

SELinux	Cookbook

Table	of	Contents

SELinux	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	The	SELinux	Development	Environment

Introduction

About	SELinux

The	role	of	the	SELinux	policy

The	example

Creating	the	development	environment

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Building	a	simple	SELinux	module

Getting	ready

How	to	do	it…

How	it	works…

The	policy	source	file

The	binary	policy	module

Loading	a	policy	into	the	policy	store

There’s	more…

See	also

Calling	refpolicy	interfaces

How	to	do	it…

How	it	works…

See	also

Creating	our	own	interface

How	to	do	it…

How	it	works…

The	location	of	the	interface	definitions

The	in-line	documentation

See	also

Using	the	refpolicy	naming	convention

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Distributing	SELinux	policy	modules

How	to	do	it…

How	it	works…

Changes	in	interfaces

Kernel	version	changes

MLS	or	not

2.	Dealing	with	File	Labels

Introduction

Defining	file	contexts	through	patterns

How	to	do	it…

How	it	works…

Path	expressions

The	order	of	processing

Class	identifiers

Context	declaration

There’s	more…

Using	substitution	definitions

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Enhancing	an	SELinux	policy	with	file	transitions

Getting	ready

How	to	do	it…

How	it	works…

Finding	the	right	search	pattern

Patterns

There’s	more…

See	also

Setting	resource-sensitivity	labels

How	to	do	it…

How	it	works…

Full	policy	replacement

Ranged	daemon	domain

Constraints

See	also

Configuring	sensitivity	categories

Getting	ready

How	to	do	it…

How	it	works…

The	mcstrans	and	setrans.conf	files

SELinux	users	and	Linux	user	mappings

Running	Apache	with	the	right	context

See	also

3.	Confining	Web	Applications

Introduction

Listing	conditional	policy	support

How	to	do	it…

How	it	works…

See	also

Enabling	user	directory	support

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Assigning	web	content	types

How	to	do	it…

How	it	works

There’s	more…

Using	different	web	server	ports

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	custom	content	types

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	custom	CGI	domain

How	to	do	it…

How	it	works…

Setting	up	mod_selinux

How	to	do	it…

How	it	works…

See	also

Starting	Apache	with	limited	clearance

How	to	do	it…

How	it	works…

There’s	more…

Mapping	HTTP	users	to	contexts

How	to	do	it…

How	it	works…

Using	source	address	mapping	to	decide	on	contexts

How	to	do	it…

How	it	works…

There’s	more…

See	also

Separating	virtual	hosts	with	mod_selinux

How	to	do	it…

How	it	works…

See	also

4.	Creating	a	Desktop	Application	Policy

Introduction

Researching	the	application’s	logical	design

How	to	do	it…

How	it	works…

Files	and	directories

Network	resources

Processes

Hardware	and	kernel	resources

Creating	a	skeleton	policy

How	to	do	it…

How	it	works…

Type	declarations

Managing	files	and	directories

X11	and	shared	memory

The	network	access

There’s	more…

See	also

Setting	context	definitions

How	to	do	it…

How	it	works…

Defining	application	role	interfaces

How	to	do	it…

How	it	works…

There’s	more…

Testing	and	enhancing	the	policy

How	to	do	it…

How	it	works…

Ignoring	permissions	we	don’t	need

How	to	do	it…

How	it	works…

Creating	application	resource	interfaces

How	to	do	it…

How	it	works…

Adding	conditional	policy	rules

How	to	do	it…

How	it	works…

There’s	more…

Adding	build-time	policy	decisions

How	to	do	it…

How	it	works…

There’s	more…

5.	Creating	a	Server	Policy

Introduction

Understanding	the	service

How	to	do	it…

How	it	works…

Online	research

Sandbox	environment

The	structural	documentation

See	also

Choosing	resource	types	wisely

How	to	do	it…

How	it	works…

Domain	definitions

Logical	resources

Infrastructural	resources

Differentiating	policies	based	on	use	cases

How	to	do	it…

How	it	works…

Creating	resource-access	interfaces

How	to	do	it…

How	it	works…

Creating	exec,	run,	and	transition	interfaces

How	to	do	it…

How	it	works…

See	also

Creating	a	stream-connect	interface

How	to	do	it…

For	a	Unix	domain	socket	with	a	socket	file

For	an	abstract	Unix	domain	socket

How	it	works…

Creating	the	administrative	interface

How	to	do	it…

How	it	works…

See	also

6.	Setting	Up	Separate	Roles

Introduction

Managing	SELinux	users

How	to	do	it…

How	it	works…

There’s	more…

Mapping	Linux	users	to	SELinux	users

How	to	do	it…

How	it	works…

Running	commands	in	a	specified	role	with	sudo

How	to	do	it…

How	it	works…

See	also

Running	commands	in	a	specified	role	with	runcon

How	to	do	it…

How	it	works…

Switching	roles

How	to	do	it…

How	it	works…

Creating	a	new	role

How	to	do	it…

How	it	works…

Defining	a	role	in	the	policy

Extending	the	role	privileges

Default	types	and	default	contexts

Initial	role	based	on	entry

How	to	do	it…

How	it	works…

Defining	role	transitions

How	to	do	it…

How	it	works…

Looking	into	access	privileges

How	to	do	it…

How	it	works…

Direct	access	inspection

Policy	manipulation

Indirect	access

7.	Choosing	the	Confinement	Level

Introduction

Finding	common	resources

How	to	do	it…

How	it	works…

Shared	file	locations

User	content	and	customizable	types

There’s	more…

Defining	common	helper	domains

How	to	do	it…

How	it	works…

Documenting	common	privileges

How	to	do	it…

How	it	works…

Granting	privileges	to	all	clients

How	to	do	it…

How	it	works…

Creating	a	generic	application	domain

How	to	do	it…

How	it	works…

Building	application-specific	domains	using	templates

How	to	do	it…

How	it	works…

Using	fine-grained	application	domain	definitions

How	to	do	it…

How	it	works…

Reducing	exploit	risks

Role	management

Type	inheritance	and	transitions

8.	Debugging	SELinux

Introduction

Identifying	whether	SELinux	is	to	blame

How	to	do	it…

How	it	works…

See	also

Analyzing	SELINUX_ERR	messages

Getting	ready

How	to	do	it…

How	it	works…

Invalid	contexts

Denied	transition	validation

Denied	security-bounded	transitions

There’s	more…

See	also

Logging	positive	policy	decisions

How	to	do	it…

How	it	works…

Looking	through	SELinux	constraints

How	to	do	it…

How	it	works…

See	also

Ensuring	an	SELinux	rule	is	never	allowed

How	to	do	it…

How	it	works…

Using	strace	to	clarify	permission	issues

How	to	do	it…

How	it	works…

Using	strace	against	daemons

How	to	do	it…

How	it	works…

There’s	more…

See	also

Auditing	system	behavior

How	to	do	it…

How	it	works…

There’s	more…

See	also

9.	Aligning	SELinux	with	DAC

Introduction

Assigning	a	different	root	location	to	regular	services

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	a	different	root	location	for	SELinux-aware	applications

How	to	do	it…

How	it	works…

See	also

Sharing	user	content	with	file	ACLs

How	to	do	it…

How	it	works…

There’s	more…

Enabling	polyinstantiated	directories

How	to	do	it…

How	it	works…

There’s	more…

Configuring	capabilities	instead	of	setuid	binaries

How	to	do	it…

How	it	works…

See	also

Using	group	membership	for	role-based	access

How	to	do	it…

How	it	works…

Backing	up	and	restoring	files

How	to	do	it…

How	it	works…

Governing	application	network	access

How	to	do	it…

How	it	works…

See	also

10.	Handling	SELinux-aware	Applications

Introduction

Controlling	D-Bus	message	flows

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Restricting	service	ownership

How	to	do	it…

How	it	works…

There’s	more…

Understanding	udev’s	SELinux	integration

How	to	do	it…

How	it	works…

Using	cron	with	SELinux

How	to	do	it…

How	it	works…

There’s	more…

Checking	the	SELinux	state	programmatically

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Querying	SELinux	userland	configuration	in	C

How	to	do	it…

How	it	works…

There’s	more…

Interrogating	the	SELinux	subsystem	code-wise

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Running	new	processes	in	a	new	context

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Reading	the	context	of	a	resource

How	to	do	it…

How	it	works…

There’s	more…

Index

SELinux	Cookbook

SELinux	Cookbook
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2014

Production	reference:	1180914

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-966-9

www.packtpub.com

Cover	image	by	Sarath	Santhan	(<sarathsanthan@gmail.com>)

http://www.packtpub.com
mailto:sarathsanthan@gmail.com

Credits
Author

Sven	Vermeulen

Reviewers

David	Quigley

Sam	Wilson

Jason	Zaman

Lukáš	Zapletal

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Rebecca	Youé

Content	Development	Editors

Dayan	Hyames

Sankalp	Pawar

Technical	Editor

Mrunal	Chavan

Copy	Editors

Sayanee	Mukherjee

Karuna	Narayanan

Laxmi	Subramanian

Project	Coordinator

Venitha	Cutinho

Proofreaders

Simran	Bhogal

Paul	Hindle

Indexers

Priya	Sane

Tejal	Soni

Graphics

Valentina	D’silva

Disha	Haria

Production	Coordinators

Kyle	Albuquerque

Aparna	Bhagat

Komal	Ramchandani

Cover	Work

Komal	Ramchandani

About	the	Author
Sven	Vermeulen	is	a	long-term	contributor	to	various	free	software	projects	and	the
author	of	various	online	guides	and	resources.	He	got	his	first	taste	of	free	software	in
1997	and	never	looked	back.	In	2003,	he	joined	the	ranks	of	the	Gentoo	Linux	project	as	a
documentation	developer	and	has	since	worked	in	several	roles,	including	Gentoo
Foundation	trustee,	council	member,	project	lead	for	various	documentations,	and	(his
current	role)	project	lead	for	Gentoo	Hardened	SELinux	integration	and	the	system
integrity	project.

During	this	time,	Sven	gained	expertise	in	several	technologies,	ranging	from	operating
system	level	knowledge	to	application	servers.	He	used	his	interest	in	security	to	guide	his
projects	further	in	the	areas	of	security	guides	using	SCAP	languages,	mandatory	access
controls	through	SELinux,	authentication	with	PAM,	(application)	firewalling,	and	more.

Within	SELinux,	Sven	contributed	several	policies	to	the	Reference	Policy	project,	and	he
is	actively	participating	in	the	policy	development	and	user	space	development	projects.

In	his	daily	job,	Sven	is	an	IT	infrastructure	architect	with	a	European	financial	institution.
The	secure	implementation	of	infrastructures	(and	the	surrounding	architectural
integration)	is,	of	course,	an	important	part	of	this.	Prior	to	this,	he	graduated	as	an	MSE
in	Computer	Engineering	from	Ghent	University,	and	then	worked	as	a	web	application
infrastructure	engineer	using	IBM	WebSphere	Application	Server.

Sven	is	the	main	author	of	Gentoo	Handbook,	which	covers	the	installation	and
configuration	of	Gentoo	Linux	on	several	architectures.	He	has	also	authored	the	Linux
Sea	online	publication,	which	is	a	basic	introduction	to	Linux	for	novice	system
administrators	and	SELinux	System	Administration,	Packt	Publishing,	which	covers
SELinux	for	system	administrators.

I	would	like	to	dedicate	this	book	to	my	godfather	and	friend,	Jo	Jagers,	who	suddenly	and
unexpectedly	passed	away	last	year.	He	showed	me	the	importance	of	friendship	and
richness	of	life.	His	energetic	approach	to	life	is	still	an	example	to	me.

You	will	always	be	missed,	my	friend.

About	the	Reviewers
David	Quigley	started	his	career	as	a	computer	systems	researcher	for	the	National
Information	Assurance	Research	Lab	at	the	NSA,	where	he	worked	as	a	member	of	the
SELinux	team.	He	led	the	design	and	implementation	to	provide	Labeled	NFS	support	for
SELinux.	He	has	previously	contributed	to	the	open	source	community	by	maintaining	the
Unionfs	1.0	code	base	and	through	code	contributions	to	various	other	projects.	He	has
presented	at	conferences	such	as	the	Ottawa	Linux	Symposium,	the	StorageSS	workshop,
LinuxCon,	and	several	local	Linux	User	Group	meetings,	where	presentation	topics
included	storage,	filesystems,	and	security.	David	currently	works	as	a	Computer	Science
Professional	for	the	Operations,	Analytics,	and	Software	Development	(OASD)	division	at
KEYW	Corporation,	developing	innovative	system	software	for	Unix	and	Windows
platforms.

I	would	like	to	thank	my	wonderful	wife,	Kathy,	for	all	she	has	done	to	make	sure	I	have
the	time	to	do	things	such	as	review	this	book	and	travel	to	give	presentations	on	SELinux.
She	is	the	joy	of	my	life	and	has	helped	me	become	the	man	I	am	today.	I’d	also	like	to
thank	all	my	children—Zoe,	Jane,	and	the	twins—who	remind	us	to	love	and	cherish	the
time	we	have	as	a	family.	Also,	I	thank	my	parents,	Gary	and	Vicky,	for	supporting	my
decisions	to	change	my	educational	direction	and	become	a	computer	scientist,	allowing
me	to	be	where	I	am	today.

Sam	Wilson	is	a	systems	and	security	engineer	with	a	focus	on	Red	Hat	Enterprise	Linux.
Having	spent	2	years	working	as	an	information	security	consultant	and	also	having
passed	the	Red	Hat	SELinux	Policy	Administration	exam,	he	is	often	asked	for	SELinux
advice	within	teams	he	works	with.	Sam	has	been	active	in	the	GNU/Linux	communities
since	early	2007	and	has	contributed	to	NTFreeNet,	Darwin	Community	Arts,	Ansible,
and	the	Fedora	project.	Sam	can	be	found	online	at	www.cycloptivity.net.

Jason	Zaman	is	a	graduate	from	Carnegie	Mellon	University	with	a	degree	in	Electrical
and	Computer	Engineering.	He	has	been	interested	in	computers	and	open	source	and	uses
Linux	from	a	young	age.	After	using	Gentoo	Linux	for	many	years,	he	has	now	joined	the
Gentoo	Hardened	and	SELinux	projects	as	a	developer.	Currently,	he	works	in	a	start-up
company	mainly	doing	Android	development	and	system	administration	to	maintain	the
servers.

Lukáš	Zapletal	works	as	a	software	engineer	in	the	cloud	division	of	Red	Hat,	where	he
develops	the	Satellite	6.0	product	and	is	also	responsible	for	SELinux	policies	of	the
product.	He	is	part	of	the	Fedora,	Foreman,	Katello,	and	OpenStack	communities.	He
worked	as	an	Editor	in	Chief	at	Linux+	and	cofounded	the	LinuxEXPRES	(Czech)
magazine.

Red	Hat	is	the	world’s	leading	provider	of	open	source	solutions,	using	a	community-
powered	approach	to	provide	reliable	and	high-performing	cloud,	virtualization,	storage,
Linux,	and	middleware	technologies.

I’d	like	to	thank	Mirek	Grepl	and	Dan	Walsh	from	the	Red	Hat	SELinux	team	for	all	their

http://www.cycloptivity.net

answers,	and	my	family,	Broňa	and	Ondra,	for	allowing	me	to	review	this	amazing	book.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
SELinux	can	be	seen	as	a	daunting	beast	to	tame.	For	many,	it	is	considered	to	be	a
complex	security	system	on	the	already	versatile	environment	that	Linux	can	be.	But	as
with	most	IT-related	services,	it	is	the	unfamiliarity	with	the	technology	that	is	causing	the
notion	of	having	a	complicated	system.

It	is,	however,	nothing	like	that.	SELinux	is	not	all	that	difficult	to	understand.	If	it	were,
then	Linux	distributions	such	as	Red	Hat	Enterprise	Linux	wouldn’t	enable	it	by	default.

To	support	everyone	in	their	daily	operations	with	SELinux-enabled	systems,	this	book
came	to	life.	It	contains	numerous	chapters	on	the	various	aspects	of	SELinux	handling
and	policy	development	in	a	recipe-based	approach	that	allows	every	person	to	quickly
dive	into	the	details	and	challenges	that	making	a	system	more	secure	brings	forth.

What	this	will	not	present	are	administration-related	commands	and	examples.	For	that,	I
have	written	another	better-suited	SELinux	resource,	SELinux	System	Administration,
Packt	Publishing,	which	covers	the	system	administration	tasks	of	SELinux-enabled
systems,	such	as	dealing	with	SELinux	Booleans	and	file	context	changes	as	well	as	an
introduction	to	the	SELinux	technology.

This	book	is	also	not	a	reference	for	the	SELinux	policy	language	in	all	its	glory.	Although
the	most	common	statements	will	be	mentioned	and	used	several	times,	it	should	be	noted
that	the	SELinux	policy	language	and	its	internal	architecture	has	a	much	wider	scope.	For
a	good	language	and	component	reference,	The	SELinux	Notebook	–	The	Foundations,
Richard	Haines,	is	recommended.	This	resource	is	available	online	at
http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html.

http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html

What	this	book	covers
Chapter	1,	The	SELinux	Development	Environment,	tells	us	how	to	set	up	the	SELinux
policy	development	environment	through	which	further	policy	development	can	occur.	We
will	look	into	a	structured,	reusable	method	for	SELinux	policy	development	and	will
create	our	first	set	of	SELinux	policy	modules	that	are	nicely	integrated	with	the	existing
SELinux	policies.

Chapter	2,	Dealing	with	File	Labels,	focuses	on	how	file	labels	are	set	and	managed.	We
will	learn	how	to	configure	the	SELinux	policy	ourselves	as	well	as	how	to	use	and
declare	file	contexts	and	assign	the	right	context	to	the	right	type	of	resource.

Chapter	3,	Confining	Web	Applications,	covers	the	default	confinement	of	the	web	server
SELinux	domain	and	explains	how	to	enhance	the	existing	policy	to	suit	our	needs.
Additional	SELinux	support	through	the	mod_selinux	Apache	module	is	also	covered.

Chapter	4,	Creating	a	Desktop	Application	Policy,	is	the	first	chapter	where	an	entirely
new	application	domain	and	policy	is	written.	We	will	look	at	how	the	policy	needs	to	be
structured	and	the	policy	rules	that	are	needed	in	order	to	successfully	and	securely	run	the
application.

Chapter	5,	Creating	a	Server	Policy,	follows	the	previous	chapter’s	momentum	but	now
with	a	focus	on	server	services.	This	chapter	targets	the	differences	between	desktop
application	policies	and	server	policies,	and	we	will	develop	a	fully	functioning	SELinux
policy	module	together	with	the	necessary	administrative	policy	interfaces	needed	to
integrate	the	policy	in	a	larger	SELinux	environment.

Chapter	6,	Setting	Up	Separate	Roles,	looks	into	the	role-based	access	controls	that
SELinux	offers.	We	create	our	own	set	of	roles	with	the	least	privilege	principle	in	mind.
After	considering	the	definition	of	SELinux	users	and	roles,	we	then	practice	the
management	of	these	roles	in	larger	environments.

Chapter	7,	Choosing	the	Confinement	Level,	inspects	the	different	confinement	levels	that
policies	can	use	and	how	these	are	implemented	on	the	system.	We	learn	about	the	pros
and	cons	of	each	confinement	level	and	create	our	own	policy	set	that	provides	the
different	levels.

Chapter	8,	Debugging	SELinux,	scrutinizes	the	various	methods	available	to	debug
SELinux	behavior	and	policies.	We	acquire	the	necessary	skills	to	work	with	the	Linux
auditing	subsystem	to	generate	additional	logging	and	perform	advanced	queries	against
the	SELinux	policy.	In	this	chapter,	we	also	uncover	why	certain	popular	Linux	debugging
tools	do	not	(properly)	work	on	an	SELinux-enabled	system.

Chapter	9,	Aligning	SELinux	with	DAC,	examines	how	SELinux	can	be	used	to	enhance
the	existing	Linux	DAC	restrictions.	We	deal	with	the	various	technologies	available	and
how	the	SELinux	policy	can	be	augmented	to	work	properly	with	those	technologies.

Chapter	10,	Handling	SELinux-aware	Applications,	considers	the	SELinux-aware
applications	and	the	interaction	(and	debugging	difficulties)	they	have	with	the	system	and

SELinux	in	general.	We	learn	how	to	configure	these	applications’	SELinux	integration
and	how	to	debug	the	applications	when	things	go	wrong.	This	chapter	also	describes	how
to	create	our	own	SELinux-aware	application.

What	you	need	for	this	book
As	the	book	focuses	on	hands-on	experience,	it	is	seriously	recommended	to	have	an
SELinux-enabled	system	at	your	disposal.	Many	distributions	offer	live	environments	that
can	be	used	to	perform	initial	investigations	with,	but	ensure	that	you	pick	one	that	can
persist	the	changes	made	to	the	system.

An	SELinux-enabled	system	should	be	using	a	recent	set	of	SELinux	libraries	and	user
space	utilities.	This	book	is	written	based	on	Gentoo	Hardened,	running	the	SELinux	user
space	libraries	and	utilities	released	in	October	2013	(such	as	libselinux-2.2.2)	with	the
reference	policy	released	in	March	2014.	The	distribution	itself	is	not	that	important,	as
everything	in	this	book	is	distribution-independent,	so	it	is	well	usable	for	Fedora	and	Red
Hat	Enterprise	Linux,	although	the	latter—at	the	time	of	writing,	Version	6—is	still	using
older	versions	of	the	SELinux	user	space	libraries	and	utilities.

From	an	experience	point	of	view,	you	should	be	well-versed	in	Linux	system
administration	as	SELinux	policy	development	and	integration	requires	good	knowledge
of	the	components	that	we	are	about	to	confine	and	protect.	This	book	assumes	that	you
are	familiar	with	the	Git	version	control	system	as	an	end	user.	This	book	also	assumes
basic	knowledge	of	how	SELinux	works	on	a	system.

Who	this	book	is	for
This	book	is	meant	for	Linux	system	administrators	and	security	administrators	who	want
to	perform	the	following	tasks:

Fine-tune	the	SELinux	subsystem	on	their	Linux	systems
Develop	SELinux	policies	for	applications	and	users
Tightly	integrate	SELinux	within	their	current	processes

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Using
the	auditallow	statement,	we	can	track	SELinux	policy	decisions	and	assist	in	the
development	of	policies	and	debugging	of	application	behavior.”

A	block	of	code	is	set	as	follows:

write_files_pattern(syslogd_t,	named_conf_t,	named_conf_t)

allow	syslogd_t	named_conf_t:file	setattr_file_perms;

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

policy_module(mysysadm,	0.1)

gen_require(`

		type	sysadm_t;

')

logging_exec_syslog(sysadm_t)

Any	command-line	input	or	output	is	written	as	follows:

~#	setsebool	cron_userdomain_transition	on

~#	grep	crond_t	/etc/selinux/mcs/contexts/users/user_u

system_r:crond_t		user_r:user_t

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Capabilities	are	well
explained	on	Chris	Friedhoff’s	POSIX	Capabilities	&	File	POSIX	Capabilities	page.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	The	SELinux	Development
Environment
This	chapter	covers	the	setup	of	the	SELinux	policy	development	environment.	We	will
cover	the	following	topics	in	this	chapter:

Creating	the	development	environment
Building	a	simple	SELinux	module
Calling	refpolicy	interfaces
Creating	our	own	interface
Using	the	refpolicy	naming	convention
Distributing	SELinux	policy	modules

Introduction
Similar	to	any	other	software	development,	having	a	well-functioning	development
environment	is	essential	to	successfully	create	and	manage	SELinux	policies.	Such	an
environment	should	not	only	support	version	control,	but	also	be	able	to	quickly	search
through	the	sources	or	show	definitions.

With	SELinux,	this	means	that	the	policy	module	sources	(which	are	all	readable	text
files)	should	be	stored	in	a	structured	manner,	the	upstream	project	that	provides	SELinux
policies	should	be	readily	accessible,	and	the	necessary	functions	or	scripts	to	query	and
search	through	the	policies	should	be	available.

Adventurous	users	might	want	to	take	a	look	at	the	SELinux	Policy	IDE	(SLIDE)	as
offered	by	Tresys	Technology	(http://oss.tresys.com/projects/slide).	In	this	book,	we	do
not	focus	on	this	IDE;	instead,	we	use	whatever	file	editor	the	user	wants	(such	as	VIM,
Emacs,	or	Kate)	and	enhance	the	environment	through	the	necessary	shell	functions	and
commands.

Before	we	cover	the	setup	of	the	development	environment,	let’s	do	a	quick	recapitulation
of	what	SELinux	is.

http://oss.tresys.com/projects/slide

About	SELinux
The	Security	Enhanced	Linux	(SELinux)	project	is	the	result	of	projects	initiated	and
supported	by	the	US	National	Security	Agency	(NSA)	and	came	to	life	in	December
2000.	It	is	the	implementation	of	a	security	system	architecture	with	a	flexible,	policy-
driven	configuration	approach.	This	architecture	is	called	the	Flux	Advanced	Security
Kernel	(Flask),	and	its	related	resources	are	still	an	important	read	for	everyone	involved
with	SELinux.

Most	papers	are	linked	through	the	Flask	website	at
http://www.cs.utah.edu/flux/fluke/html/flask.html.	The	following	are	some	examples	of
these	papers:

The	paper	called	The	Inevitability	of	Failure:	The	Flawed	Assumption	of	Security	in
Modern	Computing	Environments	is	still	a	very	topical	paper	on	why	mandatory
access	controls	are	needed	in	operating	systems
The	NSA	publication,	Implementing	SELinux	as	a	Linux	Security	Module,	available
at	http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf,	goes
deeper	into	how	SELinux	is	implemented

Nowadays,	SELinux	can	be	best	seen	as	an	additional	layer	of	security	services	on	top	of
the	existing	Linux	operating	system.	It	is	part	of	the	mainstream	Linux	kernel	and	uses	the
Linux	Security	Modules	(LSM)	interfaces	to	hook	into	the	interaction	between	processes
(user	space)	and	resources.	It	manages	various	access	services	(such	as	the	reading	of
files,	getting	directory	attributes,	binding	to	domain	sockets,	connecting	to	TCP	sockets,
and	gaining	additional	capabilities)	through	a	powerful	approach	called	type
enforcement.

The	following	diagram	displays	the	high-level	functional	position	of	the	SELinux
subsystem.	Whenever	a	subject	(in	the	drawing,	this	is	the	Application)	wants	to	perform
an	action	against	a	resource,	this	action	is	first	checked	by	the	Discretionary	Access
Control	mechanism	that	the	Linux	kernel	provides.	After	the	action	is	checked	and
allowed	by	the	DAC	mechanism,	the	LSM	implementation	(against	which	SELinux	is
registered)	calls	the	hooks	that	the	SELinux	subsystem	has	provided.	SELinux	then	checks
the	policy	(through	the	cache,	and	if	the	access	is	not	registered	in	the	cache	yet,	it	checks
in	the	entire	policy)	and	returns	whether	the	access	should	be	allowed	or	not.

http://www.cs.utah.edu/flux/fluke/html/flask.html
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf

SELinux	is	a	Mandatory	Access	Control	system	in	which	the	governed	activities	on	the
system	are	defined	in	rules	that	are	documented	through	a	policy.	This	policy	is	applicable
to	all	processes	of	the	system	and	enforced	through	the	SELinux	subsystem,	which	is	part
of	the	Linux	kernel.	Anything	that	is	not	allowed	by	the	policy	will	not	be	allowed	at	all—
security	is	not	left	at	the	discretion	of	the	user	or	correctness	of	the	application.	Unlike
Linux	DAC	restrictions,	enforcement	itself	(the	SELinux	code)	is	separate	from	the	rules
(the	SELinux	policy).	The	rules	document	what	should	be	considered	as	acceptable
behavior	on	the	system.	Actions	that	do	not	fit	the	policy	will	be	denied	by	the	SELinux
subsystem.

In	SELinux,	a	set	of	access	control	mechanisms	are	supported.	The	most	visible	one	is	its
type	enforcement	in	which	privileges	of	a	subject	(be	it	the	kernel	or	a	Linux	process)
towards	an	object	(such	as	a	file,	device,	system	capability,	or	security	control)	are	granted
based	on	the	current	security	context	of	that	subject.	This	security	context	is	most	often
represented	through	a	readable	string	such	as	staff_u:staff_r:staff_t:s0:c0,c3.	This
string	represents	the	SELinux	user	(staff_u),	SELinux	role	(staff_r),	SELinux
type/domain	(staff_t),	and	optionally,	the	SELinux	sensitivity	level	or	security	clearance,
which	provides	both	the	sensitivity	(s0)	as	well	as	assigned	categories	(c0,c3).

Alongside	type	enforcement,	SELinux	has	several	other	features	as	well.	For	instance,	it
provides	a	role-based	access	control	system	by	assigning	valid	domains	(which	are
SELinux	types	assigned	to	running	processes)	to	roles.	If	a	role	is	not	granted	a	particular
domain,	then	that	role	cannot	execute	tasks	or	applications	associated	with	that	domain.
SELinux	also	supports	user-based	access	controls,	thus	limiting	information	flow	and
governing	data	sharing	between	SELinux	users.

Another	stronghold	within	SELinux	is	its	support	for	sensitivities	(which	SELinux

displays	as	integers,	but	these	integers	can	very	well	be	interpreted	as	public,	internal,
confidential,	and	so	on)	as	well	as	access	categories.	Through	the	constraints	that	SELinux
can	impose	in	its	policy,	systems	can	be	made	to	largely	abide	by	the	Bell-LaPadula	model
(https://en.wikipedia.org/wiki/Bell-LaPadula_model).	This	model	supports	information
flow	restrictions	such	as	no	read	up	(lower	sensitivities	cannot	read	information	from
higher	sensitivities)	and	no	write	down	(higher	sensitivities	cannot	leak	information	to
lower	sensitivities).

https://en.wikipedia.org/wiki/Bell-LaPadula_model

The	role	of	the	SELinux	policy
The	SELinux	policy	itself	is	a	representation	of	what	the	security	administrator	(the	role
that	is	usually	mentioned	as	being	the	owner	of	what	is	and	isn’t	allowed	on	a	system)
finds	acceptable,	expected,	and	normalized	behavior:

Acceptable:	Application	and	user	behavior	will	be	acceptable	because	it	will	be
allowed	on	the	system	by	the	policy
Expected:	Application	and	user	behavior	will	be	expected	as	the	policy	usually
doesn’t	(or	shouldn’t)	contain	access	vectors	(a	permission	assigned	to	a	subject
towards	a	particular	object)	that	are	not	applicable	to	the	system,	even	if	it	would	be
acceptable	on	other	systems	in	the	environment
Normalized:	Application	and	user	behavior	will	be	normalized	not	in	the	sense	of
database	normalization,	but	as	in	normality—something	that	is	consistent	with	the
most	common	behavior	of	the	process

As	a	policy	represents	these	behaviors,	correct	tuning	and	development	of	the	policy	is
extremely	important.	This	is	why	the	SELinux	Cookbook	will	focus	on	policy	development
and	policy	principles.

A	policy	that	is	too	restrictive	will	cause	applications	to	malfunction,	often	in	ways	that	its
users	will	find	unexpected.	It	will	not	be	surprising	to	the	security	administrator	of	course,
as	he	knows	that	the	policy	dictates	what	is	allowed,	and	he	is	(or	at	least	should	be)
perfectly	aware	of	what	the	policy	says.

However,	a	policy	that	is	too	broad	will	not	result	in	such	behavior.	On	the	contrary,
everything	will	work	as	expected.	Sadly,	when	nonstandard	or	abnormal	behavior	is
triggered,	the	(too)	broadly	defined	policy	might	still	allow	this	nonstandard	or	abnormal
behavior	to	happen.	When	this	abnormal	behavior	is	an	exploited	vulnerability,	then
SELinux—as	powerful	as	it	can	be—has	nothing	to	deter	the	exploit,	as	the	policy	itself
has	granted	the	access.	Another	example	of	this	principle	would	be	a	network	firewall,
whose	policy	can	be	too	open	as	well.

Through	the	packaged	approach	that	policies	provide	(SELinux	policies	are	like	loadable
kernel	modules,	but	then	for	the	SELinux	subsystem),	administrators	can	push	the	policies
to	one	or	more	systems,	usually	through	the	package	management	system	or	centralized
configuration	management	system	of	choice.	Unlike	Linux	DAC	controls,	which	need	to
be	applied	on	the	files	themselves,	SELinux	policies	are	much	easier	to	handle	and	are
even	versionable—a	trait	much	appreciated	by	administrators	in	larger	environments.

The	example
Throughout	this	book,	we	will	often	come	across	settings	that	are	optional	or	whose	value
is	heavily	dependent	on	the	choices	made	by	the	system	administrator.	In	order	to	not
repeat	documenting	and	explaining	when	a	setting	or	value	is	configurable,	we	will	use	the
following	configuration	settings:

The	SELinux	type	(which	is	configured	in	/etc/selinux/config)	will	be	MCS	in
this	book.	It	uses	an	MLS-enabled,	single-sensitivity	policy	definition.	This	means
that	contexts	will	always	have	a	sensitivity	level	or	security	clearance	assigned	when
displayed,	and	the	location	of	the	SELinux	policy	configuration	will	always	be	shown
in	/etc/selinux/mcs/.	Make	sure	to	substitute	this	path	with	your	own	if	the	policy
store	on	your	environment	is	named	differently.	For	instance,	a	Red	Hat	or	Fedora
installation	defaults	to	/etc/selinux/targeted/.
Operations	will	be	documented	as	they	run	through	restricted	users,	which	are	aptly
named	user	(for	an	unprivileged	end	user	assigned	the	user_r	role),	staff	(for	a
user	that	might	perform	administrative	tasks	and	is	assigned	the	staff_r	and
sysadm_r	roles),	and	root	(which	is	mapped	to	the	sysadm_r	role).	Distributions
might	have	users	associated	with	the	unconfined_r	role.	Whenever	a	step	can	be
skipped	for	unconfined	users,	it	will	be	explicitly	mentioned.

Creating	the	development	environment
We	will	now	create	a	development	environment	in	which	the	SELinux	policies	and
upstream	project	code	as	well	as	the	functions	we	use	to	easily	query	the	SELinux	policies
will	be	stored.	This	environment	will	have	the	following	three	top-level	locations:

local/:	This	location	contains	the	SELinux	rules	that	are	local	to	the	system	and	not
part	of	a	cooperatively	developed	repository	(that	is,	where	other	developers	work)
centralized/:	This	location	contains	checkouts	of	the	various	repositories	used	in
the	development	environment
bin/:	This	location	contains	the	supporting	script(s)	we	will	use	to	query	the	policy
sources	as	well	as	troubleshoot	the	SELinux	issues

In	this	exercise,	we	will	also	populate	the	centralized/	location	with	a	checkout:	the
SELinux	policy	tree	that	is	used	by	the	current	system.

Getting	ready
Look	for	a	good	location	where	the	development	environment	should	be	stored.	This
usually	is	a	location	in	the	user’s	home	directory,	such	as	/home/staff/dev/selinux/.
Whenever	this	book	references	a	location	with	respect	to	the	development	environment,	it
will	use	the	${DEVROOT}	variable	to	refer	to	this	location.

Another	piece	of	information	that	we	need	is	the	location	of	the	repository	that	hosts	the
SELinux	policies	of	the	current	system.	This	location	is	distribution	specific,	so	consult
the	distribution	site	for	more	information.	At	the	time	of	writing	this	book,	the	policies	for
Gentoo	Linux	and	Fedora	can	be	found	at	the	following	locations:

https://github.com/sjvermeu/hardened-refpolicy
https://git.fedorahosted.org/git/selinux-policy.git

Whenever	version	control	is	used,	we	will	use	git	in	this	book.	Other	version	control
systems	exist	as	well,	but	this	too	is	outside	the	scope	of	this	book.

https://github.com/sjvermeu/hardened-refpolicy
https://git.fedorahosted.org/git/selinux-policy.git

How	to	do	it…
To	create	the	development	environment	used	in	this	book,	perform	the	following	steps:

1.	 Create	the	necessary	directories:

~$	cd	${DEVROOT}

~$	mkdir	local	centralized	bin

2.	 Create	a	checkout	of	the	distributions’	SELinux	policy	tree	(which,	in	this	example,	is
based	on	the	Gentoo	Linux	repository):

~$	cd	${DEVROOT}/centralized

~$	git	clone	git://git.overlays.gentoo.org/proj/hardened-refpolicy.git

3.	 Create	a	git	repository	for	the	policies	that	we	will	develop	throughout	this	book:

~$	cd	${DEVROOT}/local

~$	git	init

4.	 Add	the	functions.sh	script,	which	is	available	through	the	download	pack	of	this
book,	to	the	${DEVROOT}/bin/	location.

5.	 Edit	the	.profile,	.bashrc,	or	other	shell	configuration	files	that	are	sourced	when
our	Linux	user	logs	on	to	the	system,	and	add	in	the	following	code:

#	Substitute	/home/staff/dev/selinux	with	your	DEVROOT

DEVROOT=/home/staff/dev/selinux

#	Substitute	the	next	location	with	your	distributions'	policy	checkout

POLICY_LOCATION=${DEVROOT}/centralized/hardened-refpolicy/

source	${DEVROOT}/bin/functions.sh

6.	 Log	out	and	log	in	again,	and	verify	that	the	environment	is	working	by	requesting
the	definition	of	the	files_read_etc_files	interface:

~$	seshowif	files_read_etc_files

interface(`files_read_etc_files',`

		gen_require(`

				type	etc_t;

		')

		allow	$1	etc_t:dir	list_dir_perms;

		read_files_pattern($1,	etc_t,	etc_t)

		read_lnk_files_pattern($1,	etc_t,	etc_t)

')

How	it	works…
The	setup	of	the	development	environment	helps	us	deal	with	policy	development	for
further	recipes.	The	checkout	of	the	distributions’	SELinux	policy	tree	is	to	query	the
existing	policy	rules	while	developing	new	policies.	SELinux	does	not	require	to	have	the
policy	sources	available	on	a	system	(only	the	compiled	binary	SELinux	policy	modules
and	parts	of	the	SELinux	policy	rules,	which	can	be	used	by	other	policy	modules).	As	a
result,	default	installations	usually	do	not	have	the	policy	rules	available	on	the	system.

By	having	the	checkout	at	our	disposal,	we	can	review	the	existing	SELinux	policy	files
and	happily	use	examples	from	it	for	our	own	use.	A	major	user	of	this	checkout	is	the
functions.sh	script,	which	uses	the	${POLICY_LOCATION}	variable	to	know	where	the
checkout	is	hosted.	This	script	provides	several	functions	that	we’ll	use	throughout	this
book;	they	will	also	help	in	querying	the	sources.

By	sourcing	this	functions.sh	script	during	log	on,	these	functions	are	readily	available
in	the	user’s	shell.	One	of	these	functions	is	the	seshowif	function,	which	displays	the
rules	of	a	particular	interface.	The	example	given	shows	the	definition	of	the
files_read_etc_files	interface,	which	we	used	to	validate	that	our	setup	is	working
correctly.

The	functions.sh	script	can	also	work	with	the	interface	files	that	are	available	through
/usr/share/selinux/devel/	(on	Fedora/Red	Hat	systems),	making	the	checkout	of	the
policy	repository	optional	if	the	user	does	not	need	access	to	the	complete	policy	rules.
The	policy	location	defined	then	is	as	follows:

export	POLICY_LOCATION=/usr/share/selinux/devel/

There’s	more…
Next	to	the	distributions’	SELinux	policy	tree,	one	can	also	use	the	reference	policy
SELinux	tree.	This	is	the	upstream	project	that	most,	if	not	all,	Linux	distributions	use	as
the	source	of	their	policies.	It	has	to	be	said	though	that	the	reference	policy	often	lags
behind	on	the	policy	repositories	of	the	individual	distributions,	as	it	has	stricter
acceptance	criteria	for	policy	enhancements.

It	also	doesn’t	hurt	to	check	out	the	SELinux	policy	repositories	of	other	distributions.
Often,	Linux	distributions	first	do	SELinux	policy	updates	on	their	own	repository	before
pushing	their	changes	to	the	reference	policy	(which	is	called	upstreaming	in	the	free
software	development	community).	By	looking	at	other	distributions’	repositories,
developers	can	easily	see	if	the	necessary	changes	have	been	made	in	the	past	already	(and
are	thus	more	likely	to	be	correct).

See	also
For	more	information	about	the	topics	covered	in	this	recipe,	refer	to	the	following
resources:

The	reference	policy	project	(http://oss.tresys.com/projects/refpolicy/)
The	Git	tutorial	(http://git-scm.com/docs/gittutorial)

http://oss.tresys.com/projects/refpolicy/
http://git-scm.com/docs/gittutorial

Building	a	simple	SELinux	module
Now	that	we	have	a	development	environment,	it	is	time	to	create	our	first	SELinux	policy
module.	As	its	purpose	does	not	matter	at	this	point,	we	will	focus	on	a	privilege	that	is	by
default	not	allowed	(and	rightfully	so)	yet	easy	to	verify,	as	we	want	to	make	sure	that	our
policy	development	approach	works.	The	privilege	we	are	going	to	grant	is	to	allow	the
system	logger	to	write	to	a	logfile	labeled	named_conf_t	(the	type	used	for	the
configuration	of	the	BIND	DNS	server—known	as	named).

Note
Building	SELinux	policy	modules	is	to	extend	the	existing	policy	with	more	rules	that
allow	certain	accesses.	It	is	not	possible	to	create	a	policy	module	that	reduces	the	allowed
privileges	for	a	domain.	If	this	is	needed,	the	policy	module	needs	to	recreate	and
substitute	the	existing	policy	(and	thus,	a	distribution-provided	policy	will	need	to	be
removed	from	the	system).

Getting	ready
Before	we	get	started,	we	first	need	to	make	sure	that	we	can	test	the	outcome	of	the
change.	A	simple	method	would	be	to	change	the	context	of	the	/var/log/messages	file
(or	another	general	logfile	that	the	system	logger	is	configured	to	use)	and	send	messages
through	the	system	logger	using	the	logger	command:

~$	logger	"Just	a	simple	log	event"

~$	tail	/var/log/messages

Verify	that	the	message	has	indeed	been	delivered	by	looking	at	the	last	lines	shown
through	the	tail	command.	Then,	change	the	context	and	try	again.	The	event	should	not
be	shown,	and	a	denial	should	be	logged	by	the	audit	daemon:

~#	chcon	-t	named_conf_t	/var/log/messages

~$	logger	"Another	simple	log	event"

~$	tail	/var/log/messages

~#	ausearch	-m	avc	-ts	recent

With	this	in	place,	we	can	now	create	our	first	simple	SELinux	module.

How	to	do	it…
Building	a	new	SELinux	policy	is	a	matter	of	going	through	the	following	steps:

1.	 Create	a	file	called	mylogging.te	inside	${DEVROOT}/local	with	the	following
content:

policy_module(mylogging,	0.1)

gen_require(`

		type	syslogd_t;

		type	named_conf_t;

	')

#	Allow	writing	to	named_conf_t	files

allow	syslogd_t	named_conf_t:file	{	getattr	append	lock	ioctl	open	

write	};

2.	 Copy	or	link	the	Makefile	file	available	in	/usr/share/selinux/devel/	or
/usr/share/selinux/mcs/include/	(the	exact	location	is	distribution	specific)	to
the	current	directory:

~$	ln	–s	/usr/share/selinux/devel/Makefile

3.	 Build	the	SELinux	policy	module	through	this	Makefile.	The	target	is	to	name	the
(target)	policy	module	with	the	.pp	suffix:

~$	make	mylogging.pp

4.	 Switch	to	the	root	user,	and	if	we	are	logged	on	through	an	unprivileged	SELinux
domain/role,	switch	to	the	sysadm_r	or	secadm_r	role	(this	is	not	needed	if	the
current	user	domain	is	already	sysadm_t	or	unconfined_t):

~$	sudo	–r	sysadm_r	–t	sysadm_t	-s

5.	 Now,	load	the	SELinux	policy	module	(which	will	immediately	activate	the	newly
defined	SELinux	policy):

~#	semodule	–i	mylogging.pp

6.	 Verify	that	the	newly	defined	SELinux	policy	is	active	by	generating	a	new	log	event
and	by	looking	at	the	logfile	to	see	if	it	has	indeed	been	registered.

7.	 Commit	the	newly	created	files	to	the	repository:

~$	cd	${DEVROOT}/local

~$	git	add	mylogging.te	Makefile

~$	git	commit	–m	'Adding	mylogging.te	which	allows	the	system	logger	to	

write	to	the	named	configuration	file	type	named_conf_t'

When	verified,	reset	the	context	of	the	logfile	using	restorecon	/var/log/messages
and	remove	the	policy	module	from	the	subsystem	using	semodule	-r	mylogging.
After	all,	we	do	not	want	this	rule	to	stay	active.

How	it	works…
There	are	three	important,	new	aspects	of	SELinux	policy	development	that	we	got	in
touch	with	in	this	recipe:

A	policy	source	file	called	mylogging.te	was	created
A	generated,	binary	policy	module	called	mylogging.pp	was	built
The	binary	policy	file,	mylogging.pp,	is	added	to	the	active	policy	store	on	the
system

At	the	end,	we	committed	the	file	to	our	local	repository.	Using	version	control	on	policy
files	is	recommended	in	order	to	track	changes	across	time.	A	good	hint	would	be	to	tag
new	releases	of	the	policies—if	users	ever	report	issues	with	the	policy,	you	can	then	ask
them	for	the	SELinux	policy	module	version	(through	semodule	–l)	and	use	the	tags	in
the	repository	to	easily	find	rules	for	that	particular	policy	module.

In	the	remainder	of	this	book,	we	will	no	longer	use	git	add/commit	so	that	we	can	focus
on	the	SELinux	recipes.

The	policy	source	file
In	the	recipe,	we	created	a	policy	source	file	called	mylogging.te,	which	contains	the	raw
SELinux	policy	rules.	The	name,	mylogging,	is	not	chosen	at	random;	it	is	a	common	best
practice	to	name	custom	modules	starting	with	my	and	followed	by	the	name	of	the
SELinux	policy	module	whose	content	we	are	enhancing	(in	our	case,	the	logging	module
that	provides	the	SELinux	policy	for	everything	that	is	system-logging	related).	The	.te
suffix	is	not	just	a	convention	(referring	to	the	type	enforcement	part	of	SELinux);	the
build	system	requires	the	.te	suffix.

The	policy	module	rules	start	with	the	policy_module(…)	call,	which	tells	the	build
system	that	the	file	will	become	a	loadable	SELinux	policy	module	with	the	given	name
and	version.	This	name	and	version	will	be	displayed	by	the	semodule	command	if	we	ask
it	to	list	all	the	currently	loaded	SELinux	policy	modules:

~#	semodule	–l

aide		1.8.0

alsa		1.13.0

…

mylogging		0.1

…

The	best	practice	is	to	keep	all	rules	for	a	single	domain	within	a	policy	module.	If	rules
for	multiple	unrelated	domains	are	needed,	it	is	recommended	that	you	create	multiple
modules,	as	this	isolates	the	policy	rules	and	makes	modifications	more	manageable.

In	this	simple	example,	we	did	not	follow	this	best	practice	(yet).	Instead,	we	told	the
SELinux	subsystem	that	the	policy	is	going	to	be	enhanced	with	an	access	vector	for
syslogd_t.	The	access	vector	here	is	to	allow	this	domain	a	set	of	permissions	against
files	that	are	labeled	as	named_conf_t.

The	binary	policy	module

When	we	called	the	Makefile	file,	the	underlying	scripts	built	a	loadable	binary	SELinux
policy	module.	Such	files	have	the	.pp	suffix	and	are	ready	to	be	loaded	into	the	policy
store.	The	Makefile	file	called	might	not	be	installed	by	default;	some	distributions
require	specific	development	packages	to	be	installed	(such	as	selinux-policy-devel	in
Fedora).

There	is	no	nice	way	of	retrieving	the	sources	of	a	policy	if	we	are	only	given	the	.pp	file.
Sure,	there	are	commands	such	as	semodule_unpackage	and	sedismod	available,	but	these
will	only	give	a	low-level	view	of	the	rules,	not	the	original	.te	code.	So,	make	sure	to
have	backups,	and	as	we	saw	in	the	example,	use	a	versioning	system	to	control	changes
across	time.

Loading	a	policy	into	the	policy	store
To	load	the	newly	created	policy	into	the	policy	store,	we	called	the	semodule	command.
This	application	is	responsible	for	managing	the	policy	store	(which	is	the	set	of	all
SELinux	policy	modules	together	with	the	base	policy	module)	and	linking	or	unlinking
the	modules	together	into	a	final	policy.

This	final	policy	(which	can	be	found	at	/etc/selinux/mcs/policy)	is	then	loaded	into
the	SELinux	subsystem	itself	and	enforced.

There’s	more…
Throughout	this	book,	the	build	system	used	is	based	on	the	reference	policy	build	system.
This	is	a	collection	of	M4	macros	and	affiliated	scripts	that	make	the	development	of
SELinux	policies	easier.	This	is,	however,	not	the	only	way	of	creating	SELinux	policies.

When	visiting	online	resources,	you	might	come	across	SELinux	policy	modules	whose
structure	looks	like	the	following:

module	somename	1.0;

require	{

		type	some_type_t;

		type	another_type_t;

}

allow	some_type_t	another_type_t:dir	{	read	search	};

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

These	are	policy	files	that	do	not	use	the	reference	policy	build	system.	To	build	such	files,
we	first	create	an	intermediate	module	file	with	checkmodule,	after	which	we	package	the
module	file	towards	a	loadable	binary	SELinux	policy	with	semodule_package:

~$	checkmodule	-M	–m	–o	somename.mod	somename.te

~$	semodule_package	–m	somename.mod	–o	somename.pp

To	keep	things	simple,	we	will	stick	to	the	reference	policy	build	system.

http://www.packtpub.com
http://www.packtpub.com/support

See	also
Many	topics	and	areas	have	been	touched	upon	in	this	recipe.	More	information	can	be
found	at	the	following	resources:

Most	Linux	distributions	have	distribution-specific	information	on	how	SELinux	is
integrated	in	the	distribution.	For	Red	Hat,	these	resources	can	be	reached	through
https://access.redhat.com.	For	Fedora,	use	https://docs.fedoraproject.org.	Gentoo	has
its	documentation	at	https://wiki.gentoo.org.
For	more	information	on	how	to	administer	SELinux	on	a	system,	consult	the
documentation	provided	by	the	distribution	or	read	the	SELinux	System
Administration	book	published	by	Packt	Publishing	at
http://www.packtpub.com/selinux-system-administration/book.
Extensive	coverage	of	the	SELinux	language	itself	is	provided	by	the	SELinux
Notebook,	which	is	available	online	at	http://www.freetechbooks.com/the-selinux-
notebook-the-foundations-t785.html.

https://access.redhat.com
https://docs.fedoraproject.org
https://wiki.gentoo.org
http://www.packtpub.com/selinux-system-administration/book
http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html

Calling	refpolicy	interfaces
Writing	up	SELinux	policies	entirely	using	the	standard	language	constructs	offered	by
SELinux	is	doable,	but	it	is	prone	to	error	and	not	manageable	in	the	long	term.	To	support
a	more	simple	language	construct,	the	reference	policy	project	uses	a	set	of	M4	macros
that	are	expanded	with	the	underlying	SELinux	policy	statements	when	the	policy	is	built.

The	API	that	policy	developers	can	use	can	be	consulted	online,	but	most	systems	also
have	this	information	available	onsite	at	/usr/share/doc/selinux-*/.	Finding	proper
interfaces	requires	some	practice	though,	which	is	why	one	of	the	functions	that	we
installed	earlier	(as	part	of	the	development	environment)	simplifies	this	for	us.

In	this	recipe,	we	are	going	to	edit	the	mylogging.te	file	we	generated	earlier	with	the
right	reference	policy	macro.

How	to	do	it…
To	use	reference	policy	interfaces	in	an	SELinux	policy	module,	the	following	approach
can	be	taken:

1.	 Use	the	sefinddef	function	to	find	permission	groups	or	patterns	to	write	to	files:

~$	sefinddef	'file.*write'

define(`write_files_pattern',`

		allow	$1	$3:file	write_file_perms;

…

define(`write_file_perms',`{	getattr	write	append	lock	ioctl	open	}')

…

2.	 Use	the	seshowdef	function	to	show	the	full	nature	of	the	write_files_pattern
definition:

~$	seshowdef	write_files_pattern

define(`write_files_pattern',`

		allow	$1	$2:dir	search_dir_perms;

		allow	$1	$3:file	write_file_perms;

')

3.	 Use	the	sefindif	function	to	find	the	interface	that	will	allow	writing	to
named_conf_t:

~$	sefindif	'write_files_pattern.*named_conf_t'

contrib/bind.if:	interface(`bind_write_config',`

contrib/bind.if:			write_files_pattern($1,	named_conf_t,	named_conf_t)

4.	 Now,	update	the	mylogging.te	file	to	use	this	function.	The	file	should	now	look	like
the	following:

policy_module(mylogging,	0.2)

gen_require(`

		type	syslogd_t;

')

bind_write_config(syslogd_t)

Note
Note	the	use	of	the	backtick	(`)	and	single	quote	(').	Whenever	definitions	are	used,
they	need	to	start	with	a	backtick	and	end	with	a	single	quote.

5.	 Rebuild	and	reload	the	policy	module,	and	then	rerun	the	tests	we	did	earlier	to	verify
that	this	still	allows	us	to	write	to	the	named_conf_t	labeled	file.

How	it	works…
One	of	the	principles	behind	the	build	system	of	the	reference	policy	is	that	an	SELinux
policy	module	should	not	directly	mention	SELinux	types	that	are	not	related	to	that
module.	Whenever	a	policy	module	needs	to	define	rules	against	a	type	that	is	defined	by
a	different	module,	interfaces	defined	by	that	different	module	should	be	used	instead.

In	our	example,	we	need	the	interface	used	by	the	BIND	SELinux	policy	(which	handles
the	BIND-named	daemon	policy	rules);	this	interface	allows	us	to	write	to	the	BIND	DNS
server	configuration	file	type	(named_conf_t).	We	can	check	the	online	API,	the	API
documentation	in	/usr/share/doc/selinux-*,	or	just	guess	the	interface	name.	However,
in	order	to	be	certain	that	the	interface	does	what	we	need,	we	need	to	query	the	interface
definitions	themselves.

That	is	where	the	sefinddef,	seshowdef,	sefindif,	and	seshowif	functions	come	into
play.	These	functions	are	not	part	of	any	SELinux	user	space—they	are	provided	through
the	functions.sh	file	we	installed	earlier	and	are	simple	awk/grep/sed	combinations
against	the	SELinux	policy	files.

With	sefinddef	(the	SELinux	find	definition),	we	can	search	through	the	support	macros
(not	related	to	a	particular	SELinux	policy	module)	for	any	definition	that	matches	the
expression	given	to	it.	In	this	recipe,	we	gave	file.*write	as	the	expression	to	look	for.
The	seshowdef	(SELinux	show	definition)	function	shows	us	the	entire	definition	of	the
given	pattern.

The	sefindif	(SELinux	find	interface)	function	then	allows	us	to	find	an	interface	that	the
SELinux	policy	provides.	In	this	recipe,	we	used	it	to	search	for	the	interface	that	allows	a
domain	to	write	to	the	BIND	DNS	server	configuration	files.	There	is	also	a	seshowif
(SELinux	show	interface)	function	that	shows	us	the	entire	interface	definition	like	the
following:

~$	seshowif	bind_write_config

interface(`bind_write_config',`

		gen_require(`

				type	named_conf_t;

		')

		write_files_pattern($1,	named_conf_t,	named_conf_t)

		allow	$1	named_conf_t:file	setattr_file_perms;

')

This	example	interface	nicely	shows	how	interfaces	are	handled	by	the	SELinux	reference
policy	build	system.	Whenever	such	an	interface	is	called,	one	or	more	arguments	are
given	to	the	interface.	In	our	case,	we	passed	on	syslogd_t	as	the	first	(and	only)
argument.

The	build	system	then	substitutes	every	$1	occurrence	in	the	interface	with	the	first
argument,	effectively	expanding	the	call	to	the	following	code:

write_files_pattern(syslogd_t,	named_conf_t,	named_conf_t)

allow	syslogd_t	named_conf_t:file	setattr_file_perms;

The	call	to	write_files_pattern	is	then	expanded	with	the	definition	we	saw	earlier.

For	the	policy	developer,	this	is	all	handled	transparently.	The	sources	of	the	SELinux
policy	file	stay	well-formatted	and	only	call	the	interfaces.	It	is	at	build	time	that	the
expansion	of	the	various	interfaces	is	done.	This	allows	developers	to	have	nicely
segregated,	compartmentalized	policy	definitions.

See	also
The	reference	policy	project	can	be	found	online	at
http://oss.tresys.com/projects/refpolicy/

http://oss.tresys.com/projects/refpolicy/

Creating	our	own	interface
Being	able	to	call	interfaces	is	nice,	but	when	we	develop	SELinux	policies,	we	will	run
into	situations	where	we	need	to	create	our	own	interface	for	the	SELinux	module	we	are
developing.	This	is	done	through	a	file	with	an	.if	extension.

In	this	recipe,	we	are	going	to	extend	the	mylogging	policy	with	an	interface	that	allows
other	domains	to	execute	the	system	log	daemon	binary	(but	without	running	this	binary
with	the	privileges	of	the	system	logger	itself;	this	would	be	called	a	domain	transition	in
SELinux).

How	to	do	it…
1.	 If	our	current	context	is	an	unprivileged	user	domain	(as	unconfined	domains	are

highly	privileged	and	can	do	almost	everything),	we	can	try	executing	the	system
logger	daemon	(syslog-ng	or	rsyslog)	directly	and	have	it	fail	as	follows:

~$	/usr/sbin/syslog-ng	--help

bash:	/usr/sbin/syslog-ng:	Permission	denied

2.	 Now,	create	the	mylogging.if	file	(in	the	same	location	where	mylogging.te	is)
with	the	following	content,	granting	all	permissions	needed	to	execute	the	binary:

##	<summary>Local	adaptation	to	the	system	logging	SELinux	

policy</summary>

	

##

##	<summary>

##				Execute	the	system	logging	daemon	in	the	caller	domain

##	</summary>

##	<desc>

##			<p>

##					This	does	not	include	a	transition.

##			</p>

##	</desc>

##	<param	name="domain">

##				<summary>

##						Domain	allowed	access.

##				</summary>

##	</param>

#

interface(`logging_exec_syslog',`

		gen_require(`

				type	syslogd_exec_t;

		')

		can_exec($1,	syslogd_exec_t)

')

3.	 Create	a	new	SELinux	policy	module	for	the	user	domain;	this	policy	should	be	able
to	execute	the	system	logger	directly.	For	instance,	for	the	sysadm_t	domain,	we
would	create	a	mysysadm.te	file	with	the	following	content:

policy_module(mysysadm,	0.1)

gen_require(`

		type	sysadm_t;

')

logging_exec_syslog(sysadm_t)

4.	 Build	the	mysysadm	policy	module	and	load	it.	Then,	test	to	see	if	the	daemon	binary
can	now	be	executed	directly:

~$	/usr/sbin/syslog-ng	--help

How	it	works…
Let’s	first	look	at	how	the	build	system	knows	where	the	interface	definitions	are.	Then,
we’ll	cover	the	in-line	comment	system	used	in	the	example.

The	location	of	the	interface	definitions
Whenever	an	SELinux	policy	module	is	built,	the	build	system	sources	all	interface	files	it
finds	at	the	following	locations:

/usr/share/selinux/mcs/include/*	or	/usr/share/selinux/devel/include/*
(depending	on	the	Linux	distribution)
The	current	working	directory

The	first	location	is	where	the	interface	files	of	all	the	SELinux	modules	provided	by	the
Linux	distribution	are	stored.	The	files	are	inside	subdirectories	named	after	particular
categories	(the	reference	policy	calls	these	layers,	but	this	is	only	used	to	make	some
structure	amongst	the	definitions,	nothing	else)	such	as	contrib/,	system/,	and	roles/.

For	local	development	of	SELinux	policies,	this	location	is	usually	not	writable.	If	we
develop	our	own	policy	modules,	then	this	would	mean	that	none	of	the	locally	managed
SELinux	policy	files	can	use	interfaces	of	the	other	local	interface	files.	The	Makefile
file,	therefore,	also	sources	all	interface	files	it	finds	in	the	current	working	directory.

The	in-line	documentation
Inside	the	interface	file	created,	we	notice	a	few	XML-like	structures	as	comments.	These
comments	are	prefixed	by	a	double	hash	sign	(##)	and	are	used	by	the	reference	policy
build	system	to	generate	the	API	documentation	(which	can	be	found	at
/usr/share/doc/selinux-*).

For	local	policies,	this	in-line	documentation	is	not	used	and,	thus,	not	mandatory.
However,	writing	the	documentation	even	for	local	policies	helps	us	in	documenting	the
rules	better.	Also,	if	we	ever	want	to	push	our	changes	upstream,	this	in-line
documentation	will	be	requested	anyway.

The	comment	system	uses	the	following	constructs:

Right	before	an	interface	definition,	we	encounter	a	<summary>	element,	which
provides	a	one-sentence	description	of	the	interface
Additional	information	can	then	be	provided	through	a	<desc>	element	under	which
the	HTML	code	can	be	placed	for	documenting	the	interface	further
Every	parameter	to	an	interface	is	documented	through	a	<param>	entity,	which	again
contains	a	<summary>	line

See	also
The	reference	policy	API	documentation	can	be	found	online	at
http://oss.tresys.com/docs/refpolicy/api/

http://oss.tresys.com/docs/refpolicy/api/

Using	the	refpolicy	naming	convention
The	interface	names	used	to	simplify	policy	development	can	be	freely	chosen.	However,
the	reference	policy	itself	uses	a	naming	convention	to	try	and	structure	the	names	used	so
that	the	SELinux	policy	developers	can	easily	find	the	interfaces	they	need—if	they	exist
—and	give	an	unambiguous	name	to	an	interface	they	want	to	create.

