
Pro Bash
Learn to Script and Program the
GNU/Linux Shell
—
Third Edition
—
Jayant Varma
Chris F. A. Johnson

Pro Bash
Learn to Script and Program

the GNU/Linux Shell

Third Edition

Jayant Varma
Chris F. A. Johnson

Pro Bash: Learn to Script and Program the GNU/Linux Shell, Third Edition

ISBN-13 (pbk): 978-1-4842-9587-8		 ISBN-13 (electronic): 978-1-4842-9588-5
https://doi.org/10.1007/978-1-4842-9588-5

Copyright © 2023 by Jayant Varma, Chris F. A. Johnson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: Jim Markham
Editorial Assistant: Gryffin Winkler

Cover image designed by Clker-Free-Vector-Images on Pixabay (https://pixabay.com/)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
1 FDR Dr, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

Paper in this product is recyclable.

Jayant Varma
Berwick, VIC, Australia

Chris F. A. Johnson
Toronto, ON, Canada

https://doi.org/10.1007/978-1-4842-9588-5

To all the people that have helped me become what I am today:

My mother and father (may they rest in peace)

My family and siblings

My pets (may they rest in peace)

My work family across the many organizations so far

The team at Apress

And, most importantly, the readers of this book

v

About the Authors���xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Chapter 1: �Hello, World: Your First Shell Program��� 1

What Is a Shell Script?��� 1

The Hello World Code��� 2

The Hello World Program File��� 3

Naming the Script File��� 3

Selecting a Directory for the Script�� 4

Creating the File and Running the Script��� 5

Choosing and Using a Text Editor��� 6

Building a Better “Hello, World!”�� 7

Summary��� 7

Commands��� 8

Concepts�� 8

Variables�� 9

Exercises�� 9

Chapter 2: �Input, Output, and Throughput��� 11

Parameters and Variables�� 11

Positional Parameters�� 12

Special *@#0$?_!- Parameters��� 13

Variables�� 13

Arguments and Options��� 13

Why You Should Avoid echo��� 14

Table of Contents

vi

printf: Formatting and Printing Data�� 15

Escape Sequences��� 16

Format Specifiers��� 16

Width Specification�� 18

Printing to a Variable�� 20

Line Continuation��� 20

Standard Input/Output Streams and Redirection��� 20

Redirection: >, >>, and <�� 21

Reading Input��� 23

Pipelines�� 24

Command Substitution�� 24

Summary��� 25

Commands��� 25

Concepts�� 25

Exercises�� 26

Chapter 3: �Looping and Branching�� 27

Exit Status�� 27

Testing an Expression�� 28

test, a.k.a. […]��� 28

File Tests�� 28

Integer Tests��� 29

String Tests�� 29

[[…]]: Evaluate an Expression��� 31

Enhancements over Test�� 31

((�…)): Evaluate an Arithmetic Expression�� 31

Conditional Execution�� 32

if��� 32

Conditional Operators: && and ||�� 34

case��� 35

Looping�� 36

Table of Contents

vii

while�� 36

until�� 37

for��� 38

break�� 38

continue��� 39

Summary��� 39

Commands��� 40

Concepts�� 40

Exercises�� 40

Chapter 4: �Command-Line Parsing and Expansion�� 41

Quoting��� 42

Brace Expansion�� 44

Tilde Expansion�� 46

Parameter and Variable Expansion�� 47

Arithmetic Expansion��� 48

Command Substitution�� 51

Word Splitting�� 51

Pathname Expansion��� 53

Process Substitution�� 54

Parsing Options�� 55

Summary��� 58

Commands��� 58

Exercises�� 58

Chapter 5: �Parameters and Variables�� 61

The Naming of Variables�� 61

The Scope of a Variable: Can You See It from Here?�� 62

Shell Variables��� 65

Shell Variables��� 65

Parameter Expansion��� 67

Bourne Shell�� 67

Table of Contents

viii

${var:-default} and ${var-default}: Use Default Values��� 67

${var:+alternate} and ${var+alternate}: Use Alternate Values��� 68

${var:=default} and ${var=default}: Assign Default Values�� 70

${var:?message} and ${var?message}: Display Error Message If Empty or Unset����������������������� 70

POSIX Shell�� 71

${#var}: Length of Variable’s Contents��� 71

${var%PATTERN}: Remove the Shortest Match from the End�� 72

${var%%PATTERN}: Remove the Longest Match from the End�� 73

${var#PATTERN}: Remove the Shortest Match from the Beginning��� 73

${var##PATTERN}: Remove the Longest Match from the Beginning�� 73

bash��� 74

${var//PATTERN/STRING}: Replace All Instances of PATTERN with STRING���������������������������������� 74

${var:OFFSET:LENGTH}: Return a Substring of $var��� 75

${!var}: Indirect Reference��� 76

bash-4.0��� 76

${var^PATTERN}: Convert to Uppercase��� 76

${var,PATTERN}: Convert to Lowercase�� 77

Positional Parameters�� 77

Arrays��� 78

Integer-Indexed Arrays��� 79

Displaying Arrays��� 79

Assigning Array Elements�� 80

Associative Arrays�� 81

Summary��� 82

Commands��� 82

Concepts�� 83

Exercises�� 83

Table of Contents

ix

Chapter 6: �Shell Functions��� 85

Definition Syntax�� 85

Compound Commands��� 88

Getting Results��� 89

Set Different Exit Codes��� 89

Print the Result�� 90

Place Results in One or More Variables��� 91

Function Libraries�� 92

Using Functions from Libraries�� 92

Sample Script�� 93

Summary��� 95

Commands��� 95

Exercises�� 96

Chapter 7: �String Manipulation��� 97

Concatenation�� 98

Repeat Character to a Given Length�� 99

Processing Character by Character��� 100

Reversal��� 101

Case Conversion�� 102

Comparing Contents Without Regard to Case�� 105

Check for Valid Variable Name��� 106

Insert One String into Another�� 107

Examples��� 108

Overlay��� 108

Examples��� 109

Trim Unwanted Characters��� 110

Examples��� 111

Index�� 111

Summary��� 113

Table of Contents

x

Commands��� 113

Functions��� 113

Exercises�� 114

Chapter 8: �File Operations and Commands��� 115

Reading a File�� 116

External Commands��� 117

cat�� 118

head��� 119

touch�� 120

ls�� 121

cut�� 122

wc�� 123

Regular Expressions�� 124

grep�� 124

sed��� 125

awk�� 127

File Name Expansion Options�� 130

nullglob�� 131

failglob��� 131

dotglob��� 132

extglob��� 132

?(pattern-list)��� 133

*(pattern-list)��� 133

@(pattern-list)�� 133

+(pattern-list)�� 133

!(pattern-list)�� 134

nocaseglob��� 134

globstar�� 135

Summary��� 136

Table of Contents

xi

Shell Options�� 136

External Commands��� 136

Exercises�� 137

Chapter 9: �Reserved Words and Built-In Commands��� 139

help, Display Information About Built-In Commands��� 139

time, Print Time Taken for Execution of a Command��� 141

read, Read a Line from an Input Stream�� 142

-r, Read Backslashes Literally�� 142

-e, Get Input with the readline Library�� 143

-a, Read Words into an Array�� 144

-d DELIM, Read Until DELIM Instead of a Newline�� 144

-n NUM, Read a Maximum of NUM Characters��� 145

-s, Do Not Echo Input Coming from a Terminal��� 145

-p PROMPT:, Output PROMPT Without a Trailing Newline��� 145

-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input�� 145

-u FD: Read from File Descriptor FD Instead of the Standard Input������������������������������������� 146

-i TEXT, Use TEXT As the Initial Text for Readline��� 147

eval, Expand Arguments and Execute the Resulting Command��� 148

Poor Man’s Arrays�� 148

Setting Multiple Variables from One Command�� 151

type, Display Information About Commands��� 152

builtin, Execute a Built-In Command�� 154

command, Execute a Command or Display Information About Commands�������������������������� 154

pwd, Print the Current Working Directory��� 155

unalias, Remove One or More Aliases�� 155

Summary��� 157

Commands and Reserved Words�� 157

Deprecated Commands�� 158

Exercise��� 158

Table of Contents

xii

Chapter 10: �Writing Bug-Free Scripts and Debugging the Rest���������������������������� 159

Prevention Is Better Than Cure�� 160

Structure Your Programs�� 160

Comments�� 160

Initialization of Variables�� 161

Function Definitions��� 162

Runtime Configuration and Options��� 162

Process Information��� 163

Document Your Code�� 164

Format Your Code Consistently�� 164

The K.I.S.S. Principle�� 165

Grouping Commands�� 166

Test As You Go�� 167

Debugging a Script�� 169

Summary��� 174

Exercises�� 174

Chapter 11: �Programming for the Command Line��� 175

Manipulating the Directory Stack�� 175

cd��� 176

pd��� 177

cdm�� 177

dirs Built-In Command��� 178

menu�� 179

Filesystem Functions��� 181

l�� 181

lsr��� 182

cp, mv�� 183

md�� 184

Miscellaneous Functions��� 184

pr1�� 184

Table of Contents

xiii

calc�� 186

Managing Man Pages�� 186

sman�� 186

sus��� 187

k��� 187

Games�� 188

The fifteen Puzzle�� 189

Summary��� 195

Exercises�� 195

Chapter 12: �Runtime Configuration��� 197

Defining Variables�� 197

Command-Line Options and Arguments�� 198

Menus�� 198

Q&A Dialogue��� 199

Configuration Files��� 200

Scripts with Several Names��� 202

Environment Variables��� 203

All Together Now�� 204

Script Information�� 205

Default Configuration��� 205

Screen Variables�� 206

Function Definitions��� 207

Function: die�� 207

Function: menu�� 207

The Upload Settings Menu��� 208

Function: qa��� 211

Function: print_config�� 212

Function: readline�� 213

Parse Command-Line Options��� 214

Table of Contents

xiv

Bits and Pieces�� 215

Summary��� 217

Exercises�� 217

Chapter 13: �Data Processing��� 219

Arrays��� 219

Holes in an Indexed Array�� 219

Using an Array for Sorting�� 221

Insertion Sort Function��� 223

Searching an Array��� 224

Reading an Array into Memory�� 225

Two-Dimensional Grids�� 228

Working with Single-String Grids��� 229

Function: initgrid�� 229

Function: gridindex�� 230

Function: putgrid�� 231

Function: getgrid�� 232

Function: showgrid�� 233

Function: rshowgrid��� 234

Two-Dimensional Grids Using Arrays��� 235

Function: initagrid�� 237

Function: putagrid�� 238

Function: getagrid�� 238

Function: showagrid��� 239

Function: rshowagrid��� 239

Data File Formats��� 240

Line-Based Records��� 240

Delimiter-Separated Values��� 241

Fixed-Length Fields��� 244

Table of Contents

xv

Block File Formats��� 245

Summary��� 247

Exercises�� 247

Chapter 14: �Scripting the Screen�� 249

Teletypewriter vs. Canvas�� 250

Stretching the Canvas�� 250

Control Sequence Introducer��� 251

Priming the Canvas�� 251

Moving the Cursor�� 252

Changing Rendition Modes and Colors�� 253

Placing a Block of Text on the Screen�� 255

Scrolling Text�� 259

Rolling Dice�� 260

Summary��� 263

Exercises�� 263

Chapter 15: �Entry-Level Programming�� 265

Single-Key Entry�� 265

Function Library, key-funcs ��� 266

History in Scripts�� 274

Sanity Checking��� 275

Form Entry��� 276

Reading the Mouse�� 278

Summary��� 282

Exercises�� 283

�Appendix A: Shell Variables��� 285

�Index�� 301

Table of Contents

xvii

About the Authors

Jayant Varma has donned many hats in the tech field. He

has a richer and wider experience across several domains

and industries. He has worked in several capacities from

an IC (Individual Contributor) to managing multiple large

teams across geographies. He has taught at a couple of

Australian universities and is a speaker and has conducted

multiple workshops. He has several books published by

Apress on topics like SwiftUI, Lua and Xcode as well as open

source topics like Linux, bash, and shell scripting. He loves

to travel and explore new places. 

Chris F. A. Johnson was introduced to Unix in 1990 and

learned shell scripting because there was no C compiler on

the system. His first major project was a menu-driven, user-

extensible database system with report generator. Chris is

now retired and currently resides in Toronto, Canada.  

xix

About the Technical Reviewer

Emma Saroyan graduated with a BS in computer science.

She worked at startups at the intersection of technology

and education, and she enjoys sharing her knowledge

and learning from fellow developers. Emma is currently a

developer advocate, mentor, and educator.  

xxi

Acknowledgments

Writing a book is not an easy task especially at a time where technology changes and

everything is online. Add to that the time constraints with life and work being in the way.

This book is going to be in its third revision, which is a good milestone and indicates

that there are people that are still reading. A book cannot publish itself though there are

several articles on the use of AI and self-publishing; it takes a lot of effort from everyone

involved, from the author to the publishing house to the reviewer. This book is a result

of sweat and hard work and the hope that it will serve and continue to serve the readers

that are interested in bash and shell programming.

I have to also acknowledge my family that has seen me toiling away at the chapters

after work, though their major complaint has been that they have not seen me during

this process.

Lastly, my passion is coding, teaching, and writing. As my career progressed, the

days were consumed with more and more meetings and business/strategy discussions.

The third edition came as pressure on me to juggle the task as well as a relief from those

back-to-back meetings. Hope you like this revision and it has been helpful in your

journey.

1

CHAPTER 1

Hello, World: Your First
Shell Program
A shell script is a file containing one or more commands that you would type on the

command line. This chapter describes how to create such a file and make it executable.

It also covers some other issues surrounding shell scripts, including what to name the

files, where to put them, and how to run them.

�What Is a Shell Script?
A shell script is a file that contains one or more commands, which can be commands

that you might type on a command line. The script file when executed (run) would run

these commands one after the other like how one might have typed them on a command

line one after the other sequentially. In this chapter, we shall look at how to create such

a file and make it executable. We shall also cover some other points like naming these

script files, where to save them, and how to run them.

When starting with a new language, the first program that a developer writes is a

standard HelloWorld program, one that prints “Hello, World!” to the terminal. This

simple program demonstrates quite a few important concepts. The code itself is the

simplest part of this chapter. The file naming and deciding where to place the files are

not complicated either but are important.

For a major portion of the book, we shall work with the terminal; it could be a virtual

terminal, a terminal window, or even a dumb terminal. For many of the readers, some of

these might be a new concept. For simplicity’s sake, we shall use the term “terminal” to

represent them across all the platforms and across all types. In the terminal, the shell will

immediately execute any commands that are typed (after pressing Enter, of course).

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_1

https://doi.org/10.1007/978-1-4842-9588-5_1

2

When you start a terminal, you can first type the following command to find your

home directory:

$ echo "$HOME"

/home/jayant

This prints the home directory, which is stored in the variable called HOME; when

using a variable, we use the $ sign prepended to the variable name, in this case $HOME.

We can also find the current directory using the pwd (print current/working directory)

command or the PWD variable as

$ pwd

/home/jayant

$ echo "$PWD"

/home/jayant

When we start a terminal, we are generally in the home directory; however, if at

any time we are not in the home directory, we can switch back to the home directory

by using the cd command. cd stands for Change Directory. When used without any

parameters, it will take us back to the home directory. When used with parameters, it

will change to the directory name as passed in the parameters (if such a directory existed

in the path). We can also use the .. as parameters to go back one level on the directory

hierarchy (if we are not in the parent directory already).

�The Hello World Code
The code is as simple as

$ echo Hello, World!

Hello, World!

There are three words on this command line: the command itself and two

arguments. The command, echo, prints its arguments separated by a single space and

terminated with a newline.

An important note here is that the text after echo is parameters and these parameters

are separated by spaces, so we have Hello, as the first parameter and World! as

the second.

Chapter 1 Hello, World: Your First Shell Program

3

�The Hello World Program File
Before we can turn this code into a script, we need to make two important decisions:

	 1.	 What will we name this file where we shall save our code into. This

name has to be unique (i.e., it should not conflict with any other

commands)

	 2.	 Where to save this so that the shell can find it

�Naming the Script File
One of the most common mistakes that beginners make is calling the trial script test. At

first, it does make sense, but to know why this is an issue, let us simply type the following

command:

$ type test

test is a shell builtin

The type command tells us what the shell will execute (and where this could be

found if it is an external file) for any given command. In bash, type -a test will display

all the commands that match the name test.

$ type -a test

test is a shell builtin

test is /usr/bin/test

test is /bin/test

Note T he output of this command could be different depending on the system it
is run on.

As we can see, the command called test already exists; it is used to test file types and

to compare values. If our script is called test, it will not be run when we try to run test

at the shell prompt; the first command that is identified by type will be run instead. We

shall see both the type and test commands in detail in later chapters.

Chapter 1 Hello, World: Your First Shell Program

4

Typically, Unix command names are as short as possible. They are often the first

two consonants of a descriptive word, for example, mv for move or ls for list, or the first

letters of a descriptive phrase, for example, ps for process status or sed for stream editor.

For this exercise, we shall call the script hw as in hello world. Many shell

programmers add a suffix such as .sh to indicate that the program is a shell script. The

script does not require it, and it is used for programs that are being developed. One way

is to add the suffix -sh to the name during development, and then when the program is

completed, the suffix can be removed. The shell script then becomes another command

and does not need to be distinguished from any other type of command.

Note T his is a suggestion, and with the advent of verbose naming, some
developers can choose to have a verbose name for their scripts; however, keeping
in line with the Unix command naming convention, shorter names are preferred.

�Selecting a Directory for the Script
When a command is typed or the shell given a command to execute, it looks for that name

in the directories listed in the PATH variable. This variable contains a colon-separated list

of directories that contain executable commands. This is a typical value for $PATH:

$ echo $PATH

/bin:/usr/bin:/usr/local/bin:/usr/games

The directories could look different depending on the platform and the additional

directories added to the $PATH variable.

If the program is not in one of the PATH directories, then a pathname is required;

this can be an absolute or a relative pathname, for bash to find it. An absolute pathname

gives the location from the root of the filesystem such as /home/jayant/bin/hw; a

relative pathname is given in relation to the current working directory (which should be

currently the home directory) as in bin/hw.

Commands are usually stored in directories named bin, and the personal programs

belonging to a user are stored in a bin subdirectory in the $HOME directory. Since there is

no such bin directory in the user’s profile directory, we can create this by simply using

the following command:

$ mkdir bin

Chapter 1 Hello, World: Your First Shell Program

5

Now that it has been created and exists, it must be added to the PATH variable using

the following command:

$ PATH=$PATH:$HOME/bin

For this change to be applied every time we open a new shell, we can add it to a file

that will source when it is invoked. Depending on the platform and how bash is invoked,

it could be .bash_profile, .bashrc, or .profile. These files are sourced only for

interactive shells, not for scripts.

�Creating the File and Running the Script
Usually, we would require a text editor to create a program. However, for this simple

hello world script, it is not necessary to invoke or use a text editor. We can create the file

from the command line using redirection:

$ echo echo Hello, World! > bin/hw

The greater than sign (>) tells the shell to send the output of a command to the

specified resource than to the terminal. We will look at more redirection in Chapter 2.

Note T here is a double echo in the aforementioned command.

The program can now be run by calling it as an argument to the shell command:

$ bash bin/hw

That works, but it is not entirely satisfactory. We would want to run it by simply

typing hw, without having to precede it with the bash command. To do so, we need to

give the file executable permission.

$ chmod +x bin/hw

Now the command can be run simply by just its name:

$ hw

Hello, World!

Chapter 1 Hello, World: Your First Shell Program

6

�Choosing and Using a Text Editor
With modern computers, a text editor is an important piece of software; there are many

options available, from simple text editors to advanced word processors. This book, for

example, is written using Word, which is part of the Microsoft Office 365 offering. There

are other options like LibreOffice Writer and Pages. If we discuss text editors, Sublime

Text is a popular and common editor that works across all the platforms. It is a powerful

GUI-based text editor. Then we also have editors that work in the terminal such as vi,

vim, emacs, nedit, and nano, to name a few. The choice of a text editor is personal, and it

is left entirely up to everyone to choose their own preferred editor. However, when using

a terminal, I prefer the use of vim; see Figure 1-1.

Figure 1-1.  Shell script in the vim editor running on Ubuntu Linux

Chapter 1 Hello, World: Your First Shell Program

7

�Building a Better “Hello, World!”
Earlier in the chapter, we created a script using redirection. The script was, to say the

least, minimalistic. All programs, even one liners, require documentation. Information

should include at least the author, the date, and a description of the command. We can

add some comments to the code using a text editor as in Listing 1-1.

Listing 1-1.  hw

#!/bin/bash

#: Title : hw

#: Date : 2023-02-01

#: Author : Jayant Varma

#: Version : 1.0

#: Description : prints Hello, World!

#: Options : None

printf "%s\n" "Hello, World!"

Comments begin with an octothorpe, or the hash symbol (#), at the beginning of a

word and continue until the end of the line. The shell ignores them. The colon is simply

added to indicate the type of comment. It makes it easier to search the file for the type

required, ignoring all the other comments.

The first line is a special type of comment called the shebang or hash-bang. It informs

the systems about which interpreter to use to execute the file. The characters !# must

appear at the very beginning of the first line – in other words, the first two bytes of the file

for it to be recognized. The shell to use follows those two characters; in this case, we are

using the bash shell found at /bin/bash.

�Summary
In this chapter, we have covered and looked at the following commands, concepts, and

variables.

Chapter 1 Hello, World: Your First Shell Program

8

�Commands
•	 pwd: Prints the name of the current working directory

•	 cd: Changes the shell’s working directory

•	 echo: Prints its arguments separated by a space and terminated by

a newline

•	 type: Displays information about a command

•	 mkdir: Creates a new directory

•	 chmod: Modifies the permissions of a file

•	 source: a.k.a. .(dot), executes a script in the current shell

environment

•	 printf: Prints the arguments as specified by a format string

�Concepts
•	 Script: A file containing commands to be executed by the shell.

•	 Word: A word is a sequence of characters considered to be a single

unit by the shell.

•	 Output redirection: The output of a command can be sent to a file

rather than the terminal using > FILENAME.

•	 Variables: These are the names where values are stored.

•	 Comments: These consist of an unquoted word beginning with a #.

All remaining characters on that line constitute a comment and will

be ignored.

•	 Shebang or hash-bang: This is a hash and an exclamation mark (#!)

followed by the path to the interpreter that should execute the file.

•	 Interpreter: This is a program that reads a file and executes the

statements it contains. It may be a shell or another language

interpreter such as awk or Python.

Chapter 1 Hello, World: Your First Shell Program

9

�Variables
•	 PWD contains the pathname of the shell’s current working directory.

•	 HOME stores the pathname of the user’s home directory.

•	 PATH is a colon-separated list of directories in which command files

are stored. The shell searches the directories for commands it is

asked to execute.

�Exercises

	 1.	 Write a script that creates a directory called bpl inside

$HOME. Populate this directory with two subdirectories: bin and

scripts.

	 2.	 Write a script to create the “Hello, World!” script, hw, in $HOME/

bpl/bin/; make it executable; and then execute it.

	 3.	 Make the modifications to now enable running the script using

the command hw instead of /bpl/bin/hw from the user home

directory.

Chapter 1 Hello, World: Your First Shell Program

11

CHAPTER 2

Input, Output, and
Throughput
Two of the commands we used in Chapter 1 are workhorses of the shell scripter’s stable:

echo and printf. Both are bash built-in commands. Both print information to the

standard output stream, but printf is much more powerful, and echo has its problems.

In this chapter, we will cover echo and the problems it brings, the capabilities of

printf, the read command, and the standard input and output streams. We’ll start at

first with an overview of parameters and variables.

�Parameters and Variables
To quote the bash manual (type man bash at the command prompt to read it or it

can also be read online at www.gnu.org/software/bash/manual/html_node/Shell-

Parameters.html), “A parameter is an entity that stores values.” There are three types

of parameters: positional parameters, special parameters, and variables. Positional

parameters are arguments present on the command line, and they are referenced by a

number. Special parameters are set by the shell to store information about aspects of its

current state, such as the number of arguments and the exit code of the last command.

Their names are non-alphanumeric characters (e.g., *, #, and _). Variables are identified

by a name. What’s in a name? We’ll look at that in the “Variables” section.

The value of a parameter is accessed by preceding its name, number, or character

with a dollar sign, as in $3, $#, or $HOME. The name may be surrounded by braces, as in

${10}, ${PWD}, or ${USER}.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_2

http://www.gnu.org/software/bash/manual/html_node/Shell-Parameters.html
http://www.gnu.org/software/bash/manual/html_node/Shell-Parameters.html
https://doi.org/10.1007/978-1-4842-9588-5_2

12

�Positional Parameters
When we call a command and pass it some arguments like we did earlier with echo in

Chapter 1, these arguments are numbered and passed to a shell program; these are

called numbered parameters. The first argument is $1, the second $2, and so on. The

first positional parameter is not $0; this is the name of the shell or the shell script/

command we are calling.

Let us modify the hw script from Chapter 1 and make it more flexible by using

positional parameters. Let’s call it hello as seen in Listing 2-1.

Listing 2-1.  hello

#: Description: print Hello and the first command-line argument

printf "Hello, %s!\n" "$1"

Now we can call the script with an argument to change its output:

$ hello John

Hello, John!

$ hello Susan

Hello, Susan!

The original Bourne shell could only address up to nine positional parameters. If a

script were to use $10, it would be interpreted as $1 followed by a literal 0. To be able to

run older scripts, bash maintains this behavior. To access positional parameters greater

than 9, the number must be enclosed in braces like ${15}.

The script is passed to the parameters that can be accessed via their positions, $0, $1,

$2, and so on. There exists a function shift N, which moves the positional parameters

by N positions. If we ran shift (the default value of N is 1), then $0 would be discarded

and $1 would become $0, $2 would become $1, and so on. They would all be shifted by 1

position. There are some very clever and simple uses of shift to iterate through a list of

parameters of unknown length.

Note  The shift function is destructive; that is, the parameters discarded are
gone and cannot be retrieved again.

Chapter 2 Input, Output, and Throughput

13

�Special *@#0$?_!- Parameters
The first two special parameters, $* and $@, expand to the value of all the positional

parameters combined, and $# expands to the number of positional parameters. $0

contains the path to the currently running script or to the shell itself if no script is being

executed.

$$ contains the process identification number (PID) of the current process, $? is set

to the exit code of the last executed command, and $_ is set to the last argument to that

command. $! contains the PID of the last command executed in the background, and $-

is set to the options flag currently in effect.

We will discuss these parameters more in detail as they come up in the chapters and

writing scripts.

�Variables
A variable is a parameter denoted by a name; a name is a word containing only letters,

numbers, or underscores and beginning with a letter or an underscore.

Values can be assigned to variables as such:

name=value

Note  bash is particular in the way it handles spacing; there are no spaces before
the = and none after as well. If you have spaces, the command will not work.

Many variables are set by the shell itself, including the three we have already seen:

HOME, PWD, and PATH. With the two minor exceptions of auto_resume and histchars, all

the variables set by the shell are all in uppercase letters.

�Arguments and Options
The words entered after the command are its arguments. These words are separated by

whitespace (one or more spaces or tabs); if the whitespace is escaped or quoted, it no

longer separates words but becomes part of the word.

Chapter 2 Input, Output, and Throughput

14

The following command lines all have four arguments:

$ echo 1 '2 3' 4 5

$ echo -n Now\ is the time

printf "%s %s\n" one two three

In the first line, the spaces between 2 and 3 are quoted because they are surrounded

by single quotation marks. In the second, the space after Now is escaped by a backslash,

which is the shell’s escape character.

In the final line, a space is quoted with double quotes.

In the second command, the first argument is an option. Traditionally, options to

Unix commands are a single letter preceded by a hyphen, sometimes followed by an

argument. The GNU commands found in Linux distributions often accept long options

as well. These are words preceded by a double hyphen. For example (Figure 2-1), most

GNU utilities have an option --version that prints the version.

�Why You Should Avoid echo
All modern shells have echo, which is an internal command; when used, echo prints its

arguments with a single space between them to the standard output stream, followed by

a newline.

$ echo The quick brown fox

The quick brown fox

The default newline can be suppressed by using the option -n.

$ echo -n No newline

No newline$

Figure 2-1.  Long option for version

Chapter 2 Input, Output, and Throughput

15

Note  There were differences in the past between different flavors of bash
between the AT&T’s System V and BSD.

The other way of escaping and suppressing the newline character was the use of the

escape sequence /c, which would not work on many of the bash shells. However, we can

use the option -e, which tells echo to recognize all the provided escape sequences.

$ echo "No Newline\c"

No newline

$ echo -e "No newline\c"

No newline$

Tip A dd -e to the echo command if you want the escape sequences to be
recognized.

The trouble is that bash has an xpg_echo option (XPG stands for X/Open Portability

Guide, a specification for Unix systems) that makes echo behave like that other version.

This can be turned on or off while in the shell (using shopt -s xpg_echo either at the

command line or in a script), or it can be turned on when the shell is compiled. In other

words, even in bash, we cannot be absolutely sure which behavior you are going to get.

If we limit the use of echo to situations where there cannot be a conflict, that is,

where we are sure the arguments do not begin with -n and do not contain escape

sequences, we will be fairly safe. For everything else (or if we are not sure), use printf.

�printf: Formatting and Printing Data
Derived from the C programming language function of the same name, the shell

command printf is similar in purpose but differs in some of the details. Like the C

function, it uses a format string to indicate how to present the rest of its arguments:

printf FORMAT ARG ...

Chapter 2 Input, Output, and Throughput

16

The FORMAT string can contain ordinary characters, escape sequences, and format

specifiers. Ordinary characters are printed unchanged to the standard output. Escape

sequences are converted to the characters they represent. Format specifiers are replaced

with arguments from the command line.

�Escape Sequences
Escape sequences are single letters preceded by a backslash:

•	 \a: : Alert (bell)

•	 \b: Backspace

•	 \e: Escape character

•	 \f: Form feed

•	 \n: Newline

•	 \r: Carriage return

•	 \t: Horizontal tab

•	 \v: Vertical tab

•	 \\: Backslash

•	 \nnn: A character specified by one to three octal digits

•	 \xHH: A character specified by one or two hexadecimal digits

The backslashes must be protected from the shell by quotes or another backslash:

$ printf "Q\t\141\n\x42\n"

Q a

B

�Format Specifiers
The format specifiers are letters preceded by a percent sign. Optional modifiers may be placed

between the two characters. The specifiers are replaced by the corresponding argument.

When there are more arguments than specifiers, the format string is reused until all the

arguments have been consumed. The most commonly used specifiers are %s, %d, %f, and %x.

Chapter 2 Input, Output, and Throughput

17

The %s specifier prints the literal characters in the argument:

$ printf "%s\n" Print arguments on "separate lines"

Print

arguments

on

separate lines

%b is like %s except that escape sequences in the arguments are translated:

$ printf "%b\n" "Hello\nworld" "12\tword"

Hello

world

12 word

Integers are printed with %d. The integer may be specified as a decimal, octal (using a

leading 0), or hexadecimal (preceding the hex number with 0x) number. If the number is

not a valid integer, printf prints an error message:

$ printf "%d\n" 23 45 56.78 0xff 011

23

45

bash: printf: 56.78: invalid number

0

255

9

For decimal fractions or floating-point numbers, use %f. By default, they will be

printed with six decimal places:

$ printf "%f\n" 12.34 23 56.789 1.2345678

12.340000

23.000000

56.789000

1.234568

Floating-point numbers can be presented in exponential (also known as scientific)

notation using %e:

$ printf "%e\n" 12.34 23 56.789 123.45678

Chapter 2 Input, Output, and Throughput

18

1.234000e+01

2.300000e+01

5.678900e+01

1.234568e+ 02

Integers can be printed in hexadecimal using %x for lowercase letters or %X for

uppercase letters. For example, when specifying colors for a web page, they are specified

in hex notation. I know from the rgb.txt file included with the X Window system that

the red-green-blue values for royal blue are 65, 105, and 225. To convert them to a style

rule for a web page, use this:

$ printf "color: #%02x%02x%02x;\n" 65 105 225

color: #4169e1;

�Width Specification
We can modify the formats by following the percent sign with a width specification.

The argument will be printed flush right in a field of that width or will be flush left if the

number is negative. Here, we have the first field with a width of eight characters; the

words will be printed flush right. Then there is a field 15 characters wide that will be

printed flush left:

$ printf "%8s %-15s:\n" first second third fourth fifth sixth

 first second :

 third fourth :

 fifth sixth :

If the width specification is preceded by a 0, the numbers are padded with leading

zeros to fill the width:

$ printf "%04d\n" 12 23 56 123 255

0012

0023

0056

0123

0255

Chapter 2 Input, Output, and Throughput

19

A width specifier with a decimal fraction specifies the precision of a floating-point

number or the maximum width of a string:

$ printf "%12.4s %9.2f\n" John 2 Jackson 4.579 Walter 2.9

 John 2.00

 Jack 4.58

 Walt 2.90

The script shown in Listing 2-2 uses printf to output a simple sales report.

Listing 2-2.  Report

#!/bin/ bash

#: Description : print formatted sales report

Build a long string of equals signs

divider=====================================

divider=$divider$divider

Format strings for printf

header="\n %-10s %11s %8s %10s\n"

format=" %-10s %11.2f %8d %10.2f\n"

Width of divider

totalwidth=44

Print categories

printf "$header" ITEM "PER UNIT" NUM TOTAL

Print divider to match width of report

printf "%$totalwidth.${totalwidth}s\n" "$divider"

Print lines of report

printf "$format" \

 Chair 79.95 4 319.8 \

 Table 209.99 1 209.99 \

 Armchair 315.49 2 630.98

Chapter 2 Input, Output, and Throughput

20

The resulting report looks like this:

ITEM PER UNIT NUM TOTAL

==

Chair 79.95 4 319.80

Table 209.99 1 209.99

Armchair 315.49 2 630.98

Note the use of braces around the second totalwidth variable name:

${totalwidth}. In the first instance, the name is followed by a period, because a period

cannot be part of a variable name; it is ok to have it following the variable name and is

treated like a literal period. In the second, it is followed by the letter s, which could be

part of the variable name, and hence, to avoid that mix-up, the totalwidth name must

be separated from it by using braces.

�Printing to a Variable
With version 3.1, bash added a -v option to store the output in a variable instead of

printing it to the standard output:

$ printf -v num4 "%04d" 4

$ printf "%s\n" "$num4"

0004

�Line Continuation
At the end of the report script, the last four lines are read as a single line, using line

continuation. A backslash at the end of a line tells the shell to ignore the newline

character, effectively joining the next line to the current one.

�Standard Input/Output Streams and Redirection
In Unix (of which Linux is a variety), everything is a stream of bytes. The streams are

accessible as files, but there are three streams that are rarely accessed by a file name. These

are the input/output (I/O) streams attached to every command: standard input, standard

output, and standard error. By default, these streams are connected to the terminal.

Chapter 2 Input, Output, and Throughput

21

When a command reads a character or a line, it reads from the standard input

stream, which is the keyboard. When it prints information, it is sent to the standard

output, the monitor. The third stream, standard error, is also connected to the monitor;

as the name implies, it is used for error messages. These streams are referred to by

numbers, called file descriptors (FDs). These are 0, 1, and 2, respectively. The stream

names are also often contracted to stdin, stdout, and stderr.

I/O streams can be redirected to (or from) a file or into a pipeline.

�Redirection: >, >>, and <
In Chapter 1, we redirected standard output to a file using the > redirection operator.

When redirecting using >, the file is created if it doesn’t exist. If it does exist, the file

is truncated to zero length before anything is sent to it. We can create an empty file by

redirecting an empty string (i.e., nothing) to the file:

$ printf "" > FILENAME

or by simply using this:

$ > FILENAME

Redirection is performed before any command on the line is executed. If we redirect

to the same file we are reading from, that file will be truncated, and the command will

have nothing to read.

The >> operator doesn’t truncate the destination file; it appends to it. We could add

an additional line to the hw command from the first chapter by doing the following:

$ echo exit 0 >> bin/hw

Redirecting standard output does not redirect standard error. Error messages will

still be displayed on the monitor. To send the error messages to a file – in other words, to

redirect FD2 – the redirection operator is preceded by the FD.

Both standard output and standard error can be redirected on the same

line. The next command sends standard output to FILE and standard error to

ERRORFILE:

$ printf '%s\n%v\n' OK? Oops! > FILE 2> ERRORFILE

$ cat ERRORFILE

bash4: printf: `v': invalid format character

Chapter 2 Input, Output, and Throughput

22

In this case, the error message is going to a special file, /dev/null. Sometimes called

the bit bucket, anything written to it is discarded.

$ printf '%s\n%v\n' OK? Oops! 2>/dev/null

Instead of sending output to a file, it can be redirected to another I/O stream by using

>&N, where N is the number of the file descriptor. This command sends both standard

output and standard error to FILE:

$ printf '%s\n%v\n' OK? Oops! > FILE 2>& 1

Here, the order is important. The standard output is sent to FILE, and then standard

error is redirected to where standard output is going. If the order is reversed, the effect is

different. The redirection sends standard error to wherever standard output is currently

going and then changes where standard output goes. Standard error still goes to where

standard output was originally directed:

$ printf '%s\n%v\n' OK? Oops! 2>&1 > FILE

bash has also a nonstandard syntax for redirecting both standard output and

standard error to the same place:

&> FILE

To append both standard output and standard error to FILE, use this:

&>> FILE

A command that reads from standard input can have its input redirected from a file:

$ tr ,H wY < bin/hw

We can use the exec command to redirect the I/O streams for the rest of the script or

until it’s changed again.

exec 1>tempfile

exec 0<datafile

exec 2> errorfile

All standard output will now go to the file tempfile, input will be read from

datafile, and error messages will go to errorfile without having to specify it for every

command.

