

Pro	Bash	Programming
Scripting	the	GNU/Linux	Shell

Second	Edition

Chris	F.	A.	Johnson

Jayant	Varma

Pro	Bash	Programming,	Second	Edition

Copyright	©	2015	by	Chris	F.	A.	Johnson	and	Jayant	Varma

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of	the
material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or	information	storage
and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection	with	reviews	or
scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer
system,	for	exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts	thereof	is	permitted
only	under	the	provisions	of	the	Copyright	Law	of	the	Publisher’s	location,	in	its	current	version,	and	permission
for	use	must	always	be	obtained	from	Springer.	Permissions	for	use	may	be	obtained	through	RightsLink	at	the
Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the	respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4842-0122-0

ISBN-13	(electronic):	978-1-4842-0121-3

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every
occurrence	of	a	trademarked	name,	logo,	or	image	we	use	the	names,	logos,	and	images	only	in	an	editorial
fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are	not
identified	as	such,	is	not	to	be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to	proprietary
rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of	publication,
neither	the	authors	nor	the	editors	nor	the	publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions
that	may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with	respect	to	the	material	contained
herein.

Managing	Director:	Welmoed	Spahr

Lead	Editor:	Louise	Corrigan

Editorial	Board:	Steve	Anglin,	Louise	Corrigan,	Jim	DeWolf,	Jonathan	Gennick,	Robert	Hutchinson,
Michelle	Lowman,	James	Markham,	Susan	McDermott,	Matthew	Moodie,	Jeffrey	Pepper,	Douglas
Pundick,	Ben	Renow-Clarke,	Gwenan	Spearing,	Steve	Weiss

Coordinating	Editors:	Christine	Ricketts	and	Mark	Powers

Copy	Editors:	Mary	Bearden	and	Karen	Jameson

Compositor:	SPi	Global

Indexer:	SPi	Global

Artist:	SPi	Global

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring	Street,	6th
Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-
sbm.com,	or	visit	www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member
(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware
corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit	www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.	eBook
versions	and	licenses	are	also	available	for	most	titles.	For	more	information,	reference	our	Special	Bulk	Sales–
eBook	Licensing	web	page	at	www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this	text	is	available	to	readers	at
www.apress.com/9781484201220.	For	detailed	information	about	how	to	locate	your	book’s	source	code,
go	to	www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484201220
http://www.apress.com/source-code/

This	book	is	dedicated	to	my	parents,	who	would	have	been	quite	proud	to	see
this	book.

—Jayant	Varma

Contents	at	a	Glance
About	the	Authors

Acknowledgments

	Chapter	1:	Hello,	World:	Your	First	Shell	Program

	Chapter	2:	Input,	Output,	and	Throughput

	Chapter	3:	Looping	and	Branching

	Chapter	4:	Command-Line	Parsing	and	Expansion

	Chapter	5:	Parameters	and	Variables

	Chapter	6:	Shell	Functions

	Chapter	7:	String	Manipulation

	Chapter	8:	File	Operations	and	Commands

	Chapter	9:	Reserved	Words	and	Built-In	Commands

	Chapter	10:	Writing	Bug-Free	Scripts	and	Debugging	the	Rest

	Chapter	11:	Programming	for	the	Command	Line

	Chapter	12:	Runtime	Configuration

	Chapter	13:	Data	Processing

	Chapter	14:	Scripting	the	Screen

	Chapter	15:	Entry-Level	Programming

	Appendix	A:	Shell	Variables

Index

Contents
About	the	Authors

Acknowledgments

	Chapter	1:	Hello,	World:	Your	First	Shell	Program

The	Code

The	File
The	Naming	of	Scripts

Selecting	a	Directory	for	the	Script

Creating	the	File	and	Running	the	Script

Choosing	and	Using	a	Text	Editor

Building	a	Better	“Hello,	World!”

Summary
Commands

Concepts

Variables

Exercises

	Chapter	2:	Input,	Output,	and	Throughput

Parameter	and	Variables
Positional	Parameters

Special	*@#0$?_!-	Parameters

Variables

Arguments	and	Options

echo,	and	Why	You	Should	Avoid	It

printf:	Formatting	and	Printing	Data
Escape	Sequences

Format	Specifiers

Width	Specification

Printing	to	a	Variable

Line	Continuation

Standard	Input/Output	Streams	and	Redirection
Redirection:	>,	>>,	and	<

Reading	Input

Pipelines

Command	Substitution

Summary
Commands

Concepts

Exercises

	Chapter	3:	Looping	and	Branching

Exit	Status

Testing	an	Expression
test,	a.k.a.	[…]

[[…]]:	Evaluate	an	Expression

((…)):	Evaluate	an	Arithmetic	Expression

Conditional	Execution
if

Conditional	Operators,	&&	and	||

case

Looping
while

until

for

break

continue

Summary
Commands

Concepts

Exercises

	Chapter	4:	Command-Line	Parsing	and	Expansion

Quoting

Brace	Expansion

Tilde	Expansion

Parameter	and	Variable	Expansion

Arithmetic	Expansion

Command	Substitution

Word	Splitting

Pathname	Expansion

Process	Substitution

Parsing	Options

Summary
Commands

Exercises

	Chapter	5:	Parameters	and	Variables

The	Naming	of	Variables

The	Scope	of	a	Variable:	Can	You	See	It	from	Here?

Shell	Variables

Parameter	Expansion
Bourne	Shell

POSIX	Shell

Bash

Bash-4.0

Positional	Parameters

Arrays
Integer-Indexed	Arrays

Associative	Arrays

Summary
Commands

Concepts

	Chapter	6:	Shell	Functions

Definition	Syntax

Compound	Commands

Getting	Results
Set	Different	Exit	Codes

Print	the	Result

Place	Results	in	One	or	More	Variables

Function	Libraries
Using	Functions	from	Libraries

Sample	Script

Summary
Commands

Exercises

	Chapter	7:	String	Manipulation

Concatenation
Repeat	Character	to	a	Given	Length

Processing	Character	by	Character
Reversal

Case	Conversion

Comparing	Contents	Without	Regard	to	Case

Check	for	Valid	Variable	Name

Insert	One	String	into	Another
Examples

Overlay
Examples

Trim	Unwanted	Characters
Examples

Index

Summary
Commands

Functions

Exercises

	Chapter	8:	File	Operations	and	Commands

Reading	a	File

External	Commands
cat

head

touch

ls

cut

wc

Regular	Expressions
grep

sed

awk

File	Name	Expansion	Options
nullglob

failglob

dotglob

extglob

nocaseglob

globstar

Summary
Shell	Options

External	Commands

Exercises

	Chapter	9:	Reserved	Words	and	Built-In	Commands

help,	Display	Information	About	Built-In	Commands

time,	Print	Time	Taken	for	Execution	of	a	Command

read,	Read	a	Line	from	an	Input	Stream
-r,	Read	Backslashes	Literally

-e,	Get	Input	with	the	readline	Library

-a,	Read	Words	into	an	Array

-d		DELIM,	Read	Until	DELIM	Instead	of	a	Newline

-n		NUM,	Read	a	Maximum	of	NUM	Characters

-s,	Do	Not	Echo	Input	Coming	from	a	Terminal

-p		PROMPT:,	Output	PROMPT	Without	a	Trailing	Newline

-t	TIMEOUT,	Only	Wait		TIMEOUT	Seconds	for	Complete	Input

-u	FD:	Read	from	File	Descriptor	FD	Instead	of	the	Standard	Input

-i	TEXT,	Use	TEXT	as	the	Initial	Text	for	Readline

eval,	Expand	Arguments	and	Execute	Resulting	Command

Poor	Man’s	Arrays

Setting	Multiple	Variables	from	One	Command

type,	Display	Information	About	Commands

builtin,	Execute	a	Built-In	Command

command,	Execute	a	Command	or	Display	Information	About	Commands

pwd,	Print	the	Current	Working	Directory
unalias,	Remove	One	or	More	Aliases

Deprecated	Built-Ins

Dynamically	Loadable	Built-Ins

Summary
Commands	and	Reserved	Words

Deprecated	Commands

Exercise

	Chapter	10:	Writing	Bug-Free	Scripts	and	Debugging	the	Rest

Prevention	Is	Better	Than	Cure
Structure	Your	Programs

Document	Your	Code

Format	Your	Code	Consistently

The	K.I.S.S.	Principle

Test	as	You	Go

Debugging	a	Script

Summary

Exercises

	Chapter	11:	Programming	for	the	Command	Line

Manipulating	the	Directory	Stack
cd

pd

cdm

menu

Filesystem	Functions
l

lsr

cp,	mv

md

Miscellaneous	Functions
pr1

calc

Managing	Man	Pages
sman

sus

k

Games
The	fifteen	Puzzle

Summary

Exercises

	Chapter	12:	Runtime	Configuration

Defining	Variables

Command-Line	Options	and	Arguments

Menus

Q&A	Dialogue

Configuration	Files

Scripts	with	Several	Names

Environment	Variables

All	Together	Now
Script	Information

Default	Configuration

Screen	Variables

Function	Definitions

Parse	Command-Line	Options

Bits	and	Pieces

Summary

Exercises

	Chapter	13:	Data	Processing

Arrays
Holes	in	an	Indexed	Array

Using	an	Array	for	Sorting

Two-Dimensional	Grids

Data	File	Formats

Line-Based	Records

Block	File	Formats

Summary

Exercises

	Chapter	14:	Scripting	the	Screen

Teletypewriter	vs.	Canvas

Stretching	the	Canvas
Command	Sequence	Introducer

Priming	the	Canvas

Moving	the	Cursor

Changing	Rendition	Modes	and	Colors

Placing	a	Block	of	Text	on	the	Screen

Scrolling	Text

Rolling	Dice

Summary

Exercises

	Chapter	15:	Entry-Level	Programming

Single-Key	Entry
Function	Library,	key-funcs

History	in	Scripts

Sanity	Checking

Form	Entry

Reading	the	Mouse

Summary

Exercises

	Appendix	A:	Shell	Variables

BASH

BASHPID

BASH_ALIASES

BASH_ARGC

BASH_ARGV

BASH_CMDS

BASH_COMMAND

BASH_EXECUTION_STRING

BASH_LINENO

BASH_REMATCH

BASH_SOURCE

BASH_SUBSHELL

BASH_VERSINFO

BASH_VERSION

COMP_CWORD

COMP_KEY

COMP_LINE

COMP_POINT

COMP_TYPE

COMP_WORDBREAKS

COMP_WORDS

DIRSTACK

EUID

FUNCNAME

GROUPS

HISTCMD

HOSTNAME

HOSTTYPE

LINENO

MACHTYPE

OLDPWD

OPTARG

OPTIND

OSTYPE

PIPESTATUS

PPID

PWD

RANDOM

REPLY

SECONDS

SHELLOPTS

SHLVL

UID

BASH_ENV

CDPATH

COLUMNS

COMPREPLY

EMACS

FCEDIT

FIGNORE

GLOBIGNORE

HISTCONTROL

HISTFILE

HISTFILESIZE

HISTIGNORE

HISTSIZE

HISTTIMEFORMAT

HOME

HOSTFILE

IFS

IGNOREEOF

INPUTRC

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_NUMERIC

LINES

MAIL

MAILCHECK

MAILPATH

OPTERR

PATH

POSIXLY_CORRECT

PROMPT_COMMAND

PROMPT_DIRTRIM

PS1

PS2

PS3

PS4

SHELL

TIMEFORMAT

TMOUT

TMPDIR

auto_resume

histchars

Index

About	the	Authors

Chris	F.	A.	Johnson	was	introduced	to	Unix	in	1990	and	learned	shell	scripting	because
there	was	no	C	compiler	on	the	system.	His	first	major	project	was	a	menu-driven,	user-
extensible	database	system	with	report	generator.	Chris	uses	the	shell	as	his	primary,
general-purpose	programming	language,	and	his	projects	have	included	a	member
database,	menuing	system,	and	POP3	mail	filtering	and	retrieval.	Chris	is	the	author	of
Shell	Scripting	Recipes:	A	Problem-Solution	Approach	(Apress,	2005).	When	not	pushing
shell	scripting	to	the	limit,	he	designs	and	codes	web	sites,	teaches	chess,	and	composes
cryptic	crosswords.

Jayant	Varma	is	the	founder	of	OZ	Apps	(www.oz-apps.com),	a	consulting,	training,
and	development	company	providing	IT	solutions	(specialization	in	mobile	technology).
He	is	an	experienced	developer	with	more	than	20	years	of	industry	experience	spread
across	several	countries.	He	is	the	author	of	a	number	of	books	on	iOS	development,
including	Learn	Lua	for	iOS	Game	Development	(Apress,	2012),	Xcode	6	Essentials
(Packt,	2015),	More	iPhone	Development	with	Swift	(Apress,	2015),	and	More	iPhone
Development	with	Objective-C	(Apress,	2015).	He	has	also	been	a	university	lecturer	in

http://www.oz-apps.com

Australia	where	he	currently	resides.	He	loves	traveling	and	finds	Europe	to	be	his	favorite
destination.

Acknowledgments
This	book	is	a	wonderful	source	for	those	that	want	to	write	bash	shell	scripts.	I	would	like
to	thank	the	wonderful	staff	at	Apress	for	the	opportunity	to	update	this	book.	Special
thanks	to	Louise,	Christine,	and	Mark	who	facilitated	the	quick	turnaround	on	the	book
and	getting	it	to	print.	Lastly,	special	thanks	to	my	family	for	their	support	in	getting	this
book	completed.

—Jayant	Varma

CHAPTER	1

Hello,	World:	Your	First	Shell	Program
A	shell	script	is	a	file	containing	one	or	more	commands	that	you	would	type	on	the
command	line.	This	chapter	describes	how	to	create	such	a	file	and	make	it	executable.	It
also	covers	some	other	issues	surrounding	shell	scripts,	including	what	to	name	the	files,
where	to	put	them,	and	how	to	run	them.

I	will	begin	with	the	first	program	traditionally	demonstrated	in	every	computer
language:	a	program	that	prints	“Hello,	World!”	in	your	terminal.	It’s	a	simple	program,
but	it	is	enough	to	demonstrate	a	number	of	important	concepts.	The	code	itself	is	the
simplest	part	of	this	chapter.	Naming	the	file	and	deciding	where	to	put	it	are	not
complicated	tasks,	but	they	are	important.

For	most	of	this	chapter,	you	will	be	working	in	a	terminal.	It	could	be	a	virtual
terminal,	a	terminal	window,	or	even	a	dumb	terminal.	In	your	terminal,	the	shell	will
immediately	execute	any	commands	you	type	(after	you	press	Enter,	of	course).

You	should	be	in	your	home	directory,	which	you	can	find	in	the	variable	$HOME:

echo	"$HOME"

You	can	find	the	current	directory	with	either	the	pwd	command	or	the	PWD	variable:

pwd
echo	"$PWD"

If	you	are	not	in	your	home	directory,	you	can	get	there	by	typing	cd	and	pressing
Enter	at	the	shell	prompt.

	Caution		If	you	try	the	code	from	this	book	on	a	Mac,	please	note	that	the	current
version	of	Mac	OS	X,	Yosemite,	officially	supports	Bash	version	3.2.53(1).	The	current
version	of	Bash	is	4.3,	and	it	has	the	fix	for	the	Shellshock	vulnerability.	Bash	4.3	is
available	with	most	Linux	distributions.	Some	of	the	code	/	functionality	might	not	be
available	on	Mac	OS	X	systems	as	it	is	specific	to	Bash	4.x.

The	Code
The	code	is	nothing	more	than	this:

echo	Hello,	World!

There	are	three	words	on	this	command	line:	the	command	itself	and	two	arguments.

The	command,	echo,	prints	its	arguments	separated	by	a	single	space	and	terminated	with
a	newline.

The	File
Before	you	turn	that	code	into	a	script,	you	need	to	make	two	decisions:	what	you	will	call
the	file	and	where	you	will	put	it.	The	name	should	be	unique	(that	is,	it	should	not
conflict	with	any	other	commands),	and	you	should	put	it	where	the	shell	can	find	it.

The	Naming	of	Scripts
Beginners	often	make	the	mistake	of	calling	a	trial	script	test.	To	see	why	that	is	bad,
enter	the	following	at	the	command	prompt:

type	test

The	type	command	tells	you	what	the	shell	will	execute	(and	where	it	can	be	found	if
it	is	an	external	file)	for	any	given	command.	In	bash,	type	-a	test	will	display	all
the	commands	that	match	the	name	test:

$	type	test
test	is	a	shell	builtin
$	type	-a	test
test	is	a	shell	builtin
test	is	/usr/bin/test

As	you	can	see,	a	command	called	test	already	exists;	it	is	used	to	test	file	types	and
to	compare	values.	If	you	call	your	script	test,	it	will	not	be	run	when	you	type	test	at
the	shell	prompt;	the	first	command	identified	by	type	will	be	run	instead.	(I’ll	talk	more
about	both	type	and	test	in	later	chapters.)

Typically,	Unix	command	names	are	as	short	as	possible.	They	are	often	the	first	two
consonants	of	a	descriptive	word	(for	example,	mv	for	move	or	ls	for	list)	or	the	first
letters	of	a	descriptive	phrase	(for	example,	ps	for	process	status	or	sed	for	stream
editor).

For	this	exercise,	call	the	script	hw.	Many	shell	programmers	add	a	suffix,	such	as	.sh,
to	indicate	that	the	program	is	a	shell	script.	The	script	doesn’t	need	it,	and	I	use	one	only
for	programs	that	are	being	developed.	My	suffix	is	-sh,	and	when	the	program	is
finished,	I	remove	it.	A	shell	script	becomes	another	command	and	doesn’t	need	to	be
distinguished	from	any	other	type	of	command.

Selecting	a	Directory	for	the	Script
When	the	shell	is	given	the	name	of	a	command	to	execute,	it	looks	for	that	name	in	the
directories	listed	in	the	PATH	variable.	This	variable	contains	a	colon-separated	list	of

directories	that	contain	executable	commands.	This	is	a	typical	value	for	$PATH:

!"
/bin:/usr/bin:/usr/local/bin:/usr/games

If	your	program	is	not	in	one	of	the	PATH	directories,	you	must	give	a	pathname,
either	absolute	or	relative,	for	bash	to	find	it.	An	absolute	pathname	gives	the	location
from	the	root	of	the	filesystem,	such	as	/home/chris/bin/hw;	a	relative	pathname	is
given	in	relation	to	the	current	working	directory	(which	should	currently	be	your	home
directory),	as	in	bin/hw.

Commands	are	usually	stored	in	directories	named	bin,	and	a	user’s	personal
programs	are	stored	in	a	bin	subdirectory	in	the	$HOME	directory.	To	create	that
directory,	use	this	command:

mkdir	bin

Now	that	it	exists,	it	must	be	added	to	the	PATH	variable:

PATH=$PATH:$HOME/bin

For	this	change	to	be	applied	to	every	shell	you	open,	add	it	to	a	file	that	the	shell	will
source	when	it	is	invoked.	This	will	be	.bash_profile,	.bashrc,	or	.profile
depending	on	how	bash	is	invoked.	These	files	are	sourced	only	for	interactive	shells,	not
for	scripts.

Creating	the	File	and	Running	the	Script
Usually	you	would	use	a	text	editor	to	create	your	program,	but	for	a	simple	script	like
this,	it’s	not	necessary	to	call	up	an	editor.	You	can	create	the	file	from	the	command	line
using	redirection:

echo	echo	Hello,	World!	>	bin/hw

The	greater-than	sign	(>)	tells	the	shell	to	send	the	output	of	a	command	to	the
specified	file,	rather	than	to	the	terminal.	You’ll	learn	more	about	redirection	in	Chapter	2.

The	program	can	now	be	run	by	calling	it	as	an	argument	to	the	shell	command:

bash	bin/hw

That	works,	but	it’s	not	entirely	satisfactory.	You	want	to	be	able	to	type	hw,	without
having	to	precede	it	with	bash,	and	have	the	command	executed.	To	do	that,	give	the	file
execute	permissions:

chmod	+x	bin/hw

Now	the	command	can	be	run	using	just	its	name:

!"

$	hw
Hello,	World!

Choosing	and	Using	a	Text	Editor
For	many	people,	one	of	the	most	important	pieces	of	computer	software	is	a	word
processor.	Although	I	am	using	one	to	write	this	book	(LibreOffice	Writer),	it’s	not
something	I	use	often.	The	last	time	I	used	a	word	processor	was	five	years	ago	when	I
wrote	the	first	edition	of	this	book.	A	text	editor,	on	the	other	hand,	is	an	indispensable
tool.	I	use	one	for	writing	e-mail,	Usenet	articles,	shell	scripts,	PostScript	programs,	web
pages,	and	more.

A	text	editor	operates	on	plain-text	files.	It	stores	only	the	characters	you	type;	it
doesn’t	add	any	hidden	formatting	codes.	If	I	type	A	and	press	Enter	in	a	text	editor	and
save	it,	the	file	will	contain	exactly	two	characters:	A	and	a	newline.	A	word-processor	file
containing	the	same	text	would	be	thousands	of	times	larger.	(With	abiword,	the	file
contains	2,526	bytes;	the	LibreOffice.org	file	contains	7,579	bytes.)

You	can	write	scripts	in	any	text	editor,	from	the	basic	e3	or	nano	to	the	full-featured
emacs	or	nedit.	The	better	text	editors	allow	you	to	have	more	than	one	file	open	at	a
time.	They	make	editing	code	easier	with,	for	example,	syntax	highlighting,	automatic
indentation,	autocompletion,	spell	checking,	macros,	search	and	replace,	and	undo.
Ultimately,	which	editor	you	choose	is	a	matter	of	personal	preference.	I	use	GNU	emacs
(see	Figure	1-1).

Figure	1-1.	Shell	code	in	the	GNU	emacs	text	editor

	Note		In	Windows	text	files,	!”	lines	end	with	two	characters:	a	carriage	return	(CR)
and	a	linefeed	(LF).	On	Unix	systems,	such	as	Linux,	lines	end	with	a	single	linefeed.	If
you	write	your	programs	in	a	Windows	text	editor,	you	must	either	save	your	files	with
Unix	line	endings	or	remove	the	carriage	returns	afterward.

Building	a	Better	“Hello,	World!”
Earlier	in	the	chapter	you	created	a	script	using	redirection.	That	script	was,	to	say	the
least,	minimalist.	All	programs,	even	a	one	liner,	require	documentation.	Information
should	include	at	least	the	author,	the	date,	and	a	description	of	the	command.	Open	the
file	bin/hw	in	your	text	editor,	and	add	the	information	in	Listing	1-1	using	comments.

Listing	1-1.	hw

#!/bin/bash
#:	Title							:	hw
#:	Date								:	2008-11-26
#:	Author						:	"Chris	F.A.	Johnson"	<shell@cfajohnson.com>
#:	Version					:	1.0

#:	Description	:	print	Hello,	World!
#:	Options					:	None

printf	"%s\n"	"Hello,	World!"	!"

Comments	begin	with	an	octothorpe,	or	hash,	at	the	beginning	of	a	word	and	continue
until	the	end	of	the	line.	The	shell	ignores	them.	I	often	add	a	character	after	the	hash	to
indicate	the	type	of	comment.	I	can	then	search	the	file	for	the	type	I	want,	ignoring	other
comments.

The	first	line	is	a	special	type	of	comment	called	a	shebang	or	hash-bang.	It	tells	the
system	which	interpreter	to	use	to	execute	the	file.	The	characters	#!	must	appear	at	the
very	beginning	of	the	first	line;	in	other	words,	they	must	be	the	first	two	bytes	of	the	file
for	it	to	be	recognized.

Summary
The	following	are	the	commands,	concepts,	and	variables	you	learned	in	this	chapter.

Commands
pwd:	Prints	the	name	of	the	current	working	directory

cd:	Changes	the	shell’s	working	directory

echo:	Prints	its	arguments	separated	by	a	space	and	terminated	by	a
newline

type:	Displays	information	about	a	command

mkdir:	Creates	a	new	directory

chmod:	Modifies	the	permissions	of	a	file

source:	a.k.a.	.	(dot):	executes	a	script	in	the	current	shell
environment

printf:	Prints	the	arguments	as	specified	by	a	format	string

Concepts
Script:	This	is	a	file	containing	commands	to	be	executed	by	the	shell.

Word:	A	word	is	a	sequence	of	characters	considered	to	be	a	single
unit	by	the	shell.

Output	redirection:	You	can	send	the	output	of	a	command	to	a	file
rather	than	the	terminal	using	>	FILENAME.

Variables:	These	are	names	that	store	values.

Comments:	These	consist	of	an	unquoted	word	beginning	with	#.	All
remaining	characters	on	that	line	constitute	a	comment	and	will	be
ignored.

Shebang	or	hash-bang:	This	is	a	hash	and	an	exclamation	mark	(#!)
followed	by	the	path	to	the	interpreter	that	should	execute	the	file.

Interpreter:	This	is	a	program	that	reads	a	file	and	executes	the
statements	it	contains.	It	may	be	a	shell	or	another	language	interpreter
such	as	awk	or	python.

Variables
PWD	contains	the	pathname	of	the	shell’s	current	working	directory.

HOME	stores	the	pathname	of	the	user’s	home	directory.

PATH	is	a	colon-separated	list	of	directories	in	which	command	files
are	stored.	The	shell	searches	these	directories	for	commands	it	is
asked	to	execute.

Exercises
1.	 Write	a	script	that	creates	a	directory	called	bpl	inside	$HOME.

Populate	this	directory	with	two	subdirectories,	bin	and
scripts.

2.	 Write	a	script	to	create	the	“Hello,	World!”	script,	hw,	in
$HOME/bpl/bin/;	make	it	executable;	and	then	execute	it.

CHAPTER	2

Input,	Output,	and	Throughput
Two	of	the	commands	we	used	in	Chapter	1	are	workhorses	of	the	shell	scripter’s	stable:
echo	and	printf.	Both	are	bash	builtin	commands.	Both	print	information	to	the
standard	output	stream,	but	printf	is	much	more	powerful,	and	echo	has	its	problems.

In	this	chapter,	I’ll	cover	echo	and	its	problems,	the	capabilities	of	printf,	the
read	command,	and	the	standard	input	and	output	streams.	I’ll	start,	however,	with	an
overview	of	parameters	and	variables.

Parameter	and	Variables
To	quote	the	bash	manual	(type	man	bash	at	the	command	prompt	to	read	it),	“A
parameter	is	an	entity	that	stores	values.”	There	are	three	types	of	parameters:	positional
parameters,	special	parameters,	and	variables.	Positional	parameters	are	arguments
present	on	the	command	line,	and	they	are	referenced	by	a	number.	Special	parameters	are
set	by	the	shell	to	store	information	about	aspects	of	its	current	state,	such	as	the	number
of	arguments	and	the	exit	code	of	the	last	command.	Their	names	are	nonalphanumeric
characters	(for	example,	*,	#,	and	_).	Variables	are	identified	by	a	name.	What’s	in	a
name?	I’ll	explain	that	in	the	“Variables”	section.

The	value	of	a	parameter	is	accessed	by	preceding	its	name,	number,	or	character	with
a	dollar	sign,	as	in	$3,	$#,	or	$HOME.	The	name	may	be	surrounded	by	braces,	as	in
${10},	${PWD},	or	${USER}.

Positional	Parameters
The	arguments	on	the	command	line	are	available	to	a	shell	program	as	numbered
parameters.	The	first	argument	is	$1,	the	second	is	$2,	and	so	on.

You	can	make	the	hw	script	from	Chapter	1	more	flexible	by	using	a	positional
parameter.	Listing	2-1	calls	it	hello.

Listing	2-1.	hello

#:	Description:	print	Hello	and	the	first	command-line	
argument
printf	"Hello,	%s!\n"	"$1"

Now	you	can	call	the	script	with	an	argument	to	change	its	output:

$	hello	John

Hello,	John!
$	hello	Susan
Hello,	Susan!

The	Bourne	shell	could	only	address	up	to	nine	positional	parameters.	If	a	script	used
$10,	it	would	be	interpreted	as	$1	followed	by	a	zero.	To	be	able	to	run	old	scripts,	bash
maintains	that	behavior.	To	access	positional	parameters	greater	than	9,	the	number	must
be	enclosed	in	braces:	${15}.

The	script	is	passed	to	the	parameters	that	can	be	accessed	via	their	positions,	$0,	$1,
$2	and	so	on.	The	function	shift	N	moves	the	positional	parameters	by	N	positions,	if
you	ran	shift	(the	default	value	of	N	is	1),	then	$0	would	be	discarded,	$1	would
become	$0,	$2	would	become	$1,	and	so	on:	they	would	all	be	shifted	by	1	position.
There	are	some	very	clever	and	simple	uses	of	shift	to	iterate	through	a	list	of	paramters	of
unknown	length.

	Note		The	shift	function	is	distructive:	that	is,	the	paramters	discarded	are	gone	and
cannot	be	retrieved	again.

Special	*@#0$?_!-	Parameters
The	first	two	special	parameters,	$*	and	$@,	expand	to	the	value	of	all	the	positional
parameters	combined.	$#	expands	to	the	number	of	positional	parameters.	$0	contains	the
path	to	the	currently	running	script	or	to	the	shell	itself	if	no	script	is	being	executed.

$$	contains	the	process	identification	number	(PID)	of	the	current	process,	$?	is	set	to
the	exit	code	of	the	last-executed	command,	and	$_	is	set	to	the	last	argument	to	that
command.	$!	contains	the	PID	of	the	last	command	executed	in	the	background,	and	$-
is	set	to	the	option	flags	currently	in	effect.

I’ll	discuss	these	parameters	in	more	detail	as	they	come	up	in	the	course	of	writing
scripts.

Variables
A	variable	is	a	parameter	denoted	by	a	name;	a	name	is	a	word	containing	only	letters,
numbers,	or	underscores	and	beginning	with	a	letter	or	an	underscore.

Values	can	be	assigned	to	variables	in	the	following	form:

name=VALUE

	Note		Bash	is	very	particular	about	spacing:	note	that	there	are	no	spaces	before	the	=
and	none	after.	If	you	have	spaces,	the	command	would	not	work.

Many	variables	are	set	by	the	shell	itself,	including	three	you	have	already	seen:
HOME,	PWD,	and	PATH.	With	only	two	minor	exceptions,	auto_resume	and

histchars,	all	the	variables	set	by	the	shell	are	all	uppercase	letters.

Arguments	and	Options
The	words	entered	after	the	command	are	its	arguments.	These	are	words	separated	by
whitespace	(one	or	more	spaces	or	tabs).	If	the	whitespace	is	escaped	or	quoted,	it	no
longer	separates	words	but	becomes	part	of	the	word.

The	following	command	lines	all	have	four	arguments:

echo	1	'2			3'			4	5
echo		-n		Now\	is		the		time
printf	"%s	%s\n"	one	two	three

In	the	first	line,	the	spaces	between	2	and	3	are	quoted	because	they	are	surrounded	by
single	quotation	marks.	In	the	second,	the	space	after	now	is	escaped	by	a	backslash,
which	is	the	shell’s	escape	character.

In	the	final	line,	a	space	is	quoted	with	double	quotes.

In	the	second	command,	the	first	argument	is	an	option.	Traditionally,	options	to	Unix
commands	are	a	single	letter	preceded	by	a	hyphen,	sometimes	followed	by	an	argument.
The	GNU	commands	found	in	Linux	distributions	often	accept	long	options	as	well.	These
are	words	preceded	by	a	double	hyphen.	For	example,	most	GNU	utilities	have	an	option
called	—version	that	prints	the	version:

$	bash	--version
GNU	bash,	version	4.3.11(1)-release	(x86_64-unknown-linux-
gnu)

Copyright	(C)	2013	Free	Software	Foundation,	Inc.

License	GPLv3+:	GNU	GPL	version	3	or	later	
<http://gnu.org/licenses/gpl.html>

This	is	free	software;	you	are	free	to	change	and	
redistribute	it.
There	is	NO	WARRANTY,	to	the	extent	permitted	by	law.

echo,	and	Why	You	Should	Avoid	It
When	I	started	writing	shell	scripts,	I	soon	learned	about	the	two	main	branches	of	Unix:
AT&T’s	System	V	and	BSD.	One	of	their	differences	was	the	behavior	of	echo.	An
internal	command	in	all	modern	shells,	echo	prints	its	arguments	with	a	single	space
between	them	to	the	standard	output	stream,	followed	by	a	newline:

$	echo	The	quick	brown	fox

http://gnu.org/licenses/gpl.html

The	quick	brown	fox

The	default	newline	can	be	suppressed	in	one	of	two	ways,	depending	on	the	shell:

$	echo	-n	No	newline
No	newline$	echo	"No	newline\c"
No	newline$

The	BSD	variety	of	echo	accepted	the	option	-n,	which	suppressed	the	newline.
AT&T’s	version	used	an	escape	sequence,	\c,	to	do	the	same	thing.	Or	was	it	the	other
way	round?	I	have	a	hard	time	remembering	which	was	which	because,	although	I	was
using	an	AT&T	system	(hardware	and	operating	system),	its	echo	command	accepted
both	AT&T	and	BSD	syntax.

That,	of	course,	is	history.	In	this	book,	we’re	dealing	with	bash,	so	why	does	it
matter?	bash	has	the	-e	option	to	activate	escape	sequences	such	as	\c	but	by	default
uses	-n	to	prevent	a	newline	from	being	printed.	(The	escape	sequences	recognized	by
echo	-e	are	the	same	as	those	described	in	the	next	section,	with	the	addition	of	\c).

	Tip		Add	–e	to	the	echo	command	if	you	want	the	escape	sequences	to	be	recognized.

The	trouble	is	that	bash	has	an	xpg_echo	option	(XPG	stands	for	X/Open
Portability	Guide,	a	specification	for	Unix	systems)	that	makes	echo	behave	like	that
other	version.	This	can	be	turned	on	or	off	while	in	the	shell	(using	shopt	-s
xpg_echo	either	at	the	command	line	or	in	a	script),	or	it	can	be	turned	on	when	the
shell	is	compiled.	In	other	words,	even	in	bash,	you	cannot	be	absolutely	sure	which
behavior	you	are	going	to	get.

If	you	limit	the	use	of	echo	to	situations	where	there	cannot	be	a	conflict,	that	is,
where	you	are	sure	the	arguments	do	not	begin	with	-n	and	do	not	contain	escape
sequences,	you	will	be	fairly	safe.	For	everything	else	(or	if	you’re	not	sure),	use
printf.

printf:	Formatting	and	Printing	Data
Derived	from	the	C	programming	language	function	of	the	same	name,	the	shell	command
printf	is	similar	in	purpose	but	differs	in	some	of	the	details.	Like	the	C	function,	it
uses	a	format	string	to	indicate	how	to	present	the	rest	of	its	arguments:

printf	FORMAT	ARG…

The	FORMAT	string	can	contain	ordinary	characters,	escape	sequences,	and	format
specifiers.	Ordinary	characters	are	printed	unchanged	to	the	standard	output.	Escape
sequences	are	converted	to	the	characters	they	represent.	Format	specifiers	are	replaced
with	arguments	from	the	command	line.

Escape	Sequences
Escape	sequences	are	single	letters	preceded	by	a	backslash:

\a:	:	Alert	(bell)

\b:	Backspace

\e:	Escape	character

\f:	Form	feed

\n:	Newline

\r:	Carriage	return

\t:	Horizontal	tab

\v:	Vertical	tab

\:	Backslash

\nnn:	A	character	specified	by	one	to	three	octal	digits

\xHH:	A	character	specified	by	one	or	two	hexadecimal	digits

The	backslashes	must	be	protected	from	the	shell	by	quotes	or	another	backslash:

$		printf	"Q\t\141\n\x42\n"
Q							a
B

Format	Specifiers
The	format	specifiers	are	letters	preceded	by	a	percent	sign.	Optional	modifiers	may	be
placed	between	the	two	characters.	The	specifiers	are	replaced	by	thecorresponding
argument.	When	there	are	more	arguments	than	specifiers,	the	format	string	is	reused	until
all	the	arguments	have	been	consumed.	The	most	commonly	used	specifiers	are	%s,	%d,
%f,	and	%x.

The	%s	specifier	prints	the	literal	characters	in	the	argument:

$	printf	"%s\n"	Print	arguments	on	"separate	lines"
Print
arguments
on
separate	lines

%b	is	like	%s	except	that	escape	sequences	in	the	arguments	are	translated:

$	printf	"%b\n"	"Hello\nworld"	"12\tword"
Hello

world
12						word

Integers	are	printed	with	%d.	The	integer	may	be	specified	as	a	decimal,	octal	(using	a
leading	0),	or	hexadecimal	(preceding	the	hex	number	with	0x)	number.	If	the	number	is
not	a	valid	integer,	printf	prints	an	error	message:

$	printf	"%d\n"	23	45	56.78	0xff	011
23
45
bash:	printf:	56.78:	invalid	number
0
255
9

For	decimal	fractions	or	floating-point	numbers,	use	%f.	By	default	they	will	be
printed	with	six	decimal	places:

$	printf	"%f\n"	12.34	23	56.789	1.2345678
12.340000
23.000000
56.789000
1.234568

Floating-point	numbers	can	be	presented	in	exponential	(also	known	as	scientific)
notation	using	%e:

$	printf	"%e\n"	12.34	23	56.789	123.45678
1.234000e+01
2.300000e+01
5.678900e+01
1.234568e+02

Integers	can	be	printed	in	hexadecimal	using	%x	for	lowercase	letters	or	%X	for
uppercase	letters.	For	example,	when	specifying	colors	for	a	web	page,	they	are	specified
in	hex	notation.	I	know	from	the	rgb.txt	file	included	with	the	X	Window	system	that
the	red-green-blue	values	for	royal	blue	are	65,	105,	and	225.	To	convert	them	to	a	style
rule	for	a	web	page,	use	this:

$	printf	"color:	#%02x%02x%02x;\n"	65	105	225
color:	#4169e1;

Width	Specification
You	can	modify	the	formats	by	following	the	percent	sign	with	a	width	specification.	The
argument	will	be	printed	flush	right	in	a	field	of	that	width	or	will	be	flush	left	if	the
number	is	negative.	Here	we	have	the	first	field	with	a	width	of	eight	characters;	the	words
will	be	printed	flush	right.	Then	there	is	a	field	15	characters	wide	that	will	be	printed

flush	left:

$	printf	"%8s	%-15s:\n"	first	second	third	fourth	fifth	
sixth
			first	second									:
			third	fourth									:
			fifth	sixth										:

If	the	width	specification	is	preceded	by	a	0,	the	numbers	are	padded	with	leading
zeroes	to	fill	the	width:

$	printf	"%04d\n"	12	23	56	123	255
0012
0023
0056
0123
0255

A	width	specifier	with	a	decimal	fraction	specifies	the	precision	of	a	floating-point
number	or	the	maximum	width	of	a	string:

$		printf	"%12.4s	%9.2f\n"	John	2	Jackson	4.579	Walter	2.9
								John						2.00
								Jack						4.58
								Walt						2.90

The	script	shown	in.	Listing	2-2	uses	printf	to	output	a	simple	sales	report.

Listing	2-2.	Report

#!/bin/bash
#:	Description	:	print	formatted	sales	report

##	Build	a	long	string	of	equals	signs
divider=====================================
divider=$divider$divider

##	Format	strings	for	printf
header="\n	%-10s	%11s	%8s	%10s\n"
format="	%-10s	%11.2f	%8d	%10.2f\n"

##	Width	of	divider
totalwidth=44

##	Print	categories
printf	"$header"	ITEM		"PER	UNIT"	NUM	TOTAL

##	Print	divider	to	match	width	of	report
printf	"%$totalwidth.${totalwidth}s\n"	"$divider"

##	Print	lines	of	report
printf	"$format"	\
				Chair	79.95	4	319.8	\
			Table		209.99	1	209.99	\
			Armchair	315.49	2	630.98

The	resulting	report	looks	like	this:

	ITEM										PER	UNIT						NUM						TOTAL
==
	Chair												79.95								4					319.80
	Table											209.99								1					209.99
	Armchair								315.49								2					630.98

Note	the	use	of	braces	around	the	second	totalwidth	variable	name:
${totalwidth}.	In	the	first	instance,	the	name	is	followed	by	a	period,	which	cannot
be	part	of	a	variable	name.	In	the	second,	it	is	followed	by	the	letter	s,	which	could	be,	so
the	totalwidth	name	must	be	separated	from	it	by	using	braces.

Printing	to	a	Variable
With	version	3.1,	bash	added	a	-v	option	to	store	the	output	in	a	variable	instead	of
printing	it	to	the	standard	output:

$	printf	-v	num4	"%04d"	4
$	printf	"%s\n"	"$num4"
0004

Line	Continuation
At	the	end	of	the	report	script,	the	last	four	lines	are	read	as	a	single	line,	using	line
continuation.	A	backslash	at	the	end	of	a	line	tells	the	shell	to	ignore	the	newline
character,	effectively	joining	the	next	line	to	the	current	one.

Standard	Input/Output	Streams	and
Redirection
In	Unix	(of	which	Linux	is	a	variety),	everything	is	a	stream	of	bytes.	The	streams	are
accessible	as	files,	but	there	are	three	streams	that	are	rarely	accessed	by	a	filename.	These
are	the	input/output	(I/O)	streams	attached	to	every	command:	standard	input,	standard
output,	and	standard	error.	By	default,	these	streams	are	connected	to	your	terminal.

When	a	command	reads	a	character	or	a	line,	it	reads	from	the	standard	input	stream,
which	is	the	keyboard.	When	it	prints	information,	it	is	sent	to	the	standard	output,	your

monitor.	The	third	stream,	standard	error,	is	also	connected	to	your	monitor;	as	the	name
implies,	it	is	used	for	error	messages.	These	streams	are	referred	to	by	numbers,	called	file
descriptors	(FDs).	These	are	0,	1,	and	2,	respectively.	The	stream	names	are	also	often
contracted	to	stdin,	stdout,	and	stderr.

I/O	streams	can	be	redirected	to	(or	from)	a	file	or	into	a	pipeline.

Redirection:	>,	>>,	and	<
In	Chapter	1,	you	redirected	standard	output	to	a	file	using	the	>	redirection	operator.

When	redirecting	using	>,	the	file	is	created	if	it	doesn’t	exist.	If	it	does	exist,	the	file
is	truncated	to	zero	length	before	anything	is	sent	to	it.	You	can	create	an	empty	file	by
redirecting	an	empty	string	(that	is,	nothing)	to	the	file:

printf	""	>	FILENAME

or	by	simply	using	this:

>	FILENAME

Redirection	is	performed	before	any	command	on	the	line	is	executed.	If	you	redirect
to	the	same	file	you	are	reading	from,	that	file	will	be	truncated,	and	the	command	will
have	nothing	to	read.

The	>>	operator	doesn’t	truncate	the	destination	file;	it	appends	to	it.	You	could	add	a
line	to	the	hw	command	from	the	first	chapter	by	doing	the	following:

echo	exit	0	>>	bin/hw

Redirecting	standard	output	does	not	redirect	standard	error.	Error	messages	will	still
be	displayed	on	your	monitor.	To	send	the	error	messages	to	a	file	–	in	other	words,	to
redirect	FD2	–	the	redirection	operator	is	preceded	by	the	FD.

Both	standard	output	and	standard	error	can	be	redirected	on	the	same	line.	The	next
command	sends	standard	output	to	FILE	and	standard	error	to	ERRORFILE:

$	printf	'%s\n%v\n'	OK?	Oops!	>	FILE	2>	ERRORFILE
$	cat	ERRORFILE
bash4:	printf:	`v':	invalid	format	character

In	this	case,	the	error	message	is	going	to	a	special	file,	/dev/null.	Sometimes
called	the	bit	bucket,	anything	written	to	it	is	discarded.

printf	'%s\n%v\n'	OK?	Oops!	2>/dev/null

Instead	of	sending	output	to	a	file,	it	can	be	redirected	to	another	I/O	stream	by	using
>&N	where	N	is	the	number	of	the	file	descriptor.	This	command	sends	both	standard
output	and	standard	error	to	FILE:

printf	'%s\n%v\n'	OK?	Oops!	>	FILE	2>&1

Here,	the	order	is	important.	The	standard	output	is	sent	to	FILE,	and	then	standard
error	is	redirected	to	where	standard	output	is	going.	If	the	order	is	reversed,	the	effect	is
different.	The	redirection	sends	standard	error	to	wherever	standard	output	is	currently
going	and	then	changes	where	standard	output	goes.	Standard	error	still	goes	to	where
standard	output	was	originally	directed:

printf	'%s\n%v\n'	OK?	Oops!	2>&1	>	FILE

bash	has	also	a	nonstandard	syntax	for	redirecting	both	standard	output	and	standard
error	to	the	same	place:

&>	FILE

To	append	both	standard	output	and	standard	error	to	FILE,	use	this:

&>>	FILE

A	command	that	reads	from	standard	input	can	have	its	input	redirected	from	a	file:

tr,	H	wY	<	bin/hw

You	can	use	the	exec	command	to	redirect	the	I/O	streams	for	the	rest	of	the	script	or
until	it’s	changed	again.

exec	1>tempfile
exec	0<datafile
exec	2>errorrfile

All	standard	output	will	now	go	to	the	file	tempfile,	input	will	be	read	from
datafile,	and	error	messages	will	go	to	errorfile	without	having	to	specify	it	for
every	command.

Reading	Input
The	read	commandis	a	builtin	command	that	reads	from	the	standard	input.	By	default,	it
reads	until	a	newline	is	received.	The	input	is	stored	in	one	or	more	variables	given	as
arguments:

read	var

If	more	than	one	variable	is	given,	the	first	word	(the	input	up	to	the	first	space	or	tab)
is	assigned	to	the	first	variable,	the	second	word	is	assigned	to	the	second	variable,	and	so
on,	with	any	leftover	words	assigned	to	the	last	one:

$	read	a	b	c	d
January	February	March	April	May	June	July	August
$	echo	$a
January
$	echo	$b

February
$	echo	$c
March
$	echo	$d
April	May	June	July	August

The	bash	version	of	read	has	several	options.	Only	the	-r	option	is	recognized	by
the	POSIX	standard.	It	tells	the	shell	to	interpret	escape	sequences	literally.

By	default,	read	strips	backslashes	from	the	input,	and	the	following	character	is
taken	literally.	The	major	effect	of	this	default	behavior	is	to	allow	the	continuation	of
lines.	With	the	-r	option,	a	backslash	followed	by	a	newline	is	read	as	a	literal	backslash
and	the	end	of	input.

I’ll	discuss	the	other	options	in	Chapter	15.

Like	any	other	command	that	reads	standard	input,	read	can	get	its	input	from	a	file
through	redirection.	For	example,	to	read	the	first	line	from	FILENAME,	use	this:

read	var	<	FILENAME

Pipelines
Pipelines	connect	the	standard	output	of	one	command	directly	to	the	standard	input	of
another.	The	pipe	symbol	(|)	is	used	between	the	commands:

$	printf	"%s\n"	"$RANDOM"	"$RANDOM"	"$RANDOM"	"$RANDOM"	
|	tee	FILENAME
618
11267
5890
8930

The	tee	command	reads	from	the	standard	input	and	passes	it	to	one	or	more	files	as
well	as	to	the	standard	output.	$RANDOM	is	a	bash	variable	that	returns	a	different	integer
between	0	and	32,767	each	time	it	is	referenced.

$	cat	FILENAME
618
11267
5890
8930

Command	Substitution
The	output	of	a	command	can	be	stored	in	a	variable	using	command	substitution.	There
are	two	forms	for	doing	this.	The	first,	which	originated	in	the	Bourne	shell,	uses

backticks:

date=`date`

The	newer	(and	recommended)	syntax	is	as	follows:

date=$(date)

Command	substitution	should	generally	be	reserved	for	external	commands.	When
used	with	a	builtin	command,	it	is	very	slow.	That	is	why	the	-v	option	was	added	to
printf.

Summary
The	following	are	the	commands	and	concepts	you	learned	in	this	chapter.

Commands
cat:	Prints	the	contents	of	one	or	more	files	to	the	standard	output

tee:	Copies	the	standard	input	to	the	standard	output	and	to	one	or
more	files

read:	A	builtin	shell	command	that	reads	a	line	from	the	standard
input

date:	Prints	the	current	date	and	time

Concepts
Standard	I/O	streams:	These	are	streams	of	bytes	from	which
commands	read	and	to	which	output	is	sent.

Arguments:	These	are	words	that	follow	a	command;	arguments	may
include	options	as	well	as	other	information	such	as	filenames.

Parameters:	These	are	entities	that	store	values;	the	three	types	are
positional	parameters,	special	parameters,	and	variables.

Pipelines:	A	pipeline	is	a	sequence	of	one	or	more	commands
separated	by	|;	the	standard	output	of	the	command	preceding	the
pipe	symbol	is	fed	to	the	standard	input	of	the	command	following	it.

Line	continuation:	This	is	a	backslash	at	the	end	of	a	line	that	removes
the	newline	and	combines	that	line	with	the	next.

Command	substitution:	This	means	storing	the	output	of	a	command
in	a	variable	or	on	the	command	line.

Exercises
1.	 What	is	wrong	with	this	command?

tr	A	Z	<	$HOME/temp	>	$HOME/temp

2.	 Write	a	script,	using	$RANDOM,	to	write	the	following	output	both
to	a	file	and	to	a	variable.	The	following	numbers	are	only	to	show
the	format;	your	script	should	produce	different	numbers:

	1988.2365
13798.14178
10081.134
	3816.15098

CHAPTER	3

Looping	and	Branching
At	the	heart	of	any	programming	language	are	iteration	and	conditional	execution.
Iteration	is	the	repetition	of	a	section	of	code	until	a	condition	changes.	Conditional
execution	is	making	a	choice	between	two	or	more	actions	(one	of	which	may	be	to	do
nothing)	based	on	a	condition.

In	the	shell,	there	are	three	types	of	loop	(while,	until,	and	for)	and	three	types
of	conditional	execution	(if,	case,	and	the	conditional	operators	&&	and	||,	which	mean
AND	and	OR,	respectively).	With	the	exception	of	for	and	case,	the	exit	status	of	a
command	controls	the	behavior.

Exit	Status
You	can	test	the	success	of	a	command	directly	using	the	shell	keywords	while,	until,
and	if	or	with	the	control	operators	&&	and	||.	The	exit	code	is	stored	in	the	special
parameter	$?.

If	the	command	executed	successfully	(or	true),	the	value	of	$?	is	zero.	If	the
command	failed	for	some	reason,	$?	will	contain	a	positive	integer	between	1	and	255,
inclusive.	A	failed	command	usually	returns	1.	Zero	and	non-zero	exit	codes	are	also
known	as	true	and	false,	respectively.

A	command	may	fail	because	of	a	syntax	error:

$	printf	"%v\n"
bash:	printf:	`v':	invalid	format	character
$	echo	$?
1

Alternatively,	failure	may	be	the	result	of	the	command	not	being	able	to	accomplish
its	task:

$	mkdir	/qwerty
bash:	mkdir:	cannot	create	directory	`/qwerty':	Permission	
denied
$	echo	$?
1

Testing	an	Expression

Expressions	are	deemed	to	be	true	or	false	by	the	test	command	or	one	of	two
nonstandard	shell-reserved	words,	[[and	((.	The	test	command	compares	strings,
integers,	and	various	file	attributes;	((tests	arithmetic	expressions,	and	[[…]]	does
the	same	as	test	with	the	additional	feature	of	comparing	regular	expressions.

test,	a.k.a.	[…]
The	test	command	evaluates	many	kinds	of	expressions,	from	file	properties	to	integers
to	strings.	It	is	a	builtin	command,	and	therefore	its	arguments	are	expanded	just	as	for	any
other	command.	(See	Chapter	5	for	more	information.)	The	alternative	version	([)
requires	a	closing	bracket	at	the	end.

	Note		As	noted	earlier	in	Chapter	2,	bash	is	particular	about	the	spacing,	and	requires
spaces	around	the	brackets.	It	also	is	important	because	the	command	[test	and
[test	without	the	space	are	different	from	what	is	intended.

File	Tests
Several	operators	test	the	state	of	a	file.	A	file’s	existence	can	be	tested	with	-e	(or	the
nonstandard	-a).	The	type	of	file	can	be	checked	with	-f	for	a	regular	file,	-d	for	a
directory,	and	-h	or	-L	for	a	symbolic	link.	Other	operators	test	for	special	types	of	files
and	for	which	permission	bits	are	set.

Here	are	some	examples:

test	-f	/etc/fstab				##	true	if	a	regular	file
test	-h	/etc/rc.local	##	true	if	a	symbolic	link
[-x	"$HOME/bin/hw"]			##	true	if	you	can	execute	the	file
[[-s	$HOME/bin/hw]]		##	true	if	the	file	exists	and	is	not	
empty

Integer	Tests
Comparisons	between	integers	use	the	-eq,	-ne,	-gt,	-lt,	-ge,	and	-le	operators.

The	equality	of	integers	is	tested	with	-eq:

$	test	1	-eq	1
$	echo	$?
0
$	[2	-eq	1]
$	echo	$?
1

Inequality	is	tested	with	-ne:

$	[2	-ne	1]

$	echo	$?
0

The	remaining	operators	test	greater	than,	less	than,	greater	than	or	equal	to,	and	less
than	or	equal	to.

String	Tests
Strings	are	concatenations	of	zero	or	more	characters	and	can	include	any	character	except
NUL	(ASCII	0).	They	can	be	tested	for	equality	or	inequality,	for	nonempty	string	or	null
string,	,	and	in	bash	for	alphabetical	ordering.	The	=	operator	tests	for	equality,	in	other
words,	whether	they	are	identical;	!=	tests	for	inequality.	bash	also	accepts	==	for
equality,	but	there	is	no	reason	to	use	this	nonstandard	operator.

Here	are	some	examples:

test	"$a"	=	"$b"
["$q"	!=	"$b"]

The	-z	and	-n	operators	return	successfully	if	their	arguments	are	empty	or
nonempty:

$	[-z	""]
$	echo	$?
0
$	test	-n	""
$	echo	$?
1

The	greater-than	and	less-than	symbols	are	used	in	bash	to	compare	the	lexical
positions	of	strings	and	must	be	escaped	to	prevent	them	from	being	interpreted	as
redirection	operators:

$	str1=abc
$	str2=def
$	test	"$str1"	\<	"$str2"
$	echo	$?
0
$	test	"$str1"	\>	"$str2"
$	echo	$?
1

The	previous	tests	can	be	combined	in	a	single	call	to	test	with	the	-a	(logical	AND)
and	-o	(logical	OR)	operators:

test	-f	/path/to/file	-a	$test	-eq	1
test	-x	bin/file	-o	$test	-gt	1

test	is	usually	used	in	combination	with	if	or	the	conditional	operators	&&	and	||.

[[…]]:	Evaluate	an	Expression
Like	test,	[[…]]	evaluates	an	expression.	Unlike	test,	it	is	not	a	builtin	command.
It	is	part	of	the	shell	grammar	and	not	subject	to	the	same	parsing	as	a	builtin	command.
Parameters	are	expanded,	but	word	splitting	and	file	name	expansion	are	not	performed	on
words	between	[[and]].

It	supports	all	the	same	operators	as	test,	with	some	enhancements	and	additions.	It
is,	however,	nonstandard,	so	it	is	better	not	to	use	it	when	test	could	perform	the	same
function.

Enhancements	over	Test
When	the	argument	to	the	right	of	=	or	!=	is	unquoted,	it	is	treated	as	a	pattern	and
duplicates	the	functionality	of	the	case	command.

The	feature	of	[[…]]	that	is	not	duplicated	elsewhere	in	the	shell	is	the	ability	to
match	an	extended	regular	expression	using	the	=~	operator:

$	string=whatever
$	[[$string	=~	h[aeiou]]]
$	echo	$?
0
$	[[$string	=~	h[sdfghjkl]]]
$	echo	$?
1

Regular	expressions	are	explained	in	Chapter	8.

