Quick answers to common problems

SELinux Cookbook

Over 70 hands-on recipes fo develop fully functional policies to
confine your applications and users using SELinux

Sven Vermeulen []opensource

FUBLIGHIMEB

SELinux Cookbook

Table of Contents

SELinux Cookbook
Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions

1. The SELinux Development Environment

Introduction

About SELinux

The role of the SELinux policy

The example

Creating the development environment

Getting ready

How to do it...

How it works...

There’s more...

See also

Building a simple SELinux module
Getting ready

How to do it...

How it works...

The policy source file

The binary policy module
Loading a policy into the policy store

There’s more...

See also

Calling refpolicy interfaces

How to do it...

How it works...

See also

Creating our own interface

How to do it...

How it works...
The location of the interface definitions

The in-line documentation

See also

Using the refpolicy naming convention
Getting ready

How to do it...

How it works...

There’s more...

Distributing SELinux policy modules

How to do it...

How it works...

Changes in interfaces

Kernel version changes

ML.S or not

2. Dealing with File Labels

Introduction

Defining file contexts through patterns

How to doit...

How it works...

Path expressions
The order of processing

Class identifiers
Context declaration

There’s more...

Using substitution definitions
Getting ready

How to do it...

How it works...

There’s more...

See also

Enhancing an SELinux policy with file transitions
Getting ready

How to do it...

How it works...

Finding the right search pattern

Patterns

There’s more...

See also

Setting resource-sensitivity labels

How to do it...

How it works...

Full policy replacement

Ranged daemon domain

Constraints

See also

Configuring sensitivity categories
Getting ready

How to do it...

How it works...

The mcstrans and setrans.conf files

SELinux users and Linux user mappings
Running Apache with the right context

See also

3. Confining Web Applications

Introduction

Listing conditional policy support

How to do it...

How it works...

See also

Enabling user directory support
Getting ready

How to do it...
How it works...

There’s more...

See also

Assigning web content types

How to do it...

How it works

There’s more...

Using different web server ports

How to do it...

How it works...

There’s more...

See also

Using custom content types

Getting ready

How to do it...

How it works...

There’s more...

Creating a custom CGI domain

How to do it...

How it works...

Setting up mod_selinux

How to do it...

How it works...

See also

Starting Apache with limited clearance

How to do it...

How it works...

There’s more...

Mapping HTTP users to contexts

How to do it...

How it works...

Using source address mapping to decide on contexts

How to do it...

How it works...

There’s more...

See also

Separating virtual hosts with mod_selinux

How to do it...

How it works...

See also

. Creating a Desktop Application Policy
Introduction

Researching the application’s logical design

How to do it...

How it works...

Files and directories

Network resources

Processes

Hardware and kernel resources

Creating a skeleton policy

How to do it...

How it works...

Type declarations
Managing files and directories
X11 and shared memory

The network access

There’s more...

See also

Setting context definitions

How to do it...

How it works...

Defining application role interfaces

How to do it...

How it works...

There’s more...

Testing and enhancing the policy

How to do it...

How it works...

Ignoring permissions we don’t need

How to do it...

How it works...

Creating application resource interfaces

How to do it...

How it works...

Adding conditional policy rules

How to do it...

How it works...

There’s more...

Adding build-time policy decisions

How to do it...

How it works...

There’s more...

5. Creating a Server Policy

Introduction

Understanding the service

How to do it...

How it works...

Online research

Sandbox environment

The structural documentation
See also

Choosing resource types wisely

How to do it...
How it works...

Domain definitions

Logical resources

Infrastructural resources

Differentiating policies based on use cases

How to do it...

How it works...

Creating resource-access interfaces

How to do it...

How it works...

Creating exec, run, and transition interfaces

How to do it...

How it works...

See also

Creating a stream-connect interface

How to do it...

For a Unix domain socket with a socket file

For an abstract Unix domain socket
How it works...

Creating the administrative interface

How to do it...

How it works...

See also

6. Setting Up Separate Roles

Introduction

Managing SELinux users

How to do it...

How it works...

There’s more...

Mapping Linux users to SELinux users

How to do it...

How it works...

Running commands in a specified role with sudo

How to do it...

How it works...

See also

Running commands in a specified role with runcon

How to do it...

How it works...

Switching roles
How to do it...

How it works...

Creating a new role

How to do it...

How it works...

Defining a role in the policy
Extending the role privileges
Default types and default contexts

Initial role based on entry

How to do it...

How it works...

Defining role transitions

How to do it...

How it works...

Looking into access privileges

How to do it...

How it works...

Direct access inspection
Policy manipulation

Indirect access

7. Choosing the Confinement Level

Introduction

Finding common resources

How to do it...

How it works...

Shared file locations

User content and customizable types
There’s more...

Defining common helper domains

How to do it...

How it works...

Documenting common privileges

How to do it...

How it works...

Granting privileges to all clients

How to do it...

How it works...

Creating a generic application domain

How to do it...

How it works...

Building application-specific domains using templates

How to do it...

How it works...

Using fine-grained application domain definitions

How to do it...

How it works...

Reducing exploit risks
Role management
Type inheritance and transitions
8. Debugging SELinux
Introduction
Identifying whether SELinux is to blame
How to do it...
How it works...
See also
Analyzing SELINUX ERR messages
Getting ready

How to do it...

How it works...

Invalid contexts

Denied transition validation

Denied security-bounded transitions

There’s more...

See also

Logging positive policy decisions

How to do it...

How it works...

Looking through SELinux constraints

How to do it...

How it works...

See also

Ensuring an SELinux rule is never allowed

How to do it...

How it works...

Using strace to clarify permission issues

How to do it...

How it works...

Using strace against daemons

How to do it...

How it works...

There’s more...

See also

Auditing system behavior
How to do it...
How it works...

There’s more...

See also

9. Aligning SELinux with DAC

Introduction

Assigning a different root location to regular services

Getting ready
How to do it...

How it works...

There’s more...

See also
Using a different root location for SELinux-aware applications
How to do it...

How it works...

See also

Sharing user content with file ACLs

How to doit...

How it works...

There’s more...

Enabling polyinstantiated directories
How to do it...

How it works...

There’s more...

Configuring capabilities instead of setuid binaries

How to do it...

How it works...

See also

Using group membership for role-based access

How to do it...

How it works...

Backing up and restoring files
How to do it...

How it works...

Governing application network access

How to do it...

How it works...

See also

10. Handling SELinux-aware Applications

Introduction
Controlling D-Bus message flows
Getting ready

How to do it...

How it works...

There’s more...

Restricting service ownership

How to do it...

How it works...

There’s more...

Understanding udev’s SELinux integration

How to do it...

How it works...

Using cron with SELinux

How to do it...

How it works...

There’s more...

Checking the SELinux state programmatically
Getting ready

How to do it...

How it works...

There’s more...

Querying SELinux userland configuration in C

How to do it...

How it works...

There’s more...

Interrogating the SELinux subsystem code-wise

Getting ready
How to do it...

How it works...

There’s more...

Running new processes in a new context

Getting ready

How to do it...

How it works...

There’s more...

Reading the context of a resource

How to do it...

How it works...

There’s more...

Index

SELinux Cookbook

SELinux Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014
Production reference: 1180914
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-966-9

www.packtpub.com

Cover image by Sarath Santhan (<sarathsanthan@gmail.com>)

http://www.packtpub.com
mailto:sarathsanthan@gmail.com

Credits

Author

Sven Vermeulen
Reviewers

David Quigley

Sam Wilson

Jason Zaman

Lukas Zapletal
Commissioning Editor
Usha Iyer
Acquisition Editor
Rebecca Youé
Content Development Editors
Dayan Hyames
Sankalp Pawar
Technical Editor
Mrunal Chavan
Copy Editors
Sayanee Mukherjee
Karuna Narayanan
Laxmi Subramanian
Project Coordinator
Venitha Cutinho
Proofreaders
Simran Bhogal

Paul Hindle
Indexers

Priya Sane

Tejal Soni

Graphics

Valentina D’silva

Disha Haria

Production Coordinators
Kyle Albuquerque

Aparna Bhagat

Komal Ramchandani
Cover Work

Komal Ramchandani

About the Author

Sven Vermeulen is a long-term contributor to various free software projects and the
author of various online guides and resources. He got his first taste of free software in
1997 and never looked back. In 2003, he joined the ranks of the Gentoo Linux project as a
documentation developer and has since worked in several roles, including Gentoo
Foundation trustee, council member, project lead for various documentations, and (his
current role) project lead for Gentoo Hardened SELinux integration and the system
integrity project.

During this time, Sven gained expertise in several technologies, ranging from operating
system level knowledge to application servers. He used his interest in security to guide his
projects further in the areas of security guides using SCAP languages, mandatory access
controls through SELinux, authentication with PAM, (application) firewalling, and more.

Within SELinux, Sven contributed several policies to the Reference Policy project, and he
is actively participating in the policy development and user space development projects.

In his daily job, Sven is an IT infrastructure architect with a European financial institution.
The secure implementation of infrastructures (and the surrounding architectural
integration) is, of course, an important part of this. Prior to this, he graduated as an MSE
in Computer Engineering from Ghent University, and then worked as a web application
infrastructure engineer using IBM WebSphere Application Server.

Sven is the main author of Gentoo Handbook, which covers the installation and
configuration of Gentoo Linux on several architectures. He has also authored the Linux
Sea online publication, which is a basic introduction to Linux for novice system
administrators and SELinux System Administration, Packt Publishing, which covers
SELinux for system administrators.

I would like to dedicate this book to my godfather and friend, Jo Jagers, who suddenly and
unexpectedly passed away last year. He showed me the importance of friendship and
richness of life. His energetic approach to life is still an example to me.

You will always be missed, my friend.

About the Reviewers

David Quigley started his career as a computer systems researcher for the National
Information Assurance Research Lab at the NSA, where he worked as a member of the
SELinux team. He led the design and implementation to provide Labeled NFS support for
SELinux. He has previously contributed to the open source community by maintaining the
Unionfs 1.0 code base and through code contributions to various other projects. He has
presented at conferences such as the Ottawa Linux Symposium, the StorageSS workshop,
LinuxCon, and several local Linux User Group meetings, where presentation topics
included storage, filesystems, and security. David currently works as a Computer Science
Professional for the Operations, Analytics, and Software Development (OASD) division at
KEYW Corporation, developing innovative system software for Unix and Windows
platforms.

I would like to thank my wonderful wife, Kathy, for all she has done to make sure I have
the time to do things such as review this book and travel to give presentations on SELinux.
She is the joy of my life and has helped me become the man I am today. I’d also like to
thank all my children—Zoe, Jane, and the twins—who remind us to love and cherish the
time we have as a family. Also, I thank my parents, Gary and Vicky, for supporting my
decisions to change my educational direction and become a computer scientist, allowing
me to be where I am today.

Sam Wilson is a systems and security engineer with a focus on Red Hat Enterprise Linux.
Having spent 2 years working as an information security consultant and also having
passed the Red Hat SELinux Policy Administration exam, he is often asked for SELinux
advice within teams he works with. Sam has been active in the GNU/Linux communities
since early 2007 and has contributed to NTFreeNet, Darwin Community Arts, Ansible,
and the Fedora project. Sam can be found online at www.cycloptivity.net.

Jason Zaman is a graduate from Carnegie Mellon University with a degree in Electrical
and Computer Engineering. He has been interested in computers and open source and uses
Linux from a young age. After using Gentoo Linux for many years, he has now joined the
Gentoo Hardened and SELinux projects as a developer. Currently, he works in a start-up
company mainly doing Android development and system administration to maintain the
Servers.

Lukas Zapletal works as a software engineer in the cloud division of Red Hat, where he
develops the Satellite 6.0 product and is also responsible for SELinux policies of the
product. He is part of the Fedora, Foreman, Katello, and OpenStack communities. He
worked as an Editor in Chief at Linux+ and cofounded the LinuxEXPRES (Czech)
magazine.

Red Hat is the world’s leading provider of open source solutions, using a community-
powered approach to provide reliable and high-performing cloud, virtualization, storage,
Linux, and middleware technologies.

I’d like to thank Mirek Grepl and Dan Walsh from the Red Hat SELinux team for all their

http://www.cycloptivity.net

answers, and my family, Brofia and Ondra, for allowing me to review this amazing book.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

http://Packtl.ib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

SELinux can be seen as a daunting beast to tame. For many, it is considered to be a
complex security system on the already versatile environment that Linux can be. But as
with most IT-related services, it is the unfamiliarity with the technology that is causing the
notion of having a complicated system.

It is, however, nothing like that. SELinux is not all that difficult to understand. If it were,
then Linux distributions such as Red Hat Enterprise Linux wouldn’t enable it by default.

To support everyone in their daily operations with SELinux-enabled systems, this book
came to life. It contains numerous chapters on the various aspects of SELinux handling
and policy development in a recipe-based approach that allows every person to quickly
dive into the details and challenges that making a system more secure brings forth.

What this will not present are administration-related commands and examples. For that, I
have written another better-suited SELinux resource, SELinux System Administration,
Packt Publishing, which covers the system administration tasks of SELinux-enabled
systems, such as dealing with SELinux Booleans and file context changes as well as an
introduction to the SELinux technology.

This book is also not a reference for the SELinux policy language in all its glory. Although
the most common statements will be mentioned and used several times, it should be noted
that the SELinux policy language and its internal architecture has a much wider scope. For
a good language and component reference, The SELinux Notebook — The Foundations,
Richard Haines, is recommended. This resource is available online at

http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html.

http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html

What this book covers

Chapter 1, The SELinux Development Environment, tells us how to set up the SELinux
policy development environment through which further policy development can occur. We
will look into a structured, reusable method for SELinux policy development and will
create our first set of SELinux policy modules that are nicely integrated with the existing
SELinux policies.

Chapter 2, Dealing with File Labels, focuses on how file labels are set and managed. We
will learn how to configure the SELinux policy ourselves as well as how to use and
declare file contexts and assign the right context to the right type of resource.

Chapter 3, Confining Web Applications, covers the default confinement of the web server
SELinux domain and explains how to enhance the existing policy to suit our needs.
Additional SELinux support through the mod_selinux Apache module is also covered.

Chapter 4, Creating a Desktop Application Policy, is the first chapter where an entirely
new application domain and policy is written. We will look at how the policy needs to be
structured and the policy rules that are needed in order to successfully and securely run the
application.

Chapter 5, Creating a Server Policy, follows the previous chapter’s momentum but now
with a focus on server services. This chapter targets the differences between desktop
application policies and server policies, and we will develop a fully functioning SELinux
policy module together with the necessary administrative policy interfaces needed to
integrate the policy in a larger SELinux environment.

Chapter 6, Setting Up Separate Roles, looks into the role-based access controls that
SELinux offers. We create our own set of roles with the least privilege principle in mind.
After considering the definition of SELinux users and roles, we then practice the
management of these roles in larger environments.

Chapter 7, Choosing the Confinement Level, inspects the different confinement levels that
policies can use and how these are implemented on the system. We learn about the pros
and cons of each confinement level and create our own policy set that provides the
different levels.

Chapter 8, Debugging SELinux, scrutinizes the various methods available to debug
SELinux behavior and policies. We acquire the necessary skills to work with the Linux
auditing subsystem to generate additional logging and perform advanced queries against
the SELinux policy. In this chapter, we also uncover why certain popular Linux debugging
tools do not (properly) work on an SELinux-enabled system.

Chapter 9, Aligning SELinux with DAC, examines how SELinux can be used to enhance
the existing Linux DAC restrictions. We deal with the various technologies available and
how the SELinux policy can be augmented to work properly with those technologies.

Chapter 10, Handling SELinux-aware Applications, considers the SELinux-aware
applications and the interaction (and debugging difficulties) they have with the system and

SELinux in general. We learn how to configure these applications’ SELinux integration
and how to debug the applications when things go wrong. This chapter also describes how
to create our own SELinux-aware application.

What you need for this book

As the book focuses on hands-on experience, it is seriously recommended to have an
SELinux-enabled system at your disposal. Many distributions offer live environments that
can be used to perform initial investigations with, but ensure that you pick one that can
persist the changes made to the system.

An SELinux-enabled system should be using a recent set of SELinux libraries and user
space utilities. This book is written based on Gentoo Hardened, running the SELinux user
space libraries and utilities released in October 2013 (such as libselinux-2.2.2) with the
reference policy released in March 2014. The distribution itself is not that important, as
everything in this book is distribution-independent, so it is well usable for Fedora and Red
Hat Enterprise Linux, although the latter—at the time of writing, Version 6—is still using
older versions of the SELinux user space libraries and utilities.

From an experience point of view, you should be well-versed in Linux system
administration as SELinux policy development and integration requires good knowledge
of the components that we are about to confine and protect. This book assumes that you
are familiar with the Git version control system as an end user. This book also assumes
basic knowledge of how SELinux works on a system.

Who this book is for

This book is meant for Linux system administrators and security administrators who want
to perform the following tasks:

¢ Fine-tune the SELinux subsystem on their Linux systems
e Develop SELinux policies for applications and users
e Tightly integrate SELinux within their current processes

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Using
the auditallow statement, we can track SELinux policy decisions and assist in the
development of policies and debugging of application behavior.”

A block of code is set as follows:

write_files_pattern(syslogd_t, named_conf_t, named_conf_t)
allow syslogd_t named_conf_t:file setattr_file_perms;

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

policy_module(mysysadm, 0.1)
gen_require(-

type sysadm_t;
")
logging_exec_syslog(sysadm_t)

Any command-line input or output is written as follows:

~# setsebool cron_userdomain_transition on
~# grep crond_t /etc/selinux/mcs/contexts/users/user_u
system_r:crond_t user_r:user_t

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Capabilities are well
explained on Chris Friedhoff’s POSIX Capabilities & File POSIX Capabilities page.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. The SELinux Development
Environment

This chapter covers the setup of the SELinux policy development environment. We will
cover the following topics in this chapter:

Creating the development environment
Building a simple SELinux module
Calling refpolicy interfaces

Creating our own interface

Using the refpolicy naming convention
Distributing SELinux policy modules

Introduction

Similar to any other software development, having a well-functioning development
environment is essential to successfully create and manage SELinux policies. Such an
environment should not only support version control, but also be able to quickly search
through the sources or show definitions.

With SELinux, this means that the policy module sources (which are all readable text
files) should be stored in a structured manner, the upstream project that provides SELinux
policies should be readily accessible, and the necessary functions or scripts to query and
search through the policies should be available.

Adventurous users might want to take a look at the SELinux Policy IDE (SLIDE) as
offered by Tresys Technology (http://oss.tresys.com/projects/slide). In this book, we do
not focus on this IDE; instead, we use whatever file editor the user wants (such as VIM,
Emacs, or Kate) and enhance the environment through the necessary shell functions and
commands.

Before we cover the setup of the development environment, let’s do a quick recapitulation
of what SELinux is.

http://oss.tresys.com/projects/slide

About SELinux

The Security Enhanced Linux (SELinux) project is the result of projects initiated and
supported by the US National Security Agency (NSA) and came to life in December
2000. It is the implementation of a security system architecture with a flexible, policy-
driven configuration approach. This architecture is called the Flux Advanced Security
Kernel (Flask), and its related resources are still an important read for everyone involved
with SELinux.

Most papers are linked through the Flask website at
http://www.cs.utah.edu/flux/fluke/html/flask.html. The following are some examples of
these papers:

o The paper called The Inevitability of Failure: The Flawed Assumption of Security in
Modern Computing Environments is still a very topical paper on why mandatory
access controls are needed in operating systems

e The NSA publication, Implementing SELinux as a Linux Security Module, available

at http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf, goes
deeper into how SELinux is implemented

Nowadays, SELinux can be best seen as an additional layer of security services on top of
the existing Linux operating system. It is part of the mainstream Linux kernel and uses the
Linux Security Modules (LSM) interfaces to hook into the interaction between processes
(user space) and resources. It manages various access services (such as the reading of
files, getting directory attributes, binding to domain sockets, connecting to TCP sockets,
and gaining additional capabilities) through a powerful approach called type
enforcement.

The following diagram displays the high-level functional position of the SELinux
subsystem. Whenever a subject (in the drawing, this is the Application) wants to perform
an action against a resource, this action is first checked by the Discretionary Access
Control mechanism that the Linux kernel provides. After the action is checked and
allowed by the DAC mechanism, the LSM implementation (against which SELinux is
registered) calls the hooks that the SELinux subsystem has provided. SELinux then checks
the policy (through the cache, and if the access is not registered in the cache yet, it checks
in the entire policy) and returns whether the access should be allowed or not.

http://www.cs.utah.edu/flux/fluke/html/flask.html
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf

User space kKernel

r i " "1'
2 < r
W appiication = tol ok
2 not ok
. v
i
—
i Discretionary
“action™ “action " ———a——— Access
Conftrol

SELinux subsystem

Y I
ok ok
Resource Lirwx
Security B0k Policy Enforcement
aCCess
)

Modules

v

Access Vector Cache

(AVC)
——
. —
~ — == ——
.)LA-“- — | palicy load palicy Entire policy
L) I
admin

SELinux is a Mandatory Access Control system in which the governed activities on the
system are defined in rules that are documented through a policy. This policy is applicable
to all processes of the system and enforced through the SELinux subsystem, which is part
of the Linux kernel. Anything that is not allowed by the policy will not be allowed at all—
security is not left at the discretion of the user or correctness of the application. Unlike
Linux DAC restrictions, enforcement itself (the SELinux code) is separate from the rules
(the SELinux policy). The rules document what should be considered as acceptable
behavior on the system. Actions that do not fit the policy will be denied by the SELinux
subsystem.

In SELinux, a set of access control mechanisms are supported. The most visible one is its
type enforcement in which privileges of a subject (be it the kernel or a Linux process)
towards an object (such as a file, device, system capability, or security control) are granted
based on the current security context of that subject. This security context is most often
represented through a readable string such as staff_u:staff_r:staff_t:s0:c0,c3. This
string represents the SELinux user (staff_u), SELinux role (staff_r), SELinux
type/domain (staff_t), and optionally, the SELinux sensitivity level or security clearance,
which provides both the sensitivity (s0) as well as assigned categories (co, c3).

Alongside type enforcement, SELinux has several other features as well. For instance, it
provides a role-based access control system by assigning valid domains (which are
SELinux types assigned to running processes) to roles. If a role is not granted a particular
domain, then that role cannot execute tasks or applications associated with that domain.
SELinux also supports user-based access controls, thus limiting information flow and
governing data sharing between SELinux users.

Another stronghold within SELinux is its support for sensitivities (which SELinux

displays as integers, but these integers can very well be interpreted as public, internal,
confidential, and so on) as well as access categories. Through the constraints that SELinux
can impose in its policy, systems can be made to largely abide by the Bell-LaPadula model
(https://en.wikipedia.org/wiki/Bell-LLaPadula_model). This model supports information
flow restrictions such as no read up (lower sensitivities cannot read information from
higher sensitivities) and no write down (higher sensitivities cannot leak information to
lower sensitivities).

https://en.wikipedia.org/wiki/Bell-LaPadula_model

The role of the SELinux policy

The SELinux policy itself is a representation of what the security administrator (the role
that is usually mentioned as being the owner of what is and isn’t allowed on a system)
finds acceptable, expected, and normalized behavior:

e Acceptable: Application and user behavior will be acceptable because it will be
allowed on the system by the policy

e Expected: Application and user behavior will be expected as the policy usually
doesn’t (or shouldn’t) contain access vectors (a permission assigned to a subject
towards a particular object) that are not applicable to the system, even if it would be
acceptable on other systems in the environment

e Normalized: Application and user behavior will be normalized not in the sense of
database normalization, but as in normality—something that is consistent with the
most common behavior of the process

As a policy represents these behaviors, correct tuning and development of the policy is
extremely important. This is why the SELinux Cookbook will focus on policy development
and policy principles.

A policy that is too restrictive will cause applications to malfunction, often in ways that its
users will find unexpected. It will not be surprising to the security administrator of course,
as he knows that the policy dictates what is allowed, and he is (or at least should be)
perfectly aware of what the policy says.

However, a policy that is too broad will not result in such behavior. On the contrary,
everything will work as expected. Sadly, when nonstandard or abnormal behavior is
triggered, the (too) broadly defined policy might still allow this nonstandard or abnormal
behavior to happen. When this abnormal behavior is an exploited vulnerability, then
SELinux—as powerful as it can be—has nothing to deter the exploit, as the policy itself
has granted the access. Another example of this principle would be a network firewall,
whose policy can be too open as well.

Through the packaged approach that policies provide (SELinux policies are like loadable
kernel modules, but then for the SELinux subsystem), administrators can push the policies
to one or more systems, usually through the package management system or centralized
configuration management system of choice. Unlike Linux DAC controls, which need to
be applied on the files themselves, SELinux policies are much easier to handle and are
even versionable—a trait much appreciated by administrators in larger environments.

The example

Throughout this book, we will often come across settings that are optional or whose value
is heavily dependent on the choices made by the system administrator. In order to not
repeat documenting and explaining when a setting or value is configurable, we will use the
following configuration settings:

e The SELinux type (which is configured in /etc/selinux/config) will be MCS in
this book. It uses an MLS-enabled, single-sensitivity policy definition. This means
that contexts will always have a sensitivity level or security clearance assigned when
displayed, and the location of the SELinux policy configuration will always be shown
in /etc/selinux/mcs/. Make sure to substitute this path with your own if the policy
store on your environment is named differently. For instance, a Red Hat or Fedora
installation defaults to /etc/selinux/targeted/.

e Operations will be documented as they run through restricted users, which are aptly
named user (for an unprivileged end user assigned the user_r role), staff (for a
user that might perform administrative tasks and is assigned the staff_r and
sysadm_r roles), and root (which is mapped to the sysadm_r role). Distributions
might have users associated with the unconfined_r role. Whenever a step can be
skipped for unconfined users, it will be explicitly mentioned.

Creating the development environment

We will now create a development environment in which the SELinux policies and
upstream project code as well as the functions we use to easily query the SELinux policies
will be stored. This environment will have the following three top-level locations:

e local/: This location contains the SELinux rules that are local to the system and not
part of a cooperatively developed repository (that is, where other developers work)

e centralized/: This location contains checkouts of the various repositories used in
the development environment

e bin/: This location contains the supporting script(s) we will use to query the policy
sources as well as troubleshoot the SELinux issues

In this exercise, we will also populate the centralized/ location with a checkout: the
SELinux policy tree that is used by the current system.

Getting ready

Look for a good location where the development environment should be stored. This
usually is a location in the user’s home directory, such as /home/staff/dev/selinux/.
Whenever this book references a location with respect to the development environment, it
will use the ${DEVR0OT} variable to refer to this location.

Another piece of information that we need is the location of the repository that hosts the
SELinux policies of the current system. This location is distribution specific, so consult
the distribution site for more information. At the time of writing this book, the policies for
Gentoo Linux and Fedora can be found at the following locations:

¢ https://github.com/sjvermeu/hardened-refpolicy
¢ https://git.fedorahosted.org/git/selinux-policy.git

Whenever version control is used, we will use git in this book. Other version control
systems exist as well, but this too is outside the scope of this book.

https://github.com/sjvermeu/hardened-refpolicy
https://git.fedorahosted.org/git/selinux-policy.git

How to do it...

To create the development environment used in this book, perform the following steps:

1.

Create the necessary directories:

~$ cd ${DEVROOT}
~$ mkdir local centralized bin

Create a checkout of the distributions’ SELinux policy tree (which, in this example, is
based on the Gentoo Linux repository):

~$ cd ${DEVROOT}/centralized
~$ git clone git://git.overlays.gentoo.org/proj/hardened-refpolicy.git

Create a git repository for the policies that we will develop throughout this book:

~$ cd ${DEVROOT}/local

~$ git init

Add the functions.sh script, which is available through the download pack of this
book, to the ${DEVR0O0T}/bin/ location.

Edit the .profile, .bashrc, or other shell configuration files that are sourced when
our Linux user logs on to the system, and add in the following code:

Substitute /home/staff/dev/selinux with your DEVROOT
DEVROOT=/home/staff/dev/selinux

Substitute the next location with your distributions' policy checkout
POLICY_LOCATION=${DEVROOT}/centralized/hardened-refpolicy/

source ${DEVROOT}/bin/functions.sh

Log out and log in again, and verify that the environment is working by requesting
the definition of the files_read_etc_files interface:

~$ seshowif files_read_etc_files
interface(files_read_etc_files', "
gen_require(”
type etc_t;
")

allow $1 etc_t:dir list_dir_perms;

read_files_pattern($1, etc_t, etc_t)

read_lnk_files_pattern($1, etc_t, etc_t)
")

How it works...

The setup of the development environment helps us deal with policy development for
further recipes. The checkout of the distributions’ SELinux policy tree is to query the
existing policy rules while developing new policies. SELinux does not require to have the
policy sources available on a system (only the compiled binary SELinux policy modules
and parts of the SELinux policy rules, which can be used by other policy modules). As a
result, default installations usually do not have the policy rules available on the system.

By having the checkout at our disposal, we can review the existing SELinux policy files
and happily use examples from it for our own use. A major user of this checkout is the
functions. sh script, which uses the ${POLICY_LOCATION} variable to know where the
checkout is hosted. This script provides several functions that we’ll use throughout this
book; they will also help in querying the sources.

By sourcing this functions.sh script during log on, these functions are readily available
in the user’s shell. One of these functions is the seshowif function, which displays the
rules of a particular interface. The example given shows the definition of the
files_read_etc_files interface, which we used to validate that our setup is working
correctly.

The functions.sh script can also work with the interface files that are available through
/usr/share/selinux/devel/ (on Fedora/Red Hat systems), making the checkout of the
policy repository optional if the user does not need access to the complete policy rules.
The policy location defined then is as follows:

export POLICY_LOCATION=/usr/share/selinux/devel/

There’s more...

Next to the distributions’ SELinux policy tree, one can also use the reference policy
SELinux tree. This is the upstream project that most, if not all, Linux distributions use as
the source of their policies. It has to be said though that the reference policy often lags
behind on the policy repositories of the individual distributions, as it has stricter
acceptance criteria for policy enhancements.

It also doesn’t hurt to check out the SELinux policy repositories of other distributions.
Often, Linux distributions first do SELinux policy updates on their own repository before
pushing their changes to the reference policy (which is called upstreaming in the free
software development community). By looking at other distributions’ repositories,
developers can easily see if the necessary changes have been made in the past already (and
are thus more likely to be correct).

See also

For more information about the topics covered in this recipe, refer to the following
resources:

e The reference policy project (http://0ss.tresys.com/projects/refpolicy/)
e The Git tutorial (http://git-scm.com/docs/gittutorial)

http://oss.tresys.com/projects/refpolicy/
http://git-scm.com/docs/gittutorial

Building a simple SELinux module

Now that we have a development environment, it is time to create our first SELinux policy
module. As its purpose does not matter at this point, we will focus on a privilege that is by
default not allowed (and rightfully so) yet easy to verify, as we want to make sure that our
policy development approach works. The privilege we are going to grant is to allow the
system logger to write to a logfile labeled named_conf_t (the type used for the
configuration of the BIND DNS server—known as named).

Note

Building SELinux policy modules is to extend the existing policy with more rules that
allow certain accesses. It is not possible to create a policy module that reduces the allowed
privileges for a domain. If this is needed, the policy module needs to recreate and
substitute the existing policy (and thus, a distribution-provided policy will need to be
removed from the system).

Getting ready

Before we get started, we first need to make sure that we can test the outcome of the
change. A simple method would be to change the context of the /var/log/messages file
(or another general logfile that the system logger is configured to use) and send messages
through the system logger using the 1logger command:

~$ logger "Just a simple log event"
~$ tail /var/log/messages

Verify that the message has indeed been delivered by looking at the last lines shown

through the tail command. Then, change the context and try again. The event should not
be shown, and a denial should be logged by the audit daemon:

~# chcon -t named_conf_t /var/log/messages
~$ logger "Another simple log event"

~$ tail /var/log/messages

~# ausearch -m avc -ts recent

With this in place, we can now create our first simple SELinux module.

How to do it...

Building a new SELinux policy is a matter of going through the following steps:

1.

Create a file called mylogging. te inside ${DEVR00T}/1local with the following
content:

policy_module(mylogging, 0.1)
gen_require("”
type syslogd_t;
type named_conf_t;
")
Allow writing to named_conf_t files
allow syslogd_t named_conf_t:file { getattr append lock ioctl open
write };

Copy or link the Makefile file available in /usr/share/selinux/devel/ or

/usr/share/selinux/mcs/include/ (the exact location is distribution specific) to
the current directory:

~$ 1n -s /usr/share/selinux/devel/Makefile

Build the SELinux policy module through this Makefile. The target is to name the
(target) policy module with the . pp suffix:

~$ make mylogging.pp

Switch to the root user, and if we are logged on through an unprivileged SELinux
domain/role, switch to the sysadm_r or secadm_r role (this is not needed if the
current user domain is already sysadm_t or unconfined_t):

~$ sudo -r sysadm_r -t sysadm_t -s

Now, load the SELinux policy module (which will immediately activate the newly
defined SELinux policy):

~# semodule -1 mylogging.pp

Verify that the newly defined SELinux policy is active by generating a new log event
and by looking at the logfile to see if it has indeed been registered.
Commit the newly created files to the repository:

~$ cd ${DEVRO0OT}/local

~$ git add mylogging.te Makefile

~$ git commit -m 'Adding mylogging.te which allows the system logger to
write to the named configuration file type named_conf_t'

When verified, reset the context of the logfile using restorecon /var/log/messages
and remove the policy module from the subsystem using semodule -r mylogging.
After all, we do not want this rule to stay active.

How it works...

There are three important, new aspects of SELinux policy development that we got in
touch with in this recipe:

¢ A policy source file called mylogging.te was created

e A generated, binary policy module called mylogging.pp was built

e The binary policy file, mylogging.pp, is added to the active policy store on the
system

At the end, we committed the file to our local repository. Using version control on policy
files is recommended in order to track changes across time. A good hint would be to tag
new releases of the policies—if users ever report issues with the policy, you can then ask
them for the SELinux policy module version (through semodule -1) and use the tags in
the repository to easily find rules for that particular policy module.

In the remainder of this book, we will no longer use git add/commit so that we can focus
on the SELinux recipes.

The policy source file

In the recipe, we created a policy source file called mylogging. te, which contains the raw
SELinux policy rules. The name, mylogging, is not chosen at random; it is a common best
practice to name custom modules starting with my and followed by the name of the
SELinux policy module whose content we are enhancing (in our case, the logging module
that provides the SELinux policy for everything that is system-logging related). The .te
suffix is not just a convention (referring to the type enforcement part of SELinux); the
build system requires the . te suffix.

The policy module rules start with the policy_module(..) call, which tells the build
system that the file will become a loadable SELinux policy module with the given name
and version. This name and version will be displayed by the semodule command if we ask
it to list all the currently loaded SELinux policy modules:

~# semodule -1
aide 1.8.0
alsa 1.13.0

mylogging 0.1

The best practice is to keep all rules for a single domain within a policy module. If rules
for multiple unrelated domains are needed, it is recommended that you create multiple
modules, as this isolates the policy rules and makes modifications more manageable.

In this simple example, we did not follow this best practice (yet). Instead, we told the
SELinux subsystem that the policy is going to be enhanced with an access vector for
syslogd_t. The access vector here is to allow this domain a set of permissions against
files that are labeled as named_conf_t.

The binary policy module

When we called the Makefile file, the underlying scripts built a loadable binary SELinux
policy module. Such files have the . pp suffix and are ready to be loaded into the policy
store. The Makefile file called might not be installed by default; some distributions
require specific development packages to be installed (such as selinux-policy-devel in
Fedora).

There is no nice way of retrieving the sources of a policy if we are only given the . pp file.
Sure, there are commands such as semodule_unpackage and sedismod available, but these
will only give a low-level view of the rules, not the original . te code. So, make sure to
have backups, and as we saw in the example, use a versioning system to control changes
across time.

Loading a policy into the policy store

To load the newly created policy into the policy store, we called the semodule command.
This application is responsible for managing the policy store (which is the set of all
SELinux policy modules together with the base policy module) and linking or unlinking
the modules together into a final policy.

This final policy (which can be found at /etc/selinux/mcs/policy) is then loaded into
the SELinux subsystem itself and enforced.

There’s more...

Throughout this book, the build system used is based on the reference policy build system.
This is a collection of M4 macros and affiliated scripts that make the development of
SELinux policies easier. This is, however, not the only way of creating SELinux policies.

When visiting online resources, you might come across SELinux policy modules whose
structure looks like the following:

module somename 1.0;
require {
type some_type_t;
type another_type_t;
3

allow some_type_t another_type_t:dir { read search };
Tip
Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

These are policy files that do not use the reference policy build system. To build such files,
we first create an intermediate module file with checkmodule, after which we package the
module file towards a loadable binary SELinux policy with semodule_package:

~$ checkmodule -M -m -o somename.mod somename.te
~$ semodule_package -m somename.mod -0 somename.pp

To keep things simple, we will stick to the reference policy build system.

http://www.packtpub.com
http://www.packtpub.com/support

See also

Many topics and areas have been touched upon in this recipe. More information can be
found at the following resources:

e Most Linux distributions have distribution-specific information on how SELinux is
integrated in the distribution. For Red Hat, these resources can be reached through
https://access.redhat.com. For Fedora, use https://docs.fedoraproject.org. Gentoo has
its documentation at https://wiki.gentoo.org.

e For more information on how to administer SELinux on a system, consult the
documentation provided by the distribution or read the SELinux System
Administration book published by Packt Publishing at
http://www.packtpub.com/selinux-system-administration/book.

e Extensive coverage of the SELinux language itself is provided by the SELinux
Notebook, which is available online at http://www.freetechbooks.com/the-selinux-
notebook-the-foundations-t785.html.

https://access.redhat.com
https://docs.fedoraproject.org
https://wiki.gentoo.org
http://www.packtpub.com/selinux-system-administration/book
http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html

Calling refpolicy interfaces

Writing up SELinux policies entirely using the standard language constructs offered by
SELinux is doable, but it is prone to error and not manageable in the long term. To support
a more simple language construct, the reference policy project uses a set of M4 macros
that are expanded with the underlying SELinux policy statements when the policy is built.

The API that policy developers can use can be consulted online, but most systems also
have this information available onsite at /usr/share/doc/selinux-*/. Finding proper
interfaces requires some practice though, which is why one of the functions that we
installed earlier (as part of the development environment) simplifies this for us.

In this recipe, we are going to edit the mylogging. te file we generated earlier with the
right reference policy macro.

How to do it...

To use reference policy interfaces in an SELinux policy module, the following approach
can be taken:

1.

Use the sefinddef function to find permission groups or patterns to write to files:

~$ sefinddef 'file.*write'
define(write_files_pattern', "
allow $1 $3:file write_file_perms;

define(write_file_perms',6 “{ getattr write append lock ioctl open }')

Use the seshowdef function to show the full nature of the write_files_pattern
definition:

~$ seshowdef write_files_pattern
define(write_files_pattern', "
allow $1 $2:dir search_dir_perms;
allow $1 $3:file write_file_perms;

")
Use the sefindif function to find the interface that will allow writing to
named_conf_t:

~$ sefindif 'write_files_pattern. *named_conf_t'
contrib/bind.if: interface(bind_write_config', "
contrib/bind.if: write_files_pattern($1, named_conf_t, named_conf_t)

Now, update the mylogging. te file to use this function. The file should now look like
the following:

policy_module(mylogging, 0.2)
gen_require(

type syslogd_t;
Y
bind_write_config(syslogd_t)

Note

Note the use of the backtick (") and single quote ('). Whenever definitions are used,
they need to start with a backtick and end with a single quote.

Rebuild and reload the policy module, and then rerun the tests we did earlier to verify
that this still allows us to write to the named_conf_t labeled file.

How it works...

One of the principles behind the build system of the reference policy is that an SELinux
policy module should not directly mention SELinux types that are not related to that
module. Whenever a policy module needs to define rules against a type that is defined by
a different module, interfaces defined by that different module should be used instead.

In our example, we need the interface used by the BIND SELinux policy (which handles
the BIND-named daemon policy rules); this interface allows us to write to the BIND DNS
server configuration file type (named_conf_t). We can check the online API, the API
documentation in /usr/share/doc/selinux-*, or just guess the interface name. However,
in order to be certain that the interface does what we need, we need to query the interface
definitions themselves.

That is where the sefinddef, seshowdef, sefindif, and seshowif functions come into
play. These functions are not part of any SELinux user space—they are provided through
the functions.sh file we installed earlier and are simple awk/grep/sed combinations
against the SELinux policy files.

With sefinddef (the SELinux find definition), we can search through the support macros
(not related to a particular SELinux policy module) for any definition that matches the
expression given to it. In this recipe, we gave file.*write as the expression to look for.
The seshowdef (SELinux show definition) function shows us the entire definition of the
given pattern.

The sefindif (SELinux find interface) function then allows us to find an interface that the
SELinux policy provides. In this recipe, we used it to search for the interface that allows a
domain to write to the BIND DNS server configuration files. There is also a seshowif
(SELinux show interface) function that shows us the entire interface definition like the
following:

~$ seshowif bind_write_config
interface(bind_write_config', "
gen_require(”
type named_conf_t;
")

write_files_pattern($1, named_conf_t, named_conf_t)
allow $1 named_conf_t:file setattr_file_perms;

")

This example interface nicely shows how interfaces are handled by the SELinux reference
policy build system. Whenever such an interface is called, one or more arguments are
given to the interface. In our case, we passed on syslogd_t as the first (and only)
argument.

The build system then substitutes every $1 occurrence in the interface with the first
argument, effectively expanding the call to the following code:

write_files_pattern(syslogd_t, named_conf_t, named_conf_t)
allow syslogd_t named_conf_t:file setattr_file_perms;

The call towrite files_pattern is then expanded with the definition we saw earlier.

For the policy developer, this is all handled transparently. The sources of the SELinux
policy file stay well-formatted and only call the interfaces. It is at build time that the
expansion of the various interfaces is done. This allows developers to have nicely
segregated, compartmentalized policy definitions.

See also

e The reference policy project can be found online at
http://oss.tresys.com/projects/refpolicy/

http://oss.tresys.com/projects/refpolicy/

Creating our own interface

Being able to call interfaces is nice, but when we develop SELinux policies, we will run
into situations where we need to create our own interface for the SELinux module we are
developing. This is done through a file with an . if extension.

In this recipe, we are going to extend the mylogging policy with an interface that allows
other domains to execute the system log daemon binary (but without running this binary
with the privileges of the system logger itself; this would be called a domain transition in

SELinux).

How to do it...

1. If our current context is an unprivileged user domain (as unconfined domains are
highly privileged and can do almost everything), we can try executing the system
logger daemon (syslog-ng or rsyslog) directly and have it fail as follows:

~$ /usr/sbhin/syslog-ng --help
bash: /usr/sbin/syslog-ng: Permission denied

2. Now, create the mylogging.if file (in the same location where mylogging.te is)
with the following content, granting all permissions needed to execute the binary:

<summary>Local adaptation to the system logging SELinux
policy</summary>

HAHAHHHH R B HHH AR R AR R AR R AR R AR
<summary>

#it Execute the system logging daemon in the caller domain
</summary>

<desc>

Hit <p>

This does not include a transition.
</p>

</desc>

<param name="domain'">

<summary>

Domain allowed access.

</summary>

</param>

#

interface(logging_exec_syslog',

gen_require("

type syslogd_exec_t;

)

can_exec($1, syslogd_exec_t)
Y

3. Create a new SELinux policy module for the user domain; this policy should be able

to execute the system logger directly. For instance, for the sysadm_t domain, we

would create a mysysadm. te file with the following content:

policy_module(mysysadm, 0.1)
gen_require(
type sysadm_t;
Y
logging_exec_syslog(sysadm_t)
4. Build the mysysadm policy module and load it. Then, test to see if the daemon binary
can now be executed directly:

~$ /usr/sbhin/syslog-ng --help

How it works...

Let’s first look at how the build system knows where the interface definitions are. Then,
we’ll cover the in-line comment system used in the example.

The location of the interface definitions

Whenever an SELinux policy module is built, the build system sources all interface files it
finds at the following locations:

® /usr/share/selinux/mcs/include/* or /usr/share/selinux/devel/include/*
(depending on the Linux distribution)
e The current working directory

The first location is where the interface files of all the SELinux modules provided by the
Linux distribution are stored. The files are inside subdirectories named after particular
categories (the reference policy calls these layers, but this is only used to make some
structure amongst the definitions, nothing else) such as contrib/, system/, and roles/.

For local development of SELinux policies, this location is usually not writable. If we
develop our own policy modules, then this would mean that none of the locally managed
SELinux policy files can use interfaces of the other local interface files. The Makefile
file, therefore, also sources all interface files it finds in the current working directory.

The in-line documentation

Inside the interface file created, we notice a few XML-like structures as comments. These
comments are prefixed by a double hash sign (##) and are used by the reference policy
build system to generate the API documentation (which can be found at
/usr/share/doc/selinux-*).

For local policies, this in-line documentation is not used and, thus, not mandatory.
However, writing the documentation even for local policies helps us in documenting the
rules better. Also, if we ever want to push our changes upstream, this in-line
documentation will be requested anyway.

