sponsorship
of the FSF.

Revision Control System (RCS)15.5.4.2

The superior open-source alternatives began with RCS (Revision Control System),
born at Purdue University a few years after SCCS and originally distributed with
4.3BSD Unix. It is logically similar to SCCS but has a cleaner command interface,
and good facilities for grouping together entire project releases under symbolic names.

RCS is currently the most widely used version control system in the Unix world.
Some other Unix version-control systems use it as a back end or underlayer. It is well
suited for single-developer or small-group projects hosted at a single development shop.

The RCS sources are maintained and distributed by the FSF. Free ports are available
for Microsoft operating systems and VAX/VMS.

Concurrent Version System (CVS)15.5.4.3

CVS (Concurrent Version System) began life as a front end to RCS developed in the
early 1990s, but the model of version control it uses was different enough that it im-
mediately qualified as a new design. Modern implementations don’t rely on RCS.

Unlike RCS and SCCS, CVS doesn’t exclusively lock files when they’re checked
out. Instead, it tries to reconcile nonconflicting changes mechanically when they’re
checked back in, and requests human help on conflicts. The design works because
patch conflicts are much less common than one might intuitively think.
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The interface of CVS is significantly more complex than that of RCS, and it needs
a lot more disk space. These properties make it a poor choice for small projects. On
the other hand, CVS is well suited to large multideveloper efforts distributed across
several development sites connected by the Internet. CVS tools on a client machine
can easily be told to direct their operations to a repository located on a different host.

The open-source community makes heavy use of CVS for projects such as GNOME
and Mozilla. Typically, such CVS repositories allow anyone to check out sources re-
motely. Anyone can, therefore, make a local copy of a project, modify it, and mail
change patches to the project maintainers. Actual write access to the repository is
more limited and has to be explicitly granted by the project maintainers. A developer
who has such access can perform a commit option from his modified local copy,
which will cause the local changes to get made directly to the remote repository.

You can see an example of a well-run CVS repository, accessible over the Internet,
at the GNOME CVS site <http://cvs.gnome.org>. This site illustrates the
use of CVS-aware browsing tools such as Bonsai, which are useful in helping a large
and decentralized group of developers coordinate their work.

The social machinery and philosophy accompanying the use of CVS is as important
as the details of the tools. The assumption is that projects will be open and decentral-
ized, with code subject to peer review and inspection even by developers who are not
officially members of the project group.

Just as importantly, CVS’s nonlocking philosophy means that projects can’t be
blocked by a lock if a programmer disappears in the middle of making some changes.
CVS thus allows developers to avoid the “single person point of failure” problem; in
turn, this means that project boundaries can be fluid, casual contributions are relatively
easy, and projects are not required to have an elaborate hierarchy of control.

The CVS sources are maintained and distributed by the FSF.
CVS has significant problems. Some are merely implementation bugs, but one

basic problem is that your project’s file namespace is not versioned in the same way
changes to files themselves are. Thus, CVS is easily confused by file renamings,
deletions, and additions. Also, CVS records changes on a per-file basis, rather than as
sets of changes made to files. This makes it harder to back out to specific versions,
and harder to handle partial check-ins. Fortunately, none of these problems are intrinsic
to the nonlocking style, and they have been successfully addressed by newer version-
control systems.

Other Version-Control Systems15.5.4.4

CVS’s design problems are sufficient to have created demand for a better open-source
VCS. Several such efforts are under way as of 2003. The most notable of these are
Aegis and Subversion.
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Aegis <http://www.pcug.org.au/~millerp/aegis/aegis.html>
has the longest history of any of these alternatives, has hosted its own development
since 1991, and is a mature production system. It features a heavy emphasis on
regression-testing and validation.

Subversion <http://subversion.tigris.org/> is positioned as “CVS
done right”, with the known design problems fully addressed, and in 2003 probably
has the best near-term prospect of replacing CVS.

The BitKeeper <http://www.bitkeeper.com> project explores some inter-
esting design ideas related to change-sets and multiple distributed code repositories.
Linus Torvalds uses Bitkeeper for the Linux kernel sources. Its non-open-source license
is, however, controversial, and has significantly retarded the acceptance of the product.

Runtime Debugging15.6

Anyone who has been programming longer than a week knows that getting the syntax
of your programming language right is the easy part of debugging. The hard part
comes after that, when you need to understand why your syntactically correct program
doesn’t behave as you expect.

The Unix tradition encourages developers to anticipate this problem by designing
for transparency—in particular, designing programs in such a way that their internal
data flows are readily monitored with the naked eye and simple tools, and readily
mentally modeled. This is a topic we covered in detail in Chapter 6. Design for
transparency is valuable both for preventing bugs and for easing the runtime-
debugging task.

Design for transparency is not, however, sufficient in itself. When you are debug-
ging a program at runtime, it’s extremely useful to be able to examine the state of
your program at runtime, set breakpoints, and execute pieces of it down to the single-
statement level in a controlled way. Unix has a long tradition of hosting programs to
help you with this. Open-source Unixes feature a powerful one called gdb (yet another
FSF project) that supports C and C++ debugging.

Perl, Python, Java, and Emacs Lisp all support standard packages or programs
(included with their base distributions) that allow you to set breakpoints, control
execution, and do general runtime-debugger things. Tcl, designed as a small language
for small projects, has no such facility (though it does have a trace facility that can
be used to watch variables at runtime).

Remember the Unix philosophy. Spend your time on design quality, not the low-
level details, and automate away everything you can—including the detail work of
runtime debugging.
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Profiling15.7

As a general rule, 90% of the execution time of your program will be spent in 10%
of its code. Profilers are tools that help you identify the 10% of hot spots that constrain
the speed of your program. This is a good thing for making it faster.

But in the Unix tradition, profilers have a far more important function. They enable
you not to optimize the other 90%! This is good, and not just because it saves you
work. The really valuable effect is that not optimizing that 90% holds down global
complexity and reduces bugs.

You may recall that we quoted Donald Knuth observing “Premature optimization
is the root of all evil” in Chapter 1, and that Rob Pike and Ken Thompson had a few
pungent observations on the topic as well. These were the voices of experience. Do
good design. Think about what’s right first. Tune for efficiency later.

Profilers help you do this. If you get in the good habit of using them, you can get
rid of the bad habit of premature optimization. Profilers don’t just change the way
you work; they change how you think.

Profilers for compiled languages rely on instrumenting object code, so they are
even more platform-dependent than compilers. On the other hand, a compiled-language
profiler doesn’t care about the source language of the programs it instruments. Under
Unix, the single profiler gprof(1) handles C, C++, and all other compiled languages.

Perl, Python, and Emacs Lisp have their own profilers included in their basic dis-
tributions; these are portable across all platforms on which the host languages them-
selves run. Java has built-in profiling. Tcl has no profiling support as yet.

Combining Tools with Emacs15.8

One of the things the Emacs editor is very good at is acting as a front end for other
development tools (we discussed this from a philosophical angle in Chapter 13). In
fact, nearly every tool we’ve discussed in this chapter can be driven from within an
Emacs editor session through front ends that give them greater utility than they would
have running standalone.

To illustrate this, we’ll walk you through the use of these tools with Emacs in a
typical build/test/debug cycle. For details on them, see Emacs’s own on-line help
system; this section just gives you an overview, to motivate you to learn more.

Read and learn—not just about Emacs, but about the mental habit of looking for
synergies between programs, and creating them. Try to read this section as instruction
in philosophy, not just technique.
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Emacs and make15.8.1

Make, for example, can be started with the Emacs command ESC-x compile
followed by an Enter. This command will run make(1) in the current directory, captur-
ing the output in an Emacs buffer.

This by itself wouldn’t be very useful. But Emacs’s make mode knows about the
error message format (featuring a source file and line number) emitted by Unix C
compilers and many other tools.

If anything run by make issues error messages, the command Ctl-X ` (control-
X-backquote) will try to parse them and take you to each error location in turn, popping
open a window on the appropriate file and taking the cursor to the error line.9

This makes it extremely easy to step through an entire build, fixing any syntax that
has been broken since the last compile.

Emacs and Runtime Debugging15.8.2

For catching runtime errors, Emacs offers similar integration with your symbolic
debugger—that is, you can use an Emacs mode to set breakpoints in your programs
and examine their runtime state. You run the debugger by sending it commands through
an Emacs window. Whenever the debugger stops on a breakpoint, the message the
debugger ships back about the source location is parsed and used to pop up a window
on the source around the breakpoint.

Emacs’s Grand Unified Debugger mode supports all the major C debuggers: gdb(1),
sdb(1), dbx(1), and xdb(1). It also supports Perl symbolic debugging using the perldb
module, and the standard debuggers for both Java and Python. Facilities built into
Emacs Lisp itself support interactive debugging of Emacs Lisp code.

At time of writing (mid-2003) there is not yet support for Tcl debugging from
within Emacs. The design of Tcl is such that it seems unlikely to be added.

Emacs and Version Control15.8.3

Once you’ve corrected your program’s syntax and fixed its runtime bugs, you may
want to save the changes into a version-controlled archive. If you’ve only tried running
version-control tools from the shell, it’s hard to blame you for sloughing off this im-
portant step. Who wants to have to remember to run checkout/checkin commands
around every edit operation?

9. Look at p+processes->compile under the Emacs help menu for more information
on these and related compilation-control commands.
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Fortunately, Emacs offers help here too. Code built into Emacs implements a
simple-to-use front end for SCCS, RCS, CVS, or Subversion. The single command
Ctl-x v v tries to deduce the next logical version-control operation to do on the
file you are visiting. The operations this includes are registering a file, checking
out and locking it, and checking it back in (accepting a change comment in a
pop-up buffer).10

Emacs also helps you view the change history of version-controlled files, and helps
you back out changes you don’t want. It makes it easy to apply version-control oper-
ations to whole sets or project directory trees of files. In general, it does a pretty good
job of making version-control operations painless.

The implications of these features are larger than you might guess before you’ve
gotten used to it. You’ll find, once you get used to fast and easy version control, that
it’s extremely liberating. Because you know you can always revert to a known-good
state, you’ll find you feel more free to develop in a fluid and exploratory way, trying
lots of changes out to see their effects.

Emacs and Profiling15.8.4

Surprise...this is perhaps the only phase of the development cycle in which Emacs
front-ending does not offer substantial help. Profiling is an intrinsically batchy oper-
ation—instrument your program, run it, view the statistics, speed-tune the code with
an editor, repeat. There isn’t much room for Emacs leverage in the profiling-specific
parts of this cycle.

Nevertheless, there’s a good tutorial reason for us to think about Emacs and
profiling. If you found yourself analyzing a lot of profiling reports, it might pay you
to write a mode in which a mouse click or keystroke on a profile report line visited
the source of the relevant function. This actually would be fairly easy to do using the
Emacs ‘tags’ code. In fact, by the time you read this, some other reader may already
have written such a mode and contributed it to the public Emacs code base.

The real point here is again a philosophical one. Don’t drudge—drudging wastes
your time and productivity! If you find yourself spending a lot of time on the low-
level mechanical parts of development, step back. Apply the Unix philosophy. Use
your toolkit to automate or semi-automate the task.

Then give back something in return for all you’ve inherited, by posting your solu-
tion as open-source software to the Internet. Help liberate your fellow programmers
from drudgery, too.

10. See the subsection of the Emacs on-line documentation titled Version Control for more
details on these and related commands.
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Like an IDE, Only Better15.8.5

Earlier in this chapter we asserted that Emacs can give you capabilities resembling
those of a conventional integrated development environment, only better. By now you
should have enough facts in hand to see how that can be true. You can run entire
development projects from inside Emacs, driving the low-level mechanics with a few
keystrokes and saving yourself the mental effort and disruption of constantly
switching contexts.

The Emacs-enabled development style trades away some capabilities of advanced
IDEs, like graphical views of program structure. But those are frills. What Emacs
gives you in return is flexibility and control. You’re not limited by the imagination of
the IDE designer: you can tweak, customize, and add task-related intelligence using
Emacs Lisp. Also, Emacs is better at supporting mixed-language development than
conventional IDEs.

Finally, you’re not limited to accepting what one small group of IDE developers
sees fit to support. By keeping an eye on the open-source community, you can benefit
from the work of thousands of your peers, Emacs-using developers facing challenges
much like yours. This is much more effective—and much more fun.
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16

Reuse:
On Not Reinventing the Wheel

When the superior man refrains from acting, his force is felt for a thousand miles.

—Tao Te Ching (as popularly mistranslated)

Reluctance to do unnecessary work is a great virtue in programmers. If the Chinese
sage Lao-Tze were alive today and still teaching the way of the Tao, he would probably
be mistranslated as: When the superior programmer refrains from coding, his force
is felt for a thousand miles. In fact, recent translators have suggested that the Chinese
term wu-wei that has traditionally been rendered as “inaction” or “refraining from
action” should probably be read as “least action” or “most efficient action” or “action
in accordance with natural law”, which is an even better description of good engineer-
ing practice!

Remember the Rule of Economy. Re-inventing fire and the wheel for every new
project is terribly wasteful. Thinking time is precious and very valuable relative to
all the other inputs that go into software development; accordingly, it should be spent
solving new problems rather than rehashing old ones for which known solutions al-
ready exist. This attitude gives the best return both in the “soft” terms of
developing human capital and in the “hard” terms of economic return on development
investment.
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Reinventing the wheel is bad not only because it wastes time, but because
reinvented wheels are often square. There is an almost irresistible temptation to
economize on reinvention time by taking a shortcut to a crude and poorly-thought-
out version, which in the long run often turns out to be false economy.

—Henry Spencer

The most effective way to avoid reinventing the wheel is to borrow someone else’s
design and implementation of it. In other words, to reuse code.

Unix supports reuse at every level from individual library modules up to entire
programs, which Unix helps you script and recombine. Systematic reuse is one of the
most important distinguishing behaviors of Unix programmers, and the experience
of using Unix should teach you a habit of trying to prototype solutions by combining
existing components with a minimum of new invention, rather than rushing to write
standalone code that will only be used once.

The virtuousness of code reuse is one of the great apple-pie-and-motherhood ver-
ities of software development. But many developers entering the Unix community
from a basis of experience in other operating systems have never learned (or have
unlearned) the habit of systematic reuse. Waste and duplicative work is rife, even
though it seems to be against the interests both of those who pay for code and those
who produce it. Understanding why such dysfunctional behavior persists is the first
step toward changing it.

The Tale of J. Random Newbie16.1

Why do programmers reinvent wheels? There are many reasons, reaching all the way
from the narrowly technical to the psychology of programmers and the economics of
the software production system. The damage from the endemic waste of programming
time reaches all these levels as well.

Consider the first, formative job experience of J. Random Newbie, a programmer
fresh out of college. Let us assume that he (or she) has been taught the value of code
reuse and is brimming with youthful zeal to apply it.

Newbie’s first project puts him on a team building some large application. Let’s
say for the sake of example that it’s a GUI intended to help end users intelligently
construct queries for and navigate through a large database. The project managers
have assembled what they deem to be a suitable collection of tools and components,
including not merely a development language but many libraries as well.

The libraries are crucial to the project. They package many services—from win-
dowing widgets and network connections on up to entire subsystems like interactive
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help—that would otherwise require immense quantities of additional coding, with a
severe impact on the project’s budget and its ship date.

Newbie is a little worried about that ship date. He may lack experience, but he’s
read Dilbert and heard a few war stories from experienced programmers. He knows
management has a tendency to what one might euphemistically call “aggressive”
schedules. Perhaps he has read Ed Yourdon’s Death March [Yourdon], which as long
ago as 1996 noted that a majority of projects are on a time and resource budget at
least 50% too tight, and that the trend is for that squeeze to get worse.

But Newbie is bright and energetic. He figures his best chance of succeeding is to
learn to use the tools and libraries that have been handed to him as intelligently as
possible. He limbers up his typing fingers, hurls himself at the challenge...and
enters hell.

Everything takes longer and is more painful than he expects. Beneath the surface
gloss of their demo applications, the components he is re-using seem to have edge
cases in which they behave unpredictably or destructively—edge cases his code
tickles daily. He often finds himself wondering what the library programmers were
thinking. He can’t tell, because the components are inadequately documented—often
by technical writers who aren’t programmers and don’t think like programmers. And
he can’t read the source code to learn what it is actually doing, because the libraries
are opaque blocks of object code under proprietary licenses.

Newbie has to code increasingly elaborate workarounds for component problems,
to the point where the net gain from using the libraries starts to look marginal. The
workarounds make his code progressively grubbier. He probably hits a few places
where a library simply cannot be made to do something crucially important that is
theoretically within its specifications. Sometimes he is sure there is some way to ac-
tually make the black box perform, but he can’t figure out what it is.

Newbie finds that as he puts more strain on the libraries, his debugging time rises
exponentially. His code is bedeviled with crashes and memory leaks that have trace
paths leading into the libraries, into code he can’t see or modify. He knows most of
those trace paths probably lead back out to his code, but without source it is very
difficult to trace through the bits he didn’t write.

Newbie is growing horribly frustrated. He had heard in college that in industry, a
hundred lines of finished code a week is considered good performance. He had laughed
then, because he was many times more productive than that on his class projects and
the code he wrote for fun. Now it’s not funny any more. He is wrestling not merely
with his own inexperience but with a cascade of problems created by the carelessness
or incompetence of others—problems he can’t fix, but can only work around.

The project schedule is slipping. Newbie, who dreamed of being an architect, finds
himself a bricklayer trying to build with bricks that won’t stack properly and that
crumble under load-bearing pressure. But his managers don’t want to hear excuses
from a novice programmer; complaining too loudly about the poor quality of the
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components is likely to get him in political trouble with the senior people and managers
who selected them. And even if he could win that battle, changing components would
be a complicated proposition involving batteries of lawyers peering narrowly at
licensing terms.

Unless Newbie is very, very lucky, he is not going to be able to get library bugs
fixed within the lifetime of his project. In his saner moments, he may realize that the
working code in the libraries doesn’t draw his attention the way the bugs and omissions
do. He’d love to sit down for a clarifying chat with the component developers; he
suspects they can’t be the idiots their code sometimes suggests, just programmers
like him working within a system that frustrates their attempts to do the right thing.
But he can’t even find out who they are—and if he could, the software vendor they
work for probably wouldn’t let them talk to him.

In desperation, Newbie starts making his own bricks—simulating less stable library
services with more stable ones and writing his own implementations from scratch.
His replacement code, because he has a complete mental model of it that he can refresh
by rereading, tends to work relatively well and be easier to debug than the combination
of opaque components and workarounds it replaces.

Newbie is learning a lesson; the less he relies on other peoples’ code, the more
lines of code he can get written. This lesson feeds his ego. Like all young programmers,
deep down he thinks he is smarter than anyone else. His experience seems, superfi-
cially, to be confirming this. He begins building his own personal toolkit, one better
fitted to his hand.

Unfortunately, the roll-your-own reflexes Newbie is acquiring are a short-term
local optimization that will cause long-term problems. He may get more lines of code
written, but the actual value of what he produces is likely to drop substantially relative
to what it would have been if he were doing successful reuse. More code does not
equal better code, not when it’s written at a lower level and largely devoted to
reinventing wheels.

Newbie has at least one more demoralizing experience in store, when he changes
jobs. He is likely to discover that he can’t take his toolkit with him. If he walks out
of the building with code he wrote on company time, his old employers could well
regard this as intellectual-property theft. His new employers, knowing this, are not
likely to react well if he admits to reusing any of his old code.

Newbie could well find his toolkit is useless even if he can sneak it into the
building at his new job. His new employers may use a different set of proprietary
tools, languages, and libraries. It is likely he will have to learn a somewhat new set
of techniques and reinvent a new set of wheels each time he changes projects.

Thus do programmers have reuse (and other good practices that go with it, like
modularity and transparency) systematically conditioned out of them by a combination
of technical problems, intellectual-property barriers, politics, and personal ego needs.
Multiply J. Random Newbie by a hundred thousand, age him by decades, and have
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him grow more cynical and more used to the system year by year. There you have the
state of much of the software industry, a recipe for enormous waste of time and capital
and human skill—even before you factor in vendors’ market-control tactics, incompe-
tent management, impossible deadlines, and all the other pressures that make doing
good work difficult.

The professional culture that springs from J. Random Newbie’s experiences will
reflect them in the large. Programming shops will have a ferocious Not Invented Here
complex. They will be poisonously ambivalent about code reuse, pushing inadequate
but heavily marketed vendor components on their programmers in order to meet
schedule crunches, while simultaneously rejecting reuse of the programmers’ own
tested code. They will churn out huge volumes of ad-hoc, duplicative software pro-
duced by programmers who know the results will be garbage but are glumly resigned
to never being able to fix anything but their own individual pieces.

The closest equivalent of code reuse to emerge in such a culture will be a dogma
that code once paid for can never be thrown away, but must instead be patched and
kluged even when all parties know that it would be better to scrap and start anew. The
products of this culture will become progressively more bloated and buggy over time
even when every individual involved is trying his or her hardest to do good work.

Transparency as the Key to Reuse16.2

We field-tested the tale of J. Random Newbie on a number of experienced program-
mers. If you the reader are one yourself, we expect you responded to it much as they
did: with groans of recognition. If you are not a programmer but you manage program-
mers, we sincerely hope you found it enlightening. The tale is intended to illustrate
the ways in which different levels of pressure against reuse reinforce each other to
create a magnitude of problem not linearly predictable from any individual cause.

So accustomed are most of us to the background assumptions of the software in-
dustry that it can take considerable mental effort before the primary causes of this
problem can be separated from the accidents of narrative. But they are not, in the end,
very complex.

At the bottom of most of J. Random Newbie’s troubles (and the large-scale quality
problems they imply) is transparency — or, rather, the lack of it. You can’t fix what
you can’t see inside. In fact, for any software with a nontrivial API, you can’t even
properly use what you can’t see inside. Documentation is inadequate not merely in
practice but in principle; it cannot convey all the nuances that the code embodies.

In Chapter 6, we observed how central transparency is to good software. Object-
code-only components destroy the transparency of a software system, On the other
hand, the frustrations of code reuse are far less likely to bite when the code you are
attempting to reuse is available for reading and modification. Well-commented source
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code is its own documentation. Bugs in source code can be fixed. Source can be in-
strumented and compiled for debugging to make probing its behavior in obscure
cases easier. And if you need to change its behavior, you can do that.

There is another vital reason to demand source code. A lesson Unix programmers
have learned through decades of constant change is that source code lasts, object code
doesn’t. Hardware platforms change, service components like support libraries change,
the operating system grows new APIs and deprecates old ones. Everything
changes—but opaque binary executables cannot adapt to change. They are brittle,
cannot be reliably forward-ported, and have to be supported with increasingly thick
and error-prone layers of emulation code. They lock users into the assumptions of
the people who built them. You need source because, even if you have neither the in-
tention nor the need to change the software, you will have to rebuild it in new envi-
ronments to keep it running.

The importance of transparency and the code-legacy problem are reasons that you
should require the code you reuse to be open to inspection and modification.1 It is
not a complete argument for what is now called ‘open source’; because ‘open source’
has rather stronger implications than simply requiring code to be transparent
and visible.

From Reuse to Open Source16.3

In the early days of Unix, components of the operating system, its libraries, and its
associated utilities were passed around as source code; this openness was a vital part
of the Unix culture. We described in Chapter 2 how, when this tradition was disrupted
after 1984, Unix lost its initial momentum. We have also described how, a decade
later, the rise of the GNU toolkit and Linux prompted a rediscovery of the value of
open-source code.

Today, open-source code is again one of the most powerful tools in any Unix pro-
grammer’s kit. Accordingly, though the explicit concept of “open source” and the
most widely used open-source licenses are decades younger than Unix itself, it’s im-
portant to understand both to do leading-edge development in today’s Unix culture.

Open source relates to code reuse in much the way romantic love relates to sexual
reproduction—it’s possible to explain the former in terms of the latter, but to do so
is to risk overlooking much of what makes the former interesting. Open source does
not reduce to merely being a tactic for supporting reuse in software development. It
is an emergent phenomenon, a social contract among developers and users that tries

1. NASA, which consciously builds software intended to have a service life of decades, has
learned to insist on source-code availability for all space avionics software.
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to secure several advantages related to transparency. As such, there are several
different ways to approaching an understanding of it.

Our historical description earlier in this book chose one angle by focusing on
causal and cultural relationships between Unix and open source. We’ll discuss the
institutions and tactics of open-source development in Chapter 19. In discussing the
theory and practice of code reuse, it’s useful to think of open source more specifically,
as a direct response to the problems we dramatized in the tale of J. Random Newbie.

Software developers want the code they use to be transparent. Furthermore, they
don’t want to lose their toolkits and their expertise when they change jobs. They get
tired of being victims, fed up with being frustrated by blunt tools and intellectual-
property fences and having to repeatedly re-invent the wheel.

These are the motives for open source that flow from J. Random Newbie’s painful
initiatory experience with reuse. Ego needs play a part here, too; they give pervasive
emotional force to what would otherwise be a bloodless argument about engineering
best practices. Software developers are like every other kind of craftsman and artificer;
they want, not so secretly, to be artists. They have the drives and needs of artists, in-
cluding the desire to have an audience. They not only want to reuse code, they want
their code to be reused. There is an imperative here that goes beyond and overrides
short-term economic goal-seeking and that cannot be satisfied by closed-source
software production.

Open source is a kind of ideological preemptive strike on all these problems. If
the root of most of J. Random Newbie’s problems with reuse is the opacity of closed-
source code, then the institutional assumptions that produce closed-source code must
be smashed. If corporate territoriality is a problem, it must be attacked or bypassed
until the corporations have caught on to how self-destructive their territorial reflexes
are. Open source is what happens when code reuse gets a flag and an army.

Accordingly, since the late 1990s, it no longer makes any sense to try to recommend
strategies and tactics for code reuse without talking about open source, open-source
practices, open-source licensing, and the open-source community. Even if those issues
could be separated elsewhere, they have become inextricably bound together in the
Unix world.

In the remainder of this chapter, we’ll survey various issues associated with re-
using open-source code: evaluation, documentation, and licensing. In Chapter 19
we’ll discuss the open-source development model more generally, and examine the
conventions you should follow when you are releasing code for others to use.

The Best Things in Life Are Open16.4

On the Internet, literally terabytes of Unix sources for systems and applications
software, service libraries, GUI toolkits and hardware drivers are available for the
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taking. You can have most built and running in minutes with standard tools. The
mantra is  ./configure; make; make install; usually you have to be
root to do the install part.

People from outside the Unix world (especially non-technical people) are prone
to think open-source (or ‘free’) software is necessarily inferior to the commercial
kind, that it’s shoddily made and unreliable and will cause more headaches than it
saves. They miss an important point: in general, open-source software is written by
people who care about it, need it, use it themselves, and are putting their individual
reputations among their peers on the line by publishing it. They also tend to have less
of their time consumed by meetings, retroactive design changes, and bureaucratic
overhead. They are therefore both more strongly motivated and better positioned to
do excellent work than wage slaves toiling Dilbert-like to meet impossible deadlines
in the cubicles of proprietary software houses.

Furthermore, the open-source user community (those peers) is not shy about nailing
bugs, and its standards are high. Authors who put out substandard work experience
a lot of social pressure to fix their code or withdraw it, and can get a lot of skilled
help fixing it if they choose. As a result, mature open-source packages are generally
of high quality and often functionally superior to any proprietary equivalent. They
may lack polish and have documentation that assumes much, but the vital parts will
usually work quite well.

Besides the peer-review effect, another reason to expect better quality is this: in
the open-source world developers are never forced by a deadline to close their eyes,
hold their noses, and ship. A major consequent difference between open-source
practice and elsewhere is that a release level of 1.0 actually means the software is
ready to use. In fact, a version number of 0.90 or above is a fairly reliable signal that
the code is production-ready, but the developers are not quite ready to bet their repu-
tations on it.