((…)):	Evaluate	an	Arithmetic	Expression
A	nonstandard	feature,	((arithmetic	expression))	returns	false	if	the
arithmetic	expression	evaluates	to	zero	and	returns	true	otherwise.	The	portable
equivalent	uses	test	and	the	POSIX	syntax	for	shell	arithmetic:

test	$((a	-	2))	-ne	0
[$a	!=	0]

But	because	((expression))	is	shell	syntax	and	not	a	builtin	command,
expression	is	not	parsed	in	the	same	way	as	arguments	to	a	command.	This	means,	for
example,	that	a	greater	than	sign	(>)	or	less	than	sign	(<)	is	not	interpreted	as	a	redirection
operator:

if	((total	>	max));	then	:	...;	fi

A	bare	variable	is	tested	for	zero	or	non-zero,	exiting	successfully	if	the	variable	is
non-zero:

((verbose))	&&	command	##	execute	command	if	verbose	!=	0

Non-numeric	values	are	equivalent	to	0:

$	y=yes
$	((y))	&&	echo	$y	||	echo	n
$	nLists

A	list	is	a	sequence	of	one	or	more	commands	separated	by	semicolons,	ampersands,
control	operators,	or	newlines.	A	list	may	be	used	as	the	condition	in	a	while	or	until
loop,	an	if	statement,	or	as	the	body	of	any	loop.	The	exit	code	of	a	list	is	the	exit	code	of
the	last	command	in	the	list.

Conditional	Execution
Conditional	constructs	enable	a	script	to	decide	whether	to	execute	a	block	of	code	or	to
select	which	of	two	or	more	blocks	to	execute.

if
The	basic	if	command	evaluates	a	list	of	one	or	more	commands	and	executes	a	list	if	the
execution	of	<condition	list>	is	successful:

if	<condition	list>
then
			<list>
fi

Usually,	the	<condition	list>	is	a	single	command,	very	often	test	or	its
synonym,	[,	or,	in	bash,	[[.	In	Listing	3-1,	the	-z	operand	to	test	checks	whether	a
name	was	entered.

Listing	3-1.	Read	and	Check	Input

read	name
if	[[-z	$name]]
then
			echo	"No	name	entered"	>&2
			exit	1		##	Set	a	failed	return	code
fi
	

Using	the	else	keyword,	a	different	set	of	commands	can	be	executed	if	the
<condition	list>	fails,	as	shown	in	Listing	3-2.	Note	that	in	numeric	expressions
variables	do	not	require	a	leading	$.

Listing	3-2.	Prompt	for	a	Number	and	Check	That	It	Is	Not	Greater	Than	Ten

printf	"Enter	a	number	not	greater	than	10:	"
read	number
if	((number	>	10))
then
				printf	"%d	is	too	big\n"	"$number"	>&2
				exit	1
else
				printf	"You	entered	%d\n"	"$number"
fi

More	than	one	condition	can	be	given,	using	the	elif	keyword,	so	that	if	the	first	test
fails,	the	second	is	tried,	as	shown	in	Listing	3-3.

Listing	3-3.	Prompt	for	a	Number	and	Check	That	It	Is	Within	a	Given	Range

printf	"Enter	a	number	between	10	and	20	inclusive:	"
read	number
if	((number	<	10))
then
				printf	"%d	is	too	low\n"	"$number"	>&2
				exit	1
elif	((number	>	20))
then
				printf	"%d	is	too	high\n"	"$number"	>&2
				exit	1
else
				printf	"You	entered	%d\n"	"$number"
fi

	Note		In	real	use,	a	number	entered	in	the	previous	examples	would	be	checked	for
invalid	characters	before	its	value	is	compared.	Code	to	do	that	is	given	in	the	“case”
section.

Often	more	than	one	test	is	given	in	the	<condition	list>	using	&&	and	||.

Conditional	Operators,	&&	and	||
Lists	containing	the	AND	and	OR	conditional	operators	are	evaluated	from	left	to	right.	A
command	following	the	AND	operator	(&&)	is	executed	if	the	previous	command	is
successful.	The	part	following	the	OR	operator	(||)	is	executed	if	the	previous	command
fails.

For	example,	to	check	for	a	directory	and	cd	into	it	if	it	exists,	use	this:

test	-d	"$directory"	&&	cd	"$directory"

To	change	directory	and	exit	with	an	error	if	cd	fails,	use	this:

cd	"$HOME/bin"	||	exit	1

The	next	command	tries	to	create	a	directory	and	cd	to	it.	If	either	mkdir	or	cd	fails,
it	exits	with	an	error:

mkdir	"$HOME/bin"	&&	cd	"$HOME/bin"	||	exit	1

Conditional	operators	are	often	used	with	if.	In	this	example,	the	echo	command	is
executed	if	both	tests	are	successful:

if	[-d	"$dir"]	&&	cd	"$dir"
then
				echo	"$PWD"
fi

case
A	case	statement	compares	a	word	(usually	a	variable)	against	one	or	more	patterns	and
executes	the	commands	associated	with	that	pattern.	The	patterns	are	pathname	expansion
patterns	using	wildcards	(*	and	?)	and	character	lists	and	ranges	([…]).	The	syntax	is	as
follows:

case	WORD	in
		PATTERN)	COMMANDS	;;
		PATTERN)	COMMANDS	;;	##	optional
esac

A	common	use	of	case	is	to	determine	whether	one	string	is	contained	in	another.	It
is	much	faster	than	using	grep,	which	creates	a	new	process.	This	short	script	would
normally	be	implemented	as	a	shell	function	(see	Chapter	6)	so	that	it	will	be	executed
without	creating	a	new	process,	as	shown	in	Listing	3-4.

Listing	3-4.	Does	One	String	Contain	Another?

case	$1	in
				"$2")	true	;;
				*)	false	;;
esac

The	commands,	true	and	false,	do	nothing	but	succeed	or	fail,	respectively.

Another	common	task	is	to	check	whether	a	string	is	a	valid	number.	Again,	Listing	3-
5	would	usually	be	implemented	as	a	function.

Listing	3-5.	Is	This	a	Valid	Positive	Integer?

case	$1	in
				[!0-9])	false;;
				*)	true	;;

esac

Many	scripts	require	one	or	more	arguments	on	the	command	line.	To	check	whether
there	are	the	correct	number,	case	is	often	used:

case	$#	in
				3)	;;	##	We	need	3	args,	so	do	nothing
				*)	printf	"%s\n"	"Please	provide	three	names"	>&2
							exit	1
							;;
esac

Looping
When	a	command	or	series	of	commands	needs	to	be	repeated,	it	is	put	inside	a	loop.	The
shell	provides	three	types	of	loop:	while,	until,	and	for.	The	first	two	execute	until	a
condition	is	either	true	or	false;	the	third	loops	through	a	list	of	values.

while
The	condition	for	a	while	loop	is	a	list	of	one	or	more	commands,	and	the	commands	to
be	executed	while	the	condition	remains	true	are	placed	between	the	keywords	do	and
done:

while	<list>
do
		<list>
done

By	incrementing	a	variable	each	time	the	loop	is	executed,	the	commands	can	be	run	a
specific	number	of	times:

n=1
while	[$n	-le	10]
do
		echo	"$n"
		n=$(($n	+	1))
done

The	true	command	can	be	used	to	create	an	infinite	loop:

while	true	##	':'	can	be	used	in	place	of	true
do
		read	x
done

A	while	loop	can	be	used	to	read	line	by	line	from	a	file:

while	IFS=	read	-r	line
do
		:	do	something	with	"$line"
done	<	FILENAME?

until
Rarely	used,	until	loops	as	long	as	the	condition	fails.	It	is	the	opposite	of	while:

n=1
until	[$n	-gt	10]
do
		echo	"$n"
		n=$(($n	+	1))
done

for
At	the	top	of	a	for	loop,	a	variable	is	given	a	value	from	a	list	of	words.	On	each
iteration,	the	next	word	in	the	list	is	assigned:

for	var	in	Canada	USA	Mexico
do
		printf	"%s\n"	"$var"
done

bash	also	has	a	nonstandard	form	similar	to	that	found	in	the	C	programming
language.	The	first	expression	is	evaluated	when	the	for	loop	starts,	the	second	is	a	test
condition,	and	the	third	is	evaluated	at	the	end	of	each	iteration:

for	((n=1;	n<=10;	++n))
do
		echo	"$n"
done

break
A	loop	can	be	exited	at	any	point	with	the	break	command:

while	:
do
		read	x
		[-z	"$x"]	&&	break
done

With	a	numeric	argument,	break	can	exit	multiple	nested	loops:

for	n	in	a	b	c	d	e
do
		while	true
		do
				if	[$RANDOM	-gt	20000]
				then
						printf	.
						break	2	##	break	out	of	both	while	and	for	loops
				elif	[$RANDOM	-lt	10000]
				then
						printf	'"'
						break	##	break	out	of	the	while	loop
				fi
		done
done
echo

continue
Inside	a	loop,	the	continue	command	immediately	starts	a	new	iteration	of	the	loop,	by
passing	any	remaining	commands:

for	n	in	{1..9}	##	See	Brace	expansion	in	Chapter	4
do
		x=$RANDOM
		[$x	-le	20000]	&&	continue
		echo	"n=$n	x=$x"
done

Summary
Looping	and	branching	are	major	building	blocks	of	a	computer	program.	In	this	chapter,
you	learned	the	commands	and	operators	used	for	these	tasks.

Commands
test:	Evaluates	an	expression	and	returns	success	or	failure

if:	Executes	a	set	of	command	if	a	list	of	commands	is	successful	and
optionally	executes	a	different	set	if	it	is	not

case:	Matches	a	word	with	one	or	more	patterns	and	executes	the
commands	associated	with	the	first	matching	pattern

while:	Repeatedly	executes	a	set	of	commands	while	a	list	of
commands	executes	successfully

until:	Repeatedly	executes	a	set	of	commands	until	a	list	of
commands	executes	successfully

for:	Repeatedly	executes	a	set	of	commands	for	each	word	in	a	list

break:	Exits	from	a	loop

continue:	Starts	the	next	iteration	of	a	loop	immediately

Concepts
Exit	status:	The	success	or	failure	of	a	command,	stored	as	0	or	a
positive	integer	in	the	special	parameter	$?

List:	A	sequence	of	one	or	more	commands	separated	by	;,	&,	&&,	||,
or	a	newline

Exercises
1.	 Write	a	script	that	asks	the	user	to	enter	a	number	between	20	and

30.	If	the	user	enters	an	invalid	number	or	a	non-number,	ask	again.
Repeat	until	a	satisfactory	number	is	entered.

2.	 Write	a	script	that	prompts	the	user	to	enter	the	name	of	a	file.
Repeat	until	the	user	enters	a	file	that	exists.

CHAPTER	4

Command-Line	Parsing	and	Expansion
One	of	the	strengths	of	the	shell	as	a	programming	language	is	its	parsing	of	command-
line	arguments	and	the	various	expansions	it	performs	on	words	in	the	line.	When	a
command	is	called	with	arguments,	the	shell	does	several	things	before	it	invokes	the
command.

To	help	visualize	what	happens,	the	short	script	shown	in	Listing	4-1,	called	ba,	will
display	what	the	shell	has	passed	to	it	after	processing	all	the	arguments.	Each	of	its
arguments	is	printed	on	a	separate	line,	preceded	by	the	value	of	$pre	and	followed	by
the	value	of	$post.

Listing	4-1.	ba;	Displaying	Command-Line	Arguments

pre=:
post=:
printf	"$pre%s$post\n"	"$@"

Note:	Create	a	script	called	sa	with	the	text	as	can	be	seen	in	Listing	4-1.	This	is	that	is
used	in	the	code	samples	in	this	chapter.

The	special	parameter	$@	expands	to	a	list	of	all	the	command-line	arguments,	but	the
results	differ	depending	on	whether	it	is	quoted	or	not.	When	quoted,	it	expands	to	the
positional	parameters	“$1”,	“$2”,	“$3”,	“$4”,	and	so	on,	and	the	arguments
containing	whitespace	will	be	preserved.	If	$@	is	unquoted,	splitting	will	occur	wherever
there	is	whitespace.

When	a	line	is	executed,	whether	at	the	command	prompt	or	in	a	script,	the	shell	splits
the	line	into	words	wherever	there	is	unquoted	whitespace.	Then	bash	examines	the
resulting	words,	performing	up	to	eight	types	of	expansion	on	them	as	appropriate.	The
results	of	the	expansions	are	passed	to	the	command	as	its	arguments.	This	chapter
examines	the	entire	process,	from	the	initial	parsing	into	words	based	on	unquoted
whitespace	to	each	of	the	expansions	in	the	order	in	which	they	are	performed:

1.	 Brace	expansion

2.	 Tilde	expansion

3.	 Parameter	and	variable	expansion

4.	 Arithmetic	expansion

5.	 Command	substitution

6.	 Word	splitting

7.	 Pathname	expansion

8.	 Process	substitution

The	chapter	ends	with	a	shell	program	that	demonstrates	how	to	parse	options
(arguments	beginning	with	a	hyphen)	on	the	command	line,	using	the	getopts	built	in
command.

Quoting
The	shell’s	initial	parsing	of	the	command	line	uses	unquoted	whitespace,	that	is,	spaces,
tabs,	and	newlines,	to	separate	the	words.	Spaces	between	single	or	double	quotes	or
spaces	preceded	by	the	escape	character	(\)	are	considered	part	of	the	surrounding	word,
if	any.	The	delimiting	quotation	marks	are	stripped	from	the	arguments.

The	following	code	has	five	arguments.	The	first	is	the	word	this	preceded	by	a
space	(the	backslash	removes	its	special	meaning).	The	second	argument	is	‘is	a’;	the
entire	argument	is	enclosed	in	double	quotes,	again	removing	the	special	meaning	from
the	space.	The	phrase,	demonstration	of,	is	enclosed	in	single	quotes.	Next	is	a
single,	escaped	space.	Finally,	the	string	quotes	and	escapes	are	held	together	by
the	escaped	spaces.

$	sa	\	this	"is	a"	'demonstration	of'	\		quotes\	and\	
escapes
:	this:
:is	a:
:demonstration	of:
:	:
:quotes	and	escapes:

Quotes	can	be	embedded	in	a	word.	Inside	double	quotes,	a	single	quote	is	not	special,
but	a	double	quote	must	be	escaped.	Inside	single	quotes,	a	double	quote	is	not	special.

$	sa	"a	double-quoted	single	quote,	'"	"a	double-quoted	
double	quote,	\""
:a	double-quoted	single	quote,	':
:a	double-quoted	double	quote,	":
$	sa	'a	single-quoted	double	quotation	mark,	"'
:a	single-quoted	double	quotation	mark,	":

All	characters	inside	a	single-quoted	word	are	taken	literally.	A	single-quoted	word
cannot	contain	a	single	quote	even	if	it	is	escaped;	the	quotation	mark	will	be	regarded	as
closing	the	preceding	one,	and	another	single	quote	opens	a	new	quoted	section.
Consecutive	quoted	words	without	any	intervening	whitespace	are	considered	as	a	single
argument:

$	sa	"First	argument	"'still	the	first	argument'
:First	argument	still	the	first	argument:

In	bash,	single	quotes	can	be	included	in	words	of	the	form	$‘string’	if	they	are
escaped.	In	addition,	the	escape	sequences	listed	in	Chapter	2’s	description	of	printf	are
replaced	by	the	characters	they	represent:

$	echo	$'\'line1\'\n\'line2\''
'line1'
'line2'

Quoted	arguments	can	contain	literal	newlines:

$	sa	"Argument	containing	
>	a	newline"
:Argument	containing
a	newline:

	Note		The	 	is	the	enter	key	and	not	something	to	be	typed	on	the	terminal.	Since	the
shell	determines	that	the	command	is	incomplete,	it	displays	a	>	prompt	allowing	you	to
complete	the	command.

Brace	Expansion
The	first	expansion	performed,	brace	expansion,	is	non	standard	(that	is,	it	is	not	included
in	the	POSIX	specification).	It	operates	on	unquoted	braces	containing	either	a	comma-
separated	list	or	a	sequence.	Each	element	becomes	a	separate	argument.

$	sa	{one,two,three}
:one:
:two:
:three:
$	sa	{1..3}	##	added	in	bash3.0
:1:
:2:
:3:
$	sa	{a..c}
:a:
:b:
:c:

A	string	before	or	after	the	brace	expression	will	be	included	in	each	expanded
argument:

$	sa	pre{d,l}ate
:predate:
:prelate:

Braces	may	be	nested:

$	sa	{{1..3},{a..c}}
:1:
:2:
:3:
:a:
:b:
:c:

Multiple	braces	within	the	same	word	are	expanded	recursively.	The	first	brace
expression	is	expanded,	and	then	each	of	the	resulting	words	is	processed	for	the	next
brace	expression.	With	the	word	{1..3}{a..c},	the	first	term	is	expanded,	giving	the
following:

1{a..c}	2{a..c}	3{a..c}

Each	of	these	words	is	then	expanded	for	this	final	result:

$	sa	{1..3}{a..c}
:1a:
:1b:
:1c:
:2a:
:2b:
:2c:
:3a:
:3b:
:3c:

In	version	4	of	bash,	further	capabilities	have	been	added	to	brace	expansion.
Numerical	sequences	can	be	padded	with	zeros,	and	the	increment	in	a	sequence	can	be
specified:

$	sa	{01..13..3}
:01:
:04:
:07:
:10:
:13:

Increments	can	also	be	used	with	alphabetic	sequences:

$	sa	{a..h..3}
:a:
:d:
:g:

Tilde	Expansion
An	unquoted	tilde	expands	to	the	user’s	home	directory:

$	sa	~
:/home/chris:
	

Followed	by	a	login	name,	it	expands	to	that	user’s	home	directory:

$	sa	~root	~chris
:/root:
:/home/chris:

When	quoted,	either	on	the	command	line	or	in	a	variable	assignment,	the	tilde	is	not
expanded:

$	sa	"~"	"~root"
:~:
:~root:
$	dir=~chris
$	dir2="~chris"
$	sa	"$dir"	"$dir2"
:/home/chris:
:~chris:

If	the	name	following	the	tilde	is	not	a	valid	login	name,	no	expansion	is	performed:

$	sa	~qwerty
:~qwerty:

Parameter	and	Variable	Expansion
Parameter	expansion	replaces	a	variable	with	its	contents;	it	is	introduced	by	a	dollar	sign
($).	It	is	followed	by	the	symbol	or	name	to	be	expanded:

$	var=whatever
$	sa	"$var"
:whatever:

The	parameter	may	be	enclosed	in	braces:

$	var=qwerty
$	sa	"${var}"
:qwerty:

In	most	cases,	the	braces	are	optional.	They	are	required	when	referring	to	a	positional
parameter	greater	than	nine	or	when	a	variable	name	is	followed	immediately	by	a

character	that	could	be	part	of	a	name:

$	first=Jane
$	last=Johnson
$	sa	"$first_$last"	"${first}_$last"
:Johnson:
:Jane_Johnson:

Because	first_	is	a	valid	variable	name,	the	shell	tries	to	expand	it	rather	than
first;	adding	the	braces	removes	the	ambiguity.

Braces	are	also	used	in	expansions	that	do	more	than	simply	return	the	value	of	a
parameter.	These	often-cryptic	expansions	(${var##*/}	and	${var//x/y},	for
example)	add	a	great	deal	of	power	to	the	shell	and	are	examined	in	detail	in	the	next
chapter.

Parameter	expansions	that	are	not	enclosed	in	double	quotes	are	subject	to	word
splitting	and	pathname	expansion.

Arithmetic	Expansion
When	the	shell	encounters	$((expression)),	it	evaluates	expression	and
places	the	result	on	the	command	line;	expression	is	an	arithmetic	expression.	Besides
the	four	basic	arithmetic	operations	of	addition,	subtraction,	multiplication,	and	division,
its	most	used	operator	is	%	(modulo,	the	remainder	after	division).

$	sa	"$((1	+	12))"	"$((12	*	13))"	"$((16	/	4))"	"$((
6	-	9))"
:13:
:156:
:4:
:-3:

The	arithmetic	operators	(see	Tables	4-1	and	4-2)	take	the	same	precedence	that	you
learned	in	school	(basically,	that	multiplication	and	division	are	performed	before	addition
and	subtraction),	and	they	can	be	grouped	with	parentheses	to	change	the	order	of
evaluation:

$	sa	"$((3	+	4	*	5))"	"$(((3	+	4)	*	5))"
:23:
:35:

Table	4-1.	Arithmetic	Operators

Operator Description

-		+ Unary	minus	and	plus

!		~ Logical	and	bitwise	negation

*		/		% Multiplication,	division,	remainder

+	- Addition,	subtraction

<<		>> Left	and	right	bitwise	shifts

<=		>=		<	> Comparison

==	!= Equality	and	inequality

& Bitwise	AND

^ Bitwise	exclusive	OR

| Bitwise	OR

&& Logical	AND

|| Logical	OR

=		*=		/=		%=		+=		-=		<<=		>>=		&=		^=		|= Assignment

Table	4-2.	bash	Extensions

Operator Description

** Exponentiation

id++		id— Variable	post-increment	and	post-decrement

++id		–-id Variable	pre-increment	and	pre-decrement

expr	?	expr1	:	expr2 Conditional	operator

expr1	,	expr2 Comma

The	modulo	operator,	%,	returns	the	remainder	after	division:

$	sa	"$((13	%	5))"
:3:

Converting	seconds	(which	is	how	Unix	systems	store	times)	to	days,	hours,	minutes,
and	seconds	involves	division	and	the	modulo	operator,	as	shown	in	Listing	4-2.

Listing	4-2.	secs2dhms,	Convert	Seconds	(in	Argument	$1)	to	Days,	Hours,	Minutes,
and	Seconds

secs_in_day=86400
secs_in_hour=3600
mins_in_hour=60
secs_in_min=60

days=$(($1	/	$secs_in_day))
secs=$(($1	%	$secs_in_day))

printf	"%d:%02d:%02d:%02d\n"	"$days"	"$(($secs	
/	$secs_in_hour))"	\
								"$((($secs	/	$mins_in_hour)	%$mins_in_hour))"	
"$(($secs	%	$secs_in_min))"

If	not	enclosed	in	double	quotes,	the	results	of	arithmetic	expansion	are	subject	to
word	splitting.

Command	Substitution
Command	substitution	replaces	a	command	with	its	output.	The	command	must	be	placed
either	between	backticks	(`	command	`)	or	between	parentheses	preceded	by	a	dollar
sign	($(command)).	For	example,	to	count	the	lines	in	a	file	whose	name	includes
today’s	date,	this	command	uses	the	output	of	the	date	command:

$	wc	-l	$(date	+%Y-%m-%d).log
61	2009-03-31.log

The	old	format	for	command	substitution	uses	backticks.	This	command	is	the	same	as
the	previous	one:

$	wc	-l	`date	+%Y-%m-%d`.log
2	2009-04-01.log

Well,	it’s	not	exactly	the	same,	because	I	ran	the	first	command	shortly	before
midnight	and	the	second	shortly	after.	As	a	result,	wc	processed	two	different	files.

If	the	command	substitution	is	not	quoted,	word	splitting	and	pathname	expansion	are
performed	on	the	results.

Word	Splitting
The	results	of	parameter	and	arithmetic	expansions,	as	well	as	command	substitution,	are
subjected	to	word	splitting	if	they	were	not	quoted:

	

$	var="this	is	a	multi-word	value"
$	sa	$var	"$var"
:this:
:is:
:a:
:multi-word:
:value:
:this	is	a	multi-word	value:

Word	splitting	is	based	on	the	value	of	the	internal	field	separator	variable,	IFS.	The
default	value	of	IFS	contains	the	whitespace	characters	of	space,	tab,	and	newline

(IFS=$’	\t\n’).	When	IFS	has	its	default	value	or	is	unset,	any	sequence	of	default
IFS	characters	is	read	as	a	single	delimiter.

$	var='			spaced
			out			'
$	sa	$var
:spaced:
:out:

If	IFS	contains	another	character	(or	characters)	as	well	as	whitespace,	then	any
sequence	of	whitespace	characters	plus	that	character	will	delimit	a	field,	but	every
instance	of	a	non	whitespace	character	delimits	a	field:

S	IFS='	:'
$	var="qwerty		:	uiop	:		::	er	"	##	:		::	delimits	2	empty	
fields
$	sa	$var
:qwerty:
:uiop:
::
::
:er:

If	IFS	contains	only	non	whitespace	characters,	then	every	occurrence	of	every
character	in	IFS	delimits	a	field,	and	whitespace	is	preserved:

$	IFS=:
$	var="qwerty		:	uiop	:		::	er	"
$	sa	$var
:qwerty		:
:	uiop	:
:		:
::
:	er	:

Pathname	Expansion
Unquoted	words	on	the	command	line	containing	the	characters	*,	?,	and	[are	treated	as
file	globbing	patterns	and	are	replaced	by	an	alphabetical	list	of	files	that	match	the
pattern.	If	no	files	match	the	pattern,	the	word	is	left	unchanged.

The	asterisk	matches	any	string.	h*	matches	all	files	in	the	current	directory	that	begin
with	h,	and	*k	matches	all	files	that	end	with	k.	The	shell	replaces	the	wildcard	pattern
with	the	list	of	matching	files	in	alphabetical	order.	If	there	are	no	matching	files,	the
wildcard	pattern	is	left	unchanged.

$	cd	"$HOME/bin"

$	sa	h*
:hello:
:hw:
$	sa	*k
:incheck:
:numcheck:
:rangecheck:

A	question	mark	matches	any	single	character;	the	following	pattern	matches	all	files
whose	second	letter	is	a:

$	sa	?a*
:rangecheck:
:ba:
:valint:
:valnum:

Square	brackets	match	any	one	of	the	enclosed	characters,	which	may	be	a	list,	a
range,	or	a	class	of	characters:	[aceg]	matches	any	one	of	a,	c,	e,	or	g;	[h-o]	matches
any	character	from	h	to	o	inclusive;	and	[[:lower:]]	matches	all	lowercase	letters.

You	can	disable	filename	expansion	with	the	set	-f	command.	bash	has	a	number
of	options	that	affect	filename	expansion.	I’ll	cover	them	in	detail	in	Chapter	8.

Process	Substitution
Process	substitution	creates	a	temporary	filename	for	a	command	or	list	of	commands.
You	can	use	it	anywhere	a	file	name	is	expected.	The	form	<(command)	makes	the
output	of	command	available	as	a	file	name;	>(command)	is	a	file	name	that	can	be
written	to.

$	sa	<(ls	-l)	>(pr	-Tn)
:/dev/fd/63:
:/dev/fd/62:

	Note		The	pr	command	converts	text	files	for	printing	by	inserting	page	headers.	The
headers	can	be	turned	off	with	the	-T	option,	and	the	-n	option	numbers	the	lines.

When	the	filename	on	the	command	line	is	read,	it	produces	the	output	of	the
command.	Process	substitution	can	be	used	in	place	of	a	pipeline,	allowing	variables
defined	within	a	loop	to	be	visible	to	the	rest	of	the	script.	In	this	snippet,	totalsize	is
not	available	to	the	script	outside	the	loop:

$	ls	-l	|
>	while	read	perms	links	owner	group	size	month	day	time	
file

>	do
>			printf	"%10d	%s\n"	"$size"	"$file"
>			totalsize=$((${totalsize:=0}	+	${size:-0}))
>	done
$		echo	${totalsize-unset}	##	print	"unset"	if	variable	is	
not	set
unset

By	using	process	substitution	instead,	the	variable	totalsize	becomes	available
outside	of	the	loop:

$	while	read	perms	links	owner	group	size	month	day	time	
file
>	do
>			printf	"%10d	%s\n"	"$size"	"$file"
>			totalsize=$((${totalsize:=0}	+	${size:-0}))
>	done	<	<(ls	-l	*)
$	echo	${totalsize-unset}
12879

Parsing	Options
The	options	to	a	shell	script,	single	characters	preceded	by	a	hyphen,	can	be	parsed	with
the	builtin	command	getopts.	There	may	be	arguments	to	some	options,	and	options
must	precede	non	option	arguments.

Multiple	options	may	be	concatenated	with	a	single	hyphen,	but	any	that	take	an
argument	must	be	the	final	option	in	the	string.	Its	argument	follows,	with	or	without
intervening	whitespace.

On	the	following	command	line,	there	are	two	options,	-a	and	-f.	The	latter	takes	a
file	name	argument.	John	is	the	first	non	option	argument,	and	-x	is	not	an	option
because	it	comes	after	a	non	option	argument.

myscript	-a	-f	filename	John	-x	Jane

The	syntax	for	getopts	is	as	follows:

getopts	OPTSTRING	var

The	OPTSTRING	contains	all	the	option’s	characters;	those	that	take	arguments	are
followed	by	a	colon.	For	the	script	in	Listing	4-3,	the	string	is	f:v.	Each	option	is	placed
in	the	variable	$var,	and	the	option’s	argument,	if	any,	is	placed	in	$OPTARG.

Usually	used	as	the	condition	to	a	while	loop,	getopts	returns	successfully	until	it
has	parsed	all	the	options	on	the	command	line	or	until	it	encounters	the	word	—.	All
remaining	words	on	the	command	line	are	arguments	passed	to	the	main	part	of	the	script.

A	frequently	used	option	is	-v	to	turn	on	verbose	mode,	which	displays	more	than	the
default	information	about	the	running	of	the	script.	Other	options—for	example,	-f—
require	a	file	name	argument.

This	sample	script	processes	both	the	-v	and	-f	options	and,	when	in	verbose	mode,
displays	some	information.

Listing	4-3.	parseopts,	Parse	Command-Line	Options

progname=${0##*/}	##	Get	the	name	of	the	script	without	its	
path

##	Default	values
verbose=0
filename=

##	List	of	options	the	program	will	accept;
##	those	options	that	take	arguments	are	followed	by	a	colon
optstring=f:v

##	The	loop	calls	getopts	until	there	are	no	more	options	on	
the	command	line
##	Each	option	is	stored	in	$opt,	any	option	arguments	are	
stored	in	OPTARG
while	getopts	$optstring	opt
do
		case	$opt	in
				f)	filename=$OPTARG	;;	##	$OPTARG	contains	the	argument	
to	the	option
				v)	verbose=$(($verbose	+	1))	;;
				*)	exit	1	;;
		esac
done

##	Remove	options	from	the	command	line
##	$OPTIND	points	to	the	next,	unparsed	argument
shift	"$(($OPTIND	-	1))"

##	Check	whether	a	filename	was	entered
if	[-n	"$filename"]
then
			if	[$verbose	-gt	0]
			then
						printf	"Filename	is	%s\n"	"$filename"
			fi
else
			if	[$verbose	-gt	0]
			then

					printf	"No	filename	entered\n"	>&2
			fi
			exit	1
fi

##	Check	whether	file	exists
if	[-f	"$filename"]
then
		if	[$verbose	-gt	0]
		then
				printf	"Filename	%s	found\n"	"$filename"
		fi
else
		if	[$verbose	-gt	0]
		then
				printf	"File,	%s,	does	not	exist\n"	"$filename"	>&2
		fi
		exit	2
fi

##	If	the	verbose	option	is	selected,
##	print	the	number	of	arguments	remaining	on	the	command	
line
if	[$verbose	-gt	0]
then
		printf	"Number	of	arguments	is	%d\n"	"$#"
fi

Running	the	script	without	any	arguments	does	nothing	except	generate	a	failing	return
code:

$	parseopts
$	echo	$?
1

With	the	verbose	option,	it	prints	an	error	message	as	well:

$	parseopts	-v
No	filename	entered
$	echo	$?
1

With	an	illegal	option	(that	is,	one	that	is	not	in	$optstring),	the	shell	prints	an
error	message:

$	parseopts	-x
/home/chris/bin/parseopts:	illegal	option	–	x

If	a	file	name	is	entered	and	the	file	doesn’t	exist,	it	produces	this:

$	parseopts	-vf	qwerty;	echo	$?
Filename	is	qwerty
File,	qwerty,	does	not	exist
2

To	allow	a	non	option	argument	to	begin	with	a	hyphen,	the	options	can	be	explicitly
ended	with	—:

$	parseopts	-vf	~/.bashrc	-–	-x
Filename	is	/home/chris/.bashrc
Filename	/home/chris/.bashrc	found
Number	of	arguments	is	1

Summary
The	shell’s	preprocessing	of	the	command	line	before	passing	it	to	a	command	saves	the
programmer	a	great	deal	of	work.

Commands
head:	Extracts	the	first	N	lines	from	a	file;	N	defaults	to	10

cut:	Extracts	columns	from	a	file

Exercises
1.	 How	many	arguments	are	there	on	this	command	line?

sa	$#	$(date	"+%Y	%m	%d")	John\	Doe

2.	 What	potential	problem	exists	with	the	following	snippet?

year=$(date	+%Y)
month=$(date	+%m)
day=$(date	+%d)
hour=$(date	+%H)
minute=$(date	+%M)
second=$(date	+%S)

CHAPTER	5

Parameters	and	Variables
Variables	have	been	part	of	the	Unix	shell	since	its	inception	more	than	30	years	ago,	but
their	features	have	grown	over	the	years.	The	standard	Unix	shell	now	has	parameter
expansions	that	perform	sophisticated	manipulations	on	their	contents.	bash	adds	even
more	expansion	capabilities	as	well	as	indexed	and	associative	arrays.

This	chapter	covers	what	you	can	do	with	variables	and	parameters,	including	their
scope.	In	other	words,	after	a	variable	has	been	defined,	where	can	its	value	be	accessed?
This	chapter	gives	a	glimpse	of	the	more	than	80	variables	used	by	the	shell	that	are
available	to	the	programmer.	It	discusses	how	to	name	your	variables	and	how	to	pick
them	apart	with	parameter	expansion.

Positional	parameters	are	the	arguments	passed	to	a	script.	They	can	be	manipulated
with	the	shift	command	and	used	individually	by	number	or	in	a	loop.

Arrays	assign	more	than	one	value	to	a	name.	bash	has	both	numerically	indexed
arrays	and,	beginning	with	bash-4.0,	associative	arrays	that	are	assigned	and
referenced	by	a	string	instead	of	a	number.

The	Naming	of	Variables
Variable	names	can	contain	only	letters,	numbers,	and	underscores,	and	they	must	start
with	a	letter	or	an	underscore.	Apart	from	those	restrictions,	you	are	free	to	build	your
names	as	you	see	fit.	It	is,	however,	a	good	idea	to	use	a	consistent	scheme	for	naming
variables,	and	choosing	meaningful	names	can	go	a	long	way	toward	making	your	code
self-documenting.

Perhaps	the	most	frequently	cited	(though	less	often	implemented)	convention	is	that
environment	variables	should	be	in	capital	letters,	while	local	variables	should	be	in
lowercase.	Given	that	bash	itself	uses	more	than	80	uppercase	variables	internally,	this	is
a	dangerous	practice,	and	conflicts	are	not	uncommon.	I	have	seen	variables	such	as
PATH,	HOME,	LINES,	SECONDS,	and	UID	misused	with	potentially	disastrous
consequences.	None	of	bash’s	variables	begin	with	an	underscore,	so	in	my	first	book,
Shell	Scripting	Recipes:	A	Problem-Solution	Approach	(Apress,	2005),	I	used	uppercase
names	preceded	by	an	underscore	for	values	set	by	shell	functions.

Single-letter	names	should	be	used	rarely.	They	are	appropriate	as	the	index	in	a	loop,
where	its	sole	function	is	as	a	counter.	The	letter	traditionally	used	for	this	purpose	is	i,
but	I	prefer	n.	(When	teaching	programming	in	a	classroom,	the	letter	I	on	the	blackboard
was	too	easily	confused	with	the	number	1,	so	I	started	using	n	for	“number,”	and	I	still
use	it	25	years	later).

The	only	other	place	I	use	single-letter	variable	names	is	when	reading	throwaway
material	from	a	file.	If	I	need	only	one	or	two	fields	from	a	file,	for	example,	I	might	use
this:

while	IFS=:	read	login	a	b	c	name	e
do
		printf	"%-12s	%s\n"	"$login"	"$name"
done	<	/etc/passwd

I	recommend	using	either	of	two	naming	schemes.	The	first	is	used	by	Heiner	Steven
on	his	Shelldorado	web	site	at	http://www.shelldorado.com/.	He	capitalizes	the
first	letter	of	all	variables	and	also	the	first	letters	of	further	words	in	the	name:
ConfigFile,	LastDir,	FastMath.	In	some	cases,	his	usage	is	closer	to	mine.

I	use	all	lowercase	letters:	configfile,	lastdir,	fastmath.	When	the	run-
together	words	are	ambiguous	or	hard	to	read,	I	separate	them	with	an	underscore:
line_width,	bg_underline,	day_of_week.

Whatever	system	you	choose,	the	important	thing	is	that	the	names	give	a	real
indication	of	what	the	variable	contains.	But	don’t	get	carried	away	and	use	something
like	this:

long_variable_name_which_may_tell_you_something_about_its_purpose=

The	Scope	of	a	Variable:	Can	You	See	It
from	Here?
By	default,	a	variable’s	definition	is	known	only	to	the	shell	in	which	it	is	defined	(and	to
subshells	of	that	shell).	The	script	that	called	the	current	script	will	not	know	about	it,	and
a	script	called	by	the	current	script	will	not	know	about	the	variable	unless	it	is	exported	to
the	environment.

The	environment	is	an	array	of	strings	of	the	form	name=value.	Whenever	an
external	command	is	executed	(creating	a	child	process),	whether	it	is	a	compiled,	binary
command	or	an	interpreted	script,	this	array	is	passed	to	it	behind	the	scenes.	In	a	shell
script,	these	strings	are	available	as	variables.

Variables	assigned	in	a	script	may	be	exported	to	the	environment	using	the	shell
builtin	command	export:

var=whatever
export	var

In	bash	this	may	be	abbreviated	like	this:

export	var=whatever

There	is	no	need	to	export	a	variable	unless	you	want	to	make	it	available	to	scripts	(or

http://www.shelldorado.com/

other	programs)	called	from	the	current	script	(and	their	children	and	their	children’s
children	and…).	Exporting	a	variable	doesn’t	make	it	visible	anywhere	except	child
processes.

Listing	5-1	tells	you	whether	the	variable	$x	is	in	the	environment	and	what	it
contains,	if	anything.

Listing	5-1.	showvar,	Print	Value	of	Variable	x

if	[[${x+X}	=	X]]	##	If	$x	is	set
then
		if	[[-n	$x]]	##	if	$x	is	not	empty
		then
				printf	"		\$x	=	%s\n"	"$x"
		else
				printf	"		\$x	is	set	but	empty\n"
		fi
else
		printf	"	%s	is	not	set\n"	"\$x"
fi

Once	a	variable	is	exported,	it	remains	in	the	environment	until	it	is	unset:

$	unset	x
$	showvar
		$x	is	not	set
$	x=3
$	showvar
		$x	is	not	set
$	export	x
$	showvar
		$x	=	3
$	x=	##	in	bash,	reassignment	doesn't	remove	a	variable	from	
the	environment
$	showvar
		$x	is	set	but	empty

	Note		showvar	is	not	a	bash	command,	but	a	script	as	seen	in	Listing	5-1	that	works
with	the	value	of	x.

Variables	set	in	a	subshell	are	not	visible	to	the	script	that	called	it.	Subshells	include
command	substitution,	as	in	$(command)	or	`command`;	all	elements	of	a	pipeline,
and	code	enclosed	in	parentheses,	as	in	(command).

Probably	the	most	frequently	asked	question	about	shell	programming	is,	“Where	did
my	variables	go?	I	know	I	set	them,	so	why	are	they	empty?”	More	often	than	not,	this	is
caused	by	piping	the	output	of	one	command	into	a	loop	that	assigns	variables:

printf	"%s\n"	${RANDOM}{,,,,,}	|
		while	read	num
		do
				((num	>	${biggest:=0}))	&&	biggest=$num
		done
printf	"The	largest	number	is:	%d\n"	"$biggest"

When	biggest	is	found	to	be	empty,	complaints	of	variables	set	in	while	loops	not
being	available	outside	them	are	heard	in	all	the	shell	forums.	But	the	problem	is	not	the
loop;	it	is	that	the	loop	is	part	of	a	pipeline	and	therefore	is	being	executed	in	a	subshell.

With	bash-4.2,	a	new	option,	lastpipe,	enables	the	last	process	in	a	pipeline	to	be
executed	in	the	current	shell.	It	is	invoked	with	the	following:

shopt	-s	lastpipe

Shell	Variables
The	shell	either	sets	or	uses	more	than	80	variables.	Many	of	these	are	used	by	bash
internally	and	are	of	little	use	to	shell	programmers.	Others	are	used	in	debugging,	and
some	are	in	common	use	in	shell	programs.	About	half	are	set	by	the	shell	itself,	and	the
rest	are	set	by	the	operating	system,	the	user,	the	terminal,	or	a	script.

Of	those	set	by	the	shell,	you	have	already	looked	at	RANDOM,	which	returns	a	random
integer	between	0	and	32,767,	and	PWD,	which	contains	the	path	to	the	current	working
directory.	You	saw	OPTIND	and	OPTARG	used	in	parsing	command-line	options	(chapter
4).	Sometimes,	BASH_VERSION	(or	BASH_VERSINFO)	is	used	to	determine	whether
the	running	shell	is	capable	of	running	a	script.	Some	of	the	scripts	in	this	book	require	at
least	bash-3.0	and	might	use	one	of	those	variables	to	determine	whether	the	current
shell	is	recent	enough	to	run	the	script:

case	$BASH_VERSION	in
		[12].*)	echo	"You	need	at	least	bash3.0	to	run	this	
script"	>&2;	exit	2;;
esac

The	prompt	string	variables,	PS1	and	PS2,	are	used	in	interactive	shells	at	the
command	line;	PS3	is	used	with	the	select	builtin	command,	and	PS4	is	printed	before
each	line	in	execution	trace	mode	(more	on	that	in	chapter	10).

SHELL	VARIABLES

The	following	variables	are	set	by	the	shell:

The	following	variables	are	used	by	the	shell,	which	may	set	a	default	value	for	some	of
them	(for	example,	IFS):

See	Appendix	A	for	a	description	of	all	the	shell	variables.

Parameter	Expansion
Much	of	the	power	of	the	modern	Unix	shell	comes	from	its	parameter	expansions.	In	the
Bourne	shell,	these	mostly	involved	testing	whether	a	parameter	is	set	or	empty	and
replacing	with	a	default	or	alternate	value.	KornShell	additions,	which	were	incorporated
into	the	POSIX	standard,	added	string	manipulation.	KornShell	93	added	more	expansions
that	have	not	been	incorporated	into	the	standard	but	that	bash	has	adopted.	bash-4.0
has	added	two	new	expansions	of	its	own.

Bourne	Shell

The	Bourne	shell	and	its	successors	have	expansions	to	replace	an	empty	or	unset	variable
with	a	default,	to	assign	a	default	value	to	a	variable	if	it	is	empty	or	unset,	and	to	halt
execution	and	print	an	error	message	if	a	variable	is	empty	or	unset.

${var:-default}	and	${var-default}:	Use	Default	Values
The	most	commonly	used	expansion,	${var:-default},	checks	to	see	whether	a
variable	is	unset	or	empty	and	expands	to	a	default	string	if	it	is:

$	var=
$	sa	"${var:-default}"		##	The	sa	script	was	introduced	in	
Chapter	4

:default:

If	the	colon	is	omitted,	the	expansion	checks	only	whether	the	variable	is	unset:

$	var=
$	sa	"${var-default}"	##	var	is	set,	so	expands	to	nothing
::
$	unset	var
$	sa	"${var-default}"	##	var	is	unset,	so	expands	to	
"default"
:default:

This	snippet	assigns	a	default	value	to	$filename	if	it	is	not	supplied	by	an	option
or	inherited	in	the	environment:

defaultfile=$HOME/.bashrc
##	parse	options	here
filename=${filename:-"$defaultfile"}

${var:+alternate},	${var+alternate}:	Use	Alternate	Values
The	complement	to	the	previous	expansion	substitutes	an	alternate	value	if	the	parameter
is	not	empty	or,	without	a	colon,	if	it	is	set.	The	first	expansion	will	use	alternate	only
if	$var	is	set	and	is	not	empty:

$	var=
$	sa	"${var:+alternate}"	##	$var	is	set	but	empty
::
$	var=value
$	sa	"${var:+alternate}"	##	$var	is	not	empty
:alernate:

Without	the	colon,	alternate	is	used	if	the	variable	is	set,	even	if	it	is	empty:

$	var=
$	sa	"${var+alternate}"	##	var	is	set
:altername:

$	unset	var
$	sa	"${var+alternate}"	##	$var	is	not	set
::
$	var=value
$	sa	"${var:+alternate}"	##	$var	is	set	and	not	empty
:alternate:

This	expansion	is	often	used	when	adding	strings	to	a	variable.	If	the	variable	is	empty,
you	don’t	want	to	add	a	separator:

$	var=
$	for	n	in	a	b	c	d	e	f	g
>	do
>			var="$var	$n"
>	done
$	sa	"$var"
:	a	b	c	d	e	f	g:

To	prevent	the	leading	space,	you	can	use	parameter	expansion:

$	var=
$	for	n	in	a	b	c	d	e	f	g
>	do
>			var="${var:+"$var	"}$n"
>	done
$	sa	"$var"
:a	b	c	d	e	f	g:

That	is	a	shorthand	method	of	doing	the	following	for	each	value	of	n:

if	[-n	"$var"]
then
		var="$var	$n"
else
		var=$n
fi

or:

[-n	"$var"]	&&	var="$var	$n"	||	var=$n

${var:=default},	${var=default}:	Assign	Default	Values
The	${var:=default}	expansion	behaves	in	the	same	way	as	${var:-default}
except	that	it	also	assigns	the	default	value	to	the	variable:

$	unset	n
$	while	:
>	do

>		echo	:$n:
>		[${n:=0}	-gt	3]	&&	break	##	set	$n	to	0	if	unset	or	
empty
>		n=$(($n	+	1))
>	done
::
:1:
:2:
:3:
:4:

${var:?message},	${var?message}:	Display	Error	Message	If
Empty	or	Unset
If	var	is	empty	or	not	set,	message	will	be	printed	to	the	standard	error,	and	the	script
will	exit	with	a	status	of	1.	If	message	is	empty,	parameter	null	or	not	set
will	be	printed.	Listing	5-2	expects	two	non-null	command-line	arguments	and	uses	this
expansion	to	display	error	messages	when	they	are	missing	or	null.

Listing	5-2.	checkarg,	Exit	If	Parameters	Are	Unset	or	Empty

##	Check	for	unset	arguments
:	${1?An	argument	is	required}	\
		${2?Two	arguments	are	required}

##	Check	for	empty	arguments
:	${1:?A	non-empty	argument	is	required}	\
		${2:?Two	non-empty	arguments	are	required}

echo	"Thank	you."

The	message	will	be	printed	by	the	first	expansion	that	fails,	and	the	script	will	exit
at	that	point:

$	checkarg
/home/chris/bin/checkarg:	line	10:	1:	An	argument	is	
required
$	checkarg	x
/home/chris/bin/checkarg:	line	10:	2:	Two	arguments	are	
required
$	checkarg	''	''
/home/chris/bin/checkarg:	line	13:	1:	A	non-empty	argument	
is	required
$	checkarg	x	''
/home/chris/bin/checkarg:	line	13:	2:	Two	non-empty	
arguments	are	required
$	checkarg	x	x

Thank	you.

POSIX	Shell
Besides	the	expansions	from	the	Bourne	shell,	the	POSIX	shell	includes	a	number	of
expansions	from	the	KornShell.	These	include	returning	the	length	and	removing	a	pattern
from	the	beginning	or	end	of	a	variable’s	contents.

${#var}:	Length	of	Variable’s	Contents
This	expansion	returns	the	length	of	the	expanded	value	of	the	variable:

read	passwd
if	[${#passwd}	-lt	8]
then
		printf	"Password	is	too	short:	%d	characters\n"	"$#"	>&2
		exit	1
fi

${var%PATTERN}:	Remove	the	Shortest	Match	from	the
End
The	variable	is	expanded,	and	the	shortest	string	that	matches	PATTERN	is	removed	from
the	end	of	the	expanded	value.	The	PATTERN	here	and	in	other	parameter	expansions	is	a
filename	expansion	(aka	file	globbing)	pattern.

Given	the	string	Toronto	and	the	pattern	o*,	the	shortest	matching	pattern	is	the
final	o:

$	var=Toronto
$	var=${var%o*}
$	printf	"%s\n"	"$var"
Toront

Because	the	truncated	string	has	been	assigned	to	var,	the	shortest	string	that	now
matches	the	pattern	is	ont:

$	printf	"%s\n"	"${var%o*}"
Tor

This	expansion	can	be	used	to	replace	the	external	command,	dirname,	which	strips
the	filename	portion	of	a	path,	leaving	the	path	to	the	directory	(Listing	5-3).	If	there	is	no
slash	in	the	string,	the	current	directory	is	printed	if	it	is	the	name	of	an	existing	file	in	the
current	directory;	otherwise,	a	dot	is	printed.

Listing	5-3.	dname,	Print	the	Directory	Portion	of	a	File	Path

case	$1	in

		/)	printf	"%s\n"	"${1%/*}"	;;
		*)	[-e	"$1"]	&&	printf	"%s\n"	"$PWD"	||	echo	'.'	;;
esac

	Note		I	have	called	this	script	dname	rather	than	dirname	because	it	doesn’t	follow
the	POSIX	specification	for	the	dirname	command.	In	the	next	chapter,	there	is	a	shell
function	called	dirname	that	does	implement	the	POSIX	command.

$	dname	/etc/passwd
/etc
$	dname	bin
/home/chris

${var%%PATTERN}:	Remove	the	Longest	Match	from	the
End
The	variable	is	expanded,	and	the	longest	string	that	matches	PATTERN	from	the	end	of
the	expanded	value	is	removed:

$	var=Toronto
$	sa	"${var%%o*}"
:t:

${var#PATTERN}:	Remove	the	Shortest	Match	from	the
Beginning
The	variable	is	expanded,	and	the	shortest	string	that	matches	PATTERN	is	removed	from
the	beginning	of	the	expanded	value:

$	var=Toronto
$	sa	"${var#*o}"
:ronto:

${var##PATTERN}:	Remove	the	Longest	Match	from	the
Beginning
The	variable	is	expanded,	and	the	longest	string	that	matches	PATTERN	is	removed	from
the	beginning	of	the	expanded	value.	This	is	often	used	to	extract	the	name	of	a	script
from	the	$0	parameter,	which	contains	the	full	path	to	the	script:

scriptname=${0##*/}	##	/home/chris/bin/script	=>	script

Bash
Two	expansions	from	KornShell	93	were	introduced	in	bash2:	search	and	replace	and

substring	extraction.

${var//PATTERN/STRING}:	Replace	All	Instances	of
PATTERN	with	STRING
Because	the	question	mark	matches	any	single	character,	this	example	hides	a	password:

$	passwd=zxQ1.=+-a
$	printf	"%s\n"	"${passwd//?/*}"

With	a	single	slash,	only	the	first	matching	character	is	replaced.

$	printf	"%s\n"	"${passwd/[[:punct:]]/*}"
zxQ1*=+-a

${var:OFFSET:LENGTH}:	Return	a	Substring	of	$var
A	substring	of	$var	starting	at	OFFSET	is	returned.	If	LENGTH	is	specified,	that	number
of	characters	is	substituted;	otherwise,	the	rest	of	the	string	is	returned.	The	first	character
is	at	offset	0:

$	var=Toronto
$	sa	"${var:3:2}"
:on:
$	sa	"${var:3}"
:onto:

A	negative	OFFSET	is	counted	from	the	end	of	the	string.	If	a	literal	minus	sign	is
used	(as	opposed	to	one	contained	in	a	variable),	it	must	be	preceded	by	a	space	to	prevent
it	from	being	interpreted	as	a	default	expansion:

$	sa	"${var:	-3}"
:nto:

${!var}:	Indirect	Reference
If	you	have	one	variable	containing	the	name	of	another,	for	example	x=yes	and	a=x,
bash	can	use	an	indirect	reference:

$	x=yes
$	a=x
$	sa	"${!a}"
:yes:

The	same	effect	can	be	had	using	the	eval	builtin	command,	which	expands	its
arguments	and	executes	the	resulting	string	as	a	command:

$	eval	"sa	\$$a"

:yes:

See	chapter	9	for	a	more	detailed	explanation	of	eval.

Bash-4.0
In	version	4.0,	bash	introduced	two	new	parameter	expansions,	one	for	converting	to
uppercase	and	one	for	lowercase.	Both	have	single-character	and	global	versions.

${var^PATTERN}:	Convert	to	Uppercase
The	first	character	of	var	is	converted	to	uppercase	if	it	matches	PATTERN;	with	a
double	caret	(^^),	it	converts	all	characters	matching	PATTERN.	If	PATTERN	is	omitted,
all	characters	are	matched:

$	var=toronto
$	sa	"${var^}"
:Toronto:
$	sa	"${var^[n-z]}"
:Toronto:
$	sa	"${var^^[a-m]}"	##	matches	all	characters	from	a	to	
m	inclusive
:toronto:
$	sa	"${var^^[n-q]}"
:tOrONtO:
$	sa	"${var^^}"
:TORONTO:

${var,PATTERN}:	Convert	to	Lowercase
This	expansion	works	in	the	same	way	as	the	previous	one,	except	that	it	converts
uppercase	to	lowercase:

$	var=TORONTO
$	sa	"${var,,}"
:toronto:
$	sa	"${var,,[N-Q]}"
:ToRonTo:There	is	also	an	undocumented	expansion	that	
inverts	the	case:
$	var=Toronto
$	sa	"${var~}"
:toronto:
$	sa	"${var~~}"
:tORONTO:

Positional	Parameters

The	positional	parameters	can	be	referenced	individually	by	number	($1	…	$9	${10}
…)	or	all	at	once	with	“$@”	or	“$*”.	As	has	already	been	noted,	parameters	greater	than
9	must	be	enclosed	in	braces:	${10},	${11}.

The	shift	command	without	an	argument	removes	the	first	positional	parameter	and
shifts	the	remaining	arguments	forward	so	that	$2	becomes	$1,	$3	becomes	$2,	and	so
on.	With	an	argument,	it	can	remove	more.	To	remove	the	first	three	parameters,	supply	an
argument	with	the	number	of	parameters	to	remove:

$	shift	3

To	remove	all	the	parameters,	use	the	special	parameter	$#,	which	contains	the
number	of	positional	parameters:

$	shift	"$#"

To	remove	all	but	the	last	two	positional	parameters,	use	this:

$	shift	"$(($#	-	2))"

To	use	each	parameter	in	turn,	there	are	two	common	methods.	The	first	way	is	to	loop
through	the	values	of	the	parameters	by	expanding	“$@”:

for	param	in	"$@"		##	or	just:		for	param
do
		:	do	something	with	$param
done

And	this	is	the	second:

while	(($#))
do
		:	do	something	with	$1
		shift
done

Arrays
All	the	variables	used	so	far	have	been	scalar	variables;	that	is,	they	contain	only	a	single
value.	In	contrast,	array	variables	can	contain	many	values.	The	POSIX	shell	does	not
support	arrays,	but	bash	(since	version	2)	does.	Its	arrays	are	one	dimensional	and
indexed	by	integers,	and	also,	since	bash-4.0,	with	strings.

Integer-Indexed	Arrays
The	individual	members	of	an	array	variable	are	assigned	and	accessed	with	a	subscript	of
the	form	[N].	The	first	element	has	an	index	of	0.	In	bash,	arrays	are	sparse;	they
needn’t	be	assigned	with	consecutive	indices.	An	array	can	have	an	element	with	an	index

of	0,	another	with	an	index	of	42,	and	no	intervening	elements.