The comment system uses the following constructs:

e Right before an interface definition, we encounter a <summary> element, which
provides a one-sentence description of the interface

¢ Additional information can then be provided through a <desc> element under which
the HTML code can be placed for documenting the interface further

e Every parameter to an interface is documented through a <param> entity, which again
contains a <summary> line

See also

e The reference policy API documentation can be found online at
http://oss.tresys.com/docs/refpolicy/api/

http://oss.tresys.com/docs/refpolicy/api/

Using the refpolicy naming convention

The interface names used to simplify policy development can be freely chosen. However,
the reference policy itself uses a naming convention to try and structure the names used so
that the SELinux policy developers can easily find the interfaces they need—if they exist
—and give an unambiguous name to an interface they want to create.

The naming convention for the reference policy is available online at

http://oss.tresys.com/projects/refpolicy/wiki/InterfaceNaming.

http://oss.tresys.com/projects/refpolicy/wiki/InterfaceNaming

Getting ready

In this recipe, we’ll do a pen-and-paper exercise to see how the naming convention works.
In the example, we will create interface names for three situations:

e To read all logfiles
¢ To connect to the HTTP port over TCP
¢ To not audit getting the attributes of user home directories

How to do it...

1. First we need to figure out the file types that are involved in the situations:

o Generic logfiles are var_log_t (as can be seen by querying the label of
/var/log/itself):

~$ 1s -dz /var/log
drwxr-xr-x. root root system_u:object_r:var_log_t:s@ /var/log

o When we deal with all logfiles, we can safely assume this is handled by an
SELinux attribute. Let’s look at the attributes for the generic var_log_t type:

~$ seinfo -tvar_log_t -x
var_log_t
file_type
non_security_file_type
mountpoint
non_auth_file_type
logfile
o The logfile attribute looks like an interesting hit. We can now grep through the
policy sources to figure out which SELinux policy modules handle the logfile
attribute, or use sefindif (assuming that there are interfaces defined that handle

this attribute):

~$ sefindif 'attribute logfile'
system/logging.if: interface(logging_log file', "

o For the logfiles example, the module we need is called 1ogging as can be seen
from the sefindif output. Similarly, we will find that for the HTTP port, the
module is corenet, and home directories are userdom.

2. Next, we check whether there is a modifier. The first two situations have no specific
modifier (all the actions are regular verbs). The last example has one: do not audit. In
the SELinux policy language, this is known as a dontaudit statement.

3. Now, let’s look at the verbs involved. This is mostly based on experience, but the
situations show that there is a huge correlation between the verbs and the eventually
chosen refpolicy name (which usually uses SELinux permission names):

o In the first situation, this is read
o The second one has connect over TCP, which is translated into tcp_connect
o The last situation has getting the attributes, so it is translated as getattr

4. Finally, let’s look at the object that is being referenced:

o In the first situation, this is all logfiles, which we will name all_logs

o In the second situation, this is HTTP port, so we will name http_port

o The third situation has user home directories, so we will name
user_home_dirs

5. Combining this gives us the following interface names:

o Read all logfiles: 1ogging read_all logs

o Connect to the HTTP port over TCP: corenet_tcp_connect_http_port

o Do not audit getting the attributes of user home directories:
userdom_dontaudit_getattr_user_home_dirs

How it works...

The naming convention that the reference policy uses is not mandated in a technical
manner. Just like with coding styles, naming conventions are made so that collaboration is
easier (everyone uses the same naming convention) and searching through the large set of
interfaces can be directed more efficiently.

Using the proper naming convention is a matter of exercise. If uncertain, ask around in
#selinux on irc://irc.freenode.net or on the reference policy mailing list.

There’s more...

Take some time to look through the interface files available at
/usr/share/selinux/devel/include/. Next, for the more standard permission-based
interface names, there are also interface names used for templates and type assignation.

For instance, there is a template called apache_content_template. Through it, additional
SELinux types and permissions (used for web applications) are created in one go.
Similarly, there is an interface called apache_cgi_domain that marks a particular type as
being a domain that can be invoked through a web servers’ CGI support.

Besides the naming convention, the reference policy also has a style guide available at
http://oss.tresys.com/projects/refpolicy/wiki/StyleGuide. Like the naming convention, this
is purely a human aspect for improved collaboration—there is no consequence of violating
the coding style beyond the changes that might not be accepted in the upstream
repositories.

http://oss.tresys.com/projects/refpolicy/wiki/StyleGuide

Distributing SELinux policy modules

We finish this chapter by explaining how SELinux policy modules can be distributed
across multiple systems.

How to do it...

To distribute SELinux policies, complete the following steps:

1. Take into account the different system configurations to which the SELinux policies
need to be distributed:

o If multiple systems have different SELinux policy releases to be active, then
build the SELinux policy module against each of these implementations. This is
heavily distribution specific. For instance, on Gentoo, this is the version of the
sec-policy/selinux-base package. On Red Hat and derived distributions, this
is the version of the selinux-policy package.

o If multiple SELinux policy types are active (such as mcs, targeted, and strict)
and there are both MLS-enabled as well as MLS-disabled policies, then the
SELinux policy module will need to be built against both an MLS-enabled
policy as well as an MLS-disabled policy. The output of sestatus will tell us
whether MLS is enabled on an active policy or not:

~$ sestatus | grep MLS
Policy MLS status: enabled

2. Package the resulting . pp files and distribute them to the various systems. It is a
common best practice to place the .pp files inside /usr/share/selinux/mcs/ (this is
for an SELinux policy store named mcs, you can adjust it where needed).

3. On each system, make sure that the . pp file is loaded through semodule -I
policyfile.pp.

How it works...

SELinux policy modules (the files ending with .pp) contain everything SELinux needs to
activate the policy. By distributing these files across many systems (and loading it through
the semodule command), these systems receive the wanted updates against their current
SELinux policy.

Once loaded (and this only needs to happen once, as a loaded module is retained even
after the system reboots), one does not really need the . pp files anymore (loaded modules
are copied inside /etc/selinux). However, it is recommended that you keep the policies
there so that administrators can reload policies as needed; this might help in
troubleshooting the SELinux policy and system permission issues.

There are a few caveats to take into account though:

e Changes in interfaces
e Kernel version changes
e MLS-enabled or MLS-disabled policies

Changes in interfaces

The . pp files contain all rules that SELinux needs to enforce the additional policy rules.
This includes the (expanded) rules that were part of the interface definition files (the .if
files) of the module itself as well as the interfaces referred to by the policy module.

When an update against an interface occurs, then all SELinux policy modules that might
be affected by the change need to be rebuilt. As there is no simple way to know if a
module needs to be rebuilt or not, it is recommended that you rebuild all policy modules
every time a change has occurred to at least one interface.

Distributions will handle the rebuilding of the policies and the distribution of the rebuilt
policies themselves, but for custom policy modules, we need to do this ourselves.

Kernel version changes

New kernel releases might include updates against the SELinux subsystem. When these
updates provide additional features, the binary representation of a policy might be
updated. This is then reflected in the binary version of the policy that the kernel supports.

Binary versions are backward compatible, so a system that supports a maximum version
of 28 (SELinux’s binary versions are integers that are incremented with every change) will
also support loading policy modules of a lower binary version:

~# sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: mcs

Current mode: enforcing

Mode from config file: enforcing
Policy MLS status: enabled

Policy deny_unknown status: denied

Max kernel policy version: 28

Note

When the binary version of an SELinux policy module is higher than the maximum kernel
policy version, this SELinux policy module will not load on the target system. A higher
version means that the policy uses features that are only available in kernels that support
this version, so the administrator will need to update the kernels on those systems to
support the higher version or update the SELinux policy module to not use these features
so that a rebuild creates a lower-versioned binary SELinux policy module.

ML.S or not

SELinux policy modules might contain sensitivity-related information. When a policy
module is built, information is added to reflect whether it is built against an MLS-enabled
system or not.

Therefore, if we have hosts that have diverse policy usages (some policy stores are MLS-
enabled and some are ML S-disabled), then the SELinux policy module will need to be
built against both and distributed separately.

Usually, this is done by providing SELinux policy modules for each particular SELinux
policy type (be it mcs, strict, or targeted).

Chapter 2. Dealing with File Labels

In this chapter, we will cover how file labels are set and managed, and learn how to
configure the SELinux policy ourselves to use and assign the right file labels. The recipes
that this chapter covers are as follows:

Defining file contexts through patterns

Using substitution definitions

Enhancing an SELinux policy with file transitions
Setting resource-sensitivity labels

Configuring sensitivity categories

Introduction

Setting, resetting, and governing file labels are the most common tasks administrators
have to perform on an SELinux-enabled system. The policies that are provided by policy
developers as well as Linux distributions offer sane defaults to use, but many
implementations harbor different locations for services and files. Companies often install
their custom scripts and logfiles in nondefault locations, and many daemons can be
configured to support multiple instances on the same system—each of them using a
different base directory.

System administrators will know how to set context definitions through the semanage
application and then reset the contexts of the target files using setfiles or restorecon:

~# semanage fcontext -a -t httpd_sys_content_t "/srv/web/zone/htdocs(/.*)?"
~# restorecon -RF /srv/web/zone/htdocs

This, however, is a local definition, which, if necessary, needs to be exported and imported
in order to transfer it to other systems:

~# semanage export -f local_selinux.mods

~# semanage import -f local_selinux.mods

By moving context definitions into the SELinux policy realm, such definitions can be
easily installed on multiple systems and managed centrally as we’ve seen for SELinux
policy modules.

Defining file contexts through patterns

SELinux policy modules can contain file context definitions through their . fc files. In
these files, path expressions are used to point to the various locations that should match a
particular file context, and class identifiers are used to differentiate file context definitions
based on the file class (directories, regular files, symbolic links, and more).

In this recipe, we’ll create a mylogging SELinux module, which defines additional path
specifications for logging-related contexts. We will use direct file paths as well as regular
expressions, and take a look at the various class identifiers.

How to do it...

To define a file context through an SELinux policy module, use the following approach:

1.

With matchpathcon, we can check what is the context that the SELinux tools would
reset the resource to:

~# matchpathcon /service/log
/service/log system_u:object_r:default_t

Create the mylogging. te file in which we mention the types that are going to be used
in the definition. It is a best practice to handle types that are not defined by the
SELinux module itself through a different SELinux module. In this example though,
we also declare var_t to keep the example simple:

policy_module(mylogging, 0.2)
gen_require("
type var_t;
type var_log_t;
type auditd_log_t;
")
Next, create the mylogging. fc file in which we declare the path expressions and their
associated file context:

/service(/.*)? gen_context(system_u:object_r:var_t,s0)
/service/log(/.*)? gen_context(system_u:object_r:var_log_t,s0)
/service/log/audit(/.*)?
gen_context(system_u:object_r:auditd_log_t, s0)

/1xc/.*/1log -d gen_context(system_u:object_r:var_log_t,s0)
/var/opt/oracle/listener\.log —
gen_context(system_u:object_r:var_log_t,s0)

Now, build the policy module and load it:

~$ make mylogging.pp
~$ semodule -i mylogging.pp

With matchpathcon, we can now verify whether the context known to the SELinux
tools is the correct one:

~# matchpathcon /service/log
/service/log system u:object_r:var_log_ t

How it works...

An SELinux policy module contains everything SELinux needs to properly handle a set of
policy rules. This includes the rules themselves (which are declared in a . te file) with
optional interface declarations (in the . if files), which define interfaces that other policies
can call in order to generate specific SELinux rules. The third and final part of an SELinux
policy module is the related file contexts file —hence the . fc file suffix.

Note

Context declarations in a . fc file do not automatically enforce and set these contexts.
These are merely definitions used by the SELinux utilities and libraries when a relabeling
operation occurs.

This contexts file contains, per line:

¢ A path expression to which an absolute file path should match

e An optional class identifier to discern contexts (files, directories, sockets, symbolic
links, and so on)

e The context to be assigned to this path

Each part of the context definition is whitespace delimited:
<path> [<class identifier>] <context>

The lines can be ordered to the policy developers’ liking. Most developers order paths in
an alphabetical order with grouping based on the top-level directory.

Path expressions

The regular expression support in the SELinux tools and libraries is based on Perl-
Compatible Regular Expressions (PCRE).

Of all possible expressions, the simplest expression to use is the one without globbing,
such as the following code:

/var/opt/oracle/listener\.log

An important part of this is the escape of the period—if we don’t escape the period, then
the PCRE support would treat the period as any character matching not only a
listener.log file, but also 1listener_log or listenerslog.

A very common expression is the one that matches a particular directory and all
subdirectories and files inside, which is represented in the following example:

/service(/.*)?
This ensures that there is always a context definition for a file or directory within.
The order of processing

Given the exhaustive list of path expressions that a regular system has, a file path can
match multiple rules, so which one will the SELinux utilities use?

Basically, the SELinux utilities follow the principle of most specific first. Given two lines
A and B, this is checked in the following order, where the first match wins:

1. If line A has a regular expression in it and B doesn’t, then B is more specific.

2. If the number of characters before the first regular expression in line A is less than
the number of characters before the first regular expression in line B, then B is more
specific.

3. If the number of characters in line A is less than the number of characters in line B,
then line B is more specific.

4. If line A does not specify an SELinux type (so that the context part of it is <<none>>)
and line B does, then line B is more specific.

The SELinux utilities will load in the definitions given through the files available at
/etc/selinux/mcs/contexts/files/, but will give preference to the ones in
file_contexts.local (and then file_contexts.homedirs) as those are the definitions
made by the system administrator locally. However, if a local definition uses a regular
expression and a policy-provided definition doesn’t, then the policy-provided definition is
still used. This is the only exception to the preference rules between the various context
files.

The SELinux utilities provide a tool called findcon (part of the setools or setools-
console package) that can be used to analyze this ordering, which shows the matching
patterns within a single (!) context definition file and orders them from least specific to
most specific:

~$ findcon /etc/selinux/mcs/contexts/files/file_contexts -p /var/log/aide
/.* system_u:object_r:default_t:s0

/var/.* system_u:object_r:var_t:s0O

/var/log/.* system_u:object_r:var_log t:soO

/var/log/aide(/.*)? system_u:object_r:aide_log t:s0

If only the actual context definition is needed (and not the full set of matching expressions
with the precedence order as findcon shows), then matchpathcon can be used instead:

~# matchpathcon /var/log/aide
/var/log/aide system_u:object_r:aide_log t:s0

Class identifiers

The second part of the context definition is an optional part—a class identifier. Through a
class identifier, developers can tell the SELinux utilities that a context definition is only
applicable if the path expression matches a particular file class. If the class identifier is
omitted, then any class matches.

If a class identifier is shown, then one (per line) of the following identifiers can be used:

The ‘- - identifier is used for regular files
The ¢-d* identifier is used for directories
The “-1° identifier is used for symbolic links
The ‘-b‘ identifier is used for block devices

e The ‘-c‘ identifier is used for character devices
e The ‘-p‘ identifier is used for FIFO files
e The ‘-s‘ identifier is used for sockets

Context declaration

The final part of a context definition is the context itself that is to be assigned to all
matching resources. It is generated through the gen_context macro, as follows:

gen_context(system_u:object_r:var_t, s0)

The gen_context macro is used to differentiate context definitions based on policy
features. If the target policy does not support MLS, then only the first argument
(system_u:object_r:var_t, in the example) is used. If the policy supports MLS but only
a single sensitivity (s0), then :s0 is appended to the context. Otherwise, the second
argument (coincidentally also so in the example) is appended (with a colon in front).

Generally, contexts only differ on the SELinux type. The SELinux owner and SELinux
role of the resource usually remain system_u and object_r respectively.

A special value for the context is <<none>>, like in the following definition:
/proc -d <<none>>

This tells the SELinux utilities that they should never try to set the context of this
resource. Whenever an administrator triggers a filesystem relabeling operation, these
specific locations will not have their label changed (regardless of their current label). This
does not mean that an existing context should be removed!

There’s more...

In the recipe, we covered how to define labels in great detail. If many changes are made, it
makes sense to force a relabel on the entire system. On Red Hat systems, this can be
accomplished by creating a flag file and rebooting the system:

~# touch /.autorelabel
~# reboot

On Gentoo systems, the entire system can be relabeled using the r1pkg command:
~# rlpkg -a -r

On Red Hat systems, the command to relabel the system is called fixfiles:

~# fixfiles relabel

This is also needed if a system has been (temporarily) booted without SELinux support or
with SELinux disabled as files will be created that have no file context. When an
SELinux-enabled system is booted again, it will mark those files as unlabeled_t, which is
a type that most domains have no access to (SELinux-wise).

Using substitution definitions

Sometimes, applications and their resources get installed at different locations than
expected by the SELinux policy. Trying to accommodate this by defining additional
context definitions for each and every subdirectory can easily become unmanageable.

To help administrators, the SELinux utilities support substitution entries, which tell
SELinux “if a path starts with this, then label it as if it starts with that®“. Administrators can
set such a substitution (which is called an equivalence class) using semanage, as follows:

~# semanage fcontext -a -e / /mnt/chroots/bind

In this example, any location under /mnt/chroots/bind/ will be labeled as if it started
from the main / directory (so /mnt/chroots/bind/etc/ becomes etc_t as /etc/ is
etc_t).

Target locations for chroots are a good use case for this. A chroot is an alternate location
on the filesystem, which will act as the root filesystem for one or a set of applications.

For administrators who want to set substitutions across multiple systems, it is not possible
to make this part of an SELinux policy module. The file that we need to manage is called
file_contexts.subs (there is also one that ends with .subs_dist and is managed by the
Linux distribution, which we will not touch). Having that said, we can always look at how
to update this file in a more or less sane manner.

Getting ready

The easiest method would be to use a central configuration management utility, such as
Puppet, CFEngine, Chef, or Ansible, as these systems allow administrators to force the
content of specific files to a particular value. The use of a configuration management tool
is an entire book in itself, so this is outside the scope of this book. If you do want to
pursue this, remember that the file_contexts.subs file is (also) managed by the
semanage command. Administrators might want to add in local definitions that the central
configuration management utility isn’t aware of (and thus might revert the change).

In this recipe, we’ll cover a generic approach, but it does require that there is a way to do
both a file transfer followed by a single line command (executed with proper permissions).
This, however, shouldn’t be much of a challenge to most system administrators.

How to do it...

In order to apply changes to a wide range of systems, follow the next set of steps:
1. Apply the change locally to the system:
~# semanage fcontext -a -e / /mnt/chroot/bind
2. Export the definitions to a single file:
~# semanage export -f local_selinux.mods

3. Edit the local_selinux.mods file and remove all entries that are not related to the
change but need to be distributed.

4. Distribute the resulting file to the target systems.

5. Apply the changes locally to the system:

~# semanage import -f local_selinux.mods

How it works...

The semanage fcontext command instantiates an equivalence class for
/mnt/chroot/bind/, which has all subdirectories and files inside of it labeled as if they
were at /. This ensures that administrators do not need to define a large amount of file
contexts for each and every chroot location they manage.

However, this might become problematic as semanage fcontext only applies changes
locally, and on a larger infrastructure, the same settings might need to be applied to
multiple systems. For this, semanage export and semanage import can be used.

The output of the semanage export command is a set of instructions for semanage and
follows the syntax of the semanage commands to the letter.

When exporting the semanage definitions, the first set of commands that are stored are the
delete all statements such as fcontext -D (delete all locally made semanage fcontext
settings). Of course, if we only need to distribute the substitution definitions, then deleting
all previously made local statements is incorrect. Hence, the need to manually edit the
local_selinux.mods file. If only the equivalence class definition needs to be distributed,
then the file might just contain the following:

fcontext -a -e / /mnt/chroot/bind

The exported file can then be distributed to all target systems and loaded through the
semanage import command effectively applying the same set of changes to the system.

If the definition was already applied on a system, then the import command will fail:

~# semanage import -f local_selinux.mods
ValueError: Equivalence class for /mnt/chroot/bind already exists

It is important to note here that if one command in the file fails to apply, then none of the
commands in the file are applied (the file is processed in one go). This is why the delete
all rules are originally made part of the exported set of commands.

This makes distributed management of such settings more challenging if locally applied
changes need to be kept as well, unless the distributed set of changes are singular (one
exported instruction, which is allowed to fail).

There’s more...

Most files inside the /etc/selinux/mcs/contexts/ location shouldn’t be managed
through any tool except either the Linux distribution package management system
(through the installation of the base SELinux policy) or semanage.

That being said, most files inside this location don’t change much (except for the
files/file_contexts file). It might be beneficial to hook into the package management
system to update these files (if supported) or bluntly take over the management of these
files, assuming you track the changes that the distribution would make closely.

See also

The following resources dive deeper into the topics discussed in this recipe:

¢ To find out more about the various configuration files, check out
http://selinuxproject.org/page/PolicyConfigurationFiles

e The interaction of SELinux with chroots is discussed in more detail in Chapter 9,
Aligning SELinux with DAC

http://selinuxproject.org/page/PolicyConfigurationFiles

Enhancing an SELinux policy with file
transitions

Up until now, we’ve only handled the configuration part on file contexts: if we would ask
SELinux utilities to relabel files, then the changes we made would come into effect.
However, unless you run with the restorecond daemon checking out all possible file
modifications (which would really be a resource hog) or run restorecon manually against
all files regularly, the newly defined contexts will not be applied to the files.

What we need to do is modify the local SELinux policy so that, upon creation of these
files, the Linux kernel automatically assigns the right label to those files. This is handled
through file transitions, which is a specific case of a type transition.

In a type transition, we configure a policy so that if a given domain creates a file (or other
resource class) inside a directory with a specified label, then the created object should
automatically get a specific label. Policy-wise, this is written as follows:

type_transition <domain> <directory_label>:<resource_class>
<specific_label>

SELinux has also added in support for named file transitions (from Linux 2.6.39 onwards,
and available in Gentoo, Fedora 16+, and Red Hat Enterprise Linux 7+). In that case, such
a transition only occurs if the created resource matches a particular filename exactly (so
no regular expressions):

type_transition <domain> <directory_label>:<resource_class>
<specific_label> <filename>

Through the reference policy macro’s, this is supported with the filetrans_pattern
definition.

Getting ready

In order to properly define file transitions, we need to know what the source domain is that
is responsible for creating the resource. For instance, a /var/run/snort/ directory might
be created by an init script, but if there is no file transition, then this directory will be
created with the type of the parent directory (which is var_run_t) instead of the proper
type (snort_var_run_t).

So make sure to write down all the involved labels (as an example, we will use initrc_t
for an init script, var_run_t for the parent directory, and snort_var_run_t for the target
directory) before embarking on this recipe.

How to do it...

Defining a file transition can be done as follows:

1. Search through the SELinux policies to see if there is an interface that will provide a
file transition from a given domain to snort_run_t:

~$ sefindif filetrans.*snort_var_run_t

2. Assuming that none have been found, search for interfaces that allow initrc_t
created resources to transition to a given type:

~$ sefindif filetrans.*initrc_t
system/init.if: interface(init_daemon_pid_file', "
system/init.if: files_pid_filetrans(initrc_t, $1, $2, $3)

3. Bingo! Now, let’s create an enhancement for the snort SELinux module (through a
mysnort policy file) with the following declaration in it:

policy_module(mysnort, 0.1)
gen_require("

type snort_t;

type snort_var_run_t;
")
If initrc_t creates a directory called "snort" in a var_run_t dir,
make sure this one is immediately labeled as snort_var_run_t.
init_daemon_pid_file(snort_var_run_t, dir, "snort")

4. Build the new policy and load it. Then check with sesearch if a type transition is
indeed declared:

~$ sesearch -s initrc_t -t var_run_t -T | grep "snort"
type_transition initrc_t var_run_t : dir snort_var_run_t "snort"

How it works...

Linux distributions that support SELinux already provide an SELinux policy that works in
a majority of deployments. The default policy is extensive and works mostly out of the
box. If specific changes are needed, chances are that these particular SELinux rules are
already defined (as part of policy interfaces) and only need to be instantiated and loaded.

Policy interfaces usually exist in the following two types:

¢ Interfaces whose subject is delivered through an argument, and where the object
(against which operations are performed) and perhaps target (in our case, to which a
transition should occur) are hardcoded

¢ Interfaces whose subject is hardcoded and where the object, target, or both are
arguments to the interface

An example of the first interface type that can be used in our example would look like the
following code:

interface(snort_generic_pid_filetrans_pid',
gen_require("”
type snort_var_run_t;
")
files_pid_filetrans($1, snort_var_run_t, dir, $2)
")
We could then call this interface like this:

snort_generic_pid_filetrans_pid(initrc_t, '"snort")

However, such interfaces would be a burden to maintain. For every daemon support added
to the system, the init policy would need to be changed with a named file transition
together with the newly added policy rules for the daemon. Considering the amount of
daemons that can run on a system, the init policy would literally be filled with a massive
amount of named file transitions—at least one for every daemon.

The interface declaration that we encountered in the example is much more manageable.
The interface is meant to be called by the daemon policy itself and immediately ensures
that the initrc_t type can create directories of the given type (snort_var_run_t) inside
the generic run directory (var_run_t). New additions to the policy leave the init policy
at rest, making maintenance of the policies easier.

Finding the right search pattern

To find the right pattern, we use the sefindif interface to search through the available
interfaces. Finding the right expression is a matter of experience.

As we know, we want to search for file transitions, the line we are looking for will contain
filetrans_pattern. Then, one of the arguments involved is the type we are going to
transition to (snort_var_run_t). So the expression we used in the example was changed
to filetrans.*snort_var_run_t. As that didn’t result in anything, the next search
involved the domain from which a transition has to be made (initrc_t) so that the

expression was changed to filetrans.*initrc_t.

However, let’s assume we don’t know that filetrans_pattern needs to be searched for.
The type itself (snort_var_run_t) or domain (initrc_t) might be sufficient to search
through, like in the following searches:

~$ sefindif snort_var_run_t
~$ sefindif initrc_t

From the resulting list of interfaces, we can then see if an interface is available that suits
our needs.

Patterns

Patterns such as filetrans_pattern are important supporting definitions inside the
reference policy. They bundle a set of permissions related to a functional approach (such
as read files, which are handled through a read_files_pattern) and are not tied to a
particular type (unlike interfaces).

The need for patterns comes from the very fine-grained access controls that SELinux has
on Linux activities. Reading a file is a nice example: it is not sufficient to just allow a type
to perform the read action:

allow initrc_t snort_var_run_t:file read;

Most applications first check the attributes of the file (getattr) and open the file before
they can read the file. Depending on the purpose, they might also want to lock the file or
perform I/O operations on it through ioctl. So instead of just the preceding access vector,
the rule was changed to:

allow initrc_t snort_var_run_t:file { getattr lock open read ioctl }

The reference policy provides a single permission set for this called read_file_perms,
which turns the access vector into the following:

allow initrc_t snort_var_run_t:file read_file_perms;

Second, the policy developers often want to allow a domain to read a file inside a
directory that is labeled similarly. For instance, a snort_var_run_t file can be at
/var/run/snort/snort.pid with the /var/run/snort/ directory also being labeled as
snort_var_run_t. So we would also need to grant the initrc_t type search rights inside
the directory—which again is a set of permissions as can be seen from the
search_dir_perms definition:

~$ seshowdef search_dir_perms
define(search_dir_perms', "{ getattr search open }')

Instead of creating multiple rules for this, a pattern is created, called
read_files_pattern, which looks like the following:

~$ seshowdef read_files_pattern
define(read_files_pattern', "
allow $1 $2:dir search_dir_perms;
allow $1 $3:file read_file_perms;

")
This allows policy developers to use a single call:
read_files_pattern(initrc_t, snort_var_run_t, snort_var_run_t)

To see the various patterns supported for policy development, use sefinddef with the
‘define.*_pattern‘ expression:

~$ sefinddef define.*_pattern

Using patterns allows developers to create readable policy rules using a functional
approach rather than a full sum-up of each individual access vector.

There’s more...

In the snort_generic_pid_filetrans_pid interface presented earlier, we used a named
file transition: the transition occurs only if the filename passed on as the last argument
matches the filename of the file created.

Named file transitions take precedence over normal file transitions. A good example for
this are the file transitions supported for the initrc_t domain:

~# semanage -s initrc_t -t var_run_t -T
Found 2 semantic te rules:
type_transition initrc_t var_run_t : file initrc_var_run_t;
type_transition initrc_t var_run_t : dir initrc_var_run_t;
Found 16 named file transition rules:
type_transition initrc_t var_run_t : dir udev_var_run_t "udev";
type_transition initrc_t var_run_t : dir tor_var_run_t "tor";

In this case, if an init script creates a directory called udev or tor (or any of the other
transition rules that are not shown in the example), then a proper file transition occurs. If
the filename doesn’t match, then a transition occurs to the initrc_var_run_t type.

File transitions on regular files and directories are the most common, but transitions can
also occur on various other classes, such as sockets, FIFO files, symbolic links, and more.

See also

e Domain transitions (which assign a different context to a process rather than a file)
are covered in Chapter 3, Confining Web Applications in more detail and are used in
Chapter 4, Creating a Desktop Application Policy and Chapter 5, Creating a Server
Policy

Setting resource-sensitivity labels

When an SELinux policy is MLS-enabled and supports multiple sensitivities (which is not
the case with MCS, as MCS only has a single sensitivity), then SELinux can govern
information flow and access between a domain and one or more resources based on the
clearance of the domain and the sensitivity level of the resource. But even with a single
sensitivity (as is the case with MCS), SELinux has additional constraint support to ensure
that domains cannot access resources that have one of the categories assigned that the
domain doesn’t have clearance for.

A sensitivity level consists of a sensitivity (so is generally being used for the lowest
sensitivity and s15—which is a policy build-time constant and thus can be configured—is
the highest sensitivity) together with a category set (which can be a list such as
c0,c5,c8.c10).

A security clearance is similar to a sensitivity level but shows a sensitivity range (such as
s0-s3) instead of a single sensitivity level. A security clearance can be seen as a range
going from the lowest sensitivity level to the highest sensitivity level allowed by the
domain.

When policies are being developed for such systems, context definitions and policy rules
can take sensitivities into account. In this recipe, we will do the two most common
operations for MLS-enabled systems:

¢ Define a context with a higher-level sensitivity
e Set the clearance of a process policy-wise on a domain transition

To accomplish this, we will use the snort intrusion detection system as an example,
forcing it to be always executed with the s3 sensitivity and all possible categories.

This example will also show us how to substitute an existing policy rather than enhance it,
as we are going to update a definition that would otherwise collide with the existing
definition.

How to do it...

To modify an existing domain to support specific sensitivity levels, execute the following
steps:

1.

Copy the snort.te and snort.fc files from the distribution policy repository to the
local environment:

~$ cp ${POLICY_LOCATION}/policy/modules/contrib/snort.*
${DEVROOT}/local

Rename the files to mysnort (or customsnort), so we always know this is a
customized policy. Don’t forget to update the policy module call in the . te file.
Open the mysnort. te file and look for the init_daemon_domain call. Substitute the
call with the following:

init_ranged_daemon_domain(snort_t, snort_exec_t, s3:mcs_allcats)

In mysnort. fc, label the snort resources with the s3 sensitivity. For instance, for the
snort binary, label it as follows:

/usr/bin/snort — gen_context(system_u:object_r:snort_exec_t,s3)

Build the mysnort policy, remove the currently loaded snort SELinux policy module,
and load the mysnort one:

~# /etc/init.d/snort stop
~# semodule -r snort
~# semodule -i mysnort.pp

Relabel all files related to snort and then start snort again.

How it works...

There are three important aspects to this recipe:

1. We replace the entire policy rather than create an enhancement.
2. We update the policy to use a ranged daemon domain.
3. We update the file contexts to use the right sensitivity.

The file context update is obvious but the reason for fully replacing the policy might not
be.

Full policy replacement

In the example, we copied the existing policy for the snort SELinux module and made the
updates in the copy, rather than trying to enhance the policy by creating an additional
module.

This is needed because we are making changes to the SELinux policy that are mutually
exclusive to the already running SELinux policy. For instance, the file context changes
would confuse SELinux as it would then have two fully matching definitions through
policy modules, but each with a different resulting context.

In the example, we only copied the type enforcement declarations (snort.te) and file
context declarations (snort.fc). If we would copy the interface definitions as well
(snort.if), the policy build would give us a warning that there are duplicate interface
definitions—the ones provided by the Linux distribution are still on the system after all.

Ranged daemon domain

In the SELinux policy itself, we substituted the init_daemon_domain(snort_t,
snort_exec_t) entry with the following:

init_ranged_daemon_domain(snort_t, snort_exec_t, s3:mcs_allcats)

Let’s take a look at the contents of this interface:

~$ seshowif init_ranged_daemon_domain
interface(init_ranged_daemon_domain', "
gen_require(”
type initrc_t;
")
init_daemon_domain($1, $2)
ifdef(enable_mcs', "
range_transition initrc_t $2:process $3;
")
ifdef(enable_mls', "
range_transition initrc_t $2:process $3;
mls_rangetrans_target($1)
")
")

The newly called interface calls the original init_daemon_domain, but enhances it with
MCS- and MLS-related logic. In both cases, it calls range_transition so that when the

snort init script (running as initrc_t) transitions to the snort_t domain, then the active
sensitivity range is also changed to the third parameter.

In our case, the third parameter is s3:mcs_allcats, where mcs_allcats is a definition that
expands to all categories supported by the policy (such as c0.c255 if the policy supports
256 categories).

In case of MLS, it also calls mls_rangetrans_target, which is an interface that sets an
attribute to the snort_t domain, which is needed for the MLS constraints enabled in the
policy.

From the expanded code, we can see that there are ifdef () statements. These are blocks
of SELinux policy rules that are enabled (or ignored) based on build-time parameters. The
enable_mcs and enable_mls parameters are set if an MCS or MLS policy is enabled.
Other often used build-time parameters are distribution selections (such as distro_redhat
if the SELinux policy rules are specific for Red Hat Enterprise Linux and Fedora systems)
and enable_ubac (which is when user-based access control is enabled).

Constraints

Most, if not all, SELinux policy development focuses on type enforcement rules and
context definitions. SELinux does support various other statements, one of which is the
constrain statement used to implement constraints.

A constraint restricts permissions further based on a set of expressions that cover not only
the type of the object or subject, but also SELinux role and SELinux user. The constraint
that is related to the mlsrangetrans attribute (which is set by the mls_rangetrans_target
interface) looks like the following:

mlsconstrain process transition
((h1 dom h2) and
((112 eq 12) or (t1 == mlsprocsetsl) or
((t1 == privrangetrans) and (t2 == mlsrangetrans))));

The constraint tells us the following things about a transition:

e The transition can occur only when the highest sensitivity level of the subject
(domain/actor) dominates the highest sensitivity level of the object

e The lowest sensitivity level of the subject is the same as the lowest sensitivity level of
the object

e If not, then the type of the subject has to have the mlsprocsetsl attribute set

e If not, then both of the following statements have to be true:

o The type of the subject has the privrangetrans attribute set
o The type of the object has the mlsrangetrans attribute set

Domination means that the sensitivity level of the first security level is equal to or higher
than the sensitivity level of the second security level, and the categories of the first
security level are the same or a superset of the categories of the second security level.

Constraints in the SELinux policy are part of the base policy set—this means that we are
not able to add constraints through loadable SELinux policies. If we want to include

additional constraints, we would need to build the entire policy ourselves, patching the
constraints, mls, and mcs files inside the policy repository’s policy/ subdirectory.

Knowing about constraints is important, but we probably never need to write constraints
ourselves.

See also

The SELinux project site is a good start for learning about constraints and their related
statements:

e The MLS statements at http://selinuxproject.org/page/NB_MLS
e The constraint statements at http://selinuxproject.org/page/ConstraintStatements

http://selinuxproject.org/page/NB_MLS
http://selinuxproject.org/page/ConstraintStatements

Configuring sensitivity categories

Although MCS policies are MLS-enabled, they are configured to only support a single
sensitivity (namely s0). Yet even with this limitation, an MCS policy can be very useful,
for instance, in situations where a system hosts services for multiple customers. This is
because MCS can still benefit from security clearances based on categories.

Unlike sensitivities, categories are more like a discretionary access control system.
Categories are meant to be used by users (or administrators) to label files and other
resources as being a member of one or more categories. Access to those resources is then
based on the clearance level of the process and the categories assigned to the resource.
Categories are also not hierarchically structured.

An example of a use case where categories play a major role is in multitenant
deployments: systems that host one or more services for multiple tenants (multiple
customers), which, of course, require proper security segregation so that one tenant cannot
access resources of another tenant.

In most cases, administrators will try to separate those services through the runtime user
(and group membership). This is, however, not always possible. There are situations
where these separate processes still need to run as the same runtime user (although with
support for additional Linux security subsystems—such as capabilities—the number of
situations has significantly reduced again).

In this recipe, we’ll configure a system to use multiple categories to differentiate between
resources of different customers for a web server that the customers also have shell access
to. Through categories, we can provide more protection for the resources of other
customers, in case one of the customers is able to execute an exploit that would elevate
their privileges.

Getting ready

You need to prepare a system for the multiple tenants. For instance, we can host the entire
website content in /srv/web/<companyname>/ and have the web server configuration at
/etc/apache/conf/<companyname>/.

In this recipe, as an example, we will configure the system for two companies called
CompanyX and CompanyY. Each company also has a regular user (userxX for the first
company and userY for the second).

How to do it...

To instantiate different categories, follow this approach:

1. Settle on the category naming (and numbers) for different customers and configure
those in the setrans.conf file inside /etc/selinux/mcs/:

S0:c100=CompanyX
S0-s0:cl00=CompanyXClearance
s0:c101=CompanyY
S0-s0:cl01=CompanyYClearance

2. Restart the mcstrans service so that it is aware of this configuration.
3. List the categories to make sure that the changes are properly interpreted:

~$ chcat -L

so SystemLow

s0-s0:¢c0.c1023 SystemLow-SystemHigh
s0:c0.c1023 SystemHigh

s0:c100 CompanyX

s0-s0:¢c100 CompanyXClearance
s0:c101 CompanyY

s0-s0:c101 CompanyYClearance

4. Create SELinux users that have clearance to handle the right categories:

~# semanage user -a -L sO@ -r CompanyXClearance -R "user_r" userX_ u
~# semanage user -a -L s0@ -r CompanyYClearance -R "user_r" userY_u

5. Configure the Linux users (logins) with the right security clearance:

~# semanage login -m -s userX_u userX
~# semanage login -m -s userX_u useryY

6. Set the right category on the company resources:

~# chcon -1 CompanyX -R /srv/web/www.companyX.com/
/etc/apache/conf/companyX/
~# chcon -1 CompanyY -R /srv/web/www.companyY.com/
/etc/apache/conf/companyY/

7. Configure the Apache init scripts to launch Apache with the right security level by
launching it through runcon. For instance, on a Red Hat Enterprise Linux 6 system
for the first company’s web server, the following script is used:

LANG=$HTTPD_LANG daemon --pidfile=${pidfile} runcon -t httpd_t -1
CompanyX $httpd $OPTIONS

8. (Re)start the web server and validate that it is running with the right security level:

~# ps -efZ | grep httpd

How it works...

We started by configuring the system so that we can name categories and ranges rather
than having to use the integer representations. Next, we created an SELinux user for each
company and assigned each (regular) Linux account to the right SELinux user. After
updating the contexts of all company-related files, we configured Apache to start in the
right context.

The mcstrans and setrans.conf files

The setrans.conf file is a regular text file that the MCS transition daemon (mcstransd)
uses to substitute the real security level (such as s0:c¢100) with a human readable string
(such as companyX).

The Linux utilities themselves (such as 1s and ps) use the SELinux libraries to get
information about the contexts of files and processes. These libraries then connect with the
mcstransd process (through the /var/run/setrans/.setrans-unix socket), sending the
real security level and retrieving the human-readable representation for it.

It is important to remember that this is only a representation and not how the security level
is stored. In other words, do not use this in file context definition files (that is, the
SELinux policy . fc files).

SELinux users and Linux user mappings

In the example, an SELinux user is created for each company. This SELinux user is given
the clearance to work with resources tagged with the category of the respective
companies. The real Linux accounts are then mapped to this SELinux user.

From the example, we see that there are two definitions for each company:

s0:c100 CompanyX
s0-s0:c100 CompanyXClearance

The first one is a security level and can be assigned to both resources as well as processes
(users). The second one is a security clearance (a range). In this particular example, the
clearance tells us that the high security level (which can be seen as what the process is
allowed to access) are the resources of the company (s0:c100), and the low security level
(which can be seen as the security level of the process itself) is just se.

The users for the company, therefore, have clearance to access the files (and other
resources) that have their company’s category assigned to it. However, all activities
performed by these user accounts do not get this category by default—the users will need
to use chcon to set the category, as follows:

~$ chcon -1 CompanyX public_html/index.html

It is possible to give the users the security level itself rather than the clearance. When that
occurs, any resource created by the user will also get the proper category set. But, do not
use this as a way to confine resources—users can always remove categories from
resources.

Granting the security level can be done on the SELinux user level, but it is also possible to
do this through the SELinux user mapping as long as the range passed on is dominated by
the range set on the SELinux user level. For instance, to set CompanyX (s0:c100) as the
security level rather than CompanyXclearance, which is the default for users mapped to the
userX_u SELinux user, the following command can be used:

~# semanage login -m -r CompanyX userl

Running Apache with the right context

The last change made in the example was to configure the system to start the web server
with the right security level. This is done through the runcon command, where we pass on
the sensitivity level (and not the security clearance) to make sure that every resource
created through the web server inherits the right category as well as the target type.

The SELinux policy knows that if an init script launches the Apache binary (httpd), then
this application has to run in the httpd_t domain. However, now the init script launches
runcon—which the SELinux policy sees as a regular binary—so the application would
continue to run in the initrc_t domain. Hence, we need to pass on the target type
(httpd_t). On systems with an SELinux policy without unconfined domains, forgetting
this would prevent the web server to run. On systems with an SELinux policy with
unconfined domains, this might result in the web server to run in an unconfined domain
(initrc_t), effectively disabling the SELinux protections we need for the web server!

See also

The following are some more examples on multitenancy and how SELinux interacts with
it:
e sVirt (http://selinuxproject.org/page/SVirt) uses SELinux categories to segregate
virtual guests from one another
¢ Linux containers, such as through the LXC project (https://linuxcontainers.org), use
SELinux for further isolation of containers from the main system
e Apache has support for multitenancy through the mod_selinux module, which is
covered in Chapter 3, Confining Web Applications

http://selinuxproject.org/page/SVirt
https://linuxcontainers.org

Chapter 3. Confining Web Applications

In this chapter, we will cover the default confinement of the web server domain and
practice how to enhance this policy to suit our needs. We will also look into mod_selinux
and how it can be used to confine web applications even further. All this will be handled
through the following recipes:

Listing conditional policy support
Enabling user directory support
Assigning web content types

Using different web server ports

Using custom content types

Creating a custom CGI domain

Setting up mod_selinux

Starting Apache with limited clearance
Mapping HTTP users to contexts

Using source address mapping to decide on contexts
Separating virtual hosts with mod_selinux

Introduction

Web applications are a prime example of where SELinux can prove its effectiveness. They
are often facing the (untrusted) Internet and are a popular target to exploit. Securing the
web server and web applications is just one of the basic mitigating strategies though—by
confining the web server, we are reducing the results of a successful exploit even further.

A well-confined web server will only allow operations towards the operating system that
are acceptable behavior for the service. But considering the wide area of services that can
be provided through a web server, we must be careful not to open up too many privileges.

Policy developers have foreseen the situation that the web server domain might be too
broad in its privileges and have made the web server domain (httpd_t) not only very
versatile, but also very configurable. In this chapter, we will look into the domain in more
detail.

Listing conditional policy support

The first configurable aspect of the SELinux web server domain policy is its wide use of
SELinux Booleans. Through these Booleans, additional policy rules can be selectively
enabled or disabled. In this recipe, we’ll look at the Booleans and see how these can be
toggled.

How to do it...

In order to list the conditional policy support, execute the following steps:

1. Request the list of all SELinux Booleans and selectively show those starting with
httpd_:

~# getsebool -a | grep httpd_
2. To get a short description together with the Booleans, we can use semanage:

~# semanage boolean -1 | grep httpd_

3. If the description of a Boolean isn’t sufficient, we can ask the SELinux utilities to
display the SELinux rules that will be enabled (or disabled) if the Boolean is set:

~# sesearch -b httpd_enable_ftp_server -AC

Found 3 semantic av rules:

DT allow httpd_t httpd_t : capability net_bind_service ; [
httpd_enable_ftp_server]

DT allow httpd_t ftp_port_t : tcp_socket { recv_msg send_msg name_bind
} ; [httpd_enable_ftp_server]

DT allow httpd_t ftp_server_packet_t : packet { send recv } ; [
httpd_enable_ftp_server]

How it works...

Conditional SELinux policy support is provided through SELinux Booleans. These are
configurable parameters (with a true/false value), which an administrator can enable or
disable using the setsebool or semanage boolean command.

With the getsebool command, we request an overview of all SELinux Booleans. Recent
policies have a few hundred Booleans assigned, but luckily most Booleans follow one of
the two following naming conventions that make filtering easier:

e A Boolean starts with allow_ or use_
e A Boolean starts with the SELinux policy module prefix

Booleans that start with allow_ or use_ are considered global Booleans and will usually
affect multiple SELinux policy modules. A good example for such a Boolean is
allow_execmem, which enables several domains to execute code stored in writable
memory rather than read-only memory (this is a harmful, but sometimes unavoidable
memory permission setting).

