SECOND EDITION

Pro

Bash
Programming

Scripting the GNU/Linux Shell

Chris F.A. Johnson and Jayant Varma

APIESS®

Pro Bash Programming

Scripting the GNU/Linux Shell

Second Edition

Chris F. A. Johnson

Jayant Varma
Apress:

Pro Bash Programming, Second Edition
Copyright © 2015 by Chris F. A. Johnson and Jayant Varma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted
only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission
for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0122-0
ISBN-13 (electronic): 978-1-4842-0121-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the material contained
herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan

Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas
Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editors: Christine Ricketts and Mark Powers
Copy Editors: Mary Bearden and Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit www . springeronline.com. Apress Media, LLC is a California LL.C and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
wWww.apress.com/9781484201220. For detailed information about how to locate your book’s source code,
go to www . apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484201220
http://www.apress.com/source-code/

This book is dedicated to my parents, who would have been quite proud to see
this book.

—Jayant Varma

Contents at a Glance

About the Authors

Acknowledgments

Chapter 1: Hello, World: Your First Shell Program
Chapter 2: Input, Output, and Throughput

Chapter 3: Looping and Branching

Chapter 4: Command-Line Parsing and Expansion
Chapter 5: Parameters and Variables

Chapter 6: Shell Functions

Chapter 7: String Manipulation

Chapter 8: File Operations and Commands

Chapter 9: Reserved Words and Built-In Commands
Chapter 10: Writing Bug-Free Scripts and Debugging the Rest
Chapter 11: Programming for the Command Line
Chapter 12: Runtime Configuration

Chapter 13: Data Processing

Chapter 14: Scripting the Screen

Chapter 15: Entry-Level Programming

Appendix A: Shell Variables

Index

Contents

About the Authors
Acknowledgments

Chapter 1: Hello, World: Your First Shell Program
The Code
The File

The Naming of Scripts
Selecting a Directory for the Script
Creating the File and Running the Script

Choosing and Using a Text Editor
Building a Better “Hello, World!”

Summary

Commands
Concepts
Variables

Exercises
Chapter 2: Input, Output, and Throughput

Parameter and Variables

Positional Parameters
Special *@#0$?_!- Parameters

Variables
Arguments and Options
echo, and Why You Should Avoid It

printf: Formatting and Printing Data

Escape Sequences
Format Specifiers
Width Specification

Printing to a Variable

Line Continuation

Standard Input/Output Streams and Redirection

Redirection: >, >>, and <

Reading Input
Pipelines
Command Substitution

Summary

Commands

Concepts

Exercises
Chapter 3: Looping and Branching
Exit Status

Testing an Expression

test, a.k.a. [...]
[[... 1]: Evaluate an Expression

(C...)): Evaluate an Arithmetic Expression
Conditional Execution

if

Conditional Operators, && and ||

case

Looping
while
until
for
break

continue

Summary

Commands

Concepts

Exercises
Chapter 4: Command-Line Parsing and Expansion
Quoting
Brace Expansion
Tilde Expansion

Parameter and Variable Expansion

Arithmetic Expansion
Command Substitution
Word Splitting
Pathname Expansion
Process Substitution
Parsing Options

Summary

Commands

Exercises
Chapter 5: Parameters and Variables
The Naming of Variables
The Scope of a Variable: Can You See It from Here?
Shell Variables

Parameter Expansion

Bourne Shell
POSIX Shell
Bash
Bash-4.0

Positional Parameters

Arrays

Integer-Indexed Arrays

Associative Arrays

Summary

Commands

Concepts
Chapter 6: Shell Functions
Definition Syntax
Compound Commands

Getting Results

Set Different Exit Codes
Print the Result

Place Results in One or More Variables

Function Libraries

Using Functions from Libraries
Sample Script

Summary

Commands
Exercises
Chapter 7: String Manipulation

Concatenation

Repeat Character to a Given Length

Processing Character by Character

Reversal

Case Conversion
Comparing Contents Without Regard to Case
Check for Valid Variable Name

Insert One String into Another

Examples

Overlay

Examples

Trim Unwanted Characters

Examples

Index

Summary

Commands

Functions
Exercises
Chapter 8: File Operations and Commands
Reading a File

External Commands

cat

head

touch
Is
cut

wcC

Regular Expressions

grep
sed

awk

File Name Expansion Options

nullglob
failglob
dotglob
extglob
nocaseglob

globstar

Summary

Shell Options

External Commands

Exercises

Chapter 9: Reserved Words and Built-In Commands
help, Display Information About Built-In Commands
time, Print Time Taken for Execution of a Command

read, Read a Line from an Input Stream

-1, Read Backslashes Literally

-e, Get Input with the readline Library

-a, Read Words into an Array

-d DELIM, Read Until DELIM Instead of a Newline

-n NUM, Read a Maximum of NUM Characters

-s, Do Not Echo Input Coming from a Terminal

-p PROMPT:, Output PROMPT Without a Trailing Newline

-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
-u FD: Read from File Descriptor FD Instead of the Standard Input
-i TEXT, Use TEXT as the Initial Text for Readline

eval, Expand Arguments and Execute Resulting Command

Poor Man’s Arrays

Setting Multiple Variables from One Command

type, Display Information About Commands

builtin, Execute a Built-In Command
command, Execute a Command or Display Information About Commands

pwd, Print the Current Working Directory

unalias, Remove One or More Aliases
Deprecated Built-Ins
Dynamically Loadable Built-Ins

Summary

Commands and Reserved Words

Deprecated Commands
Exercise
Chapter 10: Writing Bug-Free Scripts and Debugging the Rest

Prevention Is Better Than Cure

Structure Your Programs
Document Your Code

Format Your Code Consistently
The K.I.S.S. Principle

Test as You Go

Debugging a Script
Summary
Exercises
Chapter 11: Programming for the Command Line

Manipulating the Directory Stack

cd
pd
cdm

menu

Filesystem Functions
1

Isr
cp, mv

md

Miscellaneous Functions

prl

calc
Managing Man Pages

sman
sus
k

Games

The fifteen Puzzle
Summary
Exercises

Chapter 12: Runtime Configuration
Defining Variables
Command-Line Options and Arguments
Menus
Q&A Dialogue
Configuration Files
Scripts with Several Names
Environment Variables

All Together Now

Script Information

Default Configuration

Screen Variables

Function Definitions

Parse Command-Line Options

Bits and Pieces
Summary
Exercises
Chapter 13: Data Processing
Arrays

Holes in an Indexed Array
Using an Array for Sorting

Two-Dimensional Grids

Data File Formats

Line-Based Records

Block File Formats
Summary
Exercises

Chapter 14: Scripting the Screen
Teletypewriter vs. Canvas

Stretching the Canvas

Command Sequence Introducer

Priming the Canvas
Moving the Cursor
Changing Rendition Modes and Colors
Placing a Block of Text on the Screen
Scrolling Text
Rolling Dice
Summary
Exercises
Chapter 15: Entry-Level Programming
Single-Key Entry
Function Library, key-funcs
History in Scripts
Sanity Checking
Form Entry
Reading the Mouse
Summary
Exercises
Appendix A: Shell Variables
BASH
BASHPID
BASH_ALIASES

BASH_ARGC
BASH_ARGV
BASH_CMDS
BASH_COMMAND
BASH_EXECUTION_STRING
BASH_LINENO
BASH_REMATCH
BASH_SOURCE
BASH_SUBSHELL
BASH_VERSINFO
BASH_VERSION
COMP_CWORD
COMP_KEY
COMP_LINE
COMP_POINT
COMP_TYPE
COMP_WORDBREAKS
COMP_WORDS
DIRSTACK

EUID

FUNCNAME
GROUPS
HISTCMD
HOSTNAME
HOSTTYPE
LINENO
MACHTYPE
OLDPWD

OPTARG
OPTIND
OSTYPE
PIPESTATUS
PPID

PWD
RANDOM
REPLY
SECONDS
SHELLOPTS
SHLVL

UID
BASH_ENV
CDPATH
COLUMNS
COMPREPLY
EMACS
FCEDIT
FIGNORE
GLOBIGNORE
HISTCONTROL
HISTFILE
HISTFILESIZE
HISTIGNORE
HISTSIZE
HISTTIMEFORMAT
HOME
HOSTFILE

IFS

IGNOREEOF
INPUTRC

LANG

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_NUMERIC
LINES

MAIL
MAILCHECK
MAILPATH
OPTERR

PATH
POSIXLY_CORRECT
PROMPT_COMMAND
PROMPT_DIRTRIM
PS1

PS2

PS3

PS4

SHELL
TIMEFORMAT
TMOUT

TMPDIR
auto_resume

histchars

Index

About the Authors

il _
Chris F. A. Johnson was introduced to Unix in 1990 and learned shell scripting because
there was no C compiler on the system. His first major project was a menu-driven, user-
extensible database system with report generator. Chris uses the shell as his primary,
general-purpose programming language, and his projects have included a member
database, menuing system, and POP3 mail filtering and retrieval. Chris is the author of
Shell Scripting Recipes: A Problem-Solution Approach (Apress, 2005). When not pushing
shell scripting to the limit, he designs and codes web sites, teaches chess, and composes
cryptic crosswords.

Jayant Varma is the founder of OZ Apps (www.oz—-apps.com), a consulting, training,
and development company providing IT solutions (specialization in mobile technology).
He is an experienced developer with more than 20 years of industry experience spread
across several countries. He is the author of a number of books on iOS development,
including Learn Lua for iOS Game Development (Apress, 2012), Xcode 6 Essentials
(Packt, 2015), More iPhone Development with Swift (Apress, 2015), and More iPhone
Development with Objective-C (Apress, 2015). He has also been a university lecturer in

http://www.oz-apps.com

Australia where he currently resides. He loves traveling and finds Europe to be his favorite
destination.

Acknowledgments

This book is a wonderful source for those that want to write bash shell scripts. I would like
to thank the wonderful staff at Apress for the opportunity to update this book. Special
thanks to Louise, Christine, and Mark who facilitated the quick turnaround on the book
and getting it to print. Lastly, special thanks to my family for their support in getting this
book completed.

—Jayant Varma

CHAPTER 1

Hello, World: Your First Shell Program

A shell script is a file containing one or more commands that you would type on the
command line. This chapter describes how to create such a file and make it executable. It
also covers some other issues surrounding shell scripts, including what to name the files,
where to put them, and how to run them.

I will begin with the first program traditionally demonstrated in every computer
language: a program that prints “Hello, World!” in your terminal. It’s a simple program,
but it is enough to demonstrate a number of important concepts. The code itself is the
simplest part of this chapter. Naming the file and deciding where to put it are not
complicated tasks, but they are important.

For most of this chapter, you will be working in a terminal. It could be a virtual
terminal, a terminal window, or even a dumb terminal. In your terminal, the shell will
immediately execute any commands you type (after you press Enter, of course).

You should be in your home directory, which you can find in the variable SHOME:
echo "SHOME"
You can find the current directory with either the pwd command or the PWD variable:

pwd
echo "SPWD"

If you are not in your home directory, you can get there by typing cd and pressing
Enter at the shell prompt.

Caution If you try the code from this book on a Mac, please note that the current
version of Mac OS X, Yosemite, officially supports Bash version 3.2.53(1). The current
version of Bash is 4.3, and it has the fix for the Shellshock vulnerability. Bash 4.3 is
available with most Linux distributions. Some of the code / functionality might not be
available on Mac OS X systems as it is specific to Bash 4.x.

The Code

The code is nothing more than this:

echo Hello, World!

There are three words on this command line: the command itself and two arguments.

The command, echo, prints its arguments separated by a single space and terminated with
a newline.

The File

Before you turn that code into a script, you need to make two decisions: what you will call
the file and where you will put it. The name should be unique (that is, it should not
conflict with any other commands), and you should put it where the shell can find it.

The Naming of Scripts

Beginners often make the mistake of calling a trial script test. To see why that is bad,
enter the following at the command prompt:

Lype test

The type command tells you what the shell will execute (and where it can be found if
it is an external file) for any given command. In bash, type -a test will display all
the commands that match the name test:

$ type test

test is a shell builtin
$ type -a test

test is a shell builtin
test i1s /usr/bin/test

As you can see, a command called test already exists; it is used to test file types and
to compare values. If you call your script test, it will not be run when you type test at
the shell prompt; the first command identified by t ype will be run instead. (I’1l talk more
about both type and test in later chapters.)

Typically, Unix command names are as short as possible. They are often the first two
consonants of a descriptive word (for example, mv for move or 1s for list) or the first

letters of a descriptive phrase (for example, ps for process status or sed for stream
editor).

For this exercise, call the script hw. Many shell programmers add a suffix, such as .sh,

to indicate that the program is a shell script. The script doesn’t need it, and I use one only
for programs that are being developed. My suffix is —sh, and when the program is

finished, I remove it. A shell script becomes another command and doesn’t need to be
distinguished from any other type of command.

Selecting a Directory for the Script

When the shell is given the name of a command to execute, it looks for that name in the
directories listed in the PATH variable. This variable contains a colon-separated list of

directories that contain executable commands. This is a typical value for $PATH:
| n

/bin:/usr/bin:/usr/local/bin:/usr/games

If your program is not in one of the PATH directories, you must give a pathname,
either absolute or relative, for bash to find it. An absolute pathname gives the location
from the root of the filesystem, such as /home /chris/bin/hw; a relative pathname is
given in relation to the current working directory (which should currently be your home
directory), as in bin/hw.

Commands are usually stored in directories named bin, and a user’s personal
programs are stored in a bin subdirectory in the SHOME directory. To create that
directory, use this command:

mkdir bin
Now that it exists, it must be added to the PATH variable:
PATH=SPATH: SHOME /bin

For this change to be applied to every shell you open, add it to a file that the shell will
source when it is invoked. This will be .bash profile, .bashrc,or .profile
depending on how bash is invoked. These files are sourced only for interactive shells, not
for scripts.

Creating the File and Running the Script

Usually you would use a text editor to create your program, but for a simple script like
this, it’s not necessary to call up an editor. You can create the file from the command line
using redirection:

echo echo Hello, World! > bin/hw

The greater-than sign (>) tells the shell to send the output of a command to the
specified file, rather than to the terminal. You’ll learn more about redirection in Chapter 2.

The program can now be run by calling it as an argument to the shell command:

bash bin/hw

That works, but it’s not entirely satisfactory. You want to be able to type hw, without
having to precede it with bash, and have the command executed. To do that, give the file
execute permissions:

chmod +x bin/hw

Now the command can be run using just its name:

S hw
Hello, World!

Choosing and Using a Text Editor

For many people, one of the most important pieces of computer software is a word
processor. Although I am using one to write this book (LibreOffice Writer), it’s not
something I use often. The last time I used a word processor was five years ago when I
wrote the first edition of this book. A text editor, on the other hand, is an indispensable
tool. I use one for writing e-mail, Usenet articles, shell scripts, PostScript programs, web
pages, and more.

A text editor operates on plain-text files. It stores only the characters you type; it
doesn’t add any hidden formatting codes. If I type A and press Enter in a text editor and
save it, the file will contain exactly two characters: A and a newline. A word-processor file
containing the same text would be thousands of times larger. (With abiword, the file
contains 2,526 bytes; the LibreOffice.org file contains 7,579 bytes.)

You can write scripts in any text editor, from the basic €3 or nano to the full-featured
emacs or nedit. The better text editors allow you to have more than one file open at a
time. They make editing code easier with, for example, syntax highlighting, automatic
indentation, autocompletion, spell checking, macros, search and replace, and undo.
Ultimately, which editor you choose is a matter of personal preference. I use GNU emacs
(see Figure 1-1).

o[parseopts-sh e
Filesets File Edit Options Buffers Tools Insert Help

#a Demonstration of parsing options in a script
progname=${0##* /T

Default values
verbose=0
filename=

optstring=f:v

Keep calling getopts until there are no more options on the command 1ine
while getopts foptstring opt
do
case %opt in
f) filename=$0PTARG ;;
v) verbose=%$(($%verbose + 1)) ;;
) oexit 3 ;;
esac
d done

Remove options from the command line
SOPTIND points to the next, unparsed argumentl]
shift $CC SOPTIND - 1))

Check whether a filename was entered
if [-n "$filename"”]

then
if [$verbose —gt 0]
then
printf “Filename is %s\n" "$filename”
fi
else

-~ parseopts-sh 1% (22,48) (Shell-scriptbash] TKI4G)----r-smmrmmemmmrmmermsemammeemmenes -
[{ wrote fhumefchris/Eub1ic_htm1fBashProgramminQKSCr/EarsenEts-sh

Figure 1-1. Shell code in the GNU emacs text editor

Note In Windows text files, !” lines end with two characters: a carriage return (CR)
and a linefeed (LF). On Unix systems, such as Linux, lines end with a single linefeed. If
you write your programs in a Windows text editor, you must either save your files with
Unix line endings or remove the carriage returns afterward.

Building a Better “Hello, World!”

Earlier in the chapter you created a script using redirection. That script was, to say the
least, minimalist. All programs, even a one liner, require documentation. Information
should include at least the author, the date, and a description of the command. Open the
file bin/hw in your text editor, and add the information in Listing 1-1 using comments.

Listing 1-1. hw

#!/bin/bash

#: Title : hw

#: Date : 2008-11-26

#: Author : "Chris F.A. Johnson" <shelll@cfajohnson.com>
#: Version : 1.0

#: Description : print Hello, World!
#: Options : None

printf "$s\n" "Hello, World!" !"

Comments begin with an octothorpe, or hash, at the beginning of a word and continue
until the end of the line. The shell ignores them. I often add a character after the hash to
indicate the type of comment. I can then search the file for the type I want, ignoring other
comments.

The first line is a special type of comment called a shebang or hash-bang. It tells the
system which interpreter to use to execute the file. The characters # ! must appear at the

very beginning of the first line; in other words, they must be the first two bytes of the file
for it to be recognized.

Summary

The following are the commands, concepts, and variables you learned in this chapter.

Commands

e pwd: Prints the name of the current working directory
e cd: Changes the shell’s working directory

e ccho: Prints its arguments separated by a space and terminated by a
newline

e type: Displays information about a command
e mkdir: Creates a new directory
e chmod: Modifies the permissions of a file

e source: a.k.a. . (dot): executes a scriptin the current shell
environment

e printf: Prints the arguments as specified by a format string

Concepts

e Script: This is a file containing commands to be executed by the shell.

e Word: A word is a sequence of characters considered to be a single
unit by the shell.

e Output redirection: You can send the output of a command to a file
rather than the terminal using > FILENAME.

e Variables: These are names that store values.

e Comments: These consist of an unquoted word beginning with #. All

remaining characters on that line constitute a comment and will be
ignored.

e Shebang or hash-bang: This is a hash and an exclamation mark (#!)
followed by the path to the interpreter that should execute the file.

e Interpreter: This is a program that reads a file and executes the
statements it contains. It may be a shell or another language interpreter
such as awk or python.

Variables

e PWD contains the pathname of the shell’s current working directory.
e HOME stores the pathname of the user’s home directory.

e PATH is a colon-separated list of directories in which command files

are stored. The shell searches these directories for commands it is
asked to execute.

Exercises

1. Write a script that creates a directory called bp1 inside $HOME.
Populate this directory with two subdirectories, bin and
scripts.

2. Write a script to create the “Hello, World!” script, hw, in
SHOME /bpl/bin/; make it executable; and then execute it.

CHAPTER 2

Input, Output, and Throughput

Two of the commands we used in Chapter 1 are workhorses of the shell scripter’s stable:
echo and printf. Both are bash builtin commands. Both print information to the

standard output stream, but printf is much more powerful, and echo has its problems.

In this chapter, I’ll cover echo and its problems, the capabilities of printf, the
read command, and the standard input and output streams. I’ll start, however, with an
overview of parameters and variables.

Parameter and Variables

To quote the bash manual (type man bash at the command prompt to read it), “A

parameter is an entity that stores values.” There are three types of parameters: positional
parameters, special parameters, and variables. Positional parameters are arguments
present on the command line, and they are referenced by a number. Special parameters are
set by the shell to store information about aspects of its current state, such as the number
of arguments and the exit code of the last command. Their names are nonalphanumeric
characters (for example, *, #, and). Variables are identified by a name. What’s in a

name? I’ll explain that in the “Variables” section.

The value of a parameter is accessed by preceding its name, number, or character with
a dollar sign, as in $3, $#, or SHOME. The name may be surrounded by braces, as in

${10}, S{PWD}, or S{USER}.

Positional Parameters

The arguments on the command line are available to a shell program as numbered
parameters. The first argument is $1, the second is $2, and so on.

You can make the hw script from Chapter 1 more flexible by using a positional
parameter. Listing 2-1 calls it hello.

Listing 2-1. hello

#: Description: print Hello and the first command-line
argument
printf "Hello, %s!\n" "S$1"

Now you can call the script with an argument to change its output:

$ hello John

Hello, John!
$ hello Susan
Hello, Susan!

The Bourne shell could only address up to nine positional parameters. If a script used
$10, it would be interpreted as $1 followed by a zero. To be able to run old scripts, bash

maintains that behavior. To access positional parameters greater than 9, the number must
be enclosed in braces: ${15}.

The script is passed to the parameters that can be accessed via their positions, $0, $1,
$2 and so on. The function shift N moves the positional parameters by N positions, if
you ran shift (the default value of N is 1), then $0 would be discarded, $1 would
become $0, $2 would become $1, and so on: they would all be shifted by 1 position.
There are some very clever and simple uses of shift to iterate through a list of paramters of
unknown length.

Note The shift function is distructive: that is, the paramters discarded are gone and
cannot be retrieved again.

Special *@#0$?_!- Parameters

The first two special parameters, $* and $@, expand to the value of all the positional
parameters combined. $# expands to the number of positional parameters. $0 contains the
path to the currently running script or to the shell itself if no script is being executed.

$$ contains the process identification number (PID) of the current process, $? is set to
the exit code of the last-executed command, and $_is set to the last argument to that
command. $! contains the PID of the last command executed in the background, and $ -
is set to the option flags currently in effect.

I’1l discuss these parameters in more detail as they come up in the course of writing
scripts.

Variables

A variable is a parameter denoted by a name; a name is a word containing only letters,
numbers, or underscores and beginning with a letter or an underscore.

Values can be assigned to variables in the following form:

name=VALUE

Note Bash is very particular about spacing: note that there are no spaces before the =
and none after. If you have spaces, the command would not work.

Many variables are set by the shell itself, including three you have already seen:
HOME, PWD, and PATH. With only two minor exceptions, auto resume and

histchars, all the variables set by the shell are all uppercase letters.

Arguments and Options

The words entered after the command are its arguments. These are words separated by
whitespace (one or more spaces or tabs). If the whitespace is escaped or quoted, it no
longer separates words but becomes part of the word.

The following command lines all have four arguments:

echo 1 '2 3! 4 5
echo -n Now\ 1s the time
printf "%s %$s\n" one two three

In the first line, the spaces between 2 and 3 are quoted because they are surrounded by
single quotation marks. In the second, the space after now is escaped by a backslash,
which is the shell’s escape character.

In the final line, a space is quoted with double quotes.

In the second command, the first argument is an option. Traditionally, options to Unix
commands are a single letter preceded by a hyphen, sometimes followed by an argument.
The GNU commands found in Linux distributions often accept long options as well. These
are words preceded by a double hyphen. For example, most GNU utilities have an option
called —version that prints the version:

$ bash --version
GNU bash, version 4.3.11(1)-release (x86 64-unknown-linux-
gnu)

Copyright (C) 2013 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This 1s free software; you are free to change and
redistribute it.
There is NO WARRANTY, to the extent permitted by law.

echo, and Why You Should Avoid It

When I started writing shell scripts, I soon learned about the two main branches of Unix:
AT&T’s System V and BSD. One of their differences was the behavior of echo. An

internal command in all modern shells, echo prints its arguments with a single space
between them to the standard output stream, followed by a newline:

$ echo The quick brown fox

http://gnu.org/licenses/gpl.html

The quick brown fox

The default newline can be suppressed in one of two ways, depending on the shell:

$ echo —n No newline
No newline$ echo "No newline\c"
No newline$

The BSD variety of echo accepted the option —n, which suppressed the newline.
AT&T’s version used an escape sequence, \ c, to do the same thing. Or was it the other
way round? I have a hard time remembering which was which because, although I was
using an AT&T system (hardware and operating system), its echo command accepted
both AT&T and BSD syntax.

That, of course, is history. In this book, we’re dealing with bash, so why does it
matter? bash has the —e option to activate escape sequences such as \ ¢ but by default
uses —n to prevent a newline from being printed. (The escape sequences recognized by
echo -e are the same as those described in the next section, with the addition of \ ¢).

Tip Add —e to the echo command if you want the escape sequences to be recognized.

The trouble is that bash has an xpg echo option (XPG stands for X/Open
Portability Guide, a specification for Unix systems) that makes echo behave like that
other version. This can be turned on or off while in the shell (using shopt -s
xpg_echo either at the command line or in a script), or it can be turned on when the
shell is compiled. In other words, even in bash, you cannot be absolutely sure which
behavior you are going to get.

If you limit the use of echo to situations where there cannot be a conflict, that is,
where you are sure the arguments do not begin with —n and do not contain escape
sequences, you will be fairly safe. For everything else (or if you’re not sure), use
printf.

printf: Formatting and Printing Data

Derived from the C programming language function of the same name, the shell command
printf is similar in purpose but differs in some of the details. Like the C function, it

uses a format string to indicate how to present the rest of its arguments:

printf FORMAT ARG..

The FORMAT string can contain ordinary characters, escape sequences, and format
specifiers. Ordinary characters are printed unchanged to the standard output. Escape
sequences are converted to the characters they represent. Format specifiers are replaced
with arguments from the command line.

Escape Sequences

Escape sequences are single letters preceded by a backslash:

e \a:: Alert (bell)

e \Db: Backspace

e \e: Escape character

e \ f: Form feed

e \n: Newline

e \r: Carriage return

e \t: Horizontal tab

e \v: Vertical tab

¢ \: Backslash

e \nnn: A character specified by one to three octal digits

e \xHH: A character specified by one or two hexadecimal digits

The backslashes must be protected from the shell by quotes or another backslash:

$ printf "QO\t\141\n\x42\n"
Q a
B

Format Specifiers

The format specifiers are letters preceded by a percent sign. Optional modifiers may be
placed between the two characters. The specifiers are replaced by thecorresponding
argument. When there are more arguments than specifiers, the format string is reused until
all the arguments have been consumed. The most commonly used specifiers are $s, $d,
$f, and %$x.

The %s specifier prints the literal characters in the argument:

$ printf "$s\n" Print arguments on "separate lines"
Print

arguments

on

separate lines

$Db is like s except that escape sequences in the arguments are translated:

$ printf "$b\n" "Hello\nworld" "12\tword"
Hello

world
12 word

Integers are printed with $d. The integer may be specified as a decimal, octal (using a
leading 0), or hexadecimal (preceding the hex number with 0x) number. If the number is
not a valid integer, print f prints an error message:

$ printf "%d\n" 23 45 56.78 O0xff 011
23

45

bash: printf: 56.78: invalid number
0

255

9

For decimal fractions or floating-point numbers, use % f. By default they will be
printed with six decimal places:

$ printf "%f\n" 12.34 23 56.789 1.2345678
12.340000
23.000000
56.789000
1.234568

Floating-point numbers can be presented in exponential (also known as scientific)
notation using %e:

$ printf "%e\n" 12.34 23 56.789 123.45678
1.234000e+01
2.300000e+01
5.678900e+01
1.234568e+02

Integers can be printed in hexadecimal using %x for lowercase letters or $X for
uppercase letters. For example, when specifying colors for a web page, they are specified
in hex notation. I know from the rgb . txt file included with the X Window system that
the red-green-blue values for royal blue are 65, 105, and 225. To convert them to a style
rule for a web page, use this:

$ printf "color: #%02x%02x%02x;\n" 65 105 225
color: #4169el;

Width Specification

You can modify the formats by following the percent sign with a width specification. The
argument will be printed flush right in a field of that width or will be flush left if the
number is negative. Here we have the first field with a width of eight characters; the words
will be printed flush right. Then there is a field 15 characters wide that will be printed

flush left;

$ printf "%$8s %$-15s:\n" first second third fourth fifth
sixth

first second

third fourth

fifth sixth

If the width specification is preceded by a 0, the numbers are padded with leading
zeroes to fill the width:

$ printf "%04d\n" 12 23 56 123 255
0012
0023
0056
0123
0255

A width specifier with a decimal fraction specifies the precision of a floating-point
number or the maximum width of a string;:

$ printf "%12.4s $%$9.2f\n" John 2 Jackson 4.579 Walter 2.9

John 2.00
Jack 4.58
Walt 2.90

The script shown in. Listing 2-2 uses printf to output a simple sales report.
Listing 2-2. Report

#!/bin/bash
#: Description : print formatted sales report

Build a long string of equals signs
divider=Sdivider$divider

Format strings for printf
header="\n %$-10s %11s %8s %10s\n"
format=" %-10s %11.2f %$8d %$10.2f\n"

Width of divider
totalwidth=44

Print categories
printf "$header" ITEM "PER UNIT" NUM TOTAL

Print divider to match width of report
printf "Stotalwidth.S${totalwidth}s\n" "S$divider"

Print lines of report
printf "$format" \
Chair 79.95 4 319.8 \
Table 209.99 1 209.99 \
Armchair 315.49 2 630.98

The resulting report looks like this:

TITEM PER UNIT NUM TOTAL
Chair 79.95 4 319.80
Table 209.99 1 209.99
Armchair 315.49 2 ©30.98

Note the use of braces around the second totalwidth variable name:
${totalwidth}. In the first instance, the name is followed by a period, which cannot
be part of a variable name. In the second, it is followed by the letter s, which could be, so
the totalwidth name must be separated from it by using braces.

Printing to a Variable

With version 3.1, bash added a —v option to store the output in a variable instead of
printing it to the standard output:

$ printf -v num4 "$04d4d" 4
$ printf "$s\n" "Snum4"
0004

Line Continuation

At the end of the report script, the last four lines are read as a single line, using line
continuation. A backslash at the end of a line tells the shell to ignore the newline
character, effectively joining the next line to the current one.

Standard Input/Output Streams and
Redirection

In Unix (of which Linux is a variety), everything is a stream of bytes. The streams are
accessible as files, but there are three streams that are rarely accessed by a filename. These
are the input/output (I/O) streams attached to every command: standard input, standard
output, and standard error. By default, these streams are connected to your terminal.

When a command reads a character or a line, it reads from the standard input stream,
which is the keyboard. When it prints information, it is sent to the standard output, your

monitor. The third stream, standard error, is also connected to your monitor; as the name
implies, it is used for error messages. These streams are referred to by numbers, called file
descriptors (FDs). These are 0, 1, and 2, respectively. The stream names are also often
contracted to stdin, stdout, and stderr.

I/O streams can be redirected to (or from) a file or into a pipeline.

Redirection: >, >>, and <

In Chapter 1, you redirected standard output to a file using the > redirection operator.

When redirecting using >, the file is created if it doesn’t exist. If it does exist, the file
is truncated to zero length before anything is sent to it. You can create an empty file by
redirecting an empty string (that is, nothing) to the file:

printf "" > FILENAME
or by simply using this:
> FILENAME

Redirection is performed before any command on the line is executed. If you redirect
to the same file you are reading from, that file will be truncated, and the command will
have nothing to read.

The >> operator doesn’t truncate the destination file; it appends to it. You could add a
line to the hw command from the first chapter by doing the following:

echo exit 0 >> bin/hw

Redirecting standard output does not redirect standard error. Error messages will still
be displayed on your monitor. To send the error messages to a file — in other words, to
redirect FD2 — the redirection operator is preceded by the FD.

Both standard output and standard error can be redirected on the same line. The next
command sends standard output to FILE and standard error to ERRORFILE:

$ printf '$s\n%v\n' OK? Oops! > FILE 2> ERRORFILE
$ cat ERRORFILE
bash4: printf: "v': invalid format character

In this case, the error message is going to a special file, /dev/null. Sometimes
called the bit bucket, anything written to it is discarded.

printf '$s\n%v\n' OK? Oops! 2>/dev/null

Instead of sending output to a file, it can be redirected to another I/O stream by using
>&N where N is the number of the file descriptor. This command sends both standard

output and standard error to FILE:

printf '$s\n%v\n' OK? Oops! > FILE 2>&l

Here, the order is important. The standard output is sent to FILE, and then standard
error is redirected to where standard output is going. If the order is reversed, the effect is
different. The redirection sends standard error to wherever standard output is currently
going and then changes where standard output goes. Standard error still goes to where
standard output was originally directed:

printf '$s\n%v\n' OK? Oops! 2>&1 > FILE

bash has also a nonstandard syntax for redirecting both standard output and standard
error to the same place:

&> FILE

To append both standard output and standard error to FILE, use this:

&>> FILE

A command that reads from standard input can have its input redirected from a file:

tr, H wY < bin/hw

You can use the exec command to redirect the I/O streams for the rest of the script or
until it’s changed again.

exec l1l>tempfile
exec 0O<datafile
exec 2>errorrfile

All standard output will now go to the file tempfile, input will be read from
datafile, and error messages will go to errorfile without having to specify it for
every command.

Reading Input

The read commandis a builtin command that reads from the standard input. By default, it

reads until a newline is received. The input is stored in one or more variables given as
arguments:

read var

If more than one variable is given, the first word (the input up to the first space or tab)
is assigned to the first variable, the second word is assigned to the second variable, and so
on, with any leftover words assigned to the last one:

$ read a b c d

January February March April May June July August
$ echo $Sa

January

$ echo S$b

February

$ echo Sc

March

$ echo Sd

April May June July August

The bash version of read has several options. Only the —r option is recognized by
the POSIX standard. It tells the shell to interpret escape sequences literally.

By default, read strips backslashes from the input, and the following character is

taken literally. The major effect of this default behavior is to allow the continuation of
lines. With the —r option, a backslash followed by a newline is read as a literal backslash
and the end of input.

I’1l discuss the other options in Chapter 15.

Like any other command that reads standard input, read can get its input from a file
through redirection. For example, to read the first line from FILENAME, use this:

read var < FILENAME

Pipelines

Pipelines connect the standard output of one command directly to the standard input of
another. The pipe symbol (|) is used between the commands:

$ printf "%s\n" "SRANDOM" "SRANDOM" "SRANDOM" "SRANDOM"
| tee FILENAME

618

11267

5890

8930

The tee command reads from the standard input and passes it to one or more files as
well as to the standard output. SRANDOM is a bash variable that returns a different integer
between 0 and 32,767 each time it is referenced.

$ cat FILENAME
018

11267

5890

8930

Command Substitution

The output of a command can be stored in a variable using command substitution. There
are two forms for doing this. The first, which originated in the Bourne shell, uses

backticks:

date="date"

The newer (and recommended) syntax is as follows:

date=S$ (date)

Command substitution should generally be reserved for external commands. When
used with a builtin command, it is very slow. That is why the —v option was added to
printt.

Summary

The following are the commands and concepts you learned in this chapter.

Commands

e cat: Prints the contents of one or more files to the standard output

e tee: Copies the standard input to the standard output and to one or
more files

e read: A builtin shell command that reads a line from the standard
input

e date: Prints the current date and time

Concepts

e Standard I/O streams: These are streams of bytes from which
commands read and to which output is sent.

e Arguments: These are words that follow a command; arguments may
include options as well as other information such as filenames.

e Parameters: These are entities that store values; the three types are
positional parameters, special parameters, and variables.

e Pipelines: A pipeline is a sequence of one or more commands
separated by |; the standard output of the command preceding the

pipe symbol is fed to the standard input of the command following it.

e Line continuation: This is a backslash at the end of a line that removes
the newline and combines that line with the next.

e Command substitution: This means storing the output of a command
in a variable or on the command line.

Exercises

1. What is wrong with this command?

tr A Z < SHOME/temp > $HOME/temp

2. Write a script, using $SRANDOM, to write the following output both
to a file and to a variable. The following numbers are only to show
the format; your script should produce different numbers:

1988.2365
13798.14178
10081.134

3816.15098

CHAPTER 3

Looping and Branching

At the heart of any programming language are iteration and conditional execution.
Iteration is the repetition of a section of code until a condition changes. Conditional
execution is making a choice between two or more actions (one of which may be to do
nothing) based on a condition.

In the shell, there are three types of loop (while, until, and for) and three types
of conditional execution (i f, case, and the conditional operators && and ||, which mean
AND and OR, respectively). With the exception of for and case, the exit status of a
command controls the behavior.

Exit Status

You can test the success of a command directly using the shell keywords while, until,
and i f or with the control operators && and | |. The exit code is stored in the special
parameter $ 2.

If the command executed successfully (or true), the value of $? is zero. If the
command failed for some reason, $? will contain a positive integer between 1 and 255,

inclusive. A failed command usually returns 1. Zero and non-zero exit codes are also
known as true and false, respectively.

A command may fail because of a syntax error:

$ printf "Sv\n"

bash: printf: "v': invalid format character
$ echo $?

1

Alternatively, failure may be the result of the command not being able to accomplish
its task:

$ mkdir /qwerty

bash: mkdir: cannot create directory " /gwerty': Permission
denied

$ echo $?

1

Testing an Expression

Expressions are deemed to be true or false by the test command or one of two
nonstandard shell-reserved words, [[and ((. The test command compares strings,
integers, and various file attributes; ((tests arithmetic expressions, and [[..]] does
the same as test with the additional feature of comparing regular expressions.

test, a.k.a. [... |

The test command evaluates many kinds of expressions, from file properties to integers
to strings. It is a builtin command, and therefore its arguments are expanded just as for any
other command. (See Chapter 5 for more information.) The alternative version ([)
requires a closing bracket at the end.

Note As noted earlier in Chapter 2, bash is particular about the spacing, and requires
spaces around the brackets. It also is important because the command [test and
[test without the space are different from what is intended.

File Tests

Several operators test the state of a file. A file’s existence can be tested with —e (or the
nonstandard —-a). The type of file can be checked with - f for a regular file, —-d for a
directory, and —h or -1 for a symbolic link. Other operators test for special types of files
and for which permission bits are set.

Here are some examples:

test -f /etc/fstab ## true if a regular file

test -h /etc/rc.local ## true if a symbolic link

[=x "SHOME/bin/hw"] ## true if you can execute the file
[[-s SHOME/bin/hw]] ## true if the file exists and is not
empty

Integer Tests

Comparisons between integers use the —eq, -ne, -gt, -1t, —ge, and - 1e operators.

The equality of integers is tested with —eq:

$ test 1 -eg 1
$ echo $°?

0

$ [2 —eqg 1]
$ echo $7?
1

Inequality is tested with —ne:

$ [2 —ne 1]

$ echo $?
0

The remaining operators test greater than, less than, greater than or equal to, and less
than or equal to.

String Tests

Strings are concatenations of zero or more characters and can include any character except
NUL (ASCII 0). They can be tested for equality or inequality, for nonempty string or null
string, , and in bash for alphabetical ordering. The = operator tests for equality, in other
words, whether they are identical; ! = tests for inequality. bash also accepts == for
equality, but there is no reason to use this nonstandard operator.

Here are some examples:

test n$an — "$b"
|: n$qn | = "$b" :|

The -z and —n operators return successfully if their arguments are empty or
nonempty:

$ [-z ""]
$ echo $°?

0

$ test —n ""
$ echo $°?

1

The greater-than and less-than symbols are used in bash to compare the lexical

positions of strings and must be escaped to prevent them from being interpreted as
redirection operators:

strl=abc

str2=def

test "S$strl" \< "S$str2"
echo $7?

test "Sstrl" \> "Sstr2"
echo $°?

— &4 O h B hh

The previous tests can be combined in a single call to test with the —a (logical AND)
and -o (logical OR) operators:

test -f /path/to/file -a Stest -eqg 1
test -x bin/file -o S$test -gt 1

test is usually used in combination with i f or the conditional operators && and | |.

[[...]]: Evaluate an Expression

Like test, [[.. 1] evaluates an expression. Unlike test, it is not a builtin command.

It is part of the shell grammar and not subject to the same parsing as a builtin command.
Parameters are expanded, but word splitting and file name expansion are not performed on
words between [[and]].

It supports all the same operators as test, with some enhancements and additions. It
is, however, nonstandard, so it is better not to use it when test could perform the same
function.

Enhancements over Test

When the argument to the right of = or ! = is unquoted, it is treated as a pattern and
duplicates the functionality of the case command.

The feature of [[..]] thatis not duplicated elsewhere in the shell is the ability to
match an extended regular expression using the =~ operator:

$ string=whatever
$ [[$string =~ hlaeiou] 1]
$ echo $?

[[$string =~ h[sdfghjkl]]]
echo $°?

— & B O

Regular expressions are explained in Chapter 8.

((...)): Evaluate an Arithmetic Expression

A nonstandard feature, ((arithmetic expression)) returns false if the
arithmetic expression evaluates to zero and returns t rue otherwise. The portable
equivalent uses test and the POSIX syntax for shell arithmetic:

test $((a - 2)) -ne O
[Sa !'= 0]

But because ((expression)) is shell syntax and not a builtin command,

expression is not parsed in the same way as arguments to a command. This means, for
example, that a greater than sign (>) or less than sign (<) is not interpreted as a redirection
operator:

if ((total > max)); then : ...; fi

A bare variable is tested for zero or non-zero, exiting successfully if the variable is
Nnon-Zero:

((verbose)) && command ## execute command i1f verbose != 0

Non-numeric values are equivalent to O:

S y=yes
$ ((y)) && echo $y || echo n
S nlLists

A list is a sequence of one or more commands separated by semicolons, ampersands,
control operators, or newlines. A list may be used as the condition in a while or until

loop, an if statement, or as the body of any loop. The exit code of a list is the exit code of
the last command in the list.

Conditional Execution

Conditional constructs enable a script to decide whether to execute a block of code or to
select which of two or more blocks to execute.

if

The basic i f command evaluates a list of one or more commands and executes a list if the
execution of <condition 1list> is successful:

if <condition list>
then

<list>
fi

Usually, the <condition 1list> isa single command, very often test or its
synonym, [, or, in bash, [[. In Listing 3-1, the —z operand to test checks whether a
name was entered.