Displaying	Arrays
Array	elements	are	referenced	by	the	name	and	a	subscript	in	braces.	This	example	will
use	the	shell	variable	BASH_VERSINFO.	It	is	an	array	that	contains	version	information
for	the	running	shell.	The	first	element	is	the	major	version	number,	the	second	is	the
minor:

$	printf	"%s\n"	"${BASH_VERSINFO[0]}"
4
$	printf	"%s\n"	"${BASH_VERSINFO[1]}"
3

All	the	elements	of	an	array	can	be	printed	with	a	single	statement.	The	subscripts	@
and	*	are	analogous	to	their	use	with	the	positional	parameters:	*	expands	to	a	single
parameter	if	quoted;	if	unquoted,	word	splitting	and	file	name	expansion	is	performed	on
the	result.	Using	@	as	the	subscript	and	quoting	the	expansion,	each	element	expands	to	a
separate	argument,	and	no	further	expansion	is	performed	on	them.

$	printf	"%s\n"	"${BASH_VERSINFO[*]}"
4	3	30	1	release	i686-pc-linux-gnuoldld
$		printf	"%s\n"	"${BASH_VERSINFO[@]}"
4
3
30
1
release
i686-pc-linux-gnu

Various	parameter	expansions	work	on	arrays;	for	example,	to	get	the	second	and	third
elements	from	an	array,	use	this:

$	printf	"%s\n"	"${BASH_VERSINFO[@]:1:2}"	##	minor	version	
number	and	patch	level
3
30

The	length	expansion	returns	the	number	of	elements	in	the	array	when	the	subscript	is
*	or	@,	and	it	returns	the	length	of	an	individual	element	if	a	numeric	index	is	given:

$	printf	"%s\n"	"${#BASH_VERSINFO[*]}"
6
$	printf	"%s\n"	"${#BASH_VERSINFO[2]}"	
"${#BASH_VERSINFO[5]}"
2
17

Assigning	Array	Elements
Elements	can	be	assigned	using	an	index;	the	following	commands	create	a	sparse	array:

name[0]=Aaron
name[42]=Adams

Indexed	arrays	are	more	useful	when	elements	are	assigned	consecutively	(or	packed),
because	it	makes	operations	on	them	simpler.	Assignments	can	be	made	directly	to	the
next	unassigned	element:

$	unset	a
$	a[${#a[@]}]="1	$RANDOM"	##	${#a[@]}	is	0
$	a[${#a[@]}]="2	$RANDOM"	##	${#a[@]}	is	1
$	a[${#a[@]}]="3	$RANDOM"	##	${#a[@]}	is	2
$	a[${#a[@]}]="4	$RANDOM"	##	${#a[@]}	is	3
$	printf	"%s\n"	"${a[@]}"
1	6007
2	3784
3	32330
4	25914

An	entire	array	can	be	populated	with	a	single	command:

$	province=(Quebec	Ontario	Manitoba)
$	printf	"%s\n"	"${province[@]}"
Quebec
Ontario
Manitoba

The	+=	operator	can	be	used	to	append	values	to	the	end	of	an	indexed	array.	This
results	in	a	neater	form	of	assignment	to	the	next	unassigned	element:

$	province+=(Saskatchewan)
$	province+=(Alberta	"British	Columbia"	"Nova	Scotia")
$	printf	"%-25s	%-25s	%s\n"	"${province[@]}"
Quebec																				Ontario																			Manitoba
Saskatchewan														Alberta																			British	
Columbia
Nova	Scotia

Associative	Arrays
Associative	arrays,	introduced	in	bash	in	version	4.0,	use	strings	as	subscripts	and	must
be	declared	before	being	used:

$	declare	-A	array
$	for	subscript	in	a	b	c	d	e

>	do
>			array[$subscript]="$subscript	$RANDOM"
>	done
$	printf	":%s:\n"	"${array["c"]}"	##	print	one	element
:c	1574:
$	printf	":%s:\n"	"${array[@]}"	##	print	the	entire	array
:a	13856:
:b	6235:
:c	1574:
:d	14020:
:e	9165:

Summary
By	far	the	largest	subject	in	this	chapter	is	parameter	expansion,	and	by	far	the	largest
section	of	parameter	expansion	is	devoted	to	those	expansions	that	were	introduced	by	the
KornShell	and	incorporated	into	the	standard	Unix	shell.	These	are	tools	that	give	the
POSIX	shell	much	of	its	power.	The	examples	given	in	this	chapter	are	relatively	simple;
the	full	potential	of	parameter	expansion	will	be	shown	as	you	develop	serious	programs
later	in	the	book.

Next	in	importance	are	arrays.	Though	not	part	of	the	POSIX	standard,	they	add	a
great	deal	of	functionality	to	the	shell	by	making	it	possible	to	collect	data	in	logical	units.

Understanding	the	scope	of	variables	can	save	a	lot	of	head	scratching,	and	well-
named	variables	make	a	program	more	understandable	and	maintainable.

Manipulating	the	positional	parameters	is	a	minor	but	important	aspect	of	shell
programming,	and	the	examples	given	in	this	chapter	will	be	revisited	and	expanded	upon
later	in	the	book.

Commands
declare:	Declares	variables	and	sets	their	attributes

eval:	Expands	arguments	and	executes	the	resulting	command

export:	Places	variables	into	the	environment	so	that	they	are
available	to	child	processes

shift:	Deletes	and	renumbers	positional	parameters

shopt:	Sets	shell	options

unset:	Removes	a	variable	entirely

Concepts
Environment:	A	collection	of	variables	inherited	from	the	calling

program	and	passed	to	child	processes

Array	variables:	Variables	that	contain	more	than	one	value	and
accessed	using	a	subscript

Scalar	variables:	Variables	that	contain	a	single	value

Associative	arrays:	Array	variables	whose	subscript	is	a	string	rather
than	an	integer

EXERCISES

1.	 By	default,	where	can	a	variable	assigned	in	a	script	be	accessed?
Select	all	that	apply:

In	the	current	script

In	functions	defined	in	the	current	script

In	the	script	that	called	the	current	script

In	scripts	called	by	the	current	script

In	subshells	of	the	current	script

2.	 I	advise	against	using	single-letter	variables	names	but	give	a
couple	of	places	where	they	are	reasonable.	Can	you	think	of	any
other	legitimate	uses	for	them?

3.	 Given	var=192.168.0.123,	write	a	script	that	uses	parameter
expansion	to	extract	the	second	number,	168.

CHAPTER	6

Shell	Functions
A	shell	function	is	a	compound	command	that	has	been	given	a	name.	It	stores	a	series	of
commands	for	later	execution.	The	name	becomes	a	command	in	its	own	right	and	can	be
used	in	the	same	way	as	any	other	command.	Its	arguments	are	available	in	the	positional
parameters,	just	as	in	any	other	script.	Like	other	commands,	it	sets	a	return	code.

A	function	is	executed	in	the	same	process	as	the	script	that	calls	it.	This	makes	it	fast,
because	no	new	process	has	to	be	created.	All	the	variables	of	the	script	are	available	to	it
without	having	to	be	exported,	and	when	a	function	changes	those	variables,	the	changes
will	be	seen	by	the	calling	script.	That	said,	you	can	make	variables	local	to	the	function
so	that	they	do	not	affect	the	calling	script;	the	choice	is	yours.

Not	only	do	functions	encapsulate	code	for	reuse	in	a	single	script,	but	they	can	make
it	available	to	other	scripts.	They	make	top-down	design	easy,	and	improve	legibility.	They
break	scripts	into	manageable	chunks	that	can	be	tested	and	debugged	separately.

At	the	command	line,	functions	can	do	things	that	an	external	script	cannot,	such	as
change	directories.	They	are	much	more	flexible	and	powerful	than	aliases,	which	simply
replace	the	command	you	type	with	a	different	command.	Chapter	11	presents	a	number	of
functions	that	make	working	at	the	prompt	more	productive.

Definition	Syntax
When	shell	functions	were	introduced	in	the	KornShell,	the	definition	syntax	was	as
follows:

function	name	<compound	command>

When	the	Bourne	shell	added	functions	in	1984,	the	syntax	(which	was	later	included
in	ksh	and	adopted	by	the	POSIX	standard)	was	as	follows:

name()	<compound	command>

bash	allows	either	syntax	as	well	as	the	hybrid:

function	name()	<compound	command>

The	following	is	a	function	that	I	wrote	several	years	ago	and	that,	I	recently
discovered,	is	included	as	an	example	in	the	bash	source	code	package.	It	checks	whether
a	dotted-quad	Internet	Protocol	(IP)	address	is	valid.	In	this	book,	we	always	use	the
POSIX	syntax	for	function	definition:

isvalidip()

Then	the	body	of	the	function	is	enclosed	in	braces	({	…	})	followed	by	optional
redirection	(see	the	uinfo	function	later	in	this	chapter	for	an	example).

The	first	set	of	tests	is	contained	in	a	case	statement:

case	$1	in
		""	|	*[!0-9.]*	|	*[!0-9])	return	1	;;
esac

It	checks	for	an	empty	string,	invalid	characters,	or	an	address	that	doesn’t	end	with	a
digit.	If	any	of	these	items	is	found,	the	shell	built	in	command	return	is	invoked	with
an	exit	status	of	1.	This	exits	the	function	and	returns	control	to	the	calling	script.	An
argument	sets	the	function’s	return	code;	if	there	is	no	argument,	the	exit	code	of	the
function	defaults	to	that	of	the	last	command	executed.

The	next	command,	local,	is	a	shell	built	in	that	restricts	a	variable’s	scope	to	the
function	(and	its	children),	but	the	variable	will	not	change	in	the	parent	process.	Setting
IFS	to	a	period	causes	word	splitting	at	periods,	rather	than	whitepace,	when	a	parameter
is	expanded.	Beginning	with	bash-4.0,	local	and	declare	have	an	option,	-A,	to
declare	an	associative	array.

local	IFS=.

The	set	builtin	replaces	the	positional	parameters	with	its	arguments.	Since	$IFS	is
a	period,	each	element	of	the	IP	address	is	assigned	to	a	different	parameter.

set—$1

The	final	two	lines	check	each	positional	parameter	in	turn.	If	it’s	greater	than	255,	it
is	not	valid	in	a	dotted-quad	IP	address.	If	a	parameter	is	empty,	it	is	replaced	with	the
invalid	value	of	666.	If	all	tests	are	successful,	the	function	exits	successfully;	if	not,	the
return	code	is	1,	or	failure.

[${1:-666}	-le	255]	&&	[${2:-666}	-le	255]	&&
[${3:-666}	-le	255]	&&	[${4:-666}	-le	255]

Listing	6-1	shows	the	complete	function	with	comments.

Listing	6-1.	isvalidip,	Check	Argument	for	Valid	Dotted-Quad	IP	Address

isvalidip()	#@	USAGE:	isvalidip	DOTTED-QUAD
{
		case	$1	in
				##	reject	the	following:
				##			empty	string
				##			anything	other	than	digits	and	dots
				##			anything	not	ending	in	a	digit
				""	|	*[!0-9.]*	|	*[!0-9])	return	1	;;

		esac

		##	Change	IFS	to	a	dot,	but	only	in	this	function
		local	IFS=.

		##	Place	the	IP	address	into	the	positional	parameters;
		##	after	word	splitting	each	element	becomes	a	parameter
		set—$1

		[$#	-eq	4]	&&	##	must	be	four	parameters
																		##	each	must	be	less	than	256
		##	A	default	of	666	(which	is	invalid)	is	used	if	
a	parameter	is	empty
		##	All	four	parameters	must	pass	the	test
		[${1:-666}	-le	255]	&&	[${2:-666}	-le	255]	&&
		[${3:-666}	-le	255]	&&	[${4:-666}	-le	255]	
}

	Note		Formats	other	than	dotted	quads	can	be	valid	IP	addresses,	as	in	127.1,
216.239.10085,	and	3639551845.

The	function	returns	successfully	(that	is,	a	return	code	of	0)	if	the	argument	supplied
on	the	command	line	is	a	valid	dotted-quad	IP	address.	You	can	test	the	function	at	the
command	line	by	sourcing	the	file	containing	the	function:

$.	isvalidip-func

The	function	is	now	available	at	the	shell	prompt.	Let’s	test	it	with	a	few	IP	addresses:

$	for	ip	in	127.0.0.1	168.260.0.234	1.2.3.4	123.1OO.34.21	
204.225.122.150
>	do
>			if	isvalidip	"$ip"
>			then
>					printf	"%15s:	valid\n"	"$ip"
>			else
>					printf	"%15s:	invalid\n"	"$ip"
>			fi
>	done
						127.0.0.1:	valid
		168.260.0.234:	invalid
								1.2.3.4:	valid
		123.1OO.34.21:	invalid
204.225.122.150:	valid

Compound	Commands

A	compound	command	is	a	list	of	commands	enclosed	in	(…)	or	{	…	},	expressions
enclosed	in	((…))	or	[[…]],	or	one	of	the	block-level	shell	keywords	(that	is,
case,	for,	select,	while,	and	until).

The	valint	program	from	Chapter	3	is	a	good	candidate	for	converting	to	a	function.
It	is	likely	to	be	called	more	than	once,	so	the	time	saved	could	be	significant.	The
program	is	a	single	compound	command,	so	braces	are	not	necessary	(see	Listing	6-2).

Listing	6-2.	valint,	Check	for	Valid	Integer

valint()	#@	USAGE:	valint	INTEGER
		case	${1#-}	in						##	Leading	hyphen	removed	to	accept	
negative	numbers
				[!0-9])	false;;	##	the	string	contains	a	non-digit	
character
				*)	true	;;								##	the	whole	number,	and	nothing	but	
the	number
		esac

If	a	function’s	body	is	wrapped	in	parentheses,	then	it	is	executed	in	a	subshell,	and
changes	made	during	its	execution	do	not	remain	in	effect	after	it	exits:

$	funky()	(name=nobody;	echo	"name	=	$name")
$	name=Rumpelstiltskin
$	funky
name	=	nobody
$	echo	"name	=	$name"
name	=	Rumpelstiltskin

Getting	Results
The	two	previous	functions	are	both	called	for	their	exit	status;	the	calling	program	needs
to	know	only	whether	the	function	succeeds	or	fails.	Functions	can	also	return	information
from	a	range	of	return	codes,	by	setting	one	or	more	variables	or	by	printing	its	results.

Set	Different	Exit	Codes
You	can	convert	the	rangecheck	script	from	Chapter	3	to	a	function	with	a	couple	of
improvements;	it	returns	0	on	success	as	before	but	differentiates	between	a	number	that	is
too	high	and	one	that	is	too	low.	It	returns	1	if	the	number	is	too	low,	or	it	returns	2	if	it	is
too	high.	It	also	accepts	the	range	to	be	checked	as	arguments	on	the	command	line,
defaulting	to	10	and	20	if	no	range	is	given	(Listing	6-3).

Listing	6-3.	rangecheck,	Check	Whether	an	Integer	Is	Within	a	Specified	Range

rangecheck()	#@	USAGE:	rangecheck	int	[low	[high]]
		if	["$1"	-lt	${2:-10}]

		then
				return	1
		elif	["$1"	-gt	${3:-20}]
		then
				return	2
		else
				return	0
		fi

Return	codes	are	a	single,	unsigned	byte;	therefore,	their	range	is	0	to	255.	If	you	need
numbers	larger	than	255	or	less	than	0,	use	one	of	the	other	methods	of	returning	a	value.

Print	the	Result
A	function’s	purpose	may	be	to	print	information,	either	to	the	terminal	or	to	a	file	(Listing
6-4).

Listing	6-4.	uinfo,	Print	Information	About	the	Environment

uinfo()	#@	USAGE:	uinfo	[file]
{
		printf	"%12s:	%s\n"	\
				USER				"${USER:-No	value	assigned}"	\
				PWD					"${PWD:-No	value	assigned}"	\
				COLUMNS	"${COLUMNS:-No	value	assigned}"	\
				LINES			"${LINES:-No	value	assigned}"	\
				SHELL			"${SHELL:-No	value	assigned}"	\
				HOME				"${HOME:-No	value	assigned}"	\
				TERM				"${TERM:-No	value	assigned}"
}	>	${1:-/dev/fd/1}

The	redirection	is	evaluated	at	runtime.	In	this	example,	it	expands	to	the	function’s
first	argument	or	to	/dev/fd/1	(standard	output)	if	no	argument	is	given:

$	uinfo
								USER:	chris
									PWD:	/home/chris/work/BashProgramming
					COLUMNS:	100
							LINES:	43
							SHELL:	/bin/bash
								HOME:	/home/chris
								TERM:	rxvt
$	cd;	uinfo	$HOME/tmp/info
$	cat	$HOME/tmp/info
								USER:	chris
									PWD:	/home/chris
					COLUMNS:	100
							LINES:	43

							SHELL:	/bin/bash
								HOME:	/home/chris
														TERM:	rxvt

When	the	output	is	printed	to	the	standard	output,	it	may	be	captured	using	command
substitution:

info=$(uinfo)

But	command	substitution	creates	a	new	process	and	is	therefore	slow;	save	it	for	use
with	external	commands.	When	a	script	needs	output	from	a	function,	put	it	into	variables.

Place	Results	in	One	or	More	Variables
I	was	writing	a	script	that	needed	to	sort	three	integers	from	lowest	to	highest.	I	didn’t
want	to	call	an	external	command	for	a	maximum	of	three	comparisons,	so	I	wrote	the
function	shown	in	Listing	6-5.	It	stores	the	results	in	three	variables:	_MIN3,	_MID3,	and
_MAX3.

Listing	6-5.	_max3,	Sort	Three	Integers

_max3()	#@	Sort	3	integers	and	store	in	$_MAX3,	$_MID3	and	
$_MIN3
{							#@	USAGE:
				[$#	-ne	3]	&&	return	5
				[$1	-gt	$2]	&&	{	set—$2	$1	$3;	}
				[$2	-gt	$3]	&&	{	set—$1	$3	$2;	}
				[$1	-gt	$2]	&&	{	set—$2	$1	$3;	}
				_MAX3=$3
				_MID3=$2
				_MIN3=$1
}

In	the	first	edition	of	this	book,	I	used	the	convention	of	beginning	function	names
with	an	underscore	when	they	set	a	variable	rather	than	print	the	result.	The	variable	is	the
name	of	the	function	converted	to	uppercase.	In	this	instance,	I	needed	two	other	variables
as	well.

I	could	have	used	an	array	instead	of	three	variables:

_MAX3=("$3"	"$2"	"$1")

These	days,	I	usually	pass	the	name	of	a	variable	to	store	the	result.	The	nameref
property,	introduced	in	bash-4.x,	makes	this	easy	to	use:

max3()	#@	Sort	3	integers	and	store	in	an	array
{						#@	USAGE:	max3	N1	N2	N3	[VARNAME]
		declare	-n	_max3=${4:-_MAX3}
		(($#	<	3))	&&	return	4

		(($1	>	$2))	&&	set—"$2"	"$1"	"$3"
		(($2	>	$3))	&&	set—"$1"	"$3"	"$2"
		(($1	>	$2))	&&	set—"$2"	"$1"	"$3"
		_max3=("$3"	"$2"	"$1")
}

If	no	variable	name	is	supplied	on	the	command	line,	_MAX3	is	used.

Function	Libraries
In	my	scripts	directory,	I	have	about	100	files	of	nothing	but	functions.	A	few	contain
only	a	single	function,	but	most	are	collections	of	functions	with	a	common	theme.
Sourcing	one	of	these	files	defines	a	number	of	related	functions	that	can	be	used	in	the
current	script.

I	have	a	library	of	functions	for	manipulating	dates	and	another	for	dissecting	strings.	I
have	one	for	creating	PostScript	files	of	chess	diagrams	and	one	for	playing	with
crossword	puzzles.	There’s	a	library	for	reading	function	keys	and	cursor	keys	and	a
different	one	for	mouse	buttons.

Using	Functions	from	Libraries
Most	of	the	time,	I	source	the	library	to	include	all	its	functions	in	my	script:

.	date-funcs	##	get	date-funcs	from:
													##	http://cfaj.freeshell.org/shell/ssr/08-The-
Dating-Game.shtml

Occasionally,	I	need	only	one	function	from	a	library,	so	I	cut	and	paste	it	into	the	new
script.

Sample	Script
The	following	script	defines	four	functions:	die,	usage,	version,	and	readline.
The	readline	function	will	differ	according	to	which	shell	you	are	using.	The	script
creates	a	basic	web	page,	complete	with	title	and	primary	headline	(<H1>).	The
readline	function	uses	options	to	the	builtin	command	read	that	will	be	examined	in
detail	in	Chapter	9.

##
##	Set	defaults
##
prompt="	==>	"
template='<!DOCTYPE	html>
<html	lang="en">
		<head>

http://cfaj.freeshell.org/shell/ssr/08-The-Dating-Game.shtml

				<meta	charset=utf-8>
				<title>%s</title>
				<link	href="%s"	rel="stylesheet">
		</head>
		<body>
				<h1>%s</h1>
				<div	id=main>

				</div>
		</body>
</html>
'

##
##	Define	shell	functions
##
die()	#@	DESCRIPTION:	Print	error	message	and	exit	with	
ERRNO	code
{					#@	USAGE:	die	ERRNO	MESSAGE…
		error=$1
		shift
		[-n	"$*"]	&&	printf	"%s\n"	"$*"	>&2
		exit	"$error"
}

usage()	#@	Print	script's	usage	information
{							#@	USAGE:	usage
		printf	"USAGE:	%s	HTMLFILE\n"	"$progname"
}

version()	#@	Print	scrpt's	version	information
{										#@	USAGE:	version
		printf	"%s	version	%s"	"$progname"	"${version:-1}"
}

#@	USAGE:	readline	var	prompt	default
#@	DESCRIPTION:	Prompt	user	for	string	and	offer	default
##
#@	Define	correct	version	for	your	version	of	bash	or	other	
shell
bashversion=${BASH_VERSION%%.*}
if	[${bashversion:-0}	-ge	4]
then
		##	bash4.x	has	an	-i	option	for	editing	a	supplied	value
		readline()
		{
				read	-ep	"${2:-"$prompt"}"	-i	"$3"	"$1"

		}
elif	[${BASHVERSION:-0}	-ge	2]
then
		readline()
		{
				history	-s	"$3"
				printf	"Press	up	arrow	to	edit	default	value:	'%s'\n"	
"${3:-none}"
				read	-ep	"${2:-"$prompt"}"	"$1"
		}
else
		readline()
		{
				printf	"Press	enter	for	default	of	'%s'\n"	"$3"
				printf	"%s	"	"${2:-"$prompt"}"
				read
				eval	"$1=\${REPLY:-"$3"}"
		}
fi

if	[$#	-ne	1]
then
		usage
		exit	1
fi

filename=$1

readline	title	"Page	title:	"
readline	h1	"Main	headline:	"	"$title"
readline	css	"Style	sheet	file:	"	"${filename%.*}.css"

printf	"$template"	"$title"	"$css"	"$h1"	>	"$filename"

Summary
Shell	functions	enable	you	to	create	large,	fast,	sophisticated	programs.	Without	them,	the
shell	could	hardly	be	called	a	real	programming	language.	Functions	will	be	part	of	almost
everything	from	here	to	the	end	of	the	book.

Commands
local:	Restricts	a	variable’s	scope	to	the	current	function	and	its
children

return:	Exits	a	function	(with	an	optional	return	code)

set:	With	—,	replaces	the	positional	parameters	with	the	remaining
arguments	(after	—)

Exercises
1.	 Rewrite	function	isvalidip	using	parameter	expansion	instead

of	changing	IFS.

2.	 Add	a	check	to	max3	to	verify	that	VARNAME	is	a	valid	name	for	a
variable.

CHAPTER	7

String	Manipulation
In	the	Bourne	shell,	very	little	string	manipulation	was	possible	without	resorting	to
external	commands.	Strings	could	be	concatenated	by	juxtaposition,	they	could	be	split	by
changing	the	value	of	IFS,	and	they	could	be	searched	with	case,	but	anything	else
required	an	external	command.

Even	things	that	could	be	done	entirely	in	the	shell	were	often	relegated	to	external
commands,	and	that	practice	has	continued	to	this	day.	In	some	current	Linux
distributions,	you	can	find	the	following	snippet	in	/etc/profile.	It	checks	whether	a
directory	is	included	in	the	PATH	variable:

if	!	echo	${PATH}	|grep	-q	/usr/games
then
		PATH=$PATH:/usr/games
fi

Even	in	a	Bourne	shell,	you	can	do	this	without	an	external	command:

case	:$PATH:	in
		:/usr/games:);;
		*)	PATH=$PATH:/usr/games	;;
esac

The	POSIX	shell	includes	a	number	of	parameter	expansions	that	slice	and	dice
strings,	and	bash	adds	even	more.	These	were	outlined	in	Chapter	5,	and	their	use	is
expanded	upon	in	this	chapter	along	with	other	string	techniques.

Concatenation
Concatenation	is	the	joining	together	of	two	or	more	items	to	form	one	larger	item.	In	this
case,	the	items	are	strings.	They	are	joined	by	placing	one	after	the	other.	A	common
example,	which	is	used	in	Chapter	1,	adds	a	directory	to	the	PATH	variable.	It
concatenates	a	variable	with	a	single-character	string	(:),	another	variable,	and	a	literal
string:

PATH=$PATH:$HOME/bin

If	the	right	side	of	the	assignment	contains	a	literal	space	or	other	character	special	to
the	shell,	then	it	must	be	quoted	with	double	quotes	(variables	inside	single	quotes	are	not
expanded):

var=$HOME/bin	#	this	comment	is	not	part	of	the	assignment
var="$HOME/bin	#	but	this	is"

In	bash-3.1,	a	string	append	operator	(+=)	was	added:

$	var=abc
$	var+=xyz
$	echo	"$var"
abcxyz

This	append	operator	+=	looks	much	better	and	is	clearer	to	understand.	It	also	has	a
slight	performance	advantage	over	the	other	method.	It	also	makes	sense	to	use	+=	for
appending	to	an	array,	as	demonstrated	in	Chapter	5.

	Tip		For	those	that	want	to	benchmark	the	two	methods,	you	could	try	this	little	one
liner	var=;	time	for	i	in	{1..1000};do	var=${var}foo;done;var=;
time	for	i	in	{1..1000};do	var+=foo;done

Repeat	Character	to	a	Given	Length
Concatenation	is	used	in	this	function	that	builds	a	string	of	N	characters;	it	loops,	adding
one	instance	of	$1	each	time,	until	the	string	($_REPEAT)	reaches	the	desired	length
(contained	in	$2).

_repeat()
{
		#@	USAGE:	_repeat	string	number
		_REPEAT=
		while	((${#_REPEAT}	<	$2))
		do
				_REPEAT=$_REPEAT$1
		done
}

The	result	is	stored	in	the	variable	_REPEAT:

$	_repeat	%	40
$	printf	"%s\n"	"$_REPEAT"
%%

You	can	speed	that	function	up	by	concatenating	more	than	one	instance	in	each	loop
so	that	the	length	increases	geometrically.	The	problem	with	this	version	is	that	the
resulting	string	will	usually	be	longer	than	required.	To	fix	that,	parameter	expansion	is
used	to	trim	the	string	to	the	desired	length	(Listing	7-1).

Listing	7-1.	repeat,	Repeat	a	String	N	Times

_repeat()

{
		#@	USAGE:	_repeat	string	number
		_REPEAT=$1
		while	((${#_REPEAT}	<	$2))	##	Loop	until	string	exceeds	
desired	length
		do
				_REPEAT=$_REPEAT$_REPEAT$_REPEAT	##	3	seems	to	be	the	
optimum	number
		done
		_REPEAT=${_REPEAT:0:$2}	##	Trim	to	desired	length
}

repeat()
{
		_repeat	"$@"
		printf	"%s\n"	"$_REPEAT"
}

The	_repeat	function	is	called	by	the	alert	function	(Listing	7-2).

Listing	7-2.	alert,	Print	a	Warning	Message	with	a	Border	and	a	Beep

alert()	#@	USAGE:	alert	message	border
{
		_repeat	"${2:-#}"	$((${#1}	+	8))
		printf	'\a%s\n'	"$_REPEAT"	##	\a	=	BEL
		printf	'%2.2s		%s		%2.2s\n'	"$_REPEAT"	"$1"	"$_REPEAT"
		printf	'%s\n'	"$_REPEAT"
}

The	function	prints	the	message	surrounded	by	a	border	generated	with	_repeat:

$	alert	"Do	you	really	want	to	delete	all	your	files?"
##
##		Do	you	really	want	to	delete	all	your	files?		##
##

The	border	character	can	be	changed	with	a	command-line	argument:

$	alert	"Danger,	Will	Robinson"	$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$		Danger,	Will	Robinson		$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Processing	Character	by	Character
There	are	no	direct	parameter	expansions	to	give	either	the	first	or	last	character	of	a

string,	but	by	using	the	wildcard	(?),	a	string	can	be	expanded	to	everything	except	its	first
or	last	character:

$	var=strip
$	allbutfirst=${var#?}
$	allbutlast=${var%?}
$	sa	"$allbutfirst"	"$allbutlast"
:trip:
:stri:

The	values	of	allbutfirst	and	allbutlast	can	then	be	removed	from	the
original	variable	to	give	the	first	or	last	character:

$	first=${var%"$allbutfirst"}
$	last=${var#"$allbutlast"}
$	sa	"$first"	"$last"
:s:
:p:

The	first	character	of	a	string	can	also	be	obtained	with	printf:

printf	-v	first	"%c"	"$var"

To	operate	on	each	character	of	a	string	one	at	a	time,	use	a	while	loop	and	a
temporary	variable	that	stores	the	value	of	var	minus	its	first	character.	The	temp
variable	is	then	used	as	the	pattern	in	a	${var%PATTERN}	expansion.	Finally,	$temp	is
assigned	to	var,	and	the	loop	continues	until	there	are	no	characters	left	in	var:

while	[-n	"$var"]
do
		temp=${var#?}								##	everything	but	the	first	character
		char=${var%"$temp"}		##	remove	everything	but	the	first	
character
		:	do	something	with	"$char"
		var=$temp												##	assign	truncated	value	to	var
done

Reversal
You	can	use	the	same	method	to	reverse	the	order	of	characters	in	a	string.	Each	letter	is
tacked	on	to	the	end	of	a	new	variable	(Listing	7-3).

Listing	7-3.	revstr,	Reverse	the	Order	of	a	String;	Store	Result	in	_REVSTR

_revstr()	#@	USAGE:	revstr	STRING
{
		var=$1
		_REVSTR=

		while	[-n	"$var"]
		do
				temp=${var#?}
				_REVSTR=$temp${var%"$temp"}
				var=$temp
		done
}

Case	Conversion
In	the	Bourne	shell,	case	conversion	was	done	with	external	commands	such	as	tr,	which
translates	characters	in	its	first	argument	to	the	corresponding	character	in	its	second
argument:

$	echo	abcdefgh	|	tr	ceh	CEH	#	c	=>	C,	e	=>	E,	h	=>	H
abCdEfgH
$	echo	abcdefgh	|	tr	ceh	HEC	#	c	=>	H,	e	=>	E,	h	=>	C
abHdEfgC

Ranges	specified	with	a	hyphen	are	expanded	to	include	all	intervening	characters:

$	echo	touchdown	|	tr	'a-z'	'A-Z'
TOUCHDOWN

In	the	POSIX	shell,	short	strings	can	be	converted	efficiently	using	parameter
expansion	and	a	function	containing	a	case	statement	as	a	lookup	table.	The	function
looks	up	the	first	character	of	its	first	argument	and	stores	the	uppercase	equivalent	in
_UPR.	If	the	first	character	is	not	a	lowercase	letter,	it	is	unchanged	(Listing	7-4).

Listing	7-4.	to_upper,	Convert	First	Character	of	$1	to	Uppercase

to_upper()
				case	$1	in
								a*)	_UPR=A	;;	b*)	_UPR=B	;;	c*)	_UPR=C	;;	d*)	_UPR=D	
;;
								e*)	_UPR=E	;;	f*)	_UPR=F	;;	g*)	_UPR=G	;;	h*)	_UPR=H	
;;
								i*)	_UPR=I	;;	j*)	_UPR=J	;;	k*)	_UPR=K	;;	l*)	_UPR=L	
;;
								m*)	_UPR=M	;;	n*)	_UPR=N	;;	o*)	_UPR=O	;;	p*)	_UPR=P	
;;
								q*)	_UPR=Q	;;	r*)	_UPR=R	;;	s*)	_UPR=S	;;	t*)	_UPR=T	
;;
								u*)	_UPR=U	;;	v*)	_UPR=V	;;	w*)	_UPR=W	;;	x*)	_UPR=X	
;;
								y*)	_UPR=Y	;;	z*)	_UPR=Z	;;		*)	_UPR=${1%${1#?}}	;;
				esac

To	capitalize	a	word	(that	is,	just	the	first	letter),	call	to_upper	with	the	word	as	an
argument,	and	append	the	rest	of	the	word	to	$_UPR:

$	word=function
$	to_upper	"$word"
$	printf	"%c%s\n"	"$_UPR"	"${word#?}"
Function

To	convert	the	entire	word	to	uppercase,	you	can	use	the	upword	function	shown	in
Listing	7-5.

Listing	7-5.	upword,	Convert	Word	to	Uppercase

_upword()	#@	USAGE:	upword	STRING
{
		local	word=$1
		while	[-n	"$word"]	##	loop	until	nothing	is	left	in	
$word
		do
				to_upper	"$word"
				_UPWORD=$_UPWORD$_UPR
				word=${word#?}	##	remove	the	first	character	from	$word
		done
}

upword()
{
		_upword	"$@"
		printf	"%s\n"	"$_UPWORD"
}

You	can	use	the	same	technique	to	convert	uppercase	to	lowercase;	you	can	try	to
write	the	code	for	that	as	an	exercise.

The	basics	of	case	conversion	using	the	parameter	expansions	introduced	in	bash-
4.x	were	covered	in	Chapter	5.	Some	uses	for	them	are	shown	in	the	following	sections.

Comparing	Contents	Without	Regard	to
Case
When	getting	user	input,	a	programmer	often	wants	to	accept	it	in	either	uppercase	or
lowercase	or	even	a	mixture	of	the	two.	When	the	input	is	a	single	letter,	as	in	asking	for	Y
or	N,	the	code	is	simple.	There	is	a	choice	of	using	the	or	symbol	(|):

read	ok
case	$ok	in

		y|Y)	echo	"Great!"	;;
		n|N)	echo	Good-bye
							exit	1
							;;
		*)	echo	Invalid	entry	;;
esac

or	a	bracketed	character	list:

read	ok
case	$ok	in
		[yY])	echo	"Great!"	;;
		[nN])	echo	Good-bye
							exit	1
							;;
		*)	echo	Invalid	entry	;;
esac

When	the	input	is	longer,	the	first	method	requires	all	possible	combinations	to	be
listed,	for	example:

jan	|	jaN	|	jAn	|	jAN	|	Jan	|	JaN	|	JAn	|	JAN)	echo	"Great!"	
;;

The	second	method	works	but	is	ugly	and	hard	to	read,	and	the	longer	the	string	is,	the
harder	and	uglier	it	gets:

read	monthname
case	$monthname	in	##	convert	$monthname	to	number
		[Jj][Aa][Nn]*)	month=1	;;
		[Ff][Ee][Bb]*)	month=2	;;
		##	...put	the	rest	of	the	year	here
		[Dd][Ee][Cc]*)	month=12	;;
		[1-9]|1[0-2])	month=$monthname	;;	##	accept	number	if	
entered
		*)	echo	"Invalid	month:	$monthname"	>&2	;;
esac

A	better	solution	is	to	convert	the	input	to	uppercase	first	and	then	compare	it:

_upword	"$monthname"
case	$_UPWORD	in	##	convert	$monthname	to	number
		JAN*)	month=1	;;
		FEB*)	month=2	;;
		##	...put	the	rest	of	the	year	here
		DEC*)	month=12	;;
		[1-9]|1[0-2])	month=$monthname	;;	##	accept	number	if	
entered
		*)	echo	"Invalid	month:	$monthname"	>&2	;;

esac

	Note		See	Listing	7-11	at	the	end	of	this	chapter	for	another	method	of	converting	a
month	name	to	a	number.

In	bash-4.x,	you	can	replace	the	_upword	function	with	case
${monthname^^}	in,	although	I	might	keep	it	in	a	function	to	ease	transition	between
versions	of	bash:

_upword()
{
		_UPWORD=${1^^}
}

Check	for	Valid	Variable	Name
You	and	I	know	what	constitutes	a	valid	variable	name,	but	do	your	users?	If	you	ask	a
user	to	enter	a	variable	name,	as	you	might	in	a	script	that	creates	other	scripts,	you	should
check	that	what	is	entered	is	a	valid	name.	The	function	to	do	that	is	a	simple	check	for
violation	of	the	rules:	a	name	must	contain	only	letters,	numbers,	and	underscores	and
must	begin	with	a	letter	or	an	underscore	(Listing	7-6).

Listing	7-6.	validname,	Check	$1	for	a	Valid	Variable	or	Function	Name

validname()	#@	USAGE:	validname	varname
	case	$1	in
			##	doesn't	begin	with	a	letter	or	an	underscore,	or
			##	contains	something	that	is	not	a	letter,	a	number,	or	
an	underscore
			[!a-zA-Z_]*	|	*[!a-zA-z0-9_]*)	return	1;;
	esac

The	function	is	successful	if	the	first	argument	is	a	valid	variable	name;	otherwise,	it
fails.

$	for	name	in	name1	2var	first.name	first_name	last-name
>	do
>			validname	"$name"	&&	echo	"	valid:	$name"	||	echo	
"invalid:	$name"
>	done
		valid:	name1
invalid:	2var
invalid:	first.name
		valid:	first_name
invalid:	last-name

Insert	One	String	into	Another
To	insert	a	string	into	another	string,	it	is	necessary	to	split	the	string	into	two	parts	–	the
part	that	will	be	to	the	left	of	the	inserted	string	and	the	part	to	the	right.	Then	the	insertion
string	is	sandwiched	between	them.

This	function	takes	three	arguments:	the	main	string,	the	string	to	be	inserted,	and	the
position	at	which	to	insert	it.	If	the	position	is	omitted,	it	defaults	to	inserting	after	the	first
character.	The	work	is	done	by	the	first	function,	which	stores	the	result	in
_insert_string.	This	function	can	be	called	to	save	the	cost	of	using	command
substitution.	The	insert_string	function	takes	the	same	arguments,	which	it	passes
to	_insert_string	and	then	prints	the	result	(Listing	7-7).

Listing	7-7.	insert_string,	Insert	One	String	into	Another	at	a	Specified	Location

_insert_string()	#@	USAGE:	_insert_string	STRING	INSERTION	
[POSITION]
{
		local	insert_string_dflt=2																	##	default	
insert	location
		local	string=$1																												##	container	
string
		local	i_string=$2																										##	string	to	be	
inserted
		local	i_pos=${3:-${insert_string_dflt:-2}}	##	insert	
location
		local	left	right																											##	before	and	
after	strings
		left=${string:0:$(($i_pos	-	1))}									##	string	to	
left	of	insert
		right=${string:$(($i_pos	-	1))}										##	string	to	
right	of	insert
		_insert_string=$left$i_string$right								##	build	new	
string
}

insert_string()
{
		_insert_string	"$@"	&&	printf	"%s\n"	"$_insert_string"
}

Examples
$	insert_string	poplar	u	4
popular
$	insert_string	show	ad	3

shadow
$	insert_string	tail	ops		##	use	default	position
topsail

Overlay
To	overlay	a	string	on	top	of	another	string	(replacing,	overwriting),	the	technique	is
similar	to	inserting	a	string,	the	difference	being	that	the	right	side	of	the	string	begins	not
immediately	after	the	left	side	but	at	the	length	of	the	overlay	further	along	(Listing	7-8).

Listing	7-8.	overlay,	Place	One	String	Over	the	Top	of	Another

_overlay()	#@	USAGE:	_overlay	STRING	SUBSTRING	START
{										#@	RESULT:	in	$_OVERLAY
		local	string=$1
		local	sub=$2
		local	start=$3
		local	left	right
		left=${string:0:start-1}								##	See	note	below
		right=${string:start+${#sub}-1}
		_OVERLAY=$left$sub$right
}

overlay()	#@	USAGE:	overlay	STRING	SUBSTRING	START
{
		_overlay	"$@"	&&	printf	"%s\n"	"$_OVERLAY"
}

	Note		The	arithmetic	within	the	substring	expansion	doesn’t	need	the	full	POSIX
arithmetic	syntax;	bash	will	evaluate	an	expression	if	it	finds	one	in	the	place	of	an
integer.

Examples
$	{
>	overlay	pony	b	1
>	overlay	pony	u	2
>	overlay	pony	s	3
>	overlay	pony	d	4
>	}
bony
puny
posy
pond

Trim	Unwanted	Characters
Variables	often	arrive	with	unwanted	padding:	usually	spaces	or	leading	zeroes.	These	can
easily	be	removed	with	a	loop	and	a	case	statement:

var="					John				"
while	:			##	infinite	loop
do
		case	$var	in
						'	'*)	var=${var#?}	;;	##	if	$var	begins	with	a	space	
remove	it
						*'	')	var=${var%?}	;;	##	if	$var	ends	with	a	space	
remove	it
						*)	break	;;	##	no	more	leading	or	trailing	spaces,	so	
exit	the	loop
		esac
done

A	faster	method	finds	the	longest	string	that	doesn’t	begin	or	end	with	the	character	to
be	trimmed	and	then	removes	everything	but	that	from	the	original	string.	This	is	similar
to	getting	the	first	or	last	character	from	a	string,	where	we	used	allbutfirst	and
allbutlast	variables.

If	the	string	is	“			John			“,	the	longest	string	that	ends	in	a	character	that	is	not	to	be
trimmed	is	“			John“.	That	is	removed,	and	the	spaces	at	the	end	are	stored	in
rightspaces	with	this:

rightspaces=${var##*[!]}	##	remove	everything	up	to	the	
last	non-space

Then	you	remove	$rightspaces	from	$var:

var=${var%"$rightspaces"}	##	$var	now	contains	"					John"

Next,	you	find	all	the	spaces	on	the	left	with	this:

leftspaces=${var%%[!]*}	##	remove	from	the	first	non-space	
to	the	end

Remove	$leftspaces	from	$var:

var=${var#"$leftspaces"}	##	$var	now	contains	"John"

This	technique	is	refined	a	little	for	the	trim	function	(Listing	7-9).	Its	first	argument
is	the	string	to	be	trimmed.	If	there	is	a	second	argument,	that	is	the	character	that	will	be
trimmed	from	the	string.	If	no	character	is	supplied,	it	defaults	to	a	space.

Listing	7-9.	trim,	Trim	Unwanted	Characters

_trim()	#@	Trim	spaces	(or	character	in	$2)	from	$1
{
		local	trim_string
		_TRIM=$1
		trim_string=${_TRIM##*[!${2:-	}]}
		_TRIM=${_TRIM%"$trim_string"}
		trim_string=${_TRIM%%[!${2:-	}]*}
		_TRIM=${_TRIM#"$trim_string"}
}

trim()	#@	Trim	spaces	(or	character	in	$2)	from	$1	and	print	
the	result
{
		_trim	"$@"	&&	printf	"%s\n"	"$_TRIM"
}

Examples
$	trim	"			S	p	a	c	e	d		o	u	t			"
S	p	a	c	e	d		o	u	t
$	trim	"0002367.45000"	0
2367.45

Index
The	index	function	converts	a	month	name	into	its	ordinal	number;	it	returns	the
position	of	one	string	inside	another	(Listing	7-10).	It	uses	parameter	expansion	to	extract
the	string	that	precedes	the	substring.	The	index	of	the	substring	is	one	more	than	the
length	of	the	extracted	string.

Listing	7-10.	index,	Return	Position	of	One	String	Inside	Another

_index()	#@	Store	position	of	$2	in	$1	in	$_INDEX
{
		local	idx
		case	$1	in
				"")		_INDEX=0;	return	1	;;
				"$2")	##	extract	up	to	beginning	of	the	matching	
portion
												idx=${1%%"$2"*}
												##	the	starting	position	is	one	more	than	the	
length
											_INDEX=$((${#idx}	+	1))	;;
				*)	_INDEX=0;	return	1	;;
		esac
}

index()
{
		_index	"$@"
		printf	"%d\n"	"$_INDEX"
}

Listing	7-11	shows	the	function	to	convert	a	month	name	to	a	number.	It	converts	the
first	three	letters	of	the	month	name	to	uppercase	and	finds	its	position	in	the	months
string.	It	divides	that	position	by	4	and	adds	1	to	get	the	month	number.

Listing	7-11.	month2num,	Convert	a	Month	Name	to	Its	Ordinal	Number

_month2num()
{
		local	
months=JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC
		_upword	"${1:0:3}"	##	take	first	three	letters	of	$1	and	
convert	to	uppercase
		_index	"$months"	"$_UPWORD"	||	return	1
		_MONTH2NUM=$(($_INDEX	/	4	+	1))
}

month2num()
{
		_month2num	"$@"	&&
		printf	"%s\n"	"$_MONTH2NUM"
}

Summary
You	learned	the	following	commands	and	functions	in	this	chapter.

Commands
tr:	Translates	characters

Functions
repeat:	Repeats	a	string	until	it	has	length	N

alert:	Prints	a	warning	message	with	a	border	and	a	beep

revstr:	Reverses	the	order	of	a	string;	stores	result	in	_REVSTR

to_upper:	Converts	the	first	character	of	$1	to	uppercase

upword:	Converts	a	word	to	uppercase

validname:	Checks	$1	for	a	valid	variable	or	function	name

insert_string:	Inserts	one	string	into	another	at	a	specified
location

overlay:	Places	one	string	over	the	top	of	another

trim:	Trims	unwanted	characters

index:	Returns	the	position	of	one	string	inside	another

month2num:	Converts	a	month	name	to	its	ordinal	number

Exercises
1.	 What	is	wrong	with	this	code	(besides	the	inefficiency	noted	at	the

beginning	of	the	chapter)?

if	!	echo	${PATH}	|grep	-q	/usr/games
		PATH=$PATH:/usr/games
fi

2.	 Write	a	function	called	to_lower	that	does	the	opposite	of	the
to_upper	function	in	Listing	7-4.

3.	 Write	a	function,	palindrome,	which	checks	whether	its
command-line	argument	is	a	palindrome	(that	is,	a	word	or	phrase
that	is	spelled	the	same	backward	and	forward).	Note	that	spaces
and	punctuation	are	ignored	in	the	test.	Exit	successfully	if	it	is	a
palindrome.	Include	an	option	to	print	a	message	as	well	as	set	the
return	code.

4.	 Write	two	functions,	ltrim	and	rtrim,	which	trim	characters	in
the	same	manner	as	trim	but	from	only	one	side	of	the	string,	left
and	right,	respectively.

CHAPTER	8

File	Operations	and	Commands
Because	the	shell	is	an	interpreted	language,	it	is	comparatively	slow.	Many	operations	on
files	are	best	done	with	external	commands	that	implicitly	loop	over	the	lines	of	a	file.	At
other	times,	the	shell	itself	is	more	efficient.	This	chapter	looks	at	how	the	shell	works
with	files	–	both	shell	options	that	modify	and	extend	file	name	expansion	and	shell
options	that	read	and	modify	the	contents	of	files.	Several	external	commands	that	work
on	files	are	explained,	often	accompanied	by	examples	of	when	not	to	use	them.

Some	of	the	scripts	in	this	chapter	use	an	especially	prepared	file	containing	the	King
James	version	of	the	Bible.	The	file	can	be	downloaded	from
http://cfaj.freeshell.org/kjv/kjv.txt.	Download	it	to	your	home
directory	with	wget:

wget	http://cfaj.freeshell.org/kjv/kjv.txt

In	this	file,	each	verse	of	the	Bible	is	on	a	single	line	preceded	by	the	name	of	the	book
and	the	chapter	and	verse	numbers,	all	delimited	with	colons:

Genesis:001:001:In	the	beginning	God	created	the	heaven	and	
the	earth.
Exodus:020:013:Thou	shalt	not	kill.
Exodus:022:018:Thou	shalt	not	suffer	a	witch	to	live.
John:011:035:Jesus	wept.

The	path	to	the	file	will	be	kept	in	the	variable	kjv,	which	will	be	used	whenever	the
file	is	needed.

export	kjv=$HOME/kjv.txt

Reading	a	File
The	most	basic	method	of	reading	the	contents	of	a	file	is	a	while	loop	with	its	input
redirected:

while	read		##	no	name	supplied	so	the	variable	REPLY	is	
used
do
		:	do	something	with	"$REPLY"	here
done	<	"$kjv"

The	file	will	be	stored,	one	line	at	a	time,	in	the	variable	REPLY.	More	commonly,	one

http://cfaj.freeshell.org/kjv/kjv.txt
http://cfaj.freeshell.org/kjv/kjv.txt

or	more	variable	names	will	be	supplied	as	arguments	to	read:

while	read	name	phone
do
		printf	"Name:	%-10s\tPhone:	%s\n"	"$name"	"$phone"
done	<	"$file"

The	lines	are	split	using	the	characters	in	IFS	as	word	delimiters.	If	the	file	contained
in	$file	contains	these	two	lines:

John	555-1234
Jane	555-7531

the	output	of	the	previous	snippet	will	be	as	follows:

Name:	John						Phone:	555-1234
Name:	Jane						Phone:	555-7531

By	changing	the	value	of	IFS	before	the	read	command,	other	characters	can	be
used	for	word	splitting.	The	same	script,	using	only	a	hyphen	in	IFS	instead	of	the	default
space,	tab,	and	newline,	would	produce	this:

$	while	IFS=-	read	name	phone
>	do
>		printf	"Name:	%-10s\tPhone:	%s\n"	"$name"	"$phone"
>	done	<	"$file"
Name:	John	555		Phone:	1234
Name:	Jane	555		Phone:	7531

Placing	an	assignment	in	front	of	a	command	causes	it	to	be	local	to	that	command
and	does	not	change	its	value	elsewhere	in	the	script.

To	read	the	King	James	version	of	the	Bible	(henceforth	referred	to	as	KJV),	the	field
separator	IFS	should	be	set	to	a	colon	so	that	lines	can	be	split	into	book,	chapter,	verse,
and	text,	each	being	assigned	to	a	separate	variable	(Listing	8-1).

Listing	8-1.	kjvfirsts,	Print	Book,	Chapter,	Verse,	and	First	Words	from	KJV

while	IFS=:	read	book	chapter	verse	text
do
		firstword=${text%%	*}
		printf	"%s	%s:%s	%s\n"	"$book"	"$chapter"	"$verse"	
"$firstword"
done	<	"$kjv"

The	output	(with	more	than	31,000	lines	replaced	by	a	single	ellipsis)	looks	like	this:

Genesis	001:001	In
Genesis	001:002	And
Genesis	001:003	And

...
Revelation	022:019	And
Revelation	022:020	He
Revelation	022:021	The

The	awk	programming	language	is	often	used	in	shell	scripts	when	the	shell	itself	is
too	slow	(as	in	this	case)	or	when	features	not	present	in	the	shell	are	required	(for
example,	arithmetic	using	decimal	fractions).	The	language	is	explained	in	somewhat
more	detail	in	the	following	section.

External	Commands
You	can	accomplish	many	tasks	using	the	shell	without	calling	any	external	commands.
Some	use	one	or	more	commands	to	provide	data	for	a	script	to	process.	Other	scripts	are
best	written	with	nothing	but	external	commands.

Often,	the	functionality	of	an	external	command	can	be	duplicated	within	the	shell,
and	sometimes	it	cannot.	Sometimes	using	the	shell	is	the	most	efficient	method;
sometimes	it	is	the	slowest.	Here	I’ll	cover	a	number	of	external	commands	that	process
files	and	show	how	they	are	used	(and	often	misused).	These	are	not	detailed	explanations
of	the	commands;	usually	they	are	an	overview	with,	in	most	cases,	a	look	at	how	they	are
used	–	or	misused	–	in	shell	scripts.

cat
One	of	the	most	misused	commands,	cat	reads	all	the	files	on	its	command	line	and
prints	their	contents	to	the	standard	output.	If	no	file	names	are	supplied,	cat	reads	the
standard	input.	It	is	an	appropriate	command	when	more	than	one	file	needs	to	be	read	or
when	a	file	needs	to	be	included	with	the	output	of	other	commands:

cat	*.txt	|	tr	aeiou	AEIOU	>	upvowel.txt

{
		date																##	Print	the	date	and	time
		cat	report.txt						##	Print	the	contents	of	the	file
		printf	"Signed:	"			##	Print	"Signed:	"	without	a	newline
		whoami														##	Print	the	user's	login	name
}	|	mail	-s	"Here	is	the	report"	paradigm@example.com

It	is	not	necessary	when	the	file	or	files	could	have	been	placed	on	the	command	line:

cat	thisfile.txt	|	head	-n	25	>	thatfile.txt		##	WRONG
head	-n	25	thisfile.txt	>	thatfile.txt								##	CORRECT

It	is	useful	when	more	than	one	file	(or	none)	needs	to	be	supplied	to	a	command	that
cannot	take	a	file	name	as	an	argument	or	can	take	only	a	single	file,	as	in	redirection.	It	is
useful	when	one	or	more	file	names	may	or	may	not	be	on	the	command	line.	If	no	files

mailto:paradigm@example.com

are	given,	the	standard	input	is	used:

cat	"$@"	|	while	read	x;	do	whatever;	done

The	same	thing	can	be	done	using	process	substitution,	the	advantage	being	that
variables	modified	within	the	while	loop	will	be	visible	to	the	rest	of	the	script.	The
disadvantage	is	that	it	makes	the	script	less	portable.

while	read	x;	do	:	whatever;	done	<	<(cat	"$@")

Another	frequent	misuse	of	cat	is	to	use	the	output	as	a	list	with	for:

for	line	in	$(cat	"$kjv");	do	n=$((${n:-0}	+	1));	done

That	script	does	not	put	lines	into	the	line	variable;	it	reads	each	word	into	it.	The
value	of	n	will	be	795989,	which	is	the	number	of	words	in	the	file.	There	are	31,102	lines
in	the	file.	(And	if	you	really	wanted	that	information,	you	would	use	the	wc	command.)

head
By	default,	head	prints	the	first	ten	lines	of	each	file	on	the	command	line,	or	from	the
standard	input	if	no	file	name	is	given.	The	-n	option	changes	that	default:

$	head	-n	1	"$kjv"
Genesis:001:001:In	the	beginning	God	created	the	heaven	and	
the	earth.

The	output	of	head,	like	that	of	any	command,	can	be	stored	in	a	variable:

filetop=$(head	-n	1	"$kjv")

In	that	instance,	head	is	unnecessary;	this	shell	one	liner	does	the	same	thing	without
any	external	command:

read	filetop	<	"$kjv"

Using	head	to	read	one	line	is	especially	inefficient	when	the	variable	then	has	to	be
split	into	its	constituent	parts:

book=${filetop%%:*}
text=${filetop##*:}

That	can	be	accomplished	much	more	rapidly	with	read:

$	IFS=:	read	book	chapter	verse	text	<	"$kjv"
$	sa	"$book"	"$chapter"	"$verse"	"${text%%	*}"
:Genesis:
:001:
:001:
:In:

Even	reading	multiple	lines	into	variables	can	be	faster	using	the	shell	instead	of
head:

{
		read	line1
		read	line2
		read	line3
		read	line4
}	<	"$kjv"

or,	you	can	put	the	lines	into	an	array:

for	n	in	{1..4}
do
		read	lines[${#lines[@]}]
done	<	"$kjv"

In	bash-4.x,	the	new	builtin	command	mapfile	can	also	be	used	to	populate	an
array:

mapfile	-tn	4	lines	<	"$kjv"

The	mapfile	command	is	explained	in	more	detail	in	Chapter	13.

touch
The	default	action	of	touch	is	to	update	the	timestamp	of	a	file	to	the	current	time,
creating	an	empty	file	if	it	doesn’t	exist.	An	argument	to	the	-d	option	changes	the
timestamp	to	that	time	rather	than	the	present.	It	is	not	necessary	to	use	touch	to	create	a
file.	The	shell	can	do	it	with	redirection:

>	filename

Even	to	create	multiple	files,	the	shell	is	faster:

for	file	in	{a..z}$RANDOM
do
		>	"$file"
done

ls
Unless	used	with	one	or	more	options,	the	ls	command	offers	little	functional	advantage
over	shell	file	name	expansion.	Both	list	files	in	alphabetical	order.	If	you	want	the	files
displayed	in	neat	columns	across	the	screen,	ls	is	useful.	If	you	want	to	do	anything	with
those	file	names,	it	can	be	done	better,	and	often	more	safely,	in	the	shell.