Most, if not all other Booleans start with the SELinux policy module prefix that they are
applied to. For the web server, this is httpd_ (even though the policy is called apache, the
httpd_ prefix is chosen because the policy can apply directly on various web servers, not
only on the Apache HTTPd).

When we use the semanage boolean command, a short description is provided for the
Booleans. This description is obtained from an XML file called policy.xml, which can be
found at /usr/share/selinux/devel/. The XML file is generated during the build of the
base SELinux policy.

The most accurate description of a Boolean, however, is the set of rules that it would
trigger when enabled or disabled. This is where the sesearch command comes into play.

As can be seen from the example, Booleans will trigger one or more allow rules. The
prefix to the sesearch output tells us whether a shown rule is active if the Boolean is true
(T) or false (F), and if the rule is currently enabled (E) in the policy or disabled (D).

A nice trick when querying the SELinux policy using sesearch is to ask for Boolean-
managed rules as well (regardless of whether they are currently enabled or disabled). This
can be accomplished by adding the -C option (which is the short option for - - show_cond).
For instance, to find the transitions of the newrole_t domain, the following command can
be used:

~# sesearch -s newrole_t -c process -p transition -AC
Found 5 semantic av rules:
allow newrole_t newrole_t : process { .. };
allow newrole_t chkpwd_t : process transition;
allow newrole_t updpwd_t : process transition;
EF allow newrole_t userdomain : process transition ; [secure_mode]
DT allow newrole_t unpriv_userdomain : process transition ; [secure_mode]

See also

e The httpd_selinux manual page lists all SELinux Booleans that are applicable to the
Apache SELinux module and explains their purpose in more detail:

~$ man httpd_selinux

Enabling user directory support

Let’s look at an example of how to use SELinux Booleans applicable to web server
installations. In this recipe, we’ll enable Apache UserDir support (allowing the web server
to serve local user account web pages at http://sitename/~username).

Getting ready

Configure the Apache web server to serve user content. An entire Apache configuration
tutorial would be in place here, but this is not in the scope of this book. Basically, this is
done by editing the httpd.conf file and setting the UserDir directive.

How to do it...

To enable user directory support, follow the next set of steps:

1.

Make sure that the user’s home directory is accessible for the Apache runtime
account with the following commands. If Linux DAC denies access, SELinux will
not even handle the request.

~$ chmod 755 ${HOME}/
~$ chmod 755 ${HOME}/public_html

Check that access isn’t already allowed by surfing to a user page. If all permissions
are okay but SELinux denies access, then the page should be served with a 403
(forbidden) error and a denial should be registered in the audit logs. The Apache error
logs would yield a permission denied against the resource.

The audit logs will probably tell that httpd_t isn’t allowed to act on home_root_t or
user_home_dir_t. From a look through the SELinux Booleans, we find at least two
interesting Booleans (httpd_enable_homedirs and httpd_read_user_content):

~# sesearch -s httpd_t -t home_root_t -c dir -p open -AC

Found 2 semantic av rules:

DT allow httpd_t home_root_t : dir { getattr search open } ; [
httpd_enable_homedirs]

DT allow httpd_t home_root_t : dir { getattr search open } ; [
httpd_read_user_content]

Let’s first toggle httpd_read_user_content. This allows the web server to access all
user files, which is functionally okay, but this also immediately grants it access to all
files:

~# setsebool httpd_read_user_content on

Another approach (but this approach requires user intervention) is to have
~/public_html/ labeled as httpd_user_content_t. When this is done,
httpd_read_user_content can be turned off and httpd_enable_homedirs can be
enabled:

~$ chcon -R -t httpd_user_content_t public_html
~# setsebool httpd_read_user_content off
~# setsebool httpd_enable_homedirs on

When the changes are working nicely, we can persist the changes so that they survive
a reboot:

~# setsebool -P httpd_enable_homedirs on

How it works...

The default web server policy in SELinux does not allow the web server to access user
home content. If a vulnerability in a web application or the Apache web server itself
would allow an attacker to read user content, SELinux will prevent this from happening.
But, sometimes, user content access is needed.

By enabling the httpd_read_user_content Boolean, the web server domain (and all
related domains) will have full read access to all user files. If users are not able (or do not
know how) to set the proper context on their files, then this is the only suitable option.

A better approach, however, is to enable the httpd_enable_homedirs Boolean. This
allows the web server search access through the home directory (/home/user/, which is
labeled user_home_dir_t) but does not provide read access to user content (which is
labeled user_home_t). Instead, the resources needed for the web server are labeled
httpd_user_content_t—a type that regular users can relabel resources to (or relabel
resources from). Next to httpd_user_content_t, one can also define the following
content types:

httpd_user_htaccess_t for the .htaccess files
httpd_user_script_exec_t for user-provided CGI scripts
httpd_user_ra_content_t for appendable resources (for the web server)
httpd_user_rw_content_t for read/write resources (for the web server)

These resources can be set by the end user and give a finer control over how each resource
within the ~/public_html/ location can be handled by the web server (and the web
applications).

There’s more...

Some SELinux supporting distributions have a daemon called restorecond, which can be
used to automatically set the context of files the moment they are created/detected,
without needing file transitions in policy. This can be used to automatically have
~/public_html/ labeled as httpd_user_content_t.

See also

e More information about per-user web directories can be found at
https://httpd.apache.org/docs/2.4/howto/public_html.html

https://httpd.apache.org/docs/2.4/howto/public_html.html

Assigning web content types

For standard web server configurations (without SELinux), access rights on resources for
a web server are purely based on the ownership of the files (and the access mask applied
to it). With SELinux, the resources can be labeled more specifically towards their
functional meaning.

Web applications have content that should be read-only and content that should be read-
write, but there are also specific types for resources such as .htaccess files. In this recipe,
we’ll look at the various web server content types and apply them to the right resources.

How to do it...

Execute the following steps to assign specific web content types to the right resources:

1. Take a look at the available content types for web servers by asking SELinux to show
us all types that have the httpdcontent attribute set:

~$ seinfo -ahttpdcontent -x
httpdcontent
httpd_sys_content_t
httpd_user_ra_content_t
httpd_user_rw_content_t
httpd_nagios_content_t

2. Query the existing policy for known context assignations (as those can give us
pointers to what is still lacking):

~$ semanage fcontext -1 | grep httpd_nagios

3. Now, assign the right context to those resources that aren’t labeled correctly yet. The
paths used here are an example for a Nagios installation:

~# semanage fcontext -a -t httpd_nagios_content_t
/var/www/html/nagios(/.*)?

~# semanage fcontext -a -t httpd_nagios_script_exec_t
/usr/local/lib/nagios/cgi-bin/.*

~# restorecon -R /var/www/html/nagios /usr/local/lib/nagios

How it works

The web server policy supports functional content types for web applications. These types
are used for the following content types:

e Read-only content of the web application

e Writable content of the web application (for which a distinction is made between full
writable content and content that can only be appended to, such as logfiles)

e Executable scripts (for CGI scripts and similar content)

The advantage is not so much that there is the distinction of read-only versus read-write,
but that this is supported on a per-application basis, with types that are specific to one
application. In the example, we looked at the content for the Nagios monitoring
application.

This allows administrators to provide access to these resources towards specific
applications or users. Even though all content in /var/www/html/ might be owned by the
Apache Linux user, we can still grant users (and applications) access to application-
specific resources without needing to grant those users or applications full privileges on all
Apache resources.

For the read-only content, there is the regular web application content
(httpd_nagios_content_t) and the special .htaccess content
(httpd_nagios_htaccess_t). The distinction is made primarily because access to the
regular content is given more broadly (and depending on some SELinux Booleans, this
can also become writable content), whereas the .htaccess content remains read-only.

To query the available web server content, we used the httpdcontent attribute. This
attribute is assigned to all content, allowing administrators to create policies that govern
all web content. The httpdcontent attribute is given to all these types, but there are also
attributes called httpd_rw_content, httpd_ra_content, httpd_htaccess_type, and
httpd_script_exec_type to allow for manipulation of those specific resources.

There’s more...

We covered Nagios as an example web application, which has a set of web application
related resources. Many other web applications or applications with web content have
already been identified policy-wise.

On Linux distributions that have all known policies loaded by default, this overview will
already be visible through the seinfo command as per our preceding example. If that isn’t
the case, we can always search through the SELinux policies to find out which modules
call the apache_content_template—the interface that automatically generates the right
web application content types:

~$ grep apache_content_template ${POLICY_LOCATION}/policy/modules/*/*.te

When different types become more troublesome than helpful, it is possible to ask the
SELinux policy to see all those different types as just one common web content type and
be done with it. This is supported through the httpd_unified Boolean. When this
Boolean is enabled, the web server policy will treat all various web server resource types
as one, unifying all the types. And, if the Booleans, httpd_enable_cgi and
httpd_builtin_scripting, are enabled as well, then the web server domain has the
privilege to execute that content as well.

Needless to say, unifying the web server resource contexts might make management
simpler; it also increases the privileges of the web server domain towards various web
resources, making it potentially less secure.

Using different web server ports

By default, web servers listen on the known web server ports (such as ports 80 and 443).
Often, administrators might want to have the web server listen on a nondefault port. The
SELinux policy might reject this, as it is not standard behavior for a web server to listen
on other unrelated ports.

In this recipe, we will tell SELinux that a nondefault port should still be seen as a web
server port.

How to do it...

In order to assign a label to a different port, execute the following steps:

1.

5.

To see all the ports that match http_port_t, use semanage port -1:

~# semanage port -1 | grep -w http_port_t
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000

Query the SELinux policy to see which port type is assigned to a particular port. For
instance, for port 8881, the following command is used:

~$ seinfo --portcon=8881
If the port is identified as unreserved_port_t, then we can mark it as http_port_t:
~# semanage port -a -t http_port_t -p tcp 8881

If, however, the port has been already assigned a particular type, then we need to
update the SELinux policy for the web server to allow it to listen on ports of this
particular type. For instance, for port 9090 (websm_port_t), perform the following
steps:

1. First find the interface that allows binding on websm_port_t:
~$ sefindif websm_port_t.*bind
2. Create a custom SELinux policy (myhttpd) with the following content:

corenet_sendrecv_websm_server_packets(httpd_t)
corenet_tcp_bind_websm_port(httpd_t)

3. Load the policy to allow the web server to bind on the identified port type.

Finally, edit the web server configuration file to listen to the right port:

Listen *:8881

How it works...

SELinux works with labels for all resources, including ports. In this example, we are
looking at TCP port types to allow the web server to bind to.

With seinfo, we can see whether a port matches a known declaration. Ports with a value
of 1024 or higher are, by default, labeled as unreserved_port_t, whereas, ports 511 or
lower are labeled as reserved_port_t and those in between are labeled as
hi_reserved_port_t. These are, however, defaults and more specific port types might be
declared for a specific port.

If a port is not assigned a specific type yet, then we can assign one ourselves using
semanage port. This is sufficient to allow the web server to bind to this port (there is no
need for relabeling operations on ports, unlike files or directories, as this is done by the
SELinux subsystem immediately).

If a port is already assigned a specific type, then it cannot be overridden by additional
policies or the administrator. When this occurs, the SELinux policy will need to be
enhanced to allow the web server to bind to this specific type.

In the example, we searched for the interface that would allow the web server to bind to
the port, revealing corenet_tcp_bind_websm_port as the interface to use. However, we
also added another interface—this is due to the way network controls are configured in
SELinux, and may or may not be necessary on a system. The additional interface is
corenet_sendrecv_websm_server_packets. This interface is used to allow the web server
to send or receive packets labeled as websm_server_packet_t. Packet labeling allows for
application-specific communication flow governance and extends the regular firewall
capabilities of the Linux operating system (which focus primarily on network flow
management) with SELinux domain awareness.

If packet labeling is needed, then packets are labeled through iptables on a local system,
as shown in the following command:

~# iptables -t mangle -A INPUT -p tcp --dport 9090 -j SECMARK --selctx
system_u:object_r:websm_server_packet_t

If a system does not have such iptables-based labeling (known as SECMARK labeling),
then the interface is not needed.

There’s more...

Recent SELinux user space utilities have another command available to query the
SELinux policy, called sepolicy. Searching for port declarations with sepolicy is done
as follows:

~$ sepolicy network --port 8080
8080: tcp unreserved_port_t 1024-65535
8080: udp unreserved_port_t 1024-65535
8080: tcp http_cache_port_t 8080

Also, in the SELinux policy rules, we will notice that there is a third interface often
enabled for network communication. In our example, the third interface would be called
corenet_tcp_sendrecv_websm_port. This access vector would enable the domain to send
and receive messages on the websm_port_t TCP socket. However, the support for this
access vector has been disabled in recent policies in favor of SECMARK labeling.

See also
e SECMARK labeling is explored in Chapter 9, Aligning SELinux with DAC

Using custom content types

Next up is to create our own set of content types for a web application that does not have a
policy associated with it yet. We will use DokuWiki (available at
https://www.dokuwiki.org) as an example.

https://www.dokuwiki.org

Getting ready

Install DokuWiki either through the Linux distributions’ package manager or manually
through a downloaded release from the main site. In this example, we assume that
DokuWiki is installed at /srv/web/dokuwiki/.

How to do it...

To use custom web content types, follow the next set of steps:

1. Create a policy called mydokuwiki. te with the following content:

apache_content_template(dokuwiki)

2. Add a file context definition file called mydokuwiki. fc, which contains the following
code:

/srv/web/dokuwiki/1ib/plugins(/.*)?
gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t, s0)
/srv/web/dokuwiki/conf(/.*)?
gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t, s0)
/srv/web/dokuwiki/data(/.*)?
gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t, s0)
/srv/web/dokuwiki/data/\.htaccess —
gen_context(system_u:object_r:httpd_dokuwiki_htaccess_t, s0)
/srv/web/dokuwiki(/.*)?
gen_context(system_u:object_r:httpd_dokuwiki_content_t, s0)

3. Build and load the policy and then relabel all DokuWiki files using the following
commands:

~# semodule -i mydokuwiki.pp
~# restorecon -RvF /srv/web/dokuwiki

How it works...

All the magic associated with creating web application content in SELinux is handled by
the apache_content_template interface. With seshowif, one can show all underlying
SELinux policy rules as follows:

e Various SELinux types are created, such as httpd_dokuwiki_content_t and the like,
and the proper attributes are assigned to it (such as the httpdcontent attribute).

e An SELinux Boolean is created, which allows the administrator to enable or disable
the web application to write to public files (labeled as public_content_rw_t). This is
an SELinux type used for resources that are shared across multiple services (such as
FTP servers, web servers, and many more).

e The necessary privileges are granted to the web server domain to access and handle
the newly defined types, as well as enabling CGI domains for the web application.
For our DokuWiki example, this is not needed as everything is handled by the PHP
code parsed and executed by the web server itself (usually).

We then labeled all DokuWiki files accordingly, based on the DokuWiki best practices for
file access. Some administrators might want to have the conf/ subdirectory labeled as a
nonwritable resource, and only (temporarily) enable this during the configuration.
Although this is a valid approach, it might be sufficient to use Linux DAC file access
controls to accomplish the same results.

There’s more...

Using the apache_content_template interface is a simple way to create web content
types, but it has the downside that it is an all-or-nothing approach, and the module now
heavily depends on the web server module (apache).

Experienced users might want to selectively create content and assign the right attributes
to it, allowing the web server domain to interact with the resources while still keeping
granular control over the types and resources.

We’ll leave this as an exercise that you can do to see how this can be accomplished.

Creating a custom CGI domain

Sometimes, it might not be necessary to create a full set of types. Consider a CGI script
that is triggered but without the need for a specific set of content types. Sure, one can
mark the script as httpd_sys_script_exec_t (if it is a system’s CGI script) or
httpd_user_script_exec_t (if it is a user’s custom CGI script) so that the resulting script
runs in the httpd_sys_script_t or httpd_user_script_t domain.

But, if those domains do not hold enough privileges (or too many privileges), it might be
wise to create a custom CGI domain instead.

How to do it...

To create a custom CGI domain, the following approach can be used:

1.

w

Create a custom SELinux policy module (mycgiscript.te) with the following
content:

policy_module(mycgiscript, 0.1)

type cgiscript_t;

type cgiscript_exec_t;

domain_type(cgiscript_t)

domain_entry_file(cgiscript_t, cgiscript_exec_t)
apache_cgi_domain(cgiscript_t, cgiscript_exec_t)

Create the proper file context file (mycgiscript.fc), marking the executable as
cgiscript_exec_t:

/path/to/script --gen_context(system_u:object_r:cgiscript_exec_t,s0)

Build and load the module.
Relabel the executable and test it out:

~# restorecon /path/to/script

As the cgiscript_t domain is primitive in its rights, the script will most likely not
work—however, do not turn SELinux in permissive mode. The audit logs will show
the access attempts that were denied. Instead of using audit2allow to automatically
grant everything, use the sefindif function to find a proper interface. Add the right
interfaces to the module and retry until the script works properly.

How it works...

The policy module defines a domain type (cgiscript_t) and an executable type
(cgiscript_exec_t). With the domain_type interface, cgiscript_t is marked as a
domain (and the proper SELinux rules to deal with this new domain are created as well).
With domain_entry_type, the SELinux policy is updated to mark cgiscript_exec_t as
the type that can be used to transition towards the cgiscript_t domain.

Then, we call apache_cgi_domain, which allows the web server domain (httpd_t) to
execute the cgiscript_exec_t labeled resources and have the resulting process run in the
cgiscript_t domain.

The initial policy module, however, is very primitive and will not hold enough privileges.
It is a matter of trial and error to update the policy. For instance, consider that the script
calls a binary; the audit logs might show the following content:

type=AVC msg=audit(1363205612.277:476924): avc: denied { execute } for
pid=6855 comm="cgiscript.pl" name="perl" dev=sda3 ino=4325828
scontext=system_u:system_r:cgiscript_t:s0
tcontext=system_u:object_r:bin_t:s0® tclass=file

To find out which policy interface would allow this, we can use sefindif again:

~$ sefindif exec.*bin_t'
interface(corecmd_exec_bin', "
can_exec($1, bin_t)

Developing custom policies remains a trial-and-error approach, but this is the only method
available, which ensures that only necessary privileges are granted to a domain. Some
policy developers would suggest to turn on the permissive mode and look through all
denials in the audit logs. The problem with that approach is that these denials might not
lead to the right SELinux policy rules.

For instance, the script might need to call another executable (and transition to a domain).
In permissive mode, the transition will not occur, and it would look like the main domain
(cgiscript_t) needs all privileges that the target command needs—even though all that is
needed is a proper domain transition.

By focusing on the enforcing mode, we can gradually increase the policy while keeping
the least privilege principle in place, only allowing those privileges that are actually
needed.

Setting up mod_selinux

In the next set of recipes, we use an Apache module called mod_selinux to make Apache
SELinux-aware and to support configurable transitions. In other words, the context in
which Apache is running is no longer a statically defined context, but can be changed
according to the administrators’ needs.

In this recipe, we will install mod_selinux from its source as many Linux distributions do
not offer it by default, even though it is a very powerful addition to the web server (which
is also why support for mod_selinux is often called Apache/SELinux Plus).

How to do it...

You can set up mod_selinux through the following steps:

1.
2.

Download the sources from https://github.com/kaigai/mod_selinux.

Make sure that the Apache development headers (httpd-devel on Red Hat or Fedora
systems) are installed.

Build and install the mod_selinux shared library for Apache using apxs:

~# apxs -c -1 mod_selinux.c
Note

It may be possible that the build fails with an error about client_ip. If that is the
case, edit mod_selinux.c at the line number shown in the error and use remote_ip
instead of client_ip, after which the apxs command can be run again.

Build and install the mod_selinux SELinux policy module, whose files are also part
of the downloaded sources:

~$ cp mod_selinux.te ${DEVROOT}/local

~$ cp mod_selinux.if ${DEVROOT}/local

~$ cd ${DEVROOT}/local && make mod_selinux.pp
~# semodule -1 mod_selinux.pp

Edit the web server configuration (httpd.conf) and add in the proper LoadModule
line:
LoadModule selinux_module modules/mod_selinux.SsoO

Restart the web server. Its logfiles should tell you that the SELinux policy support is
loaded:

[Fri Apr 18 13:11:23 2014] [notice] SELinux policy enabled; httpd
running as context unconfined_u:system_r:httpd_t:s0-s0:c0.c1023

https://github.com/kaigai/mod_selinux

How it works...

The mod_selinux.c file contains the Apache module code and can be built using apxs—
the Apache eXtenSion tool. This tool will perform the following tasks:

e (Call the compiler with the proper arguments to build a dynamic shared object that can
be loaded at runtime by the Apache web server
¢ Install the resulting module in the proper Apache modules/ directory

The build failure mentioned in the recipe can come up depending on the Apache version in
use, where a variable has a different name (client_ip instead of remote_ip).

Next, we copied and deployed the mod_selinux SELinux policy just like we did with
other SELinux policy modules.

Finally, the web server is updated to enable the mod_selinux Apache module. With the
mod_selinux shared library in place, Apache is now ready to make SELinux-related
decisions.

If the mod_selinux support has to be distributed to multiple systems, then only the
mod_selinux.so (now installed in the web server modules/ directory, such as
/usr/1ib64/httpd/modules/) and mod_selinux.pp files (the SELinux policy module)
need to be distributed.

See also

e A good write-up on mod_selinux can be found at
http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

Starting Apache with limited clearance

In the previous chapter, we manipulated the /etc/rc.d/init.d/httpd init script to use
runcon in order for the web server to run with a limited clearance. But with the help of

mod_selinux, this can be made configurable.

How to do it...

In order to start Apache with limited security clearance, follow the given steps:

1.

2.
3.

Edit the Apache web server configuration file (httpd.conf) and add in the following
code:

<IfModule mod_selinux.c>
selinuxServerDomain *:s0-s0@:c0.c10
</IfModule>

Undo the changes made to the service script in the previous chapter.
Restart the web server and confirm that it is running with the s0-s0:c0.c10
clearance by issuing the following commands:

~# /etc/rc.d/init.d/httpd restart

~# ps -efZ | grep httpd

system_u:system_r:httpd_t:s0-s0:c0.c10 root 2838 1 0 13:14 ?
00:00:00 /usr/sbin/httpd

system_u:system_r:httpd_t:s0-s0:c0.c10 apache 2840 2838 0 13:14 ?
00:00:00 /usr/sbin/httpd

How it works...

As mentioned before, with mod_selinux, the Apache web server becomes SELinux-aware,
meaning it can alter its own behavior and interact with the SELinux subsystem based on
configuration settings as well as SELinux policy rules.

With the selinuxServerDomain configuration directive, mod_selinux performs a dynamic
change of the current context to a new context, which is called a dynamic domain
transition or dynamic range transition (it is called domain if the type changes, range if the
sensitivity level or security clearance changes). This is only possible if an application is
SELinux-aware.

Now, such a transition is still governed through SELinux policies. For instance, the range
to which the Apache web server can transition must be dominated by the range the Apache
web server originally has (which was s0-s0:c0.c1024 in our example).

Note

The mod_selinux module does not support lookups on the context, making it impossible
to use human-readable sensitivities (governed through mcstransd as we’ve seen
previously).

There’s more...

It is possible to define different types, allowing the entire web server to run in a custom
domain. For this to happen, the httpd_t domain must have the rights to dynamically
transition to the target type (the dyntransition permission in the process class). Then,
the selinuxServerbDomain call could look like the following code:

selinuxServerDomain myhttpd_t:s0-s0:c0.c10

Of course, many more privileges are needed as well in order to access resources already
accessible by the httpd_t domain at startup, but the dyntransition permission is specific
to the SELinux-aware applications that want to support dynamic domain transitions
instead of transitioning upon process execution.

Mapping HT'TP users to contexts

Applications generally run with a static context, which inhibits all privileges that are
needed for the application. Even services (daemons) generally stay within their own
context during the entire life cycle of the service. But, with mod_selinux, it is possible to
transition the context of the web server handler (the process or thread responsible for
handling a specific request) to another context based on the authenticated user. This allows
the administrator to grant certain privileges to the application based on the user. When a
lower-privileged user abuses a vulnerability in the web application, then the reduced
privileges on the web application itself might prevent a successful exploit.

How to do it...

Through the following set of steps, we will map a web user to a specific SELinux context:

1. Create a mapping file in which the users are listed together with their target context.
For instance, to have user John’s requests handled with the sensitivity s@:co, c2, user
Cindy’s requests with the sensitivity s@:c0.c5, c¢7, all unauthenticated users as
anon_webapp_t :s0, and the other authenticated users as user_webapp_t:s0:c0:
john *:1s80:c0,c2
cindy *:s80:c0.c5,c7

__anonymous__ anon_webapp_t:s0
* user_webapp_t:s0:c0

2. Save this file on a web server-readable location, such as
/etc/httpd/conf/mod_selinux.map.
3. Edit the web server configuration file and add in the following line:

selinuxDomainMap /etc/httpd/conf/mod_selinux.map

4. Restart the web server.

How it works...

The mod_selinux module is aware of the authenticated user value and, based on the
settings in the mappings file, it can transition the request handler to a smaller sensitivity
range (as is the case in the first two examples) or to different domains altogether.

There is an important constraint to this though. The target context to which the handler can
transition must be bound by the main type (httpd_t). This means that the permissions
granted to the target context must be a subset of the permissions granted to httpd_t. This
is performed through the typebounds statement, as follows:

typebounds httpd_t anon_webapp_t;

This is because web server handlers are usually threads (or lightweight processes) instead
of processes. Threads share a lot of resources, often in ways that SELinux cannot manage.
As a result, if one thread gains more rights than the web server, then the secure state of the
web server (as a whole) might be in jeopardy. Also, the information flow between
different contexts would be difficult, if not impossible to govern.

Using source address mapping to decide
on contexts

The mod_selinux Apache module has access to other information than just the username
(in case of authenticated users). It can access environment variables (which are used in the
Apache web configuration through the setEnvIf directives), allowing a very flexible
approach on SELinux context handling within the application.

In this recipe, we will use this to change the context of request handlers based on the
remote IP address of the client.

How to do it...

Alongside web users, we can also use source address information to decide on the context.
This is done by completing the following steps:

1. First, we define the TARGETDOMAIN environment variable based on the remote IP
address in the web server configuration (httpd.conf):

SetEnvIf Remote_Addr "10\.0\.[0-9]+\.[0-9]+$"
TARGETDOMAIN=user_webapp_t:s0O

SetEnvIf Remote_Addr "10\.1\.[0-9]+\.[0-9]+$"
TARGETDOMAIN=anon_webapp_t:s0O

SetEnvIf TARGETDOMAIN A$ TARGETDOMAIN=*:s0

2. Then, in the same web server configuration, we invoke the selinuxDomainEnv
directive, which will have the handler context transitioned to the value inside
TARGETDOMAIN:

selinuxDomainEnv TARGETDOMAIN

3. Restart the web server for the changes to take effect.

How it works...

In the first step, we used Apache’s SetEnvIf directive (provided through mod_setenvif)
to check the remote IP address of the client (Remote_Addr). If it matches the expression
given, then we set the TARGETDOMAIN variable to the given context. In our example, we
used a different type for each match, but it is also possible to just change the security
clearance. We finished with a check that verified if the TARGETDOMAIN variable has been
set. If not, then a default value (*:s0) is assigned.

Next, we called the selinuxbDomainEnv directive, which makes a transition to the domain
provided in the TARGETDOMAIN variable.

There’s more...

The example uses Remote_Addr, but many other request-related aspects can be used:

With Remote_Host, the hostname of the client can be queried and used to make
decisions.

With server_Addr, the address of the web server itself (on which the request was
received) can be used. This is useful in a multihomed system, where the web server
binds to all available IP addresses.

With Request_Method, the type of request (such as GET or POST) can be used.

With Request_Protocol, the name and version of the HTTP protocol (such as
HTTP/1.0 or HTTP/1.1) can be used.

With Request_URI, the request URL can be used to tune the context or clearance.

See also

¢ For more information about Apache’s mod_setenvif support, consult the module
documentation at http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html

http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html

Separating virtual hosts with mod_selinux

One of Apache’s strengths is that it can differentiate sites based on the name used to
connect to the server, rather than just the IP address, port, and URL. This is called virtual
host support and is a very popular approach to multitenant website and web application
hosting.

For instance, a web server running on a single IP address can still host the sites of multiple
customers, say www . companyX.com and www.companyY .com. With mod_selinux, we can
change the context or security clearance of the web server request handlers based on the
associated virtual host.

How to do it...

The following approach distinguishes virtual host confinement through mod_selinux:

1. Decide on the contexts for the individual tenants. In the previous chapter, we used
s0:¢100 for company X and s0:c101 for company Y.

2. In each virtual host, set the right clearance. For instance, for company X set the
clearance as follows:

<VirtualHost *:443>
ServerName www.companyX.com
selinuxDomainvVal *:s0-s0:c100
</VirtualHost>

3. Restart the web server for the changes to take effect.

How it works...

Unlike the selinuxServerbomain directive, which is for the entire web server, the
selinuxDomainval directive sets the context of the handlers (virtual hosts) individually.
As we covered in the previous chapter, using multiple categories for a multitenant system
is a flexible way of dealing with information isolation between tenants.

An important difference with the previous chapter, however, is that the mod_selinux
module does not use mcstransd. The following setting will fail:

selinuxDomainVal *:CompanyXClearance
Such a setting would result in the following error message by Apache:

[error] (22)Invalid argument: SELinux:
setcon_raw("unconfined_u:system_r:httpd_t:CompanyXClearance") failed

As such, we need to use the standard sensitivity notation.

See also

¢ You can find more information about Apache virtual host support at
http://httpd.apache.org/docs/2.4/vhosts/

http://httpd.apache.org/docs/2.4/vhosts/

Chapter 4. Creating a Desktop
Application Policy

In this chapter, we will cover the following topics:

Researching the application’s logical design
Creating a skeleton policy

Setting context definitions

Defining application role interfaces

Testing and enhancing the policy

Ignoring permissions we don’t need
Creating application resource interfaces
Adding conditional policy rules

Adding build-time policy decisions

Introduction

Up until now, we’ve modified and enhanced existing policies and interacted with the
SELinux subsystem through the available administrative commands. But, in order to truly
benefit from the protection measures that SELinux provides, we need to create our own
policies for applications that would otherwise run with either too many privileges, or not
run at all.

Desktop applications are a good example. The end user domains (unconfined_t for
policies which support unconfined domains, and user_t, staff_t, and the like for the
other policies) have many privileges assigned to them to allow generic applications to be
executed while remaining in the user domain.

This has a huge downside: vulnerabilities within desktop applications or malfunctioning
applications can create havoc with the users’ files and resources, potentially exposing
information to malicious users. If all end user applications run within the same domain,
then we cannot talk about a least privilege environment. After all, this single user domain
then has to have the sum of all privileges needed by various applications.

In this chapter, we will create a desktop application policy for Microsoft Skype™, a
popular text messaging, voice, and video call application, which also runs on Linux
systems, but is proprietary and thus its code cannot be reviewed to find what it might do.
Confining this application ensures that the application can only perform the actions we
allow it to do.

Researching the application’s logical
design

Before embarking on a policy development spree, we need to look at the application’s
behavior and logical design. We will get to know the application and its interactions as we
begin to model this into the SELinux policy.

How to do it...

To prepare an SELinux policy for the application, let’s first look at how the application
behaves:

1. Look into the files and directories that the application will interact with and write
down the privileges that the application needs. Try to structure access based on the
functionalities of the application.

2. Figure out which network resources are required by the application, which ports does
the application bind (listen) to (if any), and which ports does it need to connect to.

3. If the application needs to interact with other SELinux domains (processes), how
does this interaction look (or what is it for)?

4. Does the application require specific hardware access or other kernel-provided
resources?

How it works...

Gathering information on at least these four resources (files, network, applications, and
hardware/kernel) helps us to start with a skeleton policy file. In the end, we might have a
schematic representation of these resources, as shown in the following diagram:

-\.___ - 4
-{.Slkype End user skype configuration Listan TCP port 34431
${HOME} Download/Upload files Connect TCP high port range
Birnd UDP high part range
Connect TCP port 443, B0

Skype
%11 Graphical application

Sound Readfwrite sound (call functionality)
Video Readfwrite video (webcam functionality)

B T '

Let’s look at how this works out for our example.

Files and directories
There are three main file accesses needed for the Skype™ application.

The first is its own, user-specific configuration, which is stored at ~/ . Skype/. This will
contain all settings for the application, including contact list, chat history, and more. In
SELinux, user-specific configuration entries are labeled as *_home_t and marked as user
home content, allowing the end user to still manage these resources.

The second consists of the generic user files, which our application needs access to in
order to upload or download files. This can be any end user file, although some
distributions create specific support for this (such as through a ~/bownloads/ location).

The third consists of the general resources of the Unix system that are available for the
application. This access is needed for the application to load the necessary libraries.
During application policy development, this is often not mentioned, as it is a default
access provided to all applications.

Network resources

The application needs to interact with network resources through its messaging, voice, and
video chat functionality.

In general, we know that the application needs to connect to the central Skype™
infrastructure for all centrally managed services, such as authentication, directory

searches, and more. This connection will be through TCP.

Next to the central infrastructure, the application will also connect to the Skype™
instances of other users for direct communication. This connection will be through both
TCP and UDP (as UDP is more common for video and voice).

Processes

As the application is a graphical application, we know that it needs to interact with the
X11 server running on the workstation. As we will see in the recipes in this chapter, this
automatically requires a set of types and permissions to be assigned to the application.

Other than that, there are no specific interactions with other domains.

Hardware and kernel resources

Finally, on the hardware level, the application will need access to the video and sound
devices (for the webcam and voice call functionality, respectively).

The application will also need to use the user terminals in case of errors (so that the error
message can be displayed).

Creating a skeleton policy

With the logical setup now in place, we can draft a skeleton policy. This policy will be a
translation from the logical setup we encountered to SELinux policy rules.

The entire policy is written in a myskype. te file. The final result of this set of recipes is
also available through the download pack of this book as a reference.

How to do it...

We start with a base skeleton that we can enhance later. This skeleton is developed as
follows:

1. We start with the declaration of the various types. From the design, we can deduce
four types:

o skype_t as the main process domain

o skype_exec_t as the label for the Skype executable(s)

o skype_home_t for the user configuration files and directories of the skype_t
domain

o skype_tmpfs_t is needed for shared memory and the X11 interaction

The code to deduce these four types is as follows:
policy_module(myskype, 0.1)
attribute_role skype_roles;

type skype_t;

type skype_exec_t;
userdom_user_application_domain(skype_t, skype_exec_t)
role skype_roles types skype_t;

type skype_home_t;
userdom_user_home_content(skype_home_t)

type skype_tmpfs_t;
userdom_user_tmpfs_file(skype_tmpfs_t);

2. Next, we write up the policy rules for accessing the various types, starting with the
manage rights on ~/ . Skype/:

Allow manage rights on ~/.Skype

manage_dirs_pattern(skype_t, skype_home_t, skype_home_t)
manage_files_pattern(skype_t, skype_home_t, skype_home_t)
userdom_user_home_dir_filetrans(skype_t, skype_home_t, dir, ".Skype")

3. We enable the x11 access and shared memory. This is a common set of privileges that
need to be assigned to X11-enabled applications:

Shared memory (also needed for X11)

manage_files_pattern(skype_t, skype_tmpfs_t, skype_tmpfs_t)
manage_lnk_files_pattern(skype_t, skype_tmpfs_t, skype_tmpfs_t)
manage_fifo_files_pattern(skype_t, skype_tmpfs_t, skype_tmpfs_t)
manage_sock_files_pattern(skype_t, skype_tmpfs_t, skype_tmpfs_t)
fs_tmpfs_filetrans(skype_t, skype_tmpfs_t, { file lnk_file fifo_file
sock_file })

Application is an X11 application
xserver_user_x_domain_template(skype, skype_t, skype_tmpfs_t)

4. Next, we write down the network access rules, as follows:

Network access
corenet_tcp_bind_generic_node(skype_t)
corenet_udp_bind_generic_node(skype_t)

Central skype services
corenet_tcp_connect_http_port(skype_t)
corenet_tcp_connect_all_unreserved_ports(skype_t)
Listen for incoming communication
corenet_tcp_bind_all_unreserved_ports(skype_t)
corenet_udp_bind_all_unreserved_ports(skype_t)

. Finally, we have the device accesses:

Voice and video calls
dev_read_sound(skype_t)
dev_read_video_dev(skype_t)
dev_write_sound(skype_t)
dev_write_video_dev(skype_t)

Terminal (tty) output
userdom_use_user_terminals(skype_t)

How it works...

In the skeleton policy, we start with the SELinux policy rules that we know will be
necessary. If we are somewhat uncertain about one or more rules, it is perfectly fine to
comment them out for starters and enable those as we move on to the testing phase in the
Testing and enhancing the policy recipe later.

The skeleton starts off with the type declarations, which focus on the resources of the
application. We then enhance the application domain with the proper privileges towards
these resources. After the resource access, we look at the X11 privileges and finish with
the network interaction of the application.

Type declarations

The first part of any policy is the declaration of types and roles. We first create a role
attribute called skype_roles to which the skype_t SELinux domain is granted. This role
attribute will then be assigned to the users who are allowed to call the application. Next,
we list the various SELinux types that the policy will provide and also give those types a
specific meaning. For instance, the skype_t and skype_exec_t types are given the proper
meaning through the userdom_user_application_domain template. This template looks
like the following:

interface(userdom_user_application_domain', "
application_domain($1, $2)
ubac_constrained($1)
")
The application_domain template, which is called from within
userdom_user_application_domain, has the following definition:

interface(application_domain', "

application_type($1)

application_executable_file($2)

domain_entry_file($1, $2)
)
This results in the skype_t domain to be marked as an application type (a true domain),
whereas skype_exec_t is an executable file, which can be used as an entry point to the
skype_t domain. Finally, skype_t is marked as ubac_constrained, which is used in case
of User-based access control (UBAC), where access to resources is not only governed
through the types and its access vectors, but also through the SELinux user. In other
words, if the SELinux user, userX_u, would somehow be able to access the processes of
another SELinux user (userY_u), then the skype_t domain will not be reachable as the
UBAC constraints would come in action, preventing any interaction between the two.

All userdom_user_* templates mark the associated resources as UBAC constrained,
together with the true file type association, so userdom_user_tmpfs_file marks the file
not only as a tmpfs_t file (the type used for shared memory), but also makes it UBAC
constrained.

Managing files and directories

Next, we provide the access rights to files and resources. In the example, we limit access
to ~/.Skype/ only and automatically mark ~/.Skype/ as skype_home_t when it is created
inside a user home directory (through userdom_user_home_dir_filetrans), even though
we identified the need to manage user content files as well. This is because we need to
make a policy design decision here—do we want the application to have full access to all
user resources or would we rather limit the access? And inversely, do we want other
applications that can access user content to access Skype™ user (configuration) data?

If we do not want the application to access any user content, then we do not need to add
any rules: the policy will only allow search rights through the user home directory (in
order to locate ~/.Skype/) and deny everything else.

If we would like to grant the application access to the user content, we can add in the
following calls:

userdom_manage_user_home_content_files(skype_t)
userdom_manage_user_home_content_dirs(skype_t)

This will grant full manage rights on user files and directories to the skype_t domain.

In the Gentoo Linux policy, additional types have been made available to provide a finer-
grained access control to user files. These types map to the XDG Base Directory
Specification (XDGBDS) as provided by the Free Desktop community, and include the
xdg_downloads_home_t type. End users can mark files and directories as
xdg_downloads_home_t and allow applications to have selective access to user files,
without risking that these applications have access to the more private files of that user.

In Gentoo, this means that the following call can be added to the policy:
xdg_manage_downloads_home(skype_t)

X11 and shared memory

When an application needs to interact with the X11 server (as a client application), much
of this interaction is done through shared memory. In Linux, shared memory can be
interpreted as files on a tmpfs mount (think /dev/shm/) although other shared memory
constructions are still possible without tmpfs.

In SELinux, policy developers want to make sure that this shared memory is labeled
specifically for the domain. For this, they create a type with _tmpfs_t as the suffix. In our
example, this is skype_tmpfs_t. Of course, we need to grant manage rights on the shared
memory (for all classes that will be used) to the skype_t domain. In case of X11
interaction, these are files, symbolic links, FIFOs, and sockets.

Next to the manage rights, we also include a file transition: whenever skype_t creates a
file, symbolic link, FIFO, or socket in a tmpfs_t labeled location, then this resource
should be automatically labeled skype_tmpfs_t. This is done through the
fs_tmpfs_filetrans call.

Finally, we use xserver_user_x_domain_template that contains all the SELinux

privileges necessary for both the X11 client as well as X11 server to interact with each
other. This template uses a prefix argument (the first argument, which we provided as
skype), which will be used to create an X11 resource type called skype_input_xevent_t.
Similar to what we’ve seen for web servers (where an apache_content_template call was
used), this template gives an easy approach to automatically build additional types and
enable the X11 support.

Next to the prefix, the domain itself is passed (skype_t) and the label used for the shared
memory (skype_tmpfs_t) are passed on as those are needed for the X11 server support.

The network access

For the network access, we start by providing the skype_t domain with bind privileges on
a TCP socket and its IP address (which is represented by node_t).

Next, we allow the skype_t domain to connect to the central Skype™ services, which are
available on HTTPS port 443 (authentication) and various seemingly random high TCP
ports (network nodes). The HTTP target port is identified as an http_port_t type, the
others are for the unreserved ports.

Finally, we allow the skype_t domain to listen for incoming communications. By default,
this is on a high TCP port for messages and state information, while for voice and video
chat, this is through UDP.

A simple way to identify the necessary types is to look at the netstat output, as it shows
us what ports a process is listening on, the protocol family (TCP or UDP), as well as
which ports it is connecting to:

~$ netstat -naput | grep skype

tcp 0 0 0.0.0.0:34431 0.0.0.0:* LISTEN 8160/skype

tcp 0 0 10.221.44.241:40650 111.221.77.150:40008 ESTABLISHED
8160/skype

udp 06 0 0.0.0.0:34302 ©0.0.0.0:* 8160/skype

There’s more...

The access to the sound and video devices is trivial, but during the design, it is very well
possible that many more accesses are already identified (as ours is just an example). As
we continue developing policies, writing a skeleton policy will become more trivial.

A great source for learning more about the policies is to look for an existing policy of a
similar application, or an application that has certain functionalities that resemble the
functionalities offered by the application we’re writing a policy for. For Skype™, we
could look at the policy of Gift (a peer-to-peer file sharing application), which is an end
user, graphical application with peer-to-peer communication flows, supporting uploading
and downloading files.

After all, SELinux policies are a write-down of what the expected behavior is of a domain.
If another application has the same or similar behavior, then its policy will be very similar
too.

In the previous example, we grouped the permissions together based on the functional
need. However, the coding style for SELinux policy files, as mentioned by the reference
policy, uses a different grouping, so make sure that if the policy would be sent upstream,
this coding style is followed instead.

See also

e For more information about the XDGBDS, see
http://standards.freedesktop.org/basedir-spec/latest/

http://standards.freedesktop.org/basedir-spec/latest/

Setting context definitions

The next step in the policy development is to mark its resources with the proper file
contexts. This will label the files of the application correctly, making sure that the
SELinux policy makes the right decisions.

How to do it...

To update the file context definitions, follow the next set of steps:
1. Create the myskype. fc file and add in the definition for ~/.Skype/:
HOME_DIR/\.Skype(/.*)? gen_context(system_u:object_r:skype_home_t, s0)
2. Next, add in the definitions for the skype binaries:

/opt/skype/skype — gen_context(system_u:object_r:skype_exec_t,s0)
/opt/bin/skype — gen_context(system_u:object_r:skype_exec_t,s0)
/usr/bin/skype — gen_context(system_u:object_r:skype_exec_t,s0)

How it works...

The definitions for the binaries are standard, path-based context declarations. The one for
the user home directory, however, is special.

As can be seen from the example, the path starts with HOME_DIR. This is a special variable
used by SELinux libraries, which automatically maps to all Linux users’ home directories.
Rather than creating a /home/[A/]*/\.Skype(/.*)? context directly, which has the design
problem that home directories on other locations (such as /export/home/user/) will not
match, the SELinux libraries will check the home directories of all real users (with a user
ID starting at 500, although this is configurable) and for each different home root directory
(/home/ is the most commonly used one), it will generate the proper contexts.

The result of this operation is stored as the file_contexts.homedirs file inside
/etc/selinux/mcs/contexts/files/ and is automatically created during policy build
(through the genhomedircon command).

Next to HOME_DIR, other supported variables are HOME_ROOT (which represents the home
root path) and ROLE (which is the first role associated with a user).

Defining application role interfaces

Finally, before testing the policy, we need to create a role interface and assign it to the user
domain that will be used to test (and run) the application. If we don’t create a role
interface and assign it to a user domain, then the user domain will either have no
privileges to execute the application at all, or the application will run with the user context
rather than the newly defined skype_t domain. If the user domain isn’t unconfined, then
chances are that the application will fail.

How to do it...

Role interfaces are the gateways of a policy. They ensure that domains and SELinux users
can interact with the application and that the set of privileges for a particular application
are coherent.

