Pro Bash

Learn to Script and Program the
GNU/Linux Shell

Third Edition

Jayant Varma
Chris F. A. Johnson

Apress:

Pro Bash

Learn to Script and Program
the GNU/Linux Shell

Third Edition

Jayant Varma
Chris F. A. Johnson

Apress®

Pro Bash: Learn to Script and Program the GNU/Linux Shell, Third Edition

Jayant Varma Chris FE. A. Johnson
Berwick, VIC, Australia Toronto, ON, Canada
ISBN-13 (pbk): 978-1-4842-9587-8 ISBN-13 (electronic): 978-1-4842-9588-5

https://doi.org/10.1007/978-1-4842-9588-5

Copyright © 2023 by Jayant Varma, Chris F. A. Johnson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: Jim Markham

Editorial Assistant: Gryffin Winkler

Cover image designed by Clker-Free-Vector-Images on Pixabay (https://pixabay.com/)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
1 FDR Dr, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

Paper in this product is recyclable.

https://doi.org/10.1007/978-1-4842-9588-5

To all the people that have helped me become what I am today:
My mother and father (may they rest in peace)
My family and siblings
My pets (may they rest in peace)
My work family across the many organizations so far
The team at Apress

And, most importantly, the readers of this book

Table of Contents

About the AUtROIS.......c.ccceemmismsmmsnsmssnssssnsssssss s ssn s san s ssn s s an s s s snnnsnssnnnnssnnnns Xvii
About the Technical REVIEWETuccssssmsmsssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnnsns Xix
Acknowledgments.......ccccveruissssnmennmmmmmmsssssssssssssneesssssssssssssnsnsesssssssssnnnnnnssesssssssnnnnnns XXi
Chapter 1: Hello, World: Your First Shell Program........cccccuseemmmnssssnnnmnssssssnsssssssnssnans 1
What IS @ SHEll SCHIP?....cvi v s a e se s e sa e s a e nne s 1
The HEllo WOTIU COUE ..o e sas s e sasns s s e 2
The Hello World Program File.........c.cciiiinininnsinsne s ses s sss s ssssessessesssssssesnens 3
Naming the SCHPE FIle ... e 3
Selecting a Directory for the SCHPL.......c.ccoverrnrrresr e 4
Creating the File and Running the SCript........couvvieiininincser e 5
Choosing and USing @ TEXt EQITOr........cccvirieriinniriene e ses s s s sessessessessssessessessssssssssessens 6
Building a Better “Hello, WOrld!” ...t 7
E 1] 4 1] 4= SRS 7
{0] T2 o PR TRR 8
{01 (0T 0 C OSSPSR 8
LT 1] T OSSPSR 9
(=] £ TP 9
Chapter 2: Input, Output, and Throughputcccccnnimnismmnmmenmem———— 11
Parameters and Variables ... 1
Positional Parameters ... ———— 12
Special *@#0$? - Parameterscoreoeereenerresresenerses s 13
L2 LT 1] TSRS 13
Arguments and OPLIONSovcvverinirersse s 13
Why YOU ShoUId AVOIT BCNOceuereererririereresessere s s s s se e s sse e s e s saessese s e ssesaessssenaesaens 14

TABLE OF CONTENTS

printf: Formatting and Printing Data ... 15
ESCAPE SEOUBNCES......coveererueirueerieeressesesse e s te e ses e se s e s s e se s e ae e s ae e se s st s b e et e e e e ae e e ae e e e et ns 16
FOrmMat SPECITIEIS....ccueiii it e s s s p e e 16
Width SPeCifiCationc.ccviiiiirirr e 18
Printing 10 @ Vari@ble........cccoviieriserrcsnncser e e 20
Line CoNtiNUALION ..o s 20
Standard Input/Output Streams and RedireCtion...........ccvvrevvrnrrienienssensenese s sessssessessenes 20
LT =T 0 4T 1 21
REAMING INPUL......ceeeee e e e 23
PIPEIINES ..ottt e e an 24
Command SUDSHIULION.......c.ccvieririserrse e sn e 24
1] 04 RS 25
L8] 111 T PR 25
{0 T) 3OO 25
(] (01T 26
Chapter 3: Looping and Branchingcccccuuussssssssmmmmmmmssssssssssssssssssssssssssssssssssssssas 27
oD S UL S 27
TEStING AN EXPIrESSIONccveueerrierisesissese e srs e s e se e s sr e e pe e nnn s 28
1EST, @.K.A. [... oo e 28
FIlE TESTS ..t 28
LT LT T OSSR 29
6] (T =T 3SR 29
[[... 11: Evaluate an EXPreSSiONccooeeermsesesenessssmsssssssssesssssssssssssssssssssssssssssnssssnsssssssssssnsssenes 31
ENhancements OVEr TEST.......ccovo e 31
((...)): Evaluate an Arithmetic EXPreSSiONccucvverererrensereresessessessessssessessesssssssessessessssessessenes 31
Conditional EXECULIONccciereiiniisisissrisssssss s s s sn s s sessans 32
) OSSPSR 32
Conditional Operators: && and Il..........ccvviriinini s ———— 34
1 L 35
(0010 4o SRS 36

TABLE OF CONTENTS

WHIHIE 1.ttt e R bbb e e e e 36
1 S 37
0] TS 38
0] =T LSS 38
(001111 1TSS SRS 39
1] 4= RS 39
L8] 0111 T R 40
{0 0T) 3OO 40
(] (o1 40
Chapter 4: Command-Line Parsing and EXpanSion........ccuceeemmmmmmmsssssssssssssssesssssnes 41
0010} (1T OSSR 42
Brace EXPANSIONccvviceriierinisessese s s ss s ss e s ss s sss e ss s s ssa e sss e ssnsesessanessnsessnne 44
TIldE EXPANSION.......eovecererrerresersersesaesessesessessessssessessesss e s e ssesaess s e ssessessessssessessessesessessessesssnensessens 46
Parameter and Variable EXPAnSIioNc.cccvverininiinnenensensss e sesses s ssessssssessesssssssssessnssens 47
Arithmetic EXPANSIONccccviviiirsire s s sn s e sr e s s nn s 48
CommaNd SUDSTIULION. ..o 51
L0 0 ST o114 OSSP 51
Pathname EXPANSIONc.cucceuviieriseninessssesessse s s e s sn s e s s ssssessssssessnsesenns 53
Process SUDSTIIULION ..o s 54
ParSing OPtiONS....ccccveveeieriereresersere s sesserse s sse e s e s saesa s e s e s sas e s e saesaese s e naesaesa e e enesaeseenaenenaenaes 55
31T 1117 OO R 58
[0] T2 o TSRS 58
(] (01T SR 58
Chapter 5: Parameters and Variables..........cccuummmmnnsmmnmnnssnsnmmssssssnmmsssssnsssssssssnnns 61
The Naming of Variablescccovevnenninennesneses e s s 61
The Scope of a Variable: Can You See It from HEre?.......ccccvvvvvvvniennnensensese s sesseseseesessessensens 62
SHEII VAIADIES ...t 65
SNEII VAIADIES ...ttt 65
Parameter EXPanSIiON. ... s s s e e 67
2101 1= I T | S 67

TABLE OF CONTENTS

${var:-default} and ${var-default}: Use Default ValUES...........ccocrrrrrererermrrrnseereseressssesesesessssenns 67
${var:+alternate} and ${var+alternate}: Use Alternate Valuesccceoererrrerererererererereserenenens 68
${var:=default} and ${var=default}: Assign Default ValUes............cccerrrerrrrrererssrreressrsrreresssnenens 70
${var:?message} and ${var?message}: Display Error Message If Empty or Unset...........cccceuune. 70
POSIX SNEILveeieeeeese e bbb ettt 71
S{#var}: Length of Variable’s CONENTScccevrrreerererirsrsee s se e s sesssessssns 71
${var%PATTERN}: Remove the Shortest Match from the Endc.ccccevrrevernrnnssesessnennnnes 72
${var%%PATTERN}: Remove the Longest Match from the End..........cccocevvrvvvvevncvcncrcncrcene 73
${var#PATTERN}: Remove the Shortest Match from the Beginning.............ccceeevvrercsvrsrrenessnnenens 73
${var##PATTERN}: Remove the Longest Match from the Beginningccovvvevererereseresesesenns 73
DASH ... —————————————————————————————————— 74
${var//PATTERN/STRING}: Replace All Instances of PATTERN with STRING............ccceeerererererennen. 74
${var:OFFSET:LENGTH}: Return a Substring of $Varcccccevrnnnicnnnnn e sesesssnsnns 75
S{Ivar}: INAIreCt REFEIENCEccueueeerrrertrertrere st a s st sa e e e e e ne e e aens 76
0 S T 76
${varAPATTERN}: Convert t0 UPPEICASE.......cvurerererererereeesssssssssssssssssssssssssssssssssesesesesssssssssaeas 76
${var,PATTERN}: CONVErt t0 LOWEICASEevvevererererereereeesssssssssssssssssssssssssssssssssesesesessssssssssaeas 77
POSItional PArameters.........coinnerisse s 77
L 2 SR 78
INTEGEr-INUEXEU AITAYS......cceecreirire s e s r e e e p e e s p e e nnan 79
DiSPIAYING AITAYSecereecrerererseersesesesese e e se s e s e e s s se s e se e re e s se e sse e see e e nse e ssesesenssenns 79
Assigning Array EIBMENTSccoveierirerrserre s s 80
ASSOCIALIVE AITAYS.....ccueeerreerrese s e e b e e e R e b e e e ae e e R e nra s 81
1] 4= R 82
L8] 0111 T R 82
{0]) 3OO 83
(] (01T 83

viil

TABLE OF CONTENTS

Chapter 6: Shell FUNCRIONS.......cccccussseenmmissssnnsmsssssnsmmssssssssessssnsssssssssnssessssnsnessssnnnnsnss 85
DefiNitioN SYNTAX......cciuecrre s e 85
Compound COMMANGS.....c..coiiiriiriere e e s s b b e ne s 88
GELEING RESUIS.....ceeeieeerreerrre s e rn e 89
Set Different EXit COUESouvvverriiernesinesine e s sn s 89
Print the RESUIL ... 90
Place Results in One or More Variables ... ssssssssssssssesssssssas Cl
T TR (0] T I T 92
Using Functions from LIDFaries ... e s srsssssessesnes 92
SAMPIE SCHIPL e ————— 93
11T 111 1T o SRS PSR SPRTT 95
L8] 0111 T 95
(] (01T T 96

Chapter 7: String Manipulationccccuseenmnnnsennmmnmsssnmmmsssssmmsssssssssssss—mmms 97
L0 L0 LT L TP 98
Repeat Character to @ Given Length ... 99
Processing Character by Charactercuoeivernsnnnessesessse s sessesenns 100
REVEISAL ... e e e e e R n e r e nne 101
02T 0] 11T 10 102
Comparing Contents Without Regard t0 CaSE.........ccceverrriererennenseriesesessesesessssessessessssessessesses 105
Check for Valid Variable NAme............ccccoerrneiencnernneessse s sssesesesssssnsaes 106
Insert One String into ANOTNEr ... ——————— 107
6. 11110 T3 OO 108
(0] - SRRSO 108
o 10 1] 0[SOS 109
Trim Unwanted CharaCters...........ccovrrrmimsmsessnnnssssse s ssssssssssssssssssans 110
EXAMPIES...c.eeeeieerc e e e e e e ne 111
30 111
£ T 113

ix

TABLE OF CONTENTS

0011110 0 R 113
1T 0 L 113
(] (o1 114
Chapter 8: File Operations and Commandsccccuusssemmmmsssssnnmssssssnnssssssssssssssnnnnss 115
REAUING @ FlEcveeeerreerec s 116
External COmMMANS........ccucerrierrnenenrese s sr s se e sr s s sr s ne e 117
17 118
NBAG ... —————————————————— 119
(01013 TSR 120
S cuteteterer e e s e e e e AR R AR AR e R R R R R e e e nE s 121
1 PR 122
WG 1otututussesesesese e e s bbb A e d e d e d e deE e AR A A A E A e e e 123
ReQUIAr EXPrESSIONSvccvverrerrrierierersessssessessessssessessesssssssessessessssessessessessssessessessssessessesssssnsessens 124
0] (] o SR 124
2 o T 125
1 127
File Name EXpansion OPLioNS ... sessesse s ssssessesssssssessessessssessensens 130
NUIGION . r e e e re e e e e e nnna 131
211100 o O 131
OTGIOD ... —————————————————— 132
BXEGIOD . —————————————— 132
(LT ST 133
(0L T T 133
@(PALLEIN=IIST)...cveeeeeeeerree s e 133
B (L= T) OSSN 133
H(PAHEIN-LIST)...ceicee e ——————————— 134
NOCASEYIOD......c e —————————— 134
0] (0] 1] T 135
£ 11T 1117 136

TABLE OF CONTENTS

ES (=T L0 010 R 136
External COmMMANGSccovurueeerereriseesesese e s aes 136
(] (o1 137
Chapter 9: Reserved Words and Built-In Commands..........ooceemmmmmmmmnnsssssssssssssnnns 139
help, Display Information About Built-In Commandsccevvninninnnininnnnnesesessessenens 139
time, Print Time Taken for Execution of @ COmMmAaNdcccccrvininninnnnninnnnses s sessesns 141
read, Read a Line from an INPUt STrEAM ... ssssessssssssessssesssns 142
-, Read Backslashes LIterallyccccvverririeriennsensene s sesessessessessssessessessessssessessens 142

-e, Get Input with the readling LIDrary..........ccvevvvrvnienssnsese s s sessessessessessssessessens 143

-2, Read Words into an AFTaycccveerernninienene s sessessesse s s ssesessessessessssessessesaessssessesnens 144

-d DELIM, Read Until DELIM Instead of @ NEWIINE.........ccccorrinnnmnenmnnnsnssssese s 144

-n NUM, Read a Maximum of NUM Characters............ccovmmmnnnmnnnnnssssssssssssssesssesnns 145

-5, Do Not Echo Input Coming from a Terminal.........c.ccocevvvervnieninnensnseniesesessessessesessesessens 145

-p PROMPT:, Output PROMPT Without a Trailing NEWIINEccceevververierrevnrensenienesensenennens 145

-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Inputcccvievevncnininnnienienens 145

-u FD: Read from File Descriptor FD Instead of the Standard Inputcccovcrvvievniniennens 146

-i TEXT, Use TEXT As the Initial Text for Readlingc.cocvrrnnsnnnnnnnnsssnnssssesesesesnns 147
eval, Expand Arguments and Execute the Resulting Commandc.ccceovvvvrienviensenienne, 148
POOK IMAN’S AITAYS ..c.uveieriiressee st s e s e se s e s s s s e s s s e sa e s b s e g b s ae s e st e b e s ae s e et e nnesaenanans 148
Setting Multiple Variables from One COMmMaNd........c.ccooeverrveriernsensensesessssessessessessssessessens 151
type, Display Information About COMMANGS..........ccvverrerererrerreressssesseresse s sesessessesessessesaes 152
builtin, Execute a Built-In COMMANGccccevimiiiiiniinsns e sss s ssessnns 154
command, Execute a Command or Display Information About Commands...........ccccvceruenee. 154
pwd, Print the Current Working DIir€CIOrY......cccvvvrvvieniennsinsenesesessesesessssessessessessssessessens 155
unalias, Remove 0ne or MOre AlIASESccvceiiiiisinniiiiisssssessssss s sssssssssesssssssssssssssnns 155

£ 111117 OO 157
Commands and ReSErved WOrdS.........c.cvuueererererenreeneseseses e e sesssssssssesesssssssas 157
Deprecated COMMANGScccoverrircrnerre et ae e s 158
(] (o1 T 158

xi

TABLE OF CONTENTS

Chapter 10: Writing Bug-Free Scripts and Debugging the Rest............ccccrvisrannnnns 159
Prevention IS Better TRAN CUFE ... 160
STruCtUre YOUr Programs.........ccocieiininninieness s sss s s ss s st se s s sss s s snas 160
[0] =] 1S 160
Initialization of Variablescccueerecernienineseese e 161
FUNCtion DEfiNitioNSccoviininiririr s 162
Runtime Configuration and OPtionScccerrevrrerienernnersese e sessessesessssessesessesessessessessssessessens 162
Process INFOrmMation............coeeorenresc e 163
DOCUMENT YOUE COUE........ceeeercereeeree e 164
Format Your Code CONSISENTIYceeernsermrmnerrenerrnsesessesese s sesssse s s sessssssssssssssssessssenns 164
The K.LS.S. PrINCIPIE ...cceee ettt e 165
Grouping COMMANUS.......cceerreririerierererser s ree e s s re e s e s e e e e s e s s sae e e e s e sae s s e e e e saesae e e e naenaes 166
=T 72T (01T 167
DebUgging @ SCHIPL ..o e e 169
£ 111 T 174
(] (o1 S 174

Chapter 11: Programming for the Command Line..........cccusssmemmmmmmnnsmsssssssssssnnnnns 175
Manipulating the Directory Stackcccvverninnninnsre s 175
011 PSSR 176
00 SR 177
1 11 S 177
dirs BUilt=In COMMANGcoceoeeeerecrece e 178
11T 0T 179
FileSyStem FUNCHIONSccccvieiicsirs e 181
ettt E R R R R A A AR AR AR R R R R e e e s 181
. 182
1§ T 1 1 183
10 OSSPSR 184
Miscellaneous FUNCLIONSccovererenernsmsnnesesese s s ss s e s sessssenns 184
0] P O SO S ST PR SR 184

TABLE OF CONTENTS

07 L 186
Managing Man PAgEsccccuiuimiririnininese s ss s s sss e st ss e s se s s s sss e e nnens 186
11 186
T 187
K ettt A AR bt R e e e 187
€2 1T 188
The fiflEEN PUZZIE ..o e 189
£ 111117 OO 195
(] (o1 195
Chapter 12: Runtime Configurationcccccvninneemmmmmmmnnmmsssssssssmmssssssssms 197
Defining VariabIEsccveeernrenmnenrsese s ses s s sessessssssessssenessssenns 197
Command-Line Options and ArgUMENTScccuceerenmmnnerrnsessnessssse s ssssessssssessssesenns 198
LT T 198
QA DIAIOGUEcovvvircereres e si st sa st e bt e b et e bbb s 199
CONfIGUIALION FIlESceiveeeireccire ettt e e e 200
Scripts With Several NAMES........ccoiivniniensinsne e s 202
Environment VariabIescoooevenmrenernsesnesesese s s ss s s ssssssssssssssssssesssenns 203
AlLTOGEENEE NOW ..o e r e a e e e re e e e nnennens 204
SCHPL INFOrMALION ... e e a e e nnen 205
Default ConfigUIAtioNccveveirrerere s e a e e saesn e s e e e s nne e 205
SCrEEN Vari@hIESccoceerirrieecr e e 206
FUNCLION DEFINITIONS ... 207
LU T (0] - S 207
FUNCLION: IMENILI ...ttt e e 207
The Upload Settings MENU.......ccceviierrrierere s e s sse e s e sse s s s e s saessesessessesaesessessessees 208
L1 0 o110 i S 211
FUNCHION: PFINE_CONTIG.....oceeeeeteiirceie e 212
LU TR (0 O = 1 L 213
Parse Command-Line OPtioNSc.ccocvviinininnninine s s sse e ssssssesnens 214

xiii

TABLE OF CONTENTS

BitS AN PIBCEScoeerriirieirineire e e e 215
£ 111117 O 217
(] (o1 217
Chapter 13: Data ProcesSingcccussssumrsssssnnsssssssnnssssssnnnnssssssnnnssssssnnssssssnnnssssssnnnnss 219
4 PSS 219
Holes in @n INAEXEM AFTAYcccerrererreserinesesesessese s sss e e sss e sr s se s s s ss e s sesssssnns 219
Using an Array for SOMING.......ccocvvviriennrriere s s s e s se s s sreses e saesaesassessesnees 221
INSErtion SOrt FUNCTHION......ccoiicccrir st 223
SEAICHING AN AITAY......ccceieeeirc st e e e et e 224
Reading an Array int0 MEMOTY........ccoeocrrecrererereseree e s 225
TWO-DIMENSIONAL GHIAScoveerrrererreserrese s s e s s s e sss e e e sessesensnnens 228
Working with Single-String GridS..........ccuurerrennnnrnesrsesessse s s ssssenens 229
10T (0§ O 1 o OO 229
FUNCLION: GFILINAEXc.eeeereecerircte sttt s a e s s e e a e s 230
FUNCHON: PUIGEI. ...t 231
LU 4T (0] =T 232
FUNCLION: SHOWGIIQ ...t ne s 233
FUNCLION: FSAOWGFIU ...ttt 234
Two-Dimensional GridS USING AITAYScccoererrrerieressssersesessssessessessessssessessessessssessessesssssssssseses 235
LT (U [0] 7 7 T o S 237
FUNCHION: PUIAGII. ..ot p s 238
LU 4 TR (0] (W =1 - T [o 238
FUNCLION: SHOWAGHIG........c.eoeeereeireeereserses s 239
FUNCLION: FSAOWAGHIM ...ttt e 239
Data File FOrMALS.........ccccvririiiiirirs e 240
Ling-Based RECOIMS...........cccvrereriniriee s 240
Delimiter-Separated VAIUES..........cccovccrrierirererc s se s e ses e e ns 241
FiXed-Length FIelUScoeooreeeeerese e 244

Xiv

TABLE OF CONTENTS

BIOCK File FOrMALScceeieicririiree e s 245
£ 111117 OO 247
(] (o1 247
Chapter 14: Scripting the SCreenccccccirrrrnnssssssssssmmmrmmmsss s ——————— 249
TeletypeWriter VS. CANVASccovvrerrererrssesrssesessssesesssssssssessssssessssssssssssssssssssssssssssssnsssssssssssnees 250
Stretching the CanVas........c.uccvernesnes e 250
Control SEqUENCE INTFOAUCETccervererrerere e a e r e s s ae e e nnes 251
Priming the CAnVAS.........cccvrerrrimierierenensenessessssessessesssssssessessesssssssessesssssssessesssssssessessesssssnsesnens 251
L0 T R T 1T O 252
Changing Rendition Modes and COIOrSccoreererererenerrnserere e 253
Placing a Block of Text 0N the SCrEeN.........c.ccccererrrnsmsnnese s 255
SCIOIING TEXE. ... e itiectrrese e e ne e ne e 259
3T Ty N ORI 260
£ 1134 7P 263
(] (01T 263
Chapter 15: Entry-Level Programmingccceesssssssssssssssssssssssnssssssssnssssssssnsssssssnnnss 265
SINGIE-KBY ENTIY ...t s 265
FUNCLION LiDFary, KEY-FUMCScooveurresernseresenesrssesessesesssssssssessssesssnns 266
Lo LY (o] g T T] SRS 274
BT T4 1 (=T T R 275
0] 110 S 276
Reading the MOUSE ... s s r e s p e 278
£ 1117 282
(] (0TSSR 283
Appendix A: Shell Variables........ccciusmmmmmmmsnnmmmmsssnmmmssssmmmssssmmmsssssmsmssssssnsnnns 285
1T - 301

About the Authors

Jayant Varma has donned many hats in the tech field. He
has a richer and wider experience across several domains
and industries. He has worked in several capacities from

an IC (Individual Contributor) to managing multiple large
teams across geographies. He has taught at a couple of
Australian universities and is a speaker and has conducted
multiple workshops. He has several books published by
Apress on topics like SwiftUI, Lua and Xcode as well as open
source topics like Linux, bash, and shell scripting. He loves
to travel and explore new places.

Chris F. A. Johnson was introduced to Unix in 1990 and
learned shell scripting because there was no C compiler on
the system. His first major project was a menu-driven, user-
extensible database system with report generator. Chris is
now retired and currently resides in Toronto, Canada.

Xvii

About the Technical Reviewer

Emma Saroyan graduated with a BS in computer science.
She worked at startups at the intersection of technology
and education, and she enjoys sharing her knowledge
and learning from fellow developers. Emma is currently a
developer advocate, mentor, and educator.

Acknowledgments

Writing a book is not an easy task especially at a time where technology changes and
everything is online. Add to that the time constraints with life and work being in the way.
This book is going to be in its third revision, which is a good milestone and indicates
that there are people that are still reading. A book cannot publish itself though there are
several articles on the use of Al and self-publishing; it takes a lot of effort from everyone
involved, from the author to the publishing house to the reviewer. This book is a result
of sweat and hard work and the hope that it will serve and continue to serve the readers
that are interested in bash and shell programming.

I'have to also acknowledge my family that has seen me toiling away at the chapters
after work, though their major complaint has been that they have not seen me during
this process.

Lastly, my passion is coding, teaching, and writing. As my career progressed, the
days were consumed with more and more meetings and business/strategy discussions.
The third edition came as pressure on me to juggle the task as well as a relief from those
back-to-back meetings. Hope you like this revision and it has been helpful in your
journey.

xxi

CHAPTER 1

Hello, World: Your First
Shell Program

A shell script is a file containing one or more commands that you would type on the
command line. This chapter describes how to create such a file and make it executable.
It also covers some other issues surrounding shell scripts, including what to name the
files, where to put them, and how to run them.

What Is a Shell Script?

A shell script is a file that contains one or more commands, which can be commands
that you might type on a command line. The script file when executed (run) would run
these commands one after the other like how one might have typed them on a command
line one after the other sequentially. In this chapter, we shall look at how to create such

a file and make it executable. We shall also cover some other points like naming these
script files, where to save them, and how to run them.

When starting with a new language, the first program that a developer writes is a
standard HelloWorld program, one that prints “Hello, World!” to the terminal. This
simple program demonstrates quite a few important concepts. The code itself is the
simplest part of this chapter. The file naming and deciding where to place the files are
not complicated either but are important.

For a major portion of the book, we shall work with the terminal; it could be a virtual
terminal, a terminal window, or even a dumb terminal. For many of the readers, some of
these might be a new concept. For simplicity’s sake, we shall use the term “terminal” to
represent them across all the platforms and across all types. In the terminal, the shell will
immediately execute any commands that are typed (after pressing Enter, of course).

© Jayant Varma, Chris E. A. Johnson 2023
J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_1

https://doi.org/10.1007/978-1-4842-9588-5_1

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

When you start a terminal, you can first type the following command to find your
home directory:

$ echo "$HOME"
/home/jayant

This prints the home directory, which is stored in the variable called HOME; when
using a variable, we use the $ sign prepended to the variable name, in this case $HOME.

We can also find the current directory using the pwd (print current/working directory)
command or the PWD variable as

$ pwd
/home/jayant

$ echo "$PWD"
/home/jayant

When we start a terminal, we are generally in the home directory; however, if at
any time we are not in the home directory, we can switch back to the home directory
by using the cd command. cd stands for Change Directory. When used without any
parameters, it will take us back to the home directory. When used with parameters, it
will change to the directory name as passed in the parameters (if such a directory existed
in the path). We can also use the .. as parameters to go back one level on the directory
hierarchy (if we are not in the parent directory already).

The Hello World Code

The code is as simple as

$ echo Hello, World!
Hello, World!

There are three words on this command line: the command itself and two
arguments. The command, echo, prints its arguments separated by a single space and
terminated with a newline.

An important note here is that the text after echo is parameters and these parameters
are separated by spaces, so we have Hello, as the first parameter and World! as
the second.

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

The Hello World Program File

Before we can turn this code into a script, we need to make two important decisions:

1. What will we name this file where we shall save our code into. This
name has to be unique (i.e., it should not conflict with any other
commands)

2. Where to save this so that the shell can find it

Naming the Script File

One of the most common mistakes that beginners make is calling the trial script test. At
first, it does make sense, but to know why this is an issue, let us simply type the following
command:

$ type test
test is a shell builtin

The type command tells us what the shell will execute (and where this could be
found if it is an external file) for any given command. In bash, type -a test will display
all the commands that match the name test.

$ type -a test
test is a shell builtin
test is /usr/bin/test
test is /bin/test

Note The output of this command could be different depending on the system it
iS run on.

As we can see, the command called test already exists; it is used to test file types and
to compare values. If our script is called test, it will not be run when we try to run test
at the shell prompt; the first command that is identified by type will be run instead. We
shall see both the type and test commands in detail in later chapters.

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Typically, Unix command names are as short as possible. They are often the first
two consonants of a descriptive word, for example, mv for move or 1s for list, or the first
letters of a descriptive phrase, for example, ps for process status or sed for stream editor.

For this exercise, we shall call the script hw as in hello world. Many shell
programmers add a suffix such as . sh to indicate that the program is a shell script. The
script does not require it, and it is used for programs that are being developed. One way
is to add the suffix -sh to the name during development, and then when the program is
completed, the suffix can be removed. The shell script then becomes another command
and does not need to be distinguished from any other type of command.

Note This is a suggestion, and with the advent of verbose naming, some
developers can choose to have a verbose name for their scripts; however, keeping
in line with the Unix command naming convention, shorter names are preferred.

Selecting a Directory for the Script

When a command is typed or the shell given a command to execute, it looks for that name
in the directories listed in the PATH variable. This variable contains a colon-separated list
of directories that contain executable commands. This is a typical value for $PATH:

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/games

The directories could look different depending on the platform and the additional
directories added to the $PATH variable.

If the program is not in one of the PATH directories, then a pathname is required;
this can be an absolute or a relative pathname, for bash to find it. An absolute pathname
gives the location from the root of the filesystem such as /home/jayant/bin/hw; a
relative pathname is given in relation to the current working directory (which should be
currently the home directory) as in bin/hw.

Commands are usually stored in directories named bin, and the personal programs
belonging to a user are stored in a bin subdirectory in the $HOME directory. Since there is
no such bin directory in the user’s profile directory, we can create this by simply using
the following command:

$ mkdir bin
4

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Now that it has been created and exists, it must be added to the PATH variable using
the following command:

$ PATH=$PATH: $HOME/bin

For this change to be applied every time we open a new shell, we can add it to a file
that will source when it is invoked. Depending on the platform and how bash is invoked,
it could be .bash_profile, .bashrc, or .profile. These files are sourced only for
interactive shells, not for scripts.

Creating the File and Running the Script

Usually, we would require a text editor to create a program. However, for this simple
hello world script, it is not necessary to invoke or use a text editor. We can create the file

from the command line using redirection:
$ echo echo Hello, World! > bin/hw

The greater than sign (>) tells the shell to send the output of a command to the
specified resource than to the terminal. We will look at more redirection in Chapter 2.

Note There is a double echo in the aforementioned command.

The program can now be run by calling it as an argument to the shell command:
$ bash bin/hw

That works, but it is not entirely satisfactory. We would want to run it by simply
typing hw, without having to precede it with the bash command. To do so, we need to
give the file executable permission.

$ chmod +x bin/hw
Now the command can be run simply by just its name:

$ hw
Hello, World!

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Choosing and Using a Text Editor

With modern computers, a text editor is an important piece of software; there are many
options available, from simple text editors to advanced word processors. This book, for
example, is written using Word, which is part of the Microsoft Office 365 offering. There
are other options like LibreOffice Writer and Pages. If we discuss text editors, Sublime
Text is a popular and common editor that works across all the platforms. It is a powerful
GUI-based text editor. Then we also have editors that work in the terminal such as vi,
vim, emacs, nedit, and nano, to name a few. The choice of a text editor is personal, and it
is left entirely up to everyone to choose their own preferred editor. However, when using
aterminal, I prefer the use of vim; see Figure 1-1.

Jjayant@jayant-virtual-machine: ~

Bcho Hello, World!

"bin/hw" 1L, 19B

Figure 1-1. Shell script in the vim editor running on Ubuntu Linux

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Building a Better “Hello, World!”

Earlier in the chapter, we created a script using redirection. The script was, to say the
least, minimalistic. All programs, even one liners, require documentation. Information
should include at least the author, the date, and a description of the command. We can
add some comments to the code using a text editor as in Listing 1-1.

Listing 1-1. hw

#!/bin/bash

#: Title : hw

#: Date ¢ 2023-02-01

#: Author : Jayant Varma

#: Version : 1.0

#: Description : prints Hello, World!
#: Options : None

printf "%s\n" "Hello, World!"

Comments begin with an octothorpe, or the hash symbol (#), at the beginning of a
word and continue until the end of the line. The shell ignores them. The colon is simply
added to indicate the type of comment. It makes it easier to search the file for the type
required, ignoring all the other comments.

The first line is a special type of comment called the shebang or hash-bang. It informs
the systems about which interpreter to use to execute the file. The characters !# must
appear at the very beginning of the first line - in other words, the first two bytes of the file
for it to be recognized. The shell to use follows those two characters; in this case, we are
using the bash shell found at /bin/bash.

Summary

In this chapter, we have covered and looked at the following commands, concepts, and
variables.

CHAPTER 1

HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Commands

pwd: Prints the name of the current working directory
cd: Changes the shell’s working directory

echo: Prints its arguments separated by a space and terminated by
anewline

type: Displays information about a command
mkdir: Creates a new directory
chmod: Modifies the permissions of a file

source: a.k.a. .(dot), executes a script in the current shell

environment

printf: Prints the arguments as specified by a format string

Concepts

Script: A file containing commands to be executed by the shell.

Word: A word is a sequence of characters considered to be a single
unit by the shell.

Output redirection: The output of a command can be sent to a file
rather than the terminal using > FILENAME.

Variables: These are the names where values are stored.

Comments: These consist of an unquoted word beginning with a #.
All remaining characters on that line constitute a comment and will
be ignored.

Shebang or hash-bang: This is a hash and an exclamation mark (#!)
followed by the path to the interpreter that should execute the file.

Interpreter: This is a program that reads a file and executes the
statements it contains. It may be a shell or another language
interpreter such as awk or Python.

CHAPTER 1 HELLO, WORLD: YOUR FIRST SHELL PROGRAM

Variables

PWD contains the pathname of the shell’s current working directory.
HOME stores the pathname of the user’s home directory.

PATH is a colon-separated list of directories in which command files
are stored. The shell searches the directories for commands it is
asked to execute.

Exercises

1.

2.

Write a script that creates a directory called bpl inside
$HOME. Populate this directory with two subdirectories: bin and
scripts.

Write a script to create the “Hello, World!” script, hw, in $HOME/
bpl/bin/; make it executable; and then execute it.

Make the modifications to now enable running the script using
the command hw instead of /bpl/bin/hw from the user home
directory.

CHAPTER 2

Input, Output, and
Throughput

Two of the commands we used in Chapter 1 are workhorses of the shell scripter’s stable:
echo and printf. Both are bash built-in commands. Both print information to the
standard output stream, but printf is much more powerful, and echo has its problems.
In this chapter, we will cover echo and the problems it brings, the capabilities of
printf, the read command, and the standard input and output streams. We'll start at

first with an overview of parameters and variables.

Parameters and Variables

To quote the bash manual (type man bash at the command prompt to read it or it
can also be read online at www.gnu.org/software/bash/manual/html_node/Shell-
Parameters.html), “A parameter is an entity that stores values.” There are three types
of parameters: positional parameters, special parameters, and variables. Positional
parameters are arguments present on the command line, and they are referenced by a
number. Special parameters are set by the shell to store information about aspects of its
current state, such as the number of arguments and the exit code of the last command.
Their names are non-alphanumeric characters (e.g., *, #, and). Variables are identified
by a name. What'’s in a name? We'll look at that in the “Variables” section.

The value of a parameter is accessed by preceding its name, number, or character
with a dollar sign, as in $3, $#, or $HOME. The name may be surrounded by braces, as in

${10}, ${PWD}, or ${USER}.

11
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_2

http://www.gnu.org/software/bash/manual/html_node/Shell-Parameters.html
http://www.gnu.org/software/bash/manual/html_node/Shell-Parameters.html
https://doi.org/10.1007/978-1-4842-9588-5_2

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Positional Parameters

When we call a command and pass it some arguments like we did earlier with echo in
Chapter 1, these arguments are numbered and passed to a shell program; these are
called numbered parameters. The first argument is $1, the second $2, and so on. The
first positional parameter is not $0; this is the name of the shell or the shell script/
command we are calling.

Let us modify the hw script from Chapter 1 and make it more flexible by using
positional parameters. Let’s call it hello as seen in Listing 2-1.

Listing 2-1. hello

#: Description: print Hello and the first command-line argument
printf "Hello, %s!\n" "$1"

Now we can call the script with an argument to change its output:

$ hello John
Hello, John!
$ hello Susan

Hello, Susan!

The original Bourne shell could only address up to nine positional parameters. If a
script were to use $10, it would be interpreted as $1 followed by a literal 0. To be able to
run older scripts, bash maintains this behavior. To access positional parameters greater
than 9, the number must be enclosed in braces like ${15}.

The script is passed to the parameters that can be accessed via their positions, $0, $1,
$2, and so on. There exists a function shift N, which moves the positional parameters
by N positions. If we ran shift (the default value of N is 1), then $0 would be discarded
and $1 would become $0, $2 would become $1, and so on. They would all be shifted by 1
position. There are some very clever and simple uses of shift to iterate through a list of
parameters of unknown length.

Note The shift function is destructive; that is, the parameters discarded are
gone and cannot be retrieved again.

12

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Special *@#0$? !- Parameters

The first two special parameters, $* and $@, expand to the value of all the positional
parameters combined, and $# expands to the number of positional parameters. $0
contains the path to the currently running script or to the shell itself if no script is being
executed.

$$ contains the process identification number (PID) of the current process, $? is set
to the exit code of the last executed command, and $_ is set to the last argument to that
command. $! contains the PID of the last command executed in the background, and $-
is set to the options flag currently in effect.

We will discuss these parameters more in detail as they come up in the chapters and
writing scripts.

Variables

A variable is a parameter denoted by a name; a name is a word containing only letters,
numbers, or underscores and beginning with a letter or an underscore.
Values can be assigned to variables as such:

name=value

Note bash is particular in the way it handles spacing; there are no spaces before
the = and none after as well. If you have spaces, the command will not work.

Many variables are set by the shell itself, including the three we have already seen:
HOME, PWD, and PATH. With the two minor exceptions of auto_resume and histchars, all
the variables set by the shell are all in uppercase letters.

Arguments and Options

The words entered after the command are its arguments. These words are separated by
whitespace (one or more spaces or tabs); if the whitespace is escaped or quoted, it no
longer separates words but becomes part of the word.

13

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT
The following command lines all have four arguments:

$ echo 1 '23' 45
$ echo -n Now\ is the time
printf "%s %s\n" one two three

In the first line, the spaces between 2 and 3 are quoted because they are surrounded
by single quotation marks. In the second, the space after Now is escaped by a backslash,
which is the shell’s escape character.

In the final line, a space is quoted with double quotes.

In the second command, the first argument is an option. Traditionally, options to
Unix commands are a single letter preceded by a hyphen, sometimes followed by an
argument. The GNU commands found in Linux distributions often accept long options
as well. These are words preceded by a double hyphen. For example (Figure 2-1), most
GNU utilities have an option --version that prints the version.

:-S bash --version
GNU bash, version 5.1.16(1)-release (x86_64-pc-linux-gnu)
Copyright (C) 2026 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software; you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Figure 2-1. Long option for version

Why You Should Avoid echo

All modern shells have echo, which is an internal command; when used, echo prints its
arguments with a single space between them to the standard output stream, followed by

a newline.

$ echo The quick brown fox
The quick brown fox

The default newline can be suppressed by using the option -n.

$ echo -n No newline
No newline$

14

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Note There were differences in the past between different flavors of bash
between the AT&T’s System V and BSD.

The other way of escaping and suppressing the newline character was the use of the
escape sequence /¢, which would not work on many of the bash shells. However, we can
use the option -e, which tells echo to recognize all the provided escape sequences.

$ echo "No Newline\c"
No newline
$ echo -e "No newline\c"

No newline$

Tip Add -e to the echo command if you want the escape sequences to be
recognized.

The trouble is that bash has an xpg_echo option (XPG stands for X/Open Portability
Guide, a specification for Unix systems) that makes echo behave like that other version.
This can be turned on or off while in the shell (using shopt -s xpg_echo either at the
command line or in a script), or it can be turned on when the shell is compiled. In other
words, even in bash, we cannot be absolutely sure which behavior you are going to get.

If we limit the use of echo to situations where there cannot be a conflict, that is,
where we are sure the arguments do not begin with -n and do not contain escape
sequences, we will be fairly safe. For everything else (or if we are not sure), use printf.

printf: Formatting and Printing Data

Derived from the C programming language function of the same name, the shell
command printf is similar in purpose but differs in some of the details. Like the C
function, it uses a format string to indicate how to present the rest of its arguments:

printf FORMAT ARG ...

15

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

The FORMAT string can contain ordinary characters, escape sequences, and format
specifiers. Ordinary characters are printed unchanged to the standard output. Escape
sequences are converted to the characters they represent. Format specifiers are replaced

with arguments from the command line.

Escape Sequences

Escape sequences are single letters preceded by a backslash:
e \a::Alert (bell)
e \b:Backspace
e \e: Escape character
o \f:Form feed
e \n:Newline
e \r:Carriage return
o \t:Horizontal tab
e \v: Vertical tab
o \\:Backslash
e \nnn: A character specified by one to three octal digits
e \xHH: A character specified by one or two hexadecimal digits

The backslashes must be protected from the shell by quotes or another backslash:

printf "0\t\141\n\x42\n"

o A

@

Format Specifiers

The format specifiers are letters preceded by a percent sign. Optional modifiers may be placed
between the two characters. The specifiers are replaced by the corresponding argument.
When there are more arguments than specifiers, the format string is reused until all the
arguments have been consumed. The most commonly used specifiers are %s, %d, %f, and %x.

16

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT
The %s specifier prints the literal characters in the argument:

$ printf "%s\n" Print arguments on "separate lines"
Print

arguments

on

separate lines

7%b is like %s except that escape sequences in the arguments are translated:

$ printf "%b\n" "Hello\nworld" "12\tword"
Hello

world

12 word

Integers are printed with %d. The integer may be specified as a decimal, octal (using a
leading 0), or hexadecimal (preceding the hex number with 0x) number. If the number is
not a valid integer, printf prints an error message:

$ printf "%d\n" 23 45 56.78 oxff 011
23

45

bash: printf: 56.78: invalid number

0

255

9

For decimal fractions or floating-point numbers, use %f. By default, they will be
printed with six decimal places:

$ printf "%f\n" 12.34 23 56.789 1.2345678
12.340000
23.000000
56.789000
1.234568

Floating-point numbers can be presented in exponential (also known as scientific)
notation using %e:

$ printf "%e\n" 12.34 23 56.789 123.45678

17

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

1.234000e+01
2.300000e+01
5.678900e+01
1.234568e+ 02

Integers can be printed in hexadecimal using %x for lowercase letters or %X for
uppercase letters. For example, when specifying colors for a web page, they are specified
in hex notation. I know from the rgb.txt file included with the X Window system that
the red-green-blue values for royal blue are 65, 105, and 225. To convert them to a style
rule for a web page, use this:

$ printf "color: #%02x%02x%02x;\n" 65 105 225
color: #4169e1;

Width Specification

We can modify the formats by following the percent sign with a width specification.
The argument will be printed flush right in a field of that width or will be flush left if the
number is negative. Here, we have the first field with a width of eight characters; the
words will be printed flush right. Then there is a field 15 characters wide that will be
printed flush left:

$ printf "%8s %-15s:\n" first second third fourth fifth sixth
first second
third fourth
fifth sixth

If the width specification is preceded by a 0, the numbers are padded with leading
zeros to fill the width:

$ printf "%04d\n" 12 23 56 123 255
0012
0023
0056
0123
0255

18

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

A width specifier with a decimal fraction specifies the precision of a floating-point
number or the maximum width of a string

$ printf "%12.4s %9.2f\n" John 2 Jackson 4.579 Walter 2.9
John 2.00
Jack 4.58
Walt 2.90

The script shown in Listing 2-2 uses printf to output a simple sales report.

Listing 2-2. Report

#!/bin/ bash
#: Description : print formatted sales report
Build a long string of equals signs
divider=====================================
divider=$divider$divider
Format strings for printf
header="\n %-10s %11s %8s %10s\n"
format=" %-10s %11.2f %8d %10.2f\n"
Width of divider
totalwidth=44
Print categories
printf "$header" ITEM "PER UNIT" NUM TOTAL
Print divider to match width of report
printf "%$totalwidth.${totalwidth}s\n" "$divider"”
Print lines of report
printf "$format" \

Chair 79.95 4 319.8 \

Table 209.99 1 209.99 \

Armchair 315.49 2 630.98

19

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT
The resulting report looks like this:

ITEM PER UNIT NUM TOTAL

Chair 79.95 4 319.80
Table 209.99 1 209.99
Armchair 315.49 2 630.98

Note the use of braces around the second totalwidth variable name:
${totalwidth}. In the first instance, the name is followed by a period, because a period
cannot be part of a variable name; it is ok to have it following the variable name and is
treated like a literal period. In the second, it is followed by the letter s, which could be
part of the variable name, and hence, to avoid that mix-up, the totalwidth name must
be separated from it by using braces.

Printing to a Variable

With version 3.1, bash added a -v option to store the output in a variable instead of
printing it to the standard output:

$ printf -v numa "%04d" 4
$ printf "%s\n" "$num4"
0004

Line Continuation

At the end of the report script, the last four lines are read as a single line, using line
continuation. A backslash at the end of a line tells the shell to ignore the newline
character, effectively joining the next line to the current one.

Standard Input/Output Streams and Redirection

In Unix (of which Linux is a variety), everything is a stream of bytes. The streams are
accessible as files, but there are three streams that are rarely accessed by a file name. These
are the input/output (I/O) streams attached to every command: standard input, standard
output, and standard error. By default, these streams are connected to the terminal.

20

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

When a command reads a character or a line, it reads from the standard input
stream, which is the keyboard. When it prints information, it is sent to the standard
output, the monitor. The third stream, standard error, is also connected to the monitor;
as the name implies, it is used for error messages. These streams are referred to by
numbers, called file descriptors (FDs). These are 0, 1, and 2, respectively. The stream
names are also often contracted to stdin, stdout, and stderr.

I/0 streams can be redirected to (or from) a file or into a pipeline.

Redirection: >, >>, and <

In Chapter 1, we redirected standard output to a file using the > redirection operator.