With	options,	however,	it’s	a	different	matter.	The	-l	option	prints	more	information

about	the	file,	including	its	permissions,	owner,	size,	and	date	of	modification.	The	-t
option	sorts	the	files	by	last	modification	time,	most	recent	first.	The	order	(whether	by
name	or	by	time)	is	reversed	with	the	-r	option.

ls	is	many	times	misused	in	a	manner	that	can	break	a	script.	File	names	containing
spaces	are	an	abomination,	but	they	are	so	common	nowadays	that	scripts	must	take	their
possibility	(or	would	it	be,	say,	inevitability?)	into	account.	In	the	following	construction
(that	is	seen	all	too	often),	not	only	is	ls	unnecessary,	but	its	use	will	break	the	script	if
any	file	names	contain	spaces:

for	file	in	$(ls);	do

The	result	of	command	substitution	is	subject	to	word	splitting,	so	file	will	be
assigned	to	each	word	in	a	file	name	if	it	contains	spaces:

$	touch	{zzz,xxx,yyy}\	a		##	create	3	files	with	a	space	in	
their	names
$	for	file	in	$(ls	*\	*);	do	echo	"$file";	done
xxx
a
yyy
a
zzz
a

On	the	other	hand,	using	file	name	expansion	gives	the	desired	(that	is,	correct)
results:

$	for	file	in	*\	*;	do	echo	"$file";	done
xxx	a
yyy	a
zzz	a

cut
The	cut	command	extracts	portions	of	a	line,	specified	either	by	character	or	by	field.
Cut	reads	from	files	listed	on	the	command	line	or	from	the	standard	input	if	no	files	are
specified.	The	selection	to	be	printed	is	done	by	using	one	of	three	options,	-b,	-c,	and	-
f,	which	stand	for	bytes,	characters,	and	fields.	Bytes	and	characters	differ	only	when
used	in	locales	with	multibyte	characters.	Fields	are	delimited	by	a	single	tab	(consecutive
tabs	delimit	empty	fields),	but	that	can	be	changed	with	the	-d	option.

The	-c	option	is	followed	by	one	or	more	character	positions.	Multiple	columns	(or
fields	when	the	-f	option	is	used)	can	be	expressed	by	a	comma-separated	list	or	by	a
range:

$	cut	-c	22	"$kjv"	|	head	-n3
e

h
o
$	cut	-c	22,24,26	"$kjv"	|	head	-n3
ebg
h	a
o	a
$	cut	-c	22-26	"$kjv"	|	head	-n3
e	beg
he	ea
od	sa

A	frequent	misuse	of	cut	is	to	extract	a	portion	of	a	string.	Such	manipulations	can	be
done	with	shell	parameter	expansion.	Even	if	it	takes	two	or	three	steps,	it	will	be	much
faster	than	calling	an	external	command.

$	boys="Brian,Carl,Dennis,Mike,Al"
$	printf	"%s\n"	"$boys"	|	cut	-d,	-f3		##	WRONG
Dennis
$	IFS=,										##	Better,	no	external	command	used
$	boyarray=($boys)
$	printf	"%s\n"	"${boyarray[2]}"
Dennis
$	temp=${boys#*,*,}	##	Better	still,	and	more	portable
$	printf	"%s\n"	"${temp%%,*}"
Dennis

wc
To	count	the	number	of	lines,	words,	or	bytes	in	a	file,	use	wc.	By	default,	it	prints	all
three	pieces	of	information	in	that	order	followed	by	the	name	of	the	file.	If	multiple	file
names	are	given	on	the	command	line,	it	prints	a	line	of	information	for	each	one	and	then
the	total:

$	wc	"$kjv"	/etc/passwd
		31102		795989	4639798	/home/chris/kjv.txt
					50					124				2409	/etc/passwd
		31152		796113	4642207	total

If	there	are	no	files	on	the	command	line,	cut	reads	from	the	standard	input:

$	wc	<	"$kjv"
		31102		795989	4639798

The	output	can	be	limited	to	one	or	two	pieces	of	information	by	using	the	-c,	-w,	or
-l	option.	If	any	options	are	used,	wc	prints	only	the	information	requested:

$	wc	-l	"$kjv"
31102	/home/chris/kjv.txt

Newer	versions	of	wc	have	another	option,	-m,	which	prints	the	number	of	characters,
which	will	be	less	than	the	number	of	bytes	if	the	file	contains	multibyte	characters.	The
default	output	remains	the	same,	however.

As	with	so	many	commands,	wc	is	often	misused	to	get	information	about	a	string
rather	than	a	file.	To	get	the	length	of	a	string	held	in	a	variable,	use	parameter	expansion:
${#var}.	To	get	the	number	of	words,	use	set	and	the	special	parameter	$#:

set	-f
set—$var
echo	$#

To	get	the	number	of	lines,	use	this:

IFS=$'\n'
set	-f
set—$var
echo	$#

Regular	Expressions
Regular	expressions	(often	called	regexes	or	regexps)	are	a	more	powerful	form	of	pattern
matching	than	file	name	globbing	and	can	express	a	much	wider	range	of	patterns	more
precisely.	They	range	from	very	simple	(a	letter	or	number	is	a	regex	that	matches	itself)
to	the	mind-bogglingly	complex.	Long	expressions	are	built	with	a	concatenation	of
shorter	expressions	and,	when	broken	down,	are	not	hard	to	understand.

There	are	similarities	between	regexes	and	file-globbing	patterns:	a	list	of	characters
within	square	brackets	matches	any	of	the	characters	in	the	list.	An	asterisk	matches	zero
or	more	–	not	any	character	as	in	file	expansion	–	of	the	preceding	character.	A	dot
matches	any	character,	so	.*	matches	any	string	of	any	length,	much	as	an	asterisk	does
in	a	globbing	pattern.

Three	important	commands	use	regular	expressions:	grep,	sed,	and	awk.	The	first	is
used	for	searching	files,	the	second	for	editing	files,	and	the	third	for	almost	anything
because	it	is	a	complete	programming	language	in	its	own	right.

grep
grep	searches	files	on	the	command	line,	or	the	standard	input	if	no	files	are	given,	and
prints	lines	matching	a	string	or	regular	expression.

$	grep	':0[57]0:001:'	"$kjv"	|	cut	-c	-78
Genesis:050:001:And	Joseph	fell	upon	his	father's	face,	and	
wept	upon	him,	and
Psalms:050:001:The	mighty	God,	even	the	LORD,	hath	spoken,	
and	called	the	eart

Psalms:070:001:MAKE	HASTE,	O	GOD,	TO	DELIVER	ME;	MAKE	HASTE	
TO	HELP	ME,	O	LORD
Isaiah:050:001:Thus	saith	the	LORD,	Where	is	the	bill	of	
your	mother's	divorce
Jeremiah:050:001:The	word	that	the	LORD	spake	against	
Babylon	and	against	the

The	shell	itself	could	have	done	the	job:

while	read	line
do
		case	$line	in
				0[57]0:001:)	printf	"%s\n"	"${line:0:78}"	;;
		esac
done	<	"$kjv"

but	it	takes	many	times	longer.

Often	grep	and	other	external	commands	are	used	to	select	a	small	number	of	lines
from	a	file	and	pipe	the	results	to	a	shell	script	for	further	processing:

$	grep	'Psalms:023'	"$kjv"	|
>	{
>	total=0
>	while	IFS=:	read	book	chapter	verse	text
>	do
>			set—$text		##	put	the	verse	into	the	positional	
parameters
>			total=$(($total	+	$#))	##	add	the	number	of	parameters
>	done
>	echo	$total
}
118

grep	should	not	be	used	to	check	whether	one	string	is	contained	in	another.	For	that,
there	is	case	or	bash’s	expression	evaluator,	[[…]].

sed
For	replacing	a	string	or	pattern	with	another	string,	nothing	beats	the	stream	editor	sed.
It	is	also	good	for	pulling	a	particular	line	or	range	of	lines	from	a	file.	To	get	the	first
three	lines	of	the	book	of	Leviticus	and	convert	the	name	of	the	book	to	uppercase,	you’d
use	this:

$	sed	-n	'/Lev.*:001:001/,/Lev.*:001:003/	
s/Leviticus/LEVITICUS/p'	"$kjv"	|
>	cut	-c	-78
LEVITICUS:001:001:And	the	LORD	called	unto	Moses,	and	spake	

unto	him	out	of	th
LEVITICUS:001:002:Speak	unto	the	children	of	Israel,	and	say	
unto	them,	If	any
LEVITICUS:001:003:If	his	offering	be	a	burnt	sacrifice	of	
the	herd,	let	him	of

The	-n	option	tells	sed	not	to	print	anything	unless	specifically	told	to	do	so;	the
default	is	to	print	all	lines	whether	modified	or	not.	The	two	regexes,	enclosed	in	slashes
and	separated	by	a	comma,	define	a	range	from	the	line	that	matches	the	first	one	to	the
line	that	matches	the	second;	s	is	a	command	to	search	and	replace	and	is	probably	the
one	most	often	used.

When	modifying	a	file,	the	standard	Unix	practice	is	to	save	the	output	to	a	new	file
and	then	move	it	to	the	place	of	the	old	one	if	the	command	is	successful:

sed	's/this/that/g'	"$file"	>	tempfile	&&	mv	tempfile	
"$file"

Some	recent	versions	of	sed	have	an	-i	option	that	will	change	the	file	in	situ.	If
used,	the	option	should	be	given	a	suffix	to	make	a	backup	copy	in	case	the	script	mangles
the	original	irretrievably:

sed	-i.bak	's/this/that/g'	"$file"

More	complicated	scripts	are	possible	with	sed,	but	they	quickly	become	very	hard	to
read.	This	example	is	far	from	the	worst	I’ve	seen,	but	it	takes	much	more	than	a	glance	to
figure	out	what	it	is	doing.	(It	searches	for	Jesus	wept	and	prints	lines	containing	it	along
with	the	lines	before	and	after;	you	can	find	a	commented	version	at
http://www.grymoire.com/Unix/Sed.html.)

sed	-n	'
/Jesus	wept/	!{
				h
}
/Jesus	wept/	{
				N
				x
				G
				p
				a\

				s/.*\n.*\n\(.*\)$/\1/
				h
}'	"$kjv"

As	you’ll	see	shortly,	the	same	program	in	awk	is	comparatively	easy	to	understand.

There	will	be	more	examples	of	sed	in	later	chapters,	so	we’ll	move	on	with	the	usual
admonishment	that	external	commands	should	be	used	on	files,	not	strings.	‘Nuff	sed!

http://www.grymoire.com/Unix/Sed.html

awk
awk	is	a	pattern	scanning	and	processing	language.	An	awk	script	is	composed	of	one	or
more	condition-action	pairs.	The	condition	is	applied	to	each	line	in	the	file	or	files	passed
on	the	command	line	or	to	the	standard	input	if	no	files	are	given.	When	the	condition
resolves	successfully,	the	corresponding	action	is	performed.

The	condition	may	be	a	regular	expression,	a	test	of	a	variable,	an	arithmetic
expression,	or	anything	that	produces	a	non-zero	or	nonempty	result.	It	may	represent	a
range	by	giving	two	condition	separated	by	a	comma;	once	a	line	matches	the	first
condition,	the	action	is	performed	until	a	line	matches	the	second	condition.	For	example,
this	condition	matches	input	lines	10	to	20	inclusive	(NR	is	a	variable	that	contains	the
current	line	number):

NR	==	10,	NR	==	20

There	are	two	special	conditions,	BEGIN	and	END.	The	action	associated	with	BEGIN
is	performed	before	any	lines	are	read.	The	END	action	is	performed	after	all	the	lines
have	been	read	or	another	action	executes	an	exit	statement.

The	action	can	be	any	computation	task.	It	can	modify	the	input	line,	it	can	save	it	in	a
variable,	it	can	perform	a	calculation	on	it,	it	can	print	some	or	all	of	the	line,	and	it	can	do
anything	else	you	can	think	of.

Either	the	condition	or	the	action	may	be	missing.	If	there	is	no	condition,	the	action	is
applied	to	all	lines.	If	there	is	no	action,	matching	lines	are	printed.

Each	line	is	split	into	fields	based	on	the	contents	of	the	variable	FS.	By	default,	it	is
any	whitespace.	The	fields	are	numbered:	$1,	$2,	and	so	on.	$0	contains	the	entire	line.
The	variable	NF	contains	the	number	of	fields	in	the	line.

In	the	awk	version	of	the	kjvfirsts	script,	the	field	separator	is	changed	to	a	colon
using	the	-F	command-line	option	(Listing	8-2).	There	is	no	condition,	so	the	action	is
performed	for	every	line.	It	splits	the	fourth	field,	the	verse	itself,	into	words,	and	then	it
prints	the	first	three	fields	and	the	first	word	of	the	verse.

Listing	8-2.	kjvfirsts-awk,	Print	Book,	Chapter,	Verse,	and	First	Words	from	the
KJV

awk	-F:	'		##	-F:	sets	the	field	delimiter	to	a	colon
{
	##	split	the	fourth	field	into	an	array	of	words
	split($4,words,"	")
	##	printf	the	first	three	fields	and	the	first	word	of	the	
fourth
	printf	"%s	%s:%s	%s\n",	$1,	$2,	$3,	words[1]
}'	"$kjv"

To	find	the	shortest	verse	in	the	KJV,	the	next	script	checks	the	length	of	the	fourth

field.	If	it	is	less	than	the	value	of	the	shortest	field	seen	so	far,	its	length	(minus	the	length
of	the	name	of	the	book),	measured	with	the	length()	function,	is	stored	in	min,	and
the	line	is	stored	in	verse.	At	the	end,	the	line	stored	in	verse	is	printed.

$	awk	-F:	'BEGIN	{	min	=	999	}	##	set	min	larger	than	any	
verse	length
length($0)	-	length($1)	<	min	{
			min	=	length($0)	–	length($1)
			verse	=	$0
	}
END	{	print	verse	}'	"$kjv"
John:011:035:Jesus	wept.

As	promised,	here	is	an	awk	script	that	searches	for	a	string	(in	this	case,	Jesus	wept)
and	prints	it	along	with	the	previous	and	next	lines:

awk	'/Jesus	wept/	{
			print	previousline
			print	$0
			n	=	1
			next
		}
n	==	1	{
			print	$0
			print	"---"
			n	=	2
		}
		{
			previousline	=	$0
		}'	"$kjv"

To	total	a	column	of	numbers:

$	printf	"%s\n"	{12..34}	|	awk	'{	total	+=	$1	}
>	END	{	print	total	}'
529

This	has	been	a	very	rudimentary	look	at	awk.	There	will	be	a	few	more	awk	scripts
later	in	the	book,	but	for	a	full	understanding,	there	are	various	books	on	awk:

The	AWK	Programming	Language	by	the	language’s	inventors	(Alfred
V.	Aho,	Peter	J.	Weinberger,	and	Brian	W.	Kernighan)

sed	&	awk	by	Dale	Dougherty	and	Arnold	Robbins

Effective	awk	Programming	by	Arnold	Robbins

Or	start	with	the	main	page.

File	Name	Expansion	Options
To	show	you	the	effects	of	the	various	file	name	expansion	options,	the	sa	command
defined	in	Chapter	4	as	well	as	pr4,	a	function	that	prints	its	arguments	in	four	columns
across	the	screen	will	be	used.	The	script	sa	is	implemented	as	a	function,	along	with
pr4	and	have	been	added	to	the	.bashrc	file:

sa()
{
				pre=:	post=:
				printf	"$pre%s$post\n"	"$@"
}

The	pr4	function	prints	its	argument	in	four	equal	columns,	truncating	any	string	that
is	too	long	for	its	allotted	space:

pr4()
{
				##	calculate	column	width
				local	width=$(((${COLUMNS:-80}	-	2)	/	4))

				##	Note	that	braces	are	necessary	on	the	second	$width	to	
separate	it	from	's'
				local	s=%-$width.${width}s
				printf	"$s	$s	$s	$s\n"	"$@"
}

There	are	six	shell	options	that	affect	the	way	in	which	file	names	are	expanded.	They
are	enabled	and	disabled	with	the	shopt	command	using	options	-s	and	-u,
respectively:

shopt	-s	extglob						##	enable	the	extglob	option
shopt	-u	nocaseglob			##	disable	the	nocaseglob	option

To	demonstrate	the	various	globbing	options,	we’ll	create	a	directory,	cd	to	it,	and	put
some	empty	files	in	it:

$	mkdir	"$HOME/globfest"	&&	cd	"$HOME/globfest"	||	echo	
Failed	>&2
$	touch	{a..f}{0..9}{t..z}$RANDOM	.{a..f}{0..9}$RANDOM

This	has	created	420	files	beginning	with	a	letter	and	60	beginning	with	a	dot.	There
are,	for	example,	7	files	beginning	with	a1:

$	sa	a1*
:a1t18345:
:a1u18557:

:a1v12490:
:a1w22008:
:a1x6088:
:a1y28651:
:a1z18318:

nullglob
Normally,	when	a	wildcard	pattern	doesn’t	match	any	files,	the	pattern	remains	the	same:

$	sa	*xy
:*xy:

If	the	nullglob	option	is	set	and	there	is	no	match,	an	empty	string	is	returned:

$	shopt	-s	nullglob
$	sa	*xy
::
$	shopt	-u	nullglob			##	restore	the	default	behavior

failglob
If	the	failglob	option	is	set	and	no	files	match	a	wildcard	pattern,	an	error	message	is
printed:

$	shopt	-s	failglob
$	sa	*xy
bash:	no	match:	*xy
$	shopt	-u	failglob			##	restore	the	default	behavior

dotglob
A	wildcard	at	the	beginning	of	a	file	name	expansion	pattern	does	not	match	file	names
that	begin	with	a	dot.	These	are	intended	to	be	“hidden”	files	and	are	not	matched	by
standard	file	name	expansion:

$	sa	*	|	wc	-l		##	not	dot	files
420

To	match	“dot”	files,	the	leading	dot	must	be	given	explicitly:

$	sa	.*	|	wc	-l	##	dot	files;	includes	.	and	..
62

The	touch	command	at	the	beginning	of	this	section	created	60	dot	files.	The	.*
expansion	shows	62	because	it	includes	the	hard-linked	entries	.	and	..	that	are	created
in	all	subdirectories.

The	dotglob	option	causes	dot	files	to	be	matched	just	like	any	other	files:

$	shopt	-s	dotglob
$	printf	"%s\n"	*	|	wc	-l
480

Expansions	of	*,	with	dotglob	enabled,	do	not	include	the	hard	links	.	and	...

extglob
When	extended	globbing	is	turned	on	with	shopt	-s	extglob,	five	new	file	name
expansion	operators	are	added.	In	each	case,	the	pattern-list	is	a	list	of	pipe-
separated	globbing	patterns.	It	is	enclosed	in	parentheses,	which	are	preceded	by	?,	*,	+,
@,	or	!,	for	example,	+(a[0-2]|34|2u),	?(john|paul|george|ringo).

To	demonstrate	extended	globbing,	remove	the	existing	files	in	$HOME/globfest,
and	create	a	new	set:

$	cd	$HOME/globfest
$	rm	*
$	touch	{john,paul,george,ringo}{john,paul,george,ringo}
{1,2}$RANDOM\
>	{john,paul,george,ringo}{1,2}$RANDOM{,,}	{1,2}$RANDOM{,,,}

?(pattern-list)
This	pattern-list	matches	zero	or	one	occurrence	of	the	given	patterns.	For	example,
the	pattern	?(john|paul)2	matches	john2,	paul2,	and	2:

$	pr4	?(john|paul)2*
222844														228151														231909														232112
john214726										john216085										john26														paul218047
paul220720										paul231051

*(pattern-list)
This	is	like	the	previous	form,	but	it	matches	zero	or	more	occurrences	of	the	given
patterns;	*(john|paul)2	will	match	all	files	matched	in	the	previous	example,	as	well
as	those	that	have	either	pattern	more	than	once	in	succession:

pr4	*(john|paul)2*
222844														228151														231909														232112
john214726										john216085										john26														johnjohn23185
johnpaul25000							
paul218047										paul220720										paul231051
pauljohn221365						paulpaul220101

@(pattern-list)

The	pattern	@(john|paul)2	matches	files	that	have	a	single	instance	of	either	pattern
followed	by	a	2:

$	pr4	@(john|paul)2*
john214726										john216085										john26														paul218047
paul220720										paul231051

+(pattern-list)
The	pattern	+(john|paul)2	matches	files	that	begin	with	one	or	more	instances	of	a
pattern	in	the	list	followed	by	a	2:

$	pr4	+(john|paul)2*
john214726										john216085										john26														johnjohn23185
johnpaul25000							
paul218047										paul220720										paul231051
pauljohn221365						paulpaul220101

!(pattern-list)
The	last	extended	globbing	pattern	matches	anything	except	one	of	the	given	patterns.	It
differs	from	the	rest	in	that	each	pattern	must	match	the	entire	file	name.	The	pattern	!
(r|p|j)*	will	not	exclude	files	beginning	with	r,	p,	or	j	(or	any	others),	but	the
following	pattern	will	(and	will	also	exclude	files	beginning	with	a	number):

$	pr4	!([jpr0-9]*)
george115425								george132443								george1706										george212389
george223300								george27803									georgegeorge16122			
georgegeorge28573
georgejohn118699				georgejohn29502					georgepaul12721					
georgepaul222618
georgeringo115095			georgeringo227768

	Note		The	explanation	given	here	for	the	last	of	these	patterns	is	simplified	but	should
be	enough	to	cover	its	use	in	the	vast	majority	of	cases.	For	a	more	complete	explanation,
see	Chapter	9	in	From	Bash	to	Z	Shell	(Apress,	2005).

nocaseglob
When	the	nocaseglob	option	is	set,	lowercase	letters	match	uppercase	letters,	and	vice
versa:

$	cd	$HOME/globfest
$	rm	-rf	*
$	touch	{{a..d},{A..D}}$RANDOM
$	pr4	*

A31783														B31846														C17836														D14046
a31882														b31603														c29437														d26729

The	default	behavior	is	for	a	letter	to	match	only	those	of	the	same	case:

$	pr4	[ab]*
a31882														b31603

The	nocaseglob	option	causes	a	letter	to	match	both	cases:

$	shopt	-s	nocaseglob
$	pr4	[ab]*
A31783														B31846														a31882														b31603

globstar
Introduced	in	bash-4.0,	the	globstar	option	allows	the	use	of	**	to	descend
recursively	into	directories	and	subdirectories	looking	for	matching	files.	As	an	example,
create	a	hierarchy	of	directories:

$	cd	$HOME/globfest
$	rm	-rf	*
$	mkdir	-p	{ab,ac}$RANDOM/${RANDOM}{q1,q2}/{z,x}$(($RANDOM	
%	10))

The	double	asterisk	wildcard	expands	to	all	the	directories:

$	shopt	-s	globstar
$	pr4	**
ab11278													ab11278/22190q1					
ab11278/22190q1/z7		ab1394
ab1394/10985q2						ab1394/10985q2/x5			
ab4351														ab4351/23041q1
ab4351/23041q1/x1			ab4424														ab4424/8752q2							
ab4424/8752q2/z9
ac11393													ac11393/20940q1					
ac11393/20940q1/z4		ac17926
ac17926/19435q2					ac17926/19435q2/x0		ac23443													
ac23443/5703q2
ac23443/5703q2/z4			
ac5662														ac5662/17958q1						ac5662/17958q1/x4

Summary
Many	external	commands	deal	with	files.	In	this	chapter,	the	most	important	ones	and
those	that	are	most	often	misused	have	been	covered.	They	have	not	been	covered	in
detail,	and	some	emphasis	has	been	placed	on	how	to	avoid	calling	them	when	the	shell

can	do	the	same	job	more	efficiently.	Basically,	it	boils	down	to	this:	use	external
commands	to	process	files,	not	strings.

Shell	Options
nullglob:	Returns	null	string	if	no	files	match	pattern

failglob:	Prints	error	message	if	no	files	match

dotglob:	Includes	dot	files	in	pattern	matching

extglob:	Enables	extended	file	name	expansion	patterns

nocaseglob:	Matches	files	ignoring	case	differences

globstar:	Searches	file	hierarchy	for	matching	files

External	Commands
awk:	Is	a	pattern	scanning	and	processing	language

cat:	Concatenates	files	and	print	on	the	standard	output

cut:	Removes	sections	from	each	line	of	one	or	more	files

grep:	Prints	lines	matching	a	pattern

head:	Outputs	the	first	part	of	one	or	more	files

ls:	Lists	directory	contents

sed:	Is	a	stream	editor	for	filtering	and	transforming	text

touch:	Changes	file	timestamps

wc:	Counts	lines,	words,	and	characters	in	one	or	more	files

Exercises
1.	 Modify	the	kjvfirsts	script:	accept	a	command-line	argument

that	specifies	how	many	chapters	are	to	be	printed.

2.	 Why	are	the	chapter	and	verse	numbers	in	kjvfirsts	formatted
with	%s	instead	of	%d?

3.	 Write	an	awk	script	to	find	the	longest	verse	in	KJV.

CHAPTER	9

Reserved	Words	and	Built-In	Commands
There	are	almost	60	built-in	commands	and	more	than	20	reserved	words	in	bash.	Some
of	them	are	indispensable,	and	some	are	rarely	used	in	scripts.	Some	are	used	primarily	at
the	command	line,	and	some	are	seldom	seen	anywhere.	Some	have	been	discussed
already,	and	others	will	be	used	extensively	in	future	chapters.

The	reserved	words	(also	called	keywords)	are	!,	case,	coproc,	do,	done,	elif,
else,	esac,	fi,	for,	function,	if,	in,	select,	then,	until,	while,	{,	},
time,	[[,	and]].	All	except	coproc,	select,	and	time	have	been	covered	earlier	in
the	book.

In	addition	to	the	standard	commands,	new	built-in	commands	can	be	dynamically
loaded	into	the	shell	at	runtime.	The	bash	source	code	package	has	more	than	20	such
commands	ready	to	be	compiled.

Because	keywords	and	built-in	commands	are	part	of	the	shell	itself,	they	execute
much	faster	than	external	commands.	They	do	not	have	to	start	a	new	process,	and	they
have	access	to,	and	can	change,	the	shell’s	environment.

This	chapter	looks	at	some	of	the	more	useful	reserved	words	and	built-in	commands,
examining	some	in	detail	and	some	with	a	summary;	a	few	are	deprecated.	Many	more	are
described	elsewhere	in	the	book.	For	the	rest,	there	is	the	builtins	man	page	and	the
help	built-in.

help,	Display	Information	About	Built-In
Commands
The	help	command	prints	brief	information	about	the	usage	of	built-in	commands	and
reserved	words.	With	the	-s	option,	it	prints	a	usage	synopsis.

Two	new	options	are	available	with	bash-4.x:	-d	and	-m.	The	first	prints	a	short,
one-line	description	of	the	command;	the	latter	formats	the	output	in	the	style	of	a	man
page:

$	help	-m	help
NAME
				help	-	Display	information	about	builtin	commands.

SYNOPSIS
				help	[-dms]	[pattern…]

DESCRIPTION
				Display	information	about	builtin	commands.

				Displays	brief	summaries	of	builtin	commands.	If	PATTERN	
is
				specified,	gives	detailed	help	on	all	commands	matching	
PATTERN,
				otherwise	the	list	of	help	topics	is	printed.

				Options:
						-d								output	short	description	for	each	topic
						-m								display	usage	in	pseudo-manpage	format
						-s								output	only	a	short	usage	synopsis	for	each	
topic	matching
								PATTERN

				Arguments:
						PATTERN			Pattern	specifying	a	help	topic

				Exit	Status:
				Returns	success	unless	PATTERN	is	not	found	or	an	invalid	
option	is	given.

SEE	ALSO
				bash(1)

IMPLEMENTATION
				GNU	bash,	version	4.3.30(1)-release	(i686-pc-linux-gnu)
				Copyright	(C)	2013	Free	Software	Foundation,	Inc.
				License	GPLv3+:	GNU	GPL	version	3	or	later	
<http://gnu.org/licenses/gpl.html>

The	pattern	is	a	globbing	pattern,	in	which	*	matches	any	number	of	any	characters
and	[…]	matches	any	single	character	in	the	enclosed	list.	Without	any	wildcard,	a	trailing
*	is	assumed:

$	help	-d	'*le'	tr	##	show	commands	ending	in	le	and	
beginning	with	tr
Shell	commands	matching	keyword	'*le,	tr'

enable	-	Enable	and	disable	shell	builtins.
mapfile	-	Read	lines	from	the	standard	input	into	an	array	
variable.
while	-	Execute	commands	as	long	as	a	test	succeeds.
trap	-	Trap	signals	and	other	events.
true	-	Return	a	successful	result.

http://gnu.org/licenses/gpl.html

time,	Print	Time	Taken	for	Execution	of	a
Command
The	reserved	word,	time,	prints	the	time	it	takes	for	a	command	to	execute.	The
command	can	be	a	simple	or	compound	command	or	a	pipeline.	The	default	output
appears	on	three	lines,	showing	the	real	time,	user	CPU	time,	and	system	CPU	time	that
was	taken	by	the	command:

$	time	echo	{1..30000}	>/dev/null	2>&1

real				0m0.175s
user				0m0.152s
sys					0m0.017s

You	can	modify	this	output	by	changing	the	TIMEFORMAT	variable:

$	TIMEFORMAT='%R	seconds		%P%%	CPU	usage'
$	time	echo	{1..30000}	>/dev/null
0.153	seconds		97.96%	CPU	usage

The	Appendix	contains	a	full	description	of	the	TIMEFORMAT	variable.

A	frequently	asked	question	about	the	time	command	is,	“Why	can’t	I	redirect	the
output	of	time?”	The	answer	demonstrates	a	difference	between	a	reserved	word	and	a
built-in	command.	When	the	shell	executes	a	command,	the	process	is	strictly	defined.	A
shell	keyword	doesn’t	have	to	follow	that	procedure.	In	the	case	of	time,	the	entire
command	line	(with	the	exception	of	the	keyword	itself	but	including	the	redirection)	is
passed	to	the	shell	to	execute.	When	the	command	has	completed,	the	timing	information
is	printed.

To	redirect	the	output	of	time,	enclose	it	in	braces:

$	{	time	echo	{1..30000}	>/dev/null	2>&1	;	}	2>	numlisttime
$	cat	numlisttime
0.193	seconds		90.95%	CPU	usage

read,	Read	a	Line	from	an	Input	Stream
If	read	has	no	arguments,	bash	reads	a	line	from	its	standard	input	stream	and	stores	it
in	the	variable	REPLY.	If	the	input	contains	a	backslash	at	the	end	of	a	line,	it	and	the
following	newline	are	removed,	and	the	next	line	is	read,	joining	the	two	lines:

$	printf	"%s\n"	'			First	line			\'	'			Second	line			'	|	{
>	read
>	sa	"$REPLY"
>	}

:			First	line						Second	line			:

	Note		The	braces	({	})	in	this	and	the	following	snippets	create	a	common	subshell	for
both	the	read	and	sa	commands.	Without	them,	read	would	be	in	a	subshell	by	itself,
and	sa	would	not	see	the	new	value	of	REPLY	(or	of	any	other	variable	set	in	the
subshell).

Only	one	option,	-r,	is	part	of	the	POSIX	standard.	The	many	bash	options	(-a,	-d,
-e,	-n,	-p,	-s,	-n,	-t,	-u,	and,	new	to	bash-4.x,	-i)	are	part	of	what	makes	this
shell	work	so	well	for	interactive	scripts.

-r,	Read	Backslashes	Literally
With	the	-r	option,	backslashes	are	treated	literally:

$	printf	"%s\n"	'			First	line\'	"			Second	line			"	|	{
>	read	-r
>	read	line2
>	sa	"$REPLY"	"$line2"
>	}
:			First	line\:
:Second	line:

The	second	read	in	that	snippet	supplies	a	variable	to	store	the	input	rather	than	using
REPLY.	As	a	result,	it	applies	word	splitting	to	the	input,	and	leading	and	trailing	spaces
are	removed.	If	IFS	had	been	set	to	an	empty	string,	then	spaces	would	not	be	used	for
word	splitting:

$	printf	"%s\n"	'			First	line\'	"			Second	line			"	|	{
>	read	-r
>	IFS=	read	line2
>	sa	"$REPLY"	"$line2"
>	}
:			First	line\:
:			Second	line			:

If	more	than	one	variable	is	given	on	the	command	line,	the	first	field	is	stored	in	the
first	variable,	and	subsequent	fields	are	stored	in	the	following	variables.	If	there	are	more
fields	than	variables,	the	last	one	stores	the	remainder	of	the	line:

$	printf	"%s\n"	"first	second	third	fourth	fifth	sixth"	|	{
>	read	a	b	c	d
>	sa	"$a"	"$b"	"$c"	"$d"
>	}
:first:
:second:

:third:
:fourth	fifth	sixth:

-e,	Get	Input	with	the	readline	Library
When	at	the	command	line	or	when	using	read	with	the	-e	option	to	get	input	from	the
keyboard,	the	readline	library	is	used.	It	allows	full-line	editing.	The	default	editing
style,	found	in	most	shells,	only	allows	editing	by	erasing	the	character	to	the	left	of	the
cursor	with	a	backspace.

With	-e,	a	backspace	still	works,	of	course,	but	the	cursor	can	be	moved	over	the
entire	line	character	by	character	with	the	arrow	keys	or	with	Ctrl-B	and	Ctrl-N	for
backward	and	forward,	respectively.	Ctrl-A	moves	to	the	beginning	of	the	line,	and	Ctrl-E
moves	to	the	end.

In	addition,	other	readline	commands	can	be	bound	to	whatever	key	combinations
you	like.	I	have	Ctrl-left	arrow	bound	to	backward-word	and	Ctrl-right	arrow	to
forward-word.	Such	bindings	can	be	placed	in	$HOME/.inputrc.	Mine	has	entries
for	two	terminals,	rxvt	and	xterm:

"\eOd":	backward-word					##	rxvt
"\eOc":	forward-word						##	rxvt
"\e[1;5D":	backward-word		##	xterm
"\e[1;5C":	forward-word			##	xterm

To	check	which	code	to	use	in	your	terminal	emulation,	press	^V	(Ctrl-v)	and	then	the
key	combination	you	want.	For	example,	in	xterm,	I	see	^[[1;5D	when	I	press	Ctrl-left
arrow.

-a,	Read	Words	into	an	Array
The	-a	option	assigns	the	words	read	to	an	array,	starting	at	index	zero:

$	printf	"%s\n"	"first	second	third	fourth	fifth	sixth"	|	{
>	read	-a	array
>	sa	"${array[0]}"
>	sa	"${array[5]}"
>	}
:first:
:sixth:

-d	DELIM,	Read	Until	DELIM	Instead	of	a	Newline
The	-d	option	takes	an	argument	that	changes	read’s	delimiter	from	a	newline	to	the
first	character	of	that	argument:

$	printf	"%s\n"	"first	second	third	fourth	fifth	sixth"	|	{

>	read	-d	'	nrh'	a
>	read	-d	'nrh'	b
>	read	-d	'rh'	c
>	read	-d	'h'	d
>	sa	"$a"	"$b"	"$c"	"$d"
>	}
:first:										##	-d	'	'
:seco:											##	-d	n
:d	thi:										##	-d	r
:d	fourt:								##	-d	h

-n	NUM,	Read	a	Maximum	of	NUM	Characters
Most	frequently	used	when	a	single	character	(for	example,	y	or	n)	is	required,	read
returns	after	reading	NUM	characters	rather	than	waiting	for	a	newline.	It	is	often	used	in
conjunction	with	-s.

-s,	Do	Not	Echo	Input	Coming	from	a	Terminal
Useful	for	entering	passwords	and	single-letter	responses,	the	-s	option	suppresses	the
display	of	the	keystrokes	entered.

-p	PROMPT:,	Output	PROMPT	Without	a	Trailing
Newline
The	following	snippet	is	a	typical	use	of	these	three	options:

read	-sn1	-p	"Continue	(y/n)?	"	var
case	${var^}	in		##	bash	4.x,	convert	$var	to	uppercase
		Y)	;;
		N)	printf	"\n%s\n"	"Good	bye."
					exit
					;;
esac

When	run,	it	looks	like	this	when	n	or	N	is	entered:

Continue	(y/n)?
Good	bye.

-t	TIMEOUT,	Only	Wait	TIMEOUT	Seconds	for
Complete	Input

The	-t	option	was	introduced	in	bash-2.04	and	accepts	integers	greater	than	0	as	an
argument.	If	TIMEOUT	seconds	pass	before	a	complete	line	has	been	entered,	read	exits
with	failure;	any	characters	already	entered	are	left	in	the	input	stream	for	the	next
command	that	reads	the	standard	input.

In	bash-4.x,	the	-t	option	accepts	a	value	of	0	and	returns	successfully	if	there	is
input	waiting	to	be	read.	It	also	accepts	fractional	arguments	in	decimal	format:

read	-t	.1	var		##	timeout	after	one-tenth	of	a	second
read	-t	2	var			##	timeout	after	2	seconds

Setting	the	variable	TMOUT	to	an	integer	greater	than	zero	has	the	same	effect	as	the	-
t	option.	In	bash-4.x,	a	decimal	fraction	can	also	be	used:

$	TMOUT=2.5
$	TIMEFORMAT='%R	seconds		%P%%	CPU	usage'
$	time	read
2.500	seconds		0.00%	CPU	usage

-u	FD:	Read	from	File	Descriptor	FD	Instead	of	the
Standard	Input
The	-u	option	tells	bash	to	read	from	a	file	descriptor.	Given	this	file:

First	line
Second	line
Third	line
Fourth	line

this	script	reads	from	it,	alternating	between	redirection	and	the	-u	option,	and	prints	all
four	lines:

exec	3<$HOME/txt
read	var	<&3
echo	"$var"
read	-u3	var
echo	"$var"
read	var	<&3
echo	"$var"
read	-u3	var
echo	"$var"

-i	TEXT,	Use	TEXT	as	the	Initial	Text	for	Readline
New	to	bash-4.x,	the	-i	option,	used	in	conjunction	with	the	-e	option,	places	text	on
the	command	line	for	editing.

$	read	–ei	'Edit	this'	-p	'==>'

would	look	like

==>	Edit	this	•

The	bash-4.x	script	shown	in	Listing	9-1	loops,	showing	a	spinning	busy	indicator,
until	the	user	presses	a	key.	It	uses	four	read	options:	-s,	-n,	-p,	and	-t.

Listing	9-1.	spinner,	Show	Busy	Indicator	While	Waiting	for	User	to	Press	a	Key

spinner="\|/-"														##	spinner
chars=1																					##	number	of	characters	to	
display
delay=.15																			##	time	in	seconds	between	
characters
prompt="press	any	key…"					##	user	prompt
clearline="\e[K"												##	clear	to	end	of	line	(ANSI	
terminal)
CR="\r"																					##	carriage	return

##	loop	until	user	presses	a	key
until	read	-sn1	-t$delay	-p	"$prompt"	var
do
		printf	"		%.${chars}s$CR"	"$spinner"
		temp=${spinner#?}															##	remove	first	character	
from	$spinner
		spinner=$temp${spinner%"$temp"}	##	and	add	it	to	the	end
done
printf	"CRclearline"

	Tip		If	delay	is	changed	to	an	integer,	the	script	will	work	in	all	versions	of	bash,	but
the	spinner	will	be	very	slow.

eval,	Expand	Arguments	and	Execute	Resulting
Command
In	Chapter	5,	the	eval	built-in	was	used	to	get	the	value	of	a	variable	whose	name	was	in
another	variable.	It	accomplished	the	same	task	as	bash’s	variable	expansion,	${!var}.
What	actually	happened	was	that	eval	expanded	the	variable	inside	quotation	marks;	the
backslashes	removed	the	special	meanings	of	the	quotes	and	the	dollar	sign	so	that	they
remained	the	literal	characters.	The	resulting	string	was	then	executed:

$	x=yes
$	a=x
$	eval	"sa	\"\$$a\""	##	executes:	sa	"$x"

yes

Other	uses	of	eval	include	assigning	values	to	a	variable	whose	name	is	contained	in
another	variable	and	obtaining	more	than	one	value	from	a	single	command.

Poor	Man’s	Arrays
Before	bash	had	associative	arrays	(that	is,	before	version	4.0),	they	could	be	simulated
with	eval.	These	two	functions	set	and	retrieve	such	values	and	take	them	for	a	test	run
(Listing	9-2).

Listing	9-2.	varfuncs,	Emulate	Associative	Arrays

validname()	##	Borrowed	from	Chapter	7
	case	$1	in
			[!a-zA-Z_]*	|	*[!a-zA-Z0-9_]*)	return	1;;
	esac

setvar()	#@	DESCRIPTION:	assign	value	to	supplied	name
{								#@	USAGE:	setvar	varname	value
		validname	"$1"	||	return	1
		eval	"$1=\$2"
}

getvar()	#@	DESCRIPTION:	print	value	assigned	to	varname
{								#@	USAGE:	getvar	varname
		validname	"$1"	||	return	1
		eval	"printf	'%s\n'	\"\${$1}\""
}

echo	"Assigning	some	values"
for	n	in	{1..3}
do
		setvar	"var_$n"	"$n	-	$RANDOM"
done
echo	"Variables	assigned;	printing	values:"
for	n	in	{1..3}
do
	getvar	"var_$n"
done

Here’s	a	sample	result	from	a	run:

Assigning	some	values
Variables	assigned;	printing	values:
1	-	28538
2	-	22523

3	-	19362

Note	the	assignment	in	setvar.	Compare	it	with	this:

setvar()	{	eval	"$1=\"$2\"";	}

If	you	substitute	this	function	for	the	one	in	varfuncs	and	run	the	script,	the	results
look	very	much	the	same.	What’s	the	difference?	Let’s	try	it	with	a	different	value,	using
stripped-down	versions	of	the	functions	at	the	command	line:

$	{
>	setvar()	{	eval	"$1=\$2";	}
>	getvar()	{	eval	"printf	'%s\n'	\"\${$1}\"";	}
>	n=1
>	setvar	"qwerty_$n"	'xxx	"	echo	Hello"'
>	getvar	"qwerty_$n"
>	}
xxx	"	echo	hello"
$	{
>	setvar2()	{	eval	"$1=\"$2\"";	}
>	setvar2	"qwerty_$n"	'xxx	"	echo	Hello"'
>	}
Hello

Hello?	Where	did	that	come	from?	With	set	-x,	you	can	see	exactly	what	is
happening:

$	set	-x	##	shell	will	now	print	commands	and	arguments	as	
they	are	executed
$	setvar	"qwerty_$n"	'xxx	"	echo	Hello"'
+	setvar	qwerty_1	'xxx	"	echo	Hello"'
+	eval	'qwerty_1=$2'

The	last	line	is	the	important	one.	There	the	variable	qwerty_1	is	set	to	whatever	is
in	$2.	$2	is	not	expanded	or	interpreted	in	any	way;	its	value	is	simply	assigned	to
qwerty_1:

$	setvar2	"qwerty_$n"	'xxx	"	echo	Hello"'
+	setvar2	qwerty_1	'xxx	"	echo	Hello"'
+	eval	'qwerty_1="xxx	"	echo	Hello""'
++	qwerty_1='xxx	'
++	echo	HelloHello

In	this	version,	$2	is	expanded	before	the	assignment	and	is	therefore	subject	to	word
splitting;	eval	sees	an	assignment	followed	by	a	command.	The	assignment	is	made,	and
then	the	command	is	executed.	In	this	case,	the	command	was	harmless,	but	if	the	value
had	been	entered	by	a	user,	it	could	have	been	something	dangerous.

To	use	eval	safely,	ensure	that	the	unexpanded	variable	is	presented	for	assignment
using	eval	“$var=\$value”.	If	necessary,	combine	multiple	elements	into	one
variable	before	using	eval:

string1=something
string2='rm	-rf	*'	##	we	do	NOT	want	this	to	be	executed
eval	"$var=\"Example=$string1\"	$string2"	##	WRONG!!	Files	
gone!
combo="Example=$string1	$string2"
eval	"$var=\$combo"	##	RIGHT!

The	value	of	the	variable	whose	name	is	in	var	is	now	the	same	as	the	contents	of
combo,	if	var	was	set	to	xx:

$	printf	"%s\n"	"$xx"
Example=something	rm	-rf	*

Setting	Multiple	Variables	from	One	Command
I	have	seen	many	scripts	in	which	several	variables	are	set	to	components	of	the	date	and
time	using	this	command	(or	something	similar):

year=$(date	+%Y)
month=$(date	+%m)
day=$(date	+%d)
hour=$(date	+%H)
minute=$(date	+%M)
second=$(date	+%S)

This	is	inefficient	because	it	calls	the	date	command	six	times.	It	could	also	give	the
wrong	results.	What	happens	if	the	script	is	called	a	fraction	of	a	second	before	midnight
and	the	date	changes	between	setting	the	month	and	day?	The	script	was	called	at	2009-
05-31T23:59:59	(this	is	the	ISO	standard	format	for	date	and	time),	but	the	values
assigned	could	amount	to	2009-05-01T00:00:00.	The	date	that	was	wanted	was	31	May
2009	23:59:59	or	01	June	2009	00:00:00;	what	the	script	got	was	1	May
2009	00:00:00.	That’s	a	whole	month	off!

A	better	method	is	to	get	a	single	string	from	date	and	split	it	into	its	parts:

date=$(date	+%Y-%m-%dT%H:%M:%S)
time=${date#*T}
date=${date%T*}
year=${date%%-*}
daymonth=${date#*-}
month=${daymonth%-*}
day=${daymonth#*-}
hour=${time%%:*}

minsec=${time#*-}
minute=${minsec%-*}
second=${minsec#*-}

Better	still,	use	eval:

$	eval	"$(date	"+year=%Y	month=%m	day=%d	hour=%H	minute=%M	
second=%S")"

The	output	of	the	date	command	is	executed	by	eval:

year=2015	month=04	day=25	hour=22	minute=49second=04

The	last	two	methods	use	only	one	call	to	date,	so	the	variables	are	all	populated
using	the	same	timestamp.	They	both	take	about	the	same	amount	of	time,	which	is	a
fraction	of	the	time	of	multiple	calls	to	date.	The	clincher	is	that	the	eval	method	is	about
one-third	as	long	as	the	string-splitting	method.

type,	Display	Information	About
Commands
Many	people	use	which	to	determine	the	actual	command	that	will	be	used	when	one	is
executed.	There	are	two	problems	with	that.

The	first	is	that	there	are	at	least	two	versions	of	which,	one	of	which	is	a	csh	script
that	doesn’t	work	well	in	a	Bourne-type	shell	(thankfully,	this	version	is	becoming	very
rare).	The	second	problem	is	that	which	is	an	external	command,	and	it	cannot	know
exactly	what	the	shell	will	do	with	any	given	command.	All	it	does	is	search	the
directories	in	the	PATH	variable	for	an	executable	with	the	same	name:

$	which	echo	printf
/bin/echo
/usr/bin/printf

You	know	that	both	echo	and	printf	are	built-in	commands,	but	which	doesn’t
know	that.	Instead	of	which,	use	the	shell	built-in	type:

$	type	echo	printf	sa
echo	is	a	shell	builtin
printf	is	a	shell	builtin
sa	is	a	function
sa	()
{
				pre=:	post=:;
				printf	"$pre%s$post\n"	"$@"
}

When	there’s	more	than	one	possible	command	that	would	be	executed	for	a	given
name,	they	can	all	be	shown	by	using	the	-a	option:

$	type	-a	echo	printf
echo	is	a	shell	builtin
echo	is	/bin/echo
printf	is	a	shell	builtin
printf	is	/usr/bin/printf

The	-p	option	limits	the	search	to	files	and	does	not	give	any	information	about	built-
ins,	functions,	or	aliases.	If	the	shell	executes	the	command	internally,	nothing	will	be
printed	unless	the	-a	option	is	also	given:

$	type	-p	echo	printf	sa	time		##	no	output	as	no	files	
would	be	executed
$	type	-ap	echo	printf	sa	time
/bin/echo
/usr/bin/printf
/usr/jayant/bin/sa
/usr/bin/time

Or	you	can	use	-P:

$	type	-P	echo	printf	sa	time
/bin/echo
/usr/bin/printf
/usr/jayant/bin/sa
/usr/bin/time

The	-t	option	gives	a	single	word	for	each	command,	either	alias,	keyword,
function,	builtin,	file,	or	an	empty	string:

$	type	-t	echo	printf	sa	time	ls
builtin
builtin
function
keyword
file

The	type	command	fails	if	any	of	its	arguments	are	not	found.

builtin,	Execute	a	Built-In	Command
The	argument	to	builtin	is	a	shell	built-in	command	that	will	be	called	rather	than	a
function	with	the	same	name.	It	prevents	the	function	from	calling	itself	and	calling	itself
ad	nauseam:

cd()	#@	DESCRIPTION:	change	directory	and	display	10	most	
recent	files
{				#@	USAGE:	cd	DIR
		builtin	cd	"$@"	||	return	1	##	don't	call	function	
recursively
		ls	-t	|	head
}

command,	Execute	a	Command	or	Display
Information	About	Commands
With	-v	or	-V,	display	information	about	a	command.	Without	options,	call	the	command
from	an	external	file	rather	than	a	function.

pwd,	Print	the	Current	Working	Directory
pwd	prints	the	absolute	pathname	of	the	current	directory.	With	the	-P	option,	it	prints	the
physical	location	with	no	symbolic	links:

$	ls	-ld	$HOME/Book			##	Directory	is	a	symbolic	link
lrwxrwxrwx		1	jayant	jayant	10	Apr	25		2015	
/home/jayant/Book	->	work/Cook
$	cd	$HOME/Book
$	pwd																	##	Include	symbolic	links
/home/jayant/Book
$	pwd	-P														##	Print	physical	location	with	no	
links
/home/jayant/work/Book

unalias,	Remove	One	or	More	Aliases
In	my	~/.bashrc	file,	I	have	unalias	-a	to	remove	all	aliases.	Some	GNU/Linux
distributions	make	the	dangerous	mistake	of	defining	aliases	that	replace	standard
commands.

One	of	the	worst	examples	is	the	redefinition	of	rm	(remove	files	or	directories)	to	rm
-i.	If	a	person,	used	to	being	prompted	before	a	file	is	removed,	puts	rm	*	(for	example)
in	a	script,	all	the	files	will	be	gone	without	any	prompting.	Aliases	are	not	exported	and,
by	default,	not	run	in	shell	scripts,	even	if	defined.

Deprecated	Built-Ins
I	don’t	recommend	using	the	following	deprecated	built-in	commands:

alias:	Defines	an	alias.	As	the	bash	man	page	says,	“For	almost
every	purpose,	aliases	are	superseded	by	shell	functions.”

let:	Evaluates	arithmetic	expressions.	Use	the	POSIX	syntax	$((
expression))	instead.

select:	An	inflexible	menuing	command.	Much	better	menus	can
be	written	easily	with	the	shell.

typeset:	Declares	a	variable’s	attributes	and,	in	a	function,	restricts
a	variable’s	scope	to	that	function	and	its	children.	Use	local	to
restrict	a	variable’s	scope	to	a	function,	and	use	declare	to	set	any
other	attributes	(if	necessary).

Dynamically	Loadable	Built-Ins
Bash	can	load	new	built-in	commands	at	runtime	if	or	when	needed.	The	bash	source
package	has	a	directory	full	of	examples	ready	to	be	compiled.	To	do	that,	download	the
source	from	ftp://ftp.cwru.edu/pub/bash/.	Unpack	the	tarball,	cd	into	the	top
level	directory,	and	run	the	configure	script:

version=4.3	##	or	use	your	bash	version
wget	ftp://ftp.cwru.edu/pub/bash/bash-$version.tar.gz
gunzip	bash-$version.tar.gz
tar	xf	bash-$version.tar
cd	bash-$version
./configure

	Note		It	would	be	recommended	to	use	4.3	as	the	version	since	it	is	the	current	version
and	has	bug	fixes	for	vulnerabilitites	that	were	found	in	earlier	versions.

Think	of	dynamically	loadable	built-ins	as	cutom	libraries	of	commands	that	are	written	in
C	and	available	as	compiled	binaries.	These	can	also	be	shared	with	others	in	the	compiled
form.	When	loaded	they	provide	new	command	or	commands	that	were	originally	not
available	in	Bash.	These	work	like	native	Bash	commands	than	external	scripts	or
programs.

The	configure	script	creates	makefiles	throughout	the	source	tree,	including	one	in
examples/loadables.	In	that	directory	are	the	source	files	for	built-in	versions	of	a
number	of	standard	commands,	as	the	README	file	says,	“whose	execution	time	is
dominated	by	process	startup	time.”	You	can	cd	into	that	directory	and	run	make:

cd	examples/loadables
make

You’ll	now	have	a	number	of	commands	ready	to	load	into	your	shell.	These	include
the	following:

logname		tee							head						mkdir					rmdir					uname
ln							cat							id								whoami

There	are	also	some	useful	new	commands:

print					##	Compatible	with	the	ksh	print	command
finfo					##	Print	file	information
strftime		##	Format	date	and	time

These	built-ins	can	be	loaded	into	a	running	shell	with	the	following	command:

enable	-f	filename	built-in-name

The	files	include	documentation,	and	the	help	command	can	be	used	with	them,	just
as	with	other	built-in	commands:

$	enable	-f	./strftime	strftime
$	help	strftime
strftime:	strftime	format	[seconds]
				Converts	date	and	time	format	to	a	string	and	displays	it	
on	the
				standard	output.		If	the	optional	second	argument	is	
supplied,	it
				is	used	as	the	number	of	seconds	since	the	epoch	to	use	
in	the
				conversion,	otherwise	the	current	time	is	used.

For	information	on	writing	dynamically	loadable	built-in	commands,	see	this	article	at
http://shell.cfajohnson.com/articles/dynamically-loadable/.

Summary
You	learned	about	the	following	commands	in	this	chapter.

Commands	and	Reserved	Words
builtin:	Executes	a	built-in	command

command:	Executes	an	external	command	or	print	information	about
a	command

eval:	Executes	arguments	as	a	shell	command

help:	Displays	information	about	built-in	commands

pwd:	Prints	the	current	working	directory

read:	Reads	a	line	from	the	standard	input	and	splits	it	into	fields

time:	Reports	time	consumed	by	pipeline’s	execution

http://shell.cfajohnson.com/articles/dynamically-loadable/

type:	Displays	information	about	command	type

Deprecated	Commands
alias:	Defines	or	display	aliases

let:	Evaluates	arithmetic	expressions

select:	Selects	words	from	a	list	and	execute	commands

typeset:	Sets	variable	values	and	attributes

Exercise
Write	a	script	that	stores	the	time	it	takes	a	command	(your	choice	of	command)	to	run	in
three	variables,	real,	user,	and	system,	corresponding	to	the	three	default	times	that
time	prints.