Chapter 2 Input, Output, and Throughput

23

�Reading Input
The read command is a built-in command that reads from the standard input. By

default, it reads until a newline is received. The input is stored in one or more variables

given as arguments:

read var

If more than one variable is given, the first word (the input up to the first space or

tab) is assigned to the first variable, the second word is assigned to the second variable,

and so on, with any leftover words assigned to the last one:

$ read a b c d

January February March April May June July August

$ echo $a

January

$ echo $b

February

$ echo $c

March

$ echo $d

April May June July August

The bash version of read has several options. Only the -r option is recognized by the

POSIX standard. It tells the shell to interpret escape sequences literally.

By default, read strips backslashes from the input, and the following character is

taken literally. The major effect of this default behavior is to allow the continuation of

lines. With the -r option, a backslash followed by a newline is read as a literal backslash

and the end of input.

We’ll discuss the other options in Chapter 15.

Like any other command that reads standard input, read can get its input from a file

through redirection. For example, to read the first line from FILENAME, use this:

$ read var < FILENAME

Chapter 2 Input, Output, and Throughput

24

�Pipelines
Pipelines connect the standard output of one command directly to the standard input of

another. The pipe symbol (|) is used between the commands:

$ printf "%s\n" "$RANDOM" "$RANDOM" "$RANDOM" "$RANDOM" | tee

FILENAME

618

11267

5890

8930

The tee command reads from the standard input and passes it to one or more files as

well as to the standard output. $RANDOM is a bash variable that returns a different integer

between 0 and 32,767 each time it is referenced.

$ cat FILENAME

618

11267

5890

8930

�Command Substitution
We learned about redirection of inputs and outputs; however, there may be a scenario

where we might want to save the results into a variable to use in a script. We can do so

using something called command substitution. There are two ways to do so; the first,

which originated in the Bourne shell, is the use of backticks as in

$ date=`data`

The newer and recommended way of doing the same is as follows:

$ date=$(date)

While it looks simple and easy, this should be generally reserved for external

commands. When used with a built-in command, it tends to be very slow. This is the

reason the -v option was added to the printf command.

Chapter 2 Input, Output, and Throughput

25

�Summary
The following are the commands and concepts we have learned in this chapter.

�Commands
•	 cat: Prints the contents of one or more files to the standard output

•	 tee: Copies the standard input to the standard output and to one or

more files

•	 read: A built-in shell command that reads a line from the

standard input

•	 date: Prints the current date and time

�Concepts
•	 Standard I/O streams: These are streams of bytes from which

commands read and to which output is sent.

•	 Arguments: These are words that follow a command; arguments may

include options as well as other information such as file names.

•	 Parameters: These are entities that store values; the three types are

positional parameters, special parameters, and variables.

•	 Pipelines: A pipeline is a sequence of one or more commands

separated by |; the standard output of the command preceding the

pipe symbol is fed to the standard input of the command following it.

•	 Line continuation: This is a backslash at the end of a line that

removes the newline and combines that line with the next.

•	 Command substitution: This means storing the output of a command

in a variable or on the command line.

Chapter 2 Input, Output, and Throughput

26

�Exercises

	 1.	 What is wrong with this command?

tr A Z < $HOME/temp > $HOME/temp

	 2.	 Write a script, using $RANDOM, to write the following output both

to a file and to a variable. The following numbers are only to show

the format; your script should produce different numbers:

1988.2365

13798.14178

10081.134

3816.15098

Chapter 2 Input, Output, and Throughput

27

CHAPTER 3

Looping and Branching
At the heart of any programming language are iteration and conditional execution.

Iteration is the repetition of a section of code until a condition changes. Conditional

execution is making a choice between two or more actions (one of which may be to do

nothing) based on a condition.

In the shell, there are three types of loops (while, until, and for) and three types of

conditional execution (if, case, and the conditional operators && and ||, which mean

AND and OR, respectively). Except for for and case, the exit status of a command controls

the behavior.

�Exit Status
We can test the success of a command directly using the shell keywords while, until,

and if or with the control operators && and ||. The exit code is stored in the special

parameter $?.

If the command executed successfully (or true), the value of $? is zero. If the

command fails for some reason, $? will contain a positive integer between 1 and 255,

inclusive. A failed command usually returns 1. Zero and nonzero exit codes are also

known as true and false, respectively.

A command may fail because of a syntax error:

$ printf "%v\n"

bash: printf: `v': invalid format character

$ echo $?

1

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_3

https://doi.org/10.1007/978-1-4842-9588-5_3

28

Alternatively, failure may be the result of the command not being able to accomplish

its task:

$ mkdir /qwerty

bash: mkdir: cannot create directory '/qwerty': Permission denied

$ echo $?

1

�Testing an Expression
Expressions are deemed to be true or false by the test command or one of two

nonstandard shell-reserved words: [[and ((. The test command compares strings,

integers, and various file attributes; ((tests arithmetic expressions, and [[...]] does

the same as test with the additional feature of comparing regular expressions.

�test, a.k.a. […]
The test command evaluates many kinds of expressions, from file properties to integers

to strings. It is a built-in command, and therefore, its arguments are expanded just as for

any other command. (See Chapter 5 for more information.) The alternative version ([)

requires a closing bracket at the end.

Note  As noted earlier in Chapter 2, bash is particular about the spacing and
requires spaces around the brackets. It also is important because the commands [
test and [test without the space are different from what is intended.

�File Tests
Several operators test the state of a file. A file’s existence can be tested with -e (or the

nonstandard -a). The type of file can be checked with -f for a regular file, -d for a

directory, and -h or -L for a symbolic link. Other operators test for special types of files

and for which permission bits are set.

Chapter 3 Looping and Branching

29

Here are some examples:

test -f /etc/fstab ## true if a regular file

test -h /etc/rc.local ## true if a symbolic link

[-x "$HOME/bin/hw"] ## true if you can execute the file

[[-s $HOME/bin/hw]] ## true if the file exists and is not empty

�Integer Tests
Comparisons between integers use the -eq, -ne, -gt, -lt, -ge, and -le operators.

The equality of integers is tested with -eq:

$ test 1 -eq 1

$ echo $?

0

$ [2 -eq 1]

$ echo $?

1

Inequality is tested with -ne:

$ [2 -ne 1]

$ echo $?

0

The remaining operators test greater than, less than, greater than or equal to, and

less than or equal to.

�String Tests
Strings are concatenations of zero or more characters and can include any character

except NUL (ASCII 0). They can be tested for equality or inequality, for nonempty string

or null string, and in bash for alphabetical ordering. The = operator tests for equality, in

other words, whether they are identical; != tests for inequality. bash also accepts == for

equality, but there is no reason to use this nonstandard operator.

Chapter 3 Looping and Branching

30

Here are some examples:

test "$a" = "$b"

["$q" != "$b"]

The -z and -n operators return successfully if their arguments are empty or

nonempty:

$ [-z ""]

$ echo $?

0

$ test -n ""

$ echo $?

1

The greater than and less than symbols are used in bash to compare the lexical

positions of strings and must be escaped to prevent them from being interpreted as

redirection operators:

$ str1=abc

$ str2=def

$ test "$str1" \< "$str2"

$ echo $?

0

$ test "$str1" \> "$str2"

$ echo $?

1

The previous tests can be combined in a single call to test with the -a (logical AND)

and -o (logical OR) operators:

test -f /path/to/file -a $test -eq 1

test -x bin/file -o $test -gt 1

test is usually used in combination with if or the conditional operators && and ||.

Chapter 3 Looping and Branching

31

�[[…]]: Evaluate an Expression
Like test, [[...]] evaluates an expression. Unlike test, it is not a built-in command.

It is part of the shell grammar and not subject to the same parsing as a built-in

command. Parameters are expanded, but word splitting and file name expansion are not

performed on words between [[and]].

It supports all the same operators as test, with some enhancements and additions.

It is, however, nonstandard, so it is better not to use it when test could perform the

same function.

�Enhancements over Test
When the argument to the right of = or != is unquoted, it is treated as a pattern and

duplicates the functionality of the case command.

The feature of [[...]] that is not duplicated elsewhere in the shell is the ability to

match an extended regular expression using the =∼ operator:

$ string=whatever

$ [[$string =∼ h[aeiou]]]
$ echo $?

0

$ [[$string =∼ h[sdfghjkl]]]
$ echo $?

1

Regular expressions are explained in Chapter 8.

�((…)): Evaluate an Arithmetic Expression
A nonstandard feature, ((arithmetic expression)) returns false if the arithmetic

expression evaluates to zero and returns true otherwise. The portable equivalent uses

test and the POSIX syntax for shell arithmetic:

test $((a - 2)) -ne 0

[$a != 0]

Chapter 3 Looping and Branching

32

But because ((expression)) is shell syntax and not a built-in command,

expression is not parsed in the same way as arguments to a command. This means,

for example, that a greater than sign (>) or less than sign (<) is not interpreted as a

redirection operator:

if ((total > max)); then : ...; fi

A bare variable is tested for zero or nonzero, exiting successfully if the variable is

nonzero:

((verbose)) && command ## execute command if verbose != 0

Non-numeric values are equivalent to 0:

$ y=yes

$ ((y)) && echo $y || echo n

$ nLists

A list is a sequence of one or more commands separated by semicolons, ampersands,

control operators, or newlines. A list may be used as the condition in a while or until

loop, an if statement, or as the body of any loop. The exit code of a list is the exit code of

the last command in the list.

�Conditional Execution
Conditional constructs enable a script to decide whether to execute a block of code or to

select which of two or more blocks to execute.

�if
The basic if command evaluates a list of one or more commands and executes a list if

the execution of <condition list> is successful:

if <condition list>

then

 <list>

fi

Chapter 3 Looping and Branching

33

Usually, the <condition list> is a single command, very often test or its synonym,

[, or, in bash, [[. In Listing 3-1, the -z operand to test checks whether a name was

entered.

Listing 3-1.  Read and Check Input

read name

if [[-z $name]]

then

 echo "No name entered" >&2

 exit 1 ## Set a failed return code

fi

Using the else keyword, a different set of commands can be executed if the

<condition list> fails, as shown in Listing 3-2. Note that in numeric expressions,

variables do not require a leading $.

Listing 3-2.  Prompt for a Number and Check That It Is Not Greater Than Ten

printf "Enter a number not greater than 10: "

read number

if ((number > 10))

then

 printf "%d is too big\n" "$number" >&2

 exit 1

else

 printf "You entered %d\n" "$number"

fi

More than one condition can be given, using the elif keyword, so that if the first test

fails, the second is tried, as shown in Listing 3-3.

Listing 3-3.  Prompt for a Number and Check That It Is Within a Given Range

printf "Enter a number between 10 and 20 inclusive: "

read number

if ((number < 10))

then

 printf "%d is too low\n" "$number" >&2

Chapter 3 Looping and Branching

34

 exit 1

elif ((number > 20))

then

 printf "%d is too high\n" "$number" >&2

 exit 1

else

 printf "You entered %d\n" "$number"

fi

Note  In real use, a number entered in the previous examples would be checked
for invalid characters before its value is compared. Code to do that is given in the
“case” section.

Often more than one test is given in the <condition list> using && and ||.

�Conditional Operators: && and ||
Lists containing the AND and OR conditional operators are evaluated from left to right.

A command following the AND operator (&&) is executed if the previous command

is successful. The part following the OR operator (||) is executed if the previous

command fails.

For example, to check for a directory and cd into it if it exists, use this:

test -d "$directory" && cd "$directory"

To change directory and exit with an error if cd fails, use this:

cd "$HOME/bin" || exit 1

The next command tries to create a directory and cd to it. If either mkdir or cd fails, it

exits with an error:

mkdir "$HOME/bin" && cd "$HOME/bin" || exit 1

Chapter 3 Looping and Branching

35

Conditional operators are often used with if. In this example, the echo command is

executed if both tests are successful:

if [-d "$dir"] && cd "$dir"

then

 echo "$PWD"

fi

�case
A case statement compares a word (usually a variable) against one or more patterns

and executes the commands associated with that pattern. The patterns are pathname

expansion patterns using wildcards (* and ?) and character lists and ranges ([...]). The

syntax is as follows:

case WORD in

 PATTERN) COMMANDS ;;

 PATTERN) COMMANDS ;; ## optional

esac

A common use of case is to determine whether one string is contained in another.

It is much faster than using grep, which creates a new process. This short script would

normally be implemented as a shell function (see Chapter 6) so that it will be executed

without creating a new process, as shown in Listing 3-4.

Listing 3-4.  Does One String Contain Another?

case $1 in

 "$2") true ;;

 *) false ;;

esac

The commands, true and false, do nothing but succeed or fail, respectively.

Another common task is to check whether a string is a valid number. Again,

Listing 3-5 would usually be implemented as a function.

Chapter 3 Looping and Branching

36

Listing 3-5.  valint, Is This a Valid Positive Integer?

case $1 in

 [!0-9]) false;;

 *) true ;;

esac

Many scripts require one or more arguments on the command line. To check

whether the correct number of arguments are passed, case is often used:

case $# in

 3) ;; ## We need 3 args, so do nothing

 *) printf "%s\n" "Please provide three names" >&2

 exit 1

 ;;

esac

�Looping
There may be a time when one might need to repeat a command several times; one

way is to write it out as many times over, and then if there were a change, reducing the

lines or increasing the lines accordingly and ensuring that it was correct can become

a nightmare and painful. In many programming languages, this problem is solved by

using a loop. The shell can offer three types of loops, namely, while, until, and for. The

first two are executed until a condition is true or false; the third type loops through a list

of values.

�while
The condition for a while loop is a list of one or more commands, and the commands

to be executed while the condition remains true are placed between the keywords do

and done:

while <condition>

do

 <commands>

done

Chapter 3 Looping and Branching

37

A while loop can be run a specific number of times using a counter, a variable that is

incremented each time the loop is executed.

n=1

while [$n -le 10]

do

 echo "$n"

 n=$(($n + 1))

done

The true command can be used to create an infinite loop:

while true ## ':' can be used in place of true

do

 read x

done

A while loop can be used to read a file line by line:

while IFS= read -r line

do

 : do something with "$line"

done < FILENAME?

�until
An until loop is not used much, and it is the opposite of a while loop; it will loop if the

condition fails, whereas the while loop keeps going till the condition passes.

n=1

until [$n -gt 10]

do

 echo "$n"

 n=$(($n + 1))

done

Chapter 3 Looping and Branching

38

�for
A for loop takes a list of values; these can be numbers, words, etc. It iterates through the

given list of words passed and provides a value via the variable name set in the for loop.

With each iteration, it advances to the next word on the list.

for var in Canada USA Mexico

do

 printf "%s\n" "$var"

done

There is another form of the for loop that is like the C programming language.

Where there are three parts to the for loop, the first expression is evaluated when the

loop starts, the second part is a test condition that determines if the loop needs to exit or

go to the next iteration, and the third is evaluated at the end of each iteration.

for ((n=1; n<=10; ++n))

do

 echo "$n"

done

�break
Sometimes we might need to stop the loop from executing when a certain condition is

met; this is also another way of exiting the loop. This can be achieved using the keyword

break. Like its name, it allows us to break from the loop.

while :

do

 read x

 [-z "$x"] && break

done

The way break works in bash is a little different than in other languages, and

instead of breaking from the current loop (in case of nested or a hierarchy of scopes),

providing a numeric value after the break statement can help in breaking from multiple

nested loops.

Chapter 3 Looping and Branching

39

for n in a b c d e

do

 while true

 do

 if [$RANDOM -gt 20000]

 then

 printf .

 break 2 ## break out of both while and for loops

 elif [$RANDOM -lt 10000]

 then

 printf '"'

 break ## break out of the while loop

 fi

 done

done

echo

�continue
There can also be situations inside a loop when we might want to not break the loop but

process the next iteration of the loop. For that, we can use the keyword continue.

for n in {1..9} ## See Brace expansion in Chapter 4

do

 x=$RANDOM

 [$x -le 20000] && continue

 echo "n=$n x=$x"

done

�Summary
Looping and branching are major building blocks of a computer program. In this

chapter, we learned the commands and operators used for these tasks.

Chapter 3 Looping and Branching

40

�Commands
•	 test: Evaluates an expression and returns success or failure

•	 if: Executes a set of commands if a list of commands is successful

and optionally executes a different set if it is not

•	 case: Matches a word with one or more patterns and executes the

commands associated with the first matching pattern

•	 while: Repeatedly executes a set of commands while a list of

commands executes successfully

•	 until: Repeatedly executes a set of commands until a list of

commands executes successfully

•	 for: Repeatedly executes a set of commands for each word in a list

•	 break: Exits from a loop

•	 continue: Starts the next iteration of a loop immediately

�Concepts
•	 Exit status: The success or failure of a command, stored as 0 or a

positive integer in the special parameter $?

•	 List: A sequence of one or more commands separated by ;, &, &&, ||,

or a newline

�Exercises

	 1.	 Write a script that asks the user to enter a number between 20

and 30. If the user enters an invalid number or a non-number, ask

again. Repeat until a satisfactory number is entered.

	 2.	 Write a script that prompts the user to enter the name of a file.

Repeat until the user enters a file that exists.

Chapter 3 Looping and Branching

41

CHAPTER 4

Command-Line Parsing
and Expansion
One of the things that shell programming language does is the parsing of command-line

arguments and the expansion it performs on words in the line. Let us look in detail what

happens when a command is called with arguments, what does the shell do before it

invokes the command.

To help visualize what happens, we can use the short script as seen in Listing 4-1

called sa, which will display what the shell has passed to it after processing all of the

arguments. Each argument is printed on a separate line, preceded by the value of $pre

and followed by the value of $post.

Listing 4-1.  sa; Displaying Command-Line Arguments

pre=:

post=:

printf "$pre%s$post\n" "$@"

Note  Create a script called sa with the text as can be seen in Listing 4-1. This is
used in the code samples in this chapter.

The special parameter $@ expands to a list of all the command-line arguments, but

the results differ depending on whether it is quoted or not. When quoted, it expands to

the positional parameters "$1", "$2", "$3", and so on, and the arguments containing

whitespace will be preserved. If $@ is unquoted, splitting will occur wherever whitespace

is present.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_4

https://doi.org/10.1007/978-1-4842-9588-5_4

42

When a line is executed, whether at the command prompt or in a script, the shell

splits the line into words wherever there is unquoted whitespace. The bash examines

the resulting words, performing up to eight types of expansion on them as appropriate.

The results of the expansions are passed to the command as its arguments. This chapter

examines the entire process, from the initial parsing into words based on unquoted

whitespace to each of the expansions in the order in which they are performed:

	 1.	 Brace expansion

	 2.	 Tilde expansion

	 3.	 Parameter and variable expansion

	 4.	 Arithmetic expansion

	 5.	 Command substitution

	 6.	 Word splitting

	 7.	 Pathname expansion

	 8.	 Process substitution

The chapter ends with a shell program that demonstrates how to parse options

(arguments beginning with a hyphen) on the command line using the getopts built-in

command.

�Quoting
The shell’s initial parsing of the command line uses unquoted whitespace, that is, spaces,

tabs, and newlines, to separate the words. Spaces between single or double quotes or

spaces preceded by the escape character (\) are considered part of the surrounding

word, if any. The delimiting quotation marks are stripped from the arguments.

The following code has five arguments. The first is the word this preceded by a

space (the backslash removes its special meaning). The second argument is “is a”;

the entire argument is enclosed in double quotes, again removing the special meaning

from the space. The phrase demonstration of is enclosed in single quotes. Next is a

single, escaped space. Finally, the string quotes and escapes are held together by the

escaped spaces.

Chapter 4 Command-Line Parsing and Expansion

43

$ sa \ this "is a" 'demonstration of' \ quotes\ and\ escapes

: this:

:is a:

:demonstration of:

: :

:quotes and escapes:

Quotes can be embedded in a word. Inside double quotes, a single quote is not special,

but a double quote must be escaped. Inside single quotes, a double quote is not special.

$ sa "a double-quoted single quote, '" "a double-quoted double

quote, \""

:a double-quoted single quote, ':

:a double-quoted double quote, ":

$ sa 'a single-quoted double quotation mark, "'

:a single-quoted double quotation mark, ":

All characters inside a single-quoted word are taken literally. A single-quoted word

cannot contain a single quote even if it is escaped; the quotation mark will be regarded

as closing the preceding one, and another single quote opens a new quoted section.

Consecutive quoted words without any intervening whitespace are considered as a

single argument:

$ sa "First argument "'still the first argument'

:First argument still the first argument:

In bash, single quotes can be included in words of the form $'string' if they are

escaped. In addition, the escape sequences listed in Chapter 2’s description of printf

are replaced by the characters they represent:

$ echo $'\'line1\'\n\'line2\''

'line1'

'line2'

Quoted arguments can contain literal newlines:

$ sa "Argument containing ⏎
> a newline"

:Argument containing

a newline:

Chapter 4 Command-Line Parsing and Expansion

44

Note  The ⏎ is the enter key and not something to be typed on the terminal.
Since the shell determines that the command is incomplete, it displays a > prompt
allowing you to complete the command.

�Brace Expansion
The first expansion performed, brace expansion, is nonstandard (i.e., it is not included

in the POSIX specification). It operates on unquoted braces containing either a comma-

separated list or a sequence. Each element becomes a separate argument.

$ sa {one,two,three}

:one:

:two:

:three:

$ sa {1..3} ## added in bash3.0

:1:

:2:

:3:

$ sa {a..c}

:a:

:b:

:c:

A string before or after the brace expression will be included in each expanded

argument:

$ sa pre{d,l}ate

:predate:

:prelate:

Chapter 4 Command-Line Parsing and Expansion

45

Braces may be nested:

$ sa {{1..3},{a..c}}

:1:

:2:

:3:

:a:

:b:

:c:

Multiple braces within the same word are expanded recursively. The first brace

expression is expanded, and then each of the resulting words is processed for the next brace

expression. With the word {1..3}{a..c}, the first term is expanded, giving the following:

1{a..c} 2{a..c} 3{a..c}

Each of these words is then expanded for this final result:

$ sa {1..3}{a..c}

:1a:

:1b:

:1c:

:2a:

:2b:

:2c:

:3a:

:3b:

:3c:

In version 4 of bash, further capabilities have been added to brace expansion.

Numerical sequences can be padded with zeros, and the increment in a sequence can be

specified. The syntax becomes {start..end..increment}.

$ sa {01..13..3}

:01:

:04:

:07:

:10:

:13:

Chapter 4 Command-Line Parsing and Expansion

46

Increments can also be used with alphabetic sequences:

$ sa {a..h..3}

:a:

:d:

:g:

�Tilde Expansion
An unquoted tilde expands to the user’s home directory $HOME :

$ sa ~

:/home/jayant:

Followed by a login name, it expands to that user’s home directory:

$ sa ∼root ∼jayant
:/root:

:/home/jayant:

When quoted, either on the command line or in a variable assignment, the tilde is

not expanded:

$ sa "∼" "∼root"
:∼:
:∼root:
$ dir=∼jayant
$ dir2="∼jayant"
$ sa "$dir" "$dir2"

:/home/jayant:

:∼jayant:

If the name following the tilde is not a valid login name, no expansion is performed:

$ sa ∼qwerty
:∼qwerty:

Chapter 4 Command-Line Parsing and Expansion

47

�Parameter and Variable Expansion
Parameter expansion replaces a variable with its contents; it is introduced by a dollar

sign ($). It is followed by the symbol or name to be expanded:

$ var=whatever

$ sa "$var"

:whatever:

The parameter may be enclosed in braces:

$ var=qwerty

$ sa "${var}"

:qwerty:

In most cases, the braces are optional. They are required when referring to a

positional parameter greater than nine or when a variable name is followed immediately

by a character that could be part of a name:

$ first=Jane

$ last=Johnson

$ sa "$first_$last" "${first}_$last"

:Johnson:

:Jane_Johnson:

Because first_ is a valid variable name, the shell tries to expand it rather than

first; adding the braces removes the ambiguity.

Braces are also used in expansions that do more than simply returning the value of

a parameter. These often-cryptic expansions (e.g., ${var##*/} and ${var//x/y}) add a

great deal of power to the shell and are examined in detail in the next chapter.

Parameter expansions that are not enclosed in double quotes are subject to word

splitting and pathname expansion.

Chapter 4 Command-Line Parsing and Expansion

48

�Arithmetic Expansion
When the shell encounters $((expression)), it evaluates expression and places the

result on the command line; expression is an arithmetic expression. Besides the four

basic arithmetic operations of addition, subtraction, multiplication, and division, its

most used operator is % (modulo, the remainder after division).

$ sa "$((1 + 12))" "$((12 * 13))" "$((16 / 4))" "$((

6 - 9))"

:13:

:156:

:4:

:-3:

The arithmetic operators (see Tables 4-1 and 4-2) take the same precedence that

you learned in school (basically, that multiplication and division are performed before

addition and subtraction), and they can be grouped with parentheses to change the

order of evaluation.

Chapter 4 Command-Line Parsing and Expansion

49

Table 4-1.  Arithmetic Operators

Operator Description

- + Unary minus and plus

! ∼ Logical and bitwise negation

* / % Multiplication, division, remainder

+ - Addition, subtraction

<< >> Left and right bitwise shifts

<= >= < > Comparison

== != Equality and inequality

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= *= /= %= += -= <<= >>=

&= ^= |=

Assignment

Chapter 4 Command-Line Parsing and Expansion

50

Table 4-2.  bash Extensions

Operator Description

** Exponentiation

id++ id-- Variable post-

increment and post-

decrement

++id –-id Variable pre-

increment and pre-

decrement

expr ? expr1 : expr2 Conditional operator

expr1, expr2 Comma

$ sa "$((3 + 4 * 5))" "$(((3 + 4) * 5))"

:23:

:35:

The modulo operator, %, returns the remainder after division:

$ sa "$((13 % 5))"

:3:

Converting seconds (which is how Unix systems store times) to days, hours, minutes,

and seconds involves division and the modulo operator, as shown in Listing 4-2.

Listing 4-2.  secs2dhms, Convert Seconds (in Argument $1) to Days, Hours,

Minutes, and Seconds

secs_in_day=86400

secs_in_hour=3600

mins_in_hour=60

secs_in_min=60

days=$(($1 / $secs_in_day))

secs=$(($1 % $secs_in_day))

printf "%d:%02d:%02d:%02d\n" "$days" "$(($secs / $secs_in_hour))" \

 �"$((($secs / $mins_in_hour) %$mins_in_hour))" "$(($secs % $secs_

in_min))"

Chapter 4 Command-Line Parsing and Expansion

51

If not enclosed in double quotes, the results of arithmetic expansion are subject to

word splitting.

�Command Substitution
Command substitution replaces a command with its output. The command must be

placed either between backticks (` command `) or between parentheses preceded by

a dollar sign ($(command)). For example, to count the lines in a file whose name

includes today’s date, this command uses the output of the date command:

$ wc -l $(date +%Y-%m-%d).log

61 2023-07-11.log

The old format for command substitution uses backticks. This command is the same

as the previous one:

$ wc -l `date +%Y-%m-%d`.log

61 2023-07-11.log

If the command substitution is not quoted, word splitting and pathname expansion

are performed on the results.

�Word Splitting
The results of parameter and arithmetic expansions, as well as command substitution,

are subjected to word splitting if they were not quoted:

$ var="this is a multi-word value"

$ sa $var "$var"

:this:

:is:

:a:

:multi-word:

:value:

:this is a multi-word value:

Chapter 4 Command-Line Parsing and Expansion

52

Word splitting is based on the value of the internal field separator variable, IFS. The

default value of IFS contains the whitespace characters of space, tab, and newline

(IFS=$' \t\n'). When IFS has its default value or is unset, any sequence of default IFS

characters is read as a single delimiter.

$ var=' spaced

 out '

$ sa $var

:spaced:

:out:

If IFS contains another character (or characters) as well as whitespace, then any

sequence of whitespace characters plus that character will delimit a field, but every

instance of a non-whitespace character delimits a field:

S IFS=' :'

$ var="qwerty : uiop : :: er " ## : :: delimits 2

empty fields

$ sa $var

:qwerty:

:uiop:

::

::

:er:

If IFS contains only non-whitespace characters, then every occurrence of every

character in IFS delimits a field, and whitespace is preserved:

$ IFS=:

$ var="qwerty : uiop : :: er "

$ sa $ var

:qwerty :

: uiop :

: :

::

: er :

Chapter 4 Command-Line Parsing and Expansion

53

�Pathname Expansion
Unquoted words on the command line containing the characters *, ?, and [are treated

as file globbing patterns and are replaced by an alphabetical list of files that match the

pattern. If no files match the pattern, the word is left unchanged.

The asterisk matches any string. h* matches all files in the current directory that

begin with h, and *k matches all files that end with k. The shell replaces the wildcard

pattern with the list of matching files in alphabetical order. If there are no matching files,

the wildcard pattern is left unchanged.

$ cd "$HOME/bin"

$ sa h*

:hello:

:hw:

$ sa *k

:incheck:

:numcheck:

:rangecheck:

A question mark matches any single character; the following pattern matches all files

whose second letter is a:

$ sa ?a*

:rangecheck:

:ba:

:valint:

:valnum:

Square brackets match any one of the enclosed characters, which may be a list, a

range, or a class of characters: [aceg] matches any one of a, c, e, or g; [h-o] matches any

character from h to o inclusive; and [[:lower:]] matches all lowercase letters.

You can disable file name expansion with the set -f command. bash has a number

of options that affect file name expansion. I’ll cover them in detail in Chapter 8 .

Chapter 4 Command-Line Parsing and Expansion

54

�Process Substitution
Process substitution creates a temporary file name for a command or list of commands.

You can use it anywhere a file name is expected. The form <(command) makes the output

of command available as a file name; >(command) is a file name that can be written to.

$ sa <(ls -l) >(pr -Tn)

:/dev/fd/63:

:/dev/fd/62:

Note  The pr command converts text files for printing by inserting page headers.
The headers can be turned off with the -T option, and the -n option numbers
the lines.

When the file name on the command line is read, it produces the output of the

command. Process substitution can be used in place of a pipeline, allowing variables

defined within a loop to be visible to the rest of the script. In this snippet, totalsize is

not available to the script outside the loop:

$ ls -l * |

> while read perms links owner group size month day time file

> do

> printf "%10d %s\n" "$size" "$file"

> totalsize=$((${totalsize:=0} + ${size:-0}))

> done

$ echo ${totalsize-unset} ## print "unset" if variable is not set

unset

By using process substitution instead, the variable totalsize becomes available

outside of the loop:

$ while read perms links owner group size month day time file

> do

> printf "%10d %s\n" "$size" "$file"

> totalsize=$((${totalsize:=0} + ${size:-0}))

> done < <(ls -l *)

$ echo ${totalsize-unset}

12879

Chapter 4 Command-Line Parsing and Expansion

55

�Parsing Options
The options to a shell script, single characters preceded by a hyphen, can be parsed with

the built-in command getopts. There may be arguments to some options, and options

must precede non-option arguments.

Multiple options may be concatenated with a single hyphen, but any that take an

argument must be the final option in the string. Its argument follows, with or without

intervening whitespace.

On the following command line, there are two options: -a and -f. The latter takes

a file name argument. John is the first non-option argument, and -x is not an option

because it comes after a non-option argument.

myscript -a -f filename John -x Jane

The syntax for getopts is as follows:

getopts OPTSTRING var

The OPTSTRING contains all the option’s characters; those that take arguments are

followed by a colon. For the script in Listing 4-3, the string is f:v. Each option is placed

in the variable $var, and the option’s argument, if any, is placed in $OPTARG.

Usually used as the condition to a while loop, getopts returns successfully until

it has parsed all the options on the command line or until it encounters the word --.

All remaining words on the command line are arguments passed to the main part of

the script.

A frequently used option is -v to turn on verbose mode, which displays more than the

default information about the running of the script. Other options – for example, -f –

require a file name argument.

This sample script processes both the -v and -f options and, when in verbose mode,

displays some information.

Listing 4-3.  parseopts, Parse Command-Line Options

progname=${0##*/} ## Get the name of the script without its path

Default values

verbose=0

filename=

List of options the program will accept;

Chapter 4 Command-Line Parsing and Expansion

56

those options that take arguments are followed by a colon

optstring=f:v

The loop calls getopts until there are no more options on the

command line

Each option is stored in $opt, any option arguments are stored in OPTARG

while getopts $optstring opt

do

 case $opt in

 f) filename=$OPTARG ;; ## $OPTARG contains the argument to the option

 v) verbose=$(($verbose + 1)) ;;

 *) exit 1 ;;

 esac

done

Remove options from the command line

$OPTIND points to the next, unparsed argument

shift "$(($OPTIND - 1))"

Check whether a filename was entered

if [-n "$filename"]

then

 if [$verbose -gt 0]

 then

 printf "Filename is %s\n" "$filename"

 fi

else

 if [$verbose -gt 0]

 then

 printf "No filename entered\n" >&2

 fi

 exit 1

fi

Check whether file exists

if [-f "$filename"]

then

 if [$verbose -gt 0]

 then

Chapter 4 Command-Line Parsing and Expansion

57

 printf "Filename %s found\n" "$filename"

 fi

else

 if [$verbose -gt 0]

 then

 printf "File, %s, does not exist\n" "$filename" >&2

 fi

 exit 2

fi

If the verbose option is selected,

print the number of arguments remaining on the command line

if [$verbose -gt 0]

then

 printf "Number of arguments is %d\n" "$#"

fi

Running the script without any arguments does nothing except generate a failing

return code:

$ parseopts

$ echo $?

1

With the verbose option, it prints an error message as well:

$ parseopts -v

No filename entered

$ echo $?

1

With an illegal option (i.e., one that is not in $optstring), the shell prints an error

message:

$ parseopts -x

/home/jayant/bin/parseopts: illegal option – x

Chapter 4 Command-Line Parsing and Expansion

58

If a file name is entered and the file doesn’t exist, it produces this:

$ parseopts -vf qwerty; echo $?

Filename is qwerty

File, qwerty, does not exist

2

To allow a non-option argument to begin with a hyphen, the options can be explicitly

ended with --:

$ parseopts -vf ∼/.bashrc -– -x
Filename is /home/jayant/.bashrc

Filename /home/jayant/.bashrc found

Number of arguments is 1

�Summary
The shell’s pre-processing of the command line before passing it to a command saves

programmers a great deal of work. The following are the commands you learned in this

chapter, followed by some exercises to test your knowledge.

�Commands
•	 head: Extracts the first N lines from a file; N defaults to 10.

•	 cut: Extracts columns from a file.

�Exercises

	 1.	 How many arguments are there on this command line?

sa $# $(date "+%Y %m %d") John\ Doe

Chapter 4 Command-Line Parsing and Expansion

59

	 2.	 What potential problem exists with the following snippet?

year=$(date +%Y)

month=$(date +%m)

day=$(date +%d)

hour=$(date +%H)

minute=$(date +%M)

second=$(date +%S)

Chapter 4 Command-Line Parsing and Expansion

61

CHAPTER 5

Parameters and Variables
Variables have been part of the Unix shell since its inception more than 30 years ago, but

their features have grown over the years. The standard Unix shell now has parameter

expansions that perform sophisticated manipulations on their contents. bash adds even

more expansion capabilities as well as indexed and associative arrays.

This chapter covers what we can do with variables and parameters, including their

scope. In other words, after a variable has been defined, where can its value be accessed?

This chapter gives a glimpse of the more than 80 variables used by the shell that are

available to the programmer. It discusses how to name the variables and how to pick

them apart with parameter expansion.

Positional parameters are the arguments passed to a script. They can be manipulated

with the shift command and used individually by number or in a loop.

Arrays assign more than one value to a name. bash has both numerically indexed

arrays and, beginning with bash-4.0, associative arrays that are assigned and referenced

by a string instead of a number.

�The Naming of Variables
Variable names can contain only letters, numbers, and underscores, and they must start

with a letter or an underscore. Apart from those restrictions, you are free to build your

names as you see fit. It is, however, a good idea to use a consistent scheme for naming

variables, and choosing meaningful names can go a long way toward making your code

self-documenting.

Perhaps the most frequently cited (though less often implemented) convention is

that environment variables should be in capital letters, while local variables should be

in lowercase. Given that bash itself uses more than 80 uppercase variables internally,

this is a dangerous practice, and conflicts are not uncommon. There are plenty of cases

where variables such as PATH, HOME, LINES, SECONDS, and UID are misused with potentially

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_5

https://doi.org/10.1007/978-1-4842-9588-5_5

62

disastrous consequences. None of bash’s variables begin with an underscore, so in the

book Shell Scripting Recipes: A Problem-Solution Approach (Apress, 2005) and in this

book, we are using uppercase names preceded by an underscore for values set by shell

functions.

Single-letter names should be used rarely. They are appropriate as the index in a

loop, where its sole function is as a counter. The letter traditionally used for this purpose

is i, but a good preference is n. The letters l, o, and i can be easily confused with numbers

like 1 and 0.

The other place where single-letter variables can be used is when using a throwaway

material from a file. If a couple of fields are required from a file, then one could use it like

while IFS=: read login a b c name e

do

 printf "%-12s %s\n" "$login" "$name"

done < /etc/passwd

One can use either of the two naming schemes. The first is used by Heiner Steven

on his Shelldorado website at www.shelldorado.com/. He capitalizes the first letter of

all variables and the first letters of further words in the name: ConfigFile, LastDir, and

FastMath.