Listing 3-1. Read and Check Input

read name
if [[-z Sname]]
then
echo "No name entered" >&2
exit 1 ## Set a failed return code
fi

Using the e1se keyword, a different set of commands can be executed if the
<condition 1ist> fails, as shown in Listing 3-2. Note that in numeric expressions
variables do not require a leading $.

Listing 3-2. Prompt for a Number and Check That It Is Not Greater Than Ten

"

printf "Enter a number not greater than 10:
read number
if ((number > 10))

then
printf "%d is too big\n" "S$Snumber" >&2
exit 1

else
printf "You entered %d\n" "Snumber"

fi

More than one condition can be given, using the e11 f keyword, so that if the first test
fails, the second is tried, as shown in Listing 3-3.

Listing 3-3. Prompt for a Number and Check That It Is Within a Given Range

1)

printf "Enter a number between 10 and 20 inclusive:
read number
if ((number < 10))

then
printf "%d is too low\n" "Snumber" >&2
exit 1

elif ((number > 20))

then
printf "%d is too high\n" "Snumber" >&2
exit 1

else
printf "You entered %d\n" "Snumber"

fi

Note In real use, a number entered in the previous examples would be checked for
invalid characters before its value is compared. Code to do that is given in the “case”
section.

Often more than one test is given in the <condition 1list> using && and | |.

Conditional Operators, && and ||

Lists containing the AND and OR conditional operators are evaluated from left to right. A
command following the AND operator (& &) is executed if the previous command is
successful. The part following the OR operator (| |) is executed if the previous command
fails.

For example, to check for a directory and cd into it if it exists, use this:
test -d "Sdirectory" && cd "Sdirectory"

To change directory and exit with an error if cd fails, use this:

cd "SHOME/bin" || exit 1

The next command tries to create a directory and cd to it. If either mkdir or cd fails,
it exits with an error:

mkdir "SHOME/bin" && cd "SHOME/bin" || exit 1

Conditional operators are often used with i f. In this example, the echo command is
executed if both tests are successful:

if [-d "S$dir"] && cd "Sdir"
then

echo "S$SPWD"
fi

case

A case statement compares a word (usually a variable) against one or more patterns and
executes the commands associated with that pattern. The patterns are pathname expansion
patterns using wildcards (* and ?) and character lists and ranges ([...]). The syntax is as
follows:

case WORD in

PATTERN) COMMANDS ;;

PATTERN) COMMANDS ;; ## optional
esac

A common use of case is to determine whether one string is contained in another. It
is much faster than using grep, which creates a new process. This short script would
normally be implemented as a shell function (see Chapter 6) so that it will be executed
without creating a new process, as shown in Listing 3-4.

Listing 3-4. Does One String Contain Another?

case S$S1 in
MS2") true ;;
*) false ;;
esac

The commands, true and false, do nothing but succeed or fail, respectively.

Another common task is to check whether a string is a valid number. Again, Listing 3-
5 would usually be implemented as a function.

Listing 3-5. Is This a Valid Positive Integer?

case $1 in
[10-9]1) false;;
*) true ;;

esacC

Many scripts require one or more arguments on the command line. To check whether
there are the correct number, case is often used:

case $# in
3) ;; ## We need 3 args, so do nothing
*) printf "%$s\n" "Please provide three names" >&2
exit 1

° o
r s

esacC

Looping

When a command or series of commands needs to be repeated, it is put inside a loop. The
shell provides three types of loop: while, until, and for. The first two execute until a

condition is either true or false; the third loops through a list of values.

while

The condition for a while loop is a list of one or more commands, and the commands to
be executed while the condition remains true are placed between the keywords do and
done:

while <list>
do

<list>
done

By incrementing a variable each time the loop is executed, the commands can be run a
specific number of times:

n=1
while [$n -le 10]
do

echo "S$n"

n=sS(($n + 1))
done

The t rue command can be used to create an infinite loop:

while true ## ':' can be used in place of true
do

read x
done

A while loop can be used to read line by line from a file:

while IFS= read -r line
do

do something with "S$line"
done < FILENAME?

until

Rarely used, unt il loops as long as the condition fails. It is the opposite of while:

n=1
until [$n -gt 10]
do

echo "S$n"

n=s$((S$n + 1))

done

for

At the top of a for loop, a variable is given a value from a list of words. On each
iteration, the next word in the list is assigned:

for var in Canada USA Mexico

do
printf "%$s\n" "Svar"
done

bash also has a nonstandard form similar to that found in the C programming

language. The first expression is evaluated when the for loop starts, the second is a test
condition, and the third is evaluated at the end of each iteration:

for ((n=1; n<=10; ++n))
do

echo "S$n"
done

break

A loop can be exited at any point with the break command:

while
do

read x

[-z "S$x"] && break
done

With a numeric argument, break can exit multiple nested loops:

for n in a b ¢ d e

do
while true
do
if [$RANDOM -gt 20000]
then

printf
break 2 ## break out of both while and for loops
elif [SRANDOM -1t 10000]
then
printf '™
break ## break out of the while loop
fi
done
done
echo

continue

Inside a loop, the continue command immediately starts a new iteration of the loop, by
passing any remaining commands:

for n in {1..9} ## See Brace expansion in Chapter 4
do

x=$RANDOM

[Sx —-1le 20000] && continue

echo "n=%n x=5$x"
done

Summary

Looping and branching are major building blocks of a computer program. In this chapter,
you learned the commands and operators used for these tasks.

Commands

e test: Evaluates an expression and returns success or failure

e if: Executes a set of command if a list of commands is successful and
optionally executes a different set if it is not

e case: Matches a word with one or more patterns and executes the
commands associated with the first matching pattern

e while: Repeatedly executes a set of commands while a list of
commands executes successfully

until: Repeatedly executes a set of commands until a list of
commands executes successfully

for: Repeatedly executes a set of commands for each word in a list

break: Exits from a loop

continue: Starts the next iteration of a loop immediately

Concepts

e FExit status: The success or failure of a command, stored as O or a
positive integer in the special parameter $?

e List: A sequence of one or more commands separated by ;, &, &&, | |,
or a newline

Exercises

1. Write a script that asks the user to enter a number between 20 and
30. If the user enters an invalid number or a non-number, ask again.
Repeat until a satisfactory number is entered.

2. Write a script that prompts the user to enter the name of a file.
Repeat until the user enters a file that exists.

CHAPTER 4

Command-Line Parsing and Expansion

One of the strengths of the shell as a programming language is its parsing of command-
line arguments and the various expansions it performs on words in the line. When a
command is called with arguments, the shell does several things before it invokes the
command.

To help visualize what happens, the short script shown in Listing 4-1, called ba, will

display what the shell has passed to it after processing all the arguments. Each of its
arguments is printed on a separate line, preceded by the value of $pre and followed by

the value of Spost.
Listing 4-1. ba; Displaying Command-Line Arguments

pre=:
post=:
printf "S$pre%ss$posti\n" "S$@"

Note: Create a script called sa with the text as can be seen in Listing 4-1. This is that is
used in the code samples in this chapter.

The special parameter $@ expands to a list of all the command-line arguments, but the

results differ depending on whether it is quoted or not. When quoted, it expands to the
positional parameters “$1”, “$2”, “$3”, “*$4”, and so on, and the arguments

containing whitespace will be preserved. If $@ is unquoted, splitting will occur wherever
there is whitespace.

When a line is executed, whether at the command prompt or in a script, the shell splits
the line into words wherever there is unquoted whitespace. Then bash examines the

resulting words, performing up to eight types of expansion on them as appropriate. The
results of the expansions are passed to the command as its arguments. This chapter
examines the entire process, from the initial parsing into words based on unquoted
whitespace to each of the expansions in the order in which they are performed:

Brace expansion

Tilde expansion

Parameter and variable expansion

Arithmetic expansion

Command substitution

o Uk Wi

Word splitting

7. Pathname expansion

8. Process substitution

The chapter ends with a shell program that demonstrates how to parse options
(arguments beginning with a hyphen) on the command line, using the getopts built in
command.

Quoting

The shell’s initial parsing of the command line uses unquoted whitespace, that is, spaces,
tabs, and newlines, to separate the words. Spaces between single or double quotes or
spaces preceded by the escape character (\) are considered part of the surrounding word,

if any. The delimiting quotation marks are stripped from the arguments.

The following code has five arguments. The first is the word this preceded by a
space (the backslash removes its special meaning). The second argumentis ‘is a’;the
entire argument is enclosed in double quotes, again removing the special meaning from
the space. The phrase, demonstration of, is enclosed in single quotes. Next is a
single, escaped space. Finally, the string quotes and escapes are held together by
the escaped spaces.

$ sa \ this "is a" 'demonstration of' \ quotes\ and\
escapes
this:
:is a:
:demonstration of:

:quotes and escapes:

Quotes can be embedded in a word. Inside double quotes, a single quote is not special,
but a double quote must be escaped. Inside single quotes, a double quote is not special.

$ sa "a double-quoted single quote, '" "a double-gquoted
double quote, \""

:a double-quoted single quote, ':

:a double-quoted double quote, ":

$ sa 'a single-quoted double quotation mark, "'

:a single-quoted double quotation mark, ":

All characters inside a single-quoted word are taken literally. A single-quoted word
cannot contain a single quote even if it is escaped; the quotation mark will be regarded as
closing the preceding one, and another single quote opens a new quoted section.
Consecutive quoted words without any intervening whitespace are considered as a single
argument:

$ sa "First argument "'still the first argument'
:First argument still the first argument:

In bash, single quotes can be included in words of the form $ *string’ if they are
escaped. In addition, the escape sequences listed in Chapter 2’s description of printf are
replaced by the characters they represent:

$ echo $'\'linel\'\n\'line2\""
'"linel'
'"line?2'!

Quoted arguments can contain literal newlines:

$ sa "Argument containing &
> a newline"

:Argument containing

a newline:

Note The <Jis the enter key and not something to be typed on the terminal. Since the
shell determines that the command is incomplete, it displays a > prompt allowing you to
complete the command.

Brace Expansion

The first expansion performed, brace expansion, is non standard (that is, it is not included
in the POSIX specification). It operates on unquoted braces containing either a comma-
separated list or a sequence. Each element becomes a separate argument.

$ sa {one, two, three}

:one:

ttwo:

:three:

$ sa {1..3} ## added in bash3.0
:1:

12

:3:

$ sa {a..c}

ta:
:b:
:C:

A string before or after the brace expression will be included in each expanded
argument:

$ sa pre{d,l}ate
:predate:
:prelate:

Braces may be nested:

$ sa {{1..3},{a..c}}

QO wh kK

Multiple braces within the same word are expanded recursively. The first brace
expression is expanded, and then each of the resulting words is processed for the next
brace expression. With the word {1..3}{a..c}, the first term is expanded, giving the
following:

l{a..c} 2{a..c} 3{a..c}

Each of these words is then expanded for this final result:

$ sa {1..3}{a..c}
:la:
:1b:
:lc:
12a:
:2b:
:2C:
:3a:
:3b:
:3c:

In version 4 of bash, further capabilities have been added to brace expansion.

Numerical sequences can be padded with zeros, and the increment in a sequence can be
specified:

$ sa {01..13..3}
:01:
:04:
:07:
:10:
:13:

Increments can also be used with alphabetic sequences:

$ sa {a..h..3}

ta:
:d:
:g:

Tilde Expansion

An unquoted tilde expands to the user’s home directory:

$ sa ~
:/home/chris:

Followed by a login name, it expands to that user’s home directory:

$ sa ~root ~chris
:/root:
:/home/chris:

When quoted, either on the command line or in a variable assignment, the tilde is not
expanded:

$ sa "~" "~root"
:~root:

$ dir=~chris

$ dir2="~chris"

$ sa "Sdir" "Sdir2"
:/home/chris:
:~chris:

If the name following the tilde is not a valid login name, no expansion is performed:

$ sa ~gwerty
t~gwerty:

Parameter and Variable Expansion

Parameter expansion replaces a variable with its contents; it is introduced by a dollar sign
($). It is followed by the symbol or name to be expanded:

$ var=whatever
$ sa "Svar"
:whatever:

The parameter may be enclosed in braces:

$ var=gwerty
$ sa "S${var}"
rgwerty:

In most cases, the braces are optional. They are required when referring to a positional
parameter greater than nine or when a variable name is followed immediately by a

character that could be part of a name:

$ first=Jane

$ last=Johnson

$ sa "S$first Slast" "S{first} Slast"
:Johnson:

:Jane Johnson:

Because first is a valid variable name, the shell tries to expand it rather than
first; adding the braces removes the ambiguity.

Braces are also used in expansions that do more than simply return the value of a
parameter. These often-cryptic expansions (${var##*/} and ${var//x/vy}, for
example) add a great deal of power to the shell and are examined in detail in the next
chapter.

Parameter expansions that are not enclosed in double quotes are subject to word
splitting and pathname expansion.

Arithmetic Expansion

When the shell encounters $ ((expression)), it evaluates expression and
places the result on the command line; expression is an arithmetic expression. Besides
the four basic arithmetic operations of addition, subtraction, multiplication, and division,
its most used operator is $ (modulo, the remainder after division).

$sa "S((1+ 12))" "S((12 * 13))" "S((16 / 4))" "$((
6 - 9))"

:13:

:156:

14

=3

The arithmetic operators (see Tables 4-1 and 4-2) take the same precedence that you
learned in school (basically, that multiplication and division are performed before addition
and subtraction), and they can be grouped with parentheses to change the order of
evaluation:

$sa "S((3+4 *5))" "S(((3 +4) *5))"
:23:
:35:

Table 4-1. Arithmetic Operators

Operator Description

-+ Unary minus and plus

Lo~ Logical and bitwise negation

* /% Multiplication, division, remainder

+ - Addition, subtraction
<< >> Left and right bitwise shifts
<= >= < > Comparison

Equality and inequality
& Bitwise AND

Bitwise exclusive OR

\ Bitwise OR
&& Logical AND
I Logical OR
= *= /= %= 4= -—= <K= >>= §&= "= = Assignment
Table 4-2. bash Extensions
Operator Description
**x Exponentiation
id++ id— Variable post-increment and post-decrement
++id --id Variable pre-increment and pre-decrement
expr ? exprl : expr2 Conditional operator
exprl , expr?2 Comma

The modulo operator, %, returns the remainder after division:

$sa "S((13 % 5))"
: 3

Converting seconds (which is how Unix systems store times) to days, hours, minutes,
and seconds involves division and the modulo operator, as shown in Listing 4-2.

Listing 4-2. secs2dhms, Convert Seconds (in Argument $1) to Days, Hours, Minutes,
and Seconds

secs 1n day=86400
secs 1in hour=3600
mins in hour=60
secs 1in min=60

days=S(($1 / $secs _in day))
secs=$(($1 % S$secs in day))

printf "%d:%02d:%02d:%02d\n" "Sdays" "$((Ssecs
/ $secs_in hour))" \

"$((($secs / $mins in hour) %Smins in hour))"
"$(($Ssecs % $secs in min))"

If not enclosed in double quotes, the results of arithmetic expansion are subject to
word splitting.

Command Substitution

Command substitution replaces a command with its output. The command must be placed
either between backticks (* command) or between parentheses preceded by a dollar
sign ($ (command)). For example, to count the lines in a file whose name includes
today’s date, this command uses the output of the date command:

$ wec -1 $(date +%Y-%m-%d) .log
61 2009-03-31.1og

The old format for command substitution uses backticks. This command is the same as
the previous one:

$ wec -1 “date +%Y-%m-%d .log
2 2009-04-01.1log

Well, it’s not exactly the same, because I ran the first command shortly before
midnight and the second shortly after. As a result, wc processed two different files.

If the command substitution is not quoted, word splitting and pathname expansion are
performed on the results.

Word Splitting

The results of parameter and arithmetic expansions, as well as command substitution, are
subjected to word splitting if they were not quoted:

$ var="this is a multi-word value"
$ sa S$var "Svar"

:this:

tis:

ta:

tmulti-word:

:value:

:this is a multi-word wvalue:

Word splitting is based on the value of the internal field separator variable, TFS. The
default value of TFS contains the whitespace characters of space, tab, and newline

(IFS=$’ \t\n’). When IFS has its default value or is unset, any sequence of default
IFS characters is read as a single delimiter.

$ var="' spaced
out !

$ sa Svar

:spaced:

rout:

If TF'S contains another character (or characters) as well as whitespace, then any

sequence of whitespace characters plus that character will delimit a field, but every
instance of a non whitespace character delimits a field:

S IFS=" '

$ var="qwerty : uiop : :: er " ## : :: delimits 2 empty
fields

$ sa Svar

rgwerty:

:uiop:

ter:

If TFS contains only non whitespace characters, then every occurrence of every
character in TFS delimits a field, and whitespace is preserved:

$ IFS=:
$ var="qgqwerty : uiop : :: er "
$ sa Svar
rgwerty
uiop

er

Pathname Expansion

Unquoted words on the command line containing the characters *, ?, and [are treated as
file globbing patterns and are replaced by an alphabetical list of files that match the
pattern. If no files match the pattern, the word is left unchanged.

The asterisk matches any string. h* matches all files in the current directory that begin
with h, and *k matches all files that end with k. The shell replaces the wildcard pattern
with the list of matching files in alphabetical order. If there are no matching files, the
wildcard pattern is left unchanged.

$ cd "SHOME/bin"

$ sa h~*
thello:

thw:

$ sa *k
:incheck:
:numcheck:
:rangecheck:

A question mark matches any single character; the following pattern matches all files
whose second letter is a:

$ sa ?a*
:rangecheck:
:ba:
:valint:
:valnum:

Square brackets match any one of the enclosed characters, which may be a list, a
range, or a class of characters: [aceg] matches any one of a, c, e, or g; [h—-o] matches
any character from h to o inclusive; and [[: lower:]] matches all lowercase letters.

You can disable filename expansion with the set -f command. bash has a number
of options that affect filename expansion. I’ll cover them in detail in Chapter 8.

Process Substitution

Process substitution creates a temporary filename for a command or list of commands.
You can use it anywhere a file name is expected. The form < (command) makes the
output of command available as a file name; > (command) is a file name that can be
written to.

$ sa <(ls -1) >(pr -Tn)
:/dev/£fd/63:
:/dev/£fd/62:

Note The pr command converts text files for printing by inserting page headers. The
headers can be turned off with the —T option, and the —n option numbers the lines.

When the filename on the command line is read, it produces the output of the
command. Process substitution can be used in place of a pipeline, allowing variables
defined within a loop to be visible to the rest of the script. In this snippet, totalsize is
not available to the script outside the loop:

$ 1s -1 |
> while read perms links owner group size month day time
file

> do

> printf "%10d %$s\n" "$size" "Sfile"

> totalsize=$((${totalsize:=0} + S$S{size:-0}))

> done

$ echo S{totalsize-unset} ## print "unset" if variable is
not set

unset

By using process substitution instead, the variable totalsize becomes available
outside of the loop:

$ while read perms links owner group size month day time
file

> do

> printf "%10d $s\n" "$size" "Sfile"

> totalsize=$((${totalsize:=0} + S$S{size:-0}))

> done < <(ls -1 *)

$ echo ${totalsize-unset}

12879

Parsing Options

The options to a shell script, single characters preceded by a hyphen, can be parsed with
the builtin command getopts. There may be arguments to some options, and options
must precede non option arguments.

Multiple options may be concatenated with a single hyphen, but any that take an
argument must be the final option in the string. Its argument follows, with or without
intervening whitespace.

On the following command line, there are two options, —a and - f. The latter takes a
file name argument. John is the first non option argument, and -x is not an option
because it comes after a non option argument.

myscript —-a —-f filename John -x Jane
The syntax for getopts is as follows:
getopts OPTSTRING wvar

The OPTSTRING contains all the option’s characters; those that take arguments are
followed by a colon. For the script in Listing 4-3, the string is f : v. Each option is placed
in the variable $var, and the option’s argument, if any, is placed in SOPTARG.

Usually used as the condition to a while loop, getopts returns successfully until it
has parsed all the options on the command line or until it encounters the word —. All
remaining words on the command line are arguments passed to the main part of the script.

A frequently used option is -v to turn on verbose mode, which displays more than the
default information about the running of the script. Other options—for example, - f—
require a file name argument.

This sample script processes both the —v and - f options and, when in verbose mode,
displays some information.

Listing 4-3. parseopts, Parse Command-Line Options

progname=${0##*/} ## Get the name of the script without its
path

Default values
verbose=0
filename=

List of options the program will accept;
those options that take arguments are followed by a colon
optstring=f:v

The loop calls getopts until there are no more options on
the command line
Each option is stored in Sopt, any option arguments are
stored in OPTARG
while getopts S$Soptstring opt
do

case $opt in

f) filename=$SOPTARG ;; ## SOPTARG contains the argument

to the option

v) verbose=$ (($verbose + 1)) ;;
*) exit 1 ;;
esac
done

Remove options from the command line
SOPTIND points to the next, unparsed argument
shift "$(($SOPTIND - 1))"

Check whether a filename was entered

if [-n "Sfilename"]
then
if [$verbose -gt 0]
then
printf "Filename is %s\n" "S$filename"
fi
else

if [$verbose -gt 0]
then

printf "No filename entered\n" >&2
fi
exit 1
fi

Check whether file exists

if [-f "Sfilename"]
then
if [Sverbose -gt 0]
then
printf "Filename %s found\n" "S$filename"
fi
else
if [Sverbose -gt 0]
then
printf "File, %s, does not exist\n" "Sfilename" >&2
fi
exit 2
fi

If the verbose option is selected,

print the number of arguments remaining on the command
line

if [$verbose -gt 0]

then
printf "Number of arguments is $d\n" "S#"
fi

Running the script without any arguments does nothing except generate a failing return
code:

$ parseopts
$ echo $7?
1

With the verbose option, it prints an error message as well:

$ parseopts -v

No filename entered
$ echo $°?

1

With an illegal option (that is, one that is not in $Soptstring), the shell prints an
erTor message:

$ parseopts -x
/home/chris/bin/parseopts: illegal option - x

If a file name is entered and the file doesn’t exist, it produces this:

$ parseopts -vf gwerty; echo $?
Filename 1is gwerty

File, gwerty, does not exist

2

To allow a non option argument to begin with a hyphen, the options can be explicitly
ended with —

$ parseopts -vf ~/.bashrc -- -x
Filename is /home/chris/.bashrc
Filename /home/chris/.bashrc found
Number of arguments is 1

Summary

The shell’s preprocessing of the command line before passing it to a command saves the
programmer a great deal of work.

Commands

e head: Extracts the first N lines from a file; N defaults to 10

e cut: Extracts columns from a file

Exercises

1. How many arguments are there on this command line?

sa S$# S (date "+%Y %m %d") John\ Doe

2. What potential problem exists with the following snippet?

year=S$ (date +%Y)
month=$ (date +%m)
day=$ (date +%d)
hour=$(date +%H)
minute=$(date +%M)
second=S$ (date +%S)

CHAPTER 5

Parameters and Variables

Variables have been part of the Unix shell since its inception more than 30 years ago, but
their features have grown over the years. The standard Unix shell now has parameter
expansions that perform sophisticated manipulations on their contents. bash adds even

more expansion capabilities as well as indexed and associative arrays.

This chapter covers what you can do with variables and parameters, including their
scope. In other words, after a variable has been defined, where can its value be accessed?
This chapter gives a glimpse of the more than 80 variables used by the shell that are
available to the programmer. It discusses how to name your variables and how to pick
them apart with parameter expansion.

Positional parameters are the arguments passed to a script. They can be manipulated
with the shift command and used individually by number or in a loop.

Arrays assign more than one value to a name. bash has both numerically indexed
arrays and, beginning with bash-4. 0, associative arrays that are assigned and
referenced by a string instead of a number.

The Naming of Variables

Variable names can contain only letters, numbers, and underscores, and they must start
with a letter or an underscore. Apart from those restrictions, you are free to build your
names as you see fit. It is, however, a good idea to use a consistent scheme for naming
variables, and choosing meaningful names can go a long way toward making your code
self-documenting.

Perhaps the most frequently cited (though less often implemented) convention is that
environment variables should be in capital letters, while local variables should be in
lowercase. Given that bash itself uses more than 80 uppercase variables internally, this is

a dangerous practice, and conflicts are not uncommon. I have seen variables such as
PATH, HOME, LINES, SECONDS, and UID misused with potentially disastrous

consequences. None of bash’s variables begin with an underscore, so in my first book,

Shell Scripting Recipes: A Problem-Solution Approach (Apress, 2005), I used uppercase
names preceded by an underscore for values set by shell functions.

Single-letter names should be used rarely. They are appropriate as the index in a loop,
where its sole function is as a counter. The letter traditionally used for this purpose is i,

but I prefer n. (When teaching programming in a classroom, the letter I on the blackboard
was too easily confused with the number 1, so I started using n for “number,” and I still
use it 25 years later).

The only other place I use single-letter variable names is when reading throwaway
material from a file. If I need only one or two fields from a file, for example, I might use
this:

while IFS=: read login a b c name e
do
printf "%-12s %$s\n" "$login" "Sname"

done < /etc/passwd

I recommend using either of two naming schemes. The first is used by Heiner Steven
on his Shelldorado web site at http://www.shelldorado.com/. He capitalizes the
first letter of all variables and also the first letters of further words in the name:
ConfigFile, LastDir, FastMath. In some cases, his usage is closer to mine.

I use all lowercase letters: configfile, lastdir, fastmath. When the run-

together words are ambiguous or hard to read, I separate them with an underscore:
line width,bg underline,day of week.

Whatever system you choose, the important thing is that the names give a real
indication of what the variable contains. But don’t get carried away and use something
like this:

long variable name which may tell you something about its pur

The Scope of a Variable: Can You See It
from Here?

By default, a variable’s definition is known only to the shell in which it is defined (and to
subshells of that shell). The script that called the current script will not know about it, and
a script called by the current script will not know about the variable unless it is exported to
the environment.

The environment is an array of strings of the form name=value. Whenever an

external command is executed (creating a child process), whether it is a compiled, binary
command or an interpreted script, this array is passed to it behind the scenes. In a shell
script, these strings are available as variables.

Variables assigned in a script may be exported to the environment using the shell
builtin command export:

var=whatever
export var

In bash this may be abbreviated like this:
export var=whatever

There is no need to export a variable unless you want to make it available to scripts (or

http://www.shelldorado.com/

other programs) called from the current script (and their children and their children’s
children and...). Exporting a variable doesn’t make it visible anywhere except child
processes.

Listing 5-1 tells you whether the variable $x is in the environment and what it
contains, if anything.

Listing 5-1. showvar, Print Value of Variable x

if [[${x+X} = X]] ## If $Sx is set
then
if [[-n $x 1] ## if $x is not empty
then
printf " \S$x = %s\n" "S$x"
else
printf " \S$x is set but empty\n"
fi
else
printf " %s is not set\n" "\$x"
fi

Once a variable is exported, it remains in the environment until it is unset:

»

unset x
$ showvar
Sx 1is not set
X=3
$ showvar
Sx 1s not set
$ export x
$ showvar
Sx = 3
$ x= ## in bash, reassignment doesn't remove a variable from
the environment
$ showvar
Sx is set but empty

&

Note showvar is not a bash command, but a script as seen in Listing 5-1 that works
with the value of x.

Variables set in a subshell are not visible to the script that called it. Subshells include
command substitution, as in $ (command) or ‘command ; all elements of a pipeline,
and code enclosed in parentheses, as in (command).

Probably the most frequently asked question about shell programming is, “Where did
my variables go? I know I set them, so why are they empty?” More often than not, this is
caused by piping the output of one command into a loop that assigns variables:

printf "$s\n" S${RANDOM}{,,,,,} |
while read num
do
((num > ${biggest:=0})) && biggest=S$num
done
printf "The largest number is: %d\n" "Sbiggest"

When biggest is found to be empty, complaints of variables set in while loops not

being available outside them are heard in all the shell forums. But the problem is not the
loop; it is that the loop is part of a pipeline and therefore is being executed in a subshell.

With bash-4.2, a new option, 1astpipe, enables the last process in a pipeline to be
executed in the current shell. It is invoked with the following:

shopt -s lastpipe

Shell Variables

The shell either sets or uses more than 80 variables. Many of these are used by bash

internally and are of little use to shell programmers. Others are used in debugging, and
some are in common use in shell programs. About half are set by the shell itself, and the
rest are set by the operating system, the user, the terminal, or a script.

Of those set by the shell, you have already looked at RANDOM, which returns a random
integer between 0 and 32,767, and PWD, which contains the path to the current working
directory. You saw OPTIND and OPTARG used in parsing command-line options (chapter
4). Sometimes, BASH VERSION (or BASH VERSINFO) is used to determine whether

the running shell is capable of running a script. Some of the scripts in this book require at
least bash-3. 0 and might use one of those variables to determine whether the current

shell is recent enough to run the script:

case SBASH VERSION in

[12].*) echo "You need at least bash3.0 to run this
script" >&2; exit 2;;
esac

The prompt string variables, PS1 and PS2, are used in interactive shells at the
command line; PS3 is used with the select builtin command, and PS4 is printed before
each line in execution trace mode (more on that in chapter 10).

SHELL VARIABLES

The following variables are set by the shell:

BASH

BASH_ARGC
BASH_EXECUTION_STRING
BASH_SUBSHELL
COMP_KEY
COMP_WORDBREAKS
EUID

HOSTNAME
MAPFILE

OSTYPE

RANDOM

SECONDS

BASHOPTS
BASH_ARGV
BASH_LINENO
BASH_VERSINFO
COMP_LINE
COMP_WORDS
FUNCNAME
HOSTTYPE
OLDPWD
PIPESTATUS
READLINE_LINE
SHELLOPTS

BASHPID
BASH_CMDS
BASH_REMATCH
BASH_VERSION
COMP_POINT
COPROC
GROUPS
LINENO
OPTARG

PPID
READLINE_POINT
SHLVL

BASH_ALIASES
BASH_COMMAND
BASH_SOURCE
COMP_CWORD
COMP_TYPE
DIRSTACK
HISTCMD
MACHTYPE
OPTIND

PUD

REPLY

uID

The following variables are used by the shell, which may set a default value for some of
them (for example, TFS):

BASH_COMPAT
CHILD_MAX
FCEDIT
HISTCONTROL
HISTSIZE

IFS

LC_ALL
LC_NUMERIC
MAILCHECK
POSIXLY CORRECT
PS2

TIMEFORMAT

histchars

BASH_ENV
COLUMNS
FIGNORE
HISTFILE

HISTTIMEFORMAT

IGNOREEOF
LC_COLLATE
LC_NUMERIC
MAILPATH

PROMPT_COMMAND

PS3
TMOUT

BASH_XTRACEFD
COMPREPLY
FUNCNEST
HISTFILESIZE
HOME

INPUTRC
LC_CTYPE

LINES

OPTERER

PROMPT DIRTRIM
PS4

TMPDIR

CDPATH
EMACS
GLOBIGNORE
HISTIGNORE
HOSTFILE
LANG
LC_MESSAGES
MAIL

PATH

P51

SHELL

auto_resume

See Appendix A for a description of all the shell variables.

Parameter Expansion

Much of the power of the modern Unix shell comes from its parameter expansions. In the
Bourne shell, these mostly involved testing whether a parameter is set or empty and
replacing with a default or alternate value. KornShell additions, which were incorporated
into the POSIX standard, added string manipulation. KornShell 93 added more expansions
that have not been incorporated into the standard but that bash has adopted. bash-4.0

has added two new expansions of its own.

Bourne Shell

The Bourne shell and its successors have expansions to replace an empty or unset variable
with a default, to assign a default value to a variable if it is empty or unset, and to halt
execution and print an error message if a variable is empty or unset.

${var:-default} and ${var-default}: Use Default Values

The most commonly used expansion, ${var:-default}, checks to see whether a
variable is unset or empty and expands to a default string if it is:

$ var=

$ sa "S{var:-default}" ## The sa script was introduced in
Chapter 4

:default:

If the colon is omitted, the expansion checks only whether the variable is unset:

$ var=
$ sa "S${var-default}" ## var is set, so expands to nothing

$ unset var

$ sa "S{var-default}" ## var is unset, so expands to
"default"

:default:

This snippet assigns a default value to $filename if it is not supplied by an option
or inherited in the environment:

defaultfile=SHOME/ .bashrc
parse options here
filename=${filename:-"Sdefaultfile"}

${var:+alternate}, ${var+alternate}: Use Alternate Values

The complement to the previous expansion substitutes an alternate value if the parameter
is not empty or, without a colon, if it is set. The first expansion will use alternate only

if Svar is set and is not empty:

$ var=
$ sa "S{var:+alternate}" ## Svar is set but empty

$ var=value
$ sa "S{var:+alternate}" ## Svar is not empty
:alernate:

Without the colon, alternate is used if the variable is set, even if it is empty:

S var=
$ sa "$S{vart+talternate}" ## var is set
raltername:

$ unset var
$ sa "S{var+alternate}" ## Svar 1is not set

$ var=value

$ sa "S{var:+alternate}" ## Svar is set and not empty
:alternate:

This expansion is often used when adding strings to a variable. If the variable is empty,
you don’t want to add a separator:

$ var=

$ for n in a bcde fg
> do

> var="Svar $n"

> done

$ sa "Svar"

abcdef g:

To prevent the leading space, you can use parameter expansion:

$ var=

$ for n in abcde fg

> do

> var="S{var:+"Svar "}sSn"
> done

$ sa "Svar"

ta bcde f g:

That is a shorthand method of doing the following for each value of n:

if [-n "Svar" |
then
var="Svar S$n"
else
var=3sn
fi
or:
[-n "Svar"] && var="Svar $Sn" || var=$n

${var:=default}, ${var=default}: Assign Default Values

The $ {var:=default} expansion behaves in the same way as ${var:-default}
except that it also assigns the default value to the variable:

$ unset n
$ while
> do

> echo :%n:

> [${n:=0} -gt 3] && break ## set $Sn to 0 if unset or
empty

> n=S((Sn + 1))

> done

:1:

12

:3:

4

${var:?message}, ${var?’message}: Display Error Message If
Empty or Unset

If var is empty or not set, message will be printed to the standard error, and the script
will exit with a status of 1. If message is empty, parameter null or not set

will be printed. Listing 5-2 expects two non-null command-line arguments and uses this
expansion to display error messages when they are missing or null.

Listing 5-2. checkarg, Exit If Parameters Are Unset or Empty

Check for unset arguments
${1?An argument is required} \
${2?Two arguments are required}

Check for empty arguments
${1:?A non-empty argument is required} \
${2:?2Two non-empty arguments are required}

echo "Thank you."

The message will be printed by the first expansion that fails, and the script will exit
at that point:

$ checkarg

/home/chris/bin/checkarg: line 10: 1: An argument is
required

$ checkarg x

/home/chris/bin/checkarg: line 10: 2: Two arguments are
required

$ checkarg "' "'

/home/chris/bin/checkarg: line 13: 1: A non-empty argument
is required

$ checkarg x ''

/home/chris/bin/checkarg: line 13: 2: Two non-empty
arguments are required

$ checkarg x x

Thank you.

POSIX Shell

Besides the expansions from the Bourne shell, the POSIX shell includes a number of
expansions from the KornShell. These include returning the length and removing a pattern
from the beginning or end of a variable’s contents.

${#var}: Length of Variable’s Contents

This expansion returns the length of the expanded value of the variable:

read passwd
if [S{#passwd} -1t 8]

then
printf "Password is too short: %d characters\n" "S$#" >&2
exit 1

fi

${var% PATTERN}: Remove the Shortest Match from the
End

The variable is expanded, and the shortest string that matches PATTERN is removed from
the end of the expanded value. The PATTERN here and in other parameter expansions is a
filename expansion (aka file globbing) pattern.

Given the string Toronto and the pattern o*, the shortest matching pattern is the
final o:

$ var=Toronto

$ var=${var%o*}

$ printf "%s\n" "Svar"
Toront

Because the truncated string has been assigned to var, the shortest string that now
matches the pattern is ont:

$ printf "$s\n" "S{varSo*}"
Tor

This expansion can be used to replace the external command, di rname, which strips

the filename portion of a path, leaving the path to the directory (Listing 5-3). If there is no
slash in the string, the current directory is printed if it is the name of an existing file in the
current directory; otherwise, a dot is printed.

Listing 5-3. dname, Print the Directory Portion of a File Path

case S$S1 1in

/) printf "$s\n" "S${1%/*}" ;;
*y [—e "$1"] && printf "%s\n" "SPWD" || echo '.' ;;
esac

Note I have called this script dname rather than dirname because it doesn’t follow
the POSIX specification for the dirname command. In the next chapter, there is a shell
function called di rname that does implement the POSIX command.

$ dname /etc/passwd
/etc

$ dname bin
/home/chris

${var% % PATTERN}: Remove the Longest Match from the
End

The variable is expanded, and the longest string that matches PATTERN from the end of
the expanded value is removed:

$ var=Toronto
$ sa "S{varsso*}"
L

${var#PATTERN}: Remove the Shortest Match from the
Beginning

The variable is expanded, and the shortest string that matches PATTERN is removed from
the beginning of the expanded value:

S var=Toronto
S sa "S{var#*o}"
c:ronto:

${var##fPATTERN}: Remove the Longest Match from the
Beginning

The variable is expanded, and the longest string that matches PATTERN is removed from

the beginning of the expanded value. This is often used to extract the name of a script
from the $0 parameter, which contains the full path to the script:

scriptname=S${0##*/} ## /home/chris/bin/script => script

Bash

Two expansions from KornShell 93 were introduced in bash?2: search and replace and

substring extraction.

${var//PATTERN/STRING}: Replace All Instances of
PATTERN with STRING

Because the question mark matches any single character, this example hides a password:

$ passwd=zxQl.=+-a
$ printf "%$s\n" "S{passwd//?/*}"

AkkKk Kk kk Kk K%k

With a single slash, only the first matching character is replaced.

$ printf "%s\n" "S${passwd/[[:punct:]]/*}"
zxQl*=+-a

${var:OFFSET:LENGTH}: Return a Substring of $var

A substring of $var starting at OFFSET is returned. If LENGTH is specified, that number

of characters is substituted; otherwise, the rest of the string is returned. The first character
is at offset O:

$ var=Toronto

$ sa "S{var:3:2}"
:on:

$ sa "S{var:3}"
:onto:

A negative OFFSET is counted from the end of the string. If a literal minus sign is

used (as opposed to one contained in a variable), it must be preceded by a space to prevent
it from being interpreted as a default expansion:

$ sa "S{var: -3}"
:nto:

${!var}: Indirect Reference

If you have one variable containing the name of another, for example x=yes and a=x,
bash can use an indirect reference:

$ x=yes

$ a=x

$ sa "S{!a}"
ryes:

The same effect can be had using the eval builtin command, which expands its
arguments and executes the resulting string as a command:

$ eval "sa \$3a"

ryes:

See chapter 9 for a more detailed explanation of eval.

Bash-4.0

In version 4.0, bash introduced two new parameter expansions, one for converting to
uppercase and one for lowercase. Both have single-character and global versions.

${varAPATTERN}: Convert to Uppercase

The first character of var is converted to uppercase if it matches PATTERN; with a
double caret (*), it converts all characters matching PATTERN. If PATTERN is omitted,
all characters are matched:

$ var=toronto

$ sa "S{var~}"
:Toronto:

$ sa "S{var*[n-z]}"
:Toronto:

$ sa "S{var""[a-m]}" ## matches all characters from a to
m inclusive
:toronto:

$ sa "S{var*"[n-g]}"
:tOrONtO:

$ sa "S{var""}"

: TORONTO:

${var,PATTERN}: Convert to Lowercase

This expansion works in the same way as the previous one, except that it converts
uppercase to lowercase:

$ var=TORONTO

$ sa "S${var,,}"
:toronto:

$ sa "S{var,, [N-Q]}"
:ToRonTo:There 1s also an undocumented expansion that
inverts the case:

$ var=Toronto

$ sa "S{var~}"
:toronto:

S sa "S{var~~}"
:tORONTO:

Positional Parameters

The positional parameters can be referenced individually by number ($1 .. $9 ${10}
...) or all at once with “$@” or “$*”. As has already been noted, parameters greater than
9 must be enclosed in braces: ${101}, ${11}.

The shift command without an argument removes the first positional parameter and
shifts the remaining arguments forward so that $2 becomes $1, $3 becomes $2, and so
on. With an argument, it can remove more. To remove the first three parameters, supply an
argument with the number of parameters to remove:

$ shift 3

To remove all the parameters, use the special parameter $#, which contains the
number of positional parameters:

$ shift "S#"
To remove all but the last two positional parameters, use this:
$ shift "S((S$# - 2))"

To use each parameter in turn, there are two common methods. The first way is to loop
through the values of the parameters by expanding “$@":

for param in "$@" ## or just: for param
do

do something with S$param
done

And this is the second:

while ((S#))
do
do something with $1
shift
done

Arrays

All the variables used so far have been scalar variables; that is, they contain only a single
value. In contrast, array variables can contain many values. The POSIX shell does not
support arrays, but bash (since version 2) does. Its arrays are one dimensional and

indexed by integers, and also, since bash-4. 0, with strings.

Integer-Indexed Arrays

The individual members of an array variable are assigned and accessed with a subscript of
the form [N]. The first element has an index of 0. In bash, arrays are sparse; they

needn’t be assigned with consecutive indices. An array can have an element with an index

of 0, another with an index of 42, and no intervening elements.
Displaying Arrays

Array elements are referenced by the name and a subscript in braces. This example will
use the shell variable BASH VERSINFO. It is an array that contains version information

for the running shell. The first element is the major version number, the second is the
minor:

$ printf "%s\n" "S${BASH VERSINFO[O]}"

4
$ printf "%s\n" "S${BASH VERSINFO[1]}"
3

All the elements of an array can be printed with a single statement. The subscripts @
and * are analogous to their use with the positional parameters: * expands to a single
parameter if quoted; if unquoted, word splitting and file name expansion is performed on
the result. Using @ as the subscript and quoting the expansion, each element expands to a
separate argument, and no further expansion is performed on them.