CHAPTER	10

Writing	Bug-Free	Scripts	and	Debugging
the	Rest
The	programmer	who	has	never	written	a	buggy	program	is	a	figment	of	someone’s
imagination.	Bugs	are	the	bane	of	a	programmer’s	existence.	They	range	from	simple
typing	errors	to	bad	coding	to	faulty	logic.	Some	are	easily	fixed;	others	can	take	hours	of
hunting.

At	one	end	of	the	spectrum	are	the	syntax	errors	that	prevent	a	script	from	completing
or	running	at	all.	These	may	involve	a	missing	character:	a	space,	a	bracket	or	brace,	a
quotation	mark.	It	may	be	a	mistyped	command	or	variable	name.	It	may	be	a	missing
keyword,	such	as	then	after	elif.

At	the	other	end	of	the	spectrum	are	the	errors	in	logic.	It	may	be	counting	from	1
when	you	should	have	started	at	0,	or	it	may	be	using	-gt	(greater	than)	when	it	should
have	been	-ge	(greater	than	or	equal	to).	It	may	be	a	faulty	formula	(isn’t	Fahrenheit	to
Celsius	(F	–	32)	*	1.8?)	or	using	the	wrong	field	in	a	data	record	(I	thought	the
shell	was	field	5	in	/etc/passwd!).

In	between	the	extremes,	common	errors	include	trying	to	operate	on	the	wrong	type
of	data	(either	the	program	itself	supplied	the	wrong	data	or	an	external	source	did)	and
failing	to	check	that	a	command	succeeds	before	proceeding	to	the	next	step.

This	chapter	looks	at	various	techniques	to	get	a	program	doing	what	it	is	supposed	to
do,	including	the	various	shell	options	for	checking	and	following	a	script’s	progress,
strategically	placing	debugging	instructions,	and,	most	important,	preventing	bugs	in	the
first	place.

Prevention	Is	Better	Than	Cure
It	is	far	better	to	avoid	introducing	bugs	than	to	remove	them.	There’s	no	way	to	guarantee
bug-free	scripts,	but	a	number	of	precautions	can	reduce	the	frequency	of	bugs
considerably.	Making	your	code	easy	to	read	helps.	So	does	documenting	it,	so	that	you
know	what	it’s	for,	what	it	expects,	what	results	it	produces,	and	so	on.

Structure	Your	Programs
The	term	structured	programming	is	applied	to	various	programming	paradigms,	but	they
all	involve	modular	programming—breaking	the	problem	down	into	manageable	parts.	In
developing	a	large	application	with	the	shell,	this	means	either	functions,	separate	scripts,

or	a	combination	of	both.

Even	a	short	program	can	benefit	from	some	structure;	it	should	contain	discrete
sections:

Comments

Initialization	of	variables

Function	definitions

Runtime	configuration	(parse	options,	read	configuration	file,	and	so
on)

Sanity	check	(are	all	values	reasonable?)

Process	information	(calculate,	slice	and	dice	lines,	I/O,	and	so	on)

Using	this	outline,	all	the	components	of	a	short	but	complete	script	are	presented	in
the	following	sections.	There	are	errors	in	the	scripts	provided;	these	will	be	found	and
corrected	using	various	debugging	techniques.

Comments
The	comments	should	include	metadata	about	the	script,	including	a	description,	a
synopsis	of	how	to	call	the	command	or	function,	author,	date	of	creation,	date	of	last
revision,	version	number,	options,	and	any	other	information	that	is	needed	in	order	to	run
the	command	successfully,	as	in	the	following	examples:

#:							Title:	wfe	-	List	words	ending	with	PATTERN
#:				Synopsis:	wfe	[-c|-h|-v]	REGEX
#:								Date:	2009-04-13
#:					Version:	1.0
#:						Author:	Chris	F.A.	Johnson
#:					Options:	-c	-	Include	compound	words
#:														-h	-	Print	usage	information
#:														-v	-	Print	version	number

The	#:	is	used	to	introduce	these	comments	so	that	grep	‘^#:’	wfe	will	extract
all	the	metadata.

Initialization	of	Variables
First,	define	some	variables	containing	metadata.	There	will	be	some	duplication	with	the
previous	comments,	but	these	variables	may	be	needed	later:

##	Script	metadata
scriptname=${0##*/}
description="List	words	ending	with	REGEX"
usage="$scriptname	[-c|-h|-v]	REGEX"
date_of_creation=2009-04-13

version=1.0
author="Chris	F.A.	Johnson"

Then	define	the	default	values,	file	locations,	and	other	information	needed	by	this
script:

##	File	locations
dict=$HOME
wordfile=$dict/singlewords
conpoundfile=$dict/Compounds

##	Default	is	not	to	show	compound	words
compounds=

##	Regular	expression	supplied	on	the	command	line
pattern=$1

Function	Definitions
There	are	three	functions	that	are	part	of	the	original	author’s	scripts	(apart	from	quick-
and-dirty	one-offs).	They	are	die,	usage,	and	version;	they	may	be	included	in	the
script	itself	or	in	a	function	library	sourced	by	the	script.	They	haven’t	been	included	in
the	scripts	for	this	book;	that	would	be	unnecessarily	repetitive.	Examples	of	these	are:

##	Function	definitions
die()	#@	DESCRIPTION:	print	error	message	and	exit	with	
supplied	return	code
{					#@	USAGE:	die	STATUS	[MESSAGE]
		error=$1
		shift
		[-n	"$*"]	printf	"%s\n"	"$*"	>&2
		exit	"$error"
}

usage()	#@	DESCRIPTION:	print	usage	information
{							#@	USAGE:	usage
								#@	REQUIRES:	variable	defined:	$scriptname
		printf	"%s	-	%s\n"	"$scriptname"	"$description"
		printf	"USAGE:	%s\n"	"$usage"
}

version()	#@	DESCRIPTION:	print	version	information
{									#@	USAGE:	version
										#@	REQUIRES:	variables	defined:	$scriptname,	$author	
and	$version
		printf	"%s	version	%s\n"	"$scriptname"	"$version"
		printf	"by	%s,	%d\n"	"$author"		"${date_of_creation%%-*"
}

Any	other	functions	will	follow	right	after	these	generic	functions.

Runtime	Configuration	and	Options
Chapter	12	will	provide	an	in-depth	look	at	runtime	configuration	and	the	different
methods	that	can	be	used.	Much	of	the	time,	all	you	need	to	do	is	parse	the	command-line
options:

##	parse	command-line	options,	-c,	-h,	and	-v
while	getopts	chv	var
do
		case	$var	in
				c)	compounds=$compoundfile	;;
				h)	usage;	exit	;;
				v)	version;	exit	;;
		esac
done
shift	$(($OPTIND	-	1))

Process	Information
As	is	often	the	case	in	a	short	script,	the	actual	work	of	the	script	is	relatively	short;	setting
up	parameters	and	checking	the	validity	of	data	take	up	the	greater	part	of	the	program:

##	Search	$wordfile	and	$compounds	if	it	is	defined
{
		cat	"$wordfile"
		if	[-n	"$compounds"]
		then
				cut	-f1	"$compounds"
		fi
}	|	grep	-i	".$regex$"	|
	sort	-fu	##	Case-insensitive	sort;	remove	duplicates

Here,	cat	is	necessary	because	the	second	file,	whose	location	is	stored	in	the
compounds	variable,	cannot	be	given	as	an	argument	to	grep	because	it	is	more	than	a
list	of	words.	The	file	has	three	tab-separated	fields:	the	phrase	with	spaces	and	other
nonalpha	characters	is	removed	and	the	following	letter	is	capitalized,	the	original	phrase,
and	the	lengths	as	they	would	appear	in	a	cryptic	crossword	puzzle:

corkScrew							cork-screw						(4-5)
groundCrew						ground	crew					(6,4)
haveAScrewLoose	have	a	screw	loose						(4,1,5,5)

If	it	were	a	simple	word	list,	like	singlewords,	the	pipeline	could	have	been
replaced	by	a	simple	command:

grep	-i	".$regex$"	"$wordfile"	${compounds:+"$compounds"}

The	grep	command	searches	the	files	given	on	the	command	line	for	lines	that	match
a	regular	expression.	The	-i	option	tells	grep	to	consider	uppercase	and	lowercase
letters	as	equivalent.

Document	Your	Code
Chris	Johnson,	the	first	Author	of	this	book	mentioned,

Until	fairly	recently,	my	own	documentation	habits	left	a	lot	to	be	desired.	In	my
scripts	directory,	I	have	more	than	900	programs	written	over	the	past	15	years
or	 thereabout.	There	are	more	 than	90	 function	 libraries.	About	20	scripts	are
called	by	cron,	and	a	dozen	more	are	called	by	those	scripts.	There	are	probably
about	 100	 scripts	 that	 I	 use	 regularly,	 with	 “regularly”	 being	 anything	 from
several	times	a	day	to	once	or	twice	a	year.

The	 rest	 are	 scripts	 under	 development,	 abandoned	 scripts,	 scripts	 that	 didn’t
work	out,	and	scripts	 that	 I	no	 longer	have	any	 idea	what	 they	are	 for.	 I	don’t
know	what	they	are	for	because	I	didn’t	include	any	documentation,	not	even	a
one-line	description.	I	don’t	know	whether	they	work,	whether	I	decided	I	didn’t
really	need	that	script,	or	anything	about	them.

For	many	of	them,	I	can	tell	what	they	do	from	their	name.	In	others,	the	code	is
straightforward,	 and	 the	 purpose	 is	 obvious.	 But	 there	 are	 still	 many	 scripts
whose	purpose	 I	don’t	 know.	Some	of	 them	 I	will	probably	end	up	duplicating
when	 I	 need	 that	 task	 again.	 When	 I	 do,	 they’ll	 have	 at	 least	 minimal
documentation.

The	story	is	the	same	with	many	developers,	especially	with	code	snippets.	There	are
software	that	help	you	organise	your	code	snippets,	but	nothing	beats	documentation	and
adding	notes,	TODO,	etc	that	can	be	searched	on.

Format	Your	Code	Consistently
There	are	various	models	for	pretty	printing	code,	and	some	people	are	quite	vociferous	in
their	defense	of	a	particular	style.	I	have	my	own	preference	(which	you’ll	have	noticed
from	the	scripts	in	this	book),	but	consistency	is	more	important	than	the	indentations
being	two,	four,	or	six	spaces	per	level.	That	there	is	indentation	is	more	important	than
the	amount	of	it.	I	would	say	that	two	spaces	(which	is	what	I	use)	is	the	minimum	and
that	eight	is	the	outside	limit,	if	not	too	much.

Similarly,	it	doesn’t	matter	whether	you	have	then	on	the	same	line	as	if	or	not.
Either	of	these	is	fine:

if	["$var"	=	"yes"];	then
		echo	"Proceeding"
fi

if	["$var"	=	"yes"]
then

		echo	"Proceeding"
fi

The	same	goes	for	other	loops	and	function	definitions.	I	prefer	this	format:

funcname()
{
		:	body	here
}

Others	like	this	format:

funcname()	{
		:	body	here
}

As	long	as	the	formatting	is	consistent	and	makes	the	structure	clear,	it	doesn’t	matter
which	format	you	use.

The	K.I.S.S.	Principle
Simplicity	aids	in	understanding	the	intent	of	your	program,	but	it’s	not	just	keeping	code
as	short	as	possible	that	counts.	When	someone	posted	the	following	question	below,	my
first	thought	was,	“That	will	be	a	complicated	regex.”	My	second	was	that	I	wouldn’t	use
a	regular	expression:

I	need	a	regular	expression	to	express	financial	quantities	in
American	notation.	They	have	a	leading	dollar	sign	and	an	optional
string	of	asterisks,	a	string	of	decimal	digits,	and	a	fractional	part
consisting	of	a	decimal	point	(.)	and	two	decimal	digits.	The	string
to	the	left	of	the	decimal	point	could	be	a	single	zero.	Otherwise,	it
must	not	start	with	a	zero.	If	there	are	more	than	three	digits	to	the
left	of	the	decimal	point,	groups	of	three	must	be	separated	by
commas.	Example:	$**2,345.67.

I’d	break	the	task	into	discrete	steps	and	code	each	one	separately.	For	example,	the
first	check	would	be:

amount='$**2,345.67'
case	$amount	in
		\$[*0-9]*)	;;	##	OK	(dollar	sign	followed	by	asterisks	or	
digits),	do	nothing
		*)	exit	1	;;
esac

By	the	time	the	tests	are	finished,	there	will	be	a	lot	more	code	than	there	would	be	in
a	regular	expression,	but	it	will	be	easier	to	understand	and	to	change	if	the	requirements
change.

Grouping	Commands
Rather	than	redirect	each	of	several	lines,	group	them	with	braces	and	use	a	single
redirection.	I	saw	this	in	a	forum	recently:

echo	"user	odad	odd"	>	ftp.txt
echo	"prompt"	>>	ftp.txt
echo	"cd	$i"	>>	ftp.txt
echo	"ls	-ltr"	>>	ftp.txt
echo	"bye"	>>	ftp.txt

I	would	recommend	this	instead:

{
		echo	"user	odad	odd"
		echo	"prompt"
		echo	"cd	$i"
		echo	"ls	-ltr"
		echo	"bye"
}	>	ftp.txt

Test	as	You	Go
Rather	than	save	all	the	debugging	until	the	end,	it	should	be	an	integral	part	of	the
process	of	developing	a	program.	Each	section	should	be	tested	as	it	is	written.	As	an
example,	let’s	look	at	a	function	I	wrote	as	part	of	a	chess	program.	No,	it’s	not	a	chess-
playing	program	(though	it	could	be	when	it’s	completed);	that	would	be	excruciatingly
slow	in	the	shell.	It’s	a	set	of	functions	for	preparing	instructional	material.

It	needs	to	be	able	to	convert	one	form	of	chess	notation	to	another	and	to	list	all
possible	moves	for	any	piece	on	the	board.	It	needs	to	be	able	to	tell	whether	a	move	is
legal	and	to	create	a	new	board	position	after	a	move	has	been	made.	At	its	most	basic
level,	it	has	to	be	able	to	convert	a	square	in	standard	algebraic	notation	(SAN)	to	its
numeric	rank	and	file.	That’s	what	this	function	does.

The	SAN	format	for	naming	a	square	is	a	lowercase	letter	representing	the	file	and	a
number	representing	the	rank.	Files	are	rows	of	squares	from	white’s	side	of	the	board	to
black’s.	Ranks	are	rows	of	squares	from	left	to	right.	The	square	in	white’s	left-hand
corner	is	a1;	that	in	black’s	is	h8.	To	calculate	possible	moves,	these	need	to	be	converted
to	the	rank	and	file:	a1	is	converted	to	rank=1	and	file=1;	h8	becomes	rank=8	and
file=8.

It’s	a	simple	function,	but	it	demonstrates	how	to	test	a	function.	The	function	receives
the	name	of	a	square	as	an	argument	and	stores	the	rank	and	file	in	those	variables.	If	the
square	is	not	valid,	it	sets	both	rank	and	file	to	0	and	returns	an	error:

split_square()	#@	DESCRIPTION:	convert	SAN	square	to	numeric	
rank	and	file

{														#@	USAGE:	split_square	SAN-SQUARE
		local	square=$1
		rank=${square#?}
		case	$square	in
				a[1-8])	file=1;;	##	Conversion	of	file	to	number
				b[1-8])	file=2;;	##	and	checking	that	the	rank	is
				c[1-8])	file=3;;	##	a	valid	number	are	done	in	a
				d[1-8])	file=4;;	##	single	look-up
				e[1-8])	file=5;;
				f[1-8])	file=6;;	##	If	the	rank	is	not	valid,
				g[1-8])	file=7;;	##	it	falls	through	to	the	default
				h[1-8])	file=8;;
				*)	file=0
							rank=0
							return	1						##	Not	a	valid	square
							;;
		esac
		return	0
}

To	test	this	function,	it	is	passed	all	possible	legitimate	squares	as	well	as	some	that	are
not.	It	prints	the	name	of	the	square	and	the	file	and	rank	numbers:

test_split_square()
{
		local	f	r
		for	f	in	{a..i}
		do
				for	r	in	{1..9}
				do
						split_square	"fr"
						printf	"fr	%d-%d		"	"$file"	"$rank"
				done
				echo
		done
}

When	the	test	is	run,	the	output	is	as	follows:

a1	1-1		a2	1-2		a3	1-3		a4	1-4		a5	1-5		a6	1-6		a7	1-7		a8	
1-8		a9	0-0
b1	2-1		b2	2-2		b3	2-3		b4	2-4		b5	2-5		b6	2-6		b7	2-7		b8	
2-8		b9	0-0
c1	3-1		c2	3-2		c3	3-3		c4	3-4		c5	3-5		c6	3-6		c7	3-7		c8	
3-8		c9	0-0
d1	4-1		d2	4-2		d3	4-3		d4	4-4		d5	4-5		d6	4-6		d7	4-7		d8	
4-8		d9	0-0

e1	5-1		e2	5-2		e3	5-3		e4	5-4		e5	5-5		e6	5-6		e7	5-7		e8	
5-8		e9	0-0
f1	6-1		f2	6-2		f3	6-3		f4	6-4		f5	6-5		f6	6-6		f7	6-7		f8	
6-8		f9	0-0
g1	7-1		g2	7-2		g3	7-3		g4	7-4		g5	7-5		g6	7-6		g7	7-7		g8	
7-8		g9	0-0
h1	8-1		h2	8-2		h3	8-3		h4	8-4		h5	8-5		h6	8-6		h7	8-7		h8	
8-8		h9	0-0
i1	0-0		i2	0-0		i3	0-0		i4	0-0		i5	0-0		i6	0-0		i7	0-0		i8	
0-0		i9	0-0

All	squares	with	the	rank	and	file	0-0	are	invalid.

Debugging	a	Script
In	the	wfe	script,	which	was	presented	section	by	section	earlier,	there	are	a	few	bugs.
Let’s	run	that	script	and	see	what	happens.	The	script	is	in	$HOME/bin,	which	is	in	your
PATH,	and	it	can	therefore	be	called	by	its	name	alone.	Before	that,	however,	a	good	first
step	is	to	check	the	script	with	the	-n	option.	This	tests	for	any	syntax	errors	without
actually	executing	the	code:

$	bash	-n	wfe
/home/jayant/bin/wfe-sh:	wfe:	line	70:	unexpected	EOF	while	
looking	for	matching	'"'
/home/jayant/bin/wfe-sh:	wfe:	line	72:	syntax	error:	
unexpected	end	of	file

The	error	message	says	that	there’s	a	missing	quotation	mark	(”).	It	has	reached	the
end	of	the	file	without	finding	it.	That	means	it	could	be	missing	anywhere	in	the	file.
After	a	quick	(or	not-so-quick)	glance	through	the	file,	it’s	not	apparent	where	it	should
be.

When	that	happens,	I	start	removing	sections	from	the	bottom	of	the	file	until	the	error
disappears.	I	remove	the	last	section;	it’s	still	there.	I	remove	the	option	parsing,	and	the
error	hasn’t	disappeared.	I	remove	the	last	function	definition,	version(),	and	the	error
has	gone.	The	error	must	be	in	that	function;	where	is	it?

version()	#@	DESCRIPTION:	print	script's	version	information
{									#@	USAGE:	version
										#@	REQUIRES:	variables	defined:	$scriptname,	$author	
and	$version
		printf	"%s	version	%s\n"	"$scriptname"	"$version"
		printf	"by	%s,	%d\n"	"$author"		"${date_of_creation%%-*"
}

There	are	no	mismatched	quotations	marks,	so	some	other	closing	character	must	be

missing	and	causing	the	problem.	After	a	quick	look,	I	see	that	the	last	variable	expansion
is	missing	a	closing	brace.	Fixed,	it	becomes	“${date_of_creation%%-*}”.
Another	check	with	-n,	and	it	gets	a	clean	bill	of	health.	Now	it’s	time	to	run	it:

$	wfe
bash:	/home/jayant/bin/wfe:	Permission	denied

Oops!	We	forgot	to	make	the	script	executable.	This	doesn’t	usually	happen	with	a
main	script;	it	happens	more	often	with	scripts	that	are	called	by	another	script.	Change
the	permissions	and	try	again:

$	chmod	+x	/home/jayant/bin/wfe
$	wfe
cat:	/home/jayant/singlewords:	No	such	file	or	directory

Have	you	downloaded	the	two	files,	singlewords	and	Compounds?	If	so,	where
did	you	put	them?	In	the	script,	they	are	declared	to	be	in	$dict,	which	is	defined	as
$HOME.	If	you	put	them	somewhere	else,	such	as	in	a	subdirectory	named	words,	change
that	line	in	the	script.	Let’s	make	a	directory,	words,	and	put	them	in	there:

mkdir	$HOME/words	&&
cd	$HOME/words	&&
wget	http://cfaj.freeshell.org/wordfinder/singlewords	&&
wget	http://cfaj.freeshell.org/wordfinder/Compounds

In	the	script,	change	the	assignment	of	dict	to	reflect	the	actual	location	of	these
files:

dict=$HOME/words

Let’s	try	again:

$	wfe
a
aa
Aachen
aalii
aardvark
....	183,758	words	skipped….

zymotic
zymotically
zymurgy
Zyrian
zythum

We	forgot	to	tell	the	program	what	we	are	searching	for.	The	script	ought	to	have
checked	that	an	argument	was	supplied,	but	we	forgot	to	include	a	sanity	check	section.
Add	that	before	the	search	is	done	(after	the	line	shift	$(($OPTIND	-	1))):

http://cfaj.freeshell.org/wordfinder/singlewords
http://cfaj.freeshell.org/wordfinder/Compounds

##	Check	that	user	entered	a	search	term
if	[-z	"$pattern"]
then
		{
				echo	"Search	term	missing"
				usage
		}	>&2
		exit	1
fi

Now,	try	again:

$	wfe
Search	term	missing
wfe	-	List	words	ending	with	REGEX
USAGE:	wfe	[-c|-h|-v]	REGEX

That’s	better.	Now	let’s	really	look	for	some	words:

$	wfe	drow
a
aa
Aachen
aalii
aardvark
....	183,758	words	skipped….

zymotic
zymotically
zymurgy
Zyrian
zythum

There’s	still	something	wrong.

One	of	the	most	useful	debugging	tools	is	set	-x,	which	prints	each	command	with
its	expanded	arguments	as	it	is	executed.	Each	line	is	preceded	by	the	value	of	the	PS4
variable.	The	default	value	of	PS4	is	“+	”;	we’ll	change	it	to	include	the	number	of	the
line	being	executed.	Put	these	two	lines	before	the	final	section	of	the	script:

export	PS4='+	$LINENO:	'	##	single	quotes	prevent	$LINENO	
being	expanded	immediately
set	-x

and	try	again:

$	wfe	drow
++	77:	cat	/home/jayant/singlewords
++	82:	grep	-i	'.$'
++	83:	sort	-fu

++	78:	'['	-n	''	']'	##	Ctrl-C	pressed	to	stop	entire	word	
list	being	printed

On	line	82,	you	see	that	the	pattern	entered	on	the	command	line	is	missing.	How	did
that	happen?	It	should	be	grep	-i	‘.drow$’.	Line	82	in	the	script	should	be	as
follows:

}	|	grep	-i	".$regex$"	|

What	happened	to	the	value	of	regex?	Comment	out	set	-x,	and	add	the	set	-u
option	at	the	top	of	the	script.	This	option	treats	unset	variables	as	an	error	when	they	are
expanded.	Run	the	script	again	to	check	whether	regex	is	set:

$	wfe	drow
/home/jayant/bin/wfe:	line	84:	regex:	unbound	variable

Why	is	regex	unset?	Take	a	look	at	the	earlier	script	and	see	which	variable	was	used
to	hold	the	command-line	argument.	Oh!	It	was	pattern,	not	regex.	You	have	to	be
consistent,	and	regex	is	a	better	description	of	its	contents,	so	let’s	use	that.	Change	all
instances	of	pattern	to	regex.	You	should	do	it	in	the	comments	at	the	top,	as	well.
Now	try	it:

$	wfe	drow
windrow

Success!	Now	add	compound	words	and	phrases	to	the	mix	with	the	-c	option:

$	wfe	-c	drow
/home/jayant/bin/wfe:	line	58:	compoundfile:	unbound	
variable

Here	we	go	again!	Surely	we	assigned	the	Compounds	file	in	the	file	locations
section.	Take	a	look;	yes,	it’s	there	on	line	23	or	thereabout.	Wait	a	minute,	there’s	a	typo:
conpoundfile=$dict/Compounds.	Change	con	to	com.	Keep	your	fingers
crossed:

$	wfe	-c	drow
$

What?	Nothing?	Not	even	windrow?	It’s	time	to	set	-x	and	see	what’s	going	on.
Uncomment	that	line,	and	play	it	again:

$	wfe	-c	drow
++	79:	cat	/home/jayant/singlewords
++	84:	grep	-i	'.-c$'
++	85:	sort	-fu
++	80:	'['	-n	/home/jayant/Compounds	']'
++	82:	cut	-f1	/home/jayant/Compounds

At	least	that’s	easy	to	figure	out.	We	assigned	regex	before	processing	the	options,
and	it	snarfed	the	first	argument,	the	-c	option.	Move	the	assignment	down	to	after	the
getopts	section,	specifically,	to	after	the	shift	command.	(And	you’ll	probably	want
to	comment	out	set	-x.):

shift	$(($OPTIND	-	1))
##	Regular	expression	supplied	on	the	command	line
regex=$1

Are	there	any	more	issues?

$	wfe	-c	drow
skidRow
windrow

That	looks	good.	It	might	seem	like	a	lot	of	work	for	a	small	script,	but	it	seems	longer
in	the	telling	than	in	the	doing,	especially	once	you	get	used	to	doing	it—or,	better	still,
getting	it	right	in	the	first	place.

Summary
Bugs	are	inevitable,	but	with	care,	most	can	be	prevented.	When	they	do	materialize,	there
are	shell	options	to	help	trace	the	problem.

Exercises
1.	 What	is	wrong	with	if	[$var=x]?	What	should	it	be?	Why

does	it	give	the	result	it	does?

2.	 Write	a	function,	valid_square(),	that	returns	successfully	if
its	sole	argument	is	a	valid	SAN	chessboard	square	or	fails	if	it	is
not.	Write	a	function	to	test	whether	it	works.

CHAPTER	11

Programming	for	the	Command	Line
This	book	is	about	programming	with	the	shell,	not	about	using	it	at	the	command	line.
You	will	not	find	information	here	about	editing	the	command	line,	creating	a	command
prompt	(the	PS1	variable),	or	retrieving	commands	from	your	interactive	history.	This
chapter	is	about	scripts	that	will	mostly	be	useful	at	the	command	line	rather	than	in	other
scripts.

Many	of	the	scripts	presented	in	this	chapter	are	shell	functions.	Some	of	them	have	to
be	that	way	because	they	change	the	environment.	Others	are	functions	because	they	are
used	often	and	are	quicker	that	way.	Others	are	both	functions	and	standalone	scripts.

Manipulating	the	Directory	Stack
The	cd	command	remembers	the	previous	working	directory,	and	cd	-	will	return	to	it.
There	is	another	command	that	will	change	the	directory	and	remember	an	unlimited
number	of	directories:	pushd.	The	directories	are	stored	in	an	array,	DIRSTACK.	To
return	to	a	previous	directory,	popd	pulls	the	top	entry	off	DIRSTACK	and	makes	that	the
current	directory.	I	use	two	functions	that	make	handling	DIRSTACK	easier,	and	I’ve
added	a	third	one	here	just	for	the	sake	of	completeness.

	Note		The	names	of	some	of	the	functions	that	are	created	in	this	chapter	are	similar	to
the	commands	available	in	Bash.	The	reason	for	this	is	to	use	your	existing	shell	scripts
without	making	any	changes	to	them	and	still	availing	of	some	additional	functionality.

cd
The	cd	function	replaces	the	built-in	command	of	the	same	name.	The	function	uses	the
built-in	command	pushd	to	change	the	directory	and	store	the	new	directory	on
DIRSTACK.	If	no	directory	is	given,	pushd	uses	$HOME.	If	changing	the	directory	fails,
cd	prints	an	error	message,	and	the	function	returns	with	a	failing	exit	code	(Listing	11-1).

Listing	11-1.	cd,	Change	Directory,	Saving	Location	on	the	Directory	Stack

cd()	#@	Change	directory,	storing	new	directory	on	DIRSTACK
{
		local	dir	error										##	variables	for	directory	and	
return	code

		while	:																		##	ignore	all	options

		do
				case	$1	in
						--)	break	;;
						-*)	shift	;;
						*)	break	;;
				esac
		done

		dir=$1

		if	[-n	"$dir"]									##	if	a	$dir	is	not	empty
		then
				pushd	"$dir"											##	change	directory
		else
				pushd	"$HOME"										##	go	HOME	if	nothing	on	the	
command	line
		fi	2>/dev/null											##	error	message	should	come	from	
cd,	not	pushd

		error=$?					##	store	pushd's	exit	code

		if	[$error	-ne	0]						##	failed,	print	error	message
		then
				builtin	cd	"$dir"						##	let	the	builtin	cd	provide	the	
error	message
		fi
		return	"$error"										##	leave	with	pushd's	exit	code
}	>	/dev/null

The	standard	output	is	redirected	to	the	bit	bucket	because	pushd	prints	the	contents
of	DIRSTACK,	and	the	only	other	output	is	sent	to	standard	error	(>&2).

	Note		A	replacement	for	a	standard	command	such	as	cd	should	accept	anything	that
the	original	accepts.	In	the	case	of	cd,	the	options	-L	and	-P	are	accepted,	even	though
they	are	ignored.	That	said,	I	do	sometimes	ignore	options	without	even	making
provisions	for	them,	especially	if	they	are	ones	I	never	use.

pd
The	pd	function	is	here	for	the	sake	of	completeness	(Listing	11-2).	It	is	a	lazy	man’s	way
of	calling	popd;	I	don’t	use	it.

Listing	11-2.	pd,	Return	to	Previous	Directory	with	popd

pd	()
{
				popd

}	>/dev/null	###	for	the	same	reason	as	cd

cdm
The	reason	I	don’t	use	pd	isn’t	because	I’m	not	lazy.	Far	from	it,	but	I	prefer	to	leave
DIRSTACK	intact	so	I	can	move	back	and	forth	between	directories.	For	that	reason,	I	use
a	menu	that	presents	all	the	directories	in	DIRSTACK.

The	cdm	function	sets	the	input	field	separator	(IFS)	to	a	single	newline	(NL	or	LF)
to	ensure	that	the	output	of	the	dirs	built-in	command	keeps	file	names	together	after
word	splitting	(Listing	11-3).	File	names	containing	a	newline	would	still	cause	problems;
names	with	spaces	are	an	annoyance,	but	names	with	newlines	are	an	abomination.

The	function	loops	through	the	names	in	DIRSTACK	(for	dir	in	$(dirs	-l
-p)),	adding	each	one	to	an	array,	item,	unless	it	is	already	there.	This	array	is	then	used
as	the	argument	to	the	menu	function	(discussed	below),	which	must	be	sourced	before
cdm	can	be	used.

DIRS	BUILT-IN	COMMAND

The	dirs	built-in	command	lists	the	directories	in	the	DIRSTACK	array.	By	default,	it
lists	them	on	a	single	line	with	the	value	of	HOME	represented	by	a	tilde.	The	-l	option
expands	~	to	$HOME,	and	-p	prints	the	directories,	one	per	line.

Listing	11-3.	cdm,	Select	New	Directory	from	a	Menu	of	Those	Already	Visited

cdm()	#@	select	new	directory	from	a	menu	of	those	already	
visited
{
		local	dir	IFS=$'\n'	item
		for	dir	in	$(dirs	-l	-p)													##	loop	through	
diretories	in	DIRSTACK[@]
		do
				["$dir"	=	"$PWD"]	&&	continue				##	skip	current	
directory
				case	${item[*]}	in
						"$dir:")	;;																				##	$dir	already	in	
array;	do	nothing
						*)	item+=("$dir:cd	'$dir'")	;;	##	add	$dir	to	array
				esac
		done
		menu	"${item[@]}"	Quit:														##	pass	array	to	menu	
function
}

When	run,	the	menu	looks	like	this:

$	cdm

				1.	/public/music/magnatune.com
				2.	/public/video
				3.	/home/jayant
				4.	/home/jayant/tmp/qwe	rty	uio	p
				5.	/home/jayant/tmp
				6.	Quit

	(1	to	6)	==>

menu
The	calling	syntax	for	the	menu	function	comes	from	9menu,	which	was	part	of	the	Plan
9	operating	system.	Each	argument	contains	two	colon-separated	fields:	the	item	to	be
displayed	and	the	command	to	be	executed.	If	there	is	no	colon	in	an	argument,	it	is	used
both	as	the	display	and	as	the	command:

$	menu	who	date	"df:df	."

				1.	who
				2.	date
				3.	df

	(1	to	3)	==>	3
Filesystem											1K-blocks						Used	Available	Use%	
Mounted	on
/dev/hda5													48070472		43616892			2011704		96%	
/home
$	menu	who	date	"df:	df	."

				1.	who
				2.	date
				3.	df

	(1	to	3)	==>	1
jayant				tty8									Jun	18	14:00	(:1)	
jayant				tty2									Jun	21	18:10

A	for	loop	numbers	and	prints	the	menu;	read	gets	the	response;	and	a	case
statement	checks	for	the	exit	characters	q,	Q,	or	0	in	the	response.	Finally,	indirect
expansion	retrieves	the	selected	item,	further	expansion	extracts	the	command,	and	eval
executes	it:	eval	“${!num#*:}”	(Listing	11-4).

Listing	11-4.	menu,	Print	Menu,	and	Execute-Associated	Command

menu()
{

		local	IFS=$'	\t\n'																								##	Use	default	
setting	of	IFS
		local	num	n=1	opt	item	cmd
		echo

		##	Loop	though	the	command-line	arguments
		for	item
		do
				printf	"		%3d.	%s\n"	"$n"	"${item%%:*}"
				n=$(($n	+	1))
		done
		echo

		##	If	there	are	fewer	than	10	items,	set	option	to	accept	
key	without	ENTER
		if	[$#	-lt	10]
		then
				opt=-sn1
		else
				opt=
		fi
		read	-p	"	(1	to	$#)	==>	"	$opt	num									##	Get	response	
from	user

		##	Check	that	user	entry	is	valid
		case	$num	in
				[qQ0]	|	"")	return	;;																			##	q,	Q	or	0	or	
""	exits
				[!0-9]	|	0*)																											##	invalid	entry
							printf	"\aInvalid	response:	%s\n"	"$num"	>&2
							return	1
							;;
		esac
		echo

		if	["$num"	-le	"$#"]			##	Check	that	number	is	<=	to	the	
number	of	menu	items
		then
				eval	"${!num#*:}"						##	Execute	it	using	indirect	
expansion
		else
				printf	"\aInvalid	response:	%s\n"	"$num"	>&2
				return	1
		fi
}

Filesystem	Functions
These	functions	vary	from	laziness	(giving	a	short	name	to	a	longer	command)	to	adding
functionality	to	standard	commands	(cp	and	mv).	They	list,	copy,	or	move	files	or	create
directories.

l
There	is	no	single-letter	command	required	by	the	POSIX	specification,	and	there	is	only
one	that	is	found	on	most	Unixes:	w,	which	shows	who	is	logged	on	and	what	they	are
doing.	I	have	defined	a	number	of	single-letter	functions:

a:	Lists	the	currently	playing	music	track

c:	Clears	the	screen	(sometimes	quicker	or	easier	than	^L)

d:	The	date	“+%A,	%-d	%B	%Y		%-I:%M:%S	%P
(%H:%M:%S)”

k:	Is	equivalent	to	man	-k,	or	apropos

t:	For	the	Amiga	and	MS-DOS	command	type,	invokes	less

v	and	V:	Lowers	and	raises	the	sound	volume,	respectively

x:	Logout

And	there’s	the	one	I	use	most	that	pipes	a	long	file	listing	through	less,	as	shown	in
Listing	11-5.

Listing	11-5.	l,	List	Files	in	Long	Format,	Piped	Through	less

l()
{
		ls	-lA	"$@"	|	less								##	the	-A	option	is	specific	to	
GNU	and	*BSD	versions
}

lsr
The	commands	I	use	most	frequently	are	l,	cd,	xx.sh,	cdm,	and	lsr;	xx.sh	is	a	file
for	throwaway	scripts.	I	keep	adding	new	ones	to	the	top;	lsr	displays	the	most	recent
files	(or	with	the	-o	option,	the	oldest	files).	The	default	setting	is	for	ten	files	to	be
shown,	but	that	can	be	changed	with	the	-n	option.

The	script	in	Listing	11-6	uses	the	-t	(or	-tr)	option	to	ls	and	pipes	the	result	to
head.

Listing	11-6.	lsr,	List	Most	Recently	Modified	Files

num=10																																											##	number	
of	files	to	print
short=0																																										##	set	to	
1	for	short	listing
timestyle='--time-style="+	%d-%b-%Y	%H:%M:%S	"'		##	GNU-
specific	time	format

opts=Aadn:os

while	getopts	$opts	opt
do
		case	$opt	in
						a|A|d)	ls_opts="$ls_opts	-$opt"	;;		##	options	passed	
to	ls
						n)	num=$OPTARG	;;																			##	number	of	files	
to	display
						o)	ls_opts="$ls_opts	-r"	;;									##	show	oldest	
files,	not	newest
						s)	short=$(($short	+	1))	;;
		esac
done
shift	$(($OPTIND	-	1))

case	$short	in
				0)	ls_opts="$ls_opts	-l	-t"	;;								##	long	listing,	
use	-l
				*)	ls_opts="$ls_opts	-t"	;;											##	short	listing,	
do	not	use	-l
esac

ls	$ls_opts	$timestyle	"$@"	|	{
				read																																		##	In	bash,	the	
same	as:	IFS=	read	-r	REPLY
				case	$line	in
								total*)	;;																								##	do	not	display	
the	'total'	line
								*)	printf	"%s\n"	"$REPLY"	;;
				esac
				cat
}	|	head	-n$num

cp,	mv
Before	switching	my	desktop	to	GNU/Linux,	I	used	an	Amiga.	Its	copy	command	would
copy	a	file	to	the	current	directory	if	no	destination	was	given.	This	function	gives	the
same	ability	as	cp	(Listing	11-7).	The	-b	option	is	GNU	specific,	so	remove	it	if	you	are

using	a	different	version	of	cp.

Listing	11-7.	cp,	Copy,	Using	the	Current	Directory	if	No	Destination	Is	Given

cp()
{
		local	final
		if	[$#	-eq	1]																		##	Only	one	arg,
		then
				command	cp	-b	"$1"	.											##	so	copy	it	to	the	
current	directory
		else
				final=${!#}
				if	[-d	"$final"]													##	if	last	arg	is	
a	directory
				then
						command	cp	-b	"$@"											##	copy	all	the	files	into	
it
				else
						command	cp	-b	"$@"	.									##	otherwise,	copy	to	the	
current	directory
				fi
		fi
}

The	mv	function	is	identical	except	that	it	has	mv	wherever	cp	appears	in	that
function.

md
Laziness	is	the	order	of	the	day	with	the	md	function	(Listing	11-8).	It	calls	mkdir	with
the	-p	option	to	create	intermediate	directories	if	they	don’t	exist.	With	the	-c	option,	md
creates	the	directory	(if	it	doesn’t	already	exist)	and	then	cds	into	it.	Because	of	the	-p
option,	no	error	is	generated	if	the	directory	exists.

Listing	11-8.	md,	Create	a	New	Directory	and	Intermediate	Directories	and	Optionally	cd
into	It

md()	{	#@	create	new	directory,	including	intermediate	
directories	if	necessary
		case	$1	in
					-c)	mkdir	-p	"$2"	&&	cd	"$2"	;;
					*)	mkdir	-p	"$@"	;;
		esac
}

Miscellaneous	Functions
I	use	the	next	two	functions	a	great	deal,	but	they	don’t	fit	into	any	category.

pr1
I	have	the	pr1	function	as	both	a	function	and	a	stand-alone	script	(Listing	11-9).	It	prints
each	of	its	argument	on	a	separate	line.	By	default,	it	limits	the	length	to	the	number	of
columns	in	the	terminal,	truncating	lines	as	necessary.

There	are	two	options,	-w	and	-W.	The	former	removes	the	truncation,	so	lines	will
always	print	in	full,	wrapping	to	the	next	line	when	necessary.	The	latter	specifies	a	width
at	which	to	truncate	lines.

Listing	11-9.	pr1,	Function	to	Print	Its	Argument	One	to	a	Line

pr1()	#@	Print	arguments	one	to	a	line
{
		case	$1	in
				-w)	pr_w=																			##	width	specification	
modifier
								shift
								;;
				-W)	pr_w=${2}
								shift	2
								;;
				-W*)	pr_w=${1#??}
									shift
									;;
				*)	pr_w=-.${COLUMNS:-80}				##	default	to	number	of	
columns	in	window
							;;
		esac
		printf	"%${pr_w}s\n"	"$@"
	}

The	script	version	(Listing	11-10)	uses	getopts;	I	didn’t	use	them	in	the	function
because	I	wanted	it	to	be	POSIX	compliant.

Listing	11-10.	pr1,	Script	to	Print	Its	Arguments	One	to	a	Line

while	getopts	wW:	opt
do
		case	$opt	in
				w)	w=
							shift
							;;

				W)	w=$OPTARG	;;
				*)	w=-.${COLUMNS:-80}	;;
		esac
done
shift	$(($OPTIND	-	1))

printf	"%${w}s\n"	"$@"

calc
Bash	lacks	the	capacity	for	arithmetic	with	decimal	fractions,	so	I	wrote	this	function
(Listing	11-11)	to	use	awk	to	do	the	dirty	work.	Note	that	characters	special	to	the	shell
must	be	escaped	or	quoted	on	the	command	line.	This	applies	particularly	to	the
multiplication	symbol,	*.

Listing	11-11.	calc,	Print	Result	of	Arithmetic	Expression

calc()	#@	Perform	arithmetic,	including	decimal	fractions
{
		local	result=$(awk	'BEGIN	{	OFMT="%f";	print	'"$*"';	
exit}')
		case	$result	in
				*.*0)	result=${result%"${result##*[!0]}"}	;;
		esac
		printf	"%s\n"	"$result"
}

The	case	statement	removes	trailing	zeroes	after	a	decimal	point.

Managing	Man	Pages
I	use	three	functions	related	to	man	pages.	The	first	searches	a	man	page	for	a	pattern	or
string,	the	second	looks	up	a	POSIX	man	page,	and	the	third	is	equivalent	to	man	-k.

sman
The	sman	function	calls	up	a	man	page	and	searches	for	a	given	string.	It	assumes	that
less	is	the	default	pager	(Listing	11-12).

Listing	11-12.	sman,	Call	Up	a	Man	Page	and	Search	for	a	Pattern

sman()	#@	USAGE:	sman	command	search_pattern
{
		LESS="$LESS${2:+	+/$2}"	man	"$1"
}

sus
When	I	want	to	check	the	portability	of	a	given	command	or,	more	usually,	to	check	which
options	are	specified	by	POSIX,	I	use	sus.	It	stores	a	copy	of	the	POSIX	man	page
locally	so	that	it	doesn’t	need	to	be	fetched	on	subsequent	queries	(Listing	11-13).

Listing	11-13.	sus,	Look	Up	a	Man	Page	in	the	POSIX	Spec

sus()
{
				local	html_file=/usr/share/sus/$1.html				##	adjust	to	
taste
				local	dir=9699919799
				local	
sus_dir=http://www.opengroup.org/onlinepubs/$dir/utilities/
				[-f	"$html_file"]	||
						lynx	-source		sus_dir{1##*/}.html	>	$html_file	
##>/dev/null	2>&1
				lynx	-dump	-nolist	$html_file	|	${PAGER:-less}
}

Here	lynx	is	a	text-mode	web	browser.	Though	normally	used	interactively	to	access
the	Web,	the	-source	and	-dump	directives	can	be	used	in	scripts.

k
The	k	function	saves	all	the	typing	of	apropos	or	man	-k.	It	actually	does	a	little	more.
It	filters	the	result	so	that	only	user	commands	(from	the	first	section	of	the	man	pages)
show.	System	and	kernel	functions	and	file	specifications,	and	so	on,	do	not	get	shown
(Listing	11-14).

Listing	11-14.	k,	List	Commands	Whose	Short	Descriptions	Include	a	Search	String

k()	#@	USAGE:	k	string
{
				man	-k	"$@"	|	grep	'(1'
}

Games
What’s	a	command	line	without	games?	Boring,	that’s	what!	I	have	written	a	number	of
games	using	the	shell.	They	include	yahtzee	(Figure	11-1),	a	game	that	uses	five	dice;
maxit	(Figure	11-2),	based	on	an	arithmetic	game	for	the	Commodore	64;	and,	of	course,
tic-tac-toe	(Figure	11-3).	All	these	games	are	too	large	to	include	their	scripts	in	this
book,	but	sections	of	them	(such	as	the	yahtzee	dice)	will	be	demonstrated	in	later
chapters.	The	one	game	that	I	can	include	here	is	the	fifteen	puzzle.

http://www.opengroup.org/onlinepubs/

Figure	11-1.	The	game	of	yahtzee,	in	which	the	player	attempts	to	get	runs,	a	full	house,	or	three,	four,	or	five	of	a
kind

Figure	11-2.	The	game	of	maxit,	in	which	one	player	selects	from	a	row,	and	the	other	from	a	column

Figure	11-3.	The	ubiquitous	game	of	tic-tac-toe

The	fifteen	Puzzle
The	fifteen	puzzle	consists	of	15	numbered,	sliding	tiles	in	a	frame;	the	object	is	to
arrange	them	in	ascending	order	like	this:
+–-+–-+–-+–-+

								|				|				|				|				|
								|		1	|		2	|		3	|		4	|
								|				|				|				|				|
								+–-+–-+–-+–-+
								|				|				|				|				|
								|		5	|		6	|		7	|		8	|
								|				|				|				|				|
								+–-+–-+–-+–-+
								|				|				|				|				|
								|		9	|	10	|	11	|	12	|
								|				|				|				|				|
								+–-+–-+–-+–-+
								|				|				|				|				|
								|	13	|	14	|	15	|				|
								|				|				|				|				|
								+–-+–-+–-+–-+

In	this	script	(Listing	11-15),	the	tiles	are	moved	with	the	cursor	keys.

Listing	11-15.	fifteen,	Place	Tiles	in	Ascending	Order

##
##	Meta	data
##

scriptname=${0##*/}
description="The	Fifteen	Puzzle"
author="Chris	F.A.	Johnson"
created=2009-06-20

##
##	Variables
##

board=({1..15}	"")									##	The	basic	board	array
target=("${board[@]}")					##	A	copy	for	comparison	(the	
target)
empty=15																					##	The	empty	square
last=0																							##	The	last	move	made
A=0	B=1	C=2	D=3														##	Indices	into	array	of	
possible	moves
topleft='\e[0;0H'												##	Move	cursor	to	top	left	
corner	of	window
nocursor='\e[?25l'											##	Make	cursor	invisible
normal=\e[0m\e[?12l\e[?25h			##	Resume	normal	operation

##	Board	layout	is	a	printf	format	string
##	At	its	most	basic,	it	could	be	a	simple:

fmt="$nocursor$topleft

					%2s		%2s		%2s		%2s

					%2s		%2s		%2s		%2s

					%2s		%2s		%2s		%2s

					%2s		%2s		%2s		%2s

"

##	I	prefer	this	ASCII	board
fmt="\e[?25l\e[0;0H\n
\t+----+----+----+----+
\t|				|				|				|				|
\t|	%2s	|	%2s	|	%2s	|	%2s	|
\t|				|				|				|				|
\t+----+----+----+----+
\t|				|				|				|				|
\t|	%2s	|	%2s	|	%2s	|	%2s	|
\t|				|				|				|				|
\t+----+----+----+----+
\t|				|				|				|				|
\t|	%2s	|	%2s	|	%2s	|	%2s	|
\t|				|				|				|				|
\t+----+----+----+----+
\t|				|				|				|				|

\t|	%2s	|	%2s	|	%2s	|	%2s	|
\t|				|				|				|				|
\t+----+----+----+----+\n\n"

##
###		Functions
##

print_board()	#@	What	the	name	says
{
		printf	"$fmt"	"${board[@]}"
}

borders()	#@	List	squares	bordering	on	the	empty	square
{
		##	Calculate	x/y	co-ordinates	of	the	empty	square
		local	x=$((${empty:=0}	%	4))		y=$(($empty	/	4))

		##	The	array,	bordering,	has	4	elements,	corresponding	to	
the	4	directions
		##	If	a	move	in	any	direction	would	be	off	the	board,	that	
element	is	empty
		##
		unset	bordering					##	clear	array	before	setting	it
		[$y	-lt	3]	&&	bordering[$A]=$(($empty	+	4))
		[$y	-gt	0]	&&	bordering[$B]=$(($empty	-	4))
		[$x	-gt	0]	&&	bordering[$C]=$(($empty	-	1))
		[$x	-lt	3]	&&	bordering[$D]=$(($empty	+	1))
}

check()	#@	Check	whether	puzzle	has	been	solved
{
		##	Compare	current	board	with	target
		if	["${board[*]}"	=	"${target[*]}"]
		then
				##	Puzzle	is	completed,	print	message	and	exit
				print_board
				printf	"\a\tCompleted	in	%d	moves\n\n"		"$moves"
				exit
		fi
}

move()	#@	Move	the	square	in	$1
{
		movelist="$empty	$movelist"				##	add	current	empty	square	
to	the	move	list
		moves=$(($moves	+	1))								##	increment	move	counter

		board[$empty]=${board[$1]}					##	put	$1	into	the	current	
empty	square
		board[$1]=""																			##	remove	number	from	new	
empty	square
		last=$empty																				##	and	put	it	in	old	
empty	square
		empty=$1																							##	set	new	value	for	empty-
square	pointer
}

random_move()	#@	Move	one	of	the	squares	in	the	arguments
{
		##	The	arguments	to	random_move	are	the	squares	that	can	
be	moved
		##	(as	generated	by	the	borders	function)
		local	sq
		while	:
		do
				sq=$(($RANDOM	%	$#	+	1))
				sq=${!sq}
				[$sq	-ne	${last:-666}]	&&			##	do	not	undo	last	move
							break
		done
		move	"$sq"
}

shuffle()	#@	Mix	up	the	board	using	legitimate	moves	(to	
ensure	solvable	puzzle)
{
		local	n=0	max=$(($RANDOM	%	100	+	150))			##	number	of	
moves	to	make
		while	[$((n	+=	1))	-lt	$max]
		do
				borders																																		##	generate	list	
of	possible	moves
				random_move	"${bordering[@]}"												##	move	to	one	
of	them	at	random
		done
}

##
###	End	of	functions
##

trap	'printf	"$normal"'	EXIT																	##	return	
terminal	to	normal	state	on	exit

##
###	Instructions	and	initialization
##

clear
print_board
echo
printf	"\t%s\n"	"$description"	"by	$author,	${created%%-*}"	
""
printf	"
	Use	the	cursor	keys	to	move	the	tiles	around.

	The	game	is	finished	when	you	return	to	the
	position	shown	above.

	Try	to	complete	the	puzzle	in	as	few	moves
	as	possible.

								Press	\e[1mENTER\e[0m	to	continue
"
shuffle																																				##	randomize	
board
moves=0																																				##	reset	move	
counter
read	-s																																				##	wait	for	user
clear																																						##	clear	the	
screen

##
###	Main	loop
##

while	:
do
		borders
		print_board
		printf	"\t			%d	move"	"$moves"
		[$moves	-ne	1]	&&	printf	"s"
		check

		##	read	a	single	character	without	waiting	for	<ENTER>
		read	-sn1	-p	$'								\e[K'	key

		##	The	cursor	keys	generate	three	characters:	ESC,	[and	
A,	B,	C,	or	D;
		##	this	loop	will	run	three	times	for	each	press	of	
a	cursor	key

		##	but	will	not	do	anything	until	it	receives	a	letter
		##	from	the	cursor	key	(or	entered	directly	with	A	etc.),	
or	a	'q'	to	exit
		case	$key	in
				A)	[-n	"${bordering[$A]}"]	&&	move	"${bordering[$A]}"	
;;
				B)	[-n	"${bordering[$B]}"]	&&	move	"${bordering[$B]}"	
;;
				C)	[-n	"${bordering[$C]}"]	&&	move	"${bordering[$C]}"	
;;
				D)	[-n	"${bordering[$D]}"]	&&	move	"${bordering[$D]}"	
;;
				q)	echo;	break	;;
		esac
done

Summary
The	scripts	provided	in	this	chapter	are	a	smattering	of	the	possibilities	for	using	scripts	at
the	command	line.	Where	the	environment	needs	to	be	changed	(as	in	cd	and	cdm),	the
scripts	must	be	shell	functions.	These	are	usually	kept	in	$HOME/.bashrc	or	in	a	file
sourced	by	.bashrc.

Even	games	can	be	programmed	without	needing	a	GUI	interface.

Exercises
1.	 Modify	the	menu	function	to	accept	its	parameters	from	a	file.

2.	 Rewrite	the	pr1	function	as	prx	that	will	behave	in	the	manner	of
pr4	from	Chapter	8	but	will	take	an	option	for	any	number	of
columns.

3.	 Add	a	getopts	section	to	the	fifteen	game	that	allows	the	user
to	select	between	three	different	board	formats.	Write	a	third
format.

CHAPTER	12

Runtime	Configuration
When	I	download	my	e-mail	from	three	or	four	different	POP3	servers,	I	don’t	use	a
different	script	for	each	one.	When	I	open	a	terminal	to	ssh	to	a	remote	computer	(half	a
dozen	of	them)	with	a	different	background	color	for	each,	I	use	the	same	script	for	every
connection.	To	upload	files	to	my	web	sites	(I	look	after	six	sites),	I	use	the	same	script	for
all	of	them.

You	can	configure	a	script’s	behavior	in	several	ways	when	you	run	it.	This	chapter
looks	at	seven	methods:	initialized	variables,	command-line	options	and	arguments,
menus,	Q&A	dialogue,	configuration	files,	multiple	names	for	one	script,	and	environment
variables.	These	methods	are	not	mutually	exclusive;	in	fact,	they	are	often	combined.	A
command-line	option	could	tell	the	script	to	use	a	different	configuration	file	or	present
the	user	with	a	menu.

Defining	Variables
If	the	runtime	requirements	for	a	script	will	rarely	change,	hard-coded	variables	may	be	all
the	configuration	you	need	(Listing	12-1).	You	can	set	them	when	the	script	is	installed.
When	a	change	is	needed,	the	parameters	can	quickly	be	changed	with	a	text	editor.

Listing	12-1.	Example	of	Initialized	Default	Variables

##	File	locations
dict=/usr/share/dict
wordfile=$dict/singlewords
compoundfile=$dict/Compounds

##	Default	is	not	to	show	compound	words
compounds=no

If	the	variables	need	changing	often,	one	or	more	of	the	other	methods	can	be	added.

Command-Line	Options	and	Arguments
The	most	common	method	for	changing	runtime	behavior	uses	command-line	options.	As
shown	in	Listing	12-2,	all	the	values	defined	earlier	can	be	modified	at	the	command	line.

Listing	12-2.	Parse	Command-Line	Options

while	getopts	d:w:f:c	var
do

		case	"$var"	in
				c)	compounds=1	;;
				d)	dict=$OPTARG	;;
				w)	wordfile=$OPTARG	;;
				f)	compoundfile=$OPTARG	;;
		esac
done

Menus
For	a	user	unfamiliar	with	a	piece	of	software,	a	menu	is	a	good	way	to	allow	runtime
changes.	In	the	menu	example	shown	in	Listing	12-3,	the	selections	are	numbered	from	1
to	4,	and	q	exits	the	menu.