With other programming languages and JSON, snake_case is quite a popular

methodology, which uses all lowercase letters separated by underscores, or another way

would be to use camelCase, which has the first word in lowercase and the subsequent

words starting with a capital letter. Whichever system one might choose, the choice of a

system is a name that gives a real indication of what the variable contains and makes it

readable. Some examples are configFile, lastDir, fastMath or line_width,

bg_underline, and day_of_week, but be aware of not getting carried away with names

like a_long_variable_name_which_may_tell_you_something_about_its_purpose=1

�The Scope of a Variable: Can You See It from Here?
By default, a variable’s definition is known only to the shell in which it is defined (and

to subshells of that shell). The script that called the current script will not know about

it, and a script called by the current script will not know about the variable unless it is

exported to the environment.

Chapter 5 Parameters and Variables

http://www.shelldorado.com/

63

The environment is an array of strings of the form name=value. Whenever an external

command is executed (creating a child process), whether it is a compiled, binary

command or an interpreted script, this array is passed to it behind the scenes. In a shell

script, these strings are available as variables.

Variables assigned in a script may be exported to the environment using the shell

built-in command export:

var=whatever

export var

In bash, this may be abbreviated like this:

export var=whatever

There is no need to export a variable unless you want to make it available to scripts

(or other programs) called from the current script (and their children and their children’s

children and so on). Exporting a variable doesn’t make it visible anywhere except child

processes.

Listing 5-1 tells you whether the variable $x is in the environment and what it

contains if anything.

Listing 5-1.  showvar, Print Value of Variable x

if [[${x+X} = X]] ## If $x is set

then

 if [[-n $x]] ## if $x is not empty

 then

 printf " \$x = %s\n" "$x"

 else

 printf " \$x is set but empty\n"

 fi

else

 printf " %s is not set\n" "\$x"

fi

Once a variable is exported, it remains in the environment until it is unset:

Chapter 5 Parameters and Variables

64

$ unset x

$ showvar

 $x is not set

$ x=3

$ showvar

 $x is not set

$ export x

$ showvar

 $x = 3

$ x= ## in bash, reassignment doesn't remove a variable from the

environment

$ showvar

 $x is set but empty

Note  showvar is not a bash command, but a script, as seen in Listing 5-1, that
works with the value of x.

Variables set in a subshell are not visible to the script that called it. Subshells include

command substitution, as in $(command) or `command`; all elements of a pipeline; and

code enclosed in parentheses, as in (command).

Probably the most frequently asked question about shell programming is, “Where

did my variables go? I know I set them, so why are they empty?” Often, this is caused by

piping the output of one command into a loop that assigns variables:

printf "%s\n" ${RANDOM}{,,,,,} |

 while read num

 do

 ((num > ${biggest:=0})) && biggest=$num

 done

printf "The largest number is: %d\n" "$biggest"

When biggest is found to be empty, complaints of variables set in while loops not

being available outside them are heard in all the shell forums. But the problem is not the

loop; it is that the loop is part of a pipeline and therefore is being executed in a subshell.

Chapter 5 Parameters and Variables

65

With bash-4.2, a new option, lastpipe, enables the last process in a pipeline to be

executed in the current shell. It is invoked with the following:

shopt -s lastpipe

�Shell Variables
The shell either sets or uses more than 80 variables. Many of these are used by bash

internally and are of little use to shell programmers. Others are used in debugging, and

some are in common use in shell programs. About half are set by the shell itself, and the

rest are set by the operating system, the user, the terminal, or a script.

Of those set by the shell, you have already looked at RANDOM, which returns a random

integer between 0 and 32,767, and PWD, which contains the path to the current working

directory. You saw OPTIND and OPTARG used in parsing command-line options (Chapter 4).

Sometimes, BASH_VERSION (or BASH_VERSINFO) is used to determine whether the running

shell is capable of running a script. Some of the scripts in this book require at least

bash-3.0 and might use one of those variables to determine whether the current shell is

recent enough to run the script:

case $BASH_VERSION in

 [12].*) echo "You need at least bash3.0 to run this script" >&2; exit 2;;

esac

The prompt string variables, PS1 and PS2, are used in interactive shells at the

command line; PS3 is used with the select built-in command, and PS4 is printed before

each line in execution trace mode (more on that in Chapter 10).

�Shell Variables
The following variables are set by the shell:

Chapter 5 Parameters and Variables

66

BASH BASHOPTS BASHPID BASH_ALIASES

BASH_ARGC BASH_ARGV BASH_CMDS BASH_COMMAND

BASH_EXECUTION_STRING BASH_LINENO BASH_REMATCH BASH_SOURCE

BASH_SUBSHELL BASH_VERSINFO BASH_VERSION COMP_CWORD

COMP_KEY COMP_LINE COMP_POINT COMP_TYPE

COMP_WORDBREAKS COMP_WORDS COPROC DIRSTACK

EUID FUNCNAME GROUPS HISTCMD

HOSTNAME HOSTTYPE LINENO MACHTYPE

MAPFILE OLDPWD OPTARG OPTIND

OSTYPE PIPESTATUS PPID PWD

RANDOM READLINE_LINE READLINE_POINT REPLY

SECONDS SHELLOPTS SHLVL UID

The following variables are used by the shell, which may set a default value for some

of them (e.g., IFS):

BASH_COMPAT BASH_ENV BASH_XTRACEFD CDPATH

CHILD_MAX COLUMNS COMPREPLY EMACS

FCEDIT FIGNORE FUNCNEST GLOBIGNORE

HISTCONTROL HISTFILE HISTFILESIZE HISTIGNORE

HISTSIZE HISTTIMEFORMAT HOME HOSTFILE

IFS IGNOREEOF INPUTRC LANG

LC_ALL LC_COLLATE LC_CTYPE LC_MESSAGES

LC_NUMERIC LC_NUMERIC LINES MAIL

MAILCHECK MAILPATH OPTERR PATH

POSIXLY_CORRECT PROMPT_COMMAND PROMPT_DIRTRIM PS1

PS2 PS3 PS4 SHELL

TIMEFORMAT TMOUT TMPDIR auto_resume

histchars

See Appendix A for a description of all the shell variables.

Chapter 5 Parameters and Variables

67

�Parameter Expansion
Much of the power of the modern Unix shell comes from its parameter expansions. In

the Bourne shell, these mostly involved testing whether a parameter is set or empty

and replacing it with a default or alternate value. KornShell additions, which were

incorporated into the POSIX standard, added string manipulation. KornShell 93 added

more expansions that have not been incorporated into the standard that bash has

adopted. bash-4.0 has added two new expansions of its own.

�Bourne Shell
The Bourne shell and its successors have expansions to replace an empty or unset

variable with a default, to assign a default value to a variable if it is empty or unset, and to

halt execution and print an error message if a variable is empty or unset.

�${var:-default} and ${var-default}: Use
Default Values
When using variables in the shell script, we might need to determine if the variable has

been set or not. When a variable is not assigned a value, it is either unset or empty. The

expansions offer to provide a default value to those variables if a value is not set. The

most commonly used expansion is ${var:-default}.

The most commonly used expansion, ${var:-default}, checks to see whether a

variable is unset or empty and expands to a default string if it is:

$ var=

$ sa "${var:-default}" ## �The sa script was introduced in

Chapter 4

:default:

If the colon is omitted, the expansion checks only whether the variable is unset:

$ var=

$ sa "${var-default}" ## var is set, so expands to nothing

::

$ unset var

Chapter 5 Parameters and Variables

68

$ �sa "${var-default}" ## var is unset, so expands to

"default"

:default:

This snippet assigns a default value to $filename if it is not supplied by an option or

inherited in the environment:

defaultfile=$HOME/.bashrc

parse options here

filename=${filename:-"$defaultfile"}

�${var:+alternate} and ${var+alternate}: Use
Alternate Values
The complement to the previous expansion substitutes an alternate value if the

parameter is not empty or, without a colon, if it is set. The first expansion will use

alternate only if $var is set and is not empty:

$ var=

$ sa "${var:+alternate}" ## $var is set but empty

::

$ var=value

$ sa "${var:+alternate}" ## $var is not empty

:alternate:

Without the colon, alternate is used if the variable is set, even if it is empty:

$ var=

$ sa "${var+alternate}" ## var is set

:alternate:

$ unset var

$ sa "${var+alternate}" ## $var is not set

::

$ var=value

$ sa "${var:+alternate}" ## $var is set and not empty

:alternate:

Chapter 5 Parameters and Variables

69

This expansion is often used when adding strings to a variable. If the variable is

empty, you don’t want to add a separator:

$ var=

$ for n in a b c d e f g

> do

> var="$var $n"

> done

$ sa "$var"

: a b c d e f g:

To prevent the leading space, you can use parameter expansion:

$ var=

$ for n in a b c d e f g

> do

> var="${var:+"$var "}$n"

> done

$ sa "$var"

:a b c d e f g:

That is a shorthand method of doing the following for each value of n:

if [-n "$var"]

then

 var="$var $n"

else

 var=$n

fi

or:

[-n "$var"] && var="$var $n" || var=$ n

Chapter 5 Parameters and Variables

70

�${var:=default} and ${var=default}: Assign
Default Values
The ${var:=default} expansion behaves in the same way as ${var:-default} except

that it also assigns the default value to the variable:

$ unset n

$ while :

> do

> echo :$n:

> [${n:=0} -gt 3] && break ## set $n to 0 if unset or empty

> n=$(($n + 1))

> done

::

:1:

:2:

:3:

:4:

�${var:?message} and ${var?message}: Display Error
Message If Empty or Unset
If var is empty or not set, message will be printed to the standard error, and the script will

exit with a status of 1. If message is empty, parameter null or not set will be printed.

Listing 5-2 expects two non-null command-line arguments and uses this expansion to

display error messages when they are missing or null.

Listing 5-2.  checkarg, Exit If Parameters Are Unset or Empty

Check for unset arguments

: ${1?An argument is required} \

 ${2?Two arguments are required}

Check for empty arguments

Chapter 5 Parameters and Variables

71

: ${1:?A non-empty argument is required} \

 ${2:?Two non-empty arguments are required}

echo "Thank you."

The message will be printed by the first expansion that fails, and the script will exit at

that point:

$ checkarg

/home/jayant/bin/checkarg: line 10: 1: An argument is required

$ checkarg x

/home/jayant/bin/checkarg: line 10: 2: Two arguments are required

$ checkarg '' ''

/home/jayant/bin/checkarg: line 13: 1: A non-empty argument is required

$ checkarg x ''

/home/jayant/bin/checkarg: line 13: 2: Two non-empty arguments are required

$ checkarg x x

Thank you.

�POSIX Shell
Besides the expansions from the Bourne shell, the POSIX shell includes several

expansions from the KornShell. These include returning the length and removing a

pattern from the beginning or end of a variable’s contents.

�${#var}: Length of Variable’s Contents
There can be times when one would want to determine the length of the value stored in

the variable. This could be helpful to determine the length of the username, the length

of the password, etc. This expansion returns the length of the expanded value of the

variable:

read passwd

if [${#passwd} -lt 8]

then

 printf "Password is too short: %d characters\n" "${#passwd}" >&2

 exit 1

fi

Chapter 5 Parameters and Variables

72

�${var%PATTERN}: Remove the Shortest Match
from the End
The variable is expanded, and the shortest string that matches PATTERN is removed from

the end of the expanded value. The PATTERN here and in other parameter expansions is a

file name expansion (a.k.a. file globbing) pattern.

Given the string Wollongong and the pattern o*, the shortest matching pattern is the

final o:

$ var=Wollongong

$ printf "%s\n" "${var%o*}"

Wollong

Because the truncated string has been assigned to var, the shortest string that now

matches the pattern is Woll:

$ printf "%s\n" "${var%o*}"

Woll

This expansion can be used to replace the external command, dirname, which strips

the file name portion of a path, leaving the path to the directory (Listing 5-3). If there is

no slash in the string, the current directory is printed if it is the name of an existing file in

the current directory; otherwise, a dot is printed.

Listing 5-3.  dname, Print the Directory Portion of a File Path

case $1 in

 /) printf "%s\n" "${1%/*}" ;;

 *) [-e "$1"] && printf "%s\n" "$PWD" || echo '.' ;;

esac

Note T his script is named dname rather than dirname because it doesn’t follow
the POSIX specification for the dirname command. In the next chapter, there is a
shell function called dirname that does implement the POSIX command.

$ dname /etc/passwd

Chapter 5 Parameters and Variables

73

/etc

$ dname bin

/home/jayant

�${var%%PATTERN}: Remove the Longest Match
from the End
The variable is expanded, and the longest string that matches the PATTERN from the end

of the expanded value is removed:

$ var=Wollongong

$ sa "${var%%o*}"

:W:

�${var#PATTERN}: Remove the Shortest Match
from the Beginning
The variable is expanded, and the shortest string that matches PATTERN is removed from

the beginning of the expanded value:

$ var=Wollongong

$ sa "${var#*o}"

:llongong:

�${var##PATTERN}: Remove the Longest Match
from the Beginning
The variable is expanded, and the longest string that matches PATTERN is removed from

the beginning of the expanded value. This is often used to extract the name of a script

from the $0 parameter, which contains the full path to the script:

$ var=Wollongong

$ sa "${var##*o}"

:ng:

Chapter 5 Parameters and Variables

74

Figure 5-1.  A summary of the expansions and how it affects the
character’s removal

�bash
Two expansions from KornShell 93 were introduced in bash2: search and replace and

substring extraction.

�${var//PATTERN/STRING}: Replace All Instances
of PATTERN with STRING
Because the question mark matches any single character, this example hides a password:

$ passwd=zxQ1.=+-a

$ printf "%s\n" "${passwd//?/*}"

With a single slash, only the first matching character is replaced.

$ printf "%s\n" "${passwd/[[:punct:]]/*}"

zxQ1*=+-a

Chapter 5 Parameters and Variables

75

Here’s another example with our string Wollongong where we can replace all of the

o’s with an e:

$ var=Wollongong

$ printf "%s\n" "${var//o/e}"

Wellengeng

Similarly, we can also use the single slash to change just a single character instead of

all instances

$ var=Wollongong

$ printf "%s\n" "${var/o/e}"

Wellongong

�${var:OFFSET:LENGTH}: Return a Substring of $var
A substring of $var starting at OFFSET is returned. If LENGTH is specified, that number of

characters is substituted; otherwise, the rest of the string is returned. The first character

is at offset 0:

$ var=Wollongong

$ sa "${var:4:3}"

:ong:

$ sa "${var:4}"

:ongong:

A negative OFFSET is counted from the end of the string. If a literal minus sign is used

(as opposed to one contained in a variable), it must be preceded by a space to prevent it

from being interpreted as a default expansion:

$ sa "${var: -4}"

:gong:

$ sa "${var:0: -4}"

:Wollon:

Chapter 5 Parameters and Variables

76

�${!var}: Indirect Reference
If you have one variable containing the name of another, for example, x=yes and a=x,

bash can use an indirect reference:

$ x=yes

$ a=x

$ sa "${a}"

:x:

$ sa "${!a}"

:yes:

The same effect can be had using the eval built-in command, which expands its

arguments and executes the resulting string as a command:

$ eval "sa \$$a"

:yes:

There is nothing special or there are no system functions or syntax magic used here.

a contains the value x, and all we are doing is evaluating a string "sa \$$a", which

expands to "sa $x", which, when evaluated, would return the value held in variable x,

which is yes.

See Chapter 9 for a more detailed explanation of eval.

�bash-4.0
In version 4.0, bash introduced two new parameter expansions: one for converting to

uppercase and one for lowercase. Both have single-character and global versions.

�${var^PATTERN}: Convert to Uppercase
The first character of var is converted to uppercase if it matches PATTERN; with a

double caret (^^), it converts all characters matching PATTERN. If PATTERN is omitted, all

characters are matched:

$ var=melbourne

$ sa "${var^}"

Chapter 5 Parameters and Variables

77

:Melbourne:

$ sa "${var^[m-z]}"

:Melbourne:

$ �sa "${var^^[a-l]}" ## matches all characters from a to m

inclusive

:mELBournE:

$ sa "${var^^[m-z]}"

:melbOURNe:

$ sa "${var^^}"

:MELBOURNE:

�${var,PATTERN}: Convert to Lowercase
This expansion works in the same way as the previous one, except that it converts

uppercase to lowercase:

$ var=MELBOURNE

$ sa "${var,}"

:mELBOURNE:

$ sa "${var,,}"

:melbourne:

$ sa "${var,,[N-Q]}"

:MELBoURnE:

#There is also an undocumented expansion that inverts the case:

$ var=MELBOURNE

$ sa "${var∼}"
:mELBOURNE:

$ sa "${var∼∼}"
:melbourne:

�Positional Parameters
The positional parameters can be referenced individually by number ($1 ... $9 ${10}

...) or all at once with "$@" or "$*". As has already been noted, parameters greater than

9 must be enclosed in braces: ${10}, ${11}.

Chapter 5 Parameters and Variables

78

The shift command without an argument removes the first positional parameter

and shifts the remaining arguments forward so that $2 becomes $1, $3 becomes $2, and

so on. With an argument, it can remove more. To remove the first three parameters,

supply an argument with the number of parameters to remove:

$ shift 3

To remove all the parameters, use the special parameter $#, which contains the

number of positional parameters:

$ shift "$#"

To remove all but the last two positional parameters, use this:

$ shift "$(($# - 2))"

To use each parameter in turn, there are two common methods. The first way is to

loop through the values of the parameters by expanding "$@":

for param in "$@" ## or just: for param

do

 : do something with $param

done

And this is the second:

while (($#))

do

 : do something with $1

 shift

done

�Arrays
All the variables used so far have been scalar variables; that is, they contain only a single

value. In contrast, array variables can contain many values. The POSIX shell does not

support arrays, but bash (since version 2) does. Its arrays are one dimensional and

indexed by integers and, since bash-4.0, with strings.

Chapter 5 Parameters and Variables

79

�Integer-Indexed Arrays
The individual members of an array variable are assigned and accessed with a subscript

of the form [N]. The first element has an index of 0. In bash, arrays are sparse; they

needn’t be assigned with consecutive indices. An array can have an element with an

index of 0, another with an index of 42, and no intervening elements.

�Displaying Arrays
Array elements are referenced by the name and a subscript in braces. This example will

use the shell variable BASH_VERSINFO. It is an array that contains version information

for the running shell. The first element is the major version number; the second is

the minor:

$ printf "%s\n" "${BASH_VERSINFO[0]}"

5

$ printf "%s\n" "${BASH_VERSINFO[1]}"

1

All the elements of an array can be printed with a single statement. The subscripts

@ and * are analogous to their use with the positional parameters: * expands to a single

parameter if quoted; if unquoted, word splitting, and file name expansion is performed

on the result. Using @ as the subscript and quoting the expansion, each element expands

to a separate argument, and no further expansion is performed on them.

$ printf "%s\n" "${BASH_VERSINFO[*]}"

5 1 16 1 release x86_64-pc-linux-gnu

$ printf "%s\n" "${BASH_VERSINFO[@]}"

5

1

16

1

release

x86_64-pc-linux-gnu

Chapter 5 Parameters and Variables

80

Various parameter expansions work on arrays; for example, to get the second and

third elements from an array, use this:

$ �printf "%s\n" "${BASH_VERSINFO[@]:1:2}" ## minor version

number and patch level

1

16

The length expansion returns the number of elements in the array when the

subscript is * or @, and it returns the length of an individual element if a numeric index

is given:

$ printf "%s\n" "${#BASH_VERSINFO[*]}"

6

$ �printf "%s\n" "${#BASH_VERSINFO[2]}" "${#BASH_VERSINFO[5]}"

2

19

�Assigning Array Elements
Elements can be assigned using an index; the following commands create a sparse array:

name[0]=Aaron

name[42]=Adams

Indexed arrays are more useful when elements are assigned consecutively (or

packed), because it makes operations on them simpler. Assignments can be made

directly to the next unassigned element:

$ unset a

$ a[${#a[@]}]="1 $RANDOM" ## ${#a[@]} is 0

$ a[${#a[@]}]="2 $RANDOM" ## ${#a[@]} is 1

$ a[${#a[@]}]="3 $RANDOM" ## ${#a[@]} is 2

$ a[${#a[@]}]="4 $RANDOM" ## ${#a[@]} is 3

$ printf "%s\n" "${a[@]}"

Chapter 5 Parameters and Variables

81

1 6007

2 3784

3 32330

4 25914

An entire array can be populated with a single command:

$ states=(TAS QLD VIC)

$ printf "%s\n" "${states[@]}"

TAS

QLD

VIC

The += operator can be used to append values to the end of an indexed array. This

results in a neater form of assignment to the next unassigned element:

$ states+=(NSW)

$ states+=(ACT "WA" "SA" "NT")

$ printf "%-25s %-25s %s\n" "${states[@]}"

TAS QLD VIC

NSW ACT WA

SA NT

�Associative Arrays
Associative arrays, introduced in bash in version 4.0, use strings as subscripts and must

be declared before being used:

$ declare -A array

$ for subscript in a b c d e

> do

> array[$subscript]="$subscript $RANDOM"

> done

$ printf ":%s:\n" "${array["c"]}" ## print one element

:c 1574:

$ printf ":%s:\n" "${array[@]}" ## print the entire array

:a 13856:

Chapter 5 Parameters and Variables

82

:b 6235:

:c 1574:

:d 14020:

:e 9165:

�Summary
The largest portion of this chapter is the parameter expansion. The parameter

expansions introduced by KornShell that were then introduced into the Unix shell are

quite important. These provide a powerful repository of tools to the user. The examples

are quite simple; however, the full potential of expansions can be explored as we develop

serious programs later in the book.

The other important point is arrays, though not a part of the POSIX standard, they

add a great deal of functionality to the shell by making it possible to collect data in

logical units.

Understanding the scope of variables can save a lot of head scratching, and adopting

a good variable naming convention also makes the program readable and maintainable.

The portion on positional parameters is minor in this chapter but an important

aspect of shell programming, and the examples in this chapter are simple; they will be

revised and expanded upon later in the book.

�Commands
•	 declare: Declares variables and sets their attributes

•	 eval: Expands arguments and executes the resulting command

•	 export: Places variables into the environment so that they are

available to child processes

•	 shift: Deletes and renumbers positional parameters

•	 shopt: Sets shell options

•	 unset: Removes a variable entirely

Chapter 5 Parameters and Variables

83

�Concepts
•	 Environment: A collection of variables inherited from the calling

program and passed to child processes

•	 Array variables: Variables that contain more than one value and

accessed using a subscript

•	 Scalar variables: Variables that contain a single value

•	 Associative arrays: Array variables whose subscript is a string rather

than an integer

�Exercises

	 1.	 By default, where can a variable assigned in a script be accessed?

Select all that apply.

•	 In the current script

•	 In functions defined in the current script

•	 In the script that called the current script

•	 In scripts called by the current script

•	 In subshells of the current script

	 2.	 I advised against using single-letter variable names but give a

couple of places where they are reasonable. Can you think of any

other legitimate uses for them?

	 3.	 Given var=192.168.0.123, write a script that uses parameter

expansion to extract the second number, 168.

Chapter 5 Parameters and Variables

85

CHAPTER 6

Shell Functions
A shell function is a compound command that has been given a name. It stores a series

of commands for later execution. The name becomes a command and can be used

in the same way as any other command. Its arguments are available in the positional

parameters, just as in any other script. Like other commands, it sets a return code.

A function is executed in the same process as the script that calls it. This makes it

fast because no new process must be created. All the variables of the script are available

to it without having to be exported, and when a function changes those variables, the

changes will be seen by the calling script. That said, you can make variables local to the

function so that they do not affect the calling script; the choice is yours.

Not only do functions encapsulate code for reuse in a single script, but they can

make it available to other scripts. They make top-down design easy and improve

legibility. They break scripts into manageable chunks that can be tested and debugged

separately.

At the command line, functions can do things that an external script cannot, such

as change directories. They are much more flexible and powerful than aliases, which

simply replace the command you type with a different command. Chapter 11 presents

several functions that make working at the prompt more productive.

�Definition Syntax
When shell functions were introduced in the KornShell, the definition syntax was as

follows:

function name { <compound command> }

When the Bourne shell added functions in 1984, the syntax (which was later

included in ksh and adopted by the POSIX standard) was as follows:

name() { <compound command> }

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_6

https://doi.org/10.1007/978-1-4842-9588-5_6

86

bash allows either syntax as well as the hybrid:

function name() { <compound command> }

The following is a function that I wrote several years ago and that, I recently

discovered, is included as an example in the bash source code package. It checks

whether a dotted-quad Internet Protocol (IP) address is valid. In this book, we always

use the POSIX syntax for function definition:

isvalidip()

Then the body of the function is enclosed in braces ({ ... }) followed by optional

redirection (see the uinfo function later in this chapter for an example).

The first set of tests is contained in a case statement:

case $1 in

 "" | *[!0-9.]* | *[!0-9]) return 1 ;;

esac

It checks for an empty string, invalid characters, or an address that doesn’t end with

a digit. If any of these items is found, the shell built-in command return is invoked with

an exit status of 1. This exits the function and returns control to the calling script. An

argument sets the function’s return code; if there is no argument, the exit code of the

function defaults to that of the last command executed.

The next command, local, is a shell built in that restricts a variable’s scope to

the function (and its children), but the variable will not change in the parent process.

Setting IFS to a period causes word splitting at periods, rather than whitespace, when a

parameter is expanded. Beginning with bash-4.0, local and declare have an option, -A,

to declare an associative array.

local IFS=.

The set built-in replaces the positional parameters with its arguments. Since $IFS is

a period, each element of the IP address is assigned to a different parameter.

set -- $1

The final two lines check each positional parameter in turn. If it’s greater than 255,

it is not valid in a dotted-quad IP address. If a parameter is empty, it is replaced with the

invalid value of 666. If all tests are successful, the function exits successfully; if not, the

return code is 1, or failure.

Chapter 6 Shell Functions

87

[${1:-666} -le 255] && [${2:-666} -le 255] &&

[${3:-666} -le 255] && [${4:-666} -le 255]

Listing 6-1 shows the complete function with comments.

Listing 6-1.  isvalidip, Check Argument for Valid Dotted-Quad IP Address

isvalidip() #@ USAGE: isvalidip DOTTED-QUAD

{

 case $1 in

 ## reject the following:

 ## empty string

 ## anything other than digits and dots

 ## anything not ending in a digit

 "" | *[!0-9.]* | *[!0-9]) return 1 ;;

 esac

 ## Change IFS to a dot, but only in this function

 local IFS=.

 ## Place the IP address into the positional parameters;

 ## after word splitting each element becomes a parameter

 set -- $1

 [$# -eq 4] && ## must be four parameters

 ## each must be less than 256

 ## A default of 666 (which is invalid) is used if a parameter is empty

 ## All four parameters must pass the test

 [${1:-666} -le 255] && [${2:-666} -le 255] &&

 [${3:-666} -le 255] && [${4:-666} -le 255]

}

Note  Formats other than dotted quads can be valid IP addresses, as in 127.1,
216.239.10085 and 3639551845.

The function returns successfully (i.e., a return code of 0) if the argument supplied

on the command line is a valid dotted-quad IP address. You can test the function at the

command line by sourcing the file containing the function:

$. isvalidip-func

Chapter 6 Shell Functions

88

The function is now available at the shell prompt. Let’s test it with a few IP addresses:

$ for ip in 127.0.0.1 168.260.0.234 1.2.3.4 123.1OO.34.21

204.225.122.150

> do

> if isvalidip "$ip"

> then

> printf "%15s: valid\n" "$ip"

> else

> printf "%15s: invalid\n" "$ip"

> fi

> done

 127.0.0.1: valid

 168.260.0.234: invalid

 1.2.3.4: valid

 123.1OO.34.21: invalid

204.225.122.150: valid

�Compound Commands
A compound command is a list of commands enclosed in (...) or { ... },

expressions enclosed in ((...)) or [[...]], or one of the block-level shell

keywords (i.e., case, for, select, while, and until).

The valint program from Chapter 3 is a good candidate for converting to a function.

It is likely to be called more than once, so the time saved could be significant. The

program is a single compound command, so braces are not necessary (see Listing 6-2).

Listing 6-2.  valint, Check for Valid Integer

valint() #@ USAGE: valint INTEGER

 case ${1#-} in ## Leading hyphen removed to accept negative numbers

 [!0-9]) false;; ## the string contains a non-digit character

 *) true ;; ## the whole number, and nothing but the number

 esac

Chapter 6 Shell Functions

89

If a function’s body is wrapped in parentheses, then it is executed in a subshell, and

changes made during its execution do not remain in effect after it exits:

$ funky() (name=nobody; echo "name = $name")

$ name=Rumpelstiltskin

$ funky

name = nobody

$ echo "name = $name"

name = Rumpelstiltskin

�Getting Results
The two previous functions are both called for their exit status; the calling program

needs to know only whether the function succeeds or fails. Functions can also return

information from a range of return codes by setting one or more variables or by printing

its results.

�Set Different Exit Codes
You can convert the rangecheck script from Chapter 3 to a function with a couple of

improvements; it returns 0 on success as before but differentiates between a number that

is too high and one that is too low. It returns 1 if the number is too low, or it returns 2 if it

is too high. It also accepts the range to be checked as arguments on the command line,

defaulting to 10 and 20 if no range is given (Listing 6-3).

Listing 6-3.  rangecheck, Check Whether an Integer Is Within a Specified Range

rangecheck() #@ USAGE: rangecheck int [low [high]]

 if ["$1" -lt ${2:-10}]

 then

 return 1

 elif ["$1" -gt ${3:-20}]

 then

 return 2

Chapter 6 Shell Functions

90

 else

 return 0

 fi

Return codes are a single, unsigned byte; therefore, their range is 0 to 255. If you

need numbers larger than 255 or less than 0, use one of the other methods of returning

a value.

�Print the Result
A function’s purpose may be to print information, either to the terminal or to a file

(Listing 6-4).

Listing 6-4.  uinfo, Print Information About the Environment

uinfo() #@ USAGE: uinfo [file]

{

 printf "%12s: %s\n" \

 USER "${USER:-No value assigned}" \

 PWD "${PWD:-No value assigned}" \

 COLUMNS "${COLUMNS:-No value assigned}" \

 LINES "${LINES:-No value assigned}" \

 SHELL "${SHELL:-No value assigned}" \

 HOME "${HOME:-No value assigned}" \

 TERM "${TERM:-No value assigned}"

} > ${1:-/dev/fd/1}

The redirection is evaluated at runtime. In this example, it expands to the function’s

first argument or to /dev/fd/1 (standard output) if no argument is given:

$ uinfo

 USER: jayant

 PWD: /home/jayant/work/BashProgramming

 COLUMNS: 100

 LINES: 43

 SHELL: /bin/bash

 HOME: /home/jayant

Chapter 6 Shell Functions

91

 TERM: rxvt

$ cd; uinfo $HOME/tmp/info

$ cat $HOME/tmp/info

 USER: jayant

 PWD: /home/jayant

 COLUMNS: 100

 LINES: 43

When the output is printed to the standard output, it may be captured using

command substitution:

info=$(uinfo)

But command substitution creates a new process and is therefore slow; save it for

use with external commands. When a script needs output from a function, put it into

variables.

�Place Results in One or More Variables
Say we wanted to sort three integers from the lowest to the highest. We could use an

external command for a maximum of three comparisons, so this is the best place to add

a function as can be seen in Listing 6-5. The way it works is it stores the results in three

variables: _MIN3, _MID3, and _MAX3.

Listing 6-5.  _max3, Sort Three Integers

_max3() #@ Sort 3 integers and store in $_MAX3, $_MID3 and $_MIN3

{ #@ USAGE: _max3 N1 N2 N3

 [$# -ne 3] && return 5

 [$1 -gt $2] && { set -- $2 $1 $3; }

 [$2 -gt $3] && { set -- $1 $3 $2; }

 [$1 -gt $2] && { set -- $2 $1 $3; }

 _MAX3=$3

 _MID3=$2

 _MIN3=$1

}

Chapter 6 Shell Functions

92

In the first edition of this book, the convention for function names that was used

started with an underscore as in _max3 for functions that set variables rather than

printing the results. The variables set were the name of the function but in uppercase.

However, in these instances, it required additional variables. Instead, an array could

have been used to minimize the number of variables.

_MAX3=("$3" "$2" "$1")

Now, with the nameref property, introduced in bash-4.x, the name of a variable can

be passed to store the result.

max3() #@ Sort 3 integers and store in an array

{ #@ USAGE: max3 N1 N2 N3 [VARNAME]

 declare -n _max3=${4:-_MAX3}

 (($# < 3)) && return 4

 (($1 > $2)) && set -- "$2" "$1" "$3"

 (($2 > $3)) && set -- "$1" "$3" "$2"

 (($1 > $2)) && set -- "$2" "$1" "$3"

 _max3=("$3" "$2" "$1")

}

If no variable name is supplied on the command line, _MAX3 is used.

�Function Libraries
How one arranges functions is entirely up to them; some can have hundreds of files that

have nothing but functions. There can be a single function in a single file or a collection

of functions in a file. It does not matter how they are organized. One good way could

be to organize them according to what they achieve, for example, a library of string

functions, or a library of functions that manipulate dates, another for reading function

keys and cursor keys, and another for mouse buttons.

�Using Functions from Libraries
Most of the time, all the functions in the script are included from the file:

. date-funcs

Chapter 6 Shell Functions

93

Occasionally, one might need only one function from a library, so the function can

be cut and paste into a new script.

�Sample Script
The following script defines four functions: die, usage, version, and readline. The

readline function will differ according to which shell you are using. The script creates a

basic web page, complete with title and primary headline (<H1>). The readline function

uses options to the built-in command read that will be examined in detail in Chapter 9.

##

Set defaults

##

prompt=" ==> "

template='<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset=utf-8>

 <title>%s</title>

 <link href="%s" rel="stylesheet">

 </head>

 <body>

 <h1>%s</h1>

 <div id=main>

 </div>

 </body>

</html>

'

##

Define shell functions

##

die() #@ DESCRIPTION: Print error message and exit with ERRNO code

{ #@ USAGE: die ERRNO MESSAGE ...

 error=$1

 shift

Chapter 6 Shell Functions

94

 [-n "$*"] && printf "%s\n" "$*" >&2

 exit "$error"

}

usage() #@ Print script's usage information

{ #@ USAGE: usage

 printf "USAGE: %s HTMLFILE\n" "$progname"

}

version() #@ Print scrpt's version information

{ #@ USAGE: version

 printf "%s version %s" "$progname" "${version:-1}"

}

#@ USAGE: readline var prompt default

#@ DESCRIPTION: Prompt user for string and offer default

##

#@ Define correct version for your version of bash or other shell

bashversion=${BASH_VERSION%%.*}

if [${bashversion:-0} -ge 4]

then

 ## bash4.x has an -i option for editing a supplied value

 readline()

 {

 read -ep "${2:-"$prompt"}" -i "$3" "$1"

 }

elif [${bashversion:-0} -ge 2]

then

 readline()

 {

 history -s "$3"

 printf "Press up arrow to edit default value: '%s'\n" "${3:-none}"

 read -ep "${2:-"$prompt"}" "$1"

 }

else

 readline()

 {

 printf "Press enter for default of '%s'\n" "$3"

Chapter 6 Shell Functions

95

 printf "%s " "${2:-"$prompt"}"

 read

 eval "$1=\${REPLY:-"$3"}"

 }

fi

if [$# -ne 1]

then

 usage

 exit 1

fi

filename=$1

readline title "Page title: "

readline h1 "Main headline: " "$title"

readline css "Style sheet file: " "${filename%.*}.css"

printf "$template" "$title" "$css" "$h1" > "$filename"

�Summary
Shell functions enable you to create large, fast, sophisticated programs. Without them,

the shell could hardly be called a real programming language. Functions will be part of

almost everything from here to the end of the book.

�Commands
•	 local: Restricts a variable’s scope to the current function and its

children

•	 return: Exits a function (with an optional return code)

•	 set: With --, replaces the positional parameters with the remaining

arguments (after --)

Chapter 6 Shell Functions

96

�Exercises

	 1.	 Rewrite function isvalidip using parameter expansion instead of

changing IFS.

	 2.	 Add a check to max3 to verify that VARNAME is a valid name for a

variable.

Chapter 6 Shell Functions

97

CHAPTER 7

String Manipulation
In the Bourne shell, very little string manipulation was possible without resorting to

external commands. Strings could be concatenated by juxtaposition, they could be split

by changing the value of IFS, and they could be searched with case, but anything else

required an external command.

Even things that could be done entirely in the shell were often relegated to external

commands, and that practice has continued to this day. In some Linux distributions, you

can find the following snippet in /etc/profile. It checks whether a directory is included

in the PATH variable:

if ! echo ${PATH} |grep -q /usr/games

then

 PATH=$PATH:/usr/games

fi

Even in a Bourne shell, you can do this without an external command:

case :$PATH: in

 :/usr/games:);;

 *) PATH=$PATH:/usr/games ;;

esac

The POSIX shell includes several parameter expansions that slice and dice strings,

and bash adds even more. These were outlined in Chapter 5, and their use is expanded

upon in this chapter along with other string techniques.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_7

https://doi.org/10.1007/978-1-4842-9588-5_7

98

�Concatenation
Concatenation is the joining together of two or more items to form one larger item.

In this case, the items are strings. They are joined by placing one after the other. A

common example, which is used in Chapter 1, adds a directory to the PATH variable.