When redirecting using >, the file is created if it doesn’t exist. If it does exist, the file
is truncated to zero length before anything is sent to it. We can create an empty file by
redirecting an empty string (i.e., nothing) to the file:

$ printf "" > FILENAME
or by simply using this:
$ > FILENAME

Redirection is performed before any command on the line is executed. If we redirect
to the same file we are reading from, that file will be truncated, and the command will
have nothing to read.

The >> operator doesn’t truncate the destination file; it appends to it. We could add
an additional line to the hw command from the first chapter by doing the following:

$ echo exit 0 >> bin/hw

Redirecting standard output does not redirect standard error. Error messages will
still be displayed on the monitor. To send the error messages to a file - in other words, to
redirect FD2 - the redirection operator is preceded by the FD.

Both standard output and standard error can be redirected on the same
line. The next command sends standard output to FILE and standard error to
ERRORFILE:

$ printf '%s\n%v\n' OK? Oops! > FILE 2> ERRORFILE

$ cat ERRORFILE

~ 0

bash4: printf: "v': invalid format character

21

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

In this case, the error message is going to a special file, /dev/null. Sometimes called
the bit bucket, anything written to it is discarded.

$ printf '%s\n%v\n' OK? Oops! 2>/dev/null

Instead of sending output to a file, it can be redirected to another I/O stream by using
>&N, where N is the number of the file descriptor. This command sends both standard
output and standard error to FILE:

$ printf '%s\n%v\n' OK? Oops! > FILE 2>& 1

Here, the order is important. The standard output is sent to FILE, and then standard
error is redirected to where standard output is going. If the order is reversed, the effect is
different. The redirection sends standard error to wherever standard output is currently
going and then changes where standard output goes. Standard error still goes to where
standard output was originally directed:

$ printf '%s\n%v\n' OK? Oops! 2>&1 > FILE

bash has also a nonstandard syntax for redirecting both standard output and
standard error to the same place:

&> FILE

To append both standard output and standard error to FILE, use this:
&> FILE

A command that reads from standard input can have its input redirected from a file:
$ tr ,H wY < bin/hw

We can use the exec command to redirect the I/0 streams for the rest of the script or
until it’s changed again.

exec 1>tempfile
exec O<datafile
exec 2> errorfile

All standard output will now go to the file tempfile, input will be read from
datafile, and error messages will go to errorfile without having to specify it for every
command.

22

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Reading Input

The read command is a built-in command that reads from the standard input. By
default, it reads until a newline is received. The input is stored in one or more variables
given as arguments:

read var

If more than one variable is given, the first word (the input up to the first space or
tab) is assigned to the first variable, the second word is assigned to the second variable,
and so on, with any leftover words assigned to the last one:

$ read a b c d

January February March April May June July August
$ echo $a

January

$ echo $b

February

$ echo $c

March

$ echo $d

April May June July August

The bash version of read has several options. Only the - option is recognized by the
POSIX standard. It tells the shell to interpret escape sequences literally.

By default, read strips backslashes from the input, and the following character is
taken literally. The major effect of this default behavior is to allow the continuation of
lines. With the -1 option, a backslash followed by a newline is read as a literal backslash
and the end of input.

We'll discuss the other options in Chapter 15.

Like any other command that reads standard input, read can get its input from a file
through redirection. For example, to read the first line from FILENAME, use this:

$ read var < FILENAME

23

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Pipelines

Pipelines connect the standard output of one command directly to the standard input of
another. The pipe symbol (|) is used between the commands:

$ printf "%s\n" "$RANDOM" "$RANDOM" "$RANDOM" "$RANDOM" | tee
FILENAME

618

11267

5890

8930

The tee command reads from the standard input and passes it to one or more files as
well as to the standard output. $RANDOM is a bash variable that returns a different integer
between 0 and 32,767 each time it is referenced.

$ cat FILENAME
618

11267

5890

8930

Command Substitution

We learned about redirection of inputs and outputs; however, there may be a scenario
where we might want to save the results into a variable to use in a script. We can do so
using something called command substitution. There are two ways to do so; the first,
which originated in the Bourne shell, is the use of backticks as in

$ date="data’
The newer and recommended way of doing the same is as follows:
$ date=$(date)

While it looks simple and easy, this should be generally reserved for external
commands. When used with a built-in command, it tends to be very slow. This is the
reason the -v option was added to the printf command.

24

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT

Summary

The following are the commands and concepts we have learned in this chapter.

Commands

cat: Prints the contents of one or more files to the standard output

tee: Copies the standard input to the standard output and to one or
more files

read: A built-in shell command that reads a line from the
standard input

date: Prints the current date and time

Concepts

Standard I/0O streams: These are streams of bytes from which
commands read and to which output is sent.

Arguments: These are words that follow a command; arguments may
include options as well as other information such as file names.

Parameters: These are entities that store values; the three types are
positional parameters, special parameters, and variables.

Pipelines: A pipeline is a sequence of one or more commands
separated by |; the standard output of the command preceding the
pipe symbol is fed to the standard input of the command following it.

Line continuation: This is a backslash at the end of a line that
removes the newline and combines that line with the next.

Command substitution: This means storing the output of a command
in a variable or on the command line.

25

CHAPTER 2 INPUT, OUTPUT, AND THROUGHPUT
Exercises

1. What is wrong with this command?
tr A Z < $HOME/temp > $HOME/temp

2. Write a script, using $RANDOM, to write the following output both
to a file and to a variable. The following numbers are only to show
the format; your script should produce different numbers:

1988.2365
13798.14178
10081.134
3816.15098

26

CHAPTER 3

Looping and Branching

At the heart of any programming language are iteration and conditional execution.
Iteration is the repetition of a section of code until a condition changes. Conditional
execution is making a choice between two or more actions (one of which may be to do
nothing) based on a condition.

In the shell, there are three types of loops (while, until, and for) and three types of
conditional execution (if, case, and the conditional operators 83 and | |, which mean
AND and OR, respectively). Except for for and case, the exit status of a command controls
the behavior.

Exit Status

We can test the success of a command directly using the shell keywords while, until,
and if or with the control operators 83 and | |. The exit code is stored in the special
parameter $?.

If the command executed successfully (or true), the value of $? is zero. If the
command fails for some reason, $? will contain a positive integer between 1 and 255,
inclusive. A failed command usually returns 1. Zero and nonzero exit codes are also
known as true and false, respectively.

A command may fail because of a syntax error:

$ printf "%v\n"

bash: printf: “v': invalid format character
$ echo $?

1

27
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_3

https://doi.org/10.1007/978-1-4842-9588-5_3

CHAPTER 3 LOOPING AND BRANCHING

Alternatively, failure may be the result of the command not being able to accomplish
its task:

$ mkdir /qwerty

bash: mkdir: cannot create directory '/qwerty': Permission denied
$ echo $?

1

Testing an Expression

Expressions are deemed to be true or false by the test command or one of two
nonstandard shell-reserved words: [[and ((. The test command compares strings,
integers, and various file attributes; ((tests arithmetic expressions, and [[...]] does
the same as test with the additional feature of comparing regular expressions.

test,a.k.a.[...]

The test command evaluates many kinds of expressions, from file properties to integers
to strings. It is a built-in command, and therefore, its arguments are expanded just as for
any other command. (See Chapter 5 for more information.) The alternative version ()
requires a closing bracket at the end.

Note As noted earlier in Chapter 2, bash is particular about the spacing and
requires spaces around the brackets. It also is important because the commands [
test and [test without the space are different from what is intended.

File Tests

Several operators test the state of a file. A file’s existence can be tested with -e (or the
nonstandard -a). The type of file can be checked with -f for a regular file, -d for a
directory, and -h or -L for a symbolic link. Other operators test for special types of files
and for which permission bits are set.

28

CHAPTER 3 LOOPING AND BRANCHING
Here are some examples:

test -f /etc/fstab ## true if a regular file

test -h /etc/rc.local ## true if a symbolic link

[-x "$HOME/bin/hw"] ## true if you can execute the file

[[-s $HOME/bin/hw]] ## true if the file exists and is not empty

Integer Tests

Comparisons between integers use the -eq, -ne, -gt, -1t, -ge, and -1e operators.
The equality of integers is tested with -eq:

$ test 1 -eq 1
$ echo $?
0
$ [2 -eq1]
$ echo $?
1

Inequality is tested with -ne:
$ [2 -ne 1]
$ echo $?
0]

The remaining operators test greater than, less than, greater than or equal to, and
less than or equal to.

String Tests

Strings are concatenations of zero or more characters and can include any character
except NUL (ASCII 0). They can be tested for equality or inequality, for nonempty string
or null string, and in bash for alphabetical ordering. The = operator tests for equality, in
other words, whether they are identical; ! = tests for inequality. bash also accepts == for
equality, but there is no reason to use this nonstandard operator.

29

CHAPTER 3 LOOPING AND BRANCHING

Here are some examples:

test ||$a|| - "$b"

[Il$qll != ll$bl|]
The -z and -n operators return successfully if their arguments are empty or
nonempty:
$ [_ Z nn]
$ echo $?
0]
$ test -n ""
$ echo $?
1

The greater than and less than symbols are used in bash to compare the lexical
positions of strings and must be escaped to prevent them from being interpreted as
redirection operators:

stri=abc

str2=def

test "$str1" \< "$str2"”
echo $?

test "$str1" \> "$str2"
echo $?

B A R O W A R A

The previous tests can be combined in a single call to test with the -a (logical AND)
and -o (logical OR) operators:

test -f /path/to/file -a $test -eq 1
test -x bin/file -o $test -gt 1

test is usually used in combination with if or the conditional operators 88 and | |.

30

CHAPTER 3 LOOPING AND BRANCHING

[[...]]: Evaluate an Expression

Like test, [[...]] evaluates an expression. Unlike test, it is not a built-in command.
It is part of the shell grammar and not subject to the same parsing as a built-in
command. Parameters are expanded, but word splitting and file name expansion are not
performed on words between [[and]].

It supports all the same operators as test, with some enhancements and additions.
It is, however, nonstandard, so it is better not to use it when test could perform the

same function.

Enhancements over Test

When the argument to the right of = or ! = is unquoted, it is treated as a pattern and
duplicates the functionality of the case command.

The feature of [[...]] thatis not duplicated elsewhere in the shell is the ability to
match an extended regular expression using the =~ operator:

string=whatever
[[$string =~ h[aeiou]]]
echo $?

[[$string =~ h[sdfghjkl]]]
echo $?

R A O W A

Regular expressions are explained in Chapter 8.

((...)): Evaluate an Arithmetic Expression

A nonstandard feature, ((arithmetic expression)) returns false if the arithmetic
expression evaluates to zero and returns true otherwise. The portable equivalent uses
test and the POSIX syntax for shell arithmetic:

test $((a-2)) -neo
[$a =0]

31

CHAPTER 3 LOOPING AND BRANCHING

But because ((expression)) is shell syntax and not a built-in command,
expression is not parsed in the same way as arguments to a command. This means,
for example, that a greater than sign (>) or less than sign (<) is not interpreted as a

redirection operator:
if ((total » max)); then : ...; fi

A bare variable is tested for zero or nonzero, exiting successfully if the variable is
nonzero:

((verbose)) 88 command ## execute command if verbose != 0
Non-numeric values are equivalent to 0:

$ y=yes
$ ((Y)) 8& echo %y || echo n
$ nlLists

A list is a sequence of one or more commands separated by semicolons, ampersands,
control operators, or newlines. A list may be used as the condition in awhile or until
loop, an if statement, or as the body of any loop. The exit code of a list is the exit code of
the last command in the list.

Conditional Execution

Conditional constructs enable a script to decide whether to execute a block of code or to
select which of two or more blocks to execute.

The basic if command evaluates a list of one or more commands and executes a list if

the execution of <condition list> is successful:

if <condition list>
then

<list>
fi

32

CHAPTER 3 LOOPING AND BRANCHING

Usually, the <condition list> isasingle command, very often test or its synonym,
[, o, in bash, [[. In Listing 3-1, the -z operand to test checks whether a name was
entered.

Listing 3-1. Read and Check Input

read name
if [[-z $name]]
then

echo "No name entered" >&2
exit 1 ## Set a failed return code
fi

Using the else keyword, a different set of commands can be executed if the
<condition list> fails, as shown in Listing 3-2. Note that in numeric expressions,
variables do not require a leading $.

Listing 3-2. Prompt for a Number and Check That It Is Not Greater Than Ten

printf "Enter a number not greater than 10:
read number
if ((number > 10))
then
printf "%d is too big\n
exit 1

$number"” >&2

else
printf "You entered %d\n" "$number"
fi

More than one condition can be given, using the elif keyword, so that if the first test
fails, the second is tried, as shown in Listing 3-3.

Listing 3-3. Prompt for a Number and Check That It Is Within a Given Range

printf "Enter a number between 10 and 20 inclusive:
read number
if ((number < 10))
then
printf "%d is too low\n" "$number" >8&2

33

CHAPTER 3 LOOPING AND BRANCHING

exit 1
elif ((number > 20))
then
printf "%d is too high\n" "$number" >&2
exit 1
else
printf "You entered %d\n" "$number"
fi

Note Inreal use, a number entered in the previous examples would be checked
for invalid characters before its value is compared. Code to do that is given in the
“case” section.

Often more than one test is given in the <condition list> using&&and | |.

Conditional Operators: && and |

Lists containing the AND and OR conditional operators are evaluated from left to right.
A command following the AND operator (&&) is executed if the previous command
is successful. The part following the OR operator (| |) is executed if the previous
command fails.

For example, to check for a directory and cd into it if it exists, use this:

test -d "$directory” && cd "$directory”
To change directory and exit with an error if cd fails, use this:
cd "$HOME/bin" || exit 1

The next command tries to create a directory and cd to it. If either mkdir or cd fails, it

exits with an error:

mkdir "$HOME/bin" && cd "$HOME/bin" || exit 1

34

CHAPTER 3 LOOPING AND BRANCHING

Conditional operators are often used with if. In this example, the echo command is
executed if both tests are successful:

if [-d "$dir"] && cd "$dir"
then

echo "$PWD"
fi

case

A case statement compares a word (usually a variable) against one or more patterns
and executes the commands associated with that pattern. The patterns are pathname
expansion patterns using wildcards (* and ?) and character lists and ranges ([. . .]). The
syntax is as follows:

case WORD in

PATTERN) COMMANDS ;;

PATTERN) COMMANDS ;; ## optional
esac

A common use of case is to determine whether one string is contained in another.
It is much faster than using grep, which creates a new process. This short script would
normally be implemented as a shell function (see Chapter 6) so that it will be executed
without creating a new process, as shown in Listing 3-4.

Listing 3-4. Does One String Contain Another?

case $1 in
"g2") true ;;
*) false ;;

esac

The commands, true and false, do nothing but succeed or fail, respectively.
Another common task is to check whether a string is a valid number. Again,
Listing 3-5 would usually be implemented as a function.

35

CHAPTER 3 LOOPING AND BRANCHING

Listing 3-5. valint, Is This a Valid Positive Integer?

case $1 in
[10-9]) false;;
*) true ;;

esac

Many scripts require one or more arguments on the command line. To check
whether the correct number of arguments are passed, case is often used:

case $# in
3) ;; ## We need 3 args, so do nothing
*) printf "%s\n" "Please provide three names" >&2
exit 1
35
esac

Looping

There may be a time when one might need to repeat a command several times; one

way is to write it out as many times over, and then if there were a change, reducing the
lines or increasing the lines accordingly and ensuring that it was correct can become

a nightmare and painful. In many programming languages, this problem is solved by
using a loop. The shell can offer three types of loops, namely, while, until, and for. The
first two are executed until a condition is true or false; the third type loops through a list
of values.

while

The condition for awhile loop is a list of one or more commands, and the commands
to be executed while the condition remains true are placed between the keywords do
and done:

while <condition>
do

<commands>
done

36

CHAPTER 3 LOOPING AND BRANCHING

A while loop can be run a specific number of times using a counter, a variable that is
incremented each time the loop is executed.

n=1
while [$n -le 10]
do

echo "$n"

n=$(($n + 1))
done

The true command can be used to create an infinite loop:

while true ## ':' can be used in place of true
do

read x
done

Awhile loop can be used to read a file line by line:

while IFS= read -r line
do

: do something with "$line"
done < FILENAME?

until

Anuntil loop is not used much, and it is the opposite of a while loop; it will loop if the
condition fails, whereas the while loop keeps going till the condition passes.

n=1
until [$n -gt 10]
do

echo "$n"

n=$(($n + 1))
done

37

CHAPTER 3 LOOPING AND BRANCHING

for

A for loop takes a list of values; these can be numbers, words, etc. It iterates through the
given list of words passed and provides a value via the variable name set in the for loop.
With each iteration, it advances to the next word on the list.

for var in Canada USA Mexico
do

printf "%s\n" "$var"
done

There is another form of the for loop that is like the C programming language.
Where there are three parts to the for loop, the first expression is evaluated when the
loop starts, the second part is a test condition that determines if the loop needs to exit or
go to the next iteration, and the third is evaluated at the end of each iteration.

for ((n=1; n<=10; ++n))
do

echo "$n"
done

break

Sometimes we might need to stop the loop from executing when a certain condition is
met; this is also another way of exiting the loop. This can be achieved using the keyword
break. Like its name, it allows us to break from the loop.

while :
do

read x

[-z "$x"] && break
done

The way break works in bash is a little different than in other languages, and
instead of breaking from the current loop (in case of nested or a hierarchy of scopes),
providing a numeric value after the break statement can help in breaking from multiple
nested loops.

38

CHAPTER 3 LOOPING AND BRANCHING

forninabcde
do
while true
do
if [$RANDOM -gt 20000]
then
printf .
break 2 ## break out of both while and for loops
elif [$RANDOM -1t 10000]
then
printf '"'
break ## break out of the while loop
fi
done
done
echo

continue

There can also be situations inside a loop when we might want to not break the loop but
process the next iteration of the loop. For that, we can use the keyword continue.

for n in {1..9} ## See Brace expansion in Chapter 4
do

x=$RANDOM

[$x -le 20000] && continue

echo "n=%$n x=%$x"
done

Summary

Looping and branching are major building blocks of a computer program. In this
chapter, we learned the commands and operators used for these tasks.

39

CHAPTER 3

LOOPING AND BRANCHING

Commands

test: Evaluates an expression and returns success or failure

if: Executes a set of commands if a list of commands is successful
and optionally executes a different set if it is not

case: Matches a word with one or more patterns and executes the
commands associated with the first matching pattern

while: Repeatedly executes a set of commands while a list of
commands executes successfully

until: Repeatedly executes a set of commands until a list of
commands executes successfully

for: Repeatedly executes a set of commands for each word in a list
break: Exits from a loop

continue: Starts the next iteration of a loop immediately

Concepts

Exit status: The success or failure of a command, stored as 0 or a
positive integer in the special parameter $?

List: A sequence of one or more commands separated by ;, &, &8, | |,
or a newline

Exercises

40

Write a script that asks the user to enter a number between 20

and 30. If the user enters an invalid number or a non-number, ask
again. Repeat until a satisfactory number is entered.

Write a script that prompts the user to enter the name of a file.

Repeat until the user enters a file that exists.

CHAPTER 4

Command-Line Parsing
and Expansion

One of the things that shell programming language does is the parsing of command-line
arguments and the expansion it performs on words in the line. Let us look in detail what
happens when a command is called with arguments, what does the shell do before it
invokes the command.

To help visualize what happens, we can use the short script as seen in Listing 4-1
called sa, which will display what the shell has passed to it after processing all of the
arguments. Each argument is printed on a separate line, preceded by the value of $pre
and followed by the value of $post.

Listing 4-1. sa; Displaying Command-Line Arguments

pre=:
post=:
printf "$pre¥s$post\n” "$@"

Note Create a script called sa with the text as can be seen in Listing 4-1. This is
used in the code samples in this chapter.

The special parameter $@ expands to a list of all the command-line arguments, but
the results differ depending on whether it is quoted or not. When quoted, it expands to
the positional parameters "$1", "$2", "$3", and so on, and the arguments containing
whitespace will be preserved. If $@ is unquoted, splitting will occur wherever whitespace

is present.

41
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_4

https://doi.org/10.1007/978-1-4842-9588-5_4

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

When a line is executed, whether at the command prompt or in a script, the shell
splits the line into words wherever there is unquoted whitespace. The bash examines
the resulting words, performing up to eight types of expansion on them as appropriate.
The results of the expansions are passed to the command as its arguments. This chapter
examines the entire process, from the initial parsing into words based on unquoted
whitespace to each of the expansions in the order in which they are performed:

1. Brace expansion

2. Tilde expansion

3. Parameter and variable expansion
4. Arithmetic expansion

5. Command substitution

6. Word splitting

7. Pathname expansion

8. Process substitution

The chapter ends with a shell program that demonstrates how to parse options
(arguments beginning with a hyphen) on the command line using the getopts built-in
command.

Quoting

The shell’s initial parsing of the command line uses unquoted whitespace, that is, spaces,
tabs, and newlines, to separate the words. Spaces between single or double quotes or
spaces preceded by the escape character (\) are considered part of the surrounding
word, if any. The delimiting quotation marks are stripped from the arguments.

The following code has five arguments. The first is the word this preceded by a
space (the backslash removes its special meaning). The second argument is “is a”;
the entire argument is enclosed in double quotes, again removing the special meaning
from the space. The phrase demonstration of is enclosed in single quotes. Next is a
single, escaped space. Finally, the string quotes and escapes are held together by the
escaped spaces.

42

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

$ sa \ this "is a" 'demonstration of' \ quotes\ and\ escapes
: this:

:is a:

:demonstration of:

:quotes and escapes:

Quotes can be embedded in a word. Inside double quotes, a single quote is not special,
but a double quote must be escaped. Inside single quotes, a double quote is not special.

$ sa "a double-quoted single quote,
quote, \""

a double-quoted double

:a double-quoted single quote, '

:a double-quoted double quote, ":

$ sa 'a single-quoted double quotation mark,
:a single-quoted double quotation mark, ":

All characters inside a single-quoted word are taken literally. A single-quoted word
cannot contain a single quote even if it is escaped; the quotation mark will be regarded
as closing the preceding one, and another single quote opens a new quoted section.
Consecutive quoted words without any intervening whitespace are considered as a
single argument:

$ sa "First argument "'still the first argument’
:First argument still the first argument:

In bash, single quotes can be included in words of the form $'string"' if they are
escaped. In addition, the escape sequences listed in Chapter 2’s description of printf
are replaced by the characters they represent:

$ echo $'\'line1\"'\n\'line2\""
"line1’
"line2’

Quoted arguments can contain literal newlines:

$ sa "Argument containing J
> a newline"

:Argument containing

a newline:

43

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Note The J is the enter key and not something to be typed on the terminal.
Since the shell determines that the command is incomplete, it displays a > prompt
allowing you to complete the command.

Brace Expansion

The first expansion performed, brace expansion, is nonstandard (i.e., it is not included
in the POSIX specification). It operates on unquoted braces containing either a comma-
separated list or a sequence. Each element becomes a separate argument.

$ sa {one,two,three}
one:
ttwo:
:three:
$ sa {1..3} ## added in bash3.0
1
:2:
:3:
$ sa {a..c}
‘a:
b
c:

A string before or after the brace expression will be included in each expanded
argument:

$ sa pre{d,l}ate
:predate:
:prelate:

44

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

Braces may be nested:

$ sa {{1..3},{a..c}}

N o 9 W N B

Multiple braces within the same word are expanded recursively. The first brace
expression is expanded, and then each of the resulting words is processed for the next brace
expression. With the word {1..3}{a. .c}, the first term is expanded, giving the following:

1{a..c} 2{a..c} 3{a..c}
Each of these words is then expanded for this final result:

$ sa {1..3}{a..c}
:1a:
:1b:
11c:
:2a:
:2b:
12c:
:3a:
:3b:
:3c:

In version 4 of bash, further capabilities have been added to brace expansion.
Numerical sequences can be padded with zeros, and the increment in a sequence can be
specified. The syntax becomes {start..end..increment}.

$ sa {01..13..3}
:01:
:04:
:07:
:10:
:13:

45

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Increments can also be used with alphabetic sequences:

$ sa {a..h..3}

Tilde Expansion

An unquoted tilde expands to the user’s home directory $HOME :

$ sa ™
:/home/jayant:

Followed by a login name, it expands to that user’s home directory:

$ sa ~root ~jayant
:/root:
:/home/jayant:

When quoted, either on the command line or in a variable assignment, the tilde is
not expanded:
$ Sa IINII IINI_OO_tII
:~100t:
$ dir=~jayant
$ dir2="~jayant"
$ sa "$dir" "$dir2"
:/home/jayant:
:~Jjayant:

If the name following the tilde is not a valid login name, no expansion is performed:

$ sa ~qwerty
i~qwerty:

46

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

Parameter and Variable Expansion

Parameter expansion replaces a variable with its contents; it is introduced by a dollar
sign ($). It is followed by the symbol or name to be expanded:

$ var=whatever
$ sa "$var"
:whatever:

The parameter may be enclosed in braces:

$ var=qwerty
$ sa "${var}"
:qwerty:

In most cases, the braces are optional. They are required when referring to a
positional parameter greater than nine or when a variable name is followed immediately
by a character that could be part of a name:

$ first=Jane

$ last=Johnson

$ sa "$first $last” "${first} $last”
:Johnson:

:Jane_Johnson:

Because first_isavalid variable name, the shell tries to expand it rather than
first; adding the braces removes the ambiguity.

Braces are also used in expansions that do more than simply returning the value of
a parameter. These often-cryptic expansions (e.g., ${var##*/} and ${var//x/y}) add a
great deal of power to the shell and are examined in detail in the next chapter.

Parameter expansions that are not enclosed in double quotes are subject to word
splitting and pathname expansion.

47

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Arithmetic Expansion

When the shell encounters $((expression)), it evaluates expression and places the
result on the command line; expression is an arithmetic expression. Besides the four
basic arithmetic operations of addition, subtraction, multiplication, and division, its
most used operator is % (modulo, the remainder after division).

$ sa "$((1+ 12))" "$((12 * 13))" "$((16 / 4))" "$((
6-9))"
$13:
:156:
14
:-3:
The arithmetic operators (see Tables 4-1 and 4-2) take the same precedence that
you learned in school (basically, that multiplication and division are performed before

addition and subtraction), and they can be grouped with parentheses to change the
order of evaluation.

48

Table 4-1. Arithmetic Operators

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

Operator Description

-+ Unary minus and plus

I ~ Logical and bitwise negation
* /% Multiplication, division, remainder
+ - Addition, subtraction

K > Left and right bitwise shifts
<= >= <> Comparison

== I= Equality and inequality

& Bitwise AND

N Bitwise exclusive OR

| Bitwise OR

&& Logical AND

| Logical OR

= *= /= J= += -= <= >>= Assignment

&= "= |=

49

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Table 4-2. bash Extensions

Operator Description

*ok Exponentiation

id++ id-- Variable post-
increment and post-
decrement

++id --id Variable pre-
increment and pre-
decrement

expr ? exprl : expr2 Conditional operator

expri, expr2 Comma

$ sa "$((3+4%5))" "$((3+4)*5))"
:23:
:35:

The modulo operator, %, returns the remainder after division:

$ sa "$((13 %5))"

Converting seconds (which is how Unix systems store times) to days, hours, minutes,
and seconds involves division and the modulo operator, as shown in Listing 4-2.

Listing 4-2. secs2dhms, Convert Seconds (in Argument $1) to Days, Hours,
Minutes, and Seconds

secs_in_day=86400

secs_in_hour=3600

mins _in_hour=60

secs_in_min=60

days=$(($1 / $secs_in day))

secs=$(($1 % $secs_in day))

printf "%d:%02d:%02d:%02d\n" "$days" "$(($secs / $secs_in hour))" \
"$((($secs / $mins_in _hour) %$mins_in hour))" "$(($secs % $secs_
in _min))"

50

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

If not enclosed in double quotes, the results of arithmetic expansion are subject to
word splitting.

Command Substitution

Command substitution replaces a command with its output. The command must be
placed either between backticks (* command *) or between parentheses preceded by
a dollar sign ($(command)). For example, to count the lines in a file whose name
includes today’s date, this command uses the output of the date command:

$ wc -1 $(date +%Y-%m-%d).log
61 2023-07-11.log

The old format for command substitution uses backticks. This command is the same

as the previous one:

$ wc -1 “date +%Y-%m-%d" .log
61 2023-07-11.log

If the command substitution is not quoted, word splitting and pathname expansion
are performed on the results.

Word Splitting

The results of parameter and arithmetic expansions, as well as command substitution,
are subjected to word splitting if they were not quoted:

$ var="this is a multi-word value"
$ sa $var "$var"

:this:

tis:

a:

:multi-word:

:value:

:this is a multi-word value:

51

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Word splitting is based on the value of the internal field separator variable, IFS. The
default value of IFS contains the whitespace characters of space, tab, and newline
(IFS=$" \t\n'). When IFS has its default value or is unset, any sequence of default IFS
characters is read as a single delimiter.

$ var=" spaced
out '

$ sa $var

:spaced:

tout:

If IFS contains another character (or characters) as well as whitespace, then any
sequence of whitespace characters plus that character will delimit a field, but every
instance of a non-whitespace character delimits a field:

S IFS=" :'

$ var="qwerty : uiop : :: er " ## : :: delimits 2
empty fields

$ sa $var

‘qwerty:

:uiop:

ter:

If IFS contains only non-whitespace characters, then every occurrence of every
character in IFS delimits a field, and whitespace is preserved:

$ IFS=:

$ var="qwerty : uiop : :: er "
$ sa $ var

:qwerty

: uiop :

Der

52

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

Pathname Expansion

Unquoted words on the command line containing the characters *, ?, and [are treated
as file globbing patterns and are replaced by an alphabetical list of files that match the
pattern. If no files match the pattern, the word is left unchanged.

The asterisk matches any string. h* matches all files in the current directory that
begin with h, and *k matches all files that end with k. The shell replaces the wildcard
pattern with the list of matching files in alphabetical order. If there are no matching files,
the wildcard pattern is left unchanged.

$ cd "$HOME/bin"
$ sa h*

hello:

thw:

$ sa *k
:incheck:

:numcheck:

:rangecheck:

A question mark matches any single character; the following pattern matches all files
whose second letter is a:

$ sa ?a*
:rangecheck:

:ba:

:valint:

:valnum:

Square brackets match any one of the enclosed characters, which may be a list, a
range, or a class of characters: [aceg] matches any one of 3, ¢, e, or g; [h-o0] matches any
character from h to o inclusive; and [[: lower :]] matches all lowercase letters.

You can disable file name expansion with the set -f command. bash has a number
of options that affect file name expansion. I'll cover them in detail in Chapter 8 .

53

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

Process Substitution

Process substitution creates a temporary file name for a command or list of commands.
You can use it anywhere a file name is expected. The form <(command) makes the output
of command available as a file name; >(command) is a file name that can be written to.

$ sa <(1s -1) >(pr -Tn)
:/dev/fd/63:
:/dev/fd/62:

Note The pr command converts text files for printing by inserting page headers.
The headers can be turned off with the -T option, and the -n option numbers
the lines.

When the file name on the command line is read, it produces the output of the
command. Process substitution can be used in place of a pipeline, allowing variables
defined within a loop to be visible to the rest of the script. In this snippet, totalsizeis
not available to the script outside the loop:

$ 1s -1 * |
> while read perms links owner group size month day time file
do
printf "%10d %s\n" "$size" "$file"
totalsize=$((${totalsize:=0} + ${size:-0}))
done

vV VvV VvV Vv

$ echo ${totalsize-unset} ## print "unset" if variable is not set
unset

By using process substitution instead, the variable totalsize becomes available
outside of the loop:

$ while read perms links owner group size month day time file
> do

> printf "%10d %s\n" "$size" "$file"

> totalsize=$((${totalsize:=0} + ${size:-0}))

> done < <(1s -1 *)

$ echo ${totalsize-unset}

12879
54

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

Parsing Options

The options to a shell script, single characters preceded by a hyphen, can be parsed with
the built-in command getopts. There may be arguments to some options, and options
must precede non-option arguments.

Multiple options may be concatenated with a single hyphen, but any that take an
argument must be the final option in the string. Its argument follows, with or without
intervening whitespace.

On the following command line, there are two options: -a and - f. The latter takes
a file name argument. John is the first non-option argument, and -x is not an option
because it comes after a non-option argument.

myscript -a -f filename John -x Jane
The syntax for getopts is as follows:
getopts OPTSTRING var

The OPTSTRING contains all the option’s characters; those that take arguments are
followed by a colon. For the script in Listing 4-3, the string is f:v. Each option is placed
in the variable $var, and the option’s argument, if any, is placed in $OPTARG.

Usually used as the condition to a while loop, getopts returns successfully until
it has parsed all the options on the command line or until it encounters the word - -.

All remaining words on the command line are arguments passed to the main part of
the script.

A frequently used option is -v to turn on verbose mode, which displays more than the
default information about the running of the script. Other options - for example, -f -
require a file name argument.

This sample script processes both the -v and - f options and, when in verbose mode,
displays some information.

Listing 4-3. parseopts, Parse Command-Line Options

progname=${0##*/} ## Get the name of the script without its path
Default values

verbose=0

filename=

List of options the program will accept;

55

CHAPTER4 COMMAND-LINE PARSING AND EXPANSION

those options that take arguments are followed by a colon
optstring=f:v
The loop calls getopts until there are no more options on the
command line
Each option is stored in $opt, any option arguments are stored in OPTARG
while getopts $optstring opt
do
case $opt in
f) filename=$0PTARG ;; ## $OPTARG contains the argument to the option
v) verbose=$(($verbose + 1)) ;;
*) exit 1 ;;
esac
done
Remove options from the command line
$OPTIND points to the next, unparsed argument
shift "$(($OPTIND - 1))"

Check whether a filename was entered
if [-n "$filename"]
then
if [$verbose -gt 0]
then
printf "Filename is %s\n" "$filename"
fi
else
if [$verbose -gt 0]
then
printf "No filename entered\n" >&2
fi
exit 1
fi

Check whether file exists
if [-f "$filename"]
then

if [$verbose -gt 0]

then

56

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION

printf "Filename %s found\n" "$filename"
fi
else
if [$verbose -gt 0]
then
printf "File, %s, does not exist\n" "$filename" >8&2
fi
exit 2
fi

If the verbose option is selected,
print the number of arguments remaining on the command line
if [$verbose -gt 0]
then
printf "Number of arguments is %d\n" "$#"
fi

Running the script without any arguments does nothing except generate a failing
return code:

$ parseopts
$ echo $?
1

With the verbose option, it prints an error message as well:

$ parseopts -v
No filename entered

$ echo $?

1

With an illegal option (i.e., one that is not in $optstring), the shell prints an error
message:

$ parseopts -x
/home/jayant/bin/parseopts: illegal option - x

57

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION
If a file name is entered and the file doesn’t exist, it produces this:

$ parseopts -vf qwerty; echo $?
Filename is qwerty

File, qwerty, does not exist

2

To allow a non-option argument to begin with a hyphen, the options can be explicitly
ended with --:

$ parseopts -vf ~/.bashrc -- -x
Filename is /home/jayant/.bashrc

Filename /home/jayant/.bashrc found

Number of arguments is 1

Summary

The shell’s pre-processing of the command line before passing it to a command saves
programmers a great deal of work. The following are the commands you learned in this
chapter, followed by some exercises to test your knowledge.

Commands

¢ head: Extracts the first N lines from a file; N defaults to 10.

e cut: Extracts columns from a file.

Exercises

1. How many arguments are there on this command line?

sa $# $(date "+%Y %m %d") John\ Doe

58

CHAPTER 4 COMMAND-LINE PARSING AND EXPANSION
2. What potential problem exists with the following snippet?

year=$(date +%Y)
month=$(date +%m)
day=$(date +%d)
hour=$(date +%H)
minute=$(date +%M)
second=$(date +%S)

59

CHAPTER 5

Parameters and Variables

Variables have been part of the Unix shell since its inception more than 30 years ago, but
their features have grown over the years. The standard Unix shell now has parameter
expansions that perform sophisticated manipulations on their contents. bash adds even
more expansion capabilities as well as indexed and associative arrays.

This chapter covers what we can do with variables and parameters, including their
scope. In other words, after a variable has been defined, where can its value be accessed?
This chapter gives a glimpse of the more than 80 variables used by the shell that are
available to the programmer. It discusses how to name the variables and how to pick
them apart with parameter expansion.

Positional parameters are the arguments passed to a script. They can be manipulated
with the shift command and used individually by number or in a loop.

Arrays assign more than one value to a name. bash has both numerically indexed
arrays and, beginning with bash-4.0, associative arrays that are assigned and referenced
by a string instead of a number.

The Naming of Variables

Variable names can contain only letters, numbers, and underscores, and they must start
with a letter or an underscore. Apart from those restrictions, you are free to build your
names as you see fit. It is, however, a good idea to use a consistent scheme for naming
variables, and choosing meaningful names can go a long way toward making your code
self-documenting.

Perhaps the most frequently cited (though less often implemented) convention is
that environment variables should be in capital letters, while local variables should be
in lowercase. Given that bash itself uses more than 80 uppercase variables internally,
this is a dangerous practice, and conflicts are not uncommon. There are plenty of cases
where variables such as PATH, HOME, LINES, SECONDS, and UID are misused with potentially

61
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_5

https://doi.org/10.1007/978-1-4842-9588-5_5

CHAPTER5 PARAMETERS AND VARIABLES

disastrous consequences. None of bash’s variables begin with an underscore, so in the
book Shell Scripting Recipes: A Problem-Solution Approach (Apress, 2005) and in this
book, we are using uppercase names preceded by an underscore for values set by shell
functions.

Single-letter names should be used rarely. They are appropriate as the indexin a
loop, where its sole function is as a counter. The letter traditionally used for this purpose
is i, but a good preference is n. The letters |, 0, and i can be easily confused with numbers
like 1 and 0.

The other place where single-letter variables can be used is when using a throwaway
material from a file. If a couple of fields are required from a file, then one could use it like

while IFS=: read login a b c name e
do

printf "%-12s %s\n" "$login" "$name"
done < /etc/passwd

One can use either of the two naming schemes. The first is used by Heiner Steven
on his Shelldorado website at www.shelldorado.com/. He capitalizes the first letter of
all variables and the first letters of further words in the name: ConfigFile, LastDir, and
FastMath.

With other programming languages and JSON, snake_case is quite a popular
methodology, which uses all lowercase letters separated by underscores, or another way
would be to use camelCase, which has the first word in lowercase and the subsequent
words starting with a capital letter. Whichever system one might choose, the choice of a
system is a name that gives a real indication of what the variable contains and makes it
readable. Some examples are configFile, lastDir, fastMath or 1ine width,
bg_underline, and day_of week, but be aware of not getting carried away with names
like a_long_variable_name_which_may_tell_you_something_about_its_purpose=1

The Scope of a Variable: Can You See It from Here?

By default, a variable’s definition is known only to the shell in which it is defined (and
to subshells of that shell). The script that called the current script will not know about
it, and a script called by the current script will not know about the variable unless it is
exported to the environment.

62

http://www.shelldorado.com/

CHAPTER5 PARAMETERS AND VARIABLES

The environment is an array of strings of the form name=value. Whenever an external
command is executed (creating a child process), whether it is a compiled, binary
command or an interpreted script, this array is passed to it behind the scenes. In a shell
script, these strings are available as variables.

Variables assigned in a script may be exported to the environment using the shell
built-in command export:

var=whatever
export var

In bash, this may be abbreviated like this:
export var=whatever

There is no need to export a variable unless you want to make it available to scripts
(or other programs) called from the current script (and their children and their children’s
children and so on). Exporting a variable doesn’t make it visible anywhere except child
processes.

Listing 5-1 tells you whether the variable $x is in the environment and what it
contains if anything.

Listing 5-1. showvar, Print Value of Variable x

if [[${x+X} = X]] ## If $x is set

then
if [[-n $x]] ## if $x is not empty
then
printf " \$x = %s\n" "$x"
else
printf " \$x is set but empty\n"”
fi
else
printf " %s is not set\n" "\$x"
fi

Once a variable is exported, it remains in the environment until it is unset:

63

CHAPTER5 PARAMETERS AND VARIABLES

$ unset x

$ showvar
$x is not set

$ x=3

$ showvar
$x is not set

$ export x

$ showvar
$x = 3

$ x= ## in bash, reassignment doesn't remove a variable from the

environment

$ showvar

$x is set but empty

Note showvar is not a bash command, but a script, as seen in Listing 5-1, that
works with the value of x.

Variables set in a subshell are not visible to the script that called it. Subshells include
command substitution, as in $(command) or ~command"; all elements of a pipeline; and
code enclosed in parentheses, as in (command).

Probably the most frequently asked question about shell programming is, “Where
did my variables go? I know I set them, so why are they empty?” Often, this is caused by
piping the output of one command into a loop that assigns variables:

printf "%s\n" ${RANDOM}{,,,,,} |
while read num
do
((num > ${biggest:=0})) & biggest=$num
done
printf "The largest number is: %d\n" "$biggest"

When biggest is found to be empty, complaints of variables set in while loops not
being available outside them are heard in all the shell forums. But the problem is not the
loop; it is that the loop is part of a pipeline and therefore is being executed in a subshell.

64

CHAPTER5 PARAMETERS AND VARIABLES

With bash-4.2, a new option, lastpipe, enables the last process in a pipeline to be
executed in the current shell. It is invoked with the following:

shopt -s lastpipe

Shell Variables

The shell either sets or uses more than 80 variables. Many of these are used by bash
internally and are of little use to shell programmers. Others are used in debugging, and
some are in common use in shell programs. About half are set by the shell itself, and the
rest are set by the operating system, the user, the terminal, or a script.

Of those set by the shell, you have already looked at RANDOM, which returns a random
integer between 0 and 32,767, and PWD, which contains the path to the current working
directory. You saw OPTIND and OPTARG used in parsing command-line options (Chapter 4).
Sometimes, BASH_VERSION (or BASH_VERSINFO) is used to determine whether the running
shell is capable of running a script. Some of the scripts in this book require at least
bash-3.0 and might use one of those variables to determine whether the current shell is
recent enough to run the script:

case $BASH VERSION in
[12].*) echo "You need at least bash3.0 to run this script" >8&2; exit 2;;
esac

The prompt string variables, PS1 and PS2, are used in interactive shells at the
command line; PS3 is used with the select built-in command, and PS4 is printed before
each line in execution trace mode (more on that in Chapter 10).

Shell Variables

The following variables are set by the shell:

65

CHAPTER5 PARAMETERS AND VARIABLES
BASH BASHOPTS BASHPID BASH_ALTIASES
BASH ARGC BASH ARGV BASH_CMDS BASH_COMMAND

BASH_EXECUTION_STRING

BASH_SUBSHELL
COMP_KEY
COMP_WORDBREAKS
EUID

HOSTNAME
MAPFILE

0STYPE

RANDOM

SECONDS

BASH_LINENO

BASH_VERSINFO

COMP_LINE
COMP_WORDS
FUNCNAME
HOSTTYPE
OLDPWD
PIPESTATUS

READLINE LINE

SHELLOPTS

BASH_REMATCH
BASH_VERSION
COMP_POINT
COPROC

GROUPS

LINENO

OPTARG

PPID
READLINE_POINT
SHLVL

BASH_SOURCE
COMP_CWORD
COMP_TYPE
DIRSTACK
HISTCMD
MACHTYPE
OPTIND

PWD

REPLY

UID

The following variables are used by the shell, which may set a default value for some

of them (e.g., IFS):

BASH_COMPAT
CHILD_MAX
FCEDIT
HISTCONTROL
HISTSIZE
IFS

LC_ALL
LC_NUMERIC
MAILCHECK
POSIXLY CORRECT
PS2
TIMEFORMAT

histchars

BASH_ENV
COLUMNS
FIGNORE
HISTFILE
HISTTIMEFORMAT
TGNOREEOF
LC_COLLATE
LC_NUMERIC
MAILPATH
PROMPT_COMMAND
PS3

TMOUT

BASH_XTRACEFD
COMPREPLY
FUNCNEST
HISTFILESIZE
HOME

INPUTRC
LC_CTYPE
LINES

OPTERR

PROMPT DIRTRIM
PS4

TMPDIR

CDPATH
EMACS
GLOBIGNORE
HISTIGNORE
HOSTFILE
LANG
LC_MESSAGES
MATL

PATH

PS1

SHELL

auto_resume

See Appendix A for a description of all the shell variables.

66

CHAPTER5 PARAMETERS AND VARIABLES

Parameter Expansion

Much of the power of the modern Unix shell comes from its parameter expansions. In
the Bourne shell, these mostly involved testing whether a parameter is set or empty
and replacing it with a default or alternate value. KornShell additions, which were
incorporated into the POSIX standard, added string manipulation. KornShell 93 added
more expansions that have not been incorporated into the standard that bash has
adopted. bash-4.0 has added two new expansions of its own.

Bourne Shell

The Bourne shell and its successors have expansions to replace an empty or unset
variable with a default, to assign a default value to a variable if it is empty or unset, and to
halt execution and print an error message if a variable is empty or unset.

${var:-default} and ${var-default}: Use
Default Values

When using variables in the shell script, we might need to determine if the variable has
been set or not. When a variable is not assigned a value, it is either unset or empty. The
expansions offer to provide a default value to those variables if a value is not set. The
most commonly used expansion is ${var: -default}.