Listing	12-3.	Set	Parameters	via	Menu

while	:		##	loop	until	user	presses	'q'
do
		##	print	menu
		printf	"\n\n%s\n"	"$bar"
		printf	"		Dictionary	parameters\n"
		printf	"%s\n\n"	"$bar"
		printf	"		1.	Directory	containing	dictionary:	%s\n"	
"$dict"
		printf	"		2.	File	containing	word	list:	%s\n"	"$wordfile"
		printf	"		3.	File	containing	compound	words	and	phrases:	
%s\n"	"$compoundfile"
		printf	"		4.	Include	compound	words	and	phrases	in	
results?	%s\n"	"$compounds"
		printf	"		q.	%s\n"	"Exit	menu"
		printf	"\n%s\n\n"	"$bar"

		##	get	user	response
		read	-sn1	-p	"Select	(1,2,3,4,q):	"	input
		echo

		##	interpret	user	response
		case	$input	in
				1)	read	-ep	"Enter	dictionary	directory:	"	dict	;;
				2)	read	-ep	"Enter	word-list	file:	"	wordfile	;;
				3)	read	-ep	"Enter	compound-word	file:	"	compoundfile	;;
				4)	["$compounds"	=	y]	&&	compounds=n	||	compounds=y	;;
				q)	break	;;
				*)	printf	"\n\aInvalid	selection:	%c\n"	"$input"	>&2
				sleep	2
				;;

		esac
done

Q&A	Dialogue
A	question-and-answer	function	cycles	through	all	the	parameters,	prompting	the	user	to
enter	a	value	for	each	one	(Listing	12-4).	This	can	get	tedious	for	the	user,	and	it	is
probably	best	used	when	there	are	no	defaults,	when	there	are	very	few	parameters	to
enter,	or	when	values	need	to	be	entered	for	a	new	configuration	file.

Listing	12-4.	Set	Variables	by	Question	and	Answer

read	-ep	"Directory	containing	dictionary:	"	dict
read	-ep	"File	containing	word	list:	"	wordfile
read	-ep	"File	containing	compound	words	and	phrases:	
"	compoundfile
read	-sn1	-p	"Include	compound	words	and	phrases	in	results	
(y/n)?	"	compounds
echo
read	-ep	"Save	parameters	(y/n)?	"	save
case	$save	in
		y|Y)	read	-ep	"Enter	path	to	configuration	file:	
"	configfile
			{
				printf	'%-30s	##	%s"\n'	\
						"dict=$dict"	"Directory	containing	dictionary"	\
						"wordfile=$wordfile"	"File	containing	word	list"	\
						"compoundfile=$compoundfile"	"File	containing	compound	
words	and	phrases"	\
						"Compounds"	"$Compounds"	"Include	compound	words	and	
phrases	in	results?"
			}	>	"${configfile:-/dev/tty}"
esac

Configuration	Files
Configuration	files	can	use	any	format,	but	it’s	easiest	to	make	them	shell	scripts	that	can
be	sourced.	The	example	file	shown	in	Listing	12-5	can	be	sourced,	but	it	can	also	provide
more	information.

Listing	12-5.	Configuration	File,	words.cfg

dict=/usr/share/dict								##	directory	containing	
dictionary	files
wordfile=singlewords								##	file	containing	word	list
compoundfile=Compounds						##	file	containing	compound	

words	and	phrases
compounds=no																##	include	compound	words	and	
phrases	in	results?

The	words.cfg	file	can	be	sourced	with	either	of	these	two	commands:

.	words.cfg
source	words.cfg

Rather	than	sourcing	the	file,	it	can	be	parsed	in	various	ways	(Listing	12-6).	In
bash-4.x,	you	can	read	the	file	into	an	array	and	extract	the	variables	and	comments
using	parameter	expansion,	the	expansion	being	applied	to	each	element	of	the	array.

Listing	12-6.	Parsing	Configuration	File

IFS=$'\n'
file=words.cfg
settings=($(<	"$file"))									##	store	file	in	array,	
1	line	per	element
eval	"${settings[@]%%#*}"										##	extract	and	execute	
the	assignments
comments=("${settings[@]#*##	}")	##	store	comments	in	
array

The	comments	array	contains	just	the	comments,	and	the	assignments	can	be
extracted	from	settings	with	“${settings[@]%%#*}”:

$	printf	"%s\n"	"${comments[@]}"
directory	containing	dictionary	files
file	containing	word	list
file	containing	compound	words	and	phrases
include	compound	words	and	phrases	in	results?

You	can	also	read	the	file	in	a	loop	to	set	the	variables	and	provide	information	about
the	variables	it	contains	by	displaying	the	comments	(Listing	12-7).

Listing	12-7.	Parsing	Configuration	File	with	Comments

while	read	assignment	x	comment
do
		if	[-n	"$assignment"]
		then
				printf	"%20s:	%s\n"	"${assignment#*=}"		"$comment"
				eval	"$assignment"
		fi
done	<	"$file"

The	following	is	the	result:
/usr/share/dict:	directory	containing	dictionary	files

									singlewords:	file	containing	word	list
											Compounds:	file	containing	compound	words	and	phrases
																			n:	include	compound	words	and	phrases	in	results?

Configuration	files	can	be	made	as	complex	as	you	like,	but	parsing	them	then	falls
more	properly	under	the	category	of	data	processing,	which	is	the	subject	of	Chapter	13.

Scripts	with	Several	Names
By	storing	the	same	file	under	different	names,	you	can	avoid	command-line	options	and
menus.	The	script	in	Listing	12-8	opens	a	terminal	and	connects	to	different	remote
computers	using	a	secure	shell.	The	terminal’s	colors,	the	mac	to	log	on	to,	and	the	name
of	the	remote	user	are	all	determined	by	the	name	of	the	script.

Listing	12-8.	bashful,	Connect	to	Remote	Computer	via	ssh

scriptname=${0##*/}

##	default	colours
bg=#ffffcc					##	default	background:	pale	yellow
fg=#000000					##	default	foreground:	black

user=bashful			##	default	user	name
term=xterm					##	default	terminal	emulator	(I	prefer	rxvt)

case	$scriptname	in
		sleepy)
					bg=#ffffff
					user=sleepy
					host=sleepy.example.com
					;;
		sneezy)
					fg=#aa0000
					bg=#ffeeee
					host=sneezy.example.org
					;;
		grumpy)
					fg=#006600
					bg=#eeffee
					term=rxvt
					host=cfajohnson.example.com
					;;
		dopey)
					host=127.0.0.1
					;;
		*)	echo	"$scriptname:	Unknown	name"	>&2
					exit	1

					;;
esac

"$term"	-fg	"$fg"	-bg	"$bg"	-e	ssh	-l	"$user"	"$host"

To	create	the	multiple	names	for	the	same	file,	create	links	with	ln	(Listing	12-9).

Listing	12-9.	Make	Multiple	Links	to	bashful	Script

cd	"$HOME/bin"	&&
for	name	in	sleepy	sneezy	grumpy	dopey
do
		ln	-s	bashful	"$name"											##	you	can	leave	out	the	-
s	option	if	you	like
done

Environment	Variables
You	can	also	pass	settings	to	a	program	using	variables.	These	can	be	either	exported	or
defined	on	the	same	line	as	the	command.	In	the	latter	case,	the	variable	is	defined	for	that
command	only.

You	alter	the	behavior	of	the	program	by	checking	for	the	value	of	a	variable	or	even
just	for	its	existence.	I	use	this	technique	most	often	to	adjust	the	output	of	a	script	using
verbose.	This	would	be	a	typical	line	in	a	script:

[${verbose:-0}	-gt	0]	&&	printf	"%s\n"	"Finished	parsing	
options"

The	script	would	be	called	with	the	following:

verbose=1	myscriptname

You	can	see	an	example	in	the	following	script	below.

All	Together	Now
The	following	is	the	program	I	use	to	update	all	my	web	sites.	It	finds	new	or	modified
files	in	a	directory	hierarchy,	stores	them	in	a	tarball,	and	uploads	them	to	a	web	site	on	a
(usually)	remote	computer.	I	have	shell	access	on	all	the	sites	I	use,	so	I	can	use	a	secure
shell,	ssh,	to	transfer	the	files	and	unpack	them	with	tar	on	the	site:

ssh	-p	"$port"	-l	"$user"	"$host"	\
						"cd	\"$dest\"	||	exit;tar	-xpzf	-"	<	"$tarfile"	&&
								touch	"$syncfile"

All	of	my	sites	use	authentication	keys	(created	with	ssh-keygen)	so	that	no
password	is	required	and	the	script	can	be	run	as	a	cron	job.

This	program	uses	all	the	techniques	mentioned	earlier	except	for	multiple	names.	It’s
more	than	you	would	usually	use	in	a	single	program,	but	it’s	a	good	illustration.

The	user	can	select	whether	to	use	command-line	options,	a	menu,	a	Q&A	dialogue,	or
a	configuration	file	to	adjust	the	settings,	or	the	user	can	even	use	the	defaults.	Command-
line	options	are	available	for	all	settings:

-c	configfile:	Reads	settings	from	configfile

-h	host:	Specifies	the	URL	or	IP	address	of	remote	computer

-p	port:	Specifies	the	SSH	port	to	use

-d	dest:	Specifies	the	destination	directory	on	the	remote	host

-u	user:	Specifies	the	user’s	login	name	on	remote	computer

-a	archivedir:	Specifies	the	local	directory	to	store	archive
files

-f	syncfile:	Specifies	the	file	whose	timestamp	is	the	cutoff
point

And	there	are	three	further	options	that	control	the	script	itself:

-t:	Tests	only,	displays	final	settings,	does	not	archive	or	upload

-m:	Presents	user	with	the	menu

-q:	Uses	Q&A	dialogue

The	script	is	examined	in	the	following	sections	in	detail,	section	by	section.

	Note		This	is	a	book	on	Pro	Bash	Scripts	and	hence	the	approach	using	scripting.
Writing	a	script	may	not	necessarily	be	the	best	solution.

There	are	a	couple	of	other	options	not	necessarily	Bash	scripting	based	that	are
created	solely	to	achieve	administration	outcomes.	There	is	a	perl	script	wrapper	called
Cluster	SSH	(open	source)	that	allows	you	to	send	a	command	to	multiple	servers	at	the
same	time	and	is	GUI	based.	There	is	another	called	Puppet,	which	is	quite	popular.

Script	Information
Note	that	parameter	expansion	is	used	to	pull	the	script	name	from	$0,	not	the	external
command,	basename	(Listing	12-10).

Listing	12-10.	upload,	Archive	and	Upload	Files	to	Remote	Computer

scriptname=${0##*/}
description="Archive	new	or	modified	files	and	upload	to	web	
site"
author="Chris	F.A.	Johnson"

version=1.0

Default	Configuration
Besides	setting	the	variables,	an	array	containing	the	names	of	the	variables	and	their
descriptions	are	created	(Listing	12-11).	This	is	used	by	the	menu	and	qa	(question	and
answer)	functions	for	labels	and	prompts.

Listing	12-11.	Default	Values	and	settings	Array

##	archive	and	upload	settings
host=127.0.0.1																								##	Remote	host	(URL	or	
IP	address)
port=22																															##	SSH	port
dest=work/upload																						##	Destination	
directory
user=jayant																											##	Login	name	on	
remote	system
source=$HOME/public_html/oz-apps.com		##	Local	directory	to	
upload
archivedir=$HOME/work/webarchives					##	Directory	to	store	
archive	files
syncfile=.sync																								##	File	to	touch	with	
time	of	last	upload

##	array	containing	variables	and	their	descriptions
varinfo=(""	##	Empty	element	to	emulate	1-based	array
		"host:Remote	host	(URL	or	IP	address)"
		"port:SSH	port"
		"dest:Destination	directory"
		"user:Login	name	on	remote	system"
		"source:Local	directory	to	upload"
		"archivedir:Directory	to	store	archive	files"
		"syncfile:File	to	touch	with	time	of	last	upload"
)

##	These	may	be	changed	by	command-line	options
menu=0										##	do	not	print	a	menu
qa=0												##	do	not	use	question	and	answer
test=0										##	0	=	upload	for	real;	1	=	don't	
archive/upload,	show	settings
configfile=					##	if	defined,	the	file	will	be	sourced
configdir=$HOME/.config		##	default	location	for	
configuration	files
sleepytime=2				##	delay	in	seconds	after	printing	messages

##	Bar	to	print	across	top	and	bottom	of	menu	(and	possibly	

elsewhere)
bar===
bar=barbarbarbar			##	make	long	enough	for	any	terminal	
window
menuwidth=${COLUMNS:-80}

Screen	Variables
These	variables	use	the	ISO-6429	standard,	which	is	now	all	but	universal	in	terminals	and
terminal	emulators	(Listing	12-12).	This	is	discussed	in	detail	in	Chapter	14.	When	printed
to	the	terminal,	these	escape	sequences	perform	the	actions	indicated	in	the	comments.

Listing	12-12.	Define	Screen	Manipulation	Variables

topleft='\e[0;0H'					##	Move	cursor	to	top	left	corner	of	
screen
clearEOS='\e[J'							##	Clear	from	cursor	position	to	end	
of	screen
clearEOL='\e[K'							##	Clear	from	cursor	position	to	end	
of	line

Function	Definitions
There	are	five	functions,	two	of	which,	menu	and	qa,	allow	the	user	to	change	the
settings.	With	readline	able	to	accept	the	user’s	input,	the	-i	option	to	read	is	used	if
the	shell	version	is	bash-4.x	or	greater.	If	the	test	option	is	used,	the	print_config
function	outputs	the	settings	in	a	format	that	is	suitable	for	a	configuration	file,	complete
with	comments.

Function:	die
The	program	exits	via	the	die	function	when	a	command	fails	(Listing	12-13).

Listing	12-13.	Define	die	Function

die()	#@	Print	error	message	and	exit	with	error	code
{					#@	USAGE:	die	[errno	[message]]

		error=${1:-1}			##	exits	with	1	if	error	number	not	given
		shift
		[-n	"$*"]	&&
				printf	"%s%s:	%s\n"	"$scriptname"	${version:+"	
($version)"}	"$*"	>&2
		exit	"$error"
}

Function:	menu

The	menu	function	uses	its	command-line	arguments	to	populate	the	menu	(Listing	12-
14).	Each	argument	contains	a	variable	name	and	a	description	of	the	variable	separated
by	a	colon.

THE	UPLOAD	SETTINGS	MENU
==

UPLOAD	SETTINGS

==

1:	Remote	host	(URL	or	IP	address)	(127.0.0.1)
				2:	ssh	port	(22)
				3:	Destination	directory	(work/upload)
				4:	Login	name	on	remote	system	(jayant)
				5:	Local	directory	to	upload	(/home/jayant/public_html/oz-
apps.com)
				6:	Directory	to	store	archive	files
(/home/jayant/work/webarchives)
				7:	File	to	touch	with	time	of	last	upload	(.sync)
				q:	Quit	menu,	start	uploading
				0:	Exit	upload

==

Select	1..7	or	'q/0'

The	function	enters	an	infinite	loop,	from	which	the	user	exits	by	selecting	q	or	0.
Within	the	loop,	menu	clears	the	screen	and	then	cycles	through	each	argument,	storing	it
in	item.	It	extracts	the	variable	name	and	description	using	parameter	expansion:

var=${item%%:*}
description=${item#*:}

The	value	of	each	var	is	obtained	through	indirect	expansion,	${!var},	and	is
included	in	the	menu	labels.	The	field	width	for	the	menu	number	is	${#max},	that	is,	the
length	of	the	highest	item	number.

Listing	12-14.	Define	menu	Function

menu()	#@	Print	menu,	and	change	settings	according	to	user	
input
{
		local	max=$#
		local	menutitle="UPLOAD	SETTINGS"
		local	readopt

		if	[$max	-lt	10]

		then													##	if	fewer	than	ten	items,
				readopt=-sn1			##	allow	single	key	entry
		else
				readopt=
		fi

		printf	"$topleft$clearEOS"		##	Move	to	top	left	and	clear	
screen

		while	:	##	infinite	loop
		do

				###
				##	display	menu
				##
				printf	"$topleft"		##	Move	cursor	to	top	left	corner	of	
screen

				##	print	menu	title	between	horizontal	bars	the	width	of	
the	screen
				printf	"\n%s\n"	"${bar:0:$menuwidth}"
				printf	"				%s\n"	"$menutitle"
				printf	"%s\n\n"	"${bar:0:$menuwidth}"

				menunum=1

				##	loop	through	the	positional	parameters
				for	item
				do
						var=${item%%:*}										##	variable	name
						description=${item#*:}			##	variable	description

						##	print	item	number,	description	and	value
						printf	"			%${#max}d:	%s	(%s)$clearEOL\n"	\
																	"$menunum"	"$description"	"${!var}"

						menunum=$(($menunum	+	1))
				done

				##	…	and	menu	adds	its	own	items
				printf	"			%${##}s\n"	"q:	Quit	menu,	start	uploading"	\
																						"0:	Exit	$scriptname"

				printf	"\n${bar:0:$menuwidth}\n"			##	closing	bar

				printf	"$clearEOS\n"	##	Clear	to	end	of	screen
				##
				###

				###
				##	User	selection	and	parameter	input
				##

				read	-p	"	Select	1..$max	or	'q'	"	$readopt	x
				echo

				["$x"	=	q]	&&	break		##	User	selected	Quit
				["$x"	=	0]	&&	exit			##	User	selected	Exit

				case	$x	in
						[!0-9]	|	"")
														##	contains	non	digit	or	is	empty
														printf	"\a	%s	-	Invalid	entry\n"	"$x"	>&2
														sleep	"$sleepytime"
														;;
						*)	if	[$x	-gt	$max]
									then
											printf	"\a	%s	-	Invalid	entry\n"	"$x"	>&2
											sleep	"$sleepytime"
											continue
									fi

									var=${!x%%:*}
									description=${!x#*:}

									##	prompt	user	for	new	value
									printf	"						%s$clearEOL\n"	"$description"
									readline	value	"								>>	"		"${!var}"

									##	if	user	did	not	enter	anything,	keep	old	value
									if	[-n	"$value"]
									then
											eval	"$var=\$value"
									else
											printf	"\a	Not	changed\n"	>&2
											sleep	"$sleepytime"
									fi
									;;
				esac
				##
				###

		done
}

Function:	qa
The	qa	function	takes	the	same	arguments	as	menu,	but	instead	of	putting	them	into	a
menu,	it	prompts	the	user	for	a	new	value	for	each	variable	(Listing	12-15).	When	it	has
run	through	all	the	command-line	arguments,	which	it	splits	up	in	the	same	manner	as
menu,	it	calls	the	menu	function	for	verification	and	editing	of	the	values.	Also	like
menu,	it	uses	readline	to	get	the	input	and	keeps	the	old	value	if	nothing	is	entered.

Listing	12-15.	Define	qa	Function

qa()	#@	Question	and	answer	dialog	for	variable	entry
{
		local	item	var	description

		printf	"\n	%s	-	%s\n"	"$scriptname"	"$description"
		printf	"	by	%s,	copyright	%d\n"		"$author"	"$copyright"
		echo
		if	[${BASH_VERSINFO[0]}	-ge	4]
		then
				printf	"	%s\n"	"You	may	edit	existing	value	using	the	
arrow	keys."
		else
				printf	"	%s\n"	"Press	the	up	arrow	to	bring	existing	
value"	\
																			"to	the	cursor	for	editing	with	the	arrow	
keys"
		fi
		echo

		for	item
		do
				##	split	$item	into	variable	name	and	description
				var=${item%%:*}
				description=${item#*:}
				printf	"\n	%s\n"	"$description"
				readline	value	"			>>	"	"${!var}"
				[-n	"$value"]	&&	eval	"$var=\$value"
		done

		menu	"$@"
}

The	dialogue	looks	like	this:

$	upload	-qt

	upload	-	Archive	new	or	modified	files	and	upload	to	web	
site

	by	Chris	F.A.	Johnson,	copyright	2009

	You	may	edit	existing	value	using	the	arrow	keys.

	Remote	host	(URL	or	IP	address)
			>>	oz-apps.com

	SSH	port
			>>	99

	Destination	directory
			>>	public_html

	Login	name	on	remote	system
			>>	jayant

	Local	directory	to	upload
			>>	/home/jayant/public_html/oz-apps.com

	Directory	to	store	archive	files
			>>	/home/jayant/work/webarchives

	File	to	touch	with	time	of	last	upload
			>>	.sync

Function:	print_config
The	print_config	function	prints	all	the	variables	listed	in	the	varinfo	array	to	the
standard	output	in	a	format	suitable	for	a	configuration	file,	as	described	earlier	in	this
chapter.	Although	probably	not	necessary	in	this	program,	it	encloses	the	assignment	value
in	double	quotes	and	escapes	double	quotes	in	the	value	using	bash’s	search-and-replace
parameter	expansion:

$	var=location
$	val='some"where'
$	printf	"%s\n"	"$var=\"${val//\"/\\\"}\""
location="some\"where"

See	the	options-parsing	section	in	Listing	12-16	for	an	example	of	the	output	of
print_config.

Listing	12-16.	Define	print_config	Function

print_config()	#@	Print	values	in	a	format	suitable	for	
a	configuration	file
{
		local	item	var	description

		[-t	1]	&&	echo		##	print	blank	line	if	output	is	to	

a	terminal

		for	item	in	"${varinfo[@]}"
		do
				var=${item%%:*}
				description=${item#*:}
				printf	"%-35s	##	%s\n"	"$var=\"\${!var//\"/\\\"}\""	
"$description"
		done

		[-t	1]	&&	echo		##	print	blank	line	if	output	is	to	
a	terminal
}

Function:	readline
If	you	are	using	bash-4.x	or	later,	the	readline	function	will	place	a	value	before	the
cursor	for	you	to	edit	(Listing	12-17).	With	an	earlier	version	of	bash,	it	puts	the	value
into	the	history	so	that	you	can	bring	it	up	with	the	up-arrow	(or	Ctrl+P)	and	then	edit	it.

Listing	12-17.	Define	readline	Function

readline()	#@	get	line	from	user	with	editing	of	current	
value
{										#@	USAGE	var	[prompt]	[default]
		local	var=${1?}	prompt=${2:-		>>>	}	default=$3

		if	[${BASH_VERSINFO[0]}	-ge	4]
		then
				read	-ep	"$prompt"	${default:+-i	"$default"}	"$var"
		else
				history	-s	"$default"
				read	-ep	"$prompt"	"$var"
		fi
}

Parse	Command-Line	Options
You	can	set	the	seven	configuration	variables	with	the	a,	d,	f,	h,	p,	s,	and	u	options.	In
addition,	you	can	specify	a	configuration	file	with	the	c	option.	A	test	run,	which	prints
the	configuration	information	but	doesn’t	attempt	to	create	a	tarball	or	upload	any	files,
can	be	triggered	with	the	t	option.	The	m	and	q	options	offer	the	user	a	menu	and	a
question-and-answer	dialogue,	respectively.

If	a	host	is	given	as	an	option,	a	config	file	name	is	built	using	a	standard	formula.	If
the	file	exists,	it	is	assigned	to	the	configfile	variable	so	that	the	parameters	will	be
loaded	from	it.	Usually	this	is	all	that	would	be	needed	to	add	to	the	command	line	for	this
purpose	(Listing	12-18).

Listing	12-18.	Parse	Command-Line	Options

while	getopts	c:h:p:d:u:a:s:f:mqt	var
do
		case	"$var"	in
				c)	configfile=$OPTARG	;;	
				h)	host=$OPTARG
							hostconfig=$configdir/$scriptname.$host.cfg
							[-f	"$hostconfig"]	&&
									configfile=$hostconfig
							;;
				p)	port=$OPTARG	;;
				s)	source=$OPTARG	;;
				d)	dest=$OPTARG	;;
				u)	user=$OPTARG	;;
				a)	archivedir=$OPTARG	;;
				f)	syncfile=$OPTARG	;;

				t)	test=1	;;	##	show	configuration,	but	do	not	archive	or	
upload

				m)	menu=1	;;
				q)	qa=1	;;
		esac
done
shift	$(($OPTIND	-	1))

Using	options	and	redirection,	this	program	can	create	new	configuration	files.	Here,
parameters	are	given	on	the	command	line,	and	defaults	are	used	for	those	not	given.

$	upload	-t	-h	www.example.com	-p	666	-u	paradigm	-d	
public_html	\
			-s	$HOME/public_html/www.example.com	>	www.example.com.cfg
$	cat	www.example.com.cfg
host="www.example.com"														##	Remote	host	(URL	or	
IP	address)
port="666"																										##	SSH	port
dest="public_html"																		##	Destination	directory
user="paradigm"																					##	Login	name	on	remote	
system
source="/home/jayant/public_html/www.example.com"	##	Local	
directory	to	upload
archivedir="/home/jayant/work/webarchives"	##	Directory	to	
store	archive	files
syncfile=".sync"																				##	File	to	touch	with	
time	of	last	upload

Bits	and	Pieces
Listing	12-19	below	shows	the	rest	of	the	script.

Listing	12-19.	The	Rest	of	the	Script

##	If	a	configuration	file	is	defined,	try	to	load	it
if	[-n	"$configfile"]
then
		if	[-f	"$configfile"]
		then
				##	exit	if	problem	with	config	file
				.	"$configfile"	||	die	1	Configuration	error
		else
				##	Exit	if	configuration	file	is	not	found.
				die	2	"Configuration	file,	$configfile,	not	found"
		fi
fi

##	Execute	menu	or	qa	if	defined
if	[$menu	-eq	1]
then
		menu	"${varinfo[@]}"
elif	[$qa	-eq	1]
then
		qa	"${varinfo[@]}"
fi

##	Create	datestamped	filename	for	tarball
tarfile=$archivedir/$host.$(date	+%Y-%m-%dT%H:%M:%S.tgz)

if	[$test	-eq	0]
then
		cd	"$source"	||	die	4
fi

##	verbose	must	be	set	(or	not)	in	the	environment	or	on	the	
command	line
if	[${verbose:-0}	-gt	0]
then
		printf	"\nArchiving	and	uploading	new	files	in	directory:	
%s\n\n"	"$PWD"
		opt=v
else
		opt=
fi

##	IFS=$'\n'	#	uncomment	this	line	if	you	have	spaces	in	
filenames	(shame	on	you!)

if	[${test:-0}	-eq	0]
then
		remote_command="cd	\"$dest\"	||	exit;tar	-xpzf	-"

		##	Archive	files	newer	than	$syncfile
		tar	cz${opt}f	"$tarfile"	$(find	.	-type	f	-newer	
"$syncfile")	&&

				##	Execute	tar	on	remote	computer	with	input	from	
$tarfile
				ssh	-p	"$port"	-l	"$user"	"$host"	"$remote_command"	<	
"$tarfile"	&&

							##	if	ssh	is	successful
							touch	"$syncfile"

else	##	test	mode
		print_config
fi

Summary
This	chapter	demonstrated	seven	methods	of	altering	the	runtime	behavior	of	a	script.	If
changes	will	be	rare,	variables	defined	in	the	script	may	be	adequate.	When	that	isn’t
enough,	command-line	options	(parsed	with	getopts)	are	often	enough.

You	can	use	a	menu	or	question-and-answer	dialogue	both	for	runtime	configuration
and	for	creating	configuration	files	that	can	be	sourced	on	demand.	Using	differently
named	files	for	the	same	script	can	save	typing.	In	some	cases,	setting	a	variable	in	the
shell’s	environment	is	enough.

Exercises
1.	 Add	code	to	the	upload	script	that	checks	that	all	variables	have

been	set	to	legitimate	values	(e.g.,	that	port	is	an	integer).

2.	 Write	a	usage	or	help	function,	and	add	it	to	the	upload	script.

3.	 Add	an	option	to	the	upload	script	to	save	the	configuration	if	it
has	been	saved.

4.	 Write	a	script	that	creates	a	configuration	file	in	the	same	form	as
words.cfg,	prompting	the	user	for	the	information	to	put	in	it.

CHAPTER	13

Data	Processing
Data	manipulation	includes	a	wide	range	of	actions,	far	more	than	can	be	adequately
covered	in	a	single	chapter.	However,	most	actions	are	just	the	application	of	techniques
already	covered	in	earlier	chapters.	Arrays	are	a	basic	data	structure,	and	although	the
syntax	was	covered	in	Chapter	5	and	they	were	used	in	the	fifteen	puzzle	code	in
Chapter	11,	I	haven’t	yet	explained	their	uses.	Parameter	expansion	has	been	used	in	a
number	of	chapters,	but	its	application	to	parsing	data	structures	has	not	been	discussed.

This	chapter	will	cover	different	ways	of	using	strings	and	arrays,	how	to	parse
character-delimited	records	into	their	individual	fields,	and	how	to	read	a	data	file.	There
are	two	function	libraries	for	manipulating	two-dimensional	grids,	and	there	are	functions
for	sorting	and	searching	arrays.

Arrays
Arrays	are	not	included	in	the	POSIX	shell,	but	bash	has	used	indexed	arrays	since
version	2.0,	and	in	version	4.0,	associative	arrays	were	added.	Indexed	arrays	are	assigned
and	referenced	using	integer	subscripts;	associative	arrays	use	strings.	There	is	no	preset
limit	to	the	number	of	elements	an	array	can	contain;	they	are	limited	only	by	available
memory.

Holes	in	an	Indexed	Array
If	some	elements	of	an	indexed	array	are	unset,	the	array	is	left	with	holes	and	it	becomes
a	sparse	array.	It	will	then	be	impossible	to	traverse	the	array	merely	by	incrementing	an
index.	There	are	various	ways	of	dealing	with	such	an	array.	To	demonstrate,	let’s	create
an	array	and	poke	some	holes	in	it:

array=(a	b	c	d	e	f	g	h	i	j)
unset	array[2]	array[4]	array[6]	array[8]

The	array	now	contains	six	elements	instead	of	the	original	ten:

$	sa	"${array[@]}"
:a:
:b:
:d:
:f:
:h:
:j:

One	way	to	iterate	through	all	the	remaining	elements	is	to	expand	them	as	arguments
to	for.	In	this	method,	there	is	no	way	of	knowing	what	the	subscript	for	each	element	is:

for	i	in	"${array[@]}"
do
		:	do	something	with	each	element,	$i,	here
done

With	a	packed	array	(one	with	no	holes),	the	index	can	start	at	0	and	be	incremented	to
get	the	next	element.	With	a	sparse	(or	any)	array,	the	${!array[@]}	expansion	lists
the	subscripts:

$	echo	"${!array[@]}"
0	1	3	5	7	9

This	expansion	can	be	used	as	the	argument	to	for:

for	i	in	"${!array[@]}"
do
		:	do	something	with	${array[$i]}	here
done

That	solution	does	not	provide	a	method	of	referring	to	the	next	element.	You	can	save
the	previous	element	yet	not	get	the	value	of	the	next	one.	To	do	that,	you	could	put	the
list	of	subscripts	into	an	array	and	use	its	elements	to	reference	the	original	array.	It’s
much	simpler	to	pack	the	array,	removing	the	holes:

$	array=("${array[@]}")
$	echo	"${!array[@]}"
0	1	2	3	4	5

Note	that	this	will	convert	an	associative	array	to	an	indexed	array.

Using	an	Array	for	Sorting
Ordering	data	alphabetically	(or	numerically)	is	not	usually	a	task	for	the	shell.	The	sort
command	is	a	very	flexible	and	efficient	tool	that	can	handle	most	sorting	needs.	There
are,	however,	a	couple	of	cases	where	sorting	can	best	be	done	by	the	shell.

The	most	obvious	is	file	name	expansion,	in	which	the	result	of	expanding	wildcards	is
always	sorted	alphabetically.	This	is	useful,	for	example,	when	working	with	date-stamped
files.	If	the	date	stamp	uses	the	standard	ISO	format,	YYYY-MM-DD,	or	a	compressed
version,	YYYYMMDD,	the	files	will	automatically	be	sorted	in	date	order.	If	you	have	files
in	the	format	log.YYYYMMDD,	this	loops	through	them	in	chronological	order:

for	file	in	log.*				##	loop	through	files	in	chronological	
order
do
			:	do	whatever

done

There	is	no	need	to	use	ls;	the	shell	sorts	the	wildcard	expansion.

With	bash-4.x,	another	expansion	is	sorted	alphabetically:	associative	arrays	with
single-character	subscripts:

$	declare	-A	q
$	q[c]=1	q[d]=2	q[a]=4
$	sa	"${q[@]}"
:4:
:1:
:2:

This	led	to	writing	a	function	that	sorts	the	letters	of	a	word	(Listing	13-1).

Listing	13-1.	lettersort,	Sort	Letters	in	a	Word	Alphabetically

lettersort()	#@	Sort	letters	in	$1,	store	in	$2
{
		local	letter	string
		declare	-A	letters
		string=${1:?}
		while	[-n	"$string"]
		do
				letter=${string:0:1}
				letters["$letter"]=${letters["$letter"]}$letter
				string=${string#?}
		done
		printf	-v	"${2:-_LETTERSORT}"	"%s"	"${letters[@]}"
}

What’s	the	point,	you	ask?	Take	a	look	at	these	examples:

$	lettersort	triangle;	printf	"%s\n"	"$_LETTERSORT"
aegilnrt
$	lettersort	integral;	printf	"%s\n"	"$_LETTERSORT"
aegilnrt

When	the	letters	are	sorted,	you	can	see	that	the	two	words	contain	the	same	letters.
Therefore,	they	are	anagrams	of	each	other.	Try	this	process	with	the	words	altering,
alerting,	and	relating.

Insertion	Sort	Function
If	you	really	want	to	do	your	sorting	in	the	shell,	you	can.	The	function	in	Listing	13-2	is
slower	than	the	external	sort	command	when	there	are	more	than	15	to	20	elements	(the
exact	numbers	will	vary	depending	on	your	computer,	its	load,	and	so	on).	It	inserts	each
element	into	the	correct	position	in	an	array	and	then	prints	the	resulting	array.

	Note		The	sort	function	is	a	program	written	in	C,	optimized	for	speed,	and	compiled,
whereas	the	script	written	in	bash	is	interpreted	at	runtime.	However,	it	all	depends	on
the	number	of	elements	you	are	sorting	and	the	way	your	scipt	is	structured,	which
determines	the	suitability	of	sort	over	using	your	own	scripted	sort.

Listing	13-2.	isort,	Sort	Command-Line	Arguments

isort()
{
		local	-a	a
		a=("$1")	##	put	first	argument	in	array	for	initial	
comparison
		shift						##	remove	first	argument
		for	e						##	for	each	of	the	remaining	arguments…
		do
				if	["$e"	\<	"${a[0]}"]																##	does	it	
precede	the	first	element?
				then
						a=("$e"	"${a[@]}")																		##	if	yes,	put	it	
first
				elif	["$e"	\>	"${a[${#a[@]}-1]}"]					##	if	no,	does	it	
go	at	the	end?
				then
						a=("${a[@]}"	"$e")																		##	if	yes,	put	it	
at	the	end
				else																																				##	otherwise,
						n=0
						while	["${a[$n]}"	\<	"$e"]										##	find	where	it	
goes
						do
								n=$(($n	+	1))
						done
						a=("${a[@]:0:n}"	"$e"	"${a[@]:n}")		##	and	put	it	
there
				fi
		done
		printf	"%s\n"	"${a[@]}"
}

To	put	Canada’s	ten	provincial	capitals	in	alphabetical	order,	you’d	use	this	code:

$	isort	"St.	John's"	Halifax	Fredericton	Charlottetown	
"Quebec	City"	\
																							Toronto	Winnipeg	Regina	Edmonton	Victoria
Charlottetown
Edmonton
Fredericton

Halifax
Quebec	City
Regina
St.	John's
Toronto
Victoria
Winnipeg

Searching	an	Array
As	with	the	isort	function,	this	function	is	designed	for	use	with	relatively	small	arrays.
If	the	array	contains	more	than	a	certain	number	of	elements	(50?	60?	70?),	it	is	faster	to
pipe	it	through	grep.	The	function	in	Listing	13-3	takes	the	name	of	an	array	and	a	search
string	as	arguments	and	stores	elements	containing	the	search	string	in	a	new	array,
_asearch_elements.

Listing	13-3.	asearch,	Search	Elements	of	an	Array	for	a	String

asearch()	#@	Search	for	substring	in	array;	results	in	array	
_asearch_elements
{									#@	USAGE:	asearch	arrayname	string
		local	arrayname=$1	substring=$2		array

		eval	"array=(\"\${$arrayname[@]}\")"

		case	${array[*]}	in
				"$substring")	;;		##	it's	there;	drop	through
				*)	return	1	;;						##	not	there;	return	error
		esac

		unset	_asearch_elements
		for	subscript	in	"${!array[@]}"
		do
				case	${array[$subscript]}	in
						"$substring")
															_asearch_elements+=("${array[$subscript]}")
															;;
				esac
		done
}

To	see	the	function	in	action,	put	the	provincial	capitals	from	the	previous	section	into
an	array	and	call	asearch:

$	capitals=("St.	John's"	Halifax	Fredericton	Charlottetown	
"Quebec	City"
																							Toronto	Winnipeg	Regina	Edmonton	Victoria	
)

$	asearch	captials	Hal	&&	printf	
"%s\n"		"${_asearch_elements[@]}"
Halifax
$	asearch	captials	ict	&&	printf	
"%s\n"		"${_asearch_elements[@]}"
Fredericton
Victoria

Reading	an	Array	into	Memory
There	are	various	ways	of	reading	a	file	into	an	array	with	bash.	The	most	obvious	is	also
the	slowest:	a	while	read	loop:

unset	array
while	read	line
do
		array+=("$line")
done	<	"$kjv"									##	kjv	is	defined	in	Chapter	8

A	faster	method	that	is	still	portable	uses	the	external	command,	cat:

IFS=$'\n'													##	split	on	newlines,	so	each	line	is	
a	separate	element
array=($(cat	"$kjv"))

In	bash,	cat	is	unnecessary:

array=(<	"$kjv")				##	IFS	is	still	set	to	a	newline

With	bash-4.x,	a	new	built-in	command,	mapfile,	is	even	faster:

mapfile	-t	array	<	"$kjv"

The	options	to	mapfile	allow	you	to	select	the	line	at	which	to	start	reading
(actually,	it’s	the	number	of	lines	to	skip	before	starting	to	read),	the	number	of	lines	to
read,	and	the	index	at	which	to	start	populating	the	array.	If	no	array	name	is	given,	the
variable	MAPFILE	is	used.

The	following	are	the	seven	options	to	mapfile:

-n	num:	Reads	no	more	than	num	lines

-O	index:	Begins	populating	the	array	at	element	index

-s	num:	Discards	the	first	num	lines

-t:	Removes	the	trailing	newline	from	each	line

-u	fd:	Reads	from	input	stream	fd	instead	of	the	standard	input

-C	callback:	Evaluates	the	shell	command	callback	every	N

lines,	where	N	is	set	by	-c	N

-c	N:	Specifies	the	number	of	lines	between	each	evaluation	of
callback;	the	default	is	5000

With	older	versions	of	bash,	you	could	use	sed	to	extract	ranges	of	lines	from	a	file;
with	bash-4.x,	you	could	use	mapfile.	Listing	13-4	installs	a	function	that	uses
mapfile	if	the	version	of	bash	is	4.x	or	greater	but	sed	is	used	if	not.

Listing	13-4.	getlines,	Store	a	Range	of	Lines	from	a	File	in	an	Array

if	["${BASH_VERSINFO[0]}"	-ge	4]
then
		getlines()	#@	USAGE:	getlines	file	start	num	arrayname
		{
				mapfile	-t	-s$(($2	-	1))	-n	${3:?}	"$4"	<	"$1"
		}
else
		getlines()	#@	USAGE:	getlines	file	start	num	arrayname
		{
				local	IFS=$'\n'	getlinearray	arrayname=${4:?}
				getlinearray=($(sed	-n	"$2,$(($2	-	1	+	$3))	p"	"$1"))
				eval	"$arrayname=(\"\${getlinearray[@]}\")"
		}
fi

Process	substitution	and	external	utilities	can	be	used	with	mapfile	to	extract
portions	of	a	file	using	different	criteria:

mapfile	-t	exodus	<	<(grep	^Exodus:	"$kjv")					##	store	the	
book	of	Exodus
mapfile	-t	books	<	<(cut	-d:	-f1	"$kjv"	|	uniq)	##	store	
names	of	all	books	in	KJV

	Tip		You	can	also	use	readarray	to	read	the	data	from	a	file	into	an	array,	it	is
basically	an	alias	for	mapfile.

Two-Dimensional	Grids
Programmers	often	have	to	deal	with	two-dimensional	grids.	As	a	constructor	of
crossword	puzzles,	I	need	to	convert	a	grid	from	a	puzzle	file	to	a	format	that	my	clients’
publications	can	import	into	desktop	publishing	software.	As	a	chess	tutor,	I	need	to
convert	chess	positions	into	a	format	I	can	use	in	worksheets	for	my	students.	In	games
such	as	tic-tac-toe,	maxit,	and	fifteen	(from	Chapter	11),	the	game	board	is	a
grid.

The	obvious	structure	to	use	is	a	two-dimensional	array.	Because	bash	has	only	one-

dimensional	arrays,	a	workaround	is	needed	to	simulate	two	dimensions.	This	can	be	done
as	an	array,	a	string,	an	array	of	strings,	or	a	“poor	man’s”	array	(see	Chapter	9).

For	a	chess	diagram,	an	associative	array	could	be	used,	with	the	squares	identified
using	the	standard	algebraic	notation	(SAN)	for	squares,	a1,	b1	to	g8,	h8:

declare	-A	chessboard
chessboard["a1"]=R
chessboard["a2"]=P
:	...	60	squares	skipped
chessboard["g8"]=r
chessboard["h8"]=b

A	structure	that	I’ve	used	on	a	few	occasions	is	an	array	in	which	each	element	is	a
string	representing	a	rank:

chessboard=(
		RNBQKBRN
		PPPPPPPP
	"								"
	"								"
	"								"
	"								"
		pppppppp
		rnbqkbnr
)

My	preference,	when	using	bash,	is	a	simple	indexed	array:

chessboardarray=(
R	N	B	Q	K	B	R	N
P	P	P	P	P	P	P	P
""	""	""	""	""	""	""	""
""	""	""	""	""	""	""	""
""	""	""	""	""	""	""	""
""	""	""	""	""	""	""	""
p	p	p	p	p	p	p	p
r	n	b	q	k	b	n	r
)

Or,	in	a	POSIX	shell,	it	could	be	a	single	string:

chessboard="RNBQKBRNPPPPPPPP																																pppppppprnbqkbnr"

Next,	two	function	libraries	are	discussed,	one	for	dealing	with	grids	in	a	single	string
and	the	other	for	grids	stored	in	arrays.

Working	with	Single-String	Grids

I	have	a	function	library,	stringgrid-funcs,	for	dealing	with	two-dimensional	grids
stored	in	a	single	string.	There	is	a	function	to	initialize	all	elements	of	a	grid	to	a	given
character	and	one	to	calculate	the	index	in	the	string	of	a	character	based	on	the	x	and	y
coordinates.	There’s	one	to	fetch	the	character	in	the	string	using	x/y	and	one	to	place	a
character	into	the	grid	at	x/y.	Finally,	there	are	functions	to	print	a	grid,	starting	either
with	the	first	row	or	with	the	last	row.	These	functions	only	work	with	square	grids.

Function:	initgrid
Given	the	name	of	the	grid	(that	is,	the	variable	name),	the	size,	and	optionally	the
character	with	which	to	fill	it,	initgrid	(Listing	13-5)	creates	a	grid	with	the
parameters	supplied.	If	no	character	is	supplied,	a	space	is	used.

Listing	13-5.	initgrid,	Create	a	Grid	and	Fill	It

initgrid()	#@	Fill	N	x	N	grid	with	a	character
{										#@	USAGE:	initgrid	gridname	size	[character]
		##	If	a	parameter	is	missing,	it's	a	programming	error,	so	
exit
		local	grid	gridname=${1:?}	char=${3:-	}	size
		export	gridsize=${2:?}																##	set	gridsize	
globally

		size=$(($gridsize	**	2))												##	total	number	of	
characters	in	grid
		printf	-v	grid	"%$size.${size}s"	"	"		##	print	string	of	
spaces	to	variable
		eval	"$gridname=\${grid//	/"$char"}"		##	replace	spaces	
with	desired	character
}

The	length	of	the	string	is	the	square	of	the	grid	size.	A	string	of	that	length	is	created
using	a	width	specification	in	printf,	with	the	-v	option	to	save	it	to	a	variable	supplied
as	an	argument.	Pattern	substitution	then	replaces	the	spaces	with	the	requested	string.

This	and	the	other	functions	in	this	library	use	the	${var:?}	expansion,	which
displays	an	error	and	exits	the	script	if	there	is	no	value	for	the	parameter.	This	is
appropriate	because	it	is	a	programming	error,	not	a	user	error	if	a	parameter	is	missing.
Even	if	it’s	missing	because	the	user	failed	to	supply	it,	it	is	still	a	programming	error;	the
script	should	have	checked	that	a	value	had	been	entered.

A	tic-tac-toe	grid	is	a	string	of	nine	spaces.	For	something	this	simple,	the	initgrid
function	is	hardly	necessary,	but	it	is	a	useful	abstraction:

$.	stringgrid-funcs
$	initgrid	ttt	3
$	sa	"$ttt"							##	The	sa	script/function	has	been	used	in	
previous	chapters

:									:

Function:	gridindex
To	convert	x	and	y	coordinates	into	the	corresponding	position	in	the	grid	string,	subtract
1	from	the	row	number,	multiply	it	by	the	gridsize,	and	add	the	columns.	Listing	13-
6,	gridindex,	is	a	simple	formula	that	could	be	used	inline	when	needed,	but	again	the
abstraction	makes	using	string	grids	easier	and	localizes	the	formula	so	that	if	there	is	a
change,	it	only	needs	fixing	in	one	place.

Listing	13-6.	gridindex,	Calculate	Index	from	Row	and	Column

gridindex()	#@	Store	row/column's	index	into	string	in	var	
or	$_gridindex
{								#@	USAGE:	gridindex	row	column	[gridsize]	[var]]
		local	row=${1:?}	col=${2:?}

		##	If	gridsize	argument	is	not	given,	take	it	from	
definition	in	calling	script
		local	gridsize=${3:-$gridsize}
		printf	-v	"${4:-_GRIDINDEX}"	"%d"	"$((($row	-	1)	
*	$gridsize	+	$col	-	1))"
}

What’s	the	index	of	row	2,	column	3	in	the	tic-tac-toe	grid	string?

$	gridindex	2	3				##	gridsize=3
$	echo	"$_GRIDINDEX"
5

Function:	putgrid
To	change	a	character	in	the	grid	string,	putgrid	(Listing	13-7)	takes	four	arguments:
the	name	of	the	variable	containing	the	string,	the	row	and	column	coordinates,	and	the
new	character.	It	splits	the	string	into	the	part	before	the	character	and	the	part	after	it
using	bash’s	substring	parameter	expansion.	It	then	sandwiches	the	new	character
between	the	two	parts	and	assigns	the	composite	string	to	the	gridname	variable.
(Compare	this	with	the	_overlay	function	in	Chapter	7.)

Listing	13-7.	putgrid,	Insert	Character	in	Grid	at	Specified	Row	and	Column

putgrid()	#@	Insert	character	int	grid	at	row	and	column
{									#@	USAGE:	putgrid	gridname	row	column	char
		local	gridname=$1								##	grid	variable	name
		local	left	right									##	string	to	left	and	right	of	
character	to	be	changed
		local	index														##	result	from	gridindex	function
		local	char=${4:?}								##	character	to	place	in	grid

		local	grid=${!gridname}		##	get	grid	string	though	
indirection

		gridindex	${2:?}	${3:?}	"$gridsize"	index

		left=${grid:0:index}
		right=${grid:index+1}
		grid=$left$4$right
		eval	"$gridname=\$grid"
}

Here’s	the	code	for	the	first	move	in	a	tic-tac-toe	game:

$	putgrid	ttt	1	2	X
$	sa	"$ttt"
:	X							:

Function:	getgrid
The	opposite	of	putgrid	is	getgrid	(Listing	13-8).	It	returns	the	character	in	a	given
position.	Its	arguments	are	the	grid	name	(I	could	have	used	the	string	itself,	because
nothing	is	being	assigned	to	it,	but	the	grid	name	is	used	for	consistency),	the	coordinates,
and	the	name	of	the	variable	in	which	to	store	the	character.	If	no	variable	name	is
supplied,	it	is	stored	in	_GRIDINDEX.

Listing	13-8.	getgrid,	Get	Character	at	Row	and	Column	Location	in	Grid

getgrid()	#@	Get	character	from	grid	in	row	Y,	column	X
{									#@	USAGE:	getgrid	gridname	row	column	var
		:	${1:?}	${2:?}	${3:?}	${4:?}
		local	grid=${!1}
		gridindex	"$2"	"$3"
		eval	"$4=\${grid:_GRIDINDEX:1}"
}

This	snippet	returns	the	piece	in	the	square	e1.	A	chess	utility	would	convert	the
square	to	coordinates	and	then	call	the	getgrid	function.	Here	it	is	used	directly:

$	gridsize=8
$	

chessboard="RNBQKBRNPPPPPPPP																																pppppppprnbqkbnr"
$	getgrid	chessboard	1	5	e1
$	sa	"$e1"
:K:

Function:	showgrid
This	function	(Listing	13-9)	extracts	rows	from	a	string	grid	using	substring	expansion	and
the	gridsize	variable	and	prints	them	to	the	standard	output.

Listing	13-9.	showgrid,	Print	a	Grid	from	a	String

showgrid()	#@	print	grid	in	rows	to	stdout
{										#@	USAGE:	showgrid	gridname	[gridsize]
		local	grid=${!1:?}	gridsize=${2:-$gridsize}
		local	row				##	the	row	to	be	printed,	then	removed	from	
local	copy	of	grid

		while	[-n	"$grid"]		##	loop	until	there's	nothing	left
		do
				row=${grid:0:"$gridsize"}					##	get	first	$gridsize	
characters	from	grid
				printf	"\t:%s:\n"	"$row"						##	print	the	row
				grid=${grid#"$row"}											##	remove	$row	from	front	
of	grid
		done
}

Here	another	move	is	added	to	the	tic-tac-toe	board	and	displays	it:

$	gridsize=3				##	reset	gridsize	after	changing	it	for	the	
chessboard
$	putgrid	ttt	2	2	O	##	add	O's	move	in	the	center	square
$	showgrid	ttt		##	print	it
								:	X	:
								:	O	:
								:			:

Function:	rshowgrid
For	most	grids,	counting	begins	in	the	top	left	corner.	For	others,	such	as	a	chessboard,	it
starts	in	the	lower	left	corner.	To	display	a	chessboard,	the	rgridshow	function	extracts
and	displays	rows	starting	from	the	end	of	the	string	rather	than	from	the	beginning.

In	Listing	13-10,	substring	expansion	is	used	with	a	negative.

Listing	13-10.	rshowgrid,	Print	a	Grid	in	Reverse	Order

rshowgrid()	#@	print	grid	to	stdout	in	reverse	order
{											#@	USAGE:	rshowgrid	grid	[gridsize]
		local	grid	gridsize=${2:-$gridsize}	row
		grid=${!1:?}
		while	[-n	"$grid"]
		do
				##	Note	space	before	minus	sign
				##	to	distinguish	it	from	default	value	substitution
				row=${grid:	-$gridsize}			##	get	last	row	from	grid
				printf	"\t:%s:\n"	"$row"		##	print	it
				grid=${grid%"$row"}							##	remove	it

		done
}

Here,	rshowgrid	is	used	to	display	the	first	move	of	a	chess	game.	(For	those	who
are	interested,	the	opening	is	called	Bird’s	Opening.	It’s	not	often	played,	but	I	have	been
using	it	successfully	for	45	years.)

$	gridsize=8
$	

chessboard="RNBQKBRNPPPPPPPP																																pppppppprnbqkbnr"
$	putgrid	chessboard	2	6	'	'
$	putgrid	chessboard	4	6	P
$	rshowgrid	chessboard
								:rnbqkbnr:
								:pppppppp:
								:								:
								:								:
								:					P		:
								:								:
								:PPPPP	PP:
								:RNBQKBRN:

These	output	functions	can	be	augmented	by	piping	the	output	through	a	utility	such	as
sed	or	awk	or	even	replaced	with	a	custom	function	for	specific	uses.	I	find	that	the
chessboard	looks	better	when	piped	through	sed	to	add	some	spacing:

$	rshowgrid	chessboard	|	sed	's/./&	/g'	##	add	a	space	after	
every	character
									:	r	n	b	q	k	b	n	r	:
									:	p	p	p	p	p	p	p	p	:
									:																	:
									:																	:
									:											P					:
									:																	:
									:	P	P	P	P	P			P	P	:
									:	R	N	B	Q	K	B	R	N	:

Two-Dimensional	Grids	Using	Arrays
For	many	grids,	a	single	string	is	more	than	adequate	(and	is	portable	to	other	shells),	but
an	array-based	grid	offers	more	flexibility.	In	the	fifteen	puzzle	in	Chapter	11,	the
board	is	stored	in	an	array.	It	is	printed	with	printf	using	a	format	string	that	can	easily
be	changed	to	give	it	a	different	look.	The	tic-tac-toe	grid	in	an	array	could	be	as	follows:

$	ttt=(""	X	""	""	O	""	""	X	"")

And	this	is	the	format	string:

$	fmt="
					|			|
			%1s	|	%1s	|	%1s
	----+---+----
			%1s	|	%1s	|	%1s
	----+---+----
			%1s	|	%1s	|	%1s
					|			|

		"

And	the	result,	when	printed,	looks	like	this:

$	printf	"$fmt"	"${ttt[@]}"

					|			|
					|	X	|
	----+---+----
					|	O	|
	----+---+----
					|	X	|
					|			|

If	the	format	string	is	changed	to	this:

fmt="

							_/					_/
				%1s		_/		%1s		_/		%1s
							_/					_/
	//_/_/_/_/_/_/_/_/
							_/					_/
				%1s		_/		%1s		_/		%1s
							_/					_/
	//_/_/_/_/_/_/_/_/
							_/					_/
				%1s		_/		%1s		_/		%1s
							_/					_/

"

the	output	will	look	like	this:

_/					_/
							_/		X		_/
							_/					_/
	//_/_/_/_/_/_/_/_/

							_/					_/
							_/		O		_/
							_/					_/
	//_/_/_/_/_/_/_/_/
							_/					_/
							_/		X		_/
							_/					_/

The	same	output	could	be	achieved	with	a	single-string	grid,	but	it	would	require
looping	over	every	character	in	the	string.	An	array	is	a	group	of	elements	that	can	be
addressed	individually	or	all	at	once,	depending	on	the	need.

The	functions	in	arraygrid-funcs	mirror	those	in	stringgrid-funcs.	In
fact,	the	gridindex	function	is	identical	to	the	one	in	stringgrid-funcs,	so	it’s
not	repeated	here.	As	with	the	sdtring	grid	functions,	some	of	them	expect	the	size	of
the	grid	to	be	available	in	a	variable,	agridsize.

Function:	initagrid
Most	of	the	functions	for	array	grids	are	simpler	than	their	single-string	counterparts.	A
notable	exception	is	initagrid	(Listing	13-11),	which	is	longer	and	slower,	due	to	the
necessity	of	a	loop	instead	of	a	simple	assignment.	The	entire	array	may	be	specified	as
arguments,	and	any	unused	array	elements	will	be	initialized	to	an	empty	string.