It concatenates a variable with a single-character string (:), another variable, and a

literal string:

PATH=$PATH:$HOME/bin

If the right side of the assignment contains a literal space or other character special

to the shell, then it must be quoted with double quotes (variables inside single quotes

are not expanded):

var=$HOME/bin # this comment is not part of the assignment

var="$HOME/bin # but this is"

In bash-3.1, a string append operator (+=) was added:

$ var=abc

$ var+=xyz

$ echo "$var"

abcxyz

This append operator += looks much better and is clearer to understand. It also has

a slight performance advantage over the other method. It also makes sense to use += for

appending to an array, as demonstrated in Chapter 5.

Tip  For those that want to benchmark the two methods, you could try this
little one liner: var=; time for i in {1..1000};do var=${var}
foo;done;var=; time for i in {1..1000};do var+=foo;done.

Chapter 7 String Manipulation

99

�Repeat Character to a Given Length
Concatenation is used in this function that builds a string of N characters; it loops, adding

one instance of $1 each time, until the string ($_REPEAT) reaches the desired length

(contained in $2).

_repeat()

{

 #@ USAGE: _repeat string number

 _REPEAT=

 while ((${#_REPEAT} < $2))

 do

 _REPEAT=$_REPEAT$1

 done

}

The result is stored in the variable _REPEAT:

$ _repeat % 40

$ printf "%s\n" "$_REPEAT"

%%

You can speed that function up by concatenating more than one instance in each

loop so that the length increases geometrically. The problem with this version is that the

resulting string will usually be longer than required. To fix that, parameter expansion is

used to trim the string to the desired length (Listing 7-1).

Listing 7-1.  repeat, Repeat a String N Times

_repeat()

{

 #@ USAGE: _repeat string number

 _REPEAT=$1

 while ((${#_REPEAT} < $2)) ## Loop until string exceeds desired length

 do

 _REPEAT=$_REPEAT$_REPEAT$_REPEAT ## 3 seems to be the optimum number

 done

 _REPEAT=${_REPEAT:0:$2} ## Trim to desired length

Chapter 7 String Manipulation

100

}

repeat()

{

 _repeat "$@"

 printf "%s\n" "$_REPEAT"

}

The _repeat function is called by the alert function (Listing 7-2).

Listing 7-2.  alert, Print a Warning Message with a Border and a Beep

alert() #@ USAGE: alert message border

{

 _repeat "${2:-#}" $((${#1} + 8))

 printf '\a%s\n' "$_REPEAT" ## \a = BEL

 printf '%2.2s %s %2.2s\n' "$_REPEAT" "$1" "$_REPEAT"

 printf '%s\n' "$_REPEAT"

}

The function prints the message surrounded by a border generated with _repeat:

$ alert "Do you really want to delete all your files?"

##

Do you really want to delete all your files?

##

The border character can be changed with a command-line argument:

$ alert "Danger, Will Robinson" $

$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$ Danger, Will Robinson $$

$$$$$$$$$$$$$$$$$$$$$$$$$$$

�Processing Character by Character
There are no direct parameter expansions to give either the first or last character of a

string, but by using the wildcard (?), a string can be expanded to everything except its

first or last character:

Chapter 7 String Manipulation

101

$ var=strip

$ allbutfirst=${var#?}

$ allbutlast=${var%?}

$ sa "$allbutfirst" "$allbutlast"

:trip:

:stri:

The values of allbutfirst and allbutlast can then be removed from the original

variable to give the first or last character:

$ first=${var%"$allbutfirst"}

$ last=${var#"$allbutlast"}

$ sa "$first" "$last"

:s:

:p:

The first character of a string can also be obtained with printf:

printf -v first "%c" "$var"

To operate on each character of a string one at a time, use a while loop and a

temporary variable that stores the value of var minus its first character. The temp variable

is then used as the pattern in a ${var%PATTERN} expansion. Finally, $ temp is assigned to

var, and the loop continues until there are no characters left in var:

while [-n "$var"]

do

 temp=${var#?} ## everything but the first character

 char=${var%"$temp"} ## remove everything but the first character

 : do something with "$char"

 var=$temp ## assign truncated value to var

done

�Reversal
You can use the same method to reverse the order of characters in a string. Each letter is

tacked on to the end of a new variable (Listing 7-3).

Chapter 7 String Manipulation

102

Listing 7-3.  revstr, Reverse the Order of a String; Store Result in _REVSTR

_revstr() #@ USAGE: revstr STRING

{

 var=$1

 _REVSTR=

 while [-n "$var"]

 do

 temp=${var#?}

 _REVSTR=$temp${var%"$temp"}

 var=$temp

 done

}

�Case Conversion
In the Bourne shell, case conversion was done with external commands such as tr,

which translates characters in its first argument to the corresponding character in its

second argument:

$ echo abcdefgh | tr ceh CEH # c => C, e => E, h => H

abCdEfgH

$ echo abcdefgh | tr ceh HEC # c => H, e => E, h => C

abHdEfgC

Ranges specified with a hyphen are expanded to include all intervening characters:

$ echo touchdown | tr 'a-z' 'A-Z'

TOUCHDOWN

In the POSIX shell, short strings can be converted efficiently using parameter

expansion and a function containing a case statement as a lookup table. The function

looks up the first character of its first argument and stores the uppercase equivalent in

_UPR. If the first character is not a lowercase letter, it is unchanged (Listing 7-4).

Chapter 7 String Manipulation

103

Listing 7-4.  to_upper, Convert First Character of $1 to Uppercase

to_upper()

 case $1 in

 a*) _UPR=A ;; b*) _UPR=B ;; c*) _UPR=C ;; d*) _UPR=D ;;

 e*) _UPR=E ;; f*) _UPR=F ;; g*) _UPR=G ;; h*) _UPR=H ;;

 i*) _UPR=I ;; j*) _UPR=J ;; k*) _UPR=K ;; l*) _UPR=L ;;

 m*) _UPR=M ;; n*) _UPR=N ;; o*) _UPR=O ;; p*) _UPR=P ;;

 q*) _UPR=Q ;; r*) _UPR=R ;; s*) _UPR=S ;; t*) _UPR=T ;;

 u*) _UPR=U ;; v*) _UPR=V ;; w*) _UPR=W ;; x*) _UPR=X ;;

 y*) _UPR=Y ;; z*) _UPR=Z ;; *) _UPR=${1%${1#?}} ;;

 esac

To capitalize a word (i.e., just the first letter), call to_upper with the word as an

argument, and append the rest of the word to $_UPR:

$ word=function

$ to_upper "$word"

$ printf "%c%s\n" "$_UPR" "${word#?}"

Function

To convert the entire word to uppercase, you can use the upword function shown in

Listing 7-5.

Listing 7-5.  upword, Convert Word to Uppercase

_upword () #@ USAGE: upword STRING

{

 local word=$1

 while [-n "$word"] ## loop until nothing is left in $word

 do

 to_upper "$word"

 _UPWORD=$_UPWORD$_UPR

 word=${word#?} ## remove the first character from $word

 done

}

Chapter 7 String Manipulation

104

upword()

{

 _upword "$@"

 printf "%s\n" "$_UPWORD"

}

You can use the same technique to convert uppercase to lowercase; you can try to

write the code for that as an exercise.

The basics of case conversion using the parameter expansions introduced in

bash-4.x were covered in Chapter 5. Some uses for them are shown in the following

sections. Using those expansions would make for some extensible functions, since the

functions we write can be limited to the code we write.

$ title=" für èlisé"

$ upword $title

FüR èLISé

$ echo ${title^^}

FÜR ÈLISÉ

So if we were to rewrite our _upword and upword functions as _newupword and

newupword, it would look something like

_newupword () #@ USAGE: upword STRING

{

 _NEWUPWORD=${1^^}

}

newupword()

{

 _newupword "$@"

 printf "%s\n" "$_NEWUPWORD"

}

Many of the functions in this book are retained for portability with earlier versions of

bash and could be replaced with shorter and more extensible versions with the features

released in the newer versions like the example shown previously that is literally a

one liner.

Chapter 7 String Manipulation

105

�Comparing Contents Without Regard to Case
When getting user input, a programmer often wants to accept it in either uppercase or

lowercase or even a mixture of the two. When the input is a single letter, as in asking for

Y or N, the code is simple. There is a choice of using the or symbol (|):

read ok

case $ok in

 y|Y) echo "Great!" ;;

 n|N) echo Good-bye

 exit 1

 ;;

 *) echo Invalid entry ;;

esac

or a bracketed character list:

read ok

case $ok in

 [yY]) echo "Great!" ;;

 [nN]) echo Good-bye

 exit 1

 ;;

 *) echo Invalid entry ;;

esac

When the input is longer, the first method requires all possible combinations to be

listed, for example:

jan | jaN | jAn | jAN | Jan | JaN | JAn | JAN) echo "Great!" ;;

The second method works but is ugly and hard to read, and the longer the string is,

the harder and uglier it gets:

read monthname

case $monthname in ## convert $monthname to number

 [Jj][Aa][Nn]*) month=1 ;;

 [Ff][Ee][Bb]*) month=2 ;;

 ## ...put the rest of the year here

Chapter 7 String Manipulation

106

 [Dd][Ee][Cc]*) month=12 ;;

 [1-9]|1[0-2]) month=$monthname ;; ## accept number if entered

 *) echo "Invalid month: $monthname" >&2 ;;

esac

A better solution is to convert the input to uppercase first and then compare it:

_upword "$monthname"

case $_UPWORD in ## convert $monthname to number

 JAN*) month=1 ;;

 FEB*) month=2 ;;

 ## ...put the rest of the year here

 DEC*) month=12 ;;

 [1-9]|1[0-2]) month=$monthname ;; ## accept number if entered

 *) echo "Invalid month: $monthname" >&2 ;;

esac

Note  See Listing 7-11 at the end of this chapter for another method of
converting a month name to a number.

In bash-4.x and later, the _upword function can be replaced with case

${monthname^^} in, although keeping it in a function might ease the transition between

versions of bash.

�Check for Valid Variable Name
As a developer or one that writes scripts, we might know what the rules around variable

naming conventions are; however, if we leave that task on a user, there are chances

that it might not end well, especially when we might have an automated script that

autogenerates code or scripts. In such scenarios, we might want to at first validate if the

name entered by the user is a valid name and it does not violate any of the rules. We shall

ensure that the name consists of only letters, numbers, and underscores and these must

begin with a letter or an underscore.

Chapter 7 String Manipulation

107

Listing 7-6.  validname, Check $1 for a Valid Variable or Function Name

validname() #@ USAGE: validname varname

case $1 in

 ## doesn't begin with a letter or an underscore, or

 ## contains something that is not a letter, a number, or an underscore

 [!a-zA-Z_]* | *[!a-zA-Z0-9_]*) return 1;;

esac

The function is successful if the first argument is a valid variable name; otherwise,

it fails.

$ for name in name1 2var first.name first_name last-name

> do

> validname "$name" && echo " valid: $name" || echo "invalid: $name"

> done

 valid: name1

invalid: 2var

invalid: first.name

 valid: first_name

invalid: last-name

�Insert One String into Another
To insert a string into another string, it is a simple operation; we need to splice the string

into two parts: the left part and the right part at the point where the insert string needs to

be inserted. Then we can simply concatenate the three strings as leftPart + insertString +

rightString.

This function takes three arguments: the main string, the string to be inserted,

and the position at which to insert it. If the position is omitted, it defaults to inserting

after the first character. The work is done by the first function, which stores the result

in _insert_string. This function can be called to save the cost of using command

substitution. The insert_string function takes the same arguments, which it passes to

_insert_string and then prints the result (Listing 7-7).

Chapter 7 String Manipulation

108

Listing 7-7.  insert_string, Insert One String into Another at a Specified

Location

_insert_string() #@ USAGE: _insert_string STRING INSERTION [POSITION]

{

 local insert_string_dflt=2 ## default insert location

 local string=$1 ## container string

 local i_string=$2 ## string to be inserted

 local i_pos=${3:-${insert_string_dflt:-2}} ## insert location

 local left right ## before and after strings

 left=${string:0:$(($i_pos - 1))} ## string to left of insert

 right=${string:$(($i_pos - 1))} ## string to right of insert

 _insert_string=$left$i_string$right ## build new string

}

insert_string()

{

 _insert_string "$@" && printf "%s\n" "$_insert_string"

}

�Examples
$ insert_string poplar u 4

popular

$ insert_string show ad 3

shadow

$ insert_string tail ops ## use default position

topsail

�Overlay
Overlaying a string is basically replacing the characters in the string; it functions like

the insert string function but the difference being that the string to overlay replaces

the rightPart up to the length of the overlay. So instead of the leftPart + insertString +

rightPart, it is leftPart + overlayString + rightString (overwriting the rightPart for the

length of the overlayString)

Chapter 7 String Manipulation

109

Listing 7-8.  overlay, Place One String over the Top of Another

_overlay() #@ USAGE: _overlay STRING SUBSTRING START

{ #@ RESULT: in $_OVERLAY

 local string=$1

 local sub=$2

 local start=$3

 local left right

 left=${string:0:start-1} ## See note below

 right=${string:start+${#sub}-1}

 _OVERLAY=$left$sub$right

}

overlay() #@ USAGE: overlay STRING SUBSTRING START

{

 _overlay "$@" && printf "%s\n" "$_OVERLAY"

}

Note T he arithmetic within the substring expansion doesn’t need the full POSIX
arithmetic syntax; bash will evaluate an expression if it finds one in the place of an
integer.

�Examples
$ {

> overlay pony b 1

> overlay pony u 2

> overlay pony s 3

> overlay pony d 4

> }

bony

puny

posy

pond

Chapter 7 String Manipulation

110

�Trim Unwanted Characters
Variables often arrive with unwanted padding: usually spaces or leading zeros. These

can easily be removed with a loop and a case statement:

var=" John "

while : ## infinite loop

do

 case $var in

 ' '*) var=${var#?} ;; ## if $var begins with a space remove it

 *' ') var=${var%?} ;; ## if $var ends with a space remove it

 *) break ;; ## no more leading or trailing spaces, so exit the loop

 esac

done

A faster method finds the longest string that doesn’t begin or end with the character

to be trimmed and then removes everything but that from the original string. This is

similar to getting the first or last character from a string, where we used allbutfirst and

allbutlast variables.

If the string is “ John ”, the longest string that ends in a character that is not to be

trimmed is “ John”. That is removed, and the spaces at the end are stored in rightspaces

with this:

rightspaces=${var##*[!]} ## remove everything up to the last non-space

Then you remove $rightspaces from $var:

var=${var%"$rightspaces"} ## $var now contains " John"

Next, you find all the spaces on the left with this:

leftspaces=${var%%[!]*} ## remove from the first non-space to the end

Remove $leftspaces from $var:

var=${var#"$leftspaces"} ## $var now contains "John"

This technique is refined a little for the trim function (Listing 7-9). Its first argument

is the string to be trimmed. If there is a second argument, that is the character that will

be trimmed from the string. If no character is supplied, it defaults to a space.

Chapter 7 String Manipulation

111

Listing 7-9.  trim, Trim Unwanted Characters

_trim() #@ Trim spaces (or character in $2) from $1

{

 local trim_string

 _TRIM=$1

 trim_string=${_TRIM##*[!${2:- }]}

 _TRIM=${_TRIM%"$trim_string"}

 trim_string=${_TRIM%%[!${2:- }]*}

 _TRIM=${_TRIM#"$trim_string"}

}

trim() #@ Trim spaces (or character in $2) from $1 and print the result

{

 _trim "$@" && printf "%s\n" "$_TRIM"

}

�Examples
$ trim " S p a c e d o u t "

S p a c e d o u t

$ trim "0002367.45000" 0

2367.45

�Index
The index function converts a month name into its ordinal number; it returns the

position of one string inside another (Listing 7-10). It uses parameter expansion to

extract the string that precedes the substring. The index of the substring is one more than

the length of the extracted string.

Listing 7-10.  index, Return Position of One String Inside Another

_index() #@ Store position of $2 in $1 in $_INDEX

{

 local idx

 case $1 in

Chapter 7 String Manipulation

112

 "") _INDEX=0; return 1 ;;

 "$2") ## extract up to beginning of the matching portion

 idx=${1%%"$2"*}

 ## the starting position is one more than the length

 _INDEX=$((${#idx} + 1)) ;;

 *) _INDEX=0; return 1 ;;

 esac

}

index()

{

 _index "$@"

 printf "%d\n" "$_INDEX"

}

Listing 7-11 shows the function to convert a month name to a number. It converts

the first three letters of the month name to uppercase and finds its position in the months

string. Since we have all the month names as "JAN.FEB.MAR...", each month name is

separated by a period and has a length of four characters. We can use the function index

to get the position in the string where the month name is, and this position divided by 4

gives us the block where that month is, add 1 to this as the first block is 0, and we get our

month converted to number.

Listing 7-11.  month2num, Convert a Month Name to Its Ordinal Number

_month2num()

{

 local months=JAN.FEB.MAR.APR.MAY.JUN.JUL.AUG.SEP.OCT.NOV.DEC

 _upword "${1:0:3}" ## take first three letters of $1 and convert to

uppercase

 _index "$months" "$_UPWORD" || return 1

 _MONTH2NUM=$(($_INDEX / 4 + 1))

}

Chapter 7 String Manipulation

113

month2num()

{

 _month2num "$@" &&

 printf "%s\n" "$_MONTH2NUM"

}

�Summary
We learned the following commands and functions in this chapter.

�Commands
•	 tr: Translates characters

�Functions
•	 repeat: Repeats a string until it has length N

•	 alert: Prints a warning message with a border and a beep

•	 revstr: Reverses the order of a string; stores result in _REVSTR

•	 to_upper: Converts the first character of $1 to uppercase

•	 upword: Converts a word to uppercase

•	 validname: Checks $1 for a valid variable or function name

•	 insert_string: Inserts one string into another at a specified location

•	 overlay: Places one string over the top of another

•	 trim: Trims unwanted characters

•	 index: Returns the position of one string inside another

•	 month2num: Converts a month name to its ordinal number

Chapter 7 String Manipulation

114

�Exercises

	 1.	 What is wrong with this code (besides the inefficiency noted at the

beginning of the chapter)?

if ! echo ${PATH} |grep -q /usr/games

 PATH=$PATH:/usr/games

fi

	 2.	 Write a function called to_lower that does the opposite of the

to_upper function in Listing 7-4.

	 3.	 Write a function, palindrome, which checks whether its

command-line argument is a palindrome (i.e., a word or phrase

that is spelled the same backward and forward). Note that spaces

and punctuation are ignored in the test. Exit successfully if it is a

palindrome. Include an option to print a message as well as set

the return code.

	 4.	 Write two functions, ltrim and rtrim, which trim characters in

the same manner as trim but from only one side of the string, left

and right, respectively.

Chapter 7 String Manipulation

115

CHAPTER 8

File Operations
and Commands
Because the shell is an interpreted language, it is comparatively slow. Many operations

on files are best done with external commands that implicitly loop over the lines of a file.

At other times, the shell itself is more efficient. This chapter looks at how the shell works

with files – both shell options that modify and extend file name expansion and shell

options that read and modify the contents of files. Several external commands that work

on files are explained, often accompanied by examples of when not to use them.

Some of the scripts in this chapter use an especially prepared file containing the King

James version of the Bible. The file can be downloaded from http://cfajohnson.com/

kjv/kjv.txt. Download it to your home directory with wget:

$ wget http://cfajohnson.com/kjv/kjv.txt

In this file, each verse of the Bible is on a single line preceded by the name of the

book and the chapter and verse numbers, all delimited with colons:

Genesis:001:001:In the beginning God created the heaven and the earth.

Exodus:020:013:Thou shalt not kill.

Exodus:022:018:Thou shalt not suffer a witch to live.

John:011:035:Jesus wept.

The path to the file will be kept in the variable kjv, which will be used whenever the

file is needed.

export kjv=$HOME/kjv.txt

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_8

http://cfajohnson.com/kjv/kjv.txt
http://cfajohnson.com/kjv/kjv.txt
https://doi.org/10.1007/978-1-4842-9588-5_8

116

�Reading a File
The most basic method of reading the contents of a file is a while loop with its input

redirected:

while read ## no name supplied so the variable REPLY is used

do

 : do something with "$REPLY" here

done < "$kjv"

The file will be stored, one line at a time, in the variable REPLY. More commonly, one

or more variable names will be supplied as arguments to read:

while read name phone

do

 �printf "Name: %-10s\tPhone: %s\n" "$ name "

"$phone"

done < "$file"

The lines are split using the characters in IFS as word delimiters. If the file contained

in $file contains these two lines:

John 555-1234

Jane 555-7531

the output of the previous snippet will be as follows:

Name: John Phone: 555-1234

Name: Jane Phone: 555-7531

By changing the value of IFS before the read command, other characters can be

used for word splitting. The same script, using only a hyphen in IFS instead of the default

space, tab, and newline, would produce this:

$ while IFS=- read name phone

> do

> printf "Name: %-10s\tPhone: %s\n" "$name" "$phone"

> done < "$file"

Name: John 555 Phone: 1234

Name: Jane 555 Phone: 7531

Chapter 8 File Operations and Commands

117

Placing an assignment in front of a command causes it to be local to that command

and does not change its value elsewhere in the script.

To read the King James version of the Bible (henceforth referred to as KJV), the field

separator IFS should be set to a colon so that lines can be split into book, chapter, verse,

and text, each being assigned to a separate variable (Listing 8-1).

Listing 8-1.  kjvfirsts, Print Book, Chapter, Verse, and First Words from KJV

while IFS=: read book chapter verse text

do

 firstword=${text%% *}

 printf "%s %s:%s %s\n" "$book" "$chapter" "$verse" "$firstword"

done < "$kjv"

The output (with more than 31,000 lines replaced by a single ellipsis) looks like this:

Genesis 001:001 In

Genesis 001:002 And

Genesis 001:003 And

...

Revelation 022:019 And

Revelation 022:020 He

Revelation 022:021 The

The awk programming language is often used in shell scripts when the shell itself

is too slow (as in this case) or when features not present in the shell are required (e.g.,

arithmetic using decimal fractions). The language is explained in somewhat more detail

in the following section.

�External Commands
Many tasks can be accomplished using the shell without even calling any external

commands. Some use more commands to provide data for a script or process, whereas

other scripts are best written with nothing but external commands.

Often, the functionality of an external command can be duplicated within the

shell, and sometimes, it cannot. Sometimes, using the shell is the most efficient

method; sometimes, it is the slowest. Here, we’ll cover several external commands that

Chapter 8 File Operations and Commands

118

process files and show how they are used (and often misused). These are not detailed

explanations of the commands; usually they are an overview with, in most cases, a look

at how they are used – or misused – in shell scripts.

�cat
One of the most misused commands, cat reads all the files on its command line and

prints their contents to the standard output. If no file names are supplied, cat reads the

standard input. It is an appropriate command when more than one file needs to be read

or when a file needs to be included with the output of other commands:

cat *.txt | tr aeiou AEIOU > upvowel.txt

{

 date ## Print the date and time

 cat report.txt ## Print the contents of the file

 printf "Signed: " ## Print "Signed: " without a newline

 whoami ## Print the user's login name

} | mail -s "Here is the report" paradigm@example.com

It is not necessary when the file or files could have been placed on the

command line:

cat thisfile.txt | head -n 25 > thatfile.txt ## WRONG

head -n 25 thisfile.txt > thatfile.txt ## CORRECT

It is useful when more than one file (or none) needs to be supplied to a command

that cannot take a file name as an argument or can take only a single file, as in

redirection. It is useful when one or more file names may or may not be on the command

line. If no files are given, the standard input is used:

cat "$@" | while read x; do whatever; done

The same thing can be done using process substitution, the advantage being that

variables modified within the while loop will be visible to the rest of the script. The

disadvantage is that it makes the script less portable.

while read x; do : whatever; done < <(cat "$@")

Chapter 8 File Operations and Commands

119

Another frequent misuse of cat is to use the output as a list with for:

for line in $(cat "$kjv"); do n=$((${n:-0} + 1)); done

That script does not put lines into the line variable; it reads each word into it. The

value of n will be 795989, which is the number of words in the file. There are 31,102 lines

in the file. (And if you really wanted that information, you would use the wc command.)

�head
By default, head prints the first ten lines of each file on the command line, or from the

standard input if no file name is given. The -n option changes that default:

$ head -n 1 "$kjv"

Genesis:001:001:In the beginning God created heaven and the earth.

The output of head, like that of any command, can be stored in a variable:

filetop=$(head -n 1 "$kjv")

In that instance, head is unnecessary; this shell one liner does the same thing without

any external command:

read filetop < "$kjv"

Using head to read one line is especially inefficient when the variable then has to be

split into its constituent parts:

book=${filetop%%:*}

text=${filetop##*:}

That can be accomplished much more rapidly with read:

$ IFS=: read book chapter verse text < "$kjv"

$ sa "$book" "$chapter" "$ verse "

"${text%% *}"

:Genesis:

:001:

:001:

:In:

Chapter 8 File Operations and Commands

120

Even reading multiple lines into variables can be faster using the shell instead

of head:

{

 read line1

 read line2

 read line3

 read line4

} < "$kjv"

or you can put the lines into an array:

for n in {1..4}

do

 read lines[${#lines[@]}]

done < "$kjv"

In bash-4.x, the new built-in command mapfile can also be used to populate

an array:

mapfile -tn 4 lines < "$kjv"

The mapfile command is explained in more detail in Chapter 13.

�touch
The default action of touch is to update the timestamp of a file to the current time,

creating an empty file if it doesn’t exist. An argument to the -d option changes the

timestamp to that time rather than the present. It is not necessary to use touch to create

a file. The shell can do it with redirection:

> filename

Even to create multiple files, the shell is faster:

for file in {a..z}$RANDOM

do

 > "$file"

done

Chapter 8 File Operations and Commands

121

�ls
Unless used with one or more options, the ls command offers little functional advantage

over shell file name expansion. Both list files in alphabetical order. If you want the files

displayed in neat columns across the screen, ls is useful. If you want to do anything with

those file names, it can be done better, and often more safely, in the shell.

With options, however, it’s a different matter. The -l option prints more information

about the file, including its permissions, owner, size, and date of modification. The -t

option sorts the files by last modification time, most recent first. The order (whether by

name or by time) is reversed with the -r option.

ls is many times misused in a manner that can break a script. File names containing

spaces are an abomination, but they are so common nowadays that scripts must

take their possibility (or would it be, say, inevitability?) into account. In the following

construction (that is seen all too often), not only is ls unnecessary, but its use will break

the script if any file names contain spaces:

for file in $(ls); do

The result of command substitution is subject to word splitting, so file will be

assigned to each word in a file name if it contains spaces:

$ �touch {zzz,xxx,yyy}\ a ## create 3 files with a space in

their names

$ for file in $(ls *\ *); do echo "$file"; done

xxx

a

yyy

a

zzz

a

On the other hand, using file name expansion gives the desired (i.e., correct) results:

$ for file in *\ *; do echo "$file"; done

xxx a

yyy a

zzz a

Chapter 8 File Operations and Commands

122

�cut
The cut command extracts portions of a line, specified either by character or by field.

Cut reads from files listed on the command line or from the standard input if no files

are specified. The selection to be printed is done by using one of three options, -b, -c,

and -f, which stand for bytes, characters, and fields. Bytes and characters differ only

when used in locales with multibyte characters. Fields are delimited by a single tab

(consecutive tabs delimit empty fields), but that can be changed with the -d option.

The -c option is followed by one or more character positions. Multiple columns (or

fields when the -f option is used) can be expressed by a comma-separated list or by

a range:

$ cut -c 22 "$kjv" | head -n3

e

h

o

$ cut -c 22,24,26 "$kjv" | head -n3

ebg

h a

o a

$ cut -c 22-26 "$kjv" | head -n3

e beg

he ea

od sa

A frequent misuse of cut is to extract a portion of a string. Such manipulations can be

done with shell parameter expansion. Even if it takes two or three steps, it will be much

faster than calling an external command.

$ boys="Brian,Carl,Dennis,Mike,Al"

$ printf "%s\n" "$boys" | cut -d, -f3 ## WRONG

Dennis

$ IFS=, ## Better, no external command used

$ boyarray=($boys)

$ printf "%s\n" "${boyarray[2]}"

Dennis

Chapter 8 File Operations and Commands

123

$ temp=${boys#*,*,} ## Better still, and more portable

$ printf "%s\n" "${temp%%,*}"

Dennis

�wc
To count the number of lines, words, or bytes in a file, use wc. By default, it prints all three

pieces of information in that order followed by the name of the file. If multiple file names

are given on the command line, it prints a line of information for each one and then

the total:

$ wc "$kjv" /etc/passwd

 31102 795989 4639798 /home/jayant/kjv.txt

 50 124 2409 /etc/passwd

 31152 796113 4642207 total

If there are no files on the command line, cut reads from the standard input:

$ wc < "$kjv"

 31102 795989 4639798

The output can be limited to one or two pieces of information by using the -c, -w, or -l

option. If any options are used, wc prints only the information requested:

$ wc -l "$kjv"

31102 /home/jayant/kjv.txt

Newer versions of wc have another option, -m, which prints the number of characters,

which will be less than the number of bytes if the file contains multibyte characters. The

default output remains the same, however.

As with so many commands, wc is often misused to get information about a

string rather than a file. To get the length of a string held in a variable, use parameter

expansion: ${#var}. To get the number of words, use set and the special parameter $#:

set -f

set -- $var

echo $#

Chapter 8 File Operations and Commands

124

To get the number of lines, use this:

IFS=$'\n'

set -f

set -- $var

echo $#

�Regular Expressions
Regular expressions (often called regexes or regexps) are a more powerful form of pattern

matching than file name globbing and can express a much wider range of patterns more

precisely. They range from very simple (a letter or number is a regex that matches itself)

to the mind-bogglingly complex. Long expressions are built with a concatenation of

shorter expressions and, when broken down, are not hard to understand.

There are similarities between regexes and file globbing patterns: a list of characters

within square brackets matches any of the characters in the list. An asterisk matches

zero or more – not any character as in file expansion – of the preceding character. A dot

matches any character, so .* matches any string of any length, much as an asterisk does

in a globbing pattern.

Three important commands use regular expressions: grep, sed, and awk. The first

is used for searching files, the second for editing files, and the third for almost anything

because it is a complete programming language in its own right.

�grep
grep searches files on the command line, or the standard input if no files are given, and

prints lines matching a string or regular expression.

$ grep ':0[57]0:001:' "$kjv" | cut -c -78

Genesis:050:001:And Joseph fell upon his father's face, and wept upon him, and

Psalms:050:001:The mighty God, even the LORD, hath spoken, and called the earth

Psalms:070:001:MAKE HASTE, O GOD, TO DELIVER ME; MAKE HASTE TO HELP ME, O LORD

Isaiah:050:001:Thus saith the LORD, Where is the bill of your mother's divorce

Jeremiah:050:001:The word that the LORD spake against Babylon and against the

Chapter 8 File Operations and Commands

125

The shell itself could have done the job:

while read line

do

 case $line in

 0[57]0:001:) printf "%s\n" "${line:0:78}" ;;

 esac

done < "$kjv"

but it takes many times longer.

Often grep and other external commands are used to select a small number of lines

from a file and pipe the results to a shell script for further processing:

$ grep 'Psalms:023' "$kjv" |

> {

> total=0

> while IFS=: read book chapter verse text

> do

> set -- $text ## put the verse into the positional parameters

> total=$(($total + $#)) ## add the number of parameters

> done

> echo $total

}

118

grep should not be used to check whether one string is contained in another. For

that, there is case or bash’s expression evaluator, [[...]].

�sed
For replacing a string or pattern with another string, nothing beats the stream editor

sed. It is also good for pulling a particular line or range of lines from a file. To get the first

three lines of the book of Leviticus and convert the name of the book to uppercase, you’d

use this:

$ sed -n '/Lev.*:001:001/,/Lev.*:001:003/ s/Leviticus/

LEVITICUS/p' "$kjv" |

> cut -c -78

Chapter 8 File Operations and Commands

126

LEVITICUS:001:001:And the LORD called unto Moses, and spake unto him

out of th

LEVITICUS:001:002:Speak unto the children of Israel, and say unto

them, If any

LEVITICUS:001:003:If his offering be a burnt sacrifice of the herd,

let him of

The -n option tells sed not to print anything unless specifically told to do so; the

default is to print all lines whether modified or not. The two regexes, enclosed in slashes

and separated by a comma, define a range from the line that matches the first one to the

line that matches the second; s is a command to search and replace and is probably the

one most often used.

When modifying a file, the standard Unix practice is to save the output to a new file

and then move it to the place of the old one if the command is successful:

sed 's/this/that/g' "$file" > tempfile && mv tempfile "$file"

Some recent versions of sed have an -i option that will change the file in situ. If used,

the option should be given a suffix to make a backup copy in case the script mangles the

original irretrievably:

sed -i.bak 's/this/that/g' "$file"

More complicated scripts are possible with sed, but they quickly become very hard

to read. This example is far from the worst I’ve seen, but it takes much more than a

glance to figure out what it is doing. (It searches for Jesus wept and prints lines containing

it along with the lines before and after; you can find a commented version at

www.grymoire.com/Unix/Sed.html.)

sed -n '

/Jesus wept/ !{

 h

}

/Jesus wept/ {

 N

 x

 G

 p

Chapter 8 File Operations and Commands

http://www.grymoire.com/Unix/Sed.html

127

 a\

 s/.*\n.*\n.*$/\1/

 h

}' "$kjv"

As you’ll see shortly, the same program in awk is comparatively easy to understand.

There will be more examples of sed in later chapters, so we’ll move on with the usual

admonishment that external commands should be used on files, not strings. ‘Nuff sed!

�awk
awk is a pattern scanning and processing language. An awk script is composed of one

or more condition-action pairs. The condition is applied to each line in the file or files

passed on the command line or to the standard input if no files are given. When the

condition resolves successfully, the corresponding action is performed.

The condition may be a regular expression, a test of a variable, an arithmetic

expression, or anything that produces a nonzero or nonempty result. It may represent

a range by giving two conditions separated by a comma; once a line matches the first

condition, the action is performed until a line matches the second condition. For

example, this condition matches input lines 10 to 20 inclusive (NR is a variable that

contains the current line number):

NR == 10, NR == 20

There are two special conditions: BEGIN and END. The action associated with BEGIN is

performed before any lines are read. The END action is performed after all the lines have

been read or another action executes an exit statement.

The action can be any computation task. It can modify the input line, it can save it in

a variable, it can perform a calculation on it, it can print some or all of the line, and it can

do anything else you can think of.

Either the condition or the action may be missing. If there is no condition, the action

is applied to all lines. If there is no action, matching lines are printed.

Chapter 8 File Operations and Commands

128

Each line is split into fields based on the contents of the variable FS. By default, it is

any whitespace. The fields are numbered: $1, $2, and so on. $0 contains the entire line.

The variable NF contains the number of fields in the line.

In the awk version of the kjvfirsts script, the field separator is changed to a colon

using the -F command-line option (Listing 8-2). There is no condition, so the action is

performed for every line. It splits the fourth field, the verse itself, into words, and then it

prints the first three fields and the first word of the verse.

Listing 8-2.  kjvfirsts-awk, Print Book, Chapter, Verse, and First Words

from the KJV

awk -F: ' ## -F: sets the field delimiter to a colon

{

split the fourth field into an array of words

split($4,words," ")

printf the first three fields and the first word of the fourth

printf "%s %s:%s %s\n", $1, $2, $3, words[1]

}' "$kjv"

To find the shortest verse in the KJV, the next script checks the length of the fourth

field. If it is less than the value of the shortest field seen so far, its length (minus the

length of the name of the book), measured with the length() function, is stored in min,

and the line is stored in verse. At the end, the line stored in verse is printed.

$ awk -F: 'BEGIN { min = 999 } ## set min larger than any

verse length

length($0) - length($1) < min {

 min = length($0) – length($1)

 verse = $0

}

END { print verse }' "$kjv"

John:011:035:Jesus wept.

Chapter 8 File Operations and Commands

129

As promised, here is an awk script that searches for a string (in this case, Jesus wept)

and prints it along with the previous and next lines:

awk '/Jesus wept/ {

 print previousline

 print $0

 n = 1

 next

 }

n == 1 {

 print $0

 print "---"

 n = 2

 }

 {

 previousline = $0

 }' "$kjv"

to total a column of numbers:

$ printf "%s\n" {12..34} | awk '{ total += $1 }

> END { print total }'

529

This has been a very rudimentary look at awk. There will be a few more awk scripts

later in the book, but for a full understanding, there are various books on awk:

•	 The AWK Programming Language by the language’s inventors (Alfred

V. Aho, Peter J. Weinberger, and Brian W. Kernighan)

•	 sed & awk by Dale Dougherty and Arnold Robbins

•	 Effective awk Programming by Arnold Robbins

Or start with the main page.

Chapter 8 File Operations and Commands

130

�File Name Expansion Options
To show you the effects of the various file name expansion options, the sa command

defined in Chapter 4 as well as pr4, a function that prints its arguments in four columns

across the screen, will be used. The script sa is implemented as a function, along with

pr4, and has been added to the .bashrc file:

sa()

{

 pre=: post=:

 printf "$pre%s$post\n" "$@"

}

The pr4 function prints its argument in four equal columns, truncating any string

that is too long for its allotted space:

pr4()

{

 ## calculate column width

 local width=$(((${COLUMNS:-80} - 2) / 4))

 �## Note that braces are necessary on

the second $width to separate it from 's'

 local s=%-$width.${width}s

 printf "$s $s $s $s\n" "$@"

}

There are six shell options that affect the way in which file names are expanded.