The	naming	convention	for	the	reference	policy	is	available	online	at
http://oss.tresys.com/projects/refpolicy/wiki/InterfaceNaming.

http://oss.tresys.com/projects/refpolicy/wiki/InterfaceNaming

Getting	ready
In	this	recipe,	we’ll	do	a	pen-and-paper	exercise	to	see	how	the	naming	convention	works.
In	the	example,	we	will	create	interface	names	for	three	situations:

To	read	all	logfiles
To	connect	to	the	HTTP	port	over	TCP
To	not	audit	getting	the	attributes	of	user	home	directories

How	to	do	it…
1.	 First	we	need	to	figure	out	the	file	types	that	are	involved	in	the	situations:

Generic	logfiles	are	var_log_t	(as	can	be	seen	by	querying	the	label	of
/var/log/itself):

~$	ls	-dZ	/var/log

drwxr-xr-x.	root	root	system_u:object_r:var_log_t:s0	/var/log

When	we	deal	with	all	logfiles,	we	can	safely	assume	this	is	handled	by	an
SELinux	attribute.	Let’s	look	at	the	attributes	for	the	generic	var_log_t	type:

~$	seinfo	–tvar_log_t	–x

		var_log_t

				file_type

				non_security_file_type

				mountpoint

				non_auth_file_type

				logfile

The	logfile	attribute	looks	like	an	interesting	hit.	We	can	now	grep	through	the
policy	sources	to	figure	out	which	SELinux	policy	modules	handle	the	logfile
attribute,	or	use	sefindif	(assuming	that	there	are	interfaces	defined	that	handle
this	attribute):

~$	sefindif	'attribute	logfile'

system/logging.if:	interface(`logging_log_file',`

…

For	the	logfiles	example,	the	module	we	need	is	called	logging	as	can	be	seen
from	the	sefindif	output.	Similarly,	we	will	find	that	for	the	HTTP	port,	the
module	is	corenet,	and	home	directories	are	userdom.

2.	 Next,	we	check	whether	there	is	a	modifier.	The	first	two	situations	have	no	specific
modifier	(all	the	actions	are	regular	verbs).	The	last	example	has	one:	do	not	audit.	In
the	SELinux	policy	language,	this	is	known	as	a	dontaudit	statement.

3.	 Now,	let’s	look	at	the	verbs	involved.	This	is	mostly	based	on	experience,	but	the
situations	show	that	there	is	a	huge	correlation	between	the	verbs	and	the	eventually
chosen	refpolicy	name	(which	usually	uses	SELinux	permission	names):

In	the	first	situation,	this	is	read
The	second	one	has	connect	over	TCP,	which	is	translated	into	tcp_connect
The	last	situation	has	getting	the	attributes,	so	it	is	translated	as	getattr

4.	 Finally,	let’s	look	at	the	object	that	is	being	referenced:

In	the	first	situation,	this	is	all	logfiles,	which	we	will	name	all_logs
In	the	second	situation,	this	is	HTTP	port,	so	we	will	name	http_port
The	third	situation	has	user	home	directories,	so	we	will	name
user_home_dirs

5.	 Combining	this	gives	us	the	following	interface	names:

Read	all	logfiles:	logging_read_all_logs
Connect	to	the	HTTP	port	over	TCP:	corenet_tcp_connect_http_port
Do	not	audit	getting	the	attributes	of	user	home	directories:
userdom_dontaudit_getattr_user_home_dirs

How	it	works…
The	naming	convention	that	the	reference	policy	uses	is	not	mandated	in	a	technical
manner.	Just	like	with	coding	styles,	naming	conventions	are	made	so	that	collaboration	is
easier	(everyone	uses	the	same	naming	convention)	and	searching	through	the	large	set	of
interfaces	can	be	directed	more	efficiently.

Using	the	proper	naming	convention	is	a	matter	of	exercise.	If	uncertain,	ask	around	in
#selinux	on	irc://irc.freenode.net	or	on	the	reference	policy	mailing	list.

There’s	more…
Take	some	time	to	look	through	the	interface	files	available	at
/usr/share/selinux/devel/include/.	Next,	for	the	more	standard	permission-based
interface	names,	there	are	also	interface	names	used	for	templates	and	type	assignation.

For	instance,	there	is	a	template	called	apache_content_template.	Through	it,	additional
SELinux	types	and	permissions	(used	for	web	applications)	are	created	in	one	go.
Similarly,	there	is	an	interface	called	apache_cgi_domain	that	marks	a	particular	type	as
being	a	domain	that	can	be	invoked	through	a	web	servers’	CGI	support.

Besides	the	naming	convention,	the	reference	policy	also	has	a	style	guide	available	at
http://oss.tresys.com/projects/refpolicy/wiki/StyleGuide.	Like	the	naming	convention,	this
is	purely	a	human	aspect	for	improved	collaboration—there	is	no	consequence	of	violating
the	coding	style	beyond	the	changes	that	might	not	be	accepted	in	the	upstream
repositories.

http://oss.tresys.com/projects/refpolicy/wiki/StyleGuide

Distributing	SELinux	policy	modules
We	finish	this	chapter	by	explaining	how	SELinux	policy	modules	can	be	distributed
across	multiple	systems.

How	to	do	it…
To	distribute	SELinux	policies,	complete	the	following	steps:

1.	 Take	into	account	the	different	system	configurations	to	which	the	SELinux	policies
need	to	be	distributed:

If	multiple	systems	have	different	SELinux	policy	releases	to	be	active,	then
build	the	SELinux	policy	module	against	each	of	these	implementations.	This	is
heavily	distribution	specific.	For	instance,	on	Gentoo,	this	is	the	version	of	the
sec-policy/selinux-base	package.	On	Red	Hat	and	derived	distributions,	this
is	the	version	of	the	selinux-policy	package.
If	multiple	SELinux	policy	types	are	active	(such	as	mcs,	targeted,	and	strict)
and	there	are	both	MLS-enabled	as	well	as	MLS-disabled	policies,	then	the
SELinux	policy	module	will	need	to	be	built	against	both	an	MLS-enabled
policy	as	well	as	an	MLS-disabled	policy.	The	output	of	sestatus	will	tell	us
whether	MLS	is	enabled	on	an	active	policy	or	not:

~$	sestatus	|	grep	MLS

Policy	MLS	status:				enabled

2.	 Package	the	resulting	.pp	files	and	distribute	them	to	the	various	systems.	It	is	a
common	best	practice	to	place	the	.pp	files	inside	/usr/share/selinux/mcs/	(this	is
for	an	SELinux	policy	store	named	mcs,	you	can	adjust	it	where	needed).

3.	 On	each	system,	make	sure	that	the	.pp	file	is	loaded	through	semodule	–I
policyfile.pp.

How	it	works…
SELinux	policy	modules	(the	files	ending	with	.pp)	contain	everything	SELinux	needs	to
activate	the	policy.	By	distributing	these	files	across	many	systems	(and	loading	it	through
the	semodule	command),	these	systems	receive	the	wanted	updates	against	their	current
SELinux	policy.

Once	loaded	(and	this	only	needs	to	happen	once,	as	a	loaded	module	is	retained	even
after	the	system	reboots),	one	does	not	really	need	the	.pp	files	anymore	(loaded	modules
are	copied	inside	/etc/selinux).	However,	it	is	recommended	that	you	keep	the	policies
there	so	that	administrators	can	reload	policies	as	needed;	this	might	help	in
troubleshooting	the	SELinux	policy	and	system	permission	issues.

There	are	a	few	caveats	to	take	into	account	though:

Changes	in	interfaces
Kernel	version	changes
MLS-enabled	or	MLS-disabled	policies

Changes	in	interfaces
The	.pp	files	contain	all	rules	that	SELinux	needs	to	enforce	the	additional	policy	rules.
This	includes	the	(expanded)	rules	that	were	part	of	the	interface	definition	files	(the	.if
files)	of	the	module	itself	as	well	as	the	interfaces	referred	to	by	the	policy	module.

When	an	update	against	an	interface	occurs,	then	all	SELinux	policy	modules	that	might
be	affected	by	the	change	need	to	be	rebuilt.	As	there	is	no	simple	way	to	know	if	a
module	needs	to	be	rebuilt	or	not,	it	is	recommended	that	you	rebuild	all	policy	modules
every	time	a	change	has	occurred	to	at	least	one	interface.

Distributions	will	handle	the	rebuilding	of	the	policies	and	the	distribution	of	the	rebuilt
policies	themselves,	but	for	custom	policy	modules,	we	need	to	do	this	ourselves.

Kernel	version	changes
New	kernel	releases	might	include	updates	against	the	SELinux	subsystem.	When	these
updates	provide	additional	features,	the	binary	representation	of	a	policy	might	be
updated.	This	is	then	reflected	in	the	binary	version	of	the	policy	that	the	kernel	supports.

Binary	versions	are	backward	compatible,	so	a	system	that	supports	a	maximum	version
of	28	(SELinux’s	binary	versions	are	integers	that	are	incremented	with	every	change)	will
also	support	loading	policy	modules	of	a	lower	binary	version:

~#	sestatus

SELinux	status:						enabled

SELinuxfs	mount:						/sys/fs/selinux

SELinux	root	directory:				/etc/selinux

Loaded	policy	name:				mcs

Current	mode:						enforcing

Mode	from	config	file:				enforcing

Policy	MLS	status:						enabled

Policy	deny_unknown	status:		denied

Max	kernel	policy	version:		28

Note
When	the	binary	version	of	an	SELinux	policy	module	is	higher	than	the	maximum	kernel
policy	version,	this	SELinux	policy	module	will	not	load	on	the	target	system.	A	higher
version	means	that	the	policy	uses	features	that	are	only	available	in	kernels	that	support
this	version,	so	the	administrator	will	need	to	update	the	kernels	on	those	systems	to
support	the	higher	version	or	update	the	SELinux	policy	module	to	not	use	these	features
so	that	a	rebuild	creates	a	lower-versioned	binary	SELinux	policy	module.

MLS	or	not
SELinux	policy	modules	might	contain	sensitivity-related	information.	When	a	policy
module	is	built,	information	is	added	to	reflect	whether	it	is	built	against	an	MLS-enabled
system	or	not.

Therefore,	if	we	have	hosts	that	have	diverse	policy	usages	(some	policy	stores	are	MLS-
enabled	and	some	are	MLS-disabled),	then	the	SELinux	policy	module	will	need	to	be
built	against	both	and	distributed	separately.

Usually,	this	is	done	by	providing	SELinux	policy	modules	for	each	particular	SELinux
policy	type	(be	it	mcs,	strict,	or	targeted).

Chapter	2.	Dealing	with	File	Labels
In	this	chapter,	we	will	cover	how	file	labels	are	set	and	managed,	and	learn	how	to
configure	the	SELinux	policy	ourselves	to	use	and	assign	the	right	file	labels.	The	recipes
that	this	chapter	covers	are	as	follows:

Defining	file	contexts	through	patterns
Using	substitution	definitions
Enhancing	an	SELinux	policy	with	file	transitions
Setting	resource-sensitivity	labels
Configuring	sensitivity	categories

Introduction
Setting,	resetting,	and	governing	file	labels	are	the	most	common	tasks	administrators
have	to	perform	on	an	SELinux-enabled	system.	The	policies	that	are	provided	by	policy
developers	as	well	as	Linux	distributions	offer	sane	defaults	to	use,	but	many
implementations	harbor	different	locations	for	services	and	files.	Companies	often	install
their	custom	scripts	and	logfiles	in	nondefault	locations,	and	many	daemons	can	be
configured	to	support	multiple	instances	on	the	same	system—each	of	them	using	a
different	base	directory.

System	administrators	will	know	how	to	set	context	definitions	through	the	semanage
application	and	then	reset	the	contexts	of	the	target	files	using	setfiles	or	restorecon:

~#	semanage	fcontext	–a	–t	httpd_sys_content_t	"/srv/web/zone/htdocs(/.*)?"

~#	restorecon	–RF	/srv/web/zone/htdocs

This,	however,	is	a	local	definition,	which,	if	necessary,	needs	to	be	exported	and	imported
in	order	to	transfer	it	to	other	systems:

~#	semanage	export	-f	local_selinux.mods

~#	semanage	import	-f	local_selinux.mods

By	moving	context	definitions	into	the	SELinux	policy	realm,	such	definitions	can	be
easily	installed	on	multiple	systems	and	managed	centrally	as	we’ve	seen	for	SELinux
policy	modules.

Defining	file	contexts	through	patterns
SELinux	policy	modules	can	contain	file	context	definitions	through	their	.fc	files.	In
these	files,	path	expressions	are	used	to	point	to	the	various	locations	that	should	match	a
particular	file	context,	and	class	identifiers	are	used	to	differentiate	file	context	definitions
based	on	the	file	class	(directories,	regular	files,	symbolic	links,	and	more).

In	this	recipe,	we’ll	create	a	mylogging	SELinux	module,	which	defines	additional	path
specifications	for	logging-related	contexts.	We	will	use	direct	file	paths	as	well	as	regular
expressions,	and	take	a	look	at	the	various	class	identifiers.

How	to	do	it…
To	define	a	file	context	through	an	SELinux	policy	module,	use	the	following	approach:

1.	 With	matchpathcon,	we	can	check	what	is	the	context	that	the	SELinux	tools	would
reset	the	resource	to:

~#	matchpathcon	/service/log

/service/log		system_u:object_r:default_t

2.	 Create	the	mylogging.te	file	in	which	we	mention	the	types	that	are	going	to	be	used
in	the	definition.	It	is	a	best	practice	to	handle	types	that	are	not	defined	by	the
SELinux	module	itself	through	a	different	SELinux	module.	In	this	example	though,
we	also	declare	var_t	to	keep	the	example	simple:

policy_module(mylogging,	0.2)

gen_require(`

		type	var_t;

		type	var_log_t;

		type	auditd_log_t;

')

3.	 Next,	create	the	mylogging.fc	file	in	which	we	declare	the	path	expressions	and	their
associated	file	context:

/service(/.*)?				gen_context(system_u:object_r:var_t,s0)

/service/log(/.*)?				gen_context(system_u:object_r:var_log_t,s0)

/service/log/audit(/.*)?				

gen_context(system_u:object_r:auditd_log_t,s0)

/lxc/.*/log		-d		gen_context(system_u:object_r:var_log_t,s0)

/var/opt/oracle/listener\.log	—	

gen_context(system_u:object_r:var_log_t,s0)

4.	 Now,	build	the	policy	module	and	load	it:

~$	make	mylogging.pp

~$	semodule	–i	mylogging.pp

5.	 With	matchpathcon,	we	can	now	verify	whether	the	context	known	to	the	SELinux
tools	is	the	correct	one:

~#	matchpathcon	/service/log

/service/log		system_u:object_r:var_log_t

How	it	works…
An	SELinux	policy	module	contains	everything	SELinux	needs	to	properly	handle	a	set	of
policy	rules.	This	includes	the	rules	themselves	(which	are	declared	in	a	.te	file)	with
optional	interface	declarations	(in	the	.if	files),	which	define	interfaces	that	other	policies
can	call	in	order	to	generate	specific	SELinux	rules.	The	third	and	final	part	of	an	SELinux
policy	module	is	the	related	file	contexts	file	—hence	the	.fc	file	suffix.

Note
Context	declarations	in	a	.fc	file	do	not	automatically	enforce	and	set	these	contexts.
These	are	merely	definitions	used	by	the	SELinux	utilities	and	libraries	when	a	relabeling
operation	occurs.

This	contexts	file	contains,	per	line:

A	path	expression	to	which	an	absolute	file	path	should	match
An	optional	class	identifier	to	discern	contexts	(files,	directories,	sockets,	symbolic
links,	and	so	on)
The	context	to	be	assigned	to	this	path

Each	part	of	the	context	definition	is	whitespace	delimited:

<path>		[<class	identifier>]		<context>

The	lines	can	be	ordered	to	the	policy	developers’	liking.	Most	developers	order	paths	in
an	alphabetical	order	with	grouping	based	on	the	top-level	directory.

Path	expressions
The	regular	expression	support	in	the	SELinux	tools	and	libraries	is	based	on	Perl-
Compatible	Regular	Expressions	(PCRE).

Of	all	possible	expressions,	the	simplest	expression	to	use	is	the	one	without	globbing,
such	as	the	following	code:

/var/opt/oracle/listener\.log

An	important	part	of	this	is	the	escape	of	the	period—if	we	don’t	escape	the	period,	then
the	PCRE	support	would	treat	the	period	as	any	character	matching	not	only	a
listener.log	file,	but	also	listener_log	or	listenerslog.

A	very	common	expression	is	the	one	that	matches	a	particular	directory	and	all
subdirectories	and	files	inside,	which	is	represented	in	the	following	example:

/service(/.*)?

This	ensures	that	there	is	always	a	context	definition	for	a	file	or	directory	within.

The	order	of	processing
Given	the	exhaustive	list	of	path	expressions	that	a	regular	system	has,	a	file	path	can
match	multiple	rules,	so	which	one	will	the	SELinux	utilities	use?

Basically,	the	SELinux	utilities	follow	the	principle	of	most	specific	first.	Given	two	lines
A	and	B,	this	is	checked	in	the	following	order,	where	the	first	match	wins:

1.	 If	line	A	has	a	regular	expression	in	it	and	B	doesn’t,	then	B	is	more	specific.
2.	 If	the	number	of	characters	before	the	first	regular	expression	in	line	A	is	less	than

the	number	of	characters	before	the	first	regular	expression	in	line	B,	then	B	is	more
specific.

3.	 If	the	number	of	characters	in	line	A	is	less	than	the	number	of	characters	in	line	B,
then	line	B	is	more	specific.

4.	 If	line	A	does	not	specify	an	SELinux	type	(so	that	the	context	part	of	it	is	<<none>>)
and	line	B	does,	then	line	B	is	more	specific.

The	SELinux	utilities	will	load	in	the	definitions	given	through	the	files	available	at
/etc/selinux/mcs/contexts/files/,	but	will	give	preference	to	the	ones	in
file_contexts.local	(and	then	file_contexts.homedirs)	as	those	are	the	definitions
made	by	the	system	administrator	locally.	However,	if	a	local	definition	uses	a	regular
expression	and	a	policy-provided	definition	doesn’t,	then	the	policy-provided	definition	is
still	used.	This	is	the	only	exception	to	the	preference	rules	between	the	various	context
files.

The	SELinux	utilities	provide	a	tool	called	findcon	(part	of	the	setools	or	setools-
console	package)	that	can	be	used	to	analyze	this	ordering,	which	shows	the	matching
patterns	within	a	single	(!)	context	definition	file	and	orders	them	from	least	specific	to
most	specific:

~$	findcon	/etc/selinux/mcs/contexts/files/file_contexts	-p	/var/log/aide

/.*				system_u:object_r:default_t:s0

/var/.*				system_u:object_r:var_t:s0

/var/log/.*		system_u:object_r:var_log_t:s0

/var/log/aide(/.*)?		system_u:object_r:aide_log_t:s0

If	only	the	actual	context	definition	is	needed	(and	not	the	full	set	of	matching	expressions
with	the	precedence	order	as	findcon	shows),	then	matchpathcon	can	be	used	instead:

~#	matchpathcon	/var/log/aide

/var/log/aide		system_u:object_r:aide_log_t:s0

Class	identifiers
The	second	part	of	the	context	definition	is	an	optional	part—a	class	identifier.	Through	a
class	identifier,	developers	can	tell	the	SELinux	utilities	that	a	context	definition	is	only
applicable	if	the	path	expression	matches	a	particular	file	class.	If	the	class	identifier	is
omitted,	then	any	class	matches.

If	a	class	identifier	is	shown,	then	one	(per	line)	of	the	following	identifiers	can	be	used:

The	‘--‘	identifier	is	used	for	regular	files
The	‘-d‘	identifier	is	used	for	directories
The	‘-l‘	identifier	is	used	for	symbolic	links
The	‘-b‘	identifier	is	used	for	block	devices

The	‘-c‘	identifier	is	used	for	character	devices
The	‘-p‘	identifier	is	used	for	FIFO	files
The	‘-s‘	identifier	is	used	for	sockets

Context	declaration
The	final	part	of	a	context	definition	is	the	context	itself	that	is	to	be	assigned	to	all
matching	resources.	It	is	generated	through	the	gen_context	macro,	as	follows:

gen_context(system_u:object_r:var_t,s0)

The	gen_context	macro	is	used	to	differentiate	context	definitions	based	on	policy
features.	If	the	target	policy	does	not	support	MLS,	then	only	the	first	argument
(system_u:object_r:var_t,	in	the	example)	is	used.	If	the	policy	supports	MLS	but	only
a	single	sensitivity	(s0),	then	:s0	is	appended	to	the	context.	Otherwise,	the	second
argument	(coincidentally	also	s0	in	the	example)	is	appended	(with	a	colon	in	front).

Generally,	contexts	only	differ	on	the	SELinux	type.	The	SELinux	owner	and	SELinux
role	of	the	resource	usually	remain	system_u	and	object_r	respectively.

A	special	value	for	the	context	is	<<none>>,	like	in	the	following	definition:

/proc		-d		<<none>>

This	tells	the	SELinux	utilities	that	they	should	never	try	to	set	the	context	of	this
resource.	Whenever	an	administrator	triggers	a	filesystem	relabeling	operation,	these
specific	locations	will	not	have	their	label	changed	(regardless	of	their	current	label).	This
does	not	mean	that	an	existing	context	should	be	removed!

There’s	more…
In	the	recipe,	we	covered	how	to	define	labels	in	great	detail.	If	many	changes	are	made,	it
makes	sense	to	force	a	relabel	on	the	entire	system.	On	Red	Hat	systems,	this	can	be
accomplished	by	creating	a	flag	file	and	rebooting	the	system:

~#	touch	/.autorelabel

~#	reboot

On	Gentoo	systems,	the	entire	system	can	be	relabeled	using	the	rlpkg	command:

~#	rlpkg	-a	-r

On	Red	Hat	systems,	the	command	to	relabel	the	system	is	called	fixfiles:

~#	fixfiles	relabel

This	is	also	needed	if	a	system	has	been	(temporarily)	booted	without	SELinux	support	or
with	SELinux	disabled	as	files	will	be	created	that	have	no	file	context.	When	an
SELinux-enabled	system	is	booted	again,	it	will	mark	those	files	as	unlabeled_t,	which	is
a	type	that	most	domains	have	no	access	to	(SELinux-wise).

Using	substitution	definitions
Sometimes,	applications	and	their	resources	get	installed	at	different	locations	than
expected	by	the	SELinux	policy.	Trying	to	accommodate	this	by	defining	additional
context	definitions	for	each	and	every	subdirectory	can	easily	become	unmanageable.

To	help	administrators,	the	SELinux	utilities	support	substitution	entries,	which	tell
SELinux	“if	a	path	starts	with	this,	then	label	it	as	if	it	starts	with	that“.	Administrators	can
set	such	a	substitution	(which	is	called	an	equivalence	class)	using	semanage,	as	follows:

~#	semanage	fcontext	–a	–e	/	/mnt/chroots/bind

In	this	example,	any	location	under	/mnt/chroots/bind/	will	be	labeled	as	if	it	started
from	the	main	/	directory	(so	/mnt/chroots/bind/etc/	becomes	etc_t	as	/etc/	is
etc_t).

Target	locations	for	chroots	are	a	good	use	case	for	this.	A	chroot	is	an	alternate	location
on	the	filesystem,	which	will	act	as	the	root	filesystem	for	one	or	a	set	of	applications.

For	administrators	who	want	to	set	substitutions	across	multiple	systems,	it	is	not	possible
to	make	this	part	of	an	SELinux	policy	module.	The	file	that	we	need	to	manage	is	called
file_contexts.subs	(there	is	also	one	that	ends	with	.subs_dist	and	is	managed	by	the
Linux	distribution,	which	we	will	not	touch).	Having	that	said,	we	can	always	look	at	how
to	update	this	file	in	a	more	or	less	sane	manner.

Getting	ready
The	easiest	method	would	be	to	use	a	central	configuration	management	utility,	such	as
Puppet,	CFEngine,	Chef,	or	Ansible,	as	these	systems	allow	administrators	to	force	the
content	of	specific	files	to	a	particular	value.	The	use	of	a	configuration	management	tool
is	an	entire	book	in	itself,	so	this	is	outside	the	scope	of	this	book.	If	you	do	want	to
pursue	this,	remember	that	the	file_contexts.subs	file	is	(also)	managed	by	the
semanage	command.	Administrators	might	want	to	add	in	local	definitions	that	the	central
configuration	management	utility	isn’t	aware	of	(and	thus	might	revert	the	change).

In	this	recipe,	we’ll	cover	a	generic	approach,	but	it	does	require	that	there	is	a	way	to	do
both	a	file	transfer	followed	by	a	single	line	command	(executed	with	proper	permissions).
This,	however,	shouldn’t	be	much	of	a	challenge	to	most	system	administrators.

How	to	do	it…
In	order	to	apply	changes	to	a	wide	range	of	systems,	follow	the	next	set	of	steps:

1.	 Apply	the	change	locally	to	the	system:

~#	semanage	fcontext	-a	-e	/	/mnt/chroot/bind

2.	 Export	the	definitions	to	a	single	file:

~#	semanage	export	-f	local_selinux.mods

3.	 Edit	the	local_selinux.mods	file	and	remove	all	entries	that	are	not	related	to	the
change	but	need	to	be	distributed.

4.	 Distribute	the	resulting	file	to	the	target	systems.
5.	 Apply	the	changes	locally	to	the	system:

~#	semanage	import	-f	local_selinux.mods

How	it	works…
The	semanage	fcontext	command	instantiates	an	equivalence	class	for
/mnt/chroot/bind/,	which	has	all	subdirectories	and	files	inside	of	it	labeled	as	if	they
were	at	/.	This	ensures	that	administrators	do	not	need	to	define	a	large	amount	of	file
contexts	for	each	and	every	chroot	location	they	manage.

However,	this	might	become	problematic	as	semanage	fcontext	only	applies	changes
locally,	and	on	a	larger	infrastructure,	the	same	settings	might	need	to	be	applied	to
multiple	systems.	For	this,	semanage	export	and	semanage	import	can	be	used.

The	output	of	the	semanage	export	command	is	a	set	of	instructions	for	semanage	and
follows	the	syntax	of	the	semanage	commands	to	the	letter.

When	exporting	the	semanage	definitions,	the	first	set	of	commands	that	are	stored	are	the
delete	all	statements	such	as	fcontext	-D	(delete	all	locally	made	semanage	fcontext
settings).	Of	course,	if	we	only	need	to	distribute	the	substitution	definitions,	then	deleting
all	previously	made	local	statements	is	incorrect.	Hence,	the	need	to	manually	edit	the
local_selinux.mods	file.	If	only	the	equivalence	class	definition	needs	to	be	distributed,
then	the	file	might	just	contain	the	following:

fcontext	-a	-e	/	/mnt/chroot/bind

The	exported	file	can	then	be	distributed	to	all	target	systems	and	loaded	through	the
semanage	import	command	effectively	applying	the	same	set	of	changes	to	the	system.

If	the	definition	was	already	applied	on	a	system,	then	the	import	command	will	fail:

~#	semanage	import	-f	local_selinux.mods

ValueError:	Equivalence	class	for	/mnt/chroot/bind	already	exists

It	is	important	to	note	here	that	if	one	command	in	the	file	fails	to	apply,	then	none	of	the
commands	in	the	file	are	applied	(the	file	is	processed	in	one	go).	This	is	why	the	delete
all	rules	are	originally	made	part	of	the	exported	set	of	commands.

This	makes	distributed	management	of	such	settings	more	challenging	if	locally	applied
changes	need	to	be	kept	as	well,	unless	the	distributed	set	of	changes	are	singular	(one
exported	instruction,	which	is	allowed	to	fail).

There’s	more…
Most	files	inside	the	/etc/selinux/mcs/contexts/	location	shouldn’t	be	managed
through	any	tool	except	either	the	Linux	distribution	package	management	system
(through	the	installation	of	the	base	SELinux	policy)	or	semanage.

That	being	said,	most	files	inside	this	location	don’t	change	much	(except	for	the
files/file_contexts	file).	It	might	be	beneficial	to	hook	into	the	package	management
system	to	update	these	files	(if	supported)	or	bluntly	take	over	the	management	of	these
files,	assuming	you	track	the	changes	that	the	distribution	would	make	closely.

See	also
The	following	resources	dive	deeper	into	the	topics	discussed	in	this	recipe:

To	find	out	more	about	the	various	configuration	files,	check	out
http://selinuxproject.org/page/PolicyConfigurationFiles
The	interaction	of	SELinux	with	chroots	is	discussed	in	more	detail	in	Chapter	9,
Aligning	SELinux	with	DAC

http://selinuxproject.org/page/PolicyConfigurationFiles

Enhancing	an	SELinux	policy	with	file
transitions
Up	until	now,	we’ve	only	handled	the	configuration	part	on	file	contexts:	if	we	would	ask
SELinux	utilities	to	relabel	files,	then	the	changes	we	made	would	come	into	effect.
However,	unless	you	run	with	the	restorecond	daemon	checking	out	all	possible	file
modifications	(which	would	really	be	a	resource	hog)	or	run	restorecon	manually	against
all	files	regularly,	the	newly	defined	contexts	will	not	be	applied	to	the	files.

What	we	need	to	do	is	modify	the	local	SELinux	policy	so	that,	upon	creation	of	these
files,	the	Linux	kernel	automatically	assigns	the	right	label	to	those	files.	This	is	handled
through	file	transitions,	which	is	a	specific	case	of	a	type	transition.

In	a	type	transition,	we	configure	a	policy	so	that	if	a	given	domain	creates	a	file	(or	other
resource	class)	inside	a	directory	with	a	specified	label,	then	the	created	object	should
automatically	get	a	specific	label.	Policy-wise,	this	is	written	as	follows:

type_transition	<domain>	<directory_label>:<resource_class>	

<specific_label>

SELinux	has	also	added	in	support	for	named	file	transitions	(from	Linux	2.6.39	onwards,
and	available	in	Gentoo,	Fedora	16+,	and	Red	Hat	Enterprise	Linux	7+).	In	that	case,	such
a	transition	only	occurs	if	the	created	resource	matches	a	particular	filename	exactly	(so
no	regular	expressions):

type_transition	<domain>	<directory_label>:<resource_class>	

<specific_label>	<filename>

Through	the	reference	policy	macro’s,	this	is	supported	with	the	filetrans_pattern
definition.

Getting	ready
In	order	to	properly	define	file	transitions,	we	need	to	know	what	the	source	domain	is	that
is	responsible	for	creating	the	resource.	For	instance,	a	/var/run/snort/	directory	might
be	created	by	an	init	script,	but	if	there	is	no	file	transition,	then	this	directory	will	be
created	with	the	type	of	the	parent	directory	(which	is	var_run_t)	instead	of	the	proper
type	(snort_var_run_t).

So	make	sure	to	write	down	all	the	involved	labels	(as	an	example,	we	will	use	initrc_t
for	an	init	script,	var_run_t	for	the	parent	directory,	and	snort_var_run_t	for	the	target
directory)	before	embarking	on	this	recipe.

How	to	do	it…
Defining	a	file	transition	can	be	done	as	follows:

1.	 Search	through	the	SELinux	policies	to	see	if	there	is	an	interface	that	will	provide	a
file	transition	from	a	given	domain	to	snort_run_t:

~$	sefindif	filetrans.*snort_var_run_t

2.	 Assuming	that	none	have	been	found,	search	for	interfaces	that	allow	initrc_t
created	resources	to	transition	to	a	given	type:

~$	sefindif	filetrans.*initrc_t

system/init.if:	interface(`init_daemon_pid_file',`

system/init.if:			files_pid_filetrans(initrc_t,	$1,	$2,	$3)

3.	 Bingo!	Now,	let’s	create	an	enhancement	for	the	snort	SELinux	module	(through	a
mysnort	policy	file)	with	the	following	declaration	in	it:

policy_module(mysnort,	0.1)

gen_require(`

		type	snort_t;

		type	snort_var_run_t;

')

#	If	initrc_t	creates	a	directory	called	"snort"	in	a	var_run_t	dir,

#	make	sure	this	one	is	immediately	labeled	as	snort_var_run_t.

init_daemon_pid_file(snort_var_run_t,	dir,	"snort")

4.	 Build	the	new	policy	and	load	it.	Then	check	with	sesearch	if	a	type	transition	is
indeed	declared:

~$	sesearch	–s	initrc_t	–t	var_run_t	–T	|	grep	"snort"

type_transition	initrc_t	var_run_t	:	dir	snort_var_run_t	"snort"

How	it	works…
Linux	distributions	that	support	SELinux	already	provide	an	SELinux	policy	that	works	in
a	majority	of	deployments.	The	default	policy	is	extensive	and	works	mostly	out	of	the
box.	If	specific	changes	are	needed,	chances	are	that	these	particular	SELinux	rules	are
already	defined	(as	part	of	policy	interfaces)	and	only	need	to	be	instantiated	and	loaded.

Policy	interfaces	usually	exist	in	the	following	two	types:

Interfaces	whose	subject	is	delivered	through	an	argument,	and	where	the	object
(against	which	operations	are	performed)	and	perhaps	target	(in	our	case,	to	which	a
transition	should	occur)	are	hardcoded
Interfaces	whose	subject	is	hardcoded	and	where	the	object,	target,	or	both	are
arguments	to	the	interface

An	example	of	the	first	interface	type	that	can	be	used	in	our	example	would	look	like	the
following	code:

interface(`snort_generic_pid_filetrans_pid',`

		gen_require(`

				type	snort_var_run_t;

		')

		files_pid_filetrans($1,	snort_var_run_t,	dir,	$2)

')

We	could	then	call	this	interface	like	this:

snort_generic_pid_filetrans_pid(initrc_t,	"snort")

However,	such	interfaces	would	be	a	burden	to	maintain.	For	every	daemon	support	added
to	the	system,	the	init	policy	would	need	to	be	changed	with	a	named	file	transition
together	with	the	newly	added	policy	rules	for	the	daemon.	Considering	the	amount	of
daemons	that	can	run	on	a	system,	the	init	policy	would	literally	be	filled	with	a	massive
amount	of	named	file	transitions—at	least	one	for	every	daemon.

The	interface	declaration	that	we	encountered	in	the	example	is	much	more	manageable.
The	interface	is	meant	to	be	called	by	the	daemon	policy	itself	and	immediately	ensures
that	the	initrc_t	type	can	create	directories	of	the	given	type	(snort_var_run_t)	inside
the	generic	run	directory	(var_run_t).	New	additions	to	the	policy	leave	the	init	policy
at	rest,	making	maintenance	of	the	policies	easier.

Finding	the	right	search	pattern
To	find	the	right	pattern,	we	use	the	sefindif	interface	to	search	through	the	available
interfaces.	Finding	the	right	expression	is	a	matter	of	experience.

As	we	know,	we	want	to	search	for	file	transitions,	the	line	we	are	looking	for	will	contain
filetrans_pattern.	Then,	one	of	the	arguments	involved	is	the	type	we	are	going	to
transition	to	(snort_var_run_t).	So	the	expression	we	used	in	the	example	was	changed
to	filetrans.*snort_var_run_t.	As	that	didn’t	result	in	anything,	the	next	search
involved	the	domain	from	which	a	transition	has	to	be	made	(initrc_t)	so	that	the

expression	was	changed	to	filetrans.*initrc_t.

However,	let’s	assume	we	don’t	know	that	filetrans_pattern	needs	to	be	searched	for.
The	type	itself	(snort_var_run_t)	or	domain	(initrc_t)	might	be	sufficient	to	search
through,	like	in	the	following	searches:

~$	sefindif	snort_var_run_t

~$	sefindif	initrc_t

From	the	resulting	list	of	interfaces,	we	can	then	see	if	an	interface	is	available	that	suits
our	needs.

Patterns
Patterns	such	as	filetrans_pattern	are	important	supporting	definitions	inside	the
reference	policy.	They	bundle	a	set	of	permissions	related	to	a	functional	approach	(such
as	read	files,	which	are	handled	through	a	read_files_pattern)	and	are	not	tied	to	a
particular	type	(unlike	interfaces).

The	need	for	patterns	comes	from	the	very	fine-grained	access	controls	that	SELinux	has
on	Linux	activities.	Reading	a	file	is	a	nice	example:	it	is	not	sufficient	to	just	allow	a	type
to	perform	the	read	action:

allow	initrc_t	snort_var_run_t:file	read;

Most	applications	first	check	the	attributes	of	the	file	(getattr)	and	open	the	file	before
they	can	read	the	file.	Depending	on	the	purpose,	they	might	also	want	to	lock	the	file	or
perform	I/O	operations	on	it	through	ioctl.	So	instead	of	just	the	preceding	access	vector,
the	rule	was	changed	to:

allow	initrc_t	snort_var_run_t:file	{	getattr	lock	open	read	ioctl	}

The	reference	policy	provides	a	single	permission	set	for	this	called	read_file_perms,
which	turns	the	access	vector	into	the	following:

allow	initrc_t	snort_var_run_t:file	read_file_perms;

Second,	the	policy	developers	often	want	to	allow	a	domain	to	read	a	file	inside	a
directory	that	is	labeled	similarly.	For	instance,	a	snort_var_run_t	file	can	be	at
/var/run/snort/snort.pid	with	the	/var/run/snort/	directory	also	being	labeled	as
snort_var_run_t.	So	we	would	also	need	to	grant	the	initrc_t	type	search	rights	inside
the	directory—which	again	is	a	set	of	permissions	as	can	be	seen	from	the
search_dir_perms	definition:

~$	seshowdef	search_dir_perms

define(`search_dir_perms',`{	getattr	search	open	}')

Instead	of	creating	multiple	rules	for	this,	a	pattern	is	created,	called
read_files_pattern,	which	looks	like	the	following:

~$	seshowdef	read_files_pattern

define(`read_files_pattern',`

		allow	$1	$2:dir	search_dir_perms;

		allow	$1	$3:file	read_file_perms;

')

This	allows	policy	developers	to	use	a	single	call:

read_files_pattern(initrc_t,	snort_var_run_t,	snort_var_run_t)

To	see	the	various	patterns	supported	for	policy	development,	use	sefinddef	with	the
‘define.*_pattern‘	expression:

~$	sefinddef	define.*_pattern

Using	patterns	allows	developers	to	create	readable	policy	rules	using	a	functional
approach	rather	than	a	full	sum-up	of	each	individual	access	vector.

There’s	more…
In	the	snort_generic_pid_filetrans_pid	interface	presented	earlier,	we	used	a	named
file	transition:	the	transition	occurs	only	if	the	filename	passed	on	as	the	last	argument
matches	the	filename	of	the	file	created.

Named	file	transitions	take	precedence	over	normal	file	transitions.	A	good	example	for
this	are	the	file	transitions	supported	for	the	initrc_t	domain:

~#	semanage	–s	initrc_t	–t	var_run_t	–T

Found	2	semantic	te	rules:

		type_transition	initrc_t	var_run_t	:	file	initrc_var_run_t;

		type_transition	initrc_t	var_run_t	:	dir	initrc_var_run_t;

Found	16	named	file	transition	rules:

type_transition	initrc_t	var_run_t	:	dir	udev_var_run_t	"udev";

type_transition	initrc_t	var_run_t	:	dir	tor_var_run_t	"tor";

…

In	this	case,	if	an	init	script	creates	a	directory	called	udev	or	tor	(or	any	of	the	other
transition	rules	that	are	not	shown	in	the	example),	then	a	proper	file	transition	occurs.	If
the	filename	doesn’t	match,	then	a	transition	occurs	to	the	initrc_var_run_t	type.

File	transitions	on	regular	files	and	directories	are	the	most	common,	but	transitions	can
also	occur	on	various	other	classes,	such	as	sockets,	FIFO	files,	symbolic	links,	and	more.

See	also
Domain	transitions	(which	assign	a	different	context	to	a	process	rather	than	a	file)
are	covered	in	Chapter	3,	Confining	Web	Applications	in	more	detail	and	are	used	in
Chapter	4,	Creating	a	Desktop	Application	Policy	and	Chapter	5,	Creating	a	Server
Policy

Setting	resource-sensitivity	labels
When	an	SELinux	policy	is	MLS-enabled	and	supports	multiple	sensitivities	(which	is	not
the	case	with	MCS,	as	MCS	only	has	a	single	sensitivity),	then	SELinux	can	govern
information	flow	and	access	between	a	domain	and	one	or	more	resources	based	on	the
clearance	of	the	domain	and	the	sensitivity	level	of	the	resource.	But	even	with	a	single
sensitivity	(as	is	the	case	with	MCS),	SELinux	has	additional	constraint	support	to	ensure
that	domains	cannot	access	resources	that	have	one	of	the	categories	assigned	that	the
domain	doesn’t	have	clearance	for.

A	sensitivity	level	consists	of	a	sensitivity	(s0	is	generally	being	used	for	the	lowest
sensitivity	and	s15—which	is	a	policy	build-time	constant	and	thus	can	be	configured—is
the	highest	sensitivity)	together	with	a	category	set	(which	can	be	a	list	such	as
c0,c5,c8.c10).

A	security	clearance	is	similar	to	a	sensitivity	level	but	shows	a	sensitivity	range	(such	as
s0-s3)	instead	of	a	single	sensitivity	level.	A	security	clearance	can	be	seen	as	a	range
going	from	the	lowest	sensitivity	level	to	the	highest	sensitivity	level	allowed	by	the
domain.

When	policies	are	being	developed	for	such	systems,	context	definitions	and	policy	rules
can	take	sensitivities	into	account.	In	this	recipe,	we	will	do	the	two	most	common
operations	for	MLS-enabled	systems:

Define	a	context	with	a	higher-level	sensitivity
Set	the	clearance	of	a	process	policy-wise	on	a	domain	transition

To	accomplish	this,	we	will	use	the	snort	intrusion	detection	system	as	an	example,
forcing	it	to	be	always	executed	with	the	s3	sensitivity	and	all	possible	categories.

This	example	will	also	show	us	how	to	substitute	an	existing	policy	rather	than	enhance	it,
as	we	are	going	to	update	a	definition	that	would	otherwise	collide	with	the	existing
definition.

How	to	do	it…
To	modify	an	existing	domain	to	support	specific	sensitivity	levels,	execute	the	following
steps:

1.	 Copy	the	snort.te	and	snort.fc	files	from	the	distribution	policy	repository	to	the
local	environment:

~$	cp	${POLICY_LOCATION}/policy/modules/contrib/snort.*	

${DEVROOT}/local

2.	 Rename	the	files	to	mysnort	(or	customsnort),	so	we	always	know	this	is	a
customized	policy.	Don’t	forget	to	update	the	policy_module	call	in	the	.te	file.

3.	 Open	the	mysnort.te	file	and	look	for	the	init_daemon_domain	call.	Substitute	the
call	with	the	following:

init_ranged_daemon_domain(snort_t,	snort_exec_t,		s3:mcs_allcats)

4.	 In	mysnort.fc,	label	the	snort	resources	with	the	s3	sensitivity.	For	instance,	for	the
snort	binary,	label	it	as	follows:

/usr/bin/snort	—	gen_context(system_u:object_r:snort_exec_t,s3)

5.	 Build	the	mysnort	policy,	remove	the	currently	loaded	snort	SELinux	policy	module,
and	load	the	mysnort	one:

~#	/etc/init.d/snort	stop

~#	semodule	–r	snort

~#	semodule	–i	mysnort.pp

6.	 Relabel	all	files	related	to	snort	and	then	start	snort	again.

How	it	works…
There	are	three	important	aspects	to	this	recipe:

1.	 We	replace	the	entire	policy	rather	than	create	an	enhancement.
2.	 We	update	the	policy	to	use	a	ranged	daemon	domain.
3.	 We	update	the	file	contexts	to	use	the	right	sensitivity.

The	file	context	update	is	obvious	but	the	reason	for	fully	replacing	the	policy	might	not
be.

Full	policy	replacement
In	the	example,	we	copied	the	existing	policy	for	the	snort	SELinux	module	and	made	the
updates	in	the	copy,	rather	than	trying	to	enhance	the	policy	by	creating	an	additional
module.

This	is	needed	because	we	are	making	changes	to	the	SELinux	policy	that	are	mutually
exclusive	to	the	already	running	SELinux	policy.	For	instance,	the	file	context	changes
would	confuse	SELinux	as	it	would	then	have	two	fully	matching	definitions	through
policy	modules,	but	each	with	a	different	resulting	context.

In	the	example,	we	only	copied	the	type	enforcement	declarations	(snort.te)	and	file
context	declarations	(snort.fc).	If	we	would	copy	the	interface	definitions	as	well
(snort.if),	the	policy	build	would	give	us	a	warning	that	there	are	duplicate	interface
definitions—the	ones	provided	by	the	Linux	distribution	are	still	on	the	system	after	all.

Ranged	daemon	domain
In	the	SELinux	policy	itself,	we	substituted	the	init_daemon_domain(snort_t,
snort_exec_t)	entry	with	the	following:

init_ranged_daemon_domain(snort_t,	snort_exec_t,	s3:mcs_allcats)

Let’s	take	a	look	at	the	contents	of	this	interface:

~$	seshowif	init_ranged_daemon_domain

interface(`init_ranged_daemon_domain',`

		gen_require(`

				type	initrc_t;

		')

		init_daemon_domain($1,	$2)

		ifdef(`enable_mcs',`

				range_transition	initrc_t	$2:process	$3;

		')

		ifdef(`enable_mls',`

				range_transition	initrc_t	$2:process	$3;

				mls_rangetrans_target($1)

		')

')

The	newly	called	interface	calls	the	original	init_daemon_domain,	but	enhances	it	with
MCS-	and	MLS-related	logic.	In	both	cases,	it	calls	range_transition	so	that	when	the

snort	init	script	(running	as	initrc_t)	transitions	to	the	snort_t	domain,	then	the	active
sensitivity	range	is	also	changed	to	the	third	parameter.

In	our	case,	the	third	parameter	is	s3:mcs_allcats,	where	mcs_allcats	is	a	definition	that
expands	to	all	categories	supported	by	the	policy	(such	as	c0.c255	if	the	policy	supports
256	categories).

In	case	of	MLS,	it	also	calls	mls_rangetrans_target,	which	is	an	interface	that	sets	an
attribute	to	the	snort_t	domain,	which	is	needed	for	the	MLS	constraints	enabled	in	the
policy.

From	the	expanded	code,	we	can	see	that	there	are	ifdef()	statements.	These	are	blocks
of	SELinux	policy	rules	that	are	enabled	(or	ignored)	based	on	build-time	parameters.	The
enable_mcs	and	enable_mls	parameters	are	set	if	an	MCS	or	MLS	policy	is	enabled.
Other	often	used	build-time	parameters	are	distribution	selections	(such	as	distro_redhat
if	the	SELinux	policy	rules	are	specific	for	Red	Hat	Enterprise	Linux	and	Fedora	systems)
and	enable_ubac	(which	is	when	user-based	access	control	is	enabled).

Constraints
Most,	if	not	all,	SELinux	policy	development	focuses	on	type	enforcement	rules	and
context	definitions.	SELinux	does	support	various	other	statements,	one	of	which	is	the
constrain	statement	used	to	implement	constraints.

A	constraint	restricts	permissions	further	based	on	a	set	of	expressions	that	cover	not	only
the	type	of	the	object	or	subject,	but	also	SELinux	role	and	SELinux	user.	The	constraint
that	is	related	to	the	mlsrangetrans	attribute	(which	is	set	by	the	mls_rangetrans_target
interface)	looks	like	the	following:

mlsconstrain	process	transition

		((h1	dom	h2)	and

			((l1	eq	l2)	or	(t1	==	mlsprocsetsl)	or

				((t1	==	privrangetrans)	and	(t2	==	mlsrangetrans))));

The	constraint	tells	us	the	following	things	about	a	transition:

The	transition	can	occur	only	when	the	highest	sensitivity	level	of	the	subject
(domain/actor)	dominates	the	highest	sensitivity	level	of	the	object
The	lowest	sensitivity	level	of	the	subject	is	the	same	as	the	lowest	sensitivity	level	of
the	object
If	not,	then	the	type	of	the	subject	has	to	have	the	mlsprocsetsl	attribute	set
If	not,	then	both	of	the	following	statements	have	to	be	true:

The	type	of	the	subject	has	the	privrangetrans	attribute	set
The	type	of	the	object	has	the	mlsrangetrans	attribute	set

Domination	means	that	the	sensitivity	level	of	the	first	security	level	is	equal	to	or	higher
than	the	sensitivity	level	of	the	second	security	level,	and	the	categories	of	the	first
security	level	are	the	same	or	a	superset	of	the	categories	of	the	second	security	level.

Constraints	in	the	SELinux	policy	are	part	of	the	base	policy	set—this	means	that	we	are
not	able	to	add	constraints	through	loadable	SELinux	policies.	If	we	want	to	include

additional	constraints,	we	would	need	to	build	the	entire	policy	ourselves,	patching	the
constraints,	mls,	and	mcs	files	inside	the	policy	repository’s	policy/	subdirectory.

Knowing	about	constraints	is	important,	but	we	probably	never	need	to	write	constraints
ourselves.

See	also
The	SELinux	project	site	is	a	good	start	for	learning	about	constraints	and	their	related
statements:

The	MLS	statements	at	http://selinuxproject.org/page/NB_MLS
The	constraint	statements	at	http://selinuxproject.org/page/ConstraintStatements

http://selinuxproject.org/page/NB_MLS
http://selinuxproject.org/page/ConstraintStatements

Configuring	sensitivity	categories
Although	MCS	policies	are	MLS-enabled,	they	are	configured	to	only	support	a	single
sensitivity	(namely	s0).	Yet	even	with	this	limitation,	an	MCS	policy	can	be	very	useful,
for	instance,	in	situations	where	a	system	hosts	services	for	multiple	customers.	This	is
because	MCS	can	still	benefit	from	security	clearances	based	on	categories.

Unlike	sensitivities,	categories	are	more	like	a	discretionary	access	control	system.
Categories	are	meant	to	be	used	by	users	(or	administrators)	to	label	files	and	other
resources	as	being	a	member	of	one	or	more	categories.	Access	to	those	resources	is	then
based	on	the	clearance	level	of	the	process	and	the	categories	assigned	to	the	resource.
Categories	are	also	not	hierarchically	structured.

An	example	of	a	use	case	where	categories	play	a	major	role	is	in	multitenant
deployments:	systems	that	host	one	or	more	services	for	multiple	tenants	(multiple
customers),	which,	of	course,	require	proper	security	segregation	so	that	one	tenant	cannot
access	resources	of	another	tenant.

In	most	cases,	administrators	will	try	to	separate	those	services	through	the	runtime	user
(and	group	membership).	This	is,	however,	not	always	possible.	There	are	situations
where	these	separate	processes	still	need	to	run	as	the	same	runtime	user	(although	with
support	for	additional	Linux	security	subsystems—such	as	capabilities—the	number	of
situations	has	significantly	reduced	again).

In	this	recipe,	we’ll	configure	a	system	to	use	multiple	categories	to	differentiate	between
resources	of	different	customers	for	a	web	server	that	the	customers	also	have	shell	access
to.	Through	categories,	we	can	provide	more	protection	for	the	resources	of	other
customers,	in	case	one	of	the	customers	is	able	to	execute	an	exploit	that	would	elevate
their	privileges.

Getting	ready
You	need	to	prepare	a	system	for	the	multiple	tenants.	For	instance,	we	can	host	the	entire
website	content	in	/srv/web/<companyname>/	and	have	the	web	server	configuration	at
/etc/apache/conf/<companyname>/.

In	this	recipe,	as	an	example,	we	will	configure	the	system	for	two	companies	called
CompanyX	and	CompanyY.	Each	company	also	has	a	regular	user	(userX	for	the	first
company	and	userY	for	the	second).

How	to	do	it…
To	instantiate	different	categories,	follow	this	approach:

1.	 Settle	on	the	category	naming	(and	numbers)	for	different	customers	and	configure
those	in	the	setrans.conf	file	inside	/etc/selinux/mcs/:

s0:c100=CompanyX

s0-s0:c100=CompanyXClearance

s0:c101=CompanyY

s0-s0:c101=CompanyYClearance

2.	 Restart	the	mcstrans	service	so	that	it	is	aware	of	this	configuration.
3.	 List	the	categories	to	make	sure	that	the	changes	are	properly	interpreted:

~$	chcat	–L

s0				SystemLow

s0-s0:c0.c1023		SystemLow-SystemHigh

s0:c0.c1023		SystemHigh

s0:c100				CompanyX

s0-s0:c100		CompanyXClearance

s0:c101				CompanyY

s0-s0:c101		CompanyYClearance

4.	 Create	SELinux	users	that	have	clearance	to	handle	the	right	categories:

~#	semanage	user	–a	–L	s0	–r	CompanyXClearance	–R	"user_r"	userX_u

~#	semanage	user	–a	–L	s0	–r	CompanyYClearance	–R	"user_r"	userY_u

5.	 Configure	the	Linux	users	(logins)	with	the	right	security	clearance:

~#	semanage	login	–m	–s	userX_u	userX

~#	semanage	login	–m	–s	userX_u	userY

6.	 Set	the	right	category	on	the	company	resources:

~#	chcon	–l	CompanyX	–R	/srv/web/www.companyX.com/	

/etc/apache/conf/companyX/

~#	chcon	–l	CompanyY	–R	/srv/web/www.companyY.com/	

/etc/apache/conf/companyY/

7.	 Configure	the	Apache	init	scripts	to	launch	Apache	with	the	right	security	level	by
launching	it	through	runcon.	For	instance,	on	a	Red	Hat	Enterprise	Linux	6	system
for	the	first	company’s	web	server,	the	following	script	is	used:

LANG=$HTTPD_LANG	daemon	--pidfile=${pidfile}	runcon	–t	httpd_t	–l	

CompanyX	$httpd	$OPTIONS

8.	 (Re)start	the	web	server	and	validate	that	it	is	running	with	the	right	security	level:

~#	ps	–efZ	|	grep	httpd

How	it	works…
We	started	by	configuring	the	system	so	that	we	can	name	categories	and	ranges	rather
than	having	to	use	the	integer	representations.	Next,	we	created	an	SELinux	user	for	each
company	and	assigned	each	(regular)	Linux	account	to	the	right	SELinux	user.	After
updating	the	contexts	of	all	company-related	files,	we	configured	Apache	to	start	in	the
right	context.

The	mcstrans	and	setrans.conf	files
The	setrans.conf	file	is	a	regular	text	file	that	the	MCS	transition	daemon	(mcstransd)
uses	to	substitute	the	real	security	level	(such	as	s0:c100)	with	a	human	readable	string
(such	as	CompanyX).

The	Linux	utilities	themselves	(such	as	ls	and	ps)	use	the	SELinux	libraries	to	get
information	about	the	contexts	of	files	and	processes.	These	libraries	then	connect	with	the
mcstransd	process	(through	the	/var/run/setrans/.setrans-unix	socket),	sending	the
real	security	level	and	retrieving	the	human-readable	representation	for	it.

It	is	important	to	remember	that	this	is	only	a	representation	and	not	how	the	security	level
is	stored.	In	other	words,	do	not	use	this	in	file	context	definition	files	(that	is,	the
SELinux	policy	.fc	files).

SELinux	users	and	Linux	user	mappings
In	the	example,	an	SELinux	user	is	created	for	each	company.	This	SELinux	user	is	given
the	clearance	to	work	with	resources	tagged	with	the	category	of	the	respective
companies.	The	real	Linux	accounts	are	then	mapped	to	this	SELinux	user.

From	the	example,	we	see	that	there	are	two	definitions	for	each	company:

s0:c100				CompanyX

s0-s0:c100		CompanyXClearance

The	first	one	is	a	security	level	and	can	be	assigned	to	both	resources	as	well	as	processes
(users).	The	second	one	is	a	security	clearance	(a	range).	In	this	particular	example,	the
clearance	tells	us	that	the	high	security	level	(which	can	be	seen	as	what	the	process	is
allowed	to	access)	are	the	resources	of	the	company	(s0:c100),	and	the	low	security	level
(which	can	be	seen	as	the	security	level	of	the	process	itself)	is	just	s0.

The	users	for	the	company,	therefore,	have	clearance	to	access	the	files	(and	other
resources)	that	have	their	company’s	category	assigned	to	it.	However,	all	activities
performed	by	these	user	accounts	do	not	get	this	category	by	default—the	users	will	need
to	use	chcon	to	set	the	category,	as	follows:

~$	chcon	–l	CompanyX	public_html/index.html

It	is	possible	to	give	the	users	the	security	level	itself	rather	than	the	clearance.	When	that
occurs,	any	resource	created	by	the	user	will	also	get	the	proper	category	set.	But,	do	not
use	this	as	a	way	to	confine	resources—users	can	always	remove	categories	from
resources.

Granting	the	security	level	can	be	done	on	the	SELinux	user	level,	but	it	is	also	possible	to
do	this	through	the	SELinux	user	mapping	as	long	as	the	range	passed	on	is	dominated	by
the	range	set	on	the	SELinux	user	level.	For	instance,	to	set	CompanyX	(s0:c100)	as	the
security	level	rather	than	CompanyXClearance,	which	is	the	default	for	users	mapped	to	the
userX_u	SELinux	user,	the	following	command	can	be	used:

~#	semanage	login	–m	–r	CompanyX	user1

Running	Apache	with	the	right	context
The	last	change	made	in	the	example	was	to	configure	the	system	to	start	the	web	server
with	the	right	security	level.	This	is	done	through	the	runcon	command,	where	we	pass	on
the	sensitivity	level	(and	not	the	security	clearance)	to	make	sure	that	every	resource
created	through	the	web	server	inherits	the	right	category	as	well	as	the	target	type.

The	SELinux	policy	knows	that	if	an	init	script	launches	the	Apache	binary	(httpd),	then
this	application	has	to	run	in	the	httpd_t	domain.	However,	now	the	init	script	launches
runcon—which	the	SELinux	policy	sees	as	a	regular	binary—so	the	application	would
continue	to	run	in	the	initrc_t	domain.	Hence,	we	need	to	pass	on	the	target	type
(httpd_t).	On	systems	with	an	SELinux	policy	without	unconfined	domains,	forgetting
this	would	prevent	the	web	server	to	run.	On	systems	with	an	SELinux	policy	with
unconfined	domains,	this	might	result	in	the	web	server	to	run	in	an	unconfined	domain
(initrc_t),	effectively	disabling	the	SELinux	protections	we	need	for	the	web	server!

See	also
The	following	are	some	more	examples	on	multitenancy	and	how	SELinux	interacts	with
it:

sVirt	(http://selinuxproject.org/page/SVirt)	uses	SELinux	categories	to	segregate
virtual	guests	from	one	another
Linux	containers,	such	as	through	the	LXC	project	(https://linuxcontainers.org),	use
SELinux	for	further	isolation	of	containers	from	the	main	system
Apache	has	support	for	multitenancy	through	the	mod_selinux	module,	which	is
covered	in	Chapter	3,	Confining	Web	Applications

http://selinuxproject.org/page/SVirt
https://linuxcontainers.org

Chapter	3.	Confining	Web	Applications
In	this	chapter,	we	will	cover	the	default	confinement	of	the	web	server	domain	and
practice	how	to	enhance	this	policy	to	suit	our	needs.	We	will	also	look	into	mod_selinux
and	how	it	can	be	used	to	confine	web	applications	even	further.	All	this	will	be	handled
through	the	following	recipes:

Listing	conditional	policy	support
Enabling	user	directory	support
Assigning	web	content	types
Using	different	web	server	ports
Using	custom	content	types
Creating	a	custom	CGI	domain
Setting	up	mod_selinux
Starting	Apache	with	limited	clearance
Mapping	HTTP	users	to	contexts
Using	source	address	mapping	to	decide	on	contexts
Separating	virtual	hosts	with	mod_selinux

Introduction
Web	applications	are	a	prime	example	of	where	SELinux	can	prove	its	effectiveness.	They
are	often	facing	the	(untrusted)	Internet	and	are	a	popular	target	to	exploit.	Securing	the
web	server	and	web	applications	is	just	one	of	the	basic	mitigating	strategies	though—by
confining	the	web	server,	we	are	reducing	the	results	of	a	successful	exploit	even	further.

A	well-confined	web	server	will	only	allow	operations	towards	the	operating	system	that
are	acceptable	behavior	for	the	service.	But	considering	the	wide	area	of	services	that	can
be	provided	through	a	web	server,	we	must	be	careful	not	to	open	up	too	many	privileges.

Policy	developers	have	foreseen	the	situation	that	the	web	server	domain	might	be	too
broad	in	its	privileges	and	have	made	the	web	server	domain	(httpd_t)	not	only	very
versatile,	but	also	very	configurable.	In	this	chapter,	we	will	look	into	the	domain	in	more
detail.

Listing	conditional	policy	support
The	first	configurable	aspect	of	the	SELinux	web	server	domain	policy	is	its	wide	use	of
SELinux	Booleans.	Through	these	Booleans,	additional	policy	rules	can	be	selectively
enabled	or	disabled.	In	this	recipe,	we’ll	look	at	the	Booleans	and	see	how	these	can	be
toggled.