Listing	13-11.	initagrid,	Initialize	a	Grid	Array

initagrid()	#@	Fill	N	x	N	grid	with	supplied	data	(or	
placeholders	if	none)
{											#@	USAGE:	initgrid	gridname	size	[character…]
		##	If	a	required	parameter	is	missing,	it's	a	programming	
error,	so	exit
		local	grid	gridname=${1:?}	char=${3:-	}	size
		export	agridsize=${2:?}													##	set	agridsize	
globally

		size=$(($agridsize	*	$agridsize))	##	total	number	of	
elements	in	grid

		shift	2								##	Remove	first	two	arguments,	gridname	and	
agridsize
		grid=("$@")		##	What's	left	goes	into	the	array

		while	[${#grid[@]}	-lt	$size]
		do
				grid+=("")
		done

		eval	"$gridname=(\"\${grid[@]}\")"
}

Function:	putagrid
Changing	a	value	in	an	array	is	a	straightforward	assignment.	Unlike	changing	a	character
in	a	string,	there	is	no	need	to	tear	it	apart	and	put	it	back	together.	All	that’s	needed	is	the
index	calculated	from	the	coordinates.	This	function	(Listing	13-12)	requires
agridsize	to	be	defined.

Listing	13-12.	putagrid,	Replace	a	Grid	Element

putagrid()	#@	Replace	character	in	grid	at	row	and	column
{										#@	USAGE:	putagrid	gridname	row	column	char
		local	left	right	pos	grid	gridname=$1
		local	value=${4:?}	index
		gridindex	${2:?}	${3:?}	"$agridsize"	index			##	calculate	
the	index
		eval	"$gridname[index]=\$value"														##	assign	the	
value
}

Function:	getagrid
Given	the	x	and	y	coordinates,	getagrid	fetches	the	value	at	that	position	and	stores	it
in	a	supplied	variable	(Listing	13-13).

Listing	13-13.	getagrid,	Extract	an	Entry	from	a	Grid

getagrid()	#@	Get	entry	from	grid	in	row	Y,	column	X
{										#@	USAGE:	getagrid	gridname	row	column	var
		:	${1:?}	${2:?}	${3:?}	${4:?}
		local	grid

		eval	"grid=(\"\${$1[@]}\")"
		gridindex	"$2"	"$3"
		eval	"$4=\${grid[$_GRIDINDEX]}"
}

Function:	showagrid
The	function	showagrid	(Listing	13-14)	prints	each	row	of	an	array	grid	on	a	separate
line.

Listing	13-14.	showagrid,	Description

showagrid()	#@	print	grid	to	stdout
{											#@	USAGE:	showagrid	gridname	format	[agridsize]
		local	gridname=${1:?}	grid

		local	format=${2:?}
		local	agridsize=${3:-${agridsize:?}}	row

		eval	"grid=(\"\${$1[@]}\")"
		printf	"$format"	"${grid[@]}"
}

Function:	rshowagrid
The	function	rshowagrid	(Listing	13-15)	prints	each	row	of	an	array	grid	on	a	separate
line	in	reverse	order.

Listing	13-15.	rshowagrid,	Description

rshowagrid()	#@	print	grid	to	stdout	in	reverse	order
{												#@	USAGE:	rshowagrid	gridname	format	
[agridsize]
		local	format=${2:?}	temp	grid
		local	agridsize=${3:-$agridsize}	row
		eval	"grid=(\"\${$1[@]}\")"
		while	["${#grid[@]}"	-gt	0]
		do
				##	Note	space	before	minus	sign
				##	to	distinguish	it	from	default	value	substitution
				printf	"$format"	"${grid[@]:	-$agridsize}"
				grid=("${grid[@]:0:${#grid[@]}-$agridsize}")
		done
}

Data	File	Formats
Data	files	are	used	for	many	purposes	and	come	in	many	different	flavors,	which	are
divided	into	two	main	types:	line	oriented	and	block	oriented.	In	line-oriented	files,	each
line	is	a	complete	record,	usually	with	fields	separated	by	a	certain	character.	In	block-
oriented	files,	each	record	can	span	many	lines,	and	there	may	be	more	than	one	block	in	a
file.	In	some	formats,	a	record	is	more	than	one	block	(a	chess	game	in	PGN	format,	for
example,	is	two	blocks	separated	by	a	blank	line).

The	shell	is	not	the	best	language	for	working	with	large	files	of	data;	it	is	better	when
working	with	individual	records.	However,	there	are	utilities	such	as	sed	and	awk	that
can	work	efficiently	with	large	files	and	extract	records	to	pass	to	the	shell.	This	section
deals	with	processing	single	records.

Line-Based	Records
Line-based	records	are	those	where	each	line	in	the	file	is	a	complete	record.	It	will
usually	be	divided	into	fields	by	a	delimiting	character,	but	sometimes	the	fields	are

defined	by	length:	the	first	20	characters	are	the	names,	the	next	20	are	the	first	line	of	the
address,	and	so	on.

When	the	files	are	large,	the	processing	is	usually	done	by	an	external	utility	such	as
sed	or	awk.	Sometimes	an	external	utility	will	be	used	to	select	a	few	records	for	the
shell	to	process.	This	snippet	searches	the	password	file	for	users	whose	shell	is	bash	and
feeds	the	results	to	the	shell	to	perform	some	(unspecified)	checks:

grep	'bash$'	/etc/passwd	|
while	read	line
do
		:	perform	some	checking	here
done

Delimiter-Separated	Values
Most	single-line	records	will	have	fields	delimited	by	a	certain	character.	In
/etc/passwd,	the	delimiter	is	a	colon.	In	other	files,	the	delimiter	may	be	a	tab,	tilde,
or,	very	commonly,	a	comma.	For	these	records	to	be	useful,	they	must	be	split	into	their
separate	fields.

When	records	are	received	on	an	input	stream,	the	easiest	way	to	split	them	is	to
change	IFS	and	read	each	field	into	its	own	variable:

grep	'bash$'	/etc/passwd	|
while	IFS=:	read	user	passwd	uid	gid	name	homedir	shell
do
		printf	"%16s:	%s\n"	\
						User							"$user"	\
						Password			"$passwd"	\
						"User	ID"		"$uid"	\
						"Group	ID"	"$gid"	\
						Name							"$name"	\
"Home	directory"	"$homedir"	\
						Shell						"$shell"

		read	<	/dev/tty
done

Sometimes	it	is	not	possible	to	split	a	record	as	it	is	read,	such	as	if	the	record	will	be
needed	in	its	entirety	as	well	as	split	into	its	constituent	fields.	In	such	cases,	the	entire	line
can	be	read	into	a	single	variable	and	then	split	later	using	any	of	several	techniques.	For
all	of	these,	the	examples	here	will	use	the	root	entry	from	/etc/passwd:

record=root:x:0:0:root:/root:/bin/bash

The	fields	can	be	extracted	one	at	a	time	using	parameter	expansion:

for	var	in	user	passwd	uid	gid	name	homedir	shell

do
		eval	"$var=\${record%%:*}"		##	extract	the	first	field
		record=${record#*:}									##	and	take	it	off	the	record
done

As	long	as	the	delimiting	character	is	not	found	within	any	field,	records	can	be	split
by	setting	IFS	to	the	delimiter.	When	doing	this,	file	name	expansion	should	be	turned	off
(with	set	-f)	to	avoid	expanding	any	wildcard	characters.	The	fields	can	be	stored	in	an
array	and	variables	can	be	set	to	reference	them:

IFS=:
set	-f
data=($record)
user=0
passwd=1
uid=2
gid=3
name=4
homedir=5
shell=6

The	variable	names	are	the	names	of	the	fields	that	can	then	be	used	to	retrieve	values
from	the	data	array:

$	echo;printf	"%16s:	%s\n"	\
						User							"${data[$user]}"	\
						Password			"${data[$passwd]}"	\
						"User	ID"		"${data[$uid]}"	\
						"Group	ID"	"${data[$gid]}"	\
						Name							"${data[$name]}"	\
"Home	directory"	"${data[$homedir]}"	\
						Shell						"${data[$shell]}"

												User:	root
								Password:	x
									User	ID:	0
								Group	ID:	0
												Name:	root
		Home	directory:	/root
											Shell:	/bin/bash

It	is	more	usual	to	assign	each	field	to	a	scalar	variable.	This	function	(Listing	13-16)
takes	a	passwd	record	and	splits	it	on	colons	and	assigns	fields	to	the	variables.

Listing	13-16.	split_passwd,	Split	a	Record	from	/etc/passwd	into	Fields	and
Assign	to	Variables

split_passwd()	#@	USAGE:	split_passwd	RECORD

{
		local	opts=$-				##	store	current	shell	options
		local	IFS=:
		local	record=${1:?}	array

		set	-f																																		##	Turn	off	
filename	expansion
		array=($record)																							##	Split	record	
into	array
		case	$opts	in	*f*);;	*)	set	+f;;	esac			##	Turn	on	
expansion	if	previously	set

		user=${array[0]}
		passwd=${array[1]}
		uid=${array[2]}
		gid=${array[3]}
		name=${array[4]}
		homedir=${array[5]}
		shell=${array[6]}
}

The	same	thing	can	be	accomplished	using	a	here	document	(Listing	13-17).

Listing	13-17.	split_passwd,	Split	a	Record	from	/etc/passwd	into	Fields	and
Assign	to	Variables

split_passwd()
{
		IFS=:	read	user	passwd	uid	gid	name	homedir	shell	<<.
$1
.
}

More	generally,	any	character-delimited	record	can	be	split	into	variables	for	each
field	with	this	function	(Listing	13-18).

Listing	13-18.	split_record,	Split	a	Record	by	Reading	Variables

split_record()	#@	USAGE	parse_record	record	delimiter	var…
{
		local	record=${1:?}	IFS=${2:?}	##	record	and	delimiter	
must	be	provided
		:	${3:?}																							##	at	least	one	variable	is	
required
		shift	2																								##	remove	record	and	
delimiter,	leaving	variables

		##	Read	record	into	a	list	of	variables	using	a	'here	
document'

		read	"$@"	<<.
$record
.
}

Using	the	record	defined	earlier,	here’s	the	output:

$	split_record	"$record"	:	user	passwd	uid	gid	name	homedir	
shell
$	sa	"$user"	"$passwd"	"$uid"	"$gid"	"$name"	"$homedir"	
"$shell"
:root:
:x:
:0:
:0:
:root:
:/root:
:/bin/bash:

Fixed-Length	Fields
Less	common	than	delimited	fields	are	fixed-length	fields.	They	aren’t	used	often,	but
when	they	are,	they	would	be	looped	through	name=width	strings	to	parse	them,	which
is	how	many	text	editors	import	data	from	fixed-length	field	data	files:

line="John											123	Fourth	Street			Toronto					
Canada																"
for	nw	in	name=15	address=20	city=12	country=22
do
		var=${nw%%=*}																	##	variable	name	precedes	
the	equals	sign
		width=${nw#*=}																##	field	width	follows	it
		eval	"$var=\${line:0:width}"		##	extract	field
		line=${line:width}												##	remove	field	from	the	
record
done

Block	File	Formats
Among	the	many	types	of	block	data	files	to	work	with	is	the	portable	game	notation
(PGN)	chess	file.	It	stores	one	or	more	chess	games	in	a	format	that	is	both	human
readable	and	machine	readable.	All	chess	programs	can	read	and	write	this	format.

Each	game	begins	with	a	seven-tag	roster	that	identifies	where	and	when	the	game	was
played,	who	played	it,	and	the	results.	This	is	followed	by	a	blank	line	and	then	the	moves
of	the	game.

Here’s	a	PGN	chess	game	file	(from
http://cfaj.freeshell.org/Fidel.pgn):

[Event	"ICS	rated	blitz	match"]
[Site	"69.36.243.188"]
[Date	"2009.06.07"]
[Round	"-"]
[White	"torchess"]
[Black	"FidelCastro"]
[Result	"1-0"]

1.	f4	c5	2.	e3	Nc6	3.	Bb5	Qc7	4.	Nf3	d6	5.	b3	a6	6.	Bxc6+	
Qxc6	7.	Bb2	Nf6
8.	O-O	e6	9.	Qe1	Be7	10.	d3	O-O	11.	Nbd2	b5	12.	Qg3	Kh8	13.	
Ne4	Nxe4	14.
Qxg7#
{FidelCastro	checkmated}	1-0

You	can	use	a	while	loop	to	read	the	tags	and	then	mapfile	to	get	the	moves	of	the
game.	The	gettag	function	extracts	the	value	from	each	tag	and	assigns	it	to	the	tag
name	(Listing	13-19).

Listing	13-19.	readpgn,	Parse	a	PGN	Game	and	Print	Game	in	a	Column

pgnfile="${1:?}"
header=0
game=0

gettag()	#@	create	a	variable	with	the	same	name	and	value	
as	the	tag
{
		local	tagline=$1
		tag=${tagline%%	*}								##	get	line	before	the	first	
space
		tag=${tag#?}														##	remove	the	open	bracket
		IFS='"'	read	a	val	b	<<.		##	get	the	2nd	field,	using	"	as	
delimiter
			$tagline
.

		eval	"$tag=\$val"
}

{
		while	IFS=	read	-r	line
		do
				case	$line	in
						\[*)	gettag	"$line"	;;

http://cfaj.freeshell.org/Fidel.pgn

						"")	[-n	"$Event"]	&&	break;;		##	skip	blank	lines	at	
beginning	of	file
				esac
		done
		mapfile	-t	game																					##	read	remainder	of	
the	file
}	<	"$pgnfile"

##	remove	blank	lines	from	end	of	array
while	[-z	"${game[${#game[@]}-1]}"]
do
		unset	game[${#game[@]}-1]
done

##	print	the	game	with	header
echo	"Event:	$Event"
echo	"Date:		$Date"
echo
set	-f
printf	"%4s		%-10s	%-10s\n"	""	White	Black		""		==========	
==========	\
										""	"$White"	"$Black"	${game[@]:0:${#game[@]}-1}
printf	"%s\n"	"${game[${#game[@]}-1]}"

Summary
This	chapter	only	scratched	the	surface	of	the	possibilities	for	data	manipulation,	but	it	is
hoped	that	it	will	provide	techniques	to	solve	some	of	your	needs	and	provide	hints	for
others.	Much	of	the	chapter	involved	using	that	most	basic	of	programming	structures,
arrays.	Techniques	were	shown	for	working	with	single-line,	character-delimited	records,
and	basic	techniques	for	working	with	blocks	of	data	in	files.

Exercises
1.	 Modify	the	isort	and	asearch	functions	to	use	sort	and

grep,	respectively,	if	the	array	exceeds	a	certain	size.

2.	 Write	a	function	that	transposes	rows	and	columns	in	a	grid	(either	a
single-string	grid	or	an	array).	For	example,	transform	these:

123
456
789

into	these:

147
256
369

3.	 Convert	some	of	the	grid	functions,	either	string	or	array	versions,
to	work	with	grids	that	are	not	square,	for	example,	6	×	3.

4.	 Convert	the	code	that	parses	fixed-width	records	into	a	function	that
accepts	the	line	of	data	as	the	first	argument,	followed	by	the
varname=width	list.

CHAPTER	14

Scripting	the	Screen
Unix	purists	will	shake	their	heads	over	this	chapter.	Traditionally,	screen	manipulation	is
done	through	the	termcap	or	terminfo	database	that	supplies	the	information
necessary	to	manipulate	any	of	dozens	or	even	hundreds	of	types	of	terminals.	The	shell
interface	to	the	database	is	an	external	command,	tput.

On	some	systems,	tput	uses	the	termcap	database;	on	others	(mostly	newer
systems),	it	uses	the	terminfo	database.	The	commands	for	the	two	databases	are	not
the	same,	so	a	tput	command	written	for	one	system	may	not	work	on	another.

On	one	system,	the	command	to	place	the	cursor	at	the	20th	column	on	the	10th	row	is
as	follows:

tput	cup	9	19

On	another	system,	this	is	the	command:

tput	cm	9	19

These	commands	will	produce	the	correct	output	for	whatever	type	of	terminal	is
specified	in	the	TERM	variable.	(Note:	tput	starts	counting	at	0.)

However,	the	plethora	of	terminal	types	has,	for	all	intents	and	purposes,	been	reduced
to	a	single,	standard	type.	This	standard,	ISO	6429	(also	known	as	ECMA-48	and
formerly	known	as	ANSI	X3.64	or	VT100),	is	ubiquitous,	and	terminals	that	do	not
support	it	are	few	and	far	between.	As	a	result,	it	is	now	feasible	to	code	for	a	single
terminal	type.	One	advantage	of	this	homogeneity	is	that	the	necessary	coding	can	be	done
entirely	within	the	shell.	There’s	no	need	for	an	external	command.

Teletypewriter	vs.	Canvas
There	are	two	methods	of	sending	the	output	of	a	script	to	a	terminal	screen.	The	first	and
more	traditional	method	uses	the	terminal	as	if	it	were	a	printer	or	teletypewriter	(which	is
the	origin	of	the	abbreviation	tty	for	the	screen	or	terminal).	In	this	mode,	as	each	line	is
printed,	the	paper	(or	screen	image)	is	scrolled	up.	Old	lines	fall	to	the	floor	(or	disappear
off	the	top	of	the	screen).	It’s	simple,	and	it	is	more	than	adequate	for	many	applications.

The	second	method	treats	the	screen	as	a	blackboard	or	canvas	and	prints	to	specific
points	on	its	surface.	It	erases	and	overprints	previously	written	sections.	It	may	print	text
in	columns	or	at	specific	locations	on	the	screen.	The	terminal	becomes	a	random-access,
rather	than	serial,	device.

This	chapter	looks	at	the	screen	as	a	canvas	or	blackboard.	It	defines	a	number	of
variables	and	functions	for	screen	manipulation,	as	well	as	presenting	some	demonstration
programs	that	use	them.

Stretching	the	Canvas
To	use	the	screen	as	a	canvas,	the	most	important	capability	is	to	be	able	to	position	the
cursor	at	any	given	location	on	the	screen.	The	sequence	for	that	is	ESC[<ROW>;
<COL>H.	When	converted	to	a	printf	format	string,	it	can	be	used	directly	or	in	a
function:

cu_row_col=$'\e[%d;%dH'
printf	"$cu_row_col"	5	10		##	Row	5,	column	10
echo	"Here	I	am!"

All	of	the	functions	in	this	chapter	are	part	of	the	screen-funcs	library,	which
sources	the	screen-vars	file.	Listing	14-1	gives	the	screen	manipulation	function.

Listing	14-1.	screen-funcs,	Library	of	Screen	Manipulation	Functions

.	screen-vars

The	printat	function	(Listing	14-2)	places	the	cursor	at	the	requested	location	and,
if	there	are	any	further	arguments,	it	prints	them.	If	the	row	and	column	are	not	specified,
printat	moves	the	cursor	to	the	top	left	corner	of	the	screen.

Listing	14-2.	printat,	Place	the	Cursor	at	a	Specified	Location	and	Print	Optional
String

printat()	#@	USAGE:	printat	[row	[column	[string]]]
{
				printf	"${cu_row_col?}"	${1:-1}	${2:-1}
				if	[$#	-gt	2]
				then
						shift	2
						printf	"%s"	"$*"
				fi
}

Command	Sequence	Introducer
Like	all	the	escape	sequences,	cu_row_col	begins	with	ESC[.	This	is	the	command
sequence	introducer	(CSI).	It	is	defined	in	the	screen-vars	file	(Listing	14-3).

Listing	14-3.	screen-vars,	Screen	Variable	Definitions

ESC=$'\e'
CSI=$ESC[

Priming	the	Canvas
Before	drawing	on	the	screen,	it	must	usually	be	cleared,	and	from	time	to	time,	various
parts	of	the	screen	will	need	to	be	cleared.	These	variables	contain	the	fundamental
sequences	for	clearing	the	screen	or	lines	(Listing	14-4).

Listing	14-4.	screen-vars,	Variable	Definitions	for	Erasing	All	or	Part	of	the	Screen

topleft=${CSI}H						##	move	cursor	to	top	left	corner	of	
screen
cls=${CSI}J										##	clear	the	screen
clear=$topleft$cls			##	clear	the	screen	and	move	to	top	
left	corner
clearEOL=${CSI}K					##	clear	from	cursor	to	end	of	line
clearBOL=${CSI}1K				##	clear	from	cursor	to	beginning	of	
line
clearEOS=${CSI}0J				##	clear	from	cursor	to	end	of	screen
clearBOS=${CSI}1J				##	clear	from	cursor	to	beginning	of	
screen

There	are	also	functions	for	clearing	rectangular	areas	of	the	screen,	which	are
presented	later	in	the	chapter.

Moving	the	Cursor
Besides	being	moved	to	an	absolute	location,	the	cursor	can	be	moved	relative	to	its
current	position.	The	first	four	sequences	are	the	same	as	those	generated	by	the	cursor
keys,	and	they	take	arguments	for	moving	more	than	one	line	or	column.	The	next	two
turn	the	cursor	on	and	off.	The	following	two	variables	save	the	cursor	position	and	move
it	back	to	the	saved	position,	respectively.

The	last	two	move	to	the	next	or	previous	line	at	the	same	column	as	the	beginning	of
the	previously	printed	line.	The	printf	specifier,	%s,	is	removed	because	it	would
consume	arguments	that	are	to	be	printed	(Listing	14-5).

Listing	14-5.	screen-vars,	Variable	Definitions	for	Moving	the	Cursor

##	cursor	movement	strings
					cu_up=${CSI}%sA
			cu_down=${CSI}%sB
		cu_right=${CSI}%sC
			cu_left=${CSI}%sD

##	turn	the	cursor	off	and	on
			cu_hide=${CSI}?25l
			cu_show=${CSI}?12l${CSI}?25h

##	save	the	cursor	position
			cu_save=${CSI}s																		##	or	${ESC}7
##	move	cursor	to	saved	position
cu_restore=${CSI}u																		##	or	${ESC}8

##	move	cursor	to	next/previous	line	in	block
					cu_NL=$cu_restore${cu_down/\%s/}$cu_save
					cu_PL=$cu_restore${cu_up/\%s/}$cu_save

The	format	strings	for	cursor	movement	use	the	%s	specifier	rather	than	%d,	even
though	any	argument	will	be	a	number.	This	is	because	printf	replaces	%d	with	a	zero
when	there	is	no	argument	to	fill	it.	If	that	happened,	the	cursor	would	not	move	at	all.
With	%s,	they	move	one	column	or	row	when	there	is	no	argument	because	%s	is	replaced
by	a	null	string.

The	script	in	Listing	14-6	puts	these	variables	and	the	printat	function	to	work.

Listing	14-6.	screen-demo1,	Script	to	Make	printat	Work

.	screen-funcs																													##	source	the	
screen-funcs	library
printf	"$clear$cu_hide"																				##	Clear	the	
screen	and	hide	the	cursor
printat	10	10	"${cu_save}XX"															##	move,	save	
position,	and	print	XX
sleep	1																																				##	ZZZZZZZZ
printat	20	20	"20/20"																						##	move	and	print
sleep	1																																				##	ZZZZZZZZ
printf	"$cu_restore$cu_down${cu_save}YY"			##	restore	pos.,	
move,	print,	save	pos.
sleep	1																																				##	ZZZZZZZZ
printf	"$cu_restore$cu_down${cu_save}ZZ"	4	##	restore	pos.,	
move,	print,	save	pos.
sleep	1																																				##	ZZZZZZZZ
printat	1	1	"$cu_show"																					##	move	to	top	
left	and	show	cursor

For	a	variation,	try	changing	the	coordinates	of	the	first	printat	command	to	other
values,	say,	5	and	40.

Changing	Rendition	Modes	and	Colors
Characters	can	be	printed	in	bold,	underline,	or	reverse	modes	as	well	as	in	various	colors
for	those	terminals	that	support	them.	(Are	there	any	left	that	don’t?)	These	attributes	are
all	modified	with	a	sequence	in	the	form	ESC[ATTRm,	where	ATTR	is	the	number	of	an
attribute	or	color	(Listing	14-7).	Multiple	attributes	can	be	specified	by	separating	them
with	semicolons.

Colors	are	specified	with	the	integers	0	to	7,	and	9	will	reset	to	the	default.	These	are
prefixed	by	3	for	foreground	color	and	4	for	background	color.	Attributes	are	also
specified	by	0	to	7	but	without	a	prefix.	Though	eight	attributes	are	defined,	only	three	are
widely	supported:	1	(bold),	4	(underline),	and	7	(reverse).	These	attributes	can	be	turned
off	individually	with	the	values	22,	24,	and	27,	respectively.	A	value	of	0	resets	all
attributes	and	colors	to	their	defaults.

Listing	14-7.	screen-vars,	Variable	Definitions	for	Colors	and	Attributes

##	colours
		black=0
				red=1
		green=2
	yellow=3
			blue=4
magenta=5
			cyan=6
		white=7

					fg=3		##	foreground	prefix
					bg=4		##	background	prefix

##	attributes
					bold=1
underline=4
		reverse=7

##	set	colors
				set_bg="${CSI}4%dm"										##	set	background	color
				set_fg="${CSI}3%dm"										##	set	foreground	color
				set_fgbg="${CSI}3%d;4%dm"				##	set	foreground	and	
background	colors

As	the	next	demonstration	script	shows,	the	colors	and	attributes	can	be	used	in	“tty”
mode	as	well	as	“canvas”	mode	(Listing	14-8).

Listing	14-8.	screen-demo2,	Color	and	Attributes	Mode

.	screen-funcs
echo
for	attr	in	"$underline"	0	"$reverse"	"$bold"	
"$bold;$reverse"
do
		printf	"$set_attr"	"$attr"
		printf	"$set_fg	%s	"	"$red"	RED
		printf	"$set_fg	%s	"	"$green"	GREEN
		printf	"$set_fg	%s	"	"$blue"	BLUE
		printf	"$set_fg	%s	"	"$black"	BLACK

		printf	"\e[m\n"
done
echo

Placing	a	Block	of	Text	on	the	Screen
The	put_block	function	prints	its	arguments	one	beneath	the	other	at	the	current	cursor
position;	put_block_at	moves	the	cursor	to	the	specified	location,	shifts	the
arguments	to	remove	the	row	and	column,	and	then	calls	put_block	with	the	remaining
arguments	(Listing	14-9).

The	cu_NL	variable	moves	the	cursor	to	the	saved	position	and	then	moves	down	a
line	and	saves	that	position.

Listing	14-9.	put_block	and	put_block_at,	Print	a	Block	of	Text	Anywhere	on	the
Screen

put_block()	#@	Print	arguments	in	a	block	beginning	at	the	
current	position
{
		printf	"$cu_save"						##	save	cursor	location
		printf	"%s$cu_NL"	"$@"	##	restore	cursor	location,	move	
line	down,	save	cursor
}

put_block_at()	#@	Print	arguments	in	a	block	at	the	position	
in	$1	and	$2
{
		printat	"$1"	"$2"
		shift	2
		put_block	"$@"
}

Listing	14-10	shows	the	script	for	screen-demo3,	which	displays	blocks	of	data	on
the	screen	in	columnar	format.

Listing	14-10.	screen-demo3

.	screenfuncs

printf	"$cls"
put_block_at	3	12	First	Second	Third	Fourth	Fifth
put_block_at	2	50	January	February	March	April	May	June	July

The	output	of	screen-demo3	is	as	follows:

January
											First																																	February

											Second																																March
											Third																																	April
											Fourth																																May
											Fifth																																	June
																																																	July

The	put_block	and	put_block_at	functions	work	well	when	the	screen	is
empty.	If	there’s	a	lot	of	text	already	on	the	screen,	the	output	may	be	obscured.	For	those
cases,	there	are	the	print_block_at	and	print_block	functions	that	clear	a
rectangular	area	around	the	block.

To	determine	the	width	that	needs	to	be	cleared,	put_block	passes	its	arguments	to
the	_max_length	function,	which	loops	through	the	arguments	to	find	the	longest
(Listing	14-11).

Listing	14-11.	_max_length,	Store	Length	of	Longest	Argument	in	_MAX_LENGTH

_max_length()	#@	store	length	of	longest	argument	in	
_MAX_LENGTH
{
		local	var
		_MAX_LENGTH=${#1}						##	initialize	with	length	of	first	
parameter
		shift																		##	...and	remove	first	parameter
		for	var																##	loop	through	remaining	
parameters
		do
				["${#var}"	-gt	"$_MAX_LENGTH"]	&&	_MAX_LENGTH=${#var}
		done
}

The	print_block	function	uses	the	result	from	_max_length	as	a	width
specification	to	printf	(Listing	14-12).	Blank	lines	are	printed	before	and	after	the	text,
and	a	space	is	printed	before	and	after	each	line.	The	only	difference	between
print_block_at	and	put_block_at	is	that	one	calls	print_block	and	the	other
calls	put_block.

Listing	14-12.	print_block,	Clear	Area	and	Print	Block

print_block()	#@	Print	arguments	in	a	block	with	space	
around	them
{
		local	_MAX_LENGTH
		_max_length	"$@"
		printf	"$cu_save"
		printf	"	%-${_MAX_LENGTH}s	$cu_NL"	"	"	"$@"	"	"
}

print_block_at()	#@	Move	to	position,	remove	2	parameters	
and	call	print_block
{
		printat	$1	$2
		shift	2
		print_block	"$@"
}

The	text	to	be	printed	with	either	print_block	or	print_block	is	more	likely	to
be	a	single	string	than	separate	arguments.	To	split	the	string	into	words	or	phrases	short
enough	to	fit	a	given	space,	use	the	wrap	function	(Listing	14-13).	This	function	splits	a
string	into	lines	with	a	maximum	width	that	is	specified	on	the	command	line.

Listing	14-13.	wrap,	Split	String	into	Array	with	Elements	Not	Exceeding	Maximum
Length

wrap()	#@	USAGE:	wrap	string	length
{						#@	requires	bash-3.1	or	later
		local	words=$1	textwidth=$2	line=	opts=$-
		local	len=0	templen=0
		set	-f

		unset	-v	wrap
		for	word	in	$words
		do
				templen=$(($len	+	1	+	${#word}))	##	Test	adding	a	word
				if	["$templen"	-gt	"$textwidth"]	##	Does	adding	a	word	
exceed	length?
				then
						wrap+=("$line")																##	Yes,	store	line	in	
array
						printf	-v	line	"%s"	"$word"						##	begin	new	line
						len=${#word}
				else
						len=$templen																					##	No,	add	word	to	
line
						printf	-v	line	"%s"	"${line:+"$line	"}"	"$word"
				fi
		done
		wrap+=("$line")

		case	$opts	in
				f)	;;
				*)	set	+f	;;
		esac
}

The	sample	shown	in	Listing	14-14	uses	wrap	and	print_block_at.

Listing	14-14.	screen-demo4,	Demonstrates	the	wrap	and	print_block	Functions

clear
wrap	"The	quick	brown	fox	jumps	over	the	lazy	dog"	15
x=xx
printat	1	1
printf	"%s\n"	$x{,,,,,,,,,,}										##	print	11	lines	of	
'x's
print_block_at	3	33	"${wrap[@]}"
printat	12	1

The	output	is	as	follows:

xx
xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx																	
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	The	quick							
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	brown	fox	jumps	
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	over	the	lazy			
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	dog													
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx																	
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
xx
xx

Scrolling	Text
By	combining	an	array	with	substring	expansion,	text	can	be	scrolled	in	any	area	of	the
screen.	Because	the	entire	area	can	be	printed	with	a	single	printf	command,	scrolling
is	fast,	though	it	gets	slower	as	the	array	size	increases.	The	demonstration	in	Listing	14-
15	stores	the	file	names	in	/usr/bin/	in	the	array,	list;	scrolls	the	list	up;	waits	for	a
second;	and	then	scrolls	it	down.

Each	loop,	up	and	down,	contains	a	commented-out	read	-t	“$delay”	line.
When	uncommented,	it	will	slow	down	the	scrolling.	It	uses	the	bash-4.x	fractional
delay.	If	you	are	using	an	earlier	version,	use	sleep	instead.	Most	implementations
(certainly	GNU	and	*BSD)	accept	a	fractional	argument.

Listing	14-15.	scroll-demo,	Scrolls	a	Block	of	Text	Up	and	Then	Down

list=(/usr/bin/*)										##	try	it	with	other	
directories	or	lists
rows=9																							##	number	of	rows	in	scrolling	
area
delay=.01																				##	delay	between	scroll	advance
width=-33.33																	##	width	spec:	(no	more	than)	
33	chars,	flush	left
x=XXXXXXXXXXXXXXXXXXXXXXXXXX	##	bar	of	'X's
x=xxxx																			##	longer	bar

clear																								##	clear	the	screen
printf	"%50.50s\n"	$x{,,,,,,,,,,,,,}										##	print	14	
lines	of	'X's

n=0																										##	start	display	with	first	
element

##	scroll	upwards	until	reaching	the	bottom
while	[$((n	+=	1))	-lt	$((${#list[@]}	-	$rows))]
do
		printf	"\e[3;1H"
		printf	"\e[7C	%${width}s\n"	"${list[@]:n:rows}"
#		read	-sn1	-t	"$delay"	&&	break
done
sleep	1

##	scroll	downwards	until	reaching	the	top
while	[$((n	-=	1))	-ge	0]
do
		printf	"\e[3;1H"
		printf	"\e[7C	%${width}s\n"	"${list[@]:n:rows}"
#		read	-sn1	-t	"$delay"	&&	break
done

printf	"\e[15;1H"				##	finish	with	cursor	well	below	
scrolling	area

Rolling	Dice
Dice	are	used	in	many	games	and	are	simple	to	program	if	you	are	satisfied	with	printing
just	the	number:

printf	"%s\n"	"$(($RANDOM	%	6	+	1))"

However,	a	respectable	graphic	rendition	can	be	programmed	surprisingly	easily	with
the	shell.	To	print	a	die,	position	the	cursor	at	the	desired	location	on	the	screen,	set	the
foreground	and	background	colors,	and	print	the	element	from	the	array	(Figure	14-1).

Figure	14-1.	Listing	14-16	contains	the	code	for	these	dice

An	array	of	six	dice	can	be	programmed	in	about	25	lines	of	code.	Each	die	is	a
concatenation	of	18	variables.	Some	of	these	have	the	same	contents	as	those	in	the
screen-funcs	library,	but	their	names	are	shortened	here	to	keep	the	lines	shorter.
Here	is	a	description	of	the	die	with	the	number	5:

$b				##	set	bold	attribute	(optional)
$cs			##	save	cursor	position
$p0			##	print	blank	row
$cr			##	restore	cursor	to	left	side	of	die
$dn			##	move	down	one	line
$cs			##	save	cursor	position
$p4			##	print	row	with	two	pips
$cr			##	restore	cursor	to	left	side	of	die
$dn			##	move	down	one	line
$cs			##	save	cursor	position
$p2			##	print	row	with	one	pip
$cr			##	restore	cursor	to	left	side	of	die
$dn			##	move	down	one	line
$cs			##	save	cursor	position
$p4			##	print	row	with	two	pips
$cr			##	restore	cursor	to	left	side	of	die
$dn			##	move	down	one	line
$p0			##	print	blank	row

After	defining	the	dice,	the	script	in	Listing	14-16	clears	the	screen	and	prints	two
random	dice	near	the	top	of	the	screen.

Listing	14-16.	dice,	Defines	an	Array	of	Six	Dice	and	Places	Two	on	the	Screen

pip=o																						##	character	to	use	for	the	pips
p0="							"															##	blank	line
p1="	$pip					"												##	one	pip	at	the	left
p2="			$pip			"												##	one	pipe	in	the	middle	of	the	
line
p3="					$pip	"												##	one	pip	at	the	right
p4="	$pip			$pip	"									##	two	pips
p5="	$pip	$pip	$pip	"						##	three	pips

cs=$'\e7'																		##	save	cursor	position
cr=$'\e8'																		##	restore	cursor	position
dn=$'\e[B'																	##	move	down	1	line
b=$'\e[1m'																	##	set	bold	attribute
cu_put='\e[%d;%dH'									##	format	string	to	position	
cursor
fgbg='\e[3%d;4%dm'									##	format	string	to	set	colors

dice=(
		##	dice	with	values	1	to	6	(array	elements	0	to	5)
		"bcs$p0$crdncs$p0$crdncs$p2$crdncs$p0$crdnp0"
		"bcs$p0$crdncs$p1$crdncs$p0$crdncs$p3$crdnp0"
		"bcs$p0$crdncs$p1$crdncs$p2$crdncs$p3$crdnp0"
		"bcs$p0$crdncs$p4$crdncs$p0$crdncs$p4$crdnp0"
		"bcs$p0$crdncs$p4$crdncs$p2$crdncs$p4$crdnp0"
		"bcs$p0$crdncs$p5$crdncs$p0$crdncs$p5$crdnp0"
)

clear
printf	"$cu_put"	2	5															##	position	cursor
printf	"$fgbg"	7	0																	##	white	on	black
printf	"%s\n"	"${dice[RANDOM%6]}"		##	print	random	die

printf	"$cu_put"	2	20														##	position	cursor
printf	"$fgbg"	0	3																	##	black	on	yellow
printf	"%s\n"	"${dice[RANDOM%6]}"		##	print	random	die

Summary
Without	touching	on	traditional	ASCII	art,	there	are	many	ways	to	draw	things	on	a
terminal	screen.	This	chapter	has	presented	a	number	of	them,	giving	the	basics	that	can
be	used	to	create	many	more.

Exercises
1.	 Write	a	function,	hbar,	that	accepts	two	integer	arguments,	a	width

and	a	color,	and	prints	a	bar	of	that	color	and	width.	Write	a	second
function,	hbar_at,	that	accepts	four	arguments:	row,	column,
width,	and	color;	moves	the	cursor	to	the	row	and	column;	and
passes	the	remaining	arguments	to	hbar.

2.	 Write	a	function,	clear_area,	that	accepts	two	integer
arguments,	rows	and	columns,	and	clears	a	rectangular	area	of	that
many	rows	and	columns.

CHAPTER	15

Entry-Level	Programming
The	preference	for	bash	over	any	other	POSIX	shell	stems	to	a	great	extent	from	its
extensions	that	enhance	interactive	programming.	The	extended	options	to	the	read	built-
in	command	(which	were	described	in	Chapter	9),	combined	with	the	history	and
readline	libraries,	add	functionality	that	no	other	shell	can	match.

Despite	its	richness,	there	is	still	no	easy	way	for	the	shell	to	deal	with	keys	such	as
function	keys	that	generate	multiple	characters.	For	that,	this	chapter	presents	the	key-
funcs	library	of	functions.	The	second	major	section	of	this	chapter	describes	how	to	use
the	mouse	in	shell	scripts	and	provides	a	demonstration	program.

Between	those	sections,	we’ll	deal	with	checking	user	input	for	validity	and	the	history
library.	Most	people	use	bash’s	history	library	only	at	the	command	line.	We’ll	use	it	in
scripts,	and	this	chapter	will	show	how	that	is	done,	by	using	the	history	command	in	a
rudimentary	script	for	editing	a	multifield	record.

Single-Key	Entry
When	writing	an	interactive	script,	you	might	want	a	single	key	to	be	pressed	without
requiring	the	user	to	press	Enter.	The	portable	way	to	do	that	is	to	use	stty	and	dd:

stty	-echo	-icanon	min	1
_KEY=$(dd	count=1	bs=1	2>/dev/null)
stty	echo	icanon

Using	three	external	commands	every	time	you	need	a	key	press	is	overkill.	When	you
need	to	use	a	portable	method,	you	can	usually	first	make	a	call	to	stty	at	the	beginning
of	the	script	and	the	other	at	the	end,	often	in	an	EXIT	trap:

trap	'stty	echo	icanon'	EXIT

Bash,	on	the	other	hand,	doesn’t	need	to	call	any	external	commands.	It	may	still	be	a
good	idea	to	use	stty	to	turn	off	echoing	at	the	beginning	and	back	on	before	exiting.
This	will	prevent	characters	from	showing	up	on	the	screen	when	the	script	is	not	waiting
for	input.

Function	Library,	key-funcs
The	functions	in	this	section	comprise	the	key-funcs	library.	It	begins	with	two
variable	definitions,	shown	here	in	Listing	15-1.

Listing	15-1.	key-funcs,	Read	a	Single	Key	Press

ESC=$'\e'
CSI=$'\e['

To	get	a	single	keystroke	with	bash,	you	can	use	the	function	in	Listing	15-2.

Listing	15-2.	_key,	Functions	for	Reading	a	Single	Key	Press

_key()
{
			IFS=	read	-r	-s	-n1	-d	''	"${1:-_KEY}"
}

First,	the	field	separator	is	set	to	an	empty	string	so	that	read	doesn’t	ignore	a	leading
space	(it’s	a	valid	keystroke,	so	you	want	it);	the	-r	option	disables	backslash	escaping,	-
s	turns	off	echoing	of	keystrokes,	and	-n1	tells	bash	to	read	a	single	character	only.

The	-d	”	option	tells	read	not	to	regard	a	newline	(or	any	other	character)	as	the
end	of	input;	this	allows	a	newline	to	be	stored	in	a	variable.	The	code	instructs	read	to
stop	after	the	first	key	is	received	(-n1)	so	it	doesn’t	read	forever.

The	last	argument	uses	${@:-_KEY}	to	add	options	or	a	variable	name	to	the	list	of
arguments.	You	can	see	its	use	in	the	_keys	function	in	Listing	15-3.	(Note	that	if	you
use	an	option	without	also	including	a	variable	name,	the	input	will	be	stored	in	$REPLY.)

	Note		For	this	to	work	on	earlier	versions	of	bash	or	on	the	Mac	OS	X,	add	the
variable	name	to	the	read	command,	such	as	IFS=	read	–r	–s	–n1	–d”	_KEY
“${1:-_KEY}”.	If	not,	then	you	have	to	look	to	$REPLY	for	the	key	press	read.

The	_key	function	can	be	used	in	a	simple	menu,	as	shown	in	Listing	15-3.

Listing	15-3.	simplemenu,	Menu	that	Responds	to	a	Single	Key	Press

##	the	_key	function	should	be	defined	here	if	it	is	not	
already
while	:
do
		printf	"\n\n\t$bar\n"
		printf	"\t	%d.	%s\n"	1	"Do	something"	\
																							2	"Do	something	else"	\
																							3	"Quit"
		printf	"\t%s\n"	"$bar"
		_key
		case	$_KEY	in
					1)	printf	"\n%s\n\n"	Something	;;
					2)	printf	"\n%s\n\n"	"Something	else"	;;
					3)	break	;;

					*)	printf	"\a\n%s\n\n"	"Invalid	choice;	try	again"
								continue
								;;
		esac
		printf	">>>	%s	"	"Press	any	key	to	continue"
		_key
done

Although	_key	is	a	useful	function	by	itself,	it	has	its	limitations	(Listing	15-4).	It	can
store	a	space,	a	newline,	a	control	code,	or	any	other	single	character,	but	what	it	doesn’t
do	is	handle	keys	that	return	more	than	one	character:	function	keys,	cursor	keys,	and	a
few	others.

These	special	keys	return	ESC	(0	×	1B,	which	is	kept	in	a	variable	$ESC)	followed	by
one	or	more	characters.	The	number	of	characters	varies	according	to	the	key	(and	the
terminal	emulation),	so	you	cannot	ask	for	a	specific	number	of	keys.	Instead,	you	have	to
loop	until	one	of	the	terminating	characters	is	read.	This	is	where	it	helps	to	use	bash’s
built-in	read	command	rather	than	the	external	dd.

Listing	15-4.	_keys,	Read	a	Sequence	of	Characters	from	a	Function	or	Cursor	Key

_keys()	#@	Store	all	waiting	keypresses	in	$_KEYS
{
				_KEYS=
				__KX=

				##	ESC_END	is	a	list	of	characters	that	can	end	a	key	
sequence
				##	Some	terminal	emulations	may	have	others;	adjust	to	
taste
				ESC_END=[a-zA-NP-Z~^\$@$ESC]

				while	:
				do
						IFS=	read	-rsn1	-d	''	-t1	__KX
						_KEYS=$_KEYS$__KX
						case	$__KX	in
										""	|	$ESC_END)	break	;;
						esac
				done
}

The	while	:	loop	calls	_key	with	the	argument	-t1,	which	tells	read	to	time	out
after	one	second,	and	the	name	of	the	variable	in	which	to	store	the	keystroke.	The	loop
continues	until	a	key	in	$ESC_END	is	pressed	or	read	times	out,	leaving	$__KX	empty.

The	timeout	is	a	partially	satisfactory	method	of	detecting	the	escape	key	by	itself.
This	is	a	case	where	dd	works	better	than	read,	because	it	can	be	set	to	time	out	in

increments	of	one-tenth	of	a	second.

To	test	the	functions,	use	_key	to	get	a	single	character;	if	that	character	is	ESC,	call
_keys	to	read	the	rest	of	the	sequence,	if	any.	The	following	snippet	assumes	that	_key
and	_keys	are	already	defined	and	pipes	each	keystroke	through	hexdump	-C	to	show
its	contents:

while	:
do
		_key
		case	$_KEY	in
						$ESC)	_keys
												_KEY=ESC_KEYS
												;;
		esac
		printf	"%s"	"$_KEY"	|	hexdump	-C	|	{
															read	a	b
															printf	"			%s\n"	"$b"
													}
		case	"$_KEY"	in	q)	break	;;	esac
done

Unlike	the	output	sequences,	which	work	everywhere,	there	is	no	homogeneity	among
key	sequences	produced	by	various	terminal	emulators.	Here	is	a	sample	run,	in	an	rxvt
terminal	window,	of	pressing	F1,	F12,	up	arrow,	Home,	and	q	to	quit:
1b	5b	31	31	7e																|.[11~|

			1b	5b	32	34	7e																|.[24~|
			1b	5b	41																						|.[A|
			1b	5b	35	7e																			|.[5~|
			71																												|q|

Here	are	the	same	keystrokes	in	an	xterm	window:

1b	4f	50																						|.OP|
			1b	5b	32	34	7e																|.[24~|
			1b	5b	41																						|.[A|
			1b	5b	48																						|.[H|
			71																												|q|

Finally,	here	they	are	as	produced	by	a	Linux	virtual	console:
1b	5b	5b	41																			|.[[A|

			1b	5b	32	34	7e																|.[24~|
			1b	5b	41																						|.[A|
			1b	5b	31	7e																			|.[1~|
			71																												|q|

All	the	terminals	tested	fit	into	one	of	these	three	groups,	at	least	for	unmodified	keys.

The	codes	stored	in	$_KEY	can	be	either	interpreted	directly	or	in	a	separate	function.
It	is	better	to	keep	the	interpretation	in	a	function	that	can	be	replaced	for	use	with
different	terminal	types.	For	example,	if	you	are	using	a	Wyse60	terminal,	the	source
wy60-keys	function	would	set	the	replacement	keys.

Listing	15-5	shows	a	function,	_esc2key,	that	works	for	the	various	terminals	on	a
Linux	box,	as	well	as	in	putty	in	Windows.	It	converts	the	character	sequence	into	a
string	describing	the	key,	for	example,	UP,	DOWN,	F1,	and	so	on:

Listing	15-5.	_esc2key,	Translate	a	String	to	a	Key	Name

_esc2key()
{
		case	$1	in
				##	Cursor	keys
				"$CSI"A	|	${CSI}OA)	_ESC2KEY=UP	;;
				"$CSI"B	|	${CSI}0B)	_ESC2KEY=DOWN	;;
				"$CSI"C	|	${CSI}OC)	_ESC2KEY=RIGHT	;;
				"$CSI"D	|	${CSI}OD)	_ESC2KEY=LEFT	;;

				##	Function	keys	(unshifted)
				"$CSI"11~	|	"$CSI["A	|	${ESC}OP)	_ESC2KEY=F1	;;
				"$CSI"12~	|	"$CSI["B	|	${ESC}OQ)	_ESC2KEY=F2	;;
				"$CSI"13~	|	"$CSI["C	|	${ESC}OR)	_ESC2KEY=F3	;;
				"$CSI"14~	|	"$CSI["D	|	${ESC}OS)	_ESC2KEY=F4	;;
				"$CSI"15~	|	"$CSI["E)	_ESC2KEY=F5	;;
				"$CSI"17~	|	"$CSI["F)	_ESC2KEY=F6	;;
				"$CSI"18~)	_ESC2KEY=F7	;;
				"$CSI"19~)	_ESC2KEY=F8	;;
				"$CSI"20~)	_ESC2KEY=F9	;;
				"$CSI"21~)	_ESC2KEY=F10	;;
				"$CSI"23~)	_ESC2KEY=F11	;;
				"$CSI"24~)	_ESC2KEY=F12	;;

				##	Insert,	Delete,	Home,	End,	Page	Up,	Page	Down
				"$CSI"2~)	_ESC2KEY=INS	;;
				"$CSI"3~)	_ESC2KEY=DEL	;;
				"$CSI"[17]~	|	"$CSI"H)	_ESC2KEY=HOME	;;
				"$CSI"[28]~	|	"$CSI"F)	_ESC2KEY=END	;;
				"$CSI"5~)	_ESC2KEY=PGUP	;;
				"$CSI"6~)	_ESC2KEY=PGDN	;;

				##	Everything	else;	add	other	keys	before	this	line
				*)	_ESC2KEY=UNKNOWN	;;
		esac
		[-n	"$2"]	&&	eval	"$2=\$_ESC2KEY"
}

You	can	wrap	the	_key	and	_esc2key	functions	into	another	function,	called
get_key	(Listing	15-6),	which	returns	either	the	single	character	pressed	or,	in	the	case
of	multicharacter	keys,	the	name	of	the	key.

Listing	15-6.	get_key,	Gets	a	Key	and,	if	Necessary,	Translates	It	to	a	Key	Name

get_key()
{
				_key
				case	$_KEY	in
								"$ESC")	_keys
																_esc2key	"ESC_KEYS"	_KEY
																;;
				esac
}

In	bash-4.x,	you	can	use	a	simpler	function	to	read	keystrokes.	The	get_key
function	in	Listing	15-7	takes	advantage	of	the	capability	of	read’s	-t	option	to	accept
fractional	times.	It	reads	the	first	character	then	waits	for	one-ten-thousandth	of	a	second
for	another	character.	If	a	multicharacter	key	was	pressed,	there	will	be	one	to	read	within
that	time.	If	not,	it	will	fall	through	the	remaining	read	statements	before	another	key	can
be	pressed.

Listing	15-7.	get_key,	Reads	a	Key	and,	if	It	Is	More	than	a	Single	Character,
Translates	It	to	a	Key	Name

get_key()	#@	USAGE:	get_key	var
{
		local	_v_	_w_	_x_	_y_	_z_	delay=${delay:-.0001}
		IFS=	read	-d	''	-rsn1	_v_
		read	-sn1	-t	"$delay"	_w_
		read	-sn1	-t	"$delay"	_x_
		read	-sn1	-t	"$delay"	_y_
		read	-sn1	-t	"$delay"	_z_
		case	$_v_	in
				$'\e')	_esc2key	"$_v_$_w_$_x_$_y_$_z_"
											printf	-v	${1:?}	$_ESC2KEY
											;;
				*)	printf	-v	${1:?}	"%s"	"$_v_$_w_$_x_$_y_$_z_"	;;
		esac
}

Whenever	you	want	to	use	cursor	or	function	keys	in	a	script,	or	for	any	single-key
entry,	you	can	source	key-funcs	and	call	get_key	to	capture	key	presses.	Listing	15-
8	is	a	simple	demonstration	of	using	the	library.

Listing	15-8.	keycapture,	Read,	and	Display	Keystrokes	Until	Q	Is	Pressed

.	key-funcs																													##	source	the	

library
while	:																																	##	infinite	loop
do
		get_key	key
		sa	"$key"																													##	the	sa	command	is	
from	previous	chapters
		case	$key	in	q|Q)	break;;	esac
done

The	script	in	Listing	15-9	prints	a	block	of	text	on	the	screen.	It	can	be	moved	around
the	screen	with	the	cursor	keys,	and	the	colors	can	be	changed	with	the	function	keys.	The
odd-numbered	function	keys	change	the	foreground	color;	the	even-numbered	keys
change	the	background.

Listing	15-9.	key-demo,	Capture	Function	and	Cursor	Keys	to	Change	Colors	and	Move
a	Block	of	Text	Around	the	Screen

trap	''	2
trap	'stty	sane;	printf	"${CSI}?12l${CSI}?25h\e[0m\n\n"'	
EXIT

stty	-echo			##	Turn	off	echoing	of	user	keystrokes
.	key-funcs		##	Source	key	functions

clear								##	Clear	the	screen
bar=====================================

##	Initial	position	for	text	block
row=$(((${LINES:-24}	-	10)	/	2))
col=$(((${COLUMNS:-80}	-	${#bar})	/	2))

##	Initial	colours
fg="${CSI}33m"
bg="${CSI}44m"

##	Turn	off	cursor
printf	"%s"	"${CSI}?25l"

##	Loop	until	user	presses	"q"
while	:
do
		printf	"\e[1m\e[%d;%dH"	"$row"	"$col"
		printf	"\e7	%-${#bar}.${#bar}s	${CSI}0m			
\e8\e[1B"		"${CSI}0m"
		printf	"\e7	fgbg%-${#bar}.${#bar}s${CSI}0m	\e8\e[1B"	
"$bar"	\
														""	"		Move	text	with	cursor	keys"	\
														""	"		Change	colors	with	function	keys"	\

														""	"		Press	'q'	to	quit"	\
														""	"$bar"
		printf	"\e7%-${#bar}.${#bar}s					"		"${CSI}0m"
		get_key	k
		case	$k	in
						UP)	row=$(($row	-	1))	;;
						DOWN)	row=$(($row	+	1))	;;
						LEFT)	col=$(($col	-	1))	;;
						RIGHT)	col=$(($col	+	1))	;;
						F1)	fg="${CSI}30m"	;;
						F2)	bg="${CSI}47m"	;;
						F3)	fg="${CSI}31m"	;;
						F4)	bg="${CSI}46m"	;;
						F5)	fg="${CSI}32m"	;;
						F6)	bg="${CSI}45m"	;;
						F7)	fg="${CSI}33m"	;;
						F8)	bg="${CSI}44m"	;;
						F9)	fg="${CSI}35m"	;;
						F10)	bg="${CSI}43m"	;;
						F11)	fg="${CSI}34m"	;;
						F12)	bg="${CSI}42m"	;;
						q|Q)	break	;;
		esac
		colmax=$((${COLUMNS:-80}	-	${#bar}	-	4))
		rowmax=$((${LINES:-24}	-	10))
		[$col	-lt	1]	&&	col=1
		[$col	-gt	$colmax]	&&	col=$colmax
		[$row	-lt	1]	&&	row=1
		[$row	-gt	$rowmax]	&&	row=$rowmax
done

History	in	Scripts
In	the	readline	functions	in	Chapters	6	and	12,	history	-s	was	used	to	place	a
default	value	into	the	history	list.	In	those	examples,	only	one	value	was	stored,	but	it	is
possible	to	store	more	than	one	value	in	history	or	even	to	use	an	entire	file.	Before	adding
to	the	history,	you	should	(in	most	cases)	clear	it:

history	-c

By	using	more	than	one	history	-s	command,	you	can	store	multiple	values:

history	-s	Genesis
history	-s	Exodus

With	the	-r	option,	you	can	read	an	entire	file	into	history.	This	snippet	puts	the

names	of	the	first	five	books	of	the	Bible	into	a	file	and	reads	that	into	the	history:

cut	-d:	-f1	"$kjv"	|	uniq	|	head	-5	>	pentateuch
history	-r	pentateuch

The	readline	functions	in	Chapters	6	and	12	use	history	if	the	bash	version	is
less	than	4,	but	read’s	-i	option	with	version	4	(or	greater).	There	are	times	when	it
might	be	more	appropriate	to	use	history	rather	than	-i	even	when	the	latter	is
available.	A	case	in	point	is	when	the	new	input	is	likely	to	be	very	different	from	the
default	but	there	is	a	chance	that	it	might	not	be.