$ printf "$s\n" "${BASH_VERSINFO [*] 1"

4 3 30 1 release 1686-pc-linux—-gnuoldld
$ printf "%s\n" "${BASH VERSINFO[@]}"

4

3

30

1

release

1686-pc-linux-gnu

Various parameter expansions work on arrays; for example, to get the second and third
elements from an array, use this:

$ printf "$s\n" "${BASH VERSINFO[@]:1:2}" ## minor version
number and patch level

3

30

The length expansion returns the number of elements in the array when the subscript is
* or @, and it returns the length of an individual element if a numeric index is given:

$ printf "%s\n" "S{#BASH VERSINFO[*]}"
6

$ printf "%$s\n" "${#BASH VERSINFO[2]}"
"S{#BASH VERSINFO[5]}"

2

17

Assigning Array Elements

Elements can be assigned using an index; the following commands create a sparse array:

name [0]=Aaron
name [42]=Adams

Indexed arrays are more useful when elements are assigned consecutively (or packed),
because it makes operations on them simpler. Assignments can be made directly to the
next unassigned element:

$ unset a
$ al${#a[@]}]="1 SRANDOM" ## ${#al[@]} is O
$ alS{#a[@]}]="2 SRANDOM" ## ${#al@]} is 1
$ a[s{#a[@]}]="3 SRANDOM" ## S{#a[@]} is 2
$ a[s{#a[@]}]="4 SRANDOM" ## S{#al[@]} is 3
$ printf "%s\n" "S{a[@]}"
1 6007
2 3784
3 32330
4 25914

An entire array can be populated with a single command:
$ province=(Quebec Ontario Manitoba)
$ printf "$s\n" "S{province[@]}"
Quebec
Ontario
Manitoba

The += operator can be used to append values to the end of an indexed array. This
results in a neater form of assignment to the next unassigned element:

$ province+=(Saskatchewan)
$ province+=(Alberta "British Columbia" "Nova Scotia")
$ printf "%-25s %-25s %s\n" "${province[Q]}"

Quebec Ontario Manitoba
Saskatchewan Alberta British
Columbia

Nova Scotia

Associative Arrays

Associative arrays, introduced in bash in version 4.0, use strings as subscripts and must
be declared before being used:

$ declare -A array
$ for subscript in a b ¢ d e

> do

> array[S$Ssubscript]="$subscript S$SRANDOM"

> done

$ printf ":%s:\n" "S${array["c"]}" ## print one element
:c 1574:

$ printf ":%s:\n" "S${array[Q]}" ## print the entire array
:a 13856:

6235:

1574:

14020:

9165:

O O Q0w

Summary

By far the largest subject in this chapter is parameter expansion, and by far the largest
section of parameter expansion is devoted to those expansions that were introduced by the
KornShell and incorporated into the standard Unix shell. These are tools that give the
POSIX shell much of its power. The examples given in this chapter are relatively simple;
the full potential of parameter expansion will be shown as you develop serious programs
later in the book.

Next in importance are arrays. Though not part of the POSIX standard, they add a
great deal of functionality to the shell by making it possible to collect data in logical units.

Understanding the scope of variables can save a lot of head scratching, and well-
named variables make a program more understandable and maintainable.

Manipulating the positional parameters is a minor but important aspect of shell
programming, and the examples given in this chapter will be revisited and expanded upon
later in the book.

Commands

e declare: Declares variables and sets their attributes
e cval: Expands arguments and executes the resulting command

e export: Places variables into the environment so that they are
available to child processes

e shift: Deletes and renumbers positional parameters
e shopt: Sets shell options

e unset: Removes a variable entirely

Concepts

e FEnvironment: A collection of variables inherited from the calling

program and passed to child processes

e Array variables: Variables that contain more than one value and
accessed using a subscript

e Scalar variables: Variables that contain a single value

e Associative arrays: Array variables whose subscript is a string rather
than an integer

EXERCISES

1. By default, where can a variable assigned in a script be accessed?
Select all that apply:

e In the current script

¢ In functions defined in the current script
¢ In the script that called the current script
e In scripts called by the current script

¢ In subshells of the current script

2. T advise against using single-letter variables names but give a
couple of places where they are reasonable. Can you think of any
other legitimate uses for them?

3. Given var=192.168.0.123, write a script that uses parameter
expansion to extract the second number, 168.

CHAPTER 6

Shell Functions

A shell function is a compound command that has been given a name. It stores a series of
commands for later execution. The name becomes a command in its own right and can be
used in the same way as any other command. Its arguments are available in the positional
parameters, just as in any other script. Like other commands, it sets a return code.

A function is executed in the same process as the script that calls it. This makes it fast,
because no new process has to be created. All the variables of the script are available to it
without having to be exported, and when a function changes those variables, the changes
will be seen by the calling script. That said, you can make variables local to the function
so that they do not affect the calling script; the choice is yours.

Not only do functions encapsulate code for reuse in a single script, but they can make
it available to other scripts. They make top-down design easy, and improve legibility. They
break scripts into manageable chunks that can be tested and debugged separately.

At the command line, functions can do things that an external script cannot, such as
change directories. They are much more flexible and powerful than aliases, which simply
replace the command you type with a different command. Chapter 11 presents a number of
functions that make working at the prompt more productive.

Definition Syntax

When shell functions were introduced in the KornShell, the definition syntax was as
follows:

function name <compound command>

When the Bourne shell added functions in 1984, the syntax (which was later included
in ksh and adopted by the POSIX standard) was as follows:

name () <compound command>
bash allows either syntax as well as the hybrid:
function name () <compound command>

The following is a function that I wrote several years ago and that, I recently
discovered, is included as an example in the bash source code package. It checks whether
a dotted-quad Internet Protocol (IP) address is valid. In this book, we always use the
POSIX syntax for function definition:

isvalidip ()

Then the body of the function is enclosed in braces ({ .. }) followed by optional
redirection (see the uinfo function later in this chapter for an example).

The first set of tests is contained in a case statement;

case $1 in
meo| %[10-9.]*% | *[10-9]) return 1 ;;
esac

It checks for an empty string, invalid characters, or an address that doesn’t end with a
digit. If any of these items is found, the shell built in command return is invoked with
an exit status of 1. This exits the function and returns control to the calling script. An
argument sets the function’s return code; if there is no argument, the exit code of the
function defaults to that of the last command executed.

The next command, 1ocal, is a shell built in that restricts a variable’s scope to the
function (and its children), but the variable will not change in the parent process. Setting
TFS to a period causes word splitting at periods, rather than whitepace, when a parameter
is expanded. Beginning with bash-4.0, local and declare have an option, -A, to
declare an associative array.

local IFS=.

The set builtin replaces the positional parameters with its arguments. Since STF'S is
a period, each element of the IP address is assigned to a different parameter.

set—S51

The final two lines check each positional parameter in turn. If it’s greater than 255, it
is not valid in a dotted-quad IP address. If a parameter is empty, it is replaced with the
invalid value of 666. If all tests are successful, the function exits successfully; if not, the
return code is 1, or failure.

[${1:-666} -le 255] && [${2:-666} -le 255] &&
[${3:-666} -le 255] && [${4:-666} -le 255]

Listing 6-1 shows the complete function with comments.

Listing 6-1. i svalidip, Check Argument for Valid Dotted-Quad IP Address

isvalidip () #@ USAGE: isvalidip DOTTED-QUAD
{
case $1 in
reject the following:
empty string
iid anything other than digits and dots
#4# anything not ending in a digit
"o *[!'0-9.]* | *[!'0-9]) return 1 ;;

esac

Change IFS to a dot, but only in this function
local IFS=.

Place the IP address into the positional parameters;
after word splitting each element becomes a parameter
set—51

[S# -eq 4] && ## must be four parameters
each must be less than 256
A default of 666 (which is invalid) 1s used if
a parameter is empty
All four parameters must pass the test
[${1:-666} -1le 255] && [S${2:-666} -le 255] &&
[${3:-666} -1le 255] && [S${4:-666} -le 255]

Note Formats other than dotted quads can be valid IP addresses, asin 127.1,
216.239.10085,and 3639551845.

The function returns successfully (that is, a return code of 0) if the argument supplied

on the command line is a valid dotted-quad IP address. You can test the function at the
command line by sourcing the file containing the function:

$. isvalidip-func

The function is now available at the shell prompt. Let’s test it with a few IP addresses:

$ for ip in 127.0.0.1 168.260.0.234 1.2.3.4 123.100.34.21
204.225.122.150

> do

> if isvalidip "$ip"

> then

> printf "%15s: valid\n" "S$ip"

> else

> printf "%$15s: invalid\n" "S$ip"
> fi

> done

127.0.0.1: valid
168.260.0.234: invalid
1.2.3.4: valid
123.100.34.21: invalid
204.225.122.150: wvalid

Compound Commands

A compound command is a list of commands enclosed in (..) or { .. }, expressions
enclosedin ((..)) or [[.. 1], orone of the block-level shell keywords (that is,
case, for, select,while,and until).

The valint program from Chapter 3 is a good candidate for converting to a function.
It is likely to be called more than once, so the time saved could be significant. The
program is a single compound command, so braces are not necessary (see Listing 6-2).

Listing 6-2. valint, Check for Valid Integer

valint () #@ USAGE: wvalint INTEGER
case ${1#-} in ## Leading hyphen removed to accept
negative numbers
[10-9]1) false;; ## the string contains a non-digit
character
*) true ;; ## the whole number, and nothing but
the number
esac

If a function’s body is wrapped in parentheses, then it is executed in a subshell, and
changes made during its execution do not remain in effect after it exits:

$ funky () (name=nobody; echo "name = Sname")
$ name=Rumpelstiltskin

$ funky

name = nobody

$ echo "name = S$name"

name = Rumpelstiltskin

Getting Results

The two previous functions are both called for their exit status; the calling program needs
to know only whether the function succeeds or fails. Functions can also return information
from a range of return codes, by setting one or more variables or by printing its results.

Set Different Exit Codes

You can convert the rangecheck script from Chapter 3 to a function with a couple of
improvements; it returns 0 on success as before but differentiates between a number that is
too high and one that is too low. It returns 1 if the number is too low, or it returns 2 if it is

too high. It also accepts the range to be checked as arguments on the command line,
defaulting to 10 and 20 if no range is given (Listing 6-3).

Listing 6-3. rangecheck, Check Whether an Integer Is Within a Specified Range

rangecheck () #@ USAGE: rangecheck int [low [high]]
if ["S1"™ -1t ${2:-10}]

then
return 1
elif ["S$1" -gt ${3:-20}]
then
return 2
else
return 0
fi

Return codes are a single, unsigned byte; therefore, their range is 0 to 255. If you need
numbers larger than 255 or less than 0, use one of the other methods of returning a value.

Print the Result

A function’s purpose may be to print information, either to the terminal or to a file (Listing
6-4).

Listing 6-4. uinfo, Print Information About the Environment

uinfo () #@ USAGE: uinfo [file]

{
printf "$12s: %$s\n" \

USER "S{USER:-No value assigned}" \
PWD "S{PWD:-No value assigned}" \
COLUMNS "S$S{COLUMNS:-No value assigned}" \
LINES "S{LINES:-No value assigned}" \
SHELL "S{SHELL:-No value assigned}" \
HOME "S{HOME:-No value assigned}" \
TERM "S{TERM:-No value assigned}"

} > ${l:-/dev/fd/1}

The redirection is evaluated at runtime. In this example, it expands to the function’s
first argument or to /dev/fd/1 (standard output) if no argument is given:

$ uinfo
USER: chris
PWD: /home/chris/work/BashProgramming
COLUMNS: 100
LINES: 43
SHELL: /bin/bash
HOME: /home/chris
TERM: rxvt
$ cd; uinfo SHOME/tmp/info
$ cat SHOME/tmp/info
USER: chris
PWD: /home/chris
COLUMNS: 100
LINES: 43

SHELL: /bin/bash
HOME: /home/chris
TERM: rxvt

When the output is printed to the standard output, it may be captured using command
substitution:

info=$(uinfo)

But command substitution creates a new process and is therefore slow; save it for use
with external commands. When a script needs output from a function, put it into variables.

Place Results in One or More Variables

I was writing a script that needed to sort three integers from lowest to highest. I didn’t

want to call an external command for a maximum of three comparisons, so I wrote the

function shown in Listing 6-5. It stores the results in three variables: MIN3, MID3, and
MAX3.

Listing 6-5. max3, Sort Three Integers

~max3() #@ Sort 3 integers and store in $ MAX3, $ MID3 and
$ MIN3
{ #Q@ USAGE:

[S# -ne 3] && return 5

[$1 —-gt $2] && { set—=$2 $1 $3; }

[$2 -gt $3 1 && { set—S1 $3 $2; 1}

[$1 -gt $2 1 && { set—S$2 $1 $3; 1}

_ MAX3=$3

 MID3=$2

_MIN3=51

In the first edition of this book, I used the convention of beginning function names
with an underscore when they set a variable rather than print the result. The variable is the
name of the function converted to uppercase. In this instance, I needed two other variables
as well.

I could have used an array instead of three variables:

_MAX3:("$3" "$2" "$l")

These days, I usually pass the name of a variable to store the result. The nameref
property, introduced in bash-4.x, makes this easy to use:

max3 () #@ Sort 3 integers and store in an array
{ #Q@ USAGE: max3 N1 N2 N3 [VARNAME]
declare -n max3=$5{4:- MAX3}
(($# < 3)) && return 4

(($l > $2)) 8 & Set_"$2" n$1n n$3n
(($2 > $3)) 8 & Set_"$1" n$3n n$2n
(($l > $2)) 8 & Set_"$2" n$1n n$3n
_max3=(n$3n n$2n n$1n)

}

If no variable name is supplied on the command line, MAX3 is used.

Function Libraries

In my scripts directory, I have about 100 files of nothing but functions. A few contain

only a single function, but most are collections of functions with a common theme.
Sourcing one of these files defines a number of related functions that can be used in the
current script.

I have a library of functions for manipulating dates and another for dissecting strings. I
have one for creating PostScript files of chess diagrams and one for playing with
crossword puzzles. There’s a library for reading function keys and cursor keys and a
different one for mouse buttons.

Using Functions from Libraries

Most of the time, I source the library to include all its functions in my script:

date-funcs ## get date-funcs from:
http://cfaj.freeshell.org/shell/ssr/08-The-
Dating-Game.shtml

Occasionally, I need only one function from a library, so I cut and paste it into the new
script.

Sample Script

The following script defines four functions: die, usage, version, and readline.
The readline function will differ according to which shell you are using. The script
creates a basic web page, complete with title and primary headline (<H1>). The
readline function uses options to the builtin command read that will be examined in
detail in Chapter 9.

#i

Set defaults
#i

prompt=" ==> "

template='<!DOCTYPE html>
<html lang="en">
<head>

http://cfaj.freeshell.org/shell/ssr/08-The-Dating-Game.shtml

<meta charset=utf-8>

<title>%$s</title>

<link href="%s" rel="stylesheet">
</head>
<body>

<hl>%s</hl>

<div id=main>

</div>
</body>
</html>

'

ik

Define shell functions

##
die () #@ DESCRIPTION: Print error message and exit with

ERRNO code

{ #@ USAGE: die ERRNO MESSAGE..
error=S$1
shift
[-n "S$*"] && printf "$s\n" "S$E" >&2

exit "Serror"

}

usage () #@ Print script's usage information
{ #@ USAGE: usage
printf "USAGE: %s HTMLFILE\n" "Sprogname"

}

version () #@ Print scrpt's version information
{ #@ USAGE: version
printf "%s version %s" "$progname" "S{version:-1}"

}

#@ USAGE: readline var prompt default

#@ DESCRIPTION: Prompt user for string and offer default

##

#Q@ Define correct version for your version of bash or other

shell

bashversion=${BASH VERSION%%.*}

if [${bashversion:-0} -ge 4]

then
bash4.x has an -1 option for editing a supplied value
readline ()

{
read -ep "${2:—"$prompt"}" -1 n$3n "$l"

}
elif [${BASHVERSION:-0} -ge 2]

then
readline ()
{
history -s "$3"
printf "Press up arrow to edit default value: '%s'\n"
"S{3:-none}"
read -ep "S${2:-"Sprompt"}" "S1"
}

else
readline ()
{
printf "Press enter for default of '$s'\n" "$3"
printf "%s " "${2:-"Sprompt"}"
read

eval "$l=\${REPLY:_"$3H}H

}
fi

if [S# -ne 1]
then

usage

exit 1
fi

filename=S1

readline title "Page title: "
readline hl "Main headline: " "Stitle"
readline css "Style sheet file: " "${filename%.*}.css"

printf "S$template" "Stitle" "Scss" "$Shl" > "Sfilename"

Summary

Shell functions enable you to create large, fast, sophisticated programs. Without them, the
shell could hardly be called a real programming language. Functions will be part of almost
everything from here to the end of the book.

Commands

e local: Restricts a variable’s scope to the current function and its
children

e return: Exits a function (with an optional return code)

e set: With —, replaces the positional parameters with the remaining
arguments (after —)

Exercises

1. Rewrite function i svalidip using parameter expansion instead
of changing TFS.

2. Add a check to max3 to verify that VARNAME is a valid name for a
variable.

CHAPTER 7

String Manipulation

In the Bourne shell, very little string manipulation was possible without resorting to
external commands. Strings could be concatenated by juxtaposition, they could be split by
changing the value of TF'S, and they could be searched with case, but anything else

required an external command.

Even things that could be done entirely in the shell were often relegated to external
commands, and that practice has continued to this day. In some current Linux
distributions, you can find the following snippet in /etc/profile. It checks whether a

directory is included in the PATH variable:

if ! echo ${PATH} |grep -g /usr/games
then

PATH=$PATH: /usr/games
fi

Even in a Bourne shell, you can do this without an external command:

case :$PATH: in
:/usr/games:);;
*) PATH=S$PATH:/usr/games ;;
esac

The POSIX shell includes a number of parameter expansions that slice and dice
strings, and bash adds even more. These were outlined in Chapter 5, and their use is

expanded upon in this chapter along with other string techniques.

Concatenation

Concatenation is the joining together of two or more items to form one larger item. In this
case, the items are strings. They are joined by placing one after the other. A common
example, which is used in Chapter 1, adds a directory to the PATH variable. It

concatenates a variable with a single-character string (:), another variable, and a literal
string;:

PATH=S$PATH:$SHOME /bin

If the right side of the assignment contains a literal space or other character special to
the shell, then it must be quoted with double quotes (variables inside single quotes are not
expanded):

var=SHOME/bin # this comment is not part of the assignment
var="S$HOME/bin # but this is"

In bash-3.1, a string append operator (+=) was added:

$ var=abc

$ var+=xyz

$ echo "Svar"
abcxyz

This append operator += looks much better and is clearer to understand. It also has a
slight performance advantage over the other method. It also makes sense to use += for
appending to an array, as demonstrated in Chapter 5.

Tip For those that want to benchmark the two methods, you could try this little one
liner var=; time for i1 in {1..1000};do var=${var}foo;done;var=;
time for i in {1..1000};do var+=foo;done

Repeat Character to a Given Length

Concatenation is used in this function that builds a string of N characters; it loops, adding
one instance of $1 each time, until the string (S REPEAT) reaches the desired length
(contained in $2).

_repeat ()

{
#Q@ USAGE: repeat string number

_REPEAT=
while ((${# REPEAT} < $2))
do

_REPEAT=S REPEATSI1
done

The result is stored in the variable REPEAT:

$ repeat % 4
$ printf "%s\
You can speed that function up by concatenating more than one instance in each loop
so that the length increases geometrically. The problem with this version is that the
resulting string will usually be longer than required. To fix that, parameter expansion is

used to trim the string to the desired length (Listing 7-1).
Listing 7-1. repeat, Repeat a String N Times

_repeat ()

{
#@ USAGE: repeat string number

_REPEAT=$1

while ((S{# REPEAT} < $2)) ## Loop until string exceeds
desired length

do

_REPEAT=$ REPEATS$ REPEATS REPEAT ## 3 seems to be the

optimum number

done

_REPEAT=S{ REPEAT:0:$52} ## Trim to desired length

}

repeat ()

{

_repeat "sS@"

printf "$s\n" "$ REPEAT"
}

The repeat function is called by the alert function (Listing 7-2).

Listing 7-2. alert, Print a Warning Message with a Border and a Beep

alert () #@ USAGE: alert message border

{
_repeat "S{2:-#}" S((S{#1} + 8))
printf '\a%s\n' "$ REPEAT" ## \a = BEL
printf '$2.2s %s $2.2s\n' "S$ REPEAT" "S1" "$ REPEAT"
printf '$s\n' "$ REPEAT"

The function prints the message surrounded by a border generated with repeat:

$ alert "Do you really want to delete all your files?"

FHEHH SR EH A R S 1 A
Do you really want to delete all your files?

G i

The border character can be changed with a command-line argument:

$ alert "Danger, Will Robinson" $

SR e e e e R R o
$$ Danger, Will Robinson $$

SSSSS80SS80S58555555855555S58

Processing Character by Character

There are no direct parameter expansions to give either the first or last character of a

string, but by using the wildcard (?), a string can be expanded to everything except its first
or last character:

$ var=strip

$ allbutfirst=S{var#?}

$ allbutlast=S${var%?}

$ sa "Sallbutfirst" "Sallbutlast"
:trip:

:stri:

The values of allbutfirst and allbutlast can then be removed from the
original variable to give the first or last character:

$ first=${vars"Sallbutfirst"}
$ last=S${var#"Sallbutlast"}

S sa "Sfirst" "Slast"

:s:

1p:

The first character of a string can also be obtained with printf:
printf -v first "%c" "Svar"

To operate on each character of a string one at a time, use a while loop and a
temporary variable that stores the value of var minus its first character. The temp
variable is then used as the pattern in a $ { var$PATTERN} expansion. Finally, $temp is
assigned to var, and the loop continues until there are no characters left in var:

while [-n "Svar"]
do
temp=S${var#?} ## everything but the first character

char=${vars"stemp"} ## remove everything but the first
character
do something with "S$char"
var=Stemp ## assign truncated value to var
done

Reversal

You can use the same method to reverse the order of characters in a string. Each letter is
tacked on to the end of a new variable (Listing 7-3).

Listing 7-3. revstr, Reverse the Order of a String; Store Resultin REVSTR

_revstr() #@ USAGE: revstr STRING
{

var=S1l
_REVSTR=

while [-n "Svar"]

do
temp=S${var#?}
_REVSTR=StempS$S{varz"Stemp"}
var=S$temp

done

Case Conversion

In the Bourne shell, case conversion was done with external commands such as t r, which

translates characters in its first argument to the corresponding character in its second
argument:

$ echo abcdefgh | tr ceh CEH # ¢ => C, e => E, h => H
abCdEfgH
$ echo abcdefgh | tr ceh HEC # ¢ => H, e => E, h => C
abHdEfgC

Ranges specified with a hyphen are expanded to include all intervening characters:

$ echo touchdown | tr 'a-z' 'A-Z'
TOUCHDOWN

In the POSIX shell, short strings can be converted efficiently using parameter
expansion and a function containing a case statement as a lookup table. The function

looks up the first character of its first argument and stores the uppercase equivalent in
__UPR. If the first character is not a lowercase letter, it is unchanged (Listing 7-4).

Listing 7-4. to_upper, Convert First Character of $1 to Uppercase
to upper ()
case $1 in

a*) UPR=A ;; b*) UPR=B ;; c*) UPR=C ;; d*) UPR=D
e*) UPR=E ;; f*) UPR=F ;; g*) UPR=G ;; h*) UPR=H
i*) _UPR=I ;; j*) UPR=J ;; k*) UPR=K ;; 1*) UPR=L
m*) UPR=M ;; n*) UPR=N ;; o*) UPR=0 ;; p*) UPR=P
g*) UPR=Q ;; r*) UPR=R ;; s*) UPR=S ;; t*) UPR=T
u*) UPR=U ;; v*) UPR=V ;; w*) UPR=W ;; x*) UPR=X

y*) UPR=Y ;; z*) UPR=Z ;; *) UPR=${1%S{1#2}} ;;
esac

To capitalize a word (that is, just the first letter), call to upper with the word as an
argument, and append the rest of the word to $ UPR:

$ word=function

$ to upper "Sword"

$ printf "%c%s\n" "$ UPR" "S{word#?}"
Function

To convert the entire word to uppercase, you can use the upword function shown in
Listing 7-5.

Listing 7-5. upword, Convert Word to Uppercase

_upword() #@ USAGE: upword STRING

{
local word=S1

while [-n "Sword"] ## loop until nothing is left in
Sword
do
to upper "Sword"
_UPWORD= $_UPWORD $_UPR
word=${word#?} ## remove the first character from S$word
done

}

upword ()

{

_upword "S@"

printf "$s\n" "$ UPWORD"
}

You can use the same technique to convert uppercase to lowercase; you can try to
write the code for that as an exercise.

The basics of case conversion using the parameter expansions introduced in bash-
4 . x were covered in Chapter 5. Some uses for them are shown in the following sections.

Comparing Contents Without Regard to
Case

When getting user input, a programmer often wants to accept it in either uppercase or
lowercase or even a mixture of the two. When the input is a single letter, as in asking for Y

or N, the code is simple. There is a choice of using the or symbol (|):

read ok
case Sok 1in

v|Y) echo "Great!" ;;
n|N) echo Good-bye
exit 1
*) echo Invalid entry ;;
esac

or a bracketed character list:

read ok
case $ok 1in
[yY]) echo "Great!" ;;
[nN]) echo Good-bye
exit 1
*) echo Invalid entry ;;
esac

When the input is longer, the first method requires all possible combinations to be
listed, for example:

Jan | jaN | jAn | JAN | Jan | JaN | JAn | JAN) echo "Great!"

o o
rs

The second method works but is ugly and hard to read, and the longer the string is, the
harder and uglier it gets:

read monthname
case S$monthname in ## convert $monthname to number
[Jj] [Aa] [Nn]*) month=1 ;;
[Ff] [Ee] [Bb]*) month=2 ;;
...put the rest of the year here
[Dd] [Ee] [Cc]*) month=12 ;;
[1-9111[0-2]) month=S$monthname ;; ## accept number if
entered
*) echo "Invalid month: Smonthname" >&2 ;;
esac

A better solution is to convert the input to uppercase first and then compare it:

_upword "S$monthname"
case $ UPWORD in ## convert Smonthname to number

JAN*) month=1 ;;

FEB*) month=2 ;;

...put the rest of the year here

DEC*) month=12 ;;

[1-9]111[0-2]) month=Smonthname ;; ## accept number if
entered

*) echo "Invalid month: $monthname" >&2 ;;

esacC

Note See Listing 7-11 at the end of this chapter for another method of converting a
month name to a number.

In bash-4.x, you can replace the upword function with case
${monthname”~”} in, although I might keep it in a function to ease transition between
versions of bash:

_upword ()
{

_UPWORD=${1""}
}

Check for Valid Variable Name

You and I know what constitutes a valid variable name, but do your users? If you ask a
user to enter a variable name, as you might in a script that creates other scripts, you should
check that what is entered is a valid name. The function to do that is a simple check for
violation of the rules: a name must contain only letters, numbers, and underscores and
must begin with a letter or an underscore (Listing 7-6).

Listing 7-6. validname, Check $1 for a Valid Variable or Function Name

validname () #@ USAGE: validname varname
case S$S1 in
doesn't begin with a letter or an underscore, or
contains something that is not a letter, a number, or
an underscore
[la-zA-Z2]* | *[la-zA-z0-9]*) return 1;;
esac

The function is successful if the first argument is a valid variable name; otherwise, it
fails.

$ for name in namel 2var first.name first name last-name
> do

> validname "Sname" && echo " valid: S$name" || echo
"invalid: Sname"
> done

valid: namel
invalid: 2var
invalid: first.name

valid: first name
invalid: last-name

Insert One String into Another

To insert a string into another string, it is necessary to split the string into two parts — the
part that will be to the left of the inserted string and the part to the right. Then the insertion
string is sandwiched between them.

This function takes three arguments: the main string, the string to be inserted, and the
position at which to insert it. If the position is omitted, it defaults to inserting after the first
character. The work is done by the first function, which stores the result in
_insert string. This function can be called to save the cost of using command
substitution. The insert string function takes the same arguments, which it passes
to insert string and then prints the result (Listing 7-7).

Listing 7-7. insert string, Insert One String into Another at a Specified Location

_insert string() #@ USAGE: insert string STRING INSERTION
[POSITION]
{

local insert string dflt=2 ## default
insert location

local string=$1 ## container
string

local i string=s$2 ## string to be
inserted

local i pos=S${3:-${insert string dflt:-2}} ## insert
location

local left right ## before and
after strings

left=${string:0:$(($1i pos - 1))} ## string to
left of insert

right=${string:$(($i pos - 1))} ## string to
right of insert

_insert string=$left$i string$right ## build new
string

}

insert string()

{
_insert string "S@" && printf "%s\n" "S$ insert string"

}

Examples

$ insert string poplar u 4
popular
$ insert string show ad 3

shadow
$ insert string tail ops ## use default position
topsail

Overlay

To overlay a string on top of another string (replacing, overwriting), the technique is
similar to inserting a string, the difference being that the right side of the string begins not
immediately after the left side but at the length of the overlay further along (Listing 7-8).

Listing 7-8. overlay, Place One String Over the Top of Another

_overlay() #@ USAGE: overlay STRING SUBSTRING START
{ #@ RESULT: in $ OVERLAY
local string=$1
local sub=$2
local start=$3
local left right
left=${string:0:start-1} ## See note below
right=${string:start+S{#sub}-1}
_OVERLAY=$left$Sub$right
}

overlay () #@ USAGE: overlay STRING SUBSTRING START

{
_overlay "S$S@" && printf "$s\n" "S$ OVERLAY"

}

Note The arithmetic within the substring expansion doesn’t need the full POSIX
arithmetic syntax; bash will evaluate an expression if it finds one in the place of an
integer.

Examples

$ {

> overlay pony b 1
> overlay pony u 2
> overlay pony s 3
> overlay pony d 4
>

Trim Unwanted Characters

Variables often arrive with unwanted padding: usually spaces or leading zeroes. These can
easily be removed with a loop and a case statement:

var=" John "
while : ## infinite loop
do

case S$Svar in
' 'x) var=S${var#?} ;; ## if Svar begins with a space
remove it
*' ") var=${vars?} ;; ## if $Svar ends with a space
remove it
*) break ;; ## no more leading or trailing spaces, SO
exit the loop
esac
done

A faster method finds the longest string that doesn’t begin or end with the character to
be trimmed and then removes everything but that from the original string. This is similar
to getting the first or last character from a string, where we used allbutfirst and

allbutlast variables.

If the string is “ John <, the longest string that ends in a character that is not to be
trimmed is “ John®. That is removed, and the spaces at the end are stored in
rightspaces with this:

rightspaces=${var##*[! 1} ## remove everything up to the
last non-space

Then you remove $Srightspaces from $Svar:
var=${var$"S$rightspaces"} ## Svar now contains " John"

Next, you find all the spaces on the left with this:

leftspaces=S${var%s%s[!]*} ## remove from the first non-space
to the end

Remove $1leftspaces from $Svar:
var=${var#"Sleftspaces"} ## Svar now contains "John"

This technique is refined a little for the t r im function (Listing 7-9). Its first argument

is the string to be trimmed. If there is a second argument, that is the character that will be
trimmed from the string. If no character is supplied, it defaults to a space.

Listing 7-9. t rim, Trim Unwanted Characters

_trim() #@ Trim spaces (or character in $2) from $1
{

local trim string

_TRIM=$1

trim string=${ TRIM##*[!S{2:- }]}

_TRIM=${ TRIM%"Strim string"}

trim string=${ TRIM%S[!S${2:- }]*}

_TRIM=${ TRIM#"Strim string"}
}

trim() #@ Trim spaces (or character in $2) from $1 and print
the result
{
_trim "S@" && printf "S$s\n" "S$ TRIM"
}

Examples

$ trim " Spaced out
Spaced out

$ trim "0002367.45000" O
2367.45

Index

The index function converts a month name into its ordinal number; it returns the
position of one string inside another (Listing 7-10). It uses parameter expansion to extract
the string that precedes the substring. The index of the substring is one more than the
length of the extracted string.

Listing 7-10. index, Return Position of One String Inside Another

_index () #@ Store position of $2 in $1 in $ INDEX
{
local idx
case $1 in
"") INDEX=0; return 1 ;;
*NS2"x) #4 extract up to beginning of the matching
portion
1dx=${1%%"S2"*}
the starting position is one more than the
length
_INDEX=S ((S{#idx} + 1)) ;;
*) _INDEX=0; return 1 ;;
esac

index ()

{

_index "S@"

printf "%d\n" "$ INDEX"
}

Listing 7-11 shows the function to convert a month name to a number. It converts the
first three letters of the month name to uppercase and finds its position in the months
string. It divides that position by 4 and adds 1 to get the month number.

Listing 7-11. month2num, Convert a Month Name to Its Ordinal Number

~monthZnum ()

{

local
months=JAN.FEBR.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC

_upword "${1:0:3}" ## take first three letters of $1 and
convert to uppercase

_index "Smonths" "S$ UPWORD" || return 1

_MONTH2NUM=$ (($ INDEX / 4 + 1))

}

month2num ()

{
_month2num "$@" &&

printf "%$s\n" "$ MONTH2NUM"
}

Summary

You learned the following commands and functions in this chapter.

Commands

e tr: Translates characters

Functions

e repeat: Repeats a string until it has length N

e alert: Prints a warning message with a border and a beep

e revstr: Reverses the order of a string; stores result in REVSTR
e to upper: Converts the first character of $1 to uppercase

e upword: Converts a word to uppercase

e validname: Checks $1 for a valid variable or function name

e insert string: Inserts one string into another at a specified
location

e overlay: Places one string over the top of another
e trim: Trims unwanted characters
e index: Returns the position of one string inside another

e month2num: Converts a month name to its ordinal number

Exercises

1. What is wrong with this code (besides the inefficiency noted at the
beginning of the chapter)?

if ! echo ${PATH} |grep -g /usr/games
PATH=$PATH: /usr/games
fi

2. Write a function called to lower that does the opposite of the
to_ upper function in Listing 7-4.

3. Write a function, palindrome, which checks whether its
command-line argument is a palindrome (that is, a word or phrase
that is spelled the same backward and forward). Note that spaces
and punctuation are ignored in the test. Exit successfully if it is a
palindrome. Include an option to print a message as well as set the
return code.

4. Write two functions, 1trim and rtrim, which trim characters in
the same manner as t r im but from only one side of the string, left
and right, respectively.

CHAPTER 8

File Operations and Commands

Because the shell is an interpreted language, it is comparatively slow. Many operations on
files are best done with external commands that implicitly loop over the lines of a file. At
other times, the shell itself is more efficient. This chapter looks at how the shell works
with files — both shell options that modify and extend file name expansion and shell
options that read and modify the contents of files. Several external commands that work
on files are explained, often accompanied by examples of when not to use them.

Some of the scripts in this chapter use an especially prepared file containing the King
James version of the Bible. The file can be downloaded from
http://cfaj.freeshell.org/kjv/kjv.txt. Download it to your home
directory with wget:

wget http://cfaj.freeshell.org/kjv/kjv.txt

In this file, each verse of the Bible is on a single line preceded by the name of the book
and the chapter and verse numbers, all delimited with colons:

Genesis:001:001:In the beginning God created the heaven and
the earth.

Exodus:020:013:Thou shalt not kill.

Exodus:022:018:Thou shalt not suffer a witch to live.
John:011:035:Jesus wept.

The path to the file will be kept in the variable kv, which will be used whenever the
file is needed.

export kjv=S$SHOME/kjv.txt

Reading a File

The most basic method of reading the contents of a file is a whi1e loop with its input
redirected:

while read ## no name supplied so the variable REPLY is
used
do
do something with "SREPLY" here
done < "Skjv"

The file will be stored, one line at a time, in the variable REPLY. More commonly, one

http://cfaj.freeshell.org/kjv/kjv.txt
http://cfaj.freeshell.org/kjv/kjv.txt

or more variable names will be supplied as arguments to read:

while read name phone
do

printf "Name: %-10s\tPhone: %s\n" "Sname" "S$phone"
done < "S$file"

The lines are split using the characters in TFS as word delimiters. If the file contained
in $file contains these two lines:

John 555-1234
Jane 555-7531

the output of the previous snippet will be as follows:

Name: John Phone: 555-1234
Name: Jane Phone: 555-7531

By changing the value of IFS before the read command, other characters can be
used for word splitting. The same script, using only a hyphen in IF'S instead of the default
space, tab, and newline, would produce this:

$ while IFS=- read name phone

> do

> printf "Name: %$-10s\tPhone: %s\n" "Sname" "S$phone"
> done < "$file"

Name: John 555 Phone: 1234

Name: Jane 555 Phone: 7531

Placing an assignment in front of a command causes it to be local to that command
and does not change its value elsewhere in the script.

To read the King James version of the Bible (henceforth referred to as KJV), the field
separator IFS should be set to a colon so that lines can be split into book, chapter, verse,
and text, each being assigned to a separate variable (Listing 8-1).

Listing 8-1. kjvfirsts, Print Book, Chapter, Verse, and First Words from KJV

while IFS=: read book chapter verse text

do
firstword=S{text%%
printf "$s %$s:%s

"Sfirstword"

done < "Skjv"

}

*
%s\n" "Sbook" "Schapter" "Sverse"

The output (with more than 31,000 lines replaced by a single ellipsis) looks like this:

Genesis 001:001 In
Genesis 001:002 And
Genesis 001:003 And

Revelation 022:019 And
Revelation 022:020 He
Revelation 022:021 The

The awk programming language is often used in shell scripts when the shell itself is
too slow (as in this case) or when features not present in the shell are required (for
example, arithmetic using decimal fractions). The language is explained in somewhat
more detail in the following section.

External Commands

You can accomplish many tasks using the shell without calling any external commands.
Some use one or more commands to provide data for a script to process. Other scripts are
best written with nothing but external commands.

Often, the functionality of an external command can be duplicated within the shell,
and sometimes it cannot. Sometimes using the shell is the most efficient method;
sometimes it is the slowest. Here I’ll cover a number of external commands that process
files and show how they are used (and often misused). These are not detailed explanations
of the commands; usually they are an overview with, in most cases, a look at how they are
used — or misused — in shell scripts.

Ccat

One of the most misused commands, cat reads all the files on its command line and
prints their contents to the standard output. If no file names are supplied, cat reads the

standard input. It is an appropriate command when more than one file needs to be read or
when a file needs to be included with the output of other commands:

cat *.txt | tr aeiou AEIOU > upvowel.txt

{

date ## Print the date and time
cat report.txt ## Print the contents of the file
printf "Signed: " ## Print "Signed: " without a newline
whoami ## Print the user's login name

} | mail -s "Here 1s the report" paradigml@example.com

It is not necessary when the file or files could have been placed on the command line:

cat thisfile.txt | head -n 25 > thatfile.txt ## WRONG
head -n 25 thisfile.txt > thatfile.txt ## CORRECT

It is useful when more than one file (or none) needs to be supplied to a command that
cannot take a file name as an argument or can take only a single file, as in redirection. It is
useful when one or more file names may or may not be on the command line. If no files

mailto:paradigm@example.com

are given, the standard input is used:

cat "S@" | while read x; do whatever; done

The same thing can be done using process substitution, the advantage being that
variables modified within the whi1le loop will be visible to the rest of the script. The
disadvantage is that it makes the script less portable.

while read x; do : whatever; done < <(cat "S$S@")

Another frequent misuse of cat is to use the output as a list with for:
for line in $(cat "S$kjv"); do n=$((${n:-0} + 1)); done

That script does not put lines into the 1 ine variable; it reads each word into it. The
value of n will be 795989, which is the number of words in the file. There are 31,102 lines
in the file. (And if you really wanted that information, you would use the wc command.)

head

By default, head prints the first ten lines of each file on the command line, or from the
standard input if no file name is given. The —n option changes that default:

$ head -n 1 "Skjv"
Genesis:001:001:In the beginning God created the heaven and
the earth.

The output of head, like that of any command, can be stored in a variable:
filetop=$(head -n 1 "$kjv")

In that instance, head is unnecessary; this shell one liner does the same thing without
any external command:

read filetop < "S$kjv"

Using head to read one line is especially inefficient when the variable then has to be
split into its constituent parts:

book=${filetop%%:*}
text=S${filetop##*:}

That can be accomplished much more rapidly with read:

$ IFS=: read book chapter verse text < "$kjv"
$ sa "Sbook" "Schapter" "Sverse" "S${text%% *}"
:Genesis:

:001:

:001:

:In:

Even reading multiple lines into variables can be faster using the shell instead of
head:

{

read linel
read line?2
read line3
read line4
}o< "Skjv"

or, you can put the lines into an array:

for n in {1..4}
do

read lines[${#1lines[@]}]
done < "Skjv"

In bash-4. %, the new builtin command mapfile can also be used to populate an
array:

mapfile -tn 4 lines < "S$kjv"

The mapfile command is explained in more detail in Chapter 13.

touch

The default action of touch is to update the timestamp of a file to the current time,
creating an empty file if it doesn’t exist. An argument to the —d option changes the
timestamp to that time rather than the present. It is not necessary to use touch to create a
file. The shell can do it with redirection:

> filename

Even to create multiple files, the shell is faster:

for file in {a..z}S$SRANDOM
do

> "Sfile"
done

Is

Unless used with one or more options, the 1 s command offers little functional advantage

over shell file name expansion. Both list files in alphabetical order. If you want the files
displayed in neat columns across the screen, 1s is useful. If you want to do anything with

those file names, it can be done better, and often more safely, in the shell.

With options, however, it’s a different matter. The -1 option prints more information

about the file, including its permissions, owner, size, and date of modification. The -t
option sorts the files by last modification time, most recent first. The order (whether by
name or by time) is reversed with the —r option.