How	to	do	it…
In	order	to	list	the	conditional	policy	support,	execute	the	following	steps:

1.	 Request	the	list	of	all	SELinux	Booleans	and	selectively	show	those	starting	with
httpd_:

~#	getsebool	–a	|	grep	httpd_

2.	 To	get	a	short	description	together	with	the	Booleans,	we	can	use	semanage:

~#	semanage	boolean	–l	|	grep	httpd_

3.	 If	the	description	of	a	Boolean	isn’t	sufficient,	we	can	ask	the	SELinux	utilities	to
display	the	SELinux	rules	that	will	be	enabled	(or	disabled)	if	the	Boolean	is	set:

~#	sesearch	–b	httpd_enable_ftp_server	–AC

Found	3	semantic	av	rules:

DT	allow	httpd_t	httpd_t	:	capability	net_bind_service	;	[

httpd_enable_ftp_server]

DT	allow	httpd_t	ftp_port_t	:	tcp_socket	{	recv_msg	send_msg	name_bind	

}	;	[httpd_enable_ftp_server]

DT	allow	httpd_t	ftp_server_packet_t	:	packet	{	send	recv	}	;	[

httpd_enable_ftp_server]

How	it	works…
Conditional	SELinux	policy	support	is	provided	through	SELinux	Booleans.	These	are
configurable	parameters	(with	a	true/false	value),	which	an	administrator	can	enable	or
disable	using	the	setsebool	or	semanage	boolean	command.

With	the	getsebool	command,	we	request	an	overview	of	all	SELinux	Booleans.	Recent
policies	have	a	few	hundred	Booleans	assigned,	but	luckily	most	Booleans	follow	one	of
the	two	following	naming	conventions	that	make	filtering	easier:

A	Boolean	starts	with	allow_	or	use_
A	Boolean	starts	with	the	SELinux	policy	module	prefix

Booleans	that	start	with	allow_	or	use_	are	considered	global	Booleans	and	will	usually
affect	multiple	SELinux	policy	modules.	A	good	example	for	such	a	Boolean	is
allow_execmem,	which	enables	several	domains	to	execute	code	stored	in	writable
memory	rather	than	read-only	memory	(this	is	a	harmful,	but	sometimes	unavoidable
memory	permission	setting).

Most,	if	not	all	other	Booleans	start	with	the	SELinux	policy	module	prefix	that	they	are
applied	to.	For	the	web	server,	this	is	httpd_	(even	though	the	policy	is	called	apache,	the
httpd_	prefix	is	chosen	because	the	policy	can	apply	directly	on	various	web	servers,	not
only	on	the	Apache	HTTPd).

When	we	use	the	semanage	boolean	command,	a	short	description	is	provided	for	the
Booleans.	This	description	is	obtained	from	an	XML	file	called	policy.xml,	which	can	be
found	at	/usr/share/selinux/devel/.	The	XML	file	is	generated	during	the	build	of	the
base	SELinux	policy.

The	most	accurate	description	of	a	Boolean,	however,	is	the	set	of	rules	that	it	would
trigger	when	enabled	or	disabled.	This	is	where	the	sesearch	command	comes	into	play.

As	can	be	seen	from	the	example,	Booleans	will	trigger	one	or	more	allow	rules.	The
prefix	to	the	sesearch	output	tells	us	whether	a	shown	rule	is	active	if	the	Boolean	is	true
(T)	or	false	(F),	and	if	the	rule	is	currently	enabled	(E)	in	the	policy	or	disabled	(D).

A	nice	trick	when	querying	the	SELinux	policy	using	sesearch	is	to	ask	for	Boolean-
managed	rules	as	well	(regardless	of	whether	they	are	currently	enabled	or	disabled).	This
can	be	accomplished	by	adding	the	–C	option	(which	is	the	short	option	for	--show_cond).
For	instance,	to	find	the	transitions	of	the	newrole_t	domain,	the	following	command	can
be	used:

~#	sesearch	–s	newrole_t	–c	process	–p	transition	–AC

Found	5	semantic	av	rules:

			allow	newrole_t	newrole_t	:	process	{	…	};

			allow	newrole_t	chkpwd_t	:	process	transition;

			allow	newrole_t	updpwd_t	:	process	transition;

EF	allow	newrole_t	userdomain	:	process	transition	;	[secure_mode]

DT	allow	newrole_t	unpriv_userdomain	:	process	transition	;	[secure_mode]

See	also
The	httpd_selinux	manual	page	lists	all	SELinux	Booleans	that	are	applicable	to	the
Apache	SELinux	module	and	explains	their	purpose	in	more	detail:

~$	man	httpd_selinux

Enabling	user	directory	support
Let’s	look	at	an	example	of	how	to	use	SELinux	Booleans	applicable	to	web	server
installations.	In	this	recipe,	we’ll	enable	Apache	UserDir	support	(allowing	the	web	server
to	serve	local	user	account	web	pages	at	http://sitename/~username).

Getting	ready
Configure	the	Apache	web	server	to	serve	user	content.	An	entire	Apache	configuration
tutorial	would	be	in	place	here,	but	this	is	not	in	the	scope	of	this	book.	Basically,	this	is
done	by	editing	the	httpd.conf	file	and	setting	the	UserDir	directive.

How	to	do	it…
To	enable	user	directory	support,	follow	the	next	set	of	steps:

1.	 Make	sure	that	the	user’s	home	directory	is	accessible	for	the	Apache	runtime
account	with	the	following	commands.	If	Linux	DAC	denies	access,	SELinux	will
not	even	handle	the	request.

~$	chmod	755	${HOME}/

~$	chmod	755	${HOME}/public_html

2.	 Check	that	access	isn’t	already	allowed	by	surfing	to	a	user	page.	If	all	permissions
are	okay	but	SELinux	denies	access,	then	the	page	should	be	served	with	a	403
(forbidden)	error	and	a	denial	should	be	registered	in	the	audit	logs.	The	Apache	error
logs	would	yield	a	permission	denied	against	the	resource.

3.	 The	audit	logs	will	probably	tell	that	httpd_t	isn’t	allowed	to	act	on	home_root_t	or
user_home_dir_t.	From	a	look	through	the	SELinux	Booleans,	we	find	at	least	two
interesting	Booleans	(httpd_enable_homedirs	and	httpd_read_user_content):

~#	sesearch	-s	httpd_t	-t	home_root_t	-c	dir	-p	open	-AC

Found	2	semantic	av	rules:

DT	allow	httpd_t	home_root_t	:	dir	{	getattr	search	open	}	;	[

httpd_enable_homedirs]

DT	allow	httpd_t	home_root_t	:	dir	{	getattr	search	open	}	;	[

httpd_read_user_content]

4.	 Let’s	first	toggle	httpd_read_user_content.	This	allows	the	web	server	to	access	all
user	files,	which	is	functionally	okay,	but	this	also	immediately	grants	it	access	to	all
files:

~#	setsebool	httpd_read_user_content	on

5.	 Another	approach	(but	this	approach	requires	user	intervention)	is	to	have
~/public_html/	labeled	as	httpd_user_content_t.	When	this	is	done,
httpd_read_user_content	can	be	turned	off	and	httpd_enable_homedirs	can	be
enabled:

~$	chcon	–R	–t	httpd_user_content_t	public_html

~#	setsebool	httpd_read_user_content	off

~#	setsebool	httpd_enable_homedirs	on

6.	 When	the	changes	are	working	nicely,	we	can	persist	the	changes	so	that	they	survive
a	reboot:

~#	setsebool	–P	httpd_enable_homedirs	on

How	it	works…
The	default	web	server	policy	in	SELinux	does	not	allow	the	web	server	to	access	user
home	content.	If	a	vulnerability	in	a	web	application	or	the	Apache	web	server	itself
would	allow	an	attacker	to	read	user	content,	SELinux	will	prevent	this	from	happening.
But,	sometimes,	user	content	access	is	needed.

By	enabling	the	httpd_read_user_content	Boolean,	the	web	server	domain	(and	all
related	domains)	will	have	full	read	access	to	all	user	files.	If	users	are	not	able	(or	do	not
know	how)	to	set	the	proper	context	on	their	files,	then	this	is	the	only	suitable	option.

A	better	approach,	however,	is	to	enable	the	httpd_enable_homedirs	Boolean.	This
allows	the	web	server	search	access	through	the	home	directory	(/home/user/,	which	is
labeled	user_home_dir_t)	but	does	not	provide	read	access	to	user	content	(which	is
labeled	user_home_t).	Instead,	the	resources	needed	for	the	web	server	are	labeled
httpd_user_content_t—a	type	that	regular	users	can	relabel	resources	to	(or	relabel
resources	from).	Next	to	httpd_user_content_t,	one	can	also	define	the	following
content	types:

httpd_user_htaccess_t	for	the	.htaccess	files
httpd_user_script_exec_t	for	user-provided	CGI	scripts
httpd_user_ra_content_t	for	appendable	resources	(for	the	web	server)
httpd_user_rw_content_t	for	read/write	resources	(for	the	web	server)

These	resources	can	be	set	by	the	end	user	and	give	a	finer	control	over	how	each	resource
within	the	~/public_html/	location	can	be	handled	by	the	web	server	(and	the	web
applications).

There’s	more…
Some	SELinux	supporting	distributions	have	a	daemon	called	restorecond,	which	can	be
used	to	automatically	set	the	context	of	files	the	moment	they	are	created/detected,
without	needing	file	transitions	in	policy.	This	can	be	used	to	automatically	have
~/public_html/	labeled	as	httpd_user_content_t.

See	also
More	information	about	per-user	web	directories	can	be	found	at
https://httpd.apache.org/docs/2.4/howto/public_html.html

https://httpd.apache.org/docs/2.4/howto/public_html.html

Assigning	web	content	types
For	standard	web	server	configurations	(without	SELinux),	access	rights	on	resources	for
a	web	server	are	purely	based	on	the	ownership	of	the	files	(and	the	access	mask	applied
to	it).	With	SELinux,	the	resources	can	be	labeled	more	specifically	towards	their
functional	meaning.

Web	applications	have	content	that	should	be	read-only	and	content	that	should	be	read-
write,	but	there	are	also	specific	types	for	resources	such	as	.htaccess	files.	In	this	recipe,
we’ll	look	at	the	various	web	server	content	types	and	apply	them	to	the	right	resources.

How	to	do	it…
Execute	the	following	steps	to	assign	specific	web	content	types	to	the	right	resources:

1.	 Take	a	look	at	the	available	content	types	for	web	servers	by	asking	SELinux	to	show
us	all	types	that	have	the	httpdcontent	attribute	set:

~$	seinfo	–ahttpdcontent	–x

		httpdcontent

				httpd_sys_content_t

				httpd_user_ra_content_t

				httpd_user_rw_content_t

				httpd_nagios_content_t

…

2.	 Query	the	existing	policy	for	known	context	assignations	(as	those	can	give	us
pointers	to	what	is	still	lacking):

~$	semanage	fcontext	–l	|	grep	httpd_nagios

3.	 Now,	assign	the	right	context	to	those	resources	that	aren’t	labeled	correctly	yet.	The
paths	used	here	are	an	example	for	a	Nagios	installation:

~#	semanage	fcontext	–a	–t	httpd_nagios_content_t	

/var/www/html/nagios(/.*)?

~#	semanage	fcontext	–a	–t	httpd_nagios_script_exec_t	

/usr/local/lib/nagios/cgi-bin/.*

~#	restorecon	–R	/var/www/html/nagios	/usr/local/lib/nagios

How	it	works
The	web	server	policy	supports	functional	content	types	for	web	applications.	These	types
are	used	for	the	following	content	types:

Read-only	content	of	the	web	application
Writable	content	of	the	web	application	(for	which	a	distinction	is	made	between	full
writable	content	and	content	that	can	only	be	appended	to,	such	as	logfiles)
Executable	scripts	(for	CGI	scripts	and	similar	content)

The	advantage	is	not	so	much	that	there	is	the	distinction	of	read-only	versus	read-write,
but	that	this	is	supported	on	a	per-application	basis,	with	types	that	are	specific	to	one
application.	In	the	example,	we	looked	at	the	content	for	the	Nagios	monitoring
application.

This	allows	administrators	to	provide	access	to	these	resources	towards	specific
applications	or	users.	Even	though	all	content	in	/var/www/html/	might	be	owned	by	the
Apache	Linux	user,	we	can	still	grant	users	(and	applications)	access	to	application-
specific	resources	without	needing	to	grant	those	users	or	applications	full	privileges	on	all
Apache	resources.

For	the	read-only	content,	there	is	the	regular	web	application	content
(httpd_nagios_content_t)	and	the	special	.htaccess	content
(httpd_nagios_htaccess_t).	The	distinction	is	made	primarily	because	access	to	the
regular	content	is	given	more	broadly	(and	depending	on	some	SELinux	Booleans,	this
can	also	become	writable	content),	whereas	the	.htaccess	content	remains	read-only.

To	query	the	available	web	server	content,	we	used	the	httpdcontent	attribute.	This
attribute	is	assigned	to	all	content,	allowing	administrators	to	create	policies	that	govern
all	web	content.	The	httpdcontent	attribute	is	given	to	all	these	types,	but	there	are	also
attributes	called	httpd_rw_content,	httpd_ra_content,	httpd_htaccess_type,	and
httpd_script_exec_type	to	allow	for	manipulation	of	those	specific	resources.

There’s	more…
We	covered	Nagios	as	an	example	web	application,	which	has	a	set	of	web	application
related	resources.	Many	other	web	applications	or	applications	with	web	content	have
already	been	identified	policy-wise.

On	Linux	distributions	that	have	all	known	policies	loaded	by	default,	this	overview	will
already	be	visible	through	the	seinfo	command	as	per	our	preceding	example.	If	that	isn’t
the	case,	we	can	always	search	through	the	SELinux	policies	to	find	out	which	modules
call	the	apache_content_template—the	interface	that	automatically	generates	the	right
web	application	content	types:

~$	grep	apache_content_template	${POLICY_LOCATION}/policy/modules/*/*.te

When	different	types	become	more	troublesome	than	helpful,	it	is	possible	to	ask	the
SELinux	policy	to	see	all	those	different	types	as	just	one	common	web	content	type	and
be	done	with	it.	This	is	supported	through	the	httpd_unified	Boolean.	When	this
Boolean	is	enabled,	the	web	server	policy	will	treat	all	various	web	server	resource	types
as	one,	unifying	all	the	types.	And,	if	the	Booleans,	httpd_enable_cgi	and
httpd_builtin_scripting,	are	enabled	as	well,	then	the	web	server	domain	has	the
privilege	to	execute	that	content	as	well.

Needless	to	say,	unifying	the	web	server	resource	contexts	might	make	management
simpler;	it	also	increases	the	privileges	of	the	web	server	domain	towards	various	web
resources,	making	it	potentially	less	secure.

Using	different	web	server	ports
By	default,	web	servers	listen	on	the	known	web	server	ports	(such	as	ports	80	and	443).
Often,	administrators	might	want	to	have	the	web	server	listen	on	a	nondefault	port.	The
SELinux	policy	might	reject	this,	as	it	is	not	standard	behavior	for	a	web	server	to	listen
on	other	unrelated	ports.

In	this	recipe,	we	will	tell	SELinux	that	a	nondefault	port	should	still	be	seen	as	a	web
server	port.

How	to	do	it…
In	order	to	assign	a	label	to	a	different	port,	execute	the	following	steps:

1.	 To	see	all	the	ports	that	match	http_port_t,	use	semanage	port	-l:

~#	semanage	port	-l	|	grep	-w	http_port_t

http_port_t		tcp		80,	81,	443,	488,	8008,	8009,	8443,	9000

2.	 Query	the	SELinux	policy	to	see	which	port	type	is	assigned	to	a	particular	port.	For
instance,	for	port	8881,	the	following	command	is	used:

~$	seinfo	--portcon=8881

3.	 If	the	port	is	identified	as	unreserved_port_t,	then	we	can	mark	it	as	http_port_t:

~#	semanage	port	-a	-t	http_port_t	-p	tcp	8881

4.	 If,	however,	the	port	has	been	already	assigned	a	particular	type,	then	we	need	to
update	the	SELinux	policy	for	the	web	server	to	allow	it	to	listen	on	ports	of	this
particular	type.	For	instance,	for	port	9090	(websm_port_t),	perform	the	following
steps:

1.	 First	find	the	interface	that	allows	binding	on	websm_port_t:

~$	sefindif	websm_port_t.*bind

2.	 Create	a	custom	SELinux	policy	(myhttpd)	with	the	following	content:

corenet_sendrecv_websm_server_packets(httpd_t)

corenet_tcp_bind_websm_port(httpd_t)

3.	 Load	the	policy	to	allow	the	web	server	to	bind	on	the	identified	port	type.

5.	 Finally,	edit	the	web	server	configuration	file	to	listen	to	the	right	port:

Listen	*:8881

How	it	works…
SELinux	works	with	labels	for	all	resources,	including	ports.	In	this	example,	we	are
looking	at	TCP	port	types	to	allow	the	web	server	to	bind	to.

With	seinfo,	we	can	see	whether	a	port	matches	a	known	declaration.	Ports	with	a	value
of	1024	or	higher	are,	by	default,	labeled	as	unreserved_port_t,	whereas,	ports	511	or
lower	are	labeled	as	reserved_port_t	and	those	in	between	are	labeled	as
hi_reserved_port_t.	These	are,	however,	defaults	and	more	specific	port	types	might	be
declared	for	a	specific	port.

If	a	port	is	not	assigned	a	specific	type	yet,	then	we	can	assign	one	ourselves	using
semanage	port.	This	is	sufficient	to	allow	the	web	server	to	bind	to	this	port	(there	is	no
need	for	relabeling	operations	on	ports,	unlike	files	or	directories,	as	this	is	done	by	the
SELinux	subsystem	immediately).

If	a	port	is	already	assigned	a	specific	type,	then	it	cannot	be	overridden	by	additional
policies	or	the	administrator.	When	this	occurs,	the	SELinux	policy	will	need	to	be
enhanced	to	allow	the	web	server	to	bind	to	this	specific	type.

In	the	example,	we	searched	for	the	interface	that	would	allow	the	web	server	to	bind	to
the	port,	revealing	corenet_tcp_bind_websm_port	as	the	interface	to	use.	However,	we
also	added	another	interface—this	is	due	to	the	way	network	controls	are	configured	in
SELinux,	and	may	or	may	not	be	necessary	on	a	system.	The	additional	interface	is
corenet_sendrecv_websm_server_packets.	This	interface	is	used	to	allow	the	web	server
to	send	or	receive	packets	labeled	as	websm_server_packet_t.	Packet	labeling	allows	for
application-specific	communication	flow	governance	and	extends	the	regular	firewall
capabilities	of	the	Linux	operating	system	(which	focus	primarily	on	network	flow
management)	with	SELinux	domain	awareness.

If	packet	labeling	is	needed,	then	packets	are	labeled	through	iptables	on	a	local	system,
as	shown	in	the	following	command:

~#	iptables	–t	mangle	–A	INPUT	–p	tcp	--dport	9090	-j	SECMARK	--selctx	

system_u:object_r:websm_server_packet_t

If	a	system	does	not	have	such	iptables-based	labeling	(known	as	SECMARK	labeling),
then	the	interface	is	not	needed.

There’s	more…
Recent	SELinux	user	space	utilities	have	another	command	available	to	query	the
SELinux	policy,	called	sepolicy.	Searching	for	port	declarations	with	sepolicy	is	done
as	follows:

~$	sepolicy	network	--port	8080

8080:	tcp	unreserved_port_t	1024-65535

8080:	udp	unreserved_port_t	1024-65535

8080:	tcp	http_cache_port_t	8080

Also,	in	the	SELinux	policy	rules,	we	will	notice	that	there	is	a	third	interface	often
enabled	for	network	communication.	In	our	example,	the	third	interface	would	be	called
corenet_tcp_sendrecv_websm_port.	This	access	vector	would	enable	the	domain	to	send
and	receive	messages	on	the	websm_port_t	TCP	socket.	However,	the	support	for	this
access	vector	has	been	disabled	in	recent	policies	in	favor	of	SECMARK	labeling.

See	also
SECMARK	labeling	is	explored	in	Chapter	9,	Aligning	SELinux	with	DAC

Using	custom	content	types
Next	up	is	to	create	our	own	set	of	content	types	for	a	web	application	that	does	not	have	a
policy	associated	with	it	yet.	We	will	use	DokuWiki	(available	at
https://www.dokuwiki.org)	as	an	example.

https://www.dokuwiki.org

Getting	ready
Install	DokuWiki	either	through	the	Linux	distributions’	package	manager	or	manually
through	a	downloaded	release	from	the	main	site.	In	this	example,	we	assume	that
DokuWiki	is	installed	at	/srv/web/dokuwiki/.

How	to	do	it…
To	use	custom	web	content	types,	follow	the	next	set	of	steps:

1.	 Create	a	policy	called	mydokuwiki.te	with	the	following	content:

apache_content_template(dokuwiki)

2.	 Add	a	file	context	definition	file	called	mydokuwiki.fc,	which	contains	the	following
code:

/srv/web/dokuwiki/lib/plugins(/.*)?		

gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t,s0)

/srv/web/dokuwiki/conf(/.*)?		

gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t,s0)

/srv/web/dokuwiki/data(/.*)?		

gen_context(system_u:object_r:httpd_dokuwiki_rw_content_t,s0)

/srv/web/dokuwiki/data/\.htaccess	—	

gen_context(system_u:object_r:httpd_dokuwiki_htaccess_t,s0)

/srv/web/dokuwiki(/.*)?		

gen_context(system_u:object_r:httpd_dokuwiki_content_t,s0)

3.	 Build	and	load	the	policy	and	then	relabel	all	DokuWiki	files	using	the	following
commands:

~#	semodule	-i	mydokuwiki.pp

~#	restorecon	-RvF	/srv/web/dokuwiki

How	it	works…
All	the	magic	associated	with	creating	web	application	content	in	SELinux	is	handled	by
the	apache_content_template	interface.	With	seshowif,	one	can	show	all	underlying
SELinux	policy	rules	as	follows:

Various	SELinux	types	are	created,	such	as	httpd_dokuwiki_content_t	and	the	like,
and	the	proper	attributes	are	assigned	to	it	(such	as	the	httpdcontent	attribute).
An	SELinux	Boolean	is	created,	which	allows	the	administrator	to	enable	or	disable
the	web	application	to	write	to	public	files	(labeled	as	public_content_rw_t).	This	is
an	SELinux	type	used	for	resources	that	are	shared	across	multiple	services	(such	as
FTP	servers,	web	servers,	and	many	more).
The	necessary	privileges	are	granted	to	the	web	server	domain	to	access	and	handle
the	newly	defined	types,	as	well	as	enabling	CGI	domains	for	the	web	application.
For	our	DokuWiki	example,	this	is	not	needed	as	everything	is	handled	by	the	PHP
code	parsed	and	executed	by	the	web	server	itself	(usually).

We	then	labeled	all	DokuWiki	files	accordingly,	based	on	the	DokuWiki	best	practices	for
file	access.	Some	administrators	might	want	to	have	the	conf/	subdirectory	labeled	as	a
nonwritable	resource,	and	only	(temporarily)	enable	this	during	the	configuration.
Although	this	is	a	valid	approach,	it	might	be	sufficient	to	use	Linux	DAC	file	access
controls	to	accomplish	the	same	results.

There’s	more…
Using	the	apache_content_template	interface	is	a	simple	way	to	create	web	content
types,	but	it	has	the	downside	that	it	is	an	all-or-nothing	approach,	and	the	module	now
heavily	depends	on	the	web	server	module	(apache).

Experienced	users	might	want	to	selectively	create	content	and	assign	the	right	attributes
to	it,	allowing	the	web	server	domain	to	interact	with	the	resources	while	still	keeping
granular	control	over	the	types	and	resources.

We’ll	leave	this	as	an	exercise	that	you	can	do	to	see	how	this	can	be	accomplished.

Creating	a	custom	CGI	domain
Sometimes,	it	might	not	be	necessary	to	create	a	full	set	of	types.	Consider	a	CGI	script
that	is	triggered	but	without	the	need	for	a	specific	set	of	content	types.	Sure,	one	can
mark	the	script	as	httpd_sys_script_exec_t	(if	it	is	a	system’s	CGI	script)	or
httpd_user_script_exec_t	(if	it	is	a	user’s	custom	CGI	script)	so	that	the	resulting	script
runs	in	the	httpd_sys_script_t	or	httpd_user_script_t	domain.

But,	if	those	domains	do	not	hold	enough	privileges	(or	too	many	privileges),	it	might	be
wise	to	create	a	custom	CGI	domain	instead.

How	to	do	it…
To	create	a	custom	CGI	domain,	the	following	approach	can	be	used:

1.	 Create	a	custom	SELinux	policy	module	(mycgiscript.te)	with	the	following
content:

policy_module(mycgiscript,	0.1)

type	cgiscript_t;

type	cgiscript_exec_t;

domain_type(cgiscript_t)

domain_entry_file(cgiscript_t,	cgiscript_exec_t)

apache_cgi_domain(cgiscript_t,	cgiscript_exec_t)

2.	 Create	the	proper	file	context	file	(mycgiscript.fc),	marking	the	executable	as
cgiscript_exec_t:

/path/to/script		--gen_context(system_u:object_r:cgiscript_exec_t,s0)

3.	 Build	and	load	the	module.
4.	 Relabel	the	executable	and	test	it	out:

~#	restorecon	/path/to/script

5.	 As	the	cgiscript_t	domain	is	primitive	in	its	rights,	the	script	will	most	likely	not
work—however,	do	not	turn	SELinux	in	permissive	mode.	The	audit	logs	will	show
the	access	attempts	that	were	denied.	Instead	of	using	audit2allow	to	automatically
grant	everything,	use	the	sefindif	function	to	find	a	proper	interface.	Add	the	right
interfaces	to	the	module	and	retry	until	the	script	works	properly.

How	it	works…
The	policy	module	defines	a	domain	type	(cgiscript_t)	and	an	executable	type
(cgiscript_exec_t).	With	the	domain_type	interface,	cgiscript_t	is	marked	as	a
domain	(and	the	proper	SELinux	rules	to	deal	with	this	new	domain	are	created	as	well).
With	domain_entry_type,	the	SELinux	policy	is	updated	to	mark	cgiscript_exec_t	as
the	type	that	can	be	used	to	transition	towards	the	cgiscript_t	domain.

Then,	we	call	apache_cgi_domain,	which	allows	the	web	server	domain	(httpd_t)	to
execute	the	cgiscript_exec_t	labeled	resources	and	have	the	resulting	process	run	in	the
cgiscript_t	domain.

The	initial	policy	module,	however,	is	very	primitive	and	will	not	hold	enough	privileges.
It	is	a	matter	of	trial	and	error	to	update	the	policy.	For	instance,	consider	that	the	script
calls	a	binary;	the	audit	logs	might	show	the	following	content:

type=AVC	msg=audit(1363205612.277:476924):	avc:	denied	{	execute	}	for	

pid=6855	comm="cgiscript.pl"	name="perl"	dev=sda3	ino=4325828	

scontext=system_u:system_r:cgiscript_t:s0	

tcontext=system_u:object_r:bin_t:s0	tclass=file

To	find	out	which	policy	interface	would	allow	this,	we	can	use	sefindif	again:

~$	sefindif	exec.*bin_t'

interface(`corecmd_exec_bin',`

		can_exec($1,	bin_t)

Developing	custom	policies	remains	a	trial-and-error	approach,	but	this	is	the	only	method
available,	which	ensures	that	only	necessary	privileges	are	granted	to	a	domain.	Some
policy	developers	would	suggest	to	turn	on	the	permissive	mode	and	look	through	all
denials	in	the	audit	logs.	The	problem	with	that	approach	is	that	these	denials	might	not
lead	to	the	right	SELinux	policy	rules.

For	instance,	the	script	might	need	to	call	another	executable	(and	transition	to	a	domain).
In	permissive	mode,	the	transition	will	not	occur,	and	it	would	look	like	the	main	domain
(cgiscript_t)	needs	all	privileges	that	the	target	command	needs—even	though	all	that	is
needed	is	a	proper	domain	transition.

By	focusing	on	the	enforcing	mode,	we	can	gradually	increase	the	policy	while	keeping
the	least	privilege	principle	in	place,	only	allowing	those	privileges	that	are	actually
needed.

Setting	up	mod_selinux
In	the	next	set	of	recipes,	we	use	an	Apache	module	called	mod_selinux	to	make	Apache
SELinux-aware	and	to	support	configurable	transitions.	In	other	words,	the	context	in
which	Apache	is	running	is	no	longer	a	statically	defined	context,	but	can	be	changed
according	to	the	administrators’	needs.

In	this	recipe,	we	will	install	mod_selinux	from	its	source	as	many	Linux	distributions	do
not	offer	it	by	default,	even	though	it	is	a	very	powerful	addition	to	the	web	server	(which
is	also	why	support	for	mod_selinux	is	often	called	Apache/SELinux	Plus).

How	to	do	it…
You	can	set	up	mod_selinux	through	the	following	steps:

1.	 Download	the	sources	from	https://github.com/kaigai/mod_selinux.
2.	 Make	sure	that	the	Apache	development	headers	(httpd-devel	on	Red	Hat	or	Fedora

systems)	are	installed.
3.	 Build	and	install	the	mod_selinux	shared	library	for	Apache	using	apxs:

~#	apxs	-c	-i	mod_selinux.c

Note
It	may	be	possible	that	the	build	fails	with	an	error	about	client_ip.	If	that	is	the
case,	edit	mod_selinux.c	at	the	line	number	shown	in	the	error	and	use	remote_ip
instead	of	client_ip,	after	which	the	apxs	command	can	be	run	again.

4.	 Build	and	install	the	mod_selinux	SELinux	policy	module,	whose	files	are	also	part
of	the	downloaded	sources:

~$	cp	mod_selinux.te	${DEVROOT}/local

~$	cp	mod_selinux.if	${DEVROOT}/local

~$	cd	${DEVROOT}/local	&&	make	mod_selinux.pp

~#	semodule	-i	mod_selinux.pp

5.	 Edit	the	web	server	configuration	(httpd.conf)	and	add	in	the	proper	LoadModule
line:

LoadModule	selinux_module	modules/mod_selinux.so

6.	 Restart	the	web	server.	Its	logfiles	should	tell	you	that	the	SELinux	policy	support	is
loaded:

[Fri	Apr	18	13:11:23	2014]	[notice]	SELinux	policy	enabled;	httpd	

running	as	context	unconfined_u:system_r:httpd_t:s0-s0:c0.c1023

https://github.com/kaigai/mod_selinux

How	it	works…
The	mod_selinux.c	file	contains	the	Apache	module	code	and	can	be	built	using	apxs—
the	Apache	eXtenSion	tool.	This	tool	will	perform	the	following	tasks:

Call	the	compiler	with	the	proper	arguments	to	build	a	dynamic	shared	object	that	can
be	loaded	at	runtime	by	the	Apache	web	server
Install	the	resulting	module	in	the	proper	Apache	modules/	directory

The	build	failure	mentioned	in	the	recipe	can	come	up	depending	on	the	Apache	version	in
use,	where	a	variable	has	a	different	name	(client_ip	instead	of	remote_ip).

Next,	we	copied	and	deployed	the	mod_selinux	SELinux	policy	just	like	we	did	with
other	SELinux	policy	modules.

Finally,	the	web	server	is	updated	to	enable	the	mod_selinux	Apache	module.	With	the
mod_selinux	shared	library	in	place,	Apache	is	now	ready	to	make	SELinux-related
decisions.

If	the	mod_selinux	support	has	to	be	distributed	to	multiple	systems,	then	only	the
mod_selinux.so	(now	installed	in	the	web	server	modules/	directory,	such	as
/usr/lib64/httpd/modules/)	and	mod_selinux.pp	files	(the	SELinux	policy	module)
need	to	be	distributed.

See	also
A	good	write-up	on	mod_selinux	can	be	found	at
http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

Starting	Apache	with	limited	clearance
In	the	previous	chapter,	we	manipulated	the	/etc/rc.d/init.d/httpd	init	script	to	use
runcon	in	order	for	the	web	server	to	run	with	a	limited	clearance.	But	with	the	help	of
mod_selinux,	this	can	be	made	configurable.

How	to	do	it…
In	order	to	start	Apache	with	limited	security	clearance,	follow	the	given	steps:

1.	 Edit	the	Apache	web	server	configuration	file	(httpd.conf)	and	add	in	the	following
code:

<IfModule	mod_selinux.c>

		selinuxServerDomain	*:s0-s0:c0.c10

</IfModule>

2.	 Undo	the	changes	made	to	the	service	script	in	the	previous	chapter.
3.	 Restart	the	web	server	and	confirm	that	it	is	running	with	the	s0-s0:c0.c10

clearance	by	issuing	the	following	commands:

~#	/etc/rc.d/init.d/httpd	restart

~#	ps	-efZ	|	grep	httpd

system_u:system_r:httpd_t:s0-s0:c0.c10	root	2838	1		0	13:14	?						

00:00:00	/usr/sbin/httpd

system_u:system_r:httpd_t:s0-s0:c0.c10	apache	2840	2838		0	13:14	?	

00:00:00	/usr/sbin/httpd

How	it	works…
As	mentioned	before,	with	mod_selinux,	the	Apache	web	server	becomes	SELinux-aware,
meaning	it	can	alter	its	own	behavior	and	interact	with	the	SELinux	subsystem	based	on
configuration	settings	as	well	as	SELinux	policy	rules.

With	the	selinuxServerDomain	configuration	directive,	mod_selinux	performs	a	dynamic
change	of	the	current	context	to	a	new	context,	which	is	called	a	dynamic	domain
transition	or	dynamic	range	transition	(it	is	called	domain	if	the	type	changes,	range	if	the
sensitivity	level	or	security	clearance	changes).	This	is	only	possible	if	an	application	is
SELinux-aware.

Now,	such	a	transition	is	still	governed	through	SELinux	policies.	For	instance,	the	range
to	which	the	Apache	web	server	can	transition	must	be	dominated	by	the	range	the	Apache
web	server	originally	has	(which	was	s0-s0:c0.c1024	in	our	example).

Note
The	mod_selinux	module	does	not	support	lookups	on	the	context,	making	it	impossible
to	use	human-readable	sensitivities	(governed	through	mcstransd	as	we’ve	seen
previously).

There’s	more…
It	is	possible	to	define	different	types,	allowing	the	entire	web	server	to	run	in	a	custom
domain.	For	this	to	happen,	the	httpd_t	domain	must	have	the	rights	to	dynamically
transition	to	the	target	type	(the	dyntransition	permission	in	the	process	class).	Then,
the	selinuxServerDomain	call	could	look	like	the	following	code:

selinuxServerDomain	myhttpd_t:s0-s0:c0.c10

Of	course,	many	more	privileges	are	needed	as	well	in	order	to	access	resources	already
accessible	by	the	httpd_t	domain	at	startup,	but	the	dyntransition	permission	is	specific
to	the	SELinux-aware	applications	that	want	to	support	dynamic	domain	transitions
instead	of	transitioning	upon	process	execution.

Mapping	HTTP	users	to	contexts
Applications	generally	run	with	a	static	context,	which	inhibits	all	privileges	that	are
needed	for	the	application.	Even	services	(daemons)	generally	stay	within	their	own
context	during	the	entire	life	cycle	of	the	service.	But,	with	mod_selinux,	it	is	possible	to
transition	the	context	of	the	web	server	handler	(the	process	or	thread	responsible	for
handling	a	specific	request)	to	another	context	based	on	the	authenticated	user.	This	allows
the	administrator	to	grant	certain	privileges	to	the	application	based	on	the	user.	When	a
lower-privileged	user	abuses	a	vulnerability	in	the	web	application,	then	the	reduced
privileges	on	the	web	application	itself	might	prevent	a	successful	exploit.

How	to	do	it…
Through	the	following	set	of	steps,	we	will	map	a	web	user	to	a	specific	SELinux	context:

1.	 Create	a	mapping	file	in	which	the	users	are	listed	together	with	their	target	context.
For	instance,	to	have	user	John’s	requests	handled	with	the	sensitivity	s0:c0,c2,	user
Cindy’s	requests	with	the	sensitivity	s0:c0.c5,c7,	all	unauthenticated	users	as
anon_webapp_t:s0,	and	the	other	authenticated	users	as	user_webapp_t:s0:c0:

john				*:s0:c0,c2

cindy				*:s0:c0.c5,c7

__anonymous__		anon_webapp_t:s0

*						user_webapp_t:s0:c0

2.	 Save	this	file	on	a	web	server-readable	location,	such	as
/etc/httpd/conf/mod_selinux.map.

3.	 Edit	the	web	server	configuration	file	and	add	in	the	following	line:

selinuxDomainMap		/etc/httpd/conf/mod_selinux.map

4.	 Restart	the	web	server.

How	it	works…
The	mod_selinux	module	is	aware	of	the	authenticated	user	value	and,	based	on	the
settings	in	the	mappings	file,	it	can	transition	the	request	handler	to	a	smaller	sensitivity
range	(as	is	the	case	in	the	first	two	examples)	or	to	different	domains	altogether.

There	is	an	important	constraint	to	this	though.	The	target	context	to	which	the	handler	can
transition	must	be	bound	by	the	main	type	(httpd_t).	This	means	that	the	permissions
granted	to	the	target	context	must	be	a	subset	of	the	permissions	granted	to	httpd_t.	This
is	performed	through	the	typebounds	statement,	as	follows:

typebounds	httpd_t	anon_webapp_t;

This	is	because	web	server	handlers	are	usually	threads	(or	lightweight	processes)	instead
of	processes.	Threads	share	a	lot	of	resources,	often	in	ways	that	SELinux	cannot	manage.
As	a	result,	if	one	thread	gains	more	rights	than	the	web	server,	then	the	secure	state	of	the
web	server	(as	a	whole)	might	be	in	jeopardy.	Also,	the	information	flow	between
different	contexts	would	be	difficult,	if	not	impossible	to	govern.

Using	source	address	mapping	to	decide
on	contexts
The	mod_selinux	Apache	module	has	access	to	other	information	than	just	the	username
(in	case	of	authenticated	users).	It	can	access	environment	variables	(which	are	used	in	the
Apache	web	configuration	through	the	SetEnvIf	directives),	allowing	a	very	flexible
approach	on	SELinux	context	handling	within	the	application.

In	this	recipe,	we	will	use	this	to	change	the	context	of	request	handlers	based	on	the
remote	IP	address	of	the	client.

How	to	do	it…
Alongside	web	users,	we	can	also	use	source	address	information	to	decide	on	the	context.
This	is	done	by	completing	the	following	steps:

1.	 First,	we	define	the	TARGETDOMAIN	environment	variable	based	on	the	remote	IP
address	in	the	web	server	configuration	(httpd.conf):

SetEnvIf	Remote_Addr	"10\.0\.[0-9]+\.[0-9]+$"	

TARGETDOMAIN=user_webapp_t:s0

SetEnvIf	Remote_Addr	"10\.1\.[0-9]+\.[0-9]+$"	

TARGETDOMAIN=anon_webapp_t:s0

SetEnvIf	TARGETDOMAIN	^$	TARGETDOMAIN=*:s0

2.	 Then,	in	the	same	web	server	configuration,	we	invoke	the	selinuxDomainEnv
directive,	which	will	have	the	handler	context	transitioned	to	the	value	inside
TARGETDOMAIN:

selinuxDomainEnv	TARGETDOMAIN

3.	 Restart	the	web	server	for	the	changes	to	take	effect.

How	it	works…
In	the	first	step,	we	used	Apache’s	SetEnvIf	directive	(provided	through	mod_setenvif)
to	check	the	remote	IP	address	of	the	client	(Remote_Addr).	If	it	matches	the	expression
given,	then	we	set	the	TARGETDOMAIN	variable	to	the	given	context.	In	our	example,	we
used	a	different	type	for	each	match,	but	it	is	also	possible	to	just	change	the	security
clearance.	We	finished	with	a	check	that	verified	if	the	TARGETDOMAIN	variable	has	been
set.	If	not,	then	a	default	value	(*:s0)	is	assigned.

Next,	we	called	the	selinuxDomainEnv	directive,	which	makes	a	transition	to	the	domain
provided	in	the	TARGETDOMAIN	variable.

There’s	more…
The	example	uses	Remote_Addr,	but	many	other	request-related	aspects	can	be	used:

With	Remote_Host,	the	hostname	of	the	client	can	be	queried	and	used	to	make
decisions.
With	Server_Addr,	the	address	of	the	web	server	itself	(on	which	the	request	was
received)	can	be	used.	This	is	useful	in	a	multihomed	system,	where	the	web	server
binds	to	all	available	IP	addresses.
With	Request_Method,	the	type	of	request	(such	as	GET	or	POST)	can	be	used.
With	Request_Protocol,	the	name	and	version	of	the	HTTP	protocol	(such	as
HTTP/1.0	or	HTTP/1.1)	can	be	used.
With	Request_URI,	the	request	URL	can	be	used	to	tune	the	context	or	clearance.

See	also
For	more	information	about	Apache’s	mod_setenvif	support,	consult	the	module
documentation	at	http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html

http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html

Separating	virtual	hosts	with	mod_selinux
One	of	Apache’s	strengths	is	that	it	can	differentiate	sites	based	on	the	name	used	to
connect	to	the	server,	rather	than	just	the	IP	address,	port,	and	URL.	This	is	called	virtual
host	support	and	is	a	very	popular	approach	to	multitenant	website	and	web	application
hosting.

For	instance,	a	web	server	running	on	a	single	IP	address	can	still	host	the	sites	of	multiple
customers,	say	www.companyX.com	and	www.companyY.com.	With	mod_selinux,	we	can
change	the	context	or	security	clearance	of	the	web	server	request	handlers	based	on	the
associated	virtual	host.

How	to	do	it…
The	following	approach	distinguishes	virtual	host	confinement	through	mod_selinux:

1.	 Decide	on	the	contexts	for	the	individual	tenants.	In	the	previous	chapter,	we	used
s0:c100	for	company	X	and	s0:c101	for	company	Y.

2.	 In	each	virtual	host,	set	the	right	clearance.	For	instance,	for	company	X	set	the
clearance	as	follows:

<VirtualHost	*:443>

		ServerName	www.companyX.com

		selinuxDomainVal	*:s0-s0:c100

</VirtualHost>

3.	 Restart	the	web	server	for	the	changes	to	take	effect.

How	it	works…
Unlike	the	selinuxServerDomain	directive,	which	is	for	the	entire	web	server,	the
selinuxDomainVal	directive	sets	the	context	of	the	handlers	(virtual	hosts)	individually.
As	we	covered	in	the	previous	chapter,	using	multiple	categories	for	a	multitenant	system
is	a	flexible	way	of	dealing	with	information	isolation	between	tenants.

An	important	difference	with	the	previous	chapter,	however,	is	that	the	mod_selinux
module	does	not	use	mcstransd.	The	following	setting	will	fail:

selinuxDomainVal	*:CompanyXClearance

Such	a	setting	would	result	in	the	following	error	message	by	Apache:

[error]	(22)Invalid	argument:	SELinux:	

setcon_raw("unconfined_u:system_r:httpd_t:CompanyXClearance")	failed

As	such,	we	need	to	use	the	standard	sensitivity	notation.

See	also
You	can	find	more	information	about	Apache	virtual	host	support	at
http://httpd.apache.org/docs/2.4/vhosts/

http://httpd.apache.org/docs/2.4/vhosts/

Chapter	4.	Creating	a	Desktop
Application	Policy
In	this	chapter,	we	will	cover	the	following	topics:

Researching	the	application’s	logical	design
Creating	a	skeleton	policy
Setting	context	definitions
Defining	application	role	interfaces
Testing	and	enhancing	the	policy
Ignoring	permissions	we	don’t	need
Creating	application	resource	interfaces
Adding	conditional	policy	rules
Adding	build-time	policy	decisions

Introduction
Up	until	now,	we’ve	modified	and	enhanced	existing	policies	and	interacted	with	the
SELinux	subsystem	through	the	available	administrative	commands.	But,	in	order	to	truly
benefit	from	the	protection	measures	that	SELinux	provides,	we	need	to	create	our	own
policies	for	applications	that	would	otherwise	run	with	either	too	many	privileges,	or	not
run	at	all.

Desktop	applications	are	a	good	example.	The	end	user	domains	(unconfined_t	for
policies	which	support	unconfined	domains,	and	user_t,	staff_t,	and	the	like	for	the
other	policies)	have	many	privileges	assigned	to	them	to	allow	generic	applications	to	be
executed	while	remaining	in	the	user	domain.

This	has	a	huge	downside:	vulnerabilities	within	desktop	applications	or	malfunctioning
applications	can	create	havoc	with	the	users’	files	and	resources,	potentially	exposing
information	to	malicious	users.	If	all	end	user	applications	run	within	the	same	domain,
then	we	cannot	talk	about	a	least	privilege	environment.	After	all,	this	single	user	domain
then	has	to	have	the	sum	of	all	privileges	needed	by	various	applications.

In	this	chapter,	we	will	create	a	desktop	application	policy	for	Microsoft	Skype™,	a
popular	text	messaging,	voice,	and	video	call	application,	which	also	runs	on	Linux
systems,	but	is	proprietary	and	thus	its	code	cannot	be	reviewed	to	find	what	it	might	do.
Confining	this	application	ensures	that	the	application	can	only	perform	the	actions	we
allow	it	to	do.

Researching	the	application’s	logical
design
Before	embarking	on	a	policy	development	spree,	we	need	to	look	at	the	application’s
behavior	and	logical	design.	We	will	get	to	know	the	application	and	its	interactions	as	we
begin	to	model	this	into	the	SELinux	policy.

How	to	do	it…
To	prepare	an	SELinux	policy	for	the	application,	let’s	first	look	at	how	the	application
behaves:

1.	 Look	into	the	files	and	directories	that	the	application	will	interact	with	and	write
down	the	privileges	that	the	application	needs.	Try	to	structure	access	based	on	the
functionalities	of	the	application.

2.	 Figure	out	which	network	resources	are	required	by	the	application,	which	ports	does
the	application	bind	(listen)	to	(if	any),	and	which	ports	does	it	need	to	connect	to.

3.	 If	the	application	needs	to	interact	with	other	SELinux	domains	(processes),	how
does	this	interaction	look	(or	what	is	it	for)?

4.	 Does	the	application	require	specific	hardware	access	or	other	kernel-provided
resources?

How	it	works…
Gathering	information	on	at	least	these	four	resources	(files,	network,	applications,	and
hardware/kernel)	helps	us	to	start	with	a	skeleton	policy	file.	In	the	end,	we	might	have	a
schematic	representation	of	these	resources,	as	shown	in	the	following	diagram:

Let’s	look	at	how	this	works	out	for	our	example.

Files	and	directories
There	are	three	main	file	accesses	needed	for	the	Skype™	application.

The	first	is	its	own,	user-specific	configuration,	which	is	stored	at	~/.Skype/.	This	will
contain	all	settings	for	the	application,	including	contact	list,	chat	history,	and	more.	In
SELinux,	user-specific	configuration	entries	are	labeled	as	*_home_t	and	marked	as	user
home	content,	allowing	the	end	user	to	still	manage	these	resources.

The	second	consists	of	the	generic	user	files,	which	our	application	needs	access	to	in
order	to	upload	or	download	files.	This	can	be	any	end	user	file,	although	some
distributions	create	specific	support	for	this	(such	as	through	a	~/Downloads/	location).

The	third	consists	of	the	general	resources	of	the	Unix	system	that	are	available	for	the
application.	This	access	is	needed	for	the	application	to	load	the	necessary	libraries.
During	application	policy	development,	this	is	often	not	mentioned,	as	it	is	a	default
access	provided	to	all	applications.

Network	resources
The	application	needs	to	interact	with	network	resources	through	its	messaging,	voice,	and
video	chat	functionality.

In	general,	we	know	that	the	application	needs	to	connect	to	the	central	Skype™
infrastructure	for	all	centrally	managed	services,	such	as	authentication,	directory

searches,	and	more.	This	connection	will	be	through	TCP.

Next	to	the	central	infrastructure,	the	application	will	also	connect	to	the	Skype™
instances	of	other	users	for	direct	communication.	This	connection	will	be	through	both
TCP	and	UDP	(as	UDP	is	more	common	for	video	and	voice).

Processes
As	the	application	is	a	graphical	application,	we	know	that	it	needs	to	interact	with	the
X11	server	running	on	the	workstation.	As	we	will	see	in	the	recipes	in	this	chapter,	this
automatically	requires	a	set	of	types	and	permissions	to	be	assigned	to	the	application.

Other	than	that,	there	are	no	specific	interactions	with	other	domains.

Hardware	and	kernel	resources
Finally,	on	the	hardware	level,	the	application	will	need	access	to	the	video	and	sound
devices	(for	the	webcam	and	voice	call	functionality,	respectively).

The	application	will	also	need	to	use	the	user	terminals	in	case	of	errors	(so	that	the	error
message	can	be	displayed).

Creating	a	skeleton	policy
With	the	logical	setup	now	in	place,	we	can	draft	a	skeleton	policy.	This	policy	will	be	a
translation	from	the	logical	setup	we	encountered	to	SELinux	policy	rules.

The	entire	policy	is	written	in	a	myskype.te	file.	The	final	result	of	this	set	of	recipes	is
also	available	through	the	download	pack	of	this	book	as	a	reference.

How	to	do	it…
We	start	with	a	base	skeleton	that	we	can	enhance	later.	This	skeleton	is	developed	as
follows:

1.	 We	start	with	the	declaration	of	the	various	types.	From	the	design,	we	can	deduce
four	types:

skype_t	as	the	main	process	domain
skype_exec_t	as	the	label	for	the	Skype	executable(s)
skype_home_t	for	the	user	configuration	files	and	directories	of	the	skype_t
domain
skype_tmpfs_t	is	needed	for	shared	memory	and	the	X11	interaction

The	code	to	deduce	these	four	types	is	as	follows:

policy_module(myskype,	0.1)

attribute_role	skype_roles;

type	skype_t;

type	skype_exec_t;

userdom_user_application_domain(skype_t,	skype_exec_t)

role	skype_roles	types	skype_t;

type	skype_home_t;

userdom_user_home_content(skype_home_t)

type	skype_tmpfs_t;

userdom_user_tmpfs_file(skype_tmpfs_t);

2.	 Next,	we	write	up	the	policy	rules	for	accessing	the	various	types,	starting	with	the
manage	rights	on	~/.Skype/:

#	Allow	manage	rights	on	~/.Skype

manage_dirs_pattern(skype_t,	skype_home_t,	skype_home_t)

manage_files_pattern(skype_t,	skype_home_t,	skype_home_t)

userdom_user_home_dir_filetrans(skype_t,	skype_home_t,	dir,	".Skype")

3.	 We	enable	the	X11	access	and	shared	memory.	This	is	a	common	set	of	privileges	that
need	to	be	assigned	to	X11-enabled	applications:

#	Shared	memory	(also	needed	for	X11)

manage_files_pattern(skype_t,	skype_tmpfs_t,	skype_tmpfs_t)

manage_lnk_files_pattern(skype_t,	skype_tmpfs_t,	skype_tmpfs_t)

manage_fifo_files_pattern(skype_t,	skype_tmpfs_t,	skype_tmpfs_t)

manage_sock_files_pattern(skype_t,	skype_tmpfs_t,	skype_tmpfs_t)

fs_tmpfs_filetrans(skype_t,	skype_tmpfs_t,	{	file	lnk_file	fifo_file	

sock_file	})

#	Application	is	an	X11	application

xserver_user_x_domain_template(skype,	skype_t,	skype_tmpfs_t)

4.	 Next,	we	write	down	the	network	access	rules,	as	follows:

#	Network	access

corenet_tcp_bind_generic_node(skype_t)

corenet_udp_bind_generic_node(skype_t)

#	Central	skype	services

corenet_tcp_connect_http_port(skype_t)

corenet_tcp_connect_all_unreserved_ports(skype_t)

#	Listen	for	incoming	communication

corenet_tcp_bind_all_unreserved_ports(skype_t)

corenet_udp_bind_all_unreserved_ports(skype_t)

5.	 Finally,	we	have	the	device	accesses:

#	Voice	and	video	calls

dev_read_sound(skype_t)

dev_read_video_dev(skype_t)

dev_write_sound(skype_t)

dev_write_video_dev(skype_t)

#	Terminal	(tty)	output

userdom_use_user_terminals(skype_t)

How	it	works…
In	the	skeleton	policy,	we	start	with	the	SELinux	policy	rules	that	we	know	will	be
necessary.	If	we	are	somewhat	uncertain	about	one	or	more	rules,	it	is	perfectly	fine	to
comment	them	out	for	starters	and	enable	those	as	we	move	on	to	the	testing	phase	in	the
Testing	and	enhancing	the	policy	recipe	later.

The	skeleton	starts	off	with	the	type	declarations,	which	focus	on	the	resources	of	the
application.	We	then	enhance	the	application	domain	with	the	proper	privileges	towards
these	resources.	After	the	resource	access,	we	look	at	the	X11	privileges	and	finish	with
the	network	interaction	of	the	application.

Type	declarations
The	first	part	of	any	policy	is	the	declaration	of	types	and	roles.	We	first	create	a	role
attribute	called	skype_roles	to	which	the	skype_t	SELinux	domain	is	granted.	This	role
attribute	will	then	be	assigned	to	the	users	who	are	allowed	to	call	the	application.	Next,
we	list	the	various	SELinux	types	that	the	policy	will	provide	and	also	give	those	types	a
specific	meaning.	For	instance,	the	skype_t	and	skype_exec_t	types	are	given	the	proper
meaning	through	the	userdom_user_application_domain	template.	This	template	looks
like	the	following:

interface(`userdom_user_application_domain',`

								application_domain($1,	$2)

								ubac_constrained($1)

')

The	application_domain	template,	which	is	called	from	within
userdom_user_application_domain,	has	the	following	definition:

interface(`application_domain',`

								application_type($1)

								application_executable_file($2)

								domain_entry_file($1,	$2)

')

This	results	in	the	skype_t	domain	to	be	marked	as	an	application	type	(a	true	domain),
whereas	skype_exec_t	is	an	executable	file,	which	can	be	used	as	an	entry	point	to	the
skype_t	domain.	Finally,	skype_t	is	marked	as	ubac_constrained,	which	is	used	in	case
of	User-based	access	control	(UBAC),	where	access	to	resources	is	not	only	governed
through	the	types	and	its	access	vectors,	but	also	through	the	SELinux	user.	In	other
words,	if	the	SELinux	user,	userX_u,	would	somehow	be	able	to	access	the	processes	of
another	SELinux	user	(userY_u),	then	the	skype_t	domain	will	not	be	reachable	as	the
UBAC	constraints	would	come	in	action,	preventing	any	interaction	between	the	two.

All	userdom_user_*	templates	mark	the	associated	resources	as	UBAC	constrained,
together	with	the	true	file	type	association,	so	userdom_user_tmpfs_file	marks	the	file
not	only	as	a	tmpfs_t	file	(the	type	used	for	shared	memory),	but	also	makes	it	UBAC
constrained.

Managing	files	and	directories
Next,	we	provide	the	access	rights	to	files	and	resources.	In	the	example,	we	limit	access
to	~/.Skype/	only	and	automatically	mark	~/.Skype/	as	skype_home_t	when	it	is	created
inside	a	user	home	directory	(through	userdom_user_home_dir_filetrans),	even	though
we	identified	the	need	to	manage	user	content	files	as	well.	This	is	because	we	need	to
make	a	policy	design	decision	here—do	we	want	the	application	to	have	full	access	to	all
user	resources	or	would	we	rather	limit	the	access?	And	inversely,	do	we	want	other
applications	that	can	access	user	content	to	access	Skype™	user	(configuration)	data?

If	we	do	not	want	the	application	to	access	any	user	content,	then	we	do	not	need	to	add
any	rules:	the	policy	will	only	allow	search	rights	through	the	user	home	directory	(in
order	to	locate	~/.Skype/)	and	deny	everything	else.

If	we	would	like	to	grant	the	application	access	to	the	user	content,	we	can	add	in	the
following	calls:

userdom_manage_user_home_content_files(skype_t)

userdom_manage_user_home_content_dirs(skype_t)

This	will	grant	full	manage	rights	on	user	files	and	directories	to	the	skype_t	domain.

In	the	Gentoo	Linux	policy,	additional	types	have	been	made	available	to	provide	a	finer-
grained	access	control	to	user	files.	These	types	map	to	the	XDG	Base	Directory
Specification	(XDGBDS)	as	provided	by	the	Free	Desktop	community,	and	include	the
xdg_downloads_home_t	type.	End	users	can	mark	files	and	directories	as
xdg_downloads_home_t	and	allow	applications	to	have	selective	access	to	user	files,
without	risking	that	these	applications	have	access	to	the	more	private	files	of	that	user.

In	Gentoo,	this	means	that	the	following	call	can	be	added	to	the	policy:

xdg_manage_downloads_home(skype_t)

X11	and	shared	memory
When	an	application	needs	to	interact	with	the	X11	server	(as	a	client	application),	much
of	this	interaction	is	done	through	shared	memory.	In	Linux,	shared	memory	can	be
interpreted	as	files	on	a	tmpfs	mount	(think	/dev/shm/)	although	other	shared	memory
constructions	are	still	possible	without	tmpfs.

In	SELinux,	policy	developers	want	to	make	sure	that	this	shared	memory	is	labeled
specifically	for	the	domain.	For	this,	they	create	a	type	with	_tmpfs_t	as	the	suffix.	In	our
example,	this	is	skype_tmpfs_t.	Of	course,	we	need	to	grant	manage	rights	on	the	shared
memory	(for	all	classes	that	will	be	used)	to	the	skype_t	domain.	In	case	of	X11
interaction,	these	are	files,	symbolic	links,	FIFOs,	and	sockets.

Next	to	the	manage	rights,	we	also	include	a	file	transition:	whenever	skype_t	creates	a
file,	symbolic	link,	FIFO,	or	socket	in	a	tmpfs_t	labeled	location,	then	this	resource
should	be	automatically	labeled	skype_tmpfs_t.	This	is	done	through	the
fs_tmpfs_filetrans	call.

Finally,	we	use	xserver_user_x_domain_template	that	contains	all	the	SELinux

privileges	necessary	for	both	the	X11	client	as	well	as	X11	server	to	interact	with	each
other.	This	template	uses	a	prefix	argument	(the	first	argument,	which	we	provided	as
skype),	which	will	be	used	to	create	an	X11	resource	type	called	skype_input_xevent_t.
Similar	to	what	we’ve	seen	for	web	servers	(where	an	apache_content_template	call	was
used),	this	template	gives	an	easy	approach	to	automatically	build	additional	types	and
enable	the	X11	support.

Next	to	the	prefix,	the	domain	itself	is	passed	(skype_t)	and	the	label	used	for	the	shared
memory	(skype_tmpfs_t)	are	passed	on	as	those	are	needed	for	the	X11	server	support.

The	network	access
For	the	network	access,	we	start	by	providing	the	skype_t	domain	with	bind	privileges	on
a	TCP	socket	and	its	IP	address	(which	is	represented	by	node_t).

Next,	we	allow	the	skype_t	domain	to	connect	to	the	central	Skype™	services,	which	are
available	on	HTTPS	port	443	(authentication)	and	various	seemingly	random	high	TCP
ports	(network	nodes).	The	HTTP	target	port	is	identified	as	an	http_port_t	type,	the
others	are	for	the	unreserved	ports.

Finally,	we	allow	the	skype_t	domain	to	listen	for	incoming	communications.	By	default,
this	is	on	a	high	TCP	port	for	messages	and	state	information,	while	for	voice	and	video
chat,	this	is	through	UDP.

A	simple	way	to	identify	the	necessary	types	is	to	look	at	the	netstat	output,	as	it	shows
us	what	ports	a	process	is	listening	on,	the	protocol	family	(TCP	or	UDP),	as	well	as
which	ports	it	is	connecting	to:

~$	netstat	-naput	|	grep	skype

tcp		0		0	0.0.0.0:34431		0.0.0.0:*		LISTEN		8160/skype

tcp		0		0	10.221.44.241:40650		111.221.77.150:40008		ESTABLISHED		

8160/skype

…

udp		0		0	0.0.0.0:34302		0.0.0.0:*				8160/skype

There’s	more…
The	access	to	the	sound	and	video	devices	is	trivial,	but	during	the	design,	it	is	very	well
possible	that	many	more	accesses	are	already	identified	(as	ours	is	just	an	example).	As
we	continue	developing	policies,	writing	a	skeleton	policy	will	become	more	trivial.

A	great	source	for	learning	more	about	the	policies	is	to	look	for	an	existing	policy	of	a
similar	application,	or	an	application	that	has	certain	functionalities	that	resemble	the
functionalities	offered	by	the	application	we’re	writing	a	policy	for.	For	Skype™,	we
could	look	at	the	policy	of	Gift	(a	peer-to-peer	file	sharing	application),	which	is	an	end
user,	graphical	application	with	peer-to-peer	communication	flows,	supporting	uploading
and	downloading	files.

After	all,	SELinux	policies	are	a	write-down	of	what	the	expected	behavior	is	of	a	domain.
If	another	application	has	the	same	or	similar	behavior,	then	its	policy	will	be	very	similar
too.

In	the	previous	example,	we	grouped	the	permissions	together	based	on	the	functional
need.	However,	the	coding	style	for	SELinux	policy	files,	as	mentioned	by	the	reference
policy,	uses	a	different	grouping,	so	make	sure	that	if	the	policy	would	be	sent	upstream,
this	coding	style	is	followed	instead.

See	also
For	more	information	about	the	XDGBDS,	see
http://standards.freedesktop.org/basedir-spec/latest/

http://standards.freedesktop.org/basedir-spec/latest/

Setting	context	definitions
The	next	step	in	the	policy	development	is	to	mark	its	resources	with	the	proper	file
contexts.	This	will	label	the	files	of	the	application	correctly,	making	sure	that	the
SELinux	policy	makes	the	right	decisions.