They are enabled and disabled with the shopt command using options -s and -u,

respectively:

shopt -s extglob ## enable the extglob option

shopt -u nocaseglob ## disable the nocaseglob option

To demonstrate the various globbing options, we’ll create a directory, cd to it, and

put some empty files in it:

$ �mkdir "$HOME/globfest" && cd "$HOME/globfest" || echo

Failed >&2

$ touch {a..f}{0..9}{t..z}$RANDOM .{a..f}{0..9}$RANDOM

Chapter 8 File Operations and Commands

131

This has created 420 files beginning with a letter and 60 beginning with a dot. There

are, for example, seven files beginning with a1:

$ sa a1*

:a1t18345:

:a1u18557:

:a1v12490:

:a1w22008:

:a1x6088:

:a1y28651:

:a1z18318:

�nullglob
Normally, when a wildcard pattern doesn’t match any files, the pattern remains

the same:

$ sa *xy

:*xy:

If the nullglob option is set and there is no match, an empty string is returned:

$ shopt -s nullglob

$ sa *xy

::

$ shopt -u nullglob ## restore the default behavior

�failglob
If the failglob option is set and no files match a wildcard pattern, an error message is

printed:

$ shopt -s failglob

$ sa *xy

bash: no match: *xy

$ shopt -u failglob ## restore the default behavior

Chapter 8 File Operations and Commands

132

�dotglob
A wildcard at the beginning of a file name expansion pattern does not match file names

that begin with a dot. These are intended to be “hidden” files and are not matched by

standard file name expansion:

$ sa * | wc -l ## not dot files

420

To match “dot” files, the leading dot must be given explicitly:

$ sa .* | wc -l ## dot files; includes . and ..

62

The touch command at the beginning of this section created 60 dot files. The .*

expansion shows 62 because it includes the hard-linked entries . and .. that are created

in all subdirectories.

The dotglob option causes dot files to be matched just like any other files:

$ shopt -s dotglob

$ printf "%s\n" * | wc -l

480

Expansions of *, with dotglob enabled, do not include the hard links . and ...

�extglob
When extended globbing is turned on with shopt -s extglob, five new file name

expansion operators are added. In each case, the pattern-list is a list of pipe-separated

globbing patterns. It is enclosed in parentheses, which are preceded by ?, *, +, @, or !, for

example, +(a[0-2]|34|2u), ?(john|paul|george|ringo).

To demonstrate extended globbing, remove the existing files in $HOME/globfest, and

create a new set:

$ cd $HOME/globfest

$ rm *

$ �touch {john,paul,george,ringo}{john,paul,george,ringo}

{1,2}$RANDOM\ >

{john,paul,george,ringo}{1,2}$RANDOM{,,} {1,2}$RANDOM{,,,}

Chapter 8 File Operations and Commands

133

�?(pattern-list)
This pattern-list matches zero or one occurrence of the given patterns. For example,

the pattern ?(john|paul)2 matches john2, paul2, and 2:

$ pr4 ?(john|paul)2*

222844 228151 231909 232112

john214726 john216085 john26 paul218047

paul220720 paul231051

�*(pattern-list)
This is like the previous form, but it matches zero or more occurrences of the given

patterns; *(john|paul)2 will match all files matched in the previous example, as well as

those that have either pattern more than once in succession:

pr4 *(john|paul)2*

222844 228151 231909 232112

john214726 john216085 john26 johnjohn23185

johnpaul25000 paul218047 paul220720 paul231051

pauljohn221365 paulpaul220101

�@(pattern-list)
The pattern @(john|paul)2 matches files that have a single instance of either pattern

followed by a 2:

$ pr4 @(john|paul)2*

john214726 john216085 john26 paul218047

paul220720 paul231051

�+(pattern-list)
The pattern +(john|paul)2 matches files that begin with one or more instances of a

pattern in the list followed by a 2:

Chapter 8 File Operations and Commands

134

$ pr4 +(john|paul)2*

john214726 john216085 john26 johnjohn23185

johnpaul25000 paul218047 paul220720 paul231051

pauljohn221365 paulpaul220101

�!(pattern-list)
The last extended globbing pattern matches anything except one of the given patterns.

It differs from the rest in that each pattern must match the entire file name. The pattern

!(r|p|j)* will not exclude files beginning with r, p, or j (or any others), but the

following pattern will (and will also exclude files beginning with a number):

$ pr4 !([jpr0-9]*)

george115425 george132443 george1706 george212389

george223300 george27803

georgegeorge16122 georgegeorge28573

georgejohn118699 georgejohn29502 georgepaul12721

georgepaul222618

georgeringo115095 georgeringo227768

Note T he explanation given here for the last of these patterns is simplified
but should be enough to cover its use in the vast majority of cases. For a more
complete explanation, see Chapter 9 in From Bash to Z Shell (Apress, 2005).

�nocaseglob
When the nocaseglob option is set, lowercase letters match uppercase letters, and

vice versa:

$ cd $HOME/globfest

$ rm -rf *

$ touch {{a..d},{A..D}}$RANDOM

Chapter 8 File Operations and Commands

135

$ pr4 *

A31783 B31846 C17836 D14046

a31882 b31603 c29437 d26729

The default behavior is for a letter to match only those of the same case:

$ pr4 [ab]*

a31882 b31603

The nocaseglob option causes a letter to match both cases:

$ shopt -s nocaseglob

$ pr4 [ab]*

A31783 B31846 a31882 b31603

�globstar
Introduced in bash-4.0, the globstar option allows the use of ** to descend recursively

into directories and subdirectories looking for matching files. As an example, create a

hierarchy of directories:

$ cd $HOME/globfest

$ rm -rf *

$ mkdir -p {ab,ac}$RANDOM/${RANDOM}{q1,q2}/{z,x}$(($RANDOM % 10))

The double asterisk wildcard expands to all the directories:

$ shopt -s globstar

$ pr4 **

ab11278 ab11278/22190q1 ab11278/22190q1/z7 ab1394

ab1394/10985q2 ab1394/10985q2/x5 ab4351 ab4351/23041q1

ab4351/23041q1/x1 ab4424 ab4424/8752q2

ab4424/8752q2/z9

ac11393 ac11393/20940q1 ac11393/20940q1/z4 ac17926

ac17926/19435q2 ac17926/19435q2/x0 ac23443 ac23443/5703q2

ac23443/5703q2/z4 ac5662

ac5662/17958q1 ac5662/17958q1/x4

Chapter 8 File Operations and Commands

136

�Summary
Many external commands deal with files. In this chapter, the most important ones and

those that are most often misused have been covered. They have not been covered in

detail, and some emphasis has been placed on how to avoid calling them when the

shell can do the same job more efficiently. Basically, it boils down to this: use external

commands to process files, not strings.

�Shell Options
•	 nullglob: Returns null string if no files match pattern

•	 failglob: Prints error message if no files match

•	 dotglob: Includes dot files in pattern matching

•	 extglob: Enables extended file name expansion patterns

•	 nocaseglob: Matches files ignoring case differences

•	 globstar: Searches file hierarchy for matching files

�External Commands
•	 awk: Is a pattern scanning and processing language

•	 cat: Concatenates files and prints on the standard output

•	 cut: Removes sections from each line of one or more files

•	 grep: Prints lines matching a pattern

•	 head: Outputs the first part of one or more files

•	 ls: Lists directory contents

•	 sed: Is a stream editor for filtering and transforming text

•	 touch: Changes file timestamps

•	 wc: Counts lines, words, and characters in one or more files

Chapter 8 File Operations and Commands

137

�Exercises

	 1.	 Modify the kjvfirsts script: accept a command-line argument

that specifies how many chapters are to be printed.

	 2.	 Why are the chapter and verse numbers in kjvfirsts formatted

with %s instead of %d?

	 3.	 Write an awk script to find the longest verse in KJV.

Chapter 8 File Operations and Commands

139

CHAPTER 9

Reserved Words
and Built-In Commands
There are almost 60 built-in commands and more than 20 reserved words in bash. Some

of them are indispensable, and some are rarely used in scripts. Some are used primarily

at the command line, and some are seldom seen anywhere. Some have been discussed

already, and others will be used extensively in future chapters.

The reserved words (also called keywords) are !, case, coproc, do, done, elif, else,

esac, fi, for, function, if, in, select, then, until, while, {, }, time, [[, and]]. All

except coproc, select, and time have been covered earlier in the book.

In addition to the standard commands, new built-in commands can be dynamically

loaded into the shell at runtime. The bash source code package has more than 20 such

commands ready to be compiled.

Because keywords and built-in commands are part of the shell itself, they execute

much faster than external commands. They do not have to start a new process, and they

have access to, and can change, the shell’s environment.

This chapter looks at some of the more useful reserved words and built-in

commands, examining some in detail and some with a summary; a few are deprecated.

Many more are described elsewhere in the book. For the rest, there is the built-ins man

page and the help built-in.

�help, Display Information About Built-In Commands
The help command prints brief information about the usage of built-in commands and

reserved words. With the -s option, it prints a usage synopsis.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_9

https://doi.org/10.1007/978-1-4842-9588-5_9

140

Two new options are available with bash-4.x: -d and -m. The first prints a short, one-

line description of the command; the latter formats the output in the style of a man page:

$ help -m help

NAME

 help - Display information about builtin commands.

SYNOPSIS

 help [-dms] [pattern ...]

DESCRIPTION

 Display information about builtin commands.

 Displays brief summaries of builtin commands. If PATTERN is

 specified, gives detailed help on all commands matching PATTERN,

 otherwise the list of help topics is printed.

 Options:

 -d output short description for each topic

 -m display usage in pseudo-manpage format

 -s output only a short usage synopsis for each topic matching

 PATTERN

 Arguments:

 PATTERN Pattern specifying a help topic

 Exit Status:

 Returns success unless PATTERN is not found or an invalid option is given.

SEE ALSO

 bash(1)

IMPLEMENTATION

 GNU bash, version 5.1.16(1)-release (x86_64-pc-linux-gnu)

 Copyright (C) 2020 Free Software Foundation, Inc.

 �License GPLv3+: GNU GPL version 3 or later < http://gnu.org/

licenses/gpl.html >

The pattern is a globbing pattern, in which * matches any number of any characters

and [...] matches any single character in the enclosed list. Without any wildcard, a

trailing * is assumed:

$ help -d '*le' tr ## show commands ending in le and beginning with tr

Shell commands matching keyword '*le, tr'

Chapter 9 Reserved Words and Built-In Commands

141

enable - Enable and disable shell builtins.

mapfile - Read lines from the standard input into an array variable.

while - Execute commands as long as a test succeeds.

trap - Trap signals and other events.

true - Return a successful result.

�time, Print Time Taken for Execution of a Command
The reserved word time prints the time it takes for a command to execute. The

command can be a simple or compound command or a pipeline. The default output

appears on three lines, showing the real time, user CPU time, and system CPU time that

was taken by the command:

$ time echo {1..30000} >/dev/null 2>&1

real 0m0.175s

user 0m0.152s

sys 0m0.017s

You can modify this output by changing the TIMEFORMAT variable:

$ TIMEFORMAT='%R seconds %P%% CPU usage'

$ time echo {1..30000} >/dev/null

0.153 seconds 97.96% CPU usage

Appendix A contains a full description of the TIMEFORMAT variable.

A frequently asked question about the time command is, “Why can’t I redirect the

output of time?” The answer demonstrates a difference between a reserved word and a

built-in command. When the shell executes a command, the process is strictly defined.

A shell keyword doesn’t have to follow that procedure. In the case of time, the entire

command line (except for the keyword itself but including the redirection) is passed

to the shell to execute. When the command has completed, the timing information is

printed.

To redirect the output of time, enclose it in braces:

$ { time echo {1..30000} >/dev/null 2>&1 ; } 2> numlisttime

$ cat numlisttime

0.193 seconds 90.95% CPU usage

Chapter 9 Reserved Words and Built-In Commands

142

�read, Read a Line from an Input Stream
If read has no arguments, bash reads a line from its standard input stream and stores

it in the variable REPLY. If the input contains a backslash at the end of a line, it and the

following newline are removed, and the next line is read, joining the two lines:

$ printf "%s\n" ' First line \' ' Second line ' | {

> read

> sa "$REPLY"

> }

: First line Second line :

Note T he braces ({ }) in this and the following snippets create a common
subshell for both the read and sa commands. Without them, read would be in a
subshell by itself, and sa would not see the new value of REPLY (or of any other
variable set in the subshell).

Only one option, -r, is part of the POSIX standard. The many bash options (-a, -d,

-e, -n, -p, -s, -n, -t, -u, and, new to bash-4.x, -i) are part of what makes this shell work

so well for interactive scripts.

�-r, Read Backslashes Literally
With the -r option, backslashes are treated literally:

$ printf "%s\n" ' First line\' " Second line " | {

> read -r

> read line2

> sa "$REPLY" "$line2"

> }

: First line\:

:Second line:

The second read in that snippet supplies a variable to store the input rather than

using REPLY. As a result, it applies word splitting to the input, and leading and trailing

spaces are removed. If IFS had been set to an empty string, then spaces would not be

used for word splitting:

Chapter 9 Reserved Words and Built-In Commands

143

$ printf "%s\n" ' First line\' " Second line " | {

> read -r

> IFS= read line2

> sa "$REPLY" "$line2"

> }

: First line\:

: Second line :

If more than one variable is given on the command line, the first field is stored in

the first variable, and subsequent fields are stored in the following variables. If there are

more fields than variables, the last one stores the remainder of the line:

$ printf "%s\n" "first second third fourth fifth sixth" | {

> read a b c d

> sa "$a" "$b" "$c" "$d"

> }

:first:

:second:

:third:

:fourth fifth sixth:

�-e, Get Input with the readline Library
When at the command line or when using read with the -e option to get input from the

keyboard, the readline library is used. It allows full-line editing. The default editing

style, found in most shells, only allows editing by erasing the character to the left of the

cursor with a backspace.

With -e, a backspace still works, of course, but the cursor can be moved over the

entire line character by character with the arrow keys or with Ctrl-B and Ctrl-N for

backward and forward, respectively. Ctrl-A moves to the beginning of the line, and Ctrl-E

moves to the end.

In addition, other readline commands can be bound to whatever key combinations

you like. I have Ctrl-left arrow bound to backward-word and Ctrl-right arrow to forward-

word. Such bindings can be placed in $HOME/.inputrc. Mine has entries for two

terminals: rxvt and xterm:

"\eOd": backward-word ## rxvt

Chapter 9 Reserved Words and Built-In Commands

144

"\eOc": forward-word ## rxvt

"\e[1;5D": backward-word ## xterm

"\e[1;5C": forward-word ## xterm

To check which code to use in your terminal emulation, press ^V (Ctrl-v) and then

the key combination you want. For example, in xterm, I see ^[[1;5D when I press Ctrl-

left arrow.

�-a, Read Words into an Array
The -a option assigns the words read to an array, starting at index zero:

$ printf "%s\n" "first second third fourth fifth sixth" | {

> read -a array

> sa "${array[0]}"

> sa "${array[5]}"

> }

:first:

:sixth:

�-d DELIM, Read Until DELIM Instead of a Newline
The -d option takes an argument that changes read’s delimiter from a newline to the first

character of that argument:

$ printf "%s\n" "first second third fourth fifth sixth" | {

> read -d ' nrh' a

> read -d 'nrh' b

> read -d 'rh' c

> read -d 'h' d

> sa "$a" "$b" "$c" "$d"

> }

:first: ## -d ' '

:seco: ## -d n

:d thi: ## -d r

:d fourt: ## -d h

Chapter 9 Reserved Words and Built-In Commands

145

�-n NUM, Read a Maximum of NUM Characters
Most frequently used when a single character (e.g., y or n) is required, read returns after

reading NUM characters rather than waiting for a newline. It is often used in conjunction

with -s.

�-s, Do Not Echo Input Coming from a Terminal
Useful for entering passwords and single-letter responses, the -s option suppresses the

display of the keystrokes entered.

�-p PROMPT:, Output PROMPT Without a Trailing Newline
The following snippet is a typical use of these three options:

read -sn1 -p "Continue (y/n)? " var

case ${var^} in ## bash 4.x, convert $var to uppercase

 Y) ;;

 N) printf "\n%s\n" "Good bye."

 exit

 ;;

esac

When run, it looks like this when n or N is entered:

Continue (y/n)?

Good bye.

�-t TIMEOUT, Only Wait TIMEOUT Seconds
for Complete Input
The -t option was introduced in bash-2.04 and accepts integers greater than 0 as an

argument. If TIMEOUT seconds pass before a complete line has been entered, read exits

with failure; any characters already entered are left in the input stream for the next

command that reads the standard input.

Chapter 9 Reserved Words and Built-In Commands

146

In bash-4.x, the -t option accepts a value of 0 and returns successfully if there is

input waiting to be read. It also accepts fractional arguments in decimal format:

read -t .1 var ## timeout after one-tenth of a second

read -t 2 var ## timeout after 2 seconds

Setting the variable TMOUT to an integer greater than 0 has the same effect as the -t

option. In bash-4.x, a decimal fraction can also be used:

$ TMOUT=2.5

$ TIMEFORMAT='%R seconds %P%% CPU usage'

$ time read

2.500 seconds 0.00% CPU usage

�-u FD  : Read from File Descriptor FD Instead
of the Standard Input
The -u option tells bash to read from a file descriptor. Given this file:

First line

Second line

Third line

Fourth line

this script reads from it, alternating between redirection and the -u option, and

prints all four lines:

exec 3<$HOME/txt

read var <&3

echo "$var"

read -u3 var

echo "$var"

read var <&3

echo "$var"

read -u3 var

echo "$var"

Chapter 9 Reserved Words and Built-In Commands

147

�-i TEXT, Use TEXT As the Initial Text for Readline
New to bash-4.x, the -i option, used in conjunction with the -e option, places text on

the command line for editing.

$ read –ei 'Edit this' -p '==>'

would look like

==> Edit this •

The bash-4.x script shown in Listing 9-1 loops, showing a spinning busy indicator,

until the user presses a key. It uses four read options: -s, -n, -p, and -t.

Listing 9-1.  spinner, Show a Busy Indicator While Waiting for the User to

Press a Key

spinner="\|/-" ## spinner

chars=1 ## number of characters to display

delay=.15 ## time in seconds between characters

prompt="press any key..." ## user prompt

clearline="\e[K" ## clear to end of line (ANSI terminal)

CR="\r" ## carriage return

loop until user presses a key

until read -sn1 -t$delay -p "$prompt" var

do

 printf " %.${chars}s$CR" "$spinner"

 temp=${spinner#?} ## remove first character from $spinner

 spinner=$temp${spinner%"$temp"} ## and add it to the end

done

printf "CRclearline"

Tip I f delay is changed to an integer, the script will work in all versions of bash,
but the spinner will be very slow.

Chapter 9 Reserved Words and Built-In Commands

148

�eval, Expand Arguments and Execute
the Resulting Command
In Chapter 5, the eval built-in was used to get the value of a variable whose name was in

another variable. It accomplished the same task as bash’s variable expansion, ${!var}.

What actually happened was that eval expanded the variable inside quotation marks;

the backslashes removed the special meanings of the quotes and the dollar sign so that

they remained the literal characters. The resulting string was then executed:

$ x=yes

$ a=x

$ eval "sa \"\$$a\"" ## executes: sa "$x"

yes

Other uses of eval include assigning values to a variable whose name is contained in

another variable and obtaining more than one value from a single command.

�Poor Man’s Arrays
Before bash had associative arrays (i.e., before version 4.0), they could be simulated

with eval. These two functions set and retrieve such values and take them for a test run

(Listing 9-2).

Listing 9-2.  varfuncs, Emulate Associative Arrays

validname() ## Borrowed from Chapter 7

case $1 in

 [!a-zA-Z_]* | *[!a-zA-Z0-9_]*) return 1;;

esac

setvar() #@ DESCRIPTION: assign value to supplied name

{ #@ USAGE: setvar varname value

 validname "$1" || return 1

 eval "$1=\$2"

}

getvar() #@ DESCRIPTION: print value assigned to varname

{ #@ USAGE: getvar varname

 validname "$1" || return 1

Chapter 9 Reserved Words and Built-In Commands

149

 eval "printf '%s\n' \"\${$1}\""

}

echo "Assigning some values"

for n in {1..3}

do

 setvar "var_$n" "$n - $RANDOM"

done

echo "Variables assigned; printing values:"

for n in {1..3}

do

getvar "var_$n"

done

Here’s a sample result from a run:

Assigning some values

Variables assigned; printing values:

1 - 28538

2 - 22523

3 - 19362

Note the assignment in setvar. Compare it with this:

setvar() { eval "$1=\"$2\""; }

If you substitute this function for the one in varfuncs and run the script, the results

look very much the same. What’s the difference? Let’s try it with a different value, using

stripped-down versions of the functions at the command line:

$ {

> setvar() { eval "$1=\$2"; }

> getvar() { eval "printf '%s\n' \"\${$1}\""; }

> n=1

> setvar "qwerty_$n" 'xxx " echo Hello"'

> getvar "qwerty_$n"

> }

xxx " echo hello"

$ {

Chapter 9 Reserved Words and Built-In Commands

150

> setvar2() { eval "$1=\"$2\""; }

> setvar2 "qwerty_$n" 'xxx " echo Hello"'

> }

Hello

Hello? Where did that come from? With set -x, you can see exactly what is

happening:

$ �set -x ## shell will now print commands and arguments as

they are executed

$ setvar "qwerty_$n" 'xxx " echo Hello"'

+ setvar qwerty_1 'xxx " echo Hello"'

+ eval 'qwerty_1=$2'

The last line is the important one; the variable qwerty_1 is set to whatever is in $2.

$2 is not expanded or interpreted in any way; its value is simply assigned to qwerty_1:

$ setvar2 "qwerty_$n" 'xxx " echo Hello"'

+ setvar2 qwerty_1 'xxx " echo Hello"'

+ eval 'qwerty_1="xxx " echo Hello""'

++ qwerty_1='xxx '

++ echo HelloHello

In this version, $2 is expanded before the assignment and is therefore subject to word

splitting; eval sees an assignment followed by a command. The assignment is made, and

then the command is executed. In this case, the command was harmless, but if the value

had been entered by a user, it could have been something dangerous.

To use eval safely, ensure that the unexpanded variable is presented for assignment

using eval "$var=\$value". If necessary, combine multiple elements into one variable

before using eval:

string1=something

string2='rm -rf *' ## we do NOT want this to be executed

eval "$var=\"Example=$string1\" $string2" ## WRONG!! Files gone!

combo="Example=$string1 $string2"

eval "$var=\$combo" ## RIGHT!

Chapter 9 Reserved Words and Built-In Commands

151

The value of the variable whose name is in var is now the same as the contents of

combo, if var was set to xx:

$ printf "%s\n" "$xx"

Example=something rm -rf *

�Setting Multiple Variables from One Command
I have seen many scripts in which several variables are set to components of the date and

time using this command (or something similar):

year=$(date +%Y)

month=$(date +%m)

day=$(date +%d)

hour=$(date +%H)

minute=$(date +%M)

second=$(date +%S)

This is inefficient because it calls the date command six times. It could also give

the wrong results. What happens if the script is called a fraction of a second before

midnight and the date changes between setting the month and day? The script was

called at 2023-05-31T23:59:59 (this is the ISO standard format for date and time), but

the values assigned could amount to 2023-06-01T00:00:00. The date that was wanted

was 31 May 2023 23:59:59 or 01 June 2023 00:00:00; what the script got was 1 May

2023 00:00:00. That’s a whole month off! If you are still wondering why this happened,

it is because when the year and month were evaluated, the date was still 31 May 2023

at 23:59:59, but when the day was evaluated, it changed to 01 June 2023 at 00:00:00;

however, the script discarded everything except for the day, which is 01, so when put

together, we get 01 from the day but May from the month.

A better method is to get a single string from date and then work with that string

splitting it into its parts:

date=$(date +%Y-%m-%dT%H:%M:%S)

time=${date#*T}

date=${date%T*}

year=${date%%-*}

daymonth=${date#*-}

Chapter 9 Reserved Words and Built-In Commands

152

month=${daymonth%-*}

day=${daymonth#*-}

hour=${time%%:*}

minsec=${time#*-}

minute=${minsec%-*}

second=${minsec#*-}

Better still, use eval:

$ �eval "$(date "+year=%Y month=%m day=%d hour=%H minute=%M

second=%S")"

The output of the date command is executed by eval:

year=2015 month=04 day=25 hour=22 minute=49second=04

The last two methods use only one call to date, so the variables are all populated

using the same timestamp. They both take about the same amount of time, which is

a fraction of the time of multiple calls to date. The clincher is that the eval method is

about one-third as long as the string-splitting method.

bash 5.0 introduced two new variables that work with dates: $EPOCHSECONDS and

$EPOCHREALTIME. Prior to bash version 5.0, one might use

$ date '+%s'

1676376326

$ echo $EPOCHSECONDS

1676376326

$ echo $EPOCHREALTIME

1676376326.4177260399

�type, Display Information About Commands
Many people use which to determine the actual command that will be used when one is

executed. There are two problems with that.

The first is that there are at least two versions of which, one of which is a csh script

that doesn’t work well in a Bourne-type shell (thankfully, this version is becoming

very rare). The second problem is that which is an external command, and it cannot

know exactly what the shell will do with any given command. All it does is search the

directories in the PATH variable for an executable with the same name:

Chapter 9 Reserved Words and Built-In Commands

153

$ which echo printf

/bin/echo

/usr/bin/printf

You know that both echo and printf are built-in commands, but which doesn’t know

that. Instead of which, use the shell built-in type:

$ type echo printf sa

echo is a shell builtin

printf is a shell builtin

sa is a function

sa ()

{

 pre=: post=:;

 printf "$pre%s$post\n" "$@"

}

When there’s more than one possible command that would be executed for a given

name, they can all be shown by using the -a option:

$ type -a echo printf

echo is a shell builtin

echo is /bin/echo

printf is a shell builtin

printf is /usr/bin/printf

The -p option limits the search to files and does not give any information about

built-ins, functions, or aliases. If the shell executes the command internally, nothing will

be printed unless the -a option is also given:

$ �type -p echo printf sa time ## no output as no files would be

executed

$ type -ap echo printf sa time

/bin/echo

/usr/bin/printf

/usr/jayant/bin/sa

/usr/bin/time

Chapter 9 Reserved Words and Built-In Commands

154

Or you can use -P:

$ type -P echo printf sa time

/bin/echo

/usr/bin/printf

/usr/jayant/bin/sa

/usr/bin/time

The -t option gives a single word for each command, either alias, keyword,

function, builtin, file, or an empty string:

$ type -t echo printf sa time ls

builtin

builtin

function

keyword

file

The type command fails if any of its arguments are not found.

�builtin, Execute a Built-In Command
The argument to builtin is a shell built-in command that will be called rather than a

function with the same name. It prevents the function from calling itself and calling itself

ad nauseam:

cd() #@ DESCRIPTION: change directory and display 10 most recent files

{ #@ USAGE: cd DIR

 builtin cd "$@" || return 1 ## don't call function recursively

 ls -t | head

}

�command, Execute a Command or Display Information
About Commands
With -v or -V, display information about a command. Without options, call the

command from an external file rather than a function.

Chapter 9 Reserved Words and Built-In Commands

155

�pwd, Print the Current Working Directory
pwd prints the absolute pathname of the current directory. With the -P option, it prints

the physical location with no symbolic links:

$ ls -ld $HOME/Book ## Directory is a symbolic link

lrwxrwxrwx 1 jayant jayant 10 Feb 25 2023 /home/jayant/Book -> work/Cook

$ cd $HOME/Book

$ pwd ## Include symbolic links

/home/jayant/Book

$ pwd -P ## Print physical location with no links

/home/jayant/work/Book

�unalias, Remove One or More Aliases
In my ∼/.bashrc file, I have unalias -a to remove all aliases. Some GNU/Linux

distributions make the dangerous mistake of defining aliases that replace standard

commands.

One of the worst examples is the redefinition of rm (remove files or directories) to

rm -i. If a person, used to being prompted before a file is removed, puts rm * (for

example) in a script, all the files will be gone without any prompting. Aliases are not

exported and, by default, not run in shell scripts, even if defined.

�Deprecated Built-Ins

I don’t recommend using the following deprecated built-in commands:

•	 alias: Defines an alias. As the bash man page says, “For almost every

purpose, aliases are superseded by shell functions.”

•	 let: Evaluates arithmetic expressions. Use the POSIX syntax $((

expression)) instead.

•	 select: An inflexible menuing command. Much better menus can be

written easily with the shell.

•	 typeset: Declares a variable’s attributes and, in a function, restricts a

variable’s scope to that function and its children. Use local to restrict

a variable’s scope to a function, and use declare to set any other

attributes (if necessary).

Chapter 9 Reserved Words and Built-In Commands

156

�Dynamically Loadable Built-Ins

bash can load new built-in commands at runtime if or when needed. The bash source

package has a directory full of examples ready to be compiled. To do that, download the

source from https://ftp.gnu.org/gnu/bash/. Unpack the tarball, cd into the top level

directory, and run the configure script:

version=5.1.16 ## or use your bash version

wget ftp://ftp.gnu.org/gnu/bash/bash-$version.tar.gz

gunzip bash-$version.tar.gz

tar xf bash-$version.tar

cd bash-$version

./configure

Note I t would be recommended to use 4.3 or higher as the version since it is
the current version and has bug fixes for vulnerabilities that were found in earlier
versions.

Think of dynamically loadable built-ins as custom libraries of commands that
are written in C and available as compiled binaries. These can also be shared
with others in the compiled form. When loaded, they provide new commands or
commands that were originally not available in bash. These work more like native
bash commands than external scripts or programs.

The configure script creates makefiles throughout the source tree, including

one in examples/loadables. In that directory are the source files for built-in versions

of a number of standard commands, as the README file says, “whose execution time is

dominated by process startup time.” You can cd into that directory and run make:

cd examples/loadables

make

You’ll now have a number of commands ready to load into your shell. These include

the following:

logname tee head mkdir rmdir uname

ln cat id whoami

Chapter 9 Reserved Words and Built-In Commands

https://ftp.gnu.org/gnu/bash/

157

There are also some useful new commands:

print ## Compatible with the ksh print command

finfo ## Print file information

strftime ## Format date and time

These built-ins can be loaded into a running shell with the following command:

enable -f filename built-in-name

The files include documentation, and the help command can be used with them,

just as with other built-in commands:

$ enable -f ./strftime strftime

$ help strftime

strftime: strftime format [seconds]

 Converts date and time format to a string and displays it on the

 standard output. If the optional second argument is supplied, it

 is used as the number of seconds since the epoch to use in the

 conversion, otherwise the current time is used.

�Summary
You learned about the following commands in this chapter.

�Commands and Reserved Words
•	 builtin: Executes a built-in command

•	 command: Executes an external command or prints information about

a command

•	 eval: Executes arguments as a shell command

•	 help: Displays information about built-in commands

•	 pwd: Prints the current working directory

•	 read: Reads a line from the standard input and splits it into fields

•	 time: Reports time consumed by pipeline’s execution

•	 type: Displays information about command type

Chapter 9 Reserved Words and Built-In Commands

158

�Deprecated Commands
•	 alias: Defines or displays aliases

•	 let: Evaluates arithmetic expressions

•	 select: Selects words from a list and executes commands

•	 typeset: Sets variable values and attributes

�Exercise
Write a script that stores the time it takes a command (your choice of command) to run

in three variables, real, user, and system, corresponding to the three default times that

time prints.

Chapter 9 Reserved Words and Built-In Commands

159

CHAPTER 10

Writing Bug-Free Scripts
and Debugging the Rest
A programmer that has never written a buggy program has either not written any code

or is more imaginary than Santa Claus or the Easter Bunny. Bugs are the bane of a

programmer’s existence. These range from simple typing errors (causing syntax errors)

to more complex bad code to faulty logic. These errors can be fixed, some easily while

others can take hours or days to identify, trace, and fix.

At one end of the spectrum are the syntax errors that prevent a script from

completing or running at all. These may involve a missing character: a space, a bracket

or brace, a quotation mark, or a typo. It may be a mistyped command or variable name.

It may be a missing keyword, such as then after elif. At the other end are the errors in

logic. It may be counting from 1 when it should have started from 0, or it may be using

-gt (greater than) when it should have been -ge (greater than or equal to). It could be

a faulty formula (Fahrenheit to Celsius (F - 32) * 1.8) or using the wrong field in a data

record, say someone thought that the shell was field 5 in /etc/passwd)

In between the extremes, common errors include trying to operate on the wrong type

of data (either the program itself supplied the wrong data or an external source did) and

failing to check that a command succeeds before proceeding to the next step.

This chapter looks at various techniques to get a program doing what it is supposed

to do, including the various shell options for checking and following a script’s progress,

strategically placing debugging instructions, and, most importantly, preventing bugs in

the first place.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_10

https://doi.org/10.1007/978-1-4842-9588-5_10

160

�Prevention Is Better Than Cure
It is far easier and better to avoid introducing bugs than to remove them. There’s no way

to guarantee bug-free scripts, but several precautions can reduce the frequency of bugs

considerably like making your code easy to read, documenting the script to know what

it’s for, what it expects, what results it produces, and so on.

�Structure Your Programs
The term structured programming is applied to various programming paradigms, but

they all involve modular programming – breaking the problem down into manageable

parts. In developing a large application with the shell, this means either functions,

separate scripts, or a combination of both.

Even a short program can benefit from some structure; it should contain discrete

sections:

•	 Comments

•	 Initialization of variables

•	 Function definitions

•	 Runtime configuration (parse options, read configuration file,

and so on)

•	 Sanity check (Are all values reasonable?)

•	 Process information (calculate, slice and dice lines, I/O, and so on)

Using this outline, all the components of a short but complete script are presented in

the following sections. There are errors in the scripts provided; these will be found and

corrected using various debugging techniques.

�Comments
The comments should include metadata about the script, including a description, a

synopsis of how to call the command or function, author, date of creation, date of last

revision, version number, options, and any other information that is needed to run the

command successfully, as in the following examples:

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

161

#: Title: wfe - List words ending with PATTERN

#: Synopsis: wfe [-c|-h|-v] REGEX

#: Date: 2023-02-13

#: Version: 1.0

#: Author: Jayant Varma

#: Options: -c - Include compound words

#: -h - Print usage information

#: -v - Print version number

The #: is used to introduce these comments so that grep '^#:' wfe will extract all

the metadata.

�Initialization of Variables
First, define some variables containing metadata. There will be some duplication with

the previous comments, but these variables may be needed later:

Script metadata

scriptname=${0##*/}

description="List words ending with REGEX"

usage="$scriptname [-c|-h|-v] REGEX"

date_of_creation=2023-02-13

version=1.0

author="Jayant Varma"

Then define the default values, file locations, and other information needed by

this script:

File locations

dict=$HOME

wordfile=$dict/singlewords

conpoundfile=$dict/Compounds

Default is not to show compound words

compounds=

Regular expression supplied on the command line

pattern=$ 1

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

162

�Function Definitions
There are three functions that can be included in a script, or a function library sourced

by a script. These are die, usage, and version (not included in the scripts for this book);

however, examples of these are

Function definitions

die() #@ DESCRIPTION: print error message and exit with supplied

return code

{ #@ USAGE: die STATUS [MESSAGE]

 error=$1

 shift

 [-n "$*"] printf "%s\n" "$*" >&2

 exit "$error"

}

usage() #@ DESCRIPTION: print usage information

{ #@ USAGE: usage

 #@ REQUIRES: variable defined: $scriptname

 printf "%s - %s\n" "$scriptname" "$description"

 printf "USAGE: %s\n" "$usage"

}

version() #@ DESCRIPTION: print version information

{ #@ USAGE: version

 #@ REQUIRES: variables defined: $scriptname, $author and $version

 printf "%s version %s\n" "$scriptname" "$version"

 printf "by %s, %d\n" "$author" "${date_of_creation%%-*"

}

Any other functions will follow right after these generic functions.

�Runtime Configuration and Options
Chapter 12 will provide an in-depth look at runtime configuration and the different

methods that can be used. Much of the time, all you need to do is parse the command-

line options:

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

163

parse command-line options, -c, -h, and -v

while getopts chv var

do

 case $var in

 c) compounds=$compoundfile ;;

 h) usage; exit ;;

 v) version; exit ;;

 esac

done

shift $(($OPTIND - 1))

�Process Information
As is often the case in a short script, the actual work of the script is relatively short;

setting up parameters and checking the validity of data take up the greater part of the

program:

Search $wordfile and $compounds if it is defined

{

 cat "$wordfile"

 if [-n "$compounds"]

 then

 cut -f1 "$compounds"

 fi

} | grep -i ".$regex$" |

sort -fu ## Case-insensitive sort; remove duplicates

Here, cat is necessary because the second file, whose location is stored in the

compounds variable, cannot be passed as an argument to grep because it is more than

a list of words. The file has three tab-separated fields: the phrase with spaces and other

non-alpha characters is removed and the following letter is capitalized, the original

phrase, and the lengths as they would appear in a cryptic crossword puzzle:

corkScrew cork-screw (4-5)

groundCrew ground crew (6,4)

haveAScrewLoose have a screw loose (4,1,5,5)

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

164

If it were a simple word list, like singlewords, the pipeline could have been replaced

by a simple command:

grep -i ".$regex$" "$wordfile" ${compounds:+"$compounds"}

The grep command searches the files given on the command line for lines that

match a regular expression. The -i option tells grep to consider uppercase and

lowercase letters as equivalent.