The most commonly used expansion, ${var:-default}, checks to see whether a
variable is unset or empty and expands to a default string if it is:

$ var=

$ sa "${var:-default}" ## The sa script was introduced in
Chapter 4

:default:

If the colon is omitted, the expansion checks only whether the variable is unset:

$ var=
$ sa "${var-default}" ## var is set, so expands to nothing
$ unset var

67

CHAPTER5 PARAMETERS AND VARIABLES

$ sa "${var-default}" ## var is unset, so expands to
"default"
:default:

This snippet assigns a default value to $filename if it is not supplied by an option or

inherited in the environment:

defaultfile=$HOME/.bashrc
parse options here
filename=${filename:-"$defaultfile"}

${var:+alternate} and ${var+alternate}: Use
Alternate Values

The complement to the previous expansion substitutes an alternate value if the
parameter is not empty or, without a colon, if it is set. The first expansion will use
alternate only if $var is set and is not empty:

$ var=

$ sa "${var:+alternate}" ## $var is set but empty
$ var=value

$ sa "${var:+alternate}" ## $var is not empty
:alternate:

Without the colon, alternate is used if the variable is set, even if it is empty:

$ var=

$ sa "${var+alternate}" ## var is set

:alternate:

$ unset var

$ sa "${var+alternate}" ## $var is not set

$ var=value

$ sa "${var:+alternate}" ## $var is set and not empty
:alternate:

68

CHAPTER5 PARAMETERS AND VARIABLES

This expansion is often used when adding strings to a variable. If the variable is
empty, you don’t want to add a separator:

$ var=

$ forninabcdefg
> do

> var="$var $n"

> done

$ sa "$var"
:abcdefg:

To prevent the leading space, you can use parameter expansion:

$ var=

$ forninabcdefg
> do

> var="${var:+"$var "}$n"

> done

$ sa "$var"
tabcdefg:

That is a shorthand method of doing the following for each value of n:

if [-n "$var"]
then
var="$var $n

else
var=%n
fi

or:

[-n "$var"] 88 var="$var $n" || var=$ n

69

CHAPTER5 PARAMETERS AND VARIABLES

${var:=default} and ${var=default}: Assign
Default Values

The ${var:=default} expansion behaves in the same way as ${var:-default} except
that it also assigns the default value to the variable:

$ unset n
$ while :
> do

> echo :$n:

> [${n:=0} -gt 3] && break ## set $n to 0 if unset or empty
> n=$(($n + 1))

> done

:1:

:2:

:3:

14

${var:?message} and ${var?message}: Display Error
Message If Empty or Unset

If var is empty or not set, message will be printed to the standard error, and the script will
exit with a status of 1. If nessage is empty, parameter null or not set will be printed.
Listing 5-2 expects two non-null command-line arguments and uses this expansion to
display error messages when they are missing or null.

Listing 5-2. checkarg, Exit If Parameters Are Unset or Empty

Check for unset arguments

: ${1?An argument is required} \
${2?Two arguments are required}

Check for empty arguments

70

CHAPTER5 PARAMETERS AND VARIABLES

: ${1:?A non-empty argument is required} \
${2:?Two non-empty arguments are required}
echo "Thank you."

The message will be printed by the first expansion that fails, and the script will exit at
that point:

$ checkarg

/home/jayant/bin/checkarg: line 10: 1: An argument is required

$ checkarg x

/home/jayant/bin/checkarg: line 10: 2: Two arguments are required
$ checkarg
/home/jayant/bin/checkarg: line 13: 1: A non-empty argument is required

$ checkarg x
/home/jayant/bin/checkarg: line 13: 2: Two non-empty arguments are required
$ checkarg x x

Thank you.

POSIX Shell

Besides the expansions from the Bourne shell, the POSIX shell includes several
expansions from the KornShell. These include returning the length and removing a
pattern from the beginning or end of a variable’s contents.

${#var}: Length of Variable’s Gontents

There can be times when one would want to determine the length of the value stored in
the variable. This could be helpful to determine the length of the username, the length
of the password, etc. This expansion returns the length of the expanded value of the

variable:

read passwd
if [${#passwd} -1t 8]
then
printf "Password is too short: %d characters\n" "${#passwd}" >&2
exit 1
fi
71

CHAPTER5 PARAMETERS AND VARIABLES

${var%PATTERN}: Remove the Shortest Match
from the End

The variable is expanded, and the shortest string that matches PATTERN is removed from
the end of the expanded value. The PATTERN here and in other parameter expansions is a
file name expansion (a.k.a. file globbing) pattern.

Given the string Wollongong and the pattern o*, the shortest matching pattern is the

final o:

$ var=Wollongong
$ printf "%s\n" "${varko*}"
Wollong

Because the truncated string has been assigned to var, the shortest string that now
matches the pattern is Woll:

$ printf "%s\n" "${varko*}"
Woll

This expansion can be used to replace the external command, dirname, which strips
the file name portion of a path, leaving the path to the directory (Listing 5-3). If there is
no slash in the string, the current directory is printed if it is the name of an existing file in
the current directory; otherwise, a dot is printed.

Listing 5-3. dname, Print the Directory Portion of a File Path

case $1 in

/) printf "%s\n" "${1%/*}" ;;

*¥) [-e "$1"] & printf "%s\n" "$PWD" || echo '.' ;;
esac

Note This script is named dname rather than dirname because it doesn’t follow
the POSIX specification for the dirname command. In the next chapter, there is a
shell function called dirname that does implement the POSIX command.

$ dname /etc/passwd

72

CHAPTER5 PARAMETERS AND VARIABLES

/etc
$ dname bin

/home/jayant

${var%%PATTERN}: Remove the Longest Match
from the End

The variable is expanded, and the longest string that matches the PATTERN from the end
of the expanded value is removed:

$ var=Wollongong
$ sa "${varkko*}"
tW:

${var#PATTERN}: Remove the Shortest Match
from the Beginning

The variable is expanded, and the shortest string that matches PATTERN is removed from
the beginning of the expanded value:

$ var=Wollongong
$ sa "${vart#*o}"
:1longong:

${var##PATTERN}: Remove the Longest Match
from the Beginning

The variable is expanded, and the longest string that matches PATTERN is removed from
the beginning of the expanded value. This is often used to extract the name of a script
from the $0 parameter, which contains the full path to the script:

$ var=Wollongong
$ sa "${var##*o}"

:ng:

73

CHAPTER5 PARAMETERS AND VARIABLES

${#var} Wliof|l |l|]o|n|g|lo]|n|g 10
% ${var%o*} Wilo|l ||l |o|n|lg|lo|n]|g Wollong
u
%% ${var%%o*} Wiol|l|l|lo|ln|glol|ln]|g w
${var#*o} Wlo |l | l||lo|n]|glo]|n]|g llongong
${var##*o} Wlo|l |l |]ofn|g|lo|n|g ng
5]

Figure 5-1. A summary of the expansions and how it affects the
character’s removal

bash

Two expansions from KornShell 93 were introduced in bash2: search and replace and
substring extraction.

${var//PATTERN/STRING}: Replace All Instances
of PATTERN with STRING

Because the question mark matches any single character, this example hides a password:

$ passwd=zx01.=+-a
$ printf "%s\n" "${passwd//?/*}"
kkokokskkkkk

With a single slash, only the first matching character is replaced.

$ printf "%s\n" "${passwd/[[:punct:]]/*}"
zxQ1*=+-a

74

CHAPTER5 PARAMETERS AND VARIABLES

Here’s another example with our string Wollongong where we can replace all of the
o’swith an e:

$ var=Wollongong

$ printf "%s\n" "${var//o/e}"

Wellengeng

Similarly, we can also use the single slash to change just a single character instead of

all instances

$ var=Wollongong

$ printf "%s\n" "${var/o/e}"

Wellongong

${var:OFFSET:LENGTH}: Return a Substring of $var

A substring of $var starting at OFFSET is returned. If LENGTH is specified, that number of
characters is substituted; otherwise, the rest of the string is returned. The first character
is at offset O:

$ var=Wollongong
$ sa "${var:4:3}"
ong:

$ sa "${var:4}"
zongong:

A negative OFFSET is counted from the end of the string. If a literal minus sign is used
(as opposed to one contained in a variable), it must be preceded by a space to prevent it
from being interpreted as a default expansion:
$ sa "${var: -4}"
:gong:
$ sa "${var:0: -4}"
:Wollon:

75

CHAPTER5 PARAMETERS AND VARIABLES

${Ivar}: Indirect Reference

If you have one variable containing the name of another, for example, x=yes and a=Xx,
bash can use an indirect reference:

$ x=yes

$ a=x

$ sa "${a}"
IX:

$ sa "${!a}"
lyes:

The same effect can be had using the eval built-in command, which expands its
arguments and executes the resulting string as a command:

$ eval "sa \$%a"
yes:

There is nothing special or there are no system functions or syntax magic used here.
a contains the value x, and all we are doing is evaluating a string "sa \$$a", which
expands to "sa $x", which, when evaluated, would return the value held in variable x,
which is yes.

See Chapter 9 for a more detailed explanation of eval.

bash-4.0

In version 4.0, bash introduced two new parameter expansions: one for converting to
uppercase and one for lowercase. Both have single-character and global versions.

${varPATTERN}: Convert to Uppercase

The first character of var is converted to uppercase if it matches PATTERN; with a
double caret (**), it converts all characters matching PATTERN. If PATTERN is omitted, all
characters are matched:

$ var=melbourne

$ sa "${var"}"

76

CHAPTER5 PARAMETERS AND VARIABLES

:Melbourne:

$ sa "${var*[m-z]}"

:Melbourne:

$ sa "${var"*[a-1]}" ## matches all characters from a to m
inclusive

:mELBournE:

$ sa "${var**[m-z]}"

:me1bOURNe:

$ sa "${var""}"

:MELBOURNE :

${var,PATTERN}: Convert to Lowercase

This expansion works in the same way as the previous one, except that it converts
uppercase to lowercase:

$ var=MELBOURNE
$ sa "${var,}"
<mELBOURNE :

$ sa "${var,,}"
:melbourne:

$ sa "${var,,[N-Q]}"
:MELBOURNE:

#There is also an undocumented expansion that inverts the case:
$ var=MELBOURNE

$ sa "${var~}"

:mELBOURNE:

$ sa "${var~~}"

:melbourne:

Positional Parameters

The positional parameters can be referenced individually by number ($1 ... $9 ${10}
...)orall at once with "$@" or "$*". As has already been noted, parameters greater than
9 must be enclosed in braces: ${10}, ${11}.

77

CHAPTER5 PARAMETERS AND VARIABLES

The shift command without an argument removes the first positional parameter
and shifts the remaining arguments forward so that $2 becomes $1, $3 becomes $2, and
so on. With an argument, it can remove more. To remove the first three parameters,

supply an argument with the number of parameters to remove:
$ shift 3

To remove all the parameters, use the special parameter $#, which contains the
number of positional parameters:

$ shift "$#"
To remove all but the last two positional parameters, use this:
$ shift "$(($# - 2))"

To use each parameter in turn, there are two common methods. The first way is to
loop through the values of the parameters by expanding "$@":

for param in "$@" ## or just: for param
do

: do something with $param
done

And this is the second:

while (($#))

do
: do something with $1
shift

done

Arrays

All the variables used so far have been scalar variables; that is, they contain only a single
value. In contrast, array variables can contain many values. The POSIX shell does not
support arrays, but bash (since version 2) does. Its arrays are one dimensional and
indexed by integers and, since bash-4.0, with strings.

78

CHAPTER5 PARAMETERS AND VARIABLES

Integer-Indexed Arrays

The individual members of an array variable are assigned and accessed with a subscript
of the form [N]. The first element has an index of 0. In bash, arrays are sparse; they
needn’t be assigned with consecutive indices. An array can have an element with an
index of 0, another with an index of 42, and no intervening elements.

Displaying Arrays

Array elements are referenced by the name and a subscript in braces. This example will
use the shell variable BASH_VERSINFO. It is an array that contains version information
for the running shell. The first element is the major version number; the second is

the minor:

$ printf "%s\n" "${BASH VERSINFO[O]}"
5

$ printf "%s\n" "${BASH VERSINFO[1]}"
1

All the elements of an array can be printed with a single statement. The subscripts
@ and * are analogous to their use with the positional parameters: * expands to a single
parameter if quoted; if unquoted, word splitting, and file name expansion is performed
on the result. Using @ as the subscript and quoting the expansion, each element expands
to a separate argument, and no further expansion is performed on them.

$ printf "%s\n" "${BASH VERSINFO[*]}"
51 16 1 release x86_64-pc-linux-gnu

$ printf "%s\n" "${BASH_VERSINFO[@]}"

5

1

16

1

release

x86_64-pc-linux-gnu

79

CHAPTER5 PARAMETERS AND VARIABLES

Various parameter expansions work on arrays; for example, to get the second and
third elements from an array, use this:

$ printf "%s\n" "${BASH VERSINFO[@]:1:2}" ## minor version
number and patch level

1

16

The length expansion returns the number of elements in the array when the
subscript is * or @, and it returns the length of an individual element if a numeric index

is given:

$ printf "%s\n" "${#BASH_VERSINFO[*]}"

6

$ printf "%s\n" "${#BASH VERSINFO[2]}" "${#BASH VERSINFO[5]}"
2

19

Assigning Array Elements

Elements can be assigned using an index; the following commands create a sparse array:

name[0]=Aaron
name[42]=Adams

Indexed arrays are more useful when elements are assigned consecutively (or
packed), because it makes operations on them simpler. Assignments can be made
directly to the next unassigned element:

unset a

a[${#a[@]}]="1 $RANDOM" ## ${#a[@]} is O
a[${#a[@]}]="2 $RANDOM" ## ${#a[@]} is 1
a[${#a[@]}]="3 $RANDOM" ## ${#a[@]} is 2
a[${#a[@]}]="4 $RANDOM" ## ${#a[@]} is 3
printf "%s\n" "${a[@]}"

R

80

CHAPTER5 PARAMETERS AND VARIABLES

1 6007
2 3784
3 32330
4 25914

An entire array can be populated with a single command:

$ states=(TAS QLD VIC)

$ printf "%s\n" "${states[@]}"
TAS

oLD

VIC

The += operator can be used to append values to the end of an indexed array. This

results in a neater form of assignment to the next unassigned element:

$ states+=(NSW)

$ states+=(ACT "WA" "SA" "NT")

$ printf "%-25s %-25s %s\n" "${states[@]}"
TAS oLD VIC

NSW ACT WA

SA NT

Associative Arrays

Associative arrays, introduced in bash in version 4.0, use strings as subscripts and must
be declared before being used:

$ declare -A array

$ for subscript ina b cde

> do

> array[$subscript]="$subscript $RANDOM"

> done

$ printf ":%s:\n" "${array["c"]}" ## print one element

:C 1574:

$ printf ":%s:\n" "${array[@]}" ## print the entire array
ta 13856:

81

CHAPTER5 PARAMETERS AND VARIABLES

:b 6235:
:C 1574:
:d 14020:
:e 9165:

Summary

The largest portion of this chapter is the parameter expansion. The parameter
expansions introduced by KornShell that were then introduced into the Unix shell are
quite important. These provide a powerful repository of tools to the user. The examples
are quite simple; however, the full potential of expansions can be explored as we develop
serious programs later in the book.

The other important point is arrays, though not a part of the POSIX standard, they
add a great deal of functionality to the shell by making it possible to collect data in
logical units.

Understanding the scope of variables can save a lot of head scratching, and adopting
a good variable naming convention also makes the program readable and maintainable.

The portion on positional parameters is minor in this chapter but an important
aspect of shell programming, and the examples in this chapter are simple; they will be
revised and expanded upon later in the book.

Commands

e declare: Declares variables and sets their attributes
o eval: Expands arguments and executes the resulting command

o export: Places variables into the environment so that they are
available to child processes

e shift: Deletes and renumbers positional parameters
o shopt: Sets shell options

» unset: Removes a variable entirely

82

CHAPTER5 PARAMETERS AND VARIABLES

Concepts

Environment: A collection of variables inherited from the calling
program and passed to child processes

Array variables: Variables that contain more than one value and
accessed using a subscript

Scalar variables: Variables that contain a single value

Associative arrays: Array variables whose subscript is a string rather
than an integer

Exercises

By default, where can a variable assigned in a script be accessed?
Select all that apply.

¢ Inthe current script

In functions defined in the current script

In the script that called the current script

In scripts called by the current script
e Insubshells of the current script

I advised against using single-letter variable names but give a
couple of places where they are reasonable. Can you think of any
other legitimate uses for them?

Given var=192.168.0.123, write a script that uses parameter
expansion to extract the second number, 168.

83

CHAPTER 6

Shell Functions

A shell function is a compound command that has been given a name. It stores a series
of commands for later execution. The name becomes a command and can be used

in the same way as any other command. Its arguments are available in the positional
parameters, just as in any other script. Like other commands, it sets a return code.

A function is executed in the same process as the script that calls it. This makes it
fast because no new process must be created. All the variables of the script are available
to it without having to be exported, and when a function changes those variables, the
changes will be seen by the calling script. That said, you can make variables local to the
function so that they do not affect the calling script; the choice is yours.

Not only do functions encapsulate code for reuse in a single script, but they can
make it available to other scripts. They make top-down design easy and improve
legibility. They break scripts into manageable chunks that can be tested and debugged
separately.

At the command line, functions can do things that an external script cannot, such
as change directories. They are much more flexible and powerful than aliases, which
simply replace the command you type with a different command. Chapter 11 presents
several functions that make working at the prompt more productive.

Definition Syntax

When shell functions were introduced in the KornShell, the definition syntax was as
follows:

function name { <compound command> }

When the Bourne shell added functions in 1984, the syntax (which was later
included in ksh and adopted by the POSIX standard) was as follows:

name() { <compound command> }

85
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_6

https://doi.org/10.1007/978-1-4842-9588-5_6

CHAPTER 6 SHELL FUNCTIONS
bash allows either syntax as well as the hybrid:
function name() { <compound command> }

The following is a function that I wrote several years ago and that, I recently
discovered, is included as an example in the bash source code package. It checks
whether a dotted-quad Internet Protocol (IP) address is valid. In this book, we always
use the POSIX syntax for function definition:

isvalidip()

Then the body of the function is enclosed in braces ({ ... })followed by optional
redirection (see the uinfo function later in this chapter for an example).
The first set of tests is contained in a case statement:

case $1 in
nn | *[!0_9‘]* | *[!0—9]) return 1 35
esac

It checks for an empty string, invalid characters, or an address that doesn’t end with
a digit. If any of these items is found, the shell built-in command retuzrn is invoked with
an exit status of 1. This exits the function and returns control to the calling script. An
argument sets the function’s return code; if there is no argument, the exit code of the
function defaults to that of the last command executed.

The next command, local, is a shell built in that restricts a variable’s scope to
the function (and its children), but the variable will not change in the parent process.
Setting IFS to a period causes word splitting at periods, rather than whitespace, when a
parameter is expanded. Beginning with bash-4.0, local and declare have an option, -A,
to declare an associative array.

local IFS=.

The set built-in replaces the positional parameters with its arguments. Since $IFS is
a period, each element of the IP address is assigned to a different parameter.

set -- $1

The final two lines check each positional parameter in turn. If it’s greater than 255,
itis not valid in a dotted-quad IP address. If a parameter is empty, it is replaced with the
invalid value of 666. If all tests are successful, the function exits successfully; if not, the

return code is 1, or failure.

86

CHAPTER6 SHELL FUNCTIONS

[${1:-666} -le 255] 8& [${2:-666} -le 255] &&
[${3:-666} -le 255] && [${4:-666} -le 255]

Listing 6-1 shows the complete function with comments.

Listing 6-1. isvalidip, Check Argument for Valid Dotted-Quad IP Address

isvalidip() #@ USAGE: isvalidip DOTTED-QUAD
{
case $1 in
reject the following:
empty string
anything other than digits and dots
anything not ending in a digit
"" | *[10-9.]* | *[!0-9]) return 1 ;;
esac
Change IFS to a dot, but only in this function
local IFS=.
Place the IP address into the positional parameters;
after word splitting each element becomes a parameter
set -- $1
[$# -eq 4] && ## must be four parameters
each must be less than 256
A default of 666 (which is invalid) is used if a parameter is empty
All four parameters must pass the test
[${1:-666} -le 255] && [${2:-666} -le 255] &&
[${3:-666} -le 255] &% [${4:-666} -le 255]

Note Formats other than dotted quads can be valid IP addresses, as in 127.1,
216.239.10085 and 3639551845.

The function returns successfully (i.e., a return code of 0) if the argument supplied
on the command line is a valid dotted-quad IP address. You can test the function at the
command line by sourcing the file containing the function:

$. isvalidip-func
87

CHAPTER6 SHELL FUNCTIONS

The function is now available at the shell prompt. Let’s test it with a few IP addresses:

$ for ip in 127.0.0.1 168.260.0.234 1.2.3.4 123.100.34.21
204.225.122.150

> do

> if isvalidip "$ip"

> then

> printf "%15s: valid\n" "$ip"

> else

> printf "%15s: invalid\n" "$ip"

> fi

> done

127.0.0.1: valid
168.260.0.234: invalid

1.2.3.4: valid
123.100.34.21: invalid

204.225.122.150: valid

Compound Commands

A compound command is a list of commands enclosedin (...)or{ ... },
expressions enclosedin ((...))or[[...]], orone of the block-level shell
keywords (i.e., case, for, select, while, and until).

The valint program from Chapter 3 is a good candidate for converting to a function.
It is likely to be called more than once, so the time saved could be significant. The
program is a single compound command, so braces are not necessary (see Listing 6-2).

Listing 6-2. valint, Check for Valid Integer

valint() #@ USAGE: valint INTEGER

case ${1#-} in ## Leading hyphen removed to accept negative numbers
[10-9]) false;; #i# the string contains a non-digit character
*) true ;; ## the whole number, and nothing but the number

esac

88

CHAPTER6 SHELL FUNCTIONS

If a function’s body is wrapped in parentheses, then it is executed in a subshell, and
changes made during its execution do not remain in effect after it exits:

$ funky() (name=nobody; echo "name = $name")
$ name=Rumpelstiltskin

$ funky

name = nobody

$ echo "name = $name"

name = Rumpelstiltskin

Getting Results

The two previous functions are both called for their exit status; the calling program
needs to know only whether the function succeeds or fails. Functions can also return
information from a range of return codes by setting one or more variables or by printing
its results.

Set Different Exit Codes

You can convert the rangecheck script from Chapter 3 to a function with a couple of
improvements; it returns 0 on success as before but differentiates between a number that
is too high and one that is too low. It returns 1 if the number is too low, or it returns 2 if it
is too high. It also accepts the range to be checked as arguments on the command line,
defaulting to 10 and 20 if no range is given (Listing 6-3).

Listing 6-3. rangecheck, Check Whether an Integer Is Within a Specified Range

rangecheck() #@ USAGE: rangecheck int [low [high]]
if ["$1" -1t ${2:-10}]
then
return 1
elif ["$1" -gt ${3:-20}]
then
return 2

89

CHAPTER6 SHELL FUNCTIONS

else
return O
fi

Return codes are a single, unsigned byte; therefore, their range is 0 to 255. If you
need numbers larger than 255 or less than 0, use one of the other methods of returning
avalue.

Print the Result

A function’s purpose may be to print information, either to the terminal or to a file
(Listing 6-4).

Listing 6-4. uinfo, Print Information About the Environment

uinfo() #@ USAGE: uinfo [file]
{
printf "%12s: %s\n" \

USER "${USER:-No value assigned}" \
PWD "${PWD:-No value assigned}" \
COLUMNS "${COLUMNS:-No value assigned}" \
LINES "${LINES:-No value assigned}" \
SHELL "${SHELL:-No value assigned}" \
HOME "${HOME: -No value assigned}" \
TERM "${TERM: -No value assigned}"

} > ${1:-/dev/fd/1}

The redirection is evaluated at runtime. In this example, it expands to the function’s
first argument or to /dev/fd/1 (standard output) if no argument is given:

$ uinfo
USER: jayant
PWD: /home/jayant/work/BashProgramming
COLUMNS: 100
LINES: 43
SHELL: /bin/bash
HOME: /home/jayant

90

CHAPTER6 SHELL FUNCTIONS

TERM: rxvt
$ cd; uinfo $HOME/tmp/info
$ cat $HOME/tmp/info

USER: jayant
PWD: /home/jayant
COLUMNS: 100
LINES: 43

When the output is printed to the standard output, it may be captured using
command substitution:

info=$(uinfo)

But command substitution creates a new process and is therefore slow; save it for
use with external commands. When a script needs output from a function, put it into
variables.

Place Results in One or More Variables

Say we wanted to sort three integers from the lowest to the highest. We could use an
external command for a maximum of three comparisons, so this is the best place to add
a function as can be seen in Listing 6-5. The way it works is it stores the results in three
variables: MIN3, MID3, and MAX3.

Listing 6-5. _max3, Sort Three Integers

_max3() #@ Sort 3 integers and store in $ MAX3, $ MID3 and $ MIN3

{ #@ USAGE: max3 N1 N2 N3

[$# -ne 3] && return 5

[$1 -gt $2] 8& { set -- $2 $1 $3; }
[$2 -gt $3] 8& { set -- $1 $3 $2; }
[$1 -gt $2] 8& { set -- $2 $1 $3; }
_MAX3=$3

_MID3=$2

_MIN3=$1

91

CHAPTER6 SHELL FUNCTIONS

In the first edition of this book, the convention for function names that was used
started with an underscore as in _max3 for functions that set variables rather than
printing the results. The variables set were the name of the function but in uppercase.
However, in these instances, it required additional variables. Instead, an array could
have been used to minimize the number of variables.

_MAX3=("$3" "$2" "$1")

Now, with the nameref property, introduced in bash-4.x, the name of a variable can
be passed to store the result.

max3() #@ Sort 3 integers and store in an array
{ #® USAGE: max3 N1 N2 N3 [VARNAME]
declare -n _max3=${4:- MAX3}
(($# < 3)) 88 return 4
(($1 > $2)) & set -- "$2" "$1" "$3"
(($2 > $3)) & set -- "$1" "$3" "$2"
(($2 > $2)) &% set -- "$2" "$1" "$3"
_max3=("$3" "$2" "$1")
}

If no variable name is supplied on the command line, MAX3 is used.

Function Libraries

How one arranges functions is entirely up to them; some can have hundreds of files that
have nothing but functions. There can be a single function in a single file or a collection
of functions in a file. It does not matter how they are organized. One good way could

be to organize them according to what they achieve, for example, a library of string
functions, or a library of functions that manipulate dates, another for reading function
keys and cursor keys, and another for mouse buttons.

Using Functions from Libraries

Most of the time, all the functions in the script are included from the file:

. date-funcs

92

CHAPTER6 SHELL FUNCTIONS

Occasionally, one might need only one function from a library, so the function can
be cut and paste into a new script.

Sample Script

The following script defines four functions: die, usage, version, and readline. The
readline function will differ according to which shell you are using. The script creates a
basic web page, complete with title and primary headline (<H1>). The readline function
uses options to the built-in command read that will be examined in detail in Chapter 9.

##
Set defaults
it

prompt=" ==>
template="<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>
<title>¥s</title>
<link href="%s" rel="stylesheet">
</head>
<body>
<h1>%s</h1>
<div id=main>
</div>
</body>
</html>
#
Define shell functions
i
die() #@ DESCRIPTION: Print error message and exit with ERRNO code
{ #@ USAGE: die ERRNO MESSAGE ...
error=%1
shift

93

CHAPTER6 SHELL FUNCTIONS

[-n "$*"] 88 printf "%s\n" "$*" >8&2
exit "$error"

}
usage() #@ Print script's usage information
{ #@ USAGE: usage
printf "USAGE: %s HTMLFILE\n" "$progname”
}
version() #@ Print scrpt's version information
{ #@ USAGE: version

printf "%s version %s ${version:-1}"

}

#® USAGE: readline var prompt default

#@ DESCRIPTION: Prompt user for string and offer default

#it

#@® Define correct version for your version of bash or other shell

bashversion=${BASH VERSION7%%.*}

if [${bashversion:-0} -ge 4]

then
bash4.x has an -i option for editing a supplied value
readline()

{

$progname

read _ep I|${2:_Il$promptll}ll _i "$3|| II$1II
}
elif [${bashversion:-0} -ge 2]
then
readline()
{
history -s "$3"
printf "Press up arrow to edit default value: '%s'\n" "${3:-none}"
read _ep "${2:_Il$promptll}ll Il$1"
}
else
readline()

{
printf "Press enter for default of '%s'\n" "$3"

94

CHAPTER 6

printf "%s " "${2:-"$prompt"}"
read
eval "$1=\${REPLY:-"$3"}"
}
fi
if [$# -ne 1]
then
usage
exit 1
fi
filename=$1
readline title "Page title:
readline h1 "Main headline: " "$title"
readline css "Style sheet file: " "${filename%.*}.css"
printf "$template” "$title" "$css" "$h1" > "$filename"

Summary

SHELL FUNCTIONS

Shell functions enable you to create large, fast, sophisticated programs. Without them,

the shell could hardly be called a real programming language. Functions will be part of

almost everything from here to the end of the book.

Commands

e local: Restricts a variable’s scope to the current function and its

children

o return: Exits a function (with an optional return code)

o set: With - -, replaces the positional parameters with the remaining

arguments (after --)

95

CHAPTER6 SHELL FUNCTIONS

Exercises

1. Rewrite function isvalidip using parameter expansion instead of
changing IFS.

2. Add a check to max3 to verify that VARNAME is a valid name for a

variable.

96

CHAPTER 7

String Manipulation

In the Bourne shell, very little string manipulation was possible without resorting to
external commands. Strings could be concatenated by juxtaposition, they could be split
by changing the value of IFS, and they could be searched with case, but anything else
required an external command.

Even things that could be done entirely in the shell were often relegated to external
commands, and that practice has continued to this day. In some Linux distributions, you
can find the following snippet in /etc/profile. It checks whether a directory is included
in the PATH variable:

if ! echo ${PATH} |grep -q /usr/games
then

PATH=$PATH: /usr/games
fi

Even in a Bourne shell, you can do this without an external command:

case :$PATH: in
:/usr/games:);;

*) PATH=$PATH:/usr/games ;;
esac

The POSIX shell includes several parameter expansions that slice and dice strings,
and bash adds even more. These were outlined in Chapter 5, and their use is expanded
upon in this chapter along with other string techniques.

97
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_7

https://doi.org/10.1007/978-1-4842-9588-5_7

CHAPTER 7 STRING MANIPULATION

Concatenation

Concatenation is the joining together of two or more items to form one larger item.
In this case, the items are strings. They are joined by placing one after the other. A
common example, which is used in Chapter 1, adds a directory to the PATH variable.
It concatenates a variable with a single-character string (:), another variable, and a
literal string:

PATH=$PATH: $HOME/bin

If the right side of the assignment contains a literal space or other character special
to the shell, then it must be quoted with double quotes (variables inside single quotes
are not expanded):

var=$HOME/bin # this comment is not part of the assignment
var="$HOME/bin # but this is"

In bash-3.1, a string append operator (+=) was added:

$ var=abc

$ var+=xyz

$ echo "$var"
abcxyz

This append operator += looks much better and is clearer to understand. It also has
a slight performance advantage over the other method. It also makes sense to use += for
appending to an array, as demonstrated in Chapter 5.

Tip For those that want to benchmark the two methods, you could try this
little one liner: var=; time for i in {1..1000};do var=${var}
foo;done;var=; time for i in {1..1000};do var+=foo;done.

98

CHAPTER 7 STRING MANIPULATION

Repeat Character to a Given Length

Concatenation is used in this function that builds a string of N characters; it loops, adding
one instance of $1 each time, until the string ($_REPEAT) reaches the desired length
(contained in $2).

_repeat()
{
#® USAGE: repeat string number
_REPEAT=
while ((${#_REPEAT} < $2))
do
_REPEAT=$ REPEAT$1
done
}
The result is stored in the variable REPEAT:
$ _repeat % 40
$ printf "%s\n" "$ REPEAT"

7676767676666 76 76:676766.76.6.6 761616 1667676666616 16 1o 1o 6367616161676

You can speed that function up by concatenating more than one instance in each
loop so that the length increases geometrically. The problem with this version is that the
resulting string will usually be longer than required. To fix that, parameter expansion is
used to trim the string to the desired length (Listing 7-1).

Listing 7-1. repeat, Repeat a String N Times

_repeat()

{

#® USAGE: repeat string number

_REPEAT=$1

while ((${# _REPEAT} < $2)) ## Loop until string exceeds desired length
do
_REPEAT=$_REPEAT$_REPEAT$ REPEAT ## 3 seems to be the optimum number
done

_REPEAT=${ REPEAT:0:$2} ## Trim to desired length

99

CHAPTER 7 STRING MANIPULATION

}
repeat()

{
_repeat "$@"

printf "%s\n" "$ REPEAT"
}

The repeat function is called by the alert function (Listing 7-2).

Listing 7-2. alert, Print a Warning Message with a Border and a Beep

alert() #@ USAGE: alert message border

{

_repeat "${2:-#}" $((${#1} + 8))

printf '\a%s\n' "$ REPEAT" ## \a = BEL

printf '%2.2s %s %2.2s\n' "$_REPEAT" "$1" "$ REPEAT"
printf '%s\n' "$_REPEAT"

}

The function prints the message surrounded by a border generated with _repeat:

$ alert "Do you really want to delete all your files?"
R A A
Do you really want to delete all your files?
Hb A B R A A e e L

The border character can be changed with a command-line argument:

$ alert "Danger, Will Robinson" $

$5$$555$9555$559555$555555$
$$ Danger, Will Robinson $$

$5$5$59$59$599$9595959555959$

Processing Character by Character

There are no direct parameter expansions to give either the first or last character of a
string, but by using the wildcard (?), a string can be expanded to everything except its
first or last character:

100

CHAPTER 7 STRING MANIPULATION

$ var=strip

$ allbutfirst=${var#?}

$ allbutlast=${var%?}

$ sa "$allbutfirst" "$allbutlast”
ttrip:

sstri:

The values of allbutfirst and allbutlast can then be removed from the original
variable to give the first or last character:

$ first=${var%"$allbutfirst"}
$ last=${var#"$allbutlast"}

$ sa "$first" "$last”

:s:

p:

The first character of a string can also be obtained with printf:

printf -v first "%c" "$var"

To operate on each character of a string one at a time, use a while loop and a
temporary variable that stores the value of var minus its first character. The temp variable
is then used as the pattern in a ${var%PATTERN} expansion. Finally, $ temp is assigned to
var, and the loop continues until there are no characters left in var:

while [-n "$var" |
do

temp=${var#?} ## everything but the first character
char=${var%"$temp"} ## remove everything but the first character
: do something with "$char"

var=$temp ## assign truncated value to var
done

Reversal

You can use the same method to reverse the order of characters in a string. Each letter is
tacked on to the end of a new variable (Listing 7-3).

101

CHAPTER 7 STRING MANIPULATION

Listing 7-3. revstr, Reverse the Order of a String; Store Resultin REVSTR

_revstr() #@ USAGE: revstr STRING

{
var=%1
_REVSTR=
while [-n "$var"]
do
temp=${var#?}
_REVSTR=$temp${var%" $temp"}
var=$temp
done
}

Case Conversion

In the Bourne shell, case conversion was done with external commands such as tr,
which translates characters in its first argument to the corresponding character in its

second argument:

$ echo abcdefgh | tr ceh CEH # ¢ => C, e => E, h => H
abCdEfgH
$ echo abcdefgh | tr ceh HEC # ¢ => H, e => E, h => C
abHdEfgC

Ranges specified with a hyphen are expanded to include all intervening characters:

$ echo touchdown | tr 'a-z' 'A-Z'
TOUCHDOWN

In the POSIX shell, short strings can be converted efficiently using parameter
expansion and a function containing a case statement as a lookup table. The function
looks up the first character of its first argument and stores the uppercase equivalent in
_UPR. If the first character is not a lowercase letter, it is unchanged (Listing 7-4).

102

CHAPTER 7 STRING MANIPULATION
Listing 7-4. to_upper, Convert First Character of $1 to Uppercase

to_upper()

case $1 in
a*) UPR=A ;; b*) UPR=B ;; c*) UPR=C ;; d*) UPR=D ;;
e*) UPR=E ;; f*) UPR=F ;; g*) UPR=G ;; h*) UPR=H ;;
i*) UPR=I ;; j*) _UPR=J ;; k*) UPR=K ;; 1*) UPR=L ;;
m*) UPR=M ;; n*) UPR=N ;; o*) UPR=0 ;; p*) UPR=P ;;
q*) _UPR=Q ;; r*) UPR=R ;; s*) UPR=S ;; t*) UPR=T ;;
u*) UPR=U ;; v*) UPR=V ;; w*) UPR=W ;; x*) UPR=X ;;
y*) UPR=Y ;; z*) UPR=Z ;; *) UPR=${1%${1#2}} ;;

esac

To capitalize a word (i.e., just the first letter), call to_upper with the word as an
argument, and append the rest of the word to $_UPR:

$ word=function

$ to_upper "$word"

$ printf "%c%s\n" "$ UPR" "${word#?}"
Function

To convert the entire word to uppercase, you can use the upword function shown in
Listing 7-5.

Listing 7-5. upword, Convert Word to Uppercase

_upword () #@ USAGE: upword STRING

{

local word=$1

while [-n "$word"] ## loop until nothing is left in $word
do
to_upper "$word"
_UPWORD=$_UPWORD$_UPR
word=${word#?} ## remove the first character from $word
done

}

103

CHAPTER 7 STRING MANIPULATION

upword()

{

_upword "$@"

printf "%s\n" "$ UPWORD"
}

You can use the same technique to convert uppercase to lowercase; you can try to
write the code for that as an exercise.

The basics of case conversion using the parameter expansions introduced in
bash-4.x were covered in Chapter 5. Some uses for them are shown in the following
sections. Using those expansions would make for some extensible functions, since the
functions we write can be limited to the code we write.

$ title=" fir elisé"
$ upword $title

FUR eLISé

$ echo ${title”"}
FUR ELISE

So if we were to rewrite our _upword and upword functions as _newupword and
newupword, it would look something like

_newupword () #@ USAGE: upword STRING

{
_NEWUPWORD=${1°~}
}
newupword ()
{
_newupword "$@"
printf "%s\n" "$ NEWUPWORD"
}

Many of the functions in this book are retained for portability with earlier versions of
bash and could be replaced with shorter and more extensible versions with the features
released in the newer versions like the example shown previously that is literally a
one liner.

104

CHAPTER 7 STRING MANIPULATION

Comparing Contents Without Regard to Case

When getting user input, a programmer often wants to accept it in either uppercase or
lowercase or even a mixture of the two. When the input is a single letter, as in asking for
Y or N, the code is simple. There is a choice of using the or symbol (|):

read ok

case $ok in

y|Y) echo "Great!" ;;

n|N) echo Good-bye

exit 1
35

*) echo Invalid entry ;;

esac

or a bracketed character list:

read ok
case %ok in
[yY]) echo "Great!" ;;
[nN]) echo Good-bye
exit 1
*) echo Invalid entry ;;
esac

When the input is longer, the first method requires all possible combinations to be
listed, for example:

jan | jaN | jAn | jAN | Jan | JaN | JAn | JAN) echo "Great!" ;;

The second method works but is ugly and hard to read, and the longer the string is,
the harder and uglier it gets:

read monthname
case $monthname in ## convert $monthname to number
[Jj1[Aa][Nn]*) month=1 ;;

[Ff][Ee][Bb]*) month=2 ;;

...put the rest of the year here

105

CHAPTER 7 STRING MANIPULATION

[Dd][Ee][Cc]*) month=12 ;;
[1-9]|1[0-2]) month=$monthname ;; ## accept number if entered
*) echo "Invalid month: $monthname" >8&2 ;;

esac

A better solution is to convert the input to uppercase first and then compare it:

_upword "$monthname"
case $ UPWORD in ## convert $monthname to number
JAN*) month=1 ;;
FEB*) month=2 ;;
...put the rest of the year here
DEC*) month=12 ;;
[1-9]]|1[0-2]) month=$monthname ;; ## accept number if entered
*) echo "Invalid month: $monthname" >&2 ;;
esac

Note See Listing 7-11 at the end of this chapter for another method of
converting a month name to a number.

In bash-4.x and later, the _upword function can be replaced with case
${monthname”"} in, although keeping it in a function might ease the transition between
versions of bash.

Check for Valid Variable Name

As a developer or one that writes scripts, we might know what the rules around variable
naming conventions are; however, if we leave that task on a user, there are chances

that it might not end well, especially when we might have an automated script that
autogenerates code or scripts. In such scenarios, we might want to at first validate if the
name entered by the user is a valid name and it does not violate any of the rules. We shall
ensure that the name consists of only letters, numbers, and underscores and these must
begin with a letter or an underscore.

106

CHAPTER 7 STRING MANIPULATION

Listing 7-6. validname, Check $1 for a Valid Variable or Function Name

validname() #@ USAGE: validname varname

case $1 in
doesn't begin with a letter or an underscore, or
contains something that is not a letter, a number, or an underscore
[la-zA-Z 1* | *[!a-zA-Z0-9]*) return 1;;

esac

The function is successful if the first argument is a valid variable name; otherwise,

it fails.

$ for name in namel 2var first.name first name last-name

> do

> validname "$name" && echo " valid: $name" || echo "invalid: $name"
> done

valid: namel
invalid: 2var
invalid: first.name
valid: first_name
invalid: last-name

Insert One String into Another

To insert a string into another string, it is a simple operation; we need to splice the string
into two parts: the left part and the right part at the point where the insert string needs to
be inserted. Then we can simply concatenate the three strings as leftPart + insertString +
rightString.

This function takes three arguments: the main string, the string to be inserted,
and the position at which to insert it. If the position is omitted, it defaults to inserting
after the first character. The work is done by the first function, which stores the result
in _insert_string. This function can be called to save the cost of using command
substitution. The insert_string function takes the same arguments, which it passes to
_insert string and then prints the result (Listing 7-7).

107

CHAPTER 7 STRING MANIPULATION

Listing 7-7. insert_string, Insert One String into Another at a Specified
Location

_insert string() #@ USAGE: _insert string STRING INSERTION [POSITION]
{

local insert string dflt=2 ## default insert location
local string=$1 ## container string

local i_string=%$2 ## string to be inserted

local i pos=${3:-${insert string dflt:-2}} ## insert location
local left right ## before and after strings

left=${string:0:$(($i_pos - 1))} ## string to left of insert
right=${string:$(($i pos - 1))} ## string to right of insert
_insert_string=$left$i string$right ## build new string

}

insert string()

{

_insert_string "$@" && printf "%s\n" "$ insert string"
}

Examples

$ insert string poplar u 4

popular

$ insert string show ad 3

shadow

$ insert_string tail ops ## use default position
topsail

Overlay

Overlaying a string is basically replacing the characters in the string; it functions like
the insert string function but the difference being that the string to overlay replaces
the rightPart up to the length of the overlay. So instead of the leftPart + insertString +
rightPart, it is leftPart + overlayString + rightString (overwriting the rightPart for the
length of the overlayString)

108

CHAPTER 7 STRING MANIPULATION

Listing 7-8. overlay, Place One String over the Top of Another

_overlay() #@ USAGE: overlay STRING SUBSTRING START
{ #@® RESULT: in $ OVERLAY
local string=%$1
local sub=%$2
local start=$3
local left right
left=${string:0:start-1} ## See note below
right=${string:start+${#sub}-1}
_OVERLAY=$left$sub$right
}

overlay() #@ USAGE: overlay STRING SUBSTRING START

{
_overlay "$@" && printf "%s\n" "$ OVERLAY"

}

Note The arithmetic within the substring expansion doesn’t need the full POSIX

arithmetic syntax; bash will evaluate an expression if it finds one in the place of an

integer.

Examples
$ {

> overlay pony b 1
> overlay pony u 2
> overlay pony s 3
> overlay pony d 4
>}

bony

puny

posy

pond

109

CHAPTER 7 STRING MANIPULATION

Trim Unwanted Characters

Variables often arrive with unwanted padding: usually spaces or leading zeros. These
can easily be removed with aloop and a case statement:

var=" John "
while : ## infinite loop
do

case $var in

" '*) var=${var#?} ;; ## if $var begins with a space remove it

*¥' ') var=${var%?} ;; ## if $var ends with a space remove it

*) break ;; ## no more leading or trailing spaces, so exit the loop
esac

done

A faster method finds the longest string that doesn’t begin or end with the character
to be trimmed and then removes everything but that from the original string. This is
similar to getting the first or last character from a string, where we used allbutfirst and
allbutlast variables.

If the string is “ John ’ the longest string that ends in a character that is not to be
trimmed is “ John” That is removed, and the spaces at the end are stored in rightspaces
with this:

rightspaces=${var##*[!]} ## remove everything up to the last non-space
Then you remove $rightspaces from $var:

var=${var%"$rightspaces"} ## $var now contains " John"
Next, you find all the spaces on the left with this:

leftspaces=${var%%[!]*} ## remove from the first non-space to the end
Remove $leftspaces from $var:

var=${var#"$leftspaces"} ## $var now contains "John"

This technique is refined a little for the trim function (Listing 7-9). Its first argument
is the string to be trimmed. If there is a second argument, that is the character that will
be trimmed from the string. If no character is supplied, it defaults to a space.

110

CHAPTER 7 STRING MANIPULATION

Listing 7-9. trim, Trim Unwanted Characters

_trim() #@ Trim spaces (or character in $2) from $1
{

local trim string

TRIM=$1

trim_string=${ TRIM##*[!${2:- }]}
_TRIM=${_TRIM%"$trim string"}

trim string=${ TRIM%%[!${2:- }]*}

_TRIM=${ TRIM#"$trim string"}

}

trim() #@ Trim spaces (or character in $2) from $1 and print the result

{
_trim "$@" & printf "%s\n" "$ TRIM"

}

Examples

$ trim" Spacedout
Spacedout

$ trim "0002367.45000" O
2367.45

Index

The index function converts a month name into its ordinal number; it returns the
position of one string inside another (Listing 7-10). It uses parameter expansion to
extract the string that precedes the substring. The index of the substring is one more than
the length of the extracted string.

Listing 7-10. index, Return Position of One String Inside Another

_index() #@ Store position of $2 in $1 in $ INDEX
{

local idx
case $1 in

111

CHAPTER 7 STRING MANIPULATION

"") _INDEX=0; return 1 ;;
"$2") ## extract up to beginning of the matching portion
idx=${1%%"$2"*}
the starting position is one more than the length
CINDEX=$((${#idx} + 1)) ;;
*) _INDEX=0; return 1 ;;
esac

}

index()

{

_index "$@"

printf "%d\n" "$ INDEX"
}

Listing 7-11 shows the function to convert a month name to a number. It converts
the first three letters of the month name to uppercase and finds its position in the months
string. Since we have all the month names as "JAN.FEB.MAR...", each month name is
separated by a period and has a length of four characters. We can use the function index
to get the position in the string where the month name is, and this position divided by 4
gives us the block where that month is, add 1 to this as the first block is 0, and we get our

month converted to number.