How	to	do	it…
To	update	the	file	context	definitions,	follow	the	next	set	of	steps:

1.	 Create	the	myskype.fc	file	and	add	in	the	definition	for	~/.Skype/:

HOME_DIR/\.Skype(/.*)?		gen_context(system_u:object_r:skype_home_t,s0)

2.	 Next,	add	in	the	definitions	for	the	skype	binaries:

/opt/skype/skype	—	gen_context(system_u:object_r:skype_exec_t,s0)

/opt/bin/skype	—	gen_context(system_u:object_r:skype_exec_t,s0)

/usr/bin/skype	—	gen_context(system_u:object_r:skype_exec_t,s0)

How	it	works…
The	definitions	for	the	binaries	are	standard,	path-based	context	declarations.	The	one	for
the	user	home	directory,	however,	is	special.

As	can	be	seen	from	the	example,	the	path	starts	with	HOME_DIR.	This	is	a	special	variable
used	by	SELinux	libraries,	which	automatically	maps	to	all	Linux	users’	home	directories.
Rather	than	creating	a	/home/[^/]*/\.Skype(/.*)?	context	directly,	which	has	the	design
problem	that	home	directories	on	other	locations	(such	as	/export/home/user/)	will	not
match,	the	SELinux	libraries	will	check	the	home	directories	of	all	real	users	(with	a	user
ID	starting	at	500,	although	this	is	configurable)	and	for	each	different	home	root	directory
(/home/	is	the	most	commonly	used	one),	it	will	generate	the	proper	contexts.

The	result	of	this	operation	is	stored	as	the	file_contexts.homedirs	file	inside
/etc/selinux/mcs/contexts/files/	and	is	automatically	created	during	policy	build
(through	the	genhomedircon	command).

Next	to	HOME_DIR,	other	supported	variables	are	HOME_ROOT	(which	represents	the	home
root	path)	and	ROLE	(which	is	the	first	role	associated	with	a	user).

Defining	application	role	interfaces
Finally,	before	testing	the	policy,	we	need	to	create	a	role	interface	and	assign	it	to	the	user
domain	that	will	be	used	to	test	(and	run)	the	application.	If	we	don’t	create	a	role
interface	and	assign	it	to	a	user	domain,	then	the	user	domain	will	either	have	no
privileges	to	execute	the	application	at	all,	or	the	application	will	run	with	the	user	context
rather	than	the	newly	defined	skype_t	domain.	If	the	user	domain	isn’t	unconfined,	then
chances	are	that	the	application	will	fail.

How	to	do	it…
Role	interfaces	are	the	gateways	of	a	policy.	They	ensure	that	domains	and	SELinux	users
can	interact	with	the	application	and	that	the	set	of	privileges	for	a	particular	application
are	coherent.

We	create	such	an	interface	in	the	.if	file	and	then	assign	this	interface	to	a	user	domain
in	order	to	test	the	interface:

1.	 Create	the	myskype.if	file	with	the	following	interface	in	it:

interface(`skype_role',`

		gen_require(`

				type	skype_t,	skype_exec_t,	skype_tmp_t,	skype_home_t;

		')

		#	Allow	the	skype_t	domain	for	the	user	role

		roleattribute	$1	skype_roles;

		#	Allow	domain	transition	for	user	domain	to	skype_t

		domtrans_pattern($2,	skype_exec_t,	skype_t)

		#	Interact	with	skype	process

		ps_process_pattern($2,	skype_t)

		allow	$2	skype_t:process	{	ptrace	signal_perms	};

		#	Manage	skype	file	resources

		manage_dirs_pattern($2,	skype_home_t,	skype_home_t)

		manage_files_pattern($2,	skype_home_t,	skype_home_t)

		manage_lnk_files_pattern($2,	skype_home_t,	skype_home_t)

		#	Allow	user	to	relabel	the	resources	if	needed

		relabel_dirs_pattern($2,	skype_home_t,	skype_home_t)

		relabel_files_pattern($2,	skype_home_t,	skype_home_t)

		relabel_lnk_files_pattern($2,	skype_home_t,	skype_home_t)

')

2.	 Create	a	policy	for	the	user	domain	(for	instance,	myunprivuser.te)	that	grants
regular	users	access	to	the	skype_t	domain,	by	assigning	the	user	domain	the
skype_role	call:

policy_module(myunprivuser,	1.0)

gen_require(`

		type	user_t;

		role	user_r;

')

optional_policy(`

		skype_role(user_r,	user_t)

')

3.	 Build	both	policies	and	load	them.	Then,	relabel	the	skype	binary	files	(and	possibly
preexisting	~/.Skype/	locations):

~#	restorecon	/opt/skype/bin/skype	/opt/bin/skype	/usr/bin/skype

~#	restorecon	-RF	/home/user/.Skype

How	it	works…
Although	we	have	defined	all	the	rules	for	the	skype_t	domain	that	we	think	are	needed
(in	the	next	recipe,	the	policy	will	be	extended	until	it	really	works),	we	have	not	defined
the	rules	yet	to	allow	a	user	domain	to	actually	execute	the	skype_exec_t	binaries	and
have	the	process	run	in	the	skype_t	domain.

To	accomplish	that,	we	need	to	ensure	that	a	domain	transition	occurs	to	the	skype_t
domain	when	the	user	executes	skype_exec_t.	This	is	handled	by	the	domtrans_pattern
call.	But	before	we	allow	the	domain	transition,	we	first	need	to	allow	the	skype_t	domain
for	the	user	role,	which	is	done	through	the	roleattribute	call.

Until	now,	we	focused	primarily	on	type	enforcement	rules	(that	is,	granting	privileges	to
SELinux	domains	based	on	the	label	of	the	target	resource).	In	order	to	allow	certain	users
to	run	an	application,	the	application	domain	itself	needs	to	be	granted	to	the	user	role.
This	is	supported	through	SELinux’s	role-based	access	control	(RBAC)	model.	This
RBAC	model	ensures	that	a	certain	domain	(skype_t,	in	our	example)	can	only	be	used	by
the	roles	we	configure	it	for	(user_r,	in	our	example).	Other	roles,	such	as	DBA	roles
(dbadm_r)	might	have	no	need	for	running	the	Skype™	application,	so	they	will	not	be
granted	access	to	the	skype_t	domain.

Note
Not	granting	a	domain	does	not	necessarily	prevent	the	application	from	executing	within
the	user	domain	itself.	To	accomplish	that,	we	need	to	make	sure	that	the	executable	file
type	cannot	be	executed	by	other	roles.	Instead	of	using
userdom_user_application_domain	for	the	skype_t	and	skype_exec_t	types	(which
would	assign	a	generic	executable	attribute	to	the	skype_exec_t	type),	we	would	use
something	similar	to	the	following:

application_type(skype_t)

files_type(skype_exec_t)

allow	skype_t	skype_exec_t:file	{	entrypoint	mmap_file_perms	ioctl	lock	};

ubac_constrained(skype_t)

As	the	user	domain,	which	needs	to	be	able	to	execute	Skype™,	also	needs	to	manage	the
skype_home_t	files	(in	case,	manual	intervention	in	~/.Skype/	is	needed	or	to	make
backups),	we	grant	it	both	manage	privileges	as	well	as	relabel	privileges.	The	relabel
privileges	are	needed	when,	for	instance,	a	backup	is	restored.

For	the	user	domain,	we	then	call	the	skype_role	interface	we	just	created.	In	the
example,	we	used	the	optional_policy	statement.	This	allows	policy	modules	to	be
loaded	even	when	one	of	the	calls	cannot	be	resolved	or	is	not	supported.

Suppose	we	need	to	unload	the	myskype	module.	Without	the	optional_policy	statement,
the	myunprivuser	module	would	need	to	be	unloaded	as	well,	even	though	this	policy
module	might	contain	other	rules	that	are	important	for	the	user	domain	to	work	correctly
(in	the	example,	we	only	called	the	skype_role	interface,	but	after	some	time,	the	module
might	call	many	other	interfaces	as	well).	If	we	don’t	unload	the	module	and	no

optional_policy	statements	are	used,	then	SELinux	will	warn	the	administrator	about
unresolved	dependencies	between	the	modules.

With	the	optional_policy	statement,	the	SELinux	tools	know	that	the	call	might	become
unresolvable,	in	which	case,	the	entire	block	(everything	inside	the	optional_policy
block)	will	be	ignored	while	the	module	remains	loaded.

There’s	more…
At	the	beginning	of	the	recipe,	we	mentioned	that	unconfined	user	domains	will	be	able	to
execute	the	application	without	a	domain	transition.	This	is	to	be	expected,	as	the	entire
idea	behind	unconfined	domains	is	that	they	are,	well,	unconfined.

It	is	considered	a	bad	practice	to,	in	general,	create	domain	transitions	from	an	unconfined
domain	to	confined	domains.	Only	in	very	specific	circumstances	do	domain	transitions
from	an	unconfined	domain	to	confined	domains	make	sense	(such	as	when	the	target
domain	is	used	to	confine	potentially	vulnerable	applications,	such	as	a	sandbox	domain).

From	a	security	perspective,	it	makes	more	sense	to	confine	users	immediately	and	use	the
proper	domain	transitions	between	(confined)	user	domains	and	the	application	domains.

Testing	and	enhancing	the	policy
With	the	policy	ready	and	loaded,	it	is	time	to	start	testing	the	application	from	a	user’s
perspective,	while	keeping	an	eye	on	the	audit	logs	(for	denials)	and	application	output.

Testing	the	application	is	an	important	phase	of	policy	development	and	will	also	be	the
most	time	consuming	task.	During	testing,	several	functional	features	of	the	application
will	be	tried	and	the	resulting	permissions	(SELinux-wise)	will	need	to	be	added	to	the
policy.

In	previous	recipes,	such	as	Creating	a	skeleton	policy,	we	enabled	a	set	of	permissions
based	on	other	policies	and	common	sense.	However,	these	permissions	have	not	been
validated	and	tested	yet.	In	this	recipe,	we	will	assert	that	the	permissions	are	truly	needed,
as	we	do	not	want	to	create	a	policy	with	too	many	rights	associated	with	it.

How	to	do	it…
Testing	policies	is	a	repetitive	task.	Every	try-out	means	that	the	AVC	denials	leading	up
to	the	start	need	to	be	discarded	(as	we	do	not	want	to	include	privileges	not	related	to	the
test)	after	which	the	application	is	tested	and	the	results	are	documented.	Depending	on
how	the	application	acts,	new	policy	rules	are	added	to	the	policy:

1.	 Write	down	the	current	timestamp	or	create	a	reference	point	inside	the	audit	logs
(for	instance,	by	reloading	the	SELinux	policy),	so	we	know	from	which	point	in	the
audit	logs	we	need	to	look	at	the	audit	events:

~#	semodule	-R

2.	 As	an	end	user,	start	the	application	(from	a	terminal	window)	and	watch	what
happens.

3.	 Write	down	the	error	that	is	displayed	(if	any):

~$	skype

skype:	error	while	loading	shared	libraries:	cannot	restore	segment	

prot	after	reloc:	Permission	denied

4.	 Look	into	the	denials	as	displayed	in	the	audit	logs:

~#	ausearch	-m	avc	-ts	recent

5.	 For	each	first	denial	or	denial	related	to	the	error	shown	earlier,	try	to	enhance	the
policy	with	the	proper	call	and	try	again.

How	it	works…
In	this	phase,	we	are	enhancing	the	policy	step	by	step.	Some	policy	developers	like	to	run
the	application	in	permissive	mode	(either	by	running	the	entire	system	in	permissive
mode	or	by	marking	this	particular	domain	as	a	permissive	domain),	registering	all
accesses	performed	(through	the	AVC	denials)	and	enhancing	the	policy	based	on	that
information.	Although	this	might	give	a	faster	working	policy,	these	developers	will	also
risk	that	they	add	too	many	privileges	to	a	policy,	something	that	is	very	difficult	to
challenge	and	change	later.

Instead,	we	let	SELinux	prevent	accesses	and	look	at	how	the	application	reacts.	Based	on
the	error	logging	of	the	application	or	the	behavior	of	the	application	and	the	AVC
denial(s)	seen	through	the	logs,	we	can	have	a	good	picture	of	what	privileges	are	really
needed.

For	instance,	simultaneously	with	the	error	presented	in	the	example,	the	following	denial
occurred:

type=AVC	msg=audit(1398930752.113:608):	avc:	denied	{	execmod	}	for	

pid=8943	comm="skype"	path="/opt/bin/skype"	dev="dm-2"	ino=801	

scontext=user_u:user_r:skype_t:s0	tcontext=user_u:user_r:skype_exec_t:s0	

tclass=file

It	is	important	that	we	focus	on	the	first	set	of	denials	that	occur	and	not	on	all	denials
shown.	It	is	very	likely	that	denials	shown	after	the	first	set	of	denials	are	from	error
handling	routines,	either	by	the	application	or	the	system	in	general,	which	would	never	be
triggered	in	the	first	place	if	the	proper	permissions	are	granted	to	the	domain.	Trying	to
grant	those	privileges	as	well	would	result	in	a	too	broadly	defined	set	of	permissions.

The	preceding	denial	shown	would	result	in	the	following	addition	to	the	policy:

#	Error	'cannot	restore	segment	prot	after	reloc'

allow	skype_t	skype_exec_t:file	execmod;

Ignoring	permissions	we	don’t	need
After	repeated	testing,	we	will	have	a	policy	that	works,	even	though	denials	might	still
show	up	in	the	audit	logs.	In	order	not	to	alarm	any	administrator,	we	might	want	to
disable	auditing	of	those	specific	denials	(while,	of	course,	ensuring	that	critical	access
vectors	are	still	logged	by	the	audit	daemon).

How	to	do	it…
In	order	to	disable	logging	of	certain	denials	that	do	not	influence	an	application’s
behavior,	trigger	the	denial	and	then	register	the	dontaudit	statements	as	explained	in	the
following	steps:

1.	 For	each	denial	shown	in	the	audit	logs,	we	need	to	find	the	corresponding
dontaudit	rule	set.	Consider	the	following	instance:

type=AVC	msg=audit(1398936489.877:2464):	avc:	denied	{	search	}	for	

pid=8241	comm="skype"	name="modules"	dev="dm-0"	ino=1322041	

scontext=user_u:user_r:skype_t:s0	

tcontext=user_u:object_r:user_home_t:s0	tclass=dir

2.	 Search	through	the	SELinux	policies	for	dontaudit	statements	on	this	matter:

~$	sefindif	dontaudit.*user_home_t.*search

interface(`userdom_dontaudit_search_user_home_content',`

		dontaudit	$1	user_home_t:dir	search_dir_perms;

3.	 Add	in	the	interface	call	to	the	policy,	rebuild	the	policy,	and	then	reload	it.	Repeat
until	all	cosmetic	denials	are	no	longer	visible.

How	it	works…
Many	operations	performed	by	applications	can	be	seen	as	cosmetic—although	in	the
example,	the	application	really	performs	the	searches	through	the	user	files,	they	are	not
needed	for	the	application	to	function	correctly.	For	instance,	it	might	be	searching
through	the	entire	directory	until	it	finds	its	own	files,	which	it	does	have	access	to.

By	adding	the	dontaudit	statements	for	these	operations,	we	ensure	that	the	audit	logs
stay	clean.

In	case	of	problems,	the	administrator	can	still	disable	the	dontaudit	statements	in	the
policy,	revealing	every	denial	that	SELinux	has	triggered	(even	those	that	are	explicitly
marked	as	dontaudit):

~#	semodule	-DB

To	re-enable	the	dontaudit	statements,	rebuild	and	reload	the	policy:

~#	semodule	-B

In	certain	situations,	there	might	not	be	an	interface	related	to	dontaudit	available.	In	that
case,	create	a	new	interface	(as	part	of	an	SELinux	policy	module)	with	the	dontaudit
rules	defined	in	it.	For	instance,	for	a	dontaudit	rule	set	to	ignore	getting	the	attributes	of
mozilla_home_t	content,	we	would	create	a	mymozilla	policy	module	with	the
mozilla_dontaudit_getattr_home	interface	declared	in	it.

Creating	application	resource	interfaces
Our	application	policy	is	almost	ready	for	deployment.	However,	it	currently	is	mainly
end	user	focused,	and	there	are	no	ways	of	interacting	with	the	skype_t	domain	(or	other
resources	managed	by	the	skype	module)	except	through	the	skype_role	interface.

In	this	recipe,	we’ll	add	an	interface	for	reading	skype_home_t.

How	to	do	it…
Alongside	the	skype_role	interface	that	we	created	in	the	Defining	application	role
interfaces	recipe,	we	need	to	create	additional	resource	interfaces	so	that	other	domains
can	easily	interact	with	the	newly	created	policy:

1.	 Open	the	myskype.if	file	and	add	in	the	following	content:

interface(`skype_read_home',`

		gen_require(`

				type	skype_home_t;

		')

		userdom_search_user_home_dirs($1)

		allow	$1	skype_home_t:dir	list_dir_perms;

		allow	$1	skype_home_t:file	read_file_perms;

		allow	$1	skype_home_t:lnk_file	read_lnk_file_perms;

')

How	it	works…
The	recipe	itself	is	simple—for	each	interaction	with	resources	managed	by	the	skype
module,	we	need	to	create	an	interface	that	can	be	called	by	other	modules.

Each	interface	should	be	complete.	For	instance,	in	order	to	read	the	skype_home_t
content,	a	domain	will	first	need	to	be	able	to	search	through	the	user’s	home	directory
(user_home_dir_t,	which	is	not	the	same	as	user_home_t	as	the	former	is	the	type	for	the
home	directory	while	the	latter	is	for	its	contents);	hence,	the	call	to
userdom_search_user_home_dirs.

Then,	the	necessary	privileges	are	assigned	to	the	domain.	As	we	do	not	provide	any	class
identifier	in	the	interface	name,	the	interface	will	grant	read	access	to	all	(significant)
classes	related	to	the	skype_home_t	type.

If	we	only	want	to	grant	read	access	to	files	(and	not	to	the	directory	class),	then	the
interface	would	be	called	skype_read_home_files.

Adding	conditional	policy	rules
We	can	further	fine-tune	our	policy	with	conditionals.	Some	of	the	access	vectors
identified	earlier	might	not	be	necessary	in	all	circumstances,	so	it	makes	sense	to	make
them	optional	and	configurable	through	SELinux	Booleans.

Two	of	the	identified	access	vectors	that	are	candidates	for	configurable	policies	are	as
follows:

Accessing	the	video	and	sound	devices	(in	order	to	reduce	the	risk	of	malware	or
vulnerabilities	in	the	application	to	access	the	webcam	or	sound	device	and	spy	on
the	unsuspecting	users)
Accessing	all	user	content	(instead	of	only	the	skype_home_t	content)

How	to	do	it…
The	following	set	of	steps	allows	us	to	make	the	policy	more	flexible	for	the
administrators	to	handle	by	introducing	Booleans.	These	Booleans	modify	the	behavior	of
the	policy	and	are	added	to	a	policy.

1.	 Inside	myskype.te,	create	the	definitions	for	both	Booleans.	This	is	usually	done
before	the	type	declarations:

gen_tunable(skype_use_audio,	false)

gen_tunable(skype_use_video,	false)

gen_tunable(skype_manage_user_content,	false)

2.	 Inside	the	policy,	group	the	statements	that	we	want	to	trigger	through	the	Booleans:

tunable_policy(`skype_use_audio',`

		dev_read_sound(skype_t)

		dev_write_sound(skype_t)

')

tunable_policy(`skype_use_video',`

		dev_read_video_dev(skype_t)

		dev_write_video_dev(skype_t)

')

tunable_policy(`skype_manage_user_content',`

		userdom_manage_user_home_content_dirs(skype_t)

		userdom_manage_user_home_content_files(skype_t)

')

How	it	works…
The	gen_tunable	declarations	will	generate	Booleans	that	administrators	can	toggle	on
the	system.	The	first	argument	of	each	declaration	is	the	name	of	the	Boolean	to	be
created,	while	the	second	argument	sets	the	default	value	of	the	Boolean.

Once	Booleans	are	defined,	the	tunable_policy	statements	allow	for	grouping	the
statement	calls	that	need	to	be	made	configurable.

It	is	possible	to	have	rules	enabled	when	a	Boolean	is	disabled	as	well.	For	instance,	for
the	skype_manage_user_content	one,	the	following	code	can	be	used:

tunable_policy(`skype_manage_user_content',`

		#	boolean	enabled

		userdom_manage_user_home_content_dirs(skype_t)

		userdom_manage_user_home_content_files(skype_t)

		',`

		#	boolean	disabled

		userdom_dontaudit_manage_user_home_content_dirs(skype_t)

		userdom_dontaudit_read_user_home_content_files(skype_t)

		…

')

Booleans	can	also	be	combined,	as	shown	in	the	following	code:

tunable_policy(`use_nfs_home_dirs	&&	skype_manage_user_content',`	…	')

In	such	situations,	the	policy	group	rules	will	only	take	effect	if	both	the	Booleans	are
enabled.

It	is	also	possible	to	only	enable	rules	if	a	Boolean	is	not	set,	as	shown	in	the	next	line	of
code:

tunable_policy(`!use_nfs_home_dirs',`	…	')

There’s	more…
Tunable	policies	are	a	powerful	extension	to	SELinux.	However,	there	are	some	caveats	to
this:

It	is	not	simple	to	make	the	description	of	SELinux	Booleans	available	to	the
administrator.	The	descriptions	are	defined	through	in-policy	comments,	but	this	is
not	used	for	custom	modules—a	full	policy	build	needs	to	be	made	in	order	to
generate	the	policy.xml	file	that	contains	all	descriptions.
It	is	not	possible	to	assign	attributes	within	a	tunable_policy	group.	Instead,	policy
developers	will	need	to	make	the	permissions	related	to	the	attribute	configurable	(if
possible)	or	not	assign	the	attribute	at	all.
It	is	not	possible	to	use	named	file	transitions	within	a	tunable_policy	group.	In
general,	that	doesn’t	matter	that	much—there	are	a	few	situations	where	a	named	file
transition	would	depend	on	a	Boolean,	but	these	situations	do	occur.
It	is	not	possible	to	have	the	optional_policy	statements	within	a	tunable_policy
group.	Instead,	wrap	the	tunable_policy	call	with	an	optional_policy	statement
first.	It	might	be	needed	to	create	multiple	blocks	if	a	single	Boolean	would	trigger
multiple	policy	calls	that	warrant	the	use	of	an	optional_policy	block.

Efforts	are	being	made	to	remove	these	shortcomings	from	the	SELinux	subsystem
though.

Adding	build-time	policy	decisions
The	last	enhancement	we	might	want	to	look	at	is	build-time	policy	decisions.	Unlike
SELinux	Booleans,	these	are	policy	blocks	that	are	enabled	(or	disabled)	based	on	build
parameters.	We	have	encountered	a	few	of	these	in	the	past	already,	namely	enable_mcs,
enable_mls	as	well	as	distribution	selection	parameters,	such	as	distro_gentoo	or
distro_redhat.

In	this	recipe,	we	will	enable	the	xdg_manage_downloads_home	call	but	only	when	the
policy	is	built	for	a	Gentoo	system.

How	to	do	it…
Build-time	decisions	are	added	to	the	policy	using	the	ifdef	statements,	as	can	be	seen
through	the	next	set	of	steps:

1.	 Open	myskype.te	and	add	in	the	following	block	of	code:

ifdef(`distro_gentoo',`

		xdg_manage_downloads_home(skype_t)

')

2.	 Rebuild	the	policy.	On	a	Gentoo	system,	we	can	confirm	that	the	access	is	now
granted	through	sesearch,	whereas	other	distributions	probably	don’t	even	know	the
xdg_downloads_home_t	type:

~$	sesearch	-s	skype_t	-t	xdg_downloads_home_t	-A

How	it	works…
The	reference	policy	build	system	automatically	defines	a	couple	of	parameters	that	can	be
used	by	the	ifdef	macros.	The	build	system	uses	definitions	inside	the	build.conf	file
available	at	/usr/share/selinux/mcs/include/	or
/usr/share/selinux/devel/include/	to	generate	such	parameters.

For	instance,	the	distribution	parameter	in	build.conf	is	set	as	follows:

DISTRO	?=	gentoo

Inside	Makefile,	this	is	converted	into	an	M4PARAM	setting:

ifneq	($(DISTRO),)

								M4PARAM	+=	-D	distro_$(DISTRO)

endif

Through	these	M4	parameters,	we	can	then	use	the	ifdef	statements	to	query	the	existence
of	these	parameters	and	make	build-time	decisions.

There’s	more…
It	is	possible	to	add	our	own	set	of	parameters.	For	this,	we	set	the	M4PARAM	environment
variable	before	we	call	the	make	command	(used	while	building	the	policy	modules).

For	instance,	to	support	the	debug	statements,	we	could	set	the	following	in	the	policy:

ifdef(`debug',`	…	')

During	policy	build,	we	can	enable	these	statements	as	follows:

~$	export	M4PARAM="-D	debug"

~$	make	mypolicy.pp

Chapter	5.	Creating	a	Server	Policy
In	this	chapter,	we	will	cover	the	following	recipes:

Understanding	the	service
Choosing	resource	types	wisely
Differentiating	policies	based	on	use	cases
Creating	resource-access	interfaces
Creating	exec,	run,	and	transition	interfaces
Creating	a	stream-connect	interface
Creating	the	administrative	interface

Introduction
Desktop	application	policies	protect	a	user	from	vulnerabilities	within	the	application	or
from	unwanted	behavior	exerted	by	the	application.	On	a	server,	however,	the	impact	can
be	much	larger.	Server	policies	are	used	to	protect	the	entire	system	from	unwanted
behavior,	abusive	access	by	users,	or	exploited	vulnerabilities	within	the	application.

Services	also	have	a	long	lifetime.	Unlike	desktop	applications,	which	usually	start	up	and
shut	down	together	with	the	users’	daily	work	cycle,	services	tend	to	run	nonstop,	24/7.
This	not	only	provides	a	larger	time	window	to	try	and	exploit	these	services,	but	also
happens	in	the	background	with	services	that	the	administrator	might	not	be	actively
watching.

Understanding	the	service
The	first	aspect	of	designing	server	policies	is	to	understand	the	service	at	hand.	Each
service	has	its	own	internal	architecture,	and	understanding	how	the	various	processes	and
resources	interact	with	each	other	is	extremely	important.

Only	when	the	internal	architecture	is	fully	understood	will	we	be	able	to	create	a	properly
functioning	policy.	Otherwise,	we	risk	that	the	policy	will	be	too	broad	(too	many	access
rights)	or	too	restricted.	Unlike	applications,	which	are	usually	easy	to	test	from	an	end
user	point	of	view,	services	often	have	activities	that	are	much	harder	to	test	(or	even
consider).

How	to	do	it…
Just	like	with	desktop	applications,	understanding	the	application	behavior	is	of	key
importance	to	create	good	SELinux	policies.	Research	into	and	analysis	of	the	behavior
can	be	done	by	performing	the	following	steps:

1.	 Research	the	service	at	large	by	looking	for	online	architecture	drawings	or
architecture	documentation.

2.	 Try	to	explore	the	service	in	a	sandbox	environment.
3.	 Follow	some	tutorials	for	the	service	with	relation	to	both	administration	tasks	as

well	as	end	user	tasks.
4.	 Structurally	document	how	the	service	should	be	used.

How	it	works…
Understanding	a	service	means	to	get	some	degree	of	experience	with	the	administration
of	the	service.	Trying	to	create	a	server	policy	for	a	specific	database	technology,	but	not
knowing	how	this	database	technology	works,	will	be	almost	impossible.

Online	research
Most	services	have	well	documented	architectural	information	available	online.	By	using
an	Internet	search	engine,	we	can	easily	come	to	the	architecture	information	for	a
particular	service.

While	developing	service	policies,	it	is	considered	a	best	practice	that	the	types	and
domains	are	named	similar	to	the	functional	services	that	are	used.	For	instance,	in	a
Postfix	architecture,	functional	services	such	as	pickup,	cleanup,	smtpd,	qmgr,	and	many
more	are	basic	services	that	a	Postfix	administrator	has	to	deal	with.	In	SELinux	policies,
we	should	try	to	have	the	domains	labeled	similarly	(so	the	domain	will	be	labeled
postfix_qmgr_t	for	the	qmgr	service,	postfix_spool_maildrop_t	for	the	maildrop
queue,	and	so	on).

Sandbox	environment
Being	able	to	play	around	with	a	service	in	a	sandbox	environment	allows	us	to	see	the
interactions	at	hand.	It	also	allows	us	to	follow	online	tutorials	or	administration	guides	to
get	to	know	the	service.

There	are	many	technologies	available	nowadays	to	play	around	with	technologies.
Virtualization	allows	users	to	run	complete	systems	in	an	isolated	environment	and	has	led
to	the	creation	of	virtual	appliances.

Virtual	appliances	are	virtual	images	that	can	be	easily	installed	in	a	virtualized
environment.	However,	a	pure	virtualization	still	requires	users	to	install	an	operating
system,	install	the	service,	and	configure	it	before	really	starting	to	use	it;	virtual
appliances	provide	preconfigured	systems	that	host	one	or	more	services	out	of	the	box.

Next	to	virtualization,	containers	are	also	starting	to	play	a	large	role.	Unlike
virtualization,	software	running	inside	containers	is	isolated	from	other	software	but	is	still
part	of	the	operating	system	itself.

The	structural	documentation
After	having	a	thorough	read	through	the	architecture	of	the	application	and	perhaps	even
playing	around	with	the	software,	we	might	need	to	document	the	architecture	of	the
service	further	in	order	to	deduce	the	right	SELinux	types	and	resources,	as	well	as
interfaces	and	roles	related	to	the	service.

In	order	not	to	forget	anything	important,	the	logical	architecture	of	a	service	can	be
documented	using	the	FAMOUS	abbreviation:

Feeds:	This	tells	us	which	external	resources	provide	input	to	the	service	in	a	more-
or-less	batch-oriented	approach	as	well	as	which	external	resources	the	service

interacts	with.
Administration:	This	informs	us	how	the	service	is	administered	(command-line
interfaces,	user	interfaces,	or	other	applications).
Monitoring:	This	informs	us	about	logfiles	used	or	commands	that	are	supported	to
verify	the	state	of	the	service.
Operations:	This	documents	the	day-to-day	runtime	behavior	of	all	the	processes
(and	the	flows,	using	the	CRUD	method—Create,	Read,	Update,	Delete).	This	is
usually	the	architecture	information	found	earlier	during	the	online	research	phase.
Users	and	rights:	This	documents	how	users	are	defined	and	managed	in	the	service.
This	also	documents	which	authentication	or	authorization	backends	are	used,	how
different	roles	within	the	service	behave,	and	so	forth.
Security-related	features:	These	tell	us	about	security-related	features	such	as
application-based	access	controls,	firewall	requirements	(which	in	our	case	are
important	for	the	policy	network	rules),	and	so	forth.

With	this	information	at	hand,	we	can	have	a	clear	overview	of	how	the	service	behaves.
For	instance,	a	high-level	view	of	the	PostgreSQL	database	service	looks	like	the
following	diagram:

Such	a	drawing	helps	us	to	identify	types	later	on,	both	for	the	processes	as	well	as	the
resources	involved.	Any	interactions	with	the	service	provided	by	third-party	services	is
shown	as	well,	as	these	interactions	will	result	in	privileges	that	need	to	be	assigned	to	the
other	processes	(that	is,	interfaces	in	the	SELinux	policy).

It	is	not	easy	to	document	how	a	service	works	without	understanding	the	service	at	hand.
Because	of	the	complexity	of	the	service,	it	is	a	good	practice	to	get	experts	or	developers
of	the	service	together	and	guide	us	in	understanding	the	service.	These	developers	and

engineers	can	later	be	used	to	challenge	the	SELinux	policy	that	is	being	written.

See	also
A	nonexhaustive	list	of	open	source	virtual	appliance	providers	is	as	follows:

Artica	(http://www.artica.fr)	for	proxy,	mail,	and	NAS	appliances.
Turnkey	Linux	(http://www.turnkeylinux.org/)	offers	more	than	a	hundred	ready-to-
use	solutions.
Vagrant	(http://www.vagrantup.com/)	is	a	management	platform	for	virtual	systems,
and	has	a	large	community	of	Vagrant	boxes	that	provide	virtual	appliance-like	setups
for	many	free	software	services.
Docker	(https://www.docker.io/)	is	not	a	true	virtualization	setup,	but	rather	a
container-based	approach.	From	the	Docker	Index	(https://index.docker.io/),	many
containers	can	be	freely	downloaded.

Many	commercial	technologies	also	provide	development	virtual	machines	to	deploy.
Virtualization	technology	providers	such	as	VMware®	have	solution-exchange
communities,	where	virtual	images	for	various	technologies	are	freely	available.

http://www.artica.fr
http://www.turnkeylinux.org/
http://www.vagrantup.com/
https://www.docker.io/
https://index.docker.io/

Choosing	resource	types	wisely
Services	interact	with	resources,	and	the	label	that	we	assign	to	the	resources	is	used	by
the	fine-grained	access	controls	assigned	to	these	resources.	End	user	files	(for	users	that
have	a	Linux	account	on	the	system)	are	labeled	as	user_home_t,	which	suffices	for	most
uses.	However,	when	we	deal	with	services,	the	choice	of	the	resource	label	defines	if	and
how	other	applications	can	access	those	resources	and	is	much	more	fine-grained	than
what	we	currently	use	for	end	user	files.

There	are	some	best	practices	concerning	resource	type	selection	within	SELinux	policies,
which	we	will	now	look	into.

How	to	do	it…
The	service	resource	types	need	to	be	carefully	chosen.	Their	naming	implies	the
functional	use	of	the	resource,	which	already	pushes	the	development	of	the	policy	in	a
certain	structure.	The	types	and	their	affiliated	permissions	can	be	developed	by
completing	the	following	steps:

1.	 Look	for	the	processes	that	will	run	within	their	own	specific	domain	and	create	the
domain	types.	For	each	domain,	look	for	the	entry	files	of	that	domain	and	create	an
_exec_t	type.	Mark	the	type	as	either	an	init	daemon	type	(when	the	service	is
launched	through	a	service	script)	or	a	D-Bus	daemon	(when	the	service	is	launched
through	the	D-Bus	service).	For	instance,	for	the	BIND	service:

type	named_t;

type	named_exec_t;

init_daemon_domain(named_t,	named_exec_t)

2.	 Look	for	all	sets	of	logical	resources	that	are	used	by	the	application.	These	are	often
files	specific	to	the	service	architecture	(such	as	database	files	for	a	database	service),
but	shouldn’t	be	limited	to	files	only.

3.	 Create	specific	types	for	these	resources.	For	instance,	for	the	Qemu	virtual	guest
images:

type	qemu_image_t;

files_type(qemu_image_t)

4.	 Grant	the	domains	the	proper	access	to	these	resources.	For	instance,	the	qemu
process	(running	as	qemu_t)	will	need	manage	rights	on	the	images:

manage_files_pattern(qemu_t,	qemu_image_t,	qemu_image_t)

5.	 Go	through	the	infrastructural	resources	(PID	files,	logfiles,	and	configuration	files)
and	label	these	accordingly.	For	instance,	for	the	named	variable,	the	runtime	data	will
be	named	as	follows:

type	named_var_run_t;

files_pid_file(named_var_run_t)

6.	 Grant	the	domains	the	proper	access	to	these	resources,	and	if	possible,	enable	a
proper	file	transition:

allow	named_t	named_var_run_t:file	manage_files_perms;

allow	named_t	named_var_run_t:sock_file	manage_sock_file_perms;

files_pid_filetrans(named_t,	named_var_run_t,	{	file	sock_file	});

How	it	works…
An	application	policy	always	provides	a	common	set	of	privileges.	It	starts	with	proper
domain	definitions	(showing	how	the	policy	will	be	structured)	and	is	followed	by	the
resource	access	patterns.	Resources	can	be	functional	in	nature	(specific	to	the	application
that	is	being	investigated	for	the	policy)	or	more	infrastructural	(such	as	logfiles	and
configuration	files).

Domain	definitions
Service	domains	are	used	to	identify	long-running	processes	that	have	a	similar	functional
scope.	An	example	could	be	the	BIND	named	process	(which	is	defined	as	named_t)	or
the	Apache	httpd	processes	(which	are	all	running	as	httpd_t).

These	service	domains	are	usually	launched	from	an	init	script,	which	results	in	the	use
of	the	init_daemon_domain	interface.	If	a	service	is	launched	by	D-Bus,	then	the	interface
to	use	is	dbus_system_domain.	Of	course,	multiple	interfaces	can	be	used:	the	PPP
daemon,	for	instance,	supports	both	init	scripts	and	D-Bus.

If	a	service	daemon	is	launched	by	another	daemon	instead,	then	it	is	sufficient	to	mark
the	process	domain	as	a	domain	type	and	the	executable	type	as	the	entry	point:

type	postfix_bounce_t;

type	postfix_bounce_exec_t;

domain_type(postfix_bounce_t)

domain_entry_file(postfix_bounce_t,	postfix_bounce_exec_t)

In	this	case,	we	need	to	provide	the	parent	domain	(in	our	case,	postfix_master_t)	the
rights	to	execute	(postfix_bounce_exec_t)	and	transition	(to	postfix_bounce_t):

domtrans_pattern(postfix_master_t,	postfix_bounce_exec_t,	postfix_bounce_t)

Logical	resources
The	logical	resources	are	the	files	that	are	specific	to	the	applications’	functional	design.
For	instance,	a	virtualization	layer	such	as	Qemu	will	have	a	logical	resource	for	the
image	files	(qemu_image_t).	The	logical	resources	for	a	web	server	have	already	been
discussed	in	an	earlier	chapter	(such	as	httpd_sys_content_t	for	standard	system	read-
only	web	content).

Such	resources	are	declared	as	regular	file	resources	and	the	proper	permissions	are
granted	to	the	various	domains.	Further	down	the	document,	when	privileges	for	the
qemu_t	domain	are	summed	up,	the	manage_files_pattern	line	can	be	added	to	allow	the
qemu_t	domain	to	manage	the	images.

By	making	separate	labels	for	each	of	the	logical	resources,	we	can	create	interfaces	for
other	processes	that	might	need	to	interact	with	these	resources	without	having	to	grant
those	applications	too	many	privileges.

Think	of	a	backup	application,	such	as	Amanda.	The	actual	backup	data	itself
(amanda_data_t)	should	only	be	accessible	by	the	Amanda	application.	Other	service

administrators	on	the	same	system	should	not	have	access	to	these	files—backups	can
contain	sensitive	information,	so	only	the	backup	tool	itself	should	have	access	to	this
data.	Even	the	backup	administrators,	who	need	to	manage	the	backup	infrastructure,
might	not	need	direct	access	to	this	data.

Infrastructural	resources
Infrastructural	resources	are	file	types	that	are	often	set	for	applications.

Logfiles	are	marked	through	the	logging_log_file	interface	and	usually	end	with	the
_log_t	suffix,	such	as	amanda_log_t.	By	marking	it	as	a	logfile,	domains	that	are
assigned	an	operation	concerning	all	logfiles	(such	as	logging_read_all_logs)
automatically	have	these	privileges	on	the	newly	defined	type.	Often,	a	file	transition	is	set
so	that	files	created	in	/var/log/	automatically	get	the	right	type.	This	is	done	through	the
logging_log_filetrans	interface:

type	amanda_log_t;

logging_log_file(amanda_log_t)

#	Directories	created	by	amanda_t	domain	in	/var/log	(var_log_t)	get	the	

amanda_log_t	type:

logging_log_filetrans(amanda_t,	amanda_log_t,	dir)

Configuration	files	are	marked	as	regular	files	(through	files_type)	and	end	with	either
_conf_t	or	_etc_t.	Some	policy	developers	like	to	use	_conf_t	for	real	configuration
files	and	_etc_t	for	other	miscellaneous	files	in	the	/etc/	directory	structure	that	are	not
direct	configuration	files.	In	most	cases	though,	this	is	only	for	semantic	reasons	as	all
related	domains	need	the	same	set	of	privileges	on	both	types.

Temporary	files	are	marked	through	the	files_tmp_file	interface	and	end	with	the
_tmp_t	suffix.	A	file	transition	is	almost	always	put	in	place	to	ensure	that	the	temporary
files	are	properly	labeled:

type	amanda_tmp_t;

files_tmp_file(amanda_tmp_t)

#	All	files,	directories	and	symbolic	links	created	by	amanda_t	in	a	tmp_t	

location	should	get	the	amanda_tmp_t	label:

files_tmp_filetrans(amanda_t,	amanda_tmp_t,	{	dir	lnk_file	file	})

PID	files	and	other	generic	run	files	are	usually	labeled	ending	with	_var_run_t	and	are
marked	as	a	PID	file	through	the	files_pid_file	interface.	As	with	logfiles,	a	file
transition	is	usually	put	in	place	as	well:

type	amanda_var_run_t;

files_pid_file(amanda_var_run_t)

#	Files	and	sockets	created	in	/var/run	should	become	amanda_var_run_t:

files_pid_filetrans(amanda_t,	amanda_var_run_t,	{	file	sock_file	})

Other	variable	data	that	is	not	given	a	logical	resource	name	is	often	labeled	ending	with
_var_lib_t.	Such	files	are	marked	as	regular	files	(using	file_type)	and	a	file	transition
can	be	defined	using	files_var_lib_filetrans.

Differentiating	policies	based	on	use	cases
As	services	mature,	they	often	gain	more	features,	which	might	not	always	be	necessary.
For	instance,	daemons	that	are	able	to	optionally	connect	to	various	network	resources
depending	on	their	configuration	should	not	be	allowed	by	the	SELinux	policy	to	always
connect	to	various	network	resources.

To	govern	these	features,	SELinux	policy	developers	include	Booleans	to	selectively
toggle	policies	based	on	the	administrator’s	requirements.

How	to	do	it…
Booleans	allow	policy	developers	to	create	policy	rules	that	only	participate	in	access
control	when	the	administrator	has	elected	to	use	them.	For	services	in	particular,	this	is
often	used	to	optionally	allow	privileges	based	on	the	use	case	of	the	service	and	is
implemented	as	follows:

1.	 Identify	the	policy	blocks	that	should	be	marked	as	optional,	depending	on	the
configuration.	For	instance,	this	could	be	a	set	of	policy	rules	that	allow	PostgreSQL
to	connect	to	other	PostgreSQL	databases:

corenet_tcp_connect_postgresql_port(postgresql_t)

corenet_sendrecv_postgresql_client_packets(postgresql_t)

2.	 For	each	block,	create	a	well-chosen	SELinux	Boolean	that	administrators	can	easily
identify	as	the	right	Boolean	to	toggle	for	their	specific	use	case.	For	instance,	we	can
create	a	postgresql_connect_db	Boolean:

##	<desc>

##			<p>

##					Determine	if	the	PostgreSQL	daemons	can	connect	to	other	

databases.

##			</p>

##	</desc>

gen_tunable(postgresql_connect_db,	false)

3.	 Surround	the	policy	blocks	that	need	to	be	toggled	with	a	tunable_policy	statement
for	the	chosen	SELinux	Boolean,	as	follows:

tunable_policy(`postgresql_connect_db',`

		corenet_tcp_connect_postgresql_port(postgresql_t)

		corenet_sendrecv_postgresql_client_packets(postgresql_t)

')

How	it	works…
Although	we	shouldn’t	over-tune	policies	by	generating	dozens	of	Booleans,	isolating
functionality	that	is	often	abused	in	exploits	is	a	good	practice.

Consider	a	database	engine.	Databases	can	have	features	that	allow	them	to	connect	to
other	databases	(for	instance,	to	set	up	database	links	or	support	some	kind	of	cluster),	but
in	many	situations,	these	features	are	not	needed.	If	a	database	is	compromised	(through
SQL	injection,	for	instance),	it	is	better	to	make	sure	that	this	database	cannot	access	other
databases	(so	the	compromised	database	is	sufficiently	contained).

The	configuration	that	toggles	this	behavior	in	a	PostgreSQL	setup	could	be	named
postgresql_connect_db	(for	database-specific	connections)	or
postgresql_connect_all_ports	(for	any	target	connection)	and	developed	as	shown	in
the	previous	example	(the	example	includes	the	in-line	comment	documentation	that
would	be	used	if	the	policy	is	meant	to	become	part	of	the	distribution	policy	or	reference
policy	project).

Accessing	other	resources	on	the	network	is	a	common	feature	that,	if	it	is	not	part	of	the
standard	behavior	of	the	application,	should	be	considered	for	making	optional.

There	are	many	other	use	cases	that	should	be	considered.	Here	is	a	nonexhaustive	list:

An	application	that	can	optionally	execute	system	scripts	or	user-provided	scripts
should	be	governed	through	an	_exec_scripts	or	_exec_user_scripts	Boolean.
Allowed	domain	transitions	to	higher-privileged	domains	or	increased	privileges	due
to	some	functionality	is	usually	governed	through	_use_*	Booleans.	For	instance,	a
domain	optionally	supporting	Java	can	have	a	_use_java	Boolean.
Access	to	specific	filesystems	or	devices	is	also	governed	through	_use_*	Booleans,
such	as	_use_cifs	(for	SMB-CIFS	filesystems)	or	_use_nfs.
Functional	support	(such	as	Nginx	support	for	various	protocols)	can	be	made
optional	through	_enable_*	Booleans,	such	as	nginx_enable_imap_server	or
nginx_enable_pop3_server.

Creating	resource-access	interfaces
With	all	the	resources	defined,	we	now	need	to	ensure	that	other	domains	can	use	those
resources	as	needed.	As	we’ve	seen,	resources	can	be	functional	in	nature	(specific	to	a
service)	or	more	infrastructural	(such	as	logfiles).

Access	to	resources	is	provided	through	SELinux	policy	rules	that	need	to	be	provided
through	access	interfaces.	These	interfaces	are	then	used	by	third-party	SELinux	policy
modules	to	document	and	allow	access	to	the	resource	types.	Without	the	access
interfaces,	the	resource	types	we	define	are	not	easily	accessible	by	other	policy
developers.

How	to	do	it…
To	create	resource-access	interfaces,	add	the	proper	interface	definition	in	the	module’s
.if	file.	For	instance,	to	create	a	set	of	resource	interfaces	to	access	ClamAV’s
configuration	files,	follow	the	next	set	of	steps:

1.	 For	each	resource,	create	an	overview	of	the	privileges	that	will	be	needed.	For	file
class	resources,	these	are	often	search,	read,	write,	and	manage	privileges.	In	case	of
logfiles,	some	applications	only	need	append	privileges	(which	ensures	that	they
cannot	modify	existing	data,	only	add	data	to	it).

2.	 Create	the	interface	in	the	module’s	.if	file	and	ensure	that	it	is	properly
documented,	as	shown	in	the	following	code:

##

##	<summary>

##			Read	clamav	configuration	files

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	allowed	access

##			</summary>

##	</param>

#

interface(`clamav_read_config','

		gen_require(`

				type	clamd_etc_t;

		')

		files_search_etc($1)

		allow	$1	clamd_etc_t:file	read_file_perms;

')

3.	 Consider	creating	a	dontaudit	interface	as	well	to	assign	to	SELinux	domains	that
might	attempt	to	perform	this	action	while	not	needing	the	privilege:

##

##	<summary>

##			Do	not	audit	attempts	to	read	the	clamd	configuration	files

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	not	to	audit

##			</summary>

##	</param>

#

interface(`clamav_dontaudit_read_config',`

		gen_require(`

				type	clamd_etc_t;

		')

		dontaudit	$1	clamd_etc_t:file	read;

')

How	it	works…
The	resource-access	interfaces	are	needed	to	allow	interaction	with	the	SELinux	types
managed	through	the	SELinux	module.	The	build	environment	does	not	have	a	default	set
of	privilege	interfaces	that	are	generated	out	of	the	box,	so	we	need	to	create	these
interfaces	ourselves.

One	might	be	tempted	to	only	create	the	resource	interfaces	that	are	known	to	be	used	in
the	immediate	future.	However,	it	is	recommended	to	create	the	proper	interfaces	for	all
resources	and	each	individually	with	a	coherent	set	of	supported	privileges.	This	is
because	we	never	know	how	the	resources	will	be	used	by	others,	and	by	not	creating	the
proper	resources,	we	are	forcing	other	developers	to	create	their	own	my*	modules	to
provide	interfaces.

By	covering	most	access	patterns	towards	the	resources,	we	provide	a	nice	set	of
interfaces	that	other	developers	can	use	while	keeping	the	interfaces	all	bound	to	a	single
module.

Even	the	dontaudit	related	interfaces	will	play	an	important	role	for	the	users	of	the
SELinux	policy.	When	policy	developers	commit	policy	improvements	to	repositories,
they	usually	do	not	dontaudit	unless	they	are	100	percent	convinced	that	these	will	hide
cosmetic	denials	and	thus	can	be	ignored.	As	a	result,	default	SELinux	system
deployments	will	have	quite	a	few	denials	in	the	audit	logs	that	need	to	be	looked	into	by
the	system	administrator.

If	the	administrator	doesn’t	believe	that	the	denials	need	to	be	enabled,	then	they	will	need
to	be	able	to	dontaudit	them.	Although	the	administrator	can	create	the	proper	interfaces
themselves,	it	is	much	easier	if	the	dontaudit	interface	definitions	are	already	provided.

Creating	exec,	run,	and	transition
interfaces
Service	domains	usually	have	a	few	binaries	that	are	executed	by	user	domains	or	through
other	service	or	application	domains.	Each	case	of	these	executions	need	to	be	properly
investigated	to	see	if	a	domain	transition	is	needed	(that	is,	a	specific	domain	needs	to	be
created	for	that	execution	environment)	or	if	the	command	can	run	within	the	privileges	of
the	caller	domain.

From	an	interface	point	of	view,	this	is	provided	through	the	_exec,	_run,	and	_domtrans
interfaces.

How	to	do	it…
Execution-related	interfaces	allow	for	other	policy	modules	to	define	the	interaction	with
this	application.	This	interaction	can	be	a	regular	execution,	but	can	also	contain	a	domain
transition	to	switch	the	application	domain	to	the	newly	defined	one.	The	set	of	execution
interfaces	are	created	as	follows:

1.	 For	each	execution	where	the	application	itself	needs	to	run	in	the	caller	domain	(so
no	transition	has	to	occur),	create	an	_exec	interface	as	follows:

#######################################

##	<summary>

##			Execute	wm	in	the	caller	domain

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	allowed	access

##			</summary>

##	</param>

#

interface(`wm_exec',`

		gen_require(`

				type	wm_exec_t;

		')

		corecmd_search_bin($1)

		can_exec($1,	wm_exec_t)

')

2.	 For	each	execution	by	a	domain	that	is	in	the	same	role	as	the	service	(usually,
system_r)	and	where	a	transition	has	to	occur,	create	a	_domtrans	interface	as
follows:

##

##	<summary>

##			Execute	vlock	in	the	vlock	domain

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	allowed	to	transition

##			</summary>

##	</param>

#

interface(`vlock_domtrans',`

		gen_require(`

				type	vlock_t,	vlock_exec_t;

		')

		corecmd_search_bin($1)

		domtrans_pattern($1,	vlock_exec_t,	vlock_t)

')

3.	 For	each	execution	by	a	domain	that	might	not	have	standard	access	to	the
application	domain,	and	where	a	domain	transition	has	to	occur,	create	a	_run
interface	as	follows:

###

##	<summary>

##			Execute	vlock	in	the	vlock	domain	and	allow	the	specific	role	the	

vlock	domain

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	allowed	to	transition

##			</summary>

##	</param>

##	<param	name="role">

##			<summary>

##			Role	allowed	to	access	the	vlock	domain

##			</summary>

##	</param>

#

interface(`vlock_run',`

		gen_require(`

				attribute_role	vlock_roles;

		')

		vlock_domtrans($1)

		roleattribute	$2	vlock_roles;

')

How	it	works…
The	use	of	_exec,	_run,	and	_domtrans	are	standard	interface	patterns	in	policy
development.	The	_role	interface	that	we	created	during	desktop	application	policy
development	not	only	includes	domain	transition	and	role	support,	but	also	resource
accesses	related	to	the	user	domain	interacting	with	the	desktop	application	domain.

In	the	_run	interface,	the	only	set	of	privileges	that	is	provided	is	to	transition	to	the	right
domain	and	assign	the	domain	to	the	right	role	(as	part	of	SELinux	role-based	access
control).	It	is	common	practice	that	the	order	of	the	parameters	of	a	_run	interface	are	the
domain	first	and	then	the	role—unlike	the	_role	interfaces,	where	the	role	comes	first	and
then	the	domain.

In	a	_domtrans	interface,	only	the	domain	transition	is	enabled.	Usually,	the	_run
interfaces	call	the	_domtrans	interface	so	that	both	interfaces	are	defined	and	the	right	one
for	the	job	is	called	by	the	caller	SELinux	policy	module.	But	unlike	the	_run	interfaces,
the	_domtrans	interfaces	do	not	extend	roles	and	are	usually	called	by	other	modules	for
service	domain	interaction.

For	instance,	the	procmail_t	domain	(for	the	procmail	daemon)	might	call	the	clamscan
application	(part	of	the	ClamAV	setup)	needing	to	transition	to	clamscan_t.	It	does	so
through	the	clamav_domtrans_clamscan	interface:

optional_policy(`

		clamav_domtrans_clamscan(procmail_t)

')

Finally,	the	_exec	interface	allows	a	domain	to	execute	a	binary	without	any	transition.
This	interface	is	needed	when	a	binary	is	labeled	as	a	specific	executable	type	(not	bin_t
or	shell_exec_t)	as	most	domains	then	do	not	have	the	privilege	to	access	this	file	at	all,
let	alone	execute	it.	For	instance,	the	Postfix	local	daemon	might	call	the	clamscan
executable	but	does	not	need	to	transition,	resulting	in	the	following	call:

optional_policy(`

		clamav_exec_clamscan(procmail_local_t)

')

See	also
Assigning	the	newly	created	interfaces	to	roles	is	covered	in	Chapter	6,	Setting	Up
Separate	Roles

Creating	a	stream-connect	interface
Be	it	through	the	specific	executable	types	or	by	the	generic	bin_t	labeled	commands,
executions	that	remain	in	the	caller	domain	might	still	require	additional	privileges	to	be
assigned	to	the	caller	domain.	These	additional	privileges	could	be	reading	of
configuration	files	or	interacting	with	the	main	domain	through	Unix	domain	sockets	or
TCP/UDP	sockets.

In	this	recipe,	we’ll	set	up	a	stream-connect	interface	(as	the	other	privilege	enhancements
are	already	covered	through	the	regular	resource-access	interfaces	or	network-access
interfaces).

How	to	do	it…
Interaction	with	an	application	socket	can	be	done	either	through	a	socket	file	or	through	a
named	Unix	domain	socket.	This	is	application-specific,	so	consulting	the	application
documentation	might	be	necessary	up	front.

For	a	Unix	domain	socket	with	a	socket	file
If	the	stream	connection	is	through	a	Unix	domain	socket	with	a	socket	file,	the	interaction
with	an	application	socket	can	be	done	by	completing	the	following	steps:

1.	 Identify	and	register	the	proper	types	in	the	.te	file.	Socket	files	usually	have	the
_var_run_t	suffix	as	they	reside	in	/var/run/.

2.	 Create	a	stream-connect	interface	that	calls	stream_connect_pattern	as	follows:

interface(`ldap_stream_connect',`

		gen_require(`

				type	slapd_t,	slapd_var_run_t;

		')

		files_search_pids($1)

		stream_connect_pattern($1,	slapd_var_run_t,	slapd_var_run_t,	slapd_t)

')

For	an	abstract	Unix	domain	socket
If	the	stream	connection	is	through	an	abstract	Unix	domain	socket	(so	no	socket	files	are
involved),	create	a	stream-connect	interface	that	only	provides	the	connectto	privilege,	as
follows:

interface(`init_stream_connect',`

		gen_require(`

				type	init_t;

		')

		allow	$1	init_t:unix_stream_connect	connectto;

')

How	it	works…
Daemons	often	provide	methods	to	interact	with	them.	Many	services	support	Unix
domain	socket-based	communication	between	a	client	application	(which	usually	runs
within	the	privileges	of	the	caller	domain)	and	the	daemon	itself.

In	such	cases,	the	daemon	itself	creates	a	socket	file	(usually	in	/var/run/)	as	some	sort
of	access	point	(applications	can	also	use	abstract	namespaces,	where	no	socket	file	is
needed	anymore)	and	the	caller	domain	is	allowed	to	write	to	this	socket	and	through	it
connect	to	the	Unix	domain	socket	held	by	the	daemon.	The	set	of	privileges	is	provided
by	the	stream_connect_pattern	definition	and	can	be	visually	represented	as	follows:

The	most	important	privilege	here	is	the	connectto	privilege	between	the	caller	domain
and	the	daemon	domain.	In	case	of	abstract	Unix	domain	sockets,	no	socket	file	is	used	at
all	and	only	the	connectto	privilege	is	needed.

These	privileges	are	then	written	in	the	following	domain-specific	interface	that	calls	the
stream_connect_pattern	definition,	which	provides	the	proper	privileges	in	one	go:

~$	seshowdef	stream_connect_pattern

define(`stream_connect_pattern',`

		allow	$1	$2:dir	search_dir_perms;

		allow	$1	$3:sock_file	write_sock_file_perms;

		allow	$1	$4:unix_stream_socket	connectto;

')

If	stream-connection-oriented	applications	are	used	whose	binaries	are	not	labeled	as
bin_t,	then	a	_stream_connect	interface	call	is	usually	seen	together	with	an	_exec
interface	call.

Creating	the	administrative	interface
To	end	the	SELinux	module	development	for	services,	we	need	to	create	proper	role-based
interfaces.	Whereas	the	_role	interface	is	usually	for	nonprivileged	user	roles,	an	_admin
interface	is	used	to	provide	all	the	necessary	privileges	to	fully	administer	a	service.

How	to	do	it…
An	administrative	interface	which	we	can	later	assign	to	the	user	and	role	that	will
administer	the	environment	is	created	with	the	following	steps:

1.	 Create	a	specific	init	script	type	for	the	init	scripts	of	the	daemon.	For	instance,	for
the	virtd	daemon	inside	virt.te,	the	following	policy	rules	create	the	proper	init
script	type:

type	virtd_initrc_exec_t;

init_script_file(virtd_initrc_exec_t)

2.	 Make	sure	that	this	init	script	is	labeled	correctly	through	the	.fc	file:

/etc/rc\.d/init\.d/libvirtd	—	

gen_context(system_u:object_r:virtd_initrc_exec_t,s0)

3.	 Start	with	a	skeleton	_admin	interface:

##

##	<summary>

##			All	rules	related	to	administer	a	virt	environment

##	</summary>

##	<param	name="domain">

##			<summary>

##			Domain	allowed	access

##			</summary>

##	</param>

##	<param	name="role">

##			<summary>

##			Role	allowed	access

##			</summary>

##	</param>

#

interface(`virt_admin',`

		gen_require(`

				…

')

4.	 Identify	all	the	resources	that	an	administrator	would	need	access	to.	Keep	in	mind
that	administrators	might	need	to	directly	modify	files	that	are	otherwise	managed
through	the	service-related	commands—do	not	take	away	this	right	from
administrators.	A	common	pattern	to	use	here	is	admin_pattern.	Add	in	the	proper
rights	in	the	interface	(and	do	not	forget	to	update	the	gen_require	block	at	the
beginning).	Consider	the	following	example:

files_search_tmp($1)

admin_pattern($1,	virt_tmp_t)

5.	 Look	through	the	administration	guides	for	other	operations	that	administrators	might
need	with	regards	to	processes.	Perhaps	there	are	certain	signals	that	could	be
allowed	to	be	sent	to	the	daemons:

#	Allow	the	admin	to	run	strace	or	other	tracing	tools	against	the	

daemons

allow	$1	virtd_t:process	{	ptrace	signal_perms	};

#	Allow	admins	to	view	all	information	related	to	the	processes

ps_process_pattern($1,	virtd_t)

6.	 Allow	the	administrator	to	run	the	init	script(s):

init_labeled_script_domtrans($1,	virtd_initrc_exec_t)

domain_system_change_exemption($1)

role_transition	$2	virtd_initrc_exec_t	system_r;

allow	$2	system_r;

How	it	works…
The	_admin	interface	is	meant	to	contain	all	the	privileges	needed	for	an	(otherwise)
unprivileged	user	to	administer	a	service.	In	essence,	this	unprivileged	user	will	become
privileged	for	this	particular	service,	gaining	just	those	rights	that	the	user	needs	in	order
to	manage	the	service,	but	nothing	more.

We	start	by	defining	a	particular	init	script	type	for	the	service.	By	default,	the	init
scripts	are	labeled	initrc_exec_t	and	only	the	system	administrator	is	allowed	to	execute
them.	As	we	do	not	want	to	give	a	specific	service	administrator	the	privileges	to	execute
any	init	script,	we	create	a	specific	script	type	(_initrc_exec_t)	and	then	allow	the	user,
through	the	_admin	interface,	to	execute	that	particular	script	type.

The	latter,	however,	is	more	than	just	creating	execute	rights	(which	is	done	through	the
init_labeled_script_domtrans	call).	Executing	the	script	also	means	that	the	script
itself	has	to	run	in	the	system_r	role.	If	we	do	not	enforce	this,	then	the	script	would
(attempt	to)	run	in	the	role	of	the	caller	domain	(such	as	virtadm_r)	and	fail,	as	the
initrc_t	domain	(the	type	used	for	the	init	scripts)	is	not	allowed	for	the	virtadm_r
role.

Transitioning	a	role	upon	executing	a	file	is	done	through	the	role_transition	directive.
In	our	example,	we	configure	that	the	user	role	(such	as	virtadm_r)	transitions	to	the
system_r	role	upon	executing	virtd_initrc_exec_t:

role_transition	$2	virtd_initrc_exec_t	system_r;

We	need	to	allow	the	system_r	role	for	the	given	user	role	as	well,	which	is	done	through
the	allow	$2	system_r	call.	But	even	that	is	not	sufficient.