If you are a programmer from outside the Unix world, you may find this claim
difficult to believe. If so, consider this: on modern Unixes, the C compiler itself is
almost invariably open source. The Free Software Foundation’s GNU Compiler Col-
lection (GCC) is so powerful, so well documented, and so reliable that there is
effectively no proprietary Unix compiler market left, and it has become normal for
Unix vendors to port GCC to their platforms rather than do in-house
compiler development.

The way to evaluate an open-source package is to read its documentation and skim
some of its code. If what you see appears to be competently written and documented
with care, be encouraged. If there also is evidence that the package has been around
for a while and has incorporated substantial user feedback, you may bet that it is quite
reliable (but test anyway).
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A good gauge of maturity and the volume of user feedback is the number of people
besides the original author mentioned in the README and project news or history
files in the source distribution. Credits to lots of people for sending in fixes and
patches are signs both of a significant user base keeping the authors on their toes, and
of a conscientious maintainer who is responsive to feedback and will take corrections.
It is also an indication that, if early code tends to be a minefield of bugs,
there has since been a thundering herd run through it without too many recent
explosions.

It’s also a good omen when the software has its own Web page, on-line FAQ
(Frequently Asked Questions) list, and an associated mailing list or Usenet newsgroup.
These are all signs that a live and substantial community of interest has grown up
around the software. On Web pages, recent updates and an extensive mirror list are
reliable signs of a project with a vigorous user community. Packages that are duds
just don’t get this kind of continuing investment, because they can’t reward it.

Ports to multiple platforms are also a valuable indication of a diversified user base.
Project pages tend to advertise new ports precisely because they signal credibility.

Here are some examples of what Web pages associated with high-quality open-
source software look like:

• GIMP <http://www.gimp.org/>

• GNOME <http://www.gnome.org>

• KDE <http://www.kde.org>

• Python <http://www.python.org>

• The Linux kernel <http://www.kernel.org>

• PostgreSQL <http://www.postgresql.org>

• XFree86 <http://xfree86.org>

• InfoZip <http://www.info-zip.org/pub/infozip/>

Looking at Linux distributions is another good way to find quality. Distribution-
makers for Linux and other open-source Unixes carry a lot of specialist expertise
about which projects are best-of-breed—that’s a large part of the value they add when
they integrate a release. If you are already using an open-source Unix, something else
to check is whether the package you are evaluating is already carried by
your distribution.

38316.4 The Best Things in Life Are Open

http://www.gimp.org/
http://www.gnome.org
http://www.kde.org
http://www.python.org
http://www.kernel.org
http://www.postgresql.org
http://xfree86.org
http://www.info-zip.org/pub/infozip/


ptg

Where to Look?16.5

Because so much open source is available in the Unix world, skill at finding code to
reuse can have an enormous payoff—much greater than is the case for other operating
systems. Such code comes in many forms: individual code snippets and examples,
code libraries, utilities to be reused in scripts. Under Unix most code reuse is not a
matter of actual cut-and-paste into your program—in fact, if you find yourself doing
that, there is almost certainly a more graceful mode of reuse that you are missing.
Accordingly, one of the most useful skills to cultivate under Unix is a good grasp of
all the different ways to glue together code, so you can use the Rule of Composition.

To find re-usable code, start by looking under your nose. Unixes have always fea-
tured a rich toolkit of re-usable utilities and libraries; modern ones, such as any current
Linux system, include thousands of programs, scripts, and libraries that may be re-
usable. A simple man -k search with a few keywords often yields useful results.

To begin to grasp something of the amazing wealth of resources out there, surf to
SourceForge, ibiblio, and Freshmeat.net. Other sites as important as these three may
exist by the time you read this book, but all three of these have shown continuing
value and popularity over a period of years, and seem likely to endure.

SourceForge <http://www.sourceforge.net> is a demonstration site for
software specifically designed to support collaborative development, complete with
associated project-management services. It is not merely an archive but a free devel-
opment-hosting service, and in mid-2003 is undoubtedly the largest single hub of
open-source activity in the world.

The Linux archives at ibiblio <http://www.ibiblio.org> were the largest
in the world before SourceForge. The ibiblio archives are passive, simply a place to
publish packages. They do, however, have a better interface to the World Wide Web
than most passive sites (the program that creates its Web look and feel was one of our
case studies in the discussion of Perl in Chapter 14). It’s also the home site of the
Linux Documentation Project, which maintains many documents that are excellent
resources for Unix users and developers.

Freshmeat <http://www.freshmeat.net> is a system dedicated to
providing release announcements of new software, and new releases of old software.
It lets users and third parties attach reviews to releases.

These three general-purpose sites contain code in many languages, but most of
their content is C or C++. There are also sites specialized around some of the inter-
preted languages as discussed in Chapter 14.

The CPAN archive is the central repository for useful free code in Perl. It is easily
reached from the Perl home page <http://www.perl.com/perl>.

The Python Software Activity makes an archive of Python software and documen-
tation available at the Python Home Page <http://www.python.org> .
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Many Java applets and pointers to other sites featuring free Java software are made
available at the Java Applets page <http://java.sun.com/applets/>.

One of the most valuable ways you can invest your time as a Unix developer is to
spend time wandering around these sites learning what is available for you to use.
The coding time you save may be your own!

Browsing the package metadata is a good idea, but don’t stop there. Sample the
code, too. You’ll get a better grasp on what the code is doing, and be able to use it
more effectively.

More generally, reading code is an investment in the future. You’ll learn from
it—new techniques, new ways to partition problems, different styles and approaches.
Both using the code and learning from it are valuable rewards. Even if you don’t use
the techniques in the code you study, the improved definition of the problem you get
from looking at other peoples’ solutions may well help you invent a better one of
your own.

Read before you write; develop the habit of reading code. There are seldom any
completely new problems, so it is almost always possible to discover code that is
close enough to what you need to be a good starting point. Even when your problem
is genuinely novel, it is likely to be genetically related to a problem someone else has
solved before, so the solution you need to develop is likely to be related to some pre-
existing one as well.

Issues in Using Open-Source Software16.6

There are three major issues in using or re-using open-source software; quality, doc-
umentation, and licensing terms. We’ve seen above that if you exercise a little judgment
in picking through your alternatives, you will generally find one or more of quite re-
spectable quality.

Documentation is often a more serious issue. Many high-quality open-source
packages are less useful than they technically ought to be because they are poorly
documentated. Unix tradition encourages a rather hieratic style of documentation,
one which (while it may technically capture all of a package’s features) assumes that
the reader is intimately familiar with the application domain and reading very carefully.
There are good reasons for this, which we’ll discuss in Chapter 18, but the style can
present a bit of a barrier. Fortunately, extracting value from it is a learnable skill.

It is worth doing a Web search for phrases including the software package, or
topic keywords, and the string “HOWTO” or “FAQ”. These queries will often turn
up documentation more useful to novices than the man page.

The most serious issue in reusing open-source software (especially in any kind of
commercial product) is understanding what obligations, if any, the package’s license
puts upon you. In the next two sections we’ll discuss this issue in detail.
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Licensing Issues16.7

Anything that is not public domain has a copyright, possibly more than one.
Under U.S. federal law, the authors of a work hold copyright even if there is no
copyright notice.

Who counts as an author under copyright law can be complicated, especially for
software that has been worked on by many hands. This is why licenses are important.
They can authorize uses of code in ways that would be otherwise impermissible under
copyright law and, drafted appropriately, can protect users from arbitrary actions by
the copyright holders.

In the proprietary software world, the license terms are designed to protect the
copyright. They’re a way of granting a few rights to users while reserving as much
legal territory as possible for the owner (the copyright holder). The copyright holder
is very important, and the license logic so restrictive that the exact technicalities of
the license terms are usually unimportant.

As will be seen below, the copyright holder typically uses the copyright to protect
the license, which makes the code freely available under terms he intends to perpetuate
indefinitely. Otherwise, only a few rights are reserved and most choices pass to the
user. In particular, the copyright holder cannot change the terms on a copy you already
have. Therefore, in open-source software the copyright holder is almost irrelevant—but
the license terms are very important.

Normally the copyright holder of a project is the current project leader or sponsor-
ing organization. Transfer of the project to a new leader is often signaled by changing
the copyright holder. However, this is not a hard and fast rule; many open-source
projects have multiple copyright holders, and there is no instance on record of this
leading to legal problems. Some projects choose to assign copyright to the Free
Software Foundation, on the theory that it has an interest in defending open source
and lawyers available to do it.

What Qualifies as Open Source16.7.1

For licensing purposes, we can distinguish several different kinds of rights that a license
may convey. There are rights to copy and redistribute, rights to use, rights to modify
for personal use, and rights to redistribute modified copies. A license may restrict or
attach conditions to any of these rights.

The Open Source Definition <http://www.opensource.org/osd.html>
is the result of a great deal of thought about what makes software “open source” or
(in older terminology) “free”. It is widely accepted in the open-source community as
an articulation of the social contract among open-source developers. Its constraints
on licensing impose the following requirements:
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• An unlimited right to copy be granted.

• An unlimited right to redistribute in unmodified form be granted.

• An unlimited right to modify for personal use be granted.

The guidelines prohibit restrictions on redistribution of modified binaries; this
meets the needs of software distributors, who need to be able to ship working code
without encumbrance. It allows authors to require that modified sources be redistributed
as pristine sources plus patches, thus establishing the author’s intentions and an “audit
trail” of any changes by others.

The OSD is the legal definition of the “OSI Certified Open Source” certification
mark, and as good a definition of “free software” as anyone has ever come up with.
All of the standard licenses (MIT, BSD, Artistic, GPL/LGPL, and MPL) meet it
(though some, like GPL, have other restrictions which you should understand before
choosing it).

Note that licenses that allow only noncommercial use do not qualify as open-source
licenses, even if they are based on GPL or some other standard license. Such licenses
discriminate against particular occupations, persons, and groups, a practice which the
OSD’s Clause 5 explicitly forbids.

Clause 5 was written after years of painful experience. No-commercial-use licenses
turn out to have the problem that there is no bright-line legal test for what sort of re-
distribution qualifies as ‘commercial’. Selling the software as a product qualifies,
certainly. But what if it were distributed at a nominal price of zero in conjunction
with other software or data, and a price is charged for the whole collection? Would
it make a difference whether the software were essential to the function of the whole
collection?

Nobody knows. The very fact that no-commercial-use licenses create uncertainty
about a redistributor’s legal exposure is a serious strike against them. One of the ob-
jectives of the OSD is to ensure that people in the distribution chain of OSD-conform-
ing software do not need to consult with intellectual-property lawyers to know what
their rights are. OSD forbids complicated restrictions against persons, groups, and
occupations partly so that people dealing with collections of software will not face a
combinatorial explosion of slightly differing (and perhaps conflicting) restrictions on
what they can do with it.

This concern is not hypothetical, either. One important part of the open-source
distribution chain is CD-ROM distributors who aggregate it in useful collections
ranging from simple anthology CDs up to bootable operating systems. Restrictions
that would make life prohibitively complicated for CD-ROM distributors, or others
trying to spread open-source software commercially, have to be forbidden.

On the other hand, the OSD has nothing to say about the laws of your jurisdiction.
Some countries have laws against exporting certain restricted technologies to named
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‘rogue states’. The OSD cannot negate those, it only says that licensors may not add
restrictions of their own.

Standard Open-Source Licenses16.7.2

Here are the standard open-source license terms you are likely to encounter. The ab-
breviations listed here are in general use.

MIT <http://www.opensource.org/licenses/mit-license.html>
MIT X Consortium license (like BSD’s but with no advertising requirement)

BSD <http://www.opensource.org/licenses/bsd-license.html>
University of California at Berkeley Regents copyright (used on BSD code)

Artistic License <http://www.opensource.org/licenses/artistic-
license.html>
Same terms as Perl Artistic License

GPL <http://www.gnu.org/copyleft.html>
GNU General Public License

LGPL <http://www.gnu.org/copyleft.html>
Library (or ‘Lesser’) GPL

MPL <http://www.opensource.org/licenses/MPL-1.1.html>
Mozilla Public License

We’ll discuss these licenses in more detail, from a developer’s point of view, in
Chapter 19. For the purposes of this chapter, the only important distinction among
them is whether they are infectious or not. A license is infectious if it requires that
any derivative work of the licensed software also be placed under its terms.

Under these licenses, the only kind of open-source use you should really worry
about is actual incorporation of the free-software code into a proprietary product (as
opposed, say, to merely using open-source development tools to make your product).
If you’re prepared to include proper license acknowledgements and pointers to the
source code you’re using in your product documentation, even direct incorporation
should be safe provided the license is not infectious.

The GPL is both the most widely used and the most controversial infectious license.
And it is clause 2(b), requiring that any derivative work of a GPLed program itself
be GPLed, that causes the controversy. (Clause 3(b) requiring licensors to make source
available on physical media on demand used to cause some, but the Internet explosion
has made publishing source code archives as required by 3(a) so cheap that nobody
worries about the source-publication requirement any more.)
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Nobody is quite certain what the “contains or is derived from” in clause 2(b) means,
nor what kinds of use are protected by the “mere aggregation” language a few para-
graphs later. Contentious issues include library linking and inclusion of GPL-licensed
header files. Part of the problem is that the U.S. copyright statutes do not define what
derivation is; it has been left to the courts to hammer out definitions in case law, and
computer software is an area in which this process (as of mid-2003) has barely begun.

At one end, the “mere aggregation” certainly makes it safe to ship GPLed software
on the same media with your proprietary code, provided they do not link to or call
each other. They may even be tools operating on the same file formats or on-disk
structures; that situation, under copyright law, would not make one a derivative of
the other.

At the other end, splicing GPLed code into your proprietary code, or linking GPLed
object code to yours, certainly does make your code a derivative work and requires
it to be GPLed.

It is generally believed that one program may execute a second program as a sub-
process without either program becoming thereby a derivative work of the other.

The case that causes dispute is dynamic linking of shared libraries. The Free
Software Foundation’s position is that if a program calls another program as a shared
library, then that program is a derivative work of the library. Some programmers think
this claim is overreaching. There are technical, legal, and political arguments on both
sides that we won’t rehash here. Since the Free Software Foundation wrote and owns
the license, it would be prudent to behave as if the FSF’s position is correct until a
court rules otherwise.

Some people think the 2(b) language is deliberately designed to infect every part
of any commercial program that uses even a snippet of GPLed code; such people refer
to it as the GPV, or “General Public Virus”. Others think the “mere aggregation”
language covers everything short of mixing GPL and non-GPL code in the same
compilation or linkage unit.

This uncertainty has caused enough agitation in the open-source community that
the FSF had to develop the special, slightly more relaxed “Library GPL” (which they
have since renamed the “Lesser GPL”) to reassure people they could continue to use
runtime libraries that came with the FSF’s GNU compiler collection.

You’ll have to choose your own interpretation of clause 2(b); most lawyers will
not understand the technical issues involved, and there is no case law. As a matter of
empirical fact, the FSF has never (from its founding in 1984 to mid-2003, at least)
sued anyone under the GPL but it has enforced the GPL by threatening lawsuit, in all
known cases successfully. And, as another empirical fact, Netscape includes the source
and object of a GPLed program with the commercial distribution of its Netscape
Navigator browser.

The MPL and LGPL are infectious in a more limited way than GPL. They
explicitly allow linking with proprietary code without turning that code into a derivative
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work, provided all traffic between the GPLed and non-GPLed code goes through a
library API or other well-defined interface.

When You Need a Lawyer16.7.3

This section is directed to commercial developers considering incorporating software
that falls under one of these standard licenses into closed-source products.

Having gone through all this legal verbiage, the expected thing for us to do at this
point is to utter a somber disclaimer to the effect that we are not lawyers, and that if
you have any doubts about the legality of something you want to do with open-source
software, you should immediately consult a lawyer.

With all due respect to the legal profession, this would be fearful nonsense. The
language of these licenses is as clear as legalese gets—they were written to be
clear—and should not be at all hard to understand if you read it carefully. The lawyers
and courts are actually more confused than you are. The law of software rights is
murky, and case law on open-source licenses is (as of mid-2003) nonexistent; no one
has ever been sued under them.

This means a lawyer is unlikely to have a significantly better insight than a careful
lay reader. But lawyers are professionally paranoid about anything they don’t under-
stand. So if you ask one, he is rather likely to tell you that you shouldn’t go anywhere
near open-source software, despite the fact that he probably doesn’t understand the
technical aspects or the author’s intentions anywhere near as well as you do.

Finally, the people who put their work under open-source licenses are generally
not mega-corporations attended by schools of lawyers looking for blood in the water;
they’re individuals or volunteer groups who mainly want to give their software away.
The few exceptions (that is, large companies both issuing under open-source licenses
and with money to hire lawyers) have a stake in open source and don’t want to antag-
onize the developer community that produces it by stirring up legal trouble. Therefore,
your odds of getting hauled into court on an innocent technical violation are probably
lower than your chances of being struck by lightning in the next week.

This isn’t to say you should treat these licenses as jokes. That would be disrespectful
of the creativity and sweat that went into the software, and you wouldn’t enjoy being
the first litigation target of an enraged author no matter how the lawsuit came out.
But in the absence of definitive case law, a visible good-faith effort to meet the author’s
intentions is 99% of what you can do; the additional 1% of protection you might (or
might not) get by consulting a lawyer is unlikely to make a difference.
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17

Portability:
Software Portability
and Keeping Up Standards

The realization that the operating systems of the target machines were as great an
obstacle to portability as their hardware architecture led us to a seemingly radical
suggestion: to evade that part of the problem altogether by moving the operating
system itself.

—Portability of C Programs and the UNIX System (1978)

Unix was the first production operating system to be ported between differing processor
families (Version 6 Unix, 1976–77). Today, Unix is routinely ported to every new
machine powerful enough to sport a memory-management unit. Unix applications
are routinely moved between Unixes running on wildly differing hardware; in fact,
it is unheard of for a port to fail.

Portability has always been one of Unix’s principal advantages. Unix programmers
tend to write on the assumption that hardware is evanescent and only the Unix API
is stable, making as few assumptions as possible about machine specifics such as
word length, endianness or memory architecture. In fact, code that is hardware-depen-
dent in any way that goes beyond the abstract machine model of C is considered bad
form in Unix circles, and only really tolerated in very special cases like operating
system kernels.
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Unix programmers have learned that it is easy to be wrong when anticipating that
a software project will have a short lifetime.1 Thus, they tend to avoid making software
dependent on specific and perishable technologies, and to lean heavily on open stan-
dards. These habits of writing for portability are so ingrained in the Unix tradition
that they are applied even to small single-use projects that are thought of as throwaway
code. They have had secondary effects all through the design of the Unix development
toolkit, and on programming languages like Perl and Python and Tcl that were
developed under Unix.

The direct benefit of portability is that it is normal for Unix software to outlive its
original hardware platform, so tools and applications don’t have to be reinvented
every few years. Today, applications originally written for Version 7 Unix (1979) are
routinely used not merely on Unixes genetically descended from V7, but on variants
like Linux in which the operating system API was written from a Unix specification
and shares no code with the Bell Labs source tree.

The indirect benefits are less obvious but may be more important. The discipline
of portability tends to exert a simplifying influence on architectures, interfaces, and
implementations. This both increases the odds of project success and reduces life-
cycle maintenance costs.

In this chapter, we’ll survey the scope and history of Unix standards. We’ll discuss
which ones are still relevant today and describe the areas of greater and lesser variance
in the Unix API. We’ll examine the tools and practices that Unix developers use to
keep code portable, and develop some guides to good practice.

Evolution of C17.1

The central fact of the Unix programming experience has always been the stability
of the C language and the handful of service interfaces that always travel with it (no-
tably, the standard I/O library and friends). The fact that a language originated in 1973
has required as little change as this one has in thirty years of heavy use is truly remark-
able, and without parallels anywhere else in computer science or engineering.

In Chapter 4, we argued that C has been successful because it acts as a layer of
thin glue over computer hardware approximating the “standard architecture” of
[BlaauwBrooks]. There is, of course, more to the story than that. To understand the
rest of the story, we’ll need to take a brief look at the history of C.

1. PDP-7 Unix and Linux were both examples of unexpected persistence. Unix originated as
a research toy hacked together by some researchers between projects, half to play with file-
system ideas and half to host a game. The second was summed up by its creator as “My terminal
emulator grew legs” [Torvalds].
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Early History of C17.1.1

C began life in 1971 as a systems-programming language for the PDP-11 port of
Unix, based on Ken Thompson’s earlier B interpreter which had in turn been modeled
on BCPL, the Basic Common Programming Language designed at Cambridge
University in 1966–67.2

Dennis Ritchie’s original C compiler (often called the “DMR” compiler after his
initials) served the rapidly growing community around Unix versions 5, 6, and 7.
Version 6 C spawned Whitesmiths C, a reimplementation that became the first com-
mercial C compiler and the nucleus of IDRIS, the first Unix workalike. But most
modern C implementations are patterned on Steven C. Johnson’s “portable C compiler”
(PCC) which debuted in Version 7 and replaced the DMR compiler entirely in both
System V and the BSD 4.x releases.

In 1976, Version 6 C introduced the typedef, union, and unsigned int
declarations. The approved syntax for variable initializations and some compound
operators also changed.

The original description of C was Brian Kernighan and Dennis M. Ritchie’s orig-
inal The C Programming Language aka “the White Book” [Kernighan-Ritchie]. It
was published in 1978, the same year the Whitemiths C compiler became available.

The White Book described enhanced Version 6 C, with one significant exception
involving the handling of public storage. Ritchie’s original intention had been to
model C’s rules on FORTRAN COMMON declarations, on the theory that any machine
that could handle FORTRAN would be ready for C. In the common-block model, a
public variable may be declared multiple times; identical declarations are merged by
the linker. But two early C ports (to Honeywell and IBM 360 mainframes) happened
to be to machines with very limited common storage or a primitive linker or both.
Thus, the Version 6 C compiler was moved to the stricter definition-reference model
(requiring at most one definition of any given public variable and the extern keyword
tagging references to it) described in [Kernighan-Ritchie].

This decision was reversed in the C compiler that shipped with Version 7 after it
developed that a great deal of existing source depended on the looser rules. Pressure
for backward-compatibility would foil yet another attempt to switch (in 1983’s System
V Release 1) before the ANSI Draft Standard finally settled on definition-reference
rules in 1988. Common-block public storage is still admitted as an acceptable variation
by the standard.

2. The ‘C’ in C therefore stands for Common—or, perhaps, for ‘Christopher’. BCPL originally
stood for “Bootstrap CPL”—a much simplified version of CPL, the very interesting but
overly ambitious and never implemented Common Programming Language of Oxford and
Cambridge, also known affectionately as “Christopher’s Programming Language” after its
prime advocate, computer-science pioneer Christopher Strachey.
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V7 C introduced enum and treated struct and union values as first-class objects
that could be assigned, passed as arguments, and returned from functions (rather than
being passed around by address).

Another major change in V7 was that Unix data structure declarations were now
documented on header files, and included. Previous Unixes had actually printed
the data structures (e.g., for directories) in the manual, from which people would
copy it into their code. Needless to say, this was a major portability problem.

—Steve Johnson

The System III C version of the PCC compiler (which also shipped with BSD 4.1c)
changed the handling of struct declarations so that members with the same names in
different structs would not clash. It also introduced void and unsigned char
declarations. The scope of extern declarations local to a function was restricted to
the function, and no longer included all code following it.

The ANSI C Draft Proposed Standard added const (for read-only storage) and
volatile (for locations such as memory-mapped I/O registers that might be modified
asynchronously from the thread of program control). The unsigned type modifier
was generalized to apply to any type, and a symmetrical signed was added. Initial-
ization syntax for auto array and structure initializers and union types was added.
Most importantly, function prototypes were added.

The most important changes in early C were the switch to definition-reference and
the introduction of function prototypes in the Draft Proposed ANSI C Standard. The
language has been essentially stable since copies of the X3J11 committee’s working
papers on the Draft Proposed Standard signaled the committee’s intentions to compiler
implementers in 1985–1986.

A more detailed history of early C, written by its designer, can be found at
[Ritchie93].

C Standards17.1.2

C standards development has been a conservative process with great care taken to
preserve the spirit of the original C language, and an emphasis on ratifying experiments
in existing compilers rather than inventing new features. The C9X charter3 document
is an excellent expression of this mission.

3. Available on the Web <http://anubis.dkuug.dk/JTC1/SC22/WG14/www/
charter>.
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Work on the first official C standard began in 1983 under the auspices of the X3J11
ANSI committee. The major functional additions to the language were settled by the
end of 1986, at which point it became common for programmers to distinguish between
“K&R C” and “ANSI C”.

Many people don’t realize how unusual the C standardization effort, especially
the original ANSI C work, was in its insistence on standardizing only tested features.
Most language standard committees spend much of their time inventing new fea-
tures, often with little consideration of how they might be implemented. Indeed,
the few ANSI C features that were invented from scratch—e.g., the notorious
“trigraphs”—were the most disliked and least successful features of C89.

—Henry Spencer

Void pointers were invented as part of the standards effort, and have been a winner.
But Henry’s point is still well taken.

—Steve Johnson

While the core of ANSI C was settled early, arguments over the contents of the
standard libraries dragged on for years. The formal standard was not issued until the
end of 1989, well after most compilers had implemented the 1985 recommendations.
The standard was originally known as ANSI X3.159, but was redesignated ISO/IEC
9899:1990 when the International Standards Organization (ISO) took over sponsorship
in 1990. The language variant it describes is generally known as C89 or C90.

The first book on C and Unix portability practice, Portable C and Unix Systems
Programming [Lapin], was published in 1987 (I wrote it under a corporate pseudonym
forced on me by my employers at the time). The Second Edition of [Kernighan-Ritchie]
came out in 1988.

A very minor revision of C89, known as Amendment 1, AM1, or C93, was
floated in 1993. It added more support for wide characters and Unicode. This became
ISO/IEC 9899–1:1994.

Revision of the C89 standard began in 1993. In 1999, ISO/IEC 9899 (generally
known as C99) was adopted by ISO. It incorporated Amendment 1, and added a great
many minor features. Perhaps the most significant one for most programmers is the
C++-like ability to declare variables at any point in a block, rather than just at the
beginning. Macros with a variable number of arguments were also added.

The C9X working group has a Web page <http://anubis.dkuug.dk/
JTC1/SC22/WG14/www/projects>, but no third standards effort is planned as
of mid-2003. They are developing an addendum on C for embedded systems.

Standardization of C has been greatly aided by the fact that working and largely
compatible implementations were running on a wide variety of systems before
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standards work was begun. This made it harder to argue about what features should
be in the standard.

Unix Standards17.2

The 1973 rewrite of Unix in C made it unprecedentedly easy to port and modify. As
a result, the ancestral Unix diverged into a family of operating systems early on. Unix
standards originally developed to reconcile the APIs of the different branches of the
family tree.

The Unix standards that evolved after 1985 were quite successful at this—so much
so that they serve as valuable documentation of the API of modern Unix implementa-
tions. In fact, real-world Unixes follow published standards so closely that developers
can (and frequently do) lean more on documents like the POSIX specification than
on the official manual pages for the Unix variant they happen to be using.

In fact, on the newer open-source Unixes (such as Linux), it is common for oper-
ating-system features to have been engineered using published standards as the
specification. We’ll return to this point when we examine the RFC standards process
later in this chapter.

Standards and the Unix Wars17.2.1

The original motivation for the development of Unix standards was the split between
the AT&T and Berkeley lines of development that we examined in Chapter 2.

The 4.x BSD Unixes were descended from the 1979 Version 7. After the release
of 4.1BSD in 1980 the BSD line quickly developed a reputation as the cutting edge
of Unix. Important additions included the vi visual editor, job control facilities for
managing multiple foreground and background tasks from a single console, and im-
provements in signals (see Chapter 7). By far the most important addition was to be
TCP/IP networking, but though Berkeley got the contract to do it in 1980, TCP/IP
was not to ship in an external release for three years.