Listing 7-11. month2num, Convert a Month Name to Its Ordinal Number

_month2num()

{

local months=JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC
_upword "${1:0:3}" ## take first three letters of $1 and convert to
uppercase

_index "$months" "$ UPWORD" || return 1

_MONTH2NUM=$(($_INDEX / 4 + 1))

}

112

CHAPTER 7

month2num()

{
_month2num "$@" &&

printf "%s\n" "$ MONTH2NUM"
}

Summary

We learned the following commands and functions in this chapter.

Commands

e tr: Translates characters

Functions

o repeat: Repeats a string until it has length N

e alert: Prints a warning message with a border and a beep

STRING MANIPULATION

o revstr: Reverses the order of a string; stores resultin REVSTR

o to_upper: Converts the first character of $1 to uppercase
o upword: Converts a word to uppercase

e validname: Checks $1 for a valid variable or function name

o insert_string:Inserts one string into another at a specified location

o overlay: Places one string over the top of another
e trim: Trims unwanted characters
e index: Returns the position of one string inside another

e month2num: Converts a month name to its ordinal number

113

CHAPTER 7 STRING MANIPULATION

Exercises

114

1.

2.

3.

4.

What is wrong with this code (besides the inefficiency noted at the
beginning of the chapter)?

if ! echo ${PATH} |grep -q /usr/games
PATH=$PATH: /usr/games
fi

Write a function called to_lower that does the opposite of the
to_upper function in Listing 7-4.

Write a function, palindrome, which checks whether its
command-line argument is a palindrome (i.e., a word or phrase
that is spelled the same backward and forward). Note that spaces
and punctuation are ignored in the test. Exit successfully if itis a
palindrome. Include an option to print a message as well as set
the return code.

Write two functions, 1trimand rtrim, which trim characters in
the same manner as trim but from only one side of the string, left
and right, respectively.

CHAPTER 8

File Operations
and Commands

Because the shell is an interpreted language, it is comparatively slow. Many operations
on files are best done with external commands that implicitly loop over the lines of a file.
At other times, the shell itself is more efficient. This chapter looks at how the shell works
with files - both shell options that modify and extend file name expansion and shell
options that read and modify the contents of files. Several external commands that work
on files are explained, often accompanied by examples of when rot to use them.

Some of the scripts in this chapter use an especially prepared file containing the King
James version of the Bible. The file can be downloaded from http://cfajohnson.com/
kjv/kjv.txt. Download it to your home directory with wget:

$ wget http://cfajohnson.com/kjv/kjv.txt

In this file, each verse of the Bible is on a single line preceded by the name of the
book and the chapter and verse numbers, all delimited with colons:

Genesis:001:001:In the beginning God created the heaven and the earth.
Exodus:020:013:Thou shalt not kill.

Exodus:022:018:Thou shalt not suffer a witch to live.
John:011:035:Jesus wept.

The path to the file will be kept in the variable kjv, which will be used whenever the
file is needed.

export kjv=$HOME/kjv.txt

115
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_8

http://cfajohnson.com/kjv/kjv.txt
http://cfajohnson.com/kjv/kjv.txt
https://doi.org/10.1007/978-1-4842-9588-5_8

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Reading a File

The most basic method of reading the contents of a file is a while loop with its input
redirected:

while read ## no name supplied so the variable REPLY is used
do

: do something with "$REPLY" here
done < "$kjv"

The file will be stored, one line at a time, in the variable REPLY. More commonly, one
or more variable names will be supplied as arguments to read:

while read name phone

do
printf "Name: %-10s\tPhone: %s\n" "$ name "
"$phone”

done < "$file"

The lines are split using the characters in IFS as word delimiters. If the file contained
in $file contains these two lines:

John 555-1234
Jane 555-7531

the output of the previous snippet will be as follows:

Name: John Phone: 555-1234
Name: Jane Phone: 555-7531

By changing the value of IFS before the read command, other characters can be
used for word splitting. The same script, using only a hyphen in IFS instead of the default
space, tab, and newline, would produce this:

$ while IFS=- read name phone

> do

> printf "Name: %-10s\tPhone: %s\n" "$name" "$phone"
> done < "$file"

Name: John 555 Phone: 1234

Name: Jane 555 Phone: 7531

116

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Placing an assignment in front of a command causes it to be local to that command
and does not change its value elsewhere in the script.

To read the King James version of the Bible (henceforth referred to as KJV), the field
separator IFS should be set to a colon so that lines can be split into book, chapter, verse,
and text, each being assigned to a separate variable (Listing 8-1).

Listing 8-1. kjvfirsts, Print Book, Chapter, Verse, and First Words from KJV

while IFS=: read book chapter verse text
do

firstword=${text%% *}

printf "%s %s:%s %s\n" "$book" "$chapter" "$verse" "$firstword"
done < "$kjv"

The output (with more than 31,000 lines replaced by a single ellipsis) looks like this:

Genesis 001:001 In
Genesis 001:002 And
Genesis 001:003 And

Revelation 022:019 And
Revelation 022:020 He
Revelation 022:021 The

The awk programming language is often used in shell scripts when the shell itself
is too slow (as in this case) or when features not present in the shell are required (e.g.,
arithmetic using decimal fractions). The language is explained in somewhat more detail
in the following section.

External Commands

Many tasks can be accomplished using the shell without even calling any external
commands. Some use more commands to provide data for a script or process, whereas
other scripts are best written with nothing but external commands.

Often, the functionality of an external command can be duplicated within the
shell, and sometimes, it cannot. Sometimes, using the shell is the most efficient
method; sometimes, it is the slowest. Here, we’ll cover several external commands that

117

CHAPTER 8 FILE OPERATIONS AND COMMANDS

process files and show how they are used (and often misused). These are not detailed
explanations of the commands; usually they are an overview with, in most cases, a look
at how they are used - or misused - in shell scripts.

cat

One of the most misused commands, cat reads all the files on its command line and
prints their contents to the standard output. If no file names are supplied, cat reads the
standard input. It is an appropriate command when more than one file needs to be read
or when a file needs to be included with the output of other commands:

cat *.txt | tr aeiou AEIOU > upvowel.txt

{
date ## Print the date and time
cat report.txt ## Print the contents of the file
printf "Signed: " ## Print "Signed: " without a newline
whoami ## Print the user's login name

} | mail -s "Here is the report" paradigm@example.com

It is not necessary when the file or files could have been placed on the

command line:

cat thisfile.txt | head -n 25 > thatfile.txt ## WRONG
head -n 25 thisfile.txt > thatfile.txt ## CORRECT

It is useful when more than one file (or none) needs to be supplied to a command
that cannot take a file name as an argument or can take only a single file, as in
redirection. It is useful when one or more file names may or may not be on the command

line. If no files are given, the standard input is used:
cat "$@" | while read x; do whatever; done

The same thing can be done using process substitution, the advantage being that
variables modified within the while loop will be visible to the rest of the script. The
disadvantage is that it makes the script less portable.

while read x; do : whatever; done < <(cat "$@")

118

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Another frequent misuse of cat is to use the output as a list with for:
for line in $(cat "$kjv"); do n=$((${n:-0} + 1)); done

That script does not put lines into the 1ine variable; it reads each word into it. The
value of n will be 795989, which is the number of words in the file. There are 31,102 lines
in the file. (And if you really wanted that information, you would use the wc command.)

head

By default, head prints the first ten lines of each file on the command line, or from the
standard input if no file name is given. The -n option changes that default:

$ head -n 1 "$kjv"
Genesis:001:001:In the beginning God created heaven and the earth.

The output of head, like that of any command, can be stored in a variable:
filetop=$(head -n 1 "$kjv")

In that instance, head is unnecessary; this shell one liner does the same thing without

any external command:
read filetop < "$kjv"

Using head to read one line is especially inefficient when the variable then has to be
split into its constituent parts:

book=${filetop%%: *}
text=${filetop#*:}

That can be accomplished much more rapidly with read:

$ IFS=: read book chapter verse text < "$kjv"

$ sa "$book" "$chapter” "$ verse !
"${text¥% *}"

:Genesis:

:001:

:001:

:In:

119

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Even reading multiple lines into variables can be faster using the shell instead
of head:

{

read linel

read line2

read line3

read line4
} o< "$kjv"

or you can put the lines into an array:

for n in {1..4}
do

read lines[${#lines[@]}]
done < "$kjv"

In bash-4.x, the new built-in command mapfile can also be used to populate
an array:

mapfile -tn 4 lines < "$kjv"

The mapfile command is explained in more detail in Chapter 13.

touch

The default action of touch is to update the timestamp of a file to the current time,
creating an empty file if it doesn’t exist. An argument to the -d option changes the
timestamp to that time rather than the present. It is not necessary to use touch to create
a file. The shell can do it with redirection:

> filename
Even to create multiple files, the shell is faster:

for file in {a..z}$RANDOM
do

> "$file"
done

120

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Is

Unless used with one or more options, the 1s command offers little functional advantage
over shell file name expansion. Both list files in alphabetical order. If you want the files
displayed in neat columns across the screen, 1s is useful. If you want to do anything with
those file names, it can be done better, and often more safely, in the shell.

With options, however, it’s a different matter. The -1 option prints more information
about the file, including its permissions, owner, size, and date of modification. The -t
option sorts the files by last modification time, most recent first. The order (whether by
name or by time) is reversed with the -1 option.

1s is many times misused in a manner that can break a script. File names containing
spaces are an abomination, but they are so common nowadays that scripts must
take their possibility (or would it be, say, inevitability?) into account. In the following
construction (that is seen all too often), not only is 1s unnecessary, but its use will break
the script if any file names contain spaces:

for file in $(1s); do

The result of command substitution is subject to word splitting, so file will be
assigned to each word in a file name if it contains spaces:

$ touch {zzz,xxx,yyy}\ a ## create 3 files with a space in
their names

$ for file in $(1Is *\ *); do echo "$file"; done

XXX

yyy

ZZZ

On the other hand, using file name expansion gives the desired (i.e., correct) results:

$ for file in *\ *; do echo "$file"; done

XXX a

yyy a
zzz a

121

CHAPTER 8 FILE OPERATIONS AND COMMANDS

cut

The cut command extracts portions of a line, specified either by character or by field.
Cutreads from files listed on the command line or from the standard input if no files
are specified. The selection to be printed is done by using one of three options, -b, -c,
and -f, which stand for bytes, characters, and fields. Bytes and characters differ only
when used in locales with multibyte characters. Fields are delimited by a single tab
(consecutive tabs delimit empty fields), but that can be changed with the -d option.

The -c option is followed by one or more character positions. Multiple columns (or
fields when the -f option is used) can be expressed by a comma-separated list or by
arange:

$ cut -c 22 "$kjv" | head -n3

cut -c 22,24,26 "$kjv" | head -n3

$ cut -c 22-26 "$kjv" | head -n3
e beg
he ea
od sa

A frequent misuse of cut is to extract a portion of a string. Such manipulations can be
done with shell parameter expansion. Even if it takes two or three steps, it will be much
faster than calling an external command.

$ boys="Brian,Carl,Dennis,Mike,Al"

$ printf "%s\n" "$boys" | cut -d, -f3 ## WRONG
Dennis

$ IFS=, ## Better, no external command used
$ boyarray=($boys)

$ printf "%s\n" "${boyarray[2]}"

Dennis

122

CHAPTER 8 FILE OPERATIONS AND COMMANDS

$ temp=${boys#*,*,} ## Better still, and more portable
$ printf "%s\n" "${temp%%,*}"

Dennis

WC

To count the number of lines, words, or bytes in a file, use wc. By default, it prints all three
pieces of information in that order followed by the name of the file. If multiple file names
are given on the command line, it prints a line of information for each one and then

the total:

$ wc "$kjv" /etc/passwd
31102 795989 4639798 /home/jayant/kjv.txt
50 124 2409 /etc/passwd
31152 796113 4642207 total

If there are no files on the command line, cut reads from the standard input:

$ wc < "$kjv"
31102 795989 4639798

The output can be limited to one or two pieces of information by using the -c, -w, or -1
option. If any options are used, wc prints only the information requested:

$ wc -1 "$kjv"
31102 /home/jayant/kjv.txt

Newer versions of wc have another option, -m, which prints the number of characters,
which will be less than the number of bytes if the file contains multibyte characters. The
default output remains the same, however.

As with so many commands, wc is often misused to get information about a
string rather than a file. To get the length of a string held in a variable, use parameter
expansion: ${#var}. To get the number of words, use set and the special parameter $#:

set -f
set -- $var
echo $#

123

CHAPTER 8 FILE OPERATIONS AND COMMANDS

To get the number of lines, use this:

IFS=$'\n'
set -f

set -- $var
echo $#

Regular Expressions

Regular expressions (often called regexes or regexps) are a more powerful form of pattern
matching than file name globbing and can express a much wider range of patterns more
precisely. They range from very simple (a letter or number is a regex that matches itself)
to the mind-bogglingly complex. Long expressions are built with a concatenation of
shorter expressions and, when broken down, are not hard to understand.

There are similarities between regexes and file globbing patterns: a list of characters
within square brackets matches any of the characters in the list. An asterisk matches
zero or more - not any character as in file expansion - of the preceding character. A dot
matches any character, so . * matches any string of any length, much as an asterisk does
in a globbing pattern.

Three important commands use regular expressions: grep, sed, and awk. The first
is used for searching files, the second for editing files, and the third for almost anything
because it is a complete programming language in its own right.

grep searches files on the command line, or the standard input if no files are given, and
prints lines matching a string or regular expression.

$ grep ':0[57]0:001:" "$kjv" | cut -c -78

Genesis:050:001:And Joseph fell upon his father's face, and wept upon him, and
Psalms:050:001:The mighty God, even the LORD, hath spoken, and called the earth
Psalms:070:001:MAKE HASTE, O GOD, TO DELIVER ME; MAKE HASTE TO HELP ME, O LORD
Isaiah:050:001:Thus saith the LORD, Where is the bill of your mother's divorce
Jeremiah:050:001:The word that the LORD spake against Babylon and against the

124

CHAPTER 8 FILE OPERATIONS AND COMMANDS
The shell itself could have done the job:

while read line
do
case $line in
0[57]0:001:) printf "%s\n" "${line:0:78}" ;;
esac
done < "$kjv"

but it takes many times longer.
Often grep and other external commands are used to select a small number of lines
from a file and pipe the results to a shell script for further processing:

grep 'Psalms:023" "$kjv" |
{
total=0
while IFS=: read book chapter verse text
do
set -- $text ## put the verse into the positional parameters
total=$(($total + $#)) ## add the number of parameters
done
echo $total

“ VvV VvV VvV VvV VvV VvV VvV VvV @

118

grep should not be used to check whether one string is contained in another. For
that, there is case or bash’s expression evaluator, [[...]].

sed

For replacing a string or pattern with another string, nothing beats the stream editor
sed. Itis also good for pulling a particular line or range of lines from a file. To get the first
three lines of the book of Leviticus and convert the name of the book to uppercase, you'd

use this:

$ sed -n '/Lev.*:001:001/,/Lev.*:001:003/ s/Leviticus/
LEVITICUS/p" "$kjv" |

> cut -c -78

125

CHAPTER 8 FILE OPERATIONS AND COMMANDS

LEVITICUS:001:001:And the LORD called unto Moses, and spake unto him
out of th

LEVITICUS:001:002:Speak unto the children of Israel, and say unto
them, If any

LEVITICUS:001:003:If his offering be a burnt sacrifice of the herd,
let him of

The -n option tells sed not to print anything unless specifically told to do so; the
default is to print all lines whether modified or not. The two regexes, enclosed in slashes
and separated by a comma, define a range from the line that matches the first one to the
line that matches the second; s is a command to search and replace and is probably the
one most often used.

When modifying a file, the standard Unix practice is to save the output to a new file
and then move it to the place of the old one if the command is successful:

sed 's/this/that/g' "$file" > tempfile && mv tempfile "$file"

Some recent versions of sed have an -1i option that will change the file in situ. If used,
the option should be given a suffix to make a backup copy in case the script mangles the
original irretrievably:

sed -i.bak 's/this/that/g' "$file"

More complicated scripts are possible with sed, but they quickly become very hard
to read. This example is far from the worst I've seen, but it takes much more than a
glance to figure out what it is doing. (It searches for Jesus wept and prints lines containing
it along with the lines before and after; you can find a commented version at
www.grymoire.com/Unix/Sed.html.)

sed -n
/Jesus wept/ !{
h

}
/Jesus wept/ {

N

X
G
P

126

http://www.grymoire.com/Unix/Sed.html

CHAPTER 8 FILE OPERATIONS AND COMMANDS

a\

s/.¥\n.*\n.*$/\1/
h
}I Il$kjvll

As you'll see shortly, the same program in awk is comparatively easy to understand.
There will be more examples of sed in later chapters, so we’'ll move on with the usual
admonishment that external commands should be used on files, not strings. ‘Nuff sed!

awk

awk is a pattern scanning and processing language. An awk script is composed of one
or more condition-action pairs. The condition is applied to each line in the file or files
passed on the command line or to the standard input if no files are given. When the
condition resolves successfully, the corresponding action is performed.

The condition may be a regular expression, a test of a variable, an arithmetic
expression, or anything that produces a nonzero or nonempty result. It may represent
arange by giving two conditions separated by a comma; once a line matches the first
condition, the action is performed until a line matches the second condition. For
example, this condition matches input lines 10 to 20 inclusive (NR is a variable that
contains the current line number):

NR == 10, NR == 20

There are two special conditions: BEGIN and END. The action associated with BEGIN is
performed before any lines are read. The END action is performed after all the lines have
been read or another action executes an exit statement.

The action can be any computation task. It can modify the input line, it can save it in
avariable, it can perform a calculation on it, it can print some or all of the line, and it can
do anything else you can think of.

Either the condition or the action may be missing. If there is no condition, the action
is applied to all lines. If there is no action, matching lines are printed.

127

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Each line is split into fields based on the contents of the variable FS. By default, it is
any whitespace. The fields are numbered: $1, $2, and so on. $0 contains the entire line.
The variable NF contains the number of fields in the line.

In the awk version of the kjvfirsts script, the field separator is changed to a colon
using the -F command-line option (Listing 8-2). There is no condition, so the action is
performed for every line. It splits the fourth field, the verse itself, into words, and then it
prints the first three fields and the first word of the verse.

Listing 8-2. kjvfirsts-awk, Print Book, Chapter, Verse, and First Words
from the KJV

awk -F: " ## -F: sets the field delimiter to a colon

{

split the fourth field into an array of words

split($4,words," ")

printf the first three fields and the first word of the fourth
printf "%s %s:%s %s\n", $1, $2, $3, words[1]

3 sk

To find the shortest verse in the KJV, the next script checks the length of the fourth
field. If it is less than the value of the shortest field seen so far, its length (minus the
length of the name of the book), measured with the length() function, is stored in min,
and the line is stored in verse. At the end, the line stored in verse is printed.

$ awk -F: 'BEGIN { min = 999 } ## set min larger than any
verse length
length($0) - length($1) < min {
min = length($0) - length($1)
verse = $0
}
END { print verse }' "$kjv"
John:011:035:Jesus wept.

128

CHAPTER 8 FILE OPERATIONS AND COMMANDS

As promised, here is an awk script that searches for a string (in this case, Jesus wept)
and prints it along with the previous and next lines:

awk '/Jesus wept/ {
print previousline
print $0
n=1
next

—

n==1{
print $0
print "---"
n=2
}
{

previousline = $0
}I Il$kjvll

to total a column of numbers:

$ printf "%s\n" {12..34} | awk '{ total += $1 }
> END { print total }'
529

This has been a very rudimentary look at awk. There will be a few more awk scripts
later in the book, but for a full understanding, there are various books on awk:

e The AWK Programming Language by the language’s inventors (Alfred
V. Aho, Peter J. Weinberger, and Brian W. Kernighan)

e sed & awk by Dale Dougherty and Arnold Robbins
e Effective awk Programming by Arnold Robbins

Or start with the main page.

129

CHAPTER 8 FILE OPERATIONS AND COMMANDS

File Name Expansion Options

To show you the effects of the various file name expansion options, the sa command
defined in Chapter 4 as well as pr4, a function that prints its arguments in four columns
across the screen, will be used. The script sa is implemented as a function, along with
pr4, and has been added to the .bashrc file:

sa()
{
pre=: post=:
printf "$pre%s$post\n" "$@"

The pr4 function prints its argument in four equal columns, truncating any string
that is too long for its allotted space:

pr4()
{
calculate column width
local width=$(((${COLUMNS:-80} - 2) / 4))
Note that braces are necessary on
the second $width to separate it from 's'
local s=%-$width.${width}s

printf "$s $s $s $s\n" "$@"

There are six shell options that affect the way in which file names are expanded.
They are enabled and disabled with the shopt command using options -s and -u,
respectively:

shopt -s extglob ## enable the extglob option
shopt -u nocaseglob ## disable the nocaseglob option

To demonstrate the various globbing options, we’ll create a directory, cd to it, and
put some empty files in it:

$ mkdir "$HOME/globfest” 8& cd "$HOME/globfest" || echo
Failed >&2
$ touch {a..f}{0..9}{t..z}$RANDOM .{a..f}{0..9}$RANDOM

130

CHAPTER 8 FILE OPERATIONS AND COMMANDS

This has created 420 files beginning with a letter and 60 beginning with a dot. There
are, for example, seven files beginning with a1:

$ sa a1l*
:a1t18345:
:alul8557:
:al1v12490:
:alw22008:
:alx6088:
:aly28651:
:a1z18318:

nullglob

Normally, when a wildcard pattern doesn’t match any files, the pattern remains
the same:

$ sa *xy
Pkxy:

If the nullglob option is set and there is no match, an empty string is returned:

$ shopt -s nullglob
$ sa *xy
$ shopt -u nullglob ## restore the default behavior

failglob

If the failglob option is set and no files match a wildcard pattern, an error message is

printed:

$ shopt -s failglob

$ sa *xy

bash: no match: *xy

$ shopt -u failglob ## restore the default behavior

131

CHAPTER 8 FILE OPERATIONS AND COMMANDS

dotglob

A wildcard at the beginning of a file name expansion pattern does not match file names
that begin with a dot. These are intended to be “hidden” files and are not matched by
standard file name expansion:

$ sa * | wc -1 ## not dot files
420

To match “dot” files, the leading dot must be given explicitly:

$ sa .* | wc -1 ## dot files; includes . and ..
62

The touch command at the beginning of this section created 60 dot files. The . *
expansion shows 62 because it includes the hard-linked entries . and . . that are created
in all subdirectories.

The dotglob option causes dot files to be matched just like any other files:

$ shopt -s dotglob
$ printf "%s\n" * | wc -1
480

Expansions of *, with dotglob enabled, do not include the hard links . and . ..

extglob

When extended globbing is turned on with shopt -s extglob, five new file name
expansion operators are added. In each case, the pattern-1list is alist of pipe-separated
globbing patterns. It is enclosed in parentheses, which are preceded by ?, *, +, @, or !, for
example, +(a[0-2]|34|2u), ?(john|paul|george|ringo).

To demonstrate extended globbing, remove the existing files in $HOME/globfest, and

create a new set:

$ cd $HOME/globfest

$ rm *

$ touch {john,paul,george,ringo}{john,paul,george,ringo}
{1,2}$RANDOM\ >

{john,paul,george,ringo}{1,2}$RANDOM{,,} {1,2}$RANDOM{,,,}

132

CHAPTER 8 FILE OPERATIONS AND COMMANDS

?(pattern-list)

This pattern-1list matches zero or one occurrence of the given patterns. For example,
the pattern ? (john|paul)2 matches john2, paul2, and 2:

$ pr4 ?(john|paul)2*

222844 228151 231909 232112
john214726 john216085 john26 paul218047
paul220720 paul231051

*(pattern-list)

This is like the previous form, but it matches zero or more occurrences of the given
patterns; *(john|paul)2 will match all files matched in the previous example, as well as
those that have either pattern more than once in succession:

pr4 *(john|paul)2*

222844 228151 231909 232112
john214726 john216085 john26 johnjohn23185
johnpaul25000 paul218047 paul220720 paul231051
pauljohn221365 paulpaul220101

@(pattern-list)

The pattern @(john | paul)2 matches files that have a single instance of either pattern

followed by a 2:

$ pr4 @(john|paul)2*

john214726 john216085 john26 paul218047
paul220720 paul231051

+(pattern-list)

The pattern +(john | paul)2 matches files that begin with one or more instances of a
pattern in the list followed by a 2:

133

CHAPTER 8 FILE OPERATIONS AND COMMANDS

$ pr4 +(john|paul)2*
john214726 john216085
johnpaul25000 paul218047
pauljohn221365 paulpaul220101
I(pattern-list)

john26
paul220720

johnjohn23185
paul231051

The last extended globbing pattern matches anything except one of the given patterns.

It differs from the rest in that each pattern must match the entire file name. The pattern

(x|p|j)* will not exclude files beginning with r, p, or j (or any others), but the

following pattern will (and will also exclude files beginning with a number):

$ pra !([jpro-9]*)
george115425 george132443
george223300 george27803
georgegeorgel6122 georgegeorge28573
georgejohn118699 georgejohn29502
georgepaul222618

georgeringol115095 georgeringo227768

georgel706 george212389

georgepaul12721

Note The explanation given here for the last of these patterns is simplified
but should be enough to cover its use in the vast majority of cases. For a more
complete explanation, see Chapter 9 in From Bash to Z Shell (Apress, 2005).

When the nocaseglob option is set, lowercase letters match uppercase letters, and

nocaseglob

vice versa:

$ cd $HOME/globfest
$ m -xf *

$ touch {{a..d},{A..D}}$RANDOM

134

CHAPTER 8 FILE OPERATIONS AND COMMANDS

$ pr4 *
A31783 B31846 C17836 D14046
a31882 b31603 €29437 d26729

The default behavior is for a letter to match only those of the same case:

$ pr4 [ab]*
a31882 b31603

The nocaseglob option causes a letter to match both cases:

$ shopt -s nocaseglob

$ pr4 [ab]*

A31783 B31846 a31882 b31603
globstar

Introduced in bash-4.0, the globstar option allows the use of ** to descend recursively
into directories and subdirectories looking for matching files. As an example, create a
hierarchy of directories:

$ cd $HOME/globfest
$ rm -rf *
$ mkdir -p {ab,ac}$RANDOM/${RANDOM}{q1,q2}/{z,x}$(($RANDOM % 10))

The double asterisk wildcard expands to all the directories:

$ shopt -s globstar

$ pr4 *k

ab11278 ab11278/22190q1 ab11278/22190q1/z7 ab1394
ab1394/10985q2 ab1394/10985q2/x5 ab4351 ab4351/23041q1
ab4351/23041q1/x1 ab4424 ab4424/8752q2

ab4424/8752q2/29

ac11393 ac11393/20940q1 ac11393/20940q1/z4 ac17926
ac17926/19435q2 ac17926/19435q2/x0 ac23443 ac23443/5703q2
ac23443/5703q2/z4 ac5662

ac5662/17958q1 ac5662/17958q1/x4

135

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Summary

Many external commands deal with files. In this chapter, the most important ones and
those that are most often misused have been covered. They have not been covered in
detail, and some emphasis has been placed on how to avoid calling them when the
shell can do the same job more efficiently. Basically, it boils down to this: use external
commands to process files, not strings.

Shell Options

e nullglob: Returns null string if no files match pattern

o failglob: Prints error message if no files match

o dotglob: Includes dot files in pattern matching

o extglob: Enables extended file name expansion patterns
e nocaseglob: Matches files ignoring case differences

o globstar: Searches file hierarchy for matching files

External Commands

o awk: Is a pattern scanning and processing language

o cat: Concatenates files and prints on the standard output
e cut: Removes sections from each line of one or more files
o grep: Prints lines matching a pattern

¢ head: Outputs the first part of one or more files

o 1s:Lists directory contents

e sed:Is a stream editor for filtering and transforming text

e touch: Changes file timestamps

¢ wc: Counts lines, words, and characters in one or more files

136

CHAPTER 8 FILE OPERATIONS AND COMMANDS

Exercises

1. Modify the kjvfirsts script: accept a command-line argument
that specifies how many chapters are to be printed.

2. Why are the chapter and verse numbers in kjvfirsts formatted
with %s instead of %d?

3. Write an awk script to find the longest verse in KJV.

137

CHAPTER 9

Reserved Words
and Built-In Commands

There are almost 60 built-in commands and more than 20 reserved words in bash. Some
of them are indispensable, and some are rarely used in scripts. Some are used primarily
at the command line, and some are seldom seen anywhere. Some have been discussed
already, and others will be used extensively in future chapters.

The reserved words (also called keywords) are !, case, coproc, do, done, elif, else,
esac, fi, for, function, if, in, select, then, until, while, {, }, time, [[, and]]. All
except coproc, select, and time have been covered earlier in the book.

In addition to the standard commands, new built-in commands can be dynamically
loaded into the shell at runtime. The bash source code package has more than 20 such
commands ready to be compiled.

Because keywords and built-in commands are part of the shell itself, they execute
much faster than external commands. They do not have to start a new process, and they
have access to, and can change, the shell’s environment.

This chapter looks at some of the more useful reserved words and built-in
commands, examining some in detail and some with a summary; a few are deprecated.
Many more are described elsewhere in the book. For the rest, there is the built-ins man
page and the help built-in.

help, Display Information About Built-In Commands

The help command prints brief information about the usage of built-in commands and
reserved words. With the -s option, it prints a usage synopsis.

139
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_9

https://doi.org/10.1007/978-1-4842-9588-5_9

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

Two new options are available with bash-4.x: -d and -m. The first prints a short, one-

line description of the command; the latter formats the output in the style of a man page:

$ help -m help

NAME

help - Display information about builtin commands.

SYNOPSIS

help [-dms] [pattern ...]

DESCRIPTION

SEE

Display information about builtin commands.

Displays brief summaries of builtin commands. If PATTERN is
specified, gives detailed help on all commands matching PATTERN,
otherwise the list of help topics is printed.

Options:
-d output short description for each topic
-m display usage in pseudo-manpage format
-s output only a short usage synopsis for each topic matching
PATTERN
Arguments:

PATTERN Pattern specifying a help topic
Exit Status:
Returns success unless PATTERN is not found or an invalid option is given.
ALSO
bash(1)

IMPLEMENTATION

GNU bash, version 5.1.16(1)-release (x86 64-pc-linux-gnu)

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later < http://gnu.org/
licenses/gpl.html >

The pattern is a globbing pattern, in which * matches any number of any characters

and [...] matches any single character in the enclosed list. Without any wildcard, a

trailing * is assumed:

$ help -d '*le' tr ## show commands ending in le and beginning with tr
Shell commands matching keyword '*le, tr'

140

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

enable - Enable and disable shell builtins.

mapfile - Read lines from the standard input into an array variable.
while - Execute commands as long as a test succeeds.

trap - Trap signals and other events.

true - Return a successful result.

time, Print Time Taken for Execution of a Command

The reserved word time prints the time it takes for a command to execute. The
command can be a simple or compound command or a pipeline. The default output
appears on three lines, showing the real time, user CPU time, and system CPU time that
was taken by the command:

$ time echo {1..30000} >/dev/null 2>&1
real 0m0.175s
user 0mo.152s
sys 0mo.017s

You can modify this output by changing the TIMEFORMAT variable:

$ TIMEFORMAT='%R seconds %P%% CPU usage'
$ time echo {1..30000} >/dev/null
0.153 seconds 97.96% CPU usage

Appendix A contains a full description of the TIMEFORMAT variable.

A frequently asked question about the time command is, “Why can’t I redirect the
output of time?” The answer demonstrates a difference between a reserved word and a
built-in command. When the shell executes a command, the process is strictly defined.
A shell keyword doesn’t have to follow that procedure. In the case of time, the entire
command line (except for the keyword itself but including the redirection) is passed
to the shell to execute. When the command has completed, the timing information is
printed.

To redirect the output of time, enclose it in braces:

$ { time echo {1..30000} >/dev/null 2>&1 ; } 2> numlisttime
$ cat numlisttime
0.193 seconds 90.95% CPU usage

141

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

read, Read a Line from an Input Stream

If read has no arguments, bash reads a line from its standard input stream and stores
itin the variable REPLY. If the input contains a backslash at the end of a line, it and the
following newline are removed, and the next line is read, joining the two lines:

$ printf "%s\n" ' First line \' ' Second line ' | {
> read
> sa "$REPLY"
>}
First line Second line

Note The braces ({ }) in this and the following snippets create a common
subshell for both the read and sa commands. Without them, read would be in a
subshell by itself, and sa would not see the new value of REPLY (or of any other
variable set in the subshell).

Only one option, -7, is part of the POSIX standard. The many bash options (-3, -d,
-e, -n, -p, -s, -n, -1, -u, and, new to bash-4.x, -1) are part of what makes this shell work

so well for interactive scripts.

-1, Read Backslashes Literally

With the -1 option, backslashes are treated literally:

$ printf "%s\n" ' First line\' " Second line " | {
> read -r
> read line2
> sa "$REPLY" "$line2"
>}
First line\:
:Second line:

The second read in that snippet supplies a variable to store the input rather than
using REPLY. As a result, it applies word splitting to the input, and leading and trailing
spaces are removed. If IFS had been set to an empty string, then spaces would not be
used for word splitting:

142

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

$ printf "%s\n" ' First line\' " Second line " | {
> read -1
> IFS= read line2
> sa "$REPLY" "$1line2"
>}
First line\:
Second line

If more than one variable is given on the command line, the first field is stored in
the first variable, and subsequent fields are stored in the following variables. If there are
more fields than variables, the last one stores the remainder of the line:

$ printf "%s\n" "first second third fourth fifth sixth" | {
>read abcd

> sa "$a" "$b" "$c" "$d"

>}

cfirst:

:second:

:third:

:fourth fifth sixth:

-e, Get Input with the readline Library

When at the command line or when using read with the -e option to get input from the
keyboard, the readline library is used. It allows full-line editing. The default editing
style, found in most shells, only allows editing by erasing the character to the left of the
cursor with a backspace.

With -e, a backspace still works, of course, but the cursor can be moved over the
entire line character by character with the arrow keys or with Ctrl-B and Ctrl-N for
backward and forward, respectively. Ctrl-A moves to the beginning of the line, and Ctrl-E
moves to the end.

In addition, other readline commands can be bound to whatever key combinations
you like. I have Ctrl-left arrow bound to backward-word and Ctri-right arrow to forward-
word. Such bindings can be placed in $HOME/ . inputrc. Mine has entries for two
terminals: rxvt and xterm:

"\e0d": backward-word ## rxvt

143

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

"\eOc": forward-word # rxvt
"\e[1;5D": backward-word ## xterm
"\e[1;5C": forward-word ## xterm

To check which code to use in your terminal emulation, press *V (Ctrl-v) and then
the key combination you want. For example, in xterm, I see *[[1;5D when I press Ctri-
left arrow.

-a, Read Words into an Array

The -a option assigns the words read to an array, starting at index zero:

$ printf "%s\n" "first second third fourth fifth sixth" | {
> read -a array

> sa "${array[0]}"

> sa "${array[5]}"

>}

:first:

:sixth:

-d DELIM, Read Until DELIM Instead of a Newline

The -d option takes an argument that changes read’s delimiter from a newline to the first
character of that argument:

$ printf "%s\n" "first second third fourth fifth sixth" | {
> read -d ' nrh' a

> read -d 'nrh' b

> read -d 'rh' ¢

> read -d 'h' d

> sa "$a" "$b" "$c" "$d"
>}

:first: #Ho-d "'
1seco: # -d n
:d thi: #H -dr
:d fourt: # -d h

144

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

-n NUM, Read a Maximum of NUM Characters

Most frequently used when a single character (e.g., y or n) is required, read returns after
reading NUM characters rather than waiting for a newline. It is often used in conjunction
with -s.

-S, Do Not Echo Input Coming from a Terminal

Useful for entering passwords and single-letter responses, the -s option suppresses the
display of the keystrokes entered.

-p PROMPT:, Output PROMPT Without a Trailing Newline

The following snippet is a typical use of these three options:

read -sn1 -p "Continue (y/n)? " var
case ${var"} in ## bash 4.x, convert $var to uppercase
Y) 55
N) printf "\n%s\n" "Good bye."
exit
55
esac

When run, it looks like this when n or N is entered:

Continue (y/n)?
Good bye.

-t TIMEOUT, Only Wait TIMEOUT Seconds
for Complete Input

The -t option was introduced in bash-2.04 and accepts integers greater than 0 as an
argument. If TIMEOUT seconds pass before a complete line has been entered, read exits
with failure; any characters already entered are left in the input stream for the next
command that reads the standard input.

145

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

In bash-4.x, the -t option accepts a value of 0 and returns successfully if there is
input waiting to be read. It also accepts fractional arguments in decimal format:

read -t .1 var ##t timeout after one-tenth of a second
read -t 2 var ##t timeout after 2 seconds

Setting the variable TMOUT to an integer greater than 0 has the same effect as the -t
option. In bash-4.x, a decimal fraction can also be used:

$ TMOUT=2.5

$ TIMEFORMAT='%R seconds %P%% CPU usage'
$ time read

2.500 seconds 0.00% CPU usage

-u FD: Read from File Descriptor FD Instead
of the Standard Input

The -u option tells bash to read from a file descriptor. Given this file:

First line
Second line
Third line
Fourth line

this script reads from it, alternating between redirection and the -u option, and
prints all four lines:

exec 3<$HOME/txt
read var <&3
echo "$var"

read -u3 var
echo "$var"

read var <&3
echo "$var"

read -u3 var
echo "$var"

146

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

-i TEXT, Use TEXT As the Initial Text for Readline

New to bash-4.x, the -1 option, used in conjunction with the -e option, places text on
the command line for editing.

$ read -ei 'Edit this' -p '==>'
would look like
==> Edit this e

The bash-4.x script shown in Listing 9-1 loops, showing a spinning busy indicator,
until the user presses a key. It uses four read options: -s, -n, -p, and - t.

Listing 9-1. spinner, Show a Busy Indicator While Waiting for the User to

Press a Key

spinner="\|/-" ## spinner

chars=1 ## number of characters to display
delay=.15 ## time in seconds between characters
prompt="press any key..." ## user prompt

clearline="\e[K" ## clear to end of line (ANSI terminal)
CR="\1" ## carriage return

loop until user presses a key

until read -snl -t$delay -p "$prompt" var

do
printf " %.${chars}s$CR" "$spinner”
temp=${spinner#?} ## remove first character from $spinner
spinner=$temp${spinner%"$temp"} ## and add it to the end

done

printf "CRclearline”

Tip If delay is changed to an integer, the script will work in all versions of bash,
but the spinner will be very slow.

147

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

eval, Expand Arguments and Execute
the Resulting Command

In Chapter 5, the eval built-in was used to get the value of a variable whose name was in
another variable. It accomplished the same task as bash’s variable expansion, ${!var}.
What actually happened was that eval expanded the variable inside quotation marks;
the backslashes removed the special meanings of the quotes and the dollar sign so that
they remained the literal characters. The resulting string was then executed:

$ x=yes

$ a=x

$ eval "sa \"\$$a\"" ## executes: sa "$x"
yes

Other uses of eval include assigning values to a variable whose name is contained in
another variable and obtaining more than one value from a single command.

Poor Man’s Arrays

Before bash had associative arrays (i.e., before version 4.0), they could be simulated
with eval. These two functions set and retrieve such values and take them for a test run
(Listing 9-2).

Listing 9-2. varfuncs, Emulate Associative Arrays

validname() ## Borrowed from Chapter 7

case $1 in
[la-zA-Z_]* | *[!a-zA-Z0-9]*) return 1;;

esac
setvar() #@ DESCRIPTION: assign value to supplied name
{ #@® USAGE: setvar varname value

validname "$1" || return 1

eval "$1=\%2"
}
getvar() #@ DESCRIPTION: print value assigned to varname
{ #@ USAGE: getvar varname

validname "$1" || return 1

148

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

eval "printf '%s\n' \"\${$1}\""
}
echo "Assigning some values"
for n in {1..3}
do
setvar "var_$n" "$n - $RANDOM"
done
echo "Variables assigned; printing values:"
for n in {1..3}
do
getvar "var_$n"
done

Here’s a sample result from a run:

Assigning some values
Variables assigned; printing values:

1 - 28538
2 - 22523
3 - 19362

Note the assignment in setvar. Compare it with this:
setvar() { eval "$1=\"$2\""; }

If you substitute this function for the one in varfuncs and run the script, the results
look very much the same. What'’s the difference? Let’s try it with a different value, using
stripped-down versions of the functions at the command line:

$ {

> setvar() { eval "$1=\%2"; }

> getvar() { eval "printf '%s\n' \"\${$1}\""; }
> n=1

> setvar "qwerty $n" 'xxx " echo Hello"'

> getvar "qwerty $n"

>}

xxx " echo hello"

$ {

149

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

> setvar2() { eval "$1=\"$2\""; }
> setvar2 "gwerty $n" 'xxx " echo Hello"'

>}
Hello

Hello? Where did that come from? With set -x, you can see exactly what is

happening:

$ set -x ## shell will now print commands and arguments as
they are executed

$ setvar "qwerty $n" 'xxx " echo Hello"'

+ setvar gwerty 1 'xxx " echo Hello"'
+ eval 'gqwerty 1=%$2'

The last line is the important one; the variable qwerty 1 is set to whatever is in $2.
$2 is not expanded or interpreted in any way; its value is simply assigned to qwerty 1:

$ setvar2 "qwerty $n" 'xxx " echo Hello"'
+ setvar2 gwerty 1 'xxx " echo Hello"'
+ eval 'gqwerty 1="xxx " echo Hello""'

++ querty 1='xxx
++ echo HelloHello

In this version, $2 is expanded before the assignment and is therefore subject to word
splitting; eval sees an assignment followed by a command. The assignment is made, and
then the command is executed. In this case, the command was harmless, but if the value
had been entered by a user, it could have been something dangerous.

To use eval safely, ensure that the unexpanded variable is presented for assignment
using eval "$var=\$value".If necessary, combine multiple elements into one variable
before using eval:

stringl=something

string2="rm -rf *' ## we do NOT want this to be executed

eval "$var=\"Example=$stringi\" $string2" ## WRONG!! Files gone!
combo="Example=$stringl $string2"

eval "$var=\$combo" ## RIGHT!

150

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

The value of the variable whose name is in var is now the same as the contents of
combo, if var was set to xx:

$ printf "%s\n" "$xx"
Example=something rm -rf *

Setting Multiple Variables from One Command

I'have seen many scripts in which several variables are set to components of the date and
time using this command (or something similar):

year=$(date +%Y)
month=$(date +%m)
day=$(date +%d)
hour=$(date +%H)
minute=$(date +%M)
second=$(date +%S)

This is inefficient because it calls the date command six times. It could also give
the wrong results. What happens if the script is called a fraction of a second before
midnight and the date changes between setting the month and day? The script was
called at 2023-05-31T23:59:59 (this is the ISO standard format for date and time), but
the values assigned could amount to 2023-06-01T00:00: 00. The date that was wanted
was 31 May 2023 23:59:59 or 01 June 2023 00:00:00; what the script got was 1 May
2023 00:00:00. That’s a whole month off! If you are still wondering why this happened,
itis because when the year and month were evaluated, the date was still 31 May 2023
at 23:59:59, but when the day was evaluated, it changed to 01 June 2023 at 00:00:00;
however, the script discarded everything except for the day, which is 01, so when put
together, we get 01 from the day but May from the month.

A better method is to get a single string from date and then work with that string
splitting it into its parts:

date=$(date +%Y-%m-%dT%H:%M:%S)
time=${date#*T}

date=${date%T*}
year=${date%%-*}
daymonth=${datet*-}

151

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

month=${daymonth%-*}
day=${daymonth#*-}
hour=${time%%: *}
minsec=${time#*-}
minute=${minsec%-*}
second=${minsec#*-}

Better still, use eval:

$ eval "$(date "+year=%Y month=%m day=%d hour=%H minute=%M
second=%S")"

The output of the date command is executed by eval:
year=2015 month=04 day=25 hour=22 minute=49second=04

The last two methods use only one call to date, so the variables are all populated
using the same timestamp. They both take about the same amount of time, which is
a fraction of the time of multiple calls to date. The clincher is that the eval method is
about one-third as long as the string-splitting method.

bash 5.0 introduced two new variables that work with dates: $EPOCHSECONDS and
$EPOCHREALTIME. Prior to bash version 5.0, one might use

$ date '+%s'
1676376326

$ echo $EPOCHSECONDS
1676376326

$ echo $EPOCHREALTIME
1676376326.4177260399

type, Display Information About Commands

Many people use which to determine the actual command that will be used when one is
executed. There are two problems with that.

The first is that there are at least two versions of which, one of which is a csh script
that doesn’t work well in a Bourne-type shell (thankfully, this version is becoming
very rare). The second problem is that which is an external command, and it cannot
know exactly what the shell will do with any given command. All it does is search the
directories in the PATH variable for an executable with the same name:

152

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

$ which echo printf
/bin/echo
/usr/bin/printf

You know that both echo and printf are built-in commands, but which doesn’t know
that. Instead of which, use the shell built-in type:

$ type echo printf sa
echo is a shell builtin

printf is a shell builtin

sa is a function

sa ()
{
pre=: post=:;
printf "$pre%s$post\n" "$@"

When there’s more than one possible command that would be executed for a given
name, they can all be shown by using the -a option:

$ type -a echo printf
echo is a shell builtin

echo is /bin/echo

printf is a shell builtin

printf is /usr/bin/printf

The -p option limits the search to files and does not give any information about
built-ins, functions, or aliases. If the shell executes the command internally, nothing will
be printed unless the -a option is also given:

$ type -p echo printf sa time ## no output as no files would be
executed

$ type -ap echo printf sa time

/bin/echo

/usr/bin/printf

/usr/jayant/bin/sa

/usr/bin/time

153

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS
Or you can use -P:

$ type -P echo printf sa time
/bin/echo

/usr/bin/printf

/usr/jayant/bin/sa

/usr/bin/time

The -t option gives a single word for each command, either alias, keyword,
function, builtin, file, or an empty string:

$ type -t echo printf sa time 1s
builtin

builtin

function

keyword

file

The type command fails if any of its arguments are not found.

builtin, Execute a Built-In Command

The argument to builtin is a shell built-in command that will be called rather than a
function with the same name. It prevents the function from calling itself and calling itself
ad nauseam:

cd() #@ DESCRIPTION: change directory and display 10 most recent files
{ #@ USAGE: cd DIR

builtin cd "$@" || return 1 ## don't call function recursively

1s -t | head
}

command, Execute a Command or Display Information
About Commands

With -v or -V, display information about a command. Without options, call the
command from an external file rather than a function.