�Document Your Code
When we write code, we can end up with several scripts in different stages of completion,

some part of libraries, some parts of code snippets, and so on. It is almost impossible to

find the scripts or organize them; there are plenty of GUI tools that have been created,

but depending on the platform in use, it may or may not have those tools. Whereas with

shell scripts and command-line tools available with bash, nothing beats documentation

and adding notes, TODO, etc., that can be searched on.

�Format Your Code Consistently
There are various models for pretty printing code; some developers can get carried away

and be quite passionate about their style and can get defensive. There is a particular

style which one will notice in the scripts in this book. These come from the original

author of this book, but what is most important is consistency than how many spaces

in indentation, two, four, or six. The point being that indentation is important, not how

many spaces are used.

Similarly, it does not matter whether we have then on the same line as if or not.

Either style is fine:

if ["$var" = "yes"]; then

 echo "Proceeding"

fi

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

165

or using then on the next line:

if ["$var" = "yes"]

then

 echo "Proceeding"

fi

The same goes for other loops and function definitions. This format is a personal

preference:

funcname()

{

 : body here

}

Others like this format:

funcname() {

 : body here

}

As long as the formatting is consistent and makes the structure clear, it doesn’t

matter which format you use.

�The K.I.S.S. Principle
Simplicity aids in understanding the intent of your program, but it’s not just keeping

code as short as possible that counts. When someone posted the following question, the

first thoughts were, “That will be a complicated regex,” followed by “wouldn’t want to use

a regular expression”:

•	 We need a regular expression to express financial quantities in

American notation. They have a leading dollar sign and an optional

string of asterisks, a string of decimal digits, and a fractional part

consisting of a decimal point (.) and two decimal digits. The string to

the left of the decimal point could be a single zero. Otherwise, it must

not start with a zero. If there are more than three digits to the left of

the decimal point, groups of three must be separated by commas, for

example, $**2,345.67.

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

166

This would see the task broken down into discrete steps and code each one

separately. For example, the first check would be

amount='$**2,345.67'

case $amount in

 �\$[*0-9]*) ;; ## OK (dollar sign followed by asterisks or digits),

do nothing

 *) exit 1 ;;

esac

By the time the tests are finished, there will be a lot more code than there would

be in a regular expression, but it will be easier to understand and to change if the

requirements change.

�Grouping Commands
Rather than redirecting each of several lines, group them with braces and use a single

redirection. One forum had this code:

echo "user odad odd" > ftp.txt

echo "prompt" >> ftp.txt

echo "cd $i" >> ftp.txt

echo "ls -ltr" >> ftp.txt

echo "bye" >> ftp.txt

Instead, a recommended alternative would be

{

 echo "user odad odd"

 echo "prompt"

 echo "cd $i"

 echo "ls -ltr"

 echo "bye"

} > ftp.txt

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

167

�Test As You Go
Rather than saving all the debugging until the end, it should be an integral part of the

process of developing a program. Each section should be tested as it is written. As an

example, let’s look at a function written as part of a chess program. No, it’s not a chess-

playing program (though it could be when it’s completed); that would be excruciatingly

slow in the shell. It’s a set of functions for preparing instructional material.

It needs to be able to convert one form of chess notation to another and to list all

possible moves for any piece on the board. It needs to be able to tell whether a move is

legal and to create a new board position after a move has been made. At its most basic

level, it has to be able to convert a square in standard algebraic notation (SAN) to its

numeric rank and file. That’s what this function does.

The SAN format for naming a square is a lowercase letter representing the file and a

number representing the rank. Files are rows of squares from white’s side of the board to

black’s. Ranks are rows of squares from left to right. The square in white’s left-

hand corner is a1; that in black’s is h8. To calculate possible moves, these need to be

converted to the rank and file: a1 is converted to rank=1 and file=1; h8 becomes rank=8

and file=8.

It’s a simple function, but this code demonstrates how to test a function. The

function receives the name of a square as an argument and stores the rank and file

in those variables. If the square is not valid, it sets both rank and file to 0 and returns

an error:

split_square() #@ DESCRIPTION: convert SAN square to numeric rank and file

{ #@ USAGE: split_square SAN-SQUARE

 local square=$1

 rank=${square#?}

 case $square in

 a[1-8]) file=1;; ## Conversion of file to number

 b[1-8]) file=2;; ## and checking that the rank is

 c[1-8]) file=3;; ## a valid number are done in a

 d[1-8]) file=4;; ## single look-up

 e[1-8]) file=5;;

 f[1-8]) file=6;; ## If the rank is not valid,

 g[1-8]) file=7;; ## it falls through to the default

 h[1-8]) file=8;;

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

168

 *) file=0

 rank=0

 return 1 ## Not a valid square

 ;;

 esac

 return 0

}

To test this function, it is passed all possible legitimate squares as well as some that

are not. It prints the name of the square and the file and rank numbers:

test_split_square()

{

 local f r

 for f in {a..i}

 do

 for r in {1..9}

 do

 split_square "fr"

 printf "fr %d-%d " "$file" "$rank"

 done

 echo

 done

}

When the test is run, the output is as follows:

a1 1-1 a2 1-2 a3 1-3 a4 1-4 a5 1-5 a6 1-6 a7 1-7 a8 1-8 a9 0-0

b1 2-1 b2 2-2 b3 2-3 b4 2-4 b5 2-5 b6 2-6 b7 2-7 b8 2-8 b9 0-0

c1 3-1 c2 3-2 c3 3-3 c4 3-4 c5 3-5 c6 3-6 c7 3-7 c8 3-8 c9 0-0

d1 4-1 d2 4-2 d3 4-3 d4 4-4 d5 4-5 d6 4-6 d7 4-7 d8 4-8 d9 0-0

e1 5-1 e2 5-2 e3 5-3 e4 5-4 e5 5-5 e6 5-6 e7 5-7 e8 5-8 e9 0-0

f1 6-1 f2 6-2 f3 6-3 f4 6-4 f5 6-5 f6 6-6 f7 6-7 f8 6-8 f9 0-0

g1 7-1 g2 7-2 g3 7-3 g4 7-4 g5 7-5 g6 7-6 g7 7-7 g8 7-8 g9 0-0

h1 8-1 h2 8-2 h3 8-3 h4 8-4 h5 8-5 h6 8-6 h7 8-7 h8 8-8 h9 0-0

i1 0-0 i2 0-0 i3 0-0 i4 0-0 i5 0-0 i6 0-0 i7 0-0 i8 0-0 i9 0-0

All squares with the rank and file 0-0 are invalid.

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

169

�Debugging a Script
In the wfe script, which was presented section by section earlier, there are a few bugs.

Let’s run that script and see what happens. The script is in $HOME/bin, which is in the

PATH, and hence, it can be called by its name alone. Before that, however, a good first

step is to check the script with the -n option. This tests for any syntax errors without

executing the code:

$ bash -n wfe

/home/jayant/bin/wfe-sh: wfe: line 70: unexpected EOF while looking for

matching '"'

/home/jayant/bin/wfe-sh: wfe: line 72: syntax error: unexpected end of file

The error message says that there’s a missing quotation mark ("). It has reached

the end of the file without finding it. That means it could be missing anywhere in the

file. After a quick (or not-so-quick) glance through the file, it’s not apparent where it

should be.

When that happens, I start removing sections from the bottom of the file until the

error disappears. I remove the last section; it’s still there. I remove the option parsing,

and the error hasn’t disappeared. I remove the last function definition, version(), and

the error has gone. The error must be in that function; where is it?

version() #@ DESCRIPTION: print script's version information

{ #@ USAGE: version

 #@ REQUIRES: variables defined: $scriptname, $author and $version

 printf "%s version %s\n" "$scriptname" "$version"

 printf "by %s, %d\n" "$author" "${date_of_creation%%-*"

}

There are no mismatched quotation marks, so some other closing character must

be missing and causing the problem. After a quick look, I see that the last variable

expansion is missing a closing brace. Fixed, it becomes "${date_of_creation%%-*}".

Another check with -n and it gets a clean bill of health. Now it’s time to run it:

$ wfe

bash: /home/jayant/bin/wfe: Permission denied

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

170

Oops! We forgot to make the script executable. This doesn’t usually happen with a

main script; it happens more often with scripts that are called by another script. Change

the permissions and try again:

$ chmod +x /home/jayant/bin/wfe

$ wfe

cat: /home/jayant/singlewords: No such file or directory

Have the files singlewords and Compounds been downloaded? If so, where were they

saved? In the script, they are declared to be in $dict, which is defined as $HOME. We can

put them somewhere else, such as in a subdirectory named words, and change that line

in the script. Let’s make a directory, words, and put them in there:

mkdir $HOME/words &&

cd $HOME/words &&

wget https://cfajohnson.com/wordfinder/singlewords &&

wget https://cfajohnson.com/wordfinder/Compounds

In the script, change the assignment of dict to reflect the actual location of

these files:

dict=$HOME/words

Let’s try again:

$ wfe

a

aa

Aachen

aalii

aardvark

.... 183,758 words skipped

zymotic

zymotically

zymurgy

Zyrian

zythum

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

171

We forgot to tell the program what we are searching for. The script ought to have

checked that an argument was supplied, but we forgot to include a sanity check section.

Add that before the search is done (after the line shift $(($OPTIND - 1))):

Check that user entered a search term

if [-z "$pattern"]

then

 {

 echo "Search term missing"

 usage

 } >&2

 exit 1

fi

Now, try again:

$ wfe

Search term missing

wfe - List words ending with REGEX

USAGE: wfe [-c|-h|-v] REGEX

That’s better. Now let’s really look for some words:

$ wfe drow

a

aa

Aachen

aalii

aardvark

.... 183,758 words skipped

zymotic

zymotically

zymurgy

Zyrian

zythum

There’s still something wrong.

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

172

One of the most useful debugging tools is set - x, which prints each command with

its expanded arguments as it is executed. Each line is preceded by the value of the PS4

variable. The default value of PS4 is “+ ”; we’ll change it to include the number of the line

being executed. Put these two lines before the final section of the script:

export PS4='+ $LINENO: ' ## single quotes prevent $LINENO being expanded

immediately

set -x

and try again:

$ wfe drow

++ 77: cat /home/jayant/singlewords

++ 82: grep -i '.$'

++ 83: sort -fu

++ 78: '[' -n '' ']' ## �Ctrl-C pressed to stop entire word list

being printed

On line 82, we can see that the pattern entered on the command line is missing.

How did that happen? It should be grep -i '.drow$'. Line 82 in the script should be as

follows:

} | grep -i ".$regex$" |

What happened to the value of regex? Comment out set -x, and add the set -u

option at the top of the script. This option treats unset variables as an error when they

are expanded. Run the script again to check whether regex is set:

$ wfe drow

/home/jayant/bin/wfe: line 84: regex: unbound variable

Why is regex unset? Look at the earlier script and see which variable was used to

hold the command-line argument. Oh! It was pattern, not regex. We must be consistent,

and regex is a better description of its contents, so let’s use that. Change all instances of

pattern to regex. You should do it in the comments at the top, as well. Now try it:

$ wfe drow

windrow

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

173

Success! Now add compound words and phrases to the mix with the -c option:

$ wfe -c drow

/home/jayant/bin/wfe: line 58: compoundfile: unbound variable

Here we go again! Surely, we assigned the Compounds file in the file locations section.

Take a look; yes, it’s there on line 23 or thereabout. Wait a minute, there’s a typo:

conpoundfile=$dict/Compounds. Change con to com. Keep your fingers crossed:

$ wfe -c drow

$

What? Nothing? Not even windrow? It’s time to set -x and see what’s going on.

Uncomment that line, and play it again:

$ wfe -c drow

++ 79: cat /home/jayant/singlewords

++ 84: grep -i '.-c$'

++ 85: sort -fu

++ 80: '[' -n /home/jayant/Compounds ']'

++ 82: cut -f1 /home/jayant/Compounds

At least that’s easy to figure out. We assigned regex before processing the options,

and it snarfed the first argument, the -c option. Move the assignment down to after the

getopts section, specifically, to after the shift command. (And you’ll probably want to

comment out set -x):

shift $(($OPTIND - 1))

Regular expression supplied on the command line

regex=$1

Are there any more issues?

$ wfe -c drow

skidRow

windrow

That looks good. It might seem like a lot of work for a small script, but it seems longer

in the telling than in the doing, especially once you get used to doing it – or, better still,

getting it right in the first place.

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

174

�Summary
Bugs are inevitable, but with care, most can be prevented. When they do materialize,

there are shell options to help trace the problem.

�Exercises

	 1.	 What is wrong with if [$var=x]? What should it be? Why does

it give the result it does?

	 2.	 Write a function, valid_square(), that returns successfully if its

sole argument is a valid SAN chessboard square or fails if it is not.

Write a function to test whether it works.

Chapter 10 Writing Bug-Free Scripts and Debugging the Rest

175

CHAPTER 11

Programming for the
Command Line
This book is about programming with the shell, not about using it at the command line.

The information provided here is about editing the command line, creating a command

prompt (the PS1 variable), or retrieving commands from the interactive history. This

chapter is about scripts that will mostly be useful at the command line rather than in

other scripts.

Many of the scripts presented in this chapter are shell functions. Some of them have

to be that way because they change the environment. Others are functions because they

are used often and are quicker that way. Others are both functions and stand-alone

scripts.

�Manipulating the Directory Stack
The cd command remembers the previous working directory, and cd - will return to

it. There is another command that changes the directory and remembers an unlimited

number of directories: pushd. The directories are stored in an array, DIRSTACK. To return

to a previous directory, popd pulls the top entry off DIRSTACK and makes that the current

directory. We can use two functions that make handling DIRSTACK easier, and there’s an

added third one just to complete the functionality.

Note  The names of some of the functions that are created in this chapter are
similar to the commands available in bash. The reason for this is to use your
existing shell scripts without making any changes to them and still availing of
some additional functionality.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_11

https://doi.org/10.1007/978-1-4842-9588-5_11

176

�cd
The cd function replaces the built-in command of the same name. The function uses

the built-in command pushd to change the directory and store the new directory on

DIRSTACK. If no directory is given, pushd uses $HOME. If changing the directory fails, cd

prints an error message, and the function returns with a failing exit code (Listing 11-1).

Listing 11-1.  cd, Change Directory, Saving Location on the Directory Stack

cd() #@ Change directory, storing new directory on DIRSTACK

{

 local dir error ## variables for directory and return code

 while : ## ignore all options

 do

 case $1 in

 --) break ;;

 -*) shift ;;

 *) break ;;

 esac

 done

 dir=$1

 if [-n "$dir"] ## if a $dir is not empty

 then

 pushd "$dir" ## change directory

 else

 pushd "$HOME" ## go HOME if nothing on the command line

 fi 2>/dev/null �## error message should come from cd, not pushd

 error=$? ## store pushd's exit code

 if [$error -ne 0] ## failed, print error message

 then

 builtin cd "$dir" ## let the builtin cd provide the error message

 fi

 return "$error" ## leave with pushd's exit code

} > /dev/null

Chapter 11 Programming for the Command Line

177

The standard output is redirected to the bit bucket because pushd prints the contents

of DIRSTACK, and the only other output is sent to standard error (>&2).

Note A replacement for a standard command such as cd should accept anything
that the original accepts. In the case of cd, the options -L and -P are accepted,
even though they are ignored.

�pd
The pd function is here for the sake of completeness (Listing 11-2). It is a lazy man’s way

of calling popd; not much use for it – if you are not lazy. :)

Listing 11-2.  pd, Return to the Previous Directory with popd

pd ()

{

 popd

} >/dev/null ### for the same reason as cd

�cdm
Using the pd command can alter the DIRSTACK; if the DIRSTACK is left alone intact, one

can move back and forth between directories. For that reason, we can use a menu that

presents all the directories in DIRSTACK.

The cdm function sets the input field separator (IFS) to a single newline (NL or LF)

to ensure that the output of the dirs built-in command keeps file names together

after word splitting (Listing 11-3). File names containing a newline would still cause

problems; names with spaces are an annoyance, but names with newlines are an

abomination.

The function loops through the names in DIRSTACK (for dir in $(dirs -l -p)),

adding each one to an array, item, unless it is already there. This array is then used as

the argument to the menu function (discussed in the following), which must be sourced

before cdm can be used.

Chapter 11 Programming for the Command Line

178

�dirs Built-In Command
The dirs built-in command lists the directories in the DIRSTACK array. By default, it

lists them on a single line with the value of HOME represented by a tilde. The -l option

expands ∼ to $HOME, and -p prints the directories, one per line.

Listing 11-3.  cdm, Select New Directory from a Menu of Those Already Visited

cdm() #@ select new directory from a menu of those already visited

{

 local dir IFS=$'\n' item

 �for dir in $(dirs -l -p) ## loop through directories in

DIRSTACK[@]

 do

 ["$dir" = "$PWD"] && continue ## skip current directory

 case ${item[*]} in

 "$dir:") ;; ## $dir already in array; do nothing

 *) item+=("$dir:cd '$dir'") ;; ## add $dir to array

 esac

 done

 menu "${item[@]}" Quit: ## pass array to menu function

}

When run, the menu looks like this:

$ cdm

 1. /public/music/magnatune.com

 2. /public/video

 3. /home/jayant

 4. /home/jayant/tmp/qwe rty uio p

 5. /home/jayant/tmp

 6. Quit

(1 to 6) ==>

Chapter 11 Programming for the Command Line

179

�menu
The calling syntax for the menu function comes from 9menu, which was part of the Plan

9 operating system. Each argument contains two colon-separated fields: the item to be

displayed and the command to be executed. If there is no colon in an argument, it is

used both as the display and as the command:

$ menu who date "df:df ."

 1. who

 2. date

 3. df

(1 to 3) ==> 3

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda5 48070472 43616892 2011704 96% /home

$ menu who date "df: df ."

 1. who

 2. date

 3. df

(1 to 3) ==> 1

jayant tty8 Jun 18 14:00 (:1)

jayant tty2 Jun 21 18:10

A for loop numbers and prints the menu; read gets the response; and a case

statement checks for the exit character q, Q, or 0 in the response. Finally, indirect

expansion retrieves the selected item, further expansion extracts the command, and

eval executes it: eval "${!num#*:}" (Listing 11-4).

Listing 11-4.  menu, Print the Menu and Execute the Associated Command

menu()

{

 local IFS=$' \t\n' ## Use default setting of IFS

 local num n=1 opt item cmd

 echo

 ## Loop through the command-line arguments

 for item

 do

Chapter 11 Programming for the Command Line

180

 printf " %3d. %s\n" "$n" "${item%%:*}"

 n=$(($n + 1))

 done

 echo

 �## If there are fewer than 10 items, set option to accept key

without ENTER

 if [$# -lt 10]

 then

 opt=-sn1

 else

 opt=

 fi

 read -p " (1 to $#) ==> " $opt num ## Get response from user

 ## Check that user entry is valid

 case $num in

 [qQ0] | "") return ;; ## q, Q or 0 or "" exits

 [!0-9] | 0*) ## invalid entry

 printf "\aInvalid response: %s\n" "$num" >&2

 return 1

 ;;

 esac

 echo

 �if ["$num" -le "$#"] �## Check that number is <= to the number of

menu items

 then

 eval "${!num#*:}" ## Execute it using indirect expansion

 else

 printf "\aInvalid response: %s\n" "$num" >&2

 return 1

 fi

}

Chapter 11 Programming for the Command Line

181

�Filesystem Functions
These functions vary from laziness (giving a short name to a longer command) to adding

functionality to standard commands (cp and mv). They list, copy, or move files or create

directories.

�l
There is no single-letter command required by the POSIX specification, and there is only

one that is found on most Unixes: w, which shows who is logged on and what they are

doing. Here, we have defined a number of single-letter functions:

•	 a: Lists the currently playing music track

•	 c: Clears the screen (sometimes quicker or easier than ^L)

•	 d: The date "+%A, %-d %B %Y %-I:%M:%S %P (%H:%M:%S)"

•	 k: Is equivalent to man -k, or apropos

•	 t: For the Amiga and MS-DOS command type, invokes less

•	 v and V: Lower and raise the sound volume, respectively

•	 x: Logout

And there’s this one that pipes a long file listing through less, as shown in

Listing 11-5.

Listing 11-5.  l, List Files in Long Format, Piped Through less

l()

{

 �ls -lA "$@" | less �## the -A option is specific to GNU and *BSD

 versions

}

Chapter 11 Programming for the Command Line

182

�lsr
The commands that can get used most frequently are l, cd, xx.sh, cdm, and lsr; xx.sh

is a file for throwaway scripts. We can keep adding new ones to the top; lsr displays the

most recent files (or with the -o option, the oldest files). The default setting is for ten files

to be shown, but that can be changed with the -n option. The script in Listing 11-6 uses

the -t (or -tr) option to ls and pipes the result to head.

Listing 11-6.  lsr, List Most Recently Modified Files

num=10 ## number of files

to print

short=0 ## set to 1 for

short listing

timestyle='--time-style="+ %d-%b-%Y %H:%M:%S "' ## GNU-specific

time format

opts=Aadn:os

while getopts $opts opt

do

 case $opt in

 a|A|d) ls_opts="$ls_opts -$opt" ;; ## options passed to ls

 n) num=$OPTARG ;; ## number of files to display

 o) ls_opts="$ls_opts -r" ;; ## show oldest files, not newest

 s) short=$(($short + 1)) ;;

 esac

done

shift $(($OPTIND - 1))

case $short in

 0) ls_opts="$ls_opts -l -t" ;; ## long listing, use -l

 �*) ls_opts="$ls_opts -t" ;; ## short listing, do not use -l

esac

ls $ls_opts $timestyle "$@" | {

 �read ## In bash, the same as: IFS=

read -r REPLY

 case $line in

Chapter 11 Programming for the Command Line

183

 total*) ;; ## do not display the 'total'

 line

 *) printf "%s\n" "$REPLY" ;;

 esac

 cat

} | head -n$ num

�cp, mv
In the following example Listing 11-7, which provides the same functionality as the

cp command, the -b flag is GNU specific, and if a different version is in use, that can be

removed.

Listing 11-7.  cp, Copy, Using the Current Directory If No Destination Is Given

cp()

{

 local final

 if [$# -eq 1] ## Only one arg,

 then

 command cp -b "$1" . ## so copy it to the current directory

 else

 final=${!#}

 if [-d "$final"] ## if last arg is a directory

 then

 command cp -b "$@" ## copy all the files into it

 else

 �command cp -b "$@" . ## otherwise, copy to the current

directory

 fi

 fi

}

The mv function is identical to the preceding code, except that it has mv wherever cp

appears in that function.

Chapter 11 Programming for the Command Line

184

�md
Laziness is the order of the day with the md function (Listing 11-8). It calls mkdir with

the -p option to create intermediate directories if they don’t exist. With the -c option,

md creates the directory (if it doesn’t already exist) and then cds into it. Because of the -p

option, no error is generated if the directory exists.

Listing 11-8.  md, Create a New Directory and Intermediate Directories and

Optionally cd into It

md() { #@ create new directory, including intermediate directories if

necessary

 case $1 in

 -c) mkdir -p "$2" && cd "$2" ;;

 *) mkdir -p "$@" ;;

 esac

}

�Miscellaneous Functions
These next two functions are quite helpful, but they don’t fit into any category.

�pr1
The pr1 function is both a function and a stand-alone script (Listing 11-9). It prints

each of its arguments on a separate line. By default, it limits the length to the number of

columns in the terminal, truncating lines as necessary.

There are two options: -w and -W. The former removes the truncation, so lines will

always print in full, wrapping to the next line when necessary. The latter specifies a width

at which to truncate lines.

Listing 11-9.  pr1, Function to Print Its Arguments One to a Line

pr1() #@ Print arguments one to a line

{

 case $1 in

Chapter 11 Programming for the Command Line

185

 -w) pr_w= ## width specification modifier

 shift

 ;;

 -W) pr_w=${2}

 shift 2

 ;;

 -W*) pr_w=${1#??}

 shift

 ;;

 *) pr_w=-.${COLUMNS:-80} ## default to number of columns in window

 ;;

 esac

 printf "%${pr_w}s\n" "$@"

}

The script version (Listing 11-10) uses getopts, and therefore, it is not POSIX

compliant.

Listing 11-10.  pr1, Script to Print Its Arguments One to a Line

while getopts wW: opt

do

 case $opt in

 w) w=

 shift

 ;;

 W) w=$OPTARG ;;

 *) w=-.${COLUMNS:-80} ;;

 esac

done

shift $(($OPTIND - 1))

printf "%${w}s\n" "$@"

Chapter 11 Programming for the Command Line

186

�calc
bash lacks the capacity for arithmetic with decimal fractions, so this function (Listing 11-11)

uses awk to do the dirty work. Note that characters special to the shell must be escaped or

quoted on the command line. This applies particularly to the multiplication symbol, *.

Listing 11-11.  calc, Print the Result of Arithmetic Expression

calc() #@ Perform arithmetic, including decimal fractions

{

 local result=$(awk 'BEGIN { OFMT="%f"; print '"$*"'; exit}')

 case $result in

 *.*0) result=${result%"${result##*[!0]}"} ;;

 esac

 printf "%s\n" "$result"

}

The case statement removes trailing zeros after a decimal point.

�Managing Man Pages
Here are three useful functions related to man pages. The first searches a man page for

a pattern or string, the second looks up a POSIX man page, and the third is equivalent

to man -k.

�sman
The sman function calls up a man page and searches for a given string. It assumes that

less is the default pager (Listing 11-12).

Chapter 11 Programming for the Command Line

187

Listing 11-12.  sman, Call Up a Man Page and Search for a Pattern

sman() #@ USAGE: sman command search_pattern

{

 LESS="$LESS${2:+ +/$2}" man "$1"

}

�sus
To check the portability of a given command or, more usually, to check which options

are specified by POSIX, we can use sus. It stores a copy of the POSIX man page locally so

that it doesn’t need to be fetched on subsequent queries (Listing 11-13).

Listing 11-13.  sus, Look Up a Man Page in the POSIX Spec

sus()

{

 local html_file=/usr/share/sus/$1.html ## adjust to taste

 local dir=9699919799

 �local sus_dir= http://www.opengroup.org/onlinepubs/$dir/

utilities/

 [-f "$html_file"] ||

 lynx -source sus_dir{1##*/}.html > $html_file ##>/dev/null 2>&1

 lynx -dump -nolist $html_file | ${PAGER:-less}

}

Here, lynx is a text-mode web browser. Though normally used interactively to access

the Web, the -source and -dump directives can be used in scripts.

�k
The k function saves all the typing of apropos or man -k. It actually does a little more.

It filters the result so that only user commands (from the first section of the man pages)

show. System and kernel functions and file specifications, and so on, do not get shown

(Listing 11-14).

Chapter 11 Programming for the Command Line

188

Listing 11-14.  k, List Commands Whose Short Descriptions Include a

Search String

k() #@ USAGE: k string

{

 man -k "$@" | grep '(1'

}

�Games
What’s a command line without games? Boring, that’s what! Chris has written a number

of games using the shell. They include yahtzee (Figure 11-1), a game that uses five dice;

maxit (Figure 11-2), based on an arithmetic game for the Commodore 64; and, of course,

tic-tac-toe (Figure 11-3). All these games are too large to include their scripts in this

book, but sections of them (such as the yahtzee dice) will be demonstrated in later

chapters. The one game included here is the fifteen puzzle.

Figure 11-1.  The game of yahtzee, in which the player attempts to get runs, a full
house, or three, four, or five of a kind

Chapter 11 Programming for the Command Line

189

Figure 11-2.  The game of maxit, in which one player selects from a row and the
other from a column

Figure 11-3.  The ubiquitous game of tic-tac-toe

�The fifteen Puzzle
The fifteen puzzle consists of 15 numbered, sliding tiles in a frame; the object is to

arrange them in ascending order like this:

 +----+----+----+----+

 | | | | |

 | 1 | 2 | 3 | 4 |

Chapter 11 Programming for the Command Line

190

 | | | | |

 +----+----+----+----+

 | | | | |

 | 5 | 6 | 7 | 8 |

 | | | | |

 +----+----+----+----+

 | | | | |

 | 9 | 10 | 11 | 12 |

 | | | | |

 +----+----+----+----+

 | | | | |

 | 13 | 14 | 15 | |

 | | | | |

 +----+----+----+----+

In this script (Listing 11-15), the tiles are moved with the cursor keys.

Listing 11-15.  fifteen, Place Tiles in Ascending Order

##

Meta data

##

scriptname=${0##*/}

description="The Fifteen Puzzle"

author="Jayant Varma"

created=2023-02-15

##

Variables

##

board=({1..15} "") ## The basic board array

target=("${board[@]}") ## A copy for comparison (the target)

empty=15 ## The empty square

last=0 ## The last move made

A=0 B=1 C=2 D=3 ## Indices into array of possible moves

topleft='\e[0;0H' ## Move cursor to top left corner of window

nocursor='\e[?25l' ## Make cursor invisible

normal=\e[0m\e[?12l\e[?25h ## Resume normal operation

Chapter 11 Programming for the Command Line

191

Board layout is a printf format string

At its most basic, it could be a simple:

fmt="$nocursor$topleft

 %2s %2s %2s %2s

 %2s %2s %2s %2s

 %2s %2s %2s % 2s

 %2s %2s %2s %2s

"

I prefer this ASCII board

fmt="\e[?25l\e[0;0H\n

\t+----+----+----+----+

\t| | | | |

\t| %2s | %2s | %2s | %2s |

\t| | | | |

\t+----+----+----+----+

\t| | | | |

\t| %2s | %2s | %2s | %2s |

\t| | | | |

\t+----+----+----+----+

\t| | | | |

\t| %2s | %2s | %2s | %2s |

\t| | | | |

\t+----+----+----+----+

\t| | | | |

\t| %2s | %2s | %2s | %2s |

\t| | | | |

\t+----+----+----+----+\n\n"

##

Functions

##

print_board() #@ What the name says

{

 printf "$fmt" "${board[@]}"

}

borders() #@ List squares bordering on the empty square

Chapter 11 Programming for the Command Line

192

{

 ## Calculate x/y co-ordinates of the empty square

 local x=$((${empty:=0} % 4)) y=$(($empty / 4))

 �## The array, bordering, has 4 elements, corresponding to the 4

directions

 �## If a move in any direction would be off the board, that element

is empty

 ##

 unset bordering ## clear array before setting it

 [$y -lt 3] && bordering[$A]=$(($empty + 4))

 [$y -gt 0] && bordering[$B]=$(($empty - 4))

 [$x -gt 0] && bordering[$C]=$(($empty - 1))

 [$x -lt 3] && bordering[$D]=$(($empty + 1))

}

check() #@ Check whether puzzle has been solved

{

 ## Compare current board with target

 if ["${board[*]}" = "${target[*]}"]

 then

 ## Puzzle is completed, print message and exit

 print_ board

 printf "\a\tCompleted in %d moves\n\n" "$moves"

 exit

 fi

}

move() #@ Move the square in $1

{

 �movelist="$empty $movelist" ## add current empty square to the

move list

 moves=$(($moves + 1)) ## increment move counter

 board[$empty]=${board[$1]} ## put $1 into the current empty square

 board[$1]="" ## remove number from new empty square

 last=$empty ## and put it in old empty square

 empty=$1 ## set new value for empty-square pointer

}

Chapter 11 Programming for the Command Line

193

random_move() #@ Move one of the squares in the arguments

{

 ## The arguments to random_move are the squares that can be moved

 ## (as generated by the borders function)

 local sq

 while :

 do

 sq=$(($RANDOM % $# + 1))

 sq=${!sq}

 [$sq -ne ${last:-666}] && ## do not undo last move

 break

 done

 move "$sq"

}

shuffle() #@ Mix up the board using legitimate moves (to ensure

solvable puzzle)

{

 local n=0 max=$(($RANDOM % 100 + 150)) �## number of moves to make

 while [$((n += 1)) -lt $max]

 do

 borders �## generate list of

possible moves

 random_move "${bordering[@]}" �## move to one of them

at random

 done

}

##

End of functions

##

trap 'printf "$normal"' EXIT �## return terminal to normal

state on exit

##

Instructions and initialization

##

clear

Chapter 11 Programming for the Command Line

194

print_board

echo

printf "\t%s\n" "$description" "by $author, ${created%%-*}" ""

printf "

Use the cursor keys to move the tiles around.

The game is finished when you return to the

position shown above.

Try to complete the puzzle in as few moves

as possible.

 Press \e[1mENTER\e[0m to continue

"

shuffle ## randomize board

moves=0 ## reset move counter

read -s ## wait for user

clear ## clear the screen

##

Main loop

##

while :

do

 borders

 print_board

 printf "\t %d move" "$moves"

 [$moves -ne 1] && printf "s"

 check

 ## read a single character without waiting for <ENTER>

 read -sn1 -p $' \e[K' key

 ## The cursor keys generate three characters: ESC, [and A, B, C, or D;

 ## this loop will run three times for each press of a cursor key

 ## but will not do anything until it receives a letter

 �## from the cursor key (or entered directly with A etc.), or a

'q' to exit

 case $key in

 A) [-n "${bordering[$A]}"] && move "${bordering[$A]}" ;;

 B) [-n "${bordering[$B]}"] && move "${bordering[$B]}" ;;

Chapter 11 Programming for the Command Line

195

 C) [-n "${bordering[$C]}"] && move "${bordering[$C]}" ;;

 D) [-n "${bordering[$D]}"] && move "${bordering[$D]}" ;;

 q) echo; break ;;

 esac

done

�Summary
The scripts provided in this chapter are a smattering of the possibilities for using scripts

at the command line. Where the environment needs to be changed (as in cd and cdm),

the scripts must be shell functions. These are usually kept in $HOME/.bashrc or in a file

sourced by .bashrc.

Even games can be programmed without needing a GUI interface.

�Exercises

	 1.	 Modify the menu function to accept its parameters from a file.

	 2.	 Rewrite the pr1 function as prx that will behave in the manner

of pr4 from Chapter 8 but will take an option for any number of

columns.

	 3.	 Add a getopts section to the fifteen game that allows the user to

select between three different board formats. Write a third format.

Chapter 11 Programming for the Command Line

197

CHAPTER 12

Runtime Configuration
When I download my e-mail from three or four different POP3 servers, I don’t use a

different script for each one. When I open a terminal to ssh to a remote computer (half a

dozen of them) with a different background color for each, I use the same script for every

connection. To upload files to my websites, I use the same script for all of them.

You can configure a script’s behavior in several ways when you run it. This chapter

looks at seven methods: initialized variables, command-line options and arguments,

menus, Q&A dialogue, configuration files, multiple names for one script, and

environment variables. These methods are not mutually exclusive; in fact, they are often

combined. A command-line option could tell the script to use a different configuration

file or present the user with a menu.

�Defining Variables
If the runtime requirements for a script would not change, then hard-coded variables

(a sort of configuration) may be all the configuration that is needed (Listing 12-1). We

can set them when the script is installed; when a change is needed, the parameters can

quickly be changed using a text editor.

Listing 12-1.  Example of Initialized Default Variables

File locations

dict=/usr/share/dict

wordfile=$dict/singlewords

compoundfile=$dict/Compounds

Default is not to show compound words

compounds=no

If the variables need changing often, one or more of the other methods can

be added.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_12

https://doi.org/10.1007/978-1-4842-9588-5_12

198

�Command-Line Options and Arguments
The most common method for changing runtime behavior uses command-line

options. As shown in Listing 12-2, all the values defined earlier can be modified at the

command line.

Listing 12-2.  Parse Command-Line Options

while getopts d:w:f:c var

do

 case "$var" in

 c) compounds=1 ;;

 d) dict=$OPTARG ;;

 w) wordfile=$OPTARG ;;

 f) compoundfile=$OPTARG ;;

 esac

done

�Menus
For a user unfamiliar with a piece of software, a menu is a good way to allow runtime

changes. In the menu example shown in Listing 12-3, the selections are numbered

from 1 to 4, and q exits the menu.

Listing 12-3.  Set Parameters via Menu

while : ## loop until user presses 'q'

do

 ## print menu

 printf "\n\n%s\n" "$bar"

 printf " Dictionary parameters\n"

 printf "%s\n\n" "$bar"

 printf " 1. Directory containing dictionary: %s\n" "$dict"

 printf " 2. File containing word list: %s\n" "$wordfile"

 �printf " 3. File containing compound words and phrases: %s\n"

"$compoundfile"

Chapter 12 Runtime Configuration

199

 �printf " 4. Include compound words and phrases in results? %s\n"

"$compounds"

 printf " q. %s\n" "Exit menu"

 printf "\n%s\n\n" "$bar"

 ## get user response

 read -sn1 -p "Select (1,2,3,4,q): " input

 echo

 ## interpret user response

 case $input in

 1) read -ep "Enter dictionary directory: " dict ;;

 2) read -ep "Enter word-list file: " wordfile ;;

 3) read -ep "Enter compound-word file: " compoundfile ;;

 4) ["$compounds" = y] && compounds=n || compounds=y ;;

 q) break ;;

 *) printf "\n\aInvalid selection: %c\n" "$input" >&2

 sleep 2

 ;;

 esac

done

�Q&A Dialogue
A question-and-answer function cycles through all the parameters, prompting the user

to enter a value for each one (Listing 12-4). This can get tedious for the user, and it is

probably best used when there are no defaults, when there are very few parameters to

enter, or when values need to be entered for a new configuration file.