SELinux	has	a	constraint	in	place	that	prevents	transitions	to	system_r,	as	the	system_r
role	is	used	for	all	system	services	and,	as	such,	is	a	highly	privileged	role.	The	constraint
is	defined	so	that	only	specific	domains	can	trigger	a	transition	to	system_r.	With	the
domain_system_change_exemption	call,	we	mark	the	user	domain	as	one	of	these
domains.

Besides	the	init	script-related	permissions,	most	_admin	interfaces	provide	administrative
rights	to	almost	all	resources	provided	by	the	module.	To	simplify	policy	development,	the
admin_pattern	call	is	used.	This	pattern	not	only	provides	manage	rights	(read,	write,
execute,	delete,	and	so	on)	on	the	resources,	but	also	relabel	rights,	allowing	the
administrator	to	relabel	files	and	directories	as	the	resource	types	used	in	the	module	(or
vice	versa,	relabel	from	those	types	to	other	types	the	administrator	has	relabel	privileges
to).

With	these	relabel	rights,	administrators	can	call	restorecon	against	files	to	label	them
correctly	(if	properly	defined	in	the	SELinux	policy)	or	use	chcon	to	specifically	set	a
label.

See	also
Creating	new	administrative	roles	is	covered	in	Chapter	6,	Setting	Up	Separate	Roles

Chapter	6.	Setting	Up	Separate	Roles
In	this	chapter,	we	will	cover	the	following	topics:

Managing	SELinux	users
Mapping	Linux	users	to	SELinux	users
Running	commands	in	a	specified	role	with	sudo
Running	commands	in	a	specified	role	with	runcon
Switching	roles
Creating	a	new	role
Initial	role	based	on	entry
Defining	role	transitions
Looking	into	access	privileges

Introduction
Roles	provide	a	flexible,	manageable	approach	to	grant	multiple	users	the	proper	rights.
Instead	of	assigning	privileges	to	individual	users,	roles	are	created	to	which	privileges	are
granted.	Users	are	then	granted	the	role	and	inherit	the	privileges	associated	with	this	role.

In	SELinux,	roles	are	used	to	grant	access	to	domains.	An	application	domain	that	is	used
to	manage	certificates	on	a	system	is	assigned	to	one	or	more	roles,	thus	allowing	users
with	that	role	to	possibly	transition	into	that	application	domain.	If	the	user	role	does	not
have	this	privilege,	then	the	necessary	permissions	to	manage	certificates	through	that
application	domain	are	not	accessible	for	the	user.

The	following	diagram	shows	the	relation	between	Linux	logins	(regular	Linux	accounts),
SELinux	users,	SELinux	roles,	and	SELinux	domains:

To	assign	roles	to	users,	Linux	accounts	are	first	mapped	to	an	SELinux	user.	An	SELinux
user	defines	which	roles	are	accessible	(as	users	can	have	multiple	roles	assigned)	as	well
as	which	security	clearance	the	user	can	have	at	most	(although	lower	security	clearances
can	be	assigned	to	users	individually	as	well).

On	systems	where	SELinux	is	primarily	meant	to	confine	network-facing	services	and	not
the	users,	this	chapter	will	have	little	value.	All	users	on	these	systems	are	mapped	to	the
unconfined_u	SELinux	user,	which	has	a	default	user	domain	of	unconfined_t	and	is
meant	to	be	almost	unrestricted—hence,	the	name,	unconfined.	When	this	is	applicable,
most	distributions	call	the	SELinux	policy	store	targeted	to	reflect	that	the	confinement	is
targeting	specific	applications	and	not	the	entire	system.

Managing	SELinux	users
In	order	to	grant	a	Linux	login	the	right	set	of	roles,	we	first	need	to	create	an	SELinux
user	that	has	just	those	roles	assigned.	Existing	SELinux	users	can	be	modified	easily,	and
if	an	SELinux	user	was	added	previously,	it	can	be	removed	from	the	system	as	well.

How	to	do	it…
Managing	SELinux	users	is	done	as	follows:

1.	 Use	semanage	user	to	list	the	currently	available	SELinux	users:

~#	semanage	user	-l

																Labeling			MLS/							MLS/

SELinux	User				Prefix					MCS	Level		MCS	Range																						

SELinux	Roles

git_shell_u					user							s0									s0																													

git_shell_r

guest_u									user							s0									s0																													

guest_r

root												user							s0									s0-s0:c0.c1023																	

staff_r	sysadm_r	system_r	unconfined_r

staff_u									user							s0									s0-s0:c0.c1023																	

staff_r	sysadm_r	system_r	unconfined_r

sysadm_u								user							s0									s0-s0:c0.c1023																	

sysadm_r

system_u								user							s0									s0-s0:c0.c1023																	

system_r	unconfined_r

unconfined_u				user							s0									s0-s0:c0.c1023																	

system_r	unconfined_r

user_u										user							s0									s0																													

user_r

xguest_u								user							s0									s0																													

xguest_r

2.	 If	no	SELinux	user	exists	yet,	with	the	right	set	of	roles,	create	it	with	semanage
user.	For	instance,	to	create	a	database	administration	SELinux	user,	run	the
following	command:

~#	semanage	user	-a	-R	"staff_r	dbadm_r"	dbadm_u

3.	 Existing	users	can	be	modified	as	follows:

~#	semanage	user	-m	-R	"staff_r	dbadm_r"	staff_u

4.	 An	SELinux	user	can	also	be	removed	from	the	system:

~#	semanage	user	-d	dbadm_u

How	it	works…
When	an	SELinux	user	is	created,	SELinux	will	update	its	configuration	files	at
/etc/selinux/	to	include	support	for	this	SELinux	user.	It	is	a	general	best	practice	to
name	SELinux	users	after	their	functional	purpose,	so	a	database	administrator	(DBA)
is	called	dbadm_u,	whereas	a	website	administrator	is	called	webadm_u.

The	set	of	roles	that	are	available	to	the	administrator	can	be	obtained	using	seinfo:

~#	seinfo	-r

Existing	SELinux	users	can	be	modified.	However,	it	is	important	that	logged-in	users	are
logged	out	(and	perhaps	temporarily	locked)	from	the	system	during	the	change.
Otherwise,	the	SELinux	policy	could	suddenly	mark	their	session	as	having	an	invalid
context	and	interrupt	those	users	in	their	operations.

When	an	SELinux	user	is	removed	from	the	system,	it	is	also	important	that	all	the
remaining	files	that	have	this	SELinux	user	in	their	context	are	relabeled.	Otherwise,	these
files	(and	other	resources)	are	labeled	with	an	invalid	context,	making	the	files	and
resources	inaccessible	to	others.

Once	an	SELinux	user	is	created,	it	is	ready	to	be	assigned	to	one	or	more	Linux	users.

There’s	more…
With	SELinux	users,	MLS	settings	can	be	provided	as	well.	For	instance,	to	set	a	specific
security	clearance,	the	following	command	is	used:

~#	semanage	user	-a	-r	s0-s0:c0.c110	dbadm_u

For	an	SELinux	user,	this	is	the	upper	limit	of	the	security	clearance	that	a	users’	context
can	be	in.	When	we	assign	users	to	an	SELinux	user,	it	is	possible	to	force	a	lower	security
clearance	individually	so	that	there	is	no	need	to	create	separate	SELinux	users	for	every
difference	in	security	clearance.

Mapping	Linux	users	to	SELinux	users
With	the	SELinux	users	available,	we	can	now	map	Linux	users	to	SELinux	users.	This
will	ensure	that	the	users,	when	logged	in	to	the	system,	are	assigned	a	default	context
aligned	with	this	SELinux	user.

How	to	do	it…
In	order	to	map	Linux	users	to	SELinux	users,	the	following	steps	can	be	taken:

1.	 List	the	existing	mappings	with	semanage	login:

~#	semanage	login	-l

Login	Name											SELinux	User														MLS/MCS	Range

__default__										user_u																				s0-s0:c0.c1023

root																	root																						s0-s0:c0.c1023

system_u													system_u																		s0-s0:c0.c1023

%wheel															sysadm_u																		s0-s0:c0.c1023

2.	 For	an	individual	user	account,	map	the	account	to	an	SELinux	user	with	semanage
login:

~#	semanage	login	-a	-s	dbadm_u	user1

3.	 It	is	also	possible	to	assign	a	group	of	users	to	an	SELinux	user	through	their	primary
Linux	group.	For	instance,	if	a	dba	group	exists,	it	can	be	assigned	to	an	SELinux
user	as	follows:

~#	semanage	login	-a	-s	dbadm_u	%dba

4.	 Mappings	can	be	modified	easily:

~#	semanage	login	-m	-s	webadm_u	user1

5.	 If	a	mapping	is	no	longer	needed,	it	can	be	removed	as	well:

~#	semanage	login	-d	user1

How	it	works…
The	semanage	login	application	manages	the	seusers	file	in	/etc/selinux/.	This	file	is
used	by	SELinux’s	pam_selinux.so	authentication	library	that	is	called	when	a	user	logs
in	to	a	system.	Upon	invocation,	SELinux	will	check	the	seusers	file	to	see	which
SELinux	user	a	Linux	account	is	mapped	to.	It	will	then	perform	an	SELinux	context
switch	so	that	the	rest	of	the	login	process	(including	the	shell	or	graphical	environment
that	is	launched)	will	have	the	right	SELinux	context	assigned	to	it.

Creating	login	mappings	does	not	influence	the	existing	sessions,	so	if	a	user	is	already
logged	in,	it	is	wise	to	have	the	user	log	out	first.	Also,	any	files	created	by	the	user	in	the
past	might	have	a	wrong	SELinux	user	associated	with	them.	Any	login	that	isn’t
specifically	mentioned	will	be	assigned	a	default	SELinux	user.	If	the	SELinux	user
changes,	then	the	files	owned	by	this	Linux	login	will	suddenly	have	a	wrong	SELinux
user	set.	If	the	user-based	access	control	feature	in	SELinux	is	enabled,	then	these	files
will	not	be	accessible	anymore	by	the	user.	In	this	case,	the	administrator	will	need	to
relabel	the	files	forcefully	(which	includes	resetting	the	SELinux	user):

~#	restorecon	-RF	/home/user1

In	case	of	both	user	mappings	and	group-based	mappings,	the	first	mapping	that	is
mentioned	in	the	seusers	file	that	matches	a	particular	login	is	used.

When	a	user	logs	in	and	no	mapping	matches	the	login	itself	(either	through	a	direct	match
against	a	Linux	account	name	or	through	a	group	membership),	then	SELinux	will	look	at
the	login	mapping	for	the	__default__	user.	This	is	a	special	rule	that	acts	as	a	fallback
rule.	On	systems	with	unconfined	users,	the	__default__	user	is	usually	mapped	to	the
unconfined_u	SELinux	user.	On	systems	without	unconfined	users,	__default__	usually
maps	to	the	(unprivileged)	user_u	SELinux	user.

Running	commands	in	a	specified	role
with	sudo
When	a	user	has	been	assigned	multiple	roles,	they	usually	work	with	their	primary	role
(such	as	staff_r)	and	only	selectively	execute	commands	with	the	other	role.	This	can	be
accomplished	through	the	sudo	command,	as	these	commands	usually	also	require	a
different	Linux	user	(which	can	be	root	or	the	postgresql	account	for	DBA	tasks	on	the
PostgreSQL	database	server).

How	to	do	it…
In	order	to	configure	sudo	to	perform	the	right	role	and	type	transition,	execute	the
following	steps:

1.	 Open	up	the	sudoers	file	through	visudo:

~#	visudo

2.	 Define	the	commands	that	the	user(s)	are	allowed	to	execute.	For	instance,	to	allow
all	users	in	the	dba	group	to	call	initdb	in	the	dbadm_r	role,	define	the	commands	as
follows:

%dba	ALL=(postgres)	ROLE="dbadm_r"	TYPE="dbadm_t"	/usr/sbin/initdb

3.	 The	users	in	the	dba	group	can	now	call	initdb,	and	sudo	will	automatically	switch
to	the	dbadm_r	role	and	the	dbadm_t	user	domain	when	initdb	is	called:

~$	sudo	-u	postgres	initdb

How	it	works…
The	regular	user	domains	that	users	run	with	are,	by	default,	not	that	privileged.	Although
it	is	possible	to	extend	the	privileges	of	the	role	and	user	domains	directly,	the	best
segregation	is	provided	through	different	roles.	Such	an	approach	allows	unprivileged	user
domains,	such	as	staff_t,	to	be	used	by	multiple,	different	organizational	roles	(and	thus,
SELinux	users).

Once	a	privileged	command	needs	to	be	executed,	users	will	need	to	switch	their	active
role.	If	this	is	only	needed	for	a	small	set	of	commands,	which	also	require	switching	the
Linux	user	itself	(such	as	switching	to	the	postgres	runtime	account),	then	privilege
delegation	tools	such	as	sudo	are	often	used.

The	sudo	command	is	an	SELinux-aware	application	that	can	be	configured	to	assist	in
switching	the	SELinux	context	as	well.	This	can	be	done	through	the	command	line
directly	if	the	user	wants:

~$	sudo	-u	postgres	-r	dbadm_r	-t	dbadm_t	initdb

However,	most	administrators	will	want	to	configure	this	in	the	sudoers	file.	This	is	more
user	friendly	as	the	end	user	does	not	need	to	continuously	pass	the	role	and	type	parts	of
the	context	in	which	commands	need	to	be	executed.

Of	course,	this	requires	that	the	SELinux	user	that	is	calling	sudo	has	the	privilege	to	run
commands	in	the	dbadm_r	role.	If	not,	then	even	if	the	sudoers	file	mentions	that	the	user
can	execute	the	command,	the	transition	(and	thus,	the	command)	will	fail,	as	shown	in
the	following	command:

~$	sudo	-u	postgres	initdb

sudo:	webadm_u:dbadm_r:dbadm_t:s0-s0:c0.c1023	is	not	a	valid	context

See	also
For	more	information	on	sudo	and	the	sudoers	file,	check	out	their	associated	manual
pages:

~$	man	sudo

~$	man	sudoers

The	main	project	site	for	the	sudo	application	is	at	https://www.sudo.ws.

https://www.sudo.ws

Running	commands	in	a	specified	role
with	runcon
Using	sudo	is	not	mandatory.	SELinux	also	provides	a	command	called	runcon	that	allows
users	to	run	a	command	in	a	different	context.	Of	course,	SELinux	restrictions	still	apply
—the	user	must	have	the	proper	privileges	to	execute	commands	with	a	different	context.

How	to	do	it…
Running	a	command	using	a	specified	role	and	type	is	done	by	completing	the	following
steps:

1.	 Identify	the	domain	in	which	the	command	should	run,	usually	by	checking	the
executables’	context	and	searching	for	the	entrypoint	definition:

~$	ls	-Z	auditctl

system_u:object_r:auditctl_exec_t				auditctl

~$	sesearch	-t	auditctl_exec_t	-c	file	-p	entrypoint	-A

Found	1	semantic	av	rules:

		allow	auditctl_t	auditctl_exec_t	:	file	{	…	entrypoint	…	};

2.	 Call	the	command,	passing	along	the	role	and	target	type:

~$	runcon	-r	secadm_r	-t	auditctl_t	auditctl	-l

How	it	works…
The	runcon	application	tells	SELinux	that	the	invocation	of	the	command	should	result	in
a	type	and	role	transition	towards	the	specified	type	(auditctl_t)	and	role	(secadm_r).
SELinux	will	perform	multiple	checks	and	validations	before	this	will	actually	succeed.
These	checks	are	as	follows:

Does	the	current	user	have	the	right	to	execute	auditctl	(execute	rights	on
auditctl_exec_t)?
Is	a	role	switch	from	the	current	role	(say	staff_r)	to	the	new	role	(secadm_r)
allowed?
Is	there	a	policy	in	place	that	allows	transition	from	the	current	type	(say	staff_t)	to
the	selected	type	(auditctl_t)?
Is	auditctl_t	a	valid	target	domain	if	the	executed	file	is	auditctl_exec_t	(which
is	the	entrypoint	check)?
Is	the	target	context	(such	as	staff_u:secadm_r:auditctl_t)	a	valid	context	(which
implies	that	the	current	SELinux	user	has	access	to	the	given	role)?

The	runcon	application	can	be	used	when	no	Linux	user	transition	needs	to	occur
(although	this	doesn’t	exclude	the	use	of	sudo).	In	the	example	of	auditctl,	this	means
that	the	regular	access	controls	on	Linux	still	apply—if	the	current	user	does	not	have	the
rights	to	access	the	files	used	by	auditctl,	then	using	runcon	will	not	suffice.

Switching	roles
When	a	role	transition	is	needed	for	more	than	just	a	couple	of	commands,	it	is	necessary
to	open	a	shell	with	the	new	role.	This	will	ensure	that	the	entire	session	is	now	running
with	the	new	role	assigned	to	it.	Every	activity	performed	from	within	this	session	will
then	run	with	the	target	role.

How	to	do	it…
Switching	roles	with	sudo	or	newrole	is	done	as	follows:

1.	 Switching	a	role	can	be	done	using	sudo	-i	or	sudo	-s	if	allowed	by	the	sudoers
file.	If	the	ROLE	and	TYPE	attributes	are	set,	then	the	target	shell	will	have	the	proper
context	assigned:

~$	id	-Z

dbadm_u:staff_r:staff_t:s0

~$	sudo	-u	postgres	-i

Password:	

~$	id	-Z

dbadm_u:dbadm_r:dbadm_t:s0

2.	 Switching	roles	can	also	be	done	using	newrole:

~$	newrole	-r	dbadm_r

How	it	works…
Getting	a	shell	after	switching	roles	is	not	all	that	different	from	executing	commands.
However,	the	SELinux	policy	might	not	allow	running	shells	and	regular	binaries	in	the
target	domain.	For	instance,	a	user	who	is	allowed	the	puppetca_t	domain	through	some
role	will	not	be	able	to	run	a	shell	in	this	domain,	as	puppetca_t	is	not	allowed	to	be	used
through	a	shell—it	is	a	domain	for	a	particular	set	of	commands.

Most	user	roles	have	a	default	user	domain	associated	with	them.	The	default	user	domain
for	a	dbadm_r	role	is	dbadm_t;	the	default	domain	for	a	webadm_r	role	is	webadm_t.	These
user	domains	do	have	the	privileges	to	be	used	through	a	shell.

The	newrole	command	only	requires	the	target	role,	as	it	will	check	the	default	type	of	a
role	(which	is	documented	in	the	default_type	file	inside
/etc/selinux/mcs/contexts/)	and	use	this	as	the	target	type.

Creating	a	new	role
Roles	are	part	of	SELinux	policies.	In	order	to	create	a	new	role,	it	isn’t	possible	to	just
invoke	a	few	semanage	commands.	Instead,	an	SELinux	policy	module	will	need	to	be
created.

How	to	do	it…
The	SELinux	policy	needs	to	be	updated	in	order	to	create	a	new	role.	The	following	steps
can	be	used	to	do	just	that:

1.	 Create	a	new	policy	module	named	after	the	role	to	be	created,	such	as	pgsqladm	(for
a	PostgreSQL	administration	role).

2.	 In	the	policy	module,	call	the	userdom_login_user_template	interface:

userdom_login_user_template(pgsqladm)

3.	 Assign	the	proper	privileges	to	the	pgsqladm_r	role	and	pgsqladm_t	type:

postgresql_admin(pgsqladm_t,	pgsqladm_r)

4.	 Edit	the	default_type	file	in	/etc/selinux/mcs/contexts/	to	make	pgsqladm_t
the	default	type	for	the	pgsqladm_r	role:

pgsqladm_r:pgsqladm_t

5.	 Edit	the	default_contexts	file	in	/etc/selinux/mcs/contexts/	to	inform	the
system	to	which	types	a	transition	has	to	be	made	when	a	user	switch	is	triggered	by
an	application.	For	instance,	for	a	local	login	session,	the	following	code	can	be	used
for	this	purpose:

system_r:local_login_t		user_r:user_t	…	pgsqladm_r:pgsqladm_t	…

6.	 Now,	build	and	load	the	policy,	and	verify	that	the	new	role	is	available:

~#	seinfo	-r	|	grep	pgsqladm_r

How	it	works…
Creating	new	roles	for	an	SELinux	system	requires	changes	on	multiple	levels.	Updating
the	SELinux	policy	is	just	one	of	these.

Defining	a	role	in	the	policy
The	first	step	is	to	create	a	new	role	and	user	domain	through	the	SELinux	policy.	There
are	a	couple	of	templates	available	in	the	reference	policy	to	easily	build	new	roles.	The
relation	between	these	templates	is	visualized	in	the	following	diagram:

The	various	blocks	in	the	diagram	represent	the	following	templates:

In	userdom_base_user_template,	the	basic	rules	and	privileges	for	roles	and	user
domains	are	documented,	regardless	of	their	future	use.	If	a	role	needs	to	be	declared
with	an	absolute	minimum	of	privileges,	the	use	of	this	template	is	preferred.
Inside	userdom_login_user_template,	userdom_base_user_template	is	called	and
extended	with	privileges	related	to	interactive	logins.	When	a	role	is	created	that	is
meant	to	be	logged	on	directly	(without	the	need	to	call	newrole	or	sudo),	then	this
interface	is	needed.
Within	userdom_restricted_user_template,	the	userdom_login_user_template
interface	is	called,	but	the	user	domain	is	also	associated	with	the
unpriv_userdomain	attribute,	meant	for	end	user	domains	that	have	little	security
impact	on	the	system.
The	userdom_common_user_template	interface	adds	privileges	and	rules	that	are
common	for	both	unprivileged	and	privileged	roles.
The	userdom_unpriv_user_template	interface	calls	both
userdom_common_user_template	and	userdom_restricted_user_template	and	is
meant	to	declare	unprivileged	roles	and	user	domains	with	interactive	logon	and
general	system	access.
The	userdom_admin_user_template	interface	calls	both
userdom_common_user_template	and	userdom_login_user_template,	and	creates	a
role	and	user	domain	that	is	meant	to	be	used	for	administrative	purposes.

Whenever	such	an	appropriate	interface	is	called,	the	proper	role	and	type	is	created	and

can	be	used	in	the	remainder	of	the	policy	module.

Extending	the	role	privileges
In	the	example,	we	assigned	PostgreSQL	administrative	rights	to	the	pgsqladm_t	user
domain	and	allowed	the	pgsqladm_r	role	the	proper	PostgreSQL	domains	(if	any).

The	reference	policy	tends	to	provide	two	types	of	interfaces	that	can	be	assigned	to	new
roles:

Administrative	roles,	whose	interface	name	usually	ends	with	_admin
End	user	roles,	whose	interface	name	usually	ends	with	_role	or	_run

Administrative	roles	allow	for	rights	on	all	resources	related	to	a	particular	domain.	In
case	of	the	postgresql_admin	interface,	the	role	and	user	domain	(which	are	passed	on	to
the	interface)	are	allowed	to	send	signals	to	the	PostgreSQL	services,	execute	the	init
script	(to	launch	or	shut	down	the	service),	and	manage	the	various	resources	of	the
domain	(such	as	the	database	files,	configuration	files,	and	logs).

Services	almost	always	have	an	_admin	interface.	These	are	called	after	the	domain,	such
as	puppet_admin	for	Puppet	administration	and	samba_admin	for	Samba	administration.
Sometimes,	an	SELinux	policy	module	has	multiple	administrative	interfaces	when	there
are	different	domains	involved.	An	example	would	be	the	logging_admin_audit	and
logging_admin_syslog	interfaces,	as	both	auditing	and	system	logging	are	provided	by
the	same	SELinux	policy	module,	but	the	administration	of	these	two	services	can	be
segregated.

End	user	roles	allow	the	user	to	execute	client	applications	or	interact	with	services.	Such
interfaces,	such	as	puppet_run_puppetca	(which	allows	a	user	domain	to	run	the
puppetca	application	and	transition	to	it)	and	openvpn_run	(which	allows	users	to	run
OpenVPN	services),	can	still	be	somewhat	administrative	in	nature,	so	make	sure	to
validate	the	content	of	the	interface.	However,	most	of	the	time,	this	is	governed	through
the	application	side	and	not	infrastructure	side—being	able	to	launch	VPN	services	does
not	mean	that	the	user	can	manipulate	routing	tables	as	they	see	fit,	even	though	the	VPN
service	domain	(openvpn_t)	can.

It	is	important	to	review	the	interfaces	before	blindly	granting	them	to	new	roles	and
users.	In	case	of	PostgreSQL,	the	postgresql_role	role,	for	instance,	does	not	allow	the
user	to	interact	with	the	PostgreSQL	service;	instead,	the	interface	is	used	to	support
SEPostgreSQL	(SELinux-enabled	PostgreSQL),	which	provides	additional	access	controls
in	PostgreSQL	based	on	SELinux	policies.	When	users	are	assigned	the	postgresql_role
role,	they	are	granted	basic	privileges	inside	a	PostgreSQL	environment.

To	allow	users	to	interact	with	PostgreSQL,	the	postgresql_stream_connect	and
postgresql_tcp_connect	interfaces	can	be	used.

Default	types	and	default	contexts
The	default_types	file	informs	SELinux	what	the	default	type	is	if	no	context	is
specified	otherwise,	and	it	is	used	by	commands	such	as	newrole	to	know	what	the	default

type	is	for	a	user.

The	default_contexts	file	(which	can	be	overridden	through	SELinux	user-specific	files
in	the	users/	subdirectory)	informs	the	SELinux	libraries	and	subsystem	what	specific
SELinux	type	to	transition	to	when	a	user	and	role	switch	has	occurred	from	within	a
specified	domain.	For	instance,	a	cron	daemon	runs	in	the	system_r:crond_t	context,	but
when	it	executes	the	user	cron	jobs,	these	jobs	themselves	need	to	run	in	a	different
SELinux	role	and	SELinux	type.	The	following	default_contexts	configuration	snippet
would	have	the	jobs	of	a	user	(whose	role	is	pgsqladm_r)	run	as	cronjob_t	(rather	than
pgsqladm_t):

system_r:crond_t		pgsqladm_r:cronjob_t

These	files	are	generated	as	part	of	the	base	policy.	Sadly,	there	are	no
default_types.local	or	default_contexts.local	files	that	can	be	used	to	provide
system-specific	changes.	As	a	result,	updates	on	the	base	SELinux	policy	might	overwrite
these	files	depending	on	how	the	Linux	distribution	treats	these	files.	If	the	files	are	seen
as	configuration	files	(such	as	with	Gentoo	Linux),	then	they	are	not	altered	by	system
updates;	instead,	the	system	administrator	is	informed	that	an	update	on	these	files	might
be	needed,	keeping	the	manual	changes	made	by	the	administrator	in	the	past.

Initial	role	based	on	entry
Users	will	often	have	multiple	roles	associated	with	them.	Depending	on	how	they	interact
with	the	system,	a	different	initial	role	(and	a	user	domain)	might	be	needed.	Consider	a
user	who	interacts	with	a	system	locally	(through	the	console),	remotely	through	SSH	(for
administrative	purposes),	and	through	FTP	(as	an	end	user),	as	depicted	in	the	following
diagram:

We	want	to	make	sure	that	the	default	role	in	which	the	user	session	starts	on	the	system
depends	on	the	entry	point	on	the	system.	Direct	console	logon	can	be	in	the
administrative	role,	sysadm_r,	whereas	remote	logon	is	first	in	the	staff_r	role	(to	ensure
a	stolen	SSH	key	cannot	be	used	to	perform	administrative	tasks	on	the	system	without
knowing	the	users’	system	password).	The	use	of	the	FTP	server	should	result	in	an
unprivileged	role,	ftp_shell_r.

Note
The	ftp_shell_r	role	is	a	nondefault	role	and	will	not	be	available	by	default.	Using
SELinux	with	an	FTP	server	in	this	setup	requires	that	the	FTP	server	is	either	SELinux
aware	(and	supports	context	transitions)	or	uses	PAM	for	its	authentication	rather	than
internal	user	accounts.

How	to	do	it…
To	configure	the	role	to	be	used	when	a	user	logs	on	or	starts	a	session,	execute	the
following	steps:

1.	 First	of	all,	make	sure	that	the	user	is	assigned	the	various	roles:

~#	semanage	user	-m	-R	"staff_r	sysadm_r	ftp_shell_r"	staff_u

2.	 Edit	the	default_contexts	file	by	reordering	the	contexts,	making	sure	that	the	right
role	is	always	mentioned	before	the	others	(or	that	the	others	are	not	mentioned	at
all):

system_r:local_login_t:s0		user_r:user_t:s0		sysadm_r:sysadm_t:s0	

staff_r:staff_t:s0

system_r:sshd_t:s0		user_r:user_t:s0		staff_r:staff_t:s0

system_r:ftpd_t:s0		ftp_shell_r:ftp_shell_t:s0

3.	 Check	whether	the	domains	have	support	for	specific	Booleans	that	explicitly	enable
or	disable	transitioning	into	particular	domains.	For	instance,	consider	the	SSH
daemon:

~#	setsebool	-P	ssh_sysadm_login	off

How	it	works…
When	applications	call	PAM	to	set	up	the	user	context,	the	PAM	configuration	will	invoke
methods	provided	by	the	pam_selinux.so	file.	These	methods	will	check	the
default_contexts	file	to	see	what	the	context	should	be	for	a	user.	When
pam_selinux.so	is	loaded	through	a	daemon	in	the	system_r:sshd_t	context,	for
instance,	then	the	lines	for	that	particular	daemon	are	interpreted:

system_r:sshd_t:s0		user_r:user_t:s0		staff_r:staff_t:s0

For	the	given	user,	the	set	of	supported	roles	is	obtained.	In	our	case,	this	is	staff_r
sysadm_r	ftp_shell_r.	The	entries	in	the	default_contexts	file	are	then	looked	at	one
by	one,	and	the	first	role	that	is	mentioned	in	the	default_contexts	file,	that	is	also	an
allowed	role	for	the	user,	will	be	used.

In	the	given	example,	as	user_r	is	not	an	allowed	role,	staff_r	is	the	next	one	on	the	list.
This	role	is	allowed,	so	when	the	user	logs	on	through	SSH,	then	its	default	role	will	be
the	staff_r	role	(and	its	associated	user	domain	will	be	staff_t).

Some	domains	are	also	configured	to	allow	or	disallow	direct	logins	into	administrative
roles.	The	SSH	policy,	for	instance,	uses	an	SELinux	Boolean	called	ssh_sysadm_login,
which	allows	transitioning	into	any	user	(ssh_sysadm_login=on)	or	only	to	unprivileged
users	(ssh_sysadm_login=off),	specified	policy-wise	as	follows:

tunable_policy(`ssh_sysadm_login',`

		userdom_spec_domtrans_all_users(sshd_t)

		userdom_signal_all_users(sshd_t)

',`

		userdom_spec_domtrans_unpriv_users(sshd_t)

		userdom_signal_all_users(sshd_t)

')

A	similar	approach	can	easily	be	built	into	custom	policies.	Note	that	the	use	of
userdom_spec_domtrans_unpriv_users	will	only	allow	using	the	daemon	for	roles	and
types	created	through	userdom_unpriv_user_template,	as	this	interface	assigns	the
unpriv_userdomain	attribute	that	is	used	by	the	userdom_spec_domtrans_unpriv_users
interface.

Defining	role	transitions
It	is	possible	to	have	SELinux	automatically	switch	roles	when	a	certain	application	is
executed.	The	usual	checks	still	apply	(such	as	if	the	role	is	a	valid	one	for	the	user,	does
the	current	user	domain	have	execute	rights,	and	many	more),	but	then,	there	is	no	longer
a	need	to	call	runcon	or	sudo	to	switch	the	role.

How	to	do	it…
Role	transitions	can	be	configured	as	follows:

1.	 Identify	the	executable	type	on	which	a	role	transition	has	to	occur:

~$	ls	-Z	puppetca

system_u:object_r:puppetca_exec_t		puppetca

2.	 In	the	SELinux	policy,	create	an	interface	that	includes	the	role	transitions:

interface(`puppet_roletrans_puppetca',`

		gen_require(`

				role	puppetadm_r;

				type	puppetca_t,	puppetca_exec_t;

		')

		allow	$1	puppetadm_r;

		role_transition	$1	puppetca_exec_t	puppetadm_r;

		domtrans_pattern($2,	puppetca_exec_t,	puppetca_t)

')

3.	 Assign	the	newly	created	interface	to	the	user:

puppet_roletrans_puppetca(staff_r,	staff_t)

How	it	works…
The	first	rule	that	is	activated	is	a	role-allow	rule.	Such	a	rule	tells	SELinux	what	role
switch	is	allowed	and	in	which	direction.	The	set	of	allowed	role	switches	can	be	queried
using	sesearch:

~#	sesearch	--role_allow

Consider	the	following	role-allow	rule(s)	for	the	puppetadm_r	role:

		allow	staff_r	puppetadm_r

In	this	case,	only	the	staff_r	role	is	allowed	to	switch	to	the	puppetadm_r	role.	Switching
from	the	puppetadm_r	role	back	to	the	staff_r	role	is	not	allowed.

The	second	rule	tells	SELinux	that	if	a	puppetca_exec_t	labeled	file	is	executed	by	the
selected	role	(staff_r,	in	our	case),	then	the	role	should	switch	to	puppetadm_r.	Of
course,	this	is	only	done	when	the	SELinux	user	is	allowed	the	target	role.

The	third	rule	will	perform	a	domain	transition	from	staff_t	to	puppetca_t	if	staff_t
executes	a	puppetca_exec_t	labeled	file.

It	should	be	noted	though	that	a	forced	role	transition	(that	is,	through	the	SELinux	policy)
is	not	a	preferred	method	in	the	majority	of	cases,	as	it	doesn’t	provide	any	flexibility	to
the	administrator.	If	this	is	implemented,	then	using	multiple	roles	is	more	difficult	as
some	domains	are	hardcoded	to	a	particular	role.

Looking	into	access	privileges
To	finish	off,	let’s	look	at	how	to	verify	access	privileges	granted	to	users.	Specifying
roles	and	privileges	allows	users	to	do	their	job,	but	from	a	security	point	of	view,	it	is	also
important	to	verify	if	(and	which)	users	can	manipulate	certain	resources.	Auditors	will
want	to	have	an	overview	of	who	is	able	to,	say,	manipulate	SELinux	policies	or	read
private	keys.

How	to	do	it…
To	properly	investigate	access	rights,	the	following	approach	can	help	in	identifying	users
(and	processes)	that	have	the	permissions	we	want	to	be	informed	about:

1.	 Verify	file	permissions	that	are	not	related	to	SELinux.
2.	 Verify	direct	access	to	the	resource	(such	as	read	rights	on	private	keys).
3.	 Look	at	who	(users	or	applications)	has	the	right	to	manipulate	the	SELinux	policy.
4.	 Check	users	and	domains	that	are	granted	direct	access	to	filesystems	and	raw

devices.
5.	 See	when	memory	can	be	accessed	directly.
6.	 Review	who	can	update	authentication	files.
7.	 Analyze	who	can	boot	the	system.

How	it	works…
Reviewing	access	is	a	lengthy	process.	It	isn’t	sufficient	to	just	look	into	file	ownership
(user	and	group)	and	look	at	the	permissions	of	the	file	to	find	out	who	is	actually	able	to
read	or	modify	the	file	(assuming	that	the	privilege	looked	into	is	file	access).	Privilege
delegation	tools	such	as	sudo	(through	the	sudoers	file	or	the	sudo	configuration	in	an
LDAP	server)	need	to	be	checked	as	well,	together	with	the	setuid	application	access,
backup	file	access	(when	read	access	is	to	be	examined),	and	more.

With	the	mandatory	access	controls	that	SELinux	provides,	checking	the	policy	for	access
rights	is	an	important	part	of	such	an	evaluation.	The	sesearch	application	can	assist	in
this	quest.

Direct	access	inspection
To	check	direct	access,	we	need	to	query	both	the	access	rights	(such	as	write	privileges
on	the	resource)	as	well	as	relabeling	rights.	After	all,	a	domain	that	is	allowed	to	change
the	SELinux	context	of	a	file	to	another	resource	can	theoretically	switch	the	context,
modify	the	file,	and	reset	the	context.

~#	sesearch	-t	lvm_etc_t	-c	file	-p	write	-ACST

Found	6	semantic	av	rules:

		allow	sysadm_t	non_auth_file_type	:	file	{	…	};

		allow	portage_t	file_type	:	file	{	…	};

...

~#	sesearch	-t	lvm_etc_t	-c	file	-p	relabelfrom,relabelto	-ACST

Found	5	semantic	av	rules:

		allow	sysadm_t	non_auth_file_type	:	file	{	…	};

		allow	restorecond_t	non_auth_file_type	:	file	{	…	};

		allow	setfiles_t	file_type	:	file	{	…	};

…

This	code	shows	not	only	the	user	domains	that	have	the	privileges,	but	also	the
application	domains.	In	a	review	of	permissions,	it	is	necessary	to	also	validate	who	can
access	and	manipulate	processes	that	run	in	these	domains.	This	can	be	done	by	checking
the	transition	permission:

~#	sesearch	-t	setfiles_t	-c	process	-p	transition	-ACST

For	each	of	the	domains,	studying	who	can	manipulate	these	processes	is	a	time-
consuming	process	and	requires	intimate	knowledge	of	the	application(s)	that	run	in	the
given	domain.	For	instance,	the	restorecond	daemon	will	only	reset	file	contexts	to	the
context	known	by	the	SELinux	tools	(so,	modifying	the	context	temporarily	is	not	possible
through	restorecond)	and	only	on	those	locations	that	are	configured	in	the	restorecond
configuration	file.

Policy	manipulation
Checking	the	SELinux	policy	isn’t	sufficient	as	the	policy	can	be	manipulated	as	well.
Loading	a	new	policy	is	governed	through,	among	various	other	privileges,	the
load_policy	permission:

~#	sesearch	-t	security_t	-c	security	-p	load_policy	-ACS

Found	2	semantic	av	rules:

EF	allow	kernel_t	security_t	:	security	load_policy		;	[

secure_mode_policyload]

EF	allow	load_policy_t	security_t	:	security	load_policy	;	[

secure_mode_policyload]

Similarly,	the	access	towards	the	selected	domains	(and	the	load_policy_t	domain	in
particular)	needs	to	be	verified.

As	can	be	seen	from	the	output,	manipulating	the	SELinux	policy	can	also	be	controlled
through	an	SELinux	Boolean	called	secure_mode_policyload.	When	this	Boolean	is
enabled,	loading	a	new	policy	is	no	longer	possible.	If	this	Boolean	is	enabled	and
persisted,	then	even	rebooting	a	system	will	not	help	unless	the	system	is	booted	in	the
permissive	mode.

Similarly,	checking	who	can	put	the	system	in	the	permissive	mode	can	be	verified	as
well:

~#	sesearch	-p	setenforce	-ACS

This	is	governed	through	the	same	SELinux	Boolean	though.

Another	way	to	manipulate	the	SELinux	policy	would	be	to	boot	the	system	in	the
permissive	mode	or	even	with	SELinux	disabled.	This	means	that	reviewing	access	to	the
boot	files	is	also	important	(the	boot_t	type).

Indirect	access
It	is	also	possible	to	access	resources	indirectly,	for	instance,	by	manipulating	the	raw
devices	(such	as	disk	devices	or	memory).	Access	to	device	files	is	already	quite
privileged	on	Linux	systems.	With	SELinux,	additional	controls	might	be	put	in	place.

Disk	devices	are	usually	labeled	as	fixed_disk_device_t.	Access	to	these	files	should
only	be	granted	to	application	domains,	although	some	privileged	user	domains	might	be
able	to	relabel	such	device	nodes	or	manipulate	application	domains	to	perform	actions
not	granted	to	the	regular	user.

~#	sesearch	-t	fixed_disk_device_t	-ACS

Users	who	are	able	to	manipulate	files	related	to	system	authentication	can	grant
themselves	different	user	roles,	for	instance,	by	logging	on	to	the	system	as	a	different
user	(who	does	have	the	rights	needed).	This	includes	access	to	/etc/pam.d/	(usually
labeled	as	etc_t)	or	the	authentication	libraries	themselves	in	/lib/security/	(usually
labeled	as	lib_t).

Chapter	7.	Choosing	the	Confinement
Level
In	this	chapter,	we	will	cover	the	following	recipes:

Finding	common	resources
Defining	common	helper	domains
Documenting	common	privileges
Granting	privileges	to	all	clients
Creating	a	generic	application	domain
Building	application-specific	domains	using	templates
Using	fine-grained	application	domain	definitions

Introduction
During	the	development	of	additional	policies,	developers	can	opt	to	use	a	very	fine-
grained	policy	model,	a	domain-per-application	model,	or	a	coarse-grained,	functionality-
based	policy	model.	The	relationship	between	these	confinement	models	is	shown	in	the
following	diagram:

In	very	fine-grained	policies,	multiple	domains	are	defined,	so	functionally	different
processes	of	the	same	application	are	all	running	in	their	own	specialized	SELinux
domain.	A	coarse-grained	policy,	on	the	other	hand,	allows	to	have	different	applications
with	a	similar	functionality	run	with	the	same	context.	Application-level	policies	are
somewhere	in	the	middle:	they	focus	on	one	domain	(or	a	very	small	set	of	domains)	for
one	application.

Most	policies	are	developed	using	a	one	domain	per	application	principle.	Still,	the
choice	of	development	patterns	in	policy	development	reflects	the	confinement	level	of	an
application,	as	shared,	coarse-grained	policies	might	allow	for	more	interaction	between
applications	and	resources	than	intended,	whereas,	a	fine-grained	policy	is	much	harder	to
develop	and	maintain.

When	we	look	at	a	functional	level,	we	usually	focus	on	shared	resources	or	resources	that
cannot	be	tied	to	a	particular	application.	An	example	is	the	mta	SELinux	policy,	which
manages	the	main	infrastructure-related	shared	content	such	as	e-mail	aliases
(etc_mail_t),	user	mailboxes	(mail_home_rw_t),	e-mail	spool	files	(mail_spool_t),	and
more.

Finding	common	resources
During	policy	development,	some	of	the	resources	used	by	the	policy	are	or	could	be
shared	with	other	policies.	If	that	is	the	case,	a	functionality-driven	policy	module	is
created	in	which	those	common	resources	are	placed.	This	allows	other	policies	to	use
these	resources	and	assign	the	right	permissions	through	the	interfaces	declared	in	the
functionality-driven	policy.

How	to	do	it…
Most	of	the	work	in	this	recipe	is	to	figure	out	what	resources	are	shared.	This	is	done	by
completing	the	following	steps:

1.	 Look	for	common	files	and	directories	that	might	be	shared	with	other	applications
and	whose	ownership	is	not	specifically	tied	to	an	application,	but	is	more	functional
in	nature.	For	these	resources,	declare	them	in	a	functionality-driven	policy.

2.	 Check	whether	there	are	devices	used	that	are	functionally	related	to	the	policy	but
not	to	a	specific	application	in	particular.

3.	 Validate	if	there	is	specific	user-provided	content	that	is	functionally	related	but	not
tied	to	a	particular	application,	and	where	the	default	user	content	types	(such	as
user_home_t)	are	better	not	used.	These	resources	need	to	be	declared	in	the
functionality-driven	policy	and	probably	made	customizable	as	well:

type	public_content_t;	#	customizable

files_type(public_content_t)

4.	 Create	the	proper	interfaces	to	handle	or	interact	with	these	common	resources:

interface(`miscfiles_read_public_files',`

		gen_require(`

				type	public_content_t;

		')

		read_files_pattern($1,	public_content_t,	public_content_t)

')

How	it	works…
Functionality-driven	policy	modules	handle	common	resources	for	multiple	applications
and	policies.	Some	example	policies	that	handle	the	functional	resources	for	multiple
applications	are	the	mail	transfer	agent	policy	(mta)	and	the	web	server	policy	(apache).
Although	the	web	server	policy	was	originally	intended	to	be	purely	for	the	Apache
HTTPd,	it	has	since	evolved	into	a	more	functionality-driven	policy	supporting	a	large
amount	of	web	server	technologies.

Shared	file	locations
A	helpful	method	for	finding	out	what	resources	are	considered	to	be	functional	in	nature
(rather	than	application-specific)	is	to	imagine	switching	one	application	in	favor	of
another.	What	resource	types	would	remain	the	same	if	we	switch	from	one	system	logger
(say	syslog-ng)	to	another	(say	rsyslog),	or	from	Courier-IMAP	to	Cyrus?	Having
knowledge	of	multiple	similar	applications	helps	in	finding	out	where	(or	what)	the	shared
locations	are.

However,	having	similar	functional	requirements	doesn’t	necessarily	make	them	shared.
The	locations	should	also	remain	the	same	(or	at	least	be	consistent	and	on	well-known
locations).	Consider	database	files:	the	database	files	for	PostgreSQL	and	SQLite
databases	both	have	the	same	functional	purpose,	but	it	makes	no	sense	to	label	them	both
with	the	same	label.	Database	files	are	specific	to	a	particular	database	implementation
and	require	specific	labels,	so	with	every	potential	common	resource,	make	sure	that	the
resource	itself	can	be	shared	across	multiple	implementations.

Device	nodes	are	a	nice	example	to	consider	for	a	functionality-driven	policy.	An	example
device	type	definition	would	look	like	the	following:

type	cachefiles_device_t;

dev_node(cachefiles_device_t)

Devices	are	usually	shared	across	multiple	applications.	Most	devices	are	defined	in	the
devices.te	policy	module	with	the	proper	interfaces	being	declared	to	allow	access	to	the
device	(such	as	dev_rw_cachefiles	for	read/write	access	to	the	previously	mentioned
cachefiles_device_t	type).	Not	all	files	in	/dev/	are	such	device	files	though.

Consider	the	/dev/log	socket,	which	is	used	to	send	log	events	to	the	system	logger.	This
socket,	which	is	available	regardless	of	the	system	logger	being	used,	is	made	available
through	the	following	logging	SELinux	policy	module:

type	devlog_t;

files_type(devlog_t)

mls_trusted_object(devlog_t)

The	mls_trusted_object	interface	makes	the	device	(labeled	devlog_t)	accessible	for	all
security	levels	in	an	MLS-enabled	policy.

User	content	and	customizable	types
User-provided	content	is	also	important	to	consider.	For	instance,	for	e-mail-related

daemons,	a	user’s	.forward	file	(which	tells	the	system	where	to	forward	the	e-mails	of
the	user)	is	available	in	his	or	her	home	directory	and	is	definitely	not	owned	by	a
particular	application.	Hence,	its	label	(mail_home_t)	is	tied	to	a	functionality-driven
policy	(mta).

Don’t	forget	to	mark	user	content	as	user	content	through	the
userdom_user_home_content	interface;	otherwise,	end	users	will	not	be	able	to	label	or
manipulate	these	files:

type	mail_home_t;

userdom_user_home_content(mail_home_t)

Some	user	content	is	also	best	marked	as	customizable.	A	customizable	type,	when
assigned	to	a	resource,	is	ignored	during	standard	relabel	operations	(usually	performed	by
the	system	administrator)	and	as	such,	the	resource	label	will	not	be	changed	back	to	what
the	SELinux	configuration	files	have	defined.	This	is	particularly	useful	for	resources
whose	path	is	not	a	fixed	location	and	usually	not	made	part	of	the	SELinux	file	context
definitions.

If	the	administrator	does	a	forced	relabel	operation,	then	the	file	context	is	reset,	even	if
the	current	type	assigned	to	the	resource	is	a	customizable	type:

~#	restorecon	-R	-F	/home/*

In	a	modular	policy	development,	there	is	no	notation	available	to	mark	a	type	as	being	a
customizable	type.	To	do	this,	the	type	needs	to	be	added	to	the	customizable_types	file
in	/etc/selinux/mcs/contexts/.

Marking	files	with	a	customizable	type	is	a	solution	when	the	path	of	the	resource	isn’t
fixed.	The	.forward	file	has	a	fixed	path,	so	there	is	no	need	for	customizable	content.
User	content	that	should	be	publicly	accessible,	however,	(marked	as	public_content_t
or	public_content_rw_t)	does	not	have	a	fixed	path;	hence,	those	types	are	(by	default)
marked	as	customizable.

When	full	policy	development	is	done	(for	instance,	through	the	Linux	distribution	policy
or	because	the	developer	controls	the	entire	policy	and	not	just	additional	modules),	then
the	#	customizable	comment	can	be	placed	behind	the	type	declaration,	as	can	be	seen
from	the	following	example	of	the	CVS	policy	module:

type	cvs_data_t;	#	customizable

files_type(cvs_data_t)

The	reference	policy	build	system	will	then	automatically	add	the	type	to	the
customizable_types	file	during	the	build	process.

There’s	more…
Other	common	resources	that	can	be	considered	are	the	TCP	and	UDP	ports.	Indeed,
network-facing	applications	bind	to	one	or	more	ports,	which	are	usually	the	same	for
applications	sharing	the	same	functionality.

However,	the	TCP	and	UDP	ports	cannot	be	declared	inside	SELinux	policy	modules;
instead,	they	need	to	be	labeled	as	part	of	the	base	policy.	Updating	a	base	policy,
however,	is	either	done	by	the	Linux	distribution	maintainers	or	the	upstream	reference
policy	project.	The	basic	rule	is	that	the	ports	are	named	after	the	service	they	are
generally	used	by:

~$	getent	services	6667

ircd				6667/tcp

~$	seinfo	--portcon=6667

portcon	tcp	6667	system_u:object_r:ircd_port_t

Defining	common	helper	domains
Next	to	the	common	resources,	some	applications	share	the	same	set	of	helper	commands.
The	sendmail	command	is	a	nice	example	of	this,	which	is	executed	by	a	large	set	of
domains	(usually,	applications	that	need	to	send	e-mails	without	using	the	SMTP	protocol
themselves).	The	sendmail	application	is	well	understood	and	most	MTA	applications
support	it	for	command-line	e-mail	sending	operations.

Supporting	such	helper	domains	is	usually	done	through	a	functionality-driven	policy.

How	to	do	it…
Creating	helper	domains	is	similar	to	creating	regular	application	domains,	but	the	use	of
attributes	allows	the	policy	to	be	very	flexible	and	usable	by	the	application-specific
policy	modules	developed	further.	Let’s	look	at	the	MTA	definition	as	an	example	of	how
this	can	be	accomplished:

1.	 Define	an	attribute	for	the	command	type:

attribute	mta_exec_type;

2.	 Create	a	proper	label	type	for	the	command,	and	assign	it	the	mta_exec_type
attribute:

type	sendmail_exec_t,	mta_exec_type;

application_executable_file(sendmail_exec_t);

3.	 Configure	an	application	domain	for	the	command:

type	system_mail_t;

application_domain(system_mail_t,	sendmail_exec_t)

4.	 If	the	application	is	for	system	purposes,	assign	the	domain	to	the	system_r	role:

role	system_r	types	system_mail_t

5.	 If	the	application	is	meant	to	be	executed	by	end	users,	do	not	forget	to	include	a
_run	or	_role	interface.

6.	 Make	an	interface	callable	by	third-party	application	domains	to	allow	them	to
interact	with	the	helper	application:

interface(`mta_send_mail',`

		gen_require(`

				attribute	mta_exec_type;

				type	system_mail_t;

		')

		corecmd_search_bin($1)

		domtrans_pattern($1,	mta_exec_type,	system_mail_t)

')

7.	 Make	another	interface	allowing	specific	policies	to	mark	their	own	helper
executables	usable	for	the	same	purpose	(as	they	might	not	always	use	the	same
type):

interface(`mta_agent_executable',`

		gen_require(`

				attribute	mta_exec_type;

		')

		typeattribute	$1	mta_exec_type;

		application_executable_file($1)

')

How	it	works…
Helper	domains	are	meant	to	provide	reusable	functionality	across	multiple
implementations.	To	support	the	flexibility	of	having	multiple	implementations,	attributes
are	usually	assigned	to	the	types	so	that	extensions	can	be	easily	created.

Consider	the	sendmail	example	again.	Most	implementations	will	have	the	command-line
sendmail	application	marked	as	sendmail_exec_t.	However,	there	are	implementations
whose	sendmail	binary	has	many	more	features,	especially	when	called	from	the
implementation	processes	themselves.	Some	implementations	even	have	the	file	as	a
symbolic	link	to	a	more	generic	e-mail-handler	application.

The	Exim	implementation,	for	instance,	uses	exim_exec_t	instead	of	using
sendmail_exec_t.	With	the	use	of	the	attributes,	the	Exim	policy	module	can	just	call	the
proper	interface	(mta_agent_executable,	in	this	case),	so	third-party	applications	can	still
execute	the	command	(even	though	it	is	exim_exec_t	and	not	sendmail_exec_t)	and	have
it	behave	as	expected	(that	is,	with	a	transition	to	the	user_mail_t	or	system_mail_t
domain	as	expressed	by	the	MTA	policy):

type	exim_exec_t;

mta_mailserver(exim_t,	exim_exec_t)

mta_agent_executable(exim_exec_t)

Attributes	allow	other	domains	to	interact	with	the	newly	defined	type	without	having	to
update	the	policy	modules	that	define	these	domains.	This	is	because	those	domains	are
granted	execute	rights	on	all	types	that	have	the	mta_exec_type	attribute	assigned,	and
will	invoke	a	domain	transition	to	the	system_mail_t	helper	domain	when	they	execute
such	a	file.	This	privilege	is	provided	through	the	mta_send_mail	interface,	which	is	a
good	example	of	a	helper	domain	interface	to	be	assigned	to	other	domains:

interface(`mta_send_mail',`

		gen_require(`

				type	system_mail_t;

				attribute	mta_exec_type;

		')

		corecmd_search_bin($1)

		domtrans_pattern($1,	mta_exec_type,	system_mail_t)

		allow	$1	mta_exec_type:lnk_file	read_lnk_file_perms;

')

Documenting	common	privileges
Next	to	the	helper	domains,	most	functionality-driven	policies	also	group	privileges	that
can	be	assigned	to	domains.	Such	privileges	could	be	to	not	only	manage	the	common
resources,	but	also	to	extend	other	domains	with	functional	requirements	as	managed	by
the	common	policy.

All	e-mail	daemons	need	to	be	able	to	bind	to	the	proper	TCP	ports,	handle	user
mailboxes,	and	so	on.	By	bundling	these	common	privileges	on	the	functional	policy
level,	any	evolution	pertaining	to	the	policy	can	be	immediately	granted	to	all	domains
inheriting	privileges	from	the	functional	policy,	rather	than	having	to	update	each	domain
individually.

How	to	do	it…
Common	privileges	can	be	found	in	a	wide	variety.	How	common	privileges	are	assigned
depends	on	the	use	case.	The	following	method,	based	on	the	e-mail	server	definition	in
the	MTA	policy,	provides	a	flexible	approach	to	this:

1.	 Create	an	attribute	for	the	functional	domain	to	which	common	privileges	are
granted:

attribute	mailserver_domain;

2.	 Define	an	interface	where	the	attribute	is	assigned	to	a	specified	domain:

interface(`mta_mailserver',`

		gen_require(`

				attribute	mailserver_domain;

		')

		typeattribute	$1	mailserver_domain;

')

3.	 Build	an	interface	that	assigns	the	functionally	related	common	privileges	to	the
specified	argument.	It	should	not	assign	attributes	though!	This	is	done	with	the
following	code:

interface(`mta_mailserver_privs,`

		gen_require(`

				type	mail_home_t;

		')

		allow	$1	mail_home_t:file	read_file_perms;

			…

')

4.	 Now,	use	the	newly	created	interface	to	grant	the	proper	permissions	on	the	attribute:

mta_mailserver_privs(mailserver_domain)

5.	 If	a	specific	application	always	has	to	inherit	the	privileges,	assign	the	attribute	to	it:

mta_mailserver(exim_t)

6.	 If	a	specific	application,	however,	optionally	inherits	the	privileges,	use	the	domain
interface:

tunable_policy(`nginx_enable_mailproxy',`

		mta_mailserver_privs(nginx_t)

')

How	it	works…
When	assigning	privileges	to	a	domain,	there	are	two	approaches	that	can	be	taken:	either
the	privileges	are	assigned	to	an	attribute	(which	is	then	associated	with	a	domain)	or	the
privileges	are	directly	assigned	to	the	domain.	Which	one	to	pick	depends	on	how	the
policy	is	going	to	be	used.	Due	to	restrictions	in	policy	development,	it	is	not	possible	to
optionally	(that	is,	triggered	through	SELinux	Booleans)	assign	attributes.	Any	attempt	to
do	so	will	result	in	a	build	failure,	as	follows:

~$	make	mymodule.pp

Compiling	mcs	mymodule	module

checkmodule:	loading	policy	configuration	from	tmp/mymodule.tmp

mymodule.te:23:ERROR	'syntax	error'	at	token	'typeattribute'	on	line	1309:

#line	23

		typeattribute	$1	mta_exec_type;

checkmodule:	error(s)	encountered	while	parsing	configuration

As	a	result,	whenever	permissions	can	be	granted	optionally	(through	SELinux	Booleans),
policy	developers	will	have	to	make	sure	that	the	permissions	are	granted	directly	(instead
of	assigning	an	attribute	to	the	domain).

However,	in	most	cases,	using	attributes	for	domains	makes	sense.	The	policy	itself	does
not	increase	in	size	that	much	(as	rules	remain	on	an	attribute	level)	and	administrators	can
easily	query	which	domains	participate	in	the	functional	approach:

~#	seinfo	-amailserver_domain	-x

		mailserver_domain

				system_mail_t

				exim_t

				courier_smtpd_t

Granting	the	permissions	through	an	interface	also	allows	us	to	quickly	look	at	the	impact
of	assigning	an	attribute,	as	we	can	then	use	the	seshowif	command:

~$	seshowif	mta_mailserver_privs

The	example	given	uses	a	server-domain	approach,	but	the	same	can	be	done	for	a	client.

Granting	privileges	to	all	clients
The	approach	of	using	interfaces	to	aggregate	privileges	not	only	benefits	domains	that
have	the	same	functional	purpose,	but	also	clients.	By	combining	the	privileges	for	the	set
of	clients,	it	is	possible	to	enhance	client	privileges	by	only	updating	the	interface	rather
than	having	to	update	all	the	clients’	policy	modules.

How	to	do	it…
Create	a	client	interface	that	can	be	assigned	to	all	clients	of	a	particular	functional
purpose.	The	following	steps	extend	an	example	policy	with	antimalware	support:

1.	 In	the	antimalware	generic	policy,	create	an	avcheck_client	attribute:

attribute	avcheck_client;

2.	 Create	the	interface	that	assigns	the	attribute	to	a	client	domain:

interface(`av_check_client',`

		gen_require(`

				attribute	avcheck_client;

		')

		typeattribute	$1	avcheck_client;

')

3.	 Create	the	interface	that	assigns	the	common	privileges	for	client	domains:

interface(`av_check_client_privs',`

		…

')

4.	 In	the	created	interface,	add	the	privileges	that	need	to	be	assigned	to	all	client
domains.	For	instance,	to	enable	a	domain	transition	for	the	ClamAV	check
command,	the	following	code	is	used:

optional_policy(`

		clamav_domtrans_check($1)

')

5.	 All	domains	that	act	as	a	client	are	either	assigned	the	av_check_client	(if	the
attribute	can	be	assigned)	or	av_check_client_privs	interface.

How	it	works…
Suppose	a	new	antimalware	policy	is	developed	for	ClamAV,	and	we	want	the	clients	to	be
able	to	execute	the	clamav_check_exec_t	applications	and	transition	them	to	the
clamav_check_t	domain.	Instead	of	updating	all	clients	with	a	clamav_domtrans_check
call,	we	only	do	this	in	the	generic	antimalware	policy’s	av_check_client_privs
interface,	as	follows:

optional_policy(`

		clamav_domtrans_check($1)

')

This	ensures	that	all	proper	domains—	not	only	those	with	the	avcheck_client	attribute
—get	the	necessary	privileges	assigned.

Another	example	that	uses	this	principle	is	the	PulseAudio	policy.	An	interface	called
pulseaudio_client_domain	is	made	available	and	should	be	used	by	PulseAudio	clients.
Whenever	the	permissions	for	a	PulseAudio	client	need	to	be	updated,	then	the	policy
developer	only	needs	to	update	the	pulseaudio_client_domain	interface	instead	of	all
client	policy	modules.

Such	an	approach	makes	policy	development	much	more	flexible	and	efficient,	as
developers	do	not	need	to	update	all	possible	client	domains	with	the	added	privileges.

Creating	a	generic	application	domain
In	some	situations,	it	makes	sense	to	create	a	generic	application	domain,	even	though
multiple	implementations	exist	for	the	same	functionality.	Examples	are	the	Java	domain
(which	works	for	all	the	popular	Java™	implementations)	and	init	domain.	When	this
occurs,	carefully	consider	whether	the	generic	application	domain	will	always	be
sufficient,	or	whether	specific	application	domains	might	come	into	play	later.	When	this
isn’t	clear,	make	sure	that	the	policy	being	developed	is	flexible	enough	to	cater	both
situations.

How	to	do	it…
In	order	to	create	a	generic	application	policy	that	is	still	flexible	with	respect	to	potential
specific	policies	that	would	be	developed	later,	follow	the	upcoming	set	of	steps:

1.	 Identify	the	permissions	that	are	(almost)	always	applicable	to	the	functional	domain,
regardless	of	the	implementation.

2.	 Assign	those	permissions	to	a	base	implementation.	For	instance,	for	Java™
implementations,	assign	permissions	as	follows:

attribute	javadomain;

#	Minimal	permissions

java_base_runtime_domain(javadomain);

type	java_t;

#	Assigns	javadomain	attribute

java_base_runtime(java_t);

3.	 Add	permissions	that	are	applicable	to	at	least	one	(or	a	few)	of	the	implementations
to	the	standard	type.	In	our	example,	this	would	be	to	java_t.	This	ensures	that
java_t	is	generally	usable	for	most	Java™	implementations.