154

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

pwd, Print the Current Working Directory

pwd prints the absolute pathname of the current directory. With the -P option, it prints
the physical location with no symbolic links:

$ 1s -1d $HOME/Book ## Directory is a symbolic link
lrwxrwxrwx 1 jayant jayant 10 Feb 25 2023 /home/jayant/Book -> work/Cook
$ cd $HOME/Book

$ pwd ## Include symbolic links
/home/jayant/Book
$ pwd -P ## Print physical location with no links

/home/jayant/work/Book

unalias, Remove One or More Aliases

In my ~/.bashrc file, I have unalias -ato remove all aliases. Some GNU/Linux
distributions make the dangerous mistake of defining aliases that replace standard
commands.

One of the worst examples is the redefinition of rm (remove files or directories) to
rm -i.If a person, used to being prompted before a file is removed, puts rm * (for
example) in a script, all the files will be gone without any prompting. Aliases are not
exported and, by default, not run in shell scripts, even if defined.

Deprecated Built-Ins

I don’t recommend using the following deprecated built-in commands:

o alias: Defines an alias. As the bash man page says, “For almost every
purpose, aliases are superseded by shell functions.”

o let: Evaluates arithmetic expressions. Use the POSIX syntax $((
expression)) instead.

e select: An inflexible menuing command. Much better menus can be
written easily with the shell.

o typeset: Declares a variable’s attributes and, in a function, restricts a
variable’s scope to that function and its children. Use local to restrict
avariable’s scope to a function, and use declare to set any other
attributes (if necessary).

155

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

Dynamically Loadable Built-Ins

bash can load new built-in commands at runtime if or when needed. The bash source
package has a directory full of examples ready to be compiled. To do that, download the
source from https://ftp.gnu.org/gnu/bash/. Unpack the tarball, cd into the top level
directory, and run the configure script:

version=5.1.16 ## or use your bash version

wget ftp://ftp.gnu.org/gnu/bash/bash-$version.tar.gz
gunzip bash-$version.tar.gz

tar xf bash-$version.tar

cd bash-$version

./configure

Note It would be recommended to use 4.3 or higher as the version since it is
the current version and has bug fixes for vulnerabilities that were found in earlier
versions.

Think of dynamically loadable built-ins as custom libraries of commands that

are written in C and available as compiled binaries. These can also be shared
with others in the compiled form. When loaded, they provide new commands or
commands that were originally not available in bash. These work more like native
bash commands than external scripts or programs.

The configure script creates makefiles throughout the source tree, including
one in examples/loadables. In that directory are the source files for built-in versions
of a number of standard commands, as the README file says, “whose execution time is
dominated by process startup time.” You can cd into that directory and run make:

cd examples/loadables
make

You'll now have a number of commands ready to load into your shell. These include

the following:
logname tee head mkdir rmdir uname
1n cat id whoami

156

https://ftp.gnu.org/gnu/bash/

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS
There are also some useful new commands:

print ## Compatible with the ksh print command
finfo ## Print file information
strftime ## Format date and time

These built-ins can be loaded into a running shell with the following command:
enable -f filename built-in-name

The files include documentation, and the help command can be used with them,
just as with other built-in commands:

$ enable -f ./strftime strftime

$ help strftime

strftime: strftime format [seconds]
Converts date and time format to a string and displays it on the
standard output. If the optional second argument is supplied, it
is used as the number of seconds since the epoch to use in the
conversion, otherwise the current time is used.

Summary

You learned about the following commands in this chapter.

Commands and Reserved Words

e builtin: Executes a built-in command

e command: Executes an external command or prints information about
a command

e eval: Executes arguments as a shell command

o help: Displays information about built-in commands

e pwd: Prints the current working directory

e read: Reads aline from the standard input and splits it into fields
o time: Reports time consumed by pipeline’s execution

o type: Displays information about command type
157

CHAPTER9 RESERVED WORDS AND BUILT-IN COMMANDS

Deprecated Commands

e alias: Defines or displays aliases
¢ let: Evaluates arithmetic expressions
e select: Selects words from a list and executes commands

o typeset: Sets variable values and attributes

Exercise

Write a script that stores the time it takes a command (your choice of command) to run
in three variables, real, user, and system, corresponding to the three default times that
time prints.

158

CHAPTER 10

Writing Bug-Free Scripts
and Debugging the Rest

A programmer that has never written a buggy program has either not written any code
or is more imaginary than Santa Claus or the Easter Bunny. Bugs are the bane of a
programmer’s existence. These range from simple typing errors (causing syntax errors)
to more complex bad code to faulty logic. These errors can be fixed, some easily while
others can take hours or days to identify, trace, and fix.

At one end of the spectrum are the syntax errors that prevent a script from
completing or running at all. These may involve a missing character: a space, a bracket
or brace, a quotation mark, or a typo. It may be a mistyped command or variable name.
It may be a missing keyword, such as then after elif. At the other end are the errors in
logic. It may be counting from 1 when it should have started from 0, or it may be using
-gt (greater than) when it should have been -ge (greater than or equal to). It could be
a faulty formula (Fahrenheit to Celsius (F - 32) * 1.8) or using the wrong field in a data
record, say someone thought that the shell was field 5 in /etc/passwd)

In between the extremes, common errors include trying to operate on the wrong type
of data (either the program itself supplied the wrong data or an external source did) and
failing to check that a command succeeds before proceeding to the next step.

This chapter looks at various techniques to get a program doing what it is supposed
to do, including the various shell options for checking and following a script’s progress,
strategically placing debugging instructions, and, most importantly, preventing bugs in
the first place.

159
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_10

https://doi.org/10.1007/978-1-4842-9588-5_10

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Prevention Is Better Than Cure

It is far easier and better to avoid introducing bugs than to remove them. There’s no way
to guarantee bug-free scripts, but several precautions can reduce the frequency of bugs
considerably like making your code easy to read, documenting the script to know what
it's for, what it expects, what results it produces, and so on.

Structure Your Programs

The term structured programming is applied to various programming paradigms, but
they all involve modular programming - breaking the problem down into manageable
parts. In developing a large application with the shell, this means either functions,
separate scripts, or a combination of both.

Even a short program can benefit from some structure; it should contain discrete
sections:

¢ Comments
o Initialization of variables
¢ Function definitions

e Runtime configuration (parse options, read configuration file,
and so on)

o Sanity check (Are all values reasonable?)
e Process information (calculate, slice and dice lines, 1/0, and so on)
Using this outline, all the components of a short but complete script are presented in

the following sections. There are errors in the scripts provided; these will be found and
corrected using various debugging techniques.

Comments

The comments should include metadata about the script, including a description, a
synopsis of how to call the command or function, author, date of creation, date of last
revision, version number, options, and any other information that is needed to run the
command successfully, as in the following examples:

160

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Title: wfe - List words ending with PATTERN
Synopsis: wfe [-c|-h|-v] REGEX
Date: 2023-02-13
Version: 1.0
Author: Jayant Varma
Options: -c - Include compound words
-h - Print usage information

HoH HF OHF B OHF O H =

-v - Print version number

The #: is used to introduce these comments so thatgrep '*#:' wfe will extract all
the metadata.

Initialization of Variables

First, define some variables containing metadata. There will be some duplication with
the previous comments, but these variables may be needed later:

Script metadata

scriptname=${o##*/}

description="List words ending with REGEX"
usage="$scriptname [-c|-h|-v] REGEX"

date of creation=2023-02-13

version=1.0

author="Jayant Varma"

Then define the default values, file locations, and other information needed by
this script:

File locations

dict=$HOME

wordfile=$dict/singlewords
conpoundfile=$dict/Compounds

Default is not to show compound words
compounds=

Regular expression supplied on the command line
pattern=$ 1

161

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Function Definitions

There are three functions that can be included in a script, or a function library sourced
by a script. These are die, usage, and version (not included in the scripts for this book);
however, examples of these are

Function definitions
die() #@ DESCRIPTION: print error message and exit with supplied
return code
{ #@ USAGE: die STATUS [MESSAGE]
error=%1
shift
[-n "$*"] printf "%s\n" "$*" >82
exit "$error"

}
usage() #@ DESCRIPTION: print usage information
{ #@ USAGE: usage

#@® REQUIRES: variable defined: $scriptname

printf "%s - %s\n" "$scriptname" "$description”
printf "USAGE: %s\n" "$usage"
}
version() #@ DESCRIPTION: print version information
{ #® USAGE: version

#® REQUIRES: variables defined: $scriptname, $author and $version
printf "%s version %s\n" "$scriptname"” "$version”
printf "by %s, %d\n" "$author" "${date of creation%%-*"

}

Any other functions will follow right after these generic functions.

Runtime Configuration and Options

Chapter 12 will provide an in-depth look at runtime configuration and the different
methods that can be used. Much of the time, all you need to do is parse the command-
line options:

162

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

parse command-line options, -c, -h, and -v
while getopts chv var
do
case $var in
c) compounds=$compoundfile ;;
h) usage; exit ;;
v) version; exit ;;
esac
done
shift $(($OPTIND - 1))

Process Information

As is often the case in a short script, the actual work of the script is relatively short;
setting up parameters and checking the validity of data take up the greater part of the

program:

Search $wordfile and $compounds if it is defined

{
cat "$wordfile"
if [-n "$compounds”]
then
cut -f1 "$compounds”
fi

} | grep -i ".$regex$" |
sort -fu ## Case-insensitive sort; remove duplicates

Here, cat is necessary because the second file, whose location is stored in the
compounds variable, cannot be passed as an argument to grep because it is more than
a list of words. The file has three tab-separated fields: the phrase with spaces and other
non-alpha characters is removed and the following letter is capitalized, the original
phrase, and the lengths as they would appear in a cryptic crossword puzzle:

corkScrew cork-screw (4-5)
groundCrew ground crew (6,4)
haveAScrewLoose have a screw loose (4,1,5,5)

163

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

If it were a simple word list, like singlewords, the pipeline could have been replaced
by a simple command:

grep -i ".$regex$" "$wordfile" ${compounds:+"$compounds”}

The grep command searches the files given on the command line for lines that
match a regular expression. The -1 option tells grep to consider uppercase and
lowercase letters as equivalent.

Document Your Code

When we write code, we can end up with several scripts in different stages of completion,
some part of libraries, some parts of code snippets, and so on. It is almost impossible to
find the scripts or organize them; there are plenty of GUI tools that have been created,
but depending on the platform in use, it may or may not have those tools. Whereas with
shell scripts and command-line tools available with bash, nothing beats documentation
and adding notes, TODO, etc., that can be searched on.

Format Your Code Consistently

There are various models for pretty printing code; some developers can get carried away
and be quite passionate about their style and can get defensive. There is a particular
style which one will notice in the scripts in this book. These come from the original
author of this book, but what is most important is consistency than how many spaces
in indentation, two, four, or six. The point being that indentation is important, not how
many spaces are used.

Similarly, it does not matter whether we have then on the same line as if or not.
Either style is fine:

if ["$var" = "yes"]; then
echo "Proceeding"
fi

164

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST
or using then on the next line:

if ["$var" = "yes"]
then

echo "Proceeding”
fi

The same goes for other loops and function definitions. This format is a personal
preference:

funcname()

{
: body here

Others like this format:

funcname() {
: body here

}

As long as the formatting is consistent and makes the structure clear, it doesn’t
matter which format you use.

The K.I.S.S. Principle

Simplicity aids in understanding the intent of your program, but it’s not just keeping
code as short as possible that counts. When someone posted the following question, the
first thoughts were, “That will be a complicated regex,” followed by “wouldn’t want to use
a regular expression”:

e We need a regular expression to express financial quantities in
American notation. They have a leading dollar sign and an optional
string of asterisks, a string of decimal digits, and a fractional part
consisting of a decimal point (.) and two decimal digits. The string to
the left of the decimal point could be a single zero. Otherwise, it must
not start with a zero. If there are more than three digits to the left of
the decimal point, groups of three must be separated by commas, for
example, $*%2,345.67.

165

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

This would see the task broken down into discrete steps and code each one
separately. For example, the first check would be

amount="$**2,345.67"
case %amount in
\$[*0-9]*) ;; ## OK (dollar sign followed by asterisks or digits),
do nothing
*) exit 1 ;;
esac
By the time the tests are finished, there will be a lot more code than there would

be in a regular expression, but it will be easier to understand and to change if the
requirements change.

Grouping Commands

Rather than redirecting each of several lines, group them with braces and use a single
redirection. One forum had this code:

echo "user odad odd" > ftp.txt
echo "prompt" >> ftp.txt

echo "cd $i" >> ftp.txt

echo "ls -1tr" >> ftp.txt

echo "bye" >> ftp.txt

Instead, a recommended alternative would be

echo "user odad odd"
echo "prompt"

echo "cd $i"
echo "1s -1tr"
echo "bye"

} > ftp.txt

166

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Test As You Go

Rather than saving all the debugging until the end, it should be an integral part of the
process of developing a program. Each section should be tested as it is written. As an
example, let’s look at a function written as part of a chess program. No, it’s not a chess-
playing program (though it could be when it’s completed); that would be excruciatingly
slow in the shell. It’s a set of functions for preparing instructional material.

It needs to be able to convert one form of chess notation to another and to list all
possible moves for any piece on the board. It needs to be able to tell whether a move is
legal and to create a new board position after a move has been made. At its most basic
level, it has to be able to convert a square in standard algebraic notation (SAN) to its
numeric rank and file. That’s what this function does.

The SAN format for naming a square is a lowercase letter representing the file and a
number representing the rank. Files are rows of squares from white’s side of the board to
black’s. Ranks are rows of squares from left to right. The square in white’s left-
hand corner is a1; that in black’s is h8. To calculate possible moves, these need to be
converted to the rank and file: a1 is converted to rank=1 and file=1; h8 becomes rank=8
and file=8.

It’s a simple function, but this code demonstrates how to test a function. The
function receives the name of a square as an argument and stores the rank and file
in those variables. If the square is not valid, it sets both rank and file to 0 and returns
an error:

split square() #@ DESCRIPTION: convert SAN square to numeric rank and file
{ #@ USAGE: split square SAN-SQUARE
local square=$1
rank=${square#?}
case $square in
a[1-8]) file=1;; ## Conversion of file to number
b[1-8]) file=2;; ## and checking that the rank is
c[1-8]) file=3;; ## a valid number are done in a
d[1-8]) file=4;; ## single look-up
e[1-8]) file=5;;
f[1-8]) file=6;; #i# If the rank is not valid,
g[1-8]) file=7;; ## it falls through to the default
h[1-8]) file=8;;

167

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

*) file=0
rank=0
return 1 ## Not a valid square
55
esac
return O

To test this function, it is passed all possible legitimate squares as well as some that
are not. It prints the name of the square and the file and rank numbers:

test split square()
{
local f r
for f in {a..i}
do
for r in {1..9}
do
split_square "fr"
printf "fr %d-%d " "$file" "$rank"
done
echo
done

When the test is run, the output is as follows:

al 1-1 a2 1-2 a3 1-3 a4 1-4 a5 1-5 a6 1-6 a7 1-7 a8 1-8 a9 0-0
b1 2-1 b2 2-2 b3 2-3 b4 2-4 b5 2-5 b6 2-6 b7 2-7 b8 2-8 b9 0-0
cl 3-1 c23-2 c33-3 ¢4 3-4 c53-5 c63-6 c73-7 c8 3-8 c9 0-0
dil 4-1 d2 4-2 d3 4-3 d4 4-4 d5 4-5 db6 4-6 d7 4-7 d8 4-8 d9 0-0
el 5-1 e2 5-2 e3 5-3 e4 5-4 e55-5 e6b 5-6 e7 5-7 e8 5-8 €9 0-0
f1 6-1 f2 6-2 f3 6-3 {4 6-4 f56-5 f6 6-6 {7 6-7 f8 6-8 f9 0-0
gl 7-1 g27-2 g37-3 g4 7-4 g5 7-5 g6 7-6 g7 7-7 g8 7-8 g9 0-0
hi1 8-1 h2 8-2 h3 8-3 h4 8-4 h5 8-5 h6 8-6 h7 8-7 h8 8-8 h9 0-0
i1 0-0 i2 0-0 i3 0-0 i4 0-0 1i5 0-0 1i6 0-0 i7 0-0 1i8 0-0 1i9 0-0

All squares with the rank and file 0-0 are invalid.

168

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Debugging a Script

In the wfe script, which was presented section by section earlier, there are a few bugs.
Let’s run that script and see what happens. The script is in $HOME/bin, which is in the
PATH, and hence, it can be called by its name alone. Before that, however, a good first
step is to check the script with the -n option. This tests for any syntax errors without
executing the code:

$ bash -n wfe

/home/jayant/bin/wfe-sh: wfe: line 70: unexpected EOF while looking for
matching
/home/jayant/bin/wfe-sh: wfe: line 72: syntax error: unexpected end of file

The error message says that there’s a missing quotation mark ("). It has reached
the end of the file without finding it. That means it could be missing anywhere in the
file. After a quick (or not-so-quick) glance through the file, it’s not apparent where it
should be.

When that happens, I start removing sections from the bottom of the file until the
error disappears. I remove the last section; it’s still there. I remove the option parsing,
and the error hasn’t disappeared. I remove the last function definition, version(), and
the error has gone. The error must be in that function; where is it?

version() #@ DESCRIPTION: print script's version information
{ #® USAGE: version
#@® REQUIRES: variables defined: $scriptname, $author and $version
printf "%s version %s\n" "$scriptname"” "$version”
printf "by %s, %d\n" "$author" "${date of creation%%-*"

}

There are no mismatched quotation marks, so some other closing character must
be missing and causing the problem. After a quick look, I see that the last variable
expansion is missing a closing brace. Fixed, it becomes "${date_of creation%%-*}".
Another check with -n and it gets a clean bill of health. Now it’s time to run it:

$ wfe
bash: /home/jayant/bin/wfe: Permission denied

169

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Oops! We forgot to make the script executable. This doesn’t usually happen with a
main script; it happens more often with scripts that are called by another script. Change
the permissions and try again:

$ chmod +x /home/jayant/bin/wfe
$ wfe
cat: /home/jayant/singlewords: No such file or directory

Have the files singlewords and Compounds been downloaded? If so, where were they
saved? In the script, they are declared to be in $dict, which is defined as $HOME. We can
put them somewhere else, such as in a subdirectory named words, and change that line
in the script. Let’s make a directory, words, and put them in there:

mkdir $HOME/words &&

cd $HOME/words &&

wget https://cfajohnson.com/wordfinder/singlewords &&
wget https://cfajohnson.com/wordfinder/Compounds

In the script, change the assignment of dict to reflect the actual location of
these files:

dict=$HOME/words
Let’s try again:

wfe

a
aa
Aachen
aalii
aardvark

. 183,758 words skipped
zymotic
zymotically
zymurgy
Zyrian
zythum

170

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

We forgot to tell the program what we are searching for. The script ought to have
checked that an argument was supplied, but we forgot to include a sanity check section.
Add that before the search is done (after the line shift $(($OPTIND - 1))):

Check that user entered a search term
if [-z "$pattern”]
then
{
echo "Search term missing"
usage
} >82
exit 1
fi

Now, try again:

$ wfe

Search term missing

wfe - List words ending with REGEX
USAGE: wfe [-c|-h|-v] REGEX

That'’s better. Now let’s really look for some words:

$ wfe drow
a
aa
Aachen
aalii
aardvark
. 183,758 words skipped
zymotic
zymotically
zymurgy
Zyrian
zythum

There’s still something wrong.

171

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

One of the most useful debugging tools is set - x, which prints each command with
its expanded arguments as it is executed. Each line is preceded by the value of the PS4
variable. The default value of PS4 is “+ ”; we’ll change it to include the number of the line
being executed. Put these two lines before the final section of the script:

export PS4="+ $LINENO: ' ## single quotes prevent $LINENO being expanded
immediately
set -x

and try again:

$ wfe drow

++ 77: cat /home/jayant/singlewords

++ 82: grep -i '.$'

++ 83: sort -fu

++ 78: '[' -n "' ']" ## Ctrl-C pressed to stop entire word list
being printed

On line 82, we can see that the pattern entered on the command line is missing.
How did that happen? It should be grep -i '.drow$'. Line 82 in the script should be as
follows:

} | grep -i ".$regex$" |

What happened to the value of regex? Comment out set -x, and add the set -u
option at the top of the script. This option treats unset variables as an error when they
are expanded. Run the script again to check whether regex is set:

$ wfe drow
/home/jayant/bin/wfe: line 84: regex: unbound variable

Why is regex unset? Look at the earlier script and see which variable was used to
hold the command-line argument. Oh! It was pattern, not regex. We must be consistent,
and regex is a better description of its contents, so let’s use that. Change all instances of
pattern to regex. You should do it in the comments at the top, as well. Now try it:

$ wfe drow
windrow

172

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST
Success! Now add compound words and phrases to the mix with the -c option:

$ wfe -c drow
/home/jayant/bin/wfe: line 58: compoundfile: unbound variable

Here we go again! Surely, we assigned the Compounds file in the file locations section.
Take a look; yes, it’s there on line 23 or thereabout. Wait a minute, there’s a typo:
conpoundfile=$dict/Compounds. Change con to com. Keep your fingers crossed:

$ wfe -c drow

$

What? Nothing? Not even windrow? It’s time to set -x and see what’s going on.
Uncomment that line, and play it again:

$ wfe -c drow

++ 79: cat /home/jayant/singlewords

++ 84: grep -1 '.-c$'

++ 85: sort -fu

++ 80: '[' -n /home/jayant/Compounds ']’
++ 82: cut -f1 /home/jayant/Compounds

Atleast that’s easy to figure out. We assigned regex before processing the options,
and it snarfed the first argument, the -c option. Move the assignment down to after the
getopts section, specifically, to after the shift command. (And you'll probably want to
comment out set -x):

shift $(($OPTIND - 1))
Regular expression supplied on the command line
regex=9$1

Are there any more issues?

$ wfe -c drow
skidRow
windrow

That looks good. It might seem like a lot of work for a small script, but it seems longer
in the telling than in the doing, especially once you get used to doing it - or, better still,
getting it right in the first place.

173

CHAPTER 10 WRITING BUG-FREE SCRIPTS AND DEBUGGING THE REST

Summary

Bugs are inevitable, but with care, most can be prevented. When they do materialize,
there are shell options to help trace the problem.

Exercises

1. Whatiswrongwith if [$var=x]? What should it be? Why does
it give the result it does?

2. Write a function, valid_square(), that returns successfully if its
sole argument is a valid SAN chessboard square or fails if it is not.
Write a function to test whether it works.

174

CHAPTER 11

Programming for the
Command Line

This book is about programming with the shell, not about using it at the command line.
The information provided here is about editing the command line, creating a command
prompt (the PS1 variable), or retrieving commands from the interactive history. This
chapter is about scripts that will mostly be useful at the command line rather than in
other scripts.

Many of the scripts presented in this chapter are shell functions. Some of them have
to be that way because they change the environment. Others are functions because they
are used often and are quicker that way. Others are both functions and stand-alone

scripts.

Manipulating the Directory Stack

The cd command remembers the previous working directory, and cd - will return to

it. There is another command that changes the directory and remembers an unlimited
number of directories: pushd. The directories are stored in an array, DIRSTACK. To return
to a previous directory, popd pulls the top entry off DIRSTACK and makes that the current
directory. We can use two functions that make handling DIRSTACK easier, and there’s an
added third one just to complete the functionality.

Note The names of some of the functions that are created in this chapter are
similar to the commands available in bash. The reason for this is to use your
existing shell scripts without making any changes to them and still availing of
some additional functionality.

175
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_11

https://doi.org/10.1007/978-1-4842-9588-5_11

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

cd

The cd function replaces the built-in command of the same name. The function uses
the built-in command pushd to change the directory and store the new directory on
DIRSTACK. If no directory is given, pushd uses $HOME. If changing the directory fails, cd
prints an error message, and the function returns with a failing exit code (Listing 11-1).

Listing 11-1. cd, Change Directory, Saving Location on the Directory Stack

cd() #@ Change directory, storing new directory on DIRSTACK
{

local dir error ## variables for directory and return code
while : ## ignore all options
do
case $1 in
--) break ;;
-*) shift ;;
*) break ;;
esac
done
dir=$1
if [-n "$dir"] ## if a $dir is not empty
then
pushd "$dir" ## change directory
else
pushd "$HOME" ## go HOME if nothing on the command line
fi 2>/dev/null ## error message should come from cd, not pushd
error=%? ## store pushd's exit code
if [$error -ne 0] ## failed, print error message
then
builtin cd "$dir" ## let the builtin cd provide the error message
fi
return "$error” ## leave with pushd's exit code

} > /dev/null

176

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

The standard output is redirected to the bit bucket because pushd prints the contents
of DIRSTACK, and the only other output is sent to standard error (>&2).

Note A replacement for a standard command such as cd should accept anything
that the original accepts. In the case of cd, the options -L and -P are accepted,
even though they are ignored.

pd

The pd function is here for the sake of completeness (Listing 11-2). It is a lazy man’s way
of calling popd; not much use for it - if you are not lazy. :)

Listing 11-2. pd, Return to the Previous Directory with popd

pd ()
{
popd
} >/dev/null #i#t for the same reason as cd

cdm

Using the pd command can alter the DIRSTACK; if the DIRSTACK is left alone intact, one
can move back and forth between directories. For that reason, we can use a menu that
presents all the directories in DIRSTACK.

The cdm function sets the input field separator (IFS) to a single newline (NL or LF)
to ensure that the output of the dirs built-in command keeps file names together
after word splitting (Listing 11-3). File names containing a newline would still cause
problems; names with spaces are an annoyance, but names with newlines are an
abomination.

The function loops through the names in DIRSTACK (for dir in $(dirs -1 -p)),
adding each one to an array, item, unless it is already there. This array is then used as
the argument to the menu function (discussed in the following), which must be sourced
before cdm can be used.

177

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

dirs Built-in Command

The dirs built-in command lists the directories in the DIRSTACK array. By default, it
lists them on a single line with the value of HOME represented by a tilde. The -1 option
expands ~ to $HOME, and -p prints the directories, one per line.

Listing 11-3. cdm, Select New Directory from a Menu of Those Already Visited

cdm() #@ select new directory from a menu of those already visited
{
local dir IFS=$'\n' item
for dir in $(dirs -1 -p) ## loop through directories in
DIRSTACK[@]
do
["$dir" = "$PWD"] && continue ## skip current directory
case ${item[*]} in
M4dir:") ;; ## $dir already in array; do nothing
*) item+=("$dir:cd '$dir'") ;; ## add $dir to array
esac
done
menu "${item[@]}" Quit: ## pass array to menu function

}

When run, the menu looks like this:

$ cdm
. /public/music/magnatune.com
. /public/video
. /home/jayant

. /home/jayant/tmp
Quit

1
2
3
4. /home/jayant/tmp/qwe rty uio p
5
6

(1 to 6) ==>

178

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

menu

The calling syntax for the menu function comes from 9menu, which was part of the Plan
9 operating system. Each argument contains two colon-separated fields: the item to be
displayed and the command to be executed. If there is no colon in an argument, it is
used both as the display and as the command:

$ menu who date "df:df ."
1. who
2. date
3. df
(1 to 3) ==>3
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hdas 48070472 43616892 2011704 96% /home
$ menu who date "df: df ."
1. who
2. date
3. df
(1 to3) ==>1
jayant tty8 Jun 18 14:00 (:1)
jayant tty2 Jun 21 18:10

A for loop numbers and prints the menu; read gets the response; and a case
statement checks for the exit character g, Q, or 0 in the response. Finally, indirect

expansion retrieves the selected item, further expansion extracts the command, and
eval executes it: eval "${!num#*:}" (Listing 11-4).

Listing 11-4. menu, Print the Menu and Execute the Associated Command

menu ()
{
local IFS=$' \t\n' ## Use default setting of IFS
local num n=1 opt item cmd
echo
Loop through the command-line arguments
for item
do

179

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

printf " %3d. %s\n" "$n" "${item¥%:*}"
n=$(($n + 1))
done
echo
If there are fewer than 10 items, set option to accept key
without ENTER
if [$# -1t 10 |
then
opt=-sni1
else
opt=
fi
read -p " (1 to $#) ==> " $opt num ## Get response from user
Check that user entry is valid
case $num in

[qQo] | "") return ;; ## g, Q or 0 or "" exits
[10-9] | 0%*) ## invalid entry
printf "\alInvalid response: %s\n" "$num" >8&2
return 1
35
esac
echo
if ["$num" -le "$#"] ## Check that number is <= to the number of
menu items
then
eval "${!numi*:}" ## Execute it using indirect expansion
else

printf "\aInvalid response: %s\n" "$num" >&2
return 1
fi

180

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

Filesystem Functions

These functions vary from laziness (giving a short name to a longer command) to adding
functionality to standard commands (cp and mv). They list, copy, or move files or create
directories.

There is no single-letter command required by the POSIX specification, and there is only
one that is found on most Unixes: w, which shows who is logged on and what they are
doing. Here, we have defined a number of single-letter functions:

e a: Lists the currently playing music track
e c:Clears the screen (sometimes quicker or easier than L)
o d:The date "+%A, %-d %B %Y %-1:%M:%S %P (%H:%M:%S)"
e k:Isequivalenttoman -k, or apropos
o t:For the Amiga and MS-DOS command type, invokes less
e vandV: Lower and raise the sound volume, respectively
¢ X:Logout
And there’s this one that pipes a long file listing through less, as shown in

Listing 11-5.

Listing 11-5. 1, List Files in Long Format, Piped Through less

1()
{
1s -1A "$@" | less ## the -A option is specific to GNU and *BSD
versions
}

181

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

Isr

The commands that can get used most frequently are 1, cd, xx. sh, cdm, and 1s1; xx. sh
is a file for throwaway scripts. We can keep adding new ones to the top; 1sr displays the
most recent files (or with the -0 option, the oldest files). The default setting is for ten files
to be shown, but that can be changed with the -n option. The script in Listing 11-6 uses
the -t (or -tr) option to 1s and pipes the result to head.

Listing 11-6. 1sr, List Most Recently Modified Files

num=10 ## number of files
to print
short=0 ## set to 1 for

short listing
timestyle="--time-style="+ %d-%b-%Y %H:7%M:%S "' ## GNU-specific
time format
opts=Aadn:os
while getopts $opts opt
do

case $opt in

alAld) 1s opts="$1s opts -$opt" ;; ## options passed to 1ls

n) num=$0PTARG ;; ## number of files to display
0) 1s opts="$1ls opts -r" ;; ## show oldest files, not newest
s) short=$(($short + 1)) ;;

esac

done
shift $(($OPTIND - 1))
case $short in

0) 1s opts="$1ls opts -1 -t" ;; ## long listing, use -1

*) 1s opts="$1ls opts -t" ;; ## short listing, do not use -1
esac
1s $1s opts $timestyle "$@" | {

read ## In bash, the same as: IFS=

read -r REPLY
case $line in

182

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

total*) ;; ## do not display the 'total'
line
*) printf "%s\n" "$REPLY" ;;
esac
cat
} | head -n$ num
cp, mv

In the following example Listing 11-7, which provides the same functionality as the
cp command, the -b flag is GNU specific, and if a different version is in use, that can be
removed.

Listing 11-7. cp, Copy, Using the Current Directory If No Destination Is Given

cp()
{
local final
if [$# -eq 1] ## Only one arg,
then
command cp -b "$1" . ## so copy it to the current directory
else
final=${'4#}
if [-d "$final"] ## if last arg is a directory
then
command cp -b "$@" ## copy all the files into it
else
command cp -b "$@" . ## otherwise, copy to the current
directory
fi
fi
}

The mv function is identical to the preceding code, except that it has mv wherever cp
appears in that function.

183

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

md

Laziness is the order of the day with the md function (Listing 11-8). It calls mkdir with
the -p option to create intermediate directories if they don’t exist. With the -c option,

md creates the directory (if it doesn’t already exist) and then cds into it. Because of the -p
option, no error is generated if the directory exists.

Listing 11-8. md, Create a New Directory and Intermediate Directories and
Optionally cd into It

md() { #@ create new directory, including intermediate directories if
necessary
case $1 in
-c) mkdir -p "$2" && cd "$2" ;;
*) mkdir -p "$@" ;;
esac

Miscellaneous Functions

These next two functions are quite helpful, but they don’t fit into any category.

pri

The pr1 function is both a function and a stand-alone script (Listing 11-9). It prints
each of its arguments on a separate line. By default, it limits the length to the number of
columns in the terminal, truncating lines as necessary.

There are two options: -w and -W. The former removes the truncation, so lines will
always print in full, wrapping to the next line when necessary. The latter specifies a width
at which to truncate lines.

Listing 11-9. pr1, Function to Print Its Arguments One to a Line

pri() #@ Print arguments one to a line

{

case $1 in

184

-W) pr_w=
shift

-W) pr_w=${2}
shift 2

-W¥) pr w=${1#??}
shift

)

*) pr_w=-.${COLUMNS:-80}

)

esac
printf "%${pr_w}s\n" "$@"
}

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

width specification modifier

default to number of columns in window

The script version (Listing 11-10) uses getopts, and therefore, it is not POSIX

compliant.

Listing 11-10. pr1, Script to Print Its Arguments One to a Line

while getopts wh: opt
do
case $opt in
W) W=
shift
W) w=$0PTARG ;;
*) w=-.${COLUMNS:-80} ;;
esac
done
shift $(($OPTIND - 1))
printf "%${w}s\n" "$@"

185

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

calc

bash lacks the capacity for arithmetic with decimal fractions, so this function (Listing 11-11)
uses awk to do the dirty work. Note that characters special to the shell must be escaped or
quoted on the command line. This applies particularly to the multiplication symbol, *.

Listing 11-11. calc, Print the Result of Arithmetic Expression

calc() #@ Perform arithmetic, including decimal fractions

{
local result=$(awk 'BEGIN { OFMT="%f"; print '"$*"'; exit}")
case $result in
.%0) result=${result%"${result#tt*[!10]}"} ;;
esac
printf "%s\n" "$result”

}

The case statement removes trailing zeros after a decimal point.

Managing Man Pages

Here are three useful functions related to man pages. The first searches a man page for
a pattern or string, the second looks up a POSIX man page, and the third is equivalent
toman -k.

sman

The sman function calls up a man page and searches for a given string. It assumes that
less is the default pager (Listing 11-12).

186

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

Listing 11-12. sman, Call Up a Man Page and Search for a Pattern

sman() #@ USAGE: sman command search pattern
{

LESS="$LESS${2:+ +/$2}" man "$1"
}

SUs

To check the portability of a given command or, more usually, to check which options
are specified by POSIX, we can use sus. It stores a copy of the POSIX man page locally so
that it doesn’t need to be fetched on subsequent queries (Listing 11-13).

Listing 11-13. sus, Look Up a Man Page in the POSIX Spec

sus()
{
local html_file=/usr/share/sus/$1.html ## adjust to taste
local dir=9699919799
local sus_dir= http://www.opengroup.org/onlinepubs/$dir/
utilities/
[-f "$html_file"] |
lynx -source sus_dir{1##*/}.html > $html file ##>/dev/null 2>&1
lynx -dump -nolist $html file | ${PAGER:-less}

Here, lynx is a text-mode web browser. Though normally used interactively to access
the Web, the -source and -dump directives can be used in scripts.

k

The k function saves all the typing of apropos orman -k. It actually does a little more.
It filters the result so that only user commands (from the first section of the man pages)
show. System and kernel functions and file specifications, and so on, do not get shown
(Listing 11-14).

187

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

Listing 11-14. k, List Commands Whose Short Descriptions Include a

Search String
k() #@ USAGE: k string
{
man -k "$@" | grep '(1'
}
Games

What'’s a command line without games? Boring, that’s what! Chris has written a number
of games using the shell. They include yahtzee (Figure 11-1), a game that uses five dice;
maxit (Figure 11-2), based on an arithmetic game for the Commodore 64; and, of course,
tic-tac-toe (Figure 11-3). All these games are too large to include their scripts in this
book, but sections of them (such as the yahtzee dice) will be demonstrated in later
chapters. The one game included here is the fifteen puzzle.

000 o 0
0 0
000 0 0
1 2 3 4 5
Scored Rolled Scored Rolled
[a] Oones: 4 [g] 3 of a kind: [-] (0)
[b] Twos: 4 Lh] 4 of a kind: [-] (0)
[c] Threes: [-] (2=6) [i] Full house: [-] ({1))
[d] Fours: [-] (0=0) [7] Small straight: [-] 0
[e] Fives: [-] (0=0) [k] Large straight: 40
[f]1 Sixes: [-] (1=6) [1] Yahtzee: [-] ()
[m] Chance: [-] (13
[55 away from bonus]
Upper total: 8 Bonus: O Lower total: 40 Grand total: 48

Figure 11-1. The game of yahtzee, in which the player attempts to get runs, a full
house, or three, four, or five of a kind

188

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

H: human: 43 (last= 4)
V: max1: 29 (last= 4)
Points left: -96

| -4| 13| -61 8] -6]1 1] -9 1]

| =11 =2] 7| 9]<6] ~Fl 1I =1l
| -61 -41 -71 13| |HHAl 7| -6l

| | =51 4] -2]-10] | =91 |
| 31 11] =11 0| 2| 1 11 |
| 1-121-13| -6| | =21 -5]|-13]

1=15] =81 101 01 1l =6l 131 =8i

| 10| 10]-12]|-12| 2]|-14| -1]| -7]

Figure 11-2. The game of maxit, in which one player selects from a row and the
other from a column

ol IX
e, LT
0101X
———— e ——
b O

Select (28 9): |}

Figure 11-3. The ubiquitous game of tic-tac-toe

The fifteen Puzzle

The fifteen puzzle consists of 15 numbered, sliding tiles in a frame; the object is to
arrange them in ascending order like this:

189

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

| | |
e T EE L e
| | | | |
| 51 6] 7] 8]
| | | | |
e a4
9	10	11	12
e LT e			
13	14	15	
e T EE L e

In this script (Listing 11-15), the tiles are moved with the cursor keys.

Listing 11-15. fifteen, Place Tiles in Ascending Order

HE R A T e e
Meta data
TR
scriptname=${o##*/}

description="The Fifteen Puzzle"
author="Jayant Varma"

created=2023-02-15

U A A A R
Variables

HE R A T e e

board=({1..15} "") ## The basic board array

target=("${board[@]}") ## A copy for comparison (the target)
empty=15 ## The empty square

last=0 ## The last move made

A=0 B=1 C=2 D=3 ## Indices into array of possible moves
topleft="\e[0;0H' ## Move cursor to top left corner of window
nocursor="\e[?251"' ## Make cursor invisible

normal=\e[Om\e[?121\e[?25h ## Resume normal operation

190

CHAPTER 11

Board layout is a printf format string

At its most basic, it could be a simple:

fmt="$nocursor$topleft
%2s %2s %2s %2s
%2s %2s %2s %h2s
%2s %2s %2s % 2s
%2s %2s %2s %2s
I prefer this ASCII board
fmt="\e[?251\e[0;0H\n

\tt--- oot
1 A N N
\t| %2s | %2s | %2s | %2s |
1 A N N
Y R s b
1 A N N
\t| %2s | %2s | %2s | %2s |
1 A N N
R s T et
1 A N N
\t| %2s | %2s | %2s | %2s |
1 A N N
\tt--- oot
1 A N N
\t| %2s | %2s | %2s | %2s |
1 A N N

\t+----+----4----+----+\n\n"
R A
Functions
R A
print board() #@ What the name says
{

printf "$fmt" "${board[@]}"

}

PROGRAMMING FOR THE COMMAND LINE

borders() #@ List squares bordering on the empty square

191

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

{

Calculate x/y co-ordinates of the empty square
local x=$((${empty:=0} % 4)) y=$(($empty / 4))
The array, bordering, has 4 elements, corresponding to the 4

directions

If a move in any direction would be off the board, that element

is empty

#H#

unset bordering ## clear array before setting it
[$y -1t 3] && bordering[$A]=$(($empty + 4))

[$y -gt 0] && bordering[$B]=$(($empty - 4))

[$x -gt 0] &&% bordering[$C]=$(($empty - 1))

[$x -1t 3] && bordering[$D]=$(($empty + 1))

}

check() #@ Check whether puzzle has been solved

{

Compare current board with target
if ["${board[*]}" = "${target[*]}"]

then

Puzzle is completed, print message and exit

print_ board

printf "\a\tCompleted in %d moves\n\n" "$moves"

exit
fi
}
move() #@ Move the square in $1
{
movelist="$empty $movelist"
move list
moves=$(($moves + 1))
board[$empty]=${board[$1]}
board[$1]=""
last=$empty
empty=%$1

192

add current empty square to the

increment move counter

put $1 into the current empty square
remove number from new empty square
.... and put it in old empty square

set new value for empty-square pointer

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

random move() #@ Move one of the squares in the arguments
{
The arguments to random move are the squares that can be moved
(as generated by the borders function)
local sq
while :
do
sq=$(($RANDOM % $# + 1))
sq=${!sq}
[$sq -ne ${last:-666}] && ## do not undo last move
break
done
move "$sq"
}
shuffle() #@ Mix up the board using legitimate moves (to ensure
solvable puzzle)
{
local n=0 max=$(($RANDOM % 100 + 150)) ## number of moves to make
while [$((n += 1)) -1t $max]

do
borders ## generate list of
possible moves
random_move "${bordering[@]}" ## move to one of them
at random
done
}
R A e
End of functions
A R R A R e e R TR R S S Ry
trap 'printf "$normal"™' EXIT ## return terminal to normal

state on exit
HHHEH

Instructions and initialization
HipH
clear

193

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

print_board
echo
printf "\t%s\n" "$description” "by $author, ${created%k-*}" ""
printf "
Use the cursor keys to move the tiles around.
The game is finished when you return to the
position shown above.
Try to complete the puzzle in as few moves
as possible.
Press \e[1mENTER\e[Om to continue

shuffle ## randomize board
moves=0 ## reset move counter
read -s ## wait for user
clear ## clear the screen

A
Main loop
R A e
while :
do

borders

print_board

printf "\t %d move" "$moves"

[$moves -ne 1] 8& printf "s"

check
read a single character without waiting for <ENTER>
read -sn1 -p $' \e[K" key

The cursor keys generate three characters: ESC, [and A, B, C, or D;
this loop will run three times for each press of a cursor key
but will not do anything until it receives a letter
from the cursor key (or entered directly with A etc.), or a
'q' to exit
case $key in
A) [-n "${bordering[$A]}"] 8& move "${bordering[$A]}" ;;
B) [-n "${bordering[$B]}"] 8& move "${bordering[$B]}" ;;

194

CHAPTER 11 PROGRAMMING FOR THE COMMAND LINE

€) [-n "${bordering[$C]}"] 8 move "${bordering[$C1}" ;;
D) [-n "${bordering[$D]}"] && move "${bordering[$D]}" ;;
q) echo; break ;;
esac
done

Summary

The scripts provided in this chapter are a smattering of the possibilities for using scripts
at the command line. Where the environment needs to be changed (as in cd and cdm),
the scripts must be shell functions. These are usually kept in $HOME/ .bashrc or in a file
sourced by .bashrc.

Even games can be programmed without needing a GUI interface.

Exercises

1. Modify the menu function to accept its parameters from a file.

2. Rewrite the pr1 function as prx that will behave in the manner
of pr4 from Chapter 8 but will take an option for any number of

columns.

3. Add agetopts section to the fifteen game that allows the user to
select between three different board formats. Write a third format.

195

CHAPTER 12

Runtime Configuration

When I download my e-mail from three or four different POP3 servers, I don’t use a
different script for each one. When I open a terminal to ssh to a remote computer (half a
dozen of them) with a different background color for each, I use the same script for every
connection. To upload files to my websites, I use the same script for all of them.

You can configure a script’s behavior in several ways when you run it. This chapter
looks at seven methods: initialized variables, command-line options and arguments,
menus, Q&A dialogue, configuration files, multiple names for one script, and
environment variables. These methods are not mutually exclusive; in fact, they are often
combined. A command-line option could tell the script to use a different configuration
file or present the user with a menu.

Defining Variables

If the runtime requirements for a script would not change, then hard-coded variables
(a sort of configuration) may be all the configuration that is needed (Listing 12-1). We
can set them when the script is installed; when a change is needed, the parameters can
quickly be changed using a text editor.

Listing 12-1. Example of Initialized Default Variables

File locations

dict=/usr/share/dict
wordfile=$dict/singlewords
compoundfile=$dict/Compounds

Default is not to show compound words
compounds=no

If the variables need changing often, one or more of the other methods can
be added.

197
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_12

https://doi.org/10.1007/978-1-4842-9588-5_12

CHAPTER 12 RUNTIME CONFIGURATION

Command-Line Options and Arguments

The most common method for changing runtime behavior uses command-line
options. As shown in Listing 12-2, all the values defined earlier can be modified at the
command line.

Listing 12-2. Parse Command-Line Options

while getopts d:w:f:c var
do
case "$var" in
c) compounds=1 ;;
d) dict=$0PTARG ;;
w) wordfile=$0OPTARG ;;
f) compoundfile=$0PTARG ;;
esac
done

Menus

For a user unfamiliar with a piece of software, a menu is a good way to allow runtime
changes. In the menu example shown in Listing 12-3, the selections are numbered
from 1 to 4, and q exits the menu.