We create such an interface in the . if file and then assign this interface to a user domain
in order to test the interface:

1. Create the myskype.if file with the following interface in it:

interface(skype_role', "
gen_require("”
type skype_t, skype_exec_t, skype_tmp_t, skype_home_t;
")
Allow the skype_t domain for the user role
roleattribute $1 skype_roles;
Allow domain transition for user domain to skype_t
domtrans_pattern($2, skype_exec_t, skype_t)
Interact with skype process
ps_process_pattern($2, skype_t)
allow $2 skype_t:process { ptrace signal_perms };
Manage skype file resources
manage_dirs_pattern($2, skype_home_t, skype_home_t)
manage_files_pattern($2, skype_home_t, skype_home_t)
manage_lnk_files_pattern($2, skype_home_t, skype_home_t)
Allow user to relabel the resources if needed
relabel_dirs_pattern($2, skype_home_t, skype_home_t)
relabel_files_pattern($2, skype_home_t, skype_home_t)
relabel_lnk_files_pattern($2, skype_home_t, skype_home_t)
")
2. Create a policy for the user domain (for instance, myunprivuser.te) that grants
regular users access to the skype_t domain, by assigning the user domain the

skype_role call:

policy_module(myunprivuser, 1.0)
gen_require(
type user_t;
role user_r;
)
optional_policy("
skype_role(user_r, user_t)
)
3. Build both policies and load them. Then, relabel the skype binary files (and possibly
preexisting ~/ . Skype/ locations):

~# restorecon /opt/skype/bin/skype /opt/bin/skype /usr/bin/skype
~# restorecon -RF /home/user/.Skype

How it works...

Although we have defined all the rules for the skype_t domain that we think are needed
(in the next recipe, the policy will be extended until it really works), we have not defined
the rules yet to allow a user domain to actually execute the skype_exec_t binaries and
have the process run in the skype_t domain.

To accomplish that, we need to ensure that a domain transition occurs to the skype_t
domain when the user executes skype_exec_t. This is handled by the domtrans_pattern
call. But before we allow the domain transition, we first need to allow the skype_t domain
for the user role, which is done through the roleattribute call.

Until now, we focused primarily on type enforcement rules (that is, granting privileges to
SELinux domains based on the label of the target resource). In order to allow certain users
to run an application, the application domain itself needs to be granted to the user role.
This is supported through SELinux’s role-based access control (RBAC) model. This
RBAC model ensures that a certain domain (skype_t, in our example) can only be used by
the roles we configure it for (user_r, in our example). Other roles, such as DBA roles
(dbadm_r) might have no need for running the Skype™ application, so they will not be
granted access to the skype_t domain.

Note

Not granting a domain does not necessarily prevent the application from executing within
the user domain itself. To accomplish that, we need to make sure that the executable file
type cannot be executed by other roles. Instead of using
userdom_user_application_domain for the skype_t and skype_exec_t types (which
would assign a generic executable attribute to the skype_exec_t type), we would use
something similar to the following:

application_type(skype_t)
files_type(skype_exec_t)
allow skype_t skype_exec_t:file { entrypoint mmap_file_perms ioctl lock };
ubac_constrained(skype_t)

As the user domain, which needs to be able to execute Skype™, also needs to manage the
skype_home_t files (in case, manual intervention in ~/.Skype/ is needed or to make
backups), we grant it both manage privileges as well as relabel privileges. The relabel
privileges are needed when, for instance, a backup is restored.

For the user domain, we then call the skype_role interface we just created. In the
example, we used the optional_policy statement. This allows policy modules to be
loaded even when one of the calls cannot be resolved or is not supported.

Suppose we need to unload the myskype module. Without the optional_policy statement,
the myunprivuser module would need to be unloaded as well, even though this policy
module might contain other rules that are important for the user domain to work correctly
(in the example, we only called the skype_role interface, but after some time, the module
might call many other interfaces as well). If we don’t unload the module and no

optional_policy statements are used, then SELinux will warn the administrator about
unresolved dependencies between the modules.

With the optional_policy statement, the SELinux tools know that the call might become
unresolvable, in which case, the entire block (everything inside the optional policy
block) will be ignored while the module remains loaded.

There’s more...

At the beginning of the recipe, we mentioned that unconfined user domains will be able to
execute the application without a domain transition. This is to be expected, as the entire
idea behind unconfined domains is that they are, well, unconfined.

It is considered a bad practice to, in general, create domain transitions from an unconfined
domain to confined domains. Only in very specific circumstances do domain transitions
from an unconfined domain to confined domains make sense (such as when the target
domain is used to confine potentially vulnerable applications, such as a sandbox domain).

From a security perspective, it makes more sense to confine users immediately and use the
proper domain transitions between (confined) user domains and the application domains.

Testing and enhancing the policy

With the policy ready and loaded, it is time to start testing the application from a user’s
perspective, while keeping an eye on the audit logs (for denials) and application output.

Testing the application is an important phase of policy development and will also be the
most time consuming task. During testing, several functional features of the application
will be tried and the resulting permissions (SELinux-wise) will need to be added to the
policy.

In previous recipes, such as Creating a skeleton policy, we enabled a set of permissions
based on other policies and common sense. However, these permissions have not been
validated and tested yet. In this recipe, we will assert that the permissions are truly needed,
as we do not want to create a policy with too many rights associated with it.

How to do it...

Testing policies is a repetitive task. Every try-out means that the AVC denials leading up
to the start need to be discarded (as we do not want to include privileges not related to the
test) after which the application is tested and the results are documented. Depending on
how the application acts, new policy rules are added to the policy:

1.

Write down the current timestamp or create a reference point inside the audit logs
(for instance, by reloading the SELinux policy), so we know from which point in the
audit logs we need to look at the audit events:

~# semodule -R

As an end user, start the application (from a terminal window) and watch what
happens.
Write down the error that is displayed (if any):

~$ skype
skype: error while loading shared libraries: cannot restore segment
prot after reloc: Permission denied

Look into the denials as displayed in the audit logs:

~# ausearch -m avc -ts recent

For each first denial or denial related to the error shown earlier, try to enhance the
policy with the proper call and try again.

How it works...

In this phase, we are enhancing the policy step by step. Some policy developers like to run
the application in permissive mode (either by running the entire system in permissive
mode or by marking this particular domain as a permissive domain), registering all
accesses performed (through the AVC denials) and enhancing the policy based on that
information. Although this might give a faster working policy, these developers will also
risk that they add too many privileges to a policy, something that is very difficult to
challenge and change later.

Instead, we let SELinux prevent accesses and look at how the application reacts. Based on
the error logging of the application or the behavior of the application and the AVC
denial(s) seen through the logs, we can have a good picture of what privileges are really
needed.

For instance, simultaneously with the error presented in the example, the following denial
occurred:

type=AVC msg=audit(1398930752.113:608): avc: denied { execmod } for
pid=8943 comm="skype" path="/opt/bin/skype" dev="dm-2" ino=801
scontext=user_u:user_r:skype_t:s0O tcontext=user_u:user_r:skype_exec_t:s0
tclass=file

It is important that we focus on the first set of denials that occur and not on all denials
shown. It is very likely that denials shown after the first set of denials are from error
handling routines, either by the application or the system in general, which would never be
triggered in the first place if the proper permissions are granted to the domain. Trying to
grant those privileges as well would result in a too broadly defined set of permissions.

The preceding denial shown would result in the following addition to the policy:

Error 'cannot restore segment prot after reloc'
allow skype_t skype_exec_t:file execmod;

Ignoring permissions we don’t need

After repeated testing, we will have a policy that works, even though denials might still
show up in the audit logs. In order not to alarm any administrator, we might want to
disable auditing of those specific denials (while, of course, ensuring that critical access
vectors are still logged by the audit daemon).

How to do it...

In order to disable logging of certain denials that do not influence an application’s
behavior, trigger the denial and then register the dontaudit statements as explained in the
following steps:

1. For each denial shown in the audit logs, we need to find the corresponding
dontaudit rule set. Consider the following instance:

type=AVC msg=audit(1398936489.877:2464): avc: denied { search } for
pid=8241 comm="skype" name="modules" dev="dm-0" ino=1322041
scontext=user_u:user_r:skype_t:s0
tcontext=user_u:object_r:user_home_t:s0®@ tclass=dir

2. Search through the SELinux policies for dontaudit statements on this matter:

~$ sefindif dontaudit.*user_home_t. *search
interface(userdom_dontaudit_search_user_home_content',
dontaudit $1 user_home_t:dir search_dir_perms;

~

3. Add in the interface call to the policy, rebuild the policy, and then reload it. Repeat
until all cosmetic denials are no longer visible.

How it works...

Many operations performed by applications can be seen as cosmetic—although in the
example, the application really performs the searches through the user files, they are not
needed for the application to function correctly. For instance, it might be searching
through the entire directory until it finds its own files, which it does have access to.

By adding the dontaudit statements for these operations, we ensure that the audit logs
stay clean.

In case of problems, the administrator can still disable the dontaudit statements in the
policy, revealing every denial that SELinux has triggered (even those that are explicitly
marked as dontaudit):

~# semodule -DB

To re-enable the dontaudit statements, rebuild and reload the policy:

~# semodule -B

In certain situations, there might not be an interface related to dontaudit available. In that
case, create a new interface (as part of an SELinux policy module) with the dontaudit
rules defined in it. For instance, for a dontaudit rule set to ignore getting the attributes of
mozilla_ home_t content, we would create a mymozilla policy module with the
mozilla_dontaudit_getattr_home interface declared in it.

Creating application resource interfaces

Our application policy is almost ready for deployment. However, it currently is mainly
end user focused, and there are no ways of interacting with the skype_t domain (or other
resources managed by the skype module) except through the skype_role interface.

In this recipe, we’ll add an interface for reading skype_home_t.

How to do it...

Alongside the skype_role interface that we created in the Defining application role
interfaces recipe, we need to create additional resource interfaces so that other domains
can easily interact with the newly created policy:

1. Open the myskype.if file and add in the following content:

interface(skype_read_home', "
gen_require("”
type skype_home_t;
")
userdom_search_user_home_dirs($1)
allow $1 skype_home_t:dir list_dir_perms;
allow $1 skype_home_t:file read_file_perms;
allow $1 skype_home_t:1lnk_file read_lnk_file_perms;

")

How it works...

The recipe itself is simple—for each interaction with resources managed by the skype
module, we need to create an interface that can be called by other modules.

Each interface should be complete. For instance, in order to read the skype_home_t
content, a domain will first need to be able to search through the user’s home directory
(user_home_dir_t, which is not the same as user_home_t as the former is the type for the
home directory while the latter is for its contents); hence, the call to
userdom_search_user_home_dirs.

Then, the necessary privileges are assigned to the domain. As we do not provide any class
identifier in the interface name, the interface will grant read access to all (significant)
classes related to the skype_home_t type.

If we only want to grant read access to files (and not to the directory class), then the
interface would be called skype_read_home_files.

Adding conditional policy rules

We can further fine-tune our policy with conditionals. Some of the access vectors
identified earlier might not be necessary in all circumstances, so it makes sense to make
them optional and configurable through SELinux Booleans.

Two of the identified access vectors that are candidates for configurable policies are as
follows:

e Accessing the video and sound devices (in order to reduce the risk of malware or
vulnerabilities in the application to access the webcam or sound device and spy on
the unsuspecting users)

e Accessing all user content (instead of only the skype_home_t content)

How to do it...

The following set of steps allows us to make the policy more flexible for the
administrators to handle by introducing Booleans. These Booleans modify the behavior of
the policy and are added to a policy.

1. Inside myskype.te, create the definitions for both Booleans. This is usually done
before the type declarations:

gen_tunable(skype_use_audio, false)
gen_tunable(skype_use_video, false)
gen_tunable(skype_manage_user_content, false)

2. Inside the policy, group the statements that we want to trigger through the Booleans:

tunable_policy(skype_use_audio',
dev_read_sound(skype_t)
dev_write_sound(skype_t)

")

tunable_policy(skype_use_video', "
dev_read_video_dev(skype_t)
dev_write_video_dev(skype_t)

")

tunable_policy(skype_manage_user_content', "
userdom_manage_user_home_content_dirs(skype_t)
userdom_manage_user_home_content_files(skype_t)

Y)

How it works...

The gen_tunable declarations will generate Booleans that administrators can toggle on
the system. The first argument of each declaration is the name of the Boolean to be
created, while the second argument sets the default value of the Boolean.

Once Booleans are defined, the tunable_policy statements allow for grouping the
statement calls that need to be made configurable.

It is possible to have rules enabled when a Boolean is disabled as well. For instance, for
the skype_manage_user_content one, the following code can be used:

tunable_policy(skype_manage_user_content', "
boolean enabled
userdom_manage_user_home_content_dirs(skype_t)
userdom_manage_user_home_content_files(skype_t)

1

boolean disabled
userdom_dontaudit_manage_user_home_content_dirs(skype_t)
userdom_dontaudit_read_user_home_content_files(skype_t)

|)...
Booleans can also be combined, as shown in the following code:

tunable_policy(use_nfs_home_dirs && skype_manage_user_content', ™ .. ')

In such situations, the policy group rules will only take effect if both the Booleans are
enabled.

It is also possible to only enable rules if a Boolean is not set, as shown in the next line of
code:

tunable_policy(!use_nfs_home_dirs', .. ')

There’s more...

Tunable policies are a powerful extension to SELinux. However, there are some caveats to
this:

e [t is not simple to make the description of SELinux Booleans available to the
administrator. The descriptions are defined through in-policy comments, but this is
not used for custom modules—a full policy build needs to be made in order to
generate the policy.xml file that contains all descriptions.

e It is not possible to assign attributes within a tunable_policy group. Instead, policy
developers will need to make the permissions related to the attribute configurable (if
possible) or not assign the attribute at all.

e [t is not possible to use named file transitions within a tunable_policy group. In
general, that doesn’t matter that much—there are a few situations where a named file
transition would depend on a Boolean, but these situations do occur.

e [t is not possible to have the optional_policy statements within a tunable_policy
group. Instead, wrap the tunable_policy call with an optional_policy statement
first. It might be needed to create multiple blocks if a single Boolean would trigger
multiple policy calls that warrant the use of an optional_policy block.

Efforts are being made to remove these shortcomings from the SELinux subsystem
though.

Adding build-time policy decisions

The last enhancement we might want to look at is build-time policy decisions. Unlike
SELinux Booleans, these are policy blocks that are enabled (or disabled) based on build
parameters. We have encountered a few of these in the past already, namely enable_mcs,
enable_mls as well as distribution selection parameters, such as distro_gentoo or
distro_redhat.

In this recipe, we will enable the xdg_manage_downloads_home call but only when the
policy is built for a Gentoo system.

How to do it...

Build-time decisions are added to the policy using the ifdef statements, as can be seen
through the next set of steps:

1. Open myskype.te and add in the following block of code:

ifdef(distro_gentoo', "
xdg_manage_downloads_home(skype_t)
")
2. Rebuild the policy. On a Gentoo system, we can confirm that the access is now
granted through sesearch, whereas other distributions probably don’t even know the
xdg_downloads_home_t type:

~$ sesearch -s skype_t -t xdg_downloads_home_t -A

How it works...

The reference policy build system automatically defines a couple of parameters that can be
used by the ifdef macros. The build system uses definitions inside the build.conf file
available at /usr/share/selinux/mcs/include/ or
/usr/share/selinux/devel/include/ to generate such parameters.

For instance, the distribution parameter in build.conf is set as follows:

DISTRO ?= gentoo

Inside Makefile, this is converted into an M4PARAM setting:

ifneq ($(DISTRO),)
M4PARAM += -D distro_$(DISTRO)
endif

Through these M4 parameters, we can then use the ifdef statements to query the existence
of these parameters and make build-time decisions.

There’s more...

It is possible to add our own set of parameters. For this, we set the M4PARAM environment
variable before we call the make command (used while building the policy modules).

For instance, to support the debug statements, we could set the following in the policy:
ifdef(debug',” .. ')
During policy build, we can enable these statements as follows:

~$ export M4PARAM="-D debug"
~$ make mypolicy.pp

Chapter 5. Creating a Server Policy

In this chapter, we will cover the following recipes:

Understanding the service

Choosing resource types wisely
Differentiating policies based on use cases
Creating resource-access interfaces
Creating exec, run, and transition interfaces
Creating a stream-connect interface
Creating the administrative interface

Introduction

Desktop application policies protect a user from vulnerabilities within the application or
from unwanted behavior exerted by the application. On a server, however, the impact can
be much larger. Server policies are used to protect the entire system from unwanted
behavior, abusive access by users, or exploited vulnerabilities within the application.

Services also have a long lifetime. Unlike desktop applications, which usually start up and
shut down together with the users’ daily work cycle, services tend to run nonstop, 24/7.
This not only provides a larger time window to try and exploit these services, but also
happens in the background with services that the administrator might not be actively
watching.

Understanding the service

The first aspect of designing server policies is to understand the service at hand. Each
service has its own internal architecture, and understanding how the various processes and
resources interact with each other is extremely important.

Only when the internal architecture is fully understood will we be able to create a properly
functioning policy. Otherwise, we risk that the policy will be too broad (too many access
rights) or too restricted. Unlike applications, which are usually easy to test from an end
user point of view, services often have activities that are much harder to test (or even
consider).

How to do it...

Just like with desktop applications, understanding the application behavior is of key
importance to create good SELinux policies. Research into and analysis of the behavior
can be done by performing the following steps:

1. Research the service at large by looking for online architecture drawings or
architecture documentation.

2. Try to explore the service in a sandbox environment.

3. Follow some tutorials for the service with relation to both administration tasks as
well as end user tasks.

4. Structurally document how the service should be used.

How it works...

Understanding a service means to get some degree of experience with the administration
of the service. Trying to create a server policy for a specific database technology, but not
knowing how this database technology works, will be almost impossible.

Online research

Most services have well documented architectural information available online. By using
an Internet search engine, we can easily come to the architecture information for a
particular service.

While developing service policies, it is considered a best practice that the types and
domains are named similar to the functional services that are used. For instance, in a
Postfix architecture, functional services such as pickup, cleanup, smtpd, gmgr, and many
more are basic services that a Postfix administrator has to deal with. In SELinux policies,
we should try to have the domains labeled similarly (so the domain will be labeled
postfix_qgmgr_t for the gmgr service, postfix_spool_maildrop_t for the maildrop
queue, and so on).

Sandbox environment

Being able to play around with a service in a sandbox environment allows us to see the
interactions at hand. It also allows us to follow online tutorials or administration guides to
get to know the service.

There are many technologies available nowadays to play around with technologies.
Virtualization allows users to run complete systems in an isolated environment and has led
to the creation of virtual appliances.

Virtual appliances are virtual images that can be easily installed in a virtualized
environment. However, a pure virtualization still requires users to install an operating
system, install the service, and configure it before really starting to use it; virtual
appliances provide preconfigured systems that host one or more services out of the box.

Next to virtualization, containers are also starting to play a large role. Unlike
virtualization, software running inside containers is isolated from other software but is still
part of the operating system itself.

The structural documentation

After having a thorough read through the architecture of the application and perhaps even
playing around with the software, we might need to document the architecture of the
service further in order to deduce the right SELinux types and resources, as well as
interfaces and roles related to the service.

In order not to forget anything important, the logical architecture of a service can be
documented using the FAMOUS abbreviation:

e Feeds: This tells us which external resources provide input to the service in a more-
or-less batch-oriented approach as well as which external resources the service

interacts with.

¢ Administration: This informs us how the service is administered (command-line
interfaces, user interfaces, or other applications).

e Monitoring: This informs us about logfiles used or commands that are supported to
verify the state of the service.

e Operations: This documents the day-to-day runtime behavior of all the processes
(and the flows, using the CRUD method—Create, Read, Update, Delete). This is
usually the architecture information found earlier during the online research phase.

e Users and rights: This documents how users are defined and managed in the service.
This also documents which authentication or authorization backends are used, how
different roles within the service behave, and so forth.

e Security-related features: These tell us about security-related features such as
application-based access controls, firewall requirements (which in our case are
important for the policy network rules), and so forth.

With this information at hand, we can have a clear overview of how the service behaves.
For instance, a high-level view of the PostgreSQL database service looks like the

tcp: 5432
s ——D

postmaster

following diagram:
monitor

R
i &
Cu ! logfile E"

signal

postgres

signal CRUD R

__—\I___
[database files]

CRUD

CRUD CRUD CRUD

- g ——) admin utils
admin 1L|;|:51Shﬁ:|2 (initdb, backup — CRUD— backup files
L1 createuser,...) Eé —

Backup files are moved
to a remote system

Such a drawing helps us to identify types later on, both for the processes as well as the
resources involved. Any interactions with the service provided by third-party services is
shown as well, as these interactions will result in privileges that need to be assigned to the
other processes (that is, interfaces in the SELinux policy).

It is not easy to document how a service works without understanding the service at hand.
Because of the complexity of the service, it is a good practice to get experts or developers
of the service together and guide us in understanding the service. These developers and

engineers can later be used to challenge the SELinux policy that is being written.

See also

A nonexhaustive list of open source virtual appliance providers is as follows:

e Artica (http://www.artica.fr) for proxy, mail, and NAS appliances.

e Turnkey Linux (http://www.turnkeylinux.org/) offers more than a hundred ready-to-
use solutions.

e Vagrant (http://www.vagrantup.com/) is a management platform for virtual systems,
and has a large community of Vagrant boxes that provide virtual appliance-like setups
for many free software services.

e Docker (https://www.docker.io/) is not a true virtualization setup, but rather a
container-based approach. From the Docker Index (https://index.docker.io/), many
containers can be freely downloaded.

Many commercial technologies also provide development virtual machines to deploy.
Virtualization technology providers such as VMware® have solution-exchange
communities, where virtual images for various technologies are freely available.

http://www.artica.fr
http://www.turnkeylinux.org/
http://www.vagrantup.com/
https://www.docker.io/
https://index.docker.io/

Choosing resource types wisely

Services interact with resources, and the label that we assign to the resources is used by
the fine-grained access controls assigned to these resources. End user files (for users that
have a Linux account on the system) are labeled as user_home_t, which suffices for most
uses. However, when we deal with services, the choice of the resource label defines if and
how other applications can access those resources and is much more fine-grained than
what we currently use for end user files.

There are some best practices concerning resource type selection within SELinux policies,
which we will now look into.

How to do it...

The service resource types need to be carefully chosen. Their naming implies the
functional use of the resource, which already pushes the development of the policy in a
certain structure. The types and their affiliated permissions can be developed by
completing the following steps:

1.

Look for the processes that will run within their own specific domain and create the
domain types. For each domain, look for the entry files of that domain and create an
_exec_t type. Mark the type as either an init daemon type (when the service is
launched through a service script) or a D-Bus daemon (when the service is launched
through the D-Bus service). For instance, for the BIND service:

type named_t;
type named_exec_t;
init_daemon_domain(named_t, named_exec_t)

Look for all sets of logical resources that are used by the application. These are often
files specific to the service architecture (such as database files for a database service),
but shouldn’t be limited to files only.

Create specific types for these resources. For instance, for the Qemu virtual guest
images:

type gemu_image_t;

files_type(gemu_image_t)

Grant the domains the proper access to these resources. For instance, the gemu
process (running as gemu_t) will need manage rights on the images:

manage_files_pattern(gemu_t, gemu_image_t, qgemu_image_t)

Go through the infrastructural resources (PID files, logfiles, and configuration files)
and label these accordingly. For instance, for the named variable, the runtime data will
be named as follows:

type named_var_run_t;
files_pid_file(named_var_run_t)

Grant the domains the proper access to these resources, and if possible, enable a
proper file transition:

allow named_t named_var_run_t:file manage_files_perms;
allow named_t named_var_run_t:sock_file manage_sock_file_perms;
files_pid_filetrans(named_t, named_var_run_t, { file sock_file });

How it works...

An application policy always provides a common set of privileges. It starts with proper
domain definitions (showing how the policy will be structured) and is followed by the
resource access patterns. Resources can be functional in nature (specific to the application
that is being investigated for the policy) or more infrastructural (such as logfiles and
configuration files).

Domain definitions

Service domains are used to identify long-running processes that have a similar functional
scope. An example could be the BIND named process (which is defined as named_t) or
the Apache httpd processes (which are all running as httpd_t).

These service domains are usually launched from an init script, which results in the use
of the init_daemon_domain interface. If a service is launched by D-Bus, then the interface
to use is dbus_system_domain. Of course, multiple interfaces can be used: the PPP
daemon, for instance, supports both init scripts and D-Bus.

If a service daemon is launched by another daemon instead, then it is sufficient to mark
the process domain as a domain type and the executable type as the entry point:

type postfix_bounce_t;

type postfix_bounce_exec_t;

domain_type(postfix_bounce_t)
domain_entry_file(postfix_bounce_t, postfix_bounce_exec_t)

In this case, we need to provide the parent domain (in our case, postfix_master_t) the
rights to execute (postfix_bounce_exec_t) and transition (to postfix_bounce_t):

domtrans_pattern(postfix_master_t, postfix_bounce_exec_t, postfix_bounce_t)
Logical resources

The logical resources are the files that are specific to the applications’ functional design.
For instance, a virtualization layer such as Qemu will have a logical resource for the
image files (gemu_image_t). The logical resources for a web server have already been
discussed in an earlier chapter (such as httpd_sys_content_t for standard system read-
only web content).

Such resources are declared as regular file resources and the proper permissions are
granted to the various domains. Further down the document, when privileges for the
gemu_t domain are summed up, the manage_files_pattern line can be added to allow the
gemu_t domain to manage the images.

By making separate labels for each of the logical resources, we can create interfaces for
other processes that might need to interact with these resources without having to grant
those applications too many privileges.

Think of a backup application, such as Amanda. The actual backup data itself
(amanda_data_t) should only be accessible by the Amanda application. Other service

administrators on the same system should not have access to these files—backups can
contain sensitive information, so only the backup tool itself should have access to this
data. Even the backup administrators, who need to manage the backup infrastructure,
might not need direct access to this data.

Infrastructural resources
Infrastructural resources are file types that are often set for applications.

Logfiles are marked through the 1ogging_log_file interface and usually end with the
_log_t suffix, such as amanda_log_t. By marking it as a logfile, domains that are
assigned an operation concerning all logfiles (such as logging_read_all logs)
automatically have these privileges on the newly defined type. Often, a file transition is set
so that files created in /var/log/ automatically get the right type. This is done through the
logging_log_filetrans interface:

type amanda_log_t;

logging_log_file(amanda_log_t)

Directories created by amanda_t domain in /var/log (var_log_t) get the
amanda_log_t type:

logging_log_filetrans(amanda_t, amanda_log_t, dir)

Configuration files are marked as regular files (through files_type) and end with either
_conf_t or _etc_t. Some policy developers like to use _conf_t for real configuration
files and _etc_t for other miscellaneous files in the /etc/ directory structure that are not

direct configuration files. In most cases though, this is only for semantic reasons as all
related domains need the same set of privileges on both types.

Temporary files are marked through the files_tmp_file interface and end with the
_tmp_t suffix. A file transition is almost always put in place to ensure that the temporary
files are properly labeled:

type amanda_tmp_t;

files_tmp_file(amanda_tmp_t)

All files, directories and symbolic links created by amanda_t in a tmp_t
location should get the amanda_tmp_t label:

files_tmp_filetrans(amanda_t, amanda_tmp_t, { dir lnk_file file })

PID files and other generic run files are usually labeled ending with _var_run_t and are
marked as a PID file through the files_pid_file interface. As with logfiles, a file
transition is usually put in place as well:

type amanda_var_run_t;

files_pid_file(amanda_var_run_t)

Files and sockets created in /var/run should become amanda_var_run_t:
files_pid_filetrans(amanda_t, amanda_var_run_t, { file sock_file })

Other variable data that is not given a logical resource name is often labeled ending with
_var_lib_t. Such files are marked as regular files (using file_type) and a file transition
can be defined using files_var_lib_filetrans.

Differentiating policies based on use cases

As services mature, they often gain more features, which might not always be necessary.
For instance, daemons that are able to optionally connect to various network resources
depending on their configuration should not be allowed by the SELinux policy to always
connect to various network resources.

To govern these features, SELinux policy developers include Booleans to selectively
toggle policies based on the administrator’s requirements.

How to do it...

Booleans allow policy developers to create policy rules that only participate in access
control when the administrator has elected to use them. For services in particular, this is
often used to optionally allow privileges based on the use case of the service and is
implemented as follows:

1. Identify the policy blocks that should be marked as optional, depending on the
configuration. For instance, this could be a set of policy rules that allow PostgreSQL
to connect to other PostgreSQL databases:

corenet_tcp_connect_postgresql_port(postgresql_t)
corenet_sendrecv_postgresql_client_packets(postgresql_t)

2. For each block, create a well-chosen SELinux Boolean that administrators can easily
identify as the right Boolean to toggle for their specific use case. For instance, we can
create a postgresql_connect_db Boolean:

<desc>

Hit <p>

Determine if the PostgreSQL daemons can connect to other
databases.

</p>

</desc>

gen_tunable(postgresqgl_connect_db, false)

3. Surround the policy blocks that need to be toggled with a tunable_policy statement
for the chosen SELinux Boolean, as follows:

~

tunable_policy(postgresql_connect_db',
corenet_tcp_connect_postgresql_port(postgresql_t)
corenet_sendrecv_postgresql_client_packets(postgresqgl_t)

')

How it works...

Although we shouldn’t over-tune policies by generating dozens of Booleans, isolating
functionality that is often abused in exploits is a good practice.

Consider a database engine. Databases can have features that allow them to connect to
other databases (for instance, to set up database links or support some kind of cluster), but
in many situations, these features are not needed. If a database is compromised (through
SQL injection, for instance), it is better to make sure that this database cannot access other
databases (so the compromised database is sufficiently contained).

The configuration that toggles this behavior in a PostgreSQL setup could be named
postgresql_connect_db (for database-specific connections) or
postgresql_connect_all ports (for any target connection) and developed as shown in
the previous example (the example includes the in-line comment documentation that
would be used if the policy is meant to become part of the distribution policy or reference
policy project).

Accessing other resources on the network is a common feature that, if it is not part of the
standard behavior of the application, should be considered for making optional.

There are many other use cases that should be considered. Here is a nonexhaustive list:

e An application that can optionally execute system scripts or user-provided scripts
should be governed through an _exec_scripts or _exec_user_scripts Boolean.

e Allowed domain transitions to higher-privileged domains or increased privileges due
to some functionality is usually governed through _use_* Booleans. For instance, a
domain optionally supporting Java can have a _use_java Boolean.

e Access to specific filesystems or devices is also governed through _use_* Booleans,
such as _use_cifs (for SMB-CIFS filesystems) or _use_nfs.

e Functional support (such as Nginx support for various protocols) can be made
optional through _enable_* Booleans, such as nginx_enable_imap_server or
nginx_enable_pop3_server.

Creating resource-access interfaces

With all the resources defined, we now need to ensure that other domains can use those
resources as needed. As we’ve seen, resources can be functional in nature (specific to a
service) or more infrastructural (such as logfiles).

Access to resources is provided through SELinux policy rules that need to be provided
through access interfaces. These interfaces are then used by third-party SELinux policy
modules to document and allow access to the resource types. Without the access
interfaces, the resource types we define are not easily accessible by other policy
developers.

How to do it...

To create resource-access interfaces, add the proper interface definition in the module’s
.if file. For instance, to create a set of resource interfaces to access ClamAV'’s
configuration files, follow the next set of steps:

1. For each resource, create an overview of the privileges that will be needed. For file
class resources, these are often search, read, write, and manage privileges. In case of
logfiles, some applications only need append privileges (which ensures that they
cannot modify existing data, only add data to it).

2. Create the interface in the module’s . if file and ensure that it is properly
documented, as shown in the following code:

HAHAHHHH R B HHH AR R AR R AR R AR R R R
<summary>
Read clamav configuration files
</summary>
<param name="domain'">
<summary>
#it Domain allowed access
</summary>
</param>
#
interface(clamav_read_config', '
gen_require("
type clamd_etc_t;
1
)
files_search_etc($1)
allow $1 clamd_etc_t:file read_file_perms;

Y
3. Consider creating a dontaudit interface as well to assign to SELinux domains that
might attempt to perform this action while not needing the privilege:

HH#HHHHHHH BB R R HHHHH R R HH R R R
<summary>
#Ht Do not audit attempts to read the clamd configuration files
</summary>
<param name="domain'">
<summary>
#it Domain not to audit
#Ht </summary>
</param>
#
interface(clamav_dontaudit_read_config', "
gen_require(”
type clamd_etc_t;
")
dontaudit $1 clamd_etc_t:file read;
)

How it works...

The resource-access interfaces are needed to allow interaction with the SELinux types
managed through the SELinux module. The build environment does not have a default set
of privilege interfaces that are generated out of the box, so we need to create these
interfaces ourselves.

One might be tempted to only create the resource interfaces that are known to be used in
the immediate future. However, it is recommended to create the proper interfaces for all
resources and each individually with a coherent set of supported privileges. This is
because we never know how the resources will be used by others, and by not creating the
proper resources, we are forcing other developers to create their own my* modules to
provide interfaces.

By covering most access patterns towards the resources, we provide a nice set of
interfaces that other developers can use while keeping the interfaces all bound to a single
module.

Even the dontaudit related interfaces will play an important role for the users of the
SELinux policy. When policy developers commit policy improvements to repositories,
they usually do not dontaudit unless they are 100 percent convinced that these will hide
cosmetic denials and thus can be ignored. As a result, default SELinux system
deployments will have quite a few denials in the audit logs that need to be looked into by
the system administrator.

If the administrator doesn’t believe that the denials need to be enabled, then they will need
to be able to dontaudit them. Although the administrator can create the proper interfaces
themselves, it is much easier if the dontaudit interface definitions are already provided.

Creating exec, run, and transition
interfaces

Service domains usually have a few binaries that are executed by user domains or through
other service or application domains. Each case of these executions need to be properly
investigated to see if a domain transition is needed (that is, a specific domain needs to be
created for that execution environment) or if the command can run within the privileges of

the caller domain.

From an interface point of view, this is provided through the _exec, _run, and _domtrans
interfaces.

How to do it...

Execution-related interfaces allow for other policy modules to define the interaction with

this application. This interaction can be a regular execution, but can also contain a domain
transition to switch the application domain to the newly defined one. The set of execution
interfaces are created as follows:

1. For each execution where the application itself needs to run in the caller domain (so
no transition has to occur), create an _exec interface as follows:

HEAHBH AR AR R H R R R R R R AR AR TR
<summary>
#i Execute wm in the caller domain
</summary>
<param name="domain">
<summary>
Domain allowed access
#it </summary>
</param>
#
interface(wm_exec', "

gen_require(

type wm_exec_t;
1
)

corecmd_search_bin($1)

can_exec($1, wm_exec_t)
")

2. For each execution by a domain that is in the same role as the service (usually,

system_r) and where a transition has to occur, create a _domtrans interface as

follows:

HAHHHHHHHH B R R HHHHH R R HHH R
<summary>
#it Execute vlock in the vlock domain
</summary>
<param name="domain'">
<summary>
#it Domain allowed to transition
#Ht </summary>
</param>
#
interface(vlock_domtrans',
gen_require(
type vlock_t, vlock_exec_t;
)
corecmd_search_bin($1)
domtrans_pattern($1, vlock exec_t, vlock_t)

Y

3. For each execution by a domain that might not have standard access to the
application domain, and where a domain transition has to occur, create a _run
interface as follows:

HHHHHHHHHHBR B R B R BB H B R R R R R R
<summary>
Execute vlock in the vlock domain and allow the specific role the
vlock domain
</summary>
<param name="domain'">
<summary>
#it Domain allowed to transition
#it </summary>
</param>
<param name="role">
<summary>
#it Role allowed to access the vlock domain
#it </summary>
</param>
#
interface(vlock_run',"

gen_require("”

attribute_role vlock_roles;
1
)
vlock_domtrans($1)
roleattribute $2 vlock_roles;

Y

How it works...

The use of _exec, _run, and _domtrans are standard interface patterns in policy

development. The _role interface that we created during desktop application policy
development not only includes domain transition and role support, but also resource
accesses related to the user domain interacting with the desktop application domain.

In the _run interface, the only set of privileges that is provided is to transition to the right
domain and assign the domain to the right role (as part of SELinux role-based access
control). It is common practice that the order of the parameters of a _run interface are the
domain first and then the role—unlike the _role interfaces, where the role comes first and
then the domain.

In a _domtrans interface, only the domain transition is enabled. Usually, the _run
interfaces call the _domtrans interface so that both interfaces are defined and the right one
for the job is called by the caller SELinux policy module. But unlike the _run interfaces,
the _domtrans interfaces do not extend roles and are usually called by other modules for
service domain interaction.

For instance, the procmail_t domain (for the procmail daemon) might call the clamscan
application (part of the ClamAV setup) needing to transition to clamscan_t. It does so
through the clamav_domtrans_clamscan interface:

optional_policy("

clamav_domtrans_clamscan(procmail_t)
")
Finally, the _exec interface allows a domain to execute a binary without any transition.
This interface is needed when a binary is labeled as a specific executable type (not bin_t
or shell _exec_t) as most domains then do not have the privilege to access this file at all,
let alone execute it. For instance, the Postfix 1ocal daemon might call the clamscan
executable but does not need to transition, resulting in the following call:

optional_policy("
clamav_exec_clamscan(procmail_local_t)

Y

See also

e Assigning the newly created interfaces to roles is covered in Chapter 6, Setting Up
Separate Roles

Creating a stream-connect interface

Be it through the specific executable types or by the generic bin_t labeled commands,
executions that remain in the caller domain might still require additional privileges to be
assigned to the caller domain. These additional privileges could be reading of
configuration files or interacting with the main domain through Unix domain sockets or
TCP/UDP sockets.

In this recipe, we’ll set up a stream-connect interface (as the other privilege enhancements
are already covered through the regular resource-access interfaces or network-access
interfaces).

How to do it...

Interaction with an application socket can be done either through a socket file or through a
named Unix domain socket. This is application-specific, so consulting the application
documentation might be necessary up front.

For a Unix domain socket with a socket file

If the stream connection is through a Unix domain socket with a socket file, the interaction
with an application socket can be done by completing the following steps:

1. Identify and register the proper types in the . te file. Socket files usually have the
_var_run_t suffix as they reside in /var/run/.
2. Create a stream-connect interface that calls stream_connect_pattern as follows:

interface(ldap_stream_connect', "
gen_require(”
type slapd_t, slapd_var_run_t;
")
files_search_pids($1)
stream_connect_pattern($1, slapd_var_run_t, slapd_var_run_t, slapd_t)

")

For an abstract Unix domain socket

If the stream connection is through an abstract Unix domain socket (so no socket files are
involved), create a stream-connect interface that only provides the connectto privilege, as
follows:

interface(init_stream_connect',
gen_require("
type init_t;
)

allow $1 init_t:unix_stream_connect connectto;

")

How it works...

Daemons often provide methods to interact with them. Many services support Unix
domain socket-based communication between a client application (which usually runs
within the privileges of the caller domain) and the daemon itself.

In such cases, the daemon itself creates a socket file (usually in /var/run/) as some sort
of access point (applications can also use abstract namespaces, where no socket file is
needed anymore) and the caller domain is allowed to write to this socket and through it
connect to the Unix domain socket held by the daemon. The set of privileges is provided
by the stream_connect_pattern definition and can be visually represented as follows:

! i

i) :

=Tl — ! ! :

I) # 1 CLl application} - -- connectta--+-» T Dagmon !

i s e T ' i

i ORI SO SR S A,
write manage

L
¥+

Control Socket

Marfrun/control.sock

Svarfmun

The most important privilege here is the connectto privilege between the caller domain
and the daemon domain. In case of abstract Unix domain sockets, no socket file is used at
all and only the connectto privilege is needed.

These privileges are then written in the following domain-specific interface that calls the
stream_connect_pattern definition, which provides the proper privileges in one go:

~$ seshowdef stream_connect_pattern
define(stream_connect_pattern',
allow $1 $2:dir search_dir_perms;
allow $1 $3:sock_file write_sock_file_perms;
allow $1 $4:unix_stream_socket connectto;
")
If stream-connection-oriented applications are used whose binaries are not labeled as
bin_t, then a _stream_connect interface call is usually seen together with an _exec

interface call.

Creating the administrative interface

To end the SELinux module development for services, we need to create proper role-based
interfaces. Whereas the _role interface is usually for nonprivileged user roles, an _admin
interface is used to provide all the necessary privileges to fully administer a service.

How to do it...

An administrative interface which we can later assign to the user and role that will
administer the environment is created with the following steps:

1. Create a specific init script type for the init scripts of the daemon. For instance, for
the virtd daemon inside virt. te, the following policy rules create the proper init
script type:

type virtd_initrc_exec_t;
init_script_file(virtd_initrc_exec_t)

2. Make sure that this init script is labeled correctly through the . fc file:

/etc/rc\.d/init\.d/1libvirtd —
gen_context(system_u:object_r:virtd_initrc_exec_t, s0)

3. Start with a skeleton _admin interface:

HHHAHHHBH B HHH AR R AR R R R AR R
<summary>
All rules related to administer a virt environment
</summary>
<param name="domain'">
#it <summary>
Domain allowed access
</summary>
</param>
<param name="role">
#it <summary>
#it Role allowed access
</summary>
</param>
#
interface(virt_admin', "
gen_require(

Y

4. Identify all the resources that an administrator would need access to. Keep in mind
that administrators might need to directly modify files that are otherwise managed
through the service-related commands—do not take away this right from
administrators. A common pattern to use here is admin_pattern. Add in the proper

rights in the interface (and do not forget to update the gen_require block at the
beginning). Consider the following example:

files_search_tmp($1)
admin_pattern($1, virt_tmp_t)

5. Look through the administration guides for other operations that administrators might
need with regards to processes. Perhaps there are certain signals that could be
allowed to be sent to the daemons:

Allow the admin to run strace or other tracing tools against the

daemons

allow $1 virtd_t:process { ptrace signal_perms };

Allow admins to view all information related to the processes
ps_process_pattern($1, virtd_t)

. Allow the administrator to run the init script(s):

init_labeled_script_domtrans($1, virtd_initrc_exec_t)
domain_system_change_exemption($1)

role_transition $2 virtd_initrc_exec_t system_r;
allow $2 system_r;

How it works...

The _admin interface is meant to contain all the privileges needed for an (otherwise)
unprivileged user to administer a service. In essence, this unprivileged user will become
privileged for this particular service, gaining just those rights that the user needs in order
to manage the service, but nothing more.

We start by defining a particular init script type for the service. By default, the init
scripts are labeled initrc_exec_t and only the system administrator is allowed to execute
them. As we do not want to give a specific service administrator the privileges to execute
any init script, we create a specific script type (_initrc_exec_t) and then allow the user,
through the _admin interface, to execute that particular script type.

The latter, however, is more than just creating execute rights (which is done through the
init_labeled_script_domtrans call). Executing the script also means that the script
itself has to run in the system_r role. If we do not enforce this, then the script would
(attempt to) run in the role of the caller domain (such as virtadm_r) and fail, as the
initrc_t domain (the type used for the init scripts) is not allowed for the virtadm_r
role.

Transitioning a role upon executing a file is done through the role_transition directive.
In our example, we configure that the user role (such as virtadm_r) transitions to the
system_r role upon executing virtd_initrc_exec_t:

role_transition $2 virtd_initrc_exec_t system_r;

We need to allow the system_r role for the given user role as well, which is done through
the allow $2 system_r call. But even that is not sufficient.

SELinux has a constraint in place that prevents transitions to system_r, as the system_r
role is used for all system services and, as such, is a highly privileged role. The constraint
is defined so that only specific domains can trigger a transition to system_r. With the
domain_system_change_exemption call, we mark the user domain as one of these
domains.

Besides the init script-related permissions, most _admin interfaces provide administrative
rights to almost all resources provided by the module. To simplify policy development, the
admin_pattern call is used. This pattern not only provides manage rights (read, write,
execute, delete, and so on) on the resources, but also relabel rights, allowing the
administrator to relabel files and directories as the resource types used in the module (or
vice versa, relabel from those types to other types the administrator has relabel privileges
to).

With these relabel rights, administrators can call restorecon against files to label them
correctly (if properly defined in the SELinux policy) or use chcon to specifically set a
label.

See also

e Creating new administrative roles is covered in Chapter 6, Setting Up Separate Roles

Chapter 6. Setting Up Separate Roles

In this chapter, we will cover the following topics:

Managing SELinux users

Mapping Linux users to SELinux users

Running commands in a specified role with sudo
Running commands in a specified role with runcon
Switching roles

Creating a new role

Initial role based on entry

Defining role transitions

Looking into access privileges

Introduction

Roles provide a flexible, manageable approach to grant multiple users the proper rights.
Instead of assigning privileges to individual users, roles are created to which privileges are
granted. Users are then granted the role and inherit the privileges associated with this role.

In SELinux, roles are used to grant access to domains. An application domain that is used
to manage certificates on a system is assigned to one or more roles, thus allowing users
with that role to possibly transition into that application domain. If the user role does not
have this privilege, then the necessary permissions to manage certificates through that
application domain are not accessible for the user.