4.	 Add	the	proper	file	contexts	to	allow	most	implementations	to	benefit	from	the
generic	application	policy:

/usr/lib/bin/java[^/]*	—	gen_context(system_u:object_r:java_exec_t,s0)

/opt/(.*/)?bin/java[^/]*	—	

gen_context(system_u:object_r:java_exec_t,s0)

How	it	works…
With	the	given	implementation,	most	Java™	implementations	on	an	SELinux-enabled
system	will	run,	when	executed,	in	the	generic	java_t	domain:	their	executables	are	all
marked	as	java_exec_t	through	generic	file	context	expressions,	and	the	java_t	domain
holds	not	only	the	set	of	least	privileges	for	Java™	domains	(as	granted	through	the
javadomain	attribute	that	gets	them	from	the	java_base_runtime_privs	interface),	but
also	those	privileges	that	are	common	for	quite	a	few	implementations.	This	means	that
the	java_t	domain	has	more	privileges	than	needed	in	most	cases,	as	it	has	to	support	a
broad	set	of	Java™	implementations.

However,	when	a	specific	implementation	will	be	created	with	a	different	policy	profile
than	the	existing	java_t	domain,	policy	developers	can	easily	mark	this	domain	as	a	Java
domain,	inheriting	the	permissions	that	are	necessary	for	every	Java™	implementation
(for	instance,	because	they	are	mandated	through	the	specifications	of	Java™)	while
staying	clear	from	the	other	permissions	that	are	granted	to	the	generic	java_t	domain:

type	icedtea_java_t;

java_base_runtime(icedtea_java_t)

By	creating	a	more	specific	file	context	definition,	the	executable	of	the	newly	created
type	will	get	this	label	assigned	(as	the	other	expressions	are	more	generic,	and	the
SELinux	utilities	use	a	most	specific	definition	first	approach):

/opt/icedtea7/bin/java	—	

gen_context(system_u:object_r:icedtea_java_exec_t,s0)

Building	a	proper	set	of	least	privilege	rules	is	not	easy	and	requires	experience	in	policy
development.	If	uncertain,	it	might	be	a	good	idea	to	use	SELinux	Booleans,	such	as	used
by	the	(generic)	cron	policy:

#	Support	extra	rules	for	fcron

gen_tunable(fcron_crond,	false)

…

tunable_policy(`fcron_crond',`

		allow	admin_crontab_t	self:process	setfscreate;

')

Through	this	approach,	specific	implementations	can	still	benefit	from	the	generic	policy
declaration,	if	the	amount	of	additional	permissions	is	small.	As	the	policy	is	enhanced
with	other	implementation	details,	the	need	for	the	tunable_policy	statement	might	be
removed	or	a	specific	implementation	for	fcron	can	be	developed	separately.

Building	application-specific	domains
using	templates
Specific	domains	have	the	advantage	that	they	can	contain	those	privileges	needed	by	the
domain,	and	no	more.	As	there	are	no	other	application	implementations	using	the	specific
domain,	the	privileges	can	be	tailored	to	the	needs	of	the	application.

In	certain	situations	though,	it	might	be	beneficial	to	automatically	generate	the	types
together	with	the	basic	permissions.	Generating	types	is	done	through	templates	(rather
than	interfaces,	although	the	underlying	implementation	of	interfaces	and	templates	is
quite	similar).	The	approach	and	development	method	is	aligned	with	interface	definitions
and	should	pose	no	difficulties	for	developers	to	understand.

An	example	to	consider	with	templates	would	be	to	automatically	create	system	cron	job
domains	for	individual	applications.	Through	a	template,	we	can	automatically	create	the
domain,	executable	type,	and	temporary	resource	types	as	well	as	properly	document	the
interactions	of	that	domain	with	the	main	cron	daemon	(which	is	needed	for
communicating	job	failures	or	success,	handling	output,	logging,	and	so	on).

How	to	do	it…
Creating	templates	is	similar	to	creating	interfaces.	To	create	templates,	the	following
approach	can	be	used:

1.	 Start	with	a	skeleton	template	inside	the	.if	file,	but	call	it	template	instead	of
interface:

template(`cron_system_job_template',`

		…

')

2.	 Add	in	the	following	type	declarations:

type	$1_cronjob_t;

type	$1_cronjob_exec_t;

application_domain($1_cronjob_t,	$1_cronjob_exec_t)

type	$1_cronjob_tmp_t;

files_tmp_file($1_cronjob_tmp_t)

3.	 Grant	the	proper	interactions	between	the	main	daemon	and	the	newly	defined	types
that	are	still	inside	the	template	definition:

allow	crond_t	$1_cronjob_t:fd	use;

allow	crond_t	$1_cronjob_t:key	manage_key_perms;

domtrans_pattern(crond_t,	$1_cronjob_exec_t,	$1_cronjob_t)

…

4.	 In	the	application	policy,	call	the	template	so	that	the	new	types	are	created.	For
instance,	to	create	the	cron	job	domains	for	Puppet,	add	the	following	code	to
puppet.te:

cron_system_job_template(puppet)

5.	 Enhance	the	(now	available)	puppet_cronjob_t	domain	with	the	permissions
needed:

allow	puppet_cronjob_t	…

How	it	works…
The	use	of	templates	has	been	discussed	earlier	in	the	chapter	on	web	server	content.
Indeed,	the	apache_content_template	definition,	too,	is	a	template	that	creates	additional
types	and	documents	the	interaction	between	the	newly	created	types	and	the	(main)	web
server	domain.

The	use	of	templates	allows	for	rapid	policy	development	as	well	as	properly	isolated
permission	handling.	When	the	main	application	evolves	and	requires	additional
permissions	with	respect	to	the	specific	application	domains,	or	certain	permissions	are	no
longer	needed,	then	only	the	template	needs	to	be	adjusted.	All	that	is	needed	to	apply	the
changes	is	to	rebuild	the	SELinux	policy	modules,	without	any	need	to	alter	their
individual	source	files.

It	is	a	best	practice	to	use	prefix	and/or	suffix	notations	for	template-provided	types	and	to
end	the	name	of	the	template	with	_template.	In	theory,	it	is	perfectly	possible	to	create	a
template	that	creates	the	specified	type(s)	without	any	prefix	and	postfix	expressions,
instead	requiring	the	various	types	to	be	passed	on	one	at	a	time:

cron_system_job_template(puppet_cronjob_t,	puppet_cronjob_exec_t,	

puppet_cronjob_tmp_t)

However,	this	approach	is	inflexible	under	the	following	circumstances:

If	additional	types	need	to	be	supported,	then	the	interface	API	itself	(the	number	of
arguments	passed	to	it	and	their	meaning)	needs	to	be	altered,	which	makes	such
changes	incompatible	with	earlier	releases.	This	is	important	because	there	might	be
policy	developers	who	are	using	this	interface	without	their	policy	being	available	in
the	repository	that	we’re	developing	in,	so	we	cannot	refactor	this	code	ourselves.
If	a	type	is	no	longer	needed,	then	either	the	interface	API	itself	needs	to	be	changed
(making	it	incompatible	with	earlier	releases)	or	the	interface	will	be	made	to	ignore
a	particular	type	(which	easily	becomes	a	development	nightmare).
Developers	will	continuously	need	to	look	at	the	order	and	meaning	of	the	types	in
order	not	to	mistakenly	have	the	executable	type	marked	as	a	domain	and	vice	versa.

Such	an	approach	would	also	make	it	possible	to	create	confusing	type	definitions:

cron_system_job_template(puppetjob_t,	pj_exec_t,	ptmp_t)

Through	such	an	approach,	developers	and	administrators	would	lose	sight	over	the
relation	between	types.

Using	proper	prefix	and	postfix	notations	allows	for	a	simplified	management.	The	use	of
a	template	such	as	cron_system_job_template	easily	informs	developers	that	there	will
be	several	types	matching	*_cronjob_t,	*_cronjob_exec_t,	and	*_cronjob_tmp_t.
Policy	developers	and	system	administrators	easily	learn	that	these	are	related	with	each
other.

Using	fine-grained	application	domain
definitions
The	use	of	templates	earlier	in	this	chapter	is	a	start	to	support	more	fine-grained
application	domain	definitions.	Instead	of	running	a	workload	inside	the	same	domain	as
the	main	application,	specific	types	are	created	that	are	meant	to	optimize	the	interaction
between	one	domain	and	another,	ensuring	that	the	permissions	granted	to	a	particular
domain	remain	small	and	manageable.

Using	fine-grained	application	domains	goes	a	step	further,	having	processes	of	the	same
application	run	inside	their	own	specific	domains.	This	is	not	always	possible	(not	all
applications	use	multiple,	distinct	processes),	but	when	it	is,	using	fine-grained	domains
provides	an	even	more	secure	environment,	where	each	task	runs	with	just	the	permissions
needed	for	that	individual	task,	even	though	the	application,	in	general,	needs	more
permissions.

An	example	implementation	of	fine-grained	application	domain	definitions	is	the	postfix
policy,	which	will	be	used	as	an	example	in	this	recipe.	The	Postfix	e-mail	server	is	well
documented	and	its	architecture	has	been	quite	stable,	making	it	a	prime	candidate	for	a
fine-grained	policy	development	approach.

However,	when	fine-grained	application	domains	are	used,	policy	development	and
maintenance	itself	becomes	harder.	Individual	interaction	changes	between	processes
(which	might	be	the	case	with	newer	versions	of	an	application)	require	policy	updates
much	more	often	than	when	all	processes	run	within	the	same	SELinux	domain.

How	to	do	it…
The	following	checks	can	be	taken	to	see	whether	fine-grained	application	domains	make
sense	or	not:

1.	 Does	the	application	architecture	use	multiple	processes,	with	each	process	having	a
distinct	functional	task?	If	not,	then	creating	fine-grained	application	domains	will
not	help	much	as	every	domain	will	have	the	same	permissions	anyhow.

2.	 Are	there	processes	with	different	access	vectors	(and	thus	are	vulnerable	to	different
threats	than	others)?	For	instance,	whether	some	processes	are	directly	accessible
through	the	network	whereas	others	are	local?	If	so,	then	using	fine-grained
application	domains	might	make	sense	to	reduce	the	impact	in	case	of	the
vulnerability	exploitation.

3.	 Is	there	an	interaction	between	a	subset	of	the	processes	with	other	domains	(not
managed	through	the	same	application),	whereas	the	other	processes	do	not	need	to
interact	with	these	domains?	If	so,	then	using	fine-grained	application	domains	might
make	sense	to	limit	exposure	of	resources	to	other	applications.

4.	 Does	the	application	support	different	roles	that	might	need	to	interact	with	some	(but
not	all)	of	the	processes?	A	single	full-application	administrator	might	still	need
administrative	privileges	to	all	processes	and	resources,	but	other	roles	might	not
have	this	requirement.	Using	fine-grained	application	domains	allows	for	fine-
grained	roles	as	well.

How	it	works…
Supporting	fine-grained	application	domains	is	usually	done	for	risk	mitigation.	But
besides	risk	mitigation,	it	also	provides	advantages	in	role	management	as	well	as	a	more
efficient	approach	to	managing	types	that	are	inherited	from	the	domain.

Reducing	exploit	risks
Consider	a	part	of	the	Postfix	architecture,	as	shown	in	the	next	diagram:

The	smtpd	daemon	handles	the	reception	of	an	e-mail	through	the	network,	and	as	such,
is	more	prone	to	remote	vulnerability	exploits	than	to	locally	running	processes	such	as
the	cleanup	process	or	even	the	qmgr	process.

By	limiting	resource	access	of	the	smtpd	daemon	to	just	the	resources	it	needs,	exploits
that	would	attempt	to	access	the	queues	(resources	not	usually	accessed	by	smtpd	but
used	by	qmgr)	would	fail	as	the	least	privilege	approach	used	in	the	smtpd	domain
(postfix_smtpd_t)	disallows	access	to	the	maildrop	queues
(postfix_spool_maildrop_t).

Proper	risk	reduction	is	only	possible	if	the	resources	of	the	application	(such	as	the
specific	queues)	are	also	defined	in	a	fine-grained	manner.	If	the	application	has	multiple
configuration	files	and	these	configuration	files	are	read	by	different	functional	processes,
then	the	configuration	files	should	be	labeled	more	specifically	as	well	(for	instance,
configuration	files	for	routing	and	configuration	files	for	network	settings).

If	the	application	resources	are	labeled	in	a	generic	fashion,	we	risk	that	all	fine-grained
domains	have	the	same	rights	towards	the	generic	resources,	making	it	more	plausible	for
a	vulnerable	application	to	be	exploited	with	larger	consequences	to	the	entire	application

architecture.

Role	management
Using	fine-grained	application	domains	goes	further	than	just	mitigation	of	exploits.	With
individual	domains,	role	access	can	be	granted	to	users	allowing	them	to	take	specific
actions	without	requiring	full	application	privileges.

For	instance,	operator	roles	can	be	created	that	allow	manipulation	of	the	Postfix	deferred
queue	and	signaling	of	the	qmgr	process	without	granting	those	users	any	specific	rights
towards	the	other	processes.	Assuming	the	user	domain	for	this	role	is	postoper_t,	this
would	be	accomplished	as	follows:

postfix_signal_qmgr(postoper_t)

postfix_manage_maildrop(postoper_t)

Type	inheritance	and	transitions
When	a	domain	creates	new	resources,	these	resources	are	assigned	a	type	based	on	the
label	of	the	domain	as	well	as	the	transitions	defined	in	the	SELinux	policy.	A	process	that
is	launched	by	a	domain	by	default	(that	is,	when	no	transitions	are	defined	in	the	policy)
inherits	the	label	of	the	parent	domain,	while	a	file	created	inside	a	directory	by	default
inherits	the	type	of	that	parent	directory.	In	the	case	of	labeled	network	support,	the
packets	are	labeled	based	on	the	parent	socket	label.

Sometimes	the	creation	of	a	resource	cannot	be	tied	to	a	parent	domain	or	parent	resource,
making	it	impossible	for	SELinux	to	deduce	the	label	to	assign	to	this	resource.	For	this
reason,	initial	SIDs	are	provided	by	the	SELinux	policy.	These	tell	the	SELinux
subsystem	what	the	default	label	is	for	such	resources	if	no	label	can	be	deduced.

For	instance,	the	initial	SIDs	for	a	(TCP/UDP)	port	and	for	a	file	are	as	follows:

sid	port	gen_context(system_u:object_r:port_t,s0)

sid	file	gen_context(system_u:object_r:unlabeled_t,s0)

The	definition	of	initial	SIDs	is	part	of	the	base	SELinux	policy	and	cannot	be	altered
using	SELinux	policy	modules.	Luckily,	there	is	little	reason	for	SELinux	developers	to
ever	touch	the	initial	SID	definitions.

These	label	inheritance	rules	are	important	in	a	fine-grained	application	domain	design.
Applications	that	use	multiple	processes	also	tend	to	use	resources	such	as	shared	memory
for	inter-process	communication	(IPC).	When	all	processes	run	with	the	same	domain,
the	shared	memory	is	also	labeled	the	same	(such	as	postgresql_tmpfs_t	for	the
PostgreSQL	managed	shared	memory)	as	a	file	transition	would	be	put	in	place:

#	/dev/shm/	shared	memory

type	postgresql_$1_tmpfs_t;

files_tmpfs_file(postgresql_$1_tmpfs_t)

…

fs_tmpfs_filetrans(postgresql_$1_t,	postgresql_$1_tmpfs_t,	file)

When	using	multiple	domain	definitions,	it	is	possible	that	shared	memory	segments	are
labeled	differently	as	well	(depending	on	which	process	creates	the	shared	memory

segments,	of	course),	so	even	IPC	can	then	be	properly	governed.	Separate	file	transitions
would	be	put	in	place	depending	on	the	domain	that	is	creating	a	shared	memory	segment.

Next	to	file	transitions,	policy	developers	can	also	introduce	domain	transitions	(which
changes	the	label	of	the	newly	created	process)	using	the	domtrans_pattern	definition.
Inside	the	Postfix	policy,	this	is	used	to	create	the	fine-grained	process	architecture:

domtrans_pattern(postfix_master_t,	postfix_postqueue_exec_t,	

postfix_postqueue_t)

domtrans_pattern(postfix_master_t,	postfix_showq_exec_t,	postfix_showq_t)

Such	domain	transitions	can	also	be	supported	through	the	interfaces,	as	we’ve	seen	in	the
earlier	chapters,	such	as	the	postfix_domtrans_smtp	interface:

interface(`postfix_domtrans_smtp',`

		gen_require(`

				type	postfix_smtp_t,	postfix_smtp_exec_t;

		')

		corecmd_search_bin($1)

		domtrans_pattern($1,	postfix_smtp_exec_t,	postfix_smtp_t)

')

A	third	transition	type	that	SELinux	supports	is	the	dynamic	domain	transition.	Such
SELinux	policy	rules	inform	the	SELinux	subsystem	that	a	process	can	change	its	own
type	dynamically—without	needing	to	execute	a	file.	This	does	require	the	application	to
be	SELinux-aware	(that	is,	be	able	to	interact	with	the	SELinux	subsystem	itself).	For
instance,	inside	the	FTP	policy,	the	following	interface	is	made	available	to	support
domains	dynamically	transitioning	to	the	anon_sftpd_t	domain:

interface(`ftp_dyntrans_anon_ftpd',`

		gen_require(`

				type	anon_sftpd_t;

		')

		dyntrans_pattern($1,	anon_sftpd_t)

')

In	our	Postfix	example,	we	used	the	/dev/shm/	shared	memory,	but	there	is	also	POSIX
shared	memory,	which	is	governed	through	the	shm	class.	This	shared	memory	inherits	the
label	from	the	domain	itself,	so	if	two	applications	(such	as	postfix_pickup_t	and
postfix_cleanup_t)	use	POSIX	shared	memory,	then	the	target	label	is	inherited	from
the	process	that	creates	the	shared	memory	region:

allow	postfix_pickup_t	postfix_cleanup_t:shm	rw_shm_perms;

Without	fine-grained	access	controls,	this	would	all	be	handled	by	a	single	domain	(say
postfix_t)	and	shared	memory	access	controls	would	be	very	limited.

Chapter	8.	Debugging	SELinux
In	this	chapter,	we	will	look	at	SELinux	debugging	through	the	following	recipes:

Identifying	whether	SELinux	is	to	blame
Analyzing	SELINUX_ERR	messages
Logging	positive	policy	decisions
Looking	through	SELinux	constraints
Ensuring	an	SELinux	rule	is	never	allowed
Using	strace	to	clarify	permission	issues
Using	strace	against	daemons
Auditing	system	behavior

Introduction
On	an	SELinux-enabled	system,	the	SELinux	policy	defines	how	applications	should
behave.	Any	change	in	behavior	might	trigger	SELinux	denials	for	certain	actions	of	that
application.	As	a	result,	end	users	can	notice	unexpected	permission	issues	or	erratic
application	behavior.

Troubleshooting	such	situations	is	usually	done	through	analysis	of	the	AVC	events.	Many
resources	already	cover	AVC	events	in	great	detail.	The	basic	premise	is	that	an	AVC
event	uses	a	set	of	key-value	pairs,	as	follows:

type=AVC	msg=audit(1369306885.125:4702304):	avc:	denied	{	append	}	for	

pid=1787	comm="syslog-ng"	name="oracle_audit.log"	dev=dm-18	ino=65	

scontext=system_u:system_r:syslogd_t:s0	tcontext=system_u:object_r:usr_t:s0	

tclass=file

In	this	example,	we	can	deduce	the	following	from	the	AVC	event:

The	event	is	a	denial	(avc:	denied)
The	operation	that	was	denied	is	appending	to	a	file	({	append	}	…	tclass=file)
The	process	that	tried	to	append	to	the	file	has	PID	1787	and	name	syslog-ng
(pid=1787	comm="syslog-ng")
The	process’	context	is	syslogd_t	(scontext=system_u:system_r:syslogd_t:s0)
The	target	file	is	called	oracle_audit.log	and	has	an	inode	number	65	on	the
filesystem,	stored	on	the	/dev/dm-18	metadevice	(name="oracle_audit.log"
dev=dm-18	ino=65)
The	file’s	context	is	usr_t	(tcontext=system_u:object_r:usr_t:s0)

However,	sometimes	it	isn’t	sufficient	to	find	out	where	the	problem	is.	Luckily,	there	are
many	more	options	available	to	debug	the	problem.

Identifying	whether	SELinux	is	to	blame
Before	blaming	the	SELinux	subsystem	and	policies	for	a	problem,	it	is	important	to
verify	whether	SELinux	is	to	blame	at	all.	Too	often,	hours	of	troubleshooting	are	put	in
analyzing	the	SELinux	policies	and	subsystem	only	to	find	out	that	the	problem	also
persists	when	SELinux	is	not	enabled.

How	to	do	it…
In	order	to	be	confident	that	SELinux	is	(or	isn’t)	to	blame,	the	following	set	of	steps	can
be	taken:

1.	 Is	it	possible	to	get	more	information	through	the	application’s	internal	debugging
system?	Consider	the	following	instance:

~#	puppet	master

Error:	Could	not	find	class	puppet::agent	for	foo.bar	on	node	foo.bar

~#	puppet	master	--debug	--no-daemonize	--verbose

2.	 Is	an	AVC	denial	related	to	the	problem	shown	in	the	audit	logs?	If	not,	try	disabling
the	dontaudit	rules	and	try	again:

~#	semodule	-DB

3.	 Is	the	application	that	gives	problems	SELinux-aware?	Most	SELinux-aware
applications	are	linked	with	the	libselinux.so	library,	so	we	can	verify	whether	this
is	the	case	using	ldd	or	scanelf:

~#	ldd	/usr/bin/dbus-daemon

								linux-vdso.so.1	=>		(0x00007fff56df4000)

								libexpat.so.1	=>	/lib64/libexpat.so.1	(0x00007f55710ae000)

								libselinux.so.1	=>	/lib64/libselinux.so.1	(0x00007f5570e8f000)

								libaudit.so.1	=>	/lib64/libaudit.so.1	(0x00007f5570c72000)

								libcap-ng.so.0	=>	/lib64/libcap-ng.so.0	(0x00007f5570a6d000)

								libpthread.so.0	=>	/lib64/libpthread.so.0	(0x00007f5570850000)

								librt.so.1	=>	/lib64/librt.so.1	(0x00007f5570647000)

								libc.so.6	=>	/lib64/libc.so.6	(0x00007f55702b3000)

								libdl.so.2	=>	/lib64/libdl.so.2	(0x00007f55700af000)

								/lib64/ld-linux-x86-64.so.2	(0x0000003458000000)

4.	 Is	the	issue	login	related?	If	so,	an	application	might	not	be	SELinux-aware	but	still
behave	differently,	as	it	uses	PAM	under	the	hood,	which	calls	the	pam_selinux.so
library.

5.	 Does	the	problem	still	persist	if	the	application	domain	is	put	in	permissive	mode?	To
check	this,	issue	the	following	command:

~#	semanage	permissive	-a	portage_t

6.	 If	the	application	domain	is	unknown,	try	putting	the	entire	system	in	permissive
mode	(if	allowed)	to	see	whether	the	problem	is	still	showing	up.	If	it	is,	then
SELinux	might	not	be	the	cause	after	all:

~#	setenforce	0

How	it	works…
Ensuring	that	SELinux	is	the	cause	of	a	problem	is	the	first	step	to	enlightenment.
Numerous	hours	of	SELinux	investigations	to	resolve	issues	are	spent	only	to	find	out	that
the	problem	was	not	with	SELinux	to	begin	with.

Getting	more	information	from	the	application	(or	applications)	involved	is	the	first	step	to
troubleshooting	issues.	Many	applications	have	command-line	flags	that	increase	logging
verbosity,	and	many	daemons	can	be	configured	to	log	more	of	their	inner	workings.	The
resulting	debug	information	(or	even	trace	information,	if	the	application	supports	it)	will
provide	a	massive	help	to	the	administrator	to	troubleshoot	a	problem.

If	additional	logging	does	not	help,	then	it	is	important	to	verify	whether	there	are	AVC
denials	in	the	audit	logs.	As	some	AVC	denials	can	be	hidden	during	regular	operations,
disabling	the	dontaudit	rules	temporarily	might	be	necessary.	Don’t	stare	blindly	at	AVC
denials	though,	and	take	a	broader	look	at	logfiles	and	audit	events.	For	instance,	in	the
next	recipe	(Analyzing	SELINUX_ERR	messages),	a	more	in-depth	analysis	of	a	particular
audit	event	type	is	discussed.

Look	through	the	various	logs	on	the	system	as	well.	The	output	of	dmesg	is	important	if
the	problem	is	kernel,	hardware,	or	core-system	related.	The	messages	logfile	(in
/var/log/)	usually	contains	pointers	when	issues	come	up	with	system	daemons.

When	no	denials	are	shown	and	there	is	no	specific	logging	that	can	assist	with	the
troubleshooting	of	an	application,	the	next	step	is	to	assure	ourselves	that	the	application	is
not	SELinux-aware.

SELinux-aware	applications	(applications	that	know	they	run	on	an	SELinux-enabled
system	and	interact	with	the	SELinux	subsystem)	can	act	differently	based	on	the	SELinux
policy	that	is	loaded,	without	actually	triggering	any	SELinux	decision	in	the	SELinux
subsystem.	On	account	of	their	awareness,	the	in-kernel	SELinux	subsystem	access
controls	might	not	be	called,	so	no	logging	will	be	shown	even	though	the	problem	is
somewhat	SELinux-related.

Although	there	is	not	any	100	percent	certain	method	to	check	whether	an	application	is
SELinux-aware,	the	two	most	common	approaches	are	as	follows:

Checking	whether	the	application	binary	is	linked	with	the	libselinux.so	library
Checking	whether	the	application	uses	PAM

An	application	that	is	linked	with	the	libselinux.so	library	is	SELinux-aware	and	will
be	able	to	query	SELinux	policies,	possibly	acting	differently	when	SELinux	is	enabled
and	often	regardless	of	SELinux	being	in	the	enforcing	or	permissive	mode.

Besides	the	ldd	command,	it	is	also	possible	to	use	the	scanelf	application	as	provided	by
the	pax-utils	package.	This	application	does	not	need	execute	privileges	against	the
binary	(which	ldd	requires)	but	has	the	downside	that	it	only	shows	the	requirements	for
the	binary,	while	ldd	also	includes	the	libraries	linked	by	the	libraries	themselves:

~$	scanelf	-n	/usr/bin/dbus-daemon

	TYPE			NEEDED	FILE

ET_DYN	libexpat.so.1,libselinux.so.1,libaudit.so.1,libcap-

ng.so.0,libpthread.so.0,librt.so.1,libc.so.6	/usr/bin/dbus-daemon

Applications	that	use	PAM	can	also	be	influenced	by	SELinux,	since	their	PAM
configuration	might	call	the	pam_selinux.so	library	(or	not	call	it,	which	can	be	equally
damaging	for	the	functionality	of	the	application	as	no	transition	will	occur	then,	having
the	user	session	still	run	with	the	context	of	the	daemon).

If	the	application	does	not	interact	with	the	SELinux	subsystem	to	query	the	SELinux
policy,	and	it	also	doesn’t	handle	SELinux	labels	directly	(that	is,	it	has	no	knowledge	of
SELinux	labels	and	does	not	actively	work	with	them	code-wise),	then	running	the
application	in	the	permissive	mode	should	show	us	whether	SELinux	is	to	blame.	In	the
permissive	mode,	the	SELinux	subsystem	access	controls	do	not	prevent	any	action.	If	a
problem	still	persists	in	the	permissive	mode,	chances	are	that	SELinux	is	not	to	blame	at
all.

See	also
More	information	about	SELinux-aware	applications	and	how	to	write	one	is	covered
in	Chapter	10,	Handling	SELinux-aware	Applications

Analyzing	SELINUX_ERR	messages
When	the	SELinux	subsystem	is	asked	to	perform	an	invalid	SELinux-specific	operation,
it	will	log	this	through	the	audit	subsystem	using	the	SELINUX_ERR	message	type.

Getting	ready
Make	sure	that	the	audit	subsystem	is	up	and	running	as	we	will	be	using	the	ausearch
application	to	(re)view	audit	events:

~#	service	auditd	start

How	to	do	it…
Analyzing	SELINUX_ERR	messages	is	done	by	viewing	the	entry	in	the	audit	logs	and
understanding	the	individual	fields;	this	is	done	by	completing	the	following	steps:

1.	 Note	the	current	date/time,	or	reload	the	SELinux	policy,	to	have	a	clear	point	in	the
audit	logs	from	where	to	look:

~#	semodule	-R

2.	 Trigger	the	behavior	in	the	application.
3.	 Ask	the	audit	subsystem	to	show	the	last	events	of	the	SELINUX_ERR	and

MAC_POLICY_LOAD	types:

~#	ausearch	-m	SELINUX_ERR,MAC_POLICY_LOAD	-ts	recent

4.	 Look	at	the	beginning	of	the	message	to	find	out	what	problematic	situation	SELinux
is	informing	us	about.

How	it	works…
The	SELinux	subsystem	will	log	any	incorrect	request.	If	it	is	application	behavior,	it	is
usually	logged	through	the	AVC	type;	but	when	the	request	is	SELinux-specific	and
incorrect,	an	SELINUX_ERR	message	type	is	displayed.	In	the	example,	we	also	looked	for
the	MAC_POLICY_LOAD	type,	so	we	know	at	which	stage	the	SELinux	policy	was	reloaded,
giving	us	a	good	starting	point	for	the	investigation.

Some	examples	of	the	SELINUX_ERR	messages	are	as	follows:

security_compute_sid:	Invalid	context
security_validate_transition:	Denied
security_bounded_transition:	Denied

Some	other	messages	exist	as	well,	although	these	are	mostly	for	SELinux-internal
problems	(related	to	the	SELinux	subsystem	inside	the	Linux	kernel,	such	as	supported
netlink	types),	which	need	to	be	resolved	by	the	SELinux	maintainers	themselves,	and	not
by	policy	developers.

Invalid	contexts
An	invalid	context	is	triggered	when	a	context	that	is	not	valid	according	to	the	RBAC	and
SELinux	user	rules	is	created.	This	is	usually	the	case	during	a	domain	transition,	where
the	target	type	is	not	allowed	for	the	role:

time->Wed	Aug	4	03:19:04	2014

type=SYSCALL	msg=audit(10590262134.246:135):	arch=c000003e	syscall=59

success=no	exit=-13	a0=187b190	a1=187b120	a2=187ac30	a3=7ffff2dc3ec0	

items=0

ppid=14696	pid=15085	auid=0	uid=0	gid=0	euid=0	suid=0	fsuid=0

egid=0	sgid=0	fsgid=0	tty=(none)	ses=21	comm="logwatch"	exe="/usr/bin/perl"

subj=system_u:system_r:logwatch_t:s0-s0:c0.c1023	key=(null)

type=SELINUX_ERR	msg=audit(10590262134.246:135):	security_compute_sid:

invalid	context	system_u:system_r:logwatch_mail_t:s0-s0:c0.c1023	for

scontext=system_u:system_r:logwatch_t:s0-s0:c0.c1023

tcontext=system_u:object_r:sendmail_exec_t:s0	tclass=process

Another	reason	for	an	invalid	context	can	be	that	a	role	transition	is	triggered,	but	this	role
is	not	allowed	for	an	SELinux	user:

type=SELINUX_ERR	audit(1257378096.775:46):	security_compute_sid:	invalid	

context

dbadm_u:system_r:mysqld_safe_t:s0	for	scontext=dbadm_u:dbadm_r:initrc_t:s0

tcontext=system_u:object_r:mysqld_safe_exec_t:s0	tclass=process

In	both	cases,	it	is	important	to	look	at	the	presented	context	and	the	scontext	and
tcontext	fields.	These	show	the	contexts	that	SELinux	finds	invalid	(presented	context)
as	well	as	the	source	(domain	initiating	the	action)	and	the	object	context	(label	through
which	the	new	context	was	decided	upon).	Based	on	these,	it	should	be	fairly	easy	to
deduce	what	the	error	is	about.

The	first	example	shows	an	attempt	to	transition	from	the	logwatch_t	domain	(which	is

allowed	for	the	system_r	role)	to	the	logwatch_mail_t	domain	(which	is	not	allowed	for
the	system_r	role).	To	solve	this,	logwatch_mail_t	needs	to	be	allowed	for	the	system_r
role:

allow	system_r	types	logwatch_mail_t;

The	second	example	is	triggered	through	a	role	transition.	A	database	administrator
launches	an	init	script,	resulting	in	the	dbadm_u:dbadm_r:initrc_t	context.	This	domain
executes	the	mysqld_safe	application	(whose	file	is	labeled	mysqld_safe_exec_t)	that,
through	the	SELinux	policy,	attempts	to	perform	a	role	transition	to	the	system_r	role.
Although	the	system_r:mysqld_safe_t	context	is	a	valid	set,	the	database	administration
user	itself	is	not	allowed	the	system_r	role.

The	main	issue	in	this	second	example	is	that	the	context	to	start	from
(dbadm_u:dbadm_r:initrc_t)	shouldn’t	be	used.	The	initrc_t	domain	should	only	be
allowed	for	the	system_r	role.	This,	by	itself,	requires	that	the	dbadm_u	SELinux	user	is
also	allowed	the	system_r	role.	So,	even	though	allowing	the	system_r	role	is	the	right
resolution,	the	approach	taken	in	the	example	is	wrong	(role	transition	from	initrc_t	to
mysqld_safe_t	instead	of	role	transitioning	upon	instantiating	initrc_t).

Denied	transition	validation
Consider	the	following	error	message,	which	came	up	when	an	init	script	tried	to
increase	the	sensitivity	of	a	file:

type=SELINUX_ERR	audit(125482134923.234:25):	security_validate_transition:

denied	for	oldcontext=system_u:object_r:selinux_config_t:s0

newcontext=system_u:object_r:selinux_config_t:s15:c0-c1023

taskcontext=system_u:system_r:initrc_t=s0-s16:c0.c1023	tclass=file

Such	a	message	occurs	when	a	file	transition	is	performed,	but	where	the	target	security
context	is	not	allowed.	SELinux	validates	whether	this	is	allowed;	if	not	allowed,	it	logs
this	through	the	message.

AVC-like	denials	will	be	in	place	here,	but	the	access	vector	cache	system	is	only	able	to
validate	pair-wise	contexts	(the	source	and	target	contexts),	whereas	the	transition
validation	needs	to	be	done	on	three	levels	(old	file	context,	new	file	context,	and	process
context).

The	solution	for	the	presented	error	will	be	to	either	allow	initrc_t	to	raise	the	security
level	of	a	file	(through	the	mls_file_upgrade	interface)	or	to	not	have	the	init	script
domain	try	to	update	the	MLS	level	of	a	file	in	the	first	place.

Denied	security-bounded	transitions
An	example	where	security-bounded	transitions	occur	is	when	the	mod_selinux	module	is
used	with	Apache	(which	uses	bounded	domains	and	transitions	for	individual	requests).
When	the	target	domain	is	not	bounded	by	the	source	domain	(that	is,	the	SELinux	policy
does	not	prevent	the	target	domain	from	executing	an	action	not	allowed	by	the	source
domain,	as	done	through	the	typebounds	statement),	then	the	following	error	is	displayed:

type=SELINUX_ERR	msg=audit(1245311998.599:17):

op=security_bounded_transition	result=denied

oldcontext=system_u:system_r:httpd_t:s0

newcontext=system_u:system_r:guest_webapp_t:s0

When	this	occurs,	a	bounded	transition	is	requested	by	the	main	application	domain	(such
as	when	a	transition	is	done	for	threads),	but	the	target	domain	is	not	marked	as	a	bounded
domain.

Note	that	this	is	different	from	when	a	bounded	domain	is	given	more	privileges—in	such
cases,	SELinux	will	deny	the	specific	permissions	when	they	are	invoked,	showing	AVC
denials.

There’s	more…
SELinux	logging	and	audit	logging	is	continuously	being	improved.	Work	is	on	the	way	to
make	the	audit	logs	easier	to	parse	by	scripts	and	to	provide	more	information.	For
instance,	at	the	time	of	writing,	a	patch	has	just	been	accepted	to	add	permissive	state
information	in	the	AVC	logging.

See	also
More	in-depth	analysis	and	explanation	of	AVC	messages	is	handled	in	SELinux	System
Administration,	Packt	Publishing.	More	resources	related	to	SELinux	audit	events	are
available	at	the	following	links:

http://www.selinuxproject.org/page/NB_AL	(including	an	overview	of	all	possible
fields	in	AVC	events)
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details

http://www.selinuxproject.org/page/NB_AL
https://wiki.gentoo.org/wiki/SELinux/Tutorials/Where_to_find_SELinux_permission_denial_details

Logging	positive	policy	decisions
On	some	occasions,	the	system	performs	actions	that	the	administrator	might	not	expect,
but	which	are	allowed	by	the	SELinux	policy,	making	it	harder	to	debug	potential
problems.	An	application	might	be	SELinux-aware,	causing	its	own	behavior	to	depend	on
the	SELinux	policy,	without	actually	using	the	SELinux	subsystem	to	enforce	access.	The
SELinux	policy	might	also	be	configured	to	behave	differently	than	expected.

In	such	situations,	it	might	be	important	to	have	SELinux	log	activities	that	were	actually
allowed	rather	than	denied;	for	instance,	logging	domain	transitions	to	make	sure	that	a
transition	has	indeed	occurred.

How	to	do	it…
In	order	to	have	domain	transitions	logged,	create	an	SELinux	policy	by	performing	the
following	steps:

1.	 Identify	the	source	and	target	domains	to	look	out	for.
2.	 Create	an	SELinux	policy	that	calls	the	auditallow	statement	on	the	access	vector

we	want	to	log:

auditallow	initrc_t	postgresql_t:process	transition;

3.	 Build	and	load	the	SELinux	policy	and	try	to	reproduce	the	situation.
4.	 Look	at	the	audit	logs	and	check	whether	an	AVC	granted	message	is	displayed:

type=AVC	msg=audit(1401379369.009:6171):	avc:		granted		{	transition	}	

for	pid=4237	comm="rc"	path="/usr/lib64/postgresql-9.3/bin/pg_ctl"	

dev="dm-3"	ino=821490	scontext=system_u:system_r:initrc_t:s0	

tcontext=system_u:system_r:postgresql_t:s0	tclass=process	

How	it	works…
Of	the	many	policy	statements	that	SELinux	supports,	the	auditallow	statement	is
interesting	and	does	not	alter	the	decisions	made	by	SELinux:	having	an	auditallow
statement	does	not	allow	the	action,	but	rather	has	the	SELinux	subsystem	log	it	if	it	is
allowed	(through	another	allow	statement).

This	makes	it	possible	for	SELinux	policy	developers	and	system	administrators	to
explicitly	ask	the	SELinux	subsystem	to	inform	them	about	decisions	taken	if	the	decision
is	to	grant	something	rather	than	deny.

Using	the	auditallow	statement,	we	can	track	SELinux	policy	decisions	and	assist	in	the
development	of	policies	and	debugging	of	application	behavior,	especially	when	a	process
is	invoked	in	a	very	short	time	frame,	as	this	makes	it	difficult	for	administrators	to	see
whether	the	context	of	the	process	is	correct	(ps	-Z	or	by	checking	the	/proc/<pid>/
contexts).

Some	administrators	might	want	to	put	in	some	additional	logging	inside	the	scripts	or
commands	that	they	invoke	(such	as	to	capture	the	output	of	id	-Z).	However,	it	is	very
much	possible	that	the	SELinux	policy	does	not	allow	the	script	to	execute	the	id
command,	let	alone	show	its	output	or	direct	its	output	to	a	specific	logfile.

Enhancing	the	SELinux	policy	with	additional	log	types,	enabling	terminal	output,
allowing	the	execution	of	binaries,	and	more	is	quite	some	overhead	just	to	find	out
whether	the	context	of	the	process	is	as	it	should	be.	Using	the	auditallow	statement	is	a
great	solution	to	this.

It	goes	beyond	domain	transitions,	of	course.	If	a	file	has	been	changed,	and	the
administrator	or	engineer	is	uncertain	which	process	or	which	context	is	causing	the
change,	then	it	is	possible	to	have	SELinux	audit	writes	on	the	file	label,	as	follows:

auditallow	domain	postgresql_etc_t:file	write;

Thanks	to	the	additional	information	in	the	AVC	log,	we	can	see	which	process	(PID)
running	in	a	particular	context	(scontext)	is	responsible	for	writing	to	the	file.

Looking	through	SELinux	constraints
Some	denials	are	caused	by	SELinux	constraints—additional	restrictions	imposed	by	the
SELinux	policy	that	are	not	purely	based	on	the	SELinux	types,	but	also	on	the	SELinux
role	and	SELinux	user.	This	is	often	not	clear	from	the	denial.

The	audit2why	application	helps	in	informing	developers	that	a	denial	came	from	a
constraint	violation:

~#	ausearch	-m	avc	-ts	recent	|	grep	type=AVC	|	audit2why

type=AVC	msg=audit(1401134596.932:62843):	avc:		denied		{	search	}	for		

pid=19384	comm="mount.nfs4"	scontext=system_u:system_r:mount_t:s0	

tcontext=system_u:object_r:nfs_t:s0	tclass=dir

								Was	caused	by:

								Policy	constraint	violation.

								May	require	adding	a	type	attribute	to	the	domain	or	type

								to	satisfy	the	constraint.

								Constraints	are	defined	in	the	policy	sources	in

								policy/constraints	(general),	policy/mcs	(MCS),	and

								policy/mls	(MLS).

This	is,	however,	not	always	the	case,	so	we	need	to	find	a	way	to	investigate	whether
denials	come	from	constraint	violations	too.

How	to	do	it…
Although	SELinux	constraints	can	be	queried	easily,	they	are	currently	difficult	to	work
with.	The	following	approach	helps	in	validating	whether	a	constraint	is	applicable	for	a
particular	AVC	denial	that	is	under	investigation:

1.	 Look	through	the	SELinux	policy	to	see	whether	the	(denied)	access	has	an	AVC
allow	rule	or	not:

~$	sesearch	-s	staff_t	-t	user_home_t	-c	file	-p	read	-A

Found	1	semantic	av		rules:

		allow	staff_t	user_home_t	:	file	{	…	read	…	};

2.	 Assuming	there	is	an	allow	rule,	see	whether	there	are	constraints	applicable	to	the
operation.	This	takes	into	account	the	class	(in	the	example,	this	is	file)	and	the
permission	(in	the	example,	this	is	read):

~$	seinfo	--constrain	|	grep	'constrain	.*	file	.*	read'	-A	1

3.	 If	constraints	might	exist,	look	at	the	attributes	of	the	source	and	target	contexts,	as
this	is	usually	how	constraints	are	documented	in	the	policy:

~$	seinfo	-tstaff_t	-x

~$	seinfo	-tuser_home_t	-x

4.	 Inside	the	SELinux	policy,	look	through	the	constraints	file	(usually	at
${POLICY_LOCATION}/policy/)	and	the	mcs	or	mls	file	(if	the	policy	uses	MCS	or
MLS),	and	look	for	the	constraints	on	the	class	and	permission	requested,	validating
whether	there	are	any	expressions	concerning	the	attributes	mentioned.

How	it	works…
Constraints	are	currently	difficult	to	validate.	Luckily,	there	aren’t	many	constraints	in
place,	but	still,	not	being	able	to	easily	verify	and	look	at	the	constraints	is	a	nuisance	for
developers.

The	complexity	increases	as	the	seinfo	--constrain	output,	which	is	the	only	available
method	to	query	constraints	next	to	reading	the	sources,	has	the	following	drawbacks:

It	does	not	provide	any	name	yet	on	the	constraints	(so	referring	to	constraints	is
difficult)
It	uses	Reverse	Polish	Notation	(RPN),	which	isn’t	very	user-friendly	(although	it	is
powerful	for	computers,	people	do	not	generally	read	RPN	fluently)
It	shows	expanded	attributes,	so	we	get	huge	lists	of	types,	rather	than	a	limited	set	of
attributes

The	constraint	definitions	inside	the	constraints,	mcs,	and	mls	files	(which	are	only
accessible	through	the	policy	source	code)	are	easier	to	look	at.	The	following	example	is
from	the	constraints	file;	constraints	from	mcs	and	mls	will	use	the	mlsconstrain
keyword:

constrain	process	{	transition	dyntransition	noatsecure	siginh	rlimitinh	}

(

..r1	==	r2

..or	(t1	==	can_change_process_role	and	t2	==	process_user_target)

..or	(t1	==	cron_source_domain	and	t2	==	cron_job_domain)

..or	(t1	==	can_system_change	and	r2	==	system_r)

..or	(t1	==	process_uncond_exempt)

);

The	controls	shown	use	attributes,	which	are	easier	to	map	with	a	specific	situation.	It	also
shows	how	flexible	constraints	can	be.	Next	to	pure	type-oriented	rules	(t1	and	t2),
constraints	also	work	with	roles	(r1	and	r2)	and	can	deal	with	SELinux	users	(u1	and	u2).
The	number	is	used	to	differentiate	between	the	subject	(1)	and	object	(2).

As	an	example,	in	constraint	language,	saying	that	something	is	allowed	if	the	SELinux
users	are	equal,	or	the	SELinux	user	of	the	subject	is	system_u,	will	be	documented	as
follows:

(

		u1	==	u2

		or	(u1	==	system_u)

)

The	output	of	the	seinfo	--constrain	command	has	the	advantage	that	it	is	easy	for
computer	programs	to	interpret.	Computer	programs	or	scripts,	which	use	the	output	of
seinfo	to	visualize	constraint	information	in	a	tree-like	manner,	can	be	created.

The	following	GraphViz-generated	graph	shows	the	UBAC	constraints	applicable	to	file
reads,	showing	only	the	user	domains	and	the	user_home_t	types	(to	not	overload	the
graph):

This	graph	shows	how	the	UBAC	constraints	are	constructed.	File	reads	are	prohibited
(regardless	of	the	type	enforcement	rules	that	are	made	in	the	policy),	unless	they	match
one	of	the	rules	shown	in	the	graph,	which	are	as	follows:

The	SELinux	user	of	the	subject	(domain)	and	object	(resource)	are	the	same
The	SELinux	user	of	the	subject	is	system_u
The	SELinux	user	of	the	object	is	system_u
The	SELinux	type	of	the	subject	does	not	match	any	of	the	mentioned	types	(only	a
subset	is	shown	in	the	drawing)
The	SELinux	type	of	the	object	does	not	match	any	of	the	mentioned	types	(only	a
subset	is	shown	in	the	drawing)
The	SELinux	type	of	the	subject	is	sysadm_t

See	also
More	information	on	SELinux	constraints	can	be	found	at	the	following	resources:

https://wiki.gentoo.org/wiki/SELinux/Constraints
http://www.selinuxproject.org/page/ConstraintStatements

https://wiki.gentoo.org/wiki/SELinux/Constraints
http://www.selinuxproject.org/page/ConstraintStatements

Ensuring	an	SELinux	rule	is	never
allowed
It	is	possible	to	include	statements	in	the	SELinux	policy	that	ensure	that	a	particular
access	vector	cannot	be	allowed,	not	even	by	enhancing	the	SELinux	policy	later.	This	is
done	with	the	neverallow	statement.

How	to	do	it…
To	include	the	neverallow	statements	in	the	policy	and	enforce	them,	go	through	the
following	steps:

1.	 In	/etc/selinux/semanage.conf,	enable	support	for	the	neverallow	statements	by
setting	the	expand-check	variable	to	1:

expand-check=1

2.	 Create	an	SELinux	policy	in	which	the	access	vectors	that	should	be	explicitly
forbidden	are	listed.	Consider	the	following	instance:

neverallow	user_t	system_mail_t:process	transition;

3.	 Build	and	load	the	policy.
4.	 Generate	another	policy	that	will	allow	the	statement	and	attempt	to	load	it:

~$	semodule	-i	mytest.pp

libsepol.check_assertion_helper:		neverallow	violated	by	allow	user_t	

system_mail_t:process	{	transition	};

libsemanage.semanage_expand_sandbox:	Expand	module	failed

semodule:	Failed!

How	it	works…
Not	all	distributions	enable	the	assertion	checks	by	default	as	they	incur	some
performance	penalty	during	policy	builds.	Some	distributions	might	even	have	policy
incompatibilities	due	to	this,	because	if	the	assertions	are	disabled,	then	the	neverallow
statements	are	never	processed:	the	neverallow	statement	isn’t	really	a	policy	decision,
but	more	a	rule	that	influences	loading	of	new	policies,	and	is	enforced	by	the	policy
linker	(which	combines	the	various	policy	modules	in	one	final	policy	binary).	As	can	be
deduced	from	the	(failure)	output,	the	neverallow	statements	are	implemented	as
assertions.

Some	neverallow	statements	are	available	as	part	of	the	base	policy.	For	instance,	the
following	statement	ensures	that	only	the	domains	with	the	selinux_unconfined_type	or
can_load_policy	attribute	set	can	actually	load	an	SELinux	policy:

neverallow	~{	selinux_unconfined_type	can_load_policy	}	security_t:security	

load_policy;

This	example	uses	the	negation	operator	(~),	which	means	all	types	except	those
mentioned.

Unlike	constraints	(that	can	also	be	used	to	implement	restrictions),	the	neverallow
statements	help	by	not	accepting	any	policy	that	will	violate	the	rule.	It	is	also	possible	to
add	the	neverallow	rules	through	modules,	unlike	constraints	that	need	to	be	part	of	the
base	SELinux	policy	(and	as	such,	are	governed	by	Linux	distribution,	an	upstream	policy,
or	developers	that	manage	complete	policies	rather	than	individual	SELinux	policy
modules).

The	expand-check	variable	in	/etc/selinux/semanage.conf	tells	the	SELinux	user
space	libraries	that	the	assertion	has	to	be	checked.	If	this	variable	is	set	to	0,	then	the
neverallow	statements	have	no	impact	on	the	policy	and	its	loading	whatsoever.

Using	strace	to	clarify	permission	issues
The	strace	application	is	a	popular	debugging	application	on	Linux	systems.	It	allows
developers	and	administrators	to	look	at	various	system	calls	made	by	an	application.	As
SELinux	often	has	access	controls	on	specific	system	calls,	using	strace	can	prove	to	be
very	useful	in	debugging	permission	issues.

How	to	do	it…
To	properly	use	strace,	follow	the	next	set	of	steps:

1.	 Enable	the	allow_ptrace	Boolean:

~#	setsebool	allow_ptrace	on

2.	 Run	the	application	with	strace:

~$	strace	-o	strace.log	-f	-s	256	tmux

3.	 In	the	resulting	logfile,	look	for	the	error	message	that	needs	to	be	debugged.

How	it	works…
The	allow_ptrace	Boolean	(on	some	distributions,	the	inverse	Boolean	called
deny_ptrace	is	available)	needs	to	be	toggled	so	that	the	domain	that	calls	strace	can	use
ptrace	(the	method	that	strace	uses	to	view	system	calls)	against	the	target	domain.	As
the	ptrace	method	can	be	a	security	concern	(it	allows	reading	target	process’	memory,
for	instance),	it	is,	by	default,	disabled.

Once	an	application	has	been	executed	through	the	strace	application,	the	logfile	will
contain	all	relevant	system	call	information.	Of	course,	on	larger	applications,	or	on
daemons,	this	logfile	can	become	massive,	so	it	makes	sense	to	limit	the	strace	operation
towards	a	particular	subset	of	system	calls,	as	shown	in	the	following	command:

~$	strace	-e	open,access	-o	strace.log	-f	-s	256	tmux

In	this	example,	only	the	open	and	access	system	calls	are	looked	at.

In	the	resulting	logfile,	the	SELinux	permission	usually	issues	results	in	failed	system
calls	with	an	EACCES	(Permission	denied)	error	code:

7313		stat("/",	{st_mode=S_IFDIR|0755,	st_size=4096,	...})	=	0

7313		stat("/home",	{st_mode=S_IFDIR|0755,	st_size=4096,	...})	=	0

7313		stat("/home/swift",	{st_mode=S_IFDIR|0755,	st_size=12288,	...})	=	0

7313		stat("/home/swift/.pki",	{st_mode=S_IFDIR|0700,	st_size=4096,	...})	=	

0

7313		stat("/home/swift/.pki/nssdb",	{st_mode=S_IFDIR|0700,	st_size=4096,	

...})	=	0

7313		statfs("/home/swift/.pki/nssdb",	0x3c3cab6fa50)	=	-1	EACCES	

(Permission	denied)

Although	an	AVC	denial	will	also	be	shown	for	most	accesses,	these	denials	often	do	not
give	a	complete	picture	as	to	at	what	stage	a	denial	is	in.	By	using	strace,	we	can	follow
the	logic	that	the	application	performs.

Sometimes,	it	isn’t	obvious	why	a	failure	occurs.	In	this	case,	it	might	be	interesting	to	run
the	application	twice—once	in	enforcing	mode	and	once	in	permissive	mode—and	look	at
the	differences	in	the	strace	logs.

Using	strace	against	daemons
The	strace	application	not	only	makes	sense	for	command-line	applications	but	also	for
daemons.	A	popular	approach	to	debugging	daemons	is	to	start	them	from	the	command
line,	possibly	with	a	specific	debug	flag,	so	that	the	daemon	doesn’t	detach	and	run	in	the
background.	However,	this	is	often	not	possible	on	SELinux:	the	policy	will	not	allow	the
daemon	to	run	as	a	command-line	foreground	process.

How	to	do	it…
The	approach	to	use	strace	against	daemons	is	similar	as	with	command	lines,	focusing
on	the	process	ID	rather	than	the	command:

1.	 Find	out	what	the	process	ID	of	the	daemon	is:

~$	pidof	postgres

2557

2.	 Use	strace	to	attach	to	the	running	process:

~$	strace	-o	strace.log	-f	-s	256	-p	2557

3.	 Specify	which	system	calls	to	watch	out	for.	For	instance,	permission	issues	while
binding	or	connecting	to	ports	or	sockets	can	be	filtered	as	follows:

~$	strace	-e	poll,select,connect,recvfrom,sendto	-o	strace.log	-f	-s	

256	-p	2557

4.	 Press	Ctrl	+	C	to	interrupt	the	strace	session;	don’t	worry,	the	daemon	will	continue
to	run	in	the	background,	unharmed.

How	it	works…
A	popular	approach	to	debugging	daemons,	which	is	to	start	the	daemon	in	the	foreground
from	the	command	line,	often	does	not	work	on	SELinux	systems:

~$	postgres	-D	/etc/postgresql-9.3	--data-directory=/srv/pgsql/data

LOG:		could	not	bind	IPv6	socket:	Permission	denied

WARNING:	could	not	create	listen	socket	for	"localhost"

FATAL:	could	not	create	any	TCP/IP	sockets

If	a	user	has	the	rights	to	execute	the	daemon	binary	directly	(which	isn’t	default	either),
then	the	daemon	usually	runs	with	the	permissions	of	the	user	domain—who	hardly	has
the	privileges	needed	to	run	the	daemon—as	there	is	no	transition	from	the	user	domain	to
the	daemon	domain.

By	using	strace	against	the	daemons,	it	is	possible	to	debug	them	in	more	detail.	The
strace	application	will	bind	to	the	process	(using	the	ptrace	method)	and	be	notified	of
every	system	call	that	the	daemon	performs.	The	-f	option	also	ensures	that	new
processes	that	the	daemon	launches	(for	instance,	worker	processes)	are	also	looked	at	by
strace.

To	end	the	strace	session,	it	is	enough	to	kill	the	strace	session	or	interrupt	it	with	Ctrl	+
C.	The	daemon	itself	is	left	untouched.

There’s	more…
Many	other	system	analysis	tools,	which	can	be	used	in	a	very	similar	manner,	exist.	Some
examples	are	SystemTap	and	Sysdig,	with	a	port	of	DTrace	to	Linux	being	actively
developed.

See	also
The	following	resources	cover	the	use	of	strace,	SystemTap,	and	Sysdig	in	more	detail:

http://www.dedoimedo.com/computers/strace.html
http://www.thegeekstuff.com/2011/11/strace-examples/
http://www.sourceware.org/systemtap/
http://www.sysdig.org/wiki/

http://www.dedoimedo.com/computers/strace.html
http://www.thegeekstuff.com/2011/11/strace-examples/
http://www.sourceware.org/systemtap/
http://www.sysdig.org/wiki/

Auditing	system	behavior
Another	approach	to	debugging	application	behavior	is	through	Linux	auditing,	especially
when	it	is	not	clear	which	process	is	responsible	for	performing	a	specific	action,	as	this
might	make	SELinux	development	a	lot	more	difficult.	When	developers	do	not	know
which	domain(s)	they	need	to	update	privileges	for,	or	do	not	know	how	exactly	a
resource	is	created,	then	the	Linux	audit	subsystem	can	help.

With	the	Linux	auditing	subsystem,	administrators	can	enable	rules	to	log	activities.	In	the
audit	log,	the	SELinux	context	of	the	subject	(process)	is	shown	as	well,	allowing
SELinux	developers	to	properly	identify	the	domain	to	work	with.

How	to	do	it…
Let’s	look	at	how	we	can	ask	the	Linux	audit	subsystem	which	process	is	responsible	for
creating	a	particular	directory	in	a	user’s	home	directory	through	the	following	steps:

1.	 As	the	root	Linux	user	(and	in	an	SELinux	role	with	sufficient	privileges),	tell	the
audit	subsystem	to	log	all	write-	and	attribute-changing	operations	inside	the	user’s
home	directory:

~#	auditctl	-w	/home/john/	-p	wa	-k	policydev

2.	 Perform	the	necessary	action(s)	to	trigger	the	behavior	that	needs	to	be	debugged.
3.	 Query	the	audit	subsystem	for	the	recent	audit	events	with	the	policydev	key:

~#	ausearch	-ts	recent	-k	policydev

4.	 Later,	disable	the	audit	rule	again	so	that	the	audit	logs	are	not	cluttered	with
development-related	events:

~#	auditctl	-W	/home/john/	-p	wa	-k	policydev

How	it	works…
The	Linux	audit	subsystem	uses	audit	rules	to	identify	which	activities	need	to	be	logged
to	the	audit	log.	The	rules	can	be	manipulated	using	the	auditctl	command	(audit
control).

In	our	example,	a	rule	was	added	for	the	/home/john/	path	(-w	/home/john)	for	which
the	write	and	attribute	changes	(-p	wa)	are	logged.	The	events	are	tagged,	so	to	speak,
with	a	key	called	policydev.	Administrators	can	choose	this	key	freely.	Its	purpose	is	to
structure	audit	events	and	simplify	search	queries.

When	the	auditctl	command	is	invoked,	the	rule	is	immediately	active,	so	after
executing	the	test,	audit	events	will	be	displayed	as	follows:

time->Sun	Jun		8	11:16:47	2014

type=PATH	msg=audit(1402219007.623:80705):	item=1	name=".dcinforc"	

inode=8364	dev=fd:0c	mode=040755	ouid=475395	ogid=475395	rdev=00:00	

obj=user_u:object_r:user_home_t:s0	nametype=CREATE

type=PATH	msg=audit(1402219007.623:80705):	item=0	name="/home/john"	

inode=229	dev=fd:0c	mode=040700	ouid=475395	ogid=475395	rdev=00:00	

obj=user_u:object_r:user_home_dir_t:s0	nametype=PARENT

type=CWD	msg=audit(1402219007.623:80705):		cwd="/home/john"

type=SYSCALL	msg=audit(1402219007.623:80705):	arch=c000003e	syscall=83	

success=yes	exit=0	a0=7fff33d50330	a1=1ff	a2=7fff33d50330	a3=a	items=2	

ppid=23132	pid=23929	auid=475395	uid=475395	gid=475395	euid=475395	

suid=475395	fsuid=475395	egid=475395	sgid=475395	fsgid=475395	tty=pts3	

ses=11203	comm="java"	exe="/usr/bin/java"	subj=user_u:user_r:java_t:s0	

key="policydev"

The	logs	show	that	it	is	a	java	process	that	is	responsible	for	creating	a	directory	called
.dcinforc/	in	the	user’s	home	directory.	The	important	fields	to	consider	here	are	the
nametype=CREATE	(which	tells	us	that	an	object	was	created)	and	syscall=83	(informing
us	which	system	call	was	trapped	by	the	audit	subsystem—in	this	case,	the	mkdir	system
call)	fields,	and	of	course	the	subj=	and	obj=	parameters.

From	the	example,	we	can	see	that	there	are	two	distinct	obj=	parameters:

The	first,	obj=user_u:object_r:user_home_t:s0,	is	mentioned	for	the	created
directory,	and	it	tells	us	what	label	the	newly	created	directory	received
The	second,	obj=user_u:object_r:user_home_dir_t:s0,	is	mentioned	for	the
parent	directory	(nametype=PARENT),	informing	us	what	the	label	of	the	directory	in
which	.dcinforc/	is	created	is

Now,	this	is	just	an	example	of	creating	directories,	but	the	audit	system	can	trap	many
types	of	activities.	This	is	where	the	syscall=	field	becomes	important.	This	field	tells	us
what	specific	system	call	was	trapped	and	logged	by	the	audit	subsystem.

A	list	of	system	calls	and	their	associated	numbers	can	be	found	in	the	proper	C	header
file.	For	instance,	the	/usr/include/asm/unistd_64.h	file	(referenced	indirectly	through
/usr/include/syscalls.h)	contains	the	following	code:

#define	__NR_rename		82		__SYSCALL(__NR_rename,	sys_rename)

#define	__NR_mkdir		83		__SYSCALL(__NR_mkdir,	sys_mkdir)

#define	__NR_rmdir		84		__SYSCALL(__NR_rmdir,	sys_rmdir)

Through	this,	we	know	that	the	directory	was	created	using	the	mkdir	system	call	and	not
by	any	other	means	(such	as	creating	the	directory	as	a	different	one	first	and	then
renaming	it).