Listing 12-3. Set Parameters via Menu

while : ## loop until user presses 'q’
do
print menu
printf "\n\n%s\n" "$bar"
printf " Dictionary parameters\n”
printf "%s\n\n" "$bar"

printf " 1. Directory containing dictionary: %s\n" "$dict"
printf " 2. File containing word list: %s\n" "$wordfile"
printf " 3. File containing compound words and phrases: %s\n"
"$compoundfile"

198

CHAPTER 12 RUNTIME CONFIGURATION

printf " 4. Include compound words and phrases in results? %s\n"
"$compounds”

printf " q. %s\n" "Exit menu"

printf "\n%s\n\n" "$bar"

get user response

read -sn1 -p "Select (1,2,3,4,q): " input

echo

interpret user response
case $input in
1) read -ep "Enter dictionary directory: " dict ;;
2) read -ep "Enter word-list file: "
3) read -ep "Enter compound-word file:

wordfile ;;

" compoundfile ;;
4) ["$compounds" =y] 8& compounds=n || compounds=y ;;
q) break ;;
*) printf "\n\aInvalid selection: %c\n" "$input" >&2
sleep 2
55

esac
done

Q&A Dialogue

A question-and-answer function cycles through all the parameters, prompting the user

to enter a value for each one (Listing 12-4). This can get tedious for the user, and it is
probably best used when there are no defaults, when there are very few parameters to

enter, or when values need to be entered for a new configuration file.

Listing 12-4. Set Variables by Question and Answer

read -ep "Directory containing dictionary: " dict

read -ep "File containing word list: " wordfile

read -ep "File containing compound words and phrases: " compoundfile
read -snl -p "Include compound words and phrases in results (y/n)? "
compounds

echo

read -ep "Save parameters (y/n)? " save

199

CHAPTER 12 RUNTIME CONFIGURATION

case $save in

y|Y) read -ep "Enter path to configuration file:

{

printf '%-30s ## %s"\n' \
"dict=$dict" "Directory containing dictionary" \
"wordfile=$wordfile" "File containing word list" \

configfile

"compoundfile=$compoundfile"” "File containing compound words and

phrases" \
"Compounds" "$Compounds” "Include compound words and phrases in
results?”
} > "${configfile:-/dev/tty}"

esac

Configuration Files

Configuration files can use any format, but it’s easiest to make them shell scripts that
can be sourced. The example file shown in Listing 12-5 can be sourced, but it can also
provide more information.

Listing 12-5. Configuration File, words.cfg

dict=/usr/share/dict ## directory containing dictionary files
wordfile=singlewords ## file containing word list
compoundfile=Compounds ## file containing compound words and phrases
compounds=no ## include compound words and phrases in
results?

The words . cfg file can be sourced with either of these two commands:

. words.cfg
source words.cfg

Rather than sourcing the file, it can be parsed in various ways (Listing 12-6). Since
bash-4.x, we can read the file into an array and extract the variables and comments
using parameter expansion, the expansion being applied to each element of the array.

200

CHAPTER 12 RUNTIME CONFIGURATION

Listing 12-6. Parsing Configuration File

IFS=$'\n'

file=words.cfg

settings=($(< "$file")) ## store file in array, 1 line

per element

eval "${settings[@]%%#*}" ## extract and execute the assignments

comments=("${settings[@]#*## }") ## store comments in array

The comments array contains just the comments, and the assignments can be
extracted from settings with "${settings[@]%%#*}":

$ printf "%s\n" "${comments[@]}"
directory containing dictionary files

file containing word list

file containing compound words and phrases
include compound words and phrases in results?

You can also read the file in a loop to set the variables and provide information about
the variables it contains by displaying the comments (Listing 12-7).

Listing 12-7. Parsing Configuration File with Comments

while read assignment x comment
do
if [-n "$assignment”]
then
printf "%20s: %s\n" "${assignment#*=}" "$comment"
eval "$assignment”
fi
done < "$file"

The following is the result:

/usr/share/dict: directory containing dictionary files
singlewords: file containing word list
Compounds: file containing compound words and phrases
n: include compound words and phrases in results?

201

CHAPTER 12 RUNTIME CONFIGURATION

Configuration files can be made as complex as you like, but parsing them then falls
more properly under the category of data processing, which is the subject of Chapter 13.

Scripts with Several Names

By storing the same file under different names, you can avoid command-line options
and menus. The script in Listing 12-8 opens a terminal and connects to different remote
computers using a secure shell. The terminal’s colors, the machine / host to log on to,
and the name of the remote user are all determined by the name of the script.

Listing 12-8. bashful, Connect to the Remote Computer via ssh

scriptname=${o##*/}

default colours

bg=#ffffcc ## default background: pale yellow
tg=#000000 ## default foreground: black
user=bashful ## default user name

term=xterm ## default terminal emulator (I prefer rxvt)
case $scriptname in
sleepy)
bg=#ffffff

user=sleepy

host=sleepy.example.com
sneezy)

fg=#aa0000

bg=#ffeeee

host=sneezy.example.org
grumpy)

fg=#006600

bg=#eeffee

term=rxvt

host=cfajohnson.example.com
dopey)

202

CHAPTER 12 RUNTIME CONFIGURATION

host=127.0.0.1
55
*) echo "$scriptname: Unknown name" >8&2
exit 1
55
esac
"$term" -fg "$fg" -bg "$bg" -e ssh -1 "$user" "$host"

To create the multiple names for the same file, create links with 1n (Listing 12-9).

Listing 12-9. Make Multiple Links to bashful Script

cd "$HOME/bin" &&
for name in sleepy sneezy grumpy dopey
do
1n -s bashful "$name" ## the -s option can be left out
done

Note The -s option with In is to make symbolic link files instead of hard links.

Environment Variables

We can also pass settings to a program using variables. These can be either exported or
defined on the same line as the command. In the latter case, the variable is defined for
that command only.

We alter the behavior of the program by checking for the value of a variable or even
just for its existence. This technique is most often used to adjust the output of a script
using verbose. This would be a typical line in a script:

[${verbose:-0} -gt 0] && printf "%s\n" "Finished parsing options"
The script would be called with the following:
verbose=1 myscriptname

You can see an example in the following script.

203

CHAPTER 12 RUNTIME CONFIGURATION

All Together Now

The following is the program used to update all my websites. It finds new or modified
files in a directory hierarchy, stores them in a tarball, and uploads them to a website on
a (usually) remote computer. All of the sites have shell access enabled so that a secure
shell connection can be made using ssh, to transfer the files and unpack them with tar
on the site:

ssh -p "$port" -1 "$user" "$host" \
"cd \"$dest\" || exit;tar -xpzf -" < "$tarfile" &8
touch "$syncfile"

All the sites use authentication keys (created with ssh-keygen) so that no password is
required, and the script can be run as a cron job.

This program uses all the techniques mentioned earlier except for multiple names.
It's more than what one would usually use in a single program, but it’s a good illustration.

The user can select whether to use command-line options, a menu, a Q&A dialogue,
or a configuration file to adjust the settings, or the user can even use the defaults.
Command-line options are available for all settings:

o -c configfile: Reads settings from configfile

e -h host: Specifies the URL or IP address of a remote computer

e -p port: Specifies the SSH port to use

e -d dest: Specifies the destination directory on the remote host

e -u user: Specifies the user’s login name on a remote computer

e -a archivedir: Specifies the local directory to store archive files

o -T syncfile: Specifies the file whose timestamp is the cutoff point
And there are three further options that control the script itself:

o -t:Tests only, displays final settings, does not archive or upload

o -m: Presents the user with the menu

e -g:Uses Q&A dialogue

The script is examined in the following sections in detail, section by section.

204

CHAPTER 12 RUNTIME CONFIGURATION

Note This is a book on Pro Bash Scripts and hence the approach using scripting.
Writing a script may not necessarily be the best solution.

There are a couple of other options not necessarily bash scripting based that are
created solely to achieve administration outcomes. There is a perl script wrapper called
Cluster SSH (open source found at https://github.com/duncs/clusterssh) that allows
you to send a command to multiple servers at the same time and is GUI based. There is
another called Puppet, which is quite popular.

Script Information

Note that parameter expansion is used to pull the script name from $0, not the external
command, basename (Listing 12-10).

Listing 12-10. upload, Archive and Upload Files to a Remote Computer

scriptname=${o##*/}

description="Archive new or modified files and upload to web site"
author="Jayant Varma"

version=1.0

Default Configuration

Besides setting the variables, an array containing the names of the variables and their
descriptions is created (Listing 12-11). This is used by the menu and ga (question and
answer) functions for labels and prompts.

Listing 12-11. Default Values and settings Array

archive and upload settings

host=127.0.0.1 ## Remote host (URL or IP address)
port=22 ## SSH port

dest=work/upload ## Destination directory
user=jayant ## Login name on remote system

source=$HOME/public_html/oz-apps.com ## Local directory to upload

205

https://github.com/duncs/clusterssh

CHAPTER 12 RUNTIME CONFIGURATION

archivedir=$HOME/work/webarchives ## Directory to store archive files
syncfile=.sync ## File to touch with time of
last upload
array containing variables and their descriptions
varinfo=("" ## Empty element to emulate 1-based array
"host:Remote host (URL or IP address)"
"port:SSH port"
"dest:Destination directory"
"user:Login name on remote system"
"source:Local directory to upload"
"archivedir:Directory to store archive files"
"syncfile:File to touch with time of last upload"

)

These may be changed by command-line options

menu=0 ## do not print a menu

qa=0 ## do not use question and answer

test=0 ## 0 = upload for real; 1 = don't archive/upload, show
settings

configfile= ## if defined, the file will be sourced

configdir=$HOME/.config ## default location for configuration files
sleepytime=2 ## delay in seconds after printing messages
Bar to print across top and bottom of menu (and possibly elsewhere)

bar=barbarbarbar ## make long enough for any terminal window
menuwidth=${COLUMNS:-80}

Screen Variables

These variables use the ISO 6429 standard, which is now all but universal in terminals
and terminal emulators (Listing 12-12). This is discussed in detail in Chapter 14. When
printed to the terminal, these escape sequences perform the actions indicated in the
comments.

206

CHAPTER 12 RUNTIME CONFIGURATION

Listing 12-12. Define Screen Manipulation Variables

topleft="\e[0;0H" ## Move cursor to top left corner of screen
clearE0S="\e[J' ## Clear from cursor position to end of screen
clearEOL="\e[K' ## Clear from cursor position to end of line

Function Definitions

There are five functions, two of which, menu and ga, allow the user to change the settings.
With readline able to accept the user’s input, the -1i option to read is used if the shell
version is bash-4.x or greater. If the test option is used, the print_config function
outputs the settings in a format that is suitable for a configuration file, complete with

comments.

Function: die

The program exits via the die function when a command fails (Listing 12-13).

Listing 12-13. Define die Function

die() #@ Print error message and exit with error code
{ #@ USAGE: die [errno [message]]
error=${1:-1} ## exits with 1 if error number not given
shift
[-n "$*"] 88
printf "%s¥%s: %s\n" "$scriptname” ${version:+" ($version)"} "$*" >&2
exit "$error"

Function: menu

The menu function uses its command-line arguments to populate the menu (Listing 12-14).
Each argument contains a variable name and a description of the variable separated by
a colon.

207

CHAPTER 12 RUNTIME CONFIGURATION

The Upload Settings Menu

1: Remote host (URL or IP address) (127.0.0.1)

2: ssh port (22)

3: Destination directory (work/upload)

4: Login name on remote system (jayant)

5: Local directory to upload (/home/jayant/public_html/oz-apps.com)
6: Directory to store archive files (/home/jayant/work/webarchives)
7: File to touch with time of last upload (.sync)
q: Quit menu, start uploading
0: Exit upload

Select 1..7 or 'q/ o'

The function enters an infinite loop, from which the user exits by selecting q or 0.
Within the loop, menu clears the screen and then cycles through each argument, storing it
in item. It extracts the variable name and description using parameter expansion:

var=${item%%: *}
description=${item#t*:}

The value of each var is obtained through indirect expansion, ${ !var}, and is
included in the menu labels. The field width for the menu number is ${#max}, that is, the
length of the highest item number.

Listing 12-14. Define menu Function

menu() #@ Print menu, and change settings according to user input
{

local max=$#

local menutitle="UPLOAD SETTINGS"

local readopt

if [$max -1t 10]

then #t if fewer than ten items,

readopt=-sn1 ## allow single key entry

208

CHAPTER 12 RUNTIME CONFIGURATION

else
readopt=
fi
printf "$topleft$clearE0S" ## Move to top left and clear screen
while : ## infinite loop
do
R A e e A e e e
display menu
it
printf "$topleft" ## Move cursor to top left corner of screen
print menu title between horizontal bars the width of the screen
printf "\n%s\n" "${bar:0:$menuwidth}"

printf " %s\n" "$menutitle"”
printf "%s\n\n" "${bar:0:$menuwidth}"
menunum=1

loop through the positional parameters
for item
do
var=${item%%: *} ## variable name
description=${item#*:} ## variable description
print item number, description and value
printf " %${#max}d: %s (%s)$clearEOL\n" \
"$menunum” "$description™ "${!var}"
menunum=$(($menunum + 1))
done
... and menu adds its own items
printf " %${##}s\n" "q: Quit menu, start uploading” \
"0: Exit $scriptname”
printf "\n${bar:0:$menuwidth}\n" ## closing bar
printf "$clearEOS\n" ## Clear to end of screen
Hi
B R
R R R e A e e
User selection and parameter input
#Ht

209

CHAPTER 12 RUNTIME CONFIGURATION

read -p " Select 1..%$max or 'q' " $readopt x
echo
["$x" = q] 88 break ## User selected Quit
["$x" = 0] 8% exit ## User selected Exit
case $x in
[lo-91 | "")
contains non digit or is empty
printf "\a %s - Invalid entry\n" "$x" >&2
sleep "$sleepytime"”
55
*) if [$x -gt $max]
then
printf "\a %s - Invalid entry\n" "$x" >&2
sleep "$sleepytime"
continue
fi
var=${!x%%:*}
description=${!x#*:}
prompt user for new value
printf " %s$clearEOL\n" "$description”
readline value " > " "${lvar}"
if user did not enter anything, keep old value
if [-n "$value"”]
then
eval "$var=\$value"
else
printf "\a Not changed\n" >& 2
sleep "$sleepytime”
fi
55
esac
#Ht
R R R e A e e
done

210

CHAPTER 12 RUNTIME CONFIGURATION

Function: ga

The ga function takes the same arguments as menu, but instead of putting them into a

menu, it prompts the user for a new value for each variable (Listing 12-15). When it has

run through all the command-line arguments, which it splits up in the same manner as

menu, it calls the menu function for verification and editing of the values. Also like menu, it
uses readline to get the input and keeps the old value if nothing is entered.

Listing 12-15. Define ga Function

ga() #@ Question and answer dialog for variable entry

{

}

local item var description
printf "\n %s - %s\n" "$scriptname" "$description”
printf " by %s, copyright %d\n" "$author" "$copyright"
echo
if [${BASH VERSINFO[0]} -ge 4]
then

printf " %s\n" "You may edit existing value using the arrow keys."
else

printf " %s\n" "Press the up arrow to bring existing value" \

"to the cursor for editing with the arrow keys"

fi
echo
for item
do

split $item into variable name and description

var=${item%%:*}

description=${item#*:}

printf "\n %s\n" "$description”

readline value " >> " "${!var}"

[-n "$value"] && eval "$var=\$value"
done
menu "$@"

211

CHAPTER 12 RUNTIME CONFIGURATION
The dialogue looks like this:

$ upload -qt
upload - Archive new or modified files and upload to web site
by Jayant Varma, copyright 2023
You may edit existing value using the arrow keys.
Remote host (URL or IP address)
>> 0z-apps.com
SSH port
>> 99
Destination directory
>> public_html
Login name on remote system
>> jayant
Local directory to upload
>> /home/jayant/public_html/oz-apps.com
Directory to store archive files
>> /home/jayant/work/webarchives
File to touch with time of last upload
>> .sync

Function: print_config

The print_config function prints all the variables listed in the varinfo array to the
standard output in a format suitable for a configuration file, as described earlier in this
chapter. Although probably not necessary in this program, it encloses the assignment
value in double quotes and escapes double quotes in the value using bash’s search-and-

replace parameter expansion:

$ var=location
$ val="some"where'
$ printf "%s\n" "$var=\"${val//\"/\\\"}\""

location="some\ "where"

See the options-parsing section in Listing 12-16 for an example of the output of
print_config.

212

CHAPTER 12 RUNTIME CONFIGURATION

Listing 12-16. Define print_config Function

print_config() #@ Print values in a format suitable for a configuration file

{

}

local item var description
[-t 1] 8 echo ## print blank line if output is to a terminal
for item in "${varinfo[@]}"
do
var=${item%%:*}
description=${item#*:}
printf "%-35s ## %s\n" "$var=\"\${!var//\"/\\\"}\"" "$description”
done
[-t 1] 8 echo ## print blank line if output is to a terminal

Function: readline

If bash-4.x or later is in use, the readline function will place a value before the cursor
to edit (Listing 12-17). With an earlier version of bash, it puts the value into the history so
that it can be brought up with the up arrow (or Ctrl+P) and then edit it.

Listing 12-17. Define readline Function

readline() #@ get line from user with editing of current value

{

#@ USAGE var [prompt] [default]

local var=${1?} prompt=${2:- >>> } default=$3
if [${BASH_VERSINFO[0]} -ge 4]
then

read -ep "$prompt" ${default:+-i "$default"} "$var"
else

history -s "$default"”

read -ep "$prompt" "$var"
fi

213

CHAPTER 12 RUNTIME CONFIGURATION

Parse Command-Line Options

We can set the seven configuration variables with the a, d, f, h, p, s, and u options. In
addition, we can also specify a configuration file with the c option. A test run, which
prints the configuration information but doesn’t attempt to create a tarball or upload any
files, can be triggered with the t option. The m and q options offer the user a menu and a
question-and-answer dialogue, respectively.

If a host is given as an option, a config file name is built using a standard formula.
If the file exists, it is assigned to the configfile variable so that the parameters will be
loaded from it. Usually this is all that would be needed to add to the command line for
this purpose (Listing 12-18).

Listing 12-18. Parse Command-Line Options

while getopts c:h:p:d:u:a:s:f:mqt var
do
case "$var" in
c) configfile=$0PTARG ;;
h) host=$0PTARG
hostconfig=$configdir/$scriptname.$host.cfg
[-f "$hostconfig"] 8&
configfile=$hostconfig
p) port=$0PTARG ;;
s) source=$0PTARG ;;
d) dest=$0PTARG ;;
u) user=$0PTARG ;;
a) archivedir=$0PTARG ;;
f) syncfile=$0PTARG ;;
t) test=1 ;; ## show configuration, but do not archive or upload
m) menu=1 ;;
q) qa=1 ;;
esac
done
shift $(($OPTIND - 1))

214

CHAPTER 12 RUNTIME CONFIGURATION

Using options and redirection, this program can create new configuration files. Here,
parameters are given on the command line, and defaults are used for those not given.

$ upload -t -h www.example.com -p 666 -u paradigm -d
public_html\ -s $HOME/public_html/www.example.com > WWW .
example.com.cfg

$ cat www . example.com.cfg
host="www.example.com" ## Remote host (URL or IP address)
port="666" ## SSH port

dest="public_html" ## Destination directory
user="paradigm" ## Login name on remote system
source="/home/jayant/public_html/www.example.com " ## Local

directory to upload

archivedir="/home/jayant/work/webarchives" ## Directory to store
archive files

syncfile=".sync" ## File to touch with time of
last upload

Bits and Pieces

Listing 12-19 shows the rest of the script.

Listing 12-19. The Rest of the Script

If a configuration file is defined, try to load it
if [-n "$configfile"]

then
if [-f "$configfile"]
then
exit if problem with config file
. "$configfile" || die 1 Configuration error
else

Exit if configuration file is not found.
die 2 "Configuration file, $configfile, not found"
fi
fi

215

CHAPTER 12 RUNTIME CONFIGURATION

Execute menu or ga if defined
if [$menu -eq 1]
then

menu "${varinfo[@]}"
elif [$ga -eq 1]
then

ga "${varinfo[@]}"
fi
Create datestamped filename for tarball
tarfile=$archivedir/$host.$(date +%Y-%m-%dT%H:%M:%S.tgz)
if [$test -eq 0]
then

cd "$source" || die 4
fi
verbose must be set (or not) in the environment or on the command line
if [${verbose:-0} -gt 0]
then

printf "\nArchiving and uploading new files in directory: %s\n\n" "$PWD"

opt=v
else

opt=
fi
IFS=$'\n' # uncomment this line if you have spaces in filenames (shame
on you!)
if [${test:-0} -eq 0]
then

remote command="cd \"$dest\" || exit;tar -xpzf -"

Archive files newer than $syncfile

tar cz${opt}f "$tarfile” $(find . -type f -newer "$syncfile") &&

Execute tar on remote computer with input from $tarfile
ssh -p "$port" -1 "$user" "$host" "$remote command" < "$tarfile" 8&&
if ssh is successful
touch "$syncfile”

216

CHAPTER 12 RUNTIME CONFIGURATION

else #i#t test mode
print_config
fi

Summary

This chapter demonstrated seven methods of altering the runtime behavior of a script.
If changes will be rare, variables defined in the script may be adequate. When that isn’t
enough, command-line options (parsed with getopts) are often enough.

You can use a menu or question-and-answer dialogue both for runtime
configuration and for creating configuration files that can be sourced on demand. Using
differently named files for the same script can save typing. In some cases, setting a

variable in the shell’s environment is enough.

Exercises

1. Add code to the upload script that checks that all variables have
been set to legitimate values (e.g., that port is an integer).

2. Write a usage or help function and add it to the upload script.

3. Add an option to the upload script to save the configuration if it
has been saved.

4. Write a script that creates a configuration file in the same form as
words.cfg, prompting the user for the information to put in it.

217

CHAPTER 13

Data Processing

Data manipulation includes a wide range of actions, far more than can be adequately
covered in a single chapter. However, most actions are just the application of techniques
already covered in earlier chapters. Arrays are a basic data structure, and although
the syntax was covered in Chapter 5 and they were used in the fifteen puzzle code in
Chapter 11, we haven’t yet explored their uses. Parameter expansion has been used in
several chapters, but its application to parsing data structures has not been discussed.
This chapter will cover different ways of using strings and arrays, how to parse
character-delimited records into their individual fields, and how to read a data file.
There are two function libraries for manipulating two-dimensional grids, and there are
functions for sorting and searching arrays.

Arrays

POSIX shell does not include support for arrays, but bash has used indexed arrays since
version 2.0, and in version 4.0, associative arrays were added. The main difference
between indexed arrays and associative arrays is that indexed arrays are referenced

by an integer subscript whereas the associated arrays have a string key. There is no
preset limit to the number of elements an array can contain; they are limited only by
available memory.

Holes in an Indexed Array

If some elements of an indexed array are unset, the array is left with holes, and
it becomes a sparse array. It will then be impossible to traverse the array merely
by incrementing an index. There are various ways of dealing with such an array.
To demonstrate, let’s create an array and poke some holes (figuratively and
programmatically) in it:

219
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_13

https://doi.org/10.1007/978-1-4842-9588-5_13

CHAPTER 13 DATA PROCESSING

array=(abcdefghiij)
unset array[2] array[4] array[6] array[8]

The array now contains six elements instead of the original ten:

$ sa "${array[@]}"

- o -+~ QO o W

One way to iterate through all the remaining elements is to expand them as
arguments to for. In this method, there is no way of knowing what the subscript for each
element is:

for i in "${array[@]}"
do

: do something with each element, $i, here
done

With a packed array (one with no holes), the index can start at 0 and be incremented
to get the next element. With a sparse (or any) array, the ${!array[@]} expansion lists
the subscripts:

$ echo "${!array[@]}"
013579

This expansion can be used as the argument to for:

for i in "${!array[@]}"
do

: do something with ${array[$i]} here
done

That solution does not provide a method of referring to the next element. We can
save the previous element yet not get the value of the next one. To do that, we could put
the list of subscripts into an array and use its elements to reference the original array.

220

CHAPTER 13 DATA PROCESSING

Alternatively, we could pack the array, that is, use the elements of the array to create a
new array from the elements and assign it to the same variable, which removes the holes
and resets the element indexes.

$ array=("${array[@]}")
$ echo "${!array[@]}"
012345

Note This will convert an associative array to an indexed array.

We can also assign a string key value to the array, that is, create an associative array.

Using an Array for Sorting

Ordering data alphabetically (or numerically) is not usually a task for the shell. The sort
command is a very flexible and efficient tool that can handle most sorting needs. There
are, however, a couple of cases where sorting can best be done by the shell.

The most obvious is file name expansion, in which the result of expanding wildcards
is always sorted alphabetically. This is useful, for example, when working with date-
stamped files. If the date stamp uses the standard ISO format, YYYY-MM-DD, or a
compressed version, YYYYMMDD, the files will automatically be sorted in date order. If we
have files in the format log.YYYYMMDD, this loops through them in chronological order:

for file in log.* ## loop through files in chronological order
do

: do whatever
done

There is no need to use 1s; the shell sorts the wildcard expansion.
Since bash-4.x, another expansion is sorted alphabetically: associative arrays with
single-character subscripts:

$ declare -A g
$ qlc]=1 qld]=2 qla]-4
$ sa "${q[@]}"

221

CHAPTER 13 DATA PROCESSING

Note In bash 5.1.x, the array indexes are sorted in descending order.

This led to writing a function that sorts the letters of a word (Listing 13-1).

Listing 13-1. lettersort, Sort Letters in a Word Alphabetically

lettersort() #@ Sort letters in $1, store in $2
{
local letter string
declare -A letters
string=${1:?}
while [-n "$string"]
do
letter=${string:0:1}
letters["$letter"]=${letters["$letter"]}$letter
string=${string#?}
done
printf -v "${2:- LETTERSORT}" "%s" "${letters[@]}"

}
What's the point, you ask? Take a look at these examples:
$ lettersort triangle; printf "%s\n" "$ LETTERSORT"
trnligea # in earlier versions it would have been aegilnrt
$ lettersort integral; printf "%s\n" "$ LETTERSORT"

trnligea # in earlier versions it would have been aegilnrt

When the letters are sorted, you can see that the two words contain the same letters.
Therefore, they are anagrams of each other. Try this process with the words altering,
alerting, and relating.

222

CHAPTER 13 DATA PROCESSING

Insertion Sort Function

If one would want to use the external command for sort in the shell, it can be used. The
thing to note is that the function listed in Listing 13-2 is much slower than the external
sort command when dealing with more than estimated 15 to 20 elements. It inserts each

element into the correct position in an array and then prints the resulting array.

Note The sort function is a program written in C, optimized for speed, and
compiled, whereas the script written in bash is interpreted at runtime. However,
it all depends on the number of elements you are sorting and the way your
script is structured, which determines the suitability of sort overusing your own
scripted sort.

Listing 13-2. isort, Sort Command-Line Arguments

isort()
{
local -a a
a=("$1") ## put first argument in array for initial comparison
shift ## remove first argument
for e ## for each of the remaining arguments...
do
if ["$e" \< "${a[o]}"] ## does it precede the first
element?
then
a=("$e" "${a[@]}") ## if yes, put it first

elif ["$e" \> "${a[${#a[@]}-2]}"] ## if no, does it go at the end?
then

a=("${al@]}" "$e") ## if yes, put it at the end
else ## otherwise,

n=0

while ["${a[$n]}" \< "$e"] ## find where it goes

do

n=$(($n + 1))

223

CHAPTER 13 DATA PROCESSING

done
a=("${a[@]:0:n}" "$e" "${a[@]:n}") ## and put it there
fi
done
printf "%s\n" "${a[@]}"

}

To put the eight Australian capital cities in alphabetical order, we can use this code:

$ states=("New South Wales" Victoria Queensland Tasmania
"South Australia" \
"Western Australia

Northern Territory" "Australian
Capital Territory")

$ isort ${states[@]}

Australian Capital Territory

New South Wales

Northern Territory

Queensland

South Australia

Tasmania

Victoria

Western Australia

Searching an Array

As with the isort function, this function is designed for use with relatively small arrays.
If the array contains more than a certain number of elements (50? 60? 70?), it is faster to
pipe it through grep. The function in Listing 13-3 takes the name of an array and a search
string as arguments and stores elements containing the search string in a new array,
_asearch_elements.

Listing 13-3. asearch, Search Elements of an Array for a String

asearch() #@ Search for substring in array; results in array _asearch_
elements
{ #@ USAGE: asearch arrayname string

local arrayname=$1 substring=$2 array

224

CHAPTER 13

eval "array=(\"\${$arrayname[@]}\")"
case ${array[*]} in

"$substring") ;; ## it's there; drop through

*) return 1 ;; ## not there; return error
esac
unset _asearch_elements
for subscript in "${!array[@]}"
do

case ${array[$subscript]} in

"$substring")
_asearch_elements+=("${array[$subscript]}")

)

DATA PROCESSING

esac
done

}

To see the function in action, put the Australian capital cities into an array and call
asearch:
$ capitals=(Sydney Melbourne Brisbane Hobart Adelaide \

Perth Darwin Canberra)
$ asearch captials ne 8& printf "%s\n" "${ asearch_
elements[@]}"
Sydney
Melbourne
Brisbane
$ asearch captials rt 8& printf "%s\n" "${ asearch_
elements[@]}"

Hobart
Perth

Reading an Array into Memory

There are various ways of reading a file into an array with bash. The most obvious is also

the slowest, awhile readloop:

225

CHAPTER 13 DATA PROCESSING

unset array
while read line
do
array+=("$line")
done < "$kjv" ## kjv is defined in Chapter 8

A faster method that is still portable uses the external command, cat:

IFS=$'\n' ## split on newlines, so each line is a
separate element
array=($(cat "$kjv"))

In bash, cat is unnecessary, the redirection itself can serve the functionality of the
cat command:

array=$(< "$kjv") ## IFS is still set to a newline
With bash-4.x, a new built-in command, mapfile, is even faster:
mapfile -t array < "$kjv"

The options to mapfile allow you to select the line at which to start reading (actually,
it’s the number of lines to skip before starting to read), the number of lines to read, and
the index at which to start populating the array. If no array name is given, the variable
MAPFILE is used.

The following are the seven options to mapfile:

e -n num: Reads no more than numlines.

e -0 index: Begins populating the array at element index.

e -5 num: Discards the first num lines.

o -t:Removes the trailing newline from each line.

e -u fd: Reads from input stream fd instead of the standard input.

e -C callback: Evaluates the shell command callback every N lines,
where Nis setby -c N.

e -c N:Specifies the number of lines between each evaluation of
callback; the default is 5000.

226

CHAPTER 13 DATA PROCESSING

With older versions of bash, you could use sed to extract ranges of lines from a file;
with bash-4.x, you could use mapfile. Listing 13-4 installs a function that uses mapfile
if the version of bash is 4.x or greater, but sed is used if not.

Listing 13-4. getlines, Store a Range of Lines from a File in an Array

if ["${BASH_VERSINFO[0]}" -ge 4]

then
getlines() #@ USAGE: getlines file start num arrayname
{
mapfile -t -s$(($2 - 1)) -n ${3:?2} "$4" < "¢$1"
}
else

getlines() #@ USAGE: getlines file start num arrayname

{
local IFS=$'\n" getlinearray arrayname=${4:?}
getlinearray=($(sed -n "$2,$(($2 - 1 + $3)) p" "$1"))
eval "$arrayname=(\"\${getlinearray[@]}\")"

}
fi

Process substitution and external utilities can be used with mapfile to extract
portions of a file using different criteria:

mapfile -t exodus < <(grep "“Exodus: "$kjv") ## store the book of Exodus
mapfile -t books < <(cut -d: -f1 "$kjv" | uniq) ## store names of all
books in K3V

Tip We can also use readarray to read the data from a file into an array; it is
basically an alias for mapfile.

227

CHAPTER 13 DATA PROCESSING

Two-Dimensional Grids

Programmers often have to deal with two-dimensional grids. Crossword puzzles are a
grid, a chess game has a grid, games like tic-tac-toe are a smaller grid, and fifteen as seen
earlier in Chapter 11 is a board game that also utilizes a grid.

The obvious structure to use for these is a two-dimensional array. The dilemma is
that bash has only one-dimensional arrays, which requires a workaround to simulate two
dimensions. This can be achieved by creating an array, a string, and an array of strings -
namely, a “poor man'’s array” (see Chapter 9).

For a chess game, an associative array could be used, with the squares identified
using the standard algebraic notations (SAN) for squares such as a1, b1, up to g8, and h8.

declare -A chessboard
chessboard["a1"]=R
chessboard["a2" =P

. 60 squares skipped
chessboard["g8" |=r
chessboard["h8"]=b

This is a common way to represent the array where in the array each elementis a
string that represents a rank.

chessboard=(
RNBQKBRN
PPPPPPPP

PPPPPPPP
rnbgkbnr

)

Another preference, when using bash, could be to use a simple indexed array:

chessboardarray=(
RNBQKBRN
PPPPPPPP

228

CHAPTER 13 DATA PROCESSING

ppppppppP
rnbagkb
)

Or in a POSIX shell, it could be a single string:

chessboard="RNBQKBRNPPPPPP
PP pppppppprnbgkbnr”

Next, let us look at two function libraries, one for dealing with grids in a single string
and the other for grids stored in arrays.

Working with Single-String Grids

We will create a function library, stringgrid- funcs, for dealing with two-dimensional
grids stored in a single string. There is a function to initialize all elements of a grid to a
given character and one to calculate the index in the string of a character based on the x
and y coordinates. There’s one to fetch the character in the string using x/y and one to
place a character into the grid at x/y. Finally, there are functions to print a grid, starting
either with the first row or with the last row. These functions only work with square grids.

Function: initgrid

Given the name of the grid (i.e., the variable name), the size, and optionally the character
with which to fill it, initgrid (Listing 13-5) creates a grid with the parameters supplied.
If no character is supplied, a space is used.

Listing 13-5. initgrid, Create a Grid and Fill It

initgrid() #@ Fill N x N grid with a character

{ #@ USAGE: initgrid gridname size [character]
If a parameter is missing, it's a programming error, so exit
local grid gridname=${1:?} char=${3:- } size

229

CHAPTER 13 DATA PROCESSING

export gridsize=${2:?} ## set gridsize globally

size=$(($gridsize ** 2)) ## total number of characters in grid

printf -v grid "%$size.${size}s" " " ## print string of spaces to

variable

eval "$gridname=\${grid// /"$char"}" ## replace spaces with desired
character

}

The length of the string is the number of squares in a row of the grid, which is also
the grid size. A string of that length is created using a width specification in printf, with
the -v option to save it to a variable supplied as an argument. Pattern substitution then
replaces the spaces with the requested string.

This and the other functions in this library use the ${var: ?} expansion, which
displays an error and exits the script if there is no value for the parameter. This is
appropriate because it is a programming error, not a user error if a parameter is missing.
Even if it's missing because the user failed to supply it, it is still a programming error; the
script should have checked that a value had been entered.

A tic-tac-toe grid is a string of nine spaces. For something this simple, the initgrid
function is hardly necessary, but it is a useful abstraction:

$. stringgrid-funcs

$ initgrid ttt 3 "="

$ sa "$ttt" ## The sa script/function has been used in previous
chapters

Function: gridindex

We can use simple algebra to store the x and y coordinates as a single index number.
This can be simply achieved by first subtracting 1 from the row number (y) and then
multiplying it by the gridsize and then adding the column (x) - 1. In Listing 13-6,
gridindex is a simple formula that could be used inline when needed, but again the
abstraction makes using string grids easier and localizes the formula so that if there is a
change, it only needs fixing in one place.

230

CHAPTER 13 DATA PROCESSING

Listing 13-6. gridindex, Calculate Index from Row and Column

gridindex() #@ Store row/column's index into string in var or $ gridindex
{ #@ USAGE: gridindex row column [gridsize] [var]]

local row=${1:?} col=${2:?}

If gridsize argument is not given, take it from definition in

calling script

local gridsize=${3:-$gridsize}

printf -v "${4:- GRIDINDEX}" "%d" "$((($row - 1) * $gridsize +

$col - 1))"

}
What'’s the index of row 2, column 3 in the tic-tac-toe grid string?
$ gridindex 2 3 ## gridsize=3
$ echo "$ GRIDINDEX"
5

Function: putgrid

To change a character in the grid string, putgrid (Listing 13-7) takes four arguments: the
name of the variable containing the string, the row and column coordinates, and the new
character. It splits the string into the part before the character and the part after it using
bash’s substring parameter expansion. It then sandwiches the new character between
the two parts and assigns the composite string to the gridname variable. (Compare this
with the _overlay function in Chapter 7.)

Listing 13-7. putgrid, Insert Character in Grid at Specified Row and Column

putgrid() #@ Insert character int grid at row and column

{ #@® USAGE: putgrid gridname row column char
local gridname=%$1 ## grid variable name
local left right ## string to left and right of character to
be changed
local index ## result from gridindex function
local char=${4:?} ## character to place in grid

local grid=${!gridname} ## get grid string though indirection

231

CHAPTER 13 DATA PROCESSING

gridindex ${2:?} ${3:?} "$gridsize" index
left=${grid:0:index}
right=${grid:index+1}

grid=$left$4$right

eval "$gridname=\$grid"

}
Here’s the code for the first move in a tic-tac-toe game:
$ putgrid ttt 1 2 X
$ sa "$ttt"
: X

Function: getgrid

The opposite of putgrid is getgrid (Listing 13-8). It returns the character in a given
position. Its arguments are the grid name (we could have used the string itself
because nothing is being assigned to it, but the grid name is used for consistency), the
coordinates, and the name of the variable in which to store the character. If no variable
name is supplied, it is stored in GRIDINDEX.

Listing 13-8. getgrid, Get Character at Row and Column Location in Grid

getgrid() #@ Get character from grid in row Y, column X
{ #@® USAGE: getgrid gridname row column var
D${2:2}) ${2:?} ${3:?} ${4:?}
local grid=${!1}
gridindex "$2" "$3"
eval "$4=\${grid: GRIDINDEX:1}"
}

This snippet returns the piece in the square e1. A chess utility would convert the
square to coordinates and then call the getgrid function. Here, it is used directly:

$ gridsize=8
$ chessboard="RNBQKBRNPPPPPP
PP pppppppprnbgkbnr”

232

CHAPTER 13 DATA PROCESSING

$ getgrid chessboard 1 5 e1
$ sa ||$e1||

Note There are 32 spaces in the code shown previously as they represent the
middle four rows of the chessboard.

Function: showgrid

This function (Listing 13-9) extracts rows from a string grid using substring expansion
and the gridsize variable and prints them to the standard output.

Listing 13-9. showgrid, Print a Grid from a String

showgrid() #@ print grid in rows to stdout
{ #@ USAGE: showgrid gridname [gridsize]
local grid=${!1:?} gridsize=${2:-$gridsize}
local row ## the row to be printed, then removed from local copy of grid
while [-n "$grid"] ## loop until there's nothing left
do

row=${grid:0:"$gridsize"} ## get first $gridsize characters
from grid
printf "\t:%s:\n" "$row" ## print the row
grid=${grid#"$row"} ## remove $row from front of grid
done
}
Here, another move is added to the tic-tac-toe board and displays it:
$ gridsize=3 ## reset gridsize after changing it for
the chessboard
$ putgrid ttt 2 2 O ## add 0's move in the center square
$ showgrid ttt ## print it

233

CHAPTER 13 DATA PROCESSING

X
: 0

Function: rshowgrid

For most grids, counting begins in the top left corner. For others, such as a chessboard,
it starts in the lower left corner. To display a chessboard, the rshowgrid function extracts
and displays rows starting from the end of the string rather than from the beginning.

In Listing 13-10, substring expansion is used with a negative.

Listing 13-10. rshowgrid, Print a Grid in Reverse Order

rshowgrid() #@ print grid to stdout in reverse order

{ #@ USAGE: rshowgrid grid [gridsize]
local grid gridsize=${2:-$gridsize} row
grid=${!1:?}
while [-n "$grid"]
do

Note space before minus sign
to distinguish it from default value substitution
row=${grid: -$gridsize} ## get last row from grid
printf "\t:%s:\n" "$row" ## print it
grid=${grid%"$row"} ## remove it

done

Here, rshowgrid is used to display the first move of a chess game. (For those who are
interested, the opening is called Bird’s Opening. It’s not often played, but Chris has been
using it successfully for 45 years.)

$ gridsize=8

$ chessboard="RNBQKBRNPPPPPP

PP pppppppprnbgkbnr”
$ putgrid chessboard 2 6 ' '

$ putgrid chessboard 4 6 P

$ rshowgrid chessboard

234

CHAPTER 13 DATA PROCESSING

:rnbgkbnr:
-PPPpPpppp-

:PPPPP PP:
:RNBQKBRN:

These output functions can be augmented by piping the output through a utility
such as sed or awk or even replaced with a custom function for specific uses. He finds
that the chessboard looks better when piped through sed to add some spacing:

$ rshowgrid chessboard | sed 's/./& /g' ## add a space
after every
character
t:rnbgkbnr:

pppppppPP -

:PPPPP PP:
:RNBOQKBRN:

Two-Dimensional Grids Using Arrays

For many grids, a single string is more than adequate (and is portable to other shells),
but an array-based grid offers more flexibility. In the fifteen puzzle in Chapter 11, the
board is stored in an array. It is printed with printf using a format string that can easily
be changed to give it a different look. The tic-tac-toe grid in an array could be as follows:

$ ttt=(mmn X mn nmn O mmn mn X nmn)
And this is the format string:

$ fmt="

235

CHAPTER 13 DATA PROCESSING

%1s | %1s | %is

____+___+____
%1s | %1s | %1s
____+___+____

%1s | %1s | %1s

And the result, when printed, looks like this:

$ printf "$fmt" "${ttt[@]}"

If the format string is changed to this:

fmt="
/ /
%1s / %1s _/ ¥1s
_/ /
NENEENNENN
/ /
%1s / %1ls /[¥1s
/ /
NENNENENNN
_/ /
%1s / %1s _/ ¥1s
/ /

the output will look like this:

/ /

236

CHAPTER 13 DATA PROCESSING

/X
7 !
A1 1 1T T T
_/ !
/0 _/
_/ /
A ST
7 !
/X
/ /

The same output could be achieved with a single-string grid, but it would require
looping over every character in the string. An array is a group of elements that can be
addressed individually or all at once, depending on the need.

The functions in arraygrid-funcs mirror those in stringgrid-funcs. In fact, the
gridindex function is identical to the one in stringgrid-funcs, so it’s not repeated
here. As with the sdtring grid functions, some of them expect the size of the grid to be
available in a variable, agridsize.

Function: initagrid

Most of the functions for array grids are simpler than their single-string counterparts. A
notable exception is initagrid (Listing 13-11), which is longer and slower, due to the
necessity of a loop instead of a simple assignment. The entire array may be specified as
arguments, and any unused array elements will be initialized to an empty string.

Listing 13-11. initagrid, Initialize a Grid Array

initagrid() #@ Fill N x N grid with supplied data (or placeholders if none)
{ #@ USAGE: initagrid gridname size [character ...]
If a required parameter is missing, it's a programming error, so exit
local grid gridname=${1:?} char=${3:- } size

export agridsize=${2:?} ## set agridsize globally
size=$(($agridsize * $agridsize)) ## total number of elements in grid
shift 2 ## Remove first two arguments, gridname and agridsize

grid=("$@") ## What's left goes into the array

237

CHAPTER 13 DATA PROCESSING

while [${#grid[@]} -1t $size]

do
grid+=("")
done
eval "$gridname=(\"\${grid[@]}\")"
}

Function: putagrid

Changing a value in an array is a straightforward assignment. Unlike changing a
character in a string, there is no need to tear it apart and put it back together. All that’s
needed is the index calculated from the coordinates. This function (Listing 13-12)
requires agridsize to be defined.

Listing 13-12. putagrid, Replace a Grid Element

putagrid() #@ Replace character in grid at row and column
{ #@® USAGE: putagrid gridname row column char
local left right pos grid gridname=$1
local value=${4:?} index
gridindex ${2:?} ${3:?} "$agridsize" index ## calculate the index
eval "$gridname[index]=\$value" ## assign the value

Function: getagrid

Given the x and y coordinates, getagrid fetches the value at that position and stores it in
a supplied variable (Listing 13-13).

Listing 13-13. getagrid, Extract an Entry from a Grid

getagrid() #@ Get entry from grid in row Y, column X

{ #@® USAGE: getagrid gridname row column var
po${1:?} ${2:7} ${3:7} ${4:?}
local grid

238

CHAPTER 13 DATA PROCESSING

eval "grid=(\"\${$1[@]}\")"
gridindex "$2" "$3"
eval "$4=\${grid[$ GRIDINDEX]}"

}

Function: showagrid

The function showagrid (Listing 13-14) prints each row of an array grid on a
separate line.

Listing 13-14. showagrid, Description

showagrid() #@ print grid to stdout
{ #@ USAGE: showagrid gridname format [agridsize]
local gridname=${1:?} grid
local format=${2:?}
local agridsize=${3:-${agridsize:?}} row
eval "grid=(\"\${$1[@]}\")"
printf "$format" "${grid[@]}"

Function: rshowagrid

The function rshowagrid (Listing 13-15) prints each row of an array grid on a separate
line in reverse order.

Listing 13-15. rshowagrid, Description

rshowagrid() #@ print grid to stdout in reverse order
{ #@ USAGE: rshowagrid gridname format [agridsize]
local format=${2:?} temp grid
local agridsize=${3:-$agridsize} row
eval "grid=(\"\${$1[@]}\")"
while ["${#grid[@]}" -gt 0]
do
Note space before minus sign

239

CHAPTER 13 DATA PROCESSING

to distinguish it from default value substitution
printf "$format" "${grid[@]: -$agridsize}"
grid=("${grid[@]:0:${#grid[@]}-$agridsize}")

done

Data File Formats

Data files are used for many purposes and come in many different flavors, which are
divided into two main types: line oriented and block oriented. In line-oriented files, each
line is a complete record, usually with fields separated by a certain character. In block-
oriented files, each record can span many lines, and there may be more than one block
in a file. In some formats, a record is more than one block (a chess game in PGN format,
for example, is two blocks separated by a blank line).