But another version, 1981’s System III, became the basis of AT&T’s later develop-
ment. System III reworked the Version 7 terminals interface into a cleaner and more
elegant form that was completely incompatible with the Berkeley enhancements. It
retained the older (non-resetting) semantics of signals (again, see Chapter 7 for
discussion of this point). The January 1983 release of System V Release 1 incorporated
some BSD utilities (such as vi(1)).

The first attempt to bridge the gap came in February 1983 from UniForum, an in-
fluential Unix user group. Their Uniforum 1983 Draft Standard (UDS 83) described
a “core Unix System” consisting of a subset of the System III kernel and libraries
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plus a file-locking primitive. AT&T declared support for UDS 83, but the standard
was an inadequate subset of evolving practice based on 4.1BSD. The problem was
exacerbated by the July 1983 release of 4.2BSD, which added many new features
(including TCP/IP networking) and introduced some subtle incompatibilities with
the ancestral Version 7.

The 1984 divestiture of the Bell operating companies and the beginnings of the
Unix wars (see Chapter 2) significantly complicated matters. Sun Microsystems was
leading the workstation industry in a BSD direction; AT&T was trying to get into the
computer business and use control of Unix as a strategic weapon even as it continued
to license the operating system to competitors like Sun. All the vendors were
making business decisions to differentiate their versions of Unix for competitive
advantage.

During the Unix wars, technical standardization became something that cooperating
technical people pushed for and most product managers accepted grudgingly or actively
resisted. The one large and important exception was AT&T, which declared its intention
to cooperate with user groups in setting standards when it announced System V Release
2 (SVr2) in January 1984. The second revision of the UniForum Draft Standard, in
1984, both tracked and influenced the API of SVr2. Later Unix standards also tended
to track System V except in areas where BSD facilities were clearly functionally su-
perior (thus, for example, modern Unix standards describe the System V terminal
controls rather than the BSD interface to the same facilities).

In 1985, AT&T released the System V Interface Definition (SVID). SVID provided
a more formal description of the SVr2 API, incorporating UDS 84. Later revisions
SVID2 and SVID3 tracked the interfaces of System V releases 3 and 4. SVID became
the basis for the POSIX standards, which ultimately tipped most of the Berkeley/AT&T
disputes over system and C library calls in AT&T’s favor.

But this would not become obvious for a few years yet; meanwhile, the Unix wars
raged on. For example, 1985 saw the release of two competing API standards for file
system sharing over networks: Sun’s Network File System (NFS) and AT&T’s Remote
File System (RFS). Sun’s NFS prevailed because Sun was willing to share not merely
specifications but open-source code with others.

The lesson of this success should have been all the more pointed because on
purely logical grounds RFS was the superior model. It supported better file-locking
semantics and better mapping among user identities on different systems, and gener-
ally made an effort to get the finer details of Unix file system semantics precisely
right, unlike NFS. The lesson was ignored, however, even when it was repeated in
1987 by the open-source X windowing system’s victory over Sun’s proprietary
Networked Window System (NeWS).

After 1985 the main thrust of Unix standardization passed to the Institute of
Electrical and Electronic Engineers (IEEE). The IEEE’s 1003 committee developed

39917.2 Unix Standards



ptg

a series of standards generally known as POSIX.4 These went beyond describing
merely systems calls and C library facilities; they specified detailed semantics of a
shell and a minimum command set, and also detailed bindings for various non-C
programming languages. The first release in 1990 was followed by a second edition
in 1996. The International Standards Organization adopted them as ISO/IEC 9945.

Key POSIX standards include the following:

1003.1 (released 1990)
Library procedures. Described the C system call API, much like Version 7 except
for signals and the terminal-control interface.

1003.2 (released 1992)
Standard shell and utilities. Shell semantics strongly resemble those of the System
V Bourne shell.

1003.4 (released 1993)
Real-time Unix. Binary semaphores, process memory locking, memory-mapped
files, shared memory, priority scheduling, real-time signals, clocks and timers,
IPC message passing, synchronized I/O, asynchronous I/O, real-time files.

In the 1996 Second Edition, 1003.4 was split into 1003.1b (real-time) and
1003.1c (threads).

Despite being underspecified in a couple of key areas such as signal-handling se-
mantics and omitting BSD sockets, the original POSIX standards became the basis
of all later Unix standardization work. They are still cited as an authority, albeit indi-
rectly through references like POSIX Programmer’s Guide [Lewine]. The de facto
Unix API standard is still “POSIX plus sockets”, with later standards mainly adding
features and specifying conformance in unusual edge cases more closely.

The next player on the scene was X/Open (later renamed the Open Group), a
consortium of Unix vendors formed in 1984. Their X/Open Portability Guides (XPGs)
initially developed in parallel with the POSIX drafts, then after 1990 the XPGs incor-
porated and extended POSIX. Unlike POSIX, which attempted to capture a safe
subset of all Unixes, the XPGs were oriented more toward common practice at the
leading edge; even XPG1 in 1985, spanning SVr2 and 4.2BSD, included sockets.

XPG2 in 1987 added a terminal-handling API that was essentially System V
curses(3). XPG3 in 1990 merged in the X11 API. XPG4 in 1992 mandated full

4. The original 1986 trial-use standard was called IEEE-IX. The name ‘POSIX’ was suggested
by Richard Stallman. The introduction to POSIX.1 says: “It is expected to be pronounced
pahz-icks as in positive, not poh-six, or other variations. The pronounciation has been published
in an attempt to promulgate a standardized way of referring to a standard operating
system interface”.
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compliance with the 1989 ANSI C standard. XPG2, 3, and 4 were heavily concerned
with support of internationalization and described an elaborate API for handling
codesets and message catalogs.

In reading about Unix standards you might come across references to “Spec 1170”
(from 1993), “Unix 95” (from 1995) and “Unix 98” (from 1998). These were certifi-
cation marks based on the X/Open standards; they are now of historical interest only.
But the work done on XPG4 turned into Spec 1170, which turned into the first version
of the Single Unix Specification (SUS).

In 1993 seventy-five systems and software vendors including every major Unix
company put a final end to the Unix wars when they declared backing for X/Open to
develop a common definition of Unix. As part of the arrangement, X/Open acquired
the rights to the Unix trademark. The merged standard became Single Unix Standard
version 1. It was followed in 1997 by a version 2. In 1999 X/Open absorbed the
POSIX activity.

In 2001, X/Open (now The Open Group) issued the Single Unix Standard version 3
<http://www.unix.org/version3/>. All the threads of Unix API standard-
ization were finally gathered into one bundle. This reflected facts on the ground; the
different varieties of Unix had re-converged on a common API. And, at least among
old-timers who remembered the turbulence of the 1980s, there was much rejoicing.

The Ghost at the Victory Banquet17.2.2

There was, unfortunately, an awkward detail—the old-school Unix vendors who had
backed the effort were under severe pressure from the new school of open-source
Unixes, and were in some cases in the process of abandoning (in favor of Linux) the
proprietary Unixes for which they had gone to so much effort to secure conformance.

The conformance testing needed to verify Single Unix Specification conformance
is an expensive proposition. It would need to be done on a per-distribution basis, but
is well out of the reach of most distributors of open-source operating systems. In any
case, Linux changes so fast that any given release of a distribution would probably
be obsolete by the time it could get certified.5

Standards like the Single Unix Specification have not entirely lost their relevance.
They’re still valuable guides for Unix implementers. But how The Open Group and
other institutions of the old-school Unix standardization process will adapt to the
rapid tempo of open-source releases (and to the low- or zero-budget operation of
open-source development groups!) remains to be seen.

5. One Linux distributor, Lasermoon in Great Britain, did achieve POSIX.1 FIPS 151–2
certification—and went out of business, because potential customers didn’t care.
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Unix Standards in the Open-Source World17.2.3

In the mid-1990s, the open-source community began standardization efforts of its
own. These efforts built on the source-code-level compatibility secured by POSIX
and its descendants. Linux, in particular, had been written from scratch in a way that
depended on the availability of Unix API standards like POSIX.6

In 1998 Oracle ported its market-leading database product to Linux, in a move
that was rightly seen as a major breakthrough in Linux’s mainstream acceptance. The
engineer in charge of the port provided a definitive demonstration that API standards
had done their job when he was asked by a reporter what technical challenges Oracle
had had to surmount. The engineer’s reply was “We typed ‘make’.”

The problem for the new-school Unixes, therefore, was not API compatibility at
the source-code level. Everybody took for granted the ability to move source code
between different Linux, BSD, and proprietary-Unix distributions without more than
a trivial amount of porting labor. The new problem was not source compatibility but
binary compatibility. For the ground under Unix had shifted in a subtle way as a
consequence of the triumph of commodity PC hardware.

In the old days, each Unix had run on what was effectively its own hardware
platform. There was enough variety in processor instruction sets and machine archi-
tectures that applications had to be ported at source level to move at all. On the other
hand, there were a relatively few major Unix releases, each with relatively long service
lifetimes. Application vendors like Oracle could afford the cost of building and ship-
ping separate binary distributions for each of three or four hardware/software combi-
nations, because they could amortize the low cost of source-code porting over large
customer populations and a long enough product life cycle.

But then the minicomputer and workstation vendors were swamped by inexpensive
386-based supermicros, and open-source Unixes changed the rules. Vendors found
they no longer had a stable platform to ship their binaries to.

The superficial problem, at first, was the large number of Unix distributors—but
as the Linux distribution market consolidated, it became clear that the real issue was
the rate of change over time. APIs were stable, but the expected locations of system
administrative files, utility programs, and things like the prefix of the paths to user
mailbox names and system log files kept changing.

The first standards effort to develop within the new-school Linux and BSD com-
munity itself (beginning in 1993) was the Filesystem Hierarchy Standard (FHS). This
was incorporated into the Linux Standards Base (LSB), which also standardized an
expected set of service libraries and helper applications. Both standards became ac-
tivities of the Free Standards Group <http://www.freestandards.org/>,

6. See Just for Fun [Torvalds] for discussion.
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which by 2001 developed a role similar to X/Open’s position amidst the old-school
Unix vendors.

IETF and the RFC Standards Process17.3

When the Unix community merged with the culture of Internet engineers, it also in-
herited a mindset formed by the RFC standards process of the Internet Engineering
Task Force (IETF). In IETF tradition, standards have to arise from experience with a
working prototype implementation—but once they become standards, code that does
not conform to them is considered broken and mercilessly scrapped.

This is not, sadly, the way standards are normally developed. The history of com-
puting is full of instances in which technical standards were derived by a process that
combined the worst features of philosophical axe-grinding with murky back-room
politics—producing specifications that failed to resemble anything ever implemented.
Worse, many were either so demanding that they could not be practically implemented
or so underspecified that they caused more confusion than they resolved. Then they
were promulgated to vendors who ignored them wherever they were inconvenient.

One of the more notorious examples of standards nonsense was the Open Systems
Interconnect networking protocols that briefly contended with TCP/IP in the 1980s—its
7-layer model looked elegant from a distance but proved overcomplicated and unim-
plementable in practice.7 The ANSI X3.64 standard for video-display terminal capa-
bilities is another famous horror story; bedeviled by subtle incompatibilities between
legally conformant implementations. Even after character-cell terminals have been
largely displaced by bitmapped displays these continue to cause problems (in partic-
ular, this is why the function and special keys in your xterm(1) will occasionally
break). The RS232 standard for serial communications was so underspecified that it
sometimes seemed that no two serial cables were alike. Standards horror stories of
similar kind could fill a book the size of this one.

The IETF’s philosophy has been famously summarized as “We reject kings, pres-
idents, and voting. We believe in rough consensus and running code”.8 That demand
for a working implementation first has saved it from the worst category of blunders.
In fact its criterion is stronger:

7. A Web search is likely to turn up a popular page comparing the OSI 7-layer model with the
Taco Bell 7-layer burrito—unfavorably to the former.

8. This line was first uttered by senior IETF cadre Dave Clark at the tumultuous 1992 meeting
during which the IETF rejected the Open Systems Interconnect protocol.
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[A] candidate specification must be implemented and tested for correct operation
and interoperability by multiple independent parties and utilized in increasingly
demanding environments, before it can be adopted as an Internet Standard.

—The Internet Standards Process—Revision 3 (RFC 2026)

All IETF standards pass through a stage as RFCs (Requests for Comment). The
submission process for RFCs is deliberately informal. RFCs may propose standards,
survey results, suggest philosophical bases for subsequent RFCs, or even make jokes.
The appearance of the annual April 1st RFC is the closest equivalent of a high holy
day observance among Internet hackers, and has produced such gems as A Standard
for the Transmission of IP Datagrams on Avian Carriers (RFC 1149)9 the The Hyper
Text Coffee Pot Control Protocol (RFC 2324),10 and The Security Flag in the IPv4
Header (RFC 3514).11

But joke RFCs are about the only sort of submission that instantly becomes an
RFC. Serious proposals actually start as “Internet-Drafts” floated for public comment
via IETF directories on several well-known hosts. Individual Internet-Drafts have no
formal status and can be changed or dropped by their originators at any time. If they
are neither withdrawn nor promoted to RFC status, they are removed after six months.

Internet-Drafts are not specifications, and software implementers and vendors are
specifically barred from claiming compliance with them as if they were specifications.
Internet-Drafts are focal points for discussion, usually in a working group connected
through an electronic mailing list. When the working group leadership deems fit, the
Internet-Draft is submitted to the RFC editor for assignment of an RFC number.

Once an Internet-Draft has been published with an RFC number, it is a specification
to which implementers may claim conformance. It is expected that the authors of the
RFC and the community at large will begin correcting the specification with
field experience.

Some RFCs go no further. A specification that fails to attract use and survive field
testing can be quietly forgotten, and eventually marked “Not recommended” or
“Superseded” by the RFC editor. Failed proposals are accepted as one of the overheads
of the process, and no stigma is attached to being associated with one.

The steering committee of the IETF (IESG, or Internet Engineering Steering Group)
is responsible for putting successful RFCs on the standards track. They do this by

9. RFC 1149 is available on the Web <http://www.ietf.org/rfc/rfc1149.txt>.
Not only that, it has been implemented <http://www.blug.linux.no/rfc1149/
writeup.html>.

10. RFC 2324 is available on the Web <http://www.ietf.org/rfc/rfc2324.txt>.

11. RFC 3514 is available on the Web <http://www.ietf.org/rfc/rfc3514.txt>.
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designating the RFC a ‘Proposed Standard’. For the RFC to qualify, the specification
must be stable, peer-reviewed, and have attracted significant interest from the Internet
community. Implementation experience is not absolutely required before an RFC is
given Proposed Standard designation, but it is considered highly desirable, and the
IESG may require it if the RFC touches the Internet core protocols or might be other-
wise destabilizing.

Proposed Standards are still subject to revision, and may even be withdrawn if the
IESG and IETF identify a better solution. They are not recommended for use in
“disruption-sensitive environments”—don’t put them in your air-traffic-control systems
or on intensive-care equipment.

When there are at least two working, complete, independently originated, and
interoperable implementations of a Proposed Standard, the IESG may elevate it to
Draft Standard status. RFC 2026 says: “Elevation to Draft Standard is a major
advance in status, indicating a strong belief that the specification is mature and
will be useful”.

Once an RFC has reached Draft Standard status, it will be changed only to address
bugs in the logic of the specification. Draft Standards are expected to be ready for
deployment in disruption-sensitive environments.

When a Draft Standard has passed the test of widespread implementation and
reached general acceptance, it may be blessed as an Internet Standard. Internet Stan-
dards keep their RFC numbers, but also get a number in the STD series. At time of
writing there are over 3000 RFCs but only 60 STDs.

RFCs not on standards track may be labeled Experimental, Informational (the joke
RFCs get this label), or Historic. The Historic label is applied to obsolete standards.
RFC 2026 notes: “(Purists have suggested that the word should be ‘Historical’;
however, at this point, the use of ‘Historic’ is historical.)”

The IETF standards process is designed to encourage standardization driven by
practice rather than theory, and to ensure that standard protocols have undergone
rigorous peer review and testing. The success of this model is evident in its results—the
worldwide Internet.

Specifications as DNA, Code as RNA17.4

Even in the paleolithic period of the PDP-7, Unix programmers had always been more
prone than their counterparts elsewhere to treat old code as disposable. This was
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doubtless a product of the Unix tradition’s emphasis on modularity, which makes it
easier to discard and replace small pieces of systems without losing everything. Unix
programmers have learned by experience that trying to salvage bad code or a bad
design is often more work than rebooting the project. Where in other programming
cultures the instinct would be to patch the monster monolith because you have so
much work invested in it, the Unix instinct is usually to scrap and rebuild.

The IETF tradition reinforced this by teaching us to think of code as secondary to
standards. Standards are what enable programs to cooperate; they knit our technologies
into wholes that are more than the sum of the parts. The IETF showed us that careful
standardization, aimed at capturing the best of existing practice, is a powerful form
of humility that achieves more than grandiose attempts to remake the world around
a never-implemented ideal.

After 1980, the impact of that lesson was increasingly widely felt in the Unix
community. Thus, while the ANSI/ISO C standard from 1989 is not completely
without flaws, it is exceptionally clean and practical for a standard of its size and
importance. The Single Unix Specification contains fossils from three decades of
experimentation and false starts in a more complicated domain, and is therefore
messier than ANSI C. But the component standards it was composed from are quite
good; strong evidence for this is the fact that Linus Torvalds successfully built a Unix
from scratch by reading them. The IETF’s quiet but powerful example created one
of the critical pieces of context that made Linus Torvalds’s feat possible.

Respect for published standards and the IETF process has become deeply ingrained
in the Unix culture; deliberately violating Internet STDs is simply Not Done. This
can sometimes create chasms of mutual incomprehension between people with a Unix
background and others prone to assume that the most popular or widely deployed
implementation of a protocol is by definition correct—even if it breaks the standard
so severely that it will not interoperate with properly conforming software.

The Unix programmer’s respect for published standards is more interesting because
he is likely to be rather hostile to a-priori specifications of other kinds. By the time
the ‘waterfall model’ (specify exhaustively first, then implement, then debug, with
no reverse motion at any stage) fell out of favor in the software-engineering literature,
it had been an object of derision among Unix programmers for years. Experience,
and a strong tradition of collaborative development, had already taught them that
prototyping and repeated cycles of test and evolution are a better way.

The Unix tradition clearly recognizes that there can be great value in good
specifications, but it demands that they be treated as provisional and subject to revision
through field experience in the way that Internet-Drafts and Proposed Standards are.
In best Unix practice, the documentation of the program is used as a specification
subject to revision analogously to an Internet Proposed Standard.
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Unlike other environments, in Unix development the documentation is often written
before the program, or at least in conjunction with it. For X11, the core X standards
were finished before the first release of X and have remained essentially unchanged
since that date. Compatibility among different X systems is improved further by
rigorous specification-driven testing.

The existence of a well-written specification made the development of the X test
suite much easier. Each statement in the X specification was translated into code
to test the implementation, a few minor inconsistencies were uncovered in the
specification during this process, but the result is a test suite that covers a significant
fraction of the code paths within the sample X library and server, and all without
referring to the source code of that implementation.

—Keith Packard

Semiautomation of the test-suite generation proved to be a major advantage. While
field experience and advances in the state of the graphics art led many to criticize X
on design grounds, and various portions of it (such as the security and user-resource
models) came to seem clumsy and over-engineered, the X implementation achieved
a remarkable level of stability and cross-vendor interoperation.

In Chapter 9 we discussed the value of pushing coding up to the highest possible
level to minimize the effects of constant defect density. Implicit in Keith Packard’s
account is the idea that the X documentation constituted no mere wish-list but a form
of high-level code. Another key X developer confirms this:

In X, the specification has always ruled. Sometimes specs have bugs that need to
be fixed too, but code is usually buggier than specs (for any spec worth its ink,
anyway).

—Jim Gettys

Jim goes on to observe that X’s process is actually quite similar to the IETF’s. Nor
is its utility limited to constructing good test suites; it means that arguments about
the system’s behavior can be conducted at a functional level with respect to the
specification, avoiding too much entanglement in implementation issues.

Having a well-considered specification driving development allows for little argu-
ment about bug vs. feature; a system which incorrectly implements the specification
is broken and should be fixed.

I suspect this is so ingrained into most of us that we lose sight of its power.
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A friend of mine who worked for a small software firm east of Bellevue wondered
how Linux applications developers could get OS changes synchronized with appli-
cation releases. In that company, major system-level APIs change frequently to
accommodate application whims and so essential OS functionality must often be
released along with each application.

I described the power held by the specifications and how the implementation was
subservient to them, and then went on to assert that an application which got an
unexpected result from a documented interface was either broken or had discovered
a bug. He found this concept startling.

Discerning such bugs is a simple matter of verifying the implementation of the
interface against the specification. Of course, having source for the implementation
makes that a bit easier.

—Keith Packard

This standards-come-first attitude has benefits for end users as well. While that
no-longer-small company east of Bellevue has trouble keeping its office suite compat-
ible with its own previous releases, GUI applications written for X11 in 1988 still run
without change on today’s X implementations. In the Unix world, this sort of
longevity is normal—and the standards-as-DNA attitude is the reason why.

Thus, experience shows that the standards-respecting, scrap-and-rebuild culture
of Unix tends to yield better interoperability over extended time than perpetual
patching of a code base without a standard to provide guidance and continuity. This
may, indeed, be one of the most important Unix lessons.

Keith’s last comment brings us directly to an issue that the success of open-source
Unixes has brought to the forefront—the relationship between open standards and
open source. We’ll address this at the end of the chapter—but before doing that, it’s
time to address the practical question of how Unix programmers can actually use the
tremendous body of accumulated standards and lore to achieve software portability.

Programming for Portability17.5

Software portability is usually thought of in quasi-spatial terms: can this code be
moved sideways to existing hardware and software platforms other than the one it
was built for? But Unix experience over decades tells us that durability down through
time is just as important, if not more so. If we could predict the future of software in
detail it would probably be the present—nevertheless, in programming for portability
we should try to think about making choices that will base the software on the features
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of its environment that are likeliest to persist, and avoid technologies that seem likely
to face end-of-life in the foreseeable future.

Under Unix, two decades of attention to the issues of specifying portable APIs has
largely solved that problem. Facilities described in the Single Unix Specification are
likely to be present on all modern Unix platforms today and rather unlikely to go
unsupported in the future.

But not all platform dependencies have to do with the system or library APIs. Your
implementation language can matter; file-system layout and configuration differences
between the source and target system can be a problem as well. But Unix practice
has evolved ways to cope.

Portability and Choice of Language17.5.1

The first issue in programming for portability is your choice of implementation lan-
guage. All the major languages we surveyed in Chapter 14 are highly portable in the
sense that compatible implementations are available across all modern Unixes; for
most, implementations under Windows and MacOS are available as well. Portability
problems tend to arise not in the core languages but in support libraries and degree
of integration with the local environment (especially IPC and concurrent-process
management, including the infrastructure for GUIs).

C Portability17.5.1.1

The core C language is extremely portable. The standard Unix implementation is the
GNU C compiler, which is ubiquitous not only in open-source Unixes but modern
proprietary Unixes as well. GNU C has been ported to Windows and classic MacOS,
but is not widely used in either environment because it lacks portable bindings to the
native GUI.

The standard I/O library, mathematics routines, and internationalization support
are portable across all C implementations. File I/O, signals, and process control are
portable across Unixes provided one takes care to use only the modern APIs described
in the Single Unix Specification; older C code often has thickets of preprocessor
conditionals for portability, but those handle legacy pre-POSIX interfaces from older
proprietary Unixes that are obsolete or close to it in 2003.

C portability starts to be a more serious problem near IPC, threads, and GUI in-
terfaces. We discussed IPC and threads portability issues in Chapter 7. The real
practical problem is GUI toolkits. A number of open-source GUI toolkits are
universally portable across modern Unixes and to Windows and classic MacOS as
well—Tk, wxWindows, GTK, and Qt are four well-known ones with source code and
documentation readily discoverable by Web search. But none of them is shipped with
all platforms, and (for reasons more legal than technical) none of these offers the
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native-GUI look and feel on all platforms. We gave some guidelines for coping
in Chapter 15.

Volumes have been written on the subject of how to write portable C code. This
book is not going to be one of them. Instead, we recommend a careful reading of
Recommended C Style and Coding Standards [Cannon] and the chapter on portability
in The Practice of Programming [Kernighan-Pike99].

C++ Portability17.5.1.2

C++ has all the same operating-system-level portability issues as C, and some of its
own. An additional one is that the open-source GNU compiler for C++ has lagged
substantially behind the proprietary implementations for most of its existence; thus,
there is not yet as of mid-2003 a universally deployed equivalent of GNU C on which
to base a de-facto standard. Furthermore, no C++ compiler yet implements the full
C++99 ISO standard for the language, though GNU C++ comes closest.

Shell Portability17.5.1.3

Shell-script portability is, unfortunately, poor. The problem is not shell itself; bash(1)
(the open-source Bourne Again shell) has become sufficiently ubiquitous that pure
shellscripts can run almost anywhere. The problem is that most shellscripts make
heavy use of other commands and filters that are much less portable, and by no means
guaranteed to be in the toolkit in any given target machine.

This problem can be overcome by dint of heroic effort, as in the autoconf(1) tools.
But it is sufficiently severe that most of the heavier sort of programming that used
to be done in shell has moved to second-generation scripting languages like Perl,
Python, and Tcl.

Perl Portability17.5.1.4

Perl has good portability. Stock Perl even offers a portable set of bindings to the Tk
toolkit that supports portable GUIs across Unix, MacOS, and Windows. One issue
dogs it, however. Perl scripts often require add-on libraries from CPAN (the Compre-
hensive Perl Archive Network) which are not guaranteed to be present with every
Perl implementation.

Python Portability17.5.1.5

Python has excellent portability. Like Perl, stock Python even offers a portable set of
bindings to the Tk toolkit that supports portable GUIs across Unix, MacOS,
and Windows.
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Stock Python has a much richer standard library than does Perl and no equivalent
of CPAN for programmers to rely on; instead, important extension modules are rou-
tinely incorporated into the stock Python distribution during minor releases. This
trades a spatial problem for a temporal one, making Python much less subject to the
missing-module effect at the cost of making Python minor version numbers somewhat
more important than Perl release levels are. In practice, the tradeoff seems to
favor Python.

Tcl Portability17.5.1.6

Tcl portability is good, overall, but varies sharply by project complexity. The Tk
toolkit for cross-platform GUI programming is native to Tcl. As with Python, evolution
of the core language has been relatively smooth, with few version-skew problems.
Unfortunately, Tcl relies even more heavily than Perl on extension facilities that are
not guaranteed to ship with every implementation—and there is no equivalent of
CPAN to centrally distribute them.

For smaller projects not reliant on extensions, therefore, Tcl portability is excellent.
But larger projects tend to depend heavily on both extensions and (as with shell pro-
gramming) calling external commands that may or may not be present on the target
machine; their portability tends to be poor.

Tcl may have suffered, ironically, from the ease of adding extensions to it. By the
time a particular extension started to look interesting as part of the standard dis-
tribution, there typically were several different versions of it in existence. At the 1995
Tcl/Tk Workshop, John Ousterhout explained why there was no OO support in the
standard Tcl distribution:

Think of five mullahs sitting around in a circle, all saying “Kill him, he’s a heathen”.
If I put a specific OO scheme into the core, then one of them will say “Bless you, my
son, you may kiss my ring”, and the other four will say “Kill him, he’s a heathen”.

The lot of a language designer is not necessarily a happy one.

Java Portability17.5.1.7

Java portability is excellent—it was, after all, designed with “write once, run every-
where” as a primary goal. Portability fails, however, to be perfect. The difficulties are
mostly version-skew problems between JDK 1.1 and the older AWT GUI toolkit
(on the one hand) and JDK 1.2 with the newer Swing GUI toolkit. There are several
important reasons for these:

• Sun’s AWT design was so deficient that it had to be replaced with Swing.
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• Microsoft’s refusal to support Java development on Windows and attempt to
replace it with C#.

• Microsoft’s decision to hold Internet Explorer’s applet support at the
JDK 1.1 level.