The following diagram shows the relation between Linux logins (regular Linux accounts),
SELinux users, SELinux roles, and SELinux domains:

Pl
))
L — x\ — ..___\ I/"‘l |II
(" useru) user r) e “\\'.
E g il e o et)]
; \\\ ! i’___ann-d_;_h)4
Fd % - §
user 1 T — — 'y.--ﬂmg"% :
: o fa Fa e et | i ”<
{ staff u \;—-' staff r 3 5 r‘y--amj"-u. {
R W ¥ W W R S
) et — £ @it))
- _____,-'-""--- / ¥ g TR _,n'l
- A e E\H\""\-\. el ! . !/
S s
/ L sysadm_u) { sysadm r Y
A ‘\ / \'\-\.___ = \"-.__ /.I
Iy — — - —
user 2 / ewrole l\“_l
£ = == Al
e o e = =
(system u /—/ system_r)
\‘m__ L e . ==
' serr'-anagnht\‘_u
oy =y
z""'_____' -'___'--\..\ T
/ \\ .funr:u::-nflnedﬁtﬁ-—-&uncnnflrlecl r)
user 3 Pl e Mt g g
Linux accounts SELinux users SELinux roles SELinux domains

To assign roles to users, Linux accounts are first mapped to an SELinux user. An SELinux
user defines which roles are accessible (as users can have multiple roles assigned) as well
as which security clearance the user can have at most (although lower security clearances
can be assigned to users individually as well).

On systems where SELinux is primarily meant to confine network-facing services and not
the users, this chapter will have little value. All users on these systems are mapped to the
unconfined_u SELinux user, which has a default user domain of unconfined_t and is
meant to be almost unrestricted—hence, the name, unconfined. When this is applicable,
most distributions call the SELinux policy store targeted to reflect that the confinement is
targeting specific applications and not the entire system.

Managing SELinux users

In order to grant a Linux login the right set of roles, we first need to create an SELinux
user that has just those roles assigned. Existing SELinux users can be modified easily, and
if an SELinux user was added previously, it can be removed from the system as well.

How to do it...

Managing SELinux users is done as follows:

1. Use semanage user to list the currently available SELinux users:

~# semanage user -1

Labeling MLS/ MLS/
SELinux User Prefix MCS Level MCS Range
SELinux Roles
git_shell u user s0 s0
git_shell_r
guest_u user s0 s0
guest_r
root user s0 s0-s0:c0.c1023
staff_r sysadm_r system_r unconfined_r
staff_u user s0 s0-s0:c0.c1023
staff_r sysadm_r system_r unconfined_r
sysadm_u user s0O s0-s0:c0.c1023
sysadm_r
system_u user s0O s0-s0:c0.c1023
system_r unconfined_r
unconfined_u user s0 s0-s0:c0.c1023
system_r unconfined_r
user_u user s0 s0O
user_r
Xxguest_u user soO sO
xguest_r

2. If no SELinux user exists yet, with the right set of roles, create it with semanage
user. For instance, to create a database administration SELinux user, run the
following command:

~# semanage user -a -R "staff_r dbadm_r" dbadm_u

3. Existing users can be modified as follows:

~# semanage user -m -R "staff_r dbadm_r" staff_u

4. An SELinux user can also be removed from the system:

~# semanage user -d dbadm_u

How it works...

When an SELinux user is created, SELinux will update its configuration files at
/etc/selinux/ to include support for this SELinux user. It is a general best practice to
name SELinux users after their functional purpose, so a database administrator (DBA)
is called dbadm_u, whereas a website administrator is called webadm_u.

The set of roles that are available to the administrator can be obtained using seinfo:

~# seinfo -r

Existing SELinux users can be modified. However, it is important that logged-in users are
logged out (and perhaps temporarily locked) from the system during the change.
Otherwise, the SELinux policy could suddenly mark their session as having an invalid
context and interrupt those users in their operations.

When an SELinux user is removed from the system, it is also important that all the
remaining files that have this SELinux user in their context are relabeled. Otherwise, these
files (and other resources) are labeled with an invalid context, making the files and
resources inaccessible to others.

Once an SELinux user is created, it is ready to be assigned to one or more Linux users.

There’s more...

With SELinux users, MLS settings can be provided as well. For instance, to set a specific
security clearance, the following command is used:

~# semanage user -a -r s0-s0:c0.c110 dbadm_u

For an SELinux user, this is the upper limit of the security clearance that a users’ context
can be in. When we assign users to an SELinux user, it is possible to force a lower security
clearance individually so that there is no need to create separate SELinux users for every
difference in security clearance.

Mapping Linux users to SELinux users

With the SELinux users available, we can now map Linux users to SELinux users. This
will ensure that the users, when logged in to the system, are assigned a default context
aligned with this SELinux user.

How to do it...

In order to map Linux users to SELinux users, the following steps can be taken:
1. List the existing mappings with semanage login:

~# semanage login -1

Login Name SELinux User MLS/MCS Range
__default_ user_u s0-s0:c0.c1023
root root s0-s0:c0.c1023
system_u system_u s0-s0:¢c0.c1023
%wheel sysadm_u s0-s0:c0.c1023

2. For an individual user account, map the account to an SELinux user with semanage
login:

~# semanage login -a -s dbadm_u useril

3. It is also possible to assign a group of users to an SELinux user through their primary
Linux group. For instance, if a dba group exists, it can be assigned to an SELinux
user as follows:

~# semanage login -a -s dbadm_u %dba

4. Mappings can be modified easily:

~# semanage login -m -s webadm_u useril

5. If a mapping is no longer needed, it can be removed as well:

~# semanage login -d userl

How it works...

The semanage login application manages the seusers file in /etc/selinux/. This file is
used by SELinux’s pam_selinux.so authentication library that is called when a user logs
in to a system. Upon invocation, SELinux will check the seusers file to see which
SELinux user a Linux account is mapped to. It will then perform an SELinux context
switch so that the rest of the login process (including the shell or graphical environment
that is launched) will have the right SELinux context assigned to it.

Creating login mappings does not influence the existing sessions, so if a user is already
logged in, it is wise to have the user log out first. Also, any files created by the user in the
past might have a wrong SELinux user associated with them. Any login that isn’t
specifically mentioned will be assigned a default SELinux user. If the SELinux user
changes, then the files owned by this Linux login will suddenly have a wrong SELinux
user set. If the user-based access control feature in SELinux is enabled, then these files
will not be accessible anymore by the user. In this case, the administrator will need to
relabel the files forcefully (which includes resetting the SELinux user):

~# restorecon -RF /home/useril

In case of both user mappings and group-based mappings, the first mapping that is
mentioned in the seusers file that matches a particular login is used.

When a user logs in and no mapping matches the login itself (either through a direct match
against a Linux account name or through a group membership), then SELinux will look at
the login mapping for the _ default__ user. This is a special rule that acts as a fallback
rule. On systems with unconfined users, the _ default__ user is usually mapped to the
unconfined_u SELinux user. On systems without unconfined users, __default__ usually
maps to the (unprivileged) user_u SELinux user.

Running commands in a specified role
with sudo

When a user has been assigned multiple roles, they usually work with their primary role
(such as staff_r) and only selectively execute commands with the other role. This can be
accomplished through the sudo command, as these commands usually also require a
different Linux user (which can be root or the postgresql account for DBA tasks on the
PostgreSQL database server).

How to do it...

In order to configure sudo to perform the right role and type transition, execute the
following steps:

1. Open up the sudoers file through visudo:

~# visudo

2. Define the commands that the user(s) are allowed to execute. For instance, to allow
all users in the dba group to call initdb in the dbadm_r role, define the commands as
follows:

%dba ALL=(postgres) ROLE="dbadm_r" TYPE="dbadm_t" /usr/sbin/initdb

3. The users in the dba group can now call initdb, and sudo will automatically switch
to the dbadm_r role and the dbadm_t user domain when initdb is called:

~$ sudo -u postgres initdb

How it works...

The regular user domains that users run with are, by default, not that privileged. Although
it is possible to extend the privileges of the role and user domains directly, the best
segregation is provided through different roles. Such an approach allows unprivileged user
domains, such as staff_t, to be used by multiple, different organizational roles (and thus,
SELinux users).

Once a privileged command needs to be executed, users will need to switch their active
role. If this is only needed for a small set of commands, which also require switching the
Linux user itself (such as switching to the postgres runtime account), then privilege
delegation tools such as sudo are often used.

The sudo command is an SELinux-aware application that can be configured to assist in
switching the SELinux context as well. This can be done through the command line
directly if the user wants:

~$ sudo -u postgres -r dbadm_r -t dbadm_t initdb

However, most administrators will want to configure this in the sudoers file. This is more
user friendly as the end user does not need to continuously pass the role and type parts of
the context in which commands need to be executed.

Of course, this requires that the SELinux user that is calling sudo has the privilege to run
commands in the dbadm_r role. If not, then even if the sudoers file mentions that the user
can execute the command, the transition (and thus, the command) will fail, as shown in
the following command:

~$ sudo -u postgres initdb
sudo: webadm_u:dbadm_r:dbadm_t:s0-s0:c0.c1023 is not a valid context

See also
For more information on sudo and the sudoers file, check out their associated manual
pages:

~$ man sudo
~$ man sudoers

The main project site for the sudo application is at https://www.sudo.ws.

https://www.sudo.ws

Running commands in a specified role
with runcon

Using sudo is not mandatory. SELinux also provides a command called runcon that allows
users to run a command in a different context. Of course, SELinux restrictions still apply
—the user must have the proper privileges to execute commands with a different context.

How to do it...

Running a command using a specified role and type is done by completing the following
steps:

1.

Identify the domain in which the command should run, usually by checking the
executables’ context and searching for the entrypoint definition:

~$ 1ls -Z auditctl
system_u:object_r:auditctl_exec_t auditctl
~$ sesearch -t auditctl _exec_t -c file -p entrypoint -A
Found 1 semantic av rules:
allow auditctl t auditctl _exec_t : file { .. entrypoint .. };

Call the command, passing along the role and target type:

~$ runcon -r secadm_r -t auditctl_t auditctl -1

How it works...

The runcon application tells SELinux that the invocation of the command should result in
a type and role transition towards the specified type (auditctl t) and role (secadm_r).
SELinux will perform multiple checks and validations before this will actually succeed.
These checks are as follows:

e Does the current user have the right to execute auditctl (execute rights on
auditctl_exec_t)?

¢ Is arole switch from the current role (say staff_r) to the new role (secadm_r)
allowed?

¢ s there a policy in place that allows transition from the current type (say staff_t) to
the selected type (auditctl t)?

e [sauditctl_t avalid target domain if the executed file is auditctl _exec_t (which
is the entrypoint check)?

e s the target context (such as staff_u:secadm_r:auditctl_t) a valid context (which
implies that the current SELinux user has access to the given role)?

The runcon application can be used when no Linux user transition needs to occur
(although this doesn’t exclude the use of sudo). In the example of auditctl, this means
that the regular access controls on Linux still apply—if the current user does not have the
rights to access the files used by auditctl, then using runcon will not suffice.

Switching roles

When a role transition is needed for more than just a couple of commands, it is necessary
to open a shell with the new role. This will ensure that the entire session is now running
with the new role assigned to it. Every activity performed from within this session will

then run with the target role.

How to do it...

Switching roles with sudo or newrole is done as follows:

1. Switching a role can be done using sudo -i or sudo -s if allowed by the sudoers
file. If the ROLE and TYPE attributes are set, then the target shell will have the proper
context assigned:

~$ id -z
dbadm_u:staff_r:staff_t:s0
~$ sudo -u postgres -i
Password:

~$ id -z
dbadm_u:dbadm_r:dbadm_t:s0

2. Switching roles can also be done using newrole:

~$ newrole -r dbadm_r

How it works...

Getting a shell after switching roles is not all that different from executing commands.
However, the SELinux policy might not allow running shells and regular binaries in the
target domain. For instance, a user who is allowed the puppetca_t domain through some
role will not be able to run a shell in this domain, as puppetca_t is not allowed to be used
through a shell—it is a domain for a particular set of commands.

Most user roles have a default user domain associated with them. The default user domain
for a dbadm_r role is dbadm_t; the default domain for a webadm_r role is webadm_t. These
user domains do have the privileges to be used through a shell.

The newrole command only requires the target role, as it will check the default type of a
role (which is documented in the default_type file inside
/etc/selinux/mcs/contexts/) and use this as the target type.

Creating a new role

Roles are part of SELinux policies. In order to create a new role, it isn’t possible to just
invoke a few semanage commands. Instead, an SELinux policy module will need to be

created.

How to do it...

The SELinux policy needs to be updated in order to create a new role. The following steps
can be used to do just that:

1. Create a new policy module named after the role to be created, such as pgsqladm (for
a PostgreSQL administration role).
2. In the policy module, call the userdom_login_user_template interface:

userdom_login_user_template(pgsqladm)
3. Assign the proper privileges to the pgsqladm_r role and pgsqladm_t type:
postgresqgl_admin(pgsgladm_t, pgsqgladm_r)

4. Edit the default_type file in /etc/selinux/mcs/contexts/ to make pgsqladm_t
the default type for the pgsqladm_r role:

pgsqladm_r:pgsqgladm_t

5. Edit the default_contexts file in /etc/selinux/mcs/contexts/ to inform the
system to which types a transition has to be made when a user switch is triggered by
an application. For instance, for a local login session, the following code can be used
for this purpose:

system_r:local_login_t user_r:user_t .. pgsqladm_r:pgsqladm_t ..
6. Now, build and load the policy, and verify that the new role is available:

~# seinfo -r | grep pgsqladm_r

How it works...

Creating new roles for an SELinux system requires changes on multiple levels. Updating
the SELinux policy is just one of these.

Defining a role in the policy

The first step is to create a new role and user domain through the SELinux policy. There
are a couple of templates available in the reference policy to easily build new roles. The
relation between these templates is visualized in the following diagram:

unpriv

. | l . |
restricted [_. login l——»‘ base ‘
X

caommaon

The various blocks in the diagram represent the following templates:

In userdom_base_user_template, the basic rules and privileges for roles and user
domains are documented, regardless of their future use. If a role needs to be declared
with an absolute minimum of privileges, the use of this template is preferred.

Inside userdom_login_user_template, userdom_base_user_template is called and
extended with privileges related to interactive logins. When a role is created that is
meant to be logged on directly (without the need to call newrole or sudo), then this
interface is needed.

Within userdom_restricted_user_template, the userdom_login_user_template
interface is called, but the user domain is also associated with the
unpriv_userdomain attribute, meant for end user domains that have little security
impact on the system.

The userdom_common_user_template interface adds privileges and rules that are
common for both unprivileged and privileged roles.

The userdom_unpriv_user_template interface calls both
userdom_common_user_template and userdom_restricted_user_template and is
meant to declare unprivileged roles and user domains with interactive logon and
general system access.

The userdom_admin_user_template interface calls both
userdom_common_user_template and userdom_login_user_template, and creates a
role and user domain that is meant to be used for administrative purposes.

Whenever such an appropriate interface is called, the proper role and type is created and

can be used in the remainder of the policy module.

Extending the role privileges

In the example, we assigned PostgreSQL administrative rights to the pgsqladm_t user
domain and allowed the pgsgladm_r role the proper PostgreSQL domains (if any).

The reference policy tends to provide two types of interfaces that can be assigned to new
roles:

e Administrative roles, whose interface name usually ends with _admin
¢ End user roles, whose interface name usually ends with _role or _run

Administrative roles allow for rights on all resources related to a particular domain. In
case of the postgresql_admin interface, the role and user domain (which are passed on to
the interface) are allowed to send signals to the PostgreSQL services, execute the init
script (to launch or shut down the service), and manage the various resources of the
domain (such as the database files, configuration files, and logs).

Services almost always have an _admin interface. These are called after the domain, such
as puppet_admin for Puppet administration and samba_admin for Samba administration.
Sometimes, an SELinux policy module has multiple administrative interfaces when there
are different domains involved. An example would be the logging_admin_audit and
logging_admin_syslog interfaces, as both auditing and system logging are provided by
the same SELinux policy module, but the administration of these two services can be
segregated.

End user roles allow the user to execute client applications or interact with services. Such
interfaces, such as puppet_run_puppetca (which allows a user domain to run the
puppetca application and transition to it) and openvpn_run (which allows users to run
OpenVPN services), can still be somewhat administrative in nature, so make sure to
validate the content of the interface. However, most of the time, this is governed through
the application side and not infrastructure side—being able to launch VPN services does
not mean that the user can manipulate routing tables as they see fit, even though the VPN
service domain (openvpn_t) can.

It is important to review the interfaces before blindly granting them to new roles and
users. In case of PostgreSQL, the postgresgl_role role, for instance, does not allow the
user to interact with the PostgreSQL service; instead, the interface is used to support
SEPostgreSQL (SELinux-enabled PostgreSQL), which provides additional access controls
in PostgreSQL based on SELinux policies. When users are assigned the postgresql_role
role, they are granted basic privileges inside a PostgreSQL environment.

To allow users to interact with PostgreSQL, the postgresql_stream_connect and
postgresql_tcp_connect interfaces can be used.

Default types and default contexts

The default_types file informs SELinux what the default type is if no context is
specified otherwise, and it is used by commands such as newrole to know what the default

type is for a user.

The default_contexts file (which can be overridden through SELinux user-specific files
in the users/ subdirectory) informs the SELinux libraries and subsystem what specific
SELinux type to transition to when a user and role switch has occurred from within a
specified domain. For instance, a cron daemon runs in the system_r:crond_t context, but
when it executes the user cron jobs, these jobs themselves need to run in a different
SELinux role and SELinux type. The following default_contexts configuration snippet
would have the jobs of a user (whose role is pgsqladm_r) run as cronjob_t (rather than
pgsqladm_t):

system_r:crond_t pgsqladm_r:cronjob_t

These files are generated as part of the base policy. Sadly, there are no
default_types.local or default_contexts.local files that can be used to provide
system-specific changes. As a result, updates on the base SELinux policy might overwrite
these files depending on how the Linux distribution treats these files. If the files are seen
as configuration files (such as with Gentoo Linux), then they are not altered by system
updates; instead, the system administrator is informed that an update on these files might
be needed, keeping the manual changes made by the administrator in the past.

Initial role based on entry

Users will often have multiple roles associated with them. Depending on how they interact
with the system, a different initial role (and a user domain) might be needed. Consider a
user who interacts with a system locally (through the console), remotely through SSH (for
administrative purposes), and through FTP (as an end user), as depicted in the following
diagram:

Linux server
login sysadm
user 1
sshd staff
I Y
ftpd ftp_shell

We want to make sure that the default role in which the user session starts on the system
depends on the entry point on the system. Direct console logon can be in the
administrative role, sysadm_r, whereas remote logon is first in the staff_r role (to ensure
a stolen SSH key cannot be used to perform administrative tasks on the system without
knowing the users’ system password). The use of the FTP server should result in an
unprivileged role, ftp_shell r.

Note

The ftp_shell r role is a nondefault role and will not be available by default. Using
SELinux with an FTP server in this setup requires that the FTP server is either SELinux
aware (and supports context transitions) or uses PAM for its authentication rather than
internal user accounts.

How to do it...

To configure the role to be used when a user logs on or starts a session, execute the
following steps:

1. First of all, make sure that the user is assigned the various roles:

~# semanage user -m -R "staff_r sysadm_r ftp_shell_r" staff_u

2. Edit the default_contexts file by reordering the contexts, making sure that the right
role is always mentioned before the others (or that the others are not mentioned at
all):

system_r:local_login_t:s@ user_r:user_t:s®@ sysadm_r:sysadm_t:s0
staff_r:staff_t:s0O

system_r:sshd_t:s@ wuser_r:user_t:s0 staff_r:staff_t:s0O
system_r:ftpd_t:s0 ftp_shell_r:ftp_shell_t:sO

3. Check whether the domains have support for specific Booleans that explicitly enable
or disable transitioning into particular domains. For instance, consider the SSH
daemon:

~# setsebool -P ssh_sysadm_login off

How it works...

When applications call PAM to set up the user context, the PAM configuration will invoke
methods provided by the pam_selinux.so file. These methods will check the
default_contexts file to see what the context should be for a user. When
pam_selinux.so is loaded through a daemon in the system_r:sshd_t context, for
instance, then the lines for that particular daemon are interpreted:

system_r:sshd_t:s@ wuser_r:user_t:s0 staff_r:staff_t:s0O

For the given user, the set of supported roles is obtained. In our case, this is staff_r
sysadm_r ftp_shell_r. The entries in the default_contexts file are then looked at one
by one, and the first role that is mentioned in the default_contexts file, that is also an
allowed role for the user, will be used.

In the given example, as user_r is not an allowed role, staff_r is the next one on the list.
This role is allowed, so when the user logs on through SSH, then its default role will be
the staff_r role (and its associated user domain will be staff_t).

Some domains are also configured to allow or disallow direct logins into administrative
roles. The SSH policy, for instance, uses an SELinux Boolean called ssh_sysadm_login,
which allows transitioning into any user (ssh_sysadm_login=on) or only to unprivileged
users (ssh_sysadm_login=0ff), specified policy-wise as follows:

tunable_policy(ssh_sysadm_login', ~
userdom_spec_domtrans_all_users(sshd_t)
userdom_signal_all_users(sshd_t)

1
4

userdom_spec_domtrans_unpriv_users(sshd_t)
userdom_signal_all users(sshd_t)

)

A similar approach can easily be built into custom policies. Note that the use of
userdom_spec_domtrans_unpriv_users will only allow using the daemon for roles and
types created through userdom_unpriv_user_template, as this interface assigns the
unpriv_userdomain attribute that is used by the userdom_spec_domtrans_unpriv_users
interface.

Defining role transitions

It is possible to have SELinux automatically switch roles when a certain application is
executed. The usual checks still apply (such as if the role is a valid one for the user, does
the current user domain have execute rights, and many more), but then, there is no longer
a need to call runcon or sudo to switch the role.

How to do it...

Role transitions can be configured as follows:

1. Identify the executable type on which a role transition has to occur:

~$ 1s -Z puppetca
system_u:object_r:puppetca_exec_t puppetca

2. In the SELinux policy, create an interface that includes the role transitions:

interface(puppet_roletrans_puppetca',
gen_require("”
role puppetadm_r;
type puppetca_t, puppetca_exec_t;
")
allow $1 puppetadm_r;
role_transition $1 puppetca_exec_t puppetadm_r;
domtrans_pattern($2, puppetca_exec_t, puppetca_t)
")
3. Assign the newly created interface to the user:

puppet_roletrans_puppetca(staff_r, staff_t)

How it works...

The first rule that is activated is a role-allow rule. Such a rule tells SELinux what role
switch is allowed and in which direction. The set of allowed role switches can be queried
using sesearch:

~# sesearch --role allow

Consider the following role-allow rule(s) for the puppetadm_r role:

allow staff_r puppetadm_r

In this case, only the staff_r role is allowed to switch to the puppetadm_r role. Switching
from the puppetadm_r role back to the staff_r role is not allowed.

The second rule tells SELinux that if a puppetca_exec_t labeled file is executed by the
selected role (staff_r, in our case), then the role should switch to puppetadm_r. Of
course, this is only done when the SELinux user is allowed the target role.

The third rule will perform a domain transition from staff_t to puppetca_t if staff_t
executes a puppetca_exec_t labeled file.

It should be noted though that a forced role transition (that is, through the SELinux policy)
is not a preferred method in the majority of cases, as it doesn’t provide any flexibility to
the administrator. If this is implemented, then using multiple roles is more difficult as
some domains are hardcoded to a particular role.

Looking into access privileges

To finish off, let’s look at how to verify access privileges granted to users. Specifying
roles and privileges allows users to do their job, but from a security point of view, it is also
important to verify if (and which) users can manipulate certain resources. Auditors will
want to have an overview of who is able to, say, manipulate SELinux policies or read
private keys.

How to do it...

To properly investigate access rights, the following approach can help in identifying users
(and processes) that have the permissions we want to be informed about:

1. Verify file permissions that are not related to SELinux.

2. Verify direct access to the resource (such as read rights on private keys).

3. Look at who (users or applications) has the right to manipulate the SELinux policy.
4. Check users and domains that are granted direct access to filesystems and raw
devices.

See when memory can be accessed directly.

Review who can update authentication files.

7. Analyze who can boot the system.

o o

How it works...

Reviewing access is a lengthy process. It isn’t sufficient to just look into file ownership
(user and group) and look at the permissions of the file to find out who is actually able to
read or modify the file (assuming that the privilege looked into is file access). Privilege
delegation tools such as sudo (through the sudoers file or the sudo configuration in an
LDAP server) need to be checked as well, together with the setuid application access,
backup file access (when read access is to be examined), and more.

With the mandatory access controls that SELinux provides, checking the policy for access
rights is an important part of such an evaluation. The sesearch application can assist in
this quest.

Direct access inspection

To check direct access, we need to query both the access rights (such as write privileges
on the resource) as well as relabeling rights. After all, a domain that is allowed to change
the SELinux context of a file to another resource can theoretically switch the context,
modify the file, and reset the context.

~# sesearch -t lvm_etc_t -c file -p write -ACST
Found 6 semantic av rules:
allow sysadm_t non_auth_file_type : file { .. };
allow portage_t file_type : file { .. };

~# sesearch -t lvm_etc_t -c file -p relabelfrom, relabelto -ACST
Found 5 semantic av rules:

allow sysadm_t non_auth_file_type : file { .. };

allow restorecond_t non_auth_file_type : file { .. };

allow setfiles_t file_type : file { .. };

This code shows not only the user domains that have the privileges, but also the
application domains. In a review of permissions, it is necessary to also validate who can
access and manipulate processes that run in these domains. This can be done by checking
the transition permission:

~# sesearch -t setfiles_t -c process -p transition -ACST

For each of the domains, studying who can manipulate these processes is a time-
consuming process and requires intimate knowledge of the application(s) that run in the
given domain. For instance, the restorecond daemon will only reset file contexts to the
context known by the SELinux tools (so, modifying the context temporarily is not possible
through restorecond) and only on those locations that are configured in the restorecond
configuration file.

Policy manipulation

Checking the SELinux policy isn’t sufficient as the policy can be manipulated as well.
Loading a new policy is governed through, among various other privileges, the
load_policy permission:

~# sesearch -t security_t -c security -p load_policy -ACS
Found 2 semantic av rules:

EF allow kernel_t security_t : security load_policy ; [
secure_mode_policyload]

EF allow load_policy t security_t : security load_policy ; [
secure_mode_policyload]

Similarly, the access towards the selected domains (and the load_policy t domain in
particular) needs to be verified.

As can be seen from the output, manipulating the SELinux policy can also be controlled
through an SELinux Boolean called secure_mode_policyload. When this Boolean is
enabled, loading a new policy is no longer possible. If this Boolean is enabled and
persisted, then even rebooting a system will not help unless the system is booted in the
permissive mode.

Similarly, checking who can put the system in the permissive mode can be verified as
well:

~# sesearch -p setenforce -ACS
This is governed through the same SELinux Boolean though.

Another way to manipulate the SELinux policy would be to boot the system in the
permissive mode or even with SELinux disabled. This means that reviewing access to the
boot files is also important (the boot_t type).

Indirect access

It is also possible to access resources indirectly, for instance, by manipulating the raw
devices (such as disk devices or memory). Access to device files is already quite
privileged on Linux systems. With SELinux, additional controls might be put in place.

Disk devices are usually labeled as fixed_disk_device_t. Access to these files should
only be granted to application domains, although some privileged user domains might be
able to relabel such device nodes or manipulate application domains to perform actions
not granted to the regular user.

~# sesearch -t fixed_disk_device_ t -ACS

Users who are able to manipulate files related to system authentication can grant
themselves different user roles, for instance, by logging on to the system as a different
user (who does have the rights needed). This includes access to /etc/pam.d/ (usually
labeled as etc_t) or the authentication libraries themselves in /1ib/security/ (usually
labeled as 1ib_t).

Chapter 7. Choosing the Confinement
Level

In this chapter, we will cover the following recipes:

Finding common resources

Defining common helper domains

Documenting common privileges

Granting privileges to all clients

Creating a generic application domain

Building application-specific domains using templates
Using fine-grained application domain definitions

Introduction

During the development of additional policies, developers can opt to use a very fine-
grained policy model, a domain-per-application model, or a coarse-grained, functionality-
based policy model. The relationship between these confinement models is shown in the
following diagram:

Implementation 1

Implementation 2

¥ ‘_:—'_-
/O

Processes TN

i '.I
l\._,f' O

SELinux
domain scope

Coarse-grained

Domain definitions
on functional level

Application
Domain definitions
on application level

on process level

Fine-grained
Domain definitions

In very fine-grained policies, multiple domains are defined, so functionally different
processes of the same application are all running in their own specialized SELinux
domain. A coarse-grained policy, on the other hand, allows to have different applications
with a similar functionality run with the same context. Application-level policies are
somewhere in the middle: they focus on one domain (or a very small set of domains) for
one application.

Most policies are developed using a one domain per application principle. Still, the
choice of development patterns in policy development reflects the confinement level of an
application, as shared, coarse-grained policies might allow for more interaction between
applications and resources than intended, whereas, a fine-grained policy is much harder to
develop and maintain.

When we look at a functional level, we usually focus on shared resources or resources that
cannot be tied to a particular application. An example is the mta SELinux policy, which
manages the main infrastructure-related shared content such as e-mail aliases
(etc_mail_t), user mailboxes (mail_home_rw_t), e-mail spool files (mail_spool_t), and
more.

Finding common resources

During policy development, some of the resources used by the policy are or could be
shared with other policies. If that is the case, a functionality-driven policy module is
created in which those common resources are placed. This allows other policies to use
these resources and assign the right permissions through the interfaces declared in the
functionality-driven policy.

How to do it...

Most of the work in this recipe is to figure out what resources are shared. This is done by
completing the following steps:

1. Look for common files and directories that might be shared with other applications
and whose ownership is not specifically tied to an application, but is more functional
in nature. For these resources, declare them in a functionality-driven policy.

2. Check whether there are devices used that are functionally related to the policy but
not to a specific application in particular.

3. Validate if there is specific user-provided content that is functionally related but not
tied to a particular application, and where the default user content types (such as
user_home_t) are better not used. These resources need to be declared in the
functionality-driven policy and probably made customizable as well:

type public_content_t; # customizable
files_type(public_content_t)

4. Create the proper interfaces to handle or interact with these common resources:

interface(miscfiles_read_public_files',
gen_require(
type public_content_t;
")
read_files_pattern($1, public_content_t, public_content_t)
")

How it works...

Functionality-driven policy modules handle common resources for multiple applications
and policies. Some example policies that handle the functional resources for multiple
applications are the mail transfer agent policy (mta) and the web server policy (apache).
Although the web server policy was originally intended to be purely for the Apache
HTTPd, it has since evolved into a more functionality-driven policy supporting a large
amount of web server technologies.

Shared file locations

A helpful method for finding out what resources are considered to be functional in nature
(rather than application-specific) is to imagine switching one application in favor of
another. What resource types would remain the same if we switch from one system logger
(say syslog-ng) to another (say rsyslog), or from Courier-IMAP to Cyrus? Having
knowledge of multiple similar applications helps in finding out where (or what) the shared
locations are.

However, having similar functional requirements doesn’t necessarily make them shared.
The locations should also remain the same (or at least be consistent and on well-known
locations). Consider database files: the database files for PostgreSQL and SQLite
databases both have the same functional purpose, but it makes no sense to label them both
with the same label. Database files are specific to a particular database implementation
and require specific labels, so with every potential common resource, make sure that the
resource itself can be shared across multiple implementations.

Device nodes are a nice example to consider for a functionality-driven policy. An example
device type definition would look like the following:

type cachefiles_device_t;
dev_node(cachefiles_device_t)

Devices are usually shared across multiple applications. Most devices are defined in the
devices.te policy module with the proper interfaces being declared to allow access to the
device (such as dev_rw_cachefiles for read/write access to the previously mentioned
cachefiles_device_t type). Not all files in /dev/ are such device files though.

Consider the /dev/1og socket, which is used to send log events to the system logger. This
socket, which is available regardless of the system logger being used, is made available
through the following logging SELinux policy module:

type devlog_t;
files_type(devlog_t)
mls_trusted_object(devlog_t)

The mls_trusted_object interface makes the device (labeled devlog_t) accessible for all
security levels in an MLS-enabled policy.

User content and customizable types

User-provided content is also important to consider. For instance, for e-mail-related

daemons, a user’s . forward file (which tells the system where to forward the e-mails of
the user) is available in his or her home directory and is definitely not owned by a
particular application. Hence, its label (mail_home_t) is tied to a functionality-driven
policy (mta).

Don’t forget to mark user content as user content through the
userdom_user_home_content interface; otherwise, end users will not be able to label or
manipulate these files:

type mail_home_t;
userdom_user_home_content(mail_home_t)

Some user content is also best marked as customizable. A customizable type, when
assigned to a resource, is ignored during standard relabel operations (usually performed by
the system administrator) and as such, the resource label will not be changed back to what
the SELinux configuration files have defined. This is particularly useful for resources
whose path is not a fixed location and usually not made part of the SELinux file context
definitions.

If the administrator does a forced relabel operation, then the file context is reset, even if
the current type assigned to the resource is a customizable type:

~# restorecon -R -F /home/*

In a modular policy development, there is no notation available to mark a type as being a
customizable type. To do this, the type needs to be added to the customizable_types file
in /etc/selinux/mcs/contexts/.

Marking files with a customizable type is a solution when the path of the resource isn’t
fixed. The . forward file has a fixed path, so there is no need for customizable content.
User content that should be publicly accessible, however, (marked as public_content_t
or public_content_rw_t) does not have a fixed path; hence, those types are (by default)
marked as customizable.

When full policy development is done (for instance, through the Linux distribution policy
or because the developer controls the entire policy and not just additional modules), then
the # customizable comment can be placed behind the type declaration, as can be seen
from the following example of the CVS policy module:

type cvs_data_t; # customizable
files_type(cvs_data_t)

The reference policy build system will then automatically add the type to the
customizable_types file during the build process.

There’s more...

Other common resources that can be considered are the TCP and UDP ports. Indeed,
network-facing applications bind to one or more ports, which are usually the same for
applications sharing the same functionality.

However, the TCP and UDP ports cannot be declared inside SELinux policy modules;
instead, they need to be labeled as part of the base policy. Updating a base policy,
however, is either done by the Linux distribution maintainers or the upstream reference
policy project. The basic rule is that the ports are named after the service they are
generally used by:

~$ getent services 6667

ircd 6667/tcp

~$ seinfo --portcon=6667

portcon tcp 6667 system_u:object_r:ircd_port_t

Defining common helper domains

Next to the common resources, some applications share the same set of helper commands.
The sendmail command is a nice example of this, which is executed by a large set of
domains (usually, applications that need to send e-mails without using the SMTP protocol
themselves). The sendmail application is well understood and most MTA applications
support it for command-line e-mail sending operations.

Supporting such helper domains is usually done through a functionality-driven policy.

How to do it...

Creating helper domains is similar to creating regular application domains, but the use of
attributes allows the policy to be very flexible and usable by the application-specific
policy modules developed further. Let’s look at the MTA definition as an example of how
this can be accomplished:

1. Define an attribute for the command type:

attribute mta_exec_type;

2. Create a proper label type for the command, and assign it the mta_exec_type
attribute:

type sendmail_exec_t, mta_exec_type;
application_executable_file(sendmail_exec_t);

3. Configure an application domain for the command:

type system_mail_t;
application_domain(system_mail_t, sendmail_exec_t)

4. If the application is for system purposes, assign the domain to the system_r role:

role system_r types system_mail_t

5. If the application is meant to be executed by end users, do not forget to include a
_run or _role interface.

6. Make an interface callable by third-party application domains to allow them to
interact with the helper application:

interface(mta_send_mail', "
gen_require("
attribute mta_exec_type;
type system_mail_t;
")
corecmd_search_bin(%$1)
domtrans_pattern($1, mta_exec_type, system_mail t)
)
7. Make another interface allowing specific policies to mark their own helper
executables usable for the same purpose (as they might not always use the same

type):

interface(mta_agent_executable', "
gen_require(
attribute mta_exec_type;
")
typeattribute $1 mta_exec_type;
application_executable_file(%$1)

")

How it works...

Helper domains are meant to provide reusable functionality across multiple
implementations. To support the flexibility of having multiple implementations, attributes
are usually assigned to the types so that extensions can be easily created.

Consider the sendmail example again. Most implementations will have the command-line
sendmail application marked as sendmail_exec_t. However, there are implementations
whose sendmail binary has many more features, especially when called from the
implementation processes themselves. Some implementations even have the file as a
symbolic link to a more generic e-mail-handler application.

The Exim implementation, for instance, uses exim_exec_t instead of using
sendmail_exec_t. With the use of the attributes, the Exim policy module can just call the
proper interface (mta_agent_executable, in this case), so third-party applications can still
execute the command (even though it is exim_exec_t and not sendmail_exec_t) and have
it behave as expected (that is, with a transition to the user_mail t or system_mail t
domain as expressed by the MTA policy):

type exim_exec_t;
mta_mailserver(exim_t, exim_exec_t)
mta_agent_executable(exim_exec_t)

Attributes allow other domains to interact with the newly defined type without having to
update the policy modules that define these domains. This is because those domains are
granted execute rights on all types that have the mta_exec_type attribute assigned, and
will invoke a domain transition to the system_mail_t helper domain when they execute
such a file. This privilege is provided through the mta_send_mail interface, which is a
good example of a helper domain interface to be assigned to other domains:

interface(mta_send_mail', "
gen_require("
type system_mail_t;
attribute mta_exec_type;
)
corecmd_search_bin($1)
domtrans_pattern($1, mta_exec_type, system_mail t)
allow $1 mta_exec_type:lnk_file read_lnk_file perms;

Y

Documenting common privileges

Next to the helper domains, most functionality-driven policies also group privileges that
can be assigned to domains. Such privileges could be to not only manage the common
resources, but also to extend other domains with functional requirements as managed by
the common policy.

All e-mail daemons need to be able to bind to the proper TCP ports, handle user
mailboxes, and so on. By bundling these common privileges on the functional policy
level, any evolution pertaining to the policy can be immediately granted to all domains
inheriting privileges from the functional policy, rather than having to update each domain
individually.

How to do it...

Common privileges can be found in a wide variety. How common privileges are assigned
depends on the use case. The following method, based on the e-mail server definition in

the MTA policy, provides a flexible approach to this:

1.

Create an attribute for the functional domain to which common privileges are
granted:

attribute mailserver_domain;

Define an interface where the attribute is assigned to a specified domain:

interface(mta_mailserver', "

gen_require("”

attribute mailserver_domain;

")

typeattribute $1 mailserver_domain;
")
Build an interface that assigns the functionally related common privileges to the
specified argument. It should not assign attributes though! This is done with the

following code:

interface(mta_mailserver_privs,
gen_require("
type mail_home_t;
")

allow $1 mail_home_t:file read_file_perms;

1) -

Now, use the newly created interface to grant the proper permissions on the attribute:

mta_mailserver_privs(mailserver_domain)

If a specific application always has to inherit the privileges, assign the attribute to it:

mta_mailserver (exim_t)

If a specific application, however, optionally inherits the privileges, use the domain

interface:

tunable_policy(nginx_enable_mailproxy', "
mta_mailserver_privs(nginx_t)

')

How it works...

When assigning privileges to a domain, there are two approaches that can be taken: either
the privileges are assigned to an attribute (which is then associated with a domain) or the
privileges are directly assigned to the domain. Which one to pick depends on how the
policy is going to be used. Due to restrictions in policy development, it is not possible to
optionally (that is, triggered through SELinux Booleans) assign attributes. Any attempt to
do so will result in a build failure, as follows:

~$ make mymodule.pp
Compiling mcs mymodule module
checkmodule: loading policy configuration from tmp/mymodule.tmp
mymodule.te:23:ERROR 'syntax error' at token 'typeattribute' on line 1309:
#line 23

typeattribute $1 mta_exec_type;
checkmodule: error(s) encountered while parsing configuration

As a result, whenever permissions can be granted optionally (through SELinux Booleans),
policy developers will have to make sure that the permissions are granted directly (instead
of assigning an attribute to the domain).

However, in most cases, using attributes for domains makes sense. The policy itself does
not increase in size that much (as rules remain on an attribute level) and administrators can
easily query which domains participate in the functional approach:

~# seinfo -amailserver_domain -Xx
mailserver_domain
system_mail_t
exim_t
courier_smtpd_t
Granting the permissions through an interface also allows us to quickly look at the impact
of assigning an attribute, as we can then use the seshowif command:

~$ seshowif mta_mailserver_privs

The example given uses a server-domain approach, but the same can be done for a client.

Granting privileges to all clients

The approach of using interfaces to aggregate privileges not only benefits domains that
have the same functional purpose, but also clients. By combining the privileges for the set
of clients, it is possible to enhance client privileges by only updating the interface rather
than having to update all the clients’ policy modules.

How to do it...

Create a client interface that can be assigned to all clients of a particular functional
purpose. The following steps extend an example policy with antimalware support:

1.

In the antimalware generic policy, create an avcheck_client attribute:

attribute avcheck_client;

Create the interface that assigns the attribute to a client domain:

interface(av_check_client',
gen_require(”
attribute avcheck_client;
")
typeattribute $1 avcheck_client;
")
Create the interface that assigns the common privileges for client domains:

interface(av_check_client_privs',

')...

In the created interface, add the privileges that need to be assigned to all client
domains. For instance, to enable a domain transition for the ClamAV check
command, the following code is used:

optional_policy("
clamav_domtrans_check($1)
Y
All domains that act as a client are either assigned the av_check_client (if the
attribute can be assigned) or av_check_client_privs interface.

How it works...

Suppose a new antimalware policy is developed for ClamAY, and we want the clients to be
able to execute the clamav_check_exec_t applications and transition them to the
clamav_check_t domain. Instead of updating all clients with a clamav_domtrans_check
call, we only do this in the generic antimalware policy’s av_check_client_privs
interface, as follows:

optional_policy("
clamav_domtrans_check($1)
")
This ensures that all proper domains— not only those with the avcheck_client attribute
—get the necessary privileges assigned.

Another example that uses this principle is the PulseAudio policy. An interface called
pulseaudio_client_domain is made available and should be used by PulseAudio clients.
Whenever the permissions for a PulseAudio client need to be updated, then the policy
developer only needs to update the pulseaudio_client_domain interface instead of all
client policy modules.

Such an approach makes policy development much more flexible and efficient, as
developers do not need to update all possible client domains with the added privileges.

Creating a generic application domain

In some situations, it makes sense to create a generic application domain, even though
multiple implementations exist for the same functionality. Examples are the Java domain
(which works for all the popular Java™ implementations) and init domain. When this
occurs, carefully consider whether the generic application domain will always be
sufficient, or whether specific application domains might come into play later. When this
isn’t clear, make sure that the policy being developed is flexible enough to cater both
situations.

How to do it...

In order to create a generic application policy that is still flexible with respect to potential
specific policies that would be developed later, follow the upcoming set of steps:

1. Identify the permissions that are (almost) always applicable to the functional domain,
regardless of the implementation.

2. Assign those permissions to a base implementation. For instance, for Java™
implementations, assign permissions as follows:

attribute javadomain;
Minimal permissions
java_base_runtime_domain(javadomain);

type java_t;
Assigns javadomain attribute
java_base_runtime(java_t);

3. Add permissions that are applicable to at least one (or a few) of the implementations
to the standard type. In our example, this would be to java_t. This ensures that
java_t is generally usable for most Java™ implementations.

4. Add the proper file contexts to allow most implementations to benefit from the
generic application policy:

/usr/lib/bin/java[~/]* — gen_context(system_u:object_r:java_exec_t,s0)
/opt/(.*/)?bin/java[r/]* —
gen_context(system_u:object_r:java_exec_t,s0)

How it works...

With the given implementation, most Java™ implementations on an SELinux-enabled
system will run, when executed, in the generic java_t domain: their executables are all
marked as java_exec_t through generic file context expressions, and the java_t domain
holds not only the set of least privileges for Java™ domains (as granted through the
javadomain attribute that gets them from the java_base_runtime_privs interface), but
also those privileges that are common for quite a few implementations. This means that
the java_t domain has more privileges than needed in most cases, as it has to support a
broad set of Java™ implementations.

However, when a specific implementation will be created with a different policy profile
than the existing java_t domain, policy developers can easily mark this domain as a Java
domain, inheriting the permissions that are necessary for every Java™ implementation
(for instance, because they are mandated through the specifications of Java™) while
staying clear from the other permissions that are granted to the generic java_t domain:

type icedtea_java_t;

java_base_runtime(icedtea_java_t)

By creating a more specific file context definition, the executable of the newly created
type will get this label assigned (as the other expressions are more generic, and the
SELinux utilities use a most specific definition first approach):

/opt/icedtea7/bin/java —
gen_context(system_u:object_r:icedtea_java_exec_t,s0)

Building a proper set of least privilege rules is not easy and requires experience in policy
development. If uncertain, it might be a good idea to use SELinux Booleans, such as used
by the (generic) cron policy:

Support extra rules for fcron
gen_tunable(fcron_crond, false)

tunable_policy(fcron_crond', "
allow admin_crontab_t self:process setfscreate;

)

Through this approach, specific implementations can still benefit from the generic policy
declaration, if the amount of additional permissions is small. As the policy is enhanced
with other implementation details, the need for the tunable_policy statement might be
removed or a specific implementation for fcron can be developed separately.