The shell is not the best language for working with large files of data; it is better when
working with individual records. However, there are utilities such as sed and awk that can
work efficiently with large files and extract records to pass to the shell. This section deals
with processing single records.

Line-Based Records

Line-based records are those where each line in the file is a complete record. It will
usually be divided into fields by a delimiting character, but sometimes the fields are
defined by length: the first 20 characters are the names, the next 20 are the first line of
the address, and so on.

When the files are large, the processing is usually done by an external utility such
as sed or awk. Sometimes, an external utility will be used to select a few records for the
shell to process. This snippet searches the password file for users whose shell is bash and
feeds the results to the shell to perform some (unspecified) checks:

grep 'bash$' /etc/passwd |
while read line
do

: perform some checking here
done

240

CHAPTER 13 DATA PROCESSING

Delimiter-Separated Values

Most single-line records will have fields delimited by a certain character. In /etc/
passwd, the delimiter is a colon. In other files, the delimiter may be a tab, tilde, or,
very commonly, a comma. For these records to be useful, they must be split into their
separate fields.

When records are received on an input stream, the easiest way to split them is to
change IFS and read each field into its own variable:

grep 'bash$' /etc/passwd |
while IFS=: read user passwd uid gid name homedir shell
do
printf "%16s: %s\n" \
User "$user” \
Password "$passwd" \
"User ID" "$uid" \
"Group ID" "$gid" \

Name "$name" \
"Home directory” "$homedir" \
Shell "$shell”
read < /dev/tty

done

Sometimes, it is not possible to split a record as it is read, such as if the record will be
needed in its entirety as well as split into its constituent fields. In such cases, the entire
line can be read into a single variable and then split later using any of several techniques.
For all of these, the examples here will use the root entry from /etc/passwd:

record=root:x:0:0:ro0t:/root:/bin/bash
The fields can be extracted one at a time using parameter expansion:

for var in user passwd uid gid name homedir shell

do
eval "$var=\${record%%:*}" ## extract the first field
record=${record#t*:} ## and take it off the record
done

241

CHAPTER 13 DATA PROCESSING

As long as the delimiting character is not found within any field, records can be split
by setting IFS to the delimiter. When doing this, file name expansion should be turned
off (with set -f) to avoid expanding any wildcard characters. The fields can be stored in
an array, and variables can be set to reference them:

IFS=:

set -f

data=($record)
user=0

passwd=1

uid=2

gid=3

name=4

homedir=5
shell=6

The variable names are the names of the fields that can then be used to retrieve
values from the data array:

$ echo;printf "%16s: %s\n" \

User "${data[$user]}" \
Password "${data[$passwd]}" \
"User ID" "${data[$uid]}" \
"Group ID" "${data[$gid]}" \

[

[

[

Name "${data[$name]}" \
"Home directory" "${data[$homedir]}" \
Shell "${data[$shell]}"

User: root
Password: x

User ID: O
Group ID: 0
Name: root

Home directory: /root
Shell: /bin/bash

It is more usual to assign each field to a scalar variable. This function (Listing 13-16)
takes a passwd record and splits it on colons and assigns fields to the variables.

242

CHAPTER 13 DATA PROCESSING

Listing 13-16. split passwd, Split a Record from /etc/passwd into Fields and
Assign to Variables

split passwd() #@ USAGE: split passwd RECORD

{
local opts=$%$- ## store current shell options
local IFS=:
local record=${1:?} array
set -f ## Turn off filename expansion
array=($record) ## Split record into array

case $opts in *f*);; *) set +f;; esac ## Turn on expansion if
previously set

user=${array[0]}

passwd=${array[1]}

uid=${array[2]}

gid=${array[3]}

name=${array[4]}

homedir=${array[5]}

shell=${array[6]}

The same thing can be accomplished using a here document (Listing 13-17).

Listing 13-17. split_passwd, Split a Record from /etc/passwd into Fields and
Assign to Variables

split passwd()
{

IFS=: read user passwd uid gid name homedir shell <<.

$1

More generally, any character-delimited record can be split into variables for each
field with this function (Listing 13-18).

243

CHAPTER 13 DATA PROCESSING

Listing 13-18. split record, Split a Record by Reading Variables

split _record() #@ USAGE parse record record delimiter var ...

{

local record=${1:?} IFS=${2:?} ## record and delimiter must be provided

: ${3:7} ## at least one variable is required
shift 2 ## remove record and delimiter, leaving
variables

Read record into a list of variables using a 'here document'
read "$@" <<.

$record
}
Using the record defined earlier, here’s the output:

$ split record "$record" : user passwd uid gid name
homedir shell

$ sa "$user" "$passwd" "$uid" "$gid" "$name" "$homedir"
"$shell”

:root:

IX:

:0:

:0:

:root:

:/root:

:/bin/bash:

Fixed-Length Fields

Less common than delimited fields are fixed-length fields. They aren’t used often, but
when they are, they would be looped through name=width strings to parse them, which is
how many text editors import data from fixed-length field data files:

line="John 123 Fourth Street Toronto
Canada "
for nw in name=15 address=20 city=12 country=22

244

CHAPTER 13 DATA PROCESSING

do
var=${nwhs%=*} ## variable name precedes the equals sign
width=${nwi*=} ## field width follows it
eval "$var=\${line:0:width}" ## extract field
line=${1line:width} ## remove field from the record
done

Block File Formats

Among the many types of block data files to work with is the portable game notation
(PGN) chess file. It stores one or more chess games in a format that is both human
readable and machine readable. All chess programs can read and write this format.

Each game begins with a seven-tag roster that identifies where and when the game
was played, who played it, and the results. This is followed by a blank line and then the
moves of the game.

Here’s a PGN chess game file (https://en.wikipedia.org/wiki/Portable Game
Notation):

Event "ICS rated blitz match"]
Site "69.36.243.188"]
Date "2009.06.07"]

White "torchess"]

Black "FidelCastro"]

[Result "1-0"]

1. f4 c5 2. e3 Nc6 3. Bb5 Qc7 4. Nf3 d6 5. b3 a6 6. Bxcé6+ Qxc6 7. Bb2 Nf6
8. 0-0 e6 9. Qel Be7 10. d3 0-0 11. Nbd2 b5 12. Qg3 Kh8 13. Ne4 Nxe4 14.
Oxg7#

{FidelCastro checkmated} 1-0

[
[
[
[
[
[

We can use awhile loop to read the tags and then mapfile to get the moves of the
game. The gettag function extracts the value from each tag and assigns it to the tag
name (Listing 13-19).

245

https://en.wikipedia.org/wiki/Portable_Game_Notation
https://en.wikipedia.org/wiki/Portable_Game_Notation

CHAPTER 13 DATA PROCESSING

Listing 13-19. readpgn, Parse a PGN Game and Print the Game in a Column

pgnfile="${1:?}"
header=0
game=0
gettag() #@ create a variable with the same name and value as the tag
{
local tagline=%1
tag=${tagline%% *} ## get line before the first space
tag=${tag#?} ## remove the open bracket
IFS=""" read a val b <<. ## get the 2nd field, using " as delimiter
$tagline

eval "$tag=\$val"

}
{
while IFS= read -r line
do
case $line in
\[*) gettag "$line" ;;
""Y [-n "$Event"] & break;; ## skip blank lines at
beginning of file
esac
done
mapfile -t game ## read remainder of the file

} < "$pgnfile”
remove blank lines from end of array
while [-z "${game[${#game[@]}-1]}"]
do
unset game[${#game[@]}-1]
done
print the game with header
echo "Event: $Event"
echo "Date: $Date"
echo
set -f

246

CHAPTER 13 DATA PROCESSING

printf "%4s %-10s %-10s\n" "" White Black "" ========== ==========
"" "$White" "$Black" ${game[@]:0:${#game[@]}-1}
printf "%s\n" "${game[${#game[@]}-1]}"

Summary

This chapter only scratched the surface of the possibilities for data manipulation, but it

is hoped that it will provide techniques to solve some of your needs and provide hints for

others. Much of the chapter involved using the most basic of programming structures:

arrays. Techniques were shown for working with single-line, character-delimited records

and basic techniques for working with blocks of data in files.

Exercises

1. Modify the isort and asearch functions to use sort and grep,
respectively, if the array exceeds a certain size.

2. Write a function that transposes rows and columns in a
grid (either a single-string grid or an array). For example,
transform these:

123
456
789

into these:

147
256
369

3. Convert some of the grid functions, either string or array versions,
to work with grids that are not square, for example, 6 x 3.

4. Convert the code that parses fixed-width records into a function
that accepts the line of data as the first argument, followed by the
varname=width list.

247

CHAPTER 14

Scripting the Screen

Unix purists will shake their heads over this chapter. Traditionally, screen manipulation
is done through the termcap or terminfo database that supplies the information
necessary to manipulate any of dozens or even hundreds of types of terminals. The shell
interface to the database is an external command, tput.

On some systems, tput uses the termcap database; on others (mostly newer
systems), it uses the terminfo database. The commands for the two databases are not
the same, so a tput command written for one system may not work on another.

On one system, the command to place the cursor at the 20th column on the 10th row
is as follows:

tput cup 9 19
On another system, this is the command:
tput cm 9 19

These commands will produce the correct output for whatever type of terminal is
specified in the TERM variable. (Note: tput starts counting at 0.)

However, the plethora of terminal types has, for all intents and purposes, been
reduced to a single, standard type. This standard, ISO 6429 (also known as ECMA-48
and formerly known as ANSI X3.64 or VT100), is ubiquitous, and terminals that do not
support it are few and far between. As a result, it is now feasible to code for a single
terminal type. One advantage of this homogeneity is that the necessary coding can be
done entirely within the shell. There’s no need for an external command.

249
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_14

https://doi.org/10.1007/978-1-4842-9588-5_14

CHAPTER 14 SCRIPTING THE SCREEN

Teletypewriter vs. Canvas

There are two methods of sending the output of a script to a terminal screen. The first
and more traditional method uses the terminal as if it were a printer or teletypewriter
(which is the origin of the abbreviation tty for the screen or terminal). In this mode, as
each line is printed, the paper (or screen image) is scrolled up. Old lines fall to the floor
(or disappear off the top of the screen). It’s simple, and it is more than adequate for many
applications.

The second method treats the screen as a blackboard or canvas and prints to specific
points on its surface. It erases and overprints previously written sections. It may print
text in columns or at specific locations on the screen. The terminal becomes a random-
access, rather than serial, device.

This chapter looks at the screen as a canvas or blackboard. It defines a number of
variables and functions for screen manipulation as well as presents some demonstration
programs that use them.

Stretching the Canvas

To use the screen as a canvas, the most important capability is to be able to

position the cursor at any given location on the screen. The sequence for that is
ESC[<ROW> ;<COL>H. When converted to a printf format string, it can be used directly or
in a function:

cu_row_col=$"\e[%d;%dH"
printf "$cu_row col" 5 10 ## Row 5, column 10
echo "Here I am!"

All of the functions in this chapter are part of the screen-funcs library, which
sources the screen-vars file. Listing 14-1 gives the screen manipulation function.

Listing 14-1. screen-funcs, Library of Screen Manipulation Functions
. screen-vars

The printat function (Listing 14-2) places the cursor at the requested location,
and if there are any further arguments, it prints them. If the row and column are not
specified, printat moves the cursor to the top left corner of the screen.

250

CHAPTER 14 SCRIPTING THE SCREEN

Listing 14-2. printat, Place the Cursor at a Specified Location and Print
Optional String

printat() #@ USAGE: printat [row [column [string]]]

{
printf "${cu row col?}" ${1:-1} ${2:-1}
if [$# -gt 2]
then
shift 2
printf "%s" "$*"
fi
}

Control Sequence Introducer

Like all the escape sequences, cu_row_col begins with ESC[. This is the control sequence
introducer (CSI). It is defined in the screen-vars file (Listing 14-3).

Listing 14-3. screen-vars, Screen Variable Definitions

ESC=$"\e'
CSI=$ESC[

Priming the Canvas

Before drawing on the screen, it must usually be cleared, and from time to time, various
parts of the screen will need to be cleared. These variables contain the fundamental
sequences for clearing the screen or lines (Listing 14-4).

Listing 14-4. screen-vars, Variable Definitions for Erasing All or Part of

the Screen
topleft=${CSI}H ## move cursor to top left corner of screen
cls=${CSI}] ## clear the screen

clear=$topleft$cls ## clear the screen and move to top left corner
clearEOL=${CSI}K ## clear from cursor to end of line

251

CHAPTER 14 SCRIPTING THE SCREEN

clearBOL=${CSI}1K ## clear from cursor to beginning of line
clearE0S=${CSI}0] ## clear from cursor to end of screen
clearBOS=${CSI}1] ## clear from cursor to beginning of screen

There are also functions for clearing rectangular areas of the screen, which are
presented later in the chapter.

Moving the Cursor

Besides being moved to an absolute location, the cursor can be moved relative to its
current position. The first four sequences are the same as those generated by the cursor
keys, and they take arguments for moving more than one line or column. The next two
turn the cursor on and off. The following two variables save the cursor position and
move it back to the saved position, respectively.

The last two move to the next or previous line at the same column as the beginning
of the previously printed line. The printf specifier, %s, is removed because it would
consume arguments that are to be printed (Listing 14-5).

Listing 14-5. screen-vars, Variable Definitions for Moving the Cursor

cursor movement strings
cu_up=${CSI}%sA
cu_down=${CSI}%sB
cu_right=${CSI}%sC
cu_left=${CSI}%sD

turn the cursor off and on
cu_hide=${CSI}?251
cu_show=${CSI}?121${CSI}?25h

save the cursor position

cu_save=${CSI}s # or ${ESC}7
move cursor to saved position
cu_restore=${CSI}u ## or ${ESC}8

move cursor to next/previous line in block
cu_NL=$cu_restore${cu_down/\%s/}$cu_save
cu_PL=$cu_restore${cu_up/\%s/}$cu_save

252

CHAPTER 14 SCRIPTING THE SCREEN

The format strings for cursor movement use the %s specifier rather than %d, even though
any argument will be a number. This is because printf replaces %d with a zero when there is
no argument to fill it. If that happened, the cursor would not move at all. With %s, they move
one column or row when there is no argument because %s is replaced by a null string.

The script in Listing 14-6 puts these variables and the printat function to work.

Listing 14-6. screen-demol, Script to Make printat Work

. screen-funcs ## source the screen-

funcs library

printf "$clear$cu_hide" ## Clear the screen and hide
the cursor

printat 10 10 "${cu_save}XX" ## move, save position, and
print XX

sleep 1 # 77777777

printat 20 20 "20/20" ## move and print

sleep 1 ## 77777777

printf "$cu_restore$cu down${cu save}YY" ## restore pos., move, print,
save pos.

sleep 1 ## 77777777

printf "$cu_restore$cu down${cu save}ZZ" 4 ## restore pos., move, print,
save pos.

sleep 1 ## 77777777

printat 1 1 "$cu_show" ## move to top left and

show cursor

For a variation, try changing the coordinates of the first printat command to other
values, say, 5 and 40.

Changing Rendition Modes and Colors

Characters can be printed in bold, underline, or reverse modes as well as in various
colors for those terminals that support them. (Are there any left that don’t?) These
attributes are all modified with a sequence in the form ESC [ATTRm, where ATTR is the
number of an attribute or color (Listing 14-7). Multiple attributes can be specified by
separating them with semicolons.

253

CHAPTER 14 SCRIPTING THE SCREEN

Colors are specified with the integers 0 to 7, and 9 will reset to the default. These
are prefixed by 3 for foreground color and 4 for background color. Attributes are also
specified by 0 to 7 but without a prefix. Though eight attributes are defined, only three
are widely supported: 1 (bold), 4 (underline), and 7 (reverse). These attributes can be
turned off individually with the values 22, 24, and 27, respectively. A value of 0 resets all
attributes and colors to their defaults.

Listing 14-7. screen-vars, Variable Definitions for Colors and Attributes

colours
black=0
red=1
green=2
yellow=3
blue=4
magenta=5
cyan=6
white=7
fg=3 ## foreground prefix
bg=4 ## background prefix
attributes
bold=1
underline=4
reverse=7
set colors
set_bg="${CSI}4%dm" ## set background color
set_fg="${CSI}3%dm" ## set foreground color
set fgbg="${CSI}3%d;4%dm" ## set foreground and background colors

As the next demonstration script shows, the colors and attributes can be used in “tty”
mode as well as “canvas” mode (Listing 14-8).

Listing 14-8. screen-demo2, Color and Attributes Mode

. screen-funcs
echo
for attr in "$underline" 0 "$reverse" "$bold" "$bold;$reverse"

254

CHAPTER 14 SCRIPTING THE SCREEN

do
printf "$set attr" "$attr"
printf "$set fg %s " "$red" RED
printf "$set fg %s " "$green" GREEN
printf "$set fg %s " "$blue" BLUE
printf "$set fg %s " "$black" BLACK
printf "\e[m\n"

done

echo

Placing a Block of Text on the Screen

The put_block function prints its arguments one beneath the other at the current cursor
position; put_block at moves the cursor to the specified location, shifts the arguments
to remove the row and column, and then calls put_block with the remaining arguments
(Listing 14-9).

The cu_NL variable moves the cursor to the saved position and then moves down a
line and saves that position.

Listing 14-9. put block and put_block at, Print a Block of Text Anywhere on
the Screen

put_block() #@ Print arguments in a block beginning at the current position
{
printf "$cu_save" ## save cursor location
printf "%s$cu NL" "$@" ## restore cursor location, move line down,
save cCursor

}
put_block at() #@ Print arguments in a block at the position in $1 and $2

{
Printat ||$1u ||$2||
shift 2
put block "$@"

}

255

CHAPTER 14 SCRIPTING THE SCREEN

Listing 14-10 shows the script for screen-demo3, which displays blocks of data on the
screen in columnar format.

Listing 14-10. screen-demo3

. screenfuncs

printf "$cls"”

put block at 3 12 First Second Third Fourth Fifth

put _block at 2 50 January February March April May June July

The output of screen-demo3 is as follows:

January
First February
Second March
Third April
Fourth May
Fifth June

July

The put_block and put_block at functions work well when the screen is empty. If
there’s a lot of text already on the screen, the output may be obscured. For those cases,
there are the print_block at and print_block functions that clear a rectangular area
around the block.

To determine the width that needs to be cleared, put_block passes its arguments
to the max_length function, which loops through the arguments to find the longest
(Listing 14-11).

Listing 14-11. _max_length, Store Length of the Longest Argumentin MAX LENGTH

_max_length() #@ store length of longest argument in _MAX LENGTH
{

local var
_MAX_LENGTH=${#1} ## initialize with length of first parameter
shift ## ...and remove first parameter

256

CHAPTER 14 SCRIPTING THE SCREEN

for var ## loop through remaining parameters
do

["${#var}" -gt "$_MAX LENGTH"] &% _MAX_LENGTH=${#var}
done

The print_block function uses the result from max_length as a width specification
to printf (Listing 14-12). Blank lines are printed before and after the text, and a space
is printed before and after each line. The only difference between print_block_at and
put_block_at is that one calls print_block and the other calls put_block.

Listing 14-12. print_block, Clear Area and Print Block

print _block() #@ Print arguments in a block with space around them
{

local MAX_LENGTH

_max_length "$@"

printf "$cu_save"

printf " %-${ MAX_LENGTH}s $cu NL" " " "$@" " "
}
print_block at() #@ Move to position, remove 2 parameters and call
print_block
{

printat $1 $2

shift 2

print _block "$@"

}

The text to be printed with either print_block or put_block is more likely to be a
single string than separate arguments. To split the string into words or phrases short
enough to fit a given space, use the wrap function (Listing 14-13). This function splits a
string into lines with a maximum width that is specified on the command line.

257

CHAPTER 14 SCRIPTING THE SCREEN

Listing 14-13. wrap, Split the String into Array with Elements Not Exceeding
Maximum Length

wrap() #@ USAGE: wrap string length
{ #@ requires bash-3.1 or later
local words=$1 textwidth=%$2 line= opts=$-
local len=0 templen=0
set -f
unset -v wrap
for word in $words
do
templen=$(($len + 1 + ${#word})) ## Test adding a word
if ["$templen” -gt "$textwidth"] ## Does adding a word exceed length?
then

wrap+=("$line") ## Yes, store line in array
printf -v line "%s" "$word" ## begin new line
len=${#word}

else
len=$templen ## No, add word to line
printf -v line "%s" "${line:+"$line "}" "$word"

fi

done

wrap+=("$line")
case $opts in
) 55
*) set +f ;;

esac

The sample shown in Listing 14-14 uses wrap and print_block at.

258

CHAPTER 14 SCRIPTING THE SCREEN

Listing 14-14. screen-demo4, Demonstrates the wrap and print_block
Functions

clear

wrap "The quick brown fox jumps over the lazy dog" 15
X=XXXXXXXXXXXKKXXXXXKXXXX XK XXXXKXXXKKKXXXXKXXXKKXKXKXXKXXXKKXKXXXXXXXKKKXKXXXX
XXXXXXXXX

printat 1 1

printf "%s\n" $x{,,,,,5555>} ## print 11 lines of 'x's
print_block at 3 33 "${wrap[@]}"

printat 12 1

The output is as follows:

1,9,9.9.9,9,0,9,0,9,0,0.0.0,0.0.0.0.0.0.0.0.9.9.9.9.0,0,0,0.0,0,0,0,0.0,0.0.0.0.0.9.0.9.9.9,.0,0,0,0,0:0,0.0.0.0.0.0.0.0.9.9.9.9.9.9,9.9,0,0,0,0,0,0.¢
1,9,9.9.9.9.9.9.9.9.0.0.0.0.0.0.0.0.0.0.0.9.9.9.9.9.9.9.9.9.0.0.0.0.0.0.0.0.0.0.0.9.9.9.9.9.99999900900000090909999999999001
XXXXXXXXX XXX XXX X XXX XXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX The qUiCk ,9,0,9,0,0.0,0.0.0.0.0.0.9.9.9.9.9,9,0,0,0,0,0,0.¢
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX brown fox jumps XXXXXXXXXX XXX XXX XXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX over the lazy XXXXXXXXXXXXXXXXXXXXXXXXX
),9,9.0.9.9,9,9,0,9,9,0,0.0,0.0.0.0.0.0.0.0.0.9.9.9.0,0,0,0,0,0.¢ dOg ,9,0,9,0,0.0,0.0.0.0.0.0.9.9.9.9.9,9,0,0,0,0,0,0.¢
XXXXXXXXX XXX XXX XXX XXXXXXXXXXXXXX XXXXXXXXXX XXX XXX XXXXXXXXX
1,9,0.9.9.9,9,9,0,9,0,0.0.0.0.0.0.0.0.0.0.0.90.9.9.9.9,0,9,0.0,0,0,0.0.0.0.0.0.0.0.9.9.9.9.9.9.9,9.9.9.0.000000000090999.99909090001
1,9,9.9.9,9,0,9,0,9,0,0,0.0.0.0.0.0.0.0.0.0.9.9.9.9,.0,0,0,0.0,0,0,0,0.0,.0.0.0.0.0.0.0.9.9.9,.0,0,0,0,0,0,0.0.0.0.0.0.0.0.9.9.9.9.9.9,9.0,0,0,0,0,0,0.¢

XXXXXXXXXXXX XXX X XXX XXXXXXXXXXXXXXXXX X XXX X XXXKX XXX XXX X XXX KX XXX X XXXXXXXXXXXX

Scrolling Text

By combining an array with substring expansion, text can be scrolled in any area of the
screen. Because the entire area can be printed with a single printf command, scrolling
is fast, though it gets slower as the array size increases. The demonstration in Listing 14-15
stores the file names in /usr/bin/ in the array, 1ist; scrolls the list up; waits for a
second; and then scrolls it down.

Each loop, up and down, contains a commented-out read -t "$delay" line. When
uncommented, it will slow down the scrolling. It uses the bash-4.x fractional delay. If
you are using an earlier version, use sleep instead. Most implementations (certainly
GNU and *BSD) accept a fractional argument.

259

CHAPTER 14 SCRIPTING THE SCREEN

Listing 14-15. scroll-demo, Scrolls a Block of Text Up and Then Down

list=(/usr/bin/*) ## try it with other directories or lists
ToWs=9 ## number of rows in scrolling area
delay=.01 ## delay between scroll advance
width=-33.33 ## width spec: (no more than) 33 chars,
flush left

X=XXXXXXXXXXXXXXXXXXXXXXXXXX ## bar of 'X's

x=xxxx ## longer bar

clear ## clear the screen

printf "%50.505\n" $X{,,,,555555557) ## print 14 lines of 'X's
n=0 ## start display with first element

scroll upwards until reaching the bottom
while [$((n += 1)) -1t $((${#list[@]} - $rows))]
do
printf "\e[3;1H"
printf "\e[7C %${width}s\n" "${1list[@]:n:rows}"
read -sn1 -t "$delay" && break
done
sleep 1
scroll downwards until reaching the top
while [$((n -=1)) -ge 0]
do
printf "\e[3;1H"
printf "\e[7C %${width}s\n" "${1list[@]:n:rows}"
read -sn1 -t "$delay” && break
done
printf "\e[15;1H" ## finish with cursor well below scrolling area

Rolling Dice

Dice are used in many games and are simple to program if you are satisfied with printing
just the number:

printf "%s\n" "$(($RANDOM % 6 + 1))"

260

CHAPTER 14 SCRIPTING THE SCREEN

However, a respectable graphic rendition can be programmed surprisingly easily
with the shell. To print a die, position the cursor at the desired location on the screen,
set the foreground and background colors, and print the element from the array
(Figure 14-1).

Figure 14-1. Listing 14-16 contains the code for these dice

An array of six dice can be programmed in about 25 lines of code. Each die is a
concatenation of 18 variables. Some of these have the same contents as those in the
screen-funcs library, but their names are shortened here to keep the lines shorter. Here
is a description of the die with the number 5:

$b ## set bold attribute (optional)

$cs ## save cursor position

$p0 ## print blank row

$cr ## restore cursor to left side of die
$dn ## move down one line

$cs ## save cursor position

$p4 ## print row with two pips

$cr ## restore cursor to left side of die
$dn ## move down one line

$cs ## save cursor position

$p2 ## print row with one pip

$cr ## restore cursor to left side of die
$dn ## move down one line

$cs ## save cursor position

$p4 ## print row with two pips

$cr ## restore cursor to left side of die
$dn ## move down one line

$p0 ## print blank ToW

261

CHAPTER 14 SCRIPTING THE SCREEN

After defining the dice, the script in Listing 14-16 clears the screen and prints two
random dice near the top of the screen.

Listing 14-16. dice, Defines an Array of Six Dice and Places Two on the Screen

pip=0 ## character to use for the pips
po=" ! ## blank line

p1=" $pip " ## one pip at the left

p2=" $pip " ## one pipe in the middle of the line
p3=" $pip " ## one pip at the right

p4a=" $pip $pip " ## two pips

p5=" $pip $pip $pip " ## three pips

cs=$"\e7’ ## save cursor position

cr=$"'\e8' ## restore cursor position
dn=$"\e[B' ## move down 1 line

b=$"'\e[1m' ## set bold attribute
cu_put="\e[%d;%dH" ## format string to position cursor
fgbg="\e[3%d;4%dm’ ## format string to set colors
dice=(

dice with values 1 to 6 (array elements 0 to 5)

"bcs$poscrsdn$cs$potcrsdndcs$p2$crédnscs$poscrdnpo”
"bcs$pobcrsdndcsspidcrsdndcs$poscrédnscs$p3scrddn$po”
"bcs$poscrsdn$csspiécrsdncsp2crdnscs$p3scr$dnspo”
"bcs$poscrsdnécsspadcrsdn$cs$poscrédnscs$pascrdnpo”
"bcs$pobcrsdnbcsspadcrsdndcs$p2scrédnscs$pascrddn$po”
"bcs$poscrsdn$cs$pscrsdn$cs$poscrédnscs$ps5crdnspo”

)
clear
printf "$cu put" 2 5 ## position cursor
printf "$fgbg" 7 0 ## white on black
printf "%s\n" "${dice[RANDOM%6]}" ## print random die
printf "$cu put" 2 20 ## position cursor
printf "$fgbg" 0 3 ## black on yellow
printf "%s\n" "${dice[RANDOM%6]}" ## print random die

262

CHAPTER 14 SCRIPTING THE SCREEN

Summary

Without touching on traditional ASCII art, there are many ways to draw things on a
terminal screen. This chapter has presented a number of them, giving the basics that can
be used to create many more.

Exercises

1. Write a function, hbar, that accepts two integer arguments, a
width and a color, and prints a bar of that color and width. Write
a second function, hbar_at, that accepts four arguments: row,
column, width, and color; moves the cursor to the row and
column; and passes the remaining arguments to hbar.

2. Write a function, clear_area, that accepts two integer arguments,
rows and columns, and clears a rectangular area of that many
rows and columns.

263

CHAPTER 15

Entry-Level Programming

The preference for bash over any other POSIX shell stems to a great extent from its
extensions that enhance interactive programming. The extended options to the read
built-in command (which were described in Chapter 9), combined with the history and
readline libraries, add functionality that no other shell can match.

Despite its richness, there is still no easy way for the shell to deal with keys such as
function keys that generate multiple characters. For that, this chapter presents the key-
funcs library of functions. The second major section of this chapter describes how to use
the mouse in shell scripts and provides a demonstration program.

Between those sections, we’'ll deal with checking user input for validity and the
history library. Most people use bash’s history library only at the command line. We’ll
use it in scripts, and this chapter will show how that is done, by using the history
command in a rudimentary script for editing a multifield record.

Single-Key Entry

When writing an interactive script, we might want a single key to be pressed without
requiring the user to press Enter. The portable way to do that is to use stty and dd:

stty -echo -icanon min 1
_KEY=$(dd count=1 bs=1 2>/dev/null)
stty echo icanon

Using three external commands every time we need a key press is overkill. When we
need to use a portable method, we can usually first make a call to stty at the beginning
of the script and the other at the end, often in an EXIT trap:

trap 'stty echo icanon' EXIT

265
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_15

https://doi.org/10.1007/978-1-4842-9588-5_15

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

bash, on the other hand, doesn’t need to call any external commands. It may still be
a good idea to use stty to turn off echoing at the beginning and back on before exiting.
This will prevent characters from showing up on the screen when the script is not
waiting for input.

Function Library, key-funcs

The functions in this section comprise the key-funcs library. It begins with two variable
definitions, shown here in Listing 15-1.

Listing 15-1. key-funcs, Read a Single Key Press

ESC=$"\e"
CSI=$"\e["

To get a single keystroke with bash, we can use the function in Listing 15-2.

Listing 15-2. _key, Functions for Reading a Single Key Press

_key()

{
IFS= read -r -s -n1 -d "' "${1:- KEY}"

First, the field separator is set to an empty string so that read doesn’t ignore a leading
space (it’s a valid keystroke, so we want it); the -1 option disables backslash escaping, -s
turns off echoing of keystrokes, and -n1 tells bash to read a single character only.

The -d "' option tells read not to regard a newline (or any other character) as the
end of input; this allows a newline to be stored in a variable. The code instructs read to
stop after the first key is received (-n1) so it doesn’t read forever.

The last argument uses ${@: - KEY} to add options or a variable name to the list of
arguments. We can see its use in the _keys function in Listing 15-3. (Note that if we use
an option without also including a variable name, the input will be stored in $REPLY.)

266

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Note For this to work on earlier versions of bash or on the Mac 0S X, add the
variable name to the read command, such as IFS= read -r -s -n1 -d'

" KEY "${1:- KEY}".If not, then we have to look to $REPLY for the key
press read.

The _

key function can be used in a simple menu, as shown in Listing 15-3.

Listing 15-3. simplemenu, Menu That Responds to a Single Key Press

the _key function should be defined here if it is not already

wh
do

do

ile :

printf
printf

printf

_key

"\n\n\t$bar\n"

"\t %d. %s\n" 1 "Do something" \
2 "Do something else" \
3 "Quit"

"\t%s\n" "$bar"

case $ KEY in

1)
2)
3)
*)

esac
printf

_key

ne

printf "\n%s\n\n" Something ;;

printf "\n%s\n\n" "Something else" ;;

break ;;

printf "\a\n%s\n\n" "Invalid choice; try again'

continue
55

">>> %s Press any key to continue"

Although _key is a useful function by itself, it has its limitations (Listing 15-4). It can

store a space, a newline, a control code, or any other single character, but what it doesn’t

do is handle keys that return more than one character: function keys, cursor keys, and a

few others.

267

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

These special keys return ESC (0 x 1B, which is kept in a variable $ESC) followed by
one or more characters. The number of characters varies according to the key (and the
terminal emulation), so we cannot ask for a specific number of keys. Instead, we have to
loop until one of the terminating characters is read. This is where it helps to use bash’s
built-in read command rather than the external dd.

Listing 15-4. keys, Read a Sequence of Characters from a Function or

Cursor Key
_keys() #@ Store all waiting keypresses in $ KEYS
{
_KEYS=
_ KX=
ESC_END is a list of characters that can end a key sequence
Some terminal emulations may have others; adjust to taste
ESC_END=[a-zA-NP-Z~"\$@$ESC]
while :
do
IFS= read -rsn1 -d "' -t1 _ KX
_KEVS=$ KEYS$ KX
case $ KX in
"" | $ESC_END) break ;;
esac
done
}

Thewhile :loop calls _key with the argument -t1, which tells read to time out
after one second, and the name of the variable in which to store the keystroke. The loop
continues until a key in $ESC_END is pressed or read times out, leaving $ KX empty.

The timeout is a partially satisfactory method of detecting the escape key by itself.
This is a case where dd works better than read, because it can be set to time out in
increments of one-tenth of a second.

To test the functions, use _key to get a single character; if that character is ESC, call _keys
to read the rest of the sequence, if any. The following snippet assumes that _key and _keys
are already defined and pipes each keystroke through hexdump - Cto show its contents:

268

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

while :
do
_key
case $_KEY in
$ESC) _keys
_KEY=ESC_KEYS
35
esac
printf "%s" "$ KEY" | hexdump -C | {
read a b
printf " %s\n" "$b"
}
case "$ KEY" in q) break ;; esac
done

Unlike the output sequences, which work everywhere, there is no homogeneity
among key sequences produced by various terminal emulators. Here is a sample run, in
an rxvt terminal window, of pressing F1, F12, up arrow, Home, and q to quit:

1b 5b 31 31 7e | [11~]
1b 5b 32 34 7e | [24~|
1b 5b 41 | [A]
1b 5b 35 7e | [5~]
71 lql

1b 4f 50 | .OP|
1b 5b 32 34 7e |.[24~]
1b 5b 41 | [A]
1b 5b 48 | [H]
71 lql

Finally, here they are as produced by a Linux virtual console:

1b 5b 5b 41 |.[[A]
1b 5b 32 34 7e |.[24~]

269

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

1b 5b 41 |.[A]
1b 5b 31 7e |.[1~]
71 lql

All the terminals tested fit into one of these three groups, at least for
unmodified keys.

The codes stored in $_KEY can be either interpreted directly or in a separate function.
It is better to keep the interpretation in a function that can be replaced for use with
different terminal types. For example, if this is run on using a Wyse60 terminal, the
source wy60-keys function would set the replacement keys.

Listing 15-5 shows a function, _esc2key, that works for the various terminals on a
Linux box, as well as in putty in Windows. It converts the character sequence into a
string describing the key, for example, UP, DOWN, F1, and so on:

Listing 15-5. _esc2key, Translate a String to a Key Name

_esc2key()
{
case $1 in

Cursor keys
"$CSI"A | ${CSI}OA) ESC2KEY=UP ;;
"$CSI"B | ${CSI}OB) ESC2KEY=DOWN ;;
"$CSI"C | ${CSI}OC) ESC2KEY=RIGHT ;;
"$CSI"D | ${CSI}OD) ESC2KEY=LEFT ;;
Function keys (unshifted)
"$CSI"11~ | "$CSI["A | ${ESC}OP) _ESC2KEY=F1 ;;

"$CSI"12~ | "$CSI["B | ${ESC}0Q) ESC2KEY=F2 ;;
"$CSI"13~ | "$CSI["C | ${ESCIOR) ESC2KEY=F3 ;;
"$CSI"14~ | "$CSI["D | ${ESC}OS) _ESC2KEY=F4 ;;
"$CSI"15~ | "$CSI["E) ESC2KEY=F5 ;;
"$CSI"17~ | "$CSI["F) _ESC2KEY=F6 ;;

"$CSI"18~) ESC2KEY=F7 ;;
"$CSI"19~) ESC2KEY=F8 ;;
"$CSI"20~) ESC2KEY=F9 ;;
"$CSI"21~) ESC2KEY=F10 ;;
"$CSI"23~) ESC2KEY=F11 ;;
"$CSI"24~) ESC2KEY=F12 ;;

270

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Insert, Delete, Home, End, Page Up, Page Down
"$CSI"2~) _ESC2KEY=INS ;;
"$CSI"3~) ESC2KEY=DEL ;;
"$CSI"[17]~ | "$CSI"H) ESC2KEY=HOME ;;
"$CSI"[28]~ | "$CSI"F) ESC2KEY=END ;;
"$CSI"5~) ESC2KEY=PGUP ;;
"$CSI"6~) ESC2KEY=PGDN ;;
Everything else; add other keys before this line
*) _ESC2KEY=UNKNOWN ;;

esac

[-n "$2"] && eval "$2=\$ ESC2KEY"

}

We can wrap the key and _esc2key functions into another function, called get
key (Listing 15-6), which returns either the single character pressed or, in the case of
multicharacter keys, the name of the key.

Listing 15-6. get key, Gets a Key and, If Necessary, Translates It to a Key Name

get_key()
{

_key

case $ KEY in

"$ESC") keys
_esc2key "ESC KEYS" KEY

esac

}

In bash-4.x, we can use a simpler function to read keystrokes. The get_key function
in Listing 15-7 takes advantage of the capability of read’s -t option to accept fractional
times. It reads the first character and then waits for one-ten-thousandth of a second for
another character. If a multicharacter key was pressed, there will be one to read within
that time. If not, it will fall through the remaining read statements before another key

can be pressed.

271

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Listing 15-7. get key, Reads a Key and, If It Is More Than a Single Character,
Translates It to a Key Name

get_key() #@ USAGE: get key var

{
local v. w x_ y z delay=${delay:-.0001}
IFS= read -d "' -rsn1 v_
read -snl1 -t "$delay" w_
read -sn1 -t "$delay” x_
read -snl -t "$delay" y
read -snl1 -t "$delay" z
case $ v_ in
$'\e') esc2key "$ vIwWwIxyz"
printf -v ${1:?} $ ESC2KEY
*) printf -v ${2:?} "%s" "$vSwSxyz";;
esac
}

Whenever we want to use cursor or function keys in a script, or for any single-key
entry, we can source key-funcs and call get_key to capture key presses. Listing 15-8 is a
simple demonstration of using the library.

Listing 15-8. keycapture, Read and Display Keystrokes Until Q Is Pressed

. key-funcs ## source the library
while : ## infinite loop
do
get key key
sa "$key" ## the sa command is from previous
chapters

case $key in q|Q) break;; esac
done

The script in Listing 15-9 prints a block of text on the screen. It can be moved around
the screen with the cursor keys, and the colors can be changed with the function keys.
The odd-numbered function keys change the foreground color; the even-numbered keys

change the background.

272

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Listing 15-9. key-demo, Capture Function and Cursor Keys to Change Colors and
Move a Block of Text Around the Screen

trap '' 2

trap 'stty sane; printf "${CSI}?121${CSI}?25h\e[Om\n\n"" EXIT
stty -echo ## Turn off echoing of user keystrokes

. key-funcs ## Source key functions

clear ## Clear the screen

Initial position for text block
row=$(((${LINES:-24} - 10) / 2))
col=$(((${COLUMNS:-80} - ${#bar}) / 2))
Initial colours
fg="${CSI}33m"
bg="${CSI}44m"
Turn off cursor
printf "%s" "${CSI}?251"
Loop until user presses "q"
while :
do
printf "\e[1m\e[%d;%dH" "$row" "$col"
printf "\e7 %-${#bar}.${#tbar}s ${CSI}om \e8\e[1B" "${CSI}om"
printf "\e7 fgbgk-${#tbar}.${#bar}s${CSI}om \e8\e[1B" "$bar" \
""" Move text with cursor keys" \
""" Change colors with function keys" \
Press 'q' to quit" \

nn Il$barll
printf "\e7%-${#bar}.${#tbar}s " "${CSI}om"
get key k
case $k in

UP) row=$(($row - 1)) ;;
DOWN) row=$(($row + 1)) ;;
LEFT) col=$(($col - 1)) ;;
RIGHT) col=$(($col + 1)) ;;
F1) fg="${CSI}30m" ;;

F2) bg="${CSI}47m" ;;

273

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

F3) fg="${CSI}31m" ;;
F4) bg="${CSI}46m" ;;
F5) fg="${CSI}32m" ;;
F6) bg="${CSI}a5m" ;;
F7) fg="${CSI}33m" ;;
F8) bg="${CSI}44m" ;;
F9) fg="${CSI}35m" ;;
F10) bg="${CSI}43m" ;;
F11) fg="${CSI}34m" ;;
F12) bg="${CSI}42m" ;;
q|Q) break ;;
esac
colmax=$((${COLUMNS:-80} - ${#bar} - 4))
rowmax=$((${LINES:-24} - 10))
[$col -1t 1] && col=1
[$col -gt $colmax] && col=$colmax
[$row -1t 1] && row=1
[$row -gt $rowmax] && row=$rowmax
done

History in Scripts

In the readline functions in Chapters 6 and 12, history -s was used to place a default
value into the history list. In those examples, only one value was stored, but it is possible
to store more than one value in history or even to use an entire file. Before adding to the
history, we should (in most cases) clear it:

history -c
By using more than one history -scommand, we can store multiple values:

history -s Genesis
history -s Exodus

274

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

With the -1 option, we can read an entire file into history. This snippet puts the
names of the first five books of the Bible into a file and reads that into the history:

cut -d: -f1 "$kjv" | uniq | head -5 > pentateuch
history -r pentateuch

The readline functions in Chapters 6 and 12 use history if the bash version is less
than 4, but read’s - i option with version 4 (or greater). There are times when it might be
more appropriate to use history rather than -1i even when the latter is available. A case
in point is when the new input is likely to be very different from the default but there is a
chance that it might not be.

For history to be available, we must use the -e option with read. This also gives us
access to other key bindings defined in the . inputrc file.

Sanity Checking

Sanity checking is testing input for the correct type and a reasonable value. If a user
inputs Jane for her age, it’s obviously wrong: the data is of the wrong type. If she enters
666, it’s the correct type but almost certainly an incorrect value. The incorrect type can
easily be detected with the valint script (see Chapter 3) or function (see Chapter 6). We
can use the rangecheck function from Chapter 6 to check for a reasonable value.

Sometimes, the error is more problematic, or even malicious. Suppose a script asks
for a variable name and then uses eval to assign a value to it:

read -ep "Enter variable name: " var

read -ep "Enter value: " val

eval "$var=\$val"
Now, suppose the entry goes like this:

Enter variable name: rm -rf *;name
Enter value: whatever

The command that eval will execute is as follows:

m -rf *;name=whatever

275

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Poof! All the files and subdirectories are gone from the current directory. It could

have been prevented by checking the value of var with the validname function from

Chapter 7:

validname "$var" && eval "$var=\$val" || echo Bad variable name >8&2

When editing a database, checking that there are no invalid characters is an

important step. For example, in editing /etc/passwd (or a table from which it is created),

we must make sure that there are no colons in any of the fields. Figure 15-1 adds some

humor to this discussion.

HL, THIS 15 OH, DEAR - DID HE
YOUR SONS SCHOOL. | BREAK SOMETHING?
e e, | N AWAY-

$orl S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ ?

{

~OH.YES LTNE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.
‘II AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

Figure 15-1. Cartoon courtesy of Randall Munroe at http://xkcd.com

Form Entry

The script in Listing 15-10 is a demonstration of handling user input with a menu and

history. It uses the key-

funcs library to get the user’s selection and to edit password fields. It has a hard-coded

record and doesn’t read the /etc/passwd file. It checks for a colon in an entry and prints

an error message if one is found.

The record is read into an array from a here document. A single printf statement

prints the menu using a format string with seven blanks and the entire array as its

arguments.

276

http://xkcd.com/

CHAPTER 15

Listing 15-10. password, Simple Record-Editing Script

record=root:x:0:0:ro0t:/root:/bin/bash
fieldnames=(User Password UID
GID Name Home Shell)
. key-funcs
IFS=: read -a user <<EOF
$record
EOF
z=0
clear
while :
presses 0 or q
do
printf "\e[H\n
0. Quit
1 User: %s\e[K
2. Password: %s\e[K
3. UID: %s\e[K
4. GID: %s\e[K
5 Name: %s\e[K
6 Home: %s\e[K
7 Shell: %s\e[K
Select field (1-7): \e[0]" "${user[@]}"
get key field
printf "\n\n"
case $field in
0/q[Q) break ;;
[1-7]) 55
fall through
*) continue;;
esac
history -c
history -s "${user[field-1]}"
in history

record to edit

load the key functions
read record into array

loop until user

print menu and prompt
get user input
print a blank line

quit
menu item selected;

clear history
insert current value

ENTRY-LEVEL PROGRAMMING

277

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

printf ' Press UP to edit "%s"\n' "${user[field-1]}" ## tell user
what's there

read -ep " ${fieldnames[field-1]}: " val ## get user entry
case $val in
:) echo " Field may not contain a colon (press ENTER)"

>&2 ## ERROR
get_key; continue
35
) continue ;;
*) user[field-1]=$val ;;
esac

done

Reading the Mouse

On the Linux console_codes! man page, there is a section labeled “mouse tracking.”
Interesting! It reads: “The mouse tracking facility is intended to return xterm-compatible
mouse status reports.” Does that mean the mouse can be used in shell scripts?

According to that man page, mouse tracking is available in two modes: X10
compatibility mode, which sends an escape sequence on button press, and normal
tracking mode, which sends an escape sequence on both button press and release. Both
modes also send modifier-key information.