• Sun licensing terms that make open-source implementations of JDK 1.2
impossible, retarding its deployment (especially in the Linux world).

For programs that involve GUIs, Java developers seeking portability will, for the
foreseeable future, face a choice: Stay in JDK 1.1/AWT with a poorly designed
toolkit for maximum portability (including to Microsoft Windows), or get the better
toolkit and capabilities of JDK 1.2 at the cost of sacrificing some portability.

Finally, as we noted previously, the Java thread support has portability problems.
The Java API, unlike less ambitious operating-system bindings for other languages,
bravely tried to bridge the gaps between the diverging process models offered by
different operating systems. It does not quite manage the trick.

Emacs Lisp Portability17.5.1.8

Emacs Lisp portability is excellent. Emacs installations tend to be upgraded frequently,
so seriously out-of-date environments are rare. The same extension Lisp is supported
everywhere and effectively all extensions are shipped with Emacs itself.

Then, too, the primitive set of Emacs is quite stable. It achieved completeness for
the things an editor has to do (manipulating buffers, bashing text) years ago. Only
the introduction of X has disturbed this picture at all, and very few Emacs modes
need to be aware of X. Portability problems are usually manifestations of quirks in
the C-level bindings of operating-system facilities; control of subordinate processes
in modes like mail agents is about the only issue where such problems manifest with
any frequency.

Avoiding System Dependencies17.5.2

Once your language and support libraries are chosen, the next portability issue is
usually the location of key system files and directories: mail spools, logfile directories
and the like. The archetype of this sort of problem is whether the mail spool directory
is /var/spool/mail or /var/mail.

Often, you can avoid this sort of dependency by stepping back and reframing the
problem. Why are you opening a file in the mail spool directory, anyway? If you’re
writing to it, wouldn’t it be better to simply invoke the local mail transport agent to
do it for you so the file-locking gets done right? If you’re reading from it, might it be
better to query it through a POP3 or IMAP server?
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The same sort of question applies elsewhere. If you find yourself opening logfiles
manually, shouldn’t you be using syslog(3) instead? Function-call interfaces through
the C library are better standardized than system file locations. Use that fact!

If you must have system file locations in your code, your best alternative depends
on whether you will be distributing in source code or binary form. If you are distribut-
ing in source, the autoconf tools we discuss in the next section will help you. If you’re
distributing in binary, then it’s good practice to have your program poke around at
runtime and see if it can automatically adapt itself to local conditions—say, by actu-
ally checking for the existence of /var/mail and /var/spool/mail.

Tools for Portability17.5.3

You can often use the open-source GNU autoconf(1) we surveyed in Chapter 15 to
handle portability issues, do system-configuration probes, and tailor your makefiles.
People building from sources today expect to be able to type configure; make;
make install and get a clean build. There is a good tutorial on these tools
<http://seul.org/docs/autotut/>. Even if you’re distributing in binary,
the autoconf(1) tools can help automate away the problem of conditionalizing your
code for different platforms.

Other tools that address this problem; two of the better known are the Imake(1)
tool associated with the X windowing system and the Configure tool built by
Larry Wall (later the inventor of Perl) and adapted for many different projects. All are
at least as complicated as the autoconf suite, and no longer as often used. They don’t
cover as wide a range of target systems.

Internationalization17.6

An in-depth discussion of code internationalization—designing software so the in-
terface readily incorporates multiple languages and the vagaries of different character
sets—would be out of scope for this book. However, a few lessons for good practice
do stand out from Unix experience.

First, separate the message base from the code. Good Unix practice is to separate
the message strings a program uses from its code. so that message dictionaries in
other languages can be plugged in without modifying the code.

The best-known tool for this job is GNU gettext, which requires that you wrap
native-language strings that need to be internationalized in a special macro. The macro
uses each string as a key into per-language dictionaries which can be supplied as
separate files. If no such dictionaries are available (or if they are but the string lookup
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does not return a match), the macro simply returns its argument, implicitly falling
back on the native language in the code.

While gettext itself is messy and fragile as of mid-2003, its general philosophy is
sound. For many projects, it is possible to craft a lighter-weight version of this idea
with good results.

Second, there is a clear trend in modern Unixes to scrap all the historical cruft as-
sociated with multiple character sets and make applications natively speak UTF-8,
the 8-bit shift encoding of the Unicode character set (as opposed to, say, making them
natively speak 16-bit wide characters). The low 128 characters of UTF-8 are ASCII,
and the low 256 are Latin-1, which means this choice is backward-compatible with
the two most widely used character sets. The fact that XML and Java have made this
choice helps, but the momentum is present even where XML and Java are not.

Third, beware of character ranges in regular expressions. The element [a-z] will
not necessarily catch all lower-case letters if the script or program it’s in is applied
to (say) German, where the sharp-s or ß character is considered lower-case but does
not fall in that range; similar problems arise with French accented letters. Its safer to
use [[:lower:]]. and other symbolic ranges described in the POSIX standard.

Portability, Open Standards, and Open Source17.7

Portability requires standards. Open-source reference implementations are the most
effective method known for both promulgating a standard and for pressuring propri-
etary vendors into conforming. If you are a developer, open-source implementations
of a published standard can both tremendously reduce your coding workload and allow
your product to benefit (in ways both expected and unexpected) from the labor
of others.

Let’s suppose, for example, you are designing image-capture software for a digital
camera. Why write your own format for saving image bits or buy proprietary code
when (as we noted in Chapter 5) there is a well-tested, full-featured library for writing
PNGs in open source?

The (re)invention of open source has had a significant impact on the standards
process as well. Though it is not formally a requirement, the IETF has since around
1997 grown increasingly resistant to standard-tracking RFCs that do not have at least
one open-source reference implementation. In the future, it seems likely that confor-
mance to any given standard will increasingly be measured by conformance to (or
outright use of!) open-source implementations that have been blessed by the
standard’s authors.
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The flip side of this is that often the best way to make something a standard is to
distribute a high-quality open-source implementation of it.

—Henry Spencer

In the end, the most effective step you can take to ensure the portability of your
code is to not rely on proprietary technology. You never know when the closed-source
library or tool or code generator or network protocol you are depending on will be
end-of-lifed, or when the interface will be changed in some backwards-incompatible
way that breaks your project. With open-source code, you have a path forward even
if the leading-edge version changes in a way that breaks your project; because you
have access to source code, you can forward-port it to new platforms if you need to.

Until the late 1990s this advice would have been impractical. The few alternatives
to relying on proprietary operating systems and development tools were noble
experiments, academic proofs-of-concept, or toys. But the Internet changed everything;
in mid-2003 Linux and the other open-source Unixes exist and have proven their
mettle as platforms for delivering production-quality software. Developers have a
better option now than being dependent on short-term business decisions designed to
protect someone else’s monopoly. Practice defensive design—build on open source
and don’t get stranded!
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18

Documentation:
Explaining Your Code
to a Web-Centric World

I’ve never met a human being who would want to read 17,000 pages of documen-
tation, and if there was, I’d kill him to get him out of the gene pool.

—Joseph Costello

Unix’s first application, in 1971, was as a platform for document preparation—Bell
Labs used it to prepare patent documents for filing. Computer-driven phototypesetting
was still a novel idea then, and for years after it debuted in 1973 Joe Ossana’s troff(1)
formatter defined the state of the art.

Ever since, sophisticated document formatters, typesetting software, and page-
layout programs of various sorts have been an important theme in the Unix tradition.
While troff(1) has proven surprisingly durable, Unix has also hosted a lot of ground-
breaking work in this application area. Today, Unix developers and Unix tools are at
the cutting edge of far-reaching changes in documentation practice triggered by the
advent of the World Wide Web.

At the user-presentation level, Unix-community practice has been moving rapidly
toward ‘everything is HTML, all references are URLs’ since the mid-1990s. Increas-
ingly, modern Unix help browsers are simply Web browsers that know how to parse
certain specialized kinds of URLs (for example, ‘man:ls(1)’ interprets the ls(1) man
page into HTML). This relieves the problems created by having lots of different
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formats for documentation masters, but does not entirely solve them. Documentation
composers still have to grapple with issues about which master format best meets
their particular needs.

In this chapter, we’ll survey the rather unfortunate surfeit of different documentation
formats and tools left behind by decades of experimentation, and we’ll develop
guidelines for good practice and good style.

Documentation Concepts18.1

Our first distinction is between “What You See Is What You Get” (WYSIWYG) doc-
umentation programs and markup-centered tools. Most desktop-publishing programs
and word processors are in the former category; they have GUIs in which what one
types is inserted directly into an on-screen presentation of the document intended to
resemble the final printed version as closely as possible. In a markup-centered system,
by contrast, the master document is normally flat text containing explicit, visible
control tags and not at all resembling the intended output. The marked-up source can
be modified with an ordinary text editor, but has to be fed to a formatter program to
produce rendered output for printing or display.

The visual-interface, WYSIWYG style was too expensive for early computer
hardware, and remained rare until the advent of the Macintosh personal computer in
1984. It is completely dominant on non-Unix operating systems today, Native Unix
document tools, on the other hand, are almost all markup-centered. The Unix troff(1)
of 1971 was a markup formatter, and is probably the oldest such program still in use.

Markup-centered tools still have a role because actual implementations of WYSI-
WYG tend to be broken in various ways—some superficial, some deep. WYSIWYG
document processors have the general problem with GUIs that we discussed in
Chapter 11; the fact that you can visually manipulate anything tends to mean you
must visually manipulate everything. That would remain a problem even if the
WYSIWIG correspondence between screen and printer output were perfect—but it
almost never is.

In truth, WYSIWYG document processors aren’t exactly WYSIWIG. Most have
interfaces that obscure the differences between screen presentation and printer output
without actually eliminating them. Thus they violate the Rule of Least Surprise: the
visual aspect of the interface encourages you to use the program like a typewriter
even though it is not, and your input will occasionally produce an unexpected and
undesired result.

In further truth, WYSIWIG systems actually rely on markup codes but expend
great effort on keeping them invisible in normal use. Thus they break the Rule of
Transparency: you can’t see all of the markup, so it is difficult to fix documents that
break because of misplaced markup codes.

Chapter 18 Documentation418



ptg

Despite its problems, WYSIWYG document processors can be very nice if what
you want is to slide a picture three ems to the right on the cover of a four-page
brochure. But they tend to be constricting any time you need to make a global change
to the layout of a 300-page manuscript. WYSIWYG users faced with that kind of
challenge must give it up or suffer the death of a thousand mouse clicks; in situations
like that, there is really no substitute for being able to edit explicit markup, and Unix’s
markup-centered document tools offer better solutions.

Today, in a world influenced by the example of the Web and XML, it has become
common to make a distinction between presentation and structural markup in docu-
ments—the former being instructions about how a document should look, the latter
being instructions about how it’s organized and what it means. This distinction wasn’t
clearly understood or followed through in early Unix tools, but it’s important for un-
derstanding the design pressures that led to today’s descendants of them.

Presentation-level markup carries all the formatting information (e.g., about desired
whitespace layout and font changes) in the document itself. In a structural-markup
system, the document has to be combined with a stylesheet that tells the formatter
how to translate the structure markup in the document to a physical layout. Both kinds
of markup ultimately control the physical appearance of a printed or browsed docu-
ment, but structural markup does it through one more level of indirection that turns
out to be necessary if you want to produce good results for both printing and the Web.

Most markup-centered documentation systems support a macro facility. Macros
are user-defined commands that are expanded by text substitution into sequences of
built-in markup requests. Usually, these macros add structural features (like the abil-
ity to declare section headings) to the markup language.

The troff macro sets (mm, me, and my ms package) were actually designed to push
people away from format-oriented editing and toward content-oriented editing.
The idea was to label the semantic parts and then have different style packages
that would know whether in this style the title should be boldfaced or not, centered
or not, and so on. Thus there was at one point a set of macros that tried to imitate
ACM style, and another that imitated Physical Review style, but used the basic
-ms markup. All of the macros lost out to people who were focused on producing
one document, and controlling its appearance, just as Web pages get bogged down
in the dispute over whether the reader or author should control the appearance. I
frequently found secretaries who were using the .AU (author name) command just
to produce italics, noticing that it did that, and then getting into trouble with its
other effects.

—Mike Lesk

Finally, we note that there are significant differences between the sorts of things
composers want to do with small documents (business and personal letters, brochures,
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newsletters) and the things they want to do with large ones (books, long articles,
technical papers, and manuals). Large documents tend to have more structure, to be
pieced together from parts that may have to be changed separately, and to need auto-
matically-generated features like tables of contents; these are both traits that favor
markup-centered tools.

The Unix Style18.2

The Unix style of documentation (and documentation tools) has several technical and
cultural traits that set it apart from the way documentation is done elsewhere. Under-
standing these signature traits first will create context for you to understand why the
programs and the practice look the way they do, and why the documentation reads
the way it does.

The Large-Document Bias18.2.1

Unix documentation tools have always been designed primarily for the challenges
involved in composing large and complex documents. Originally it was patent appli-
cations and paperwork; later it was scientific and technical papers, technical documen-
tation of all sorts. Consequently, most Unix developers learned to love markup-centered
documentation tools. Unlike the PC users of the time, the Unix culture was unim-
pressed with WYSIWYG word processors when they became generally available in
the late 1980s and early 1990s—and even among today’s younger Unix hackers it is
still unusual to find anyone who really prefers them.

Dislike of opaque binary document formats—and especially of opaque proprietary
binary formats—also played a part in the rejection of WYSIWYG tools. On the other
hand, Unix programmers seized on PostScript (the now-standard language for control-
ling imaging printers) with enthusiasm as soon as the language documentation became
available; it fits neatly in the Unix tradition of domain-specific languages. Modern
open-source Unix systems have excellent PostScript and Portable Document Format
(PDF) tools.

Another consequence of this history is that Unix documentation tools have tended
to have relatively weak support for including images, but strong support for diagrams,
tables, graphing, and mathematical typesetting—the sorts of things often needed in
technical papers.

The Unix attachment to markup-centered systems has often been caricatured as a
prejudice or a troglodyte trait, but it is not really anything of the kind. Just as the pu-
tatively ‘primitive’ CLI style of Unix is in many ways better adapted to the needs of
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power users than GUIs, the markup-centered design of tools like troff(1) is a better
fit for the needs of power documenters than are WYSIWYG programs.

The large-document bias in Unix tradition did not just keep Unix developers at-
tached to markup-based formatters like troff, it also made them interested in structural
markup. The history of Unix document tools is one of lurching, muddled, and erratic
movement in a general direction away from presentation markup and toward structural
markup. In mid-2003 this journey is not yet over, but the end is distantly in sight.

The development of the World Wide Web meant that the ability to render documents
in multiple media (or, at least, for both print and HTML display) became the central
challenge for documentation tools after about 1993. At the same time, even ordinary
users were, under the influence of HTML, becoming more comfortable with markup-
centered systems. This led directly to an explosion of interest in structural markup
and the invention of XML after 1996. Suddenly the old-time Unix attachment to
markup-centered systems started looking prescient rather than reactionary.

Today, in mid-2003, most of the leading-edge development of XML-based docu-
mentation tools using structural markup is taking place under Unix. But, at the same
time, the Unix culture has yet to let go of its older tradition of presentation-level
markup systems. The creaking, clanking, armor-plated dinosaur that is troff has only
partly been displaced by HTML and XML.

Cultural Style18.2.2

Most software documentation is written by technical writers for the least-common-
denominator ignorant—the knowledgeable writing for the knowledgeless. The docu-
mentation that ships with Unix systems has traditionally been written by programmers
for their peers. Even when it is not peer-to-peer documentation, it tends to be influenced
in style and format by the enormous mass of programmer-to-programmer documen-
tation that ships with Unix systems.

The difference this makes can be summed up in one observation: Unix manual
pages traditionally have a section called BUGS. In other cultures, technical writers
try to make the product look good by omitting and skating over known bugs. In the
Unix culture, peers describe the known shortcomings of their software to each other
in unsparing detail, and users consider a short but informative BUGS section to be
an encouraging sign of quality work. Commercial Unix distributions that have broken
this convention, either by suppressing the BUGS section or euphemizing it to a softer
tag like LIMITATIONS or ISSUES or APPLICATION USAGE, have invariably fallen
into decline.

Where most other software documentation tends to to oscillate between incompre-
hensibility and oversimplifying condescension, classic Unix documentation is written
to be telegraphic but complete. It does not hold you by the hand, but it usually points
in the right direction. The style assumes an active reader, one who is able to deduce
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obvious unsaid consequences of what is said, and who has the self-confidence to trust
those deductions.

Unix programmers tend to be good at writing references, and most Unix documen-
tation has the flavor of a reference or aide memoire for someone who thinks like the
document-writer but is not yet an expert at his or her software. The results often look
much more cryptic and sparse than they actually are. Read every word carefully, be-
cause whatever you want to know will probably be there, or deducible from what’s
there. Read every word carefully, because you will seldom be told anything twice.

The Zoo of Unix Documentation Formats18.3

All the major Unix documentation formats except the very newest one are presentation-
level markups assisted by macro packages. We examine them here from oldest
to newest.

troff  and the Documenter’s Workbench Tools18.3.1

We discussed the Documenter’s Workbench architecture and tools in Chapter 8 as an
example of how to integrate a system of multiple minilanguages. Now we return to
these tools in their functional role as a typesetting system.

The troff formatter interprets a presentation-level markup language. Recent imple-
mentations like the GNU project’s groff(1) emit PostScript by default, though it is
possible to get other forms of output by selecting a suitable driver. See Example 18.1
for several of the troff codes you might encounter in document sources.

troff(1) has many other requests, but you are unlikely to see most of them directly.
Very few documents are written in bare troff. It supports a macro facility, and half a
dozen macro packages are in more or less general use. Of these, the overwhelmingly
most common is the man(7) macro package used to write Unix manual pages. See
Example 18.2 for a sample.

Two of the other half-dozen historical troff macro libraries, ms(7) and mm(7) are
still in use. BSD Unix has its own elaborate extended macro set, mdoc(7). All these
are designed for writing technical manuals and long-form documentation. They are
similar in style but more elaborate than man macros, and oriented toward producing
typeset output.

A minor variant of troff(1) called nroff(1) produces output for devices that can
only support constant-width fonts, like line printers and character-cell terminals.
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Example 18.1: groff(1) markup example.

This is running text.
.\" Comments begin with a backslash and double quote.
.ft B
This text will be in bold font.
.ft R
This text will be back in the default (Roman) font.
These lines, going back to "This is running text", will 
be formatted as a filled paragraph.
.bp
The bp request forces a new page and a paragraph break.
This line will be part of the second filled paragraph.
.sp 3
The .sp request emits the number of blank lines given as argument
.nf
The nf request switches off paragraph filling.
Until the fi request switches it back on
whitespace and layout will be preserved.

One word in this line will be in \fBbold\fR font.
.fi

Paragraph filling is back on.

When you view a Unix manual page within a terminal window, it is nroff that has
rendered it for you.

The Documenter’s Workbench tools do the technical-documentation jobs they
were designed for quite well, which is why they have remained in continuous use for
more than thirty years while computers increased a thousandfold in capacity. They
produce typeset text of reasonable quality on imaging printers, and can throw a toler-
able approximation of a formatted manual page on your screen.

They fall down badly in a couple of areas, however. Their stock selection of
available fonts is limited. They don’t handle images well. It’s hard to get precise
control of the positioning of text or images or diagrams within a page. Support for
multilingual documents is nonexistent. There are numerous other problems, some
chronic but minor and some absolute showstoppers for specific uses. But the most
serious problem is that because so much of the markup is presentation level, it’s
difficult to make good Web pages out of unmodified troff sources.

Nevertheless, at time of writing man pages remain the single most important form
of Unix documentation.
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Example 18.2: man markup example.

.SH SAMPLE SECTION
The SH macro starts a section, boldfacing the section title.
.P
The P request starts a new paragraph.  The I request sets its 
argument in
.I italics.
.IP *
This starts an indented paragraph with an asterisk label.
More text for the first bulleted paragraph.
.TP
This first line will become a paragraph label
This will be the first line in the paragraph, further indented
relative to the label.

The blank line just above this is treated almost exactly like a
paragraph break (actually, like the troff-level request .sp 1).
.SS A subsection
This is subsection text.

TEX18.3.2

TEX (pronounced /teH/ with a rough h as though you are gargling) is a very capable
typesetting program that, like the Emacs editor, originated outside the Unix culture
but is now naturalized in it. It was created by noted computer scientist Donald Knuth
when he became impatient with the quality of typography, and especially mathemat-
ical typesetting, that was available to him in the late 1970s.

TEX, like troff(1), is a markup-centered system. TEX’s request language is rather
more powerful than troff’s; among other things, it is better at handling images, page-
positioning content precisely, and internationalization. TEX is particularly good at
mathematical typesetting, and unsurpassed at basic typesetting tasks like kerning,
line filling, and hyphenating. TEX has become the standard submission format for
most mathematical journals. It is actually now maintained as open source by a working
group of the the American Mathematical Society. It is also commonly used for
scientific papers.

As with troff(1), human beings usually do not write large volumes of raw TEX
macros by hand; they use macro packages and various auxiliary programs instead.
One particular macro package, LATEX, is almost universal, and most people who say
they’re composing in TEX almost always actually mean they’re writing LATEX. Like
troff’s macro packages, a lot of its requests are semi-structural.
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One important use of TEX that is normally hidden from the user is that other doc-
ument-processing tools often generate LATEX to be turned into PostScript, rather than
attempting the much more difficult job of generating PostScript themselves. The
xmlto(1) front end that we discussed as a shell-programming case study in Chapter 14
uses this tactic; so does the XML-DocBook toolchain we’ll examine later in
this chapter.

TEX has a wider application range than troff(1) and is in most ways a better design.
It has the same fundamental problems as troff in an increasingly Web-centric world;
its markup has strong ties to the presentation level, and automatically generating good
Web pages from TEX sources is difficult and fault-prone.

TEX is never used for Unix system documentation and only rarely used for appli-
cation documentation; for those purposes, troff is sufficient. But some software
packages that originated in academia outside the Unix community have imported the
use of TEX as a documentation master format; the Python language is one example.
As we noted above, it is also heavily used for mathematical and scientific papers, and
will probably dominate that niche for some years yet.

Texinfo18.3.3

Texinfo is a documentation markup invented by the Free Software Foundation and
used mainly for GNU project documentation—including the documentation for such
essential tools as Emacs and the GNU Compiler Collection.

Texinfo was the first markup system specifically designed to support both typeset
output on paper and hypertext output for browsing. The hypertext format was not,
however, HTML; it was a more primitive variety called ‘info’, originally designed to
be browsed from within Emacs. On the print side, Texinfo turns into TEX macros and
can go from there to PostScript.

The Texinfo tools can now generate HTML. But they don’t do a very good or
complete job, and because a lot of Texinfo’s markup is at presentation level it is
doubtful that they ever will. As of mid-2003, the Free Software Foundation is working
on heuristic Texinfo to DocBook translation. Texinfo will probably remain a live
format for some time.

POD18.3.4

Plain Old Documentation is the markup system used by the maintainers of Perl. It
generates manual pages, and has all the familiar problems of presentation-level
markups, including trouble generating good HTML.
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HTML18.3.5

Since the World Wide Web entered the mainstream in the early 1990s, a small but
increasing percentage of Unix projects have been writing their documentation directly
in HTML. The problem with this approach is that it is difficult to generate high-
quality typeset output from HTML. There are particular problems with indexing as
well; the information needed to generate indexes is not present in HTML.

DocBook18.3.6

DocBook is an SGML and XML document type definition designed for large, complex
technical documents. It is alone among the markup formats used in the Unix commu-
nity in being purely structural. The xmlto(1) tool discussed in Chapter 14 supports
rendering to HTML, XHTML, PostScript, PDF, Windows Help markup, and several
less important formats.

Several major open-source projects (including the Linux Documentation Project,
FreeBSD, Apache, Samba, GNOME, and KDE) already use DocBook as a master
format. This book was written in XML-DocBook.

DocBook is a large topic. We’ll return to it after summing up the problems with
the current state of Unix documentation.

The Present Chaos and a Possible Way Out18.4

Unix documentation is, at present, a mess.
Between man, ms, mm, TEX, Texinfo, POD, HTML, and DocBook, the documen-

tation master files on modern Unix systems are scattered across eight different markup
formats. There is no uniform way to view all the rendered versions. They aren’t Web-
accessible, and they aren’t cross-indexed.

Many people in the Unix community are aware that this is a problem. At time of
writing most of the effort toward solving it has come from open-source developers,
who are more actively interested in competing for acceptance by nontechnical end
users than developers for proprietary Unixes have been. Since 2000, practice has been
moving toward use of XML-DocBook as a documentation interchange format.

The goal, which is within sight but will take a lot of effort to achieve, is to equip
every Unix system with software that will act as a systemwide document registry.
When system administrators install packages, one step will be to enter the package’s
XML-DocBook documentation into the registry. It will then be rendered into a common
HTML document tree and cross-linked to the documentation already present.
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Early versions of the document-registry software are already working. The problem
of forward-converting documentation from the other formats into XML-DocBook is
a large and messy one, but the conversion tools are falling into place. Other political
and technical problems remain to be attacked, but are probably solvable. While there
is not as of mid-2003 a communitywide consensus that the older formats have to be
phased out, that seems the likeliest working out of events.

Accordingly, we’ll next take a very detailed look at DocBook and its toolchain.
This description should be read as an introduction to XML under Unix, a pragmatic
guide to practice and as a major case study. It’s a good example of how, in the context
of the Unix community, cooperation between different project groups develops around
shared standards.

DocBook18.5

A great many major open-source projects are converging on DocBook as a standard
format for their documentation. The advocates of XML-based markup seem to have
won the theoretical argument against presentation-level and for structural-level markup,
and an effective XML-DocBook toolchain is available in open source.

Nevertheless, a lot of confusion still surrounds DocBook and the programs that
support it. Its devotees speak an argot that is dense and forbidding even by comput-
er-science standards, slinging around acronyms that have no obvious relationship to
the things you need to do to write markup and make HTML or PostScript from it.
XML standards and technical papers are notoriously obscure. In the rest of this section,
we’ll try to dispel the fog of jargon.

Document Type Definitions18.5.1

(Note: to keep the explanation simple, most of this section tells some lies, mainly by
omitting a lot of history. Truthfulness will be fully restored in a following section.)

DocBook is a structural-level markup language. Specifically, it is a dialect of XML.
A DocBook document is a piece of XML that uses XML tags for structural markup.

For a document formatter to apply a stylesheet to your document and make it look
good, it needs to know things about the overall structure of your document. For
example, in order to physically format chapter headers properly, it needs to know that
a book manuscript normally consists of front matter, a sequence of chapters, and back
matter. In order for it to know this sort of thing, you need to give it a Document Type
Definition or DTD. The DTD tells your formatter what sorts of elements can be in
the document structure, and in what order they can appear.
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Figure 18.1: Processing structural documents.

What we mean by calling DocBook a ‘dialect’ of XML is actually that DocBook
is a DTD—a rather large DTD, with somewhere around 400 tags in it.1

Lurking behind DocBook is a kind of program called a validating parser. When
you format a DocBook document, the first step is to pass it through a validating
parser (the front end of the DocBook formatter). This program checks your document
against the DocBook DTD to make sure you aren’t breaking any of the DTD’s struc-
tural rules (otherwise the back end of the formatter, the part that applies your stylesheet,
might become quite confused).

The validating parser will either throw an error, giving you messages about places
where the document structure is broken, or translate the document into a stream of
XML elements and text that the parser back end combines with the information in
your stylesheet to produce formatted output.

Figure 18.1 diagrams the whole process.
The part of the diagram inside the dotted box is your formatting software, or

toolchain. Besides the obvious and visible input to the formatter (the document source)
you’ll need to keep the two hidden inputs of the formatter (DTD and stylesheet) in
mind to understand what follows.

Other DTDs18.5.2

A brief digression into other DTDs may help clarify what parts of the previous section
are specific to DocBook and what parts are general to all structural-markup languages.