1s is many times misused in a manner that can break a script. File names containing

spaces are an abomination, but they are so common nowadays that scripts must take their
possibility (or would it be, say, inevitability?) into account. In the following construction
(that is seen all too often), not only is 1 s unnecessary, but its use will break the script if
any file names contain spaces:

for file in $(1ls); do

The result of command substitution is subject to word splitting, so £i1e will be
assigned to each word in a file name if it contains spaces:

$ touch {zzz,xxx,yyy}\ a ## create 3 files with a space in
their names

$ for file in $(ls *\ *); do echo "$file"; done

XXX

a

YYY
a

ZZ27Z

On the other hand, using file name expansion gives the desired (that is, correct)
results:

$ for file in *\ *; do echo "$file"; done
XXX a

YYy a
zzZ a

cut

The cut command extracts portions of a line, specified either by character or by field.

Cut reads from files listed on the command line or from the standard input if no files are
specified. The selection to be printed is done by using one of three options, -b, —c, and -

f, which stand for bytes, characters, and fields. Bytes and characters differ only when

used in locales with multibyte characters. Fields are delimited by a single tab (consecutive
tabs delimit empty fields), but that can be changed with the —d option.

The -c option is followed by one or more character positions. Multiple columns (or
fields when the - option is used) can be expressed by a comma-separated list or by a
range:

$ cut -c 22 "Skjv" | head -n3
=

h

0

$ cut -c 22,24,26 "$kjv" | head -n3
ebg

h a

o a

$ cut -c 22-26 "Skjv" | head -n3

e beg

he ea

od sa

A frequent misuse of cut is to extract a portion of a string. Such manipulations can be

done with shell parameter expansion. Even if it takes two or three steps, it will be much
faster than calling an external command.

$ boys="Brian,Carl,Dennis,Mike,Al"

$ printf "%$s\n" "Sboys" | cut -d, -f3 ## WRONG
Dennis
$ IFS=, ## Better, no external command used

$ boyarray=(Sboys)

$ printf "$s\n" "S{boyarray[2]}"

Dennis

$ temp=S{boys#*,*,} ## Better still, and more portable
$ printf "$s\n" "S{temp%%,*}"

Dennis

WC

To count the number of lines, words, or bytes in a file, use wc. By default, it prints all

three pieces of information in that order followed by the name of the file. If multiple file
names are given on the command line, it prints a line of information for each one and then
the total:

$ we "Skjv" /etc/passwd
31102 795989 4639798 /home/chris/kjv.txt
50 124 2409 /etc/passwd
31152 796113 4642207 total

If there are no files on the command line, cut reads from the standard input:

$ we < "$ij"
31102 795989 4639798

The output can be limited to one or two pieces of information by using the -c, —w, or
-1 option. If any options are used, wc prints only the information requested:

$ we -1 "Skjv"
31102 /home/chris/kjv.txt

Newer versions of wc have another option, —m, which prints the number of characters,
which will be less than the number of bytes if the file contains multibyte characters. The
default output remains the same, however.

As with so many commands, wc is often misused to get information about a string
rather than a file. To get the length of a string held in a variable, use parameter expansion:
${#var}. To get the number of words, use set and the special parameter $#:

set -f
set—Svar
echo S#

To get the number of lines, use this:

IFS=S$'\n'
set -f
set—Svar
echo S#

Regular Expressions

Regular expressions (often called regexes or regexps) are a more powerful form of pattern
matching than file name globbing and can express a much wider range of patterns more
precisely. They range from very simple (a letter or number is a regex that matches itself)
to the mind-bogglingly complex. Long expressions are built with a concatenation of
shorter expressions and, when broken down, are not hard to understand.

There are similarities between regexes and file-globbing patterns: a list of characters
within square brackets matches any of the characters in the list. An asterisk matches zero
or more — not any character as in file expansion — of the preceding character. A dot
matches any character, so . * matches any string of any length, much as an asterisk does

in a globbing pattern.

Three important commands use regular expressions: grep, sed, and awk. The first is

used for searching files, the second for editing files, and the third for almost anything
because it is a complete programming language in its own right.

grep

grep searches files on the command line, or the standard input if no files are given, and
prints lines matching a string or regular expression.

$ grep ':0[57]0:001:" "Skjv" | cut -c -78
Genesis:050:001:And Joseph fell upon his father's face, and
wept upon him, and

Psalms:050:001:The mighty God, even the LORD, hath spoken,
and called the eart

Psalms:070:001:MAKE HASTE, O GOD, TO DELIVER ME; MAKE HASTE
TO HELP ME, O LORD

Isaiah:050:001:Thus saith the LORD, Where is the bill of
your mother's divorce

Jeremiah:050:001:The word that the LORD spake against
Babylon and against the

The shell itself could have done the job:

while read line
do
case $line in
*0[57]0:001:%) printf "%s\n" "${line:0:78}" ;;
esac
done < "Skjv"

but it takes many times longer.

Often grep and other external commands are used to select a small number of lines
from a file and pipe the results to a shell script for further processing:

$ grep 'Psalms:023' "$kjv" |

> A

> total=0

> while IFS=: read book chapter verse text

> do

> set—Stext ## put the verse into the positional
parameters

> total=S$((Stotal + $#)) ## add the number of parameters
> done

> echo S$total

}
118

grep should not be used to check whether one string is contained in another. For that,
there is case or bash’s expression evaluator, [[..]].

sed

For replacing a string or pattern with another string, nothing beats the stream editor sed.
It is also good for pulling a particular line or range of lines from a file. To get the first
three lines of the book of Leviticus and convert the name of the book to uppercase, you’d
use this:

$ sed -n "/Lev.*:001:001/,/Lev.*:001:003/
s/Leviticus/LEVITICUS/p' "Skjv" |

> cut -c -78

LEVITICUS:001:001:And the LORD called unto Moses, and spake

unto him out of th

LEVITICUS:001:002:Speak unto the children of Israel, and say
unto them, If any

LEVITICUS:001:003:If his offering be a burnt sacrifice of
the herd, let him of

The —n option tells sed not to print anything unless specifically told to do so; the
default is to print all lines whether modified or not. The two regexes, enclosed in slashes
and separated by a comma, define a range from the line that matches the first one to the
line that matches the second; s is a command to search and replace and is probably the
one most often used.

When modifying a file, the standard Unix practice is to save the output to a new file
and then move it to the place of the old one if the command is successful:

sed 's/this/that/g' "S$file" > tempfile && mv tempfile
"$file"

Some recent versions of sed have an —1 option that will change the file in situ. If
used, the option should be given a suffix to make a backup copy in case the script mangles
the original irretrievably:

sed -i.bak 's/this/that/g' "$file"

More complicated scripts are possible with sed, but they quickly become very hard to
read. This example is far from the worst I’ve seen, but it takes much more than a glance to
figure out what it is doing. (It searches for Jesus wept and prints lines containing it along
with the lines before and after; you can find a commented version at
http://www.grymoire.com/Unix/Sed.html.)

sed -n '

/Jesus wept/ !/{
h

}

/Jesus wept/ {
N
X
G

<
a\

s/ . *\n.*\n\ (.*\)$/\1/
h
} T "$ij"

As you’ll see shortly, the same program in awk is comparatively easy to understand.

There will be more examples of sed in later chapters, so we’ll move on with the usual
admonishment that external commands should be used on files, not strings. ‘Nuff sed!

http://www.grymoire.com/Unix/Sed.html

awk

awk is a pattern scanning and processing language. An awk script is composed of one or
more condition-action pairs. The condition is applied to each line in the file or files passed
on the command line or to the standard input if no files are given. When the condition
resolves successfully, the corresponding action is performed.

The condition may be a regular expression, a test of a variable, an arithmetic
expression, or anything that produces a non-zero or nonempty result. It may represent a
range by giving two condition separated by a comma; once a line matches the first
condition, the action is performed until a line matches the second condition. For example,
this condition matches input lines 10 to 20 inclusive (NR is a variable that contains the
current line number):

NR == 10, NR == 20

There are two special conditions, BEGIN and END. The action associated with BEGIN
is performed before any lines are read. The END action is performed after all the lines
have been read or another action executes an ex it statement.

The action can be any computation task. It can modify the input line, it can save it in a
variable, it can perform a calculation on it, it can print some or all of the line, and it can do
anything else you can think of.

Either the condition or the action may be missing. If there is no condition, the action is
applied to all lines. If there is no action, matching lines are printed.

Each line is split into fields based on the contents of the variable FS. By default, it is
any whitespace. The fields are numbered: $1, $2, and so on. $0 contains the entire line.
The variable NF contains the number of fields in the line.

In the awk version of the kjvfirsts script, the field separator is changed to a colon
using the —F command-line option (Listing 8-2). There is no condition, so the action is

performed for every line. It splits the fourth field, the verse itself, into words, and then it
prints the first three fields and the first word of the verse.

Listing 8-2. kjvfirsts-awk, Print Book, Chapter, Verse, and First Words from the
KJV

awk -F: ' ## -F: sets the field delimiter to a colon

{

split the fourth field into an array of words

split ($4,words," ")

printf the first three fields and the first word of the
fourth

printf "%s %$s:%s %s\n", $1, $2, $3, words[1l]

FroTSkjv"

To find the shortest verse in the KJV, the next script checks the length of the fourth

field. If it is less than the value of the shortest field seen so far, its length (minus the length
of the name of the book), measured with the 1ength () function, is stored in min, and
the line is stored in verse. At the end, the line stored in verse is printed.

$ awk -F: 'BEGIN { min = 999 } ## set min larger than any
verse length
length ($0) - length($1) < min {
min = length($0) - length($1)
verse = $0
}
END { print verse }' "Skjv"
John:011:035:Jesus wept.

As promised, here is an awk script that searches for a string (in this case, Jesus wept)
and prints it along with the previous and next lines:

awk '/Jesus wept/ {
print previousline
print $0
n =1
next
}
n == 1 {
print $0
print "---"
n =2
}
{
previousline = $0
ProTSkgv"”

To total a column of numbers:

$ printf "$s\n" {12..34} | awk '{ total += $1 }
> END { print total }'
529

This has been a very rudimentary look at awk. There will be a few more awk scripts
later in the book, but for a full understanding, there are various books on awk :

e The AWK Programming Language by the language’s inventors (Alfred
V. Aho, Peter J. Weinberger, and Brian W. Kernighan)
e sed & awk by Dale Dougherty and Arnold Robbins

e Effective awk Programming by Arnold Robbins

Or start with the main page.

File Name Expansion Options

To show you the effects of the various file name expansion options, the sa command
defined in Chapter 4 as well as pr4, a function that prints its arguments in four columns
across the screen will be used. The script sa is implemented as a function, along with
pr4 and have been added to the .bashrc file:

sa ()

{
pre=: post=:
printf "Spres$post\n" "s$@"

The pr4 function prints its argument in four equal columns, truncating any string that
is too long for its allotted space:

pr4 ()
{

calculate column width
local width=$(((S{COLUMNS:-80} - 2) / 4))

Note that braces are necessary on the second $width to
separate it from 's'

local s=%-Swidth.${width}s

printf "$s S$s $s S$s\n" "s@"

There are six shell options that affect the way in which file names are expanded. They
are enabled and disabled with the shopt command using options -s and -u,

respectively:

shopt -s extglob ## enable the extglob option
shopt -u nocaseglob ## disable the nocaseglob option

To demonstrate the various globbing options, we’ll create a directory, cd to it, and put
some empty files in it:

$ mkdir "SHOME/globfest" && cd "SHOME/globfest" || echo
Failed >&2
$ touch {a..f}{0..9}{t..z}SRANDOM .{a..f}{0..9}SRANDOM

This has created 420 files beginning with a letter and 60 beginning with a dot. There
are, for example, 7 files beginning with a1:

$ sa al~*
:altl8345:
:alul8557:

:alv12490:
:alw22008:
:alx6088:

:aly28651:
:alz18318:

nullglob

Normally, when a wildcard pattern doesn’t match any files, the pattern remains the same:

$ sa *xy
XYy

If the nul1glob option is set and there is no match, an empty string is returned:

$ shopt -s nullglob
$ sa *xy

$ shopt -u nullglob ## restore the default behavior

failglob

If the failglob option is set and no files match a wildcard pattern, an error message is
printed:

$ shopt -s failglob

$ sa *xy

bash: no match: *xy

$ shopt -u failglob ## restore the default behavior

dotglob

A wildcard at the beginning of a file name expansion pattern does not match file names
that begin with a dot. These are intended to be “hidden” files and are not matched by
standard file name expansion:

$sa * | wec -1 ## not dot files
420

To match “dot” files, the leading dot must be given explicitly:

$sa .* | we -1 ## dot files; includes . and
62

The touch command at the beginning of this section created 60 dot files. The . *
expansion shows 62 because it includes the hard-linked entries . and . . that are created
in all subdirectories.

The dotglob option causes dot files to be matched just like any other files:

$ shopt -s dotglob
$ printf "%s\n" * | wc -1
480

Expansions of *, with dotglob enabled, do not include the hard links . and . ..

extglob

When extended globbing is turned on with shopt -s extglob, five new file name
expansion operators are added. In each case, the pattern-1ist is a list of pipe-
separated globbing patterns. It is enclosed in parentheses, which are preceded by 2, *, +,
@, or !, for example, + (a[0-2] |34 |2u), ? (john|paul |george|ringo).

To demonstrate extended globbing, remove the existing files in SHOME /globfest,
and create a new set:

$ cd SHOME/globfest

$ rm *

$ touch {john,paul,george,ringo}{john,paul,george, ringo}
{1,2}SRANDOM\

> {john,paul,george,ringo} {1, 2}SRANDOM{,,} {1,2}$RANDOM{,,,}

?(pattern-list)

This pattern-11ist matches zero or one occurrence of the given patterns. For example,

the pattern ? (john |paul) 2 matches john2, paul2, and 2:

$ pr4 ?(john|paul)2*

222844 228151 231909
John214726 7ohn216085 john26
paul220720 paul?231051

*(pattern-list)

This is like the previous form, but it matches zero or more occurrences of the given

patterns; * (john |paul) 2 will match all files matched in the previous example, as well

as those that have either pattern more than once in succession:

pr4 * (john|paul)2*

222844 228151 231909
John214726 John216085 John26
Johnpaul25000

paul218047 praul220720 paul231051
pauljohn221365 paulpaul220101

@(pattern-list)

[\

L. N

The pattern @ (john | paul) 2 matches files that have a single instance of either pattern
followed by a 2:

$ pr4d @ (john|paul)2*
John214726 John216085 Jjohn26
paul220720 paul231051

+(pattern-list)

The pattern + (john | paul) 2 matches files that begin with one or more instances of a
pattern in the list followed by a 2:

$ prd4d +(john|paul)2*

john214726 john216085 john26
Johnpaul25000

raulz218047 paulz220720 paul231051
pauljohn221365 paulpaul220101

I(pattern-list)

The last extended globbing pattern matches anything except one of the given patterns. It
differs from the rest in that each pattern must match the entire file name. The pattern !

(rpl3j) * will not exclude files beginning with r, p, or j (or any others), but the
following pattern will (and will also exclude files beginning with a number):

$ prd4 ! ([Jpr0-91%*)

georgell5425 georgel32443 georgel’/06
george223300 george27803 georgegeorgelo6l2?
georgegeorge28573

georgejohnl18699 georgejohn29502 georgepaull27/721
georgepaul222618

georgeringoll5095 georgeringo227768

Note The explanation given here for the last of these patterns is simplified but should
be enough to cover its use in the vast majority of cases. For a more complete explanation,
see Chapter 9 in From Bash to Z Shell (Apress, 2005).

nocaseglob

When the nocaseglob option is set, lowercase letters match uppercase letters, and vice
versa:

$ cd SHOME/globfest

S rm -rf *

$ touch {{a..d},{A..D}}SRANDOM
$ prd *

A31783
a31882

B31846
b31603

Cl17836
c29437

The default behavior is for a letter to match only those of the same case:

$ prd [ab]l~*

a31882

b31603

The nocaseglob option causes a letter to match both cases:

$ shopt -s nocaseglob

$ prd4 [ab]l~*

A31783

globstar

B31846

a31882

Introduced in bash-4. 0, the globstar option allows the use of ** to descend

recursively into directories and subdirectories looking for matching files. As an example,
create a hierarchy of directories:

$ cd SHOME/globfest

S rm -rf *

$ mkdir -p {ab,ac}SRANDOM/S${RANDOM}{ql,q2}/{z,x}S$ ((SRANDOM

o\°

10 1))

The double asterisk wildcard expands to all the directories:

$ shopt -s globstar

$ prd **
abl1278
abl11278/22190qgl/z7
ab1394/10985q9g2
ab4351
ab4351/23041gl1/x1
ab4424/8752q92/z9
acll393
acll1393/20940gl/z4
acl7926/19435g2
ac23443/5703g2
ac23443/5703g2/z4
achb662

Summary

ab11278/22190qg1l
ab1394
ab1394/1098592 /x5
ab4351/23041q1
ab4424 ab4424/8752q92
acll1393/20940q9l

acl7926

acl7926/1943592/x0 ac23443

ac5662/17958qgl ac5662/17958ql/x4

Many external commands deal with files. In this chapter, the most important ones and
those that are most often misused have been covered. They have not been covered in
detail, and some emphasis has been placed on how to avoid calling them when the shell

can do the same job more efficiently. Basically, it boils down to this: use external
commands to process files, not strings.

Shell Options

nullglob: Returns null string if no files match pattern
failglob: Prints error message if no files match
dotglob: Includes dot files in pattern matching
extglob: Enables extended file name expansion patterns
nocaseglob: Matches files ignoring case differences

globstar: Searches file hierarchy for matching files

External Commands

awk: Is a pattern scanning and processing language

cat: Concatenates files and print on the standard output
cut: Removes sections from each line of one or more files
grep: Prints lines matching a pattern

head: Outputs the first part of one or more files

1s: Lists directory contents

sed: Is a stream editor for filtering and transforming text
touch: Changes file timestamps

wc: Counts lines, words, and characters in one or more files

Exercises

1. Modify the kjvfirsts script: accept a command-line argument

that specifies how many chapters are to be printed.

2. Why are the chapter and verse numbers in kjvfirsts formatted

with $s instead of $d?

3. Write an awk script to find the longest verse in KJV.

CHAPTER 9

Reserved Words and Built-In Commands

There are almost 60 built-in commands and more than 20 reserved words in bash. Some
of them are indispensable, and some are rarely used in scripts. Some are used primarily at
the command line, and some are seldom seen anywhere. Some have been discussed
already, and others will be used extensively in future chapters.

The reserved words (also called keywords) are !, case, coproc, do, done, elif,
else, esac, fi, for, function, if, in, select, then,until, while, {, },
time, [[,and]]. All except coproc, select, and time have been covered earlier in
the book.

In addition to the standard commands, new built-in commands can be dynamically
loaded into the shell at runtime. The bash source code package has more than 20 such

commands ready to be compiled.

Because keywords and built-in commands are part of the shell itself, they execute
much faster than external commands. They do not have to start a new process, and they
have access to, and can change, the shell’s environment.

This chapter looks at some of the more useful reserved words and built-in commands,
examining some in detail and some with a summary; a few are deprecated. Many more are
described elsewhere in the book. For the rest, there is the builtins man page and the

he1lp built-in.

help, Display Information About Built-In
Commands

The help command prints brief information about the usage of built-in commands and
reserved words. With the —s option, it prints a usage synopsis.

Two new options are available with bash-4 . x: —d and —m. The first prints a short,
one-line description of the command; the latter formats the output in the style of a man

page:
$ help -m help

NAME
help - Display information about builtin commands.

SYNOPSIS
help [-dms] [pattern..]

DESCRIPTION
Display information about builtin commands.

Displays brief summaries of builtin commands. If PATTERN
is

specified, gives detailed help on all commands matching
PATTERN,

otherwise the list of help topics is printed.

Options:
-d output short description for each topic
-m display usage in pseudo-manpage format
-s output only a short usage synopsis for each
topic matching
PATTERN

Arguments:
PATTERN Pattern specifying a help topic

Exit Status:
Returns success unless PATTERN is not found or an invalid
option is given.

SEE ALSO
bash (1)

IMPLEMENTATION
GNU bash, version 4.3.30(1)-release (1i686-pc-linux-gnu)
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

The pattern is a globbing pattern, in which * matches any number of any characters
and [..] matches any single character in the enclosed list. Without any wildcard, a trailing
* is assumed:

$ help -d '"*le' tr ## show commands ending in le and
beginning with tr
Shell commands matching keyword '*le, tr'

enable - Enable and disable shell builtins.

mapfile - Read lines from the standard input into an array
variable.

while - Execute commands as long as a test succeeds.

trap - Trap signals and other events.

true - Return a successful result.

http://gnu.org/licenses/gpl.html

time, Print Time Taken for Execution of a
Command

The reserved word, t ime, prints the time it takes for a command to execute. The

command can be a simple or compound command or a pipeline. The default output
appears on three lines, showing the real time, user CPU time, and system CPU time that
was taken by the command:

$ time echo {1..30000} >/dev/null 2>&1

real Om0.175s
user Om0.152s
SYyS Om0.017s

You can modify this output by changing the TTMEFORMAT variable:

$ TIMEFORMAT='%R seconds %P%% CPU usage'
S time echo {1..30000} >/dev/null
0.153 seconds 97.96% CPU usage

The Appendix contains a full description of the TIMEFORMAT variable.

A frequently asked question about the t ime command is, “Why can’t I redirect the
output of t ime?” The answer demonstrates a difference between a reserved word and a

built-in command. When the shell executes a command, the process is strictly defined. A
shell keyword doesn’t have to follow that procedure. In the case of t ime, the entire

command line (with the exception of the keyword itself but including the redirection) is
passed to the shell to execute. When the command has completed, the timing information
is printed.

To redirect the output of t ime, enclose it in braces:

$ { time echo {1..30000} >/dev/null 2>&1 ; } 2> numlisttime
$ cat numlisttime
0.193 seconds 90.95% CPU usage

read, Read a Line from an Input Stream

If read has no arguments, bash reads a line from its standard input stream and stores it
in the variable REPLY. If the input contains a backslash at the end of a line, it and the
following newline are removed, and the next line is read, joining the two lines:

$ printf "$s\n" ' First line \' ! Second line " A
> read

> sa "SREPLY"

>}

First line Second line

Note The braces ({ }) in this and the following snippets create a common subshell for
both the read and sa commands. Without them, read would be in a subshell by itself,

and sa would not see the new value of REPLY (or of any other variable set in the
subshell).

Only one option, -r, is part of the POSIX standard. The many bash options (-a, -d,
-e, -n, -p, -S, —n, —t, —u, and, new to bash-4.x, —1) are part of what makes this
shell work so well for interactive scripts.

-r, Read Backslashes Literally

With the —r option, backslashes are treated literally:

$ printf "$s\n" ' First line\' " Second line "ol A
> read -r
> read line?2
> sa "SREPLY" "Sline2"
>}
First line\:
:Second line:

The second read in that snippet supplies a variable to store the input rather than using
REPLY. As aresult, it applies word splitting to the input, and leading and trailing spaces
are removed. If TFS had been set to an empty string, then spaces would not be used for
word splitting:

$ printf "S$s\n" ' First line\' " Second line "ol A
> read -r
> IFS= read line?2
> sa "SREPLY" "Sline2"
>}
First line\:
Second line

If more than one variable is given on the command line, the first field is stored in the
first variable, and subsequent fields are stored in the following variables. If there are more
fields than variables, the last one stores the remainder of the line:

$ printf "$s\n" "first second third fourth fifth sixth" | {
> read a b ¢ d

> Sa "$a" "$b" "$C" "$d"

>}

:first:

:second:

:third:
:fourth fifth sixth:

-e, Get Input with the readline Library

When at the command line or when using read with the —e option to get input from the
keyboard, the readline library is used. It allows full-line editing. The default editing

style, found in most shells, only allows editing by erasing the character to the left of the
cursor with a backspace.

With -e, a backspace still works, of course, but the cursor can be moved over the

entire line character by character with the arrow keys or with Ctrl-B and Ctrl-N for
backward and forward, respectively. Ctrl-A moves to the beginning of the line, and Ctrl-E
moves to the end.

In addition, other readline commands can be bound to whatever key combinations
you like. I have Ctrl-left arrow bound to backward-word and Ctrl-right arrow to
forward-word. Such bindings can be placed in SHOME/ . inputrc. Mine has entries
for two terminals, rxvt and xterm:

"\eOd": backward-word ## rxvt
"\eOc": forward-word ## rxvt
"\e[1l;5D": backward-word ## xterm
"\e[1l;5C": forward-word ## xterm

To check which code to use in your terminal emulation, press ~V (Ctrl-v) and then the
key combination you want. For example, in xterm, [see ~ [[1; 5D when I press Ctrl-left
arTow.

-a, Read Words into an Array

The -a option assigns the words read to an array, starting at index zero:

$ printf "$s\n" "first second third fourth fifth sixth" | {
> read —-a array

> sa "S{arrayl[0]}"

> sa "S{arrayl[5]}"

>}

:first:

:sixth:

-d DELIM, Read Until DELIM Instead of a Newline

The —d option takes an argument that changes read’s delimiter from a newline to the
first character of that argument:

$ printf "%$s\n" "first second third fourth fifth sixth" | {

> read -d ' nrh' a

> read -d 'nrh' b

> read -d 'rh' c

> read -d 'h' d

> sa "Sa" "Sb" "Sc'" "sd"
>}

:first: ## -4 '
:seco: ## -d n
:d thi: ## -d r
:d fourt: ## -d h

-n NUM, Read a Maximum of NUM Characters

Most frequently used when a single character (for example, y or n) is required, read
returns after reading NUM characters rather than waiting for a newline. It is often used in
conjunction with -s.

-s, Do Not Echo Input Coming from a Terminal

Useful for entering passwords and single-letter responses, the —s option suppresses the
display of the keystrokes entered.

-p PROMPT:, Output PROMPT Without a Trailing
Newline

The following snippet is a typical use of these three options:

read -snl -p "Continue (y/n)? " var
case ${var”} in ## bash 4.x, convert $var to uppercase
Y) ;i
N) printf "\n%s\n" "Good bye."
exit

esac

When run, it looks like this when n or N is entered:

Continue (y/n)?
Good bye.

-t TIMEOUT, Only Wait TIMEOUT Seconds for
Complete Input

The -t option was introduced in bash-2.04 and accepts integers greater than 0 as an
argument. If TTMEOUT seconds pass before a complete line has been entered, read exits
with failure; any characters already entered are left in the input stream for the next
command that reads the standard input.

In bash-4. %, the —t option accepts a value of 0 and returns successfully if there is
input waiting to be read. It also accepts fractional arguments in decimal format:

read -t .1 var ## timeout after one-tenth of a second
read -t 2 var ## timeout after 2 seconds

Setting the variable TMOUT to an integer greater than zero has the same effect as the -
t option. In bash-4 . x, a decimal fraction can also be used:

$ TMOUT=2.5

$ TIMEFORMAT='%R seconds %P%% CPU usage'
$ time read

2.500 seconds 0.00% CPU usage

-u FD: Read from File Descriptor FD Instead of the
Standard Input

The —u option tells bash to read from a file descriptor. Given this file:

First line
Second line
Third line
Fourth line

this script reads from it, alternating between redirection and the —u option, and prints all
four lines:

exec 3<SHOME/txt
read var <&3
echo "Svar"

read -u3 var
echo "Svar"

read var <&3
echo "Svar"

read -u3 var
echo "Svar"

-i TEXT, Use TEXT as the Initial Text for Readline

New to bash-4. x, the -1 option, used in conjunction with the —e option, places text on
the command line for editing.

$ read -ei 'Edit this' -p '==>'
would look like
==> Edit this =

The bash-4 . x script shown in Listing 9-1 loops, showing a spinning busy indicator,
until the user presses a key. It uses four read options: -s, -n, —-p, and -t.

Listing 9-1. spinner, Show Busy Indicator While Waiting for User to Press a Key

spinner="\|/-" ## spinner

chars=1 ## number of characters to
display

delay=.15 ## time in seconds between
characters

prompt="press any key.." ## user prompt
clearline="\e[K" ## clear to end of line (ANSI
terminal)

CR="\r" ## carriage return

loop until user presses a key
until read -snl -tSdelay -p "Sprompt" var

do
printf " %.${chars}s$CR" "$spinner"
temp=S${spinner#?} ## remove first character

from $spinner

spinner=S$temp${spinners"Stemp"} ## and add it to the end
done
printf "$CRSclearline"

Tip If delay is changed to an integer, the script will work in all versions of bash, but
the spinner will be very slow.

eval, Expand Arguments and Execute Resulting
Command

In Chapter 5, the eval built-in was used to get the value of a variable whose name was in
another variable. It accomplished the same task as bash’s variable expansion, ${ ! var}.
What actually happened was that eval expanded the variable inside quotation marks; the

backslashes removed the special meanings of the quotes and the dollar sign so that they
remained the literal characters. The resulting string was then executed:

$ x=yes
$ a=x
$ eval "sa \"\$Sa\"" ## executes: sa "$x"

yes

Other uses of eval include assigning values to a variable whose name is contained in
another variable and obtaining more than one value from a single command.

Poor Man’s Arrays

Before bash had associative arrays (that is, before version 4.0), they could be simulated
with eval. These two functions set and retrieve such values and take them for a test run
(Listing 9-2).

Listing 9-2. var funcs, Emulate Associative Arrays

validname () ## Borrowed from Chapter 7
case $1 in

[la-zA-Z2]* | *[la-zA-Z20-9]*) return 1;;
esac

setvar () #@ DESCRIPTION: assign value to supplied name
{ #Q@ USAGE: setvar varname value

validname "$1" || return 1

eval "S$1=\352"
}

getvar () #@ DESCRIPTION: print value assigned to varname
{ #@ USAGE: getvar varname

validname "S$1" || return 1

eval "printf '$s\n' \"\S${S1}\""
}

echo "Assigning some values"
for n in {1..3}
do
setvar "var Sn" "$n - SRANDOM"
done
echo "Variables assigned; printing values:"
for n in {1..3}
do
getvar "var_ Sn"
done

Here’s a sample result from a run:

Assigning some values

Variables assigned; printing values:
1 - 28538

2 - 22523

3 - 19362

Note the assignment in setvar. Compare it with this:
setvar () { eval "S1=\"$2\""; }

If you substitute this function for the one in var funcs and run the script, the results

look very much the same. What’s the difference? Let’s try it with a different value, using
stripped-down versions of the functions at the command line:

$ {

> setvar () { eval "$1=\$2"; }

> getvar () { eval "printf '$s\n' \"\S{S$S1}\""; }
> n=1

> setvar "gwerty Sn" 'xxx " echo Hello"'
> getvar "gqwerty $n"

>} B

xxx " echo hello"

$ {

> setvar2 () { eval "$1=\"$2\""; }

> setvar?2 "gwerty $Sn" 'xxx " echo Hello"'
>) B

Hello

Hello? Where did that come from? With set -x, you can see exactly what is
happening:

$ set -x ## shell will now print commands and arguments as
they are executed

$ setvar "gwerty $n" 'xxx " echo Hello"'

+ setvar gwerty 1 'xxx " echo Hello"'

+ eval 'gwerty 1=352"

The last line is the important one. There the variable qwerty 1 is set to whatever is
in $2. $2 is not expanded or interpreted in any way; its value is simply assigned to
gwerty 1:

$ setvar2 "gwerty Sn" 'xxx " echo Hello™'
+ setvarZ gwerty 1 'xxx " echo Hello"'

+ eval 'gwerty 1="xxx " echo Hello""'

++ gwerty 1="xxx '

++ echo HelloHello

In this version, $2 is expanded before the assignment and is therefore subject to word
splitting; eval sees an assignment followed by a command. The assignment is made, and

then the command is executed. In this case, the command was harmless, but if the value
had been entered by a user, it could have been something dangerous.

To use eval safely, ensure that the unexpanded variable is presented for assignment
using eval “S$var=\S$value”. If necessary, combine multiple elements into one
variable before using eval:

stringl=something

string2="rm -rf *' ## we do NOT want this to be executed
eval "S$var=\"Example=Sstringl\" $string2" ## WRONG!! Files
gone'!

combo="Example=$stringl S$string2"

eval "Svar=\S$Scombo" ## RIGHT!

The value of the variable whose name is in var is now the same as the contents of
combo, if var was set to xx:

$ printf "%s\n" "Sxx"
Example=something rm -rf *

Setting Multiple Variables from One Command

I have seen many scripts in which several variables are set to components of the date and
time using this command (or something similar):

year=$ (date +%Y)
month=3$ (date +%m)
day=$ (date +3%d)
hour=$ (date +%H)
minute=$ (date +%M)
second=$ (date +%S)

This is inefficient because it calls the date command six times. It could also give the
wrong results. What happens if the script is called a fraction of a second before midnight
and the date changes between setting the month and day? The script was called at 2009-
05-31T23:59:59 (this is the ISO standard format for date and time), but the values
assigned could amount to 2009-05-01T00:00:00. The date that was wanted was 31 May
2009 23:59:59%90r 01 June 2009 00:00:00; what the script got was 1 May
2009 00:00:00. That’s a whole month off!

A better method is to get a single string from date and split it into its parts:

date=$ (date +%Y-%m-%dT%$H:%M:%9)
time=S${date#*T}

date=S${date%T*}
year=S${date%%—-*}
daymonth=S${date#*-}

month=$ {daymonth%-*}
day=${daymonth#*-}
hour=S{time%%:*}

minsec=S{time#*-}
minute=S$S{minsec%-*}
second=S${minsec#*-}

Better still, use eval:

$ eval "$(date "+year=%Y month=%m day=%d hour=%H minute=%M
second=%38")"

The output of the date command is executed by eval:

year=2015 month=04 day=25 hour=22 minute=49second=04

The last two methods use only one call to date, so the variables are all populated

using the same timestamp. They both take about the same amount of time, which is a
fraction of the time of multiple calls to date. The clincher is that the eval method is about
one-third as long as the string-splitting method.

type, Display Information About
Commands

Many people use which to determine the actual command that will be used when one is
executed. There are two problems with that.

The first is that there are at least two versions of which, one of which is a csh script
that doesn’t work well in a Bourne-type shell (thankfully, this version is becoming very
rare). The second problem is that which is an external command, and it cannot know
exactly what the shell will do with any given command. All it does is search the
directories in the PATH variable for an executable with the same name:

$ which echo printf
/bin/echo
/usr/bin/printf

You know that both echo and printf are built-in commands, but which doesn’t
know that. Instead of which, use the shell built-in type:

$ type echo printf sa
echo is a shell builtin
printf is a shell builtin
sa 1s a function
sa ()
{
pre=: post=:;
printf "Spre%sS$Spost\n" "sS@"

When there’s more than one possible command that would be executed for a given
name, they can all be shown by using the —a option:

$ type —-a echo printf
echo is a shell builtin
echo is /bin/echo

printf is a shell builtin
printf is /usr/bin/printf

The -p option limits the search to files and does not give any information about built-

ins, functions, or aliases. If the shell executes the command internally, nothing will be
printed unless the —a option is also given:

$ type -p echo printf sa time ## no output as no files
would be executed

$ type -ap echo printf sa time

/bin/echo

/usr/bin/printf

/usr/jayant/bin/sa

/usr/bin/time

Or you can use -P:

$ type -P echo printf sa time
/bin/echo

/usr/bin/printf
/usr/jayant/bin/sa
/usr/bin/time

The -t option gives a single word for each command, either alias, keyword,
function,builtin, file, or an empty string:

$ type -t echo printf sa time 1s
builtin

builtin

function

keyword

file

The t ype command fails if any of its arguments are not found.

builtin, Execute a Built-In Command

The argument to builtin is a shell built-in command that will be called rather than a

function with the same name. It prevents the function from calling itself and calling itself
ad nauseam:

cd() #@ DESCRIPTION: change directory and display 10 most
recent files

{ #Q@ USAGE: cd DIR
builtin cd "$Q@" || return 1 ## don't call function
recursively

ls -t | head
}

command, Execute a Command or Display
Information About Commands

With -v or -V, display information about a command. Without options, call the command
from an external file rather than a function.

pwd, Print the Current Working Directory

pwd prints the absolute pathname of the current directory. With the —P option, it prints the
physical location with no symbolic links:

$ 1s -1d $HOME/Book ## Directory is a symbolic link
lrwxrwxrwx 1 Jjayant jayant 10 Apr 25 2015
/home/jayant/Book -> work/Cook

$ cd SHOME/Book

$ pwd ## Include symbolic links
/home/jayant/Book

$ pwd -P ## Print physical location with no
links

/home/jayant/work/Book

unalias, Remove One or More Aliases

In my ~/.bashrc file, have unalias -a toremove all aliases. Some GNU/Linux
distributions make the dangerous mistake of defining aliases that replace standard
commands.

One of the worst examples is the redefinition of rm (remove files or directories) to rm
-1. If a person, used to being prompted before a file is removed, puts rm * (for example)
in a script, all the files will be gone without any prompting. Aliases are not exported and,
by default, not run in shell scripts, even if defined.

Deprecated Built-Ins

I don’t recommend using the following deprecated built-in commands:

e alias: Defines an alias. As the bash man page says, “For almost
every purpose, aliases are superseded by shell functions.”

e let: Evaluates arithmetic expressions. Use the POSIX syntax $ ((
expression)) instead.

e select: An inflexible menuing command. Much better menus can
be written easily with the shell.

e typeset: Declares a variable’s attributes and, in a function, restricts
a variable’s scope to that function and its children. Use 1ocal to
restrict a variable’s scope to a function, and use declare to set any
other attributes (if necessary).

Dynamically L.oadable Built-Ins

Bash can load new built-in commands at runtime if or when needed. The bash source
package has a directory full of examples ready to be compiled. To do that, download the
source from ftp://ftp.cwru.edu/pub/bash/. Unpack the tarball, cd into the top
level directory, and run the configure script:

version=4.3 ## or use your bash version

wget ftp://ftp.cwru.edu/pub/bash/bash-$version.tar.gz
gunzip bash-Sversion.tar.gz

tar xf bash-$version.tar

cd bash-$version

./configure

Note It would be recommended to use 4.3 as the version since it is the current version
and has bug fixes for vulnerabilitites that were found in earlier versions.

Think of dynamically loadable built-ins as cutom libraries of commands that are written in
C and available as compiled binaries. These can also be shared with others in the compiled
form. When loaded they provide new command or commands that were originally not
available in Bash. These work like native Bash commands than external scripts or
programs.

The configure script creates makefiles throughout the source tree, including one in
examples/loadables. In that directory are the source files for built-in versions of a
number of standard commands, as the README file says, “whose execution time is
dominated by process startup time.” You can cd into that directory and run make:

cd examples/loadables
make

You’ll now have a number of commands ready to load into your shell. These include
the following:

logname tee head mkdir rmdir uname
1n cat id whoami

There are also some useful new commands:

print ## Compatible with the ksh print command
finfo ## Print file information
strftime ## Format date and time

These built-ins can be loaded into a running shell with the following command:

enable -f filename built-in—-name

The files include documentation, and the he1p command can be used with them, just
as with other built-in commands:

$ enable -f ./strftime strftime
$ help strftime
strftime: strftime format [seconds]

Converts date and time format to a string and displays it
on the

standard output. If the optional second argument is
supplied, it

is used as the number of seconds since the epoch to use
in the

conversion, otherwise the current time is used.

For information on writing dynamically loadable built-in commands, see this article at
http://shell.cfajohnson.com/articles/dynamically-loadable/.

Summary

You learned about the following commands in this chapter.

Commands and Reserved Words

e builtin: Executes a built-in command

e command: Executes an external command or print information about
a command

e ecval: Executes arguments as a shell command

e help: Displays information about built-in commands

e pwd: Prints the current working directory

e read: Reads a line from the standard input and splits it into fields

e time: Reports time consumed by pipeline’s execution

http://shell.cfajohnson.com/articles/dynamically-loadable/

e type: Displays information about command type

Deprecated Commands

e alias: Defines or display aliases
e let: Evaluates arithmetic expressions
e select: Selects words from a list and execute commands

e typeset: Sets variable values and attributes

Exercise

Write a script that stores the time it takes a command (your choice of command) to run in
three variables, real, user, and system, corresponding to the three default times that
time prints.

CHAPTER 10

Writing Bug-Free Scripts and Debugging
the Rest

The programmer who has never written a buggy program is a figment of someone’s
imagination. Bugs are the bane of a programmer’s existence. They range from simple
typing errors to bad coding to faulty logic. Some are easily fixed; others can take hours of
hunting.

At one end of the spectrum are the syntax errors that prevent a script from completing
or running at all. These may involve a missing character: a space, a bracket or brace, a
quotation mark. It may be a mistyped command or variable name. It may be a missing
keyword, such as then after e11f.

At the other end of the spectrum are the errors in logic. It may be counting from 1
when you should have started at 0, or it may be using —gt (greater than) when it should
have been —ge (greater than or equal to). It may be a faulty formula (isn’t Fahrenheit to
Celsius (F - 32) * 1.87?)or using the wrong field in a data record (I thought the
shell was field 5in /etc/passwdl).

In between the extremes, common errors include trying to operate on the wrong type
of data (either the program itself supplied the wrong data or an external source did) and
failing to check that a command succeeds before proceeding to the next step.

This chapter looks at various techniques to get a program doing what it is supposed to
do, including the various shell options for checking and following a script’s progress,
strategically placing debugging instructions, and, most important, preventing bugs in the
first place.

Prevention Is Better Than Cure

It is far better to avoid introducing bugs than to remove them. There’s no way to guarantee
bug-free scripts, but a number of precautions can reduce the frequency of bugs
considerably. Making your code easy to read helps. So does documenting it, so that you
know what it’s for, what it expects, what results it produces, and so on.

Structure Your Programs

The term structured programming is applied to various programming paradigms, but they
all involve modular programming—breaking the problem down into manageable parts. In
developing a large application with the shell, this means either functions, separate scripts,

or a combination of both.
Even a short program can benefit from some structure; it should contain discrete
sections:
e Comments
¢ Initialization of variables
¢ Function definitions

e Runtime configuration (parse options, read configuration file, and so
on)

e Sanity check (are all values reasonable?)
e Process information (calculate, slice and dice lines, I/0O, and so on)
Using this outline, all the components of a short but complete script are presented in

the following sections. There are errors in the scripts provided; these will be found and
corrected using various debugging techniques.