To test this, printf "\e[?9h" was first entered at a terminal window. This is the
escape sequence that sets the “X10 Mouse Reporting (default off): Set reporting mode to
1 (or reset to 0)” If the mouse button is pressed, the computer will beep and print “FB”
on the screen. Repeating the mouse click at various points on the screen will net more
beepsand “&% -(5. =2 H7 T=]C G rJ }M”

A mouse click sends six characters: ESC, [, M, b, x, and y. The first three characters are
common to all mouse events, the second three contain the button pressed, and the final
ones are the x and y locations of the mouse. To confirm this, save the input in a variable
and pipe it to hexdump:

$ printf "\e[?9h"

Thttp://man7.org/linux/man-pages/man4/console _codes.4.html

278

http://man7.org/linux/man-pages/man4/console_codes.4.html

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

$ read x

AL [MIMO ## press mouse button and enter

$ printf "$x" | hexdump -C

00000000 1b 5b 4d 21 4d 4f |.[MIMO|
00000006

The first three appear as expected, but what are the final three? According to the man
page, the lower two bits of the button character tell which button has been pressed; the
upper bits identify the active modifiers. The x and y coordinates are the ASCII values to
which 32 has been added to take them out of the range of control characters. The ! is 1, "
is 2, and so on.

That gives us a 1 for the mouse button, which means button 2, since 0 to 2 are
buttons 1, 2, and 3, respectively, and 4 is released. The x and y coordinates are 45

(O x 4d = 77; 77 - 32 = 45) and 47.

Surprisingly, since running across this information about mouse tracking in a Linux
console_codes man page, it was found that these escape codes do not work in all Linux
consoles. They work in xterm, rxvt, and gnome-terminal on Linux and FreeBSD. They
can also be used on FreeBSD and NetBSD, via ssh from a Linux rxvt terminal window.
They do not work in a KDE konsole window.

Now we know that mouse reporting works (in most xterm windows) and can get
information from a mouse click on the standard input. That leaves two questions: How
do we read the information into a variable (without having to press Return), and how can
the button and x, y information be decoded in a shell script?

With bash, use the read command’s -n option with an argument to specify the
number of characters. To read the mouse, six characters are needed:

read -n6 X

Neither of these is adequate for a real script (not all input will be mouse clicks, and
we might want to get single keystrokes), but they suffice to demonstrate the concept.

The next step is to decode the input. For the purposes of this demonstration, we can
assume that the six characters do indeed represent a mouse click and that the first three
characters are ESC, [, and M. Here, we are only interested in the last three, so we extract
them into three separate variables using POSIX parameter expansion:

mi=${x#22?} ## Remove the first 3 characters
m2=${x#?22?} ## Remove the first 4 characters

279

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Then convert the first character of each variable to its ASCII value. This uses a POSIX
printf extension: “If the leading character is a single-quote or double-quote, the value
shall be the numeric value in the underlying codeset of the character following the

single-quote or double-quote.”

printf -v mb "%d" "'$m1"
printf -v mx "%d" "'$m2"
printf -v my "%d" "'$m3"

Finally, interpret the ASCII values. For the mouse button, do a bitwise AND 3. For
the x and y coordinates, subtract 32:

Values > 127 are signed, so fix if less than 0
[$mx -1t 0] && mx=$((255 + $mx))

[$my -1t 0] && my=$((255 + $my))

BUTTON=$((($mb & 3) + 1))

MOUSEX=$(($mx - 32))

MOUSEY=$(($my - 32))

Putting it all together, the script in Listing 15-11 prints the mouse’s coordinates
whenever we press a mouse button.

There are two sensitive areas on the top row. Clicking the left one toggles the mouse
reporting mode between reporting only a button press and reporting the release as well.
Clicking the right one exits the script.

Listing 15-11. mouse-demo, Example of Reading Mouse Clicks

ESC=$"\e'

but_row=1

mv=9 ## mv=1000 for press and release reporting; mv=9 for press only
_STTY=$(stty -g) ## Save current terminal setup

stty -echo -icanon ## Turn off line buffering

printf "${ESC}[?${mv}h " ## Turn on mouse reporting
printf "${ESC}[?251" ## Turn off cursor

printat() #@ USAGE: printat ROW COLUMN

{

>www . opengroup.org/onlinepubs/9699919799/utilities/printf.html
280

http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

printf "${ESC}[${1};${2}H"

}
print buttons()
{
num_but=%#
gutter=2
gutters=$(($num but + 1))
but_width=$((($COLUMNS - $gutters) / $num but))
n=0
for but_str
do
col=$(($gutter + $n * ($but width + $gutter)))
printat $but_row $col
printf "${ESC}[7m%${but width}s" " "
printat $but row $(($col + ($but width - ${#but str}) 7/ 2))
printf "%.${but width}s${ESC}[om" "$but str"
n=$(($n + 1))
done
}
clear
while :
do

[$mv -eq 9] && mv_str="Click to Show Press & Release" ||
mv_str="Click to Show Press Only"

print_buttons "$mv_str" "Exit"

read -n6 x

mi=${x#22?} ## Remove the first 3 characters

m2=${x#222?} ## Remove the first 4 characters

Convert to characters to decimal values

printf -v mb "%d" "'$m1"

printf -v mx "%d" "'$m2"

printf -v my "%d" "'$m3"

Values > 127 are signed

[$mx -1t 0] && MOUSEX=$((223 + $mx)) || MOUSEX=$(($mx - 32))

281

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

[$my -1t 0] &% MOUSEY=$((223 + $my)) || MOUSEY=$(($my - 32))
Button pressed is in first 2 bytes; use bitwise AND
BUTTON=$((($mb & 3) + 1))
case $MOUSEY in
$but_row) ## Calculate which on-screen button has been pressed
button=$((($MOUSEX - $gutter) / $but width + 1))
case $button in
1) printf "${ESC}[?${mv}1"
[$mv -eq 9] && mv=1000 || mv=9
printf "${ESC}[?${mv}ih"
[$mv -eq 1000] 8& x=$(dd bs=1 count=6 2>/
dev/null)
2) break ;;
esac
*) printat $MOUSEY $MOUSEX
printf "X=%d Y=%d [%d] " $MOUSEX $MOUSEY $BUTTON

)

esac
done
printf "${ESC}H[?${mv}1" ## Turn off mouse reporting
stty "$ STTY" ## Restore terminal settings

printf "${ESC}[?121${ESC}[?25h" ## Turn cursor back on
printf "\n${ESC}[0I\n" ## Clear from cursor to bottom of screen,

Summary

bash has a rich set of options for interactive programming. In this chapter, we learned
how to leverage that to read any keystroke, including function keys and others that

return more than a single character.

282

CHAPTER 15 ENTRY-LEVEL PROGRAMMING

Exercises

1. Using the key-funcs library, write a menu script that uses the
function keys for selection.

2. Rewrite the key-funcs library to include mouse handling, and
incorporate the function into the mouse-demo script.

3. The password script does minimal checking for invalid entries.
What checking would one add? How would you code it?

283

APPENDIX A

Shell Variables

This list is excerpted from the bash man page and edited to make a stand-alone
document. The following variables are set by bash.

BASH

Expands to the full file name used to invoke this instance of bash.

BASHOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -s option to the shopt built-in command (see “Shell Builtin
Commands” in the bash man page). The options appearing in BASHOPTS are those
reported as on by shopt. If this variable is in the environment when bash starts up, each
shell option in the list will be enabled before reading any startup files. This variable is
read-only.

BASHPID

Expands to the process ID of the current bash process. This differs from $$ under
certain circumstances, such as subshells that do not require bash to be reinitialized.

BASH_ALIASES

An associative array variable whose members correspond to the internal list of
aliases as maintained by the alias built-in. Elements added to this array appear in the
alias list; unsetting array elements causes aliases to be removed from the alias list.

BASH_ARGC

An array variable whose values are the number of parameters in each frame of the
current bash execution call stack. The number of parameters to the current subroutine
(shell function or script executed with . or source) is at the top of the stack. When a
subroutine is executed, the number of parameters passed is pushed onto BASH_ARGC. The
shell sets BASH_ARGC only when in extended debugging mode (see the description of the
extdebug option to the shopt built-in in the bash man page).

285
© Jayant Varma, Chris E. A. Johnson 2023

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5

https://doi.org/10.1007/978-1-4842-9588-5

APPENDIXA SHELL VARIABLES

BASH_ARGV

An array variable containing all the parameters in the current bash execution
call stack. The final parameter of the last subroutine call is at the top of the stack; the
first parameter of the initial call is at the bottom. When a subroutine is executed, the
parameters supplied are pushed onto BASH_ARGV. The shell sets BASH ARGV only when
in extended debugging mode (see the description of the extdebug option to the shopt
built-in in the bash man page).

BASH_ARGVO0

When referenced, this variable expands to the name of the shell or shell script
(identical to $0). Assignment to BASH_ARGVO causes the value assigned to also be
assigned to $0. If BASH ARGVO is unset, it loses its special properties, even if it is
subsequently reset.

BASH_CMDS

An associative array variable whose members correspond to the internal hash table
of commands as maintained by the hash built-in. Elements added to this array appear
in the hash table; unsetting array elements causes commands to be removed from the
hash table.

BASH_COMMAND

The command currently being executed or about to be executed, unless the shell is
executing a command as the result of a trap, in which case it is the command executing
at the time of the trap.

BASH_EXECUTION_STRING

The command argument to the -c invocation option.

BASH_LINENO

An array variable whose members are the line numbers in source files corresponding
to each member of FUNCNAME.

${BASH_LINENO[$i]} is the line number in the source file ${BASH_LINENO[$i+1]}
where ${FUNCNAME[$i]} was called (or ${BASH_LINENO[$i-1]} if referenced within
another shell function). The corresponding source file name is ${BASH_SOURCE[$i]}.
Use LINENO to obtain the current line number.

BASH_LOADABLES_PATH

A colon-separated list of directories in which the shell looks for dynamically loadable
built-ins specified by the enable command.

286

APPENDIXA SHELL VARIABLES

BASH_REMATCH

An array variable whose members are assigned by the =~ binary operator to the [[
conditional command. The element with index 0 is the portion of the string matching
the entire regular expression. The element with index n is the portion of the string
matching the nth parenthesized subexpression. This variable is read-only.

BASH_SOURCE

An array variable whose members are the source file names where the
corresponding shell function names in the FUNCNAME array variable are defined. The shell
function ${FUNCNAME[$1]} is defined in the file ${BASH_SOURCE[$i]} and called from
${BASH_SOURCE[$i+1]}.

BASH_SUBSHELL

Incremented by one each time a subshell or subshell environment is spawned. The
initial value is 0.

BASH_VERSINFO

A read-only array variable whose members hold version information for this
instance of bash. The values assigned to the array members are as follows:

o BASH VERSINFO[0]: The major version number (the release)

e BASH VERSINFO[1]: The minor version number (the version)

o BASH_VERSINFO[2]: The patch level

e BASH VERSINFO[3]: The build version

e BASH VERSINFO[4]: The release status (e.g., beta1)

[
[
[
[
[
[5]: The value of MACHTYPE

I:
IE
IE
]:
IE
IE

« BASH VERSINFO[5

BASH_VERSION

Expands to a string describing the version of this instance of bash.

COMP_CWORD

An index into ${COMP_WORDS} of the word containing the current cursor position.
This variable is available only in shell functions invoked by the programmable
completion facilities (see “Programmable Completion” in the bash man page).

COMP_KEY

The key (or final key of a key sequence) used to invoke the current completion

function.

287

APPENDIXA SHELL VARIABLES

COMP_LINE

The current command line. This variable is available only in shell functions
and external commands invoked by the programmable completion facilities (see
“Programmable Completion” in the bash man page).

COMP_POINT

The index of the current cursor position relative to the beginning of the current
command. If the current cursor position is at the end of the current command, the
value of this variable is equal to ${#COMP_LINE}. This variable is available only in shell
functions and external commands invoked by the programmable completion facilities
(see “Programmable Completion” in the bash man page).

COMP_TYPE

Set to an integer value corresponding to the type of completion attempted that
caused a completion function to be called: TAB for normal completion, ? for listing
completions after successive tabs, ! for listing alternatives on partial word completion,
@ to list completions if the word is not unmodified, or % for menu completion. This
variable is available only in shell functions and external commands invoked by the
programmable completion facilities (see “Programmable Completion” in the bash
man page).

COMP_WORDBREAKS

The set of characters that the readline library treats as word separators when
performing word completion. If COMP_ WORDBREAKS is unset, it loses its special
properties, even if it is subsequently reset.

COMP_WORDS

An array variable (see “Arrays” in the bash man page) consisting of the individual
words in the current command line. The line is split into words as readline would split
it, using COMP_WORDBREAKS as described previously. This variable is available only in
shell functions invoked by the programmable completion facilities (see “Programmable
Completion” in the bash man page).

COPROC

An array variable (see “Arrays” in the bash man page) created to hold the file
descriptors for output from and input to an unnamed coprocess (see “Coprocesses” in
the bash man page).

288

APPENDIXA SHELL VARIABLES

DIRSTACK

An array variable (see “Arrays” in the bash man page) containing the current
contents of the directory stack. Directories appear in the stack in the order they are
displayed by the dirs built-in. Assigning to members of this array variable may be
used to modify directories already in the stack, but the pushd and popd built-ins must
be used to add and remove directories. Assignment to this variable will not change
the current directory. If DIRSTACK is unset, it loses its special properties, even if it is
subsequently reset.

EPOCHREALTIME

Each time this parameter is referenced, it expands to the number of seconds since
the Unix Epoch (see time(3)) as a floating-point value with microsecond granularity.
Assignments to EPOCHREALTIME are ignored. If EPOCHREALTIME is unset, it loses its special
properties, even if it is subsequently reset.

EPOCHSECONDS

Each time this parameter is referenced, it expands to the number of seconds
since the Unix Epoch (see time(3)). Assignments to EPOCHSECONDS are ignored. If
EPOCHSECONDS is unset, it loses its special properties, even if it is subsequently reset.

EUID

Expands to the effective user ID of the current user, initialized at shell startup. This
variable is read-only.

FUNCNAME

An array variable containing the names of all shell functions currently in the
execution call stack. The element with index 0 is the name of any currently executing
shell function. The bottommost element is main. This variable exists only when a shell
function is executing. Assignments to FUNCNAME have no effect and return an error status.
If FUNCNAME is unset, it loses its special properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element of
FUNCNAME has corresponding elements in BASH_LINENO and BASH_SOURCE to describe
the call stack. For instance, ${ FUNCNAME[$i] } was called from the file ${BASH
SOURCE[$i+1]} atline number ${BASH_LINENO[$1i]}. The caller built-in displays the
current call stack using this information.

GROUPS

An array variable containing the list of groups of which the current user is a member.
Assignments to GROUPS have no effect and return an error status. If GROUPS is unset, it
loses its special properties, even if it is subsequently reset.

289

APPENDIXA SHELL VARIABLES

HISTCMD

The history number, or index in the history list, of the current command. If HISTCMD
is unset, it loses its special properties, even if it is subsequently reset.

HOSTNAME

Automatically set to the name of the current host.

HOSTTYPE

Automatically set to a string that uniquely describes the type of machine on which
bash is executing. The default is system dependent.

LINENO

Each time this parameter is referenced, the shell substitutes a decimal number
representing the current sequential line number (starting with 1) within a script or
function. When not in a script or function, the value substituted is not guaranteed
to be meaningful. If LINENO is unset, it loses its special properties, even if it is
subsequently reset.

MACHTYPE

Automatically set to a string that fully describes the system type on which bash is
executing, in the standard GNU cpu-company-system format. The default is system
dependent.

MAPFILE

An array variable (see “Arrays” in the bash man page) created to hold the text read by
the mapfile built-in when no variable name is supplied.

OLDPWD

The previous working directory as set by the cd command.

OPTARG

The value of the last option argument processed by the getopts built-in command
(see “Shell Builtin Commands” in the bash man page).

OPTIND

The index of the next argument to be processed by the getopts built-in command
(see “Shell Builtin Commands” in the bash man page).

OSTYPE

Automatically set to a string that describes the operating system on which bash is
executing. The default is system dependent.

290

APPENDIXA SHELL VARIABLES

PIPESTATUS

An array variable (see “Arrays” in the bash man page) containing a list of exit status
values from the processes in the most recently executed foreground pipeline (which may
contain only a single command).

PPID

The process ID of the shell’s parent. This variable is read-only.

PWD

The current working directory as set by the cd command.

RANDOM

Each time this parameter is referenced, a random integer between 0 and 32767 is
generated. The sequence of random numbers may be initialized by assigning a value to
RANDOM. If RANDOM is unset, it loses its special properties, even if it is subsequently reset.

READLINE_LINE

The contents of the readline line buffer, for use with “bind -x" (see "Shell Builtin
Commands" in the bash man page).

READLINE_MARK

The position of the mark (saved insertion point) in the readline line buffer, for use
with “bind -x" (see "Shell Builtin Commands" in the bash man page). The characters
between the insertion point and the mark are often called the region.

READLINE_POINT

The position of the insertion point in the readline line buffer, for use with “bind -x"
(see "Shell Builtin Commands" in the bash man page).

REPLY

Set to the line of input read by the read built-in command when no arguments are
supplied.

SECONDS

Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If a value is assigned to SECONDS, the value returned upon subsequent
references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

SHELLOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -0 option to the set built-in command (see “Shell Builtin Commands”
in the bash man page). The options appearing in SHELLOPTS are those reported as on by
set -o.Ifthis variable is in the environment when bash starts up, each shell option in
the list will be enabled before reading any startup files. This variable is read-only.

291

APPENDIXA SHELL VARIABLES

SHLVL

Incremented by one each time an instance of bash is started.

SRANDOM

This variable expands to a 32-bit pseudorandom number each time it is referenced.
The random number generator is not linear on systems that support /dev/urandom or
arc4random, so each returned number has no relationship to the numbers preceding it.
The random number generator cannot be seeded, so assignments to this variable have
no effect. If SRANDOM is unset, it loses its special properties, even if it is subsequently reset.

UID

Expands to the user ID of the current user, initialized at shell startup. This variable is
read-only.

The following variables are used by the shell. In some cases, bash assigns a default
value to a variable; these cases are noted in the following sections.

BASH_COMPAT

The value is used to set the shell's compatibility level. See SHELL COMPATIBILITY
MODE below for a description of the various compatibility levels and their effects. The
value may be a decimal number (e.g., 4.2) or an integer (e.g., 42) corresponding to
the desired compatibility level. If BASH _COMPAT is unset or set to the empty string, the
compatibility level is set to the default for the current version. If BASH_COMPAT is set to a
value that is not one of the valid compatibility levels, the shell prints an error message
and sets the compatibility level to the default for the current version. The valid values
correspond to the compatibility levels described below under SHELL COMPATIBILITY
MODE. For example, 4.2 and 42 are valid values that correspond to the compat42 shopt
option and set the compatibility level to 42. The current version is also a valid value.

BASH_ENV

If this parameter is set when bash is executing a shell script, its value is interpreted
as a file name containing commands to initialize the shell, as in ~/.bashrc. The value of
BASH_ENV is subjected to parameter expansion, command substitution, and arithmetic
expansion before being interpreted as a file name. PATH is not used to search for the
resultant file name.

BASH_XTRACEFD

If set to an integer corresponding to a valid file descriptor, bash will write the trace
output generated when set -xis enabled to that file descriptor. The file descriptor is
closed when BASH_XTRACEFD is unset or assigned a new value. Unsetting BASH_XTRACEFD

292

APPENDIXA SHELL VARIABLES

or assigning it the empty string causes the trace output to be sent to the standard error.
Note that setting BASH _XTRACEFD to 2 (the standard error file descriptor) and then
unsetting it will result in the standard error being closed.

CDPATH

The search path for the cd command. This is a colon-separated list of directories in
which the shell looks for destination directories specified by the cd command. A sample
valueis .:~:/usr.

CHILD_MAX

Sets the number of exited child status values for the shell to remember. bash will
not allow this value to be decreased below a POSIX-mandated minimum, and there is a
maximum value (currently 8192) that this may not exceed. The minimum value is system
dependent.

COLUMNS

Used by the select built-in command to determine the terminal width when
printing selection lists. This is automatically set upon receipt of a STGWINCH.

COMPREPLY

An array variable from which bash reads the possible completions generated by a
shell function invoked by the programmable completion facility (see “Programmable
Completion” in the bash man page).

EMACS

If bash finds this variable in the environment when the shell starts with value t, it
assumes that the shell is running in an emacs shell buffer and disables line editing.

ENV

Expanded and executed similarly to BASH_ENV (see “Invocation" in the bash man
page) when an interactive shell is invoked in POSIX mode.

EXECIGNORE

A colon-separated list of shell patterns (see Pattern Matching) defining the list of
file names to be ignored by command search using PATH. Files whose full pathnames
match one of these patterns are not considered executable files for the purposes of
completion and command execution via PATH lookup. This does not affect the behavior
of the [, test, and [[commands. Full pathnames in the command hash table are not
subject to EXECIGNORE. Use this variable to ignore shared library files that have the
executable bit set but are not executable files. The pattern matching honors the setting of
the extglob shell option.

293

APPENDIXA SHELL VARIABLES

FCEDIT

The default editor for the fc built-in command.

FIGNORE

A colon-separated list of suffixes to ignore when performing file name completion
(see READLINE in the bash man page). A file name whose suffix matches one of the entries
in FIGNORE is excluded from the list of matched file names. A sample value is .0: ~.

FUNCNEST

If set to a numeric value greater than 0, it defines a maximum function nesting level.
Function invocations that exceed this nesting level will cause the current command
to abort.

GLOBIGNORE

A colon-separated list of patterns defining the set of file names to be ignored by
pathname expansion. If a file name matched by a pathname expansion pattern also
matches one of the patterns in GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL

A colon-separated list of values controlling how commands are saved on the history
list. If the list of values includes ignorespace, lines that begin with a space character are
not saved in the history list. A value of ignoredups causes lines matching the previous
history entry to not be saved. A value of ignoreboth is shorthand for ignorespace and
ignoredups. A value of erasedups causes all previous lines matching the current line to
be removed from the history list before that line is saved. Any value not in the previous
list is ignored. IfHISTCONTROL is unset or does not include a valid value, all lines read
by the shell parser are saved on the history list, subject to the value of HISTIGNORE. The
second and subsequent lines of a multiline compound command are not tested and are
added to the history regardless of the value of HISTCONTROL.

HISTFILE

The name of the file in which command history is saved (see HISTORY in the bash
man page). The default value is ~/.bash_history. If unset, the command history is not
saved when an interactive shell exits.

HISTFILESIZE

The maximum number of lines contained in the history file. When this variable is
assigned a value, the history file is truncated, if necessary, by removing the oldest entries
to contain no more than that number of lines. The default value is 500. The history file is
also truncated to this size after writing it when an interactive shell exits.

294

APPENDIXA SHELL VARIABLES

HISTIGNORE

A colon-separated list of patterns used to decide which command lines should be
saved on the history list. Each pattern is anchored at the beginning of the line and must
match the complete line (no implicit * is appended). Each pattern is tested against the
line after the checks specified by HISTCONTROL are applied. In addition to the normal
shell pattern matching characters, & matches the previous history line. & may be escaped
using a backslash; the backslash is removed before attempting a match. The second and
subsequent lines of a multiline compound command are not tested and are added to the
history regardless of the value of HISTIGNORE.

HISTSIZE

The number of commands to remember in the command history (see HISTORY in the
bash man page). The default value is 500.

HISTTIMEFORMAT

If this variable is set and not null, its value is used as a format string for strftime(3)
to print the time stamp associated with each history entry displayed by the history
built-in. If this variable is set, time stamps are written to the history file so they may be
preserved across shell sessions. This uses the history comment character to distinguish
timestamps from other history lines.

HOME

The home directory of the current user; the default argument for the cd built-in
command. The value of this variable is also used when performing tilde expansion.

HOSTFILE

Contains the name of a file in the same format as /etc/hosts that should be
read when the shell needs to complete a hostname. The list of possible hostname
completions may be changed while the shell is running; the next time hostname
completion is attempted after the value is changed, bash adds the contents of the new
file to the existing list. IFHOSTFILE is set but has no value, bash attempts to read /etc/
hosts to obtain the list of possible hostname completions. When HOSTFILE is unset, the
hostname list is cleared.

IFS

The internal field separator that is used for word splitting after expansion and to split

lines into words with the read built-in command. The default value is .

295

APPENDIXA SHELL VARIABLES

IGNOREEOQF

Controls the action of an interactive shell on receipt of an EOF character as the sole
input. If set, the value is the number of consecutive EOF characters that must be typed as
the first characters on an input line before bash exits. If the variable exists but does not
have a numeric value or does not have a value, the default value is 10. If it does not exist,
EOF signifies the end of input to the shell.

INPUTRC

The file name for the readline startup file, overriding the default of ~/.inputrc (see
READLINE in the bash man page).

INSIDE_EMACS

If this variable appears in the environment when the shell starts, bash assumes that
it is running inside an emacs shell buffer and may disable line editing, depending on the
value of TERM.

LANG

Used to determine the locale category for any category not specifically selected with
a variable starting with LC .

LC_ALL

This variable overrides the value of LANG and any other LC_ variable specifying a
locale category.

LC_COLLATE

This variable determines the collation order used when sorting the results of
pathname expansion and determines the behavior of range expressions, equivalence
classes, and collating sequences within pathname expansion and pattern matching.

LC_CTYPE

This variable determines the interpretation of characters and the behavior of
character classes within pathname expansion and pattern matching.

LC_MESSAGES

This variable determines the locale used to translate double-quoted strings
preceded by a $.

LC_NUMERIC

This variable determines the locale category used for number formatting.

LC_TIME

This variable determines the locale category used for data and time formatting.

296

APPENDIXA SHELL VARIABLES

LINES

Used by the select built-in command to determine the column length for printing
selection lists. This is automatically set upon receipt of a STGWINCH.

MAIL

If this parameter is set to a file name and the MAILPATH variable is not set, bash
informs the user of the arrival of mail in the specified file.

MAILCHECK

Specifies how often (in seconds) bash checks for mail. The default is 60 seconds.
When it is time to check for mail, the shell does so before displaying the primary prompt.
If this variable is unset or set to a value that is not a number greater than or equal to zero,
the shell disables mail checking.

MAILPATH

A colon-separated list of file names to be checked for mail. The message to be
printed when mail arrives in a particular file may be specified by separating the file name
from the message with a ?. When used in the text of the message, $_ expands to the name
of the current mail file. Here’s an example:

MAILPATH="'/var/mail/bfox?"You have mail":~/shell-mail?"$ has mail!"'

bash supplies a default value for this variable, but the location of the user mail files
that it uses is system dependent (e.g., /var/mail/$USER).

OPTERR

If set to the value 1, bash displays error messages generated by the getopts built-in
command (see “Shell Builtin Commands” in the bash man page). OPTERR is initialized to
1 each time the shell is invoked or a shell script is executed.

PATH

The search path for commands. It is a colon-separated list of directories in which the
shell looks for commands (see “Command Execution” in the bash man page). A zero-
length (null) directory name in the value of PATH indicates the current directory. A null
directory name may appear as two adjacent colons or as an initial or trailing colon. The
default path is system-dependent and is set by the administrator who installs bash. A
common value is /usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usx/bin.

POSIXLY_CORRECT

If this variable is in the environment when bash starts, the shell enters POSIX mode
before reading the startup files, as if the --posix invocation option had been supplied. If
itis set while the shell is running, bash enables POSIX mode, as if the command set -o
posix had been executed.

297

APPENDIXA SHELL VARIABLES

PROMPT_COMMAND

If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM

If set to a number greater than 0, the value is used as the number of trailing directory
components to retain when expanding the \w and \W prompt string escapes (see
“Prompting” in the bash man page). Characters removed are replaced with an ellipsis.

PSO

The value of this parameter is expanded (see “Prompting” in the bash man page)
and displayed by interactive shell after reading a command and before the command is
executed.

PS1

The value of this parameter is expanded (see “Prompting” in the bash man page) and
used as the primary prompt string. The default value is "\s-\v\$ ".

PS2

The value of this parameter is expanded as with PS1 and used as the secondary
prompt string. The defaultis "> "

PS3

The value of this parameter is used as the prompt for the select command (see “Shell
Grammar” earlier).

PS4

The value of this parameter is expanded as with PS1, and the value is printed before
each command bash displays during an execution trace. The first character of PS4 is
replicated multiple times, as necessary, to indicate multiple levels of indirection. The
defaultis "+ "

SHELL

The full pathname to the shell is kept in this environment variable. If it is not set
when the shell starts, bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT

The value of this parameter is used as a format string specifying how the timing
information for pipelines prefixed with the time reserved word should be displayed. The
% character introduces an escape sequence that is expanded to a time value or other
information. The escape sequences and their meanings are as follows; the braces denote
optional portions.

o %% Aliteral %.

e %[p][1]R: The elapsed time in seconds.

298

APPENDIXA SHELL VARIABLES

e %[p][1]U: The number of CPU seconds spent in user mode.
e %[p][1]S: The number of CPU seconds spent in system mode.

e %P: The CPU percentage, computed as (U + %S) / %R. The optional
p is a digit specifying the precision, the number of fractional digits
after a decimal point. A value of 0 causes no decimal point or fraction
to be output. At most three places after the decimal point may be
specified; values of p greater than 3 are changed to 3. If p is not
specified, the value 3 is used. The optional I specifies a longer format,
including minutes, of the form MMmSS. FFs. The value of p determines
whether the fraction is included. If this variable is not set, bash acts
as ifithad the value $' \nreal\t%31R\nuser\t%31U\nsys%31S". If the
value is null, no timing information is displayed. A trailing newline is

added when the format string is displayed.

TMOUT

If set to a value greater than 0, TMOUT is treated as the default timeout for the read
built-in. The select command terminates if input does not arrive after TMOUT seconds
when input is coming from a terminal. In an interactive shell, the value is interpreted
as the number of seconds to wait for input after issuing the primary prompt. bash
terminates after waiting for that number of seconds if input does not arrive.

TMPDIR

If set, bash uses its value as the name of a directory in which bash creates temporary
files for the shell’s use.

auto_resume

This variable controls how the shell interacts with the user and job control. If this
variable is set, single-word simple commands without redirections are treated as
candidates for resumption of an existing stopped job. There is no ambiguity allowed;
if there is more than one job beginning with the string typed, the job most recently
accessed is selected. The name of a stopped job, in this context, is the command line
used to start it. If set to the value exact, the string supplied must match the name of a
stopped job exactly; if set to substring, the string supplied needs to match a substring
of the name of a stopped job. The substring value provides functionality analogous to
the %? job identifier (see “Job Control” in the bash man page). If set to any other value,
the supplied string must be a prefix of a stopped job’s name; this provides functionality
analogous to the %string job identifier.

299

APPENDIXA SHELL VARIABLES

histchars

The two or three characters that control history expansion and tokenization (see
“History Expansion” in the bash man page). The first character is the history expansion
character, the character that signals the start of a history expansion, normally !. The
second character is the quick substitution character, which is used as shorthand for
rerunning the previous command entered, substituting one string for another in the
command. The default is *. The optional third character is the character that indicates
that the remainder of the line is a comment when found as the first character of a word,
normally #. The history comment character causes history substitution to be skipped for
the remaining words on the line. It does not necessarily cause the shell parser to treat the

rest of the line as a comment.

300

Index

A

Arguments, 13, 14
Associative arrays, 81, 83

Bash extensions, 50
Bourne shell, 67, 85, 97, 102
Bourne-type shell, 152
Bugs, 174
comments, 160, 161
debugging script, 169, 171-173
document code, 164
format code, 164, 165
function definition, 162
grouping commands, 166
K.I.S.S. principle, 165
process information, 163
runtime configuration/options, 162
structured programming, 160
test, 167, 168
typing errors, 159
variable initialization, 161
Built-in shell command, 25

C

cd command, 2, 175, 293
cdm function, 177
Cluster SSH, 205
Command line

calc, 186

© Jayant Varma, Chris E. A. Johnson 2023

cd function, 176
cdm, 177
cp, mv, 183
directory stack, 175
dirs built-in command, 178
fifteen puzzle, 189-194
filesystem functions, 181
games, 188, 189, 195
k function, 187
Isr, 182
md, 184
menu, 179, 180
pd function, 177
prl, 184, 185
single-letter command, 181
sman, 186
sus, 187
Command-line parsing
arguments, 41
command substitution, 51
expansion, 4
arithmetic expression, 48, 50
brace, 44-46
parameter/variable, 47
pathname, 53
tilde, 46
parsing options, 55-58
process substitution, 54
quoting, 42, 43
word splitting, 51, 52
Control sequence introducer (CSI), 251
Command substitution, 24, 25

301

J. Varma and C. E A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5

https://doi.org/10.1007/978-1-4842-9588-5

INDEX

Compound command, 88
Concatenation, 98
cp command, 183
cut command, 122

D

Data manipulation, 219
Data processing
arrays, 219
block file formats, 245, 246
data file formats, 240
delimiter-separated values, 241-243
fixed-length fields, 244
indexed array, 219, 220
insertion sort function, 223
line-based records, 240
programming structures, 247
reading array, memory, 226, 227
searching array, 224, 225
single-string grids, 229
function, 231
getgrid, 232
gridindex, 231
initgrid, 229, 230
putgrid, 231, 232
rshowgrid, 234, 235
showgrid, 233
sort command, 221, 222
two dimensional grids, 228, 235-237
functions, 237-240
dirs built-in command, 178

E

Echo, 14, 15
Entry-level programming
form entry, 276, 277

302

history library, 265

history-s, 274

key-funcs library, 266-268,

270-272, 274

mouse tracking, 278-282

sanity checking, 275, 276

single-key entry, 265
Escape sequences, 16

F

File descriptors (FDs), 21
File operations and commands
awk, 127-129
cat, 118, 119
cut, 122
dotglob, 132
external commands, 115,117, 136
extglob, 132
failglob option, 131
file name expansion
options, 130, 131
globstar, 135
grep, 124, 125
head, 119, 120
Is command, 121
nocaseglob option, 134
nullglob, 131
patterns, 133, 134
reading file, 116, 117
regular expressions, 124
sed, 125-127
shell options, 136
touch, 120
wc, 123
Format specifiers, 16
FORMAT string, 16
FUNCNAME array, 287

G

grep command, 164

H

help command, 139
$HOME directory, 4

|, J
Input field separator (IFS), 177
Input/output (I/0) streams
command, 21
pipelines, 24
reading input, 23
redirection operator, 21, 22
Internet Protocol (IP), 86
Iteration, 27

K

k function, 187
King James version (KJV), 117

L

Line continuation, 20, 25
Looping/branching
[[...]] evaluate expression, 31
arithmetic expression, 31
break, 38
case statement, 35
conditional execution, 32
conditional operators, AND/OR, 34, 35
continue, 39, 40
exit status, 27, 28
if command, 32, 33
string tests, 29
test command, 28

INDEX

file tests, 28
integer tests, 29
testing expressions, 28
types of loops, 36

for, 38

until, 37

while, 36

_max_length function, 256
md function, 184

N,O
nameref property, 92
Numbered parameters, 12

P

Parameters
positional, 12
special, 13
types, 11
PATH directories, 4
pd function, 177
Pipelines, 24, 25
Poor Man’s Arrays
assignment, 150, 151
associative arrays, 148, 149
built-in command, 154
pwd prints, 155
setting multiple variables,
command, 151, 152
unalias, 155-157
Portable game notation (PGN), 245
Positional parameters, 11, 12, 25, 82
POSIX mode, 297
POSIX shell, 71, 97, 102, 265

303

INDEX

prl function, 184 default configuration, 205, 206
printat command, 253 die function, 207
printat function, 250 directory hierarchy, 204
print_block function, 257 environment variables, 203
print_config function, 212 function definitions, 207
printf, 15, 259 menu function, 207
escape sequence, 16 menus, 198
fomat specifiers, 16-18 parse command-line options, 214, 215
FORMAT string, 16 print_config function, 212
printing variable, 20 ga function, 211
width specification, 18-20 Q&A function, 199
Process identification number (PID), 13 readline function, 213
put_block function, 255 screen variables, 206
put_block_at functions, 256 script information, 205

scripts, 202, 203
settings menu, 208-210

Q

ga function, 211

variables, 197

S

R Scalar variables, 78, 83
readline function, 213 screen-funcs library, 250
Real programming language, 95 Screen manipulation
Regular expressions, 124 block of text, 255-257, 259
Reserved words CSI, 251
commands, 157 priming canvas, 251-253
deprecated commands, 158 rendition modes/colors, 253, 254
help, display information, 139, 140 rolling dice, 260-262
keywords, 139 scrolling text, 259
reads a line, input stream, 142-148 stretching canvas, 250
time, print time, 141 teletypewriter vs. canvas, 250
Runtime configuration termcap or terminfo database, 249
arguments, 198 terminal screen, 263
bits/pieces, 215, 216 Shebang/hash-bang, 7, 8
Cluster SSH, 205 Shell function
code, 217 command line, 85
command-line options, 197, 198 commands, 95
configuration files, 200, 201 compound command, 88

304

definition, 85
exit codes, set different, 89
function libraries, 92
print result, 90, 91
results, 89
sample script, 93-95
syntax, 85-88
variables, 91, 92
Shell script
command, 2
creating file/running script, 5
definition, 1
Hello, World, build, 7
Hello World code, 2
naming, 3, 4
selecting directories, 4
text editor, 6
variables, 9
Shell variables
Bash, 285-287, 298, 300
HOSTFILE, 295
TMOUT, 299
sman function, 186
sort command, 221
Special parameters, 11
Standard algebraic notation (SAN), 167
String manipulation
case conversion, 102-104
comparing contents, 105
concatenation, 98
directory, 97
examples, 108
external command, 97
functions, 113
index function, 111, 112
insert one string into another, 107
overlaying, 108
processing character, 100, 101

INDEX

repeat character, given length,
99, 100
reversal, 101
trim unwanted characters, 110
valid variable name, check, 106
Strings, 29

T

Tic-tac-toe grid, 230, 235

U

Unix command, 4
Unix shell, 61

Vv

Variables, 13
arrays, 78
assignments, 80
associative arrays, 81
Bourne shell, 70, 71
displaying arrays, 79
integer-indexed arrays, 79
interpreted script, 63
names, 61, 62
parameter expansion
bash, 74-76
bash 4.0, 76, 77
Bourne shell, 67-70
POSIX shell, 71-73
positional parameters, 77, 78
shell, 65
subshells, 64

W XY,Z

wrap function, 257

305

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Hello, World: Your First Shell Program
	What Is a Shell Script?
	The Hello World Code
	The Hello World Program File
	Naming the Script File
	Selecting a Directory for the Script
	Creating the File and Running the Script
	Choosing and Using a Text Editor
	Building a Better “Hello, World!”
	Summary
	Commands
	Concepts
	Variables
	Exercises

	Chapter 2: Input, Output, and Throughput
	Parameters and Variables
	Positional Parameters
	Special *@#0$?_!- Parameters
	Variables
	Arguments and Options
	Why You Should Avoid echo
	printf: Formatting and Printing Data
	Escape Sequences
	Format Specifiers
	Width Specification
	Printing to a Variable
	Line Continuation
	Standard Input/Output Streams and Redirection
	Redirection: >, >>, and <
	Reading Input
	Pipelines
	Command Substitution
	Summary
	Commands
	Concepts
	Exercises

	Chapter 3: Looping and Branching
	Exit Status
	Testing an Expression
	test, a.k.a. […]
	File Tests
	Integer Tests
	String Tests
	[[…]]: Evaluate an Expression
	Enhancements over Test
	((…)): Evaluate an Arithmetic Expression
	Conditional Execution
	if
	Conditional Operators: && and ||
	case
	Looping
	while
	until
	for
	break
	continue
	Summary
	Commands
	Concepts
	Exercises

	Chapter 4: Command-Line Parsing and Expansion
	Quoting
	Brace Expansion
	Tilde Expansion
	Parameter and Variable Expansion
	Arithmetic Expansion
	Command Substitution
	Word Splitting
	Pathname Expansion
	Process Substitution
	Parsing Options
	Summary
	Commands
	Exercises

	Chapter 5: Parameters and Variables
	The Naming of Variables
	The Scope of a Variable: Can You See It from Here?
	Shell Variables
	Shell Variables
	Parameter Expansion
	Bourne Shell
	${var:-default} and ${var-default}: Use Default Values
	${var:+alternate} and ${var+alternate}: Use Alternate Values
	${var:=default} and ${var=default}: Assign Default Values
	${var:?message} and ${var?message}: Display Error Message If Empty or Unset
	POSIX Shell
	${#var}: Length of Variable’s Contents
	${var%PATTERN}: Remove the Shortest Match from the End
	${var%%PATTERN}: Remove the Longest Match from the End
	${var#PATTERN}: Remove the Shortest Match from the Beginning
	${var##PATTERN}: Remove the Longest Match from the Beginning
	bash
	${var//PATTERN/STRING}: Replace All Instances of PATTERN with STRING
	${var:OFFSET:LENGTH}: Return a Substring of $var
	${!var}: Indirect Reference
	bash-4.0
	${var^PATTERN}: Convert to Uppercase
	${var,PATTERN}: Convert to Lowercase
	Positional Parameters
	Arrays
	Integer-Indexed Arrays
	Displaying Arrays
	Assigning Array Elements
	Associative Arrays
	Summary
	Commands
	Concepts
	Exercises

	Chapter 6: Shell Functions
	Definition Syntax
	Compound Commands
	Getting Results
	Set Different Exit Codes
	Print the Result
	Place Results in One or More Variables
	Function Libraries
	Using Functions from Libraries
	Sample Script
	Summary
	Commands
	Exercises

	Chapter 7: String Manipulation
	Concatenation
	Repeat Character to a Given Length
	Processing Character by Character
	Reversal
	Case Conversion
	Comparing Contents Without Regard to Case
	Check for Valid Variable Name
	Insert One String into Another
	Examples
	Overlay
	Examples
	Trim Unwanted Characters
	Examples
	Index
	Summary
	Commands
	Functions
	Exercises

	Chapter 8: File Operations and Commands
	Reading a File
	External Commands
	cat
	head
	touch
	ls
	cut
	wc
	Regular Expressions
	grep
	sed
	awk
	File Name Expansion Options
	nullglob
	failglob
	dotglob
	extglob
	?(pattern-list)
	*(pattern-list)
	@(pattern-list)
	+(pattern-list)
	!(pattern-list)
	nocaseglob
	globstar
	Summary
	Shell Options
	External Commands
	Exercises

	Chapter 9: Reserved Words and Built-In Commands
	help, Display Information About Built-In Commands
	time, Print Time Taken for Execution of a Command
	read, Read a Line from an Input Stream
	-r, Read Backslashes Literally
	-e, Get Input with the readline Library
	-a, Read Words into an Array
	-d DELIM, Read Until DELIM Instead of a Newline
	-n NUM, Read a Maximum of NUM Characters
	-s, Do Not Echo Input Coming from a Terminal
	-p PROMPT:, Output PROMPT Without a Trailing Newline
	-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
	-u FD: Read from File Descriptor FD Instead of the Standard Input
	-i TEXT, Use TEXT As the Initial Text for Readline
	eval, Expand Arguments and Execute the Resulting Command

	Poor Man’s Arrays
	Setting Multiple Variables from One Command
	type, Display Information About Commands
	builtin, Execute a Built-In Command
	command, Execute a Command or Display Information About Commands
	pwd, Print the Current Working Directory
	unalias, Remove One or More Aliases
	Deprecated Built-Ins
	Dynamically Loadable Built-Ins

	Summary
	Commands and Reserved Words
	Deprecated Commands

	Exercise

	Chapter 10: Writing Bug-Free Scripts and Debugging the Rest
	Prevention Is Better Than Cure
	Structure Your Programs
	Comments
	Initialization of Variables
	Function Definitions
	Runtime Configuration and Options
	Process Information
	Document Your Code
	Format Your Code Consistently
	The K.I.S.S. Principle
	Grouping Commands
	Test As You Go
	Debugging a Script
	Summary
	Exercises

	Chapter 11: Programming for the Command Line
	Manipulating the Directory Stack
	cd
	pd
	cdm
	dirs Built-In Command
	menu
	Filesystem Functions
	l
	lsr
	cp, mv
	md
	Miscellaneous Functions
	pr1
	calc
	Managing Man Pages
	sman
	sus
	k
	Games
	The fifteen Puzzle
	Summary
	Exercises

	Chapter 12: Runtime Configuration
	Defining Variables
	Command-Line Options and Arguments
	Menus
	Q&A Dialogue
	Configuration Files
	Scripts with Several Names
	Environment Variables
	All Together Now
	Script Information
	Default Configuration
	Screen Variables
	Function Definitions
	Function: die
	Function: menu
	The Upload Settings Menu
	Function: qa
	Function: print_config
	Function: readline
	Parse Command-Line Options
	Bits and Pieces
	Summary
	Exercises

	Chapter 13: Data Processing
	Arrays
	Holes in an Indexed Array
	Using an Array for Sorting
	Insertion Sort Function
	Searching an Array
	Reading an Array into Memory
	Two-Dimensional Grids
	Working with Single-String Grids
	Function: initgrid
	Function: gridindex
	Function: putgrid
	Function: getgrid
	Function: showgrid
	Function: rshowgrid
	Two-Dimensional Grids Using Arrays
	Function: initagrid
	Function: putagrid
	Function: getagrid
	Function: showagrid
	Function: rshowagrid
	Data File Formats
	Line-Based Records
	Delimiter-Separated Values
	Fixed-Length Fields
	Block File Formats
	Summary
	Exercises

	Chapter 14: Scripting the Screen
	Teletypewriter vs. Canvas
	Stretching the Canvas
	Control Sequence Introducer
	Priming the Canvas
	Moving the Cursor
	Changing Rendition Modes and Colors
	Placing a Block of Text on the Screen
	Scrolling Text
	Rolling Dice
	Summary
	Exercises

	Chapter 15: Entry-Level Programming
	Single-Key Entry
	Function Library, key-funcs
	History in Scripts
	Sanity Checking
	Form Entry
	Reading the Mouse
	Summary
	Exercises

	Appendix A: Shell Variables
	Index