Listing 12-4.  Set Variables by Question and Answer

read -ep "Directory containing dictionary: " dict

read -ep "File containing word list: " wordfile

read -ep "File containing compound words and phrases: " compoundfile

read -sn1 -p "Include compound words and phrases in results (y/n)? "

compounds

echo

read -ep "Save parameters (y/n)? " save

Chapter 12 Runtime Configuration

200

case $save in

 y|Y) read -ep "Enter path to configuration file: " configfile

 {

 printf '%-30s ## %s"\n' \

 "dict=$dict" "Directory containing dictionary" \

 "wordfile=$wordfile" "File containing word list" \

 �"compoundfile=$compoundfile" "File containing compound words and

phrases" \

 � "Compounds" "$Compounds" "Include compound words and phrases in

results?"

 } > "${configfile:-/dev/tty}"

esac

�Configuration Files
Configuration files can use any format, but it’s easiest to make them shell scripts that

can be sourced. The example file shown in Listing 12-5 can be sourced, but it can also

provide more information.

Listing 12-5.  Configuration File, words.cfg

dict=/usr/share/dict ## directory containing dictionary files

wordfile=singlewords ## file containing word list

compoundfile=Compounds ## file containing compound words and phrases

compounds=no ## include compound words and phrases in

results?

The words.cfg file can be sourced with either of these two commands:

. words.cfg

source words.cfg

Rather than sourcing the file, it can be parsed in various ways (Listing 12-6). Since

bash-4.x, we can read the file into an array and extract the variables and comments

using parameter expansion, the expansion being applied to each element of the array.

Chapter 12 Runtime Configuration

201

Listing 12-6.  Parsing Configuration File

IFS=$'\n'

file=words.cfg

settings=($(< "$file")) ## store file in array, 1 line

per element

eval "${settings[@]%%#*}" ## extract and execute the assignments

comments=("${settings[@]#*## }") ## store comments in array

The comments array contains just the comments, and the assignments can be

extracted from settings with "${settings[@]%%#*}":

$ printf "%s\n" "${comments[@]}"

directory containing dictionary files

file containing word list

file containing compound words and phrases

include compound words and phrases in results?

You can also read the file in a loop to set the variables and provide information about

the variables it contains by displaying the comments (Listing 12-7).

Listing 12-7.  Parsing Configuration File with Comments

while read assignment x comment

do

 if [-n "$assignment"]

 then

 printf "%20s: %s\n" "${assignment#*=}" "$comment"

 eval "$assignment"

 fi

done < "$file"

The following is the result:

 /usr/share/dict: directory containing dictionary files

 singlewords: file containing word list

 Compounds: file containing compound words and phrases

 n: include compound words and phrases in results?

Chapter 12 Runtime Configuration

202

Configuration files can be made as complex as you like, but parsing them then falls

more properly under the category of data processing, which is the subject of Chapter 13.

�Scripts with Several Names
By storing the same file under different names, you can avoid command-line options

and menus. The script in Listing 12-8 opens a terminal and connects to different remote

computers using a secure shell. The terminal’s colors, the machine / host to log on to,

and the name of the remote user are all determined by the name of the script.

Listing 12-8.  bashful, Connect to the Remote Computer via ssh

scriptname=${0##*/}

default colours

bg=#ffffcc ## default background: pale yellow

fg=#000000 ## default foreground: black

user=bashful ## default user name

term=xterm ## default terminal emulator (I prefer rxvt)

case $scriptname in

 sleepy)

 bg=#ffffff

 user=sleepy

 host=sleepy.example.com

 ;;

 sneezy)

 fg=#aa0000

 bg=#ffeeee

 host=sneezy.example.org

 ;;

 grumpy)

 fg=#006600

 bg=#eeffee

 term=rxvt

 host=cfajohnson.example.com

 ;;

 dopey)

Chapter 12 Runtime Configuration

203

 host=127.0.0.1

 ;;

 *) echo "$scriptname: Unknown name" >&2

 exit 1

 ;;

esac

"$term" -fg "$fg" -bg "$bg" -e ssh -l "$user" "$host"

To create the multiple names for the same file, create links with ln (Listing 12-9).

Listing 12-9.  Make Multiple Links to bashful Script

cd "$HOME/bin" &&

for name in sleepy sneezy grumpy dopey

do

 ln -s bashful "$name" ## the -s option can be left out

done

Note T he -s option with ln is to make symbolic link files instead of hard links.

�Environment Variables
We can also pass settings to a program using variables. These can be either exported or

defined on the same line as the command. In the latter case, the variable is defined for

that command only.

We alter the behavior of the program by checking for the value of a variable or even

just for its existence. This technique is most often used to adjust the output of a script

using verbose. This would be a typical line in a script:

[${verbose:-0} -gt 0] && printf "%s\n" "Finished parsing options"

The script would be called with the following:

verbose=1 myscriptname

You can see an example in the following script.

Chapter 12 Runtime Configuration

204

�All Together Now
The following is the program used to update all my websites. It finds new or modified

files in a directory hierarchy, stores them in a tarball, and uploads them to a website on

a (usually) remote computer. All of the sites have shell access enabled so that a secure

shell connection can be made using ssh, to transfer the files and unpack them with tar

on the site:

ssh -p "$port" -l "$user" "$host" \

 "cd \"$dest\" || exit;tar -xpzf -" < "$tarfile" &&

 touch "$syncfile"

All the sites use authentication keys (created with ssh-keygen) so that no password is

required, and the script can be run as a cron job.

This program uses all the techniques mentioned earlier except for multiple names.

It’s more than what one would usually use in a single program, but it’s a good illustration.

The user can select whether to use command-line options, a menu, a Q&A dialogue,

or a configuration file to adjust the settings, or the user can even use the defaults.

Command-line options are available for all settings:

•	 -c configfile: Reads settings from configfile

•	 -h host: Specifies the URL or IP address of a remote computer

•	 -p port: Specifies the SSH port to use

•	 -d dest: Specifies the destination directory on the remote host

•	 -u user: Specifies the user’s login name on a remote computer

•	 -a archivedir: Specifies the local directory to store archive files

•	 -f syncfile: Specifies the file whose timestamp is the cutoff point

And there are three further options that control the script itself:

•	 -t: Tests only, displays final settings, does not archive or upload

•	 -m: Presents the user with the menu

•	 -q: Uses Q&A dialogue

The script is examined in the following sections in detail, section by section.

Chapter 12 Runtime Configuration

205

Note T his is a book on Pro Bash Scripts and hence the approach using scripting.
Writing a script may not necessarily be the best solution.

There are a couple of other options not necessarily bash scripting based that are

created solely to achieve administration outcomes. There is a perl script wrapper called

Cluster SSH (open source found at https://github.com/duncs/clusterssh) that allows

you to send a command to multiple servers at the same time and is GUI based. There is

another called Puppet, which is quite popular.

�Script Information
Note that parameter expansion is used to pull the script name from $0, not the external

command, basename (Listing 12-10).

Listing 12-10.  upload, Archive and Upload Files to a Remote Computer

scriptname=${0##*/}

description="Archive new or modified files and upload to web site"

author="Jayant Varma"

version=1.0

�Default Configuration
Besides setting the variables, an array containing the names of the variables and their

descriptions is created (Listing 12-11). This is used by the menu and qa (question and

answer) functions for labels and prompts.

Listing 12-11.  Default Values and settings Array

archive and upload settings

host=127.0.0.1 ## Remote host (URL or IP address)

port=22 ## SSH port

dest=work/upload ## Destination directory

user=jayant ## Login name on remote system

source=$HOME/public_html/oz-apps.com ## Local directory to upload

Chapter 12 Runtime Configuration

https://github.com/duncs/clusterssh

206

archivedir=$HOME/work/webarchives ## Directory to store archive files

syncfile=.sync ## File to touch with time of

last upload

array containing variables and their descriptions

varinfo=("" ## Empty element to emulate 1-based array

 "host:Remote host (URL or IP address)"

 "port:SSH port"

 "dest:Destination directory"

 "user:Login name on remote system"

 "source:Local directory to upload"

 "archivedir:Directory to store archive files"

 "syncfile:File to touch with time of last upload"

)

These may be changed by command-line options

menu=0 ## do not print a menu

qa=0 ## do not use question and answer

test=0 ## 0 = upload for real; 1 = don't archive/upload, show

settings

configfile= ## if defined, the file will be sourced

configdir=$HOME/.config ## default location for configuration files

sleepytime=2 ## delay in seconds after printing messages

Bar to print across top and bottom of menu (and possibly elsewhere)

bar===

bar=barbarbarbar ## make long enough for any terminal window

menuwidth=${COLUMNS:-80}

�Screen Variables
These variables use the ISO 6429 standard, which is now all but universal in terminals

and terminal emulators (Listing 12-12). This is discussed in detail in Chapter 14. When

printed to the terminal, these escape sequences perform the actions indicated in the

comments.

Chapter 12 Runtime Configuration

207

Listing 12-12.  Define Screen Manipulation Variables

topleft='\e[0;0H' ## Move cursor to top left corner of screen

clearEOS='\e[J' ## Clear from cursor position to end of screen

clearEOL='\e[K' ## Clear from cursor position to end of line

�Function Definitions
There are five functions, two of which, menu and qa, allow the user to change the settings.

With readline able to accept the user’s input, the -i option to read is used if the shell

version is bash-4.x or greater. If the test option is used, the print_config function

outputs the settings in a format that is suitable for a configuration file, complete with

comments.

�Function: die
The program exits via the die function when a command fails (Listing 12-13).

Listing 12-13.  Define die Function

die() #@ Print error message and exit with error code

{ #@ USAGE: die [errno [message]]

 error=${1:-1} ## exits with 1 if error number not given

 shift

 [-n "$*"] &&

 printf "%s%s: %s\n" "$scriptname" ${version:+" ($version)"} "$*" >&2

 exit "$error"

}

�Function: menu
The menu function uses its command-line arguments to populate the menu (Listing 12-14).

Each argument contains a variable name and a description of the variable separated by

a colon.

Chapter 12 Runtime Configuration

208

�The Upload Settings Menu
===

 UPLOAD SETTINGS

===

 1: Remote host (URL or IP address) (127.0.0.1)

 2: ssh port (22)

 3: Destination directory (work/upload)

 4: Login name on remote system (jayant)

 5: Local directory to upload (/home/jayant/public_html/oz-apps.com)

 6: Directory to store archive files (/home/jayant/work/webarchives)

 7: File to touch with time of last upload (.sync)

 q: Quit menu, start uploading

 0: Exit upload

===

Select 1..7 or 'q/ 0'

The function enters an infinite loop, from which the user exits by selecting q or 0.

Within the loop, menu clears the screen and then cycles through each argument, storing it

in item. It extracts the variable name and description using parameter expansion:

var=${item%%:*}

description=${item#*:}

The value of each var is obtained through indirect expansion, ${!var}, and is

included in the menu labels. The field width for the menu number is ${#max}, that is, the

length of the highest item number.

Listing 12-14.  Define menu Function

menu() #@ Print menu, and change settings according to user input

{

 local max=$#

 local menutitle="UPLOAD SETTINGS"

 local readopt

 if [$max -lt 10]

 then ## if fewer than ten items,

 readopt=-sn1 ## allow single key entry

Chapter 12 Runtime Configuration

209

 else

 readopt=

 fi

 printf "$topleft$clearEOS" ## Move to top left and clear screen

 while : ## infinite loop

 do

 ###

 ## display menu

 ##

 printf "$topleft" ## Move cursor to top left corner of screen

 ## print menu title between horizontal bars the width of the screen

 printf "\n%s\n" "${bar:0:$menuwidth}"

 printf " %s\n" "$menutitle"

 printf "%s\n\n" "${bar:0:$menuwidth}"

 menunum=1

 ## loop through the positional parameters

 for item

 do

 var=${item%%:*} ## variable name

 description=${item#*:} ## variable description

 ## print item number, description and value

 printf " %${#max}d: %s (%s)$clearEOL\n" \

 "$menunum" "$description" "${!var}"

 menunum=$(($menunum + 1))

 done

 ## ... and menu adds its own items

 printf " %${##}s\n" "q: Quit menu, start uploading" \

 "0: Exit $scriptname"

 printf "\n${bar:0:$menuwidth}\n" ## closing bar

 printf "$clearEOS\n" ## Clear to end of screen

 ##

 ###

 ###

 ## User selection and parameter input

 ##

Chapter 12 Runtime Configuration

210

 read -p " Select 1..$max or 'q' " $readopt x

 echo

 ["$x" = q] && break ## User selected Quit

 ["$x" = 0] && exit ## User selected Exit

 case $x in

 [!0-9] | "")

 ## contains non digit or is empty

 printf "\a %s - Invalid entry\n" "$x" >&2

 sleep "$sleepytime"

 ;;

 *) if [$x -gt $max]

 then

 printf "\a %s - Invalid entry\n" "$x" >&2

 sleep "$sleepytime"

 continue

 fi

 var=${!x%%:*}

 description=${!x#*:}

 ## prompt user for new value

 printf " %s$clearEOL\n" "$description"

 readline value " >> " "${!var}"

 ## if user did not enter anything, keep old value

 if [-n "$value"]

 then

 eval "$var=\$value"

 else

 printf "\a Not changed\n" >& 2

 sleep "$sleepytime"

 fi

 ;;

 esac

 ##

 ###

 done

}

Chapter 12 Runtime Configuration

211

�Function: qa
The qa function takes the same arguments as menu, but instead of putting them into a

menu, it prompts the user for a new value for each variable (Listing 12-15). When it has

run through all the command-line arguments, which it splits up in the same manner as

menu, it calls the menu function for verification and editing of the values. Also like menu, it

uses readline to get the input and keeps the old value if nothing is entered.

Listing 12-15.  Define qa Function

qa() #@ Question and answer dialog for variable entry

{

 local item var description

 printf "\n %s - %s\n" "$scriptname" "$description"

 printf " by %s, copyright %d\n" "$author" "$copyright"

 echo

 if [${BASH_VERSINFO[0]} -ge 4]

 then

 printf " %s\n" "You may edit existing value using the arrow keys."

 else

 printf " %s\n" "Press the up arrow to bring existing value" \

 "to the cursor for editing with the arrow keys"

 fi

 echo

 for item

 do

 ## split $item into variable name and description

 var=${item%%:*}

 description=${item#*:}

 printf "\n %s\n" "$description"

 readline value " >> " "${!var}"

 [-n "$value"] && eval "$var=\$value"

 done

 menu "$@"

}

Chapter 12 Runtime Configuration

212

The dialogue looks like this:

$ upload -qt

upload - Archive new or modified files and upload to web site

by Jayant Varma, copyright 2023

You may edit existing value using the arrow keys.

Remote host (URL or IP address)

 >> oz-apps.com

SSH port

 >> 99

Destination directory

 >> public_html

Login name on remote system

 >> jayant

Local directory to upload

 >> /home/jayant/public_html/oz-apps.com

Directory to store archive files

 >> /home/jayant/work/webarchives

File to touch with time of last upload

 >> .sync

�Function: print_config
The print_config function prints all the variables listed in the varinfo array to the

standard output in a format suitable for a configuration file, as described earlier in this

chapter. Although probably not necessary in this program, it encloses the assignment

value in double quotes and escapes double quotes in the value using bash’s search-and-

replace parameter expansion:

$ var=location

$ val='some"where'

$ printf "%s\n" "$var=\"${val//\"/\\\"}\""

location="some\"where"

See the options-parsing section in Listing 12-16 for an example of the output of

print_config.

Chapter 12 Runtime Configuration

213

Listing 12-16.  Define print_config Function

print_config() #@ Print values in a format suitable for a configuration file

{

 local item var description

 [-t 1] && echo ## print blank line if output is to a terminal

 for item in "${varinfo[@]}"

 do

 var=${item%%:*}

 description=${item#*:}

 printf "%-35s ## %s\n" "$var=\"\${!var//\"/\\\"}\"" "$description"

 done

 [-t 1] && echo ## print blank line if output is to a terminal

}

�Function: readline
If bash-4.x or later is in use, the readline function will place a value before the cursor

to edit (Listing 12-17). With an earlier version of bash, it puts the value into the history so

that it can be brought up with the up arrow (or Ctrl+P) and then edit it.

Listing 12-17.  Define readline Function

readline() #@ get line from user with editing of current value

{ #@ USAGE var [prompt] [default]

 local var=${1?} prompt=${2:- >>> } default=$3

 if [${BASH_VERSINFO[0]} -ge 4]

 then

 read -ep "$prompt" ${default:+-i "$default"} "$var"

 else

 history -s "$default"

 read -ep "$prompt" "$var"

 fi

}

Chapter 12 Runtime Configuration

214

�Parse Command-Line Options
We can set the seven configuration variables with the a, d, f, h, p, s, and u options. In

addition, we can also specify a configuration file with the c option. A test run, which

prints the configuration information but doesn’t attempt to create a tarball or upload any

files, can be triggered with the t option. The m and q options offer the user a menu and a

question-and-answer dialogue, respectively.

If a host is given as an option, a config file name is built using a standard formula.

If the file exists, it is assigned to the configfile variable so that the parameters will be

loaded from it. Usually this is all that would be needed to add to the command line for

this purpose (Listing 12-18).

Listing 12-18.  Parse Command-Line Options

while getopts c:h:p:d:u:a:s:f:mqt var

do

 case "$var" in

 c) configfile=$OPTARG ;;

 h) host=$OPTARG

 hostconfig=$configdir/$scriptname.$host.cfg

 [-f "$hostconfig"] &&

 configfile=$hostconfig

 ;;

 p) port=$OPTARG ;;

 s) source=$OPTARG ;;

 d) dest=$OPTARG ;;

 u) user=$OPTARG ;;

 a) archivedir=$OPTARG ;;

 f) syncfile=$OPTARG ;;

 t) test=1 ;; ## show configuration, but do not archive or upload

 m) menu=1 ;;

 q) qa=1 ;;

 esac

done

shift $(($OPTIND - 1))

Chapter 12 Runtime Configuration

215

Using options and redirection, this program can create new configuration files. Here,

parameters are given on the command line, and defaults are used for those not given.

$ upload -t -h www.example.com -p 666 -u paradigm -d

public_html\ -s $HOME/public_html/www.example.com > www.

example.com.cfg

$ cat www.example.com.cfg

host="www.example.com" ## Remote host (URL or IP address)

port="666" ## SSH port

dest="public_html" ## Destination directory

user="paradigm" ## Login name on remote system

source="/home/jayant/public_html/www.example.com " ## Local

directory to upload

archivedir="/home/jayant/work/webarchives" ## Directory to store

archive files

syncfile=".sync" ## File to touch with time of

last upload

�Bits and Pieces
Listing 12-19 shows the rest of the script.

Listing 12-19.  The Rest of the Script

If a configuration file is defined, try to load it

if [-n "$configfile"]

then

 if [-f "$configfile"]

 then

 ## exit if problem with config file

 . "$configfile" || die 1 Configuration error

 else

 ## Exit if configuration file is not found.

 die 2 "Configuration file, $configfile, not found"

 fi

fi

Chapter 12 Runtime Configuration

216

Execute menu or qa if defined

if [$menu -eq 1]

then

 menu "${varinfo[@]}"

elif [$qa -eq 1]

then

 qa "${varinfo[@]}"

fi

Create datestamped filename for tarball

tarfile=$archivedir/$host.$(date +%Y-%m-%dT%H:%M:%S.tgz)

if [$test -eq 0]

then

 cd "$source" || die 4

fi

verbose must be set (or not) in the environment or on the command line

if [${verbose:-0} -gt 0]

then

 printf "\nArchiving and uploading new files in directory: %s\n\n" "$PWD"

 opt=v

else

 opt=

fi

IFS=$'\n' # uncomment this line if you have spaces in filenames (shame

on you!)

if [${test:-0} -eq 0]

then

 remote_command="cd \"$dest\" || exit;tar -xpzf -"

 ## Archive files newer than $syncfile

 tar cz${opt}f "$tarfile" $(find . -type f -newer "$syncfile") &&

 ## Execute tar on remote computer with input from $tarfile

 ssh -p "$port" -l "$user" "$host" "$remote_command" < "$tarfile" &&

 ## if ssh is successful

 touch "$syncfile"

Chapter 12 Runtime Configuration

217

else ## test mode

 print_config

fi

�Summary
This chapter demonstrated seven methods of altering the runtime behavior of a script.

If changes will be rare, variables defined in the script may be adequate. When that isn’t

enough, command-line options (parsed with getopts) are often enough.

You can use a menu or question-and-answer dialogue both for runtime

configuration and for creating configuration files that can be sourced on demand. Using

differently named files for the same script can save typing. In some cases, setting a

variable in the shell’s environment is enough.

�Exercises

	 1.	 Add code to the upload script that checks that all variables have

been set to legitimate values (e.g., that port is an integer).

	 2.	 Write a usage or help function and add it to the upload script.

	 3.	 Add an option to the upload script to save the configuration if it

has been saved.

	 4.	 Write a script that creates a configuration file in the same form as

words.cfg, prompting the user for the information to put in it.

Chapter 12 Runtime Configuration

219

CHAPTER 13

Data Processing
Data manipulation includes a wide range of actions, far more than can be adequately

covered in a single chapter. However, most actions are just the application of techniques

already covered in earlier chapters. Arrays are a basic data structure, and although

the syntax was covered in Chapter 5 and they were used in the fifteen puzzle code in

Chapter 11, we haven’t yet explored their uses. Parameter expansion has been used in

several chapters, but its application to parsing data structures has not been discussed.

This chapter will cover different ways of using strings and arrays, how to parse

character-delimited records into their individual fields, and how to read a data file.

There are two function libraries for manipulating two-dimensional grids, and there are

functions for sorting and searching arrays.

�Arrays
POSIX shell does not include support for arrays, but bash has used indexed arrays since

version 2.0, and in version 4.0, associative arrays were added. The main difference

between indexed arrays and associative arrays is that indexed arrays are referenced

by an integer subscript whereas the associated arrays have a string key. There is no

preset limit to the number of elements an array can contain; they are limited only by

available memory.

�Holes in an Indexed Array
If some elements of an indexed array are unset, the array is left with holes, and

it becomes a sparse array. It will then be impossible to traverse the array merely

by incrementing an index. There are various ways of dealing with such an array.

To demonstrate, let’s create an array and poke some holes (figuratively and

programmatically) in it:

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_13

https://doi.org/10.1007/978-1-4842-9588-5_13

220

array=(a b c d e f g h i j)

unset array[2] array[4] array[6] array[8]

The array now contains six elements instead of the original ten:

$ sa "${array[@]}"

:a:

:b:

:d:

:f:

:h:

:j:

One way to iterate through all the remaining elements is to expand them as

arguments to for. In this method, there is no way of knowing what the subscript for each

element is:

for i in "${array[@]}"

do

 : do something with each element, $i, here

done

With a packed array (one with no holes), the index can start at 0 and be incremented

to get the next element. With a sparse (or any) array, the ${!array[@]} expansion lists

the subscripts:

$ echo "${!array[@]}"

0 1 3 5 7 9

This expansion can be used as the argument to for:

for i in "${!array[@]}"

do

 : do something with ${array[$i]} here

done

That solution does not provide a method of referring to the next element. We can

save the previous element yet not get the value of the next one. To do that, we could put

the list of subscripts into an array and use its elements to reference the original array.

Chapter 13 Data Processing

221

Alternatively, we could pack the array, that is, use the elements of the array to create a

new array from the elements and assign it to the same variable, which removes the holes

and resets the element indexes.

$ array=("${array[@]}")

$ echo "${!array[@]}"

0 1 2 3 4 5

Note T his will convert an associative array to an indexed array.

We can also assign a string key value to the array, that is, create an associative array.

�Using an Array for Sorting
Ordering data alphabetically (or numerically) is not usually a task for the shell. The sort

command is a very flexible and efficient tool that can handle most sorting needs. There

are, however, a couple of cases where sorting can best be done by the shell.

The most obvious is file name expansion, in which the result of expanding wildcards

is always sorted alphabetically. This is useful, for example, when working with date-

stamped files. If the date stamp uses the standard ISO format, YYYY-MM-DD, or a

compressed version, YYYYMMDD, the files will automatically be sorted in date order. If we

have files in the format log.YYYYMMDD, this loops through them in chronological order:

for file in log.* ## loop through files in chronological order

do

 : do whatever

done

There is no need to use ls; the shell sorts the wildcard expansion.

Since bash-4.x, another expansion is sorted alphabetically: associative arrays with

single-character subscripts:

$ declare -A q

$ q[c]=1 q[d]=2 q[a]=4

$ sa "${q[@]}"

Chapter 13 Data Processing

222

:2:

:1:

:4:

Note I n bash 5.1.x, the array indexes are sorted in descending order.

This led to writing a function that sorts the letters of a word (Listing 13-1).

Listing 13-1.  lettersort, Sort Letters in a Word Alphabetically

lettersort() #@ Sort letters in $1, store in $2

{

 local letter string

 declare -A letters

 string=${1:?}

 while [-n "$string"]

 do

 letter=${string:0:1}

 letters["$letter"]=${letters["$letter"]}$letter

 string=${string#?}

 done

 printf -v "${2:-_LETTERSORT}" "%s" "${letters[@]}"

}

What’s the point, you ask? Take a look at these examples:

$ lettersort triangle; printf "%s\n" "$_LETTERSORT"

trnligea # in earlier versions it would have been aegilnrt

$ lettersort integral; printf "%s\n" "$_LETTERSORT"

trnligea # in earlier versions it would have been aegilnrt

When the letters are sorted, you can see that the two words contain the same letters.

Therefore, they are anagrams of each other. Try this process with the words altering,

alerting, and relating.

Chapter 13 Data Processing

223

�Insertion Sort Function
If one would want to use the external command for sort in the shell, it can be used. The

thing to note is that the function listed in Listing 13-2 is much slower than the external

sort command when dealing with more than estimated 15 to 20 elements. It inserts each

element into the correct position in an array and then prints the resulting array.

Note T he sort function is a program written in C, optimized for speed, and
compiled, whereas the script written in bash is interpreted at runtime. However,
it all depends on the number of elements you are sorting and the way your
script is structured, which determines the suitability of sort overusing your own
scripted sort.

Listing 13-2.  isort, Sort Command-Line Arguments

isort()

{

 local -a a

 a=("$1") ## put first argument in array for initial comparison

 shift ## remove first argument

 for e ## for each of the remaining arguments...

 do

 �if ["$e" \< "${a[0]}"] ## does it precede the first

element?

 then

 a=("$e" "${a[@]}") ## if yes, put it first

 elif ["$e" \> "${a[${#a[@]}-1]}"] ## if no, does it go at the end?

 then

 a=("${a[@]}" "$e") ## if yes, put it at the end

 else ## otherwise,

 n=0

 while ["${a[$n]}" \< "$e"] ## find where it goes

 do

 n=$(($n + 1))

Chapter 13 Data Processing

224

 done

 a=("${a[@]:0:n}" "$e" "${a[@]:n}") ## and put it there

 fi

 done

 printf "%s\n" "${a[@]}"

}

To put the eight Australian capital cities in alphabetical order, we can use this code:

$ �states=("New South Wales" Victoria Queensland Tasmania

"South Australia" \

 �"Western Australia" "Northern Territory" "Australian

Capital Territory")

$ �isort ${states[@]}

Australian Capital Territory

New South Wales

Northern Territory

Queensland

South Australia

Tasmania

Victoria

Western Australia

�Searching an Array
As with the isort function, this function is designed for use with relatively small arrays.

If the array contains more than a certain number of elements (50? 60? 70?), it is faster to

pipe it through grep. The function in Listing 13-3 takes the name of an array and a search

string as arguments and stores elements containing the search string in a new array,

_asearch_elements.

Listing 13-3.  asearch, Search Elements of an Array for a String

asearch() #@ Search for substring in array; results in array _asearch_

elements

{ #@ USAGE: asearch arrayname string

 local arrayname=$1 substring=$2 array

Chapter 13 Data Processing

225

 eval "array=(\"\${$arrayname[@]}\")"

 case ${array[*]} in

 "$substring") ;; ## it's there; drop through

 *) return 1 ;; ## not there; return error

 esac

 unset _asearch_elements

 for subscript in "${!array[@]}"

 do

 case ${array[$subscript]} in

 "$substring")

 _asearch_elements+=("${array[$subscript]}")

 ;;

 esac

 done

}

To see the function in action, put the Australian capital cities into an array and call

asearch:

$ capitals=(Sydney Melbourne Brisbane Hobart Adelaide \

 Perth Darwin Canberra)

$ asearch captials ne && printf "%s\n" "${_asearch_

elements[@]}"

Sydney

Melbourne

Brisbane

$ �asearch captials rt && printf "%s\n" "${_asearch_

elements[@]}"

Hobart

Perth

�Reading an Array into Memory
There are various ways of reading a file into an array with bash. The most obvious is also

the slowest, a while read loop:

Chapter 13 Data Processing

226

unset array

while read line

do

 array+=("$line")

done < "$kjv" ## kjv is defined in Chapter 8

A faster method that is still portable uses the external command, cat:

IFS=$'\n' �## split on newlines, so each line is a

separate element

array=($(cat "$kjv"))

In bash, cat is unnecessary, the redirection itself can serve the functionality of the

cat command:

array=$(< "$kjv") ## IFS is still set to a newline

With bash-4.x, a new built-in command, mapfile, is even faster:

mapfile -t array < "$kjv"

The options to mapfile allow you to select the line at which to start reading (actually,

it’s the number of lines to skip before starting to read), the number of lines to read, and

the index at which to start populating the array. If no array name is given, the variable

MAPFILE is used.

The following are the seven options to mapfile:

•	 -n num: Reads no more than num lines.

•	 -O index: Begins populating the array at element index.

•	 -s num: Discards the first num lines.

•	 -t: Removes the trailing newline from each line.

•	 -u fd: Reads from input stream fd instead of the standard input.

•	 -C callback: Evaluates the shell command callback every N lines,

where N is set by -c N.

•	 -c N: Specifies the number of lines between each evaluation of

callback; the default is 5000.

Chapter 13 Data Processing

227

With older versions of bash, you could use sed to extract ranges of lines from a file;

with bash-4.x, you could use mapfile. Listing 13-4 installs a function that uses mapfile

if the version of bash is 4.x or greater, but sed is used if not.

Listing 13-4.  getlines, Store a Range of Lines from a File in an Array

if ["${BASH_VERSINFO[0]}" -ge 4]

then

 getlines() #@ USAGE: getlines file start num arrayname

 {

 mapfile -t -s$(($2 - 1)) -n ${3:?} "$4" < "$1"

 }

else

 getlines() #@ USAGE: getlines file start num arrayname

 {

 local IFS=$'\n' getlinearray arrayname=${4:?}

 getlinearray=($(sed -n "$2,$(($2 - 1 + $3)) p" "$1"))

 eval "$arrayname=(\"\${getlinearray[@]}\")"

 }

fi

Process substitution and external utilities can be used with mapfile to extract

portions of a file using different criteria:

mapfile -t exodus < <(grep ^Exodus: "$kjv") ## store the book of Exodus

mapfile -t books < <(cut -d: -f1 "$kjv" | uniq) ## store names of all

books in KJV

Tip  We can also use readarray to read the data from a file into an array; it is
basically an alias for mapfile.

Chapter 13 Data Processing

228

�Two-Dimensional Grids
Programmers often have to deal with two-dimensional grids. Crossword puzzles are a

grid, a chess game has a grid, games like tic-tac-toe are a smaller grid, and fifteen as seen

earlier in Chapter 11 is a board game that also utilizes a grid.

The obvious structure to use for these is a two-dimensional array. The dilemma is

that bash has only one-dimensional arrays, which requires a workaround to simulate two

dimensions. This can be achieved by creating an array, a string, and an array of strings –

namely, a “poor man’s array” (see Chapter 9).

For a chess game, an associative array could be used, with the squares identified

using the standard algebraic notations (SAN) for squares such as a1, b1, up to g8, and h8.

declare -A chessboard

chessboard["a1"]=R

chessboard["a2"]=P

: ... 60 squares skipped

chessboard["g8"]=r

chessboard["h8"]=b

This is a common way to represent the array where in the array each element is a

string that represents a rank.

chessboard=(

 RNBQKBRN

 PPPPPPPP

" "

" "

" "

" "

 pppppppp

 rnbqkbnr

)

Another preference, when using bash, could be to use a simple indexed array:

chessboardarray=(

R N B Q K B R N

P P P P P P P P

Chapter 13 Data Processing

229

"" "" "" "" "" "" "" ""

"" "" "" "" "" "" "" ""

"" "" "" "" "" "" "" ""

"" "" "" "" "" "" "" ""

p p p p p p p p

r n b q k b n r

)

Or in a POSIX shell, it could be a single string:

chessboard="RNBQKBRNPPPPPP

PP pppppppprnbqkbnr"

Next, let us look at two function libraries, one for dealing with grids in a single string

and the other for grids stored in arrays.

�Working with Single-String Grids
We will create a function library, stringgrid- funcs, for dealing with two-dimensional

grids stored in a single string. There is a function to initialize all elements of a grid to a

given character and one to calculate the index in the string of a character based on the x

and y coordinates. There’s one to fetch the character in the string using x/y and one to

place a character into the grid at x/y. Finally, there are functions to print a grid, starting

either with the first row or with the last row. These functions only work with square grids.

�Function: initgrid
Given the name of the grid (i.e., the variable name), the size, and optionally the character

with which to fill it, initgrid (Listing 13-5) creates a grid with the parameters supplied.

If no character is supplied, a space is used.

Listing 13-5.  initgrid, Create a Grid and Fill It

initgrid() #@ Fill N x N grid with a character

{ #@ USAGE: initgrid gridname size [character]

 ## If a parameter is missing, it's a programming error, so exit

 local grid gridname=${1:?} char=${3:- } size

Chapter 13 Data Processing

230

 export gridsize=${2:?} ## set gridsize globally

 size=$(($gridsize ** 2)) ## total number of characters in grid

 �printf -v grid "%$size.${size}s" " " ## print string of spaces to

variable

 eval "$gridname=\${grid// /"$char"}" ## replace spaces with desired

character

}

The length of the string is the number of squares in a row of the grid, which is also

the grid size. A string of that length is created using a width specification in printf, with

the -v option to save it to a variable supplied as an argument. Pattern substitution then

replaces the spaces with the requested string.

This and the other functions in this library use the ${var:?} expansion, which

displays an error and exits the script if there is no value for the parameter. This is

appropriate because it is a programming error, not a user error if a parameter is missing.

Even if it’s missing because the user failed to supply it, it is still a programming error; the

script should have checked that a value had been entered.

A tic-tac-toe grid is a string of nine spaces. For something this simple, the initgrid

function is hardly necessary, but it is a useful abstraction:

$. stringgrid-funcs

$ initgrid ttt 3 "="

$ sa "$ttt" ## The sa script/function has been used in previous

chapters

:=========:

�Function: gridindex
We can use simple algebra to store the x and y coordinates as a single index number.

This can be simply achieved by first subtracting 1 from the row number (y) and then

multiplying it by the gridsize and then adding the column (x) - 1. In Listing 13-6,

gridindex is a simple formula that could be used inline when needed, but again the

abstraction makes using string grids easier and localizes the formula so that if there is a

change, it only needs fixing in one place.

Chapter 13 Data Processing

231

Listing 13-6.  gridindex, Calculate Index from Row and Column

gridindex() #@ Store row/column's index into string in var or $_gridindex

{ #@ USAGE: gridindex row column [gridsize] [var]]

 local row=${1:?} col=${2:?}

 �## If gridsize argument is not given, take it from definition in

calling script

 local gridsize=${3:-$gridsize}

 �printf -v "${4:-_GRIDINDEX}" "%d" "$((($row - 1) * $gridsize +

$col - 1))"

}

What’s the index of row 2, column 3 in the tic-tac-toe grid string?

$ gridindex 2 3 ## gridsize=3

$ echo "$_GRIDINDEX"

5

�Function: putgrid
To change a character in the grid string, putgrid (Listing 13-7) takes four arguments: the

name of the variable containing the string, the row and column coordinates, and the new

character. It splits the string into the part before the character and the part after it using

bash’s substring parameter expansion. It then sandwiches the new character between

the two parts and assigns the composite string to the gridname variable. (Compare this

with the _overlay function in Chapter 7.)

Listing 13-7.  putgrid, Insert Character in Grid at Specified Row and Column

putgrid() #@ Insert character int grid at row and column

{ #@ USAGE: putgrid gridname row column char

 local gridname=$1 ## grid variable name

 �local left right �## string to left and right of character to

be changed

 local index ## result from gridindex function

 local char=${4:?} ## character to place in grid

 local grid=${!gridname} ## get grid string though indirection

Chapter 13 Data Processing

232

 gridindex ${2:?} ${3:?} "$gridsize" index

 left=${grid:0:index}

 right=${grid:index+1}

 grid=$left$4$right

 eval "$gridname=\$grid"

}

Here’s the code for the first move in a tic-tac-toe game:

$ putgrid ttt 1 2 X

$ sa "$ttt"

: X :

�Function: getgrid
The opposite of putgrid is getgrid (Listing 13-8). It returns the character in a given

position. Its arguments are the grid name (we could have used the string itself

because nothing is being assigned to it, but the grid name is used for consistency), the

coordinates, and the name of the variable in which to store the character. If no variable

name is supplied, it is stored in _GRIDINDEX.

Listing 13-8.  getgrid, Get Character at Row and Column Location in Grid

getgrid() #@ Get character from grid in row Y, column X

{ #@ USAGE: getgrid gridname row column var

 : ${1:?} ${2:?} ${3:?} ${4:?}

 local grid=${!1}

 gridindex "$2" "$3"

 eval "$4=\${grid:_GRIDINDEX:1}"

}

This snippet returns the piece in the square e1. A chess utility would convert the

square to coordinates and then call the getgrid function. Here, it is used directly:

$ gridsize=8

$ chessboard="RNBQKBRNPPPPPP

PP pppppppprnbqkbnr"

Chapter 13 Data Processing

233

$ getgrid chessboard 1 5 e1

$ sa "$e1"

:K:

Note T here are 32 spaces in the code shown previously as they represent the
middle four rows of the chessboard.