1. In XML-speak, what we have been calling a ‘dialect’ is called an ‘application’; we’ve
avoided that usage, since it collides with another more common sense of the word.
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TEI <http://www.tei-c.org/> (Text Encoding Initiative) is a large, elab-
orate DTD used primarily in academia for computer transcription of literary texts.
TEI’s Unix-based toolchains use many of the same tools that are involved with Doc-
Book, but with different stylesheets and (of course) a different DTD.

XHTML, the latest version of HTML, is also an XML application described by a
DTD, which explains the family resemblance between XHTML and DocBook tags.
The XHTML toolchain consists of Web browsers that can format HTML as flat ASCII,
together with any of a number of ad-hoc HTML-to-print utilities.

Many other XML DTDs are maintained to help people exchange structured infor-
mation in fields as diverse as bioinformatics and banking. You can look at a list of
repositories <http://www.xml.com/pub/rg/DTD_Repositories> to get
some idea of the variety available.

The DocBook Toolchain18.5.3

Normally, what you’ll do to make XHTML from your DocBook sources is use the
xmlto(1) front end. Your commands will look like this:

bash$ xmlto xhtml foo.xml
bash$ ls *.html
ar01s02.html ar01s03.html ar01s04.html index.html

In this example, you converted an XML-DocBook document named foo.xml
with three top-level sections into an index page and two parts. Making one big page
is just as easy:

bash$ xmlto xhtml-nochunks foo.xml
bash$ ls *.html
foo.html

Finally, here is how you make PostScript for printing:

bash$ xmlto ps foo.xml       # To make PostScript
bash$ ls *.ps
foo.ps

To turn your documents into HTML or PostScript, you need an engine that can
apply the combination of DocBook DTD and a suitable stylesheet to your document.
Figure 18.2 illustrates how the open-source tools for doing this fit together.

Parsing your document and applying the stylesheet transformation will be handled
by one of three programs. The most likely one is xsltproc, the parser that ships with
Red Hat Linux. The other possibilities are two Java programs, Saxon and Xalan.
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Figure 18.2: Present-day XML-DocBook toolchain.

It is relatively easy to generate high-quality XHTML from either DocBook; the
fact that XHTML is simply another XML DTD helps a lot. Translation to HTML is
done by applying a rather simple stylesheet, and that’s the end of the story. RTF is
also simple to generate in this way, and from XHTML or RTF it’s easy to generate a
flat ASCII text approximation in a pinch.

The awkward case is print. Generating high-quality printed output—which means,
in practice, Adobe’s PDF (Portable Document Format)—is difficult. Doing it right
requires algorithmically duplicating the delicate judgments of a human typesetter
moving from content to presentation level.

So, first, a stylesheet translates DocBook’s structural markup into another dialect
of XML—FO (Formatting Objects). FO markup is very much presentation-level; you
can think of it as a sort of XML functional equivalent of troff. It has to be translated
to PostScript for packaging in a PDF.

In the toolchain shipped with Red Hat Linux, this job is handled by a TEX macro
package called PassiveTeX. It translates the formatting objects generated by xsltproc
into Donald Knuth’s TEX language. TEX’s output, known as DVI (DeVice Independent)
format, is then massaged into PDF.

If you think this bucket chain of XML to TEX macros to DVI to PDF sounds like
an awkward kludge, you’re right. It clanks, it wheezes, and it has ugly warts. Fonts
are a significant problem, since XML and TEX and PDF have very different models
of how fonts work; also, handling internationalization and localization is a nightmare.
About the only thing this code path has going for it is that it works.

The elegant way will be FOP, a direct FO-to-PostScript translator being developed
by the Apache project. With FOP, the internationalization problem is, if not solved,
at least well confined; XML tools handle Unicode all the way through to FOP. The
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Figure 18.3: Future XML-DocBook toolchain with FOP.

mapping from Unicode glyphs to PostScript font is also strictly FOP’s problem. The
only trouble with this approach is that it doesn’t work—yet. As of mid-2003, FOP is
in an unfinished alpha state—usable, but with rough edges and missing features.

Figure 18.3 illustrates what the FOP toolchain looks like.
FOP has competition. Another project called xmlroff.2 aims to do the same things

as FOP, but in C (and therefore both faster than Java and not relying on the Java
environment). As of mid-2003, xmlroff is in an unfinished alpha state, not as far along
as FOP.

Migration Tools18.5.4

The second biggest problem with DocBook is the effort needed to convert old-style
presentation markup to DocBook markup. Human beings can usually parse the pre-
sentation of a document into logical structure automatically, because (for example)
they can tell from context when an italic font means ‘emphasis’ and when it means
something else such as ‘this is a foreign phrase’.

Somehow, in converting documents to DocBook, those sorts of distinctions need
to be made explicit. Sometimes they’re present in the old markup; often they are not,
and the missing structural information has to be either deduced by clever heuristics
or added by a human.

2. xmlroff project page <http://xmlroff.sourceforge.net/>.
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Here is a summary of the state of conversion tools from various other formats.
None of these do a completely perfect job; inspection and perhaps a bit of hand-editing
by a human being will be needed after conversion.

GNU Texinfo
The Free Software Foundation intends to support DocBook as an interchange
format. Texinfo has enough structure to make reasonably good automatic
conversion possible (human editing is still needed afterwards, but not much of
it), and the 4.x versions of makeinfo feature a --docbook switch that generates
DocBook. More at the makeinfo project page <http://www.gnu.org/
directory/texinfo.html>.

POD
A POD::DocBook <http://www.cpan.org/modules/by-module/
Pod/> module translates Plain Old Documentation markup to DocBook. It
claims to translate every POD tag except C<> within commands. The man page
also says “Nested =over/=back lists are not supported within DocBook”, but
notes that the module has been heavily tested.

LATEX
A project called TeX4ht <http://www.lrz-muenchen.de/services
/software/sonstiges/tex4ht/mn.html> can, according to the author
of PassiveTEX, generate DocBook from LATEX.

man pages and other troff-based markups
These are generally considered the biggest and nastiest conversion problems.
And indeed, the basic troff(1) markup is at too low a presentation level for auto-
matic conversion tools to do much of any good. However, the gloom in the picture
lightens significantly if we consider translation from sources of documents
written in macro packages like man(7). These have enough structural features
for automatic translation to get some traction.

I wrote a tool to do troff-to-DocBook myself, because I couldn’t
find anything else that did a tolerable job of it. It’s called doclifter
<http://www.catb.org/~esr/doclifter/>. It will translate to either
SGML or XML DocBook from man(7), mdoc(7), ms(7), or me(7) macros. See
the documentation for details.

Editing Tools18.5.5

One thing we do not have in mid-2003 is a good open-source structure editor for
SGML/XML documents.
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LyX <http://www.lyx.org/> is a GUI word processor that uses LATEX for
printing and supports structural editing of LATEX markup. There is a LATEX package
that generates DocBook, and a how-to document <http://bgu.chez.
tiscali.fr/doc/db4lyx/> describing how to write SGML and XML in the
LyX GUI.

GNU TEXMacs <http://www.math.u-psud.fr/~anh/TeXmacs/
TeXmacs.html> is a project aimed at producing an editor that is good for technical
and mathematical material, including displayed formulas. 1.0 was released in April
2002. The developers plan XML support in the future, but it’s not there yet.

Most people still hack DocBook tags by hand using either vi or emacs.

Related Standards and Practices18.5.6

The tools are coming together, if slowly, to edit and format DocBook markup. But
DocBook itself is a means, not an end. We’ll need other standards besides DocBook
itself to accomplish the searchable-documentation-database objective. There are two
big issues: document cataloging and metadata.

The ScrollKeeper <http://scrollkeeper.sourceforge.net/> project
aims directly to meet this need. It provides a simple set of script hooks that can be
used by package install and uninstall productions to register and unregister their
documentation.

ScrollKeeper uses the Open Metadata Format <http://www.ibiblio.org/
osrt/omf/>. This is a standard for indexing open-source documentation analogous
to a library card-catalog system. The idea is to support rich search facilities that use
the card-catalog metadata as well as the source text of the documentation itself.

SGML18.5.7

In previous sections, we have deliberately omitted a lot of DocBook’s history. XML
has an older brother, Standard Generalized Markup Language (SGML).

Until mid-2002, no discussion of DocBook would have been complete without a
long excursion into SGML, the differences between SGML and XML, and detailed
descriptions of the SGML DocBook toolchain. Life can be simpler now; an XML
DocBook toolchain is available in open source, works as well as the SGML toolchain
ever did, and is easier to use.

XML-DocBook References18.5.8

One of the things that makes learning DocBook difficult is that the sites related to it
tend to overwhelm the newbie with long lists of W3C standards, massive exercises
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in SGML theology, and dense thickets of abstract terminology. See XML in a Nutshell
[Harold-Means] for a good book-length general introduction.

Norman Walsh’s DocBook: The Definitive Guide is available in print
<http://www.oreilly.com/catalog/docbook/> and on the Web
<http://www.docbook.org/tdg/en/html/docbook.html>. This is in-
deed the definitive reference, but as an introduction or tutorial it’s a disaster. Instead,
read this:

Writing Documents Using DocBook <http://xml.web.cern.ch/XML/
goossens/dbatcern/>. This is an excellent tutorial.

There is an equally excellent DocBook FAQ <http://www.dpawson.co.uk
/docbook/> with a lot of material on styling HTML output. There is also a DocBook
wiki <http://docbook.org/wiki/moin.cgi>.

Finally, the The XML Cover Pages <http://xml.coverpages.org/> will
take you into the jungle of XML standards if you really want to go there.

Best Practices for Writing Unix Documentation18.6

The advice we gave earlier in the chapter about reading Unix documentation can be
turned around. When you write documentation for people within the Unix culture,
don’t dumb it down. If you write as if for idiots, you will be written off as an idiot
yourself. Dumbing documentation down is very different from making it accessible;
the former is lazy and omits important things, whereas the latter requires careful
thought and ruthless editing.

Don’t think for a moment that volume will be mistaken for quality. And especially,
never ever omit functional details because you fear they might be confusing, nor
warnings about problems because you don’t want to look bad. It is unanticipated
problems that will cost you credibility and users, not the problems you were
honest about.

Try to hit a happy medium in information density. Too low is as bad as too high.
Use screen shots sparingly; they tend to convey little information beyond the style
and feel of the interface. They are never a good substitute for clear textual description.

If your project is of any significant size, you should probably be shipping three
different kinds of documentation: man pages as reference material, a tutorial manual,
and a FAQ (Frequently Asked Questions) list. You should have a website as well, to
serve as a central point of distribution (see the guidelines on communication in
Chapter 19).

Huge man pages are viewed with some disfavor; navigation within them can be
difficult. If yours are getting large, consider writing a reference manual, with the man
page(s) giving a quick summary, pointers into the reference manual, and details of
how the program(s) are invoked.

Chapter 18 Documentation434

http://www.oreilly.com/catalog/docbook/
http://www.docbook.org/tdg/en/html/docbook.html
http://xml.web.cern.ch/XML/goossens/dbatcern/
http://xml.web.cern.ch/XML/goossens/dbatcern/
http://www.dpawson.co.uk/docbook/
http://docbook.org/wiki/moin.cgi
http://xml.coverpages.org/
http://www.dpawson.co.uk/docbook/


ptg

In your source code, include the standard metainformation files described in the
Chapter 19 section on open-source release practices, such as README. Even if your
code is going to be proprietary, these are Unix conventions and future maintainers
coming from a Unix background will come up to speed faster if the conventions
are followed.

Your man pages should be command references in the traditional Unix style for
the traditional Unix audience. The tutorial manual should be long-form documentation
for nontechnical users. And the FAQ should be an evolving resource that grows as
your software support group learns what the frequent questions are and how to
answer them.

There are more specific habits you should adopt if you want to get a little ahead
of mid-2003’s practice:

1. Maintain your document masters in XML-DocBook. Even your man pages
can be DocBook RefEntry documents. There is a very good HOWTO
<http://www.linuxdoc.org/HOWTO/mini/Man-Page.html> on
writing manual pages that explains the sections and organization your users will
expect to see.

2. Ship the XML masters. Also, in case your users’ systems don’t have xmlto(1)
ship the troff sources that you get by running xmlto man on your masters.
Your software distribution’s installation procedure should install those in the
normal way, but direct people to the XML files if they want to write or edit
documentation.

3. Make your project’s installation package ScrollKeeper-ready.

4. Generate XHTML from your masters (with xmlto xhtml) and make it
available from your project’s Web page.

Whether or not you’re using XML-DocBook as a master format, you’ll want to
find a way to convert your documentation to HTML. Whether your software is open-
source or proprietary, users are increasingly likely to find it via the Web. Putting your
documentation on-line has the direct effect of making it easier for potential users and
customers who know your software exists to read it and learn about it. It has the indi-
rect effect that your software will become more likely to turn up in a Web search.
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19

Open Source:
Programming in the New
Unix Community

Software is like sex—it’s better when it’s free.

—Linus Torvalds

We concluded Chapter 2 by observing the largest-scale pattern in Unix’s history; it
flourished when its practices most closely approximated open source, and stagnated
when they did not. We then asserted in Chapter 16 that open-source development
tools tend to be of high quality. We’ll begin this chapter by sketching an explanation
of how and why open-source development works. Most of its behaviors are simply
intensifications of long-established Unix-tradition practices.

We’ll then descend from realm of abstraction and describe some of the most im-
portant folk customs that Unix has picked up from the open-source community—in
particular, the community-evolved guidelines for what a good source-code release
looks like. Many of these customs could be profitably adopted by developers on other
modern operating systems as well.

We’ll describe these customs on the assumption that you are developing open
source; most are still good ideas even if you are writing proprietary software. The
open-source assumption is also historically appropriate, because many of these customs
found their way back into proprietary Unix shops via ubiquitous open-source tools
like patch(1), Emacs, and GCC.
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Unix and Open Source19.1

Open-source development exploits the fact that characterizing and fixing bugs—unlike,
say, implementing a particular algorithm—is a task that lends itself well to being split
into multiple parallel subtasks. Exploration of the neighborhood of possibilities near
a prototype design also parallelizes well. With the right technological and social ma-
chinery in place, development teams that are loosely networked and very large can
do astoundingly good work.

Astoundingly, that is, if you are carrying around the mental habits developed by
people who treat process secrecy and proprietary control as a given. From The Myth-
ical Man-Month [Brooks] until the rise of Linux, the orthodoxy in software engineering
was all about small, closely managed teams within heavyweight organizations like
corporations and government. The practice was of large teams closely managed.

The early Unix community, before the AT&T divestiture, was a paradigmatic
example of open source in action. While the pre-divestiture Unix code was technically
and legally proprietary, it was treated as a commons within its user/developer commu-
nity. Volunteer efforts were self-directed by the people most strongly motivated to
solve problems. From these choices many good things flowed. Indeed, the technique
of open-source development evolved as an unconscious folk practice in the Unix
community for more than a quarter century, many years before it was analyzed and
labeled in the late 1990s (see The Cathedral and the Bazaar [Raymond01] and Un-
derstanding Open Source Software Development [Feller-Fitzgerald]).

In retrospect, it is rather startling how oblivious we all were to the implications of
our own behavior. Several people came very close to understanding the phenomenon;
Richard Gabriel in his “Worse Is Better” paper from 1990 [Gabriel] is the best known,
but one can find prefigurations in Brooks [Brooks] (1975) and as far back as Vyssotsky
and Corbató’s meditations on the Multics design (1965). I failed to get it over more
than twenty years of observing software development, before being awakened by
Linux in the mid-1990s. This experience should make any thoughtful and humble
person wonder what other important unifying concepts are still implicit in our behavior
and lurking right under our collective noses, hidden not by their complexity but by
their very simplicity.

The rules of open-source development are simple:

1. Let the source be open. Have no secrets. Make the code and the process that
produces it public. Encourage third-party peer review. Make sure that others
can modify and redistribute the code freely. Grow the co-developer community
as big as you can.
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2. Release early, release often. A rapid release tempo means quick and effective
feedback. When each incremental release is small, changing course in response
to real-world feedback is easier.

Just make sure your first release builds, runs, and demonstrates promise.
Usually, an initial version of an open-source program demonstrates promise by
doing at least some portion of its final job, sufficient to show that the initiator
can actually continue the project. For example, an initial version of a word pro-
cessor might support typing in text and displaying it on the screen.

A first release that cannot be compiled or run can kill a project (as, famously,
almost happened to the Mozilla browser). Releases that cannot compile suggest
that the project developers will be unable to complete the project. Also, non-
working programs are difficult for other developers to contribute to, because
they cannot easily determine if any change they made improved the program
or not.

3. Reward contribution with praise. If you can’t give your co-developers material
rewards, give psychological ones. Even if you can, remember that people will
often work harder for reputation than they would for gold.

A corollary of rule 2 is that individual releases should not be momentous events,
with many promises attached and much preparation. It’s important to ruthlessly
streamline your release process, so that you can do frequent releases painlessly. A
setup where all other work must stop during release preparation is a terrible mistake.
(Notably, if you’re using CVS or something similar, releases in preparation should
be branches off the main line of development, so that they don’t block main-line
progress.) To sum up, don’t treat releases as big special events; make them part of
normal routine.

—Henry Spencer

Remember that the reason for frequent releases is to shorten and speed the feedback
loop connecting your user population to your developers. Therefore, resist thinking
of the next release as a polished jewel that cannot ship until everything is perfect.
Don’t make long wish lists. Make progress incrementally, admit and advertise current
bugs, and have confidence that perfection will come with time. Accept that you will
go through dozens of point releases on the way, and don’t get upset as the version
numbers mount.

Open-source development uses large teams of programmers distributed over the
Internet and communicating primarily through email and Web documents. Typically,
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most contributors to any given project are volunteers contributing in order to be
rewarded by the increased usefulness of the software to them, and by reputation in-
centives. A central individual or core group steers the project; other contributors may
drop in and drop out sporadically. To encourage casual contributors, it is important
to avoid erecting social barriers between them and the core team. Minimize the core
team’s privileged status, and work hard to keep the boundaries inconspicuous.

Open-source projects follow the Unix-tradition advice of automating wherever
possible. They use the patch(1) tool to pass around incremental changes. Many projects
(and all large ones) have network-accessible code repositories using version-control
systems like CVS (recall the discussion in Chapter 15). Use of automated bug- and
patch-tracking systems is also common.

In 1997, almost nobody outside the hacker culture understood that it was even
possible to run a large project this way, let alone get high-quality results. In 2003 this
is no longer news; projects like Linux, Apache, and Mozilla have achieved both success
and high public visibility.

Abandoning the habit of secrecy in favor of process transparency and peer review
was the crucial step by which alchemy became chemistry. In the same way, it is
beginning to appear that open-source development may signal the long-awaited mat-
uration of software development as a discipline.

Best Practices for Working with Open-Source Developers19.2

Much of what constitutes best practice in the open-source community is a natural
adaptation to distributed development; you’ll read a lot in the rest of this chapter about
behaviors that maintain good communication with other developers. Where Unix
conventions are arbitrary (such as the standard names of files that convey metainfor-
mation about a source distribution) they often trace back either to Usenet in the early
1980s, or to the conventions and standards of the GNU project.

Good Patching Practice19.2.1

Most people become involved in open-source software by writing patches for other
people’s software before releasing projects of their own. Suppose you’ve written a
set of source-code changes for someone else’s baseline code. Now put yourself in
that person’s shoes. How is he to judge whether to include the patch?

It is very difficult to judge the quality of code, so developers tend to evaluate
patches by the quality of the submission. They look for clues in the submitter’s style
and communications behavior instead—indications that the person has been in their
shoes and understands what it’s like to have to evaluate and merge an incoming patch.

Chapter 19 Open Source440



ptg

This is actually a rather reliable proxy for code quality. In many years of dealing
with patches from many hundreds of strangers, I have only seldom seen a patch that
was thoughtfully presented and respectful of my time but technically bogus. On the
other hand, experience teaches that patches which look careless or are packaged in a
lazy and inconsiderate way are very likely to actually be bogus.

Here are some tips on how to get your patch accepted:

Do send patches, don’t send whole archives or files.19.2.1.1

If your change includes a new file that doesn’t exist in the code, then of course you
have to send the whole file. But if you’re modifying an already-existing file, don’t
send the whole file. Send a diff instead; specifically, send the output of the diff(1)
command run to compare the baseline distributed version against your
modified version.

The diff(1) command and its dual, patch(1), are the most basic tools of open-source
development. Diffs are better than whole files because the developer you’re sending
a patch to may have changed the baseline version since you got your copy. By sending
him a diff you save him the effort of separating your changes from his; you show re-
spect for his time.

Send patches against the current version of the code.19.2.1.2

It is both counterproductive and rude to send a maintainer patches against the code
as it existed several releases ago, and expect him to do all the work of determining
which changes duplicate things he has since done, versus which things are actually
novel in your patch.

As a patch submitter, it is your responsibility to track the state of the source and
send the maintainer a minimal patch that expresses what you want done to the main-
line codebase. That means sending a patch against the current version.

Don’t include patches for generated files.19.2.1.3

Before you send your patch, walk through it and delete any patch bands for files in
it that are going to be automatically regenerated once the maintainer applies the patch
and remakes. The classic examples of this error are C files generated by Bison or Flex.

These days the most common mistake of this kind is sending a diff with a huge
band that is nothing but changebars between your configure script and the main-
tainer’s. This file is generated by autoconf.

This is inconsiderate. It means your recipient is put to the trouble of separating
the real content of the patch from a lot of bulky noise. It’s a minor error, not as impor-
tant as some of the things we’ll get to further on—but it will count against you.

44119.2 Best Practices for Working with Open-Source Developers



ptg

Don’t send patch bands that just tweak RCS or SCCS
$-symbols.

19.2.1.4

Some people put special tokens in their source files that are expanded by the version-
control system when the file is checked in: the $Id$ construct used by RCS and
CVS, for example.

If you’re using a local version-control system yourself, your changes may alter
these tokens. This isn’t really harmful, because when your recipient checks his code
back in after applying your patch the tokens will be re-expanded in accordance with
the maintainer’s version-control status. But those extra patch bands are noise. They’re
distracting. It’s more considerate not to send them.

This is another minor error. You’ll be forgiven for it if you get the big things right.
But you want to avoid it anyway.

Do use -c or -u format, don’t use the default (-e) format.19.2.1.5

The default (-e) format of diff (1) is very brittle. It doesn’t include any context, so
the patch tool can’t cope if any lines have been inserted or deleted in the baseline
code since you took the copy you modified.

Getting an -e diff is annoying, and suggests that the sender is either an extreme
newbie, careless, or clueless. Most such patches get tossed out without a
second thought.

Do include documentation with your patch.19.2.1.6

This is very important. If your patch makes a user-visible addition or change to the
software’s features, include changes to the appropriate man pages and other docu-
mentation files in your patch. Do not assume that the recipient will be happy to docu-
ment your code for you, or to have undocumented features lurking in the code.

Documenting your changes well demonstrates some good things. First, it’s consid-
erate to the person you are trying to persuade. Second, it shows that you understand
the ramifications of your change well enough to explain it to somebody who can’t
see the code. Third, it demonstrates that you care about the people who will ultimately
use the software.

Good documentation is usually the most visible sign of what separates a solid
contribution from a quick and dirty hack. If you take the time and care necessary to
produce it, you’ll find you’re already 85% of the way to having your patch accepted
by most developers.

Chapter 19 Open Source442



ptg

Do include an explanation with your patch.19.2.1.7

Your patch should include cover notes explaining why you think the patch is necessary
or useful. This is explanation directed not to the users of the software but to the
maintainer to whom you are sending the patch.

The note can be short—in fact, some of the most effective cover notes I’ve ever
seen just said “See the documentation updates in this patch”. But it should show the
right attitude.

The right attitude is helpful, respectful of the maintainer’s time, quietly confident
but unassuming. It’s good to display understanding of the code you’re patching. It’s
good to show that you can identify with the maintainer’s problems. It’s also good to
be up front about any risks you perceive in applying the patch. Here are some examples
of the sorts of explanatory comments that experienced developers send:

“I’ve seen two problems with this code, X and Y. I fixed problem X, but I didn’t
try addressing problem Y because I don’t think I understand the part of the code that
I believe is involved”.

“Fixed a core dump that can happen when one of the foo inputs is too long. While
I was at it, I went looking for similar overflows elsewhere. I found a possible one in
blarg.c, near line 666. Are you sure the sender can’t generate more than 80 characters
per transmission?”

“Have you considered using the Foonly algorithm for this problem? There is a
good implementation at <http://www.example.com/~jsmith/foonly.html>”.

“This patch solves the immediate problem, but I realize it complicates the memory
allocation in an unpleasant way. Works for me, but you should probably test it under
heavy load before shipping”.

“This may be featuritis, but I’m sending it anyway. Maybe you’ll know a cleaner
way to implement the feature”.

Do include useful comments in your code.19.2.1.8

A maintainer will want to have strong confidence that he understands your changes
before merging them in. This isn’t an invariable rule; if you have a track record of
good work with the maintainer, he may just run a casual eye over the changes before
checking them in semiautomatically. But everything you can do to help him understand
your code and decrease his uncertainty increases your chances that your patch will
be accepted.

Good comments in your code help the maintainer understand it. Bad
comments don’t.
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Here’s an example of a bad comment:

/* norman newbie fixed this 13 Aug 2001 */

This conveys no information. It’s nothing but a muddy territorial bootprint you’re
planting in the middle of the maintainer’s code. If he takes your patch (which you’ve
made less likely) he will almost certainly strip out this comment. If you want a credit,
include a patch band for the project NEWS or HISTORY file. He’s more likely to
take that.

Here’s an example of a good comment:

/*
 * This conditional needs to be guarded so that crunch_data() never
 * gets passed a NULL pointer.  <norman_newbie@foosite.com>
 */

This comment shows that you understand not only the maintainer’s code but the
kind of information that he needs to have confidence in your changes. This kind of
comment gives him confidence in your changes.

Don’t take it personally if your patch is rejected19.2.1.9

There are lots of reasons a patch can be rejected that don’t reflect on you. Remember
that most maintainers are under heavy time pressure, and have to be conservative in
what they accept lest the project code get broken. Sometime resubmitting with im-
provements will help. Sometimes it won’t. Life is hard.

Good Project- and Archive-Naming Practice19.2.2

As the load on maintainers of archives like ibiblio, SourceForge, and CPAN increases,
there is an increasing trend for submissions to be processed partly or wholly by pro-
grams (rather than entirely by a human).

This makes it more important for project and archive-file names to fit regular pat-
terns that computer programs can parse and understand.

Use GNU-style names with a stem and major.minor.patch
numbering.

19.2.2.1

It’s helpful to everybody if your archive files all have GNU-like names—all-lower-case
alphanumeric stem prefix, followed by a hyphen, followed by a version number,
extension, and other suffixes.
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A good general form of name has these parts in order:

1. project prefix

2. dash

3. version number

4. dot

5. “src” or “bin” (optional)

6. dot or dash (dot preferred)

7. binary type and options (optional)

8. archiving and compression extensions

Name stems in this style can contain hyphen or underscores to separate syllables;
dashes are actually preferred. It is good practice to group related projects by giving
the stems a common hyphen-terminated prefix.

Let’s suppose you have a project you call ‘foobar’ at major version 1, minor version
or release 2, patchlevel 3. If it’s got just one archive part (presumably the sources),
here’s what its names should look like like:

foobar-1.2.3.tar.gz
The source archive.

foobar.lsm
The LSM file (assuming you’re submitting to ibiblio).

Please don’t use names like these:

foobar123.tar.gz
This looks to many programs like an archive for a project called “foobar123”
with no version number.

foobar1.2.3.tar.gz
This looks to many programs like an archive for a project called “foobar1” at
version 2.3.

foobar-v1.2.3.tar.gz
Many programs think this goes with a project called “foobar-v1”.

foo_bar-1.2.3.tar.gz
The underscore is hard for people to speak, type, and remember.
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FooBar-1.2.3.tar.gz
Unless you like looking like a marketing weenie. This is also hard for people to
speak, type, and remember.