Building application-specific domains
using templates

Specific domains have the advantage that they can contain those privileges needed by the
domain, and no more. As there are no other application implementations using the specific
domain, the privileges can be tailored to the needs of the application.

In certain situations though, it might be beneficial to automatically generate the types
together with the basic permissions. Generating types is done through templates (rather
than interfaces, although the underlying implementation of interfaces and templates is
quite similar). The approach and development method is aligned with interface definitions
and should pose no difficulties for developers to understand.

An example to consider with templates would be to automatically create system cron job
domains for individual applications. Through a template, we can automatically create the
domain, executable type, and temporary resource types as well as properly document the
interactions of that domain with the main cron daemon (which is needed for
communicating job failures or success, handling output, logging, and so on).

How to do it...

Creating templates is similar to creating interfaces. To create templates, the following
approach can be used:

1.

Start with a skeleton template inside the . if file, but call it template instead of
interface:

template(cron_system_job_template', "

|)...
Add in the following type declarations:

type $1_cronjob_t;
type $1_cronjob_exec_t;
application_domain($1_cronjob_t, $1_cronjob_exec_t)

type $1_cronjob_tmp_t;
files_tmp_file($1_cronjob_tmp_t)

Grant the proper interactions between the main daemon and the newly defined types
that are still inside the template definition:

allow crond_t $1_cronjob_t:fd use;
allow crond_t $1_cronjob_t:key manage_key_perms;
domtrans_pattern(crond_t, $1_cronjob_exec_t, $1_cronjob_t)

In the application policy, call the template so that the new types are created. For
instance, to create the cron job domains for Puppet, add the following code to
puppet. te:

cron_system_job_template(puppet)

Enhance the (now available) puppet_cronjob_t domain with the permissions
needed:

allow puppet_cronjob_t ..

How it works...

The use of templates has been discussed earlier in the chapter on web server content.
Indeed, the apache_content_template definition, too, is a template that creates additional
types and documents the interaction between the newly created types and the (main) web
server domain.

The use of templates allows for rapid policy development as well as properly isolated
permission handling. When the main application evolves and requires additional
permissions with respect to the specific application domains, or certain permissions are no
longer needed, then only the template needs to be adjusted. All that is needed to apply the
changes is to rebuild the SELinux policy modules, without any need to alter their
individual source files.

It is a best practice to use prefix and/or suffix notations for template-provided types and to
end the name of the template with _template. In theory, it is perfectly possible to create a
template that creates the specified type(s) without any prefix and postfix expressions,
instead requiring the various types to be passed on one at a time:

cron_system_job_template(puppet_cronjob_t, puppet_cronjob_exec_t,
puppet_cronjob_tmp_t)

However, this approach is inflexible under the following circumstances:

e If additional types need to be supported, then the interface API itself (the number of
arguments passed to it and their meaning) needs to be altered, which makes such
changes incompatible with earlier releases. This is important because there might be
policy developers who are using this interface without their policy being available in
the repository that we’re developing in, so we cannot refactor this code ourselves.

o If a type is no longer needed, then either the interface API itself needs to be changed
(making it incompatible with earlier releases) or the interface will be made to ignore
a particular type (which easily becomes a development nightmare).

¢ Developers will continuously need to look at the order and meaning of the types in
order not to mistakenly have the executable type marked as a domain and vice versa.

Such an approach would also make it possible to create confusing type definitions:

cron_system_job_template(puppetjob_t, pj_exec_t, ptmp_t)

Through such an approach, developers and administrators would lose sight over the
relation between types.

Using proper prefix and postfix notations allows for a simplified management. The use of
a template such as cron_system_job_template easily informs developers that there will
be several types matching *_cronjob_t, *_cronjob_exec_t, and *_cronjob_tmp_t.
Policy developers and system administrators easily learn that these are related with each
other.

Using fine-grained application domain
definitions

The use of templates earlier in this chapter is a start to support more fine-grained
application domain definitions. Instead of running a workload inside the same domain as
the main application, specific types are created that are meant to optimize the interaction
between one domain and another, ensuring that the permissions granted to a particular
domain remain small and manageable.

Using fine-grained application domains goes a step further, having processes of the same
application run inside their own specific domains. This is not always possible (not all
applications use multiple, distinct processes), but when it is, using fine-grained domains
provides an even more secure environment, where each task runs with just the permissions
needed for that individual task, even though the application, in general, needs more
permissions.

An example implementation of fine-grained application domain definitions is the postfix
policy, which will be used as an example in this recipe. The Postfix e-mail server is well
documented and its architecture has been quite stable, making it a prime candidate for a
fine-grained policy development approach.

However, when fine-grained application domains are used, policy development and
maintenance itself becomes harder. Individual interaction changes between processes
(which might be the case with newer versions of an application) require policy updates
much more often than when all processes run within the same SELinux domain.

How to do it...

The following checks can be taken to see whether fine-grained application domains make
sense or not:

1. Does the application architecture use multiple processes, with each process having a
distinct functional task? If not, then creating fine-grained application domains will
not help much as every domain will have the same permissions anyhow.

2. Are there processes with different access vectors (and thus are vulnerable to different
threats than others)? For instance, whether some processes are directly accessible
through the network whereas others are local? If so, then using fine-grained
application domains might make sense to reduce the impact in case of the
vulnerability exploitation.

3. Is there an interaction between a subset of the processes with other domains (not
managed through the same application), whereas the other processes do not need to
interact with these domains? If so, then using fine-grained application domains might
make sense to limit exposure of resources to other applications.

4. Does the application support different roles that might need to interact with some (but
not all) of the processes? A single full-application administrator might still need
administrative privileges to all processes and resources, but other roles might not
have this requirement. Using fine-grained application domains allows for fine-
grained roles as well.

How it works...

Supporting fine-grained application domains is usually done for risk mitigation. But
besides risk mitigation, it also provides advantages in role management as well as a more
efficient approach to managing types that are inherited from the domain.

Reducing exploit risks

Consider a part of the Postfix architecture, as shown in the next diagram:

o o [|

cleanup H rewrite |

I e e P
g
S mail gueues
active deferrad
S
r

=zt
Bl = S I o
d \ 3
|
{; network [| il -
L ot | resohe | qrmgr
-\“-—‘x___x"—’J P -
Y i / N,
| f -""--- T
A smtp [loeal pipe

L
user mail

The smtpd daemon handles the reception of an e-mail through the network, and as such,
is more prone to remote vulnerability exploits than to locally running processes such as
the cleanup process or even the gqmgr process.

By limiting resource access of the smtpd daemon to just the resources it needs, exploits
that would attempt to access the queues (resources not usually accessed by smtpd but
used by qmgr) would fail as the least privilege approach used in the smtpd domain
(postfix_smtpd_t) disallows access to the maildrop queues
(postfix_spool_maildrop_t).

Proper risk reduction is only possible if the resources of the application (such as the
specific queues) are also defined in a fine-grained manner. If the application has multiple
configuration files and these configuration files are read by different functional processes,
then the configuration files should be labeled more specifically as well (for instance,
configuration files for routing and configuration files for network settings).

If the application resources are labeled in a generic fashion, we risk that all fine-grained
domains have the same rights towards the generic resources, making it more plausible for
a vulnerable application to be exploited with larger consequences to the entire application

architecture.

Role management

Using fine-grained application domains goes further than just mitigation of exploits. With
individual domains, role access can be granted to users allowing them to take specific
actions without requiring full application privileges.

For instance, operator roles can be created that allow manipulation of the Postfix deferred
queue and signaling of the gmgr process without granting those users any specific rights
towards the other processes. Assuming the user domain for this role is postoper_t, this
would be accomplished as follows:

postfix_signal_qgmgr(postoper_t)
postfix_manage_maildrop(postoper_t)

Type inheritance and transitions

When a domain creates new resources, these resources are assigned a type based on the
label of the domain as well as the transitions defined in the SELinux policy. A process that
is launched by a domain by default (that is, when no transitions are defined in the policy)
inherits the label of the parent domain, while a file created inside a directory by default
inherits the type of that parent directory. In the case of labeled network support, the
packets are labeled based on the parent socket label.

Sometimes the creation of a resource cannot be tied to a parent domain or parent resource,
making it impossible for SELinux to deduce the label to assign to this resource. For this
reason, initial SIDs are provided by the SELinux policy. These tell the SELinux
subsystem what the default label is for such resources if no label can be deduced.

For instance, the initial SIDs for a (TCP/UDP) port and for a file are as follows:

sid port gen_context(system_u:object_r:port_t,s0)

sid file gen_context(system_u:object_r:unlabeled_t,s0)

The definition of initial SIDs is part of the base SELinux policy and cannot be altered
using SELinux policy modules. Luckily, there is little reason for SELinux developers to
ever touch the initial SID definitions.

These label inheritance rules are important in a fine-grained application domain design.
Applications that use multiple processes also tend to use resources such as shared memory
for inter-process communication (IPC). When all processes run with the same domain,
the shared memory is also labeled the same (such as postgresql_tmpfs_t for the
PostgreSQL managed shared memory) as a file transition would be put in place:

/dev/shm/ shared memory
type postgresql_$1_tmpfs_t;
files_tmpfs_file(postgresql_$1_tmpfs_t)

fs_tmpfs_filetrans(postgresql _$1_t, postgresql_$1 tmpfs_t, file)

When using multiple domain definitions, it is possible that shared memory segments are
labeled differently as well (depending on which process creates the shared memory

segments, of course), so even IPC can then be properly governed. Separate file transitions
would be put in place depending on the domain that is creating a shared memory segment.

Next to file transitions, policy developers can also introduce domain transitions (which
changes the label of the newly created process) using the domtrans_pattern definition.
Inside the Postfix policy, this is used to create the fine-grained process architecture:

domtrans_pattern(postfix_master_t, postfix_postqueue_exec_t,
postfix_postqueue_t)
domtrans_pattern(postfix_master_t, postfix_showqg_exec_t, postfix_showq_t)

Such domain transitions can also be supported through the interfaces, as we’ve seen in the
earlier chapters, such as the postfix_domtrans_smtp interface:

interface(postfix_domtrans_smtp',

gen_require("”

type postfix_smtp_t, postfix_smtp_exec_t;

")

corecmd_search_bin($1)

domtrans_pattern($1, postfix_smtp_exec_t, postfix_smtp_t)
)
A third transition type that SELinux supports is the dynamic domain transition. Such
SELinux policy rules inform the SELinux subsystem that a process can change its own
type dynamically—without needing to execute a file. This does require the application to
be SELinux-aware (that is, be able to interact with the SELinux subsystem itself). For
instance, inside the FTP policy, the following interface is made available to support

domains dynamically transitioning to the anon_sftpd_t domain:

interface(ftp_dyntrans_anon_ftpd', "

gen_require("

type anon_sftpd_t;

d;ntrans_pattern($1, anon_sftpd_t)
)
In our Postfix example, we used the /dev/shm/ shared memory, but there is also POSIX
shared memory, which is governed through the shm class. This shared memory inherits the
label from the domain itself, so if two applications (such as postfix_pickup_t and
postfix_cleanup_t) use POSIX shared memory, then the target label is inherited from
the process that creates the shared memory region:

allow postfix_pickup_t postfix_cleanup_t:shm rw_shm_perms;

Without fine-grained access controls, this would all be handled by a single domain (say
postfix_t) and shared memory access controls would be very limited.

Chapter 8. Debugging SELinux

In this chapter, we will look at SELinux debugging through the following recipes:

Identifying whether SELinux is to blame
Analyzing SELINUX_ERR messages
Logging positive policy decisions

Looking through SELinux constraints
Ensuring an SELinux rule is never allowed
Using strace to clarify permission issues
Using strace against daemons

Auditing system behavior

Introduction

On an SELinux-enabled system, the SELinux policy defines how applications should
behave. Any change in behavior might trigger SELinux denials for certain actions of that
application. As a result, end users can notice unexpected permission issues or erratic
application behavior.

Troubleshooting such situations is usually done through analysis of the AVC events. Many
resources already cover AVC events in great detail. The basic premise is that an AVC
event uses a set of key-value pairs, as follows:

type=AVC msg=audit(1369306885.125:4702304): avc: denied { append } for
pid=1787 comm="syslog-ng" name="oracle_audit.log" dev=dm-18 ino=65
scontext=system_u:system_r:syslogd_t:s@ tcontext=system_u:object_r:usr_t:s0
tclass=file

In this example, we can deduce the following from the AVC event:

e The event is a denial (avc: denied)

e The operation that was denied is appending to a file ({ append } .. tclass=file)

e The process that tried to append to the file has PID 1787 and name syslog-ng
(pid=1787 comm="syslog-ng")

e The process’ context is syslogd_t (scontext=system_u:system_r:syslogd_t:s0)

e The target file is called oracle_audit.log and has an inode number 65 on the
filesystem, stored on the /dev/dm-18 metadevice (name="oracle_audit.log"
dev=dm-18 ino=65)

e The file’s context is usr_t (tcontext=system_u:object_r:usr_t:s0)

However, sometimes it isn’t sufficient to find out where the problem is. Luckily, there are
many more options available to debug the problem.

Identifying whether SELinux is to blame

Before blaming the SELinux subsystem and policies for a problem, it is important to
verify whether SELinux is to blame at all. Too often, hours of troubleshooting are put in
analyzing the SELinux policies and subsystem only to find out that the problem also
persists when SELinux is not enabled.

How to do it...

In order to be confident that SELinux is (or isn’t) to blame, the following set of steps can
be taken:

1.

Is it possible to get more information through the application’s internal debugging
system? Consider the following instance:

~# puppet master
Error: Could not find class puppet::agent for foo.bar on node foo.bar
~# puppet master --debug --no-daemonize --verbose

Is an AVC denial related to the problem shown in the audit logs? If not, try disabling
the dontaudit rules and try again:

~# semodule -DB

Is the application that gives problems SELinux-aware? Most SELinux-aware
applications are linked with the 1ibselinux.so library, so we can verify whether this
is the case using 1dd or scanelf:

~# 1ldd /usr/bin/dbus-daemon
linux-vdso.so.1 => (0x00007fff56df4000)
libexpat.so.1 => /1ib64/libexpat.so.1 (0x00007f55710ae000)
libselinux.so0.1 => /1ib64/libselinux.so.1 (0x00007f5570e8f000)
libaudit.so.1 => /1ib64/libaudit.so.1 (0x00007f5570c72000)
libcap-ng.so0.0 => /1ib64/l1libcap-ng.so0.0 (0x00007f5570a6d000)
libpthread.so0.0 => /1ib64/libpthread.so0.0 (0x00007f5570850000)
librt.so.1 => /1ib64/librt.so.1 (0x00007f5570647000)
libc.s0.6 => /1ib64/1ibc.so0.6 (0x00007f55702b3000)
libdl.so0.2 => /1ib64/1ibdl.so0.2 (0x00007f55700af000)
/1ib64/1d-1inux-x86-64.s0.2 (0x0000003458000000)

Is the issue login related? If so, an application might not be SELinux-aware but still
behave differently, as it uses PAM under the hood, which calls the pam_selinux.so
library.

Does the problem still persist if the application domain is put in permissive mode? To
check this, issue the following command:

~# semanage permissive -a portage_t

If the application domain is unknown, try putting the entire system in permissive
mode (if allowed) to see whether the problem is still showing up. If it is, then
SELinux might not be the cause after all:

~# setenforce 0

How it works...

Ensuring that SELinux is the cause of a problem is the first step to enlightenment.
Numerous hours of SELinux investigations to resolve issues are spent only to find out that
the problem was not with SELinux to begin with.

Getting more information from the application (or applications) involved is the first step to
troubleshooting issues. Many applications have command-line flags that increase logging
verbosity, and many daemons can be configured to log more of their inner workings. The
resulting debug information (or even trace information, if the application supports it) will
provide a massive help to the administrator to troubleshoot a problem.

If additional logging does not help, then it is important to verify whether there are AVC
denials in the audit logs. As some AVC denials can be hidden during regular operations,
disabling the dontaudit rules temporarily might be necessary. Don’t stare blindly at AVC
denials though, and take a broader look at logfiles and audit events. For instance, in the
next recipe (Analyzing SELINUX_ERR messages), a more in-depth analysis of a particular
audit event type is discussed.

Look through the various logs on the system as well. The output of dmesg is important if
the problem is kernel, hardware, or core-system related. The messages logfile (in
/var/log/) usually contains pointers when issues come up with system daemons.

When no denials are shown and there is no specific logging that can assist with the
troubleshooting of an application, the next step is to assure ourselves that the application is
not SELinux-aware.

SELinux-aware applications (applications that know they run on an SELinux-enabled
system and interact with the SELinux subsystem) can act differently based on the SELinux
policy that is loaded, without actually triggering any SELinux decision in the SELinux
subsystem. On account of their awareness, the in-kernel SELinux subsystem access
controls might not be called, so no logging will be shown even though the problem is
somewhat SELinux-related.

Although there is not any 100 percent certain method to check whether an application is
SELinux-aware, the two most common approaches are as follows:

e Checking whether the application binary is linked with the 1ibselinux.so library
e Checking whether the application uses PAM

An application that is linked with the 1ibselinux. so library is SELinux-aware and will
be able to query SELinux policies, possibly acting differently when SELinux is enabled
and often regardless of SELinux being in the enforcing or permissive mode.

Besides the 1dd command, it is also possible to use the scanelf application as provided by
the pax-utils package. This application does not need execute privileges against the
binary (which 1dd requires) but has the downside that it only shows the requirements for
the binary, while 1dd also includes the libraries linked by the libraries themselves:

~$ scanelf -n /usr/bin/dbus-daemon

TYPE NEEDED FILE
ET_DYN libexpat.so.1,libselinux.so.1,libaudit.so.1,libcap-
ng.so.0,libpthread.so.0,1librt.so.1,1ibc.so0.6 /usr/bin/dbus-daemon

Applications that use PAM can also be influenced by SELinux, since their PAM
configuration might call the pam_selinux.so library (or not call it, which can be equally
damaging for the functionality of the application as no transition will occur then, having
the user session still run with the context of the daemon).

If the application does not interact with the SELinux subsystem to query the SELinux
policy, and it also doesn’t handle SELinux labels directly (that is, it has no knowledge of
SELinux labels and does not actively work with them code-wise), then running the
application in the permissive mode should show us whether SELinux is to blame. In the
permissive mode, the SELinux subsystem access controls do not prevent any action. If a
problem still persists in the permissive mode, chances are that SELinux is not to blame at
all.

See also

e More information about SELinux-aware applications and how to write one is covered
in Chapter 10, Handling SELinux-aware Applications

Analyzing SELINUX_ERR messages

When the SELinux subsystem is asked to perform an invalid SELinux-specific operation,
it will log this through the audit subsystem using the SELINUX_ERR message type.

Getting ready

Make sure that the audit subsystem is up and running as we will be using the ausearch
application to (re)view audit events:

~# service auditd start

How to do it...

Analyzing SELINUX_ERR messages is done by viewing the entry in the audit logs and
understanding the individual fields; this is done by completing the following steps:

1. Note the current date/time, or reload the SELinux policy, to have a clear point in the
audit logs from where to look:

~# semodule -R

2. Trigger the behavior in the application.
3. Ask the audit subsystem to show the last events of the SELINUX_ERR and
MAC_POLICY_LOAD types:

~# ausearch -m SELINUX_ERR,MAC_POLICY_LOAD -ts recent

4. Look at the beginning of the message to find out what problematic situation SELinux
is informing us about.

How it works...

The SELinux subsystem will log any incorrect request. If it is application behavior, it is
usually logged through the AVC type; but when the request is SELinux-specific and
incorrect, an SELINUX_ERR message type is displayed. In the example, we also looked for
the MAC_POLICY_LOAD type, so we know at which stage the SELinux policy was reloaded,
giving us a good starting point for the investigation.

Some examples of the SELINUX_ERR messages are as follows:

e security_compute_sid: Invalid context
e security validate_transition: Denied
® security_bounded_transition: Denied

Some other messages exist as well, although these are mostly for SELinux-internal
problems (related to the SELinux subsystem inside the Linux kernel, such as supported
netlink types), which need to be resolved by the SELinux maintainers themselves, and not
by policy developers.

Invalid contexts

An invalid context is triggered when a context that is not valid according to the RBAC and
SELinux user rules is created. This is usually the case during a domain transition, where
the target type is not allowed for the role:

time->Wed Aug 4 03:19:04 2014

type=SYSCALL msg=audit(10590262134.246:135): arch=c000003e syscall=59
success=no exit=-13 a0=187b190 al=187b120 a2=187ac30 a3=7ffff2dc3ecO
items=0

ppid=14696 pid=15085 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0

egid=0 sgid=0 fsgid=0 tty=(none) ses=21 comm="logwatch" exe="/usr/bin/perl"
subj=system_u:system_r:logwatch_t:s0-s0:c0.c1023 key=(null)
type=SELINUX_ERR msg=audit(10590262134.246:135): security_compute_sid:
invalid context system_u:system_r:logwatch_mail_ t:s@-s0:c0.c1023 for
scontext=system_u:system_r:logwatch_t:s0-s0:c0.c1023
tcontext=system_u:object_r:sendmail_exec_t:s@ tclass=process

Another reason for an invalid context can be that a role transition is triggered, but this role
is not allowed for an SELinux user:

type=SELINUX_ERR audit(1257378096.775:46): security_compute_sid: invalid
context

dbadm_u:system_r:mysqld_safe_t:s@ for scontext=dbadm_u:dbadm_r:initrc_t:s0
tcontext=system_u:object_r:mysqgld_safe_exec_t:sO tclass=process

In both cases, it is important to look at the presented context and the scontext and
tcontext fields. These show the contexts that SELinux finds invalid (presented context)
as well as the source (domain initiating the action) and the object context (label through
which the new context was decided upon). Based on these, it should be fairly easy to
deduce what the error is about.

The first example shows an attempt to transition from the logwatch_t domain (which is

allowed for the system_r role) to the logwatch_mail_t domain (which is not allowed for
the system_r role). To solve this, logwatch_mail_t needs to be allowed for the system_r
role:

allow system_r types logwatch_mail_t;

The second example is triggered through a role transition. A database administrator
launches an init script, resulting in the dbadm_u:dbadm_r:initrc_t context. This domain
executes the mysqld_safe application (whose file is labeled mysqld_safe_exec_t) that,
through the SELinux policy, attempts to perform a role transition to the system_r role.
Although the system_r:mysqld_safe_t context is a valid set, the database administration
user itself is not allowed the system_r role.

The main issue in this second example is that the context to start from
(dbadm_u:dbadm_r:initrc_t) shouldn’t be used. The initrc_t domain should only be
allowed for the system_r role. This, by itself, requires that the dbadm_u SELinux user is
also allowed the system_r role. So, even though allowing the system_r role is the right
resolution, the approach taken in the example is wrong (role transition from initrc_t to
mysgld_safe_t instead of role transitioning upon instantiating initrc_t).

Denied transition validation

Consider the following error message, which came up when an init script tried to
increase the sensitivity of a file:

type=SELINUX_ERR audit(125482134923.234:25): security_validate_transition:
denied for oldcontext=system_u:object_r:selinux_config_t:s0
newcontext=system_u:object_r:selinux_config_t:s15:c0-c1023
taskcontext=system_u:system_r:initrc_t=s0-s16:c0.c1023 tclass=file

Such a message occurs when a file transition is performed, but where the target security
context is not allowed. SELinux validates whether this is allowed; if not allowed, it logs
this through the message.

AVC-like denials will be in place here, but the access vector cache system is only able to
validate pair-wise contexts (the source and target contexts), whereas the transition
validation needs to be done on three levels (old file context, new file context, and process
context).

The solution for the presented error will be to either allow initrc_t to raise the security
level of a file (through the mls_file_upgrade interface) or to not have the init script
domain try to update the MLS level of a file in the first place.

Denied security-bounded transitions

An example where security-bounded transitions occur is when the mod_selinux module is
used with Apache (which uses bounded domains and transitions for individual requests).
When the target domain is not bounded by the source domain (that is, the SELinux policy
does not prevent the target domain from executing an action not allowed by the source
domain, as done through the typebounds statement), then the following error is displayed:

type=SELINUX_ERR msg=audit(1245311998.599:17):
op=security_bounded_transition result=denied
oldcontext=system_u:system_r:httpd_t:s0
newcontext=system_u:system_r:guest_webapp_t:s0O

When this occurs, a bounded transition is requested by the main application domain (such
as when a transition is done for threads), but the target domain is not marked as a bounded

domain.

Note that this is different from when a bounded domain is given more privileges—in such
cases, SELinux will deny the specific permissions when they are invoked, showing AVC
denials.

There’s more...

SELinux logging and audit logging is continuously being improved. Work is on the way to
make the audit logs easier to parse by scripts and to provide more information. For
instance, at the time of writing, a patch has just been accepted to add permissive state
information in the AVC logging.

See also

More in-depth analysis and explanation of AVC messages is handled in SELinux System
Administration, Packt Publishing. More resources related to SELinux audit events are
available at the following links:

¢ http://www.selinuxproject.org/page/NB_AL (including an overview of all possible
fields in AVC events)

¢ https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission

http://www.selinuxproject.org/page/NB_AL
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details

Logging positive policy decisions

On some occasions, the system performs actions that the administrator might not expect,
but which are allowed by the SELinux policy, making it harder to debug potential
problems. An application might be SELinux-aware, causing its own behavior to depend on
the SELinux policy, without actually using the SELinux subsystem to enforce access. The
SELinux policy might also be configured to behave differently than expected.

In such situations, it might be important to have SELinux log activities that were actually
allowed rather than denied; for instance, logging domain transitions to make sure that a
transition has indeed occurred.

How to do it...

In order to have domain transitions logged, create an SELinux policy by performing the
following steps:

1. Identify the source and target domains to look out for.
2. Create an SELinux policy that calls the auditallow statement on the access vector
we want to log:

auditallow initrc_t postgresql_t:process transition;

w

Build and load the SELinux policy and try to reproduce the situation.
4. Look at the audit logs and check whether an AVC granted message is displayed:

type=AVC msg=audit(1401379369.009:6171): avc: granted { transition }
for pid=4237 comm="rc" path="/usr/1ib64/postgresql-9.3/bin/pg_ctl"
dev="dm-3" in0=821490 scontext=system_u:system_r:initrc_t:s0
tcontext=system_u:system_r:postgresql_t:s0® tclass=process

How it works...

Of the many policy statements that SELinux supports, the auditallow statement is
interesting and does not alter the decisions made by SELinux: having an auditallow
statement does not allow the action, but rather has the SELinux subsystem log it if it is
allowed (through another allow statement).

This makes it possible for SELinux policy developers and system administrators to
explicitly ask the SELinux subsystem to inform them about decisions taken if the decision
is to grant something rather than deny.

Using the auditallow statement, we can track SELinux policy decisions and assist in the
development of policies and debugging of application behavior, especially when a process
is invoked in a very short time frame, as this makes it difficult for administrators to see
whether the context of the process is correct (ps -z or by checking the /proc/<pid>/
contexts).

Some administrators might want to put in some additional logging inside the scripts or
commands that they invoke (such as to capture the output of id -Z). However, it is very
much possible that the SELinux policy does not allow the script to execute the id
command, let alone show its output or direct its output to a specific logfile.

Enhancing the SELinux policy with additional log types, enabling terminal output,
allowing the execution of binaries, and more is quite some overhead just to find out
whether the context of the process is as it should be. Using the auditallow statement is a
great solution to this.

It goes beyond domain transitions, of course. If a file has been changed, and the
administrator or engineer is uncertain which process or which context is causing the
change, then it is possible to have SELinux audit writes on the file label, as follows:

auditallow domain postgresql_etc_t:file write;

Thanks to the additional information in the AVC log, we can see which process (PID)
running in a particular context (scontext) is responsible for writing to the file.

Looking through SELinux constraints

Some denials are caused by SELinux constraints—additional restrictions imposed by the
SELinux policy that are not purely based on the SELinux types, but also on the SELinux
role and SELinux user. This is often not clear from the denial.

The audit2why application helps in informing developers that a denial came from a
constraint violation:

~# ausearch -m avc -ts recent | grep type=AVC | audit2why

type=AVC msg=audit(1401134596.932:62843): avc: denied { search } for
pid=19384 comm="mount.nfs4" scontext=system_u:system_r:mount_t:s0
tcontext=system_u:object_r:nfs_t:s0 tclass=dir

Was caused by:
Policy constraint violation.

May require adding a type attribute to the domain or type
to satisfy the constraint.

Constraints are defined in the policy sources in
policy/constraints (general), policy/mcs (MCS), and
policy/mls (MLS).

This is, however, not always the case, so we need to find a way to investigate whether
denials come from constraint violations too.

How to do it...

Although SELinux constraints can be queried easily, they are currently difficult to work
with. The following approach helps in validating whether a constraint is applicable for a
particular AVC denial that is under investigation:

1. Look through the SELinux policy to see whether the (denied) access has an AVC
allow rule or not:

~$ sesearch -s staff_t -t user_home_t -c file -p read -A
Found 1 semantic av rules:
allow staff_t user_home_t : file { .. read .. };

2. Assuming there is an allow rule, see whether there are constraints applicable to the
operation. This takes into account the class (in the example, this is file) and the
permission (in the example, this is read):

~$ seinfo --constrain | grep 'constrain .* file .* read' -A 1

3. If constraints might exist, look at the attributes of the source and target contexts, as
this is usually how constraints are documented in the policy:

~$ seinfo -tstaff_t -x
~$ seinfo -tuser_home_t -Xx

4. Inside the SELinux policy, look through the constraints file (usually at
${POLICY_LOCATION}/policy/) and the mcs or mls file (if the policy uses MCS or

MLS), and look for the constraints on the class and permission requested, validating
whether there are any expressions concerning the attributes mentioned.

How it works...

Constraints are currently difficult to validate. Luckily, there aren’t many constraints in
place, but still, not being able to easily verify and look at the constraints is a nuisance for
developers.

The complexity increases as the seinfo --constrain output, which is the only available
method to query constraints next to reading the sources, has the following drawbacks:

¢ It does not provide any name yet on the constraints (so referring to constraints is
difficult)

e It uses Reverse Polish Notation (RPN), which isn’t very user-friendly (although it is
powerful for computers, people do not generally read RPN fluently)

¢ It shows expanded attributes, so we get huge lists of types, rather than a limited set of
attributes

The constraint definitions inside the constraints, mcs, and mls files (which are only
accessible through the policy source code) are easier to look at. The following example is
from the constraints file; constraints from mcs and m1s will use the mlsconstrain
keyword:

constrain process { transition dyntransition noatsecure siginh rlimitinh }

(

L.rl == r2
..or (tl1 == can_change_process_role and t2 == process_user_target)
..or (tl1 == cron_source_domain and t2 == cron_job_domain)
..or (tl1 == can_system_change and r2 == system_r)
or (tl1 == process_uncond_exempt)

)i
The controls shown use attributes, which are easier to map with a specific situation. It also
shows how flexible constraints can be. Next to pure type-oriented rules (t1 and t2),

constraints also work with roles (r1 and r2) and can deal with SELinux users (u1 and u2).
The number is used to differentiate between the subject (1) and object (2).

As an example, in constraint language, saying that something is allowed if the SELinux
users are equal, or the SELinux user of the subject is system_u, will be documented as
follows:

(

ul == u2

or (ul == system_u)
)
The output of the seinfo --constrain command has the advantage that it is easy for
computer programs to interpret. Computer programs or scripts, which use the output of
seinfo to visualize constraint information in a tree-like manner, can be created.

The following GraphViz-generated graph shows the UBAC constraints applicable to file
reads, showing only the user domains and the user_home_t types (to not overload the

graph):

[T

. 4 S o e ———
_h\u /:: (Lj__m\l (‘:F_ sysadm_t user_home tstaff t user t _:)

|
S “x_l_x Weispl e e g i
|, —~~> {::E-_- ‘(F: (_"::_Sy_n;'lm_t user_home_t staff { l];["_r__i_____;_::)

— ey

o~

v v s
DIOIOICD,

L&

This graph shows how the UBAC constraints are constructed. File reads are prohibited
(regardless of the type enforcement rules that are made in the policy), unless they match

one of the rules shown in the graph, which are as follows:

The SELinux user of the subject (domain) and object (resource) are the same
The SELinux user of the subject is system_u
The SELinux user of the object is system_u

subset is shown in the drawing)

The SELinux type of the subject does not match any of the mentioned types (only a

e The SELinux type of the object does not match any of the mentioned types (only a

subset is shown in the drawing)
e The SELinux type of the subject is sysadm_t

See also

More information on SELinux constraints can be found at the following resources:

e https://wiki.gentoo.org/wiki/SELinux/Constraints
¢ http://www.selinuxproject.org/page/ConstraintStatements

https://wiki.gentoo.org/wiki/SELinux/Constraints
http://www.selinuxproject.org/page/ConstraintStatements

Ensuring an SELinux rule is never
allowed

It is possible to include statements in the SELinux policy that ensure that a particular
access vector cannot be allowed, not even by enhancing the SELinux policy later. This is
done with the neverallow statement.

How to do it...

To include the neverallow statements in the policy and enforce them, go through the
following steps:

1.

o

In /etc/selinux/semanage.conf, enable support for the neverallow statements by
setting the expand-check variable to 1:

expand-check=1

Create an SELinux policy in which the access vectors that should be explicitly
forbidden are listed. Consider the following instance:

neverallow user_t system_mail_t:process transition;

Build and load the policy.
Generate another policy that will allow the statement and attempt to load it:

~$ semodule -i mytest.pp

libsepol.check_assertion_helper: neverallow violated by allow user_t
system_mail_t:process { transition };
libsemanage.semanage_expand_sandbox: Expand module failed

semodule: Failed!

How it works...

Not all distributions enable the assertion checks by default as they incur some
performance penalty during policy builds. Some distributions might even have policy
incompatibilities due to this, because if the assertions are disabled, then the neverallow
statements are never processed: the neverallow statement isn’t really a policy decision,
but more a rule that influences loading of new policies, and is enforced by the policy
linker (which combines the various policy modules in one final policy binary). As can be
deduced from the (failure) output, the neverallow statements are implemented as
assertions.

Some neverallow statements are available as part of the base policy. For instance, the
following statement ensures that only the domains with the selinux_unconfined_type or
can_load_policy attribute set can actually load an SELinux policy:

neverallow ~{ selinux_unconfined_type can_load_policy } security_t:security
load_policy;

This example uses the negation operator (~), which means all types except those
mentioned.

Unlike constraints (that can also be used to implement restrictions), the neverallow
statements help by not accepting any policy that will violate the rule. It is also possible to
add the neverallow rules through modules, unlike constraints that need to be part of the
base SELinux policy (and as such, are governed by Linux distribution, an upstream policy,
or developers that manage complete policies rather than individual SELinux policy
modules).

The expand-check variable in /etc/selinux/semanage.conf tells the SELinux user
space libraries that the assertion has to be checked. If this variable is set to 0, then the
neverallow statements have no impact on the policy and its loading whatsoever.

Using strace to clarify permission issues

The strace application is a popular debugging application on Linux systems. It allows
developers and administrators to look at various system calls made by an application. As
SELinux often has access controls on specific system calls, using strace can prove to be
very useful in debugging permission issues.

How to do it...

To properly use strace, follow the next set of steps:
1. Enable the allow_ptrace Boolean:
~# setsebool allow_ptrace on
2. Run the application with strace:

~$ strace -o strace.log -f -s 256 tmux

3. In the resulting logfile, look for the error message that needs to be debugged.

How it works...

The allow_ptrace Boolean (on some distributions, the inverse Boolean called
deny_ptrace is available) needs to be toggled so that the domain that calls strace can use
ptrace (the method that strace uses to view system calls) against the target domain. As
the ptrace method can be a security concern (it allows reading target process’ memory,
for instance), it is, by default, disabled.

Once an application has been executed through the strace application, the logfile will
contain all relevant system call information. Of course, on larger applications, or on
daemons, this logfile can become massive, so it makes sense to limit the strace operation
towards a particular subset of system calls, as shown in the following command:

~$ strace -e open,access -0 strace.log -f -s 256 tmux
In this example, only the open and access system calls are looked at.

In the resulting logfile, the SELinux permission usually issues results in failed system
calls with an EACCES (Permission denied) error code:

7313 stat("/", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
7313 stat("/home", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
7313 stat("/home/swift", {st_mode=S_IFDIR|0755, st_size=12288, ...}) = 0

7313 stat("/home/swift/.pki", {st_mode=S_IFDIR|0700, st_size=4096, ...}) =
0

7313 stat("/home/swift/.pki/nssdb", {st_mode=S_IFDIR|0700, st_size=4096,
...}) =0

7313 statfs("/home/swift/.pki/nssdb", 0x3c3cab6fa50) = -1 EACCES
(Permission denied)

Although an AVC denial will also be shown for most accesses, these denials often do not
give a complete picture as to at what stage a denial is in. By using strace, we can follow
the logic that the application performs.

Sometimes, it isn’t obvious why a failure occurs. In this case, it might be interesting to run
the application twice—once in enforcing mode and once in permissive mode—and look at
the differences in the strace logs.

Using strace against daemons

The strace application not only makes sense for command-line applications but also for
daemons. A popular approach to debugging daemons is to start them from the command
line, possibly with a specific debug flag, so that the daemon doesn’t detach and run in the
background. However, this is often not possible on SELinux: the policy will not allow the
daemon to run as a command-line foreground process.

How to do it...

The approach to use strace against daemons is similar as with command lines, focusing
on the process ID rather than the command:

1. Find out what the process ID of the daemon is:

~$ pidof postgres
2557

2. Use strace to attach to the running process:

~$ strace -o strace.log -f -s 256 -p 2557

3. Specify which system calls to watch out for. For instance, permission issues while
binding or connecting to ports or sockets can be filtered as follows:

~$ strace -e poll, select,connect,recvfrom,sendto -o strace.log -f -s
256 -p 2557

4. Press Ctrl + C to interrupt the strace session; don’t worry, the daemon will continue
to run in the background, unharmed.

How it works...

A popular approach to debugging daemons, which is to start the daemon in the foreground
from the command line, often does not work on SELinux systems:

~$ postgres -D /etc/postgresql-9.3 --data-directory=/srv/pgsql/data
LOG: could not bind IPv6é socket: Permission denied

WARNING: could not create listen socket for "localhost"

FATAL: could not create any TCP/IP sockets

If a user has the rights to execute the daemon binary directly (which isn’t default either),
then the daemon usually runs with the permissions of the user domain—who hardly has
the privileges needed to run the daemon—as there is no transition from the user domain to
the daemon domain.

By using strace against the daemons, it is possible to debug them in more detail. The
strace application will bind to the process (using the ptrace method) and be notified of
every system call that the daemon performs. The -f option also ensures that new
processes that the daemon launches (for instance, worker processes) are also looked at by
strace.

To end the strace session, it is enough to kill the strace session or interrupt it with Ctrl +
C. The daemon itself is left untouched.

There’s more...

Many other system analysis tools, which can be used in a very similar manner, exist. Some
examples are SystemTap and Sysdig, with a port of DTrace to Linux being actively
developed.

See also

The following resources cover the use of strace, SystemTap, and Sysdig in more detail:

¢ http://www.dedoimedo.com/computers/strace.html

o http://www.thegeekstuff.com/2011/11/strace-examples/
e http://www.sourceware.org/systemtap/
e http://www.sysdig.org/wiki/

http://www.dedoimedo.com/computers/strace.html
http://www.thegeekstuff.com/2011/11/strace-examples/
http://www.sourceware.org/systemtap/
http://www.sysdig.org/wiki/

Auditing system behavior

Another approach to debugging application behavior is through Linux auditing, especially
when it is not clear which process is responsible for performing a specific action, as this
might make SELinux development a lot more difficult. When developers do not know
which domain(s) they need to update privileges for, or do not know how exactly a
resource is created, then the Linux audit subsystem can help.

With the Linux auditing subsystem, administrators can enable rules to log activities. In the
audit log, the SELinux context of the subject (process) is shown as well, allowing
SELinux developers to properly identify the domain to work with.

How to do it...

Let’s look at how we can ask the Linux audit subsystem which process is responsible for
creating a particular directory in a user’s home directory through the following steps:

1. As the root Linux user (and in an SELinux role with sufficient privileges), tell the
audit subsystem to log all write- and attribute-changing operations inside the user’s
home directory:

~# auditctl -w /home/john/ -p wa -k policydev

2. Perform the necessary action(s) to trigger the behavior that needs to be debugged.
3. Query the audit subsystem for the recent audit events with the policydev key:

~# ausearch -ts recent -k policydev

4. Later, disable the audit rule again so that the audit logs are not cluttered with
development-related events:

~# auditctl -W /home/john/ -p wa -k policydev

How it works...

The Linux audit subsystem uses audit rules to identify which activities need to be logged
to the audit log. The rules can be manipulated using the auditctl command (audit
control).

In our example, a rule was added for the /home/john/ path (-w /home/john) for which
the write and attribute changes (-p wa) are logged. The events are tagged, so to speak,
with a key called policydev. Administrators can choose this key freely. Its purpose is to
structure audit events and simplify search queries.

When the auditctl command is invoked, the rule is immediately active, so after
executing the test, audit events will be displayed as follows:

time->Sun Jun 8 11:16:47 2014

type=PATH msg=audit(1402219007.623:80705): item=1 name=".dcinforc"
inode=8364 dev=fd:0c mode=040755 ouid=475395 09gid=475395 rdev=00:00
obj=user_u:object_r:user_home_t:s0 nametype=CREATE

type=PATH msg=audit(1402219007.623:80705): item=0 name="/home/john"
inode=229 dev=fd:0c mode=040700 ouid=475395 0gid=475395 rdev=00:00
obj=user_u:object_r:user_home_dir_t:s0 nametype=PARENT

type=CWD msg=audit(1402219007.623:80705): cwd="/home/john"

type=SYSCALL msg=audit(1402219007.623:80705): arch=c000003e syscall=83
success=yes exit=0 a0=7fff33d50330 al=1ff a2=7fff33d50330 a3=a items=2
ppid=23132 pid=23929 auid=475395 uid=475395 gid=475395 euid=475395
suid=475395 fsuid=475395 egid=475395 sgid=475395 fsgid=475395 tty=pts3
ses=11203 comm="java" exe="/usr/bin/java" subj=user_u:user_r:java_t:s0
key="policydev"

The logs show that it is a java process that is responsible for creating a directory called
.dcinforc/ in the user’s home directory. The important fields to consider here are the
nametype=CREATE (which tells us that an object was created) and syscall=83 (informing
us which system call was trapped by the audit subsystem—in this case, the mkdir system

call) fields, and of course the subj= and obj= parameters.
From the example, we can see that there are two distinct obj= parameters:

e The first, obj=user_u:object_r:user_home_t:s0, is mentioned for the created
directory, and it tells us what label the newly created directory received

e The second, obj=user_u:object_r:user_home_dir_t:s0, is mentioned for the
parent directory (nametype=PARENT), informing us what the label of the directory in
which .dcinforc/ is created is

Now, this is just an example of creating directories, but the audit system can trap many
types of activities. This is where the syscall= field becomes important. This field tells us
what specific system call was trapped and logged by the audit subsystem.

A list of system calls and their associated numbers can be found in the proper ¢ header
file. For instance, the /usr/include/asm/unistd_64.h file (referenced indirectly through
/usr/include/syscalls.h) contains the following code:

#define __NR_rename 82 _ SYSCALL(__NR_rename, sys_rename)

#define _ NR_mkdir 83 _ SYSCALL(__NR _mkdir, sys_mkdir)
#define _ NR_rmdir 84 _ SYSCALL(__NR _rmdir, sys_rmdir)

Through this, we know that the directory was created using the mkdir system call and not
by any other means (such as creating the directory as a different one first and then
renaming it).

There’s more...

The audit subsystem receives the rules it needs to follow up on at boot. Most Linux
distributions offer a file called audit.rules inside /etc/audit/, which contains various
commands, locations, and system calls that need to be trapped and logged. This file is then
read at boot time by the audit daemon init script.

If we need to have certain rules loaded automatically—and not just for the duration of a
short test—then it is recommended to add the rules to this audit.rules script, together
with the appropriate comment explaining why this needs to be trapped.

Now, we only used path-based auditing capabilities in the example. The Linux audit
subsystem, however, can do much more than just that. For instance, it is possible to audit
particular system calls. This allows administrators to keep a close eye on suspicious
system call usages, such as the use of unshare (which is used for Linux namespaces):

~# auditctl -a entry,always -S unshare -k namespace_suspect

See also

e A good set of default audit rules to work with is mentioned in the CISecurity
Benchmark for Red Hat Enterprise Linux, available at

https://benchmarks.cisecurity.org/

https://benchmarks.cisecurity.org/

Chapter 9. Aligning SELinux with DAC

In this chapter, our focus will be on the following set of recipes:

Assigning a different root location to regular services

Using a different root location for SELinux-aware applications
Sharing user content with file ACLs

Enabling polyinstantiated directories

Configuring capabilities instead of setuid binaries

Using group membership for role-based access

Backing up and restoring files

Governing application network access

Introduction

SELinux is an access control mechanism that works alongside the regular access controls
that Linux provides. Making sure that these various access control systems play nicely
together is important as both have their merits and uses.