There’s	more…
The	audit	subsystem	receives	the	rules	it	needs	to	follow	up	on	at	boot.	Most	Linux
distributions	offer	a	file	called	audit.rules	inside	/etc/audit/,	which	contains	various
commands,	locations,	and	system	calls	that	need	to	be	trapped	and	logged.	This	file	is	then
read	at	boot	time	by	the	audit	daemon	init	script.

If	we	need	to	have	certain	rules	loaded	automatically—and	not	just	for	the	duration	of	a
short	test—then	it	is	recommended	to	add	the	rules	to	this	audit.rules	script,	together
with	the	appropriate	comment	explaining	why	this	needs	to	be	trapped.

Now,	we	only	used	path-based	auditing	capabilities	in	the	example.	The	Linux	audit
subsystem,	however,	can	do	much	more	than	just	that.	For	instance,	it	is	possible	to	audit
particular	system	calls.	This	allows	administrators	to	keep	a	close	eye	on	suspicious
system	call	usages,	such	as	the	use	of	unshare	(which	is	used	for	Linux	namespaces):

~#	auditctl	-a	entry,always	-S	unshare	-k	namespace_suspect

See	also
A	good	set	of	default	audit	rules	to	work	with	is	mentioned	in	the	CISecurity
Benchmark	for	Red	Hat	Enterprise	Linux,	available	at
https://benchmarks.cisecurity.org/

https://benchmarks.cisecurity.org/

Chapter	9.	Aligning	SELinux	with	DAC
In	this	chapter,	our	focus	will	be	on	the	following	set	of	recipes:

Assigning	a	different	root	location	to	regular	services
Using	a	different	root	location	for	SELinux-aware	applications
Sharing	user	content	with	file	ACLs
Enabling	polyinstantiated	directories
Configuring	capabilities	instead	of	setuid	binaries
Using	group	membership	for	role-based	access
Backing	up	and	restoring	files
Governing	application	network	access

Introduction
SELinux	is	an	access	control	mechanism	that	works	alongside	the	regular	access	controls
that	Linux	provides.	Making	sure	that	these	various	access	control	systems	play	nicely
together	is	important	as	both	have	their	merits	and	uses.

Regular	DAC	security	services	on	Linux	are	already	quite	powerful	and	are	being
extended	with	almost	every	Linux	release.	Namespaces,	extended	access	controls,
additional	chroot	restrictions,	and	other	services	are	added	to	the	Linux	ecosystem	to
support	the	hardening	of	Linux	systems	further.

In	this	process	of	hardening	systems,	SELinux	is	just	another	layer	of	defense.	Putting	all
efforts	only	on	SELinux	would	be	a	major	mistake	to	make,	as	SELinux	has	its	downsides
as	well.	By	properly	enabling	the	Linux	DAC	controls	and	tweaking	SELinux	so	that	it
plays	nicely	together	with	these	controls,	a	Linux	system	can	be	made	much	more	resilient
against	vulnerabilities	and	attacks.

Assigning	a	different	root	location	to
regular	services
A	different	root	location,	also	known	as	a	chroot,	is	an	important	feature	of	Linux	systems
meant	to	disallow	direct	access	to	file	resources	outside	a	specified	directory	location.	The
environment	that	is	accessible	from	a	chroot	is	called	a	jail	or	chroot	jail.	Applications	in
a	chroot	jail	are	launched	with	a	different	root,	wherein	only	those	files	that	are	needed	for
the	application	to	work	are	hosted.

Although	it	is	commonly	seen	as	a	security	feature,	this	was	not	the	intention	of	a	chroot.
However,	with	the	proper	approach,	chroots	can	enhance	the	secure	setup	of	an
application.

For	instance,	in	case	of	a	vulnerability,	a	successful	exploit	might	only	be	able	to	access
the	files	available	in	the	chroot.	Other	sensitive	files,	such	as	authentication-related	files	or
other	service	configurations,	are	not	reachable	from	within	the	chroot	(assuming	the
exploited	application	does	not	have	the	privileges	to	break	out	of	a	chroot	jail).

The	steps	to	set	up	a	chroot	environment	for	any	service	are	similar,	but	the	end	result	of	a
chroot	is	never	the	same:	different	files	need	to	be	available	in	a	chroot	depending	on	the
application	that	is	being	restricted.

Getting	ready
Find	the	application	that	needs	to	be	restricted.	Such	applications	have	to	be	end	services,
in	the	sense	that	there	is	little	to	no	interaction	between	the	application	and	other
applications	or	services.	Otherwise,	all	those	other	applications	and	services	would	need	to
be	available	in	the	same	chroot	as	well.

Usually,	the	primary	targets	are	those	services	that	are	very	popular	in	use	on	the	Internet.
Exploits	for	these	services	are	usually	more	actively	searched	and	developed	for,	and
when	a	vulnerability	is	found	and	an	exploit	has	been	developed,	malicious	users	or
groups	quickly	scan	the	Internet	for	vulnerable	versions	to	attack.

How	to	do	it…
The	next	set	of	steps	shows	how	to	set	up	a	chroot	environment	and	inform	SELinux	about
the	chroot.	We	use	the	BIND	DNS	server	as	our	example	service	and	/var/chroot/	as	the
chroot	location:

1.	 Create	the	chroot	location	and	add	in	the	necessary	subdirectories:

~#	mkdir	-p	/var/chroot/dev

~#	mkdir	-p	/var/chroot/etc/bind

~#	mkdir	-p	/var/chroot/var/bind/{sec,pri,dyn}

~#	mkdir	-p	/var/chroot/var/{log,run}

~#	chown	root:named	/var/chroot

~#	chmod	750	/var/chroot

~#	chown	-R	named:named	/var/chroot/var/*

2.	 Copy	all	the	files	that	the	application	needs:

~#	cp	/etc/named.conf	/var/chroot/etc/

~#	cp	/etc/localtime	/var/chroot/etc/

~#	cp	-a	/var/named/*	/var/chroot/var/named/

3.	 Create	the	device	files	that	the	application	needs:

~#	mknod	/var/chroot/dev/null	c	1	3

~#	mknod	/var/chroot/dev/random	c	1	8

~#	chmod	666	/var/chroot/dev/*

4.	 As	the	BIND	service	knows	about	chroots,	we	do	not	need	to	copy	its	binaries	and
libraries	to	the	chroot	location.	However,	not	all	services	support	chroots	out	of	the
box.	When	this	is	the	case,	we	need	to	copy	the	binaries	and	libraries	as	well.

5.	 Now,	relabel	the	files	in	the	chroot	so	that	they	get	the	proper	SELinux	labels:

~#	setfiles	-r	/var/chroot/	

/etc/selinux/mcs/contexts/files/file_contexts	/var/chroot/

6.	 Launch	the	application	with	the	proper	options	to	enable	the	chroot	support.	Some
Linux	distributions	already	support	chroot	information	for	the	BIND	service.	In
general,	it	requires	the	named	application	to	be	launched	with	the	-t	/var/chroot/
option.	If	the	application	does	not	support	chroots	out	of	the	box,	use	the	chroot
command	itself:

~#	chroot	/var/chroot/	su	-	named	-c	/usr/sbin/named

7.	 If	the	application	supports	chroots	out	of	the	box,	it	might	require	the	chroot
capability.	This	is	supported	through	the	sys_chroot	permission,	granted	through	the
following	SELinux	policy	interface:

corecmd_exec_chroot(named_t)

How	it	works…
Setting	up	a	chroot	environment	is	usually	a	trial-and-error	approach;	although,	for	more
popular	services,	many	tutorials	exist	on	the	Internet	that	make	setting	up	chroots	a	lot
easier.

The	basic	approach	to	use	is	four-fold:

1.	 Create	the	chroot	location	and	directory	structure.
2.	 Install	the	necessary	files	and,	if	necessary,	application	binaries	and	libraries.
3.	 Update	the	SELinux	labels	of	the	resources.
4.	 Call	the	chroot	binary	or	use	the	built-in	chroot	capabilities	of	the	application.

When	creating	a	chroot	location,	we	need	to	make	sure	that	the	structure	is	similar	to	a
real	root	location	(that	is,	the	/	location);	as	for	the	application,	it	will	see	the	filesystem	as
if	this	chroot	location	is	the	entire	filesystem.

Which	files	to	install	is	a	different	matter	though,	and	having	online	resources	to	inform	us
what	to	do	is	a	great	help.	But	if	these	online	resources	are	missing,	then	we	can	still	find
out	which	files	are	needed.

For	instance,	we	can	use	the	ldd	or	scanelf	application:

~#	ldd	/usr/sbin/named

		linux-vdso.so.1

		liblwres.so.90	=>	/usr/lib64/liblwres.so.90

		libdns.so.100	=>	/usr/lib64/libdns.so.100

		libbind9.so.90	=>	/usr/lib64/libbind9.so.90

		libisccfg.so.90	=>	/usr/lib64/libisccfg.so.90

		libisccc.so.90	=>	/usr/lib64/libisccc.so.90

		libisc.so.95	=>	/usr/lib64/libisc.so.95

		libc.so.6	=>	/lib64/libc.so.6

		/lib64/ld-linux-x86-64.so.2

But	in	general,	it	is	the	trial-and-error	approach	that	works	the	easiest.	Just	launch	the
application	in	the	chroot,	register	its	errors,	and	resolve	them.

For	SELinux,	the	important	bit	here	is	that	the	chroot	should	be	labeled	correctly.
Consider	/var/chroot/etc/named.conf,	for	instance.	The	SELinux	policy	will	assume
that	this	file	is	labeled	named_conf_t.	However,	the	location	itself
(/var/chroot/etc/named.conf)	implies	var_t,	as	/var/	is	var_t	and	there	are	no
definitions	for	any	of	our	defined	location’s	subdirectories	or	files	within.

The	setfiles	command	allows	us	to	relabel	a	location	with	a	different	root	location,
resulting	in	/var/chroot/etc/named.conf	being	labeled	as	if	it	was	/etc/named.conf.
However,	take	care	that	a	system	relabeling	operation	is	followed	by	the	setfiles
command	again	as	the	SELinux	configuration	is	not	aware	of	this	change	in	labeling.

Finally,	the	application	itself	needs	to	be	launched	inside	the	chroot	or	through	its	built-in
chroot	support.	Applications	that	support	chroots	themselves	can	be	tuned	through	their
configuration	files	and	start	up	options	to	make	sure	that	they	run	in	a	chroot	environment.

If	that	isn’t	possible,	then	the	application	should	be	started	using	an	init	script	that	calls
the	chroot	command,	most	likely	together	with	the	su	application	to	allow	switching	to	a
different	user.

There’s	more…
A	chroot	is	a	relatively	primitive	yet	powerful	method	for	reducing	the	impact	of	an
exploit.	However,	methods	exist	to	escape	a	chroot.	Luckily,	there	are	some	kernel	patches
that	improve	the	security	of	chroots	tremendously.	A	popular	update	is	the	one	maintained
by	the	grsecurity	team	(http://www.grsecurity.net).

With	grsecurity’s	chroot	restrictions,	the	kernel	can	be	configured	with	the	following
options:

Disallow	mounts	and	remounts	of	filesystems	initiated	from	within	the	chroot
Disallow	chrooting	from	within	the	chroot
Disallow	the	pivot_root	call	from	within	the	chroot
Force	the	current	working	directory	of	chrooted	applications	to	be	the	root	directory
of	the	chroot
Disallow	the	setuid	and	setgid	chmod	operations	from	within	the	chroot
Disallow	changing	directories	through	open	file	descriptors	pointing	outside	the
chroot
Disallow	attaching	to	shared	memory	created	outside	the	chroot
Disallow	access	to	Unix	domain	sockets	created	outside	the	chroot
Disallow	sending	signals	to	processes	outside	the	chroot

Besides	these	options,	there	are	many,	many	more	options.	Such	options	make	chroot	jails
much	more	security-oriented	than	originally	intended	and	make	for	a	very	powerful
mitigation	against	exploits.

http://www.grsecurity.net

See	also
There	are	many	resources	available	about	chroot	jails	and	BIND	chroots	in	particular:

Building	and	configuring	BIND	9	in	a	chroot	jail	available	at
http://www.unixwiz.net/techtips/bind9-chroot.html	goes	in	great	detail	and	has
pointers	to	various	other	BIND-related	resources
On	the	same	site,	best	practices	for	Unix	chroot()	operations	can	be	found:
http://www.unixwiz.net/techtips/chroot-practices.html
The	Jailkit	project	(http://olivier.sessink.nl/jailkit/)	provides	a	set	of	utilities	to
manage	chroot	jails

http://www.unixwiz.net/techtips/bind9-chroot.html
http://www.unixwiz.net/techtips/chroot-practices.html
http://olivier.sessink.nl/jailkit/

Using	a	different	root	location	for
SELinux-aware	applications
SELinux-aware	applications	have	more	requirements	when	they	run	inside	a	chroot
location.	They	require	access	to	the	SELinux	subsystem	(from	within	the	chroot)	and
possibly	SELinux	configuration	entries.	This	includes	PAM-enabled	services,	as	user
logins	on	these	services	might	require	access	to	the	SELinux	user	configuration	files	(such
as	the	seusers	file	and	default	contexts).

How	to	do	it…
First,	create	the	regular	chroot	location	as	we	saw	earlier.	To	update	the	system	to	support
SELinux-aware	applications	inside	the	chroot,	complete	the	following	steps:

1.	 Mount	the	SELinux	filesystem	inside	the	chroot	at	/sys/fs/selinux/	so	that	the
application	can	query	the	SELinux	policy:

~#	mkdir	-p	/var/chroot/sys/fs/selinux

~#	mount	-t	selinuxfs	none	/var/chroot/sys/fs/selinux

2.	 Optionally,	create	the	/var/chroot/etc/selinux/	location	and	copy	the	current
definition	inside	it:

~#	cp	-a	/etc/selinux/	/var/chroot/etc/

3.	 Update	the	seusers	file	(in	/var/chroot/etc/selinux/mcs/)	to	only	contain	the
SELinux	user	mapping(s)	needed	inside	the	chroot.

How	it	works…
Applications	that	are	SELinux-aware	usually	require	access	to	the	SELinux	filesystem
(/sys/fs/selinux/)	and	a	kernel-provided	pseudo	filesystem	needed	in	order	to	interact
with	the	SELinux	subsystem.	This	should	be	seen	as	a	more	dangerous	situation,	as	this
usually	has	the	application	run	as	a	more	privileged	user	and	with	access	to	a	system
resource	that	is	not	protected	by	the	chroot	anymore.	This	reduces	the	effectiveness	of	a
chroot	jail	as	a	security	measure.

If	applications	do	not	support	chroots	themselves	internally,	then	we	will	have	to	expose
the	/sys/fs/selinux/	filesystems	to	the	application	that	is	chrooted.	If	the	application
supports	chroot	out	of	the	box,	it	might	only	call	the	chroot	after	consulting	SELinux	(that
is,	from	the	nonchrooted	parent)	and	run	the	worker	or	user	processes	inside	a	chroot.	This
is	the	case	with	chrooted	SFTP	users	supported	through	OpenSSH.

It	might	also	be	sufficient	to	mount	the	SELinux	filesystem	on	/selinux/	(a	deprecated
but	still	a	supported	location	for	the	SELinux	filesystem)	inside	the	chroot.	That	way,	no
fake	/sys/fs/	location	needs	to	be	created:

~#	mount	-t	selinuxfs	none	/var/chroot/selinux

The	/etc/selinux/	location	is	not	always	needed,	so	it	shouldn’t	be	made	accessible
inside	the	chroot	by	default.	SELinux-aware	applications	that	use	SELinux	user	and	role
transitions	or	that	actively	modify	file	contexts	will	need	to	be	able	to	read	the	files	inside
/etc/selinux/	though.

Depending	on	the	reason	of	the	chroot	jail,	it	might	be	possible	as	well	to	use	a	read-only
bind-mount	of	the	/etc/selinux/	location:

~#	mount	-o	bind	/etc/selinux	/var/chroot/etc/selinux

~#	mount	-o	remount,ro	/var/chroot/etc/selinux

The	remount	afterwards	is	needed	to	mark	it	as	read-only.	A	bind-mount,	by	itself,	doesn’t
allow	additional	mount	options	to	be	passed,	so	we	cannot	immediately	mount	with	the	ro
mount	option.	Of	course,	it	is	no	longer	possible/needed	to	modify	the	seusers	file	with	a
read-only	bind-mount.

See	also
Detailed	guides	on	SFTP	chroots	can	be	found	at
https://wiki.archlinux.org/index.php/SFTP_chroot	and
http://en.wikibooks.org/wiki/OpenSSH/Cookbook/SFTP

https://wiki.archlinux.org/index.php/SFTP_chroot
http://en.wikibooks.org/wiki/OpenSSH/Cookbook/SFTP

Sharing	user	content	with	file	ACLs
Access	control	lists	allow	for	more	fine-grained	access	controls	on	files.	Instead	of	using	a
common	group	ownership,	access	to	files	can	be	individually	granted	to	users	or	groups.

However,	the	access	controls	that	SELinux	enables	should	also	be	tailored	to	this
situation.	Features	such	as	the	user-based	access	control	constraints	in	SELinux	might
prevent	sharing	user	content	altogether,	regardless	of	the	ACLs	set	on	the	file.

How	to	do	it…
Assuming	that	a	user	wants	to	allow	read	and	read-write	accesses	to	a	set	of	files	and
directories,	the	following	set	of	steps	can	be	used:

1.	 Create	an	accessible	location	outside	the	user’s	home	directory:

~#	mkdir	-p	/home/share/

~#	chmod	1777	/home/share/

2.	 Create	an	SELinux	file	type	that	can	be	used	for	sharing	resources:

type	user_share_t;

files_type(user_share_t)

3.	 Create	an	interface	allowing	users	to	administer	the	resource:

interface(`userdom_admin_user_share','

		gen_require(`

				type	user_share_t;

		')

		admin_pattern($1,	user_share_t)

	')

4.	 Assign	this	type	to	the	new	location:

~#	semanage	fcontext	-a	-t	user_share_t	"/home/share(/.*)?"

~#	restorecon	-R	/home/share/

5.	 Assign	the	interface	to	the	user	domain(s)	that	will	participate	in	the	shared
development	of	this	resource:

userdom_admin_user_share(user_t)

6.	 Move	the	files	that	need	to	be	shared	outside	the	user’s	home	directory,	as	the
SELinux	context	of	the	home	directory	will	not	allow	sharing	resources	within.

~$	cp	-r	sharedfiles/	/home/share	&&	rm	-r	sharedfiles/

7.	 Assign	the	ACL	that	allows	the	(limited	set	of)	users	proper	access:

~$	setfacl	-R	-m	u:user1:rX	/home/share/sharedfiles

~$	setfacl	-R	-m	u:user2:rwX	/home/share/sharedfiles

~$	setfacl	-m	"default:u:user2:rwX"	/home/share/sharedfiles

~$	setfacl	-m	"default:u:user0:rwX"	/home/share/sharedfiles

~$	setfacl	-m	"default:u:user1:rX"	/home/share/sharedfiles

How	it	works…
The	file-level	access	controls	can	be	perfectly	used	together	with	the	SELinux	access
controls.	However,	special	care	needs	to	be	taken	that	both	control	mechanisms	(file	ACLs
and	the	SELinux	policy)	don’t	interfere	with	each	other.	SELinux	might	disallow	accesses
expected	to	work	(for	instance,	due	to	SELinux	constraints	rather	than	type	enforcement
settings),	but	also	file	access	controls	need	to	be	properly	managed	in	order	to	keep	the
behavior	on	the	system	consistent.

In	the	recipes,	the	files	that	are	shared	are	moved	outside	the	user’s	home	directory.	This	is
mostly	because	of	SELinux’	UBAC	feature,	which	disallows	different	SELinux	users	to
access	each	others’	regular	resources	(such	as	those	labeled	as	user_home_t	but	also
user_home_dir_t).	As	user_home_dir_t	isn’t	accessible	by	other	SELinux	users	under
the	UBAC	constraints,	users	mapped	to	a	different	SELinux	user	will	not	be	able	to	enter
and	search	through	the	sharing	user’s	home	directory,	regardless	of	ACLs	being	installed.

Not	all	systems	have	UBAC	enabled,	or	the	sharing	might	be	within	a	single	SELinux
user,	so	this	approach	is	not	always	necessary.	Still,	using	a	different	location	allows	for
better	management.	Consider	the	case	where	the	first	user	exits	the	company,	but	his	team
wants	to	continue	accessing	and	managing	the	shared	resources.	They	would	disappear	if
the	user	home	directory	is	removed.

With	the	files	moved	to	a	different	location,	the	next	step	is	to	label	the	files	with	a	file
type	that	all	users	can	access,	but	which	isn’t	restricted	by	the	UBAC	feature.	File	types
that	have	the	ubac_constrained_type	attribute	set	cannot	be	used	for	sharing,	so	a	new
file	type	is	created	that	is	labeled	as	a	regular	file.	The	user	domains	are	then	granted
administrative	rights	on	this	type	(allowing	them	not	only	to	manage	the	files,	but	also	to
relabel	files	to	or	from	the	user_share_t	type).	This	ensures	that	SELinux	doesn’t	prevent
access	to	the	shared	resources,	while	still	preventing	unauthorized	domains	to	access	the
resources.

It	might	also	be	sufficient	to	pick	a	file	type	that	is	already	accessible	by	users,	such	as	the
nfs_t	type	(if	the	SELinux	Boolean,	use_nfs_home_dirs,	is	set).	However,	assigning	a
type	that	is	functionally	used	for	different	reasons	(nfs_t	is	for	NFS-mounted	filesystems)
might	open	up	access	to	these	resources	from	other	domains	as	well.	As	such,
administrators	need	to	carefully	consider	the	reasons	for	and	the	consequences	of	each
choice.

After	labeling	the	/home/share/	location	with	the	user_share_t	type,	the	original	user
copies	the	resources	to	the	new	location	and	removes	them	from	the	current	one.	This
approach	(copy	and	remove)	is	used	to	ensure	that	resources	inherit	the	label	of	the	target
location	(user_share_t)	instead	of	keeping	the	labels	associated	with	the	original	file
location	(user_home_t),	as	would	be	the	case	with	a	move	(mv)	command.	In	more	recent
coreutils	packages,	support	for	mv	-Z	is	made	available,	which	allows	you	to	move	the
resources	directly	while	still	giving	the	resources	a	proper	context.

A	third	approach	for	the	user	would	be	to	move	the	resources	first	and	then	relabel	them:

~$	mv	sharedfiles/	/home/share/

~$	chcon	-R	-t	user_share_t	/home/share/sharedfiles/

Finally,	with	all	SELinux	rules	and	support	in	place,	the	file	access	controls	are	enabled	on
the	shared	resources,	and	a	default	ACL	is	enabled	so	that	write	operations	by	other	users
will	automatically	inherit	the	proper	ACL	on	the	written	resource	as	well,	making	sure	that
all	users	cooperating	on	the	shared	resource	don’t	need	to	continuously	set	ACLs	on	the
files.

Without	the	default	ACLs,	other	users	might	create	files	inside	sharedfiles/	that	have	no
ACLs	set,	disallowing	other	users	to	access	the	resources.

There’s	more…
Another	approach	that	could	be	taken	is	to	use	the	setgid	group	ownership.	For	instance,
if	all	users	that	participate	in	the	shared	files	access	are	in	a	shrgrp	group,	then	the
following	will	automatically	have	all	files	created	inside	the	mentioned	directory	have	the
shrgrp	group	ownership	defined	as	well:

~$	chgrp	-R	shrgrp	/home/share/sharedfiles/

~$	find	/home/share/sharedfiles/	-type	d	-exec	chmod	g+s	'{}'	\;

This	does	require	the	users	to	have	a	proper	umask	setting	(such	as	007	or	less)	so	that	the
group	permission	on	the	newly	created	resource	allows	read	and	write	accesses	for	group
members.

Enabling	polyinstantiated	directories
On	Linux	and	Unix	systems,	the	/tmp/	and	/var/tmp/	locations	are	world	writable.	They
are	used	to	provide	a	common	location	for	temporary	files	and	are	protected	through	the
sticky	bit	so	that	users	cannot	remove	files	they	don’t	own	from	the	directory,	even	though
the	directory	is	world	writable.

But	despite	this	measure,	there	is	a	history	of	attacks	against	the	/tmp/	and	/var/tmp/
locations,	such	as	race	conditions	with	symbolic	links	and	information	leakage	through
(temporary	or	not)	world	or	group-readable	files	generated	within.

Polyinstantiated	directories	provide	a	neat	solution	to	this	problem:	users	get	their	own,
private	/tmp/	and	/var/tmp/	instance.	These	directory	instances	are	created	upon	login	on
a	different	location,	but	then	made	visible	(mounted)	on	the	/tmp/	and	/var/tmp/
locations	for	that	specific	user	session.	This	mount	is	local	to	the	user	session	through	the
use	of	Linux	namespaces—other	users	have	their	own	view	on	the	mounts,	and	for
administrators,	polyinstantiation	is	not	enabled,	so	they	keep	a	global	view	on	the	system.

How	to	do	it…
To	enable	polyinstantiation	of	/tmp/	and	/var/tmp/,	the	following	steps	should	be
followed:

1.	 Create	the	/tmp-inst/	and	/var/tmp/tmp-inst/	locations:

~#	mkdir	/tmp-inst/	/var/tmp/tmp-inst/

~#	chmod	000	/tmp-inst/	/var/tmp/tmp-inst/

2.	 Set	the	label	for	these	locations	as	tmp_t:

~#	semanage	fcontext	-a	-t	tmp_t	-f	d	/tmp-inst

~#	semanage	fcontext	-a	-t	tmp_t	-f	d	/var/tmp/tmp-inst

3.	 Edit	/etc/security/namespace.conf	and	add	in	the	following	definitions:

/tmp		/tmp-inst/				level		root,adm

/var/tmp		/var/tmp/tmp-inst/		level		root,adm

4.	 Edit	the	PAM	configuration	file	used	by	logins,	such	as	system-login,	and	add	the
following	line	to	the	session	group	after	the	pam_selinux.so	one:

session		required		pam_namespace.so

5.	 Enable	the	allow_polyinstantiation	SELinux	Boolean:

~#	setsebool	-P	allow_polyinstantiation	on

How	it	works…
The	system	preparation	for	polyinstantiated	directories	requires	that	the	directories
themselves	are	available	and	have	the	proper	permissions	set.	When	the	parent	directory,
such	as	/tmp/,	is	a	tmpfs	mount,	then	we	cannot	have	the	polyinstantiated	directories
made	available	inside	of	it	(such	as	/tmp/tmp-inst/),	as	that	directory	would	be	missing
after	a	reboot	(unless	it	is	added	through	the	init	scripts);	hence	the	setup	of	/tmp-inst/
as	a	separate	location.	Of	course,	administrators	can	still	opt	to	have	this	location	itself	as
a	tmpfs	mount—the	important	thing	is	that	the	directory	must	exist	and	have	the	proper
permissions	(which	is	represented	by	the	000	permission	set).

In	the	example,	/var/tmp/	is	assumed	not	to	be	a	tmpfs	mount,	so	we	can	define	the
polyinstantiated	directories	inside	of	it.

The	configuration	file	for	polyinstantiated	directories	is	the	namespace.conf	file	under
/etc/security/.	In	it,	the	mount-point	is	mentioned	together	with	the	directory	in	which
the	polyinstantiated	directories	are	created:

/tmp		/tmp-inst/		level		root,adm

The	third	column	defines	the	method	for	polyinstantiation.	On	non-SELinux	systems,	the
most	common	method	used	is	the	user	method,	which	creates	directories	based	on	the
username.	On	SELinux-enabled	systems,	the	method	must	be	either	level	or	context.

In	case	of	the	level	method,	the	directories	are	created	based	on	the	username	and	MLS
level	of	the	user	session.	The	context	method	has	directories	created	based	on	the
username	and	security	context.	This	allows	for	hiding	temporary	data	based	on	the	role	of
the	user,	so	accidental	data	leakage	is	less	likely	to	occur.

Administrators	can	access	the	polyinstantiated	directories	as	they	are	excluded	from	the
polyinstantiation:	the	excluded	list	of	users	is	configured	as	the	fourth	column	in	the
namespace.conf	file.	Administrators	can	still	see	the	directories	that	are	created
dynamically:

~#	ls	-l	/tmp-inst/

drwxrwxrwt.	2	root	root	4096	Jun	22	12:31	system_u:object_r:tmp_t:s0_user1

drwxrwxrwt.	2	root	root	4096	Jun	22	12:30	system_u:object_r:tmp_t:s0_user2

Next,	the	PAM	configuration	file(s)	are	modified	to	enable	the	pam_namespace.so	library.
To	find	the	PAM	configuration	files	that	need	to	be	edited,	look	for	the	PAM	configuration
files	that	call	pam_selinux.so:

~#	cd	/etc/pam.d

~#	grep	-l	pam_selinux.so	*

system-login

In	this	example,	the	system-login	PAM	configuration	file	is	the	only	file	calling
pam_selinux.so,	so	the	pam_namespace.so	line	is	added	to	this	file.	The	line	must	be
added	after	the	pam_selinux.so	call	as	the	pam_namespace.so	file	uses	the	context	of	the
user	to	decide	how	to	call	the	instantiated	directory.	If	pam_selinux.so	has	not	been
called	yet,	then	this	information	is	not	available	and	the	logon	will	fail.

Finally,	the	SELinux	Boolean,	allow_polyinstantiation,	is	enabled	so	that	the	proper
domains	have	the	privilege	to	create	(and	change	the	contexts	of)	the	proper	directories,	to
use	namespaces,	to	check	user	context,	and	more.

There’s	more…
Administrators	can	go	further	than	just	having	the	directories	created	when	needed.
During	the	setup	of	polyinstantiated	directories,	a	script	called	namespace.init,	which	is
available	at	/etc/security/	is	called	to	further	handle	the	creation	and	modification	of
those	directories.

This	script	can	be	adjusted	to	copy	files	towards	the	instantiated	directory	(the	file	usually
contains	this	logic	already	for	polyinstantiated	home	directories)	or	do	other	changes,
allowing	to	further	tune	the	setup	for	a	user	session.

The	systemd	init	system	also	has	support	for	polyinstantiated	/tmp/	directories	through
the	PrivateTmp	directive,	which	provides	a	private	/tmp/	directory	for	a	service	rather
than	end	users.

Configuring	capabilities	instead	of	setuid
binaries
Linux	capabilities	allow	for	course-grained	kernel	security	authorizations	on	the	user	and
application	levels.	Before	capabilities	existed,	administrators	could	only	grant	additional
privileges	to	users	through	setuid	applications:	applications	which,	when	executed,
inherit	the	privileges	of	the	owner	of	the	application	(usually,	root).	With	capabilities,	the
set	of	privileges	can	be	restricted	further.

For	instance,	the	ping	application	can	be	granted	the	cap_net_raw	capability,	so	it	does
not	need	to	be	setuid	anymore.	Depending	on	the	setup,	either	users	need	to	be	granted
the	possible	use	of	the	capability	(if	the	application	has	the	proper	flag	set)	or	the
capability	is	granted	immediately	(regardless	of	user	settings).

How	to	do	it…
To	use	capabilities	with	SELinux,	execute	the	following	steps:

1.	 Enable	the	capabilities	that	are	needed	for	an	application	on	the	application	binary:

~#	setcap	cap_net_raw+ei	/bin/ping

2.	 For	the	users	that	are	allowed	to	use	the	net_raw	capability,	add	the	proper
configurations	in	/etc/security/capability.conf	(one	line	per	user):

cap_net_raw			user1

3.	 SELinux	domains	that	will	use	the	capability	need	to	be	granted	the	use	of	it.	For
common	applications,	this	is	usually	already	in	place.

allow	ping_t	self:capability	net_raw;

4.	 SELinux	domains	that	are	allowed	to	modify	the	capability	set	assigned	to	their
process(es)	must	have	the	setcap	privilege	set:

allow	local_login_t	self:process	setcap;

5.	 Edit	the	PAM	configuration	file(s)	for	the	services	through	which	the	capabilities	are
allowed,	and	add	the	following	line	to	the	auth	configuration	block:

auth		required		pam_cap.so

6.	 If	capabilities	need	to	be	tracked/audited,	SELinux’s	auditallow	statement	can	be
used:

auditallow	domain	self:capability	net_raw;

How	it	works…
The	capabilities	that	a	process	is	currently	allowed	to	use	are	called	the	permitted
capabilities.	The	capabilities	that	are	active	are	the	effective	capabilities.	A	third	set	of
capabilities	are	inheritable	capabilities.

In	the	example,	we	enabled	the	cap_net_raw	capability	for	the	ping	application	and
marked	the	capability	as	effective	if	it	is	inherited.	In	other	words,	it	is	not	enabled
(permitted)	by	default.	If	we	want	to	enable	the	cap_net_raw	capability	immediately,	we
would	use	the	effective	and	permitted	set:

~#	setcap	cap_net_raw+ep	/bin/ping

Applications	that	are	capability-aware	do	not	need	to	have	the	effective	bit	set.	They
will	enable	(and	drop)	the	capabilities	as	they	are	needed	through	the	proper	system	calls
(which	is	why	the	setcap	permission	is	needed	for	these	domains).	If	ping	was	capability-
aware,	then	the	following	would	be	sufficient	for	our	example:

~#	setcap	cap_net_raw+i	/bin/ping

Next,	the	users	that	are	allowed	the	cap_net_raw	capability	(through	the	selected	set	of
applications)	need	to	be	granted	the	cap_net_raw	capability	in	their	inherited	capability
set.	This	is	done	through	the	capability.conf	file	in	/etc/security/	and	by	calling	the
pam_cap.so	module	from	within	the	proper	PAM	configuration	files.	The	use	of	PAM
configuration	files	also	allows	us	to	differentiate	capabilities	based	on	the	service	through
which	a	user	logs	on.

To	check	the	currently	enabled	capabilities,	users	can	execute	the	capsh	application:

~$	/sbin/capsh	--print	|	grep	^Current

Current:	cap_net_raw+i

To	see	the	capabilities	on	a	file,	the	getcap	application	can	be	used:

~$	getcap	/bin/ping

/bin/ping	=	cap_net_raw+ei

Finally,	auditing	the	use	of	capabilities	through	the	auditallow	statement	tells	us	when
(and	by	whom)	a	capability	was	used,	although	the	same	can	be	accomplished	without	an
SELinux	policy	using	the	Linux	audit	subsystem,	auditing	for	the	setcap	system	call.

See	also
Capabilities	are	well	explained	in	Chris	Friedhoff’s	POSIX	Capabilities	&	File
POSIX	Capabilities	page	(http://www.friedhoff.org/posixfilecaps.html)

http://www.friedhoff.org/posixfilecaps.html

Using	group	membership	for	role-based
access
In	larger	environments,	access	controls	are	usually	granted	based	on	group	membership.
Group	membership	is	easier	to	manage	than	individual	permissions:	just	adding	or
removing	users	from	a	group	automatically	grants	or	revokes	permissions,	and
administrators	can	easily	find	out	which	permission(s)	a	user	will	have	based	on	the	group
membership.

How	to	do	it…
In	order	to	use	group	membership	as	a	high-level	method	for	assigning	permissions,
administrators	need	to	take	care	of	the	following	aspects:

1.	 Add	user(s)	to	the	groups	they	should	belong	to:

~#	gpasswd	-a	user1	dba

~#	gpasswd	-a	user1	dev

2.	 Assign	the	proper	SELinux	user	to	the	group:

~#	semanage	login	-s	dbadm_u	%dba

3.	 Restrict	binaries	and	libraries	that	should	only	be	called	by	a	specific	group:

~#	chgrp	-R	dev	/usr/lib/gcc	/usr/x86_64-pc-linux-gnu/gcc-bin

~#	chmod	-R	o-rx	/usr/lib/gcc	/usr/x86_64-pc-linux-gnu/gcc-bin

4.	 Use	group	notation	inside	the	sudoers	file	to	grant	specific	privileges	to	group
members:

%dba		ALL=(ALL)		TYPE=dbadm_t	ROLE=dbadm_r	NOPASSWD:	initdb

How	it	works…
Using	groups	makes	permission	handling	much	easier.	In	the	end,	this	allows
administrators	to	just	handle	group	membership	for	users	and	automatically	assign
privileges	based	on	the	groups.

We	can	grant	groups	an	SELinux	user,	and	through	the	group	membership	decide	which
SELinux	user	a	regular	user	is	logged	into.	Of	course,	users	can	belong	to	multiple	groups.
For	SELinux,	it	is	the	order	of	the	seusers	file	that	decides	which	of	the	following
mappings	are	used:

SELinux	user	mappings	for	individual	users	take	precedence	over	group	mappings
The	first	group	mapping	in	the	seusers	file	that	uses	a	group	that	the	Linux	user	is	a
member	of	decides	the	SELinux	user	mapping	if	no	individual	SELinux	user
mappings	exist	for	this	user

As	such,	if	a	user	is	a	member	of	two	groups	(say,	dba	and	web)	and	there	are	mappings	to
both	dbadm_u	(for	the	dba	group)	and	webadm_u	(for	the	web	group),	then	the	first	mapping
in	the	seusers	file	will	decide	what	the	user’s	SELinux	user	will	be.

In	order	to	override	this,	either	add	the	user	individually	or	create	another	group	(say,
dbaweb),	grant	the	user	this	group	as	well,	and	put	that	group	mapping	at	the	beginning	of
the	list	in	the	seusers	file.

When	only	a	specific	user	group	is	allowed	access	to	an	application,	but	that	application
does	not	use	any	specific	SELinux	domains,	then	it	might	be	more	flexible	for
administrators	to	use	the	Linux	DAC	permissions	to	restrict	access	to	the	application.	By
only	allowing	a	specific	group	(dev,	in	our	example),	read	and	execute	rights	on	the
application	and	application	libraries,	we	can	restrict	access	easily.

Another	approach	is	to	label	the	files	with	new	SELinux	types	and	grant	the	proper
domains	access	to	those	types.	However,	this	might	lead	to	a	large	set	of	domains	needing
access	to	the	types	(and	so	requires	massive	policy	development	effort),	whereas	the	Linux
DAC	approach	is	easily	implemented.

Backing	up	and	restoring	files
An	important	aspect	to	the	availability	of	a	system	and	the	security	of	a	service	is	to
provide	backup	and	restore	services.	For	many,	having	a	copy	of	the	files	available	might
seem	sufficient	as	a	backup	approach.	However,	backups	should	contain	more	than	just	the
content	of	a	file.

How	to	do	it…
When	selecting	a	backup	solution,	make	sure	to	check	for	the	following:

1.	 A	selection	of	the	extended	attributes	of	the	files	should	be	backed	up	as	well	(and
not	only	the	security.selinux	one).

2.	 When	files	are	restored	onto	their	original	location,	the	SELinux	context	should	be
restored	with	it	as	well.	If	the	backup	solution	doesn’t	support	SELinux	contexts,	the
restorecon	command	should	be	invoked	afterwards	against	the	restored	file(s).

3.	 When	files	are	restored	into	a	temporary	area,	the	SELinux	context	should	not	be
restored.	Instead,	the	administrator	should	put	the	file	back	in	place	and	restore	the
context	afterwards.

4.	 The	SELinux	configuration	in	/etc/selinux/	should	definitely	be	backed	up,	even	if
no	full	system	backups	are	used.	Whenever	the	policy	or	file	context	definitions	are
altered,	these	should	be	backed	up	as	well	whenever	files	are	backed	up.

How	it	works…
File	labels	are	stored	as	the	security.selinux	extended	attribute.	As	the	functioning	of	a
policy	is	based	on	the	labels	of	all	objects	involved,	not	backing	up	and	restoring	the	file
labels	might	jeopardize	the	functioning	of	the	system	after	a	restore	operation.

When	the	backup	solution	does	not	support	extended	attributes,	it	is	important	that	all
labels	are	properly	set	through	the	semanage	fcontext	command.	This	is	the	only	way	to
make	sure	that,	after	a	restore,	the	admin	can	run	restorecon	against	the	restored	files	in
order	to	reset	the	file	labels:

~#	tar	xvf	/path/to/last_backup.tar.gz	etc/named.conf

~#	restorecon	/etc/named.conf

However,	it	is	seriously	recommended	to	select	a	backup	solution	that	supports	extended
attributes	as	many	other	Linux-related	settings	are	stored	as	extended	attributes.	The	file
ACLs,	for	instance,	are	stored	as	extended	attributes	as	well:

~$	getfattr	-m	.	-d	named.conf

#	file:	named.conf

security.selinux="system_u:object_r:named_conf_t:s0"

system.posix_acl_access=0sAgAAAAEABgD/////AgAGAOo…

Other	examples	of	extended	attributes	that	can	be	used	on	a	system	are	PaX	markings
(user.pax.flags),	IMA	and	EVM	hashes	(security.ima	and	security.evm),	and
capabilities	(security.capability).	But	herein	lies	the	problem	as	well:	some	attributes
shouldn’t	(or	cannot)	be	restored.	The	IMA	and	EVM	attributes,	for	instance,	are	handled
by	the	Linux	kernel	and	cannot	be	manipulated	by	user	utilities.

Alongside	the	file	labels,	backing	up	and	restoring	the	SELinux	policy	should	be
integrated	as	well,	especially	on	a	system	with	a	modified	SELinux	policy.	If	a	policy	is
different	after	a	restore,	then	types	might	be	missing	and	labels	might	become	invalid.

Governing	application	network	access
On	Linux	systems,	iptables	(and	more	recently,	nftables)	is	the	de	facto	host-based
firewall	technology.	Administrators	will	undoubtedly	use	it	to	prevent	access	to	a	service
from	unauthorized	systems.	We	can	also	use	iptables	to	identify	and	label	network
packets,	allowing	only	authorized	applications	(domains)	to	send	or	receive	those	network
packets.

By	default,	the	SELinux	policy	supports	client	and	server	packets	and	allows	the	usual
domains	access	to	their	client	and/or	server	packets.	For	instance,	the	web	server	domains
(such	as	httpd_t)	will	have	the	privileges	to	send	and	receive	http_server_packet_t
packets:

allow	httpd_t	http_server_packet_t:packet	{	send	recv	};

This	is	provided	through	the	corenet_sendrecv_http_server_packets	interface.
Enabling	packet	labeling	is	simply	done	using	iptables	as	will	be	shown	through	this
recipe.	But	to	properly	govern	network	access,	custom	packet	types	will	need	to	be	created
to	ensure	that	no	default	allowed	access	is	used.

How	to	do	it…
To	only	allow	authorized	domains	access	to	particular	network	packets	(datagrams	and
data	streams),	use	the	following	approach:

1.	 Identify	the	flow	that	needs	to	be	allowed.	For	instance,	we	might	only	want	DNS
requests	from	10.11.12.0/24	to	be	accepted	by	the	dnsmasq_t	domain,	and	requests
from	10.13.14.0/24	to	be	accepted	by	the	named_t	domain.

2.	 Create	two	new	packet	types:

type	dnsmasq_server_packet_t;

corenet_server_packet(dnsmasq_server_packet_t)

	

type	named_server_packet_t;

corenet_server_packet(named_server_packet_t)

3.	 Allow	the	domains	send	and	receive	privileges	for	these	packets:

allow	dnsmasq_t	dnsmasq_server_packet_t:packet	{	send	recv	};

allow	named_t	named_server_packet_t:packet	{	send	recv	};

4.	 Label	the	incoming	traffic	accordingly:

~#	iptables	-t	mangle	-A	INPUT	-p	tcp	-s	10.11.12.0/24	--dport	53	-j	

SECMARK	--selctx	"system_u:object_r:dnsmasq_server_packet_t:s0"

~#	iptables	-t	mangle	-A	INPUT	-p	udp		-s	10.11.12.0/24	--dport	53	-j	

SECMARK	--selctx	"system_u:object_r:dnsmasq_server_packet_t:s0"

~#	iptables	-t	mangle	-A	INPUT	-p	tcp	-s	10.13.14.0/24	--dport	53	-j	

SECMARK	--selctx	"system_u:object_r:named_server_packet_t:s0"

~#	iptables	-t	mangle	-A	INPUT	-p	udp	-s	10.13.14.0/24	--dport	53	-j	

SECMARK	--selctx	"system_u:object_r:named_server_packet_t:s0"

How	it	works…
By	using	custom	network	packet	labels,	access	from	or	to	specific	applications	can	be
governed	using	an	SELinux	policy.	Even	though	multiple	applications	can	accept
incoming	DNS	requests,	this	recipe	shows	how	to	ensure	that	only	one	application	can
deal	with	requests	that	have	passed	a	certain	filter.

Whenever	a	SECMARK	label	is	enabled	with	iptables,	the	Linux	kernel	will
automatically	enable	SECMARK	labeling	on	all	packets.	Packets	that	are	not	marked
specifically	by	the	administrator	will	be	marked	with	the	unlabeled_t	type.	Some
domains	are	allowed	to	handle	the	unlabeled_t	packets	through	the
corenet_sendrecv_unlabeled_packets	interface	(or	the
kernel_sendrecv_unlabeled_packets	interface).	However,	if	that	is	not	the	case,	then
those	domains	will	not	be	able	to	handle	network	traffic	anymore.

As	such,	it	is	advised	to	use	the	standard	labeling	for	other	incoming	(and	outgoing)
traffic.	To	identify	which	incoming	traffic	should	be	labeled,	we	can	leverage	assistance
from	the	netstat	output:

~#	netstat	-naptZ	|	awk	'/LISTEN/	{print	$4,$6,$7,$8}'

0.0.0.0:13500	LISTEN	6489/mysqld	system_u:system_r:mysqld_t:s0

0.0.0.0:80	LISTEN	23303/httpd	system_u:system_r:httpd_t:s0

10.11.12.122:53	LISTEN	4432/dnsmasq	system_u:system_r:dnsmasq_t:s0

10.13.14.42:53	LISTEN	5423/named	system_u:system_r:named_t:s0

Based	on	this	output,	labeling	the	appropriate	traffic	as	mysqld_server_packet_t	and
http_server_packet_t	will	allow	those	domains	to	access	their	incoming	network	traffic.

By	creating	additional	types	for	dnsmasq_t	and	named_t,	those	applications	can	only
handle	requests	associated	with	those	packet	types.	If	an	administrator	changes	the
configuration	of	one	of	these	DNS	servers,	then	the	network	packet	labeling	will	still
ensure	that	DNS	requests	from	the	previously	identified	network	segments	cannot	be	used
by	the	wrong	DNS	server,	even	though	the	flow	is	allowed	firewall-wise.

With	sesearch,	interrogating	the	policy	to	see	which	applications	(domains)	are	able	to
send	and	receive	certain	packets	is	easy:

~#	sesearch	-t	dns_server_packet_t	-ACTS

Found	10	semantic	av	rules:

			allow	nova_network_t	dns_server_packet_t	:	packet	{	send	recv	}	;

			allow	corenet_unconfined_type	packet_type	:	packet	{	send	recv	relabelto	

flow_in	flow_out	forward_in	forward_out	}	;

			allow	named_t	dns_server_packet_t	:	packet	{	send	recv	}	;

			allow	vmware_host_t	server_packet_type	:	packet	{	send	recv	}	;

			allow	dnsmasq_t	dns_server_packet_t	:	packet	{	send	recv	}	;

			allow	kernel_t	packet_type	:	packet	send	;

			allow	iptables_t	packet_type	:	packet	relabelto	;

ET	allow	squid_t	packet_type	:	packet	{	send	recv	}	;	[squid_connect_any]

DT	allow	icecast_t	packet_type	:	packet	{	send	recv	}	;	[

icecast_connect_any]

DT	allow	git_session_t	server_packet_type	:	packet	{	send	recv	}	;	[

git_session_bind_all_unreserved_ports]

The	same	approach	can	be	taken	from	a	client	level.	A	mail	server	might	need	to	connect
to	other	mail	servers,	which	means	that	the	outgoing	data	can	be	labeled	as
mail_client_packet_t	(if	we	use	the	default	traffic).	However,	if	we	want	to	make	sure
only	the	mail	server	can	connect	to	other	mail	servers	(and	no	other	domains	that	also
have	privileges	to	send	and	receive	the	mail_client_packet_t	packets),	then	a	new
packet	type	can	be	used.

See	also
For	more	information	about	SECMARK	labeling,	read	up	on	the	following	resources:

http://www.selinuxproject.org/page/NB_Networking
Paul	Moore’s	Transitioning	to	Secmark	at
http://paulmoore.livejournal.com/4281.html
James	Morris’s	New	Secmark-based	network	controls	for	SELinux	at	http://james-
morris.livejournal.com/11010.html

http://www.selinuxproject.org/page/NB_Networking
http://paulmoore.livejournal.com/4281.html
http://james-morris.livejournal.com/11010.html

Chapter	10.	Handling	SELinux-aware
Applications
In	this	chapter,	we	will	cover	handling	of	SELinux-aware	applications	through	the
following	recipes:

Controlling	D-Bus	message	flows
Restricting	service	ownership
Understanding	udev’s	SELinux	integration
Using	cron	with	SELinux
Checking	the	SELinux	state	programmatically
Querying	SELinux	userland	configuration	in	C
Interrogating	the	SELinux	subsystem	code-wise
Running	new	processes	in	a	new	context
Reading	the	context	of	a	resource

Introduction
For	most	applications,	the	SELinux	subsystem	in	the	Linux	kernel	is	capable	of	enforcing
security	controls	without	further	interaction	with	other	applications	and	components.
However,	there	are	actions	that	cannot	be	handled	by	the	SELinux	subsystem
autonomously.	Some	applications	execute	commands	for	specific	users,	but	the	target
domain	cannot	be	deduced	from	the	path	of	the	application	that	is	itself	being	executed,
making	type	transitions	based	on	the	label	impossible.

One	solution	for	this	problem	is	to	make	the	application	SELinux-aware,	having	the
application	interrogate	the	SELinux	subsystem	as	to	what	should	be	the	context	of	the
newly	executed	application.	Once	the	context	is	obtained,	the	application	can	then	instruct
the	SELinux	subsystem	that	this	context	can	be	assigned	to	the	process	that	will	be
launched	next.

Of	course,	it	isn’t	only	about	deciding	what	context	a	process	should	be	in.	Applications
can	also	check	the	SELinux	policy	and	act	on	the	policy	themselves,	rather	than	having
the	policies	enforced	through	the	Linux	kernel.	If	applications	use	SELinux	to	get	more
information	about	a	session	and	set	contexts	based	on	this	information,	then	we	call	these
applications	SELinux-aware.

The	easiest	method	to	see	whether	an	application	is	SELinux-aware	is	to	check	the
documentation,	or	to	check	whether	it	is	linked	with	the	libselinux.so	library:

~$		ldd	/usr/sbin/crond	|	grep	selinux

		libselinux.so.1	=>	/lib64/libselinux.so.1	(0x00007fa53299a000)

Some	SELinux-aware	applications	not	only	query	information,	but	also	enforce	decisions
on	objects	that	the	SELinux	subsystem	in	the	Linux	kernel	cannot	control.	Examples	of
such	objects	are	the	database	objects	in	the	Security	Enhanced	PostgreSQL
(SEPostgreSQL)	application	or	the	D-Bus	services.	Although	represented	in	the	SELinux
policy,	they	are	not	part	of	the	regular	Linux	operating	system	but	are	instead	owned	by
the	application	itself.	Such	SELinux-aware	applications	are	called	user	space	object
managers.

Regardless	of	how	an	application	handles	its	SELinux-specific	code,	whenever	such
applications	are	used	on	a	system,	it	is	important	to	know	how	the	SELinux	code	in	the
application	works,	as	the	standard	approach	(look	at	AVC	denials	and	see	whether	a
context	needs	to	be	changed	or	the	policy	tuned)	might	not	work	at	all	in	these	cases.

Controlling	D-Bus	message	flows
D-Bus	implementation	on	Linux	is	an	example	of	an	SELinux-aware	application,	acting	as
a	user	space	object	manager.	Applications	can	register	themselves	on	a	bus	and	can	send
messages	between	applications	through	D-Bus.	These	messages	can	be	controlled	through
the	SELinux	policy	as	well.

Getting	ready
Before	looking	at	the	SELinux	access	controls	related	to	message	flows,	it	is	important	to
focus	on	a	D-Bus	service	and	see	how	its	authentication	is	done	(and	how	messages	are
relayed	in	D-Bus)	as	this	is	reflected	in	the	SELinux	integration.

Go	to	/etc/dbus-1/system.d/	(which	hosts	the	configuration	files	for	D-Bus	services)
and	take	a	look	at	a	configuration	file.	For	instance,	the	service	configuration	file	for
dnsmasq	looks	like	the	following:

<!DOCTYPE	busconfig	PUBLIC	"-//freedesktop//DTD	D-BUS	Bus	Configuration	

1.0//EN"	"http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">

<busconfig>

		<policy	user="root">

				<allow	own="uk.org.thekelleys.dnsmasq"/>

				<allow	send_destination="uk.org.thekelleys.dnsmasq"/>

		</policy>

		<policy	context="default">

				<deny	own="uk.org.thekelleys.dnsmasq"/>

				<deny	send_destination="uk.org.thekelleys.dnsmasq"/>

		</policy>

</busconfig>

This	configuration	tells	D-Bus	that	only	the	root	Linux	user	is	allowed	to	have	a	service
own	the	uk.org.thekelleys.dnsmasq	service	and	send	messages	to	this	service.	Others
(as	managed	through	the	default	policy)	are	denied	these	operations.

On	a	system	with	SELinux	enabled,	having	root	as	the	finest	granularity	doesn’t	cut	it.	So,
let’s	look	at	how	the	SELinux	policy	can	offer	a	fine-grained	access	control	in	D-Bus.

How	to	do	it…
To	control	D-Bus	message	flows	with	SELinux,	perform	the	following	steps:

1.	 Identify	the	domain	of	the	application	that	will	(or	does)	own	the	D-Bus	service	we
are	interested	in.	For	the	dnsmasq	application,	this	would	be	dnsmasq_t:

~#	ps	-eZ	|	grep	dnsmasq	|	awk	'{print	$1}'

system_u:system_r:dnsmasq_t:s0-s0:c0.c1023

2.	 Identify	the	domain	of	the	application	that	wants	to	send	messages	to	the	service.	For
instance,	this	could	be	the	sysadm_t	user	domain.

3.	 Allow	the	two	domains	to	interact	with	each	other	through	D-Bus	messages	as
follows:

gen_require(`

		class	dbus	send_msg;

')

allow	sysadm_t	dnsmasq_t:dbus	send_msg;

allow	dnsmasq_t	sysadm_t:dbus	send_msg;

How	it	works…
When	an	application	connects	to	D-Bus,	the	SELinux	label	of	its	connection	is	used	as	the
label	to	check	when	sending	messages.	As	there	is	no	transition	for	such	connections,	the
label	of	the	connection	is	the	context	of	the	process	itself	(the	domain);	hence	the	selection
of	dnsmasq_t	in	the	example.

When	D-Bus	receives	a	request	to	send	a	message	to	a	service,	D-Bus	will	check	the
SELinux	policy	for	the	send_msg	permission.	It	does	so	by	passing	on	the	information
about	the	session	(source	and	target	context	and	the	permission	that	is	requested)	to	the
SELinux	subsystem,	which	computes	whether	access	should	be	allowed	or	not.	The	access
control	itself,	however,	is	not	enforced	by	SELinux	(it	only	gives	feedback),	but	by	D-Bus
itself	as	governing	the	message	flows	is	solely	D-Bus’	responsibility.

This	is	also	why,	when	developing	D-Bus-related	policies,	both	the	class	and	permission
need	to	be	explicitly	mentioned	in	the	policy	module.	Without	this,	the	development
environment	might	error	out,	claiming	that	dbus	is	not	a	valid	class.

D-Bus	checks	the	context	of	the	client	that	is	sending	a	message	as	well	as	the	context	of
the	connection	of	the	service	(which	are	both	domain	labels)	and	see	if	there	is	a	send_msg
permission	allowed.	As	most	communication	is	two-fold	(sending	a	message	and	then
receiving	a	reply),	the	permission	is	checked	in	both	directions.	After	all,	sending	a	reply
is	just	sending	a	message	(policy-wise)	in	the	reverse	direction.

It	is	possible	to	verify	this	behavior	with	dbus-send	if	the	rule	is	on	a	user	domain.	For
instance,	to	look	at	the	objects	provided	by	the	service,	the	D-Bus	introspection	can	be
invoked	against	the	service:

~#	dbus-send	--system	--dest=uk.org.thekelleys.dnsmasq	--print-reply	

/uk/org/thekelleys/dnsmasq	org.freedesktop.DBus.Introspectable.Introspect

When	SELinux	does	not	have	the	proper	send_msg	allow	rules	in	place,	the	following
error	will	be	logged	by	D-Bus	in	its	service	logs	(but	no	AVC	denial	will	show	up	as	it
isn’t	the	SELinux	subsystem	that	denies	the	access):

Error	org.freedesktop.DBus.Error.AccessDenied:	An	SELinux	policy	prevents	

this	sender	from	sending	this	message	to	this	recipient.	0	matched	rules;	

type="method_call",	sender=":1.17"	(uid=0	pid=6738	comm="")	

interface="org.freedesktop.DBus.Introspectable"	member="Introspect"	error	

name="(unset)"	requested_reply="0"	destination="uk.org.thekelleys.dnsmasq"	

(uid=0	pid=6635	comm="")

When	the	policy	does	allow	the	send_msg	permission,	the	introspection	returns	an	XML
output	showing	the	provided	methods	and	interfaces	for	this	service.

There’s	more…
The	current	D-Bus	implementation	is	a	pure	user	space	implementation.	Because	more
applications	become	dependent	on	D-Bus,	work	is	being	done	to	create	a	kernel-based	D-
Bus	implementation	called	kdbus.	The	exact	implementation	details	of	this	project	are	not
finished	yet,	so	it	is	unknown	whether	the	SELinux	access	controls	that	are	currently
applicable	to	D-Bus	will	still	be	valid	on	kdbus.

Restricting	service	ownership
Applications	that	register	themselves	on	the	bus	own	a	service	name.	The
uk.org.thekelleys.dnsmasq	service	name	is	an	example	of	this.	The	D-Bus	policy,
declared	in	the	busconfig	XML	file	at	/etc/dbus-1/system.d/	(or	session.d/	if	the
service	is	for	the	session	bus	instead	of	system	bus)	provides	information	for	D-Bus	to
decide	when	taking	ownership	of	a	particular	service	is	allowed.

Thanks	to	D-Bus’	SELinux	integration,	additional	constraints	can	be	added	to	ensure	that
only	authorized	applications	can	take	ownership	of	a	particular	service.

How	to	do	it…
To	restrict	service	ownership	through	the	SELinux	policy,	follow	the	ensuing	set	of	steps:

1.	 Inside	the	D-Bus	configuration	file	of	the	service,	make	sure	that	the	own	permission
is	properly	protected.	For	instance,	make	sure	only	the	root	Linux	user	can	own	the
service:

<policy	user="root">

		<allow	own="uk.org.thekelleys.dnsmasq"	/>

</policy>

2.	 If	the	runtime	service	account	can	differ,	it	is	possible	to	declare	a	group=	parameter
instead	of	a	user=	parameter	as	well.

3.	 Next,	declare	which	label	to	associate	to	the	service:

<selinux>

		<associate	own="uk.org.thekelleys.dnsmasq"	context="dnsmasq_t"	/>

</selinux>

4.	 In	the	SELinux	policy,	declare	which	domain(s)	are	allowed	to	acquire	this	service:

gen_require(`

		class	dbus	acquire_svc;

')

allow	dnsmasq_t	self:dbus	acquire_svc;

How	it	works…
The	D-Bus	configuration	allows	administrators	to	define	when	service	ownership	for	a
particular	service	can	be	taken.	Most	services	define	the	user	(or	group)	that	is	allowed	to
own	a	service,	as	shown	in	the	example.	But	for	system	services,	only	declaring	that	the
Linux	root	user	can	own	a	particular	service	is	definitely	not	sufficiently	fine-grained.

Enter	SELinux.	With	the	association	definition	in	the	busconfig	XML	file,	D-Bus	is	told
that	any	application	domain	that	tries	to	own	that	particular	service	must	have	the
acquire_svc	privilege	(in	the	dbus	class)	against	the	mentioned	context.

With	this	approach,	administrators	can	ensure	that	other	domains,	even	though	they	run	as
the	Linux	root	user,	are	not	allowed	to	own	the	service.

Although	the	usual	approach,	for	the	target	label,	is	to	require	the	context	of	the
application	itself,	it	is	also	possible	to	use	a	different	context.	For	instance,	a	new	type	can
be	declared	such	as	dnsmasq_dbus_t	and	then	the	SELinux	policy	is	set	to	the	following:

allow	dnsmasq_t	dnsmasq_dbus_t:dbus	acquire_svc;

There’s	more…
The	D-Bus	application	has	a	configuration	file	inside	/etc/selinux/mcs/contexts/,
which	follows	the	same	structure,	called	dbus_contexts.	This	is	a	default	context
definition	for	D-Bus	ownership	(what	context	should	be	used	by	default	if	it	cannot	be
deduced	by	other	means).	By	default,	no	SELinux-specific	settings	are	provided	anymore
as	D-Bus	is	now	fully	aware	of	the	contexts	to	use,	and	it	is	not	recommended	to	modify
this	file	anymore.