If you have to differentiate between source and binary archives, or between
different kinds of binary, or express some kind of build option in the file name, please
treat that as a file extension to go after the version number. That is, please do this:

foobar-1.2.3.src.tar.gz
Sources.

foobar-1.2.3.bin.tar.gz
Binaries, type not specified.

foobar-1.2.3.bin.i386.tar.gz
i386 binaries.

foobar-1.2.3.bin.i386.static.tar.gz
i386 binaries statically linked.

foobar-1.2.3.bin.SPARC.tar.gz
SPARC binaries.

Please don’t use names like ‘foobar-i386–1.2.3.tar.gz’, because programs have a
hard time telling type infixes (like ‘-i386’) from the stem.

The convention for distinguishing major from minor release is simple: you
increment the patch level for fixes or minor features, the minor version number
for compatible new features, and the major version number when you make
incompatible changes.

But respect local conventions where appropriate.19.2.2.2

Some projects and communities have well-defined conventions for names and version
numbers that aren’t necessarily compatible with the above advice. For instance, Apache
modules are generally named like mod_foo, and have both their own version number
and the version of Apache with which they work. Likewise, Perl modules have version
numbers that can be treated as floating point numbers (e.g., you might see 1.303 rather
than 1.3.3), and the distributions are generally named Foo-Bar-1.303.tar.gz for version
1.303 of module Foo::Bar. (Perl itself, on the other hand, switched to using the
conventions described here in late 1999.)

Look for and respect the conventions of specialized communities and developers;
for general use, follow the above guidelines.
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Try hard to choose a name prefix that is unique and easy
to type.

19.2.2.3

The stem prefix should be common to all of a project’s files, and it should be easy to
read, type, and remember. So please don’t use underscores. And don’t capitalize or
BiCapitalize without extremely good reason—it messes up the natural human-eyeball
search order and looks like some marketing weenie trying to be clever.

It confuses people when two different projects have the same stem name. So try
to check for collisions before your first release. Two good places to check are the
index file of ibiblio <http://metalab.unc.edu/pub/Linux> and the appli-
cation index at Freshmeat <http://www.freshmeat.net>. Another good place
to check is SourceForge <http://www.sourceforge.net>; do a name
search there.

Good Development Practice19.2.3

Here are some of the behaviors that can make the difference between a successful
project with lots of contributors and one that stalls out after attracting no interest:

Don’t rely on proprietary code.19.2.3.1

Don’t rely on proprietary languages, libraries, or other code. Doing so is risky business
at the best of times; in the open-source community, it is considered downright rude.
Open-source developers don’t trust code for which they can’t review the source.

Use GNU Autotools.19.2.3.2

Configuration choices should be made at compile time. A significant advantage of
open-source distributions is that they allow the package to adapt at compile-time to
the environment it finds. This is critical because it allows the package to run on plat-
forms its developers have never seen, and it allows the software’s community of users
to do their own ports. Only the largest of development teams can afford to buy all the
hardware and hire enough employees to support even a limited number of platforms.

Therefore: Use the GNU autotools to handle portability issues, do system-
configuration probes, and tailor your makefiles. People building from sources
today expect to be able to type configure; make; make install and
get a clean build—and rightly so. There is a good tutorial on these tools
<http://seul.org/docs/autotut/>.

autoconf and autoheader are mature. automake, as we’ve previously noted,
is still buggy and brittle as of mid-2003; you may have to maintain your own
Makefile.in. Fortunately it’s the least important of the autotools.
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Regardless of your approach to configuration, do not ask the user for system infor-
mation at compile-time. The user installing the package does not know the answers
to your questions, and this approach is doomed from the start. The software must be
able to determine for itself any information that it may need at compile- or install-time.

But autoconf should not be regarded as a license for knob-ridden designs. If at all
possible, program to standards like POSIX and refrain also from asking the system
for configuration information. Keep ifdefs to a minimum—or, better yet, have
none at all.

Test your code before release.19.2.3.3

A good test suite allows the team to easily run regression tests before releases. Create
a strong, usable test framework so that you can incrementally add tests to your software
without having to train developers in the specialized intricacies of the test suite.

Distributing the test suite allows the community of users to test their ports before
contributing them back to the group.

Encourage your developers to use a wide variety of platforms as their desktop and
test machines, so that code is continuously being tested for portability flaws as part
of normal development.

It is good practice, and encourages confidence in your code, when it ships with
the test suite you use, and that test suite can be run with make test.

Sanity-check your code before release.19.2.3.4

By “sanity check” we mean: use every tool available that has a reasonable chance of
catching errors a human would be prone to overlook. The more of these you catch
with tools, the fewer your users and you will have to contend with.

If you’re writing C/C++ using GCC, test-compile with -Wall and clean up all
warning messages before each release. Compile your code with every compiler you
can find—different compilers often find different problems. Specifically, compile
your software on a true 64-bit machine. Underlying datatypes can change on 64-bit
machines, and you will often find new problems there. Find a Unix vendor’s system
and run the lint utility over your software.

Run tools that look for memory leaks and other runtime errors; Electric Fence and
Valgrind are two good ones available in open source.

For Python projects, the PyChecker <http://sourceforge.net/
projects/pychecker> program can be a useful check. It often catches
nontrivial errors.

If you’re writing Perl, check your code with perl -c (and maybe -T, if applicable).
Use perl -w and ‘use strict’ religiously. (See the Perl documentation for further
discussion.)
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Spell-check your documentation and READMEs
before release.

19.2.3.5

Spell-check your documentation, README files and error messages in your software.
Sloppy code, code that produces warning messages when compiled, and spelling errors
in README files or error messages, all lead users to believe the engineering behind
it is also haphazard and sloppy.

Recommended C/C++ Portability Practices19.2.3.6

If you are writing C, feel free to use the full ANSI features. Specifically, do use
function prototypes, which will help you spot cross-module inconsistencies. The old-
style K&R compilers are ancient history.

Do not assume compiler-specific features such as the GCC -pipe option or
nested functions are available. These will come around and bite you the second
somebody ports to a non-Linux, non-GCC system.

Code required for portability should be isolated to a single area and a single set
of source files (for example, an os subdirectory). Compiler, library and operating
system interfaces with portability issues should be abstracted to files in this directory.

A portability layer is a library (or perhaps just a set of macros in header files) that
abstracts away just the parts of an operating system’s API your program is interested
in. Portability layers make it easier to do new software ports. Often, no member of
the development team knows the porting platform (for example, there are literally
hundreds of different embedded operating systems, and nobody knows any significant
fraction of them). By creating a separate portability layer, it becomes possible for a
specialist who knows a platform to port your software without having to understand
anything outside the portability layer.

Portability layers also simplify applications. Software rarely needs the full func-
tionality of more complex system calls such as mmap(2) or stat(2), and programmers
commonly configure such complex interfaces incorrectly. A portability layer with
abstracted interfaces (say, something named __file_exists instead of a call to
stat(2)) allows you to import only the limited, necessary functionality from the system,
simplifying the code in your application.

Always write your portability layer to select based on a feature, never based on a
platform. Trying to create a separate portability layer for each supported platform
results in a multiple update problem maintenance nightmare. A “platform” is always
selected on at least two axes: the compiler and the library/operating system release.
In some cases there are three axes, as when Linux vendors select a C library indepen-
dently of the operating system release. With M vendors, N compilers, and O operating
system releases, the number of platforms quickly scales out of reach of any but the
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largest development teams. On the other hand, by using language and systems standards
such as ANSI and POSIX 1003.1, the set of features is relatively constrained.

Portability choices can be made along either lines of code or compiled files. It
doesn’t make a difference if you select alternate lines of code on a platform, or one
of a few different files. A rule of thumb is to move portability code for different plat-
forms into separate files when the implementations diverge significantly
(shared memory mapping on Unix vs. Windows), and leave portability code in a
single file when the differences are minimal (for example, whether you’re using
gettimeofday, clock_gettime, ftime or time to find out the current
time-of-day).

For anywhere outside a portability layer, heed this advice:

#ifdef and #if are last resorts, usually a sign of failure of imagination, excessive
product differentiation, gratuitous “optimization” or accumulated trash. In the
middle of code they are anathema. /usr/include/ stdio.h from GNU is
an archetypical horror.

—Doug McIlroy

Use of #ifdef and #if is permissible (if well controlled) within a portability
layer. Outside it, try hard to confine these to conditionalizing #includes based on
feature symbols.

Never intrude on the namespace of any other part of the system, including file-
names, error return values and function names. Where the namespace is shared, doc-
ument the portion of the namespace that you use.

Choose a coding standard. The debate over the choice of standard can go on
forever—regardless, it is too difficult and expensive to maintain software built using
multiple coding standards, and so some common style must be chosen. Enforce your
coding standard ruthlessly, as consistency and cleanliness of the code are of the
highest priority; the details of the coding standard itself are a distant second.

Good Distribution-Making Practice19.2.4

These guidelines describe how your distribution should look when someone downloads,
retrieves and unpacks it.

Make sure tarballs always unpack into a single new directory.19.2.4.1

The single most annoying mistake fledgling contributors make is to build tarballs that
unpack the files and directories in the distribution into the current directory, potentially
overwriting files already located there. Never do this!
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Instead, make sure your archive files all have a common directory part named after
the project, so they will unpack into a single top-level directory directly beneath the
current one. Conventionally, the name of the directory should be the same as the stem
of the tarball’s name. So, for example, a tarball named foo-0.23.tar.gz is
expected to unpack into a subdirectory named foo-0.23.

Example 19.1 shows a makefile trick that, assuming your distribution directory is
named “foobar” and SRC contains a list of your distribution files, accomplishes this.

Example 19.1: tar archive maker production.

foobar-$(VERS).tar.gz:
 @ls $(SRC) | sed s:^:foobar-$(VERS)/: >MANIFEST
 @(cd ..; ln -s foobar foobar-$(VERS))
 (cd ..; tar -czvf foobar/foobar-$(VERS).tar.gz `cat foobar/MANIFEST`)
 @(cd ..; rm foobar-$(VERS))

Include a README.19.2.4.2

Include a file called README that is a roadmap of your source distribution. By ancient
convention (originating with Dennis Ritchie himself before 1980, and promulgated
on Usenet in the early 1980s), this is the first file intrepid explorers will read after
unpacking the source.

README files should be short and easy to read. Make yours an introduction, not
an epic. Good things to have in the README include the following:

1. A brief description of the project.

2. A pointer to the project website (if it has one).

3. Notes on the developer’s build environment and potential portability problems.

4. A roadmap describing important files and subdirectories.

5. Either build/installation instructions or a pointer to a file containing same (usu-
ally INSTALL).

6. Either a maintainers/credits list or a pointer to a file containing same (usually
CREDITS).

7. Either recent project news or a pointer to a file containing same (usually NEWS).

8. Project mailing list addresses.
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At one time this file was commonly READ.ME, but this interacts badly with
browsers, who are all too likely to assume that the .ME suffix means it’s not textual
and can only be downloaded rather than browsed. This usage is deprecated.

Respect and follow standard file-naming practices.19.2.4.3

Before even looking at the README, your intrepid explorer will have scanned the
filenames in the top-level directory of your unpacked distribution. Those names can
themselves convey information. By adhering to certain standard naming practices,
you can give the explorer valuable clues about where to look next.

Here are some standard top-level file names and what they mean. Not every dis-
tribution needs all of these.

README
The roadmap file, to be read first.

INSTALL
Configuration, build, and installation instructions.

AUTHORS
List of project contributors (GNU convention).

NEWS
Recent project news.

HISTORY
Project history.

CHANGES
Log of significant changes between revisions.

COPYING
Project license terms (GNU convention).

LICENSE
Project license terms.

FAQ
Plain-text Frequently-Asked-Questions document for the project.

Note the overall convention that filenames with all-caps names are human-readable
metainformation about the package, rather than build components. This elaboration
of the README was developed early on at the Free Software Foundation.
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Having a FAQ file can save you a lot of grief. When a question about the project
comes up often, put it in the FAQ; then direct users to read the FAQ before sending
questions or bug reports. A well-nurtured FAQ can decrease the support burden on
the project maintainers by an order of magnitude or more.

Having a HISTORY or NEWS file with timestamps in it for each release is valuable.
Among other things, it may help establish prior art if you are ever hit with a patent-
infringement lawsuit (this hasn’t happened to anyone yet, but best to be prepared).

Design for upgradability.19.2.4.4

Your software will change over time as you put out new releases. Some of these
changes will not be backward-compatible. Accordingly, you should give serious
thought to designing your installation layouts so that multiple installed versions of
your code can coexist on the same system. This is especially important for li-
braries—you can’t count on all your client programs to upgrade in lockstep with your
API changes.

The Emacs, Python, and Qt projects have a good convention for handling this:
version-numbered directories (another practice that seems to have been made routine
by the FSF). Here’s how an installed Qt library hierarchy looks (${ver} is the
version number):

/usr/lib/qt
/usr/lib/qt-${ver}
/usr/lib/qt-${ver}/bin          # Where you find moc
/usr/lib/qt-${ver}/lib          # Where you find .so
/usr/lib/qt-${ver}/include      # Where you find header files

With this organization, multiple versions can coexist. Client programs have to
specify the library version they want, but that’s a small price to pay for not having
the interfaces break on them. This good practice avoids the notorious “DLL Hell”
failure mode of Windows.

Under Linux, provide RPMs.19.2.4.5

The de facto standard format for installable binary packages under Linux that used
by the Red Hat Package manager, RPM. It’s featured in the most popular Linux dis-
tribution, and supported by effectively all other Linux distributions (except Debian
and Slackware; and Debian can install from RPMs). Accordingly, it’s a good idea for
your project site to provide installable RPMs as well as source tarballs.

It’s also a good idea for you to include in your source tarball the RPM spec file,
with a production that makes RPMs from it in your makefile. The spec file should
have the extension .spec; that’s how the rpm -t option finds it in a tarball.
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For extra style points, generate your spec file with a shellscript that automatically
plugs in the correct version number by analyzing the project makefile or
a version.h.

Note: If you supply source RPMs, use BuildRoot to make the program be built in
/tmp or /var/tmp. If you don’t, during the course of running the make install part
of your build, the install will install the files in the real final places. This will happen
even if there are file collisions, and even if you didn’t want to install the package at
all. When you’re done, the files will have been installed and your system’s RPM
database will not know about it. Such badly behaved SRPMs are a minefield and
should be eschewed.

Provide checksums.19.2.4.6

Provide checksums with your binaries (tarballs, RPMs, etc.). This will allow people
to verify that they haven’t been corrupted or had Trojan-horse code inserted in them.

While there are several commands you can use for this purpose (such as sum and
cksum) it is best to use a cryptographically-secure hash function. The GPG package
provides this capability via the --detach-sign option; so does the GNU command
md5sum.

For each binary you ship, your project Web page should list the checksum and the
command you used to generate it.

Good Communication Practice19.2.5

Your software and documentation won’t do the world much good if nobody but you
knows they exist. Also, developing a visible presence for the project on the Internet
will assist you in recruiting users and co-developers. Here are the standard ways to
do that.

Announce to Freshmeat.19.2.5.1

Announce to Freshmeat <http://www.freshmeat.net>. Besides being
widely read itself, this group is a major feeder for Web-based technical news channels.

Never assume the audience has been reading your release announcements since
the beginning of time. Always include at least a one-line description of what the
software does. Bad example: “Announcing the latest release of FooEditor, now with
themes and ten times faster”. Good example: “Announcing the latest release of
FooEditor, the scriptable editor for touch-typists, now with themes and ten
times faster”.

Chapter 19 Open Source454

http://www.freshmeat.net


ptg

Announce to a relevant topic newsgroup.19.2.5.2

Find a Usenet topic group directly relevant to your application, and announce there
as well. Post only where the function of the code is relevant, and exercise restraint.

If (for example) you are releasing a program written in Perl that queries IMAP
servers, you should certainly post to comp.mail.imap. But you should probably
not post to comp.lang.perl unless the program is also an instructive example of
cutting-edge Perl techniques.

Your announcement should include the URL of a project website.

Have a website.19.2.5.3

If you intend trying to build any substantial user or developer community around your
project, it should have a website. Standard things to have on the website include:

• The project charter (why it exists, who the audience is, etc.).

• Download links for the project sources.

• Instructions on how to join the project mailing list(s).

• A FAQ (Frequently Asked Questions) list.

• HTMLized versions of the project documentation.

• Links to related and/or competing projects.

Refer to the website examples in Chapter 16 for examples of what a well-educated
project website looks like.

An easy way to have a website is to put your project on one of the sites that spe-
cializes in providing free hosting. In 2003 the two most important of these are
SourceForge (which is a demonstration and test site for proprietary collaboration
tools) or Savannah (which hosts open-source projects as an ideological statement).

Host project mailing lists.19.2.5.4

It’s standard practice to have a private development list through which project collab-
orators can communicate and exchange patches. You may also want to have an an-
nouncements list for people who want to be kept informed of the project’s progress.

If you are running a project named ‘foo’, your developer list might be foo-dev
or foo-friends; your announcement list might be foo-announce.
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An important decision is just how private the “private” development list is. Wider
participation in design discussions is often a good thing, but if the list is relatively
open, sooner or later you will get people asking new-user questions on it. Opinions
vary on how best to solve this problem. Just having the documentation tell the new
users not to ask elementary questions on the development list is not a solution; such
a request must be enforced somehow.

An announcements list needs to be tightly controlled. Traffic should be at most a
few messages a month; the whole purpose of such a list is to accommodate people
who want to know when something important happens, but don’t want to hear about
day-to-day details. Most such people will quickly unsubscribe if the list starts gener-
ating significant clutter in their mailboxes.

Release to major archives.19.2.5.5

See the section Where Should I Look? in Chapter 16 for specifics on the major open-
source archive sites. You should release your package to these.

Other important locations include:

• The Python Software Activity <http://www.python.org> site (for
software written in Python).

• The CPAN <http://language.perl.com/CPAN>, the Comprehensive
Perl Archive Network (for software written in Perl).

The Logic of Licenses: How to Pick One19.3

The choice of license terms involves decisions about what, if any restrictions the author
wants to put on what people do with the software.

If you want to make no restrictions at all, you should put your software in the
public domain. An appropriate way to do this would be to include something like the
following text at the head of each file:

Placed in public domain by J. Random Hacker, 2003.  Share and enjoy!

If you do this, you are surrendering your copyright. Anyone can do anything they
like with any part of the text. It doesn’t get any freer than this.

But very little open-source software is actually placed in the public domain. Some
open-source developers want to use their ownership of the code to ensure that it stays
open (these tend to adopt the GPL). Others simply want to control their legal exposure;
one of the things all open-source licenses have in common is a disclaimer of warranty.
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Why You Should Use a Standard License19.4

The widely known licenses conforming to the Open Source Definition have well-es-
tablished interpretive traditions. Developers (and, to the extent they care, users) know
what they imply, and have a reasonable take on the risks and tradeoffs they involve.
Therefore, use one of the standard licenses carried on the OSI site if at all possible.

If you must write your own license, be sure to have it certified by OSI. This will
avoid a lot of argument and overhead. Unless you’ve been through it, you have no
idea how nasty a licensing flamewar can get; people become passionate because the
licenses are regarded as almost-sacred covenants touching the core values of the open-
source community.

Furthermore, the presence of an established interpretive tradition may prove im-
portant if your license is ever tested in court. At time of writing (mid-2003) there is
no case law either supporting or invalidating any open-source license. However, it is
a legal doctrine (at least in the United States, and probably in other common-law
countries such as England and the rest of the British Commonwealth) that courts are
supposed to interpret licenses and contracts according to the expectations and practices
of the community in which they originated. There is thus good reason to hope that
open-source community practice will be determinative when the court system finally
has to cope.

Varieties of Open-Source Licensing19.5

MIT or X Consortium License19.5.1

The loosest kind of free-software license is one that grants unrestricted rights to copy,
use, modify, and redistribute modified copies as long as a copy of the copyright and
license terms is retained in all modified versions. But when you accept this license
you do give up the right to sue the maintainers.

You can find a template for the standard X Consortium license at the OSI site
<http://www.opensource.org/licenses/mit-license.html>.

BSD Classic License19.5.2

The next least restrictive kind of license grants unrestricted rights to copy, use, modify,
and redistribute modified copies as long as a copy of the copyright and license terms
is retained in all modified versions, and an acknowledgment is made in advertising
or documentation associated with the package. Grantee has to give up the right to sue
the maintainers.
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The original BSD license is the best-known license of this kind. Among parts of
the free-software culture that trace their lineages back to BSD Unix, this license is
used even on a lot of free software that was written thousands of miles from Berkeley.

It is also not uncommon to find minor variants of the BSD license that change the
copyright holder and omit the advertising requirement (making it effectively equivalent
to the MIT license). Note that in mid-1999 the Office of Technology Transfer of the
University of California rescinded the advertising clause in the BSD license. So the
license on the BSD software has been relaxed in exactly this way. Should you choose
the BSD approach, we strongly recommend that you use the new license (without
advertising clause) rather than the old. That requirement was dropped because it led
to significant legal and procedural complications over what constituted advertising.

You can find a BSD license template at the OSI site <http://www.open-
source.org/licenses/bsd-license.html>.

Artistic License19.5.3

The next most restrictive kind of license grants unrestricted rights to copy, use, and
locally modify. It allows redistribution of modified binaries, but restricts redistribution
of modified sources in ways intended to protect the interests of the authors and the
free-software community.

The Artistic License, devised for Perl and widely used in the Perl developer com-
munity, is of this kind. It requires modified files to contain “prominent notice” that
they have been altered. It also requires people who redistribute changes to make them
freely available and make efforts to propagate them back to the free-software commu-
nity.

You can find a copy of the Artistic License at the OSI site <http://www.
opensource.org/licenses/artistic-license.html>.

General Public License19.5.4

The GNU General Public License (and its derivative, the Library or “Lesser” GPL)
is the single most widely used free-software license. Like the Artistic License, it allows
redistribution of modified sources provided the modified files bear “prominent notice”.

The GPL requires that any program containing parts that are under GPL be wholly
GPLed. (The exact circumstances that trigger this requirement are not perfectly clear
to everybody.)

These extra requirements actually make the GPL more restrictive than any of the
other commonly used licenses. (Larry Wall developed the Artistic License to avoid
them while serving many of the same objectives.)
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You can find a pointer to the GPL, and instructions about how to apply it, at FSF
copyleft site <http://www.gnu.org/copyleft.html>.

Mozilla Public License19.5.5

The Mozilla Public License supports software that is open source, but may be linked
with closed-source modules or extensions. It requires that the distributed software
(“Covered Code”) remain open, but permits add-ons called through a defined API to
remain closed.

You can find a template for the MPL at the OSI site <http://www.open-
source.org/licenses/MPL-1.1.html>.
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20

Futures:
Dangers and Opportunities

The best way to predict the future is to invent it.

Uttered during a 1971 meeting at XEROX PARC
—Alan Kay

History is not over. Unix will continue to grow and change. The community and the
tradition around Unix will continue to evolve. Trying to forecast the future is a chancy
business, but we can perhaps anticipate it in two ways: first, by looking at how Unix
has coped with design challenges in the past; second, by identifying problems that
are looking for solutions and opportunities waiting to be exploited.

Essence and Accident in Unix Tradition20.1

To understand how Unix’s design might change in the future, we can start by looking
at how Unix programming style has changed over time in the past. This effort leads
us directly to one of the challenges of understanding the Unix style—distinguishing
between accident and essence. That is, recognizing traits that arise from transient
technical circumstances versus those that are deeply tied to the central Unix design
challenge—how to do modularity and abstraction right while also keeping systems
transparent and simple.

This distinction can be difficult, because traits that arose as accidents have some-
times turned out to have essential utility. Consider as an example the ‘Silence is
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golden’ rule of Unix interface design we examined in Chapter 11; it began as an
adaptation to slow teletypes, but continued because programs with terse output could
be combined in scripts more easily. Today, in an environment where having many
programs running visibly through a GUI is normal, it has a third kind of utility: silent
programs don’t distract or waste the user’s attention.

On the other hand, some traits that once seemed essential to Unix turned out to be
accidents tied to a particular set of cost ratios. For example, old-school Unix favored
program designs (and minilanguages like awk(1)) that did line-at-a-time processing
of an input stream or record-at-a-time processing of binary files, with any context
that needed to be maintained between pieces carried by elaborate state-machine code.
New-school Unix design, on the other hand, is generally happy with the assumption
that a program can read its entire input into memory and thereafter randomly access
it at will. Indeed, modern Unixes supply an mmap(2) call that allows the programmer
to map an entire file into virtual memory and completely hides the serialization of
I/O to and from disk space.

This change trades away storage economy to get simpler and more transparent
code. It’s an adaptation to the plunging cost of memory relative to programmer time.
Many of the differences between old-school Unix designs in the 1970s and 1980s and
those of the new post-1990 school can be traced to the huge shift in relative costs that
today makes all machine resources several orders of magnitude cheaper relative to
programmer time than they were in 1969.

Looking back, we can identify three specific technology changes that have driven
significant changes in Unix design style: internetworking, bitmapped graphics displays,
and the personal computer. In each case, the Unix tradition has adapted to the challenge
by discarding accidents that were no longer adaptive and finding new applications
for its essential ideas. Biological evolution works this way too. Evolutionary biologists
have a rule: “Don’t assume that historical origin specifies current utility, or vice versa”.
A brief look at how Unix adapted in each of these cases may provide some clues to
how Unix might adapt itself to future technology shifts that we cannot yet anticipate.

Chapter 2 described the first of these changes: the rise of internetworking, from
the angle of cultural history, telling how TCP/IP brought the original Unix and
ARPANET cultures together after 1980. In Chapter 7, the material on obsolescent
IPC and networking methods such as System V STREAMS  hints at the many false
starts, missteps, and dead ends that preoccupied Unix developers through much of
the following decade. There was a good deal of confusion about protocols,1 and about

1. For a few years it looked like ISO’s 7-layer networking standard might compete successfully
with TCP/IP. It was promoted by a European standards committee politically horrified at
the thought of adopting any technology birthed in the bowels of the Pentagon. Alas, their
indignation exceeded their technical acuity. The result proved overcomplicated and unhelpful;
see [Padlipsky] for details.
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the relationship between intermachine networking and interprocess communication
among processes on the same machine.

Eventually the confusion was cleared up when TCP/IP won and BSD sockets re-
asserted Unix’s essential everything-is-a-byte-stream metaphor. It became normal to
use BSD sockets for both IPC and networking, older methods for both largely fell
out of use, and Unix software grew increasingly indifferent to whether communicating
components were hosted on the same or different machines. The invention of the
World Wide Web in 1990–1991 was the logical result.

When bitmapped graphics and the example of the Macintosh arrived in 1984 a
few years after TCP/IP, they posed a rather more difficult challenge. The original
GUIs from Xerox PARC and Apple were beautiful, but wired together far too many
levels of the system for Unix programmers to feel comfortable with their design. The
prompt response of Unix programmers was to make separation of policy from
mechanism an explicit principle; the X windowing system established it by 1988. By
splitting X widget sets away from the display manager that was doing low-level
graphics, they created an architecture that was modular and clean in Unix terms, and
one that could easily evolve better policy over time.

But that was the easy part of the problem. The hard part was deciding whether
Unix ought to have a unified interface policy at all, and if so what it ought to be.
Several different attempts to establish one through proprietary toolkits (like Motif)
failed. Today, in 2003, GTK and Qt contend with each other for the role. While the
debate on this question is not over in 2003, the persistence of different UI styles that
we noted in Chapter 11 seems telling. New-school Unix design has kept the command
line, and dealt with the tension between GUI and CLI approaches by writing lots of
CLI-engine/GUI-interface pairs that can be used in both styles.

The personal computer posed few major design challenges as a technology in itself.
The 386 and later chips were powerful enough to give the systems designed around
them cost ratios similar to those of the minicomputers, workstations, and servers on
which Unix matured. The true challenge was a change in the potential market for
Unix; the much lower overall price of the hardware made personal computers attractive
to a vastly broader, less technically sophisticated user population.