Regular DAC security services on Linux are already quite powerful and are being
extended with almost every Linux release. Namespaces, extended access controls,
additional chroot restrictions, and other services are added to the Linux ecosystem to
support the hardening of Linux systems further.

In this process of hardening systems, SELinux is just another layer of defense. Putting all
efforts only on SELinux would be a major mistake to make, as SELinux has its downsides
as well. By properly enabling the Linux DAC controls and tweaking SELinux so that it
plays nicely together with these controls, a Linux system can be made much more resilient
against vulnerabilities and attacks.

Assigning a different root location to
regular services

A different root location, also known as a chroot, is an important feature of Linux systems
meant to disallow direct access to file resources outside a specified directory location. The
environment that is accessible from a chroot is called a jail or chroet jail. Applications in
a chroot jail are launched with a different root, wherein only those files that are needed for
the application to work are hosted.

Although it is commonly seen as a security feature, this was not the intention of a chroot.
However, with the proper approach, chroots can enhance the secure setup of an
application.

For instance, in case of a vulnerability, a successful exploit might only be able to access
the files available in the chroot. Other sensitive files, such as authentication-related files or
other service configurations, are not reachable from within the chroot (assuming the
exploited application does not have the privileges to break out of a chroot jail).

The steps to set up a chroot environment for any service are similar, but the end result of a
chroot is never the same: different files need to be available in a chroot depending on the
application that is being restricted.

Getting ready

Find the application that needs to be restricted. Such applications have to be end services,
in the sense that there is little to no interaction between the application and other
applications or services. Otherwise, all those other applications and services would need to
be available in the same chroot as well.

Usually, the primary targets are those services that are very popular in use on the Internet.
Exploits for these services are usually more actively searched and developed for, and
when a vulnerability is found and an exploit has been developed, malicious users or
groups quickly scan the Internet for vulnerable versions to attack.

How to do it...

The next set of steps shows how to set up a chroot environment and inform SELinux about
the chroot. We use the BIND DNS server as our example service and /var/chroot/ as the
chroot location:

1. Create the chroot location and add in the necessary subdirectories:

~# mkdir -p /var/chroot/dev

~# mkdir -p /var/chroot/etc/bind

~# mkdir -p /var/chroot/var/bind/{sec,pri,dyn}
~# mkdir -p /var/chroot/var/{log, run}

~# chown root:named /var/chroot

~# chmod 750 /var/chroot

~# chown -R named:named /var/chroot/var/*

2. Copy all the files that the application needs:

~# cp /etc/named.conf /var/chroot/etc/
~# cp /etc/localtime /var/chroot/etc/
~# cp -a /var/named/* /var/chroot/var/named/

3. Create the device files that the application needs:

~# mknod /var/chroot/dev/null ¢ 1 3
~# mknod /var/chroot/dev/random c 1 8
~# chmod 666 /var/chroot/dev/*

4. As the BIND service knows about chroots, we do not need to copy its binaries and
libraries to the chroot location. However, not all services support chroots out of the
box. When this is the case, we need to copy the binaries and libraries as well.

5. Now, relabel the files in the chroot so that they get the proper SELinux labels:

~# setfiles -r /var/chroot/
/etc/selinux/mcs/contexts/files/file_contexts /var/chroot/

6. Launch the application with the proper options to enable the chroot support. Some
Linux distributions already support chroot information for the BIND service. In
general, it requires the named application to be launched with the -t /var/chroot/
option. If the application does not support chroots out of the box, use the chroot
command itself:

~# chroot /var/chroot/ su - named -c /usr/sbin/named

7. If the application supports chroots out of the box, it might require the chroot
capability. This is supported through the sys_chroot permission, granted through the
following SELinux policy interface:

corecmd_exec_chroot(named_t)

How it works...

Setting up a chroot environment is usually a trial-and-error approach; although, for more
popular services, many tutorials exist on the Internet that make setting up chroots a lot
easier.

The basic approach to use is four-fold:

1. Create the chroot location and directory structure.

2. Install the necessary files and, if necessary, application binaries and libraries.
3. Update the SELinux labels of the resources.

4. Call the chroot binary or use the built-in chroot capabilities of the application.

When creating a chroot location, we need to make sure that the structure is similar to a
real root location (that is, the / location); as for the application, it will see the filesystem as
if this chroot location is the entire filesystem.

Which files to install is a different matter though, and having online resources to inform us
what to do is a great help. But if these online resources are missing, then we can still find
out which files are needed.

For instance, we can use the 1dd or scanelf application:

~# 1ldd /usr/sbin/named
linux-vdso.so.1
liblwres.s0.90 => /usr/1ib64/liblwres.so0.90
libdns.s0.100 => /usr/1ib64/1libdns.so0.100
libbind9.s0.90 => /usr/1ib64/1libbind9.s0.90
libisccfg.s0.90 => /usr/1ib64/libisccfg.s0.90
libisccc.s0.90 => /usr/1ib64/libisccc.s0.90
libisc.s0.95 => /usr/1ib64/1ibisc.s0.95
libc.so0.6 => /1ib64/1libc.s0.6
/1ib64/1d-1inux-x86-64.s0.2

But in general, it is the trial-and-error approach that works the easiest. Just launch the
application in the chroot, register its errors, and resolve them.

For SELinux, the important bit here is that the chroot should be labeled correctly.
Consider /var/chroot/etc/named.conf, for instance. The SELinux policy will assume
that this file is labeled named_conf_t. However, the location itself
(/var/chroot/etc/named.conf) implies var_t, as /var/ is var_t and there are no
definitions for any of our defined location’s subdirectories or files within.

The setfiles command allows us to relabel a location with a different root location,
resulting in /var/chroot/etc/named.conf being labeled as if it was /etc/named.conf.
However, take care that a system relabeling operation is followed by the setfiles
command again as the SELinux configuration is not aware of this change in labeling.

Finally, the application itself needs to be launched inside the chroot or through its built-in
chroot support. Applications that support chroots themselves can be tuned through their
configuration files and start up options to make sure that they run in a chroot environment.

If that isn’t possible, then the application should be started using an init script that calls
the chroot command, most likely together with the su application to allow switching to a
different user.

There’s more...

A chroot is a relatively primitive yet powerful method for reducing the impact of an
exploit. However, methods exist to escape a chroot. Luckily, there are some kernel patches
that improve the security of chroots tremendously. A popular update is the one maintained

by the grsecurity team (http://www.grsecurity.net).

With grsecurity’s chroot restrictions, the kernel can be configured with the following
options:

Disallow mounts and remounts of filesystems initiated from within the chroot
Disallow chrooting from within the chroot

Disallow the pivot_root call from within the chroot

Force the current working directory of chrooted applications to be the root directory
of the chroot

Disallow the setuid and setgid chmod operations from within the chroot
Disallow changing directories through open file descriptors pointing outside the
chroot

Disallow attaching to shared memory created outside the chroot

Disallow access to Unix domain sockets created outside the chroot

Disallow sending signals to processes outside the chroot

Besides these options, there are many, many more options. Such options make chroot jails
much more security-oriented than originally intended and make for a very powerful
mitigation against exploits.

http://www.grsecurity.net

See also

There are many resources available about chroot jails and BIND chroots in particular:

¢ Building and configuring BIND 9 in a chroot jail available at
http://www.unixwiz.net/techtips/bind9-chroot.html goes in great detail and has
pointers to various other BIND-related resources

¢ On the same site, best practices for Unix chroot () operations can be found:
http://www.unixwiz.net/techtips/chroot-practices.html

e The Jailkit project (http://olivier.sessink.nl/jailkit/) provides a set of utilities to
manage chroot jails

http://www.unixwiz.net/techtips/bind9-chroot.html
http://www.unixwiz.net/techtips/chroot-practices.html
http://olivier.sessink.nl/jailkit/

Using a different root location for
SELinux-aware applications

SELinux-aware applications have more requirements when they run inside a chroot
location. They require access to the SELinux subsystem (from within the chroot) and
possibly SELinux configuration entries. This includes PAM-enabled services, as user
logins on these services might require access to the SELinux user configuration files (such
as the seusers file and default contexts).

How to do it...

First, create the regular chroot location as we saw earlier. To update the system to support
SELinux-aware applications inside the chroot, complete the following steps:

1. Mount the SELinux filesystem inside the chroot at /sys/fs/selinux/ so that the
application can query the SELinux policy:

~# mkdir -p /var/chroot/sys/fs/selinux
~# mount -t selinuxfs none /var/chroot/sys/fs/selinux

2. Optionally, create the /var/chroot/etc/selinux/ location and copy the current
definition inside it:
~# cp -a /etc/selinux/ /var/chroot/etc/

3. Update the seusers file (in /var/chroot/etc/selinux/mcs/) to only contain the
SELinux user mapping(s) needed inside the chroot.

How it works...

Applications that are SELinux-aware usually require access to the SELinux filesystem
(/sys/fs/selinux/) and a kernel-provided pseudo filesystem needed in order to interact
with the SELinux subsystem. This should be seen as a more dangerous situation, as this
usually has the application run as a more privileged user and with access to a system
resource that is not protected by the chroot anymore. This reduces the effectiveness of a
chroot jail as a security measure.

If applications do not support chroots themselves internally, then we will have to expose
the /sys/fs/selinux/ filesystems to the application that is chrooted. If the application
supports chroot out of the box, it might only call the chroot after consulting SELinux (that
is, from the nonchrooted parent) and run the worker or user processes inside a chroot. This
is the case with chrooted SFTP users supported through OpenSSH.

It might also be sufficient to mount the SELinux filesystem on /selinux/ (a deprecated
but still a supported location for the SELinux filesystem) inside the chroot. That way, no
fake /sys/fs/ location needs to be created:

~# mount -t selinuxfs none /var/chroot/selinux

The /etc/selinux/ location is not always needed, so it shouldn’t be made accessible
inside the chroot by default. SELinux-aware applications that use SELinux user and role
transitions or that actively modify file contexts will need to be able to read the files inside
/etc/selinux/ though.

Depending on the reason of the chroot jail, it might be possible as well to use a read-only
bind-mount of the /etc/selinux/ location:

~# mount -0 bind /etc/selinux /var/chroot/etc/selinux
~# mount -o remount,ro /var/chroot/etc/selinux

The remount afterwards is needed to mark it as read-only. A bind-mount, by itself, doesn’t
allow additional mount options to be passed, so we cannot immediately mount with the ro
mount option. Of course, it is no longer possible/needed to modify the seusers file with a
read-only bind-mount.

See also

¢ Detailed guides on SFTP chroots can be found at

https://wiki.archlinux.org/index.php/SFTP_chroot and
http://en.wikibooks.org/wiki/OpenSSH/Cookbook/SFTP

https://wiki.archlinux.org/index.php/SFTP_chroot
http://en.wikibooks.org/wiki/OpenSSH/Cookbook/SFTP

Sharing user content with file ACLs

Access control lists allow for more fine-grained access controls on files. Instead of using a
common group ownership, access to files can be individually granted to users or groups.

However, the access controls that SELinux enables should also be tailored to this
situation. Features such as the user-based access control constraints in SELinux might
prevent sharing user content altogether, regardless of the ACLs set on the file.

How to do it...

Assuming that a user wants to allow read and read-write accesses to a set of files and
directories, the following set of steps can be used:

1.

Create an accessible location outside the user’s home directory:

~# mkdir -p /home/share/
~# chmod 1777 /home/share/

Create an SELinux file type that can be used for sharing resources:

type user_share_t;
files_type(user_share_t)

Create an interface allowing users to administer the resource:

interface(userdom_admin_user_share', '
gen_require("”
type user_share_t;
")
admin_pattern($1, user_share_t)
")
Assign this type to the new location:

~# semanage fcontext -a -t user_share_t "/home/share(/.*)?"
~# restorecon -R /home/share/

Assign the interface to the user domain(s) that will participate in the shared
development of this resource:

userdom_admin_user_share(user_t)

Move the files that need to be shared outside the user’s home directory, as the
SELinux context of the home directory will not allow sharing resources within.

~$ cp -r sharedfiles/ /home/share && rm -r sharedfiles/

Assign the ACL that allows the (limited set of) users proper access:

~$ setfacl -R -m u:userl:rX /home/share/sharedfiles
~$ setfacl -R -m u:user2:rwX /home/share/sharedfiles
~$ setfacl -m "default:u:user2:rwX" /home/share/sharedfiles
~$ setfacl -m "default:u:user0:rwX" /home/share/sharedfiles
~$ setfacl -m "default:u:userl:rX" /home/share/sharedfiles

How it works...

The file-level access controls can be perfectly used together with the SELinux access
controls. However, special care needs to be taken that both control mechanisms (file ACLs
and the SELinux policy) don’t interfere with each other. SELinux might disallow accesses
expected to work (for instance, due to SELinux constraints rather than type enforcement
settings), but also file access controls need to be properly managed in order to keep the
behavior on the system consistent.

In the recipes, the files that are shared are moved outside the user’s home directory. This is
mostly because of SELinux’ UBAC feature, which disallows different SELinux users to
access each others’ regular resources (such as those labeled as user_home_t but also
user_home_dir_t). As user_home_dir_t isn’t accessible by other SELinux users under
the UBAC constraints, users mapped to a different SELinux user will not be able to enter
and search through the sharing user’s home directory, regardless of ACLs being installed.

Not all systems have UBAC enabled, or the sharing might be within a single SELinux
user, so this approach is not always necessary. Still, using a different location allows for
better management. Consider the case where the first user exits the company, but his team
wants to continue accessing and managing the shared resources. They would disappear if
the user home directory is removed.

With the files moved to a different location, the next step is to label the files with a file
type that all users can access, but which isn’t restricted by the UBAC feature. File types
that have the ubac_constrained_type attribute set cannot be used for sharing, so a new
file type is created that is labeled as a regular file. The user domains are then granted
administrative rights on this type (allowing them not only to manage the files, but also to
relabel files to or from the user_share_t type). This ensures that SELinux doesn’t prevent
access to the shared resources, while still preventing unauthorized domains to access the
resources.

It might also be sufficient to pick a file type that is already accessible by users, such as the
nfs_t type (if the SELinux Boolean, use_nfs_home_dirs, is set). However, assigning a
type that is functionally used for different reasons (nfs_t is for NFS-mounted filesystems)
might open up access to these resources from other domains as well. As such,
administrators need to carefully consider the reasons for and the consequences of each
choice.

After labeling the /home/share/ location with the user_share_t type, the original user
copies the resources to the new location and removes them from the current one. This
approach (copy and remove) is used to ensure that resources inherit the label of the target
location (user_share_t) instead of keeping the labels associated with the original file
location (user_home_t), as would be the case with a move (mv) command. In more recent
coreutils packages, support for mv -z is made available, which allows you to move the
resources directly while still giving the resources a proper context.

A third approach for the user would be to move the resources first and then relabel them:

~$ mv sharedfiles/ /home/share/
~$ chcon -R -t user_share_t /home/share/sharedfiles/

Finally, with all SELinux rules and support in place, the file access controls are enabled on
the shared resources, and a default ACL is enabled so that write operations by other users
will automatically inherit the proper ACL on the written resource as well, making sure that
all users cooperating on the shared resource don’t need to continuously set ACLs on the
files.

Without the default ACLs, other users might create files inside sharedfiles/ that have no
ACLs set, disallowing other users to access the resources.

There’s more...

Another approach that could be taken is to use the setgid group ownership. For instance,
if all users that participate in the shared files access are in a shrgrp group, then the
following will automatically have all files created inside the mentioned directory have the
shrgrp group ownership defined as well:

~$ chgrp -R shrgrp /home/share/sharedfiles/
~$ find /home/share/sharedfiles/ -type d -exec chmod g+s '{}' \;

This does require the users to have a proper umask setting (such as 007 or less) so that the
group permission on the newly created resource allows read and write accesses for group
members.

Enabling polyinstantiated directories

On Linux and Unix systems, the /tmp/ and /var/tmp/ locations are world writable. They
are used to provide a common location for temporary files and are protected through the
sticky bit so that users cannot remove files they don’t own from the directory, even though
the directory is world writable.

But despite this measure, there is a history of attacks against the /tmp/ and /var/tmp/
locations, such as race conditions with symbolic links and information leakage through
(temporary or not) world or group-readable files generated within.

Polyinstantiated directories provide a neat solution to this problem: users get their own,
private /tmp/ and /var/tmp/ instance. These directory instances are created upon login on
a different location, but then made visible (mounted) on the /tmp/ and /var/tmp/
locations for that specific user session. This mount is local to the user session through the
use of Linux namespaces—other users have their own view on the mounts, and for
administrators, polyinstantiation is not enabled, so they keep a global view on the system.

How to do it...

To enable polyinstantiation of /tmp/ and /var/tmp/, the following steps should be
followed:

1.

Create the /tmp-inst/ and /var/tmp/tmp-inst/ locations:

~# mkdir /tmp-inst/ /var/tmp/tmp-inst/
~# chmod 000 /tmp-inst/ /var/tmp/tmp-inst/

Set the label for these locations as tmp_t:

~# semanage fcontext -a -t tmp_t -f d /tmp-inst
~# semanage fcontext -a -t tmp_t -f d /var/tmp/tmp-inst

Edit /etc/security/namespace.conf and add in the following definitions:

/tmp /tmp-inst/ level root,adm
/var/tmp /var/tmp/tmp-inst/ level root,adm

Edit the PAM configuration file used by logins, such as system-1login, and add the
following line to the session group after the pam_selinux.so one:

session required pam_namespace.so

Enable the allow_polyinstantiation SELinux Boolean:

~# setsebool -P allow_polyinstantiation on

How it works...

The system preparation for polyinstantiated directories requires that the directories
themselves are available and have the proper permissions set. When the parent directory,
such as /tmp/, is a tmpfs mount, then we cannot have the polyinstantiated directories
made available inside of it (such as /tmp/tmp-inst/), as that directory would be missing
after a reboot (unless it is added through the init scripts); hence the setup of /tmp-inst/
as a separate location. Of course, administrators can still opt to have this location itself as
a tmpfs mount—the important thing is that the directory must exist and have the proper
permissions (which is represented by the 006 permission set).

In the example, /var/tmp/ is assumed not to be a tmpfs mount, so we can define the
polyinstantiated directories inside of it.

The configuration file for polyinstantiated directories is the namespace . conf file under
/etc/security/. In it, the mount-point is mentioned together with the directory in which
the polyinstantiated directories are created:

/tmp /tmp-inst/ level root,adm

The third column defines the method for polyinstantiation. On non-SELinux systems, the
most common method used is the user method, which creates directories based on the
username. On SELinux-enabled systems, the method must be either 1evel or context.

In case of the 1level method, the directories are created based on the username and MLS
level of the user session. The context method has directories created based on the
username and security context. This allows for hiding temporary data based on the role of
the user, so accidental data leakage is less likely to occur.

Administrators can access the polyinstantiated directories as they are excluded from the
polyinstantiation: the excluded list of users is configured as the fourth column in the
namespace.conf file. Administrators can still see the directories that are created
dynamically:

~# 1s -1 /tmp-inst/
drwxrwxrwt. 2 root root 4096 Jun 22 12:31 system_u:object_r:tmp_t:s0_userl
drwxrwxrwt. 2 root root 4096 Jun 22 12:30 system_u:object_r:tmp_t:s0_user2

Next, the PAM configuration file(s) are modified to enable the pam_namespace. so library.
To find the PAM configuration files that need to be edited, look for the PAM configuration
files that call pam_selinux.so:

~# cd /etc/pam.d

~# grep -1 pam_selinux.so *

system-login

In this example, the system-login PAM configuration file is the only file calling
pam_selinux.so, so the pam_namespace. so line is added to this file. The line must be
added after the pam_selinux.so call as the pam_namespace. so file uses the context of the
user to decide how to call the instantiated directory. If pam_selinux.so has not been
called yet, then this information is not available and the logon will fail.

Finally, the SELinux Boolean, allow_polyinstantiation, is enabled so that the proper
domains have the privilege to create (and change the contexts of) the proper directories, to
use namespaces, to check user context, and more.

There’s more...

Administrators can go further than just having the directories created when needed.
During the setup of polyinstantiated directories, a script called namespace.init, which is
available at /etc/security/ is called to further handle the creation and modification of
those directories.

This script can be adjusted to copy files towards the instantiated directory (the file usually
contains this logic already for polyinstantiated home directories) or do other changes,
allowing to further tune the setup for a user session.

The systemd init system also has support for polyinstantiated /tmp/ directories through
the PrivateTmp directive, which provides a private /tmp/ directory for a service rather
than end users.

Configuring capabilities instead of setuid
binaries

Linux capabilities allow for course-grained kernel security authorizations on the user and
application levels. Before capabilities existed, administrators could only grant additional
privileges to users through setuid applications: applications which, when executed,
inherit the privileges of the owner of the application (usually, root). With capabilities, the
set of privileges can be restricted further.

For instance, the ping application can be granted the cap_net_raw capability, so it does
not need to be setuid anymore. Depending on the setup, either users need to be granted
the possible use of the capability (if the application has the proper flag set) or the
capability is granted immediately (regardless of user settings).

How to do it...

To use capabilities with SELinux, execute the following steps:

1.

Enable the capabilities that are needed for an application on the application binary:
~# setcap cap_net_raw+ei /bin/ping

For the users that are allowed to use the net_raw capability, add the proper
configurations in /etc/security/capability.conf (one line per user):

cap_net_raw userl

SELinux domains that will use the capability need to be granted the use of it. For
common applications, this is usually already in place.

allow ping_t self:capability net_raw;

SELinux domains that are allowed to modify the capability set assigned to their
process(es) must have the setcap privilege set:

allow local_login_t self:process setcap;

Edit the PAM configuration file(s) for the services through which the capabilities are
allowed, and add the following line to the auth configuration block:

auth required pam_cap.so

If capabilities need to be tracked/audited, SELinux’s auditallow statement can be
used:

auditallow domain self:capability net_raw;

How it works...

The capabilities that a process is currently allowed to use are called the permitted
capabilities. The capabilities that are active are the effective capabilities. A third set of
capabilities are inheritable capabilities.

In the example, we enabled the cap_net_raw capability for the ping application and
marked the capability as effective if it is inherited. In other words, it is not enabled
(permitted) by default. If we want to enable the cap_net_raw capability immediately, we
would use the effective and permitted set:

~# setcap cap_net_raw+ep /bin/ping

Applications that are capability-aware do not need to have the effective bit set. They
will enable (and drop) the capabilities as they are needed through the proper system calls
(which is why the setcap permission is needed for these domains). If ping was capability-
aware, then the following would be sufficient for our example:

~# setcap cap_net_raw+i /bin/ping

Next, the users that are allowed the cap_net_raw capability (through the selected set of
applications) need to be granted the cap_net_raw capability in their inherited capability
set. This is done through the capability.conf file in /etc/security/ and by calling the
pam_cap.so module from within the proper PAM configuration files. The use of PAM
configuration files also allows us to differentiate capabilities based on the service through
which a user logs on.

To check the currently enabled capabilities, users can execute the capsh application:

~$ /sbin/capsh --print | grep ~Current
Current: cap_net_raw+i

To see the capabilities on a file, the getcap application can be used:

~$ getcap /bin/ping

/bin/ping = cap_net_raw+eili

Finally, auditing the use of capabilities through the auditallow statement tells us when
(and by whom) a capability was used, although the same can be accomplished without an
SELinux policy using the Linux audit subsystem, auditing for the setcap system call.

See also

e (Capabilities are well explained in Chris Friedhoff’s POSIX Capabilities & File
POSIX Capabilities page (http://www.friedhoff.org/posixfilecaps.html)

http://www.friedhoff.org/posixfilecaps.html

Using group membership for role-based
access

In larger environments, access controls are usually granted based on group membership.
Group membership is easier to manage than individual permissions: just adding or
removing users from a group automatically grants or revokes permissions, and
administrators can easily find out which permission(s) a user will have based on the group
membership.

How to do it...

In order to use group membership as a high-level method for assigning permissions,
administrators need to take care of the following aspects:

1. Add user(s) to the groups they should belong to:

~# gpasswd -a userl dba
~# gpasswd -a userl dev

2. Assign the proper SELinux user to the group:
~# semanage login -s dbadm_u %dba
3. Restrict binaries and libraries that should only be called by a specific group:

~# chgrp -R dev /usr/lib/gcc /usr/x86_64-pc-linux-gnu/gcc-bin
~# chmod -R o-rx /usr/lib/gcc /usr/x86_64-pc-linux-gnu/gcc-bin

4. Use group notation inside the sudoers file to grant specific privileges to group
members:

%dba ALL=(ALL) TYPE=dbadm_t ROLE=dbadm_r NOPASSWD: initdb

How it works...

Using groups makes permission handling much easier. In the end, this allows
administrators to just handle group membership for users and automatically assign
privileges based on the groups.

We can grant groups an SELinux user, and through the group membership decide which
SELinux user a regular user is logged into. Of course, users can belong to multiple groups.
For SELinux, it is the order of the seusers file that decides which of the following
mappings are used:

e SELinux user mappings for individual users take precedence over group mappings

e The first group mapping in the seusers file that uses a group that the Linux user is a
member of decides the SELinux user mapping if no individual SELinux user
mappings exist for this user

As such, if a user is a member of two groups (say, dba and web) and there are mappings to
both dbadm_u (for the dba group) and webadm_u (for the web group), then the first mapping
in the seusers file will decide what the user’s SELinux user will be.

In order to override this, either add the user individually or create another group (say,
dbaweb), grant the user this group as well, and put that group mapping at the beginning of
the list in the seusers file.

When only a specific user group is allowed access to an application, but that application
does not use any specific SELinux domains, then it might be more flexible for
administrators to use the Linux DAC permissions to restrict access to the application. By
only allowing a specific group (dev, in our example), read and execute rights on the
application and application libraries, we can restrict access easily.

Another approach is to label the files with new SELinux types and grant the proper
domains access to those types. However, this might lead to a large set of domains needing
access to the types (and so requires massive policy development effort), whereas the Linux
DAC approach is easily implemented.

Backing up and restoring files

An important aspect to the availability of a system and the security of a service is to
provide backup and restore services. For many, having a copy of the files available might
seem sufficient as a backup approach. However, backups should contain more than just the
content of a file.

How to do it...

When selecting a backup solution, make sure to check for the following:

1.

A selection of the extended attributes of the files should be backed up as well (and
not only the security.selinux one).

When files are restored onto their original location, the SELinux context should be
restored with it as well. If the backup solution doesn’t support SELinux contexts, the
restorecon command should be invoked afterwards against the restored file(s).
When files are restored into a temporary area, the SELinux context should not be
restored. Instead, the administrator should put the file back in place and restore the
context afterwards.

The SELinux configuration in /etc/selinux/ should definitely be backed up, even if
no full system backups are used. Whenever the policy or file context definitions are
altered, these should be backed up as well whenever files are backed up.

How it works...

File labels are stored as the security.selinux extended attribute. As the functioning of a
policy is based on the labels of all objects involved, not backing up and restoring the file
labels might jeopardize the functioning of the system after a restore operation.

When the backup solution does not support extended attributes, it is important that all
labels are properly set through the semanage fcontext command. This is the only way to
make sure that, after a restore, the admin can run restorecon against the restored files in
order to reset the file labels:

~# tar xvf /path/to/last_backup.tar.gz etc/named.conf
~# restorecon /etc/named.conf

However, it is seriously recommended to select a backup solution that supports extended
attributes as many other Linux-related settings are stored as extended attributes. The file
ACLs, for instance, are stored as extended attributes as well:

~$ getfattr -m . -d named.conf

file: named.conf
security.selinux="system_u:object_r:named_conf_t:s0"
system.posix_acl_access=0SAgAAAAEABgD/////AgAGAOQO...

Other examples of extended attributes that can be used on a system are PaX markings
(user.pax.flags), IMA and EVM hashes (security.ima and security.evm), and
capabilities (security.capability). But herein lies the problem as well: some attributes
shouldn’t (or cannot) be restored. The IMA and EVM attributes, for instance, are handled
by the Linux kernel and cannot be manipulated by user utilities.

Alongside the file labels, backing up and restoring the SELinux policy should be
integrated as well, especially on a system with a modified SELinux policy. If a policy is
different after a restore, then types might be missing and labels might become invalid.

Governing application network access

On Linux systems, iptables (and more recently, nftables) is the de facto host-based
firewall technology. Administrators will undoubtedly use it to prevent access to a service
from unauthorized systems. We can also use iptables to identify and label network
packets, allowing only authorized applications (domains) to send or receive those network
packets.

By default, the SELinux policy supports client and server packets and allows the usual
domains access to their client and/or server packets. For instance, the web server domains
(such as httpd_t) will have the privileges to send and receive http_server_packet_t
packets:

allow httpd_t http_server_packet_t:packet { send recv };

This is provided through the corenet_sendrecv_http_server_packets interface.
Enabling packet labeling is simply done using iptables as will be shown through this
recipe. But to properly govern network access, custom packet types will need to be created
to ensure that no default allowed access is used.

How to do it...

To only allow authorized domains access to particular network packets (datagrams and
data streams), use the following approach:

1. Identify the flow that needs to be allowed. For instance, we might only want DNS
requests from 10.11.12.0/24 to be accepted by the dnsmasq_t domain, and requests
from 10.13.14.0/24 to be accepted by the named_t domain.

2. Create two new packet types:

type dnsmasq_server_packet_t;
corenet_server_packet(dnsmasq_server_packet_t)

type named_server_packet_t;
corenet_server_packet(named_server_packet_t)

3. Allow the domains send and receive privileges for these packets:

allow dnsmasq_t dnsmasq_server_packet_t:packet { send recv };
allow named_t named_server_packet_t:packet { send recv };

4. Label the incoming traffic accordingly:

~# iptables -t mangle -A INPUT -p tcp -s 10.11.12.0/24 --dport 53 -j
SECMARK --selctx "system_u:object_r:dnsmasq_server_packet_t:s0"

~# iptables -t mangle -A INPUT -p udp -s 10.11.12.0/24 --dport 53 -j
SECMARK --selctx "system_u:object_r:dnsmasq_server_packet_t:s0"

~# iptables -t mangle -A INPUT -p tcp -s 10.13.14.0/24 --dport 53 -j
SECMARK --selctx "system_u:object_r:named_server_packet_t:s0"

~# iptables -t mangle -A INPUT -p udp -s 10.13.14.0/24 --dport 53 -j
SECMARK --selctx "system_u:object_r:named_server_packet_t:so0"

How it works...

By using custom network packet labels, access from or to specific applications can be
governed using an SELinux policy. Even though multiple applications can accept
incoming DNS requests, this recipe shows how to ensure that only one application can
deal with requests that have passed a certain filter.

Whenever a SECMARK label is enabled with iptables, the Linux kernel will
automatically enable SECMARK labeling on all packets. Packets that are not marked
specifically by the administrator will be marked with the unlabeled_t type. Some
domains are allowed to handle the unlabeled_t packets through the
corenet_sendrecv_unlabeled_packets interface (or the
kernel_sendrecv_unlabeled_packets interface). However, if that is not the case, then
those domains will not be able to handle network traffic anymore.

As such, it is advised to use the standard labeling for other incoming (and outgoing)
traffic. To identify which incoming traffic should be labeled, we can leverage assistance
from the netstat output:

~# netstat -naptz | awk '/LISTEN/ {print $4,$6,$7,$8}"
0.0.0.0:13500 LISTEN 6489/mysqld system_u:system_r:mysqld_t:sO
0.0.0.0:80 LISTEN 23303/httpd system_u:system_r:httpd_t:s0
10.11.12.122:53 LISTEN 4432/dnsmasq system_u:system_r:dnsmasq_t:s0
10.13.14.42:53 LISTEN 5423/named system_u:system_r:named_t:s0

Based on this output, labeling the appropriate traffic as mysqld_server_packet_t and
http_server_packet_t will allow those domains to access their incoming network traffic.

By creating additional types for dnsmasq_t and named_t, those applications can only
handle requests associated with those packet types. If an administrator changes the
configuration of one of these DNS servers, then the network packet labeling will still
ensure that DNS requests from the previously identified network segments cannot be used
by the wrong DNS server, even though the flow is allowed firewall-wise.

With sesearch, interrogating the policy to see which applications (domains) are able to
send and receive certain packets is easy:

~# sesearch -t dns_server_packet_t -ACTS
Found 10 semantic av rules:

allow nova_network_t dns_server_packet_t : packet { send recv } ;

allow corenet_unconfined_type packet_type : packet { send recv relabelto
flow_in flow_out forward_in forward_out } ;

allow named_t dns_server_packet_t : packet { send recv } ;

allow vmware_host_t server_packet_type : packet { send recv } ;

allow dnsmasq_t dns_server_packet_t : packet { send recv } ;

allow kernel_t packet_type : packet send ;

allow iptables_t packet_type : packet relabelto ;
ET allow squid_t packet_type : packet { send recv } ; [squid_connect_any]
DT allow icecast_t packet_type : packet { send recv } ; [
icecast_connect_any]
DT allow git_session_t server_packet_type : packet { send recv } ; [
git_session_bind_all_unreserved_ports]

The same approach can be taken from a client level. A mail server might need to connect
to other mail servers, which means that the outgoing data can be labeled as

mail client_packet_t (if we use the default traffic). However, if we want to make sure
only the mail server can connect to other mail servers (and no other domains that also
have privileges to send and receive the mail_client_packet_t packets), then a new
packet type can be used.

See also

For more information about SECMARK labeling, read up on the following resources:

e http://www.selinuxproject.org/page/NB_Networking
e Paul Moore’s Transitioning to Secmark at

http://paulmoore.livejournal.com/4281.html
e James Morris’s New Secmark-based network controls for SELinux at http://james-
morris.livejournal.com/11010.html

http://www.selinuxproject.org/page/NB_Networking
http://paulmoore.livejournal.com/4281.html
http://james-morris.livejournal.com/11010.html

Chapter 10. Handling SELinux-aware
Applications

In this chapter, we will cover handling of SELinux-aware applications through the
following recipes:

Controlling D-Bus message flows

Restricting service ownership

Understanding udev’s SELinux integration
Using cron with SELinux

Checking the SELinux state programmatically
Querying SELinux userland configuration in C
Interrogating the SELinux subsystem code-wise
Running new processes in a new context
Reading the context of a resource

Introduction

For most applications, the SELinux subsystem in the Linux kernel is capable of enforcing
security controls without further interaction with other applications and components.
However, there are actions that cannot be handled by the SELinux subsystem
autonomously. Some applications execute commands for specific users, but the target
domain cannot be deduced from the path of the application that is itself being executed,
making type transitions based on the label impossible.

One solution for this problem is to make the application SELinux-aware, having the
application interrogate the SELinux subsystem as to what should be the context of the
newly executed application. Once the context is obtained, the application can then instruct
the SELinux subsystem that this context can be assigned to the process that will be
launched next.

Of course, it isn’t only about deciding what context a process should be in. Applications
can also check the SELinux policy and act on the policy themselves, rather than having
the policies enforced through the Linux kernel. If applications use SELinux to get more
information about a session and set contexts based on this information, then we call these
applications SELinux-aware.

The easiest method to see whether an application is SELinux-aware is to check the
documentation, or to check whether it is linked with the 1ibselinux.so library:

~$ 1ldd /usr/sbin/crond | grep selinux
libselinux.so0.1 => /1lib64/libselinux.so.1 (0x00007fa53299a000)

Some SELinux-aware applications not only query information, but also enforce decisions
on objects that the SELinux subsystem in the Linux kernel cannot control. Examples of
such objects are the database objects in the Security Enhanced PostgreSQL
(SEPostgreSQL) application or the D-Bus services. Although represented in the SELinux
policy, they are not part of the regular Linux operating system but are instead owned by
the application itself. Such SELinux-aware applications are called user space object
managers.

Regardless of how an application handles its SELinux-specific code, whenever such
applications are used on a system, it is important to know how the SELinux code in the
application works, as the standard approach (look at AVC denials and see whether a
context needs to be changed or the policy tuned) might not work at all in these cases.

Controlling D-Bus message flows

D-Bus implementation on Linux is an example of an SELinux-aware application, acting as
a user space object manager. Applications can register themselves on a bus and can send
messages between applications through D-Bus. These messages can be controlled through

the SELinux policy as well.

Getting ready

Before looking at the SELinux access controls related to message flows, it is important to
focus on a D-Bus service and see how its authentication is done (and how messages are
relayed in D-Bus) as this is reflected in the SELinux integration.

Go to /etc/dbus-1/system.d/ (which hosts the configuration files for D-Bus services)
and take a look at a configuration file. For instance, the service configuration file for
dnsmasq looks like the following:

<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus Configuration
1.0//EN" "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">
<busconfig>
<policy user="root">
<allow own="uk.org.thekelleys.dnsmasq"/>
<allow send_destination="uk.org.thekelleys.dnsmasq"/>
</policy>
<policy context="default">
<deny own="uk.org.thekelleys.dnsmasq"/>
<deny send_destination="uk.org.thekelleys.dnsmasq"/>
</policy>
</busconfig>

This configuration tells D-Bus that only the root Linux user is allowed to have a service
own the uk.org.thekelleys.dnsmasq service and send messages to this service. Others
(as managed through the default policy) are denied these operations.

On a system with SELinux enabled, having root as the finest granularity doesn’t cut it. So,
let’s look at how the SELinux policy can offer a fine-grained access control in D-Bus.

How to do it...

To control D-Bus message flows with SELinux, perform the following steps:

1. Identify the domain of the application that will (or does) own the D-Bus service we
are interested in. For the dnsmasq application, this would be dnsmasq_t:

~# ps -eZ | grep dnsmasq | awk '{print $1}'
system_u:system_r:dnsmasq_t:s0-s0:c0.c1023

2. ldentify the domain of the application that wants to send messages to the service. For
instance, this could be the sysadm_t user domain.

3. Allow the two domains to interact with each other through D-Bus messages as
follows:

gen_require("
class dbus send_msg;
")
allow sysadm_t dnsmasqg_t:dbus send_msg;
allow dnsmasq_t sysadm_t:dbus send_msg;

How it works...

When an application connects to D-Bus, the SELinux label of its connection is used as the
label to check when sending messages. As there is no transition for such connections, the
label of the connection is the context of the process itself (the domain); hence the selection
of dnsmasq_t in the example.

When D-Bus receives a request to send a message to a service, D-Bus will check the
SELinux policy for the send_msg permission. It does so by passing on the information
about the session (source and target context and the permission that is requested) to the
SELinux subsystem, which computes whether access should be allowed or not. The access
control itself, however, is not enforced by SELinux (it only gives feedback), but by D-Bus
itself as governing the message flows is solely D-Bus’ responsibility.

This is also why, when developing D-Bus-related policies, both the class and permission
need to be explicitly mentioned in the policy module. Without this, the development
environment might error out, claiming that dbus is not a valid class.

D-Bus checks the context of the client that is sending a message as well as the context of
the connection of the service (which are both domain labels) and see if there is a send_msg
permission allowed. As most communication is two-fold (sending a message and then
receiving a reply), the permission is checked in both directions. After all, sending a reply
is just sending a message (policy-wise) in the reverse direction.

It is possible to verify this behavior with dbus-send if the rule is on a user domain. For
instance, to look at the objects provided by the service, the D-Bus introspection can be
invoked against the service:

~# dbus-send --system --dest=uk.org.thekelleys.dnsmasq --print-reply
/uk/org/thekelleys/dnsmasq org.freedesktop.DBus.Introspectable.Introspect

When SELinux does not have the proper send_msg allow rules in place, the following
error will be logged by D-Bus in its service logs (but no AVC denial will show up as it
isn’t the SELinux subsystem that denies the access):

Error org.freedesktop.DBus.Error.AccessDenied: An SELinux policy prevents
this sender from sending this message to this recipient. 0 matched rules;
type="method_call", sender=":1.17" (uid=0 pid=6738 comm="")
interface="org.freedesktop.DBus.Introspectable" member="Introspect" error
name="(unset)" requested_reply="0" destination="uk.org.thekelleys.dnsmasq"
(uid=0 pid=6635 comm="")

When the policy does allow the send_msg permission, the introspection returns an XML
output showing the provided methods and interfaces for this service.

There’s more...

The current D-Bus implementation is a pure user space implementation. Because more
applications become dependent on D-Bus, work is being done to create a kernel-based D-
Bus implementation called kdbus. The exact implementation details of this project are not
finished yet, so it is unknown whether the SELinux access controls that are currently
applicable to D-Bus will still be valid on kdbus.

Restricting service ownership

Applications that register themselves on the bus own a service name. The
uk.org.thekelleys.dnsmasq service name is an example of this. The D-Bus policy,
declared in the busconfig XML file at /etc/dbus-1/system.d/ (or session.d/ if the
service is for the session bus instead of system bus) provides information for D-Bus to
decide when taking ownership of a particular service is allowed.

Thanks to D-Bus’ SELinux integration, additional constraints can be added to ensure that
only authorized applications can take ownership of a particular service.

How to do it...

To restrict service ownership through the SELinux policy, follow the ensuing set of steps:

1. Inside the D-Bus configuration file of the service, make sure that the own permission
is properly protected. For instance, make sure only the root Linux user can own the
service:

<policy user="root">
<allow own="uk.org.thekelleys.dnsmasq" />
</policy>

2. If the runtime service account can differ, it is possible to declare a group= parameter

instead of a user= parameter as well.
3. Next, declare which label to associate to the service:

<selinux>
<associate own="uk.org.thekelleys.dnsmasq" context="dnsmasqg_t" />
</selinux>

4. In the SELinux policy, declare which domain(s) are allowed to acquire this service:

gen_require("
class dbus acquire_svc;
")

allow dnsmasqg_t self:dbus acquire_svc;

How it works...

The D-Bus configuration allows administrators to define when service ownership for a
particular service can be taken. Most services define the user (or group) that is allowed to
own a service, as shown in the example. But for system services, only declaring that the
Linux root user can own a particular service is definitely not sufficiently fine-grained.

Enter SELinux. With the association definition in the busconfig XML file, D-Bus is told
that any application domain that tries to own that particular service must have the
acquire_svc privilege (in the dbus class) against the mentioned context.

With this approach, administrators can ensure that other domains, even though they run as
the Linux root user, are not allowed to own the service.

Although the usual approach, for the target label, is to require the context of the
application itself, it is also possible to use a different context. For instance, a new type can
be declared such as dnsmasq_dbus_t and then the SELinux policy is set to the following:

allow dnsmasq_t dnsmasq_dbus_t:dbus acquire_svc;

There’s more...

The D-Bus application has a configuration file inside /etc/selinux/mcs/contexts/,
which follows the same structure, called dbus_contexts. This is a default context
definition for D-Bus ownership (what context should be used by default if it cannot be
deduced by other means). By default, no SELinux-specific settings are provided anymore
as D-Bus is now fully aware of the contexts to use, and it is not recommended to modify
this file anymore.

However, it is useful to know that the file exists and is used, especially when D-Bus would
be executed in a container, chroot, or other environment as D-Bus will complain if the file
is missing:

Failed to start message bus: Failed to open
"/etc/selinux/mcs/contexts/dbus_contexts": No such file or directory

If the SELinux support in D-Bus needs to be disabled (but without rebuilding D-Bus), then
edit /etc/dbus-1/system.conf and session.conf and remove the following line:

<include if_selinux_enabled="yes"
selinux_root_relative="yes">contexts/dbus_contexts</include>

Understanding udev’s SELinux
integration

The udev device manager is responsible for handling device files inside the /dev/
structure whenever changes occur. As many device files have different contexts, without
any SELinux awareness, the udev policy would need to be enhanced with many, many
named file transitions. Such a named file transition, for a device /dev/mydevice towards
the mydevice_t type, would look like the following code:

dev_filetrans(udev_t, mydevice_t, chr_file, "mydevice")

However, when /dev/mydevicel, /dev/mydevice2, and so on need to be labeled as well,
then each possible name would need to be iterated in the policy (named file transitions do
not support regular expressions). Luckily, udev is SELinux-aware, making it unnecessary
to create policy enhancements for every device file.

This recipe shows us when additional policy enhancements are needed and when not.

How to do it...

To understand how udev’s SELinux integration works, the following decision criteria can
be followed:

1. Whenever a device file is created by udev inside a directory with the device_t label,
then udev will automatically label the device file with the label known to the
SELinux subsystem through its file_contexts definitions if the target type is
assigned the device_node attribute.

2. If the parent directory does not use the device_t type, then make sure that udev
holds manage rights on that target type.

3. If the target file context is not associated with the device_node attribute, grant udev
the proper relabelto privileges.

4. If udev’s rules are configured to create symbolic links, then assert that the label of the
links remains the generic device_t type.

How it works...

The udev application is a standard SELinux-aware application that interacts with the
SELinux user space by querying the context definitions and either creating the new device
files with the queried context or by relabeling the device files afterwards.

By querying the context definitions (instead of relying on the SELinux policy),
administrators can easily modify the rules for different device names or include support
for new device types, without the need to enhance the udev_t related policies. All that an
administrator has to do is to configure the proper file context definition:

~# semanage fcontext -a -t mydevice_t -f -c /dev/mydevice[0-9]*

However, if the target device type (mydevice_t) is not associated with the device_node
attribute, then udev_t will not have the privileges to relabel this device type. This attribute
is vital for the support of udev_t, as it has relabel (and manage) rights on all device nodes
through this attribute.