Comments

The comments should include metadata about the script, including a description, a
synopsis of how to call the command or function, author, date of creation, date of last
revision, version number, options, and any other information that is needed in order to run
the command successfully, as in the following examples:

Title: wfe - List words ending with PATTERN
#: Synopsis: wfe [-c|-h|-v] REGEX

i Date: 2009-04-13

i Version: 1.0

i Author: Chris F.A. Johnson

¥ Options: -c - Include compound words

i -h - Print usage information

¥l -v - Print version number

The # : is used to introduce these comments so that grep ‘"#:’ wfe will extract
all the metadata.

Initialization of Variables

First, define some variables containing metadata. There will be some duplication with the
previous comments, but these variables may be needed later:

Script metadata

scriptname=${0##*/}

description="List words ending with REGEX"
usage="S$scriptname [-c|-h]|-v] REGEX"

date of creation=2009-04-13

version=1.0
author="Chris F.A. Johnson"

Then define the default values, file locations, and other information needed by this
script:

File locations

dict=$SHOME
wordfile=$dict/singlewords
conpoundfile=$dict/Compounds

Default is not to show compound words
compounds=

Regular expression supplied on the command line
pattern=$1

Function Definitions

There are three functions that are part of the original author’s scripts (apart from quick-
and-dirty one-offs). They are die, usage, and version; they may be included in the
script itself or in a function library sourced by the script. They haven’t been included in
the scripts for this book; that would be unnecessarily repetitive. Examples of these are:

Function definitions
die () #@ DESCRIPTION: print error message and exit with
supplied return code
{ #@ USAGE: die STATUS [MESSAGE]
error=351
shift
[-n "$*"] prlntf n%s\nn "$*" >&2
exit "Serror"

}

usage () #@ DESCRIPTION: print usage information
{ #@ USAGE: usage
#@ REQUIRES: variable defined: S$scriptname
printf "%s - %s\n" "S$scriptname" "Sdescription"
printf "USAGE: %s\n" "Susage"
}

version () #@ DESCRIPTION: print version information
{ #Q@ USAGE: version
#Q@ REQUIRES: variables defined: $scriptname, S$author
and Sversion
printf "%s version %s\n" "Sscriptname" "Sversion"
printf "by %s, %d\n" "Sauthor" "S${date of creation%%-*"

}

Any other functions will follow right after these generic functions.

Runtime Configuration and Options

Chapter 12 will provide an in-depth look at runtime configuration and the different
methods that can be used. Much of the time, all you need to do is parse the command-line
options:

parse command-line options, -c, -h, and -v
while getopts chv var
do
case S$Svar in
c) compounds=$compoundfile ;;
h) usage; exit ;;
v) version; exit ;;
esac
done
shift $((SOPTIND - 1))

Process Information

As is often the case in a short script, the actual work of the script is relatively short; setting
up parameters and checking the validity of data take up the greater part of the program:

Search Swordfile and S$compounds if it is defined

{

cat "Swordfile"
if [-n "Scompounds"]
then
cut -f1 "Scompounds"
fi
} | grep -i ".SregexS" |
sort —-fu ## Case-insensitive sort; remove duplicates

Here, cat is necessary because the second file, whose location is stored in the
compounds variable, cannot be given as an argument to grep because it is more than a
list of words. The file has three tab-separated fields: the phrase with spaces and other
nonalpha characters is removed and the following letter is capitalized, the original phrase,
and the lengths as they would appear in a cryptic crossword puzzle:

corkScrew cork—-screw (4-5)
groundCrew ground crew (6,4)
haveAScrewlLoose have a screw loose (4,1,5,5)

If it were a simple word list, like singlewords, the pipeline could have been
replaced by a simple command:

grep -1 ".Sregex$" "Swordfile" ${compounds:+"Scompounds"}

The grep command searches the files given on the command line for lines that match
a regular expression. The —1i option tells grep to consider uppercase and lowercase
letters as equivalent.

Document Your Code

Chris Johnson, the first Author of this book mentioned,

Until fairly recently, my own documentation habits left a lot to be desired. In my
scripts directory, I have more than 900 programs written over the past 15 years
or thereabout. There are more than 90 function libraries. About 20 scripts are
called by cron, and a dozen more are called by those scripts. There are probably
about 100 scripts that I use regularly, with “regularly” being anything from
several times a day to once or twice a year.

The rest are scripts under development, abandoned scripts, scripts that didn’t
work out, and scripts that I no longer have any idea what they are for. I don’t
know what they are for because I didn't include any documentation, not even a
one-line description. I don’t know whether they work, whether I decided I didn’t
really need that script, or anything about them.

For many of them, I can tell what they do from their name. In others, the code is
straightforward, and the purpose is obvious. But there are still many scripts
whose purpose I don’t know. Some of them I will probably end up duplicating
when 1 need that task again. When I do, they’ll have at least minimal
documentation.

The story is the same with many developers, especially with code snippets. There are
software that help you organise your code snippets, but nothing beats documentation and
adding notes, TODO, etc that can be searched on.

Format Your Code Consistently

There are various models for pretty printing code, and some people are quite vociferous in
their defense of a particular style. I have my own preference (which you’ll have noticed
from the scripts in this book), but consistency is more important than the indentations
being two, four, or six spaces per level. That there is indentation is more important than
the amount of it. I would say that two spaces (which is what I use) is the minimum and
that eight is the outside limit, if not too much.

Similarly, it doesn’t matter whether you have then on the same line as i f or not.
Either of these is fine:

if ["Svar" = "yes"]; then
echo "Proceeding"

fi

if ["$var" — "yeS"]

then

echo "Proceeding"
fi

The same goes for other loops and function definitions. I prefer this format:

funcname ()
{
body here

}
Others like this format:

funcname () {
body here

}

As long as the formatting is consistent and makes the structure clear, it doesn’t matter
which format you use.

The K.I.S.S. Principle

Simplicity aids in understanding the intent of your program, but it’s not just keeping code
as short as possible that counts. When someone posted the following question below, my
first thought was, “That will be a complicated regex.” My second was that I wouldn’t use
a regular expression:

I need a regular expression to express financial quantities in
American notation. They have a leading dollar sign and an optional
string of asterisks, a string of decimal digits, and a fractional part
consisting of a decimal point (.) and two decimal digits. The string
to the left of the decimal point could be a single zero. Otherwise, it
must not start with a zero. If there are more than three digits to the
left of the decimal point, groups of three must be separated by
commas. Example: $**2,345.67.

I’d break the task into discrete steps and code each one separately. For example, the
first check would be:

amount="'$**2,345.67"
case Samount in
\S[*0-91*) ;; ## OK (dollar sign followed by asterisks or
digits), do nothing
*) exit 1 ;;
esac
By the time the tests are finished, there will be a lot more code than there would be in

a regular expression, but it will be easier to understand and to change if the requirements
change.

Grouping Commands

Rather than redirect each of several lines, group them with braces and use a single
redirection. I saw this in a forum recently:

echo "user odad odd" > ftp.txt
echo "prompt" >> ftp.txt

echo "cd $i" >> ftp.txt

echo "1ls -1tr" >> ftp.txt

echo "bye" >> ftp.txt

I would recommend this instead:

echo "user odad odd"
echo "prompt"
echo "cd $i"
echo "ls -1tr"
echo "bye"
} > ftp.txt

Test as You Go

Rather than save all the debugging until the end, it should be an integral part of the
process of developing a program. Each section should be tested as it is written. As an
example, let’s look at a function I wrote as part of a chess program. No, it’s not a chess-
playing program (though it could be when it’s completed); that would be excruciatingly
slow in the shell. It’s a set of functions for preparing instructional material.

It needs to be able to convert one form of chess notation to another and to list all
possible moves for any piece on the board. It needs to be able to tell whether a move is
legal and to create a new board position after a move has been made. At its most basic
level, it has to be able to convert a square in standard algebraic notation (SAN) to its
numeric rank and file. That’s what this function does.

The SAN format for naming a square is a lowercase letter representing the file and a
number representing the rank. Files are rows of squares from white’s side of the board to
black’s. Ranks are rows of squares from left to right. The square in white’s left-hand
corner is al; that in black’s is h8. To calculate possible moves, these need to be converted
to the rank and file: a1 is converted to rank=1 and file=1; h8 becomes rank=8 and
file=8.

It’s a simple function, but it demonstrates how to test a function. The function receives
the name of a square as an argument and stores the rank and file in those variables. If the
square is not valid, it sets both rank and file to O and returns an error:

split square() #@ DESCRIPTION: convert SAN square to numeric
rank and file

{ #Q@ USAGE: split square SAN-SQUARE
local square=$S1
rank=${square#?}
case $square in

al[l-8]) file=1;; ## Conversion of file to number
b[1-8]) file=2;; ## and checking that the rank is
c[1-8]) file=3;; ## a valid number are done in a
d[1-8]) file=4;; ## single look-up
e[1l-8]) file=b5;;
f[1-8]) file=6;; ## If the rank is not wvalid,
g[l-8]) file=7;; ## it falls through to the default
h[1-8]) file=8;;
*)y file=0

rank=0

return 1 ## Not a valid square

esac

return O

To test this function, it is passed all possible legitimate squares as well as some that are
not. It prints the name of the square and the file and rank numbers:

test split square()
{
local f «r
for £ in {a..i}
do
for r in {1..9}
do
split square "SfSr"
printf "$fSr %d-%d " "S$file" "Srank"
done
echo
done

When the test is run, the output is as follows:

al 1-1 a2 1-2 a3 1-3 a4 1-4 a5 1-5 a6 1-6 a7 1-7 a8
1-8 a9 0-0
bl 2-1 b2 2-2 b3 2-3 b4 2-4 b5 2-5 b6 2-6 Db7 2-7 D8
2-8 b9 0-0
cl 3-1 c¢2 3-2 ¢3 3-3 c4 3-4 ¢c5 3-5 c¢c6 3-6 c7 3-7 c8
3-8 ¢9 0-0
dl 4-1 d2 4-2 d3 4-3 d4 4-4 d5 4-5 do 4-6 d7 4-7 d8
4-8 d9 0-0

el 5-1 e2 5-2 e3 5-3 e4d 5-4 e5 5-5 e6 5-6 e7 5-7 e8
5-8 e9 0-0
fl 6-1 f£f2 6-2 £f3 6-3 f4 6-4 £f5 6-5 f6 o6-6 f£7 6-7 £8
6-8 £9 0-0
gl 7-1 g2 7-2 g3 7-3 g4 7-4 g5 7-5 g6 7-6 g7 7-7 g8
7-8 g9 0-0
hl 8-1 h2 8-2 h3 8-3 h4 8-4 h5 8-5 ho6 8-6 h7 8-7 h8
8-8 h9 0-0
il 0-0 i2 0-0 13 0-0 i4 0-0 i5 0-0 16 0-0 4i7 0-0 18
0-0 19 0-0

All squares with the rank and file 0-0 are invalid.

Debugging a Script

In the wfe script, which was presented section by section earlier, there are a few bugs.
Let’s run that script and see what happens. The script is in $SHOME /bin, which is in your
PATH, and it can therefore be called by its name alone. Before that, however, a good first
step is to check the script with the —n option. This tests for any syntax errors without
actually executing the code:

$ bash -n wfe

/home/jayant/bin/wfe-sh: wfe: line 70: unexpected EOF while
looking for matching '"'

/home/jayant/bin/wfe-sh: wfe: line 72: syntax error:
unexpected end of file

The error message says that there’s a missing quotation mark (”). It has reached the

end of the file without finding it. That means it could be missing anywhere in the file.
After a quick (or not-so-quick) glance through the file, it’s not apparent where it should
be.

When that happens, I start removing sections from the bottom of the file until the error
disappears. I remove the last section; it’s still there. I remove the option parsing, and the
error hasn’t disappeared. I remove the last function definition, version (), and the error

has gone. The error must be in that function; where is it?

version () #@ DESCRIPTION: print script's version information
{ #@ USAGE: version

#Q@ REQUIRES: variables defined: S$scriptname, S$Sauthor
and Sversion

printf "%s version %s\n" "Sscriptname" "Sversion"
printf "by %s, %d\n" "Sauthor" "S${date of creation%%-*"

}

There are no mismatched quotations marks, so some other closing character must be

missing and causing the problem. After a quick look, I see that the last variable expansion
is missing a closing brace. Fixed, it becomes “$ {date of creation%%-*}".
Another check with -n, and it gets a clean bill of health. Now it’s time to run it:

$ wfe
bash: /home/jayant/bin/wfe: Permission denied

Oops! We forgot to make the script executable. This doesn’t usually happen with a
main script; it happens more often with scripts that are called by another script. Change
the permissions and try again:

$ chmod +x /home/jayant/bin/wfe
$ wfe
cat: /home/jayant/singlewords: No such file or directory

Have you downloaded the two files, singlewords and Compounds? If so, where
did you put them? In the script, they are declared to be in $dict, which is defined as
SHOME. If you put them somewhere else, such as in a subdirectory named words, change
that line in the script. Let’s make a directory, words, and put them in there:

mkdir S$HOME/words &&

cd SHOME/words &&

wget http://cfaj.freeshell.org/wordfinder/singlewords &&
wget http://cfaj.freeshell.org/wordfinder/Compounds

In the script, change the assignment of dict to reflect the actual location of these
files:

dict=SHOME/words
Let’s try again:

$ wfe
a
aa
Aachen
aalii
aardvark

. 183,758 words skipped...
zymotic
zymotically
Zymurqgy
Zyrian
zythum

We forgot to tell the program what we are searching for. The script ought to have
checked that an argument was supplied, but we forgot to include a sanity check section.
Add that before the search is done (after the line shift $(($SOPTIND - 1))):

http://cfaj.freeshell.org/wordfinder/singlewords
http://cfaj.freeshell.org/wordfinder/Compounds

Check that user entered a search term
if [-z "Spattern"]
then
{
echo "Search term missing"
usage
b >&2
exit 1
fi

Now, try again:

$ wfe

Search term missing

wfe - List words ending with REGEX
USAGE: wfe [-c|-h|-v] REGEX

That’s better. Now let’s really look for some words:

$ wfe drow
a
aa
Aachen
aalii
aardvark

. 183,758 words skipped...
zymotic
zymotically
Zymurgy
Zyrian
zythum

There’s still something wrong.

One of the most useful debugging tools is set -x, which prints each command with
its expanded arguments as it is executed. Each line is preceded by the value of the PS4
variable. The default value of PS4 is “+ ”; we’ll change it to include the number of the
line being executed. Put these two lines before the final section of the script:

export PS4='+ SLINENO: ' ## single quotes prevent S$SLINENO

being expanded immediately
set -x

and try again:

$ wfe drow

+4+ 77: cat /home/jayant/singlewords
++ 82: grep -1 '.S$'

++ 83: sort -fu

++ 78: '"['" -n '"'" ']'" ## Ctrl-C pressed to stop entire word
list being printed

On line 82, you see that the pattern entered on the command line is missing. How did
that happen? It should be grep -1 ‘.drow$’. Line 82 in the script should be as
follows:

} | grep -i ".SregexS$" |

What happened to the value of regex? Comment out set -x, and add the set -u

option at the top of the script. This option treats unset variables as an error when they are
expanded. Run the script again to check whether regex is set:

$ wfe drow
/home/jayant/bin/wfe: line 84: regex: unbound variable

Why is regex unset? Take a look at the earlier script and see which variable was used
to hold the command-line argument. Oh! It was pattern, not regex. You have to be
consistent, and regex is a better description of its contents, so let’s use that. Change all
instances of pattern to regex. You should do it in the comments at the top, as well.
Now try it:

$ wfe drow
windrow

Success! Now add compound words and phrases to the mix with the —c option:

$ wfe -c drow
/home/jayant/bin/wfe: line 58: compoundfile: unbound
variable

Here we go again! Surely we assigned the Compounds file in the file locations
section. Take a look; yes, it’s there on line 23 or thereabout. Wait a minute, there’s a typo:
conpoundfile=$dict/Compounds. Change con to com. Keep your fingers
crossed:

$ wfe -c drow

S

What? Nothing? Not even windrow? It’s time to set -x and see what’s going on.
Uncomment that line, and play it again:

$ wfe -c drow
+4+ 79: cat /home/jayant/singlewords

++ 84: grep -1 '.-c$'
++ 85: sort -fu
+4+ 80: '[' -n /home/jayant/Compounds ']

+4+ 82: cut -fl1 /home/jayant/Compounds

At least that’s easy to figure out. We assigned regex before processing the options,
and it snarfed the first argument, the —c option. Move the assignment down to after the
getopts section, specifically, to after the shift command. (And you’ll probably want
to comment out set -x.):

shift $(($OPTIND - 1))
Regular expression supplied on the command line
regex=51

Are there any more issues?

$ wfe -c drow
skidRow
windrow

That looks good. It might seem like a lot of work for a small script, but it seems longer
in the telling than in the doing, especially once you get used to doing it—or, better still,
getting it right in the first place.

Summary

Bugs are inevitable, but with care, most can be prevented. When they do materialize, there
are shell options to help trace the problem.

Exercises

1. Whatis wrong with if [S$var=x]? What should it be? Why
does it give the result it does?

2. Write a function, valid square (), that returns successfully if
its sole argument is a valid SAN chessboard square or fails if it is
not. Write a function to test whether it works.

CHAPTER 11

Programming for the Command Line

This book is about programming with the shell, not about using it at the command line.
You will not find information here about editing the command line, creating a command
prompt (the PS1 variable), or retrieving commands from your interactive history. This

chapter is about scripts that will mostly be useful at the command line rather than in other
scripts.

Many of the scripts presented in this chapter are shell functions. Some of them have to
be that way because they change the environment. Others are functions because they are
used often and are quicker that way. Others are both functions and standalone scripts.

Manipulating the Directory Stack

The cd command remembers the previous working directory, and cd - will return to it.

There is another command that will change the directory and remember an unlimited
number of directories: pushd. The directories are stored in an array, DIRSTACK. To

return to a previous directory, popd pulls the top entry off DTRSTACK and makes that the
current directory. I use two functions that make handling DTIRSTACK easier, and I've
added a third one here just for the sake of completeness.

Note The names of some of the functions that are created in this chapter are similar to
the commands available in Bash. The reason for this is to use your existing shell scripts
without making any changes to them and still availing of some additional functionality.

cd

The cd function replaces the built-in command of the same name. The function uses the
built-in command pushd to change the directory and store the new directory on
DIRSTACK. If no directory is given, pushd uses $SHOME. If changing the directory fails,
cd prints an error message, and the function returns with a failing exit code (Listing 11-1).

Listing 11-1. cd, Change Directory, Saving Location on the Directory Stack

cd() #@ Change directory, storing new directory on DIRSTACK
{

local dir error ## variables for directory and
return code

while : ## ignore all options

do
case S1 in
--) break ;;
-*) shift ;;
*) break ;;
esac
done

dir=51

if [-n "Sdir"] ## if a $dir is not empty
then
pushd "s$dir" ## change directory
else
pushd "SHOME" ## go HOME if nothing on the
command line
fi 2>/dev/null ## error message should come from
cd, not pushd

error=$? ## store pushd's exit code
if [$error -ne 0] ## failed, print error message
then
builtin cd "$dir" ## let the builtin cd provide the
error message
fi
return "Serror" ## leave with pushd's exit code

} > /dev/null

The standard output is redirected to the bit bucket because pushd prints the contents
of DTIRSTACK, and the only other output is sent to standard error (>&2).

Note A replacement for a standard command such as cd should accept anything that
the original accepts. In the case of cd, the options —-L and —P are accepted, even though
they are ignored. That said, I do sometimes ignore options without even making
provisions for them, especially if they are ones I never use.

pd

The pd function is here for the sake of completeness (Listing 11-2). It is a lazy man’s way
of calling popd; I don’t use it.

Listing 11-2. pd, Return to Previous Directory with popd

} >/dev/null ### for the same reason as cd

cdm

The reason I don’t use pd isn’t because I’m not lazy. Far from it, but I prefer to leave
DIRSTACK intact so I can move back and forth between directories. For that reason, I use
a menu that presents all the directories in DTRSTACK.

The cdm function sets the input field separator (IFS) to a single newline (NL or LF)
to ensure that the output of the di rs built-in command keeps file names together after
word splitting (Listing 11-3). File names containing a newline would still cause problems;
names with spaces are an annoyance, but names with newlines are an abomination.

The function loops through the names in DIRSTACK (for dir in $(dirs -1
-p)), adding each one to an array, i tem, unless it is already there. This array is then used
as the argument to the menu function (discussed below), which must be sourced before
cdm can be used.

DIRS BUILT-IN COMMAND

The dirs built-in command lists the directories in the DTRSTACK array. By default, it
lists them on a single line with the value of HOME represented by a tilde. The -1 option
expands ~ to SHOME, and —p prints the directories, one per line.

Listing 11-3. cdm, Select New Directory from a Menu of Those Already Visited

cdm () #@ select new directory from a menu of those already
visited
{

local dir IFS=$'\n' item

for dir in $(dirs -1 -p) ## loop through
diretories in DIRSTACK[@]
do
["$Sdir" = "SPWD"] && continue ## skip current
directory
case S${item[*]} in
"Sdir:") ;; ## Sdir already in
array; do nothing
*) itemt+=("S$dir:cd 'S$dir'") ;; ## add $dir to array
esac
done
menu "S${item[@]}" Quit: ## pass array to menu
function

}

When run, the menu looks like this:

S cdm

1. /public/music/magnatune.com
2. /public/video
3. /home/jayant
4. /home/jayant/tmp/qwe rty uio p
5. /home/jayant/tmp
6. Quit
(1 to 6) ==>
menu

The calling syntax for the menu function comes from 9menu, which was part of the Plan

9 operating system. Each argument contains two colon-separated fields: the item to be
displayed and the command to be executed. If there is no colon in an argument, it is used
both as the display and as the command:

S menu who date "df:df ."

1. who
2. date
3. df
(1 to 3) ==> 3
Filesystem 1K-blocks Used Available Use%
Mounted on
/dev/hdab 48070472 43616892 2011704 96%
/home

S menu who date "df: df ."

1. who
2. date
3. df
(1 to 3) ==>1
Jayant tty8 Jun 18 14:00 (:1)
Jayant tty2 Jun 21 18:10

A for loop numbers and prints the menu; read gets the response; and a case
statement checks for the exit characters g, Q, or 0 in the response. Finally, indirect
expansion retrieves the selected item, further expansion extracts the command, and eval
executes it: eval “S${!num#*:}” (Listing 11-4).

Listing 11-4. menu, Print Menu, and Execute-Associated Command

menu ()

{

local IFS=$' \t\n' ## Use default
setting of IFS

local num n=1 opt item cmd

echo

Loop though the command-line arguments
for item

do
printf " %3d. %$s\n" "Sn" "S{item%%:*}"
n=s$((Sn + 1))

done

echo

If there are fewer than 10 items, set option to accept
key without ENTER
if [$# -1t 10]
then
opt=-snl
else
opt=
fi
read -p " (1 to $#) ==> " Sopt num ## Get response
from user

Check that user entry is valid
case Snum in

[gQ0] | "") return ;; ## g, Q or 0 or
"" exits
[10=9]1 | 0%*) ## invalid entry
printf "\aInvalid response: %$s\n" "$Snum" >&2
return 1
esac
echo
if ["Snum" -le "S#"] ## Check that number is <= to the
number of menu items
then
eval "S{!num#*:}" ## Execute i1t using indirect
expansion
else
printf "\alInvalid response: $s\n" "Snum" >&2

return 1
fi

Filesystem Functions

These functions vary from laziness (giving a short name to a longer command) to adding
functionality to standard commands (cp and mv) . They list, copy, or move files or create
directories.

1

There is no single-letter command required by the POSIX specification, and there is only
one that is found on most Unixes: w, which shows who is logged on and what they are
doing. I have defined a number of single-letter functions:

e a: Lists the currently playing music track

e c: Clears the screen (sometimes quicker or easier than 1)

d: The date “+%A,
(SH:5M:%3)”

o\°

-d 3B %Y

o\°

-T:3M:%S %P

k: Is equivalent to man -k, or apropos

t: For the Amiga and MS-DOS command type, invokes 1ess

v and V: Lowers and raises the sound volume, respectively

e x: Logout

And there’s the one I use most that pipes a long file listing through 1ess, as shown in
Listing 11-5.

Listing 11-5. 1, List Files in Long Format, Piped Through less

10)
{

ls -1A "$@" | less ## the -A option is specific to
GNU and *BSD versions

}

Isr

The commands I use most frequently are 1, cd, xx.sh, cdm, and 1sr; xx . sh is a file
for throwaway scripts. I keep adding new ones to the top; 1sr displays the most recent
files (or with the —o option, the oldest files). The default setting is for ten files to be
shown, but that can be changed with the —n option.

The script in Listing 11-6 uses the —t (or —tr) option to 1s and pipes the result to
head.

Listing 11-6. 1sr, List Most Recently Modified Files

num=10 ## number
of files to print

short=0 ## set to
1 for short listing
timestyle='—--time-style="+ %d-%b-%Y $H:%M:%S "' ## GNU-

specific time format
opts=Aadn:os

while getopts Sopts opt
do
case S$Sopt in
alAld) ls opts="Sls opts -Sopt" ;; ## options passed
to 1s

n) num=SOPTARG ;; ## number of files
to display
o) ls opts="$1ls opts -r" ;; ## show oldest
files, not newest
s) short=$(($short + 1)) ;;
esac

done
shift $((SOPTIND - 1))

case Sshort in

0) 1ls opts="$1ls opts -1 -t" ;; ## long listing,
use -1

*) ls opts="Sls opts -t" ;; ## short listing,
do not use -1
esac
ls $1s opts Stimestyle "$@" | {

read ## In bash, the

same as: IFS= read -r REPLY
case $line in
total™*) ;; ## do not display
the 'total' line
*) printf "$s\n" "SREPLY" ;;

esac
cat

} | head —-nSnum

Cp, mv

Before switching my desktop to GNU/Linux, I used an Amiga. Its copy command would
copy a file to the current directory if no destination was given. This function gives the
same ability as cp (Listing 11-7). The -b option is GNU specific, so remove it if you are

using a different version of cp.

Listing 11-7. cp, Copy, Using the Current Directory if No Destination Is Given

cp ()
{

local final
if [$# -eq 1] ## Only one arg,
then
command cp -b "S$1" . ## so copy it to the
current directory
else
final=S{!#}
if [-d "S$final"] ## if last arg is
a directory
then
command cp -b "s$@" ## copy all the files into
it
else
command cp -b "S$@" . ## otherwise, copy to the
current directory
fi
fi

The mv function is identical except that it has mv wherever cp appears in that
function.

md

Laziness is the order of the day with the md function (Listing 11-8). It calls mkdir with
the —p option to create intermediate directories if they don’t exist. With the —c option, md
creates the directory (if it doesn’t already exist) and then cds into it. Because of the -p
option, no error is generated if the directory exists.

Listing 11-8. md, Create a New Directory and Intermediate Directories and Optionally cd
into It

md() { #@ create new directory, including intermediate
directories 1f necessary
case $1 in
-c) mkdir -p "S$2" && cd "S$2" ;;
*) mkdir -p "$@" ;;
esac

Miscellaneous Functions

I use the next two functions a great deal, but they don’t fit into any category.

prl

I have the pr1 function as both a function and a stand-alone script (Listing 11-9). It prints
each of its argument on a separate line. By default, it limits the length to the number of
columns in the terminal, truncating lines as necessary.

There are two options, —w and —-W. The former removes the truncation, so lines will

always print in full, wrapping to the next line when necessary. The latter specifies a width
at which to truncate lines.

Listing 11-9. pr1, Function to Print Its Argument One to a Line

prl () #@ Print arguments one to a line
{
case $1 in
-W) Ppr w= ## width specification
modifier
shift
-W) pr w=${2}
shift 2
-W*) pr w=S{l#??}
shift
*) pr w=-.3{COLUMNS:-80} ## default to number of
columns in window
esac
printf "$S{pr w}s\n" "S@"
}

The script version (Listing 11-10) uses getopts; I didn’t use them in the function
because I wanted it to be POSIX compliant.

Listing 11-10. pr1, Script to Print Its Arguments One to a Line

while getopts wW: opt
do
case Sopt in
W) W=
shift

r 7

W) w=S$OPTARG ;;
*) w=-.S{COLUMNS:-80} ;;
esac
done
shift $((SOPTIND - 1))

printf "S{w}s\n" "sS@"

calc

Bash lacks the capacity for arithmetic with decimal fractions, so I wrote this function
(Listing 11-11) to use awk to do the dirty work. Note that characters special to the shell

must be escaped or quoted on the command line. This applies particularly to the
multiplication symbol, *.

Listing 11-11. calc, Print Result of Arithmetic Expression

calc() #@ Perform arithmetic, including decimal fractions
{

local result=$(awk 'BEGIN { OFMT="%f"; print '"s$x"';
exit}")

case Sresult in

*.*0) result=S{result%"S{result##*['!'0]1}1"}
esac
printf "$s\n" "Sresult"

}

.
r7

The case statement removes trailing zeroes after a decimal point.

Managing Man Pages

I use three functions related to man pages. The first searches a man page for a pattern or
string, the second looks up a POSIX man page, and the third is equivalent to man -k.

SIMdn

The sman function calls up a man page and searches for a given string. It assumes that
less is the default pager (Listing 11-12).

Listing 11-12. sman, Call Up a Man Page and Search for a Pattern

sman () #@ USAGE: sman command search pattern

{
LESS="SLESSS${2:+ +/$2}" man "S$1"
}

Sus

When I want to check the portability of a given command or, more usually, to check which
options are specified by POSIX, I use sus. It stores a copy of the POSIX man page

locally so that it doesn’t need to be fetched on subsequent queries (Listing 11-13).
Listing 11-13. sus, Look Up a Man Page in the POSIX Spec

sus ()
{

local html file=/usr/share/sus/$1.html ## adjust to
taste

local dir=9699919799

local

sus_dir=http://www.opengroup.org/onlinepubs/Sdir/utilities/
[-£ "Shtml file™] ||
lynx -source $sus dir${l##*/}.html > Shtml file
##>/dev/null 2>&1
lynx -dump -nolist Shtml file | S${PAGER:-less}
}

Here 1ynx is a text-mode web browser. Though normally used interactively to access
the Web, the —source and —dump directives can be used in scripts.

k

The k function saves all the typing of apropos orman -k. It actually does a little more.
It filters the result so that only user commands (from the first section of the man pages)

show. System and kernel functions and file specifications, and so on, do not get shown
(Listing 11-14).

Listing 11-14. k, List Commands Whose Short Descriptions Include a Search String

k() #@ USAGE: k string
{

man -k "$@" | grep ' (1'
}

Games

What’s a command line without games? Boring, that’s what! I have written a number of
games using the shell. They include yahtzee (Figure 11-1), a game that uses five dice;
maxit (Figure 11-2), based on an arithmetic game for the Commodore 64; and, of course,
tic-tac-toe (Figure 11-3). All these games are too large to include their scripts in this
book, but sections of them (such as the yaht zee dice) will be demonstrated in later
chapters. The one game that I can include here is the £i fteen puzzle.

http://www.opengroup.org/onlinepubs/

O
0
5
Scored Rolled
[a] Ones: 4 [g] 3 of a kind: [-] (0)
[b] Twos: 4 Lh] 4 of a kind: [-] (0)
[c] Threes: [-] (2=6) [1] Full house: [-] (0)
[d] Fours: [-] (0=0) [j] Small straight: [-] (0)
[e] Fives: [-]1 (0=0) [k] Large straight: 40
[f] Sixes: [-] (1=6) [1] Yahtzee: [-] (0)
[m] Chance: [-] (15)
[55 away from bonus]
Upper total: 8 Bonus: 0 Lower total: 40 Grand total: 48

Figure 11-1. The game of yaht zee, in which the player attempts to get runs, a full house, or three, four, or five of a
kind

H: human: 43 (last= 4)

V: max1: 29 (last= 4)

Points left: -96

| =4 18] —6]| 8] & 1[28] T]|

| =1l =21 71 9| -6] =7 1| -71]

| 61 -4 -7| 13| |WEA 7! -6l
I | -s| 4l —21-101 | -9l |
| @ -1 o] 21 [i |
| 1121131 =81 [=21 =5)-13]

=3al =81 111 O 1L =6l 131 =8}

| 10| 10|-12]-12] 2[-14] -1]| -7]|

Figure 11-2. The game of max1i t, in which one player selects from a row, and the other from a column

01 D
i e el i
01 01X
R S S ——

X | I

Select (28 9): |}

Figure 11-3. The ubiquitous game of tic-tac-toe

The fifteen Puzzle

The fifteen puzzle consists of 15 numbered, sliding tiles in a frame; the object is to
arrange them in ascending order like this:
t——f——t——+——+
| | | | |
10 21 31 4|
| | | | |
t——f——t——+——+
| | | | |
S e | 71 8|
| | | | |
t——t——t——+——+
9	10	11	12
t——F——F——+——+			
13	14	15	

| | | | |
e R

In this script (Listing 11-15), the tiles are moved with the cursor keys.
Listing 11-15. £i fteen, Place Tiles in Ascending Order

R d s s e R R R
Meta data
R d s E R e R R R R

scriptname=${0##*/}
description="The Fifteen Puzzle"
author="Chris F.A. Johnson"
created=2009-06-20

e E s E RS RS L e S EEEEEE e
Variables
s E SRR E SRR

board=(
target=(

target)

empty=15

last=0

{1..15}
"S{board[@]}"

A=0 B=1 C=2 D=3
possible moves
topleft="\e[0;0H'
corner of window

nocursor="\e[?251"

mwwn

)

)

normal=\e[0m\e[?121\e[?25h

#4
#4

i
i
ik
ik

il
il

The basic board array
A copy for comparison (the
The empty square

The last move made

Indices into array of

Move cursor to top left

Make cursor invisible
Resume normal operation

Board layout is a printf format string
At its most basic,

fmt="$nocursorStopleft

"

it could be a simple:

I prefer this ASCII board
fmt="\e[?2251\e[0; 0H\n

\t+-————F————F————F————+
\t| | |
\t] %2s $2s | % | %$2s |
\t| | |
\t+-———-F-——-——F————F—-——- +
\t| | |
\t] %2s $2s | % | %$2s |
\t| | |
\t+-————F - +
\t| | |
\t] %2s $2s | % | %$2s |
\t| | |
\t+-————F————f +
|

\t] %$2s | %2s | %2s | %2s |
\t] | | | |
\t+---—+-—-——4+-———+————+\n\n"

sz i s s s LT
Functions

G

print board() #@ What the name says
{
printf "S$fmt" "S{board[@]}"

}

borders () #@ List squares bordering on the empty square
{
Calculate x/y co-ordinates of the empty square
local x=$5((S${empty:=0} % 4)) y=$((Sempty / 4))

The array, bordering, has 4 elements, corresponding to
the 4 directions

If a move in any direction would be off the board, that
element is empty

##

unset bordering ## clear array before setting it
[Sy -1t 3] && bordering[SA]l=$((Sempty + 4))

[Sy =gt 0] && bordering[SB]=$((Sempty - 4))

[$x —=gt 0] && bordering[SCl=$((Sempty - 1))

[$x -1t 3] && bordering[SD]=$((Sempty + 1))

}

check () #@ Check whether puzzle has been solved
{
Compare current board with target
if ["S{board[*]}" = "S{target[*]}"]
then
Puzzle is completed, print message and exit
print board

printf "\al\tCompleted in %d moves\n\n" "Smoves"
exit
fi
}
move () #@ Move the square in $1
{
movelist="Sempty Smovelist" ## add current empty square

to the move list
moves=$((Smoves + 1)) ## increment move counter

board[S$empty]=${board[$1]} ## put $1 into the current
empty square

board[$1]="" ## remove number from new
empty square

last=Sempty ## and put it in old
empty square

empty=5$1 ## set new value for empty-

square pointer

}

random move () #@ Move one of the squares in the arguments
{

The arguments to random move are the squares that can
be moved

(as generated by the borders function)

local sg
while
do
sq=S$((SRANDOM % S$S# + 1))
sg=5{!sq}
[$sg -ne S${last:-666}] && ## do not undo last move
break
done

move "Ssqg"

}

shuffle () #@ Mix up the board using legitimate moves (to
ensure solvable puzzle)

{

local n=0 max=S$S(($SRANDOM % 100 + 150)) ## number of
moves to make
while [$((n += 1)) -1t Smax]
do
borders ## generate list
of possible moves
random move "${bordering[@]}" ## move to one
of them at random
done

}

xtd st st s A s SR LR
End of functions

G

trap 'printf "Snormal"' EXIT ## return
terminal to normal state on exit

S E SRR e R R E
Instructions and initialization

G o

clear

print board

echo

printf "\t%s\n" "Sdescription" "by Sauthor, S${created%%-*}"
printf "

Use the cursor keys to move the tiles around.

The game 1s finished when you return to the
position shown above.

Try to complete the puzzle in as few moves
as possible.

Press \e[1lmENTER\e[Om to continue

"

shuffle ## randomize
board

moves=0 ## reset move
counter

read -s ## walt for user
clear ## clear the
screen

FHAFHFHA A A AR F A F AR A A AR HH
Main loop
FHAFHFH A A A A A AR A AR A AR AR HH

while

do
borders
print board
printf "\t $d move" "Smoves"
[Smoves -ne 1] && printf "s"
check

read a single character without waiting for <ENTER>
read -snl -p $' \e[K' key

The cursor keys generate three characters: ESC, [and
A, B, C, or D;

this loop will run three times for each press of
a cursor key

but will not do anything until it receives a letter
from the cursor key (or entered directly with A etc.),
or a 'g' to exit
case Skey in
A) [-n "S{bordering[$SA]}"] && move "S${bordering[SA]}"

B) [-n "${bordering[S$SB]}"] && move "${bordering[$B]}"
C) [-n "S${bordering[SC]}"] && move "${bordering[$C]}"
D) [-n "S$S{bordering[$D]}"] && move "S${bordering[SD]}"

qg) echo; break ;;
esac
done

Summary

The scripts provided in this chapter are a smattering of the possibilities for using scripts at
the command line. Where the environment needs to be changed (as in cd and cdm), the
scripts must be shell functions. These are usually kept in SHOME / .bashrc or in a file
sourced by .bashrc.

Even games can be programmed without needing a GUI interface.

Exercises

1. Modify the menu function to accept its parameters from a file.

2. Rewrite the pr1 function as prx that will behave in the manner of
pr4 from Chapter 8 but will take an option for any number of
columns.

3. Add a getopts section to the £i fteen game that allows the user
to select between three different board formats. Write a third
format.

CHAPTER 12

Runtime Configuration

When I download my e-mail from three or four different POP3 servers, I don’t use a
different script for each one. When I open a terminal to ssh to a remote computer (half a
dozen of them) with a different background color for each, I use the same script for every
connection. To upload files to my web sites (I look after six sites), I use the same script for
all of them.

You can configure a script’s behavior in several ways when you run it. This chapter
looks at seven methods: initialized variables, command-line options and arguments,
menus, Q&A dialogue, configuration files, multiple names for one script, and environment
variables. These methods are not mutually exclusive; in fact, they are often combined. A
command-line option could tell the script to use a different configuration file or present
the user with a menu.

Defining Variables

If the runtime requirements for a script will rarely change, hard-coded variables may be all
the configuration you need (Listing 12-1). You can set them when the script is installed.
When a change is needed, the parameters can quickly be changed with a text editor.

Listing 12-1. Example of Initialized Default Variables

File locations
dict=/usr/share/dict
wordfile=$dict/singlewords
compoundfile=$dict/Compounds

Default is not to show compound words
compounds=no

If the variables need changing often, one or more of the other methods can be added.

Command-Line Options and Arguments

The most common method for changing runtime behavior uses command-line options. As
shown in Listing 12-2, all the values defined earlier can be modified at the command line.

Listing 12-2. Parse Command-Line Options

while getopts d:w:f:c var
do

case "Svar" in

c) compounds=1 ;;
d) dict=SOPTARG ;;
w) wordfile=SOPTARG ;;
f) compoundfile=SOPTARG ;;
esac
done
Menus

For a user unfamiliar with a piece of software, a menu is a good way to allow runtime
changes. In the menu example shown in Listing 12-3, the selections are numbered from 1
to 4, and g exits the menu.

Listing 12-3. Set Parameters via Menu

while : ## loop until user presses 'q'
do

print menu

printf "\n\n%s\n" "Sbar"

printf " Dictionary parameters\n"

printf "%s\n\n" "Sbar"

printf " 1. Directory containing dictionary: %s\n"
"Sdict"

printf " 2. File containing word list: %$s\n" "Swordfile"

printf " 3. File containing compound words and phrases:
$s\n" "Scompoundfile"

printf " 4. Include compound words and phrases in
results? %$s\n" "Scompounds"

printf " g. %$s\n" "Exit menu"

printf "\n%s\n\n" "Sbar"

get user response
read -snl -p "Select (1,2,3,4,q9): " input
echo

interpret user response
case Sinput in

1) read -ep "Enter dictionary directory: " dict ;;

2) read -ep "Enter word-list file: " wordfile ;;

3) read -ep "Enter compound-word file: " compoundfile ;;
4) ["Scompounds" = y] && compounds=n || compounds=y ;;
q) break ;;

*

) printf "\n\aInvalid selection: %c\n" "Sinput" >&2
sleep 2

r s

esac
done

Q&A Dialogue

A question-and-answer function cycles through all the parameters, prompting the user to
enter a value for each one (Listing 12-4). This can get tedious for the user, and it is
probably best used when there are no defaults, when there are very few parameters to
enter, or when values need to be entered for a new configuration file.

Listing 12-4. Set Variables by Question and Answer

read -ep "Directory containing dictionary: " dict

read -ep "File containing word list: " wordfile

read -ep "File containing compound words and phrases:

" compoundfile

read -snl -p "Include compound words and phrases in results
(y/n)? " compounds

echo

read -ep "Save parameters (y/n)? " save

case $save in
v]Y) read -ep "Enter path to configuration file:
" configfile
{
printf '%$-30s ## %s"\n' \
"dict=$dict" "Directory containing dictionary" \
"wordfile=Swordfile" "File containing word list" \
"compoundfile=Scompoundfile”™ "File containing compound
words and phrases" \
"Compounds" "$Compounds" "Include compound words and
phrases in results?"
} > "S${configfile:-/dev/tty}"
esac

Configuration Files

Configuration files can use any format, but it’s easiest to make them shell scripts that can
be sourced. The example file shown in Listing 12-5 can be sourced, but it can also provide
more information.