The proprietary-Unix vendors, accustomed to the fatter margins from selling more
powerful systems to sophisticated buyers, were never interested in this wider market.
The first serious initiatives toward the end-user desktop came out of the open-source
community and were mounted for essentially ideological reasons. As of mid-2003,
market surveys indicate that Linux has reached about 4%–5% share there, closely
comparable to the Apple Macintosh’s.

Whether or not Linux ever does substantially better than this, the nature of the
Unix community’s response is already clear. We examined it in the study of Linux in
Chapter 3. It includes adopting a few technologies (such as XML) from elsewhere,
and putting a lot of effort into naturalizing GUIs into the Unix world. But underneath
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the themed GUIs and the installation packaging, the main emphasis is still on modu-
larity and clean code—on getting the infrastructure for serious, high-reliability com-
puting and communications right.

The history of the large-scale desktop-focused developments like Mozilla and
OpenOffice.org that were launched in the late 1990s illustrates this emphasis well.
In both these cases, the most important theme in community feedback wasn’t demand
for new features or pressure to make a ship date—it was distaste for monster monoliths,
and a general sense that these huge programs would have to be slimmed down,
refactored, and carved into modules before they would be other than embarrassments.

Despite being accompanied by a great deal of innovation, the responses to all three
technologies were conservative with regard to the fundamental Unix design
rules—modularity, transparency, separation of policy from mechanism, and the other
qualities we’ve tried to characterize earlier in this book. The learned response of Unix
programmers, reinforced over thirty years, was to go back to first principles—to try
to get more leverage out of Unix’s basic abstractions of streams, namespaces, and
processes in preference to layering on new ones.

Plan 9: The Way the Future Was20.2

We know what Unix’s future used to look like. It was designed by the research group
at Bell Labs that built Unix and called ‘Plan 9 from Bell Labs’.2 Plan 9 was an attempt
to do Unix over again, better.

The central design challenge the designers attempted to meet in Plan 9 was
integrating graphics and ubiquitous networking into a comfortable Unix-like
framework. They kept the Unix choice to mediate access to as many system services
as possible through a single big file-hierarchy name space. In fact, they improved on
it; many facilities that under Unix are accessed through various ad-hoc interfaces like
BSD sockets, fcntl(2), and ioctl(2) are in Plan 9 accessed through ordinary read and
write operations on special files analogous to device files. For portability and ease of
access, almost all device interfaces are textual rather than binary. Most system services
(including, for example, the window system) are file servers containing special files
or directory trees representing the served resources. By representing all resources as

2. The name is a tribute to the 1958 movie that has passed into legend as “the worst ever
made”, Plan 9 from Outer Space. (The legend is, unfortunately, incorrect, as the few who have
seen an even worse stinkeroo from 1966 called Manos: The Hands of Fate can attest.) Docu-
mentation, including a survey paper describing the architecture, along with complete source
code and a distribution that installs on PCs, can be readily found with a Web search for the
phrase ‘Plan 9 from Bell Labs’.
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files, Plan 9 turns the problem of accessing resources on different servers into the
problem of accessing files on different servers.

Plan 9 combined this more-Unix-than-Unix file model with a new concept: private
name spaces. Every user (in fact, every process) can have its own view of the system’s
services by creating its own tree of file-server mounts. Some of the file server mounts
will have been manually set up by the user, and others automatically set up at login
time. So (as the Plan 9 from Bell Labs survey paper points out) “/dev/cons always
refers to your terminal device and /bin/date to the correct version of the date
command to run, but which files those names represent depends on circumstances
such as the architecture of the machine executing date”.

The single most important feature of Plan 9 is that all mounted file servers export
the same file-system-like interface, regardless of the implementation behind them.
Some might correspond to local file systems, some to remote file systems accessed
over a network, some to instances of system servers running in user space (like the
window system or an alternate network stack), and some to kernel interfaces. To users
and client programs, all these cases look alike.

One of the examples from the Plan 9 survey paper is the way FTP access to remote
sites is implemented. There is no ftp(1) command under Plan 9. Instead there is an
ftpfs fileserver, and each FTP connection looks like a file system mount. ftpfs automat-
ically translates open, read, and write commands on files and directories under the
mount point into FTP protocol transactions. Thus, all ordinary file-handling tools
such as ls(1), mv(1) and cp(1) simply work, both underneath the FTP mount point
and across the boundaries with the rest of the user’s view of the namespace. The only
difference the user (or his scripts and programs) will notice is retrieval speed.

Plan 9 has much else to recommend it, including the reinvention of some of the
more problematic areas of the Unix system-call interface, the elimination of superuser,
and many other interesting rethinkings. Its pedigree is impeccable, its design elegant,
and it exposes some significant errors in the design of Unix. Unlike most efforts at a
second system, it produced an architecture that was in many ways simpler and more
elegant than its predecessor. Why didn’t it take over the world?

One could argue for a lot of specific reasons—lack of any serious effort to market
it, scanty documentation, much confusion and stumbling over fees and licensing. For
those unfamiliar with Plan 9, it seemed to function mainly as a device for generating
interesting papers on operating-systems research. But Unix itself had previously sur-
mounted all these sorts of obstacles to attract a dedicated following that spread it
worldwide. Why didn’t Plan 9?

The long view of history may tell a different story, but in 2003 it looks like Plan
9 failed simply because it fell short of being a compelling enough improvement on
Unix to displace its ancestor. Compared to Plan 9, Unix creaks and clanks and has
obvious rust spots, but it gets the job done well enough to hold its position. There is
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a lesson here for ambitious system architects: the most dangerous enemy of a better
solution is an existing codebase that is just good enough.

Some Plan 9 ideas have been absorbed into modern Unixes, particularly the more
innovative open-source versions. FreeBSD has a /proc file system modeled exactly
on that of Plan 9 that can be used to query or control running processes. FreeBSD’s
rfork(2) and Linux’s clone(2) system calls are modeled on Plan 9’s rfork(2). Linux’s
/proc file system, in addition to presenting process information, holds a variety of
synthesized Plan 9-like device files used to query and control kernel internals using
predominantly textual interfaces. Experimental 2003 versions of Linux are implement-
ing per-process mount points, a long step toward Plan 9’s private namespaces. The
various open-source Unixes are all moving toward systemwide support for UTF-8,
an encoding actually invented for Plan 9.3

It may well be that over time, much more of Plan 9 will work its way into Unix
as various portions of Unix’s architecture slide into senescence. This is one possible
line of development for Unix’s future.

Problems in the Design of Unix20.3

Plan 9 cleans up Unix, but only really adds one new concept (private namespaces) to
its basic set of design ideas. But are there serious problems with those basic design
ideas? In Chapter 1 we touched on several issues that Unix arguably got wrong. Now
that the open-source movement has put the design future of Unix back in the hands
of programmers and technical people, these are no longer decisions we have to live
with forever. We’ll reexamine them in order to get a better handle on how Unix might
evolve in the future.

A Unix File Is Just a Big Bag of Bytes20.3.1

A Unix file is just a big bag of bytes, with no other attributes. In particular, there is
no capability to store information about the file type or a pointer to an associated ap-
plication program outside the file’s actual data.

More generally, everything is a byte stream; even hardware devices are byte streams.
This metaphor was a tremendous success of early Unix, and a real advance over a
world in which (for example) compiled programs could not produce output that could
be fed back to the compiler. Pipes and shell programming sprang from this metaphor.

3. The tale of how UTF-8 was born involves Ken Thompson, Rob Pike, a new Jersey
diner, and a frenzied overnight hack <http://www.cl.cam.ac.uk/~mgk25/ucs/
utf-8-history.txt>.
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But Unix’s byte-stream metaphor is so central that Unix has trouble integrating
software objects with operations that don’t fit neatly into the byte stream or file
repertoire of operations (create, open, read, write, delete). This is especially a problem
for GUI objects such as icons, windows, and ‘live’ documents. Within a classical Unix
model of the world, the only way to extend the everything-is-a-byte-stream metaphor
is through ioctl calls, a notoriously ugly collection of back doors into kernel space.

Fans of the Macintosh family of operating systems tend to be vociferous about
this. They advocate a model in which a single filename may have both data and re-
source ‘forks’, the data fork corresponding to the Unix byte stream and the resource
fork being a collection of name/value pairs. Unix partisans prefer approaches that
make file data self-describing so that effectively the same sort of metadata is stored
within the file.

The problem with the Unix approach is that every program that writes the file has
to know about it. Thus, for example, if we want the file to carry type information inside
it, every tool that touches it has to take care to either preserve the type field unaltered
or interpret and then rewrite it. While this would be theoretically possible to arrange,
in practice it would be far too fragile.

On the other hand, supporting file attributes raises awkward questions about which
file operations should preserve them. It’s clear that a copy of a named file to another
name should copy the source file’s attributes as well as its data—but suppose we
cat(1) the file, redirecting the output of cat(1) to a new name?

The answer to this question depends on whether the attributes are actually properties
of filenames or are in some magical way bundled with the file’s data as a sort of
invisible preamble or postamble. Then the question becomes: Which operations make
the properties visible?

Xerox PARC file-system designs grappled with this problem as far back as the
1970s. They had an ‘open serialized’ call that returned a byte stream containing both
attributes and content. If applied to a directory, it returned a serialization of the direc-
tory’s attributes plus the serialization of all the files in it. It is not clear that this ap-
proach has ever been bettered.

Linux 2.5 already supports attaching arbitrary name/value pairs as properties of a
filename, but at time of writing this capability is not yet much used by applications.
Recent versions of Solaris have a roughly equivalent feature.

Unix Support for GUIs Is Weak20.3.2

The Unix experience proves that using a handful of metaphors as the basis for a
framework is a powerful strategy (recall the discussion of frameworks and shared
context in Chapter 13). The visual metaphor at the heart of modern GUIs (files repre-
sented by icons, and opened by clicking which invokes some designated handler
program, typically able to create and edit these files) has proven both successful and
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long-lived, exerting a strong hold on users and interface designers ever since Xerox
PARC pioneered it in the 1970s.

Despite considerable recent effort, in 2003 Unix still supports this metaphor only
poorly and grudgingly—there are lots of layers, few conventions, and only weak
construction utilities. A typical reaction from a Unix old hand is to suspect that this
reflects deeper problems with the GUI metaphor itself.

I think part of the problem is that we still don’t have the metaphor right. For
example, on the Mac I drag a file to the trashcan to delete it, but when I drag it to
a disc it gets copied, and can’t drag it to a printer icon to print it because that’s
done through the menus. I could go on and on. It’s like files were in OS/360, before
Unix came along with its simple (but not too simple), file idea.

—Steve Johnson

We quoted Brian Kernighan and Mike Lesk to similar effect in Chapter 11. But
the inquiry can’t stop with indicting the GUI, because with all its flaws there is
tremendous demand for GUIs from end users. Supposing we could get the metaphor
right at the level of the design of user interactions, would Unix be capable of supporting
it gracefully?

The answer is: probably not. We touched on this problem in considering whether
the bag-of-bytes model is adequate. Macintosh-style file attributes may help provide
the mechanism for richer support of GUIs, but it seems very unlikely that they are
the whole answer. Unix’s object model doesn’t include the right fundamental con-
structs. We need to think through what a really strong framework for GUIs would be
like—and, just as importantly, how it can be integrated with the existing frameworks
of Unix. This is a hard problem, demanding fundamental insights that have yet to
emerge from the noise and confusion of ordinary software engineering or
academic research.

File Deletion Is Forever20.3.3

People with VMS experience, or who remember TOPS-20, often miss these systems’
file-versioning facilities. Opening an existing file for write or deleting it actually re-
named it in a predictable way including a version number; only an explicit removal
operation on a version file actually erased data.

Unix does without this, at a not inconsiderable cost in user irritation when the
wrong files get deleted through a typo or unexpected effects of shell wildcarding.

There does not seem to be any foreseeable prospect that this will change at the
operating system level. Unix developers like clear, simple operations that do what the
user tells them to do, even if the user’s instructions could amount to commanding
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“shoot me in the foot”. Their instinct is to say that protecting the user from himself
should be done at the GUI or application level, not in the operating system.

Unix Assumes a Static File System20.3.4

Unix has, in one sense, a very static model of the world. Programs are implicitly as-
sumed to run only briefly, so the background of files and directories can be assumed
static during their execution. There is no standard, well-established way to ask the
system to notify an application if and when a specified file or directory changes. This
becomes a significant issue when writing long-lived user-interface software which
wants to know about changes to the background.

Linux has file- and directory-change notification features,4 and some versions of
BSD have copied them, but these are not yet portable to other Unixes.

The Design of Job Control Was Badly Botched20.3.5

Apart from the ability to suspend processes (in itself a trivial addition to the scheduler
which could be made fairly inoffensive) what job control is about is switching a ter-
minal among multiple processes. Unfortunately, it does the easiest part—deciding
where keystrokes go—and punts all the hard parts, like saving and restoring the state
of the screen, to the application.

A really good implementation of such a facility would be completely invisible to
user processes: no dedicated signals, no need to save and restore terminal modes, no
need for the applications to redraw the screen at random times. The model ought to
be a virtual keyboard that is sometimes connected to the real one (and blocks you if
you ask for input when it isn’t connected) and a virtual screen which is sometimes
visible on the real one (and might or might not block on output when it’s not), with
the system doing the multiplexing in the same way it multiplexes access to the disk,
the processor, etc... and no impact on user programs at all.5

Doing it right would have required the Unix tty driver to track the entire current
screen state rather than just maintaining a line buffer, and to know about terminal
types at kernel level (possibly with help from a daemon process) so it could do restores
properly when a suspended process is foregrounded again. A consequence of doing

4. Look for F_NOTIFY under fcntl(2).

5.  This paragraph is based on a 1984 analysis by Henry Spencer. He went on to note that job
control was necessary and appropriate for POSIX.1 and later Unix standards to consider pre-
cisely because it oozes its way into every program, and hence has to be thought about in any
application-to-system interface. Hence, POSIX’s endorsement of a mis-design, while proper
solutions were “out of scope” and hence were not even considered.
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it wrong is that the Unix kernel can’t detach a session, such as an xterm or Emacs
job, from one terminal and re-attach it to another (which could be of a different type).

As Unix usage has shifted to X displays and terminal emulators, job control has
become relatively less important, and this issue does not have quite the force it once
did. It is still annoying that there is no suspend/attach/detach, however; this feature
could be useful for saving the state of terminal sessions between logins.

A common open-source program called screen(1) solves several of these problems.6

However, since it has to be called explicitly by the user, its facilities are not guaranteed
to be present in every terminal session; also, the kernel-level code that overlaps with
it in function has not been removed.

The Unix API Doesn’t Use Exceptions20.3.6

C lacks a facility for throwing named exceptions with attached data.7 Thus, the C
functions in the Unix API indicate errors by returning a distinguished value (usually
–1 or a NULL character pointer) and setting a global errno variable.

In retrospect, this is the source of many subtle errors. Programmers in a hurry often
neglect to check return values. Because no exception is thrown, the Rule of Repair is
violated; program flow continues until the error condition manifests as some kind of
failure or data corruption later in execution.

The absence of exceptions also means that some tasks which ought to be simple
idioms—like aborting from a signal handler on a version with Berkeley-style
signals—have to be performed with code that is complex, subject to portability
glitches, and bug-prone.

This problem can be (and normally is) hidden by bindings of the Unix API in
languages such as Python or Java that have exceptions.

The lack of exceptions is actually an indicator of a problem with larger immediate
implications; C’s weak type ontology makes communication between higher-level
languages implemented in it problematic. Most of the more modern languages, for
example, have lists and dictionaries as primary data types—but, because these don’t
have any canonical representation in the universe of C, attempting to pass lists between
(say) Perl and Python is an unnatural act requiring a lot of glue.

6. There is a project site for screen(1) at http://www.math.fu-berlin.de/
~guckes/screen/.

7. For nonprogrammers, throwing an exception is a way for a program to bail out in the middle
of a procedure. It’s not quite an exit because the throw can be intercepted by catcher code in
an enclosing procedure. Exceptions are normally used to signal errors or unexpected conditions
that mean it would be pointless to try to continue normal processing.
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There are technologies that address the larger problem, such as CORBA, but they
tend to involve a lot of runtime translation and be unpleasantly heavyweight.

ioctl (2) and fcntl (2) Are an Embarrassment20.3.7

The ioctl(2) and fcntl(2) mechanisms provide a way to write hooks into a device
driver. The original, historical use of ioctl(2) was to set parameters like baud rate and
number of framing bits in a serial-communications driver, thus the name (for ‘I/O
control’). Later, ioctl calls were added for other driver functions, and fcntl(2) was
added as a hook into the file system.

Over the years, ioctl and fcntl calls have proliferated. They are often poorly
documented, and often a source of portability problems as well. With each one comes
a grubby pile of macro definitions describing operation types and special argument
values.

The underlying problem is the same as ‘big bag of bytes’; Unix’s object model is
weak, leaving no natural places to put many auxiliary operations. Designers have an
untidy choice among unsatisfactory alternatives; fcntl/ioctl going through
devices in /dev, new special-purpose system calls, or hooks through special-
purpose virtual file systems that hook into the kernel (e.g. /proc under Linux
and elsewhere).

It is not clear whether or how Unix’s object model will be enriched in the future.
If MacOS-like file attributes become a common feature of Unix, tweaking magic
named attributes on device drivers may take over the role ioctl/fcntl now have
(this would at least have the merit of not requiring piles of macro definitions before
the interface could be used). We’ve already seen that Plan 9 , which uses the named
file server or file system as its basic object, rather than the file/bytestream, presents
another possible path.

The Unix Security Model May Be Too Primitive20.3.8

Perhaps root is too powerful, and Unix should have finer-grained capabilities or ACLs
(Access Control Lists) for system-administration functions, rather than one superuser
that can do anything. People who take this position argue that too many system pro-
grams have permanent root privileges through the set-user-ID mechanism; if even
one can be compromised, intrusions everywhere will follow.

This argument is weak, however. Modern Unixes allow any given user account to
belong to multiple security groups. Through use of the execute-permission and set-
group-ID bits on program executables, each group can in effect function as an ACL
for files or programs.
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This theoretical possibility is very little used, however, suggesting that the demand
for ACLs is much less in practice than it is in theory.

Unix Has Too Many Different Kinds of Names20.3.9

Unix unified files and local devices—they’re all just byte streams. But network devices
accessed through sockets have different semantics in a different namespace. Plan 9
demonstrates that files can be smoothly unified with both local and remote (network)
devices, and all of these things can be managed through a namespace that is dynami-
cally adjustable per-user and even per-program.

File Systems Might Be Considered Harmful20.3.10

Was having a file system at all the wrong thing? Since the late 1970s there has been
an intriguing history of research into persistent object stores and operating systems
that don’t have a shared global file system at all, but rather treat disk storage as a huge
swap area and do everything through virtualized object pointers.

Modern efforts in this line (such as EROS8) hint that such designs can offer large
benefits including both provable conformance to a security policy and higher perfor-
mance. It must be noted, however, that if this is a failure of Unix, it is equally a failure
of all of its competitors; no major production operating system has yet followed
EROS’s lead.9

Towards a Global Internet Address Space20.3.11

Perhaps URLs don’t go far enough. We’ll leave the last word on possible future direc-
tions of Unix to Unix’s inventor:

My ideal for the future is to develop a file system remote interface (a la Plan 9)
and then have it implemented across the Internet as the standard rather than HTML.
That would be ultimate cool.

—Ken Thompson

8. http://www.eros-os.org/

9. The operating systems of the Apple Newton, the AS/400 minicomputer and the Palm
handheld could be considered exceptions.
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Problems in the Environment of Unix20.4

The old-time Unix culture has largely reinvented itself in the open-source movement.
Doing so saved us from extinction, but it also means that the problems of open source
are now ours as well.

One of these is how to make open-source development economically sustainable.
We have reconnected with our roots in the collaborative, open process of Unix’s early
days. We have largely won the technical argument for abandoning secrecy and propri-
etary control. We have thought of ways to cooperate with markets and managers on
more equal terms than we ever could in the 1970s and 1980s, and in many ways our
experiments have succeeded. In 2003 the open-source Unixes, and their core develop-
ment groups, have achieved a degree of mainstream respectability and authority that
would have been unimaginable as recently as the mid-1990s.

We have come a long way. But we have a long way to go yet. We know what
business models might work in theory, and now we can even point at a sporadic
handful of successes that demonstrate that they work in practice; now we have to
show that they can be made to work reliably over a longer term.

It’s not necessarily going to be an easy transition. Open source turns software into
a service industry. Service-provider firms (think of medical and legal practices) can’t
be scaled up by injecting more capital into them; those that try only scale up their
fixed costs, overshoot their revenue base, and starve to death. The choices come down
to singing for your supper (getting paid through tips and donations), running a corner
shop (a small, low-overhead service business), or finding a wealthy patron (some
large firm that needs to use and modify open-source software for its business purposes).

In total, the amount of money spent to hire software developers can be expected
to rise, for the same reasons that mechanics’ hourly wages go up as the price of auto-
mobiles drops.10 But it is going to become more difficult for any one individual or
firm to capture a lot of that spending. There will be many programmers who are well
off, but fewer millionaires. This is actually a sign of progress, of inefficiencies being
competed out of the system. But it will represent a big change in climate, and probably
means that investors will lose what little interest they have left in funding
software startups.

One important subproblem related to the increasing difficulty of sustaining really
large software businesses is how to organize end-user testing. Historically, the Unix
culture’s concentration on infrastructure has meant that we have not tended to build
programs that depended for their value on providing a comfortable interface for end-
users. Now, especially in the open-source Unixes that aim to compete directly with

10. For a more complete discussion of this effect, see The Magic Cauldron in [Raymond01].
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Microsoft and Apple, that is changing. But end-user interfaces need to be systemati-
cally tested with real end users—and therein lie some challenges.

Real end-user testing demands facilities, specialists, and a level of monitoring that
are difficult for the distributed volunteer groups characteristic of open-source devel-
opment to arrange. It may be, therefore, that open-source word processors, spread-
sheets, and other ‘productivity’ applications have to be left in the hands of large cor-
porate-sponsored efforts like OpenOffice.org that can afford the overhead. Open-
source developers consider single corporations to be single points of failure and
worry about such dependencies, but no better solution has yet evolved.

These are economic problems. We have other problems of a more political nature,
because success makes enemies.

Some are familiar. Microsoft’s ambition for an unchallengeable monopoly lock
on computing made the defeat of Unix a strategic goal for the company in the mid-
1980s, five years before we knew we were in a fight. In mid-2003, despite having had
several growth markets it was counting on largely usurped by Linux, Microsoft is still
the wealthiest and most powerful software company in the world. Microsoft knows
very well that it must defeat the new-school Unixes of the open-source movement to
survive. To defeat them, it must destroy or discredit the culture that produced them.

Unix’s comeback in the hands of the open-source community, and its association
with the freewheeling culture of the Internet, has made it newer enemies as well.
Hollywood and Big Media feel deeply threatened by the Internet and have launched
a multipronged attack on uncontrolled software development. Existing legislation
like the Digital Millennium Copyright Act has already been used to prosecute software
developers who were doing things the media moguls disliked (the most notorious
cases, of course, involve the DeCSS software that enables copying of encrypted
DVDs). Contemplated schemes like the so-called Trusted Computing Platform Alliance
and Palladium threaten11 to make open-source development effectively illegal—and
if open source goes down, Unix is very likely to go down with it.

Unix and the hackers and the Internet against Microsoft and Hollywood and Big
Media. It’s a struggle we need to win for all our traditional reasons of professionalism,
allegiance to our craft, and mutual tribal loyalty. But there are larger reasons this
struggle is important. The possibilities of politics are increasingly shaped by commu-
nication technology—who can use it, who can censor it, who can control it. Govern-
ment and corporate control of the content of the nets, and of what people can do with
their computers, is a severe long-term threat to political freedom. The nightmare
scenario is one in which corporate monopolism and statist power-seeking, always
natural allies, feed back into each other and create rationales for increasing regulation,

11. See the TCPA FAQ <http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html> for
a rather hair-raising summary of the possibilities by a noted security specialist.
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repression, and criminalization of digital speech. In opposing this, we are the warriors
of liberty—not merely our own liberty, but everyone else’s as well.

Problems in the Culture of Unix20.5

Just as important as the technical problems with Unix itself and the challenges conse-
quent on its success are the cultural problems of the community around it. There are
at least two serious ones: a lesser challenge of internal transition, and a greater one
of overcoming our historical elitism.

The lesser challenge is that of friction between the old-school Unix gurus and the
new-school open-source crowd. The success of Linux, in particular, is not an entirely
comfortable phenomenon for a lot of older Unix programmers. This is partly a gener-
ational problem. The raucous energy, naïvete and gleeful zealotry of the Linux kids
sometimes grates on elders who have been around since the 1970s and (often rightly)
consider themselves wiser. It’s only exacerbated by the fact that the kids are succeeding
where the elders failed.

The greater problem of psychology only became clear to me after spending three
days at a Macintosh developer conference in 2000. It was a very enlightening experi-
ence to be immersed in a programming culture with assumptions diametrically opposed
to those of the Unix world.

Macintosh programmers are all about the user experience. They’re architects and
decorators. They design from the outside in, asking first “What kind of interaction
do we want to support?” and then building the application logic behind it to meet the
demands of the user-interface design. This leads to programs that are very pretty and
infrastructure that is weak and rickety. In one notorious example, as late as Release 9
the MacOS memory manager sometimes required the user to manually deallocate
memory by manually chucking out exited but still-resident programs. Unix people
are viscerally revolted by this kind of mal-design; they don’t understand how Macin-
tosh people could live with it.

By contrast, Unix people are all about infrastructure. We are plumbers and stone-
masons. We design from the inside out, building mighty engines to solve abstractly
defined problems (like “How do we get reliable packet-stream delivery from point A
to point B over unreliable hardware and links?”). We then wrap thin and often pro-
foundly ugly interfaces around the engines. The commands date(1), find(1), and ed(1)
are notorious examples, but there are hundreds of others. Macintosh people are vis-
cerally revolted by this kind of mal-design; they don’t understand how Unix people
can live with it.

Both design philosophies have some validity, but the two camps have a great deal
of difficulty seeing each other’s points. The typical Unix developer’s reflex is to dismiss
Macintosh software as gaudy fluff, eye-candy for the ignorant, and to continue
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building software that appeals to other Unix developers. If end-users don’t like it, so
much the worse for the end users; they will come around when they get a clue.

In many ways this kind of parochialism has served us well. We are the keepers of
the Internet and the World Wide Web. Our software and our traditions dominate serious
computing, the applications where 24/7 reliability and minimal downtime is a must.
We really are extremely good at building solid infrastructure; not perfect by any means,
but there is no other software technical culture that has anywhere close to our track
record, and it is one to be proud of.

The problem is that we increasingly face challenges that demand a more inclusive
view. Most of the computers in the world don’t live in server rooms, but rather in the
hands of those end users. In early Unix days, before personal computers, our culture
defined itself partly as a revolt against the priesthood of the mainframes, the keepers
of the big iron. Later, we absorbed the power-to-the-people idealism of the early mi-
crocomputer enthusiasts. But today we are the priesthood; we are the people who run
the networks and the big iron. And our implicit demand is that if you want to use our
software, you must learn to think like us.

In 2003, there is a deep ambivalence in our attitude—a tension between elitism
and missionary populism. We want to reach and convert the 92% of the world for
whom computing means games and multimedia and glossy GUI interfaces and (at
their most technical) light email and word processing and spreadsheets. We are
spending major effort on projects like GNOME and KDE designed to give Unix a
pretty face. But we are still elitists at heart, deeply reluctant and in many cases unable
to identify with or listen to the needs of the Aunt Tillies of the world.