For	history	to	be	available,	you	must	use	the	-e	option	with	read.	This	also	gives
you	access	to	other	key	bindings	defined	in	your	.inputrc	file.

Sanity	Checking
Sanity	checking	is	testing	input	for	the	correct	type	and	a	reasonable	value.	If	a	user	inputs
Jane	for	her	age,	it’s	obviously	wrong:	the	data	is	of	the	wrong	type.	If	she	enters	666,	it’s
the	correct	type	but	almost	certainly	an	incorrect	value.	The	incorrect	type	can	easily	be
detected	with	the	valint	script	(see	Chapter	3)	or	function	(see	Chapter	6).	You	can	use
the	rangecheck	function	from	Chapter	6	to	check	for	a	reasonable	value.

Sometimes	the	error	is	more	problematic,	or	even	malicious.	Suppose	a	script	asks	for
a	variable	name	and	then	uses	eval	to	assign	a	value	to	it:

read	-ep	"Enter	variable	name:	"	var
read	-ep	"Enter	value:	"	val
eval	"$var=\$val"

Now,	suppose	the	entry	goes	like	this:

Enter	variable	name:	rm	-rf	*;name
Enter	value:	whatever

The	command	that	eval	will	execute	is	as	follows:

rm	-rf	*;name=whatever

Poof!	All	your	files	and	subdirectories	are	gone	from	the	current	directory.	It	could
have	been	prevented	by	checking	the	value	of	var	with	the	validname	function	from
Chapter	7:

validname	"$var"	&&	eval	"$var=\$val"	||	echo	Bad	variable	
name	>&2

When	editing	a	database,	checking	that	there	are	no	invalid	characters	is	an	important
step.	For	example,	in	editing	/etc/passwd	(or	a	table	from	which	it	is	created),	you
must	make	sure	that	there	are	no	colons	in	any	of	the	fields.	Figure	15-1	adds	some	humor

to	this	discussion.

Figure	15-1.	Cartoon	courtesy	of	Randall	Munroe	at	http://xkcd.com

Form	Entry
The	script	in	Listing	15-10	is	a	demonstration	of	handling	user	input	with	a	menu	and
history.	It	uses	the	key-funcs	library	to	get	the	user’s	selection	and	to	edit	password
fields.	It	has	a	hard-coded	record	and	doesn’t	read	the	/etc/passwd	file.	It	checks	for	a
colon	in	an	entry	and	prints	an	error	message	if	one	is	found.

The	record	is	read	into	an	array	from	a	here	document.	A	single	printf	statement
prints	the	menu,	using	a	format	string	with	seven	blanks	and	the	entire	array	as	its
arguments.

Listing	15-10.	password,	Simple	Record-Editing	Script

record=root:x:0:0:root:/root:/bin/bash							##	record	to	
edit
fieldnames=(User	Password	UID
													GID	Name	Home	Shell)

.	key-funcs																																		##	load	the	key	
functions

IFS=:	read	-a	user	<<EOF																					##	read	record	
into	array
$record
EOF

z=0
clear
while	:																																						##	loop	until	
user	presses	0	or	q
do
		printf	"\e[H\n
			0.					Quit

http://xkcd.com

			1.					User:	%s\e[K
			2.	Password:	%s\e[K
			3.						UID:	%s\e[K
			4.						GID:	%s\e[K
			5.					Name:	%s\e[K
			6.					Home:	%s\e[K
			7.				Shell:	%s\e[K

				Select	field	(1-7):	\e[0J"	"${user[@]}"			##	print	menu	
and	prompt

		get_key	field																															##	get	user	
input

		printf	"\n\n"																															##	print	
a	blank	line
		case	$field	in
				0|q|Q)	break	;;																											##	quit
				[1-7])	;;																																	##	menu	item	
selected;	fall	through
				*)	continue;;
		esac
		history	-c																																		##	clear	
history
		history	-s	"${user[field-1]}"															##	insert	
current	value	in	history
		printf	'		Press	UP	to	edit	"%s"\n'	"${user[field-1]}"	##	
tell	user	what's	there
		read	-ep	"								${fieldnames[field-1]}:	"	val							##	
get	user	entry
		case	$val	in
				:)	echo	"						Field	may	not	contain	a	colon	(press	
ENTER)"	>&2		##	ERROR
									get_key;	continue
									;;
				"")	continue	;;
				*)	user[field-1]=$val	;;
		esac
done

Reading	the	Mouse
On	the	Linux	console_codes1	man	page,	there	is	a	section	labeled	“mouse	tracking.”
Interesting!	It	reads:	“The	mouse	tracking	facility	is	intended	to	return	xterm-compatible
mouse	status	reports.”	Does	that	mean	the	mouse	can	be	used	in	shell	scripts?

According	to	that	man	page,	mouse	tracking	is	available	in	two	modes:	X10
compatibility	mode,	which	sends	an	escape	sequence	on	button	press,	and	normal	tracking
mode,	which	sends	an	escape	sequence	on	both	button	press	and	release.	Both	modes	also
send	modifier-key	information.

To	test	this,	printf	“\e[?9h”	was	first	entered	at	a	terminal	window.	This	is	the
escape	sequence	that	sets	the	“X10	Mouse	Reporting	(default	off):	Set	reporting	mode	to	1
(or	reset	to	0)”.	If	you	press	the	mouse	button,	the	computer	will	beep	and	print	“FB”	on
the	screen.	Repeating	the	mouse	click	at	various	points	on	the	screen	will	net	more	beeps
and	“&%	-(5.	=2	H7	T=]C	fG	rJ	}M.”

A	mouse	click	sends	six	characters:	ESC,	[,	M,	b,	x,	y.	The	first	three	characters	are
common	to	all	mouse	events,	the	second	three	contain	the	button	pressed,	and	the	finals
ones	are	the	x	and	y	locations	of	the	mouse.	To	confirm	this,	save	the	input	in	a	variable
and	pipe	it	to	hexdump:

$	printf	"\e[?9h"
$	read	x
^[[M!MO												##	press	mouse	button	and	enter
$	printf	"$x"	|	hexdump	-C
00000000		1b	5b	4d	21	4d	4f																							|.[M!MO|
00000006

The	first	three	appear	as	expected,	but	what	are	the	final	three?	According	to	the	man
page,	the	lower	two	bits	of	the	button	character	tell	which	button	has	been	pressed;	the
upper	bits	identify	the	active	modifiers.	The	x	and	y	coordinates	are	the	ASCII	values	to
which	32	has	been	added	to	take	them	out	of	the	range	of	control	characters.	The	!	is	1,	“
is	2,	and	so	on.

That	gives	us	a	1	for	the	mouse	button,	which	means	button	2,	since	0	to	2	are	buttons
1,	2,	and	3,	respectively,	and	4	is	release.	The	x	and	y	coordinates	are	45	(O	×	4d	=	77;	77
–	32	=	45)	and	47.

Surprisingly,	since	running	across	this	information	about	mouse	tracking	in	a	Linux
console_codes	man	page,	it	was	found	that	these	escape	codes	do	not	work	in	all
Linux	consoles.	They	work	in	xterm,	rxvt,	and	gnome-terminal	on	Linux	and
FreeBSD.	They	can	also	be	used	on	FreeBSD	and	NetBSD,	via	ssh	from	a	Linux	rxvt
terminal	window.	They	do	not	work	in	a	KDE	konsole	window.

You	now	know	that	mouse	reporting	works	(in	most	xterm	windows),	and	you	can
get	information	from	a	mouse	click	on	the	standard	input.	That	leaves	two	questions:	How
do	you	read	the	information	into	a	variable	(without	having	to	press	Return),	and	how	can
the	button	and	x,	y	information	be	decoded	in	a	shell	script?

With	bash,	use	the	read	command’s	-n	option	with	an	argument	to	specify	the
number	of	characters.	To	read	the	mouse,	six	characters	are	needed:

read	-n6	x

Neither	of	these	is	adequate	for	a	real	script	(not	all	input	will	be	mouse	clicks,	and
you	will	want	to	get	single	keystrokes),	but	they	suffice	to	demonstrate	the	concept.

The	next	step	is	to	decode	the	input.	For	the	purposes	of	this	demonstration,	you	can
assume	that	the	six	characters	do	indeed	represent	a	mouse	click	and	that	the	first	three
characters	are	ESC,	[,	and	M.	Here	we	are	only	interested	in	the	last	three,	so	we	extract
them	into	three	separate	variables	using	POSIX	parameter	expansion:

m1=${x#???}				##	Remove	the	first	3	characters
m2=${x#????}			##	Remove	the	first	4	characters
m3=${x#?????}		##	Remove	the	first	5	characters

Then	convert	the	first	character	of	each	variable	to	its	ASCII	value.	This	uses	a	POSIX
printf	extension:	“If	the	leading	character	is	a	single-quote	or	double-quote,	the	value
shall	be	the	numeric	value	in	the	underlying	codeset	of	the	character	following	the	single-
quote	or	double-quote.”2

printf	-v	mb	"%d"	"'$m1"
printf	-v	mx	"%d"	"'$m2"
printf	-v	my	"%d"	"'$m3"

Finally,	interpret	the	ASCII	values.	For	the	mouse	button,	do	a	bitwise	AND	3.	For	the
x	and	y	coordinates,	subtract	32:

##	Values	>	127	are	signed,	so	fix	if	less	than	0
[$mx	-lt	0]	&&	mx=$((255	+	$mx))
[$my	-lt	0]	&&	my=$((255	+	$my))

BUTTON=$((($mb	&	3)	+	1))
MOUSEX=$(($mx	-	32))
MOUSEY=$(($my	-	32))

Putting	it	all	together,	the	script	in	Listing	15-11	prints	the	mouse’s	coordinates
whenever	you	press	a	mouse	button.

There	are	two	sensitive	areas	on	the	top	row.	Clicking	the	left	one	toggles	the	mouse
reporting	mode	between	reporting	only	a	button	press	and	reporting	the	release	as	well.
Clicking	the	right	one	exits	the	script.

Listing	15-11.	mouse-demo,	Example	of	Reading	Mouse	Clicks

ESC=$'\e'
but_row=1

mv=9		##	mv=1000	for	press	and	release	reporting;	mv=9	for	
press	only

_STTY=$(stty	-g)						##	Save	current	terminal	setup
stty	-echo	-icanon				##	Turn	off	line	buffering
printf	"${ESC}[?${mv}h								"			##	Turn	on	mouse	reporting

printf	"${ESC}[?25l"		##	Turn	off	cursor

printat()	#@	USAGE:	printat	ROW	COLUMN
{
				printf	"${ESC}[${1};${2}H"
}

print_buttons()
{
			num_but=$#
			gutter=2
			gutters=$(($num_but	+	1))
			but_width=$((($COLUMNS	-	$gutters)	/	$num_but))
			n=0
			for	but_str
			do
					col=$(($gutter	+	$n	*	($but_width	+	$gutter)))
					printat	$but_row	$col
					printf	"${ESC}[7m%${but_width}s"	"	"
					printat	$but_row	$(($col	+	($but_width	-	${#but_str})	
/	2))
					printf	"%.${but_width}s${ESC}[0m"	"$but_str"
					n=$(($n	+	1))
			done
}

clear
while	:
do
		[$mv	-eq	9]	&&	mv_str="Click	to	Show	Press	&	Release"	||
																			mv_str="Click	to	Show	Press	Only"
		print_buttons	"$mv_str"	"Exit"

		read	-n6	x

		m1=${x#???}				##	Remove	the	first	3	characters
		m2=${x#????}			##	Remove	the	first	4	characters
		m3=${x#?????}		##	Remove	the	first	5	characters

		##	Convert	to	characters	to	decimal	values
		printf	-v	mb	"%d"	"'$m1"
		printf	-v	mx	"%d"	"'$m2"
		printf	-v	my	"%d"	"'$m3"
		##	Values	>	127	are	signed
		[$mx	-lt	0]	&&	MOUSEX=$((223	+	$mx))	||	MOUSEX=$(($mx	
-	32))
		[$my	-lt	0]	&&	MOUSEY=$((223	+	$my))	||	MOUSEY=$(($my	

-	32))

		##	Button	pressed	is	in	first	2	bytes;	use	bitwise	AND
		BUTTON=$((($mb	&	3)	+	1))

		case	$MOUSEY	in
							$but_row)	##	Calculate	which	on-screen	button	has	been	
pressed
																	button=$((($MOUSEX	-	$gutter)	/	$but_width	
+	1))
																	case	$button	in
																						1)	printf	"${ESC}[?${mv}l"
																									[$mv	-eq	9]	&&	mv=1000	||	mv=9
																									printf	"${ESC}[?${mv}h"
																									[$mv	-eq	1000]	&&	x=$(dd	bs=1	count=6	
2>/dev/null)
																									;;
																						2)	break	;;
																	esac
																	;;
							*)	printat	$MOUSEY	$MOUSEX
										printf	"X=%d	Y=%d	[%d]		"	$MOUSEX	$MOUSEY	$BUTTON
										;;
		esac

done

printf	"${ESC}[?${mv}l"		##	Turn	off	mouse	reporting
stty	"$_STTY"												##	Restore	terminal	settings
printf	"${ESC}[?12l${ESC}[?25h"	##	Turn	cursor	back	on
printf	"\n${ESC}[0J\n"			##	Clear	from	cursor	to	bottom	of	
screen,

Summary
Bash	has	a	rich	set	of	options	for	interactive	programming.	In	this	chapter,	you	learned
how	to	leverage	that	to	read	any	keystroke,	including	function	keys	and	others	that	return
more	than	a	single	character.

Exercises
1.	 Using	the	key-funcs	library,	write	a	menu	script	that	uses	the

function	keys	for	selection.

2.	 Rewrite	the	key-funcs	library	to	include	mouse	handling,	and

incorporate	the	function	into	the	mouse-demo	script.

3.	 The	password	script	does	minimal	checking	for	invalid	entries.
What	checking	would	you	add?	How	would	you	code	it?

1http://man7.org/linux/man-pages/man4/console_codes.4.html

2http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

http://man7.org/linux/man-pages/man4/console_codes.4.html
http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

APPENDIX	A

Shell	Variables
This	list	is	excerpted	from	the	bash	man	page	and	edited	to	make	a	stand-alone
document.	The	following	variables	are	set	by	bash.

BASH
Expands	to	the	full	file	name	used	to	invoke	this	instance	of	bash.

BASHPID
Expands	to	the	process	ID	of	the	current	bash	process.	This	differs	from	$$	under	certain
circumstances,	such	as	subshells	that	do	not	require	bash	to	be	reinitialized.

BASH_ALIASES
An	associative	array	variable	whose	members	correspond	to	the	internal	list	of	aliases	as
maintained	by	the	alias	builtin.	Elements	added	to	this	array	appear	in	the	alias	list;
unsetting	array	elements	causes	aliases	to	be	removed	from	the	alias	list.

BASH_ARGC
An	array	variable	whose	values	are	the	number	of	parameters	in	each	frame	of	the	current
bash	execution	call	stack.	The	number	of	parameters	to	the	current	subroutine	(shell
function	or	script	executed	with	.	or	source)	is	at	the	top	of	the	stack.	When	a	subroutine
is	executed,	the	number	of	parameters	passed	is	pushed	onto	BASH_ARGC.	The	shell	sets
BASH_ARGC	only	when	in	extended	debugging	mode	(see	the	description	of	the
extdebug	option	to	the	shopt	builtin	in	the	bash	man	page).

BASH_ARGV
An	array	variable	containing	all	the	parameters	in	the	current	bash	execution	call	stack.
The	final	parameter	of	the	last	subroutine	call	is	at	the	top	of	the	stack;	the	first	parameter
of	the	initial	call	is	at	the	bottom.	When	a	subroutine	is	executed,	the	parameters	supplied
are	pushed	onto	BASH_ARGV.	The	shell	sets	BASH_ARGV	only	when	in	extended

debugging	mode	(see	the	description	of	the	extdebug	option	to	the	shopt	builtin	in	the
bash	man	page).

BASH_CMDS
An	associative	array	variable	whose	members	correspond	to	the	internal	hash	table	of
commands	as	maintained	by	the	hash	builtin.	Elements	added	to	this	array	appear	in	the
hash	table;	unsetting	array	elements	causes	commands	to	be	removed	from	the	hash	table.

BASH_COMMAND
The	command	currently	being	executed	or	about	to	be	executed,	unless	the	shell	is
executing	a	command	as	the	result	of	a	trap,	in	which	case	it	is	the	command	executing	at
the	time	of	the	trap.

BASH_EXECUTION_STRING
The	command	argument	to	the	-c	invocation	option.

BASH_LINENO
An	array	variable	whose	members	are	the	line	numbers	in	source	files	corresponding	to
each	member	of	FUNCNAME.	${BASH_LINENO[$i]}	is	the	line	number	in	the	source
file	where	${FUNCNAME[$i]}	was	called	(or	${BASH_LINENO[$i-1]}	if
referenced	within	another	shell	function).	The	corresponding	source	file	name	is
${BASH_SOURCE[$i]}.	Use	LINENO	to	obtain	the	current	line	number.

BASH_REMATCH
An	array	variable	whose	members	are	assigned	by	the	=~	binary	operator	to	the	[[
conditional	command.	The	element	with	index	0	is	the	portion	of	the	string	matching	the
entire	regular	expression.	The	element	with	index	n	is	the	portion	of	the	string	matching
the	nth	parenthesized	subexpression.	This	variable	is	read-only.

BASH_SOURCE
An	array	variable	whose	members	are	the	source	file	names	corresponding	to	the	elements
in	the	FUNCNAME	array	variable.

BASH_SUBSHELL
Incremented	by	one	each	time	a	subshell	or	subshell	environment	is	spawned.	The	initial
value	is	0.

BASH_VERSINFO
A	read-only	array	variable	whose	members	hold	version	information	for	this	instance	of
bash.	The	values	assigned	to	the	array	members	are	as	follows:

BASH_VERSINFO[0]:	The	major	version	number	(the	release)

BASH_VERSINFO[1]:	The	minor	version	number	(the	version)

BASH_VERSINFO[2]:	The	patch	level

BASH_VERSINFO[3]:	The	build	version

BASH_VERSINFO[4]:	The	release	status	(e.g.,	beta1)

BASH_VERSINFO[5]:	The	value	of	MACHTYPE

BASH_VERSION
Expands	to	a	string	describing	the	version	of	this	instance	of	bash.

COMP_CWORD
An	index	into	${COMP_WORDS}	of	the	word	containing	the	current	cursor	position.	This
variable	is	available	only	in	shell	functions	invoked	by	the	programmable	completion
facilities	(see	“Programmable	Completion”	in	the	bash	man	page).

COMP_KEY
The	key	(or	final	key	of	a	key	sequence)	used	to	invoke	the	current	completion	function.

COMP_LINE
The	current	command	line.	This	variable	is	available	only	in	shell	functions	and	external
commands	invoked	by	the	programmable	completion	facilities	(see	“Programmable
Completion”	in	the	bash	man	page).

COMP_POINT
The	index	of	the	current	cursor	position	relative	to	the	beginning	of	the	current	command.
If	the	current	cursor	position	is	at	the	end	of	the	current	command,	the	value	of	this
variable	is	equal	to	${#COMP_LINE}.	This	variable	is	available	only	in	shell	functions
and	external	commands	invoked	by	the	programmable	completion	facilities	(see
“Programmable	Completion”	in	the	bash	man	page).

COMP_TYPE
Set	to	an	integer	value	corresponding	to	the	type	of	completion	attempted	that	caused	a
completion	function	to	be	called:	TAB	for	normal	completion,	?	for	listing	completions
after	successive	tabs,	!	for	listing	alternatives	on	partial	word	completion,	@	to	list
completions	if	the	word	is	not	unmodified,	or	%	for	menu	completion.	This	variable	is
available	only	in	shell	functions	and	external	commands	invoked	by	the	programmable
completion	facilities	(see	“Programmable	Completion”	in	the	bash	man	page).

COMP_WORDBREAKS
The	set	of	characters	that	the	readline	library	treats	as	word	separators	when
performing	word	completion.	If	COMP_WORDBREAKS	is	unset,	it	loses	its	special
properties,	even	if	it	is	subsequently	reset.

COMP_WORDS
An	array	variable	(see	“Arrays”	in	the	bash	man	page)	consisting	of	the	individual	words
in	the	current	command	line.	The	line	is	split	into	words	as	readline	would	split	it,
using	COMP_WORDBREAKS	as	described	previously.	This	variable	is	available	only	in
shell	functions	invoked	by	the	programmable	completion	facilities	(see	“Programmable
Completion”	in	the	bash	man	page).

DIRSTACK
An	array	variable	(see	“Arrays”	in	the	bash	man	page)	containing	the	current	contents	of
the	directory	stack.	Directories	appear	in	the	stack	in	the	order	they	are	displayed	by	the
dirs	builtin.	Assigning	to	members	of	this	array	variable	may	be	used	to	modify
directories	already	in	the	stack,	but	the	pushd	and	popd	builtins	must	be	used	to	add	and
remove	directories.	Assignment	to	this	variable	will	not	change	the	current	directory.	If
DIRSTACK	is	unset,	it	loses	its	special	properties,	even	if	it	is	subsequently	reset.

EUID
Expands	to	the	effective	user	ID	of	the	current	user,	initialized	at	shell	startup.	This
variable	is	read-only.

FUNCNAME
An	array	variable	containing	the	names	of	all	shell	functions	currently	in	the	execution
call	stack.	The	element	with	index	0	is	the	name	of	any	currently	executing	shell	function.
The	bottom-most	element	is	main.	This	variable	exists	only	when	a	shell	function	is
executing.	Assignments	to	FUNCNAME	have	no	effect	and	return	an	error	status.	If
FUNCNAME	is	unset,	it	loses	its	special	properties,	even	if	it	is	subsequently	reset.

GROUPS
An	array	variable	containing	the	list	of	groups	of	which	the	current	user	is	a	member.
Assignments	to	GROUPS	have	no	effect	and	return	an	error	status.	If	GROUPS	is	unset,	it
loses	its	special	properties,	even	if	it	is	subsequently	reset.

HISTCMD
The	history	number,	or	index	in	the	history	list,	of	the	current	command.	If	HISTCMD	is
unset,	it	loses	its	special	properties,	even	if	it	is	subsequently	reset.

HOSTNAME
Automatically	set	to	the	name	of	the	current	host.

HOSTTYPE
Automatically	set	to	a	string	that	uniquely	describes	the	type	of	machine	on	which	bash
is	executing.	The	default	is	system-dependent.

LINENO
Each	time	this	parameter	is	referenced,	the	shell	substitutes	a	decimal	number	representing
the	current	sequential	line	number	(starting	with	1)	within	a	script	or	function.	When	not
in	a	script	or	function,	the	value	substituted	is	not	guaranteed	to	be	meaningful.	If
LINENO	is	unset,	it	loses	its	special	properties,	even	if	it	is	subsequently	reset.

MACHTYPE
Automatically	set	to	a	string	that	fully	describes	the	system	type	on	which	bash	is
executing,	in	the	standard	GNU	cpu-company-system	format.	The	default	is	system-
dependent.

OLDPWD
The	previous	working	directory	as	set	by	the	cd	command.

OPTARG
The	value	of	the	last	option	argument	processed	by	the	getopts	builtin	command	(see
“Shell	Builtin	Commands”	in	the	bash	man	page).

OPTIND
The	index	of	the	next	argument	to	be	processed	by	the	getopts	builtin	command	(see
“Shell	Builtin	Commands”	in	the	bash	man	page).

OSTYPE
Automatically	set	to	a	string	that	describes	the	operating	system	on	which	bash	is
executing.	The	default	is	system-dependent.

PIPESTATUS
An	array	variable	(see	“Arrays”	in	the	bash	man	page)	containing	a	list	of	exit	status
values	from	the	processes	in	the	most	recently	executed	foreground	pipeline	(which	may
contain	only	a	single	command).

PPID
The	process	ID	of	the	shell’s	parent.	This	variable	is	read-only.

PWD
The	current	working	directory	as	set	by	the	cd	command.

RANDOM
Each	time	this	parameter	is	referenced,	a	random	integer	between	0	and	32767	is
generated.	The	sequence	of	random	numbers	may	be	initialized	by	assigning	a	value	to
RANDOM.	If	RANDOM	is	unset,	it	loses	its	special	properties,	even	if	it	is	subsequently
reset.

REPLY
Set	to	the	line	of	input	read	by	the	read	builtin	command	when	no	arguments	are
supplied.

SECONDS
Each	time	this	parameter	is	referenced,	the	number	of	seconds	since	shell	invocation	is
returned.	If	a	value	is	assigned	to	SECONDS,	the	value	returned	upon	subsequent
references	is	the	number	of	seconds	since	the	assignment	plus	the	value	assigned.	If
SECONDS	is	unset,	it	loses	its	special	properties,	even	if	it	is	subsequently	reset.

SHELLOPTS
A	colon-separated	list	of	enabled	shell	options.	Each	word	in	the	list	is	a	valid	argument
for	the	-o	option	to	the	set	builtin	command	(see	“Shell	Builtin	Commands”	in	the
bash	man	page).	The	options	appearing	in	SHELLOPTS	are	those	reported	as	on	by	set
-o.	If	this	variable	is	in	the	environment	when	bash	starts	up,	each	shell	option	in	the	list
will	be	enabled	before	reading	any	startup	files.	This	variable	is	read-only.

SHLVL
Incremented	by	one	each	time	an	instance	of	bash	is	started.

UID
Expands	to	the	user	ID	of	the	current	user,	initialized	at	shell	startup.	This	variable	is	read-
only.

The	following	variables	are	used	by	the	shell.	In	some	cases,	bash	assigns	a	default
value	to	a	variable;	these	cases	are	noted	in	the	following	sections.

BASH_ENV

If	this	parameter	is	set	when	bash	is	executing	a	shell	script,	its	value	is	interpreted	as	a
file	name	containing	commands	to	initialize	the	shell,	as	in	~/.bashrc.	The	value	of
BASH_ENV	is	subjected	to	parameter	expansion,	command	substitution,	and	arithmetic
expansion	before	being	interpreted	as	a	file	name.	PATH	is	not	used	to	search	for	the
resultant	file	name.

CDPATH
The	search	path	for	the	cd	command.	This	is	a	colon-separated	list	of	directories	in	which
the	shell	looks	for	destination	directories	specified	by	the	cd	command.	A	sample	value	is
.:~:/usr.

COLUMNS
Used	by	the	select	builtin	command	to	determine	the	terminal	width	when	printing
selection	lists.	This	is	automatically	set	upon	receipt	of	a	SIGWINCH.

COMPREPLY
An	array	variable	from	which	bash	reads	the	possible	completions	generated	by	a	shell
function	invoked	by	the	programmable	completion	facility	(see	“Programmable
Completion”	in	the	bash	man	page).

EMACS
If	bash	finds	this	variable	in	the	environment	when	the	shell	starts	with	value	t,	it
assumes	that	the	shell	is	running	in	an	emacs	shell	buffer	and	disables	line	editing.

FCEDIT
The	default	editor	for	the	fc	builtin	command.

FIGNORE
A	colon-separated	list	of	suffixes	to	ignore	when	performing	file	name	completion	(see
READLINE	in	the	bash	man	page).	A	file	name	whose	suffix	matches	one	of	the	entries
in	FIGNORE	is	excluded	from	the	list	of	matched	file	names.	A	sample	value	is	.o:~.

GLOBIGNORE

A	colon-separated	list	of	patterns	defining	the	set	of	file	names	to	be	ignored	by	pathname
expansion.	If	a	file	name	matched	by	a	pathname	expansion	pattern	also	matches	one	of
the	patterns	in	GLOBIGNORE,	it	is	removed	from	the	list	of	matches.

HISTCONTROL
A	colon-separated	list	of	values	controlling	how	commands	are	saved	on	the	history	list.	If
the	list	of	values	includes	ignorespace,	lines	that	begin	with	a	space	character	are	not
saved	in	the	history	list.	A	value	of	ignoredups	causes	lines	matching	the	previous
history	entry	to	not	be	saved.	A	value	of	ignoreboth	is	shorthand	for	ignorespace
and	ignoredups.	A	value	of	erasedups	causes	all	previous	lines	matching	the
current	line	to	be	removed	from	the	history	list	before	that	line	is	saved.	Any	value	not	in
the	previous	list	is	ignored.	If	HISTCONTROL	is	unset	or	does	not	include	a	valid	value,
all	lines	read	by	the	shell	parser	are	saved	on	the	history	list,	subject	to	the	value	of
HISTIGNORE.	The	second	and	subsequent	lines	of	a	multiline	compound	command	are
not	tested	and	are	added	to	the	history	regardless	of	the	value	of	HISTCONTROL.

HISTFILE
The	name	of	the	file	in	which	command	history	is	saved	(see	HISTORY	in	the	bash	man
page).	The	default	value	is	~/.bash_history.	If	unset,	the	command	history	is	not
saved	when	an	interactive	shell	exits.

HISTFILESIZE
The	maximum	number	of	lines	contained	in	the	history	file.	When	this	variable	is	assigned
a	value,	the	history	file	is	truncated,	if	necessary,	by	removing	the	oldest	entries	to	contain
no	more	than	that	number	of	lines.	The	default	value	is	500.	The	history	file	is	also
truncated	to	this	size	after	writing	it	when	an	interactive	shell	exits.

HISTIGNORE
A	colon-separated	list	of	patterns	used	to	decide	which	command	lines	should	be	saved	on
the	history	list.	Each	pattern	is	anchored	at	the	beginning	of	the	line	and	must	match	the
complete	line	(no	implicit	*	is	appended).	Each	pattern	is	tested	against	the	line	after	the
checks	specified	by	HISTCONTROL	are	applied.	In	addition	to	the	normal	shell	pattern
matching	characters,	&	matches	the	previous	history	line.	&	may	be	escaped	using	a
backslash;	the	backslash	is	removed	before	attempting	a	match.	The	second	and
subsequent	lines	of	a	multiline	compound	command	are	not	tested	and	are	added	to	the
history	regardless	of	the	value	of	HISTIGNORE.

HISTSIZE
The	number	of	commands	to	remember	in	the	command	history	(see	HISTORY	in	the
bash	man	page).	The	default	value	is	500.

HISTTIMEFORMAT
If	this	variable	is	set	and	not	null,	its	value	is	used	as	a	format	string	for	strftime(3)
to	print	the	time	stamp	associated	with	each	history	entry	displayed	by	the	history
builtin.	If	this	variable	is	set,	time	stamps	are	written	to	the	history	file	so	they	may	be
preserved	across	shell	sessions.	This	uses	the	history	comment	character	to	distinguish
timestamps	from	other	history	lines.

HOME
The	home	directory	of	the	current	user;	the	default	argument	for	the	cd	builtin	command.
The	value	of	this	variable	is	also	used	when	performing	tilde	expansion.

HOSTFILE
Contains	the	name	of	a	file	in	the	same	format	as	/etc/hosts	that	should	be	read	when
the	shell	needs	to	complete	a	hostname.	The	list	of	possible	hostname	completions	may	be
changed	while	the	shell	is	running;	the	next	time	hostname	completion	is	attempted	after
the	value	is	changed,	bash	adds	the	contents	of	the	new	file	to	the	existing	list.	If
HOSTFILE	is	set	but	has	no	value,	bash	attempts	to	read	/etc/hosts	to	obtain	the
list	of	possible	hostname	completions.	When	HOSTFILE	is	unset,	the	hostname	list	is
cleared.

IFS
The	Internal	Field	Separator	that	is	used	for	word	splitting	after	expansion	and	to	split
lines	into	words	with	the	read	builtin	command.	The	default	value	is	””.

IGNOREEOF
Controls	the	action	of	an	interactive	shell	on	receipt	of	an	EOF	character	as	the	sole	input.
If	set,	the	value	is	the	number	of	consecutive	EOF	characters	that	must	be	typed	as	the	first
characters	on	an	input	line	before	bash	exits.	If	the	variable	exists	but	does	not	have	a
numeric	value	or	does	not	have	a	value,	the	default	value	is	10.	If	it	does	not	exist,	EOF
signifies	the	end	of	input	to	the	shell.

INPUTRC
The	file	name	for	the	readline	startup	file,	overriding	the	default	of	~/.inputrc
(see	READLINE	in	the	bash	man	page).

LANG
Used	to	determine	the	locale	category	for	any	category	not	specifically	selected	with	a
variable	starting	with	LC_.

LC_ALL
This	variable	overrides	the	value	of	LANG	and	any	other	LC_	variable	specifying	a	locale
category.

LC_COLLATE
This	variable	determines	the	collation	order	used	when	sorting	the	results	of	pathname
expansion	and	determines	the	behavior	of	range	expressions,	equivalence	classes,	and
collating	sequences	within	pathname	expansion	and	pattern	matching.

LC_CTYPE
This	variable	determines	the	interpretation	of	characters	and	the	behavior	of	character
classes	within	pathname	expansion	and	pattern	matching.

LC_MESSAGES
This	variable	determines	the	locale	used	to	translate	double-quoted	strings	preceded	by	a
$.

LC_NUMERIC
This	variable	determines	the	locale	category	used	for	number	formatting.

LINES
Used	by	the	select	builtin	command	to	determine	the	column	length	for	printing
selection	lists.	This	is	automatically	set	upon	receipt	of	a	SIGWINCH.

MAIL
If	this	parameter	is	set	to	a	file	name	and	the	MAILPATH	variable	is	not	set,	bash	informs
the	user	of	the	arrival	of	mail	in	the	specified	file.

MAILCHECK
Specifies	how	often	(in	seconds)	bash	checks	for	mail.	The	default	is	60	seconds.	When
it	is	time	to	check	for	mail,	the	shell	does	so	before	displaying	the	primary	prompt.	If	this
variable	is	unset	or	set	to	a	value	that	is	not	a	number	greater	than	or	equal	to	zero,	the
shell	disables	mail	checking.

MAILPATH
A	colon-separated	list	of	file	names	to	be	checked	for	mail.	The	message	to	be	printed
when	mail	arrives	in	a	particular	file	may	be	specified	by	separating	the	file	name	from	the
message	with	a	?.	When	used	in	the	text	of	the	message,	$_	expands	to	the	name	of	the
current	mail	file.	Here’s	an	example:

MAILPATH='/var/mail/bfox?"You	have	mail":~/shell-mail?"$_	
has	mail!"'

Bash	supplies	a	default	value	for	this	variable,	but	the	location	of	the	user	mail	files	that
it	uses	is	system	dependent	(for	example,	/var/mail/$USER).

OPTERR
If	set	to	the	value	1,	bash	displays	error	messages	generated	by	the	getopts	builtin
command	(see	“Shell	Builtin	Commands”	in	the	bash	man	page).	OPTERR	is	initialized
to	1	each	time	the	shell	is	invoked	or	a	shell	script	is	executed.

PATH
The	search	path	for	commands.	It	is	a	colon-separated	list	of	directories	in	which	the	shell
looks	for	commands	(see	“Command	Execution”	in	the	bash	man	page).	A	zero-length
(null)	directory	name	in	the	value	of	PATH	indicates	the	current	directory.	A	null	directory
name	may	appear	as	two	adjacent	colons	or	as	an	initial	or	trailing	colon.	The	default	path
is	system-dependent	and	is	set	by	the	administrator	who	installs	bash.	A	common	value
is	/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin.

POSIXLY_CORRECT

If	this	variable	is	in	the	environment	when	bash	starts,	the	shell	enters	POSIX	mode
before	reading	the	startup	files,	as	if	the	—posix	invocation	option	had	been	supplied.	If
it	is	set	while	the	shell	is	running,	bash	enables	POSIX	mode,	as	if	the	command	set	-
o	posix	had	been	executed.

PROMPT_COMMAND
If	set,	the	value	is	executed	as	a	command	prior	to	issuing	each	primary	prompt.

PROMPT_DIRTRIM
If	set	to	a	number	greater	than	zero,	the	value	is	used	as	the	number	of	trailing	directory
components	to	retain	when	expanding	the	\w	and	\W	prompt	string	escapes	(see
“Prompting”	in	the	bash	man	page).	Characters	removed	are	replaced	with	an	ellipsis.

PS1
The	value	of	this	parameter	is	expanded	(see	“Prompting”	in	the	bash	man	page)	and
used	as	the	primary	prompt	string.	The	default	value	is	“\s-\v\$	“.

PS2
The	value	of	this	parameter	is	expanded	as	with	PS1	and	used	as	the	secondary	prompt
string.	The	default	is	“>	“.

PS3
The	value	of	this	parameter	is	used	as	the	prompt	for	the	select	command	(see	“SHELL
GRAMMAR”	earlier).

PS4
The	value	of	this	parameter	is	expanded	as	with	PS1,	and	the	value	is	printed	before	each
command	bash	displays	during	an	execution	trace.	The	first	character	of	PS4	is
replicated	multiple	times,	as	necessary,	to	indicate	multiple	levels	of	indirection.	The
default	is	“+	“.

SHELL

The	full	pathname	to	the	shell	is	kept	in	this	environment	variable.	If	it	is	not	set	when	the
shell	starts,	bash	assigns	to	it	the	full	pathname	of	the	current	user’s	login	shell.

TIMEFORMAT
The	value	of	this	parameter	is	used	as	a	format	string	specifying	how	the	timing
information	for	pipelines	prefixed	with	the	time	reserved	word	should	be	displayed.	The	%
character	introduces	an	escape	sequence	that	is	expanded	to	a	time	value	or	other
information.	The	escape	sequences	and	their	meanings	are	as	follows;	the	braces	denote
optional	portions.

%%:	A	literal	%.

%[p][l]R:	The	elapsed	time	in	seconds.

%[p][l]U:	The	number	of	CPU	seconds	spent	in	user	mode.

%[p][l]S:	The	number	of	CPU	seconds	spent	in	system	mode.

%P:	The	CPU	percentage,	computed	as	(%U	+	%S)	/	%R.	The
optional	p	is	a	digit	specifying	the	precision,	the	number	of
fractional	digits	after	a	decimal	point.	A	value	of	0	causes	no
decimal	point	or	fraction	to	be	output.	At	most	three	places	after	the
decimal	point	may	be	specified;	values	of	p	greater	than	3	are
changed	to	3.	If	p	is	not	specified,	the	value	3	is	used.	The	optional
l	specifies	a	longer	format,	including	minutes,	of	the	form
MMmSS.FFs.	The	value	of	p	determines	whether	the	fraction	is
included.	If	this	variable	is	not	set,	bash	acts	as	if	it	had	the	value
$’\nreal\t%3lR\nuser\t%3lU\nsys%3lS’.	If	the	value
is	null,	no	timing	information	is	displayed.	A	trailing	newline	is
added	when	the	format	string	is	displayed.

TMOUT
If	set	to	a	value	greater	than	zero,	TMOUT	is	treated	as	the	default	timeout	for	the	read
builtin.	The	select	command	terminates	if	input	does	not	arrive	after	TMOUT	seconds	when
input	is	coming	from	a	terminal.	In	an	interactive	shell,	the	value	is	interpreted	as	the
number	of	seconds	to	wait	for	input	after	issuing	the	primary	prompt.	Bash	terminates
after	waiting	for	that	number	of	seconds	if	input	does	not	arrive.

TMPDIR
If	set,	bash	uses	its	value	as	the	name	of	a	directory	in	which	bash	creates	temporary
files	for	the	shell’s	use.

auto_resume
This	variable	controls	how	the	shell	interacts	with	the	user	and	job	control.	If	this	variable
is	set,	single	word	simple	commands	without	redirections	are	treated	as	candidates	for
resumption	of	an	existing	stopped	job.	There	is	no	ambiguity	allowed;	if	there	is	more
than	one	job	beginning	with	the	string	typed,	the	job	most	recently	accessed	is	selected.
The	name	of	a	stopped	job,	in	this	context,	is	the	command	line	used	to	start	it.	If	set	to	the
value	exact,	the	string	supplied	must	match	the	name	of	a	stopped	job	exactly;	if	set	to
substring,	the	string	supplied	needs	to	match	a	substring	of	the	name	of	a	stopped	job.	The
substring	value	provides	functionality	analogous	to	the	%?	job	identifier	(see	“Job
Control”	in	the	bash	man	page).	If	set	to	any	other	value,	the	supplied	string	must	be	a
prefix	of	a	stopped	job’s	name;	this	provides	functionality	analogous	to	the	%string	job
identifier.

histchars
The	two	or	three	characters	that	control	history	expansion	and	tokenization	(see	“History
Expansion”	in	the	bash	man	page).	The	first	character	is	the	history	expansion	character,
the	character	that	signals	the	start	of	a	history	expansion,	normally	!.	The	second
character	is	the	quick	substitution	character,	which	is	used	as	shorthand	for	rerunning	the
previous	command	entered,	substituting	one	string	for	another	in	the	command.	The
default	is	^.	The	optional	third	character	is	the	character	that	indicates	that	the	remainder
of	the	line	is	a	comment	when	found	as	the	first	character	of	a	word,	normally	#.	The
history	comment	character	causes	history	substitution	to	be	skipped	for	the	remaining
words	on	the	line.	It	does	not	necessarily	cause	the	shell	parser	to	treat	the	rest	of	the	line
as	a	comment.

Index
		A

agridsize	variable

ANSI	X3.64

Arithmetic	expansion

arraygrid-funcs	library

Arrays

associative

elements

indexed

integer-indexed

packed

reading	into	memory

scalar	variables

searching

sorting	with

two-dimensional

two-dimensional	grids	using

ASCII	values

asearch()	function

Associative	arrays

converting	to	indexed	arrays

expansions	of

awk	programming	language

		B
Block	file	formats

Block-oriented	files

Bourne	shell

Brace	expansion

Bug-free	Scripts

buggy	program

file	and	rank	numbers

grouping	commands

K.I.S.S.	Principle

SAN

structured	programming

comments

function

process	information

runtime	configuration	and	options

variables

Buggy	program

Built-in	commands

aliases

arithmetic	expressions

array

associative	arrays

Bash	commands

busy	indicator

configure	script

date	command

display	information

echo	and	printf

eval	method

execute	command

file	descriptor

get	input

help	command

multiple	variables

NUM	characters

output	PROMPT

PATH	variable

POSIX	standard

shell	command

string-splitting	method

time	command

timeout

typeset

varfuncs

variable	expansion

		C
cat	command

Chapter	Data	Processing

Command	line

directory	stack

filesystem	functions

games

man	pages

miscellaneous	functions

Command-line	parsing	and	expansion

arithmetic	operations

braces

command	substitution

description

parameter	and	variable

parsing	options

pathname

process	substitution

quotes

tilde

word	splitting

Command	sequence	introducer	(CSI)

Command	substitution

Compound	commands

single	compound	command

valint	program

Concatenation

alert	function

append	operator	(+=)	string

description

N	characters

repeat	function

($_REPEAT)	string

CSI.	See	Command	sequence	introducer	(CSI)

		D
Data	array

Data	file	formats

block	file

line-based	records

Data	manipulation

Data	processing

arrays

records

Debugging	techniques

conpoundfile=$dict/Compounds

$dict

$HOME/bin

-c	option

PS4	variable

set-u	option

set–x	option

version()

wfe	script

Delimiter-separated	values	(DSV)

Directory	stack

cd	function

cdm	function

menu	function

pd	function

dotglob

Dotted-quad	Internet	Protocol	(IP)	address

		E
Entry-Level	programming

form	entry

format	string,	seven	blanks

simple	Record-Editing	script

mouse	reading	(see	Mouse,	shell	scripts)

sanity	checking

scripts	history

single-key	entry	(see	Key-funcs	library)

extglob

${var:?}	expansion

		F
failglob	option

Fields

fixed-length

File	name	expansions

sorting

File	operations	and	commands

awk

cat

cut	command

dotglob

extglob

failglob	option

file	reading

globstar

grep

head

@(john|paul)2

ls	command

nocaseglob

nullglob	option

!(pattern-list)

?(pattern-list)

*(pattern-list)

+(pattern-list)

pr4	function

sa	command

sed

shell

touch

wc

Filesystem	functions

cp

l

lsr

md

Fixed-length	fields

Function	libraries

Functions,	runtime	configuration

bash-4.x

die

menu

print_config

qa

readline

		G
Games

fifteen	Puzzle

maxit

tic-tac-toe

yahtzee

getagrid()	function

getgrid()	function

getlines()	function

gettag	function

Globbing	patterns

globstar

grep

Grids

calculating	index

creating	and	filling

getting	characters	from

inserting	characters	in

printing,	from	strings

printing,	in	reverse	order

single-string

two-dimensional

Grid	arrays

extracting	elements	from

initializing

printing,	in	reverse	order

replacing	element

gridindex()	function

		H
Head

‘here	documents’

		I,	J
IFS.	See	Input	field	separator	(IFS);	Internal	field	separator	(IFS)

Indexed	arrays

converting	to	associative	arrays

holes	in

initagrid()	function

initgrid()	function

Input	field	separator	(IFS)

Internal	field	separator	(IFS)

isort()	function

		K
Key-funcs	library

block	of	text

call	_keys

cursor	keys

ESC

_esc2key,	string

get_key

keycapture,	read	and	display	keystrokes

_keys	function,	simple	menu

_keys,	sequence	of	characters

keystroke,	hexdump-C

Linux	virtual	console

rxvt	terminal	window

single	key	press

KornShell

		L
Line-based	records

Line-oriented	files

ls	command

		M
Man	pages

k

POSIX

sman

sus

mapfile	command

MAPFILE	variable

Miscellaneous	functions

calc

pr1

Mouse,	shell	scripts

coding

Linux	console_codes	man	page

modes

normal	tracking

X10	compatibility

mouse	tracking

POSIX	printf	extension

read	command’s-n	option

six	characters

Mouse	tracking

		N,	O
name=width	strings

nocaseglob

nullglob	option

		P,	Q

Packed	arrays

Parameter	expansion

alternate	values

Bourne	shell

convert	to	lowercase

convert	to	uppercase

default	values

error	message

indirect	reference

length,	variable’s	contents

PATTERN

substring

Parsing	options

Pathname	expansion

!(pattern-list)

?(pattern-list)

@(pattern-list)

*(pattern-list)

+(pattern-list)

Portable	game	notation	(PGN)	files

Positional	parameters

POSIX	parameter	expansion

POSIX	syntax

pr4	function

Printf	specifier

Process	substitution

Puppet

putagrid()	function

putgrid()	function

		R
Real	programming	language

Records

line-based

splitting

rshowagrid()	function

rshowgrid()	function

Runtime	configuration

authentication	keys

cron	job

ssh-keygen

bits	and	pieces

Cluster	SSH

configuration	files

bash-4.x

comments

words.cfg

default	values	and	settings	array

environment	variables

menus

multiple	names

parse	command-line	options

Puppet

Q&A	Dialogue

screen	manipulation	variables

script	information

variables

		S
SAN.	See	Standard	algebraic	notation	(SAN)

Sanity	checking

Scalar	variables

Screen	scripting

block	of	text,	placing

cu_NL	variable

_max_length	function

print_block

put_block	and	put_block_at	functions

wrap	and	print_block	Functions

wrap	function

wrap,	split	string

canvas

priming

stretching

colors	and	attributes

cursor,	moving

printat	function

variable	definitions

ESC

rolling	dice

scrolling	text

printf	command

text	Up	and	then	down

teletypewriter	vs.	canvas

sed	command

Shell	functions

Bourne	shell

case	statement	tests

command	line

command	substitution

compound	commands

function	libraries

IFS

IP	address

KornShell

local	command

one/more	variables

print	information

rangecheck	script

real	programming	language

scripts

set	different	exit	codes

top-down	design

Shell	prompt

showagrid()	function

showgrid()	function

Single-string	grids

Sort	command

split_passwd()	function

Standard	algebraic	notation	(SAN)

stringgrid-funcs	library

String	manipulation

allbutfirst	and	allbutlast	values

Bourne	shell

contents	without	case

index	function

insert_string

month2num	function

overlay	string

PATH	variable

POSIX	shell

_REVSTR

$temp	variable

trim	unwanted	characters

_UPR

_upword

valid	variable/function	name

		T,	U
Tilde	expansion

Touch

tput

Two-dimensional	grids

using	arrays

		V
Variables

expansion

naming	of

scalar

scope	of

shell

		W,	X,	Y,	Z
Wc

while	read	loops

Word	splitting

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Chapter 1: Hello, World: Your First Shell Program
	The Code
	The File
	The Naming of Scripts
	Selecting a Directory for the Script
	Creating the File and Running the Script

	Choosing and Using a Text Editor
	Building a Better “Hello, World!”
	Summary
	Commands
	Concepts
	Variables

	Exercises

	Chapter 2: Input, Output, and Throughput
	Parameter and Variables
	Positional Parameters
	Special*@#0$?_!- Parameters
	Variables

	Arguments and Options
	echo, and Why You Should Avoid It
	printf: Formatting and Printing Data
	Escape Sequences
	Format Specifiers
	Width Specification
	Printing to a Variable

	Line Continuation
	Standard Input /Output Streams and Redirection
	Redirection: >, >>, and <

	Reading Input
	Pipelines
	Command Substitution
	Summary
	Commands
	Concepts

	Exercises

	Chapter 3: Looping and Branching
	Exit Status
	Testing an Expression
	test, a.k.a. […]
	[[…]]: Evaluate an Expression
	((…)): Evaluate an Arithmetic Expression

	Conditional Execution
	if
	Conditional Operators, & and ||
	case

	Looping
	while
	until
	for
	break
	continue

	Summary
	Commands
	Concepts

	Exercises

	Chapter 4: Command-Line Parsing and Expansion
	Quoting
	Brace Expansion
	Tilde Expansion
	Parameter and Variable Expansion
	Arithmetic Expansion
	Command Substitution
	Word Splitting
	Pathname Expansion
	Process Substitution
	Parsing Options
	Summary
	Commands

	Exercises

	Chapter 5: Parameters and Variables
	The Naming of Variables
	The Scope of a Variable: Can You See It from Here?
	Shell Variables
	Parameter Expansion
	Bourne Shell
	POSIX Shell
	Bash
	Bash-4.0

	Positional Parameters
	Arrays
	Integer-Indexed Arrays
	Associative Arrays

	Summary
	Commands
	Concepts

	Chapter 6: Shell Functions
	Definition Syntax
	Compound Commands
	Getting Results
	Set Different Exit Codes
	Print the Result
	Place Results in One or More Variables

	Function Libraries
	Using Functions from Libraries

	Sample Script
	Summary
	Commands

	Exercises

	Chapter 7: String Manipulation
	Concatenation
	Repeat Character to a Given Length

	Processing Character by Character
	Reversal

	Case Conversion
	Comparing Contents Without Regard to Case
	Check for Valid Variable Name
	Insert One String into Another
	Examples

	Overlay
	Examples

	Trim Unwanted Characters
	Examples

	Index
	Summary
	Commands
	Functions

	Exercises

	Chapter 8: File Operations and Commands
	Reading a File
	External Commands
	cat
	head
	touch
	ls
	cut
	wc

	Regular Expressions
	grep
	sed
	awk

	File Name Expansion Options
	nullglob
	failglob
	dotglob
	extglob
	nocaseglob
	globstar

	Summary
	Shell Options
	External Commands

	Exercises

	Chapter 9: Reserved Words and Built-In Commands
	help, Display Information About Built-In Commands
	time, Print Time Taken for Execution of a Command
	read, Read a Line from an Input Stream
	-r, Read Backslashes Literally
	-e, Get Input with the readline Library
	-a, Read Words into an Array
	-d DELIM, Read Until DELIM Instead of a Newline
	-n NUM, Read a Maximum of NUM Characters
	-s, Do Not Echo Input Coming from a Terminal
	-p PROMPT:, Output PROMPT Without a Trailing Newline
	-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
	-u FD: Read from File Descriptor FD Instead of the Standard Input
	-i TEXT, Use TEXT as the Initial Text for Readline
	eval, Expand Arguments and Execute Resulting Command
	Poor Man’s Arrays
	Setting Multiple Variables from One Command

	type, Display Information About Commands
	builtin, Execute a Built-In Command
	command, Execute a Command or Display Information About Commands
	pwd, Print the Current Working Directory
	unalias, Remove One or More Aliases

	Deprecated Built-Ins
	Dynamically Loadable Built-Ins
	Summary
	Commands and Reserved Words
	Deprecated Commands

	Exercise

	Chapter 10: Writing Bug-Free Scripts and Debugging the Rest
	Prevention Is Better Than Cure
	Structure Your Programs
	Document Your Code
	Format Your Code Consistently
	The K.I.S.S. Principle
	Test as You Go

	Debugging a Script
	Summary
	Exercises

	Chapter 11: Programming for the Command Line
	Manipulating the Directory Stack
	cd
	pd
	cdm
	menu

	Filesystem Functions
	l
	lsr
	cp, mv
	md

	Miscellaneous Functions
	pr1
	calc

	Managing Man Pages
	sman
	sus
	k

	Games
	The fifteen Puzzle

	Summary
	Exercises

	Chapter 12: Runtime Configuration
	Defining Variables
	Command-Line Options and Arguments
	Menus
	Q&A Dialogue
	Configuration Files
	Scripts with Several Names
	Environment Variables
	All Together Now
	Script Information
	Default Configuration
	Screen Variables
	Function Definitions
	Parse Command-Line Options
	Bits and Pieces

	Summary
	Exercises

	Chapter 13: Data Processing
	Arrays
	Holes in an Indexed Array
	Using an Array for Sorting
	Two-Dimensional Grids

	Data File Formats
	Line-Based Records
	Block File Formats

	Summary
	Exercises

	Chapter 14: Scripting the Screen
	Teletypewriter vs. Canvas
	Stretching the Canvas
	Command Sequence Introducer

	Priming the Canvas
	Moving the Cursor
	Changing Rendition Modes and Colors
	Placing a Block of Text on the Screen
	Scrolling Text
	Rolling Dice
	Summary
	Exercises

	Chapter 15: Entry-Level Programming
	Single-Key Entry
	Function Library, key-funcs

	History in Scripts
	Sanity Checking
	Form Entry
	Reading the Mouse
	Summary
	Exercises

	Appendix A: Shell Variables
	BASH
	BASHPID
	BASH_ALIASES
	BASH_ARGC
	BASH_ARGV
	BASH_CMDS
	BASH_COMMAND
	BASH_EXECUTION_STRING
	BASH_LINENO
	BASH_REMATCH
	BASH_SOURCE
	BASH_SUBSHELL
	BASH_VERSINFO
	BASH_VERSION
	COMP_CWORD
	COMP_KEY
	COMP_LINE
	COMP_POINT
	COMP_TYPE
	COMP_WORDBREAKS
	COMP_WORDS
	DIRSTACK
	EUID
	FUNCNAME
	GROUPS
	HISTCMD
	HOSTNAME
	HOSTTYPE
	LINENO
	MACHTYPE
	OLDPWD
	OPTARG
	OPTIND
	OSTYPE
	PIPESTATUS
	PPID
	PWD
	RANDOM
	REPLY
	SECONDS
	SHELLOPTS
	SHLVL
	UID
	BASH_ENV
	CDPATH
	COLUMNS
	COMPREPLY
	EMACS
	FCEDIT
	FIGNORE
	GLOBIGNORE
	HISTCONTROL
	HISTFILE
	HISTFILESIZE
	HISTIGNORE
	HISTSIZE
	HISTTIMEFORMAT
	HOME
	HOSTFILE
	IFS
	IGNOREEOF
	INPUTRC
	LANG
	LC_ALL
	LC_COLLATE
	LC_CTYPE
	LC_MESSAGES
	LC_NUMERIC
	LINES
	MAIL
	MAILCHECK
	MAILPATH
	OPTERR
	PATH
	POSIXLY_CORRECT
	PROMPT_COMMAND
	PROMPT_DIRTRIM
	PS1
	PS2
	PS3
	PS4
	SHELL
	TIMEFORMAT
	TMOUT
	TMPDIR
	auto_resume
	histchars

	Index