Listing 12-5. Configuration File, words.cfg

dict=/usr/share/dict ## directory containing
dictionary files
wordfile=singlewords ## file containing word list

compoundfile=Compounds ## file containing compound

words and phrases
compounds=no ## include compound words and
phrases in results?

The words . cfg file can be sourced with either of these two commands:

words.cfg
source words.cfg

Rather than sourcing the file, it can be parsed in various ways (Listing 12-6). In
bash-4. x, you can read the file into an array and extract the variables and comments
using parameter expansion, the expansion being applied to each element of the array.

Listing 12-6. Parsing Configuration File

IFS=S$'\n'

file=words.cfg

settings=($(< "S$file")) ## store file in array,
1 line per element

eval "${settings[@]%%#*}" ## extract and execute
the assignments

comments=("${settings[Q@]#*## }") ## store comments in
array

The comments array contains just the comments, and the assignments can be
extracted from settings with “${settings[@]%%#*}":

$ printf "$s\n" "S{comments[Q@]}"

directory containing dictionary files

file containing word list

file containing compound words and phrases
include compound words and phrases in results?

You can also read the file in a loop to set the variables and provide information about
the variables it contains by displaying the comments (Listing 12-7).

Listing 12-7. Parsing Configuration File with Comments

while read assignment x comment

do
if [-n "Sassignment"]
then
printf "%$20s: %$s\n" "S${assignment#*=}" "Scomment"
eval "$assignment"
fi

done < "Sfile"

The following is the result:

/usr/share/dict: directory containing dictionary files

singlewords:
Compounds :

file containing word list
file containing compound words and phrases

n: include compound words and phrases in results?

Configuration files can be made as complex as you like, but parsing them then falls
more properly under the category of data processing, which is the subject of Chapter 13.

Scripts with Several Names

By storing the same file under different names, you can avoid command-line options and
menus. The script in Listing 12-8 opens a terminal and connects to different remote
computers using a secure shell. The terminal’s colors, the mac to log on to, and the name
of the remote user are all determined by the name of the script.

Listing 12-8. bashful, Connect to Remote Computer via ssh

scriptname=S${0##*/}

default colours

bg=#ffffcc ## default
fg=#000000 ## default
user=bashful ## default
term=xterm ## default

case $scriptname in
sleepy)
bg=#ffffff
user=sleepy

background: pale yellow
foreground: black

user name

terminal emulator (I prefer rxvt)

host=sleepy.example.com

sneezy)
fg=#aa0000
bg=#ffeeee

host=sneezy.example.org

grumpy)
fg=#006600
bg=#eeffee
term=rxvt

host=cfajohnson.example.com

dopey)

host=127.0.0.1
echo "S$scriptname:
exit 1

*)

Unknown name"

>&2

o o
rs

esac
"Sterm" -fg "$fg" -bg "Sbg" -e ssh -1 "Suser" "Shost"

To create the multiple names for the same file, create links with 1n (Listing 12-9).
Listing 12-9. Make Multiple Links to bashful Script

cd "SHOME/bin" &&
for name in sleepy sneezy grumpy dopey

do

In -s bashful "S$name" ## you can leave out the -
s option if you like
done

Environment Variables

You can also pass settings to a program using variables. These can be either exported or
defined on the same line as the command. In the latter case, the variable is defined for that
command only.

You alter the behavior of the program by checking for the value of a variable or even
just for its existence. I use this technique most often to adjust the output of a script using
verbose. This would be a typical line in a script:

[$S{verbose:-0} -gt 0] && printf "%$s\n" "Finished parsing
options™"

The script would be called with the following:
verbose=1 myscriptname

You can see an example in the following script below.

All Together Now

The following is the program I use to update all my web sites. It finds new or modified
files in a directory hierarchy, stores them in a tarball, and uploads them to a web site on a
(usually) remote computer. I have shell access on all the sites I use, so I can use a secure
shell, ssh, to transfer the files and unpack them with tar on the site:

ssh -p "S$port"™ -1 "Suser" "Shost" \
"cd \"S$dest\" || exit;tar -xpzf -" < "Starfile" &&
touch "$syncfile"

All of my sites use authentication keys (created with ssh-keygen) so that no
password is required and the script can be run as a cron job.

This program uses all the techniques mentioned earlier except for multiple names. It’s
more than you would usually use in a single program, but it’s a good illustration.

The user can select whether to use command-line options, a menu, a Q&A dialogue, or
a configuration file to adjust the settings, or the user can even use the defaults. Command-
line options are available for all settings:

-c configfile: Reads settings from configfile

-h host: Specifies the URL or IP address of remote computer
-p port: Specifies the SSH port to use

-d dest: Specifies the destination directory on the remote host
-u user: Specifies the user’s login name on remote computer

-a archivedir: Specifies the local directory to store archive
files

-f syncfile: Specifies the file whose timestamp is the cutoff
point

And there are three further options that control the script itself:
—t: Tests only, displays final settings, does not archive or upload
-m: Presents user with the menu

—-q: Uses Q&A dialogue

The script is examined in the following sections in detail, section by section.

Note This is a book on Pro Bash Scripts and hence the approach using scripting.
Writing a script may not necessarily be the best solution.

There are a couple of other options not necessarily Bash scripting based that are
created solely to achieve administration outcomes. There is a per1 script wrapper called

Cluster SSH (open source) that allows you to send a command to multiple servers at the
same time and is GUI based. There is another called Puppet, which is quite popular.

Script Information

Note that parameter expansion is used to pull the script name from $0, not the external
command, basename (Listing 12-10).

Listing 12-10. upload, Archive and Upload Files to Remote Computer

scriptname=${0##*/}

description="Archive new or modified files and upload to web
site"

author="Chris F.A. Johnson"

version=1.0

Default Configuration

Besides setting the variables, an array containing the names of the variables and their
descriptions are created (Listing 12-11). This is used by the menu and ga (question and
answer) functions for labels and prompts.

Listing 12-11. Default Values and settings Array

archive and upload settings

host=127.0.0.1 ## Remote host (URL or
IP address)

port=22 ## SSH port
dest=work/upload ## Destination
directory

user=jayant ## Login name on

remote system
source=SHOME/public html/oz-apps.com ## Local directory to
upload

archivedir=$HOME/work/webarchives ## Directory to store
archive files
syncfile=.sync ## File to touch with

time of last upload

array containing variables and their descriptions
varinfo=("" ## Empty element to emulate l-based array
"host:Remote host (URL or IP address)"
"port:SSH port"
"dest:Destination directory"
"user:Login name on remote system"
"source:Local directory to upload"
"archivedir:Directory to store archive files"
"syncfile:File to touch with time of last upload"

)

These may be changed by command-line options

menu=0 ## do not print a menu

qa=0 ## do not use question and answer
test=0 ## 0 = upload for real; 1 = don't
archive/upload, show settings

configfile= ## 1if defined, the file will be sourced

configdir=$SHOME/.config ## default location for
configuration files
sleepytime=2 ## delay in seconds after printing messages

Bar to print across top and bottom of menu (and possibly

elsewhere)

bar=Sbar$barSbarSbar ## make long enough for any terminal
window
menuwidth=${COLUMNS:-80}

Screen Variables

These variables use the ISO-6429 standard, which is now all but universal in terminals and
terminal emulators (Listing 12-12). This is discussed in detail in Chapter 14. When printed
to the terminal, these escape sequences perform the actions indicated in the comments.

Listing 12-12. Define Screen Manipulation Variables

topleft="\e[0;0H' ## Move cursor to top left corner of
screen

clearEOS="\e[J' ## Clear from cursor position to end
of screen

clearEOL="\e[K' ## Clear from cursor position to end
of line

Function Definitions

There are five functions, two of which, menu and ga, allow the user to change the
settings. With readline able to accept the user’s input, the —1 option to read is used if
the shell version is bash-4 . x or greater. If the test option is used, the print config

function outputs the settings in a format that is suitable for a configuration file, complete
with comments.

Function: die

The program exits via the die function when a command fails (Listing 12-13).

Listing 12-13. Define die Function

die() #@ Print error message and exit with error code
{ #@ USAGE: die [errno [message]]

error=${1:-1} ## exits with 1 if error number not given
shift
[-n "S$*"] &&
printf "%$s%s: %$s\n" "S$scriptname" ${version:+"
(Sversion) "} "S*" >g2
exit "Serror"

}

Function: menu

The menu function uses its command-line arguments to populate the menu (Listing 12-
14). Each argument contains a variable name and a description of the variable separated
by a colon.

THE UPLOAD SETTINGS MENU

1: Remote host (URL or IP address) (127.0.0.1)

2: ssh port (22)

3: Destination directory (work/upload)

4: Login name on remote system (jayant)

5: Local directory to upload (/home/jayant/public html/oz-
apps.com) B

6: Directory to store archive files
(/home/jayant/work/webarchives)

7: File to touch with time of last upload (.sync)

g: Quit menu, start uploading

0: Exit upload

Select 1..7 or 'q/0"'

The function enters an infinite loop, from which the user exits by selecting g or 0.
Within the loop, menu clears the screen and then cycles through each argument, storing it
in 1 tem. It extracts the variable name and description using parameter expansion:

var=S${item%%:*}
description=S${item#*:}

The value of each var is obtained through indirect expansion, ${ ! var}, and is
included in the menu labels. The field width for the menu number is $ { #max }, that is, the
length of the highest item number.

Listing 12-14. Define menu Function

menu () #@ Print menu, and change settings according to user
input
{

local max=S#
local menutitle="UPLOAD SETTINGS"
local readopt

if [Smax -1t 10]

then ## 1f fewer than ten items,

readopt=-snl ## allow single key entry
else

readopt=
fi

printf "StopleftSclearEOS" ## Move to top left and clear
screen

while : ## infinite loop
do

gtz s s LR AR EEEEEEEEEEEEEEEEEEEEEEEEEEE
display menu

ik

printf "Stopleft" ## Move cursor to top left corner of
screen

print menu title between horizontal bars the width of
the screen

printf "\n%s\n" "S${bar:0:Smenuwidth}"

printf " %s\n" "Smenutitle"

printf "$s\n\n" "S${bar:0:Smenuwidth}"

menunum=1

loop through the positional parameters
for item

do
var=$S{item%%: *} ## variable name
description=S${item#*:} ## variable description

print item number, description and value

printf " $S{#max}td: %$s (%s)SclearEOL\n" \
"Smenunum" "S$description" "S{!var}"

menunum=S$ ((Smenunum + 1))

done

.. and menu adds its own items

printf " SS{##}s\n" "g: Quit menu, start uploading" \
"O0: Exit S$scriptname"

printf "\nS${bar:0:$menuwidth}\n" ## closing bar

printf "$clearEOS\n" ## Clear to end of screen
##

G i

G i i i

User selection and parameter input

#i

read -p " Select 1..$max or 'g' " Sreadopt x
echo

["S$x" = g] && break ## User selected Quit
["$x" =0] && exit ## User selected Exit

case S$x in
[I0=91 ["")
contains non digit or is empty
printf "\a %$s - Invalid entry\n" "S$x" >&2
sleep "Ssleepytime"
*) if [$x —-gt $max]
then
printf "\a %$s - Invalid entry\n" "S$x" >&2
sleep "S$sleepytime"
continue
fi

var=S{!x%%:*}
description=S{!x#*:}

prompt user for new value
printf " $sSclearEOL\n" "Sdescription"
readline value " >> " "s{lvar}"

if user did not enter anything, keep old value

if [-n "Svalue"]
then

eval "Svar=\Svalue"
else

printf "\a Not changed\n" >&2
sleep "S$sleepytime"
fi
esac
##
FH AR AR A A H A A AR F A AR S A F AR A F AR HH

done

}

Function: ga

The ga function takes the same arguments as menu, but instead of putting them into a
menu, it prompts the user for a new value for each variable (Listing 12-15). When it has
run through all the command-line arguments, which it splits up in the same manner as
menu, it calls the menu function for verification and editing of the values. Also like

menu, it uses readline to get the input and keeps the old value if nothing is entered.

Listing 12-15. Define ga Function

ga () #@ Question and answer dialog for variable entry

{

local item var description

printf "\n %s - %s\n" "S$scriptname" "Sdescription"
printf " by %s, copyright %d\n" "S$author" "S$Scopyright"
echo
if [${BASH_VERSINFO[O]} -ge 4]
then
printf " %$s\n" "You may edit existing value using the
arrow keys."
else
printf " %s\n" "Press the up arrow to bring existing
value" \
"to the cursor for editing with the arrow
keys"
fi
echo

for item

do
split $item into variable name and description
var=S{item%%:*}
description=S${item#*:}

printf "\n %$s\n" "Sdescription"
readline value " >> " "s{lyar}"
[-n "Svalue"] && eval "Svar=\Svalue"
done
menu "S@"

The dialogue looks like this:
$ upload —-gt

upload - Archive new or modified files and upload to web
site

by Chris F.A. Johnson, copyright 2009
You may edit existing value using the arrow keys.

Remote host (URL or IP address)
>> oz-apps.com

SSH port
>> 99

Destination directory
>> public html

Login name on remote system
>> jayant

Local directory to upload
>> /home/jayant/public html/oz-apps.com

Directory to store archive files
>> /home/jayant/work/webarchives

File to touch with time of last upload
>> .sync

Function: print_config

The print config function prints all the variables listed in the varinfo array to the
standard output in a format suitable for a configuration file, as described earlier in this
chapter. Although probably not necessary in this program, it encloses the assignment value
in double quotes and escapes double quotes in the value using bash’s search-and-replace
parameter expansion:

$ var=location
$ val="'some"where'

$ prlntf "%s\n" "Svarz\"${Val//\"/\\\"}\""
location="some\"where"

See the options-parsing section in Listing 12-16 for an example of the output of
print config.

Listing 12-16. Define print config Function

print config() #@ Print values in a format suitable for
a configuration file

{

local item var description

[-t 1] && echo ## print blank line if output is to

a terminal

for item in "S${varinfol[@]}"
do
var=S{item%%:*}
description=S${item#*:}
printf "%-35s ## $s\n" "Svar=\"\S{!var//\"/\\\"}\""
"Sdescription"
done

[-t 1] && echo ## print blank line if output is to
a terminal

}

Function: readline

If you are using bash-4 . x or later, the readline function will place a value before the
cursor for you to edit (Listing 12-17). With an earlier version of bash, it puts the value
into the history so that you can bring it up with the up-arrow (or Ctrl+P) and then edit it.

Listing 12-17. Define readl ine Function

readline () #@ get line from user with editing of current
value
{ #Q@ USAGE var [prompt] [default]

local var=${1?} prompt=${2:- >>> } default=3$3

if [${BASH_VERSINFO[O]} -ge 4]
then
read -ep "Sprompt" S$S{default:+-i "Sdefault"} "Svar"
else
history -s "Sdefault"
read -ep "Sprompt" "Svar"
fi
}

Parse Command-Line Options

You can set the seven configuration variables with the a, d, f, h, p, s, and u options. In
addition, you can specify a configuration file with the c option. A test run, which prints
the configuration information but doesn’t attempt to create a tarball or upload any files,
can be triggered with the t option. The m and g options offer the user a menu and a
question-and-answer dialogue, respectively.

If a host is given as an option, a config file name is built using a standard formula. If
the file exists, it is assigned to the configfile variable so that the parameters will be
loaded from it. Usually this is all that would be needed to add to the command line for this
purpose (Listing 12-18).

Listing 12-18. Parse Command-Line Options

while getopts c:h:p:d:u:a:s:f:mgt var
do
case "S$var" in
c) configfile=SOPTARG ;;
h) host=S$SOPTARG
hostconfig=S$Sconfigdir/$scriptname.$host.cfg
[-f "Shostconfig"] &&
configfile=Shostconfig

° o
r 7

p) port=$OPTARG ;;
s) source=SOPTARG ;;
d) dest=SOPTARG ;;
u) user=$OPTARG ;;
a) archivedir=$OPTARG ;;
f) syncfile=SOPTARG ;;
t) test=1 ;; ## show configuration, but do not archive or
upload
m) menu=1 ;;
a) ga=1l ;;
esac
done

shift $((SOPTIND - 1))

Using options and redirection, this program can create new configuration files. Here,
parameters are given on the command line, and defaults are used for those not given.

$ upload -t -h www.example.com -p 666 -u paradigm -d
public html \

-s SHOME/public html/www.example.com > www.example.com.cfg
$ cat www.example.com.cfg

host="www.example.com" ## Remote host (URL or
IP address)

port="666" ## SSH port

dest="public html" ## Destination directory
user="paradigm" ## Login name on remote
system

source="/home/jayant/public html/www.example.com" ## Local
directory to upload
archivedir="/home/jayant/work/webarchives" ## Directory to
store archive files
syncfile=".sync" ## File to touch with
time of last upload

Bits and Pieces

Listing 12-19 below shows the rest of the script.
Listing 12-19. The Rest of the Script

If a configuration file is defined, try to load it

if [-n "Sconfigfile"]
then
if [-f "Sconfigfile"]
then
exit if problem with config file
"Sconfigfile" || die 1 Configuration error
else

Exit i1f configuration file is not found.
die 2 "Configuration file, $configfile, not found"
fi
fi

Execute menu or ga if defined
if [$menu -eqg 1]
then
menu "S${varinfol[@]}"
elif [$ga -eq 1]
then
ga "S{varinfo[@]}"
fi

Create datestamped filename for tarball
tarfile=Sarchivedir/Shost.$ (date +%Y-%$m-%dT$H:%M:%S.tgz)

if [Stest -eq 0]
then

cd "Ssource" || die 4
fi

verbose must be set (or not) in the environment or on the
command line
if [${verbose:-0} -gt 0]
then
printf "\nArchiving and uploading new files in directory:
$s\n\n" "SPWD"
opt=v
else
opt=
fi

IFS=$'\n' # uncomment this line if you have spaces in
filenames (shame on you!)

if [S${test:-0} -eq 0]
then
remote command="cd \"Sdest\" || exit;tar -xpzf -

"

Archive files newer than S$syncfile
tar czS$S{opt}f "Starfile" S$(find . -type f -newer
"Ssyncfile") &&

Execute tar on remote computer with input from
Starfile

ssh -p "Sport" -1 "Suser" "Shost" "Sremote command" <
"Starfile" &&

if ssh is successful
touch "S$syncfile"

else ## test mode
print config
fi

Summary

This chapter demonstrated seven methods of altering the runtime behavior of a script. If
changes will be rare, variables defined in the script may be adequate. When that isn’t
enough, command-line options (parsed with getopts) are often enough.

You can use a menu or question-and-answer dialogue both for runtime configuration
and for creating configuration files that can be sourced on demand. Using differently
named files for the same script can save typing. In some cases, setting a variable in the
shell’s environment is enough.

Exercises

1. Add code to the upload script that checks that all variables have
been set to legitimate values (e.g., that port is an integer).

2. Write a usage or help function, and add it to the upload script.

3. Add an option to the upload script to save the configuration if it
has been saved.

4. Write a script that creates a configuration file in the same form as
words . cfg, prompting the user for the information to put in it.

CHAPTER 13

Data Processing

Data manipulation includes a wide range of actions, far more than can be adequately
covered in a single chapter. However, most actions are just the application of techniques
already covered in earlier chapters. Arrays are a basic data structure, and although the
syntax was covered in Chapter 5 and they were used in the fi fteen puzzle code in
Chapter 11, I haven’t yet explained their uses. Parameter expansion has been used in a
number of chapters, but its application to parsing data structures has not been discussed.

This chapter will cover different ways of using strings and arrays, how to parse
character-delimited records into their individual fields, and how to read a data file. There
are two function libraries for manipulating two-dimensional grids, and there are functions
for sorting and searching arrays.

Arrays

Arrays are not included in the POSIX shell, but bash has used indexed arrays since
version 2.0, and in version 4.0, associative arrays were added. Indexed arrays are assigned
and referenced using integer subscripts; associative arrays use strings. There is no preset
limit to the number of elements an array can contain; they are limited only by available
memory.

Holes in an Indexed Array

If some elements of an indexed array are unset, the array is left with holes and it becomes
a sparse array. It will then be impossible to traverse the array merely by incrementing an
index. There are various ways of dealing with such an array. To demonstrate, let’s create
an array and poke some holes in it:

array=(a bcde £f ghij)
unset array([2] arrayl[4] array[6] array[8]

The array now contains six elements instead of the original ten:

$ sa "S{arrayl[@]}"

-5 Hh Q.0 W

One way to iterate through all the remaining elements is to expand them as arguments
to for. In this method, there is no way of knowing what the subscript for each element is:

for 1 in "S{array[@]}"
do

do something with each element, $i, here
done

With a packed array (one with no holes), the index can start at 0 and be incremented to
get the next element. With a sparse (or any) array, the ${ larray[@] } expansion lists
the subscripts:

$ echo "${!array[@]}"
01 35729

This expansion can be used as the argument to for:

for i in "S${'!'array[@]}"
do

do something with S${array[$i]} here
done

That solution does not provide a method of referring to the next element. You can save
the previous element yet not get the value of the next one. To do that, you could put the
list of subscripts into an array and use its elements to reference the original array. It’s
much simpler to pack the array, removing the holes:

$ array=("S{array[@]}")
$ echo "S${'!array[@]}"
01 2 3 45

Note that this will convert an associative array to an indexed array.

Using an Array for Sorting

Ordering data alphabetically (or numerically) is not usually a task for the shell. The sort
command is a very flexible and efficient tool that can handle most sorting needs. There
are, however, a couple of cases where sorting can best be done by the shell.

The most obvious is file name expansion, in which the result of expanding wildcards is
always sorted alphabetically. This is useful, for example, when working with date-stamped
files. If the date stamp uses the standard ISO format, YYYY-MM-DD, or a compressed
version, YYYYMMDD, the files will automatically be sorted in date order. If you have files
in the format 10g.YYYYMMDD, this loops through them in chronological order:

for file in log.* ## loop through files in chronological
order
do

do whatever

done

There is no need to use 1 s; the shell sorts the wildcard expansion.

With bash-4 . x, another expansion is sorted alphabetically: associative arrays with
single-character subscripts:

$ declare -A g

$ glcl=1 gld]=2 gla]=4
$ sa "S{qg[@]}"

14

:1:

12

This led to writing a function that sorts the letters of a word (Listing 13-1).
Listing 13-1. 1ettersort, Sort Letters in a Word Alphabetically

lettersort () #@ Sort letters in $1, store in $2
{
local letter string
declare -A letters
string=5${1:7?}
while [-n "$string"]
do
letter=S${string:0:1}
letters["Sletter"]=S{letters["Sletter"]}Sletter
string=S${string#?}
done
printf -v "${2:- LETTERSORT}" "%s" "S{letters[@]}"

What’s the point, you ask? Take a look at these examples:

$ lettersort triangle; printf "%$s\n" "$ LETTERSORT"
aegilnrt
$ lettersort integral; printf "$s\n" "$ LETTERSORT"
aegilnrt

When the letters are sorted, you can see that the two words contain the same letters.
Therefore, they are anagrams of each other. Try this process with the words altering,
alerting, and relating.

Insertion Sort Function

If you really want to do your sorting in the shell, you can. The function in Listing 13-2 is
slower than the external sort command when there are more than 15 to 20 elements (the
exact numbers will vary depending on your computer, its load, and so on). It inserts each
element into the correct position in an array and then prints the resulting array.

Note The sort function is a program written in C, optimized for speed, and compiled,
whereas the script written in bash is interpreted at runtime. However, it all depends on
the number of elements you are sorting and the way your scipt is structured, which
determines the suitability of sort over using your own scripted sort.

Listing 13-2. i sort, Sort Command-Line Arguments

isort ()

{

local -a a

a=("S$1") ## put first argument in array for initial
comparison
shift ## remove first argument
for e ## for each of the remaining arguments..
do
if ["Se"™ \< "S${a[0]}"] ## does it
precede the first element?
then
a=("Se" "S{a[@]}"™) ## if yes, put it
first
elif ["Se" \> "S${a[S{#a[@]}-171}"] ## if no, does it
go at the end?
then
a=("S{al@]}" "se") ## if yes, put it
at the end
else ## otherwise,
n=0
while ["${a[$n]}" \< "se"] ## find where it
goes
do
n=s(($n + 1))
done
a=("s${al[@]:0:n}" "se" "S{al[@]:n}") ## and put it
there
fi
done

printf "%s\n" "S{al[@]}"
}

To put Canada’s ten provincial capitals in alphabetical order, you’d use this code:

$ isort "St. John's" Halifax Fredericton Charlottetown
"Quebec City" \

Toronto Winnipeg Regina Edmonton Victoria
Charlottetown
Edmonton
Fredericton

Halifax
Quebec City
Regina

St. John's
Toronto
Victoria
Winnipeg

Searching an Array

As with the i sort function, this function is designed for use with relatively small arrays.
If the array contains more than a certain number of elements (50? 60? 707?), it is faster to
pipe it through grep. The function in Listing 13-3 takes the name of an array and a search
string as arguments and stores elements containing the search string in a new array,
_asearch elements.

Listing 13-3. asearch, Search Elements of an Array for a String

asearch () #@ Search for substring in array; results in array
_asearch elements
{ #Q@ USAGE: asearch arrayname string

local arrayname=$1 substring=$2 array
eval "array=(\"\${Sarrayname[@]}\")"

case ${array[*]} in
"Ssubstring") ;; ## it's there; drop through
*) return 1 ;; ## not there; return error
esac

unset asearch elements
for subscript in "${!array[@]}"
do

case ${array[Ssubscript]} in

"Ssubstring")
_asearch elements+=("S${array[Ssubscript]}")

esac

done

To see the function in action, put the provincial capitals from the previous section into
an array and call asearch:

$ capitals=("St. John's" Halifax Fredericton Charlottetown
"Quebec City"
Toronto Winnipeg Regina Edmonton Victoria

)

$ asearch captials Hal && printf

"$s\n" "S$S{ asearch elements[@]}"
Halifax

$ asearch captials ict && printf
"$s\n" "S$S{ asearch elements[@]}"
Fredericton

Victoria

Reading an Array into Memory

There are various ways of reading a file into an array with bash. The most obvious is also
the slowest: awhile read loop:

unset array
while read line

do
array+=("S$Sline")
done < "Skjv" ## kjv is defined in Chapter 8

A faster method that is still portable uses the external command, cat:

IFS=$'\n" ## split on newlines, so each line 1is
a separate element
array=($(cat "Skjv"))

In bash, cat is unnecessary:
array=(< "S$kjv") ## IFS is still set to a newline
With bash-4. x, a new built-in command, mapfile, is even faster:
mapfile -t array < "s$kjv"

The options to mapfile allow you to select the line at which to start reading

(actually, it’s the number of lines to skip before starting to read), the number of lines to
read, and the index at which to start populating the array. If no array name is given, the
variable MAPFILE is used.

The following are the seven options to mapfile:

e -n num: Reads no more than num lines

e -O index: Begins populating the array at element i ndex

e —s num: Discards the first num lines

e —t: Removes the trailing newline from each line

e —u fd: Reads from input stream fd instead of the standard input

e —-C callback: Evaluates the shell command callback every N

lines, where N is set by -c N
e —c N: Specifies the number of lines between each evaluation of
callback; the defaultis 5000

With older versions of bash, you could use sed to extract ranges of lines from a file;
with bash-4.x, you could use mapfile. Listing 13-4 installs a function that uses
mapfile if the version of bash is 4.x or greater but sed is used if not.

Listing 13-4. get1ines, Store a Range of Lines from a File in an Array

if | "${BASH_VERSINFO[O]}" -ge 4]
then
getlines () #@ USAGE: getlines file start num arrayname
{
mapfile -t -s$(($2 - 1)) -n ${3:2} "s4" < "s1"
}
else
getlines () #@ USAGE: getlines file start num arrayname

{
local IFS=$'\n' getlinearray arrayname=${4:7?}
getlinearray=(S$S(sed -n "$2,$(($2 - 1 + $3)) p" "s1"))
eval "Sarrayname=(\"\${getlinearray[@]}\")"

}
fi

Process substitution and external utilities can be used with mapfile to extract
portions of a file using different criteria:

mapfile -t exodus < <(grep "Exodus: "Skjv") ## store the
book of Exodus
mapfile -t books < <(cut -d: -fl1 "S$kjv" | uniqg) ## store

names of all books in KJV

Tip You can also use readarray to read the data from a file into an array, it is
basically an alias for mapfile.

Two-Dimensional Grids

Programmers often have to deal with two-dimensional grids. As a constructor of
crossword puzzles, I need to convert a grid from a puzzle file to a format that my clients’
publications can import into desktop publishing software. As a chess tutor, I need to
convert chess positions into a format I can use in worksheets for my students. In games
suchas tic-tac-toe, maxit, and fifteen (from Chapter 11), the game board is a
grid.

The obvious structure to use is a two-dimensional array. Because bash has only one-

dimensional arrays, a workaround is needed to simulate two dimensions. This can be done
as an array, a string, an array of strings, or a “poor man’s” array (see Chapter 9).

For a chess diagram, an associative array could be used, with the squares identified
using the standard algebraic notation (SAN) for squares, al, bl to g8, h8:

declare -A chessboard
chessboard["al"]=R
chessboard["a2"]=P

: 60 squares skipped
chessboard["g8"]=r
chessboard["h8"]=Db

A structure that I’ve used on a few occasions is an array in which each element is a
string representing a rank:

chessboard=(
RNBOKBRN
PPPPPPPP

PpPPppPPp
rnbgkbnr

)
My preference, when using bash, is a simple indexed array:

chessboardarray= (
RNBQZKDBIRN
PP PP PP PP

mww mww mww mww mww mww mww mww
mww mww mww mww mww mww mww mww
mwwn mww mww mww mww mww mww mww
mww mww mww mww mww mww mww mww
n k nr

PP P
b g b

— B8 0

Or, in a POSIX shell, it could be a single string;:

chessboard="RNBOQKBRNPPPPPPPP €

Next, two function libraries are discussed, one for dealing with grids in a single string
and the other for grids stored in arrays.

Working with Single-String Grids

I have a function library, stringgrid-funcs, for dealing with two-dimensional grids
stored in a single string. There is a function to initialize all elements of a grid to a given
character and one to calculate the index in the string of a character based on the x and y
coordinates. There’s one to fetch the character in the string using x /vy and one to place a
character into the grid at x/y. Finally, there are functions to print a grid, starting either
with the first row or with the last row. These functions only work with square grids.

Function: initgrid

Given the name of the grid (that is, the variable name), the size, and optionally the
character with which to fill it, initgrid (Listing 13-5) creates a grid with the
parameters supplied. If no character is supplied, a space is used.

Listing 13-5. initgrid, Create a Grid and Fill It

initgrid() #@ Fill N x N grid with a character
{ #Q@ USAGE: initgrid gridname size [character]

If a parameter is missing, it's a programming error, SO
exit

local grid gridname=${1:?} char=${3:- } size

export gridsize=${2:?} ## set gridsize
globally

size=$(($gridsize ** 2)) ## total number of
characters in grid

printf -v grid "%S$size.S${size}s" " " ## print string of

spaces to variable
eval "$gridname=\${grid// /"Schar"}" ## replace spaces
with desired character

}

The length of the string is the square of the grid size. A string of that length is created
using a width specification in print f, with the —v option to save it to a variable supplied

as an argument. Pattern substitution then replaces the spaces with the requested string.

This and the other functions in this library use the $ {var: ?} expansion, which
displays an error and exits the script if there is no value for the parameter. This is
appropriate because it is a programming error, not a user error if a parameter is missing.
Even if it’s missing because the user failed to supply it, it is still a programming error; the
script should have checked that a value had been entered.

A tic-tac-toe grid is a string of nine spaces. For something this simple, the initgrid
function is hardly necessary, but it is a useful abstraction:

$. stringgrid-funcs

$ initgrid ttt 3

$ sa "sttt" ## The sa script/function has been used in
previous chapters

Function: gridindex

To convert x and y coordinates into the corresponding position in the grid string, subtract
1 from the row number, multiply it by the gridsize, and add the columns. Listing 13-
6, gridindex, is a simple formula that could be used inline when needed, but again the

abstraction makes using string grids easier and localizes the formula so that if there is a
change, it only needs fixing in one place.

Listing 13-6. gr idindex, Calculate Index from Row and Column

gridindex () #@ Store row/column's index into string in var
or $ gridindex
{ #@ USAGE: gridindex row column [gridsize] [var]]

local row=S${1:?} col=${2:?}

If gridsize argument is not given, take it from
definition in calling script

local gridsize=${3:-Sgridsize}

printf -v "${4:- GRIDINDEX}" "%d" "S$S(((Srow - 1)
* Sgridsize + S$col - 1))"
}

What’s the index of row 2, column 3 in the tic-tac-toe grid string?

$ gridindex 2 3 ## gridsize=3
$ echo "$_GRIDINDEX"
5

Function: putgrid

To change a character in the grid string, putgrid (Listing 13-7) takes four arguments:
the name of the variable containing the string, the row and column coordinates, and the

new character. It splits the string into the part before the character and the part after it
using bash’s substring parameter expansion. It then sandwiches the new character

between the two parts and assigns the composite string to the gridname variable.
(Compare this with the overlay function in Chapter 7.)

Listing 13-7. putgrid, Insert Character in Grid at Specified Row and Column

putgrid() #@ Insert character int grid at row and column

{ #@ USAGE: putgrid gridname row column char

local gridname=$1 ## grid variable name

local left right ## string to left and right of
character to be changed

local index ## result from gridindex function

local char=${4:?} ## character to place in grid

local grid=${!gridname} ## get grid string though
indirection

gridindex ${2:?} ${3:?} "Sgridsize" index

left=${grid:0:index}
right=${grid:index+1}
grid=$left$4Sright

eval "$gridname=\$grid"

Here’s the code for the first move in a tic-tac-toe game:

$ putgrid ttt 1 2 X
$ sa "Sttt"
. X .

Function: getgrid

The opposite of putgrid is getgrid (Listing 13-8). It returns the character in a given
position. Its arguments are the grid name (I could have used the string itself, because
nothing is being assigned to it, but the grid name is used for consistency), the coordinates,
and the name of the variable in which to store the character. If no variable name is
supplied, it is stored in GRIDINDEX.

Listing 13-8. getgrid, Get Character at Row and Column Location in Grid

getgrid() #@ Get character from grid in row Y, column X
{ #Q@ USAGE: getgrid gridname row column var
S{1:2} S{2:2} ${3:?} ${4:?}
local grid=s${!1}
gridindex "$2" "$3"
eval "$4=\${grid: GRIDINDEX:1}"
}

This snippet returns the piece in the square e1. A chess utility would convert the
square to coordinates and then call the getgrid function. Here it is used directly:

$ gridsize=8

$

chessboard="RNBQKBRNPPPPPPPP €
$ getgrid chessboard 1 5 el

$ sa "Sel"

:K:

Function: showgrid

This function (Listing 13-9) extracts rows from a string grid using substring expansion and
the gridsize variable and prints them to the standard output.

Listing 13-9. showgrid, Print a Grid from a String

showgrid () #@ print grid in rows to stdout

{ #@ USAGE: showgrid gridname [gridsize]
local grid=${!1:?} gridsize=${2:-$gridsize}
local row ## the row to be printed, then removed from

local copy of grid

while [-n "S$Sgrid"] ## loop until there's nothing left
do
row=S${grid:0:"Sgridsize"} ## get first $gridsize
characters from grid
printf "\t:%$s:\n" "Srow" ## print the row
grid=${grid#" Srow"} ## remove Srow from front
of grid
done

}
Here another move is added to the tic-tac-toe board and displays it:

$ gridsize=3 ## reset gridsize after changing it for the
chessboard
$ putgrid ttt 2 2 O ## add O's move in the center square
$ showgrid ttt ## print it
. X .
O

Function: rshowgrid

For most grids, counting begins in the top left corner. For others, such as a chessboard, it
starts in the lower left corner. To display a chessboard, the rgridshow function extracts

and displays rows starting from the end of the string rather than from the beginning.
In Listing 13-10, substring expansion is used with a negative.

Listing 13-10. rshowgrid, Print a Grid in Reverse Order

rshowgrid() #@ print grid to stdout in reverse order
{ #@ USAGE: rshowgrid grid [gridsize]
local grid gridsize=${2:-Sgridsize} row
grid=S${!1:7?}
while [-n "$grid"]
do
Note space before minus sign
to distinguish it from default value substitution
row=${grid: -$gridsize} ## get last row from grid
printf "\t:%s:\n" "Srow" ## print it
grid=S${grid%"Srow"} ## remove it

done

Here, rshowgrid is used to display the first move of a chess game. (For those who
are interested, the opening is called Bird’s Opening. It’s not often played, but I have been
using it successfully for 45 years.)

$ gridsize=8
$
chessboard="RNBOQKBRNPPPPPPPP r

$ putgrid chessboard 2 6 ' '

$ putgrid chessboard 4 6 P

$ rshowgrid chessboard
:rnbgkbnr:

- PPPPPPPP -

P

:PPPPP PP:
: RNBQKBRN :

These output functions can be augmented by piping the output through a utility such as
sed or awk or even replaced with a custom function for specific uses. I find that the

chessboard looks better when piped through sed to add some spacing:

$ rshowgrid chessboard | sed 's/./& /g' ## add a space after
every character
rnbgkbnr

PpPppPPPPP

P
PPPPP P P
R NBQUKDBRN
Two-Dimensional Grids Using Arrays

For many grids, a single string is more than adequate (and is portable to other shells), but
an array-based grid offers more flexibility. In the £i fteen puzzle in Chapter 11, the

board is stored in an array. It is printed with print f using a format string that can easily
be changed to give it a different look. The tic-tac-toe grid in an array could be as follows:

$ ttt: (mwn X LA LA O mwn LA X LA)

And this is the format string:

$ls | %1s | %1ls
_____|_ _______

$ls | %1s | %1s

$1ls | %1ls | %1s

"

And the result, when printed, looks like this:

$ printf "S$fmt" "S{ttt[@]}"

X
| O |
X

If the format string is changed to this:

fmt="
_/ _/
$ls / %ls / %1s
_/ _/
A S A
_/ _/
$ls / %ls / %1s
_/ _/
S
_/ _/
$ls / S%ls / %ls
/ /

"

/0 _/

_/ _/
A A A A

_/ _/

/X

/ /

The same output could be achieved with a single-string grid, but it would require
looping over every character in the string. An array is a group of elements that can be
addressed individually or all at once, depending on the need.

The functions in arraygrid-funcs mirror those in stringgrid-funcs. In
fact, the gridindex function is identical to the one in stringgrid-funcs, soit’s
not repeated here. As with the sdtring grid functions, some of them expect the size of
the grid to be available in a variable, agridsize.

Function: initagrid

Most of the functions for array grids are simpler than their single-string counterparts. A
notable exception is initagrid (Listing 13-11), which is longer and slower, due to the
necessity of a loop instead of a simple assignment. The entire array may be specified as
arguments, and any unused array elements will be initialized to an empty string.

Listing 13-11. initagrid, Initialize a Grid Array

initagrid() #@ Fill N x N grid with supplied data (or

placeholders if none)

{ #Q@ USAGE: initgrid gridname size [character..]
If a required parameter is missing, it's a programming

error, so exit

local grid gridname=${1:?} char=${3:- } size

export agridsize=${2:7?} ## set agridsize
globally

size=$(($Sagridsize * Sagridsize)) ## total number of

elements 1in grid

shift 2 ## Remove first two arguments, gridname and
agridsize
grid=("$Q@") ## What's left goes into the array

while [${#grid[@]} -1t $size]
do

grid+=("")
done

eval "Sgridname=(\"\$S{grid[@]}\")"
}

Function: putagrid

Changing a value in an array is a straightforward assignment. Unlike changing a character
in a string, there is no need to tear it apart and put it back together. All that’s needed is the
index calculated from the coordinates. This function (Listing 13-12) requires
agridsize to be defined.

Listing 13-12. putagrid, Replace a Grid Element

putagrid() #@ Replace character in grid at row and column
{ #@ USAGE: putagrid gridname row column char
local left right pos grid gridname=$1
local value=${4:?} index
gridindex ${2:?} ${3:?} "Sagridsize" index ## calculate
the index
eval "S$Sgridname[index]=\S$value" ## assign the
value

}

Function: getagrid

Given the x and y coordinates, getagrid fetches the value at that position and stores it
in a supplied variable (Listing 13-13).

Listing 13-13. getagrid, Extract an Entry from a Grid

getagrid() #@ Get entry from grid in row Y, column X

{ #@ USAGE: getagrid gridname row column var
${1:2} ${2:2} ${3:2} ${4:7?}
local grid

eval "grid=(\"\S${S1[@]}\")"

gridindex "$2" "S$3"

eval "$4=\${grid[$_GRIDINDEX]}"
}

Function: showagrid

The function showagrid (Listing 13-14) prints each row of an array grid on a separate
line.

Listing 13-14. showagrid, Description

showagrid() #@ print grid to stdout

{ #@ USAGE: showagrid gridname format [agridsize]
local gridname=${1:?} grid

local format=${2:7?}
local agridsize=${3:-S${agridsize:?}} row

eval "grid=(\"\S{SL1[@]I}\")"
printf "S$format" "S{grid[@]}"

}

Function: rshowagrid

The function rshowagrid (Listing 13-15) prints each row of an array grid on a separate
line in reverse order.

Listing 13-15. rshowagrid, Description

rshowagrid () #@ print grid to stdout in reverse order
{ #@ USAGE: rshowagrid gridname format
[agridsize]
local format=${2:?} temp grid
local agridsize=${3:-Sagridsize} row
eval "grid=(\"\S{S1[Q@]}\")"
while ["S${#grid[Q@]}" -gt 0]
do
Note space before minus sign
to distinguish it from default value substitution
printf "$format" "${grid[@]: -$agridsize}"
grid=("S${grid[@Q@]:0:${#grid[Q@]}-$agridsize}")
done

Data File Formats

Data files are used for many purposes and come in many different flavors, which are
divided into two main types: line oriented and block oriented. In line-oriented files, each
line is a complete record, usually with fields separated by a certain character. In block-
oriented files, each record can span many lines, and there may be more than one block in a
file. In some formats, a record is more than one block (a chess game in PGN format, for
example, is two blocks separated by a blank line).