If a udev rule would request the creation of a device file that is not associated with the
device_node attribute (or a different file—the requested file does not need to be a device),
then an update on the SELinux policy is needed if the default context association (that is,
through inheritance of the type through the parent directory) is not sufficient.

For the same reason, it is necessary to have symbolic links remain as device_t as the
SELinux policy does not handle different types for symbolic links.

Of course, this SELinux support inside udev also has its consequences when device files
are created outside of udev’s handling. If that is the case, then the administrator has to
make sure that the label of the files is corrected, as wrong device types can result in a
system malfunction.

A popular approach for that is to relabel the entire /dev/ structure (which is often done by
a distribution init script to counter the default device file creation—and its default
device_t type—from within the initial RAM filesystem or the devtmpfs mount):

~# restorecon -R /dev

Using cron with SELiInux

Another example of an SELinux-aware application is cron. Well, actually a set of cron
implementations, as there is not a single cron application. Examples of cron
implementations are vixie-cron, cronie, and fcron.

The cron implementations invoke commands for (and as) a particular Linux user. As these
commands are not set in stone (the main purpose of cron is to allow any command to be
run for a particular user or even for the system itself), it is not possible to easily create a
policy that is sufficiently fine-grained to accommodate all features provided by cron. After
all, for SELinux itself, there is no difference between cron calling a command for one user
or another: all that is involved is the cron domain (crond_t) and the target type of the
command (such as bin_t).

For this reason, many cron implementations are made SELinux-aware, allowing the cron
implementation to select the proper target context.

How to do it...

To properly interact with an SELinux-aware cron, the following steps need to be followed:

1. Make sure that the crontab files are properly labeled: user_cron_spool_t for the
user crontabs, and system_cron_spool_t for the system crontab.

2. Check /etc/selinux/mcs/contexts/default_contexts or
/etc/selinux/mcs/contexts/users/* for the target context of the
system_r:crond_t domain.

3. Have the crontab file context be an entrypoint for the target domain. For instance, if
the target domain for a user is its own user domain (such as user_t), then
user_cron_spool_t has to be known as an entrypoint for user_t.

4. Set the cron_userdomain_transition Boolean to on if the target domain for user
jobs is the user domain, or of f if the target domain should be the cronjob_t domain.

How it works...

When cron is SELinux-aware, it is vital that it is running in the crond_t domain. Its
internal SELinux code will query the SELinux policy to see what the target domain is for a
user through the application, and if cron isn’t running in the crond_t domain, then this
query will not result in the correct set of domains:

~# ps -efZz | grep fcron | awk '{print $1}'
system_u:system_r:crond_t:s0-s0:c0.c1023

Before launching user jobs from cron, the cron application will check the file context of
the user crontab file. This file context is then used to see whether the target domain for the
user jobs has the user crontab file context as an entrypoint.

To know what the current target domain will be, we can use the getseuser helper
application:

~# getseuser hannah system u:system_r:crond_t:soO
seuser: user_u
Context 0 user_u:user_r:cronjob_t:s0

In this case, the target domain is cronjob_t. This should be confirmed by the
default_contexts (or user-specific context) file:

~# grep crond_t /etc/selinux/mcs/contexts/users/user_u
system_r:crond_t user_r:cronjob_t

If the target domain should be the user domain, then we need to toggle the right Boolean
and adjust the context file accordingly:

~# setsebool cron_userdomain_transition on
~# grep crond_t /etc/selinux/mcs/contexts/users/user_u
system_r:crond_t wuser_r:user_t

With the target domain known, the last thing that is needed is that the user cronjob file
context is known as an entrypoint for the domain, which most cron implementations will
check as a sort-of access control:

~# sesearch -s user_t -t user_cron_spool_t -c file -p entrypoint -A
Found 1 semantic av rules:
allow user_t user_cron_spool_t : file entrypoint ;

There’s more...

Not all cron implementations are SELinux-aware. If the implementation is not SELinux-
aware, then the cron jobs will all run inside a single cron job container (cronjob_t for
user cron jobs and system_cronjob_t for system cron jobs) with the system_u SELinux
user and the system_r SELinux role.

Checking the SELinux state
programmatically

If the need arises to make an SELinux-aware application, then several languages can be
used. The 1ibselinux package usually provides bindings for multiple programming and
scripting languages. In the next set of recipes, the C programming language will be used
as an example implementation.

The first step to support SELinux in an application is to check the SELinux state. In this
recipe, we will show how to create an application that links with the 1ibselinux library
and checks the state of SELinux.

Getting ready

As we are going to update a C application, this set of recipes will assume basic knowledge
of C programming. An example C application that uses all the input from this (and other)
recipes can be found in the download pack of this book.

How to do it...

In order to link with 1ibselinux and to check the current SELinux state, the following set
of steps can be used:

1. Create a C application code file and refer to the SELinux header files through a
compiler directive:

#ifdef SELINUX

#include <selinux/selinux.h>

#include <selinux/av_permissions.h>
#include <selinux/get_context_list.h>
#endif

2. In the application, have the SELinux-related function call return success if SELinux
support should not be built-in (that is, when the compiler directive isn’t set):

int selinux_prepare_fork(char * name) {
#ifndef SELINUX

return 0O;
#else

#eHdif
i

3. Inside the SELinux function, check whether SELinux is enabled using the
is_selinux_enabled() function call:

int rc;
rc = is_selinux_enabled();
if (rc == 0) {
.. // SELinux is not enabled

} else if (rc == -1) {
.. // Could not check SELinux state (call failed)
} else {

.. // SEL1nux is enabled
+;

4. Add a check to see whether SELinux is in permissive or enforcing mode. Of course,
this check is only needed if SELinux is enabled:

rc = security_getenforce();
if (rc == 0) {

.. // SELinux 1s in permissive mode
} else if (rc == 1) {

.. // SELinux 1s in enforcing mode
} else {

.. // Faliled to query state

i
5. Build the application while linking with 1ibselinux:

~# gcc -0 test -DSELINUX -lselinux test.c

How it works...

The libselinux library provides all needed functions for applications to query SELinux
and interact with the SELinux subsystem. Of course, when developing applications, it
remains important that SELinux support is a compile-time optional choice: not all Linux
systems have SELinux enabled, so if the application is by default linked with 1ibselinux,
then all target systems would need to install the necessary dependencies.

But even applications that are linked with 1ibselinux must be able to support systems
where SELinux has been disabled; hence, the need to check the state of SELinux using
is_selinux_enabled().

However, this is_selinux_enabled() function does not return any other information
(such as which policy is loaded). To check if SELinux is running in permissive mode, the
call to security_getenforce() can be used.

A well-defined application should use this state as well to adjust its behavior: if the
application is running in permissive mode, then it should try not to enforce SELinux
policy-related decisions in its application logic.

To refer to the cron example from an earlier recipe: if the crontab file context is not known
as an entrypoint for the selected domain, then the application should log that this is not the
case, but still continue working (as the mode is set in permissive mode). Sadly, most
SELinux-aware applications do not change their behavior based on the permissive state of
SELinux and can still fail (or follow a different logic) as if SELinux is in the enforcing
state.

There’s more...

There are other similar methods available that can be used to query the SELinux state.

The is_selinux_mls_enabled() method, for instance, returns a value indicating whether
SELinux is running with MLS or not. This is useful as some context-related methods
require level information if MLS is enabled, so querying the state and changing the
method calls depending on the MLS state might be necessary.

A similar function to security_getenforce() is security_setenforce(). As can be
deduced from the name, this allows applications to toggle the enforcing mode of SELinux.
Of course, this is only possible if the domain in which the application runs has the proper
SELinux permissions.

Querying SELinux userland configuration
in C
In this recipe, we will be querying the SELinux userland to obtain the default context for a

given user based on the context of the current process. The process is responsible for
gathering the Linux username of the user upfront.

How to do it...

Query the SELinux configuration as follows:

1. Get the current context of the process:

char * curcon = 0;
rc = getcon(&curcon);
if (rc) {
.. // Getting context failed
if (permissive) {
.. // Continue with the application logic, ignoring SELinux stuff
} else {
.. // Log failure and stop application logic
s
iy

2. Take the Linux username (assumed to be in the name variable) and get the SELinux
user:

char * sename = 0;

char * selevel = 0;

rc = getseuserbyname(name, &sename, &selevel);

if (rc) {
.. // Call failed. Again check permissive state
.. // and take appropriate action.
freecon(curcon);

i
3. Now, get the default context based on the obtained SELinux user (sename) and
current context (which is handled by the method itself through the NULL variable):

char * newcon = 0;

rc = get_default_context(sename, NULL, &newcon);

if (rc) {
.. // Call failed. Again check permissive state
.. // and take appropriate action.
freecon(curcon);

};

How it works...

In the first block, the current process context is obtained using the getcon() method. For
the end result of this recipe, getting the current context explicitly isn’t necessary—the
get_default_context () method that is invoked later will base its decision on the current
context anyway (through the second parameter, which is NULL in this recipe). However,
having the current context known is important for logging purposes as well as to query the
SELinux policy itself (as we will do in the next recipe).

The next step is to obtain the SELinux user given a Linux user. The sename (SELinux
user) and selevel (SELinux sensitivity) variables are filled in by the getseuserbyname ()
method, given the Linux username (which is a regular char * variable).

Finally, with the SELinux user now available, get_default_context() is invoked to get
the default context stored into the third parameter (newcon). If we would need to get the
default context from a different context than the current one, then instead of NULL, the
second parameter should be the context to query for:

rc = get_default_context(sename, curcon, &newcon);

There’s more...

Some other methods might be interesting to use in SELinux-aware applications.

The getprevcon() method, for instance, returns the previous context rather than the
current context of the process. This previous context is usually the context of the parent
process, although with applications that can perform dynamic transitions, this can be the
previous context of the current process as well.

This information can also be obtained from the /proc/ filesystem, in the process’s attr/
subdirectory in which the current and prev files can be checked:

~$ id -z
staff_u:staff_r:staff_t:s0
~$ newrole -r sysadm_r
Password:

~$ id -z
staff_u:sysadm_r:sysadm_t:s0
~$ cat /proc/$$/attr/current
staff_u:sysadm_r:sysadm_t:s0
~$ cat /proc/$$/attr/prev
staff_u:staff_r:newrole_t:sO

As can be seen, after running newrole to switch roles, the last domain that the process was
in was the newrole_t domain (which then performed a domain and role transition to the
current context).

Applications that are allowed to perform dynamic transitions (that is, without launching
new commands) can use the setcon() method to switch from the current context to a new
context.

The get_default_context () method is also part of a larger family of methods. For
instance, when the user has multiple roles assigned, there can be multiple contexts allowed
for a particular transition. The get_ordered_context_list() method returns the list of
contexts that are supported (whereas the get_default_context() method only returns the
first). One can filter out specific contexts by providing the role with the
get_ordered_context_list_with_role() method.

On MLS-enabled systems, get_default_context_with_level() or
get_default_context_with_rolelevel() will apply a specified level to the resulting
context as well.

Another method that is available is the get_default_type() method, which returns the
default type for a given role. As with the other methods, this results in the SELinux code
to query configuration files inside /etc/selinux/; in this particular case, the
default_type file inside /etc/selinux/mcs/contexts/.

Interrogating the SELinux subsystem
code-wise

In order to query the SELinux policy, we have seen the use of the sesearch command and
other SELinux utilities. Code-wise, SELinux policies can be queried using the
security_compute_av_flags method.

Getting ready

The curcon and newcon variables can be filled in through methods such as getcon() (for
the current context) or get_default_context () as we have seen in the previous recipe.

How to do it...

As an example, we want to query the transition permission between two process domains.
To accomplish this, the following method is used:

1. First of all, call the security_compute_av_flags() method:

struct av_decision avd;
rc = security_compute_av_flags(curcon, newcon, SECCLASS_PROCESS,
PROCESS__TRANSITION, &avd);
if (rc) {
.. // Method failed.
freecon(curcon);
freecon(newcon);

i
2. Now read the response:

if (!(avd.allowed & PROCESS__TRANSITION)) {
.. // Transition is denied

i
3. Check whether the current context is a permissive domain or not:

if (avd.flags & SELINUX_AVD_FLAGS_PERMISSIVE) {
.. // Domain 1s permissive

};

How it works...

The security_compute_av_flags() method is the C method equivalent of sesearch
(roughly speaking). It takes the source and target context, class, and permission and stores
the result of the query in a specific structure (struct av_decision).

The class and permission entries can be obtained from the flask.h (for the class
declarations) and the av_permissions.h (for the permission declarations) header files that
are located inside /usr/include/selinux/.

The result of the query is obtained by checking whether the permission is in the decision
result.

Next to the permission query, an important aspect to validate (and which is often forgotten
by SELinux-aware applications) is to check whether the domain itself is marked as
permissive. After all, even on an SELinux-enabled system, where SELinux is in enforcing
mode, some domains can still be marked as permissive.

The SELINUX_AVD_FLAGS_PERMISSIVE flag is a flag added to the query response (struct
av_decision), which allows developers to query the permissive state of domains. With
this information at hand, the SELinux-aware application can still decide to continue even
if the policy denies a certain activity, just as the user has requested.

There’s more...

There are other methods available as well to query the SELinux policy that might be used
by SELinux-aware applications.

With selinux_check_access(), for instance, applications can query the SELinux policy
to see if a given source context has the access permission for a given class and permission
on the target context. This is not the same as security_compute_av_flags(), as this
method uses strings for the class and permission, and also has a different return based on
the enforcing state of SELinux or the permissive nature of a particular domain.

Running new processes in a new context

Sometimes, it isn’t possible to force a particular domain upon invocation of a new task or
process. The default transition rules that can be enabled through the SELinux policy are
only applicable if the source domain and file context (of the application or task to execute)
are unambiguously decisive for the target context.

In applications that can run the same command (or execute commands with the same
context) for different target domains, SELinux-awareness is a must.

This recipe will show how to force a particular domain for a new process.

Getting ready

The newcon variable that is used in this recipe can be filled in through methods such as
get_default_context() as we have seen in a previous recipe.

How to do it...

To launch a process in a specific context, go through the following steps:

1. Tell SELinux what the new context should be:

int rc = setexeccon(newcon);
if (rc) {
.. // Call failed
freecon(newcon);

i

2. Fork and execute the command. For instance, to execute id -z, the following code is
used:

pid_t child;
child = fork();
if (child < 0) {
.. // Fork failed} else if (child == 0) {
int pidrc;
pidrc = execl("/usr/bin/id", "id", "-Z", NULL);
if (pidrc !'= 0) {
.. // Command failed
i¥
} else {
.. // Parent process
int status;
wait(&status);

I

How it works...

Applications that want newly executed tasks to run in a particular context need to tell the
SELinux subsystem that the next execve, execl, or other exec* method should result in
the child process running in the new domain.

Of course, the SELinux policy must still allow the transition policy-wise, even though
there is no more need for an automatic domain transition in the policy (as this would
require an unambiguous decision, which is exactly what isn’t possible if the source
domain and file context are the same for different target contexts):

allow crond_t self : process setexec;
allow crond_t staff_t : process transition;

The setexec permission allows the source domain to explicitly tell the SELinux
subsystem what context the task should run in. Without this permission, the call to
setexeccon() would fail.

There’s more...

The setexeccon() method has a sibling method called getexeccon(). This method
returns the context that would be assigned when executing a new process (which would
provide a validation of the last setexeccon() call).

Another similar method is the setexecfilecon() method. This method allows SELinux-
aware applications to take the SELinux policy decisions into account in case of file-based
transition information. So, if there is a domain transition known when executing a
particular file, then this domain transition is honored. If not, the fallback type provided
through the setexecfilecon() method is used:

char * fallbackcon = "system_u:object_r:openscap_helper_script_t:s0";
char * filename = "/usr/libexec/openscap/probe_process";
.rc = setexecfilecon(filename, fallbackcon);

In this example, if the context of the probe_process file is used in the SELinux policy to
create an automatic domain transition upon invocation by the current application, then that
target domain is used for the application execution. However, if the context of the
probe_process file is the one that does not trigger any automatic domain transition, then
the fallbackcon context is used for the next application execution.

Reading the context of a resource

It is, of course, also important to obtain the context of a resource if the application is
SELinux-aware. This could be for logging purposes or to decide which domain to
transition to (based on the resource context, current context, username, and so on).

How to do it...

To read the context of a resource, the following methods are available:

1. Given a file path, the following call to getfilecon() will provide the context of the
file:

security_context_t filecon = 0;
char * path = "/etc/passwd";
rc = getfilecon(path, &filecon);
if (rc < 0) {

.. // Call failed
iy
.. // Do stuff with the context
freecon(filecon);

2. To get the context of a process, assuming the pid variable (of the pid_t type) has the
proper process ID in it, the following code is used:

security_context_t pidcon = 0;
rc = getpidcon(pid, &pidcon);
if (rc < 0) {

.. // Call failed
Iy
.. // Do stuff with the context
freecon(pidcon);

How it works...

The SELinux library has various methods for obtaining the contexts of resources. File and
process types are shown in the recipe, but other methods exist as well. For instance, with
the fgetfilecon() method, the context of a file descriptor can be obtained. All these
methods provide the context in a standard string (char *) format.

After getting the context of a resource, it is important to free the context when it is no
longer used. Otherwise, a memory leak will occur in the application as there are no other
methods that will clean up the contexts.

There’s more...

When labeled networking is used (for instance, with CIPSO/NetLabel support or labeled
[PSec), then the getpeercon() method can be used to obtain the context of the peer that
participates in the communication session.

Alongside querying the context, it is also possible to tell the SELinux subsystem that file

creation should result in that file being created immediately with a particular context. For
this, the setfscreatecon() method can be used—this is also the method that recent udev
versions use when creating new device files in /dev/.

Index

A

abstract Unix domain socket
o stream-connect interface, creating for / For an abstract Unix domain socket,
How it works...
Acceptable behavior / The role of the SELinux policy
access privileges
o verifying / Looking into access privileges, How it works...
access privileges, verifying
o direct access inspection / Direct access inspection
o policy manipulation / Policy manipulation
o indirect access / Indirect access
Administration, logical architecture / The structural documentation
administrative interface
o creating / Creating the administrative interface, How to do it..., How it works...
allow_execmem / How it works...
Apache
o running, with right context / Running Apache with the right context
o starting, with limited clearance / Starting Apache with limited clearance, How it
works...
Apache eXtenSion tool
o tasks, performing / How it works...
Apache virtual host support
o URL/ See also
Application / About SELinux
application-specific domains
o building, templates used / Building application-specific domains using
templates, How it works...
application logical design
o researching / Researching the application’s logical design
files / Files and directories
directories / Files and directories
network resources / Network resources
processes / Processes
hardware resource / Hardware and kernel resources
o kernel resource / Hardware and kernel resources
application network access
o governing / Governing application network access, How it works...
application resource interfaces
o creating / Creating application resource interfaces
application role interfaces
o defining / Defining application role interfaces, How to do it..., How it works...,

O O O O O

There’s more...
Artica
o URL/ See also

auditallow statement / How it works...

auditctl command / How it works...
audit subsystem
o about / There’s more...

backup file

o about / Backing up and restoring files, How it works...
backup solution

o selecting / How to do it..., How it works...
Bell-LaPadula model

o URL / About SELinux
binary policy module

o creating / The binary policy module
BIND 9, chroot jail

o configuring, URL / See also

o building, URL / See also
build-time policy decisions

o adding / Adding build-time policy decisions, How it works...

-C option / How it works...
C
o SELinux userland configuration, querying in / Querying SELinux userland
configuration in C, How it works..., There’s more...

capabilities
o used, with SELinux / Configuring capabilities instead of setuid binaries, How it
works...

chroot / Using substitution definitions
o about / Introduction

o assigning, to regular services / Assigning a different root location to regular
services, How to do it..., How it works..., There’s more...
o used, for SELinux-aware applications / Using a different root location for
SELinux-aware applications, How it works...
chroot() operations
o URL / See also
chroot jail
o about / Assigning a different root location to regular services
CISecurity Benchmark for Red Hat Enterprise Linux
o reference / See also
class identifiers
o about / Class identifiers
— identifier / Class identifiers
-d identifier / Class identifiers
-1 identifier / Class identifiers
-b identifier / Class identifiers
-c identifier / Class identifiers
-p identifier / Class identifiers
-s identifier / Class identifiers
cleanup process / Reducing exploit risks

O O O O O o o

clients
o privileges, granting to / Granting privileges to all clients, How to do it..., How it
works...

coarse-grained policy
o about / Introduction

commands
o running, with sudo / Running commands in a specified role with sudo, How it
works. ..

o running, with runcon command / Running commands in a specified role with

runcon, How it works...
comment system
o constructs, using / The in-line documentation
common helper domains

o defining / Defining common helper domains, How to do it..., How it works...
conditional policy rules
o adding / Adding conditional policy rules, How it works..., There’s more...
conditional policy support
o listing / Listing conditional policy support, How it works...
configuration files
o URL/ See also
constraints, resource-sensitivity labels / Constraints
constraint statements
o URL/ See also
context
o processes, running in / Running new processes in a new context, How it
works..., There’s more...
context, of resource
o reading / Reading the context of a resource, There’s more...
context declaration / Context declaration
context definitions
o setting / Setting context definitions, How it works...
context method / How it works...
contexts
o HTTP users, mapping to / Mapping HTTP users to contexts, How to do it...
o deciding, source address mapping used / Using source address mapping to
decide on contexts, There’s more...
cron
o used, with SELinux / Using cron with SELinux, How it works..., There’s
more...
custom CGI domain
o creating / Creating a custom CGI domain, How to do it..., How it works...
custom content types
o using / Using custom content types, How it works...
customizable type / User content and customizable types, There’s more...

D-Bus message flows
o controlling / Controlling D-Bus message flows, Getting ready, How it works...,
There’s more...
database administrator (DBA) / How it works...

default contexts / Default types and default contexts

default types / Default types and default contexts
default_contexts file / Default types and default contexts

denied security-bounded transitions
o about / Denied security-bounded transitions
denied transition validation
o about / Denied transition validation
Desktop applications
o about / Introduction
development environment
o creating / Creating the development environment, How to do it..., How it
works...
direct access inspection / Direct access inspection
directories
o about / Files and directories
Docker
o URL / See also
DokuWiki

o URL / Using custom content types
domain definitions / Domain definitions

E

e equivalence class / Using substitution definitions
e exec interface

o creating / Creating exec, run, and transition interfaces, How to do it..., How it
works. ..
e Expected behavior / The role of the SELinux policy

FAMOUS abbreviation / The structural documentation
Fedora
o URL / Getting ready, See also
Feeds, logical architecture / The structural documentation
fgetfilecon() method / How it works...
file ACLs
o user content, sharing with / Sharing user content with file ACLs, How to do it...,
How it works..., There’s more...
file contexts
o defining, through patterns / Defining file contexts through patterns, How it
works..., Path expressions, Class identifiers, There’s more...
o path expressions / Path expressions
o order, processing / The order of processing
o class identifiers / Class identifiers
o context declaration / Context declaration
file labels
o managing / Introduction
files
o about / Files and directories
file transition
o defining / How to do it...
file transitions

o SELinux policy, enhancing with / Enhancing an SELinux policy with file
transitions, Getting ready, How it works..., Finding the right search pattern,
Patterns, There’s more...

file_contexts.subs / Using substitution definitions
findcon tool / The order of processing
fine-grained application domain definitions

o using / Using fine-grained application domain definitions, How to do it...

example / Using fine-grained application domain definitions
exploit risks, reducing / Reducing exploit risks
role management / Role management
type inheritance / Type inheritance and transitions
o transitions / Type inheritance and transitions
fine-grained policies
o about / Introduction
Flask
o URL / About SELinux
four-fold
o about / How it works...
ftp_shell_r role / Initial role based on entry
full policy replacement, resource-sensitivity labels / Full policy replacement

O O O o

e functions.sh script / How it works...

generic application domain

o creating / Creating a generic application domain, How it works...
Gentoo Linux

o URL / Getting ready
gen_context macro / Context declaration
gen_tunable declarations
o about / How it works...
getcon() method / How it works...
getexeccon() method / There’s more...
getpeercon() method / There’s more...
getprevcon() method / There’s more...
getsebool command / How it works...
get_default_context() method / There’s more...
get_ordered_context_list() method / There’s more...
get_ordered_context_list_with_role() method / There’s more...
git tutorial
o URL / See also
group membership
o used, for role-based access / Using group membership for role-based access,
How it works...
grsecurity
o about / There’s more...
o URL / There’s more...

hardware resource / Hardware and kernel resources
httpdcontent attribute / How it works

httpd_selinux / See also

HTTP users

o mapping, to contexts / Mapping HTTP users to contexts, How to do it...

in-line documentation / The in-line documentation
indirect access / Indirect access
infrastructural resources / Infrastructural resources
initial SIDs / Type inheritance and transitions
inter-process communication (IPC) / Type inheritance and transitions
interface changes, SELinux policy modules / Changes in interfaces
interface names
o about/How to doit...
invalid context
o about / Invalid contexts
is_selinux_enabled() function / How it works...
is_selinux_mls_enabled() method / There’s more...

e jail

o about / Assigning a different root location to regular services
o Jailkit project

o URL/ See also

kdbus / There’s more...
kernel
o configuring / There’s more...
kernel resource / Hardware and kernel resources
kernel version changes, SELinux policy modules / Kernel version changes

level method / How it works...
libselinux.so library / How it works...
libselinux library / How it works...
libselinux package / Checking the SELinux state programmatically
Linux containers
o URL/ See also
Linux Security Modules (LSM) / About SELinux
Linux user

o mapping / SELinux users and Linux user mappings
Linux users

o mapping, to SELinux users / Mapping Linux users to SELinux users, How it
works...
location, interface definitions
o about / The location of the interface definitions
logical architecture, service
o Feeds / The structural documentation
Administration / The structural documentation
Monitoring / The structural documentation
Operations / The structural documentation
Users and rights / The structural documentation
o Security-related features / The structural documentation
logical resources / Logical resources

O O O O

mcstrans file / The mcstrans and setrans.conf files
MLS-disabled system / MLS or not
MLS-enabled system / MLS or not
MLS-enabled systems
o operations / Setting resource-sensitivity labels
MLS statements
o URL/ See also
mod_selinux
o setting / Setting up mod_selinux, How to do it..., How it works...
o URL/How to doit..., See also
o virtual hosts, separating with / Separating virtual hosts with mod_selinux, How
it works...
mod_selinux.c file
o about / How it works...
mod_selinux module
o about / Denied security-bounded transitions
mod_setenvif support
o URL/ See also
Monitoring, logical architecture / The structural documentation

naming convention, reference policy

o URL / Using the refpolicy naming convention

network / Reducing exploit risks
network access / The network access

network resources / Network resources
neverallow statement
o about / Ensuring an SELinux rule is never allowed

o including, in SELinux policy / How to do it..., How it works...

newrole command / How it works...
Normalized behavior / The role of the SELinux policy

one domain per application
o about / Introduction
online research, service / Online research
open source virtual appliance providers
o list/ See also
Operations, logical architecture / The structural documentation
optional_policy statement
o about / How it works...
order
o processing / The order of processing
own interface
o creating / Creating our own interface, How to do it..., How it works...
o Jocation, interface definitions / The location of the interface definitions
o in-line documentation / The in-line documentation

${POLICY_LOCATION} variable / How it works...
.pp files / Changes in interfaces
packet labeling
o about / How it works...
path expressions / Path expressions
patterns
o file contexts, defining through / Defining file contexts through patterns, How it
works..., Path expressions, The order of processing, Context declaration
o using / Patterns, There’s more...
per-user web directories
o URL/ See also
Perl-Compatible Regular Expressions (PCRE) / Path expressions
permission issues
o clarifying, strace used / How to do it..., How it works...

permissions
o ignoring / Ignoring permissions we don’t need, How it works...
policies

o differentiating, based on use cases / Differentiating policies based on use cases,
How it works...

policy
o loading, into policy store / Loading a policy into the policy store, There’s
more...

o testing / Testing and enhancing the policy, How it works...

o enhancing / Testing and enhancing the policy, How it works...
o role, defining / Defining a role in the policy

policy manipulation / Policy manipulation
policy source file
o creating / The policy source file
polyinstantiated directories
o enabling / Enabling polyinstantiated directories, How it works..., There’s
more...
positive policy decisions
o logging / Logging positive policy decisions, How to do it..., How it works...
POSIX Capabilities & File POSIX Capabilities
o URL / See also

privileges
o documenting / Documenting common privileges, How to do it..., How it
works. ..
o granting, to all clients / Granting privileges to all clients, How to do it..., How it
works. ..

processes / Processes
o running, in new context / Running new processes in a new context, How it

works..., There’s more...

Q

e gmgr process / Reducing exploit risks

ranged daemon domain, resource-sensitivity labels / Ranged daemon domain
read_file_perms / Patterns
Red Hat
o URL / See also
reference policy API documentation
o URL/ See also
reference policy project
o URL / See also, See also
refpolicy interfaces

o calling / Calling refpolicy interfaces, How it works...
refpolicy naming convention

o using / Using the refpolicy naming convention, How to do it..., There’s more...

Remote_Host / There’s more...
Request_Method / There’s more...
Request_Protocol / There’s more...
Request_URI / There’s more...
resource-access interfaces
o creating / Creating resource-access interfaces, How to do it..., How it works...
resource-sensitivity labels

o setting / Setting resource-sensitivity labels, How to do it..., Full policy
replacement, Constraints, See also

o full policy replacement / Full policy replacement
o ranged daemon domain / Ranged daemon domain
o constraints / Constraints
resources
finding / Finding common resources, How to do it...
shared file locations / Shared file locations
user content / User content and customizable types, There’s more...
customizable type / User content and customizable types, There’s more...
resource types
o selecting / Choosing resource types wisely, How to do it...
o domain definitions / Domain definitions
o logical resources / Logical resources
infrastructural resources / Infrastructural resources
restorecond / There’s more...
restore file
o about / Backing up and restoring files, How it works...
Reverse Polish Notation (RPN) / How it works...
role
o creating / Creating a new role, How to do it...
o defining, in policy / Defining a role in the policy
o configuring / Initial role based on entry, How to do it..., How it works...

O O O O

(¢]

role, creating
o role, defining in policy / Defining a role in the policy
role privileges, extending / Extending the role privileges

default types / Default types and default contexts
o default contexts / Default types and default contexts

role-based access
o group membership, using for / Using group membership for role-based access,
How it works...
role-based access control / About SELinux
Role Based Access Control (RBAC) / How it works...
role management / Role management
role privileges
o extending / Extending the role privileges
roles
o about / Introduction
o assigning, to users / Introduction
o switching / Switching roles, How it works...
role transitions
o defining / Defining role transitions, How it works...
runcon application / How it works...

runcon command / Running Apache with the right context
o commands, running with / Running commands in a specified role with runcon,

How it works...
run interface

o creating / Creating exec, run, and transition interfaces, How to do it..., How it

works...

(¢]

(¢]

sandbox environment, service / Sandbox environment
search pattern
o selecting / Finding the right search pattern
SECMARK labeling
o URL/ See also
Security-related features, logical architecture / The structural documentation
Security Enhanced PostgreSQL (SEPostgreSQL) / Introduction
sefinddef function / How to do it..., How it works...
sefindif function / How to do it..., How it works...
SELinux
about / Introduction, About SELinux, Introduction

example / The example
analyzing / Identifying whether SELinux is to blame, How it works...

capabilities, using with / Configuring capabilities instead of setuid binaries,
How it works...

o cron, using with / Using cron with SELinux, How it works..., There’s more...
SELinux-aware applications
o chroot, used for / Using a different root location for SEL.inux-aware
applications, How it works...
o handling / Introduction
SELinux audit events
o references / See also
SELinux constraints
o overview / Looking through SELinux constraints, How to do it..., How it
works...
o references / See also
SELinux module
o building / Building a simple SELinux module, Getting ready, How to do it...,
How it works..., The binary policy module, There’s more...
o policy source file, creating / The policy source file
o binary policy module, creating / The binary policy module
o policy, loading into policy store / Loading a policy into the policy store, There’s
more...
SELinux policy
about / The role of the SELinux policy
Acceptable behavior / The role of the SELinux policy
Expected behavior / The role of the SELinux policy
Normalized behavior / The role of the SELinux policy
enhancing, with file transitions / Enhancing an SELinux policy with file
transitions, Getting ready, How it works...
search pattern, selecting / Finding the right search pattern
o patterns / Patterns, There’s more...

o
o
o
o

O O O O O

(¢]

o neverallow statement, including in / How to do it..., How it works...
SELinux policy, storing

o local// Creating the development environment
o centralized/ / Creating the development environment

o bin// Creating the development environment
SELinux Policy IDE (SLIDE)

o about / Introduction
o URL / Introduction
SELinux policy modules
o distributing / Distributing SELinux policy modules, How it works..., MLS or
not
o interface changes / Changes in interfaces
o kernel version changes / Kernel version changes
o MLS-enabled system / MLS or not
o MLS-disabled system / MLS or not
SELinux state
o checking / Checking the SELinux state programmatically, How to do it..., How
it works...
SELinux subsystem, code wise
o interrogating / Interrogating the SELinux subsystem code-wise, How it works...,
There’s more...
SELinux userland configuration
o querying, in C / Querying SELinux userland configuration in C, How it
works..., There’s more...
SELinux users
o mapping / SELinux users and Linux user mappings
o managing / Managing SELinux users, How to do it..., How it works...
o Linux users, mapping to / Mapping Linux users to SELinux users, How to do
it...
SELINUX_AVD_FLAGS_PERMISSIVE flag / How it works...
SELINUX_ERR messages
o analyzing / Getting ready, How it works...
o examples / How it works...
semanage boolean command / How it works...
semanage command / Getting ready
semanage export command / How it works...
semanage fcontext command / How it works..., How it works...
semodule command / The policy source file, Loading a policy into the policy store
sendmail command / Defining common helper domains
sensitivity categories
o configuring / Configuring sensitivity categories, How to do it..., SELinux users
and Linux user mappings, Running Apache with the right context
o mcstrans file / The mcstrans and setrans.conf files
o setrans.conf file / The mcstrans and setrans.conf files

o SELinux users, mapping / SELinux users and Linux user mappings
o Linux user, mapping / SELinux users and Linux user mappings
o Apache, running with right context / Running Apache with the right context
sepolicy
o about / There’s more...
Server Addr / There’s more...
service
o about / Understanding the service, How to do it...
o online research / Online research
o sandbox environment / Sandbox environment
o structural documentation / The structural documentation, See also
service ownership
o restricting / Restricting service ownership, How it works...
seshowdef function / How to do it..., How it works...
seshowif function / How it works...
setcon() method / There’s more...
setexecfilecon() method / There’s more...
setexec permission / How it works...
setfiles command / How it works...
setfscreatecon() method / There’s more...
setrans.conf file / The mcstrans and setrans.conf files
setsebool command / How it works...
SFTP chroots
o URL/ See also
shared file locations / Shared file locations
shared memory / X11 and shared memory
skeleton policy
o creating / Creating a skeleton policy, How to do it..., Type declarations,
Managing files and directories, There’s more...
type declarations / Type declarations
files, managing / Managing files and directories
directories, managing / Managing files and directories
X11 server / X11 and shared memory
shared memory / X11 and shared memory
o network access / The network access
smtpd daemon / Reducing exploit risks
source address mapping
o used, for deciding on contexts / Using source address mapping to decide on
contexts, There’s more...
ssh_sysadm_login / How it works...
strace
o used, for clarifying permission issues / How to do it..., How it works...
o using, against daemons / How to do it..., How it works...
o reference / See also

O O O O O

stream-connect interface
o creating / Creating a stream-connect interface
o creating, for Unix domain socket with socket file / For a Unix domain socket
with a socket file
o creating, for abstract Unix domain socket / For an abstract Unix domain socket,
How it works...
structural documentation, service / The structural documentation, See also
style guide, reference policy
o URL/ There’s more...
substitution definitions
o using / Using substitution definitions, How it works..., There’s more...
sudo
o commands, running with / Running commands in a specified role with sudo,
How it works...
sudo application
o URL / See also
sudo command / How it works...
sVirt
o URL / See also
Sysdig
o reference / See also
system behavior
o auditing / Auditing system behavior, How it works...
SystemTap
o reference / See also

tail command / Getting ready
targeted / Introduction
templates
o used, for building application-specific domains / Building application-specific
domains using templates, How it works...
tor / There’s more...
transition interface

o creating / Creating exec, run, and transition interfaces, How to do it..., How it
works...

transitions / Type inheritance and transitions
Turnkey Linux
o URL/ See also
type declarations / Type declarations
type enforcement / About SELinux

type inheritance / Type inheritance and transitions
type transition / Enhancing an SELinux policy with file transitions

udev / There’s more...
udev’s SELinux integration
o about / Understanding udev’s SELinux integration, How it works...
Unix domain socket, with socket file
o stream-connect interface, creating for / For a Unix domain socket with a socket
file

use cases
o policies, differentiating / Differentiating policies based on use cases, How it
works...

User Based Access Control (UBAC)

o about / Type declarations
user content / User content and customizable types, There’s more...

o sharing, with file ACLs / Sharing user content with file ACLs, How to do it...,

How it works..., There’s more...

user directory support

o enabling / Enabling user directory support, How to do it..., There’s more...
userdom_admin_user_template / Defining a role in the policy
userdom_base_user_template / Defining a role in the policy
userdom_common_user_template / Defining a role in the policy
userdom_login_user_template / Defining a role in the policy
userdom_restricted_user_template / Defining a role in the policy
userdom_unpriv_user_template / Defining a role in the policy
user method / How it works...
Users and rights, logical architecture / The structural documentation
user space object managers / Introduction

\Y

e Vagrant
o URL/ See also
e virtual hosts

o separating, with mod_selinux / Separating virtual hosts with mod_selinux, How
it works...

W

e web applications

o about / Introduction
e web content types

o assigning / Assigning web content types, How it works, There’s more...
e web server ports

o using / Using different web server ports, How to do it..., How it works...

X

e X11 server / X11 and shared memory
e XDGBDS
o URL / See also

	SELinux Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. The SELinux Development Environment
	Introduction
	About SELinux
	The role of the SELinux policy
	The example
	Creating the development environment
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Building a simple SELinux module
	Getting ready
	How to do it…
	How it works…
	The policy source file
	The binary policy module
	Loading a policy into the policy store
	There's more...
	See also
	Calling refpolicy interfaces
	How to do it…
	How it works…
	See also
	Creating our own interface
	How to do it…
	How it works…
	The location of the interface definitions
	The in-line documentation
	See also
	Using the refpolicy naming convention
	Getting ready
	How to do it…
	How it works…
	There's more...
	Distributing SELinux policy modules
	How to do it…
	How it works…
	Changes in interfaces
	Kernel version changes
	MLS or not
	2. Dealing with File Labels
	Introduction
	Defining file contexts through patterns
	How to do it…
	How it works…
	Path expressions
	The order of processing
	Class identifiers
	Context declaration
	There's more...
	Using substitution definitions
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Enhancing an SELinux policy with file transitions
	Getting ready
	How to do it…
	How it works…
	Finding the right search pattern
	Patterns
	There's more...
	See also
	Setting resource-sensitivity labels
	How to do it…
	How it works…
	Full policy replacement
	Ranged daemon domain
	Constraints
	See also
	Configuring sensitivity categories
	Getting ready
	How to do it…
	How it works…
	The mcstrans and setrans.conf files
	SELinux users and Linux user mappings
	Running Apache with the right context
	See also
	3. Confining Web Applications
	Introduction
	Listing conditional policy support
	How to do it…
	How it works...
	See also
	Enabling user directory support
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Assigning web content types
	How to do it…
	How it works
	There's more...
	Using different web server ports
	How to do it…
	How it works...
	There's more...
	See also
	Using custom content types
	Getting ready
	How to do it…
	How it works...
	There's more...
	Creating a custom CGI domain
	How to do it…
	How it works...
	Setting up mod_selinux
	How to do it…
	How it works...
	See also
	Starting Apache with limited clearance
	How to do it…
	How it works...
	There's more...
	Mapping HTTP users to contexts
	How to do it…
	How it works...
	Using source address mapping to decide on contexts
	How to do it…
	How it works...
	There's more...
	See also
	Separating virtual hosts with mod_selinux
	How to do it…
	How it works...
	See also
	4. Creating a Desktop Application Policy
	Introduction
	Researching the application's logical design
	How to do it…
	How it works…
	Files and directories
	Network resources
	Processes
	Hardware and kernel resources
	Creating a skeleton policy
	How to do it…
	How it works…
	Type declarations
	Managing files and directories
	X11 and shared memory
	The network access
	There's more...
	See also
	Setting context definitions
	How to do it…
	How it works…
	Defining application role interfaces
	How to do it…
	How it works…
	There's more...
	Testing and enhancing the policy
	How to do it…
	How it works…
	Ignoring permissions we don't need
	How to do it…
	How it works…
	Creating application resource interfaces
	How to do it…
	How it works…
	Adding conditional policy rules
	How to do it…
	How it works…
	There's more...
	Adding build-time policy decisions
	How to do it…
	How it works…
	There's more...
	5. Creating a Server Policy
	Introduction
	Understanding the service
	How to do it…
	How it works…
	Online research
	Sandbox environment
	The structural documentation
	See also
	Choosing resource types wisely
	How to do it…
	How it works…
	Domain definitions
	Logical resources
	Infrastructural resources
	Differentiating policies based on use cases
	How to do it…
	How it works…
	Creating resource-access interfaces
	How to do it…
	How it works…
	Creating exec, run, and transition interfaces
	How to do it…
	How it works…
	See also
	Creating a stream-connect interface
	How to do it…
	For a Unix domain socket with a socket file
	For an abstract Unix domain socket
	How it works…
	Creating the administrative interface
	How to do it…
	How it works…
	See also
	6. Setting Up Separate Roles
	Introduction
	Managing SELinux users
	How to do it…
	How it works…
	There's more...
	Mapping Linux users to SELinux users
	How to do it…
	How it works…
	Running commands in a specified role with sudo
	How to do it…
	How it works…
	See also
	Running commands in a specified role with runcon
	How to do it…
	How it works…
	Switching roles
	How to do it…
	How it works…
	Creating a new role
	How to do it…
	How it works…
	Defining a role in the policy
	Extending the role privileges
	Default types and default contexts
	Initial role based on entry
	How to do it…
	How it works…
	Defining role transitions
	How to do it…
	How it works…
	Looking into access privileges
	How to do it…
	How it works…
	Direct access inspection
	Policy manipulation
	Indirect access
	7. Choosing the Confinement Level
	Introduction
	Finding common resources
	How to do it…
	How it works…
	Shared file locations
	User content and customizable types
	There's more...
	Defining common helper domains
	How to do it…
	How it works…
	Documenting common privileges
	How to do it…
	How it works…
	Granting privileges to all clients
	How to do it…
	How it works…
	Creating a generic application domain
	How to do it…
	How it works…
	Building application-specific domains using templates
	How to do it…
	How it works…
	Using fine-grained application domain definitions
	How to do it…
	How it works…
	Reducing exploit risks
	Role management
	Type inheritance and transitions
	8. Debugging SELinux
	Introduction
	Identifying whether SELinux is to blame
	How to do it…
	How it works…
	See also
	Analyzing SELINUX_ERR messages
	Getting ready
	How to do it…
	How it works…
	Invalid contexts
	Denied transition validation
	Denied security-bounded transitions
	There's more...
	See also
	Logging positive policy decisions
	How to do it…
	How it works…
	Looking through SELinux constraints
	How to do it…
	How it works…
	See also
	Ensuring an SELinux rule is never allowed
	How to do it…
	How it works…
	Using strace to clarify permission issues
	How to do it…
	How it works…
	Using strace against daemons
	How to do it…
	How it works…
	There's more...
	See also
	Auditing system behavior
	How to do it…
	How it works…
	There's more...
	See also
	9. Aligning SELinux with DAC
	Introduction
	Assigning a different root location to regular services
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Using a different root location for SELinux-aware applications
	How to do it…
	How it works…
	See also
	Sharing user content with file ACLs
	How to do it…
	How it works…
	There's more...
	Enabling polyinstantiated directories
	How to do it…
	How it works…
	There's more...
	Configuring capabilities instead of setuid binaries
	How to do it…
	How it works…
	See also
	Using group membership for role-based access
	How to do it…
	How it works…
	Backing up and restoring files
	How to do it…
	How it works…
	Governing application network access
	How to do it…
	How it works…
	See also
	10. Handling SELinux-aware Applications
	Introduction
	Controlling D-Bus message flows
	Getting ready
	How to do it…
	How it works…
	There's more...
	Restricting service ownership
	How to do it…
	How it works…
	There's more...
	Understanding udev's SELinux integration
	How to do it…
	How it works…
	Using cron with SELinux
	How to do it…
	How it works…
	There's more…
	Checking the SELinux state programmatically
	Getting ready
	How to do it…
	How it works…
	There's more...
	Querying SELinux userland configuration in C
	How to do it…
	How it works…
	There's more...
	Interrogating the SELinux subsystem code-wise
	Getting ready
	How to do it…
	How it works…
	There's more...
	Running new processes in a new context
	Getting ready
	How to do it…
	How it works…
	There's more...
	Reading the context of a resource
	How to do it…
	How it works…
	There's more...
	Index