To non-technical end users, the software we build tends to be either bewildering
and incomprehensible, or clumsy and condescending, or both at the same time. Even
when we try to do the user-friendliness thing as earnestly as possible, we’re woefully
inconsistent at it. Many of the attitudes and reflexes we’ve inherited from old-school
Unix are just wrong for the job. Even when we want to listen to and help Aunt Tillie,
we don’t know how—we project our categories and our concerns onto her and give
her ‘solutions’ that she finds as daunting as her problems.

Our greatest challenge as a culture is whether we can outgrow the assumptions
that have served us so well—whether we can acknowledge, not merely intellectually
but in the sinew of daily practice, that the Macintosh people have a point. Their point
is made in more general, less Mac-specific way in The Inmates Are Running the Asylum
[Cooper], an insightful and argumentative book about what its author calls interaction
design that (despite occasional crotchets) contains a good deal of hard truth that every
Unix programmer ought to know.

We can turn aside from this; we can remain a priesthood appealing to a select mi-
nority of the best and brightest, a geek meritocracy focused on our historical role as
the keepers of the software infrastructure and the networks. But if we do this, we will
very likely go into decline and eventually lose the dynamism that has sustained us
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through decades. Someone else will serve the people; someone else will put themselves
where the power and the money are, and own the future of 92% of all software. The
odds are, whether that someone else is Microsoft or not, that they will do it using
practices and software we don’t much like.

Or we can truly accept the challenge. The open-source movement is trying hard
to do so. But the kind of sustained work and intelligence we have brought to other
problems in the past will not alone suffice. Our attitudes must change in a fundamental
and difficult way.

In Chapter 4 we discussed the importance of throwing away limiting assumptions
and discarding the past in solving technical problems, suggesting a parallel with the
Zen ideas of detachment and ‘beginner’s mind’. We have a larger kind of detachment
to work on now. We must learn humility before Aunt Tillie, and relinquish some of
the long-held prejudices that have made us so successful in the past.

Tellingly, the Macintosh culture has begun to converge with ours—MacOS X has
Unix underneath, and in 2003 Mac developers are (albeit with a struggle in some
cases) making the mental adjustment to learn the infrastructure-focused virtues of
Unix. Our challenge will be, reciprocally, to embrace the user-centered virtues of the
Macintosh.

There are other signs that the Unix culture is shedding its insularity as well. One
is the convergence that seems to be going on between the Unix/open-source commu-
nity and the movement called “agile programming”.12 We noted in Chapter 4 that
Unix programmers have seized happily on the concept of refactoring, one of the
preoccupations of the agile-programming thinkers. Refactoring, and other agile con-
cepts like unit-testing and design around stories, seem to articulate and sharpen
practices that have heretofore been widespread but only implicit in the Unix tradition.
The Unix tradition, on the other hand, can bring groundedness and the lessons of long
experience to the agile-programming party. As open-source software gains market
share it is even conceivable that these cultures will fuse, much as the old-time Internet
and early Unix cultures did after 1980.

Reasons to Believe20.6

The future of Unix is full of difficult problems. Would we truly want it any other way?
For more than thirty years we have thrived on challenges. We pioneered the best

practices of software engineering. We created today’s Internet and Web. We have built
the largest, most complex, and most reliable software systems ever to exist. We

12. For an introduction to agile programming, see the Agile Manifesto <http://
agilemanifesto.org/>
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outlasted the IBM monopoly and we’re making a run against the Microsoft monopoly
that is good enough to deeply frighten it.

Not that everything has been triumph by any means. In the 1980s we nearly de-
stroyed ourselves by acceding to the proprietary capture of Unix. We neglected the
low end, the nontechnical end users, for far too long and thereby left Microsoft an
opening to grossly lower the quality standards of software. Intelligent observers have
pronounced our technology, our community, and our values to be dead any number
of times.

But always we have come storming back. We make mistakes, but we learn from
our mistakes. We have transmitted our culture across generations; we have absorbed
much of what was best from the early academic hackers and the ARPANET experi-
menters and the microcomputer enthusiasts and a number of other cultures. The open-
source movement has resurrected the vigor and idealism of our early years, and today
we are stronger and more numerous than we have ever been.

So far, betting against the Unix hackers has always been short-term smart but long-
term stupid. We can prevail—if we choose to.
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A

Glossary of Abbreviations

The most important abbreviations and acronyms used in the main text are defined here.

API
Application Programming Interface. The set of procedure calls that communicates
with a linkable procedure library or an operating-system kernel or the combination
of both.

BSD
Berkeley System Distribution; also Berkeley Software Distribution; sources are
ambiguous. The generic name of the Unix distributions issued by the Computer
Science Research Group at the University of California at Berkeley between
1976 and 1994, and of the open-source Unixes genetically descended from them.

CLI
Command Line Interface. Considered archaic by some, but still very useful in
the Unix world.

CPAN
Comprehensive Perl Archive Network. The central Web repository
<http://cpan.org/> for Perl modules and extensions.

GNU
GNU’s Not Unix! The recursive acronym for the Free Software Foundation’s
project to produce an entire free-software clone of Unix. This effort didn’t
completely succeed, but did produce many of the essential tools of modern Unix
development including Emacs and the GNU Compiler Collection.
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GUI
Graphical User Interface. The modern style of application interface using mice,
windows, and icons invented at Xerox PARC during the 1970s, as opposed to
the older CLI or roguelike styles.

IDE
Integrated Development Environment. A GUI workbench for developing code,
featuring facilities like symbolic debugging, version control, and data-structure
browsing. These are not commonly used under Unix, for reasons discussed in
Chapter 15.

IETF
Internet Engineering Task Force. The entity responsible for defining Internet
protocols such as TCP/IP. A loose, collegial organization mainly of
technical people.

IPC
Inter-Process Communication. Any method of passing data between processes
running in separate address spaces.

MIME
Multipurpose Internet Mail Extensions. A series of RFCs that describe standards
for embedding binary and multipart messages within RFC-822 mail. Besides
being used for mail transport, MIME is used as an underlevel by important ap-
plication protocols including HTTP and BEEP.

OO
Object Oriented. A style of programming that tries to encapsulate data to be
manipulated and the code that manipulates it in (theoretically) sealed containers
called objects. By contrast, non-object-oriented programming is more casual
about exposing the internals of the data structure and code.

OS
Operating System. The foundation software of a machine; that which schedules
tasks, allocates storage, and presents a default interface to the user between ap-
plications. The facilities an operating system provides and its general design
philosophy exert an extremely strong influence on programming style and on
the technical cultures that grow up around its host machines.

PDF
Portable Document Format. The PostScript language for control of printers and
other imaging devices is designed to be streamed to printers. PDF is a sequence
of PostScript pages, packaged with annotations so it can conveniently be used
as a display format.

Appendix A Glossary of Abbreviations480



ptg

PDP-11
Programmable Data Processor 11. Possibly the single most successful minicom-
puter design in history; first shipped in 1970, last shipped in 1990, and the im-
mediate ancestor of the VAX. The PDP-11 was the first major Unix platform.

PNG
Portable Network Graphics. The World Wide Web Consortium’s standard and
recommended format for bitmap graphics images. An elegantly designed binary
graphics format described in Chapter 5.

RFC
Request For Comment. An Internet standard. The name arose at a time when the
documents were regarded as proposals to be submitted to a then-nonexistent but
anticipated formal approval process of some sort. The formal approval process
never materialized.

RPC
Remote Procedure Call. Use of IPC methods that attempt to create the illusion
that the processes exchanging them are running in the same address space, so
they can cheaply (a) share complex structures, and (b) call each other like function
libraries, ignoring latency and other performance considerations. This illusion
is notoriously difficult to sustain.

TCP/IP
Transmission Control Protocol/Internet Protocol. The basic protocol of the In-
ternet since the conversion from NCP (Network Control Protocol) in 1983.
Provides reliable transport of data streams.

UDP/IP
Universal Datagram Protocol/Internet Protocol. Provides unreliable but low-
latency transport for small data packets.

UI
User Interface.

VAX
Formally, Virtual Address Extension: the name of a classic minicomputer design
developed by Digital Equipment Corporation (later merged with Compaq, later
merged with Hewlett-Packard) from the PDP-11. The first VAX shipped in 1977.
For ten years after 1980 VAXen were among the most important Unix platforms.
Microprocessor reimplementations are still shipping today.
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Anyone who has attended a USENIX conference in a fancy hotel can tell you that
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equivalent to “Look, another amazingly mobile form of slime mold!” in the mouth
of a hotel cocktail waitress.
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license, and articulated the “mechanism, not policy” central credo of the X design.
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Steve Johnson wrote yacc(1) and then used it to write the Portable C Compiler, which
replaced the original DMR C and became the ancestor of most later Unix C compilers.
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Mike Lesk was part of the original Unix crew at Bell Labs. Among other contributions,
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Doug McIlroy headed the research group at Bell Labs where Unix was born and
invented the Unix pipe. He wrote spell(1), diff(1), sort(1), join(1), tr(1), and other
classic Unix tools, and helped define the traditional style of Unix documentation. He
has also done pioneering work in storage-allocation algorithms, computer security,
and theorem-proving.

Marshall Kirk McKusick implemented the 4.2BSD fast file system and was the Re-
search Computer Scientist at the Berkeley Computer Systems Research Group (CSRG)
overseeing the development and release of 4.3BSD and 4.4BSD.

Keith Packard was a major contributor to the original X11 code. During a second
phase of involvement beginning in 1999, Keith rewrote the X rendering code, produc-
ing a more powerful but dramatically smaller implementation suitable for handheld
computers and PDAs.

Eric S. Raymond has been writing Unix software since 1982. In 1991 he edited The
New Hacker’s Dictionary, and has since been studying the Unix community and the
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Henry Spencer was a leader among the first wave of programmers to embrace Unix
when it escaped from Bell Labs in the mid-1970s. His contributions included the
public-domain getopt(3), the first open-source string library, and an open-source
regular-expression engine which found use in 4.4BSD and as the reference for the
POSIX standard. He is also a noted expert on the arcana of C. He was a coauthor of
C News, and has for many years been a voice of reason on Usenet and one of its most
respected regulars.
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D

Rootless Root:
The Unix Koans of Master Foo

Editor’s Introduction

The discovery of the collection of koans known as the Rootless Root, apparently
preserved for decades in the dry upper air of the Western Mountains, has ignited great
controversy in scholarly circles. Are these authentic documents shedding new light
on the teaching of the early Unix patriarchs? Or are they clever pastiches from a later
age, commanding the authority of semi-mythical figures such as the Patriarchs
Thompson, Ritchie and McIlroy for doctrines which evolved closer to our own era?

It is impossible to say for certain. All sides in the dispute have made much of an
alleged similarity to that venerable classic, The Tao of Programming.1 But Rootless
Root is quite different in tone and style from the loose, poetic anecdotes of the James
translation, focused as it is on the remarkable and enigmatic figure of Master Foo.

1. The Tao of Programming is available on the Web <http://www.canonical.org/
~kragen/tao-of-programming.html>.
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It would be more apposite to seek parallels in the AI Koans;2 indeed, there are
textual clues that the author of the Rootless Root may have redacted certain versions
of the AI Koans. We are also on much firmer ground in seeking connections with the
Loginataka;3 indeed, it is quite possible that the unknown authors of Rootless Root
and of Loginataka were one and the same person, possibly a student of Master
Foo himself.

Mention should also be made of the Tales of Zen Master Greg,4 though the Nine
Inch Nails references have cast some doubt on their antiquity and it is thus unlikely
that they influenced Rootless Root.

That the title of the work was intended as a reference to the Zen classic Gateless
Gate5 of Mumon, we can say with fair confidence. There are echoes of Mumon in
several of the koans.

There is considerable dispute over whether Master Foo should be assigned to the
Eastern (New Jersey) School, or the Western School that grew out of the Patriarch
Thompson’s epochal early journey to Berkeley. If this question has not been settled,
it is perhaps because we cannot even establish that Master Foo ever existed! He might
merely be a composite of a group of teachers, or of an entire dharma lineage.

Even supposing the legend of Master Foo accreted around the teaching of some a
single person, what of his favored student Nubi? Nubi has all the earmarks of a stock
figure, the perfect disciple. One is reminded of the tales surrounding the Buddha’s
favorite follower Ananda. It seems likely that there was a historical Ananda, but no
trace of his actual personality has survived the euhemerizing process by which the
life of the Buddha was polished into timeless myth.

In the end, all we can do is take these teaching stories on their own terms, and
extract what kernels of wisdom may be found there.

The redaction of the Rootless Root is a work in progress, as the source materials
present many difficulties in reconstruction and interpretation. Future versions may
include more stories as these difficulties are overcome.

2. The AI Koans are available on the Web <http://www.catb.org/~esr/jargon/
html/Some-AI-Koans.html>.

3. The Loginataka is available on the Web <http://www.catb.org/~esr/faqs/
loginataka.html>.

4. The Tales of Zen Master Greg are available on the Web <http://www.gu.uwa.edu.au/
users/greg/>.

5. The Gateless Gate is available on the Web <http://www.ibiblio.org/zen/
cgi-bin/koan-index.pl>.
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Master Foo and the Ten Thousand Lines

Master Foo once said to a visiting programmer: “There is more Unix-nature in one
line of shell script than there is in ten thousand lines of C”.

The programmer, who was very proud of his mastery of C, said: “How can this be?
C is the language in which the very kernel of Unix is implemented!”

Master Foo replied: “That is so. Nevertheless, there is more Unix-nature in one line
of shell script than there is in ten thousand lines of C”.

The programmer grew distressed. “But through the C language we experience the
enlightenment of the Patriarch Ritchie! We become as one with the operating system
and the machine, reaping matchless performance!”

Master Foo replied: “All that you say is true. But there is still more Unix-nature in
one line of shell script than there is in ten thousand lines of C”.

The programmer scoffed at Master Foo and rose to depart. But Master Foo nodded
to his student Nubi, who wrote a line of shell script on a nearby whiteboard, and said:
“Master programmer, consider this pipeline. Implemented in pure C, would it not
span ten thousand lines?”

The programmer muttered through his beard, contemplating what Nubi had written.
Finally he agreed that it was so.

“And how many hours would you require to implement and debug that C program?”
asked Nubi.

“Many”, admitted the visiting programmer. “But only a fool would spend the time to
do that when so many more worthy tasks await him”.

“And who better understands the Unix-nature?” Master Foo asked. “Is it he who
writes the ten thousand lines, or he who, perceiving the emptiness of the task, gains
merit by not coding?”

Upon hearing this, the programmer was enlightened.

501



ptg

Master Foo and the Script Kiddie

A stranger from the land of Woot came to Master Foo as he was eating the morning
meal with his students.

“I hear y00 are very l33t”, he said. “Pl33z teach m3 all y00 know”.

Master Foo’s students looked at each other, confused by the stranger’s barbarous
language. Master Foo just smiled and replied: “You wish to learn the Way of Unix?”

“I want to b3 a wizard hax0r”, the stranger replied, “and 0wn ever3one’s b0xen”.

“I do not teach that Way”, replied Master Foo.

The stranger grew agitated. “D00d, y00 r nothing but a p0ser”, he said. “If y00 n00
anything, y00 wud t33ch m3”.

“There is a path”, said Master Foo, “that might bring you to wisdom”. The master
scribbled an IP address on a piece of paper. “Cracking this box should pose you little
difficulty, as its guardians are incompetent. Return and tell me what you find”.

The stranger bowed and left. Master Foo finished his meal.

Days passed, then months. The stranger was forgotten.

Years later, the stranger from the land of Woot returned.

“Damn you!” he said, “I cracked that box, and it was easy like you said. But I got
busted by the FBI and thrown in jail”.

“Good”, said Master Foo. “You are ready for the next lesson”. He scribbled an IP
address on another piece of paper and handed it to the stranger.

“Are you crazy?” the stranger yelled. “After what I’ve been through, I’m never going
to break into a computer again!”

Master Foo smiled. “Here”, he said, “is the beginning of wisdom”.

On hearing this, the stranger was enlightened.
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Master Foo Discourses on the Two Paths

Master Foo instructed his students:

“There is a line of dharma teaching, exemplified by the Patriarch McIlroy’s mantra
‘Do one thing well’, which emphasizes that software partakes of the Unix way when
it has simple and consistent behavior, with properties that can be readily modeled by
the mind of the user and used by other programs”.

“But there is another line of dharma teaching, exemplified by the Patriarch Thompson’s
great mantra ‘When in doubt, use brute force’, and various sutras on the value of
getting 90% of cases right now, rather than 100% later, which emphasizes robustness
and simplicity of implementation”.

“Now tell me: which programs have the Unix nature?”

After a silence, Nubi observed:

“Master, these teachings may conflict”.

“A simple implementation is likely to lack logic for edge cases, such as resource
exhaustion, or failure to close a race window, or a timeout during an uncompleted
transaction”.

“When such edge cases occur, the behavior of the software will become irregular and
difficult. Surely this is not the Way of Unix?”

Master Foo nodded in agreement.

“On the other hand, it is well known that fancy algorithms are brittle. Further, each
attempt to cover an edge case tends to interact with both the program’s central algo-
rithms and the code covering other edge cases”.

“Thus, attempts to cover all edge cases in advance, guaranteeing ‘simplicity of de-
scription’, may in fact produce code that is overcomplicated and brittle or which,
plagued by bugs, never ships at all. Surely this is not the Way of Unix?”

Master Foo nodded in agreement.

“What, then, is the proper dharma path?” asked Nubi.
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The master spoke:

“When the eagle flies, does it forget that its feet have touched the ground? When the
tiger lands upon its prey, does it forget its moment in the air? Three pounds of VAX!”

On hearing this, Nubi was enlightened.
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Master Foo and the Methodologist

When Master Foo and his student Nubi journeyed among the sacred sites, it was the
Master’s custom in the evenings to offer public instruction to Unix neophytes of the
towns and villages in which they stopped for the night.

On one such occasion, a methodologist was among those who gathered to listen.

“If you do not repeatedly profile your code for hot spots while tuning, you will be
like a fisherman who casts his net in an empty lake”, said Master Foo.

“Is it not, then, also true”, said the methodology consultant, “that if you do not con-
tinually measure your productivity while managing resources, you will be like a
fisherman who casts his net in an empty lake?”

“I once came upon a fisherman who just at that moment let his net fall in the lake on
which his boat was floating”, said Master Foo. “He scrabbled around in the bottom
of his boat for quite a while looking for it”.

“But”, said the methodologist, “if he had dropped his net in the lake, why was he
looking in the boat?”

“Because he could not swim”, replied Master Foo.

Upon hearing this, the methodologist was enlightened.
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Master Foo Discourses on the Graphical User Interface

One evening, Master Foo and Nubi attended a gathering of programmers who had
met to learn from each other. One of the programmers asked Nubi to what school he
and his master belonged. Upon being told they were followers of the Great Way of
Unix, the programmer grew scornful.

“The command-line tools of Unix are crude and backward”, he scoffed. “Modern,
properly designed operating systems do everything through a graphical user interface”.

Master Foo said nothing, but pointed at the moon. A nearby dog began to bark at the
master’s hand.

“I don’t understand you!” said the programmer.

Master Foo remained silent, and pointed at an image of the Buddha. Then he pointed
at a window.

“What are you trying to tell me?” asked the programmer.

Master Foo pointed at the programmer’s head. Then he pointed at a rock.

“Why can’t you make yourself clear?” demanded the programmer.

Master Foo frowned thoughtfully, tapped the the programmer twice on the nose, and
dropped him in a nearby trashcan.

As the programmer was attempting to extricate himself from the garbage, the dog
wandered over and piddled on him.

At that moment, the programmer achieved enlightenment.
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Master Foo and the Unix Zealot

A Unix zealot, having heard that Master Foo was wise in the Great Way, came to him
for instruction. Master Foo said to him:

“When the Patriarch Thompson invented Unix, he did not understand it. Then he
gained in understanding, and no longer invented it”.

“When the Patriarch McIlroy invented the pipe, he knew that it would transform
software, but did not know that it would transform mind”.

“When the Patriarch Ritchie invented C, he condemned programmers to a thousand
hells of buffer overruns, heap corruption, and stale-pointer bugs”.

“Truly, the Patriarchs were blind and foolish!”

The zealot was greatly angered by the Master’s words.

“These enlightened ones”, he protested. “gave us the Great Way of Unix. Surely, if
we mock them we will lose merit and be reborn as beasts or MCSEs”.

“Is your code ever completely without stain and flaw?” demanded Master Foo.

“No”, admitted the zealot, “no man’s is”.

“The wisdom of the Patriarchs”, said Master Foo, “was that they knew they were fools”.

Upon hearing this, the zealot was enlightened.
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Master Foo Discourses on the Unix-Nature

A student said to Master Foo: “We are told that the firm called SCO holds true domin-
ion over Unix”.

Master Foo nodded.

The student continued, “Yet we are also told that the firm called OpenGroup also
holds true dominion over Unix”.

Master Foo nodded.

“How can this be?” asked the student.

Master Foo replied:

“SCO indeed has dominion over the code of Unix, but the code of Unix is not Unix.
OpenGroup indeed has dominion over the name of Unix, but the name of Unix is
not Unix”.

“What, then, is the Unix-nature?” asked the student.

Master Foo replied:

“Not code. Not name. Not mind. Not things. Always changing, yet never changing”.

“The Unix-nature is simple and empty. Because it is simple and empty, it is more
powerful than a typhoon”.

“Moving in accordance with the law of nature, it unfolds inexorably in the minds of
programmers, assimilating designs to its own nature. All software that would compete
with it must become like to it; empty, empty, profoundly empty, perfectly void, hail!”

Upon hearing this, the student was enlightened.

Appendix D Rootless Root508



ptg

Master Foo and the End User

On another occasion when Master Foo gave public instruction, an end user, having
heard tales of the Master’s wisdom, came to him for guidance.

He bowed three times to Master Foo. “I wish to learn the Great Way of Unix”, he said
“but the command line confuses me”.

Some of the onlooking neophytes began to mock the end user, calling him “clueless”
and saying that the Way of Unix is only for those of discipline and intelligence.

The Master held up a hand for silence, and called the most obstreperous of the
neophytes who had mocked forward, to where he and the end user sat.

“Tell me”, he asked the neophyte, “of the code you have written and the works of
design you have uttered”.

The neophyte began to stammer out a reply, but fell silent.

Master Foo turned to the end-user. “Tell me”, he inquired, “why do you seek the Way?”

“I am discontent with the software I see around me”, the end user replied. “It neither
performs reliably nor pleases the eye and hand. Having heard that the Unix way,
though difficult, is superior, I seek to cast aside all snares and delusions”.

“And what do you do in the world”, asked Master Foo, “that you must strive
with software?”

“I am a builder”, the end user replied, “Many of the houses of this town were made
under my chop”.

Master Foo turned back to the neophyte. “The housecat may mock the tiger”, said
the master, “but doing so will not make his purr into a roar”.

Upon hearing this, the neophyte was enlightened.
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Colophon

No proprietary software was used during the composition of this book. Drafts were
typeset from XML-DocBook master files created with GNU Emacs. PostScript gen-
eration was performed with Tim Waugh’s xmlto, Norman Walsh’s XSL stylesheets,
Daniel Veillard’s xsltproc, Sebastian Rahtz’s PassiveTeX macros, the TeTeX dis-
tribution of Donald Knuth’s TEX typesetter, and Thomas Rokicki’s dvips postproces-
sor. All the diagrams were composed by the author using pic2graph driving gpic
and grap2graph driving Ted Faber’s grap implementation (grap2graph was
written by the author for this project and is now part of the groff distribution). The
entire toolchain was hosted by stock Red Hat Linux. Production typesetting was done
by Alina Kirsanova.

The cover art is a composite of two images from the original Zen Comics by
Ioanna Salajan. It was adapted and colored mainly by Jerry Votta, but the author and
GIMP had a hand in the work.
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objections to, 6–7
and object-oriented languages, 101–103
open source, 437–459
open standards, 8

open-source applications, 9
as open-source software, 7–8
operating system, elements of style, 53–61
optimization, 287–294
options, 7
origin of, 29–30
philosophy, 3–27, 369

applying, 26
compared to others, 53–80

portability, 393–417
preferred user interface style, 58–59
record structures, 57–58
reuse, 375–390
specification level, 215–229
textuality, 105–131
tools, 349–373
transparency, 133–155
and universality, 6
use of term, xxix
Version 7 release, 34
wars, 35–41, 398–401
X toolkit, choosing, 346–347

Unix interface design, history of, 256–257
Unix interface design patterns, 266–280

applying, 280–281
cantrip pattern, 268
CLI server pattern, 182, 278–279
compiler pattern, 269
ed pattern, 270
filter pattern, 266–267
language-based patterns, 279–280
polyvalent-program pattern, 281
roguelike pattern, 270–271
“separated engine and interface” pattern,

273–278
client/server pair, 277–278
configurator/actor pair, 274
driver/engine pair, 275–277
spooler/daemon pair, 275

sink pattern, 269
source pattern, 268

Unix System V. See
Unix textual file format conventions, 120–122
Unmarshalling, 106
unzip, 245
URI (Universal Resource Indicator), 128
URL (Uniform Resource Locator), 9, 128
Usenet, 35, 42, 110, 114, 205, 272, 305, 343,

383, 440, 451, 455, 495, 497
USER environment variable, 238
User-interface design, 140, 475
Utility productions, 359–362
UUCP, 35
uupc, 247
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-v option, 247
-V option, 247
Validating parser, 428
VAX/VMS operating system, 10, 35, 367
Venix, 37
Version control:

Aegis, 368–369
automated, 366
by hand, 365
purpose of, 364–365
Subversion, 368–369
systems, 364–369
Unix tools for, 367–369

Concurrent Version System (CVS), 367–368
Revision Control System (RCS), 367
Source Code Control System (SCCS), 367

vi, 35, 247, 272, 311, 351, 352
vile, 351
vim, 351
VM/CMS, 4, 74–76
VMS, 40, 61–64, 468

-w option, 247
Wall, Larry, 39, 458
Waterfall model, 406
wc, 162
White Book, 94, 395
who, 268
Wily editor, 308–309
Window manager, 257
Windows operating system, 10, 40, 50, 66, 67,

75, 77–79, 100, 113, 135, 146–147,
152–153, 171, 173, 175, 176, 179, 181, 193,
207, 238, 242, 248, 252, 256–257, 265, 324,
329, 340, 349–352, 367, 409–410, 412, 450,
453

Windows Help markup, 426
Windows INI format, 119–120
Windows NT, 68–71

Wittgentstein, Ludwig, 321
Workplace Shell (WPS), 66
World Wide Web (WWW), 8–9, 42, 281, 476
“Worse Is Better”, paper (Gabriel), 298, 438
Wrappers, 166, 330

backup scripts, 166
security wrappers, 167–168

write, 177
wxWindows, 346–347, 409
WYSIWYG, 196, 258, 418–419

-x option, 247–248
X clients, 251
X servers, 251

X toolkit, 191
choosing, 346–347

X windowing system, 7, 47, 49, 63, 108, 183,
463

and XFree86, 42,
Xalan, 429
xcalc, 262–263
xcdroast, xxxi, 276
xdb, 371
XEmacs, 352
XENIX, 35
Xerox PARC, 256, 273, 461, 463, 467–468, 480
XF86Config file, 251–252
XFree86, 42, 251–252, 383
XHTML, 426
XML, 117–119, 196, 205, 284, 331, 463
XML Cover Pages, 434
XML-DocBook, 426
xmllint, 147
XML-RPC, 131, 158
xmlroff, 431
xmltk toolkit, 118–119
xmlto, xxx-xxxi, 331–332, 425–426, 429, 435
X/Open, 401
XSLT, 186, 194–195, 331–332
xsltproc, 429–430
xterm, 144, 244, 403
xvi, 351

-y option, 248
yacc, 10, 93, 183, 185, 210, 352, 353–356
Yacc/M, 355
ypbind, 172

-z option, 248
Zawinski’s Law, 313, 316
zcat, 248
Zen, xxix, 13, 149–150, 225, 287, 317, 477

and value of detachment, 94
zip, 122, 248
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