The shell is not the best language for working with large files of data; it is better when
working with individual records. However, there are utilities such as sed and awk that

can work efficiently with large files and extract records to pass to the shell. This section
deals with processing single records.

LLine-Based Records

Line-based records are those where each line in the file is a complete record. It will
usually be divided into fields by a delimiting character, but sometimes the fields are

defined by length: the first 20 characters are the names, the next 20 are the first line of the
address, and so on.

When the files are large, the processing is usually done by an external utility such as
sed or awk. Sometimes an external utility will be used to select a few records for the
shell to process. This snippet searches the password file for users whose shell is bash and
feeds the results to the shell to perform some (unspecified) checks:

grep 'bash$' /etc/passwd |
while read line
do

perform some checking here
done

Delimiter-Separated Values

Most single-line records will have fields delimited by a certain character. In
/etc/passwd, the delimiter is a colon. In other files, the delimiter may be a tab, tilde,

or, very commonly, a comma. For these records to be useful, they must be split into their
separate fields.

When records are received on an input stream, the easiest way to split them is to
change TF'S and read each field into its own variable:

grep 'bash$' /etc/passwd |

while IFS=: read user passwd uid gid name homedir shell
do
printf "%16s: $s\n" \
User "Suser" \
Password "Spasswd" \
"User ID" "Suid" \
"Group ID" "S$gid" \
Name "Sname" \
"Home directory" "Shomedir" \
Shell "Sshell"

read < /dev/tty
done

Sometimes it is not possible to split a record as it is read, such as if the record will be
needed in its entirety as well as split into its constituent fields. In such cases, the entire line
can be read into a single variable and then split later using any of several techniques. For
all of these, the examples here will use the root entry from /etc/passwd:

record=root:x:0:0:root:/root:/bin/bash

The fields can be extracted one at a time using parameter expansion:

for var in user passwd uid gid name homedir shell

do

eval "Svar=\${record%%:*}" ## extract the first field
record=S{record#*:} ## and take it off the record
done

As long as the delimiting character is not found within any field, records can be split
by setting TFS to the delimiter. When doing this, file name expansion should be turned off
(with set -f) to avoid expanding any wildcard characters. The fields can be stored in an
array and variables can be set to reference them:

IFS=:

set -f

data=($record)
user=0

passwd=1

uid=2

gid=3

name=4
homedir=5
shell=6

The variable names are the names of the fields that can then be used to retrieve values
from the data array:

$ echo;printf "%$16s: %s\n" \

User "S{data[Suser]}" \

Password "S{data[Spasswd]}" \

"User ID" "S$S{data[Suid]}"™ \

"Group ID" "${data[$gid]}" \

Name "S{data[Sname]}" \
"Home directory" "S${data[$homedir]}" \

Shell "S{data[Sshell]}"

User: root
Password: x
User ID: O
Group ID: O
Name: root
Home directory: /root
Shell: /bin/bash

It is more usual to assign each field to a scalar variable. This function (Listing 13-16)
takes a passwd record and splits it on colons and assigns fields to the variables.

Listing 13-16. split passwd, Split a Record from /etc/passwd into Fields and
Assign to Variables

split passwd() #@ USAGE: split passwd RECORD

{

local opts=$- ## store current shell options
local IFS=:

local record=${1:?} array

set -f ## Turn off
filename expansion

array=(Srecord) ## Split record
into array

case Sopts in *f*);; *) set +f;; esac ## Turn on

expansion 1f previously set

user=${array[0]}
passwd=S${array[1l]}
uid=S${array[2]}
gid=S${array[3]}
name=S${array[4]}
homedir=S${array[5]}
shell=S${array[6]}

The same thing can be accomplished using a here document (Listing 13-17).

Listing 13-17. split passwd, Split a Record from /etc/passwd into Fields and
Assign to Variables

split passwd()
{

IFS=: read user passwd uid gid name homedir shell <<.

$1

More generally, any character-delimited record can be split into variables for each
field with this function (Listing 13-18).

Listing 13-18. split record, Split a Record by Reading Variables

split record() #@ USAGE parse record record delimiter var..

{
local record=S${1l:?} IFS=${2:?} ## record and delimiter
must be provided

S{3:?} ## at least one variable 1is
required
shift 2 ## remove record and

delimiter, leaving variables

Read record into a list of variables using a 'here
document'

read "S@" <<.
Srecord

}
Using the record defined earlier, here’s the output:

$ split record "Srecord" : user passwd uid gid name homedir
shell

$ sa "Suser" "S$passwd" "suid" "Sgid" "Sname" "Shomedir"
"Sshell"

:root:

1X:

:0:

:0:

troot:

:/root:

:/bin/bash:

Fixed-Length Fields

Less common than delimited fields are fixed-length fields. They aren’t used often, but
when they are, they would be looped through name=width strings to parse them, which

is how many text editors import data from fixed-length field data files:

line="John 123 Fourth Street Toronto
Canada "

for nw in name=15 address=20 city=12 country=22
do

var=${nwss=* ## variable name precedes
the equals sign
width=${nw#*=} ## field width follows it
eval "S$var=\${line:0:width}" ## extract field
line=${line:width} ## remove field from the
record
done

Block File Formats

Among the many types of block data files to work with is the portable game notation
(PGN) chess file. It stores one or more chess games in a format that is both human
readable and machine readable. All chess programs can read and write this format.

Each game begins with a seven-tag roster that identifies where and when the game was
played, who played it, and the results. This is followed by a blank line and then the moves
of the game.

Here’s a PGN chess game file (from
http://cfaj.freeshell.org/Fidel.pgn):

[Event "ICS rated blitz match"]
[Site "69.36.243.188"]

[Date "2009.06.07"]

[Round "-"]

[White "torchess"]

[Black "FidelCastro"]

[Result "1-0"]

1. £4 ¢c5 2. e3 Nco 3. Bbd Qc7 4. Nf3 do 5. b3 a6 6. Bxco+
Oxc6b 7. Bb2 Nf6

8. 0O-0 e6 9. Qel Be7 10. d3 O0-0 11. Nbd2 b5 12. Qg3 Kh8 13.
Ned Nxe4d 14.

Oxg7#
{FidelCastro checkmated} 1-0

You can use a while loop to read the tags and then mapfile to get the moves of the
game. The gettag function extracts the value from each tag and assigns it to the tag
name (Listing 13-19).

Listing 13-19. readpgn, Parse a PGN Game and Print Game in a Column

pgnfile="S${1:2}"
header=0
game=0

gettag () #@ create a variable with the same name and value
as the tag
{

local tagline=$1

tag=S${tagline%% *} ## get line before the first
space

tag=S${tag#?} ## remove the open bracket

IFS='"' read a val b <<. ## get the 2nd field, using " as
delimiter

Stagline

eval "Stag=\Sval"
}

{
while IFS= read -r line
do
case Sline in
\[*) gettag "S$line" ;;

http://cfaj.freeshell.org/Fidel.pgn

"")y [-n "S$Event"] && break;; ## skip blank lines at
beginning of file
esac
done
mapfile -t game ## read remainder of
the file
} < "S$pgnfile"

remove blank lines from end of array

while [-z "${game[${#game[@]}-11}"]
do

unset game[${#game[@]}-1]
done

print the game with header
echo "Event: SEvent"
echo "Date: S$SDate"

echo
set —-f
printf "%$4s $%-10s %$-10s\n" "" White Black "" ==========

""oUSWhite"™ "$Black" S$S{game[Q@]:0:S{#game[@]}-1}
printf "%s\n" "${game[S${#game[@]}-1]1}"

Summary

This chapter only scratched the surface of the possibilities for data manipulation, but it is
hoped that it will provide techniques to solve some of your needs and provide hints for
others. Much of the chapter involved using that most basic of programming structures,
arrays. Techniques were shown for working with single-line, character-delimited records,
and basic techniques for working with blocks of data in files.

Exercises

1. Modify the i sort and asearch functions to use sort and
grep, respectively, if the array exceeds a certain size.

2. Write a function that transposes rows and columns in a grid (either a
single-string grid or an array). For example, transform these:

123
456
789

into these:

147
256
369

. Convert some of the grid functions, either string or array versions,
to work with grids that are not square, for example, 6 x 3.

. Convert the code that parses fixed-width records into a function that
accepts the line of data as the first argument, followed by the
varname=width list.

CHAPTER 14

Scripting the Screen

Unix purists will shake their heads over this chapter. Traditionally, screen manipulation is
done through the termcap or terminfo database that supplies the information
necessary to manipulate any of dozens or even hundreds of types of terminals. The shell
interface to the database is an external command, tput.

On some systems, tput uses the termcap database; on others (mostly newer
systems), it uses the terminfo database. The commands for the two databases are not
the same, so a tput command written for one system may not work on another.

On one system, the command to place the cursor at the 20th column on the 10th row is
as follows:

tput cup 9 19

On another system, this is the command:

tput cm 9 19

These commands will produce the correct output for whatever type of terminal is
specified in the TERM variable. (Note: tput starts counting at 0.)

However, the plethora of terminal types has, for all intents and purposes, been reduced
to a single, standard type. This standard, ISO 6429 (also known as ECMA-48 and
formerly known as ANSI X3.64 or VT100), is ubiquitous, and terminals that do not
support it are few and far between. As a result, it is now feasible to code for a single
terminal type. One advantage of this homogeneity is that the necessary coding can be done
entirely within the shell. There’s no need for an external command.

Teletypewriter vs. Canvas

There are two methods of sending the output of a script to a terminal screen. The first and
more traditional method uses the terminal as if it were a printer or teletypewriter (which is
the origin of the abbreviation tty for the screen or terminal). In this mode, as each line is
printed, the paper (or screen image) is scrolled up. Old lines fall to the floor (or disappear
off the top of the screen). It’s simple, and it is more than adequate for many applications.

The second method treats the screen as a blackboard or canvas and prints to specific
points on its surface. It erases and overprints previously written sections. It may print text
in columns or at specific locations on the screen. The terminal becomes a random-access,
rather than serial, device.

This chapter looks at the screen as a canvas or blackboard. It defines a number of
variables and functions for screen manipulation, as well as presenting some demonstration
programs that use them.

Stretching the Canvas

To use the screen as a canvas, the most important capability is to be able to position the
cursor at any given location on the screen. The sequence for that is ESC [<ROW>;

<COL>H. When converted to a printf format string, it can be used directly or in a
function:

cu row col=$'\e[%d;%dH'
printf "S$cu row col" 5 10 ## Row 5, column 10
echo "Here I am!"

All of the functions in this chapter are part of the screen-funcs library, which
sources the screen-vars file. Listing 14-1 gives the screen manipulation function.

Listing 14-1. screen-funcs, Library of Screen Manipulation Functions
screen-vars

The printat function (Listing 14-2) places the cursor at the requested location and,
if there are any further arguments, it prints them. If the row and column are not specified,
printat moves the cursor to the top left corner of the screen.

Listing 14-2. printat, Place the Cursor at a Specified Location and Print Optional
String

printat () #@ USAGE: printat [row [column [string]]]
{

printf "S${cu row col?}" ${l:-1} ${2:-1}

if [$# -gt 2]

then

shift 2

printf "&$s" "Ss*"
fi

}

Command Sequence Introducer

Like all the escape sequences, cu_row col begins with ESC [. This is the command
sequence introducer (CSI). It is defined in the screen-vars file (Listing 14-3).

Listing 14-3. screen-vars, Screen Variable Definitions

ESC=$"\e'
CSI=SESC]|

Priming the Canvas

Before drawing on the screen, it must usually be cleared, and from time to time, various
parts of the screen will need to be cleared. These variables contain the fundamental
sequences for clearing the screen or lines (Listing 14-4).

Listing 14-4. screen-vars, Variable Definitions for Erasing All or Part of the Screen

topleft=${CSI}H ## move cursor to top left corner of
screen

cls=${CSI}J ## clear the screen
clear=$topleftScls ## clear the screen and move to top
left corner

clearEOL=${CSI}K ## clear from cursor to end of line
clearBOL=${CSI}1K ## clear from cursor to beginning of
line

clearEOS=S${CSI}0J ## clear from cursor to end of screen
clearBOS=S${CSI}1Jd ## clear from cursor to beginning of
screen

There are also functions for clearing rectangular areas of the screen, which are
presented later in the chapter.

Moving the Cursor

Besides being moved to an absolute location, the cursor can be moved relative to its
current position. The first four sequences are the same as those generated by the cursor
keys, and they take arguments for moving more than one line or column. The next two
turn the cursor on and off. The following two variables save the cursor position and move
it back to the saved position, respectively.

The last two move to the next or previous line at the same column as the beginning of
the previously printed line. The printf specifier, $s, is removed because it would

consume arguments that are to be printed (Listing 14-5).

Listing 14-5. screen-vars, Variable Definitions for Moving the Cursor

cursor movement strings
cu up=5${CSI}%sA
cu down=5{CSI}%sB
cu right=${CSI}%sC
cu left=5{CSI}%sD

turn the cursor off and on
cu hide=${CSI}?251
cu show=5{CSI}?121${CSI}?25h

save the cursor position

cu save=3{CSI}s ## or S{ESC}7
move cursor to saved position
cu restore=5{CSI}u ## or S$S{ESC}8

move cursor to next/previous line in block
cu NL=Scu restore${cu down/\%s/}Scu save
cu PL=Scu restore${cu up/\%s/}Scu save

The format strings for cursor movement use the % s specifier rather than $d, even
though any argument will be a number. This is because print f replaces $d with a zero
when there is no argument to fill it. If that happened, the cursor would not move at all.
With $s, they move one column or row when there is no argument because % s is replaced

by a null string.
The script in Listing 14-6 puts these variables and the printat function to work.

Listing 14-6. screen-demol, Script to Make printat Work

screen-funcs ## source the
screen—-funcs library
printf "S$clearS$cu hide" ## Clear the
screen and hide the cursor
printat 10 10 "S${cu save}XX" ## move, save
position, and print XX
sleep 1 ## 2727272727277
printat 20 20 "20/20" ## move and print
sleep 1 ## 7272272727277
printf "Scu restoreScu down${cu save}lYY" ## restore pos.,
move, print, save pos.
sleep 1 ## 7272272727277

printf "Scu restoreScu down${cu save}ZZ" 4 ## restore pos.,
move, print, save pos.

sleep 1 ## 7272272727277
printat 1 1 "Scu show" ## move to top
left and show cursor

For a variation, try changing the coordinates of the first printat command to other
values, say, 5 and 40.

Changing Rendition Modes and Colors

Characters can be printed in bold, underline, or reverse modes as well as in various colors
for those terminals that support them. (Are there any left that don’t?) These attributes are
all modified with a sequence in the form ESC [ATTRm, where ATTR is the number of an
attribute or color (Listing 14-7). Multiple attributes can be specified by separating them
with semicolons.

Colors are specified with the integers 0 to 7, and 9 will reset to the default. These are
prefixed by 3 for foreground color and 4 for background color. Attributes are also
specified by 0 to 7 but without a prefix. Though eight attributes are defined, only three are
widely supported: 1 (bold), 4 (underline), and 7 (reverse). These attributes can be turned
off individually with the values 22, 24, and 27, respectively. A value of 0 resets all
attributes and colors to their defaults.

Listing 14-7. screen-vars, Variable Definitions for Colors and Attributes

colours
black=0
red=1
green=2
yellow=3
blue=4
magenta=>5
cyan=6
white=7

fg=3 ## foreground prefix
bg=4 ## background prefix

attributes
bold=1
underline=4
reverse=7

set colors

set bg="${CSI}4%dm" ## set background color
set fg="${CSI}3%dm" ## set foreground color
set fgbg="S${CSI}3%d;4%dm" ## set foreground and

background colors

As the next demonstration script shows, the colors and attributes can be used in “tty”
mode as well as “canvas” mode (Listing 14-8).

Listing 14-8. screen-demo2, Color and Attributes Mode

screen—-funcs

echo
for attr in "$underline" 0 "Sreverse" "$bold"
"Sbold; Sreverse"
do
printf "S$set attr" "Sattr"
printf "$set fg %s " "Sred" RED
printf "$set fg %s " "Sgreen" GREEN
printf "$set fg %s " "Sblue" BLUE

printf "$set fg %s " "S$Sblack" BLACK

printf "\e[m\n"
done
echo

Placing a Block of Text on the Screen

The put block function prints its arguments one beneath the other at the current cursor
position; put block at moves the cursor to the specified location, shifts the
arguments to remove the row and column, and then calls put block with the remaining
arguments (Listing 14-9).

The cu_NL variable moves the cursor to the saved position and then moves down a

line and saves that position.

Listing 14-9. put block and put block at, Print a Block of Text Anywhere on the
Screen

put block() #@ Print arguments in a block beginning at the
current position

{

printf "Scu save" ## save cursor location
printf "$sScu NL" "S@" ## restore cursor location, move

line down, save cursor

}

put block at() #@ Print arguments in a block at the position
in $1 and $2
{

printat "$1" n$2n

shift 2

put block "$@"

}

Listing 14-10 shows the script for screen-demo3, which displays blocks of data on
the screen in columnar format.

Listing 14-10. screen-demo3

screenfuncs

printf "S$cls"
put block at 3 12 First Second Third Fourth Fifth
put block at 2 50 January February March April May June July

The output of screen-demo3 is as follows:

January
First February

Second March

Third April

Fourth May

Fifth June
July

The put blockand put block at functions work well when the screen is

empty. If there’s a lot of text already on the screen, the output may be obscured. For those
cases, there are the print block at andprint block functions that clear a

rectangular area around the block.

To determine the width that needs to be cleared, put block passes its arguments to
the max length function, which loops through the arguments to find the longest
(Listing 14-11).

Listing 14-11. max_ length, Store Length of Longest Argument in MAX LENGTH

~max length() #@ store length of longest argument in
_MAX LENGTH

{

local wvar

_MAX LENGTH=${#1} ## initialize with length of first
parameter

shift ## ...and remove first parameter

for var ## loop through remaining
parameters

do

["S{#var}" -gt "$ MAX LENGTH"] && MAX LENGTH=S${#var}
done

The print block function uses the result from max length as a width
specification to print f (Listing 14-12). Blank lines are printed before and after the text,

and a space is printed before and after each line. The only difference between
print block atandput block at isthatone calls print block and the other

calls put block.
Listing 14-12. print Dblock, Clear Area and Print Block

print block() #@ Print arguments in a block with space
around them
{

local MAX LENGTH

~max_length "3S@"

printf "Scu save"

printf " %-${ MAX LENGTH}s $cu NL" " ™ "g@" " "

print block at() #@ Move to position, remove 2 parameters
and call print block
{
printat $1 $2
shift 2
print block "S$@"
}

The text to be printed with either print blockor print block is more likely to
be a single string than separate arguments. To split the string into words or phrases short
enough to fit a given space, use the wrap function (Listing 14-13). This function splits a
string into lines with a maximum width that is specified on the command line.

Listing 14-13. wrap, Split String into Array with Elements Not Exceeding Maximum
Length

wrap () #@ USAGE: wrap string length

{ #@ requires bash-3.1 or later
local words=$1 textwidth=$2 line= opts=$-
local len=0 templen=0
set —-f

unset -v wrap
for word in Swords

do
templen=$(($len + 1 + ${#word})) ## Test adding a word
if ["Stemplen" -gt "S$textwidth"] ## Does adding a word
exceed length?
then
wrap+=("$line") ## Yes, store line in
array
printf -v line "%$s" "Sword" ## begin new line
len=${#word}
else
len=S$templen ## No, add word to
line
printf -v line "%s" "${line:+"$line "}" "Sword"
fi
done
wrap+=("S$Sline")

case $opts in
£x) g
*) set +f ;;
esac

The sample shown in Listing 14-14 uses wrap and print block at.

Listing 14-14. screen-demo4, Demonstrates the wrap and print block Functions

clear

wrap "The quick brown fox jumps over the lazy dog" 15

) E010:9:9:0:9:9.0:9:9.0:9:9:0:9:9:0:0:9.0:0:9.0:0:9..0:9:.0:9:9.0:9:9.0:0:9.0:0:$.0:0:9.9:0:9.9.0:9:$.0.9:9.0:9:$.0:9"
printat 1 1

printf "S$s\n" S$xX{,,,, s} ## print 11 lines of
'x's

print block at 3 33 "$S{wrap[@]}"

printat 12 1

The output is as follows:

XX XXX KXXXKX XXX XXX XXX XX KXX XXX XX XXX KX X XXX XXX X XX XXX XXX XXX XX XXX XXX XX >
XX XXX XXX XXX XX KXX XXX X XXX XXX XXX XXX XXX XXX KX XXX XXX XXX KX XXX XXX XXX XXX >
XXX XXX XXX XXX KX XXX XXX KX XXX XXX XXXXXX

XX XXX KXXXKX XXX KX XXX XXX KX XXX KXXXXXXXX
XXXXXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXXKXXXXXXXXXXX The quick

XX XXX KXXXKX XXX XXX KX XXX KX XXX KX XXX XXXX
XXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXX brown fox jumps

XX XXX XXX KX XXX KX XXX XXX KX KXXXKX XXX XXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXX over the lazy

XX XXX KX XXX XXX KX XXX KX XXX KXXXKX XXX XXXX

XX XXX XX XXX KX KX XXX XXX KXXXXXXXXXXXXXX dOg

XX XXKXXKXKXKXKXKXKXKX XXX KXKXXXXXXXXXXXXXX

XX XXXXXXKXKXKXKX XXX XXX KXKXXXXXXXXXXXXX

XX XXXXKXKXKXKXKXKXKX XXX KXKXXKXXXXXXXXXXXX

01 9,9.9.9.9.9.9.9,9.9,9.9:9:9:9:9:9:9:9:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9:9:9:9:9:9:9:9:9:9.9.9.9,9.9.9.9.9.9.9.9.9.9.9.9;
01 9,9.9.9.9.9.9.9,9.9,9:9:9:9:9:9:9:9:9:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9:9:9:9:9:9:9:9:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9;
01 9,9.9.9.9.9.9.9,9.9,9:9:9:9:9:9:9:9:9:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9:9:9:9:9:9:9:9:9:9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9;

Scrolling Text

By combining an array with substring expansion, text can be scrolled in any area of the
screen. Because the entire area can be printed with a single printf command, scrolling

is fast, though it gets slower as the array size increases. The demonstration in Listing 14-
15 stores the file names in /usr/bin/ in the array, 11ist; scrolls the list up; waits for a

second; and then scrolls it down.

Each loop, up and down, contains a commented-out read -t “$delay” line.
When uncommented, it will slow down the scrolling. It uses the bash-4 . x fractional
delay. If you are using an earlier version, use s1eep instead. Most implementations
(certainly GNU and *BSD) accept a fractional argument.

Listing 14-15. scroll-demo, Scrolls a Block of Text Up and Then Down

list=(/usr/bin/*) ## try it with other
directories or lists

rows=9 ## number of rows in scrolling
area

delay=.01 ## delay between scroll advance
width=-33.33 ## width spec: (no more than)

33 chars, flush left
NED000.0000000000000000000000GE T INT-Talel D G

x=5xxx5x ## longer bar

clear ## clear the screen

printf "$50.50s\n" S$xX{,,, s rrrrrrrrs} ## print 14
lines of '"X's

n=0 ## start display with first
element

scroll upwards until reaching the bottom
while [$((n += 1)) -1t $((S${#1list[@]} - Srows))]
do
printf "\e[3;1H"
printf "\e[7C %$${width}s\n" "${list[@]:n:rows}"
read -snl -t "S$Sdelay" && break

done

sleep 1

scroll downwards until reaching the top
while [$((n -=1)) -ge 0]

do

printf "\e[3;1H"

printf "\e[7C %$${width}s\n" "${list[@]:n:rows}"
read -snl -t "Sdelay" && break
done

printf "\e[15;1H" ## finish with cursor well below
scrolling area

Rolling Dice
Dice are used in many games and are simple to program if you are satisfied with printing

just the number:

printf "$s\n" "S$((SRANDOM % 6 + 1))"

However, a respectable graphic rendition can be programmed surprisingly easily with
the shell. To print a die, position the cursor at the desired location on the screen, set the
foreground and background colors, and print the element from the array (Figure 14-1).

Figure 14-1. Listing 14-16 contains the code for these dice

An array of six dice can be programmed in about 25 lines of code. Each die is a
concatenation of 18 variables. Some of these have the same contents as those in the
screen-funcs library, but their names are shortened here to keep the lines shorter.

Here is a description of the die with the number 5:

Sb

Scs
$p0
Scr
sdn
Scs
Sp4
Scr
sdn
Scs
Sp2
Scr
Sdn
Scs
Sp4
Scr
Sdn
$p0

After defining the dice, the script in Listing 14-16 clears the screen and prints two

il
ik
ik
ik
ik
ik
ik
ik
ik
i
i
i
i
ik
i
i
#
#

set bold attribute (optional)

save cursor position

print blank row

restore cursor to left side
move down one line

save cursor position

print row with two pips
restore cursor to left side
move down one line

save cursor position

print row with one pip
restore cursor to left side
move down one line

save cursor position

print row with two pips
restore cursor to left side
move down one line

print blank row

random dice near the top of the screen.

Listing 14-16. dice, Defines an Array of Six Dice and Places Two on the Screen

pip=o

pO=" " ## blank line

pl=" S$pip " ## one pip at the left

p2=" Spip " ## one pipe in the middle of the
line

p3=" Spip " ## one pip at the right

p4=" Spip Spip " ## two pips

p5=" Spip Spip Spip " ## three pips

character to use for the pips

of die

of die

of die

of die

cs=$"'\e7"'
cr=$"'\e8'
dn=$"'\e[B'
b=S$"'"\e[1lm'
cu put="'\e
cursor
fgbg="\e[3

dice=(

ik
4
4
4
[$d; SdH' idid

sd;4%dm' idid

dice with values 1 to 6
"SbScsSp0ScrSdnscsSp0ScrsdnScssSp2ScrsdnScsSp0ScrSdnspo”
"SbScsSp0ScrSdnsScsSplscrsdnScssSp0ScrsdnScsSp3sScrSdnspo”
"SbScsSp0ScrSdnsScsSplsScrsdnScsSp2ScrsdnScsSp3sScrSdnspO”
"SbScsSp0ScrSdnsScsSpidsScrsdnScsSp0ScrsdnScsSpdScrSdnspo”
"SbScsSp0ScrSdnScsSpidsScrsdnScsSp2ScrsdnScsSpdScrSdnspo”
"SbScsSp0ScrSdnsScsSpbscrsdnScsSp0ScrsdnScsSpS5ScrSdnspo”

)

clear

printf "Scu put" 2 5
printf "$fgbg" 7 0

printf "%$s

\n" "${dice [RANDOMS%6

printf "Scu put" 2 20
printf "$fgbg" 0 3

printf "%s

\n" "${dice [RANDOMS%6

Summary

save cursor position

restore

cursor position

move down 1 line
set bold attribute
format string to position

format string to set colors

i
i
I &

ik
ik
I &

(array elements 0 to 5)

position cursor
white on black
print random die

position cursor
black on yellow
print random die

Without touching on traditional ASCII art, there are many ways to draw things on a
terminal screen. This chapter has presented a number of them, giving the basics that can
be used to create many more.

Exercises

1. Write a function, hbar, that accepts two integer arguments, a width

and a color, and prints a bar of that color and width. Write a second
function, hbar at, that accepts four arguments: row, column,

width, and color; moves the cursor to the row and column; and

passes the remaining arguments to hbar.

Write a function, clear area, that accepts two integer
arguments, rows and columns, and clears a rectangular area of that

many rows and columns.

CHAPTER 15

Entry-Level Programming

The preference for bash over any other POSIX shell stems to a great extent from its
extensions that enhance interactive programming. The extended options to the read built-
in command (which were described in Chapter 9), combined with the history and
readline libraries, add functionality that no other shell can match.

Despite its richness, there is still no easy way for the shell to deal with keys such as
function keys that generate multiple characters. For that, this chapter presents the key-
funcs library of functions. The second major section of this chapter describes how to use
the mouse in shell scripts and provides a demonstration program.

Between those sections, we’ll deal with checking user input for validity and the history
library. Most people use bash’s history library only at the command line. We’ll use it in
scripts, and this chapter will show how that is done, by using the history command in a
rudimentary script for editing a multifield record.

Single-Key Entry

When writing an interactive script, you might want a single key to be pressed without
requiring the user to press Enter. The portable way to do that is to use stty and dd:

stty —-echo -icanon min 1
_KEY=$ (dd count=1 bs=1 2>/dev/null)
stty echo icanon

Using three external commands every time you need a key press is overkill. When you
need to use a portable method, you can usually first make a call to st ty at the beginning

of the script and the other at the end, often in an EXIT trap:
trap 'stty echo icanon' EXIT

Bash, on the other hand, doesn’t need to call any external commands. It may still be a
good idea to use stty to turn off echoing at the beginning and back on before exiting.
This will prevent characters from showing up on the screen when the script is not waiting
for input.

Function Library, key-funcs

The functions in this section comprise the key-funcs library. It begins with two
variable definitions, shown here in Listing 15-1.

Listing 15-1. key-funcs, Read a Single Key Press

ESC=S$"\e'
CSI=S$'\e['

To get a single keystroke with bash, you can use the function in Listing 15-2.

Listing 15-2. key, Functions for Reading a Single Key Press

_key ()
{
IFS= read -r -s -nl -d ''" "${1l:- KEY}"

First, the field separator is set to an empty string so that read doesn’t ignore a leading
space (it’s a valid keystroke, so you want it); the —r option disables backslash escaping, -
s turns off echoing of keystrokes, and —n1 tells bash to read a single character only.

The —d ” option tells read not to regard a newline (or any other character) as the
end of input; this allows a newline to be stored in a variable. The code instructs read to
stop after the first key is received (-n1) so it doesn’t read forever.

The last argument uses $ {@: - KEY} to add options or a variable name to the list of
arguments. You can see its use in the keys function in Listing 15-3. (Note that if you
use an option without also including a variable name, the input will be stored in SREPLY.)

Note For this to work on earlier versions of bash or on the Mac OS X, add the
variable name to the read command, such as IFS= read -r -s -nl -d” KEY
“${1l:- KEY}”.If not, then you have to look to SREPLY for the key press read.

The key function can be used in a simple menu, as shown in Listing 15-3.

Listing 15-3. simplemenu, Menu that Responds to a Single Key Press

the key function should be defined here if it is not
already
while
do
printf "\n\n\tSbar\n"
printf "\t %d. %s\n" 1 "Do something" \
2 "Do something else" \
3 "Quit"
printf "\t%s\n" "Sbar"
_key
case S _KEY in
1) printf "\n%s\n\n" Something ;;
2) printf "\n%s\n\n" "Something else" ;;
3) break ;;

*) printf "\a\n%$s\n\n" "Invalid choice; try again"

continue
7
esac
printf ">>> %s " "Press any key to continue"
_key
done

Although key is a useful function by itself, it has its limitations (Listing 15-4). It can
store a space, a newline, a control code, or any other single character, but what it doesn’t
do is handle keys that return more than one character: function keys, cursor keys, and a
few others.

These special keys return ESC (0 x 1B, which is kept in a variable $ESC) followed by
one or more characters. The number of characters varies according to the key (and the
terminal emulation), so you cannot ask for a specific number of keys. Instead, you have to
loop until one of the terminating characters is read. This is where it helps to use bash’s
built-in read command rather than the external dd.

Listing 15-4. keys, Read a Sequence of Characters from a Function or Cursor Key

_keys () #@ Store all waiting keypresses in $ KEYS
{

_KEYS=

_ KX=

ESC END is a list of characters that can end a key
sequence

Some terminal emulations may have others; adjust to
taste

ESC_END=[a-zA-NP-Z~"\$@S$ESC]

while
do
IFS= read -rsnl -d '' -tl KX
_KEYS=$ KEYSS$ KX
case S KX in
"" | SESC_END) break ;;
esac
done

The while : loop calls key with the argument -t 1, which tells read to time out
after one second, and the name of the variable in which to store the keystroke. The loop
continues until a key in SESC_END is pressed or read times out, leaving $ KX empty.

The timeout is a partially satisfactory method of detecting the escape key by itself.
This is a case where dd works better than read, because it can be set to time out in

increments of one-tenth of a second.

To test the functions, use key to get a single character; if that character is ESC, call
_keys to read the rest of the sequence, if any. The following snippet assumes that key
and keys are already defined and pipes each keystroke through hexdump -C to show
its contents:

while
do
_key
case $ KEY in
SESC) keys
_KEY=ESC_KEYS

.
rs

esac

printf "%s" "$ KEY" | hexdump -C | {
read a b
printf " s\n" "Sb"

}
case "$_KEY" in g) break ;; esac
done

Unlike the output sequences, which work everywhere, there is no homogeneity among
key sequences produced by various terminal emulators. Here is a sample run, in an rxvt

terminal window, of pressing F1, F12, up arrow, Home, and q to quit:

1b 5b 31 31 7e | .[11~]
1b 5b 32 34 e | . [24~]
1b 5b 41 | . [A]
1b 5b 35 7e | . [O5~]
71 gl

Here are the same keystrokes in an xterm window:
1b 4f 50 | .OP|
1b 5b 32 34 7e | . [24~]
1b 5b 41 | . [A]
1b 5b 48 | . [H]
71 gl
Finally, here they are as produced by a Linux virtual console:
1b 5b 5b 41 | . [[A]
1b 5b 32 34 Te | . [24~]
1b 5b 41 | . [A]
1b 5b 31 7e [. [1~]
71 lal

All the terminals tested fit into one of these three groups, at least for unmodified keys.

The codes stored in $ KEY can be either interpreted directly or in a separate function.

It is better to keep the interpretation in a function that can be replaced for use with
different terminal types. For example, if you are using a Wyse60 terminal, the source
wy60-keys function would set the replacement keys.

Listing 15-5 shows a function, esc2key, that works for the various terminals on a
Linux box, as well as in put ty in Windows. It converts the character sequence into a
string describing the key, for example, UP, DOWN, F1, and so on:

Listing 15-5. esc2key, Translate a String to a Key Name

_esczkey ()
{
case $1 in
Cursor keys

"SCSI"A | ${CSI}OA _ESC2KEY=UP ;;

)

"SCSI"B | S{CSI}OB) _ESCZKEY=DOWN -
"SCSI"C | S{CSI}OC) _ESCZKEY=RIGHT -
"SCSI"D | S{CSI}OD) _ESCZKEY=LEFT H
Function keys (unshifted)
"SCSI"11l~ | "SCSI["A | S{ESC}OP) _ESC2KEY=F1 -
"SCSI"12~ | "SCSI["B | S{ESC}OQ) _ESC2KEY:F2 H
"SCSI"13~ | "SCSI["C | S${ESC}OR) ESC2KEY=F3 ;;
"SCSI"14~ | "SCSI["D | S${ESC}0OS) ESC2KEY=F4 ;;
"SCSI"15~ | "SCSI["E) _ESCZKEY=F5 H
"SCSI"17~ | "SCSI["F) _ESCZKEY=F6 H
"$CSI"18~) ESC2KEY=F7 ;;
"$CSI"19~) ESC2KEY=F8 ;;
"$CSI"20~) ESC2KEY=F9 ;;
"SCSI"21~) ESC2KEY=F10 ;;
"SCSI"23~) ESC2KEY=F11l ;;

)

"$CSI"24~) ESC2KEY=F12 ;;

Insert, Delete, Home, End, Page Up, Page Down
"$CSI"2~) _ESC2KEY=INS ;;
"$CSI"3~) _ESC2KEY=DEL ;;

"SCSI"[17]~ | "S$CSI"H) ESC2KEY=HOME ;;
"$CSI"[28]~ | "S$SCSI"F) ESC2KEY=END ;;
"SCSI"5~) ESC2KEY=PGUP ;;
"$SCSI"6~) ESC2KEY=PGDN ;;

Everything else; add other keys before this line
*) ESCZKEY=UNKNOWN ;;

esac

[-n "$2"] && eval "$2=\$ ESC2KEY"

You can wrap the key and esc2key functions into another function, called
get key (Listing 15-6), which returns either the single character pressed or, in the case
of multicharacter keys, the name of the key.

Listing 15-6. get key, Gets a Key and, if Necessary, Translates It to a Key Name

get key ()
{
_key
case $ KEY in
"SESC") keys
_esc2key "SESCS KEYS" KEY

esacC

In bash-4.x, you can use a simpler function to read keystrokes. The get key
function in Listing 15-7 takes advantage of the capability of read’s -t option to accept
fractional times. It reads the first character then waits for one-ten-thousandth of a second
for another character. If a multicharacter key was pressed, there will be one to read within
that time. If not, it will fall through the remaining read statements before another key can

be pressed.

Listing 15-7. get _key, Reads a Key and, if It Is More than a Single Character,
Translates It to a Key Name

get key () #@ USAGE: get key var

{
local wv W X Y z delay=${delay:-.0001}

IFS= read -d ''" -rsnl v
read -snl -t "$delay" w
read -snl -t "$delay" x
read -snl -t "S$delay" vy
read -snl -t "S$delay" =z
case $ v in

s'\e') _esc2key "S v.S w S xSy S z™"

printf -v ${1:?} S ESC2KEY

*) printf -v ${1:?} "%s" "$ v .S w $ x Sy S z" ;;
esac

Whenever you want to use cursor or function keys in a script, or for any single-key
entry, you can source key-funcs and call get key to capture key presses. Listing 15-

8 is a simple demonstration of using the library.

Listing 15-8. keycapture, Read, and Display Keystrokes Until Q Is Pressed

key-funcs ## source the

library

while : ## infinite loop
do
get key key
sa "Skey" ## the sa command is

from previous chapters
case Skey in g|Q) break;; esac
done

The script in Listing 15-9 prints a block of text on the screen. It can be moved around
the screen with the cursor keys, and the colors can be changed with the function keys. The
odd-numbered function keys change the foreground color; the even-numbered keys
change the background.

Listing 15-9. key-demo, Capture Function and Cursor Keys to Change Colors and Move
a Block of Text Around the Screen

trap '' 2
trap 'stty sane; printf "S${CSI}?121${CSI}?25h\e[0m\n\n""
EXIT

stty -echo ## Turn off echoing of user keystrokes
key-funcs ## Source key functions

clear ## Clear the screen

Initial position for text block
row=$ (((${LINES:-24} - 10) / 2))
col=$((($S{COLUMNS:-80} - S${#bar}) / 2))

Initial colours
fg="${CSI}33m"
bg="${CSI}44m"

Turn off cursor
printf "%s" "S$S{CSI}?2251"

Loop until user presses "g"
while
do
printf "\e[lm\e[%d; %dH" "Srow" "Scol"
printf "\e7 %-${#bar}.S{#bar}ts S${CSI}Om
\e8\e[1B" "S${CSI}Om"
printf "\e7 S$fgSbg%-S${#bar}.S{#bar}sS{CSI}0Om \e8\e[1B"
"Sbar" \

Move text with cursor keys" \
Change colors with function keys" \

mwn "

mwn "

Press 'g' to quit" \
mwwn "$bar"
printf "\e7%-S{#bar}.S{#bar}s "
get key k

case Sk in

UP) row=S((Srow - 1)) ;;
DOWN) row=$((Srow + 1)) ;;
LEFT) col=$(($col - 1)) ;;
RIGHT) col=$((Scol + 1)) ;;
F1) fg="${CSI}30m" ;;
F2) bg="${CSI}47m" ;;
F3) fg="${CSI}31Im" ;;
F4) bg="${CSI}4em" ;;
F5) fg="${CSI}32m" ;;
F6) bg="${CSI}45m" ;;
F7) fg="${CSI}33m" ;;
F8) bg="${CSI}44m" ;;
F9) fg="${CSI}35m" ;;
F10) bg="${CSI}43m" ;;
F11) fg="${CSI}34m" ;;
F12) bg="${CSI}42m" ;;
qglQ) break ;;
esac
colmax=$((${COLUMNS:-80} - S$S{#bar}
rowmax=S ((S$S{LINES:-24} - 10))

[Scol -1t 1
[$Scol -gt S$colmax]
[Srow -1t 1]
[Srow -gt S$Srowmax]

done

] && col=1
&& col=$colmax
&& row=1
&& row=$rowmax

History in Scripts

"S{CSI}Om"

In the readline functions in Chapters 6 and 12, history -s was used to place a
default value into the history list. In those examples, only one value was stored, but it is
possible to store more than one value in history or even to use an entire file. Before adding
to the history, you should (in most cases) clear it:

history -c

By using more than one history -s command, you can store multiple values:

history -s Genesis
history -s Exodus

With the -r option, you can read an entire file into history. This snippet puts the

names of the first five books of the Bible into a file and reads that into the history:

cut -d: -f1 "S$kjv" | unig | head -5 > pentateuch
history -r pentateuch

The readline functions in Chapters 6 and 12 use history if the bash version is
less than 4, but read’s —1i option with version 4 (or greater). There are times when it
might be more appropriate to use history rather than -1 even when the latter is
available. A case in point is when the new input is likely to be very different from the
default but there is a chance that it might not be.

For history to be available, you must use the —e option with read. This also gives
you access to other key bindings defined in your . inputrc file.

Sanity Checking

Sanity checking is testing input for the correct type and a reasonable value. If a user inputs
Jane for her age, it’s obviously wrong: the data is of the wrong type. If she enters 666, it’s
the correct type but almost certainly an incorrect value. The incorrect type can easily be
detected with the valint script (see Chapter 3) or function (see Chapter 6). You can use

the rangecheck function from Chapter 6 to check for a reasonable value.