However,	it	is	useful	to	know	that	the	file	exists	and	is	used,	especially	when	D-Bus	would
be	executed	in	a	container,	chroot,	or	other	environment	as	D-Bus	will	complain	if	the	file
is	missing:

Failed	to	start	message	bus:	Failed	to	open	

"/etc/selinux/mcs/contexts/dbus_contexts":	No	such	file	or	directory

If	the	SELinux	support	in	D-Bus	needs	to	be	disabled	(but	without	rebuilding	D-Bus),	then
edit	/etc/dbus-1/system.conf	and	session.conf	and	remove	the	following	line:

<include	if_selinux_enabled="yes"	

selinux_root_relative="yes">contexts/dbus_contexts</include>

Understanding	udev’s	SELinux
integration
The	udev	device	manager	is	responsible	for	handling	device	files	inside	the	/dev/
structure	whenever	changes	occur.	As	many	device	files	have	different	contexts,	without
any	SELinux	awareness,	the	udev	policy	would	need	to	be	enhanced	with	many,	many
named	file	transitions.	Such	a	named	file	transition,	for	a	device	/dev/mydevice	towards
the	mydevice_t	type,	would	look	like	the	following	code:

dev_filetrans(udev_t,	mydevice_t,	chr_file,	"mydevice")

However,	when	/dev/mydevice1,	/dev/mydevice2,	and	so	on	need	to	be	labeled	as	well,
then	each	possible	name	would	need	to	be	iterated	in	the	policy	(named	file	transitions	do
not	support	regular	expressions).	Luckily,	udev	is	SELinux-aware,	making	it	unnecessary
to	create	policy	enhancements	for	every	device	file.

This	recipe	shows	us	when	additional	policy	enhancements	are	needed	and	when	not.

How	to	do	it…
To	understand	how	udev’s	SELinux	integration	works,	the	following	decision	criteria	can
be	followed:

1.	 Whenever	a	device	file	is	created	by	udev	inside	a	directory	with	the	device_t	label,
then	udev	will	automatically	label	the	device	file	with	the	label	known	to	the
SELinux	subsystem	through	its	file_contexts	definitions	if	the	target	type	is
assigned	the	device_node	attribute.

2.	 If	the	parent	directory	does	not	use	the	device_t	type,	then	make	sure	that	udev
holds	manage	rights	on	that	target	type.

3.	 If	the	target	file	context	is	not	associated	with	the	device_node	attribute,	grant	udev
the	proper	relabelto	privileges.

4.	 If	udev’s	rules	are	configured	to	create	symbolic	links,	then	assert	that	the	label	of	the
links	remains	the	generic	device_t	type.

How	it	works…
The	udev	application	is	a	standard	SELinux-aware	application	that	interacts	with	the
SELinux	user	space	by	querying	the	context	definitions	and	either	creating	the	new	device
files	with	the	queried	context	or	by	relabeling	the	device	files	afterwards.

By	querying	the	context	definitions	(instead	of	relying	on	the	SELinux	policy),
administrators	can	easily	modify	the	rules	for	different	device	names	or	include	support
for	new	device	types,	without	the	need	to	enhance	the	udev_t	related	policies.	All	that	an
administrator	has	to	do	is	to	configure	the	proper	file	context	definition:

~#	semanage	fcontext	-a	-t	mydevice_t	-f	-c	/dev/mydevice[0-9]*

However,	if	the	target	device	type	(mydevice_t)	is	not	associated	with	the	device_node
attribute,	then	udev_t	will	not	have	the	privileges	to	relabel	this	device	type.	This	attribute
is	vital	for	the	support	of	udev_t,	as	it	has	relabel	(and	manage)	rights	on	all	device	nodes
through	this	attribute.

If	a	udev	rule	would	request	the	creation	of	a	device	file	that	is	not	associated	with	the
device_node	attribute	(or	a	different	file—the	requested	file	does	not	need	to	be	a	device),
then	an	update	on	the	SELinux	policy	is	needed	if	the	default	context	association	(that	is,
through	inheritance	of	the	type	through	the	parent	directory)	is	not	sufficient.

For	the	same	reason,	it	is	necessary	to	have	symbolic	links	remain	as	device_t	as	the
SELinux	policy	does	not	handle	different	types	for	symbolic	links.

Of	course,	this	SELinux	support	inside	udev	also	has	its	consequences	when	device	files
are	created	outside	of	udev’s	handling.	If	that	is	the	case,	then	the	administrator	has	to
make	sure	that	the	label	of	the	files	is	corrected,	as	wrong	device	types	can	result	in	a
system	malfunction.

A	popular	approach	for	that	is	to	relabel	the	entire	/dev/	structure	(which	is	often	done	by
a	distribution	init	script	to	counter	the	default	device	file	creation—and	its	default
device_t	type—from	within	the	initial	RAM	filesystem	or	the	devtmpfs	mount):

~#	restorecon	-R	/dev

Using	cron	with	SELinux
Another	example	of	an	SELinux-aware	application	is	cron.	Well,	actually	a	set	of	cron
implementations,	as	there	is	not	a	single	cron	application.	Examples	of	cron
implementations	are	vixie-cron,	cronie,	and	fcron.

The	cron	implementations	invoke	commands	for	(and	as)	a	particular	Linux	user.	As	these
commands	are	not	set	in	stone	(the	main	purpose	of	cron	is	to	allow	any	command	to	be
run	for	a	particular	user	or	even	for	the	system	itself),	it	is	not	possible	to	easily	create	a
policy	that	is	sufficiently	fine-grained	to	accommodate	all	features	provided	by	cron.	After
all,	for	SELinux	itself,	there	is	no	difference	between	cron	calling	a	command	for	one	user
or	another:	all	that	is	involved	is	the	cron	domain	(crond_t)	and	the	target	type	of	the
command	(such	as	bin_t).

For	this	reason,	many	cron	implementations	are	made	SELinux-aware,	allowing	the	cron
implementation	to	select	the	proper	target	context.

How	to	do	it…
To	properly	interact	with	an	SELinux-aware	cron,	the	following	steps	need	to	be	followed:

1.	 Make	sure	that	the	crontab	files	are	properly	labeled:	user_cron_spool_t	for	the
user	crontabs,	and	system_cron_spool_t	for	the	system	crontab.

2.	 Check	/etc/selinux/mcs/contexts/default_contexts	or
/etc/selinux/mcs/contexts/users/*	for	the	target	context	of	the
system_r:crond_t	domain.

3.	 Have	the	crontab	file	context	be	an	entrypoint	for	the	target	domain.	For	instance,	if
the	target	domain	for	a	user	is	its	own	user	domain	(such	as	user_t),	then
user_cron_spool_t	has	to	be	known	as	an	entrypoint	for	user_t.

4.	 Set	the	cron_userdomain_transition	Boolean	to	on	if	the	target	domain	for	user
jobs	is	the	user	domain,	or	off	if	the	target	domain	should	be	the	cronjob_t	domain.

How	it	works…
When	cron	is	SELinux-aware,	it	is	vital	that	it	is	running	in	the	crond_t	domain.	Its
internal	SELinux	code	will	query	the	SELinux	policy	to	see	what	the	target	domain	is	for	a
user	through	the	application,	and	if	cron	isn’t	running	in	the	crond_t	domain,	then	this
query	will	not	result	in	the	correct	set	of	domains:

~#	ps	-efZ	|	grep	fcron	|	awk	'{print	$1}'

system_u:system_r:crond_t:s0-s0:c0.c1023

Before	launching	user	jobs	from	cron,	the	cron	application	will	check	the	file	context	of
the	user	crontab	file.	This	file	context	is	then	used	to	see	whether	the	target	domain	for	the
user	jobs	has	the	user	crontab	file	context	as	an	entrypoint.

To	know	what	the	current	target	domain	will	be,	we	can	use	the	getseuser	helper
application:

~#	getseuser	hannah	system_u:system_r:crond_t:s0

seuser:	user_u

Context	0				user_u:user_r:cronjob_t:s0

In	this	case,	the	target	domain	is	cronjob_t.	This	should	be	confirmed	by	the
default_contexts	(or	user-specific	context)	file:

~#	grep	crond_t	/etc/selinux/mcs/contexts/users/user_u

system_r:crond_t		user_r:cronjob_t

If	the	target	domain	should	be	the	user	domain,	then	we	need	to	toggle	the	right	Boolean
and	adjust	the	context	file	accordingly:

~#	setsebool	cron_userdomain_transition	on

~#	grep	crond_t	/etc/selinux/mcs/contexts/users/user_u

system_r:crond_t		user_r:user_t

With	the	target	domain	known,	the	last	thing	that	is	needed	is	that	the	user	cronjob	file
context	is	known	as	an	entrypoint	for	the	domain,	which	most	cron	implementations	will
check	as	a	sort-of	access	control:

~#	sesearch	-s	user_t	-t	user_cron_spool_t	-c	file	-p	entrypoint	-A

Found	1	semantic	av	rules:

		allow	user_t	user_cron_spool_t	:	file	entrypoint	;

There’s	more…
Not	all	cron	implementations	are	SELinux-aware.	If	the	implementation	is	not	SELinux-
aware,	then	the	cron	jobs	will	all	run	inside	a	single	cron	job	container	(cronjob_t	for
user	cron	jobs	and	system_cronjob_t	for	system	cron	jobs)	with	the	system_u	SELinux
user	and	the	system_r	SELinux	role.

Checking	the	SELinux	state
programmatically
If	the	need	arises	to	make	an	SELinux-aware	application,	then	several	languages	can	be
used.	The	libselinux	package	usually	provides	bindings	for	multiple	programming	and
scripting	languages.	In	the	next	set	of	recipes,	the	C	programming	language	will	be	used
as	an	example	implementation.

The	first	step	to	support	SELinux	in	an	application	is	to	check	the	SELinux	state.	In	this
recipe,	we	will	show	how	to	create	an	application	that	links	with	the	libselinux	library
and	checks	the	state	of	SELinux.

Getting	ready
As	we	are	going	to	update	a	C	application,	this	set	of	recipes	will	assume	basic	knowledge
of	C	programming.	An	example	C	application	that	uses	all	the	input	from	this	(and	other)
recipes	can	be	found	in	the	download	pack	of	this	book.

How	to	do	it…
In	order	to	link	with	libselinux	and	to	check	the	current	SELinux	state,	the	following	set
of	steps	can	be	used:

1.	 Create	a	C	application	code	file	and	refer	to	the	SELinux	header	files	through	a
compiler	directive:

#ifdef	SELINUX

#include	<selinux/selinux.h>

#include	<selinux/av_permissions.h>

#include	<selinux/get_context_list.h>

#endif

2.	 In	the	application,	have	the	SELinux-related	function	call	return	success	if	SELinux
support	should	not	be	built-in	(that	is,	when	the	compiler	directive	isn’t	set):

int	selinux_prepare_fork(char	*	name)	{

#ifndef	SELINUX

		return	0;

#else

		…

#endif

};

3.	 Inside	the	SELinux	function,	check	whether	SELinux	is	enabled	using	the
is_selinux_enabled()	function	call:

int	rc;

rc	=	is_selinux_enabled();

if	(rc	==	0)	{

		…	//	SELinux	is	not	enabled

}	else	if	(rc	==	-1)	{

		…	//	Could	not	check	SELinux	state	(call	failed)

}	else	{

		…	//	SELinux	is	enabled

};

4.	 Add	a	check	to	see	whether	SELinux	is	in	permissive	or	enforcing	mode.	Of	course,
this	check	is	only	needed	if	SELinux	is	enabled:

rc	=	security_getenforce();

if	(rc	==	0)	{

		…	//	SELinux	is	in	permissive	mode

}	else	if	(rc	==	1)	{

		…	//	SELinux	is	in	enforcing	mode

}	else	{

		…	//	Failed	to	query	state

};

5.	 Build	the	application	while	linking	with	libselinux:

~#	gcc	-o	test	-DSELINUX	-lselinux	test.c

How	it	works…
The	libselinux	library	provides	all	needed	functions	for	applications	to	query	SELinux
and	interact	with	the	SELinux	subsystem.	Of	course,	when	developing	applications,	it
remains	important	that	SELinux	support	is	a	compile-time	optional	choice:	not	all	Linux
systems	have	SELinux	enabled,	so	if	the	application	is	by	default	linked	with	libselinux,
then	all	target	systems	would	need	to	install	the	necessary	dependencies.

But	even	applications	that	are	linked	with	libselinux	must	be	able	to	support	systems
where	SELinux	has	been	disabled;	hence,	the	need	to	check	the	state	of	SELinux	using
is_selinux_enabled().

However,	this	is_selinux_enabled()	function	does	not	return	any	other	information
(such	as	which	policy	is	loaded).	To	check	if	SELinux	is	running	in	permissive	mode,	the
call	to	security_getenforce()	can	be	used.

A	well-defined	application	should	use	this	state	as	well	to	adjust	its	behavior:	if	the
application	is	running	in	permissive	mode,	then	it	should	try	not	to	enforce	SELinux
policy-related	decisions	in	its	application	logic.

To	refer	to	the	cron	example	from	an	earlier	recipe:	if	the	crontab	file	context	is	not	known
as	an	entrypoint	for	the	selected	domain,	then	the	application	should	log	that	this	is	not	the
case,	but	still	continue	working	(as	the	mode	is	set	in	permissive	mode).	Sadly,	most
SELinux-aware	applications	do	not	change	their	behavior	based	on	the	permissive	state	of
SELinux	and	can	still	fail	(or	follow	a	different	logic)	as	if	SELinux	is	in	the	enforcing
state.

There’s	more…
There	are	other	similar	methods	available	that	can	be	used	to	query	the	SELinux	state.

The	is_selinux_mls_enabled()	method,	for	instance,	returns	a	value	indicating	whether
SELinux	is	running	with	MLS	or	not.	This	is	useful	as	some	context-related	methods
require	level	information	if	MLS	is	enabled,	so	querying	the	state	and	changing	the
method	calls	depending	on	the	MLS	state	might	be	necessary.

A	similar	function	to	security_getenforce()	is	security_setenforce().	As	can	be
deduced	from	the	name,	this	allows	applications	to	toggle	the	enforcing	mode	of	SELinux.
Of	course,	this	is	only	possible	if	the	domain	in	which	the	application	runs	has	the	proper
SELinux	permissions.

Querying	SELinux	userland	configuration
in	C
In	this	recipe,	we	will	be	querying	the	SELinux	userland	to	obtain	the	default	context	for	a
given	user	based	on	the	context	of	the	current	process.	The	process	is	responsible	for
gathering	the	Linux	username	of	the	user	upfront.

How	to	do	it…
Query	the	SELinux	configuration	as	follows:

1.	 Get	the	current	context	of	the	process:

char	*	curcon	=	0;

rc	=	getcon(&curcon);

if	(rc)	{

		…	//	Getting	context	failed

		if	(permissive)	{

				…	//	Continue	with	the	application	logic,	ignoring	SELinux	stuff

		}	else	{

				…	//	Log	failure	and	stop	application	logic

		};

};

2.	 Take	the	Linux	username	(assumed	to	be	in	the	name	variable)	and	get	the	SELinux
user:

char	*	sename	=	0;

char	*	selevel	=	0;

rc	=	getseuserbyname(name,	&sename,	&selevel);

if	(rc)	{

		…	//	Call	failed.	Again	check	permissive	state

		…	//	and	take	appropriate	action.

		freecon(curcon);

};

3.	 Now,	get	the	default	context	based	on	the	obtained	SELinux	user	(sename)	and
current	context	(which	is	handled	by	the	method	itself	through	the	NULL	variable):

char	*	newcon	=	0;

rc	=	get_default_context(sename,	NULL,	&newcon);

if	(rc)	{

		…	//	Call	failed.	Again	check	permissive	state

		…	//	and	take	appropriate	action.

		freecon(curcon);

};

How	it	works…
In	the	first	block,	the	current	process	context	is	obtained	using	the	getcon()	method.	For
the	end	result	of	this	recipe,	getting	the	current	context	explicitly	isn’t	necessary—the
get_default_context()	method	that	is	invoked	later	will	base	its	decision	on	the	current
context	anyway	(through	the	second	parameter,	which	is	NULL	in	this	recipe).	However,
having	the	current	context	known	is	important	for	logging	purposes	as	well	as	to	query	the
SELinux	policy	itself	(as	we	will	do	in	the	next	recipe).

The	next	step	is	to	obtain	the	SELinux	user	given	a	Linux	user.	The	sename	(SELinux
user)	and	selevel	(SELinux	sensitivity)	variables	are	filled	in	by	the	getseuserbyname()
method,	given	the	Linux	username	(which	is	a	regular	char	*	variable).

Finally,	with	the	SELinux	user	now	available,	get_default_context()	is	invoked	to	get
the	default	context	stored	into	the	third	parameter	(newcon).	If	we	would	need	to	get	the
default	context	from	a	different	context	than	the	current	one,	then	instead	of	NULL,	the
second	parameter	should	be	the	context	to	query	for:

rc	=	get_default_context(sename,	curcon,	&newcon);

There’s	more…
Some	other	methods	might	be	interesting	to	use	in	SELinux-aware	applications.

The	getprevcon()	method,	for	instance,	returns	the	previous	context	rather	than	the
current	context	of	the	process.	This	previous	context	is	usually	the	context	of	the	parent
process,	although	with	applications	that	can	perform	dynamic	transitions,	this	can	be	the
previous	context	of	the	current	process	as	well.

This	information	can	also	be	obtained	from	the	/proc/	filesystem,	in	the	process’s	attr/
subdirectory	in	which	the	current	and	prev	files	can	be	checked:

~$	id	-Z

staff_u:staff_r:staff_t:s0

~$	newrole	-r	sysadm_r

Password:	

~$	id	-Z

staff_u:sysadm_r:sysadm_t:s0

~$	cat	/proc/$$/attr/current

staff_u:sysadm_r:sysadm_t:s0

~$	cat	/proc/$$/attr/prev

staff_u:staff_r:newrole_t:s0

As	can	be	seen,	after	running	newrole	to	switch	roles,	the	last	domain	that	the	process	was
in	was	the	newrole_t	domain	(which	then	performed	a	domain	and	role	transition	to	the
current	context).

Applications	that	are	allowed	to	perform	dynamic	transitions	(that	is,	without	launching
new	commands)	can	use	the	setcon()	method	to	switch	from	the	current	context	to	a	new
context.

The	get_default_context()	method	is	also	part	of	a	larger	family	of	methods.	For
instance,	when	the	user	has	multiple	roles	assigned,	there	can	be	multiple	contexts	allowed
for	a	particular	transition.	The	get_ordered_context_list()	method	returns	the	list	of
contexts	that	are	supported	(whereas	the	get_default_context()	method	only	returns	the
first).	One	can	filter	out	specific	contexts	by	providing	the	role	with	the
get_ordered_context_list_with_role()	method.

On	MLS-enabled	systems,	get_default_context_with_level()	or
get_default_context_with_rolelevel()	will	apply	a	specified	level	to	the	resulting
context	as	well.

Another	method	that	is	available	is	the	get_default_type()	method,	which	returns	the
default	type	for	a	given	role.	As	with	the	other	methods,	this	results	in	the	SELinux	code
to	query	configuration	files	inside	/etc/selinux/;	in	this	particular	case,	the
default_type	file	inside	/etc/selinux/mcs/contexts/.

Interrogating	the	SELinux	subsystem
code-wise
In	order	to	query	the	SELinux	policy,	we	have	seen	the	use	of	the	sesearch	command	and
other	SELinux	utilities.	Code-wise,	SELinux	policies	can	be	queried	using	the
security_compute_av_flags	method.

Getting	ready
The	curcon	and	newcon	variables	can	be	filled	in	through	methods	such	as	getcon()	(for
the	current	context)	or	get_default_context()	as	we	have	seen	in	the	previous	recipe.

How	to	do	it…
As	an	example,	we	want	to	query	the	transition	permission	between	two	process	domains.
To	accomplish	this,	the	following	method	is	used:

1.	 First	of	all,	call	the	security_compute_av_flags()	method:

struct	av_decision	avd;

rc	=	security_compute_av_flags(curcon,	newcon,	SECCLASS_PROCESS,	

PROCESS__TRANSITION,	&avd);

if	(rc)	{

		…	//	Method	failed.

		freecon(curcon);

		freecon(newcon);

};

2.	 Now	read	the	response:

if	(!(avd.allowed	&	PROCESS__TRANSITION))	{

		…	//	Transition	is	denied

};

3.	 Check	whether	the	current	context	is	a	permissive	domain	or	not:

if	(avd.flags	&	SELINUX_AVD_FLAGS_PERMISSIVE)	{

		…	//	Domain	is	permissive

};

How	it	works…
The	security_compute_av_flags()	method	is	the	C	method	equivalent	of	sesearch
(roughly	speaking).	It	takes	the	source	and	target	context,	class,	and	permission	and	stores
the	result	of	the	query	in	a	specific	structure	(struct	av_decision).

The	class	and	permission	entries	can	be	obtained	from	the	flask.h	(for	the	class
declarations)	and	the	av_permissions.h	(for	the	permission	declarations)	header	files	that
are	located	inside	/usr/include/selinux/.

The	result	of	the	query	is	obtained	by	checking	whether	the	permission	is	in	the	decision
result.

Next	to	the	permission	query,	an	important	aspect	to	validate	(and	which	is	often	forgotten
by	SELinux-aware	applications)	is	to	check	whether	the	domain	itself	is	marked	as
permissive.	After	all,	even	on	an	SELinux-enabled	system,	where	SELinux	is	in	enforcing
mode,	some	domains	can	still	be	marked	as	permissive.

The	SELINUX_AVD_FLAGS_PERMISSIVE	flag	is	a	flag	added	to	the	query	response	(struct
av_decision),	which	allows	developers	to	query	the	permissive	state	of	domains.	With
this	information	at	hand,	the	SELinux-aware	application	can	still	decide	to	continue	even
if	the	policy	denies	a	certain	activity,	just	as	the	user	has	requested.

There’s	more…
There	are	other	methods	available	as	well	to	query	the	SELinux	policy	that	might	be	used
by	SELinux-aware	applications.

With	selinux_check_access(),	for	instance,	applications	can	query	the	SELinux	policy
to	see	if	a	given	source	context	has	the	access	permission	for	a	given	class	and	permission
on	the	target	context.	This	is	not	the	same	as	security_compute_av_flags(),	as	this
method	uses	strings	for	the	class	and	permission,	and	also	has	a	different	return	based	on
the	enforcing	state	of	SELinux	or	the	permissive	nature	of	a	particular	domain.

Running	new	processes	in	a	new	context
Sometimes,	it	isn’t	possible	to	force	a	particular	domain	upon	invocation	of	a	new	task	or
process.	The	default	transition	rules	that	can	be	enabled	through	the	SELinux	policy	are
only	applicable	if	the	source	domain	and	file	context	(of	the	application	or	task	to	execute)
are	unambiguously	decisive	for	the	target	context.

In	applications	that	can	run	the	same	command	(or	execute	commands	with	the	same
context)	for	different	target	domains,	SELinux-awareness	is	a	must.

This	recipe	will	show	how	to	force	a	particular	domain	for	a	new	process.

Getting	ready
The	newcon	variable	that	is	used	in	this	recipe	can	be	filled	in	through	methods	such	as
get_default_context()	as	we	have	seen	in	a	previous	recipe.

How	to	do	it…
To	launch	a	process	in	a	specific	context,	go	through	the	following	steps:

1.	 Tell	SELinux	what	the	new	context	should	be:

int	rc	=	setexeccon(newcon);

if	(rc)	{

		…	//	Call	failed

		freecon(newcon);

};

2.	 Fork	and	execute	the	command.	For	instance,	to	execute	id	-Z,	the	following	code	is
used:

pid_t	child;

child	=	fork();

if	(child	<	0)	{

		…	//	Fork	failed}	else	if	(child	==	0)	{

		int	pidrc;

		pidrc	=	execl("/usr/bin/id",	"id",	"-Z",	NULL);

		if	(pidrc	!=	0)	{

				…	//	Command	failed

		};

}	else	{

		…	//	Parent	process

		int	status;

		wait(&status);

};

How	it	works…
Applications	that	want	newly	executed	tasks	to	run	in	a	particular	context	need	to	tell	the
SELinux	subsystem	that	the	next	execve,	execl,	or	other	exec*	method	should	result	in
the	child	process	running	in	the	new	domain.

Of	course,	the	SELinux	policy	must	still	allow	the	transition	policy-wise,	even	though
there	is	no	more	need	for	an	automatic	domain	transition	in	the	policy	(as	this	would
require	an	unambiguous	decision,	which	is	exactly	what	isn’t	possible	if	the	source
domain	and	file	context	are	the	same	for	different	target	contexts):

allow	crond_t	self	:	process	setexec;

allow	crond_t	staff_t	:	process	transition;

The	setexec	permission	allows	the	source	domain	to	explicitly	tell	the	SELinux
subsystem	what	context	the	task	should	run	in.	Without	this	permission,	the	call	to
setexeccon()	would	fail.

There’s	more…
The	setexeccon()	method	has	a	sibling	method	called	getexeccon().	This	method
returns	the	context	that	would	be	assigned	when	executing	a	new	process	(which	would
provide	a	validation	of	the	last	setexeccon()	call).

Another	similar	method	is	the	setexecfilecon()	method.	This	method	allows	SELinux-
aware	applications	to	take	the	SELinux	policy	decisions	into	account	in	case	of	file-based
transition	information.	So,	if	there	is	a	domain	transition	known	when	executing	a
particular	file,	then	this	domain	transition	is	honored.	If	not,	the	fallback	type	provided
through	the	setexecfilecon()	method	is	used:

char	*	fallbackcon	=	"system_u:object_r:openscap_helper_script_t:s0";

char	*	filename	=	"/usr/libexec/openscap/probe_process";

…rc	=	setexecfilecon(filename,	fallbackcon);

In	this	example,	if	the	context	of	the	probe_process	file	is	used	in	the	SELinux	policy	to
create	an	automatic	domain	transition	upon	invocation	by	the	current	application,	then	that
target	domain	is	used	for	the	application	execution.	However,	if	the	context	of	the
probe_process	file	is	the	one	that	does	not	trigger	any	automatic	domain	transition,	then
the	fallbackcon	context	is	used	for	the	next	application	execution.

Reading	the	context	of	a	resource
It	is,	of	course,	also	important	to	obtain	the	context	of	a	resource	if	the	application	is
SELinux-aware.	This	could	be	for	logging	purposes	or	to	decide	which	domain	to
transition	to	(based	on	the	resource	context,	current	context,	username,	and	so	on).

How	to	do	it…
To	read	the	context	of	a	resource,	the	following	methods	are	available:

1.	 Given	a	file	path,	the	following	call	to	getfilecon()	will	provide	the	context	of	the
file:

security_context_t	filecon	=	0;

char	*	path	=	"/etc/passwd";

rc	=	getfilecon(path,	&filecon);

if	(rc	<	0)	{

		…	//	Call	failed

};

…	//	Do	stuff	with	the	context

freecon(filecon);

2.	 To	get	the	context	of	a	process,	assuming	the	pid	variable	(of	the	pid_t	type)	has	the
proper	process	ID	in	it,	the	following	code	is	used:

security_context_t	pidcon	=	0;

rc	=	getpidcon(pid,	&pidcon);

if	(rc	<	0)	{

		…	//	Call	failed

};

…	//	Do	stuff	with	the	context

freecon(pidcon);

How	it	works…
The	SELinux	library	has	various	methods	for	obtaining	the	contexts	of	resources.	File	and
process	types	are	shown	in	the	recipe,	but	other	methods	exist	as	well.	For	instance,	with
the	fgetfilecon()	method,	the	context	of	a	file	descriptor	can	be	obtained.	All	these
methods	provide	the	context	in	a	standard	string	(char	*)	format.

After	getting	the	context	of	a	resource,	it	is	important	to	free	the	context	when	it	is	no
longer	used.	Otherwise,	a	memory	leak	will	occur	in	the	application	as	there	are	no	other
methods	that	will	clean	up	the	contexts.

There’s	more…
When	labeled	networking	is	used	(for	instance,	with	CIPSO/NetLabel	support	or	labeled
IPSec),	then	the	getpeercon()	method	can	be	used	to	obtain	the	context	of	the	peer	that
participates	in	the	communication	session.

Alongside	querying	the	context,	it	is	also	possible	to	tell	the	SELinux	subsystem	that	file
creation	should	result	in	that	file	being	created	immediately	with	a	particular	context.	For
this,	the	setfscreatecon()	method	can	be	used—this	is	also	the	method	that	recent	udev
versions	use	when	creating	new	device	files	in	/dev/.

Index
A

abstract	Unix	domain	socket
stream-connect	interface,	creating	for	/	For	an	abstract	Unix	domain	socket,
How	it	works…

Acceptable	behavior	/	The	role	of	the	SELinux	policy
access	privileges

verifying	/	Looking	into	access	privileges,	How	it	works…
access	privileges,	verifying

direct	access	inspection	/	Direct	access	inspection
policy	manipulation	/	Policy	manipulation
indirect	access	/	Indirect	access

Administration,	logical	architecture	/	The	structural	documentation
administrative	interface

creating	/	Creating	the	administrative	interface,	How	to	do	it…,	How	it	works…
allow_execmem	/	How	it	works…
Apache

running,	with	right	context	/	Running	Apache	with	the	right	context
starting,	with	limited	clearance	/	Starting	Apache	with	limited	clearance,	How	it
works…

Apache	eXtenSion	tool
tasks,	performing	/	How	it	works…

Apache	virtual	host	support
URL	/	See	also

Application	/	About	SELinux
application-specific	domains

building,	templates	used	/	Building	application-specific	domains	using
templates,	How	it	works…

application	logical	design
researching	/	Researching	the	application’s	logical	design
files	/	Files	and	directories
directories	/	Files	and	directories
network	resources	/	Network	resources
processes	/	Processes
hardware	resource	/	Hardware	and	kernel	resources
kernel	resource	/	Hardware	and	kernel	resources

application	network	access
governing	/	Governing	application	network	access,	How	it	works…

application	resource	interfaces
creating	/	Creating	application	resource	interfaces

application	role	interfaces
defining	/	Defining	application	role	interfaces,	How	to	do	it…,	How	it	works…,

There’s	more…
Artica

URL	/	See	also
auditallow	statement	/	How	it	works…
auditctl	command	/	How	it	works…
audit	subsystem

about	/	There’s	more…

B
backup	file

about	/	Backing	up	and	restoring	files,	How	it	works…
backup	solution

selecting	/	How	to	do	it…,	How	it	works…
Bell-LaPadula	model

URL	/	About	SELinux
binary	policy	module

creating	/	The	binary	policy	module
BIND	9,	chroot	jail

configuring,	URL	/	See	also
building,	URL	/	See	also

build-time	policy	decisions
adding	/	Adding	build-time	policy	decisions,	How	it	works…

C
-C	option	/	How	it	works…
C

SELinux	userland	configuration,	querying	in	/	Querying	SELinux	userland
configuration	in	C,	How	it	works…,	There’s	more…

capabilities
used,	with	SELinux	/	Configuring	capabilities	instead	of	setuid	binaries,	How	it
works…

chroot	/	Using	substitution	definitions
about	/	Introduction
assigning,	to	regular	services	/	Assigning	a	different	root	location	to	regular
services,	How	to	do	it…,	How	it	works…,	There’s	more…
used,	for	SELinux-aware	applications	/	Using	a	different	root	location	for
SELinux-aware	applications,	How	it	works…

chroot()	operations
URL	/	See	also

chroot	jail
about	/	Assigning	a	different	root	location	to	regular	services

CISecurity	Benchmark	for	Red	Hat	Enterprise	Linux
reference	/	See	also

class	identifiers
about	/	Class	identifiers
—	identifier	/	Class	identifiers
-d	identifier	/	Class	identifiers
-l	identifier	/	Class	identifiers
-b	identifier	/	Class	identifiers
-c	identifier	/	Class	identifiers
-p	identifier	/	Class	identifiers
-s	identifier	/	Class	identifiers

cleanup	process	/	Reducing	exploit	risks
clients

privileges,	granting	to	/	Granting	privileges	to	all	clients,	How	to	do	it…,	How	it
works…

coarse-grained	policy
about	/	Introduction

commands
running,	with	sudo	/	Running	commands	in	a	specified	role	with	sudo,	How	it
works…
running,	with	runcon	command	/	Running	commands	in	a	specified	role	with
runcon,	How	it	works…

comment	system
constructs,	using	/	The	in-line	documentation

common	helper	domains

defining	/	Defining	common	helper	domains,	How	to	do	it…,	How	it	works…
conditional	policy	rules

adding	/	Adding	conditional	policy	rules,	How	it	works…,	There’s	more…
conditional	policy	support

listing	/	Listing	conditional	policy	support,	How	it	works…
configuration	files

URL	/	See	also
constraints,	resource-sensitivity	labels	/	Constraints
constraint	statements

URL	/	See	also
context

processes,	running	in	/	Running	new	processes	in	a	new	context,	How	it
works…,	There’s	more…

context,	of	resource
reading	/	Reading	the	context	of	a	resource,	There’s	more…

context	declaration	/	Context	declaration
context	definitions

setting	/	Setting	context	definitions,	How	it	works…
context	method	/	How	it	works…
contexts

HTTP	users,	mapping	to	/	Mapping	HTTP	users	to	contexts,	How	to	do	it…
deciding,	source	address	mapping	used	/	Using	source	address	mapping	to
decide	on	contexts,	There’s	more…

cron
used,	with	SELinux	/	Using	cron	with	SELinux,	How	it	works…,	There’s
more…

custom	CGI	domain
creating	/	Creating	a	custom	CGI	domain,	How	to	do	it…,	How	it	works…

custom	content	types
using	/	Using	custom	content	types,	How	it	works…

customizable	type	/	User	content	and	customizable	types,	There’s	more…

D
D-Bus	message	flows

controlling	/	Controlling	D-Bus	message	flows,	Getting	ready,	How	it	works…,
There’s	more…

database	administrator	(DBA)	/	How	it	works…
default	contexts	/	Default	types	and	default	contexts
default	types	/	Default	types	and	default	contexts
default_contexts	file	/	Default	types	and	default	contexts
denied	security-bounded	transitions

about	/	Denied	security-bounded	transitions
denied	transition	validation

about	/	Denied	transition	validation
Desktop	applications

about	/	Introduction
development	environment

creating	/	Creating	the	development	environment,	How	to	do	it…,	How	it
works…

direct	access	inspection	/	Direct	access	inspection
directories

about	/	Files	and	directories
Docker

URL	/	See	also
DokuWiki

URL	/	Using	custom	content	types
domain	definitions	/	Domain	definitions

E
equivalence	class	/	Using	substitution	definitions
exec	interface

creating	/	Creating	exec,	run,	and	transition	interfaces,	How	to	do	it…,	How	it
works…

Expected	behavior	/	The	role	of	the	SELinux	policy

F
FAMOUS	abbreviation	/	The	structural	documentation
Fedora

URL	/	Getting	ready,	See	also
Feeds,	logical	architecture	/	The	structural	documentation
fgetfilecon()	method	/	How	it	works…
file	ACLs

user	content,	sharing	with	/	Sharing	user	content	with	file	ACLs,	How	to	do	it…,
How	it	works…,	There’s	more…

file	contexts
defining,	through	patterns	/	Defining	file	contexts	through	patterns,	How	it
works…,	Path	expressions,	Class	identifiers,	There’s	more…
path	expressions	/	Path	expressions
order,	processing	/	The	order	of	processing
class	identifiers	/	Class	identifiers
context	declaration	/	Context	declaration

file	labels
managing	/	Introduction

files
about	/	Files	and	directories

file	transition
defining	/	How	to	do	it…

file	transitions
SELinux	policy,	enhancing	with	/	Enhancing	an	SELinux	policy	with	file
transitions,	Getting	ready,	How	it	works…,	Finding	the	right	search	pattern,
Patterns,	There’s	more…

file_contexts.subs	/	Using	substitution	definitions
findcon	tool	/	The	order	of	processing
fine-grained	application	domain	definitions

using	/	Using	fine-grained	application	domain	definitions,	How	to	do	it…
example	/	Using	fine-grained	application	domain	definitions
exploit	risks,	reducing	/	Reducing	exploit	risks
role	management	/	Role	management
type	inheritance	/	Type	inheritance	and	transitions
transitions	/	Type	inheritance	and	transitions

fine-grained	policies
about	/	Introduction

Flask
URL	/	About	SELinux

four-fold
about	/	How	it	works…

ftp_shell_r	role	/	Initial	role	based	on	entry
full	policy	replacement,	resource-sensitivity	labels	/	Full	policy	replacement

functions.sh	script	/	How	it	works…

G
generic	application	domain

creating	/	Creating	a	generic	application	domain,	How	it	works…
Gentoo	Linux

URL	/	Getting	ready
gen_context	macro	/	Context	declaration
gen_tunable	declarations

about	/	How	it	works…
getcon()	method	/	How	it	works…
getexeccon()	method	/	There’s	more…
getpeercon()	method	/	There’s	more…
getprevcon()	method	/	There’s	more…
getsebool	command	/	How	it	works…
get_default_context()	method	/	There’s	more…
get_ordered_context_list()	method	/	There’s	more…
get_ordered_context_list_with_role()	method	/	There’s	more…
git	tutorial

URL	/	See	also
group	membership

used,	for	role-based	access	/	Using	group	membership	for	role-based	access,
How	it	works…

grsecurity
about	/	There’s	more…
URL	/	There’s	more…

H
hardware	resource	/	Hardware	and	kernel	resources
httpdcontent	attribute	/	How	it	works
httpd_selinux	/	See	also
HTTP	users

mapping,	to	contexts	/	Mapping	HTTP	users	to	contexts,	How	to	do	it…

I
in-line	documentation	/	The	in-line	documentation
indirect	access	/	Indirect	access
infrastructural	resources	/	Infrastructural	resources
initial	SIDs	/	Type	inheritance	and	transitions
inter-process	communication	(IPC)	/	Type	inheritance	and	transitions
interface	changes,	SELinux	policy	modules	/	Changes	in	interfaces
interface	names

about	/	How	to	do	it…
invalid	context

about	/	Invalid	contexts
is_selinux_enabled()	function	/	How	it	works…
is_selinux_mls_enabled()	method	/	There’s	more…

J
jail

about	/	Assigning	a	different	root	location	to	regular	services
Jailkit	project

URL	/	See	also

K
kdbus	/	There’s	more…
kernel

configuring	/	There’s	more…
kernel	resource	/	Hardware	and	kernel	resources
kernel	version	changes,	SELinux	policy	modules	/	Kernel	version	changes

L
level	method	/	How	it	works…
libselinux.so	library	/	How	it	works…
libselinux	library	/	How	it	works…
libselinux	package	/	Checking	the	SELinux	state	programmatically
Linux	containers

URL	/	See	also
Linux	Security	Modules	(LSM)	/	About	SELinux
Linux	user

mapping	/	SELinux	users	and	Linux	user	mappings
Linux	users

mapping,	to	SELinux	users	/	Mapping	Linux	users	to	SELinux	users,	How	it
works…

location,	interface	definitions
about	/	The	location	of	the	interface	definitions

logical	architecture,	service
Feeds	/	The	structural	documentation
Administration	/	The	structural	documentation
Monitoring	/	The	structural	documentation
Operations	/	The	structural	documentation
Users	and	rights	/	The	structural	documentation
Security-related	features	/	The	structural	documentation

logical	resources	/	Logical	resources

M
mcstrans	file	/	The	mcstrans	and	setrans.conf	files
MLS-disabled	system	/	MLS	or	not
MLS-enabled	system	/	MLS	or	not
MLS-enabled	systems

operations	/	Setting	resource-sensitivity	labels
MLS	statements

URL	/	See	also
mod_selinux

setting	/	Setting	up	mod_selinux,	How	to	do	it…,	How	it	works…
URL	/	How	to	do	it…,	See	also
virtual	hosts,	separating	with	/	Separating	virtual	hosts	with	mod_selinux,	How
it	works…

mod_selinux.c	file
about	/	How	it	works…

mod_selinux	module
about	/	Denied	security-bounded	transitions

mod_setenvif	support
URL	/	See	also

Monitoring,	logical	architecture	/	The	structural	documentation

N
naming	convention,	reference	policy

URL	/	Using	the	refpolicy	naming	convention
network	/	Reducing	exploit	risks
network	access	/	The	network	access
network	resources	/	Network	resources
neverallow	statement

about	/	Ensuring	an	SELinux	rule	is	never	allowed
including,	in	SELinux	policy	/	How	to	do	it…,	How	it	works…

newrole	command	/	How	it	works…
Normalized	behavior	/	The	role	of	the	SELinux	policy

O
one	domain	per	application

about	/	Introduction
online	research,	service	/	Online	research
open	source	virtual	appliance	providers

list	/	See	also
Operations,	logical	architecture	/	The	structural	documentation
optional_policy	statement

about	/	How	it	works…
order

processing	/	The	order	of	processing
own	interface

creating	/	Creating	our	own	interface,	How	to	do	it…,	How	it	works…
location,	interface	definitions	/	The	location	of	the	interface	definitions
in-line	documentation	/	The	in-line	documentation

P
${POLICY_LOCATION}	variable	/	How	it	works…
.pp	files	/	Changes	in	interfaces
packet	labeling

about	/	How	it	works…
path	expressions	/	Path	expressions
patterns

file	contexts,	defining	through	/	Defining	file	contexts	through	patterns,	How	it
works…,	Path	expressions,	The	order	of	processing,	Context	declaration
using	/	Patterns,	There’s	more…

per-user	web	directories
URL	/	See	also

Perl-Compatible	Regular	Expressions	(PCRE)	/	Path	expressions
permission	issues

clarifying,	strace	used	/	How	to	do	it…,	How	it	works…
permissions

ignoring	/	Ignoring	permissions	we	don’t	need,	How	it	works…
policies

differentiating,	based	on	use	cases	/	Differentiating	policies	based	on	use	cases,
How	it	works…

policy
loading,	into	policy	store	/	Loading	a	policy	into	the	policy	store,	There’s
more…
testing	/	Testing	and	enhancing	the	policy,	How	it	works…
enhancing	/	Testing	and	enhancing	the	policy,	How	it	works…
role,	defining	/	Defining	a	role	in	the	policy

policy	manipulation	/	Policy	manipulation
policy	source	file

creating	/	The	policy	source	file
polyinstantiated	directories

enabling	/	Enabling	polyinstantiated	directories,	How	it	works…,	There’s
more…

positive	policy	decisions
logging	/	Logging	positive	policy	decisions,	How	to	do	it…,	How	it	works…

POSIX	Capabilities	&	File	POSIX	Capabilities
URL	/	See	also

privileges
documenting	/	Documenting	common	privileges,	How	to	do	it…,	How	it
works…
granting,	to	all	clients	/	Granting	privileges	to	all	clients,	How	to	do	it…,	How	it
works…

processes	/	Processes
running,	in	new	context	/	Running	new	processes	in	a	new	context,	How	it

works…,	There’s	more…

Q
qmgr	process	/	Reducing	exploit	risks

R
ranged	daemon	domain,	resource-sensitivity	labels	/	Ranged	daemon	domain
read_file_perms	/	Patterns
Red	Hat

URL	/	See	also
reference	policy	API	documentation

URL	/	See	also
reference	policy	project

URL	/	See	also,	See	also
refpolicy	interfaces

calling	/	Calling	refpolicy	interfaces,	How	it	works…
refpolicy	naming	convention

using	/	Using	the	refpolicy	naming	convention,	How	to	do	it…,	There’s	more…
Remote_Host	/	There’s	more…
Request_Method	/	There’s	more…
Request_Protocol	/	There’s	more…
Request_URI	/	There’s	more…
resource-access	interfaces

creating	/	Creating	resource-access	interfaces,	How	to	do	it…,	How	it	works…
resource-sensitivity	labels

setting	/	Setting	resource-sensitivity	labels,	How	to	do	it…,	Full	policy
replacement,	Constraints,	See	also
full	policy	replacement	/	Full	policy	replacement
ranged	daemon	domain	/	Ranged	daemon	domain
constraints	/	Constraints

resources
finding	/	Finding	common	resources,	How	to	do	it…
shared	file	locations	/	Shared	file	locations
user	content	/	User	content	and	customizable	types,	There’s	more…
customizable	type	/	User	content	and	customizable	types,	There’s	more…

resource	types
selecting	/	Choosing	resource	types	wisely,	How	to	do	it…
domain	definitions	/	Domain	definitions
logical	resources	/	Logical	resources
infrastructural	resources	/	Infrastructural	resources

restorecond	/	There’s	more…
restore	file

about	/	Backing	up	and	restoring	files,	How	it	works…
Reverse	Polish	Notation	(RPN)	/	How	it	works…
role

creating	/	Creating	a	new	role,	How	to	do	it…
defining,	in	policy	/	Defining	a	role	in	the	policy
configuring	/	Initial	role	based	on	entry,	How	to	do	it…,	How	it	works…

role,	creating
role,	defining	in	policy	/	Defining	a	role	in	the	policy
role	privileges,	extending	/	Extending	the	role	privileges
default	types	/	Default	types	and	default	contexts
default	contexts	/	Default	types	and	default	contexts

role-based	access
group	membership,	using	for	/	Using	group	membership	for	role-based	access,
How	it	works…

role-based	access	control	/	About	SELinux
Role	Based	Access	Control	(RBAC)	/	How	it	works…
role	management	/	Role	management
role	privileges

extending	/	Extending	the	role	privileges
roles

about	/	Introduction
assigning,	to	users	/	Introduction
switching	/	Switching	roles,	How	it	works…

role	transitions
defining	/	Defining	role	transitions,	How	it	works…

runcon	application	/	How	it	works…
runcon	command	/	Running	Apache	with	the	right	context

commands,	running	with	/	Running	commands	in	a	specified	role	with	runcon,
How	it	works…

run	interface
creating	/	Creating	exec,	run,	and	transition	interfaces,	How	to	do	it…,	How	it
works…

S
sandbox	environment,	service	/	Sandbox	environment
search	pattern

selecting	/	Finding	the	right	search	pattern
SECMARK	labeling

URL	/	See	also
Security-related	features,	logical	architecture	/	The	structural	documentation
Security	Enhanced	PostgreSQL	(SEPostgreSQL)	/	Introduction
sefinddef	function	/	How	to	do	it…,	How	it	works…
sefindif	function	/	How	to	do	it…,	How	it	works…
SELinux

about	/	Introduction,	About	SELinux,	Introduction
example	/	The	example
analyzing	/	Identifying	whether	SELinux	is	to	blame,	How	it	works…
capabilities,	using	with	/	Configuring	capabilities	instead	of	setuid	binaries,
How	it	works…
cron,	using	with	/	Using	cron	with	SELinux,	How	it	works…,	There’s	more…

SELinux-aware	applications
chroot,	used	for	/	Using	a	different	root	location	for	SELinux-aware
applications,	How	it	works…
handling	/	Introduction

SELinux	audit	events
references	/	See	also

SELinux	constraints
overview	/	Looking	through	SELinux	constraints,	How	to	do	it…,	How	it
works…
references	/	See	also

SELinux	module
building	/	Building	a	simple	SELinux	module,	Getting	ready,	How	to	do	it…,
How	it	works…,	The	binary	policy	module,	There’s	more…
policy	source	file,	creating	/	The	policy	source	file
binary	policy	module,	creating	/	The	binary	policy	module
policy,	loading	into	policy	store	/	Loading	a	policy	into	the	policy	store,	There’s
more…

SELinux	policy
about	/	The	role	of	the	SELinux	policy
Acceptable	behavior	/	The	role	of	the	SELinux	policy
Expected	behavior	/	The	role	of	the	SELinux	policy
Normalized	behavior	/	The	role	of	the	SELinux	policy
enhancing,	with	file	transitions	/	Enhancing	an	SELinux	policy	with	file
transitions,	Getting	ready,	How	it	works…
search	pattern,	selecting	/	Finding	the	right	search	pattern
patterns	/	Patterns,	There’s	more…

neverallow	statement,	including	in	/	How	to	do	it…,	How	it	works…
SELinux	policy,	storing

local/	/	Creating	the	development	environment
centralized/	/	Creating	the	development	environment
bin/	/	Creating	the	development	environment

SELinux	Policy	IDE	(SLIDE)
about	/	Introduction
URL	/	Introduction

SELinux	policy	modules
distributing	/	Distributing	SELinux	policy	modules,	How	it	works…,	MLS	or
not
interface	changes	/	Changes	in	interfaces
kernel	version	changes	/	Kernel	version	changes
MLS-enabled	system	/	MLS	or	not
MLS-disabled	system	/	MLS	or	not

SELinux	state
checking	/	Checking	the	SELinux	state	programmatically,	How	to	do	it…,	How
it	works…

SELinux	subsystem,	code	wise
interrogating	/	Interrogating	the	SELinux	subsystem	code-wise,	How	it	works…,
There’s	more…

SELinux	userland	configuration
querying,	in	C	/	Querying	SELinux	userland	configuration	in	C,	How	it
works…,	There’s	more…

SELinux	users
mapping	/	SELinux	users	and	Linux	user	mappings
managing	/	Managing	SELinux	users,	How	to	do	it…,	How	it	works…
Linux	users,	mapping	to	/	Mapping	Linux	users	to	SELinux	users,	How	to	do
it…

SELINUX_AVD_FLAGS_PERMISSIVE	flag	/	How	it	works…
SELINUX_ERR	messages

analyzing	/	Getting	ready,	How	it	works…
examples	/	How	it	works…

semanage	boolean	command	/	How	it	works…
semanage	command	/	Getting	ready
semanage	export	command	/	How	it	works…
semanage	fcontext	command	/	How	it	works…,	How	it	works…
semodule	command	/	The	policy	source	file,	Loading	a	policy	into	the	policy	store
sendmail	command	/	Defining	common	helper	domains
sensitivity	categories

configuring	/	Configuring	sensitivity	categories,	How	to	do	it…,	SELinux	users
and	Linux	user	mappings,	Running	Apache	with	the	right	context
mcstrans	file	/	The	mcstrans	and	setrans.conf	files
setrans.conf	file	/	The	mcstrans	and	setrans.conf	files

SELinux	users,	mapping	/	SELinux	users	and	Linux	user	mappings
Linux	user,	mapping	/	SELinux	users	and	Linux	user	mappings
Apache,	running	with	right	context	/	Running	Apache	with	the	right	context

sepolicy
about	/	There’s	more…

Server_Addr	/	There’s	more…
service

about	/	Understanding	the	service,	How	to	do	it…
online	research	/	Online	research
sandbox	environment	/	Sandbox	environment
structural	documentation	/	The	structural	documentation,	See	also

service	ownership
restricting	/	Restricting	service	ownership,	How	it	works…

seshowdef	function	/	How	to	do	it…,	How	it	works…
seshowif	function	/	How	it	works…
setcon()	method	/	There’s	more…
setexecfilecon()	method	/	There’s	more…
setexec	permission	/	How	it	works…
setfiles	command	/	How	it	works…
setfscreatecon()	method	/	There’s	more…
setrans.conf	file	/	The	mcstrans	and	setrans.conf	files
setsebool	command	/	How	it	works…
SFTP	chroots

URL	/	See	also
shared	file	locations	/	Shared	file	locations
shared	memory	/	X11	and	shared	memory
skeleton	policy

creating	/	Creating	a	skeleton	policy,	How	to	do	it…,	Type	declarations,
Managing	files	and	directories,	There’s	more…
type	declarations	/	Type	declarations
files,	managing	/	Managing	files	and	directories
directories,	managing	/	Managing	files	and	directories
X11	server	/	X11	and	shared	memory
shared	memory	/	X11	and	shared	memory
network	access	/	The	network	access

smtpd	daemon	/	Reducing	exploit	risks
source	address	mapping

used,	for	deciding	on	contexts	/	Using	source	address	mapping	to	decide	on
contexts,	There’s	more…

ssh_sysadm_login	/	How	it	works…
strace

used,	for	clarifying	permission	issues	/	How	to	do	it…,	How	it	works…
using,	against	daemons	/	How	to	do	it…,	How	it	works…
reference	/	See	also

stream-connect	interface
creating	/	Creating	a	stream-connect	interface
creating,	for	Unix	domain	socket	with	socket	file	/	For	a	Unix	domain	socket
with	a	socket	file
creating,	for	abstract	Unix	domain	socket	/	For	an	abstract	Unix	domain	socket,
How	it	works…

structural	documentation,	service	/	The	structural	documentation,	See	also
style	guide,	reference	policy

URL	/	There’s	more…
substitution	definitions

using	/	Using	substitution	definitions,	How	it	works…,	There’s	more…
sudo

commands,	running	with	/	Running	commands	in	a	specified	role	with	sudo,
How	it	works…

sudo	application
URL	/	See	also

sudo	command	/	How	it	works…
sVirt

URL	/	See	also
Sysdig

reference	/	See	also
system	behavior

auditing	/	Auditing	system	behavior,	How	it	works…
SystemTap

reference	/	See	also

T
tail	command	/	Getting	ready
targeted	/	Introduction
templates

used,	for	building	application-specific	domains	/	Building	application-specific
domains	using	templates,	How	it	works…

tor	/	There’s	more…
transition	interface

creating	/	Creating	exec,	run,	and	transition	interfaces,	How	to	do	it…,	How	it
works…

transitions	/	Type	inheritance	and	transitions
Turnkey	Linux

URL	/	See	also
type	declarations	/	Type	declarations
type	enforcement	/	About	SELinux
type	inheritance	/	Type	inheritance	and	transitions
type	transition	/	Enhancing	an	SELinux	policy	with	file	transitions

U
udev	/	There’s	more…
udev’s	SELinux	integration

about	/	Understanding	udev’s	SELinux	integration,	How	it	works…
Unix	domain	socket,	with	socket	file

stream-connect	interface,	creating	for	/	For	a	Unix	domain	socket	with	a	socket
file

use	cases
policies,	differentiating	/	Differentiating	policies	based	on	use	cases,	How	it
works…

User	Based	Access	Control	(UBAC)
about	/	Type	declarations

user	content	/	User	content	and	customizable	types,	There’s	more…
sharing,	with	file	ACLs	/	Sharing	user	content	with	file	ACLs,	How	to	do	it…,
How	it	works…,	There’s	more…

user	directory	support
enabling	/	Enabling	user	directory	support,	How	to	do	it…,	There’s	more…

userdom_admin_user_template	/	Defining	a	role	in	the	policy
userdom_base_user_template	/	Defining	a	role	in	the	policy
userdom_common_user_template	/	Defining	a	role	in	the	policy
userdom_login_user_template	/	Defining	a	role	in	the	policy
userdom_restricted_user_template	/	Defining	a	role	in	the	policy
userdom_unpriv_user_template	/	Defining	a	role	in	the	policy
user	method	/	How	it	works…
Users	and	rights,	logical	architecture	/	The	structural	documentation
user	space	object	managers	/	Introduction

V
Vagrant

URL	/	See	also
virtual	hosts

separating,	with	mod_selinux	/	Separating	virtual	hosts	with	mod_selinux,	How
it	works…

W
web	applications

about	/	Introduction
web	content	types

assigning	/	Assigning	web	content	types,	How	it	works,	There’s	more…
web	server	ports

using	/	Using	different	web	server	ports,	How	to	do	it…,	How	it	works…

X
X11	server	/	X11	and	shared	memory
XDGBDS

URL	/	See	also

	SELinux Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. The SELinux Development Environment
	Introduction
	About SELinux
	The role of the SELinux policy
	The example
	Creating the development environment
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Building a simple SELinux module
	Getting ready
	How to do it…
	How it works…
	The policy source file
	The binary policy module
	Loading a policy into the policy store
	There's more...
	See also
	Calling refpolicy interfaces
	How to do it…
	How it works…
	See also
	Creating our own interface
	How to do it…
	How it works…
	The location of the interface definitions
	The in-line documentation
	See also
	Using the refpolicy naming convention
	Getting ready
	How to do it…
	How it works…
	There's more...
	Distributing SELinux policy modules
	How to do it…
	How it works…
	Changes in interfaces
	Kernel version changes
	MLS or not
	2. Dealing with File Labels
	Introduction
	Defining file contexts through patterns
	How to do it…
	How it works…
	Path expressions
	The order of processing
	Class identifiers
	Context declaration
	There's more...
	Using substitution definitions
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Enhancing an SELinux policy with file transitions
	Getting ready
	How to do it…
	How it works…
	Finding the right search pattern
	Patterns
	There's more...
	See also
	Setting resource-sensitivity labels
	How to do it…
	How it works…
	Full policy replacement
	Ranged daemon domain
	Constraints
	See also
	Configuring sensitivity categories
	Getting ready
	How to do it…
	How it works…
	The mcstrans and setrans.conf files
	SELinux users and Linux user mappings
	Running Apache with the right context
	See also
	3. Confining Web Applications
	Introduction
	Listing conditional policy support
	How to do it…
	How it works...
	See also
	Enabling user directory support
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Assigning web content types
	How to do it…
	How it works
	There's more...
	Using different web server ports
	How to do it…
	How it works...
	There's more...
	See also
	Using custom content types
	Getting ready
	How to do it…
	How it works...
	There's more...
	Creating a custom CGI domain
	How to do it…
	How it works...
	Setting up mod_selinux
	How to do it…
	How it works...
	See also
	Starting Apache with limited clearance
	How to do it…
	How it works...
	There's more...
	Mapping HTTP users to contexts
	How to do it…
	How it works...
	Using source address mapping to decide on contexts
	How to do it…
	How it works...
	There's more...
	See also
	Separating virtual hosts with mod_selinux
	How to do it…
	How it works...
	See also
	4. Creating a Desktop Application Policy
	Introduction
	Researching the application's logical design
	How to do it…
	How it works…
	Files and directories
	Network resources
	Processes
	Hardware and kernel resources
	Creating a skeleton policy
	How to do it…
	How it works…
	Type declarations
	Managing files and directories
	X11 and shared memory
	The network access
	There's more...
	See also
	Setting context definitions
	How to do it…
	How it works…
	Defining application role interfaces
	How to do it…
	How it works…
	There's more...
	Testing and enhancing the policy
	How to do it…
	How it works…
	Ignoring permissions we don't need
	How to do it…
	How it works…
	Creating application resource interfaces
	How to do it…
	How it works…
	Adding conditional policy rules
	How to do it…
	How it works…
	There's more...
	Adding build-time policy decisions
	How to do it…
	How it works…
	There's more...
	5. Creating a Server Policy
	Introduction
	Understanding the service
	How to do it…
	How it works…
	Online research
	Sandbox environment
	The structural documentation
	See also
	Choosing resource types wisely
	How to do it…
	How it works…
	Domain definitions
	Logical resources
	Infrastructural resources
	Differentiating policies based on use cases
	How to do it…
	How it works…
	Creating resource-access interfaces
	How to do it…
	How it works…
	Creating exec, run, and transition interfaces
	How to do it…
	How it works…
	See also
	Creating a stream-connect interface
	How to do it…
	For a Unix domain socket with a socket file
	For an abstract Unix domain socket
	How it works…
	Creating the administrative interface
	How to do it…
	How it works…
	See also
	6. Setting Up Separate Roles
	Introduction
	Managing SELinux users
	How to do it…
	How it works…
	There's more...
	Mapping Linux users to SELinux users
	How to do it…
	How it works…
	Running commands in a specified role with sudo
	How to do it…
	How it works…
	See also
	Running commands in a specified role with runcon
	How to do it…
	How it works…
	Switching roles
	How to do it…
	How it works…
	Creating a new role
	How to do it…
	How it works…
	Defining a role in the policy
	Extending the role privileges
	Default types and default contexts
	Initial role based on entry
	How to do it…
	How it works…
	Defining role transitions
	How to do it…
	How it works…
	Looking into access privileges
	How to do it…
	How it works…
	Direct access inspection
	Policy manipulation
	Indirect access
	7. Choosing the Confinement Level
	Introduction
	Finding common resources
	How to do it…
	How it works…
	Shared file locations
	User content and customizable types
	There's more...
	Defining common helper domains
	How to do it…
	How it works…
	Documenting common privileges
	How to do it…
	How it works…
	Granting privileges to all clients
	How to do it…
	How it works…
	Creating a generic application domain
	How to do it…
	How it works…
	Building application-specific domains using templates
	How to do it…
	How it works…
	Using fine-grained application domain definitions
	How to do it…
	How it works…
	Reducing exploit risks
	Role management
	Type inheritance and transitions
	8. Debugging SELinux
	Introduction
	Identifying whether SELinux is to blame
	How to do it…
	How it works…
	See also
	Analyzing SELINUX_ERR messages
	Getting ready
	How to do it…
	How it works…
	Invalid contexts
	Denied transition validation
	Denied security-bounded transitions
	There's more...
	See also
	Logging positive policy decisions
	How to do it…
	How it works…
	Looking through SELinux constraints
	How to do it…
	How it works…
	See also
	Ensuring an SELinux rule is never allowed
	How to do it…
	How it works…
	Using strace to clarify permission issues
	How to do it…
	How it works…
	Using strace against daemons
	How to do it…
	How it works…
	There's more...
	See also
	Auditing system behavior
	How to do it…
	How it works…
	There's more...
	See also
	9. Aligning SELinux with DAC
	Introduction
	Assigning a different root location to regular services
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also
	Using a different root location for SELinux-aware applications
	How to do it…
	How it works…
	See also
	Sharing user content with file ACLs
	How to do it…
	How it works…
	There's more...
	Enabling polyinstantiated directories
	How to do it…
	How it works…
	There's more...
	Configuring capabilities instead of setuid binaries
	How to do it…
	How it works…
	See also
	Using group membership for role-based access
	How to do it…
	How it works…
	Backing up and restoring files
	How to do it…
	How it works…
	Governing application network access
	How to do it…
	How it works…
	See also
	10. Handling SELinux-aware Applications
	Introduction
	Controlling D-Bus message flows
	Getting ready
	How to do it…
	How it works…
	There's more...
	Restricting service ownership
	How to do it…
	How it works…
	There's more...
	Understanding udev's SELinux integration
	How to do it…
	How it works…
	Using cron with SELinux
	How to do it…
	How it works…
	There's more…
	Checking the SELinux state programmatically
	Getting ready
	How to do it…
	How it works…
	There's more...
	Querying SELinux userland configuration in C
	How to do it…
	How it works…
	There's more...
	Interrogating the SELinux subsystem code-wise
	Getting ready
	How to do it…
	How it works…
	There's more...
	Running new processes in a new context
	Getting ready
	How to do it…
	How it works…
	There's more...
	Reading the context of a resource
	How to do it…
	How it works…
	There's more...
	Index