Sometimes the error is more problematic, or even malicious. Suppose a script asks for
a variable name and then uses eval to assign a value to it:

read -ep "Enter variable name: " var
read -ep "Enter value: " wval
eval "Svar=\Sval"

Now, suppose the entry goes like this:

Enter variable name: rm -rf *;name
Enter value: whatever

The command that eval will execute is as follows:
rm —-rf *;name=whatever

Poof! All your files and subdirectories are gone from the current directory. It could
have been prevented by checking the value of var with the validname function from

Chapter 7:

validname "Svar" && eval "Svar=\$Sval" || echo Bad variable
name >&2

When editing a database, checking that there are no invalid characters is an important
step. For example, in editing /etc/passwd (or a table from which it is created), you

must make sure that there are no colons in any of the fields. Figure 15-1 adds some humor

to this discussion.

HI, THIS 1S OH, DEAR - DID HE

YOUR SON SCHOOL. | BREAK SOMETHING?
WE'RE HAVING SOME
COMPUTER TRuBLE. | "N A WAY- /

Sml Sl

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ ?

~ OH.YES UTTLE
BOBBY TABRLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YPURE HAPPY.
‘ll AND I HOPE
=~ YOUVE LEARNED
TO SANMIZE YOUR
DATARASE INPUTS,

Figure 15-1. Cartoon courtesy of Randall Munroe at http://xkcd. com

Form Entry

The script in Listing 15-10 is a demonstration of handling user input with a menu and
history. It uses the key—-funcs library to get the user’s selection and to edit password
fields. It has a hard-coded record and doesn’t read the /et c/passwd file. It checks for a
colon in an entry and prints an error message if one is found.

The record is read into an array from a here document. A single printf statement
prints the menu, using a format string with seven blanks and the entire array as its

arguments.

Listing 15-10. password, Simple Record-Editing Script

record=root:x:0:0:root:/root:/bin/bash

edit

fieldnames=(User Password UID

GID Name Home Shell

key-funcs
functions

IFS=: read -a user <<EOF
into array

Srecord

EQOF

z=0
clear
while
user presses 0 or g
do
printf "\e[H\n
0. Quit

)

record to

load the key

read record

loop until

http://xkcd.com

1. User: %s\e[K
2. Password: %s\e[K
3. UID: %s\e[K
4. GID: %s\e[K
5. Name: %s\e[K
6. Home: %s\e[K
7. Shell: %s\e[K
Select field (1-7): \e[0J" "S{user[@]}" ## print menu
and prompt
get key field ## get user
input
printf "\n\n" ## print
a blank line
case $field in
0lglQ) break ;; ## quit
[1=-71) 7 ## menu item

selected; fall through
*) continue;;

esac

history -c ## clear
history

history -s "S${user[field-1]1}" ## insert
current value in history

printf ' Press UP to edit "%$s"\n' "S$S{user[field-11}" ##
tell user what's there

read -ep " S{fieldnames[field-1]}: " wval #4#

get user entry
case S$Sval in
:) echo " Field may not contain a colon (press
ENTER) " >&2 ## ERROR
get key; continue
"") continue ;;
*) user|[field-1]=Sval ;;
esac
done

Reading the Mouse

On the Linux console codes! man page, there is a section labeled “mouse tracking.”
Interesting! It reads: “The mouse tracking facility is intended to return xterm-compatible
mouse status reports.” Does that mean the mouse can be used in shell scripts?

According to that man page, mouse tracking is available in two modes: X10
compatibility mode, which sends an escape sequence on button press, and normal tracking
mode, which sends an escape sequence on both button press and release. Both modes also
send modifier-key information.

To test this, printf “\e[?9h” was first entered at a terminal window. This is the

escape sequence that sets the “X10 Mouse Reporting (default off): Set reporting mode to 1
(or reset to 0)”. If you press the mouse button, the computer will beep and print “FB” on
the screen. Repeating the mouse click at various points on the screen will net more beeps
and “§&% -(5. =2 H7 T=]C £fG rJ IM.”

A mouse click sends six characters: ESC, [, M, b, x, y. The first three characters are

common to all mouse events, the second three contain the button pressed, and the finals
ones are the x and y locations of the mouse. To confirm this, save the input in a variable

and pipe it to hexdump:

$ printf "\e[?9h"

S read x

A~ [M!I'MO ## press mouse button and enter

$ printf "$x" | hexdump -C

00000000 1b 5b 4d 21 4d 4f | . [M!MO |
00000006

The first three appear as expected, but what are the final three? According to the man
page, the lower two bits of the button character tell which button has been pressed; the
upper bits identify the active modifiers. The x and y coordinates are the ASCII values to

which 32 has been added to take them out of the range of control characters. The ! is 1,
is 2, and so on.

That gives us a 1 for the mouse button, which means button 2, since 0 to 2 are buttons
1, 2, and 3, respectively, and 4 is release. The x and y coordinates are 45 (O x 4d = 77; 77
— 32 =45) and 47.

Surprisingly, since running across this information about mouse tracking in a Linux
console codes man page, it was found that these escape codes do not work in all
Linux consoles. They work in xterm, rxvt, and gnome-terminal on Linux and
FreeBSD. They can also be used on FreeBSD and NetBSD, via ssh from a Linux rxvt
terminal window. They do not work in a KDE konsole window.

You now know that mouse reporting works (in most xterm windows), and you can

get information from a mouse click on the standard input. That leaves two questions: How
do you read the information into a variable (without having to press Return), and how can
the button and %, y information be decoded in a shell script?

With bash, use the read command’s —n option with an argument to specify the
number of characters. To read the mouse, six characters are needed:

read —-n6 x

Neither of these is adequate for a real script (not all input will be mouse clicks, and
you will want to get single keystrokes), but they suffice to demonstrate the concept.

The next step is to decode the input. For the purposes of this demonstration, you can
assume that the six characters do indeed represent a mouse click and that the first three
characters are ESC, [, and M. Here we are only interested in the last three, so we extract

them into three separate variables using POSIX parameter expansion:

ml=S{x#2?7?} ## Remove the first 3 characters
m2=S{x#?2?227?} ## Remove the first 4 characters
m3=$ {x#?2?2?22°7 ## Remove the first 5 characters

Then convert the first character of each variable to its ASCII value. This uses a POSIX
printf extension: “If the leading character is a single-quote or double-quote, the value
shall be the numeric value in the underlying codeset of the character following the single-

quote or double-quote.”?

printf -v mb "%d" "'Sml"
printf -v mx "%d" "'Sm2"
printf -v my "%d" "'Sm3"

Finally, interpret the ASCII values. For the mouse button, do a bitwise AND 3. For the
x and y coordinates, subtract 32:

Values > 127 are signed, so fix if less than 0
[Smx -1t 0] && mx=$((255 + Smx))
[Smy -1t 0] && my=$((255 + Smy))

BUTTON=$ (((Smb & 3) + 1))
MOUSEX=S$ ((Smx - 32))
MOUSEY=S$ (($Smy - 32))

Putting it all together, the script in Listing 15-11 prints the mouse’s coordinates
whenever you press a mouse button.

There are two sensitive areas on the top row. Clicking the left one toggles the mouse
reporting mode between reporting only a button press and reporting the release as well.
Clicking the right one exits the script.

Listing 15-11. mouse-demo, Example of Reading Mouse Clicks

ESC=S"'\e'
but row=l1

mv=9 ## mv=1000 for press and release reporting; mv=9 for
press only

_STTY=S (stty -9) ## Save current terminal setup
stty —-echo -icanon ## Turn off line buffering
printf "${ESC}[?S{mv}h " ## Turn on mouse reporting

printf "S${ESC} [?251" ## Turn off cursor

printat () #@ USAGE: printat ROW COLUMN
{

printf "S{ESC}[S{1};S{2}H"
}

print buttons ()
{
num_but=5$#
gutter=2
gutters=S$(($Snum but + 1))
but width=$ (((SCOLUMNS - Sgutters) / Snum but))
n=0
for but str
do
col=$ ((Sgutter + $n * (Sbut width + Sgutter)))
printat $but row Scol
printf "S${ESC}[7m%S{but width}s™ " "
printat S$but row $((S$col + (Sbut width - S${#but str})

/ 2))
printf "%$.S{but width}s$S{ESC}[0m" "Sbut str"
n=5(($n + 1))
done
}
clear
while
do

[Smv -eq 9] && mv_str="Click to Show Press & Release" ||
mv_str="Click to Show Press Only"
print buttons "Smv_str" "Exit"

read —-no6 x

ml=S{x#?27?7?} ## Remove the first 3 characters
m2=S{x#?2?22?} ## Remove the first 4 characters
m3=S{x#?2?2?27?7 ## Remove the first 5 characters

Convert to characters to decimal values

printf -v mb "%d" "'Sml"

printf -v mx "%d" "'s$m2"

printf -v my "%d" "'s$m3"

Values > 127 are signed

[Smx -1t 0] && MOUSEX=$((223 + $mx)) || MOUSEX=$((Smx
- 32))

[Smy -1t 0] && MOUSEY=$((223 + S$my)) || MOUSEY=$ ((Smy

- 32))

Button pressed is in first 2 bytes; use bitwise AND
BUTTON=S (((Smb & 3) + 1))

case SMOUSEY in
$but row) ## Calculate which on-screen button has been

pressed

button=$ ((($SMOUSEX - S$gutter) / $but width
+ 1))
case Sbutton in
1) printf "S{ESC}[?2S$S{mv}1"
[Smv -eq 9] && mv=1000 || mv=9
printf "S{ESC}[?S{mv}h"
[Smv -eq 1000] && x=$(dd bs=1 count=6
2>/dev/null)
2) break ;;
esac
*) printat $MOUSEY SMOUSEX
printf "X=%d Y=%d [%d] " SMOUSEX SMOUSEY SBUTTON
esac
done

printf "S${ESC}[?S{mv}1" ## Turn off mouse reporting

stty "S STTY" ## Restore terminal settings
printf "${ESC} [?121S$S{ESC} [?225h" ## Turn cursor back on
printf "\nS${ESC} [0J\n" ## Clear from cursor to bottom of
screen,

Summary

Bash has a rich set of options for interactive programming. In this chapter, you learned
how to leverage that to read any keystroke, including function keys and others that return
more than a single character.

Exercises

1. Using the key-funcs library, write a menu script that uses the
function keys for selection.

2. Rewrite the key-funcs library to include mouse handling, and

incorporate the function into the mouse-demo script.

3. The password script does minimal checking for invalid entries.
What checking would you add? How would you code it?

1http://man7.org/linux/man—pages/man4/console_codes.4.html

2http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

http://man7.org/linux/man-pages/man4/console_codes.4.html
http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

APPENDIX A

Shell Variables

This list is excerpted from the bash man page and edited to make a stand-alone
document. The following variables are set by bash.

BASH

Expands to the full file name used to invoke this instance of bash.

BASHPID

Expands to the process ID of the current bash process. This differs from $$ under certain
circumstances, such as subshells that do not require bash to be reinitialized.

BASH_ALIASES

An associative array variable whose members correspond to the internal list of aliases as
maintained by the alias builtin. Elements added to this array appear in the alias list;
unsetting array elements causes aliases to be removed from the alias list.

BASH_ARGC

An array variable whose values are the number of parameters in each frame of the current
bash execution call stack. The number of parameters to the current subroutine (shell

function or script executed with . or source) is at the top of the stack. When a subroutine
is executed, the number of parameters passed is pushed onto BASH ARGC. The shell sets
BASH ARGC only when in extended debugging mode (see the description of the
extdebug option to the shopt builtin in the bash man page).

BASH_ARGYV

An array variable containing all the parameters in the current bash execution call stack.
The final parameter of the last subroutine call is at the top of the stack; the first parameter
of the initial call is at the bottom. When a subroutine is executed, the parameters supplied
are pushed onto BASH ARGV. The shell sets BASH ARGV only when in extended

debugging mode (see the description of the extdebug option to the shopt builtin in the
bash man page).

BASH_CMDS

An associative array variable whose members correspond to the internal hash table of
commands as maintained by the hash builtin. Elements added to this array appear in the
hash table; unsetting array elements causes commands to be removed from the hash table.

BASH_COMMAND

The command currently being executed or about to be executed, unless the shell is
executing a command as the result of a trap, in which case it is the command executing at
the time of the trap.

BASH_EXECUTION_STRING

The command argument to the —c invocation option.

BASH_LINENO

An array variable whose members are the line numbers in source files corresponding to
each member of FUNCNAME. ${BASH LINENO[$i]} is the line number in the source

file where $ { FUNCNAME [$1] } was called (or $ {BASH LINENO[$i-1]} if
referenced within another shell function). The corresponding source file name is
${BASH SOURCE[$1i]}.Use LINENO to obtain the current line number.

BASH_REMATCH

An array variable whose members are assigned by the =~ binary operator to the [[
conditional command. The element with index 0 is the portion of the string matching the
entire regular expression. The element with index n is the portion of the string matching
the nth parenthesized subexpression. This variable is read-only.

BASH_SOURCE

An array variable whose members are the source file names corresponding to the elements
in the FUNCNAME array variable.

BASH_SUBSHELL

Incremented by one each time a subshell or subshell environment is spawned. The initial
value is 0.

BASH_VERSINFO

A read-only array variable whose members hold version information for this instance of
bash. The values assigned to the array members are as follows:

BASH VERSINFO[0]: The major version number (the release)
BASH VERSINFO [1]: The minor version number (the version)
BASH VERSINFO([2]: The patch level

BASH VERSINFO [3]: The build version

BASH VERSINFO [4]: The release status (e.g., betal)

BASH VERSINFO[S5]: The value of MACHTYPE

BASH_VERSION

Expands to a string describing the version of this instance of bash.

COMP_CWORD

An index into $ { COMP_WORDS} of the word containing the current cursor position. This

variable is available only in shell functions invoked by the programmable completion
facilities (see “Programmable Completion” in the bash man page).

COMP_KEY

The key (or final key of a key sequence) used to invoke the current completion function.

COMP_LINE

The current command line. This variable is available only in shell functions and external
commands invoked by the programmable completion facilities (see “Programmable
Completion” in the bash man page).

COMP_POINT

The index of the current cursor position relative to the beginning of the current command.
If the current cursor position is at the end of the current command, the value of this
variable is equal to $ {#COMP LINE}. This variable is available only in shell functions
and external commands invoked by the programmable completion facilities (see
“Programmable Completion” in the bash man page).

COMP_TYPE

Set to an integer value corresponding to the type of completion attempted that caused a
completion function to be called: TAB for normal completion, ? for listing completions
after successive tabs, ! for listing alternatives on partial word completion, @ to list
completions if the word is not unmodified, or % for menu completion. This variable is
available only in shell functions and external commands invoked by the programmable
completion facilities (see “Programmable Completion” in the bash man page).

COMP_WORDBREAKS

The set of characters that the readline library treats as word separators when
performing word completion. If COMP WORDBREAKS is unset, it loses its special
properties, even if it is subsequently reset.

COMP_WORDS

An array variable (see “Arrays” in the bash man page) consisting of the individual words
in the current command line. The line is split into words as readline would split it,
using COMP_WORDBREAKS as described previously. This variable is available only in

shell functions invoked by the programmable completion facilities (see “Programmable
Completion” in the bash man page).

DIRSTACK

An array variable (see “Arrays” in the bash man page) containing the current contents of

the directory stack. Directories appear in the stack in the order they are displayed by the
dirs builtin. Assigning to members of this array variable may be used to modify

directories already in the stack, but the pushd and popd builtins must be used to add and

remove directories. Assignment to this variable will not change the current directory. If
DIRSTACK is unset, it loses its special properties, even if it is subsequently reset.

EUID

Expands to the effective user ID of the current user, initialized at shell startup. This
variable is read-only.

FUNCNAME

An array variable containing the names of all shell functions currently in the execution
call stack. The element with index 0 is the name of any currently executing shell function.
The bottom-most element is ma in. This variable exists only when a shell function is

executing. Assignments to FUNCNAME have no effect and return an error status. If
FUNCNAME is unset, it loses its special properties, even if it is subsequently reset.

GROUPS

An array variable containing the list of groups of which the current user is a member.
Assignments to GROUPS have no effect and return an error status. If GROUPS is unset, it

loses its special properties, even if it is subsequently reset.

HISTCMD

The history number, or index in the history list, of the current command. If HISTCMD is
unset, it loses its special properties, even if it is subsequently reset.

HOSTNAME

Automatically set to the name of the current host.

HOSTTYPE

Automatically set to a string that uniquely describes the type of machine on which bash
is executing. The default is system-dependent.

LINENO

Each time this parameter is referenced, the shell substitutes a decimal number representing
the current sequential line number (starting with 1) within a script or function. When not
in a script or function, the value substituted is not guaranteed to be meaningful. If
LINENO is unset, it loses its special properties, even if it is subsequently reset.

MACHTYPE

Automatically set to a string that fully describes the system type on which bash is
executing, in the standard GNU cpu-company-system format. The default is system-
dependent.

OLDPWD

The previous working directory as set by the cd command.

OPTARG

The value of the last option argument processed by the getopts builtin command (see
“Shell Builtin Commands” in the bash man page).

OPTIND

The index of the next argument to be processed by the getopt s builtin command (see
“Shell Builtin Commands” in the bash man page).

OSTYPE

Automatically set to a string that describes the operating system on which bash is
executing. The default is system-dependent.

PIPESTATUS

An array variable (see “Arrays” in the bash man page) containing a list of exit status

values from the processes in the most recently executed foreground pipeline (which may
contain only a single command).

PPID

The process ID of the shell’s parent. This variable is read-only.

PWD

The current working directory as set by the cd command.

RANDOM

Each time this parameter is referenced, a random integer between 0 and 32767 is
generated. The sequence of random numbers may be initialized by assigning a value to
RANDOM. If RANDOM is unset, it loses its special properties, even if it is subsequently
reset.

REPLY

Set to the line of input read by the read builtin command when no arguments are
supplied.

SECONDS

Each time this parameter is referenced, the number of seconds since shell invocation is
returned. If a value is assigned to SECONDS, the value returned upon subsequent

references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

SHELLOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid argument
for the —o option to the set builtin command (see “Shell Builtin Commands” in the

bash man page). The options appearing in SHELLOPTS are those reported as on by set
—o. If this variable is in the environment when bash starts up, each shell option in the list
will be enabled before reading any startup files. This variable is read-only.

SHILVL

Incremented by one each time an instance of bash is started.

UID

Expands to the user ID of the current user, initialized at shell startup. This variable is read-
only.

The following variables are used by the shell. In some cases, bash assigns a default
value to a variable; these cases are noted in the following sections.

BASH_ENV

If this parameter is set when bash is executing a shell script, its value is interpreted as a
file name containing commands to initialize the shell, as in ~/ .bashrc. The value of
BASH ENV is subjected to parameter expansion, command substitution, and arithmetic
expansion before being interpreted as a file name. PATH is not used to search for the
resultant file name.

CDPATH

The search path for the cd command. This is a colon-separated list of directories in which
the shell looks for destination directories specified by the cd command. A sample value is
:~:/usr.

COLUMNS

Used by the select builtin command to determine the terminal width when printing
selection lists. This is automatically set upon receipt of a STGWINCH.

COMPREPLY

An array variable from which bash reads the possible completions generated by a shell

function invoked by the programmable completion facility (see “Programmable
Completion” in the bash man page).

EMACS

If bash finds this variable in the environment when the shell starts with value t, it
assumes that the shell is running in an emacs shell buffer and disables line editing.

FCEDIT

The default editor for the fc builtin command.

FIGNORE

A colon-separated list of suffixes to ignore when performing file name completion (see
READLINE in the bash man page). A file name whose suffix matches one of the entries

in FIGNORE is excluded from the list of matched file names. A sample value is .o: ~.

GLOBIGNORE

A colon-separated list of patterns defining the set of file names to be ignored by pathname
expansion. If a file name matched by a pathname expansion pattern also matches one of
the patterns in GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL

A colon-separated list of values controlling how commands are saved on the history list. If
the list of values includes ignorespace, lines that begin with a space character are not

saved in the history list. A value of ignoredups causes lines matching the previous
history entry to not be saved. A value of ignoreboth is shorthand for ignorespace
and ignoredups. A value of erasedups causes all previous lines matching the

current line to be removed from the history list before that line is saved. Any value not in
the previous list is ignored. If HISTCONTROL is unset or does not include a valid value,

all lines read by the shell parser are saved on the history list, subject to the value of
HISTIGNORE. The second and subsequent lines of a multiline compound command are

not tested and are added to the history regardless of the value of HISTCONTROL.

HISTFILE

The name of the file in which command history is saved (see HISTORY in the bash man
page). The default value is ~/ .bash history. If unset, the command history is not
saved when an interactive shell exits.

HISTFILESIZE

The maximum number of lines contained in the history file. When this variable is assigned
a value, the history file is truncated, if necessary, by removing the oldest entries to contain
no more than that number of lines. The default value is 500. The history file is also
truncated to this size after writing it when an interactive shell exits.

HISTIGNORE

A colon-separated list of patterns used to decide which command lines should be saved on
the history list. Each pattern is anchored at the beginning of the line and must match the
complete line (no implicit * is appended). Each pattern is tested against the line after the
checks specified by HISTCONTROL are applied. In addition to the normal shell pattern
matching characters, & matches the previous history line. & may be escaped using a
backslash; the backslash is removed before attempting a match. The second and
subsequent lines of a multiline compound command are not tested and are added to the
history regardless of the value of HISTIGNORE.

HISTSIZE

The number of commands to remember in the command history (see HISTORY in the
bash man page). The default value is 500.

HISTTIMEFORMAT

If this variable is set and not null, its value is used as a format string for strftime (3)
to print the time stamp associated with each history entry displayed by the history
builtin. If this variable is set, time stamps are written to the history file so they may be
preserved across shell sessions. This uses the history comment character to distinguish
timestamps from other history lines.

HOME

The home directory of the current user; the default argument for the cd builtin command.
The value of this variable is also used when performing tilde expansion.

HOSTFILE

Contains the name of a file in the same format as /etc/hosts that should be read when

the shell needs to complete a hostname. The list of possible hostname completions may be
changed while the shell is running; the next time hostname completion is attempted after
the value is changed, bash adds the contents of the new file to the existing list. If

HOSTFILE is set but has no value, bash attempts to read /etc/hosts to obtain the
list of possible hostname completions. When HOSTFILE is unset, the hostname list is
cleared.

IFS

The Internal Field Separator that is used for word splitting after expansion and to split
lines into words with the read builtin command. The default value is ””.

IGNOREEOF

Controls the action of an interactive shell on receipt of an EOF character as the sole input.
If set, the value is the number of consecutive EOF characters that must be typed as the first
characters on an input line before bash exits. If the variable exists but does not have a
numeric value or does not have a value, the default value is 10. If it does not exist, EOF
signifies the end of input to the shell.

INPUTRC

The file name for the readl ine startup file, overriding the default of ~/ . inputrc
(see READLINE in the bash man page).

LANG

Used to determine the locale category for any category not specifically selected with a
variable starting with LC .

LC_ALL

This variable overrides the value of LANG and any other LC variable specifying a locale
category.

LC_COLLATE

This variable determines the collation order used when sorting the results of pathname
expansion and determines the behavior of range expressions, equivalence classes, and
collating sequences within pathname expansion and pattern matching.

LC_CTYPE

This variable determines the interpretation of characters and the behavior of character
classes within pathname expansion and pattern matching.

LC_MESSAGES

This variable determines the locale used to translate double-quoted strings preceded by a

S.

LC_NUMERIC

This variable determines the locale category used for number formatting.

LINES

Used by the select builtin command to determine the column length for printing
selection lists. This is automatically set upon receipt of a STGWINCH.

MAIL

If this parameter is set to a file name and the MATL.PATH variable is not set, bash informs
the user of the arrival of mail in the specified file.

MAILCHECK

Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When
it is time to check for mail, the shell does so before displaying the primary prompt. If this
variable is unset or set to a value that is not a number greater than or equal to zero, the
shell disables mail checking.

MAILPATH

A colon-separated list of file names to be checked for mail. The message to be printed
when mail arrives in a particular file may be specified by separating the file name from the
message with a 2. When used in the text of the message, $_ expands to the name of the
current mail file. Here’s an example:

MATILPATH='"/var/mail/bfox?"You have mail":~/shell—mail?"$_
has mail!"™!

Bash supplies a default value for this variable, but the location of the user mail files that
it uses is system dependent (for example, /var/mail/SUSER).

OPTERR

If set to the value 1, bash displays error messages generated by the getopts builtin
command (see “Shell Builtin Commands” in the bash man page). OPTERR is initialized
to 1 each time the shell is invoked or a shell script is executed.

PATH

The search path for commands. It is a colon-separated list of directories in which the shell
looks for commands (see “Command Execution” in the bash man page). A zero-length

(null) directory name in the value of PATH indicates the current directory. A null directory

name may appear as two adjacent colons or as an initial or trailing colon. The default path
is system-dependent and is set by the administrator who installs bash. A common value

is /usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin.

POSIXLY_CORRECT

If this variable is in the environment when bash starts, the shell enters POSIX mode
before reading the startup files, as if the —posix invocation option had been supplied. If
it is set while the shell is running, bash enables POSIX mode, as if the command set -
o posix had been executed.

PROMPT_COMMAND

If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM

If set to a number greater than zero, the value is used as the number of trailing directory
components to retain when expanding the \w and \W prompt string escapes (see
“Prompting” in the bash man page). Characters removed are replaced with an ellipsis.

PS1

The value of this parameter is expanded (see “Prompting” in the bash man page) and
used as the primary prompt string. The default value is “\s-\v\$ ™.

PS2

The value of this parameter is expanded as with PS1 and used as the secondary prompt
string. The default is “> ™.

PS3

The value of this parameter is used as the prompt for the select command (see “SHELL
GRAMMAR?” earlier).

PS4

The value of this parameter is expanded as with PS1, and the value is printed before each
command bash displays during an execution trace. The first character of PS4 is

replicated multiple times, as necessary, to indicate multiple levels of indirection. The
default is “+ ™.

SHELL

The full pathname to the shell is kept in this environment variable. If it is not set when the
shell starts, bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT

The value of this parameter is used as a format string specifying how the timing
information for pipelines prefixed with the time reserved word should be displayed. The %
character introduces an escape sequence that is expanded to a time value or other
information. The escape sequences and their meanings are as follows; the braces denote
optional portions.

%%: A literal %.

o\°

[p] [1]R: The elapsed time in seconds.

o\°

[p] [1]1U: The number of CPU seconds spent in user mode.
% [p] [11S: The number of CPU seconds spent in system mode.

$P: The CPU percentage, computed as (53U + %S) / %R. The
optional p is a digit specifying the precision, the number of
fractional digits after a decimal point. A value of 0 causes no
decimal point or fraction to be output. At most three places after the
decimal point may be specified; values of p greater than 3 are
changed to 3. If p is not specified, the value 3 is used. The optional

1 specifies a longer format, including minutes, of the form
MMmSS . FF's. The value of p determines whether the fraction is

included. If this variable is not set, bash acts as if it had the value
$'\nreal\t%31R\nuser\t%31U\nsys%31S’. If the value
is null, no timing information is displayed. A trailing newline is
added when the format string is displayed.

TMOUT

If set to a value greater than zero, TMOUT is treated as the default timeout for the read
builtin. The select command terminates if input does not arrive after TMOUT seconds when

input is coming from a terminal. In an interactive shell, the value is interpreted as the
number of seconds to wait for input after issuing the primary prompt. Bash terminates
after waiting for that number of seconds if input does not arrive.

TMPDIR

If set, bash uses its value as the name of a directory in which bash creates temporary
files for the shell’s use.

auto_resume

This variable controls how the shell interacts with the user and job control. If this variable
is set, single word simple commands without redirections are treated as candidates for
resumption of an existing stopped job. There is no ambiguity allowed; if there is more
than one job beginning with the string typed, the job most recently accessed is selected.
The name of a stopped job, in this context, is the command line used to start it. If set to the
value exact, the string supplied must match the name of a stopped job exactly; if set to
substring, the string supplied needs to match a substring of the name of a stopped job. The
substring value provides functionality analogous to the %2 job identifier (see “Job
Control” in the bash man page). If set to any other value, the supplied string must be a
prefix of a stopped job’s name; this provides functionality analogous to the $string job
identifier.

histchars

The two or three characters that control history expansion and tokenization (see “History
Expansion” in the bash man page). The first character is the history expansion character,
the character that signals the start of a history expansion, normally !. The second
character is the quick substitution character, which is used as shorthand for rerunning the
previous command entered, substituting one string for another in the command. The
default is . The optional third character is the character that indicates that the remainder
of the line is a comment when found as the first character of a word, normally #. The
history comment character causes history substitution to be skipped for the remaining
words on the line. It does not necessarily cause the shell parser to treat the rest of the line
as a comment.

Index

A

agridsize variable
ANSI X3.64
Arithmetic expansion
arraygrid-funcs library
Arrays
associative
elements
indexed
integer-indexed
packed
reading into memory
scalar variables
searching
sorting with
two-dimensional
two-dimensional grids using
ASCII values
asearch() function
Associative arrays
converting to indexed arrays
expansions of

awk programming language

B

Block file formats
Block-oriented files
Bourne shell
Brace expansion
Bug-free Scripts
buggy program
file and rank numbers
grouping commands
K.I.S.S. Principle
SAN
structured programming

cominents

function

process information

runtime configuration and options

variables
Buggy program
Built-in commands
aliases
arithmetic expressions
array
associative arrays
Bash commands
busy indicator
configure script
date command
display information
echo and printf
eval method
execute command
file descriptor
get input
help command
multiple variables
NUM characters
output PROMPT
PATH variable
POSIX standard
shell command
string-splitting method
time command
timeout
typeset
varfuncs

variable expansion

C

cat command

Chapter Data Processing

Command line
directory stack
filesystem functions
games

man pages

miscellaneous functions
Command-line parsing and expansion

arithmetic operations

braces

command substitution

description

parameter and variable

parsing options

pathname

process substitution

quotes

tilde

word splitting
Command sequence introducer (CSI)
Command substitution
Compound commands

single compound command

valint program
Concatenation

alert function

append operator (+=) string

description

N characters

repeat function

($_REPEAT) string

CSI. See Command sequence introducer (CSI)

D

Data array
Data file formats
block file
line-based records
Data manipulation
Data processing
arrays
records
Debugging techniques
conpoundfile=$dict/Compounds
$dict
$HOME/bin
- option

PS4 variable

set-u option

set—x option

version()

wfe script
Delimiter-separated values (DSV)
Directory stack

cd function

cdm function

menu function

pd function
dotglob
Dotted-quad Internet Protocol (IP) address

E

Entry-Level programming
form entry
format string, seven blanks
simple Record-Editing script
mouse reading (see Mouse, shell scripts)
sanity checking
scripts history
single-key entry (see Key-funcs library)
extglob

${var:?} expansion

F

failglob option

Fields
fixed-length

File name expansions
sorting

File operations and commands
awk
cat
cut command
dotglob
extglob
failglob option
file reading
globstar
grep
head

@(john|paul)2
ls command
nocaseglob
nullglob option
!(pattern-list)
?(pattern-list)
*(pattern-list)
+(pattern-list)
pr4 function
sa command
sed
shell
touch
wce
Filesystem functions
cp
1
Isr
md
Fixed-length fields
Function libraries
Functions, runtime configuration
bash-4.x
die
menu
print_config
qa

readline

G

Games
fifteen Puzzle
maxit
tic-tac-toe
yahtzee
getagrid() function
getgrid() function
getlines() function
gettag function
Globbing patterns
globstar

grep

Grids
calculating index
creating and filling
getting characters from
inserting characters in
printing, from strings
printing, in reverse order
single-string
two-dimensional

Grid arrays
extracting elements from
initializing
printing, in reverse order
replacing element

gridindex() function

H

Head

‘here documents’

I,J

IFS. See Input field separator (IFS); Internal field separator (IFS)
Indexed arrays
converting to associative arrays
holes in
initagrid() function
initgrid() function
Input field separator (IFS)
Internal field separator (IFS)

isort() function

K

Key-funcs library
block of text
call _keys
cursor keys
ESC
_esc2key, string
get_key
keycapture, read and display keystrokes

_keys function, simple menu

_keys, sequence of characters
keystroke, hexdump-C

Linux virtual console

rxvt terminal window

single key press

KornShell

L

Line-based records
Line-oriented files

Is command

M

Man pages
k
POSIX
sman
sus
mapfile command
MAPFILE variable
Miscellaneous functions
calc
prl
Mouse, shell scripts
coding
Linux console_codes man page
modes
normal tracking
X10 compatibility
mouse tracking
POSIX printf extension
read command’s-n option
six characters

Mouse tracking

N, O

name=width strings
nocaseglob

nullglob option

P,Q

Packed arrays
Parameter expansion
alternate values
Bourne shell
convert to lowercase
convert to uppercase
default values
error message
indirect reference
length, variable’s contents
PATTERN
substring
Parsing options
Pathname expansion
!(pattern-list)
?(pattern-list)
@(pattern-list)
*(pattern-list)
+(pattern-list)
Portable game notation (PGN) files
Positional parameters
POSIX parameter expansion
POSIX syntax
pr4 function
Printf specifier
Process substitution
Puppet
putagrid() function
putgrid() function

R

Real programming language
Records
line-based
splitting
rshowagrid() function
rshowgrid() function
Runtime configuration
authentication keys
cron job
ssh-keygen

bits and pieces

Cluster SSH
configuration files
bash-4.x
comments
words.cfg
default values and settings array
environment variables
menus
multiple names
parse command-line options
Puppet
Q&A Dialogue
screen manipulation variables
script information

variables

S

SAN. See Standard algebraic notation (SAN)
Sanity checking
Scalar variables
Screen scripting
block of text, placing
cu_NL variable
_max_length function
print_block
put_block and put_block_at functions
wrap and print_block Functions
wrap function
wrap, split string
canvas
priming
stretching
colors and attributes
cursor, moving
printat function
variable definitions
ESC
rolling dice
scrolling text
printf command
text Up and then down

teletypewriter vs. canvas

sed command
Shell functions
Bourne shell
case statement tests
command line
command substitution
compound commands
function libraries
IFS
IP address
KornShell
local command
one/more variables
print information
rangecheck script
real programming language
scripts
set different exit codes
top-down design
Shell prompt
showagrid() function
showgrid() function
Single-string grids
Sort command
split_passwd() function
Standard algebraic notation (SAN)
stringgrid-funcs library
String manipulation
allbutfirst and allbutlast values
Bourne shell
contents without case
index function
insert_string
month2num function
overlay string
PATH variable
POSIX shell
_REVSTR
$temp variable
trim unwanted characters
_UPR

_upword

valid variable/function name

T, U

Tilde expansion

Touch

tput

Two-dimensional grids

using arrays

\Y

Variables
expansion
naming of
scalar

scope of
shell

WX, Y Z

Wc
while read loops

Word splitting

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Chapter 1: Hello, World: Your First Shell Program
	The Code
	The File
	The Naming of Scripts
	Selecting a Directory for the Script
	Creating the File and Running the Script

	Choosing and Using a Text Editor
	Building a Better “Hello, World!”
	Summary
	Commands
	Concepts
	Variables

	Exercises

	Chapter 2: Input, Output, and Throughput
	Parameter and Variables
	Positional Parameters
	Special*@#0$?_!- Parameters
	Variables

	Arguments and Options
	echo, and Why You Should Avoid It
	printf: Formatting and Printing Data
	Escape Sequences
	Format Specifiers
	Width Specification
	Printing to a Variable

	Line Continuation
	Standard Input /Output Streams and Redirection
	Redirection: >, >>, and <

	Reading Input
	Pipelines
	Command Substitution
	Summary
	Commands
	Concepts

	Exercises

	Chapter 3: Looping and Branching
	Exit Status
	Testing an Expression
	test, a.k.a. […]
	[[…]]: Evaluate an Expression
	((…)): Evaluate an Arithmetic Expression

	Conditional Execution
	if
	Conditional Operators, & and ||
	case

	Looping
	while
	until
	for
	break
	continue

	Summary
	Commands
	Concepts

	Exercises

	Chapter 4: Command-Line Parsing and Expansion
	Quoting
	Brace Expansion
	Tilde Expansion
	Parameter and Variable Expansion
	Arithmetic Expansion
	Command Substitution
	Word Splitting
	Pathname Expansion
	Process Substitution
	Parsing Options
	Summary
	Commands

	Exercises

	Chapter 5: Parameters and Variables
	The Naming of Variables
	The Scope of a Variable: Can You See It from Here?
	Shell Variables
	Parameter Expansion
	Bourne Shell
	POSIX Shell
	Bash
	Bash-4.0

	Positional Parameters
	Arrays
	Integer-Indexed Arrays
	Associative Arrays

	Summary
	Commands
	Concepts

	Chapter 6: Shell Functions
	Definition Syntax
	Compound Commands
	Getting Results
	Set Different Exit Codes
	Print the Result
	Place Results in One or More Variables

	Function Libraries
	Using Functions from Libraries

	Sample Script
	Summary
	Commands

	Exercises

	Chapter 7: String Manipulation
	Concatenation
	Repeat Character to a Given Length

	Processing Character by Character
	Reversal

	Case Conversion
	Comparing Contents Without Regard to Case
	Check for Valid Variable Name
	Insert One String into Another
	Examples

	Overlay
	Examples

	Trim Unwanted Characters
	Examples

	Index
	Summary
	Commands
	Functions

	Exercises

	Chapter 8: File Operations and Commands
	Reading a File
	External Commands
	cat
	head
	touch
	ls
	cut
	wc

	Regular Expressions
	grep
	sed
	awk

	File Name Expansion Options
	nullglob
	failglob
	dotglob
	extglob
	nocaseglob
	globstar

	Summary
	Shell Options
	External Commands

	Exercises

	Chapter 9: Reserved Words and Built-In Commands
	help, Display Information About Built-In Commands
	time, Print Time Taken for Execution of a Command
	read, Read a Line from an Input Stream
	-r, Read Backslashes Literally
	-e, Get Input with the readline Library
	-a, Read Words into an Array
	-d DELIM, Read Until DELIM Instead of a Newline
	-n NUM, Read a Maximum of NUM Characters
	-s, Do Not Echo Input Coming from a Terminal
	-p PROMPT:, Output PROMPT Without a Trailing Newline
	-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
	-u FD: Read from File Descriptor FD Instead of the Standard Input
	-i TEXT, Use TEXT as the Initial Text for Readline
	eval, Expand Arguments and Execute Resulting Command
	Poor Man’s Arrays
	Setting Multiple Variables from One Command

	type, Display Information About Commands
	builtin, Execute a Built-In Command
	command, Execute a Command or Display Information About Commands
	pwd, Print the Current Working Directory
	unalias, Remove One or More Aliases

	Deprecated Built-Ins
	Dynamically Loadable Built-Ins
	Summary
	Commands and Reserved Words
	Deprecated Commands

	Exercise

	Chapter 10: Writing Bug-Free Scripts and Debugging the Rest
	Prevention Is Better Than Cure
	Structure Your Programs
	Document Your Code
	Format Your Code Consistently
	The K.I.S.S. Principle
	Test as You Go

	Debugging a Script
	Summary
	Exercises

	Chapter 11: Programming for the Command Line
	Manipulating the Directory Stack
	cd
	pd
	cdm
	menu

	Filesystem Functions
	l
	lsr
	cp, mv
	md

	Miscellaneous Functions
	pr1
	calc

	Managing Man Pages
	sman
	sus
	k

	Games
	The fifteen Puzzle

	Summary
	Exercises

	Chapter 12: Runtime Configuration
	Defining Variables
	Command-Line Options and Arguments
	Menus
	Q&A Dialogue
	Configuration Files
	Scripts with Several Names
	Environment Variables
	All Together Now
	Script Information
	Default Configuration
	Screen Variables
	Function Definitions
	Parse Command-Line Options
	Bits and Pieces

	Summary
	Exercises

	Chapter 13: Data Processing
	Arrays
	Holes in an Indexed Array
	Using an Array for Sorting
	Two-Dimensional Grids

	Data File Formats
	Line-Based Records
	Block File Formats

	Summary
	Exercises

	Chapter 14: Scripting the Screen
	Teletypewriter vs. Canvas
	Stretching the Canvas
	Command Sequence Introducer

	Priming the Canvas
	Moving the Cursor
	Changing Rendition Modes and Colors
	Placing a Block of Text on the Screen
	Scrolling Text
	Rolling Dice
	Summary
	Exercises

	Chapter 15: Entry-Level Programming
	Single-Key Entry
	Function Library, key-funcs

	History in Scripts
	Sanity Checking
	Form Entry
	Reading the Mouse
	Summary
	Exercises

	Appendix A: Shell Variables
	BASH
	BASHPID
	BASH_ALIASES
	BASH_ARGC
	BASH_ARGV
	BASH_CMDS
	BASH_COMMAND
	BASH_EXECUTION_STRING
	BASH_LINENO
	BASH_REMATCH
	BASH_SOURCE
	BASH_SUBSHELL
	BASH_VERSINFO
	BASH_VERSION
	COMP_CWORD
	COMP_KEY
	COMP_LINE
	COMP_POINT
	COMP_TYPE
	COMP_WORDBREAKS
	COMP_WORDS
	DIRSTACK
	EUID
	FUNCNAME
	GROUPS
	HISTCMD
	HOSTNAME
	HOSTTYPE
	LINENO
	MACHTYPE
	OLDPWD
	OPTARG
	OPTIND
	OSTYPE
	PIPESTATUS
	PPID
	PWD
	RANDOM
	REPLY
	SECONDS
	SHELLOPTS
	SHLVL
	UID
	BASH_ENV
	CDPATH
	COLUMNS
	COMPREPLY
	EMACS
	FCEDIT
	FIGNORE
	GLOBIGNORE
	HISTCONTROL
	HISTFILE
	HISTFILESIZE
	HISTIGNORE
	HISTSIZE
	HISTTIMEFORMAT
	HOME
	HOSTFILE
	IFS
	IGNOREEOF
	INPUTRC
	LANG
	LC_ALL
	LC_COLLATE
	LC_CTYPE
	LC_MESSAGES
	LC_NUMERIC
	LINES
	MAIL
	MAILCHECK
	MAILPATH
	OPTERR
	PATH
	POSIXLY_CORRECT
	PROMPT_COMMAND
	PROMPT_DIRTRIM
	PS1
	PS2
	PS3
	PS4
	SHELL
	TIMEFORMAT
	TMOUT
	TMPDIR
	auto_resume
	histchars

	Index