�Function: showgrid
This function (Listing 13-9) extracts rows from a string grid using substring expansion

and the gridsize variable and prints them to the standard output.

Listing 13-9.  showgrid, Print a Grid from a String

showgrid() #@ print grid in rows to stdout

{ #@ USAGE: showgrid gridname [gridsize]

 local grid=${!1:?} gridsize=${2:-$gridsize}

 local row ## the row to be printed, then removed from local copy of grid

 while [-n "$grid"] ## loop until there's nothing left

 do

 row=${grid:0:"$gridsize"} �## get first $gridsize characters

from grid

 printf "\t:%s:\n" "$row" ## print the row

 grid=${grid#"$row"} ## remove $row from front of grid

 done

}

Here, another move is added to the tic-tac-toe board and displays it:

$ gridsize=3 �## reset gridsize after changing it for

the chessboard

$ putgrid ttt 2 2 O ## add O's move in the center square

$ showgrid ttt ## print it

Chapter 13 Data Processing

234

 : X :

 : O :

 : :

�Function: rshowgrid
For most grids, counting begins in the top left corner. For others, such as a chessboard,

it starts in the lower left corner. To display a chessboard, the rshowgrid function extracts

and displays rows starting from the end of the string rather than from the beginning.

In Listing 13-10, substring expansion is used with a negative.

Listing 13-10.  rshowgrid, Print a Grid in Reverse Order

rshowgrid() #@ print grid to stdout in reverse order

{ #@ USAGE: rshowgrid grid [gridsize]

 local grid gridsize=${2:-$gridsize} row

 grid=${!1:?}

 while [-n "$grid"]

 do

 ## Note space before minus sign

 ## to distinguish it from default value substitution

 row=${grid: -$gridsize} ## get last row from grid

 printf "\t:%s:\n" "$row" ## print it

 grid=${grid%"$row"} ## remove it

 done

}

Here, rshowgrid is used to display the first move of a chess game. (For those who are

interested, the opening is called Bird’s Opening. It’s not often played, but Chris has been

using it successfully for 45 years.)

$ gridsize=8

$ chessboard="RNBQKBRNPPPPPP

PP pppppppprnbqkbnr"

$ putgrid chessboard 2 6 ' '

$ putgrid chessboard 4 6 P

$ rshowgrid chessboard

Chapter 13 Data Processing

235

 :rnbqkbnr:

 :pppppppp:

 : :

 : :

 : P :

 : :

 :PPPPP PP:

 :RNBQKBRN:

These output functions can be augmented by piping the output through a utility

such as sed or awk or even replaced with a custom function for specific uses. He finds

that the chessboard looks better when piped through sed to add some spacing:

$ rshowgrid chessboard | sed 's/./& /g' �## add a space

after every

character

 : r n b q k b n r :

 : p p p p p p p p :

 : :

 : :

 : P :

 : :

 : P P P P P P P :

 : R N B Q K B R N :

�Two-Dimensional Grids Using Arrays
For many grids, a single string is more than adequate (and is portable to other shells),

but an array-based grid offers more flexibility. In the fifteen puzzle in Chapter 11, the

board is stored in an array. It is printed with printf using a format string that can easily

be changed to give it a different look. The tic-tac-toe grid in an array could be as follows:

$ ttt=("" X "" "" O "" "" X "")

And this is the format string:

$ fmt="

 | |

Chapter 13 Data Processing

236

 %1s | %1s | %1s

----+---+----

 %1s | %1s | %1s

----+---+----

 %1s | %1s | %1s

 | |

 "

And the result, when printed, looks like this:

$ printf "$fmt" "${ttt[@]}"

 | |

 | X |

----+---+----

 | O |

----+---+----

 | X |

 | |

If the format string is changed to this:

fmt="

 _/ _/

 %1s _/ %1s _/ %1s

 _/ _/

//_/_/_/_/_/_/_/_/

 _/ _/

 %1s _/ %1s _/ %1s

 _/ _/

//_/_/_/_/_/_/_/_/

 _/ _/

 %1s _/ %1s _/ %1s

 _/ _/

"

the output will look like this:

 _/ _/

Chapter 13 Data Processing

237

 _/ X _/

 _/ _/

//_/_/_/_/_/_/_/_/

 _/ _/

 _/ O _/

 _/ _/

//_/_/_/_/_/_/_/_/

 _/ _/

 _/ X _/

 _/ _/

The same output could be achieved with a single-string grid, but it would require

looping over every character in the string. An array is a group of elements that can be

addressed individually or all at once, depending on the need.

The functions in arraygrid-funcs mirror those in stringgrid-funcs. In fact, the

gridindex function is identical to the one in stringgrid-funcs, so it’s not repeated

here. As with the sdtring grid functions, some of them expect the size of the grid to be

available in a variable, agridsize.

�Function: initagrid
Most of the functions for array grids are simpler than their single-string counterparts. A

notable exception is initagrid (Listing 13-11), which is longer and slower, due to the

necessity of a loop instead of a simple assignment. The entire array may be specified as

arguments, and any unused array elements will be initialized to an empty string.

Listing 13-11.  initagrid, Initialize a Grid Array

initagrid() #@ Fill N x N grid with supplied data (or placeholders if none)

{ #@ USAGE: initagrid gridname size [character ...]

 ## If a required parameter is missing, it's a programming error, so exit

 local grid gridname=${1:?} char=${3:- } size

 export agridsize=${2:?} ## set agridsize globally

 size=$(($agridsize * $agridsize)) ## total number of elements in grid

 shift 2 ## Remove first two arguments, gridname and agridsize

 grid=("$@") ## What's left goes into the array

Chapter 13 Data Processing

238

 while [${#grid[@]} -lt $size]

 do

 grid+=("")

 done

 eval "$gridname=(\"\${grid[@]}\")"

}

�Function: putagrid
Changing a value in an array is a straightforward assignment. Unlike changing a

character in a string, there is no need to tear it apart and put it back together. All that’s

needed is the index calculated from the coordinates. This function (Listing 13-12)

requires agridsize to be defined.

Listing 13-12.  putagrid, Replace a Grid Element

putagrid() #@ Replace character in grid at row and column

{ #@ USAGE: putagrid gridname row column char

 local left right pos grid gridname=$1

 local value=${4:?} index

 gridindex ${2:?} ${3:?} "$agridsize" index ## calculate the index

 eval "$gridname[index]=\$value" ## assign the value

}

�Function: getagrid
Given the x and y coordinates, getagrid fetches the value at that position and stores it in

a supplied variable (Listing 13-13).

Listing 13-13.  getagrid, Extract an Entry from a Grid

getagrid() #@ Get entry from grid in row Y, column X

{ #@ USAGE: getagrid gridname row column var

 : ${1:?} ${2:?} ${3:?} ${4:?}

 local grid

Chapter 13 Data Processing

239

 eval "grid=(\"\${$1[@]}\")"

 gridindex "$2" "$3"

 eval "$4=\${grid[$_GRIDINDEX]}"

}

�Function: showagrid
The function showagrid (Listing 13-14) prints each row of an array grid on a

separate line.

Listing 13-14.  showagrid, Description

showagrid() #@ print grid to stdout

{ #@ USAGE: showagrid gridname format [agridsize]

 local gridname=${1:?} grid

 local format=${2:?}

 local agridsize=${3:-${agridsize:?}} row

 eval "grid=(\"\${$1[@]}\")"

 printf "$format" "${grid[@]}"

}

�Function: rshowagrid
The function rshowagrid (Listing 13-15) prints each row of an array grid on a separate

line in reverse order.

Listing 13-15.  rshowagrid, Description

rshowagrid() #@ print grid to stdout in reverse order

{ #@ USAGE: rshowagrid gridname format [agridsize]

 local format=${2:?} temp grid

 local agridsize=${3:-$agridsize} row

 eval "grid=(\"\${$1[@]}\")"

 while ["${#grid[@]}" -gt 0]

 do

 ## Note space before minus sign

Chapter 13 Data Processing

240

 ## to distinguish it from default value substitution

 printf "$format" "${grid[@]: -$agridsize}"

 grid=("${grid[@]:0:${#grid[@]}-$agridsize}")

 done

}

�Data File Formats
Data files are used for many purposes and come in many different flavors, which are

divided into two main types: line oriented and block oriented. In line-oriented files, each

line is a complete record, usually with fields separated by a certain character. In block-

oriented files, each record can span many lines, and there may be more than one block

in a file. In some formats, a record is more than one block (a chess game in PGN format,

for example, is two blocks separated by a blank line).

The shell is not the best language for working with large files of data; it is better when

working with individual records. However, there are utilities such as sed and awk that can

work efficiently with large files and extract records to pass to the shell. This section deals

with processing single records.

�Line-Based Records
Line-based records are those where each line in the file is a complete record. It will

usually be divided into fields by a delimiting character, but sometimes the fields are

defined by length: the first 20 characters are the names, the next 20 are the first line of

the address, and so on.

When the files are large, the processing is usually done by an external utility such

as sed or awk. Sometimes, an external utility will be used to select a few records for the

shell to process. This snippet searches the password file for users whose shell is bash and

feeds the results to the shell to perform some (unspecified) checks:

grep 'bash$' /etc/passwd |

while read line

do

 : perform some checking here

done

Chapter 13 Data Processing

241

�Delimiter-Separated Values
Most single-line records will have fields delimited by a certain character. In /etc/

passwd, the delimiter is a colon. In other files, the delimiter may be a tab, tilde, or,

very commonly, a comma. For these records to be useful, they must be split into their

separate fields.

When records are received on an input stream, the easiest way to split them is to

change IFS and read each field into its own variable:

grep 'bash$' /etc/passwd |

while IFS=: read user passwd uid gid name homedir shell

do

 printf "%16s: %s\n" \

 User "$user" \

 Password "$passwd" \

 "User ID" "$uid" \

 "Group ID" "$gid" \

 Name "$name" \

"Home directory" "$homedir" \

 Shell "$shell"

 read < /dev/tty

done

Sometimes, it is not possible to split a record as it is read, such as if the record will be

needed in its entirety as well as split into its constituent fields. In such cases, the entire

line can be read into a single variable and then split later using any of several techniques.

For all of these, the examples here will use the root entry from /etc/passwd:

record=root:x:0:0:root:/root:/bin/bash

The fields can be extracted one at a time using parameter expansion:

for var in user passwd uid gid name homedir shell

do

 eval "$var=\${record%%:*}" ## extract the first field

 record=${record#*:} ## and take it off the record

done

Chapter 13 Data Processing

242

As long as the delimiting character is not found within any field, records can be split

by setting IFS to the delimiter. When doing this, file name expansion should be turned

off (with set -f) to avoid expanding any wildcard characters. The fields can be stored in

an array, and variables can be set to reference them:

IFS=:

set -f

data=($record)

user=0

passwd=1

uid=2

gid=3

name=4

homedir=5

shell=6

The variable names are the names of the fields that can then be used to retrieve

values from the data array:

$ echo;printf "%16s: %s\n" \

 User "${data[$user]}" \

 Password "${data[$passwd]}" \

 "User ID" "${data[$uid]}" \

 "Group ID" "${data[$gid]}" \

 Name "${data[$name]}" \

"Home directory" "${data[$homedir]}" \

 Shell "${data[$shell]}"

 User: root

 Password: x

 User ID: 0

 Group ID: 0

 Name: root

 Home directory: /root

 Shell: /bin/bash

It is more usual to assign each field to a scalar variable. This function (Listing 13-16)

takes a passwd record and splits it on colons and assigns fields to the variables.

Chapter 13 Data Processing

243

Listing 13-16.  split_passwd, Split a Record from /etc/passwd into Fields and

Assign to Variables

split_passwd() #@ USAGE: split_passwd RECORD

{

 local opts=$- ## store current shell options

 local IFS=:

 local record=${1:?} array

 set -f ## Turn off filename expansion

 array=($record) ## Split record into array

 case $opts in *f*);; *) set +f;; esac �## Turn on expansion if

previously set

 user=${array[0]}

 passwd=${array[1]}

 uid=${array[2]}

 gid=${array[3]}

 name=${array[4]}

 homedir=${array[5]}

 shell=${array[6]}

}

The same thing can be accomplished using a here document (Listing 13-17).

Listing 13-17.  split_passwd, Split a Record from /etc/passwd into Fields and

Assign to Variables

split_passwd()

{

 IFS=: read user passwd uid gid name homedir shell <<.

$1

.

}

More generally, any character-delimited record can be split into variables for each

field with this function (Listing 13-18).

Chapter 13 Data Processing

244

Listing 13-18.  split_record, Split a Record by Reading Variables

split_record() #@ USAGE parse_record record delimiter var ...

{

 local record=${1:?} IFS=${2:?} ## record and delimiter must be provided

 : ${3:?} ## at least one variable is required

 �shift 2 �## remove record and delimiter, leaving

variables

 ## Read record into a list of variables using a 'here document'

 read "$@" <<.

$record

.

}

Using the record defined earlier, here’s the output:

$ �split_record "$record" : user passwd uid gid name

homedir shell

$ �sa "$user" "$passwd" "$uid" "$gid" "$name" "$homedir"

"$shell"

:root:

:x:

:0:

:0:

:root:

:/root:

:/bin/bash:

�Fixed-Length Fields
Less common than delimited fields are fixed-length fields. They aren’t used often, but

when they are, they would be looped through name=width strings to parse them, which is

how many text editors import data from fixed-length field data files:

line="John 123 Fourth Street Toronto

Canada "

for nw in name=15 address=20 city=12 country=22

Chapter 13 Data Processing

245

do

 var=${nw%%=*} ## variable name precedes the equals sign

 width=${nw#*=} ## field width follows it

 eval "$var=\${line:0:width}" ## extract field

 line=${line:width} ## remove field from the record

done

�Block File Formats
Among the many types of block data files to work with is the portable game notation

(PGN) chess file. It stores one or more chess games in a format that is both human

readable and machine readable. All chess programs can read and write this format.

Each game begins with a seven-tag roster that identifies where and when the game

was played, who played it, and the results. This is followed by a blank line and then the

moves of the game.

Here’s a PGN chess game file (https://en.wikipedia.org/wiki/Portable_Game_

Notation):

[Event "ICS rated blitz match"]

[Site "69.36.243.188"]

[Date "2009.06.07"]

[Round "-"]

[White "torchess"]

[Black "FidelCastro"]

[Result "1-0"]

1. f4 c5 2. e3 Nc6 3. Bb5 Qc7 4. Nf3 d6 5. b3 a6 6. Bxc6+ Qxc6 7. Bb2 Nf6

8. O-O e6 9. Qe1 Be7 10. d3 O-O 11. Nbd2 b5 12. Qg3 Kh8 13. Ne4 Nxe4 14.

Qxg7#

{FidelCastro checkmated} 1-0

We can use a while loop to read the tags and then mapfile to get the moves of the

game. The gettag function extracts the value from each tag and assigns it to the tag

name (Listing 13-19).

Chapter 13 Data Processing

https://en.wikipedia.org/wiki/Portable_Game_Notation
https://en.wikipedia.org/wiki/Portable_Game_Notation

246

Listing 13-19.  readpgn, Parse a PGN Game and Print the Game in a Column

pgnfile="${1:?}"

header=0

game=0

gettag() #@ create a variable with the same name and value as the tag

{

 local tagline=$1

 tag=${tagline%% *} ## get line before the first space

 tag=${tag#?} ## remove the open bracket

 IFS='"' read a val b <<. ## get the 2nd field, using " as delimiter

 $tagline

.

 eval "$tag=\$val"

}

{

 while IFS= read -r line

 do

 case $line in

 \[*) gettag "$line" ;;

 "") [-n "$Event"] && break;; �## skip blank lines at

beginning of file

 esac

 done

 mapfile -t game ## read remainder of the file

} < "$pgnfile"

remove blank lines from end of array

while [-z "${game[${#game[@]}-1]}"]

do

 unset game[${#game[@]}-1]

done

print the game with header

echo "Event: $Event"

echo "Date: $Date"

echo

set -f

Chapter 13 Data Processing

247

printf "%4s %-10s %-10s\n" "" White Black "" ========== ========== \

 "" "$White" "$Black" ${game[@]:0:${#game[@]}-1}

printf "%s\n" "${game[${#game[@]}-1]}"

�Summary
This chapter only scratched the surface of the possibilities for data manipulation, but it

is hoped that it will provide techniques to solve some of your needs and provide hints for

others. Much of the chapter involved using the most basic of programming structures:

arrays. Techniques were shown for working with single-line, character-delimited records

and basic techniques for working with blocks of data in files.

�Exercises

	 1.	 Modify the isort and asearch functions to use sort and grep,

respectively, if the array exceeds a certain size.

	 2.	 Write a function that transposes rows and columns in a

grid (either a single-string grid or an array). For example,

transform these:

123

456

789

into these:

147

256

369

	 3.	 Convert some of the grid functions, either string or array versions,

to work with grids that are not square, for example, 6 × 3.

	 4.	 Convert the code that parses fixed-width records into a function

that accepts the line of data as the first argument, followed by the

varname=width list.

Chapter 13 Data Processing

249

CHAPTER 14

Scripting the Screen
Unix purists will shake their heads over this chapter. Traditionally, screen manipulation

is done through the termcap or terminfo database that supplies the information

necessary to manipulate any of dozens or even hundreds of types of terminals. The shell

interface to the database is an external command, tput.

On some systems, tput uses the termcap database; on others (mostly newer

systems), it uses the terminfo database. The commands for the two databases are not

the same, so a tput command written for one system may not work on another.

On one system, the command to place the cursor at the 20th column on the 10th row

is as follows:

tput cup 9 19

On another system, this is the command:

tput cm 9 19

These commands will produce the correct output for whatever type of terminal is

specified in the TERM variable. (Note: tput starts counting at 0.)

However, the plethora of terminal types has, for all intents and purposes, been

reduced to a single, standard type. This standard, ISO 6429 (also known as ECMA-48

and formerly known as ANSI X3.64 or VT100), is ubiquitous, and terminals that do not

support it are few and far between. As a result, it is now feasible to code for a single

terminal type. One advantage of this homogeneity is that the necessary coding can be

done entirely within the shell. There’s no need for an external command.

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_14

https://doi.org/10.1007/978-1-4842-9588-5_14

250

�Teletypewriter vs. Canvas
There are two methods of sending the output of a script to a terminal screen. The first

and more traditional method uses the terminal as if it were a printer or teletypewriter

(which is the origin of the abbreviation tty for the screen or terminal). In this mode, as

each line is printed, the paper (or screen image) is scrolled up. Old lines fall to the floor

(or disappear off the top of the screen). It’s simple, and it is more than adequate for many

applications.

The second method treats the screen as a blackboard or canvas and prints to specific

points on its surface. It erases and overprints previously written sections. It may print

text in columns or at specific locations on the screen. The terminal becomes a random-

access, rather than serial, device.

This chapter looks at the screen as a canvas or blackboard. It defines a number of

variables and functions for screen manipulation as well as presents some demonstration

programs that use them.

�Stretching the Canvas
To use the screen as a canvas, the most important capability is to be able to

position the cursor at any given location on the screen. The sequence for that is

ESC[<ROW>;<COL>H. When converted to a printf format string, it can be used directly or

in a function:

cu_row_col=$'\e[%d;%dH'

printf "$cu_row_col" 5 10 ## Row 5, column 10

echo "Here I am!"

All of the functions in this chapter are part of the screen-funcs library, which

sources the screen-vars file. Listing 14-1 gives the screen manipulation function.

Listing 14-1.  screen-funcs, Library of Screen Manipulation Functions

. screen-vars

The printat function (Listing 14-2) places the cursor at the requested location,

and if there are any further arguments, it prints them. If the row and column are not

specified, printat moves the cursor to the top left corner of the screen.

Chapter 14 Scripting the Screen

251

Listing 14-2.  printat, Place the Cursor at a Specified Location and Print

Optional String

printat() #@ USAGE: printat [row [column [string]]]

{

 printf "${cu_row_col?}" ${1:-1} ${2:-1}

 if [$# -gt 2]

 then

 shift 2

 printf "%s" "$*"

 fi

}

�Control Sequence Introducer
Like all the escape sequences, cu_row_col begins with ESC[. This is the control sequence

introducer (CSI). It is defined in the screen-vars file (Listing 14-3).

Listing 14-3.  screen-vars, Screen Variable Definitions

ESC=$'\e'

CSI=$ESC[

�Priming the Canvas
Before drawing on the screen, it must usually be cleared, and from time to time, various

parts of the screen will need to be cleared. These variables contain the fundamental

sequences for clearing the screen or lines (Listing 14-4).

Listing 14-4.  screen-vars, Variable Definitions for Erasing All or Part of

the Screen

topleft=${CSI}H ## move cursor to top left corner of screen

cls=${CSI}J ## clear the screen

clear=$topleft$cls ## clear the screen and move to top left corner

clearEOL=${CSI}K ## clear from cursor to end of line

Chapter 14 Scripting the Screen

252

clearBOL=${CSI}1K ## clear from cursor to beginning of line

clearEOS=${CSI}0J ## clear from cursor to end of screen

clearBOS=${CSI}1J ## clear from cursor to beginning of screen

There are also functions for clearing rectangular areas of the screen, which are

presented later in the chapter.

�Moving the Cursor
Besides being moved to an absolute location, the cursor can be moved relative to its

current position. The first four sequences are the same as those generated by the cursor

keys, and they take arguments for moving more than one line or column. The next two

turn the cursor on and off. The following two variables save the cursor position and

move it back to the saved position, respectively.

The last two move to the next or previous line at the same column as the beginning

of the previously printed line. The printf specifier, %s, is removed because it would

consume arguments that are to be printed (Listing 14-5).

Listing 14-5.  screen-vars, Variable Definitions for Moving the Cursor

cursor movement strings

 cu_up=${CSI}%sA

 cu_down=${CSI}%sB

 cu_right=${CSI}%sC

 cu_left=${CSI}%sD

turn the cursor off and on

 cu_hide=${CSI}?25l

 cu_show=${CSI}?12l${CSI}?25h

save the cursor position

 cu_save=${CSI}s ## or ${ESC}7

move cursor to saved position

 cu_restore=${CSI}u ## or ${ESC}8

move cursor to next/previous line in block

 cu_NL=$cu_restore${cu_down/\%s/}$cu_save

 cu_PL=$cu_restore${cu_up/\%s/}$cu_save

Chapter 14 Scripting the Screen

253

The format strings for cursor movement use the %s specifier rather than %d, even though

any argument will be a number. This is because printf replaces %d with a zero when there is

no argument to fill it. If that happened, the cursor would not move at all. With %s, they move

one column or row when there is no argument because %s is replaced by a null string.

The script in Listing 14-6 puts these variables and the printat function to work.

Listing 14-6.  screen-demo1, Script to Make printat Work

. screen-funcs ## source the screen-

funcs library

printf "$clear$cu_hide" ## Clear the screen and hide

the cursor

printat 10 10 "${cu_save}XX" ## move, save position, and

print XX

sleep 1 ## ZZZZZZZZ

printat 20 20 "20/20" ## move and print

sleep 1 ## ZZZZZZZZ

printf "$cu_restore$cu_down${cu_save}YY" ## restore pos., move, print,

save pos.

sleep 1 ## ZZZZZZZZ

printf "$cu_restore$cu_down${cu_save}ZZ" 4 ## restore pos., move, print,

save pos.

sleep 1 ## ZZZZZZZZ

printat 1 1 "$cu_show" ## move to top left and

show cursor

For a variation, try changing the coordinates of the first printat command to other

values, say, 5 and 40.

�Changing Rendition Modes and Colors
Characters can be printed in bold, underline, or reverse modes as well as in various

colors for those terminals that support them. (Are there any left that don’t?) These

attributes are all modified with a sequence in the form ESC [ATTRm, where ATTR is the

number of an attribute or color (Listing 14-7). Multiple attributes can be specified by

separating them with semicolons.

Chapter 14 Scripting the Screen

254

Colors are specified with the integers 0 to 7, and 9 will reset to the default. These

are prefixed by 3 for foreground color and 4 for background color. Attributes are also

specified by 0 to 7 but without a prefix. Though eight attributes are defined, only three

are widely supported: 1 (bold), 4 (underline), and 7 (reverse). These attributes can be

turned off individually with the values 22, 24, and 27, respectively. A value of 0 resets all

attributes and colors to their defaults.

Listing 14-7.  screen-vars, Variable Definitions for Colors and Attributes

colours

 black=0

 red=1

 green=2

 yellow=3

 blue=4

 magenta=5

 cyan=6

 white=7

 fg=3 ## foreground prefix

 bg=4 ## background prefix

attributes

 bold=1

 underline=4

 reverse=7

set colors

 set_bg="${CSI}4%dm" ## set background color

 set_fg="${CSI}3%dm" ## set foreground color

 set_fgbg="${CSI}3%d;4%dm" ## set foreground and background colors

As the next demonstration script shows, the colors and attributes can be used in “tty”

mode as well as “canvas” mode (Listing 14-8).

Listing 14-8.  screen-demo2, Color and Attributes Mode

. screen-funcs

echo

for attr in "$underline" 0 "$reverse" "$bold" "$bold;$reverse"

Chapter 14 Scripting the Screen

255

do

 printf "$set_attr" "$attr"

 printf "$set_fg %s " "$red" RED

 printf "$set_fg %s " "$green" GREEN

 printf "$set_fg %s " "$blue" BLUE

 printf "$set_fg %s " "$black" BLACK

 printf "\e[m\n"

done

echo

�Placing a Block of Text on the Screen
The put_block function prints its arguments one beneath the other at the current cursor

position; put_block_at moves the cursor to the specified location, shifts the arguments

to remove the row and column, and then calls put_block with the remaining arguments

(Listing 14-9).

The cu_NL variable moves the cursor to the saved position and then moves down a

line and saves that position.

Listing 14-9.  put_block and put_block_ at, Print a Block of Text Anywhere on

the Screen

put_block() #@ Print arguments in a block beginning at the current position

{

 printf "$cu_save" ## save cursor location

 printf "%s$cu_NL" "$@" �## restore cursor location, move line down,

save cursor

}

put_block_at() #@ Print arguments in a block at the position in $1 and $2

{

 printat "$1" "$2"

 shift 2

 put_block "$@"

}

Chapter 14 Scripting the Screen

256

Listing 14-10 shows the script for screen-demo3, which displays blocks of data on the

screen in columnar format.

Listing 14-10.  screen-demo3

. screenfuncs

printf "$cls"

put_block_at 3 12 First Second Third Fourth Fifth

put_block_at 2 50 January February March April May June July

The output of screen-demo3 is as follows:

 January

 First February

 Second March

 Third April

 Fourth May

 Fifth June

 July

The put_block and put_block_at functions work well when the screen is empty. If

there’s a lot of text already on the screen, the output may be obscured. For those cases,

there are the print_block_at and print_block functions that clear a rectangular area

around the block.

To determine the width that needs to be cleared, put_block passes its arguments

to the _max_length function, which loops through the arguments to find the longest

(Listing 14-11).

Listing 14-11.  _max_length, Store Length of the Longest Argument in _MAX_LENGTH

_max_length() #@ store length of longest argument in _MAX_LENGTH

{

 local var

 _MAX_LENGTH=${#1} ## initialize with length of first parameter

 shift ## ...and remove first parameter

Chapter 14 Scripting the Screen

257

 for var ## loop through remaining parameters

 do

 ["${#var}" -gt "$_MAX_LENGTH"] && _MAX_LENGTH=${#var}

 done

}

The print_block function uses the result from _max_length as a width specification

to printf (Listing 14-12). Blank lines are printed before and after the text, and a space

is printed before and after each line. The only difference between print_block_at and

put_block_at is that one calls print_block and the other calls put_block.

Listing 14-12.  print_block, Clear Area and Print Block

print_block() #@ Print arguments in a block with space around them

{

 local _MAX_LENGTH

 _max_length "$@"

 printf "$cu_save"

 printf " %-${_MAX_LENGTH}s $cu_NL" " " "$@" " "

}

print_block_at() #@ Move to position, remove 2 parameters and call

print_block

{

 printat $1 $2

 shift 2

 print_block "$@"

}

The text to be printed with either print_block or put_block is more likely to be a

single string than separate arguments. To split the string into words or phrases short

enough to fit a given space, use the wrap function (Listing 14-13). This function splits a

string into lines with a maximum width that is specified on the command line.

Chapter 14 Scripting the Screen

258

Listing 14-13.  wrap, Split the String into Array with Elements Not Exceeding

Maximum Length

wrap() #@ USAGE: wrap string length

{ #@ requires bash-3.1 or later

 local words=$1 textwidth=$2 line= opts=$-

 local len=0 templen=0

 set -f

 unset -v wrap

 for word in $words

 do

 templen=$(($len + 1 + ${#word})) ## Test adding a word

 if ["$templen" -gt "$textwidth"] ## Does adding a word exceed length?

 then

 wrap+=("$line") ## Yes, store line in array

 printf -v line "%s" "$word" ## begin new line

 len=${#word}

 else

 len=$templen ## No, add word to line

 printf -v line "%s" "${line:+"$line "}" "$word"

 fi

 done

 wrap+=("$line")

 case $opts in

 f) ;;

 *) set +f ;;

 esac

}

The sample shown in Listing 14-14 uses wrap and print_block_at.

Chapter 14 Scripting the Screen

259

Listing 14-14.  screen-demo4, Demonstrates the wrap and print_block

Functions

clear

wrap "The quick brown fox jumps over the lazy dog" 15

x=xxx

xxxxxxxxx

printat 1 1

printf "%s\n" $x{,,,,,,,,,,} ## print 11 lines of 'x's

print_block_at 3 33 "${wrap[@]}"

printat 12 1

The output is as follows:

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx The quick xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx brown fox jumps xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx over the lazy xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx dog xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xx

�Scrolling Text
By combining an array with substring expansion, text can be scrolled in any area of the

screen. Because the entire area can be printed with a single printf command, scrolling

is fast, though it gets slower as the array size increases. The demonstration in Listing 14-15

stores the file names in /usr/bin/ in the array, list; scrolls the list up; waits for a

second; and then scrolls it down.

Each loop, up and down, contains a commented-out read -t "$delay" line. When

uncommented, it will slow down the scrolling. It uses the bash-4.x fractional delay. If

you are using an earlier version, use sleep instead. Most implementations (certainly

GNU and *BSD) accept a fractional argument.

Chapter 14 Scripting the Screen

260

Listing 14-15.  scroll-demo, Scrolls a Block of Text Up and Then Down

list=(/usr/bin/*) ## try it with other directories or lists

rows=9 ## number of rows in scrolling area

delay=.01 ## delay between scroll advance

width=-33.33 ## width spec: (no more than) 33 chars,

flush left

x=XXXXXXXXXXXXXXXXXXXXXXXXXX ## bar of 'X's

x=xxxx ## longer bar

clear ## clear the screen

printf "%50.50s\n" $x{,,,,,,,,,,,,,} ## print 14 lines of 'X's

n=0 ## start display with first element

scroll upwards until reaching the bottom

while [$((n += 1)) -lt $((${#list[@]} - $rows))]

do

 printf "\e[3;1H"

 printf "\e[7C %${width}s\n" "${list[@]:n:rows}"

read -sn1 -t "$delay" && break

done

sleep 1

scroll downwards until reaching the top

while [$((n -= 1)) -ge 0]

do

 printf "\e[3;1H"

 printf "\e[7C %${width}s\n" "${list[@]:n:rows}"

read -sn1 -t "$delay" && break

done

printf "\e[15;1H" ## finish with cursor well below scrolling area

�Rolling Dice
Dice are used in many games and are simple to program if you are satisfied with printing

just the number:

printf "%s\n" "$(($RANDOM % 6 + 1))"

Chapter 14 Scripting the Screen

261

However, a respectable graphic rendition can be programmed surprisingly easily

with the shell. To print a die, position the cursor at the desired location on the screen,

set the foreground and background colors, and print the element from the array

(Figure 14-1).

Figure 14-1.  Listing 14-16 contains the code for these dice

An array of six dice can be programmed in about 25 lines of code. Each die is a

concatenation of 18 variables. Some of these have the same contents as those in the

screen-funcs library, but their names are shortened here to keep the lines shorter. Here

is a description of the die with the number 5:

$b ## set bold attribute (optional)

$cs ## save cursor position

$p0 ## print blank row

$cr ## restore cursor to left side of die

$dn ## move down one line

$cs ## save cursor position

$p4 ## print row with two pips

$cr ## restore cursor to left side of die

$dn ## move down one line

$cs ## save cursor position

$p2 ## print row with one pip

$cr ## restore cursor to left side of die

$dn ## move down one line

$cs ## save cursor position

$p4 ## print row with two pips

$cr ## restore cursor to left side of die

$dn ## move down one line

$p0 ## print blank row

Chapter 14 Scripting the Screen

262

After defining the dice, the script in Listing 14-16 clears the screen and prints two

random dice near the top of the screen.

Listing 14-16.  dice, Defines an Array of Six Dice and Places Two on the Screen

pip=o ## character to use for the pips

p0=" " ## blank line

p1=" $pip " ## one pip at the left

p2=" $pip " ## one pipe in the middle of the line

p3=" $pip " ## one pip at the right

p4=" $pip $pip " ## two pips

p5=" $pip $pip $pip " ## three pips

cs=$'\e7' ## save cursor position

cr=$'\e8' ## restore cursor position

dn=$'\e[B' ## move down 1 line

b=$'\e[1m' ## set bold attribute

cu_put='\e[%d;%dH' ## format string to position cursor

fgbg='\e[3%d;4%dm' ## format string to set colors

dice=(

 ## dice with values 1 to 6 (array elements 0 to 5)

 "bcs$p0$crdncs$p0$crdncs$p2$crdncs$p0$crdnp0"

 "bcs$p0$crdncs$p1$crdncs$p0$crdncs$p3$crdnp0"

 "bcs$p0$crdncs$p1$crdncs$p2$crdncs$p3$crdnp0"

 "bcs$p0$crdncs$p4$crdncs$p0$crdncs$p4$crdnp0"

 "bcs$p0$crdncs$p4$crdncs$p2$crdncs$p4$crdnp0"

 "bcs$p0$crdncs$p5$crdncs$p0$crdncs$p5$crdnp0"

)

clear

printf "$cu_put" 2 5 ## position cursor

printf "$fgbg" 7 0 ## white on black

printf "%s\n" "${dice[RANDOM%6]}" ## print random die

printf "$cu_put" 2 20 ## position cursor

printf "$fgbg" 0 3 ## black on yellow

printf "%s\n" "${dice[RANDOM%6]}" ## print random die

Chapter 14 Scripting the Screen

263

�Summary
Without touching on traditional ASCII art, there are many ways to draw things on a

terminal screen. This chapter has presented a number of them, giving the basics that can

be used to create many more.

�Exercises

	 1.	 Write a function, hbar, that accepts two integer arguments, a

width and a color, and prints a bar of that color and width. Write

a second function, hbar_at, that accepts four arguments: row,

column, width, and color; moves the cursor to the row and

column; and passes the remaining arguments to hbar.

	 2.	 Write a function, clear_area, that accepts two integer arguments,

rows and columns, and clears a rectangular area of that many

rows and columns.

Chapter 14 Scripting the Screen

265

CHAPTER 15

Entry-Level Programming
The preference for bash over any other POSIX shell stems to a great extent from its

extensions that enhance interactive programming. The extended options to the read

built-in command (which were described in Chapter 9), combined with the history and

readline libraries, add functionality that no other shell can match.

Despite its richness, there is still no easy way for the shell to deal with keys such as

function keys that generate multiple characters. For that, this chapter presents the key-

funcs library of functions. The second major section of this chapter describes how to use

the mouse in shell scripts and provides a demonstration program.

Between those sections, we’ll deal with checking user input for validity and the

history library. Most people use bash’s history library only at the command line. We’ll

use it in scripts, and this chapter will show how that is done, by using the history

command in a rudimentary script for editing a multifield record.

�Single-Key Entry
When writing an interactive script, we might want a single key to be pressed without

requiring the user to press Enter. The portable way to do that is to use stty and dd:

stty -echo -icanon min 1

_KEY=$(dd count=1 bs=1 2>/dev/null)

stty echo icanon

Using three external commands every time we need a key press is overkill. When we

need to use a portable method, we can usually first make a call to stty at the beginning

of the script and the other at the end, often in an EXIT trap:

trap 'stty echo icanon' EXIT

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5_15

https://doi.org/10.1007/978-1-4842-9588-5_15

266

bash, on the other hand, doesn’t need to call any external commands. It may still be

a good idea to use stty to turn off echoing at the beginning and back on before exiting.

This will prevent characters from showing up on the screen when the script is not

waiting for input.

�Function Library, key-funcs
The functions in this section comprise the key-funcs library. It begins with two variable

definitions, shown here in Listing 15-1.

Listing 15-1.  key-funcs, Read a Single Key Press

ESC=$'\e'

CSI=$'\e['

To get a single keystroke with bash, we can use the function in Listing 15-2.

Listing 15-2.  _key, Functions for Reading a Single Key Press

_key()

{

 IFS= read -r -s -n1 -d '' "${1:-_KEY}"

}

First, the field separator is set to an empty string so that read doesn’t ignore a leading

space (it’s a valid keystroke, so we want it); the -r option disables backslash escaping, -s

turns off echoing of keystrokes, and -n1 tells bash to read a single character only.

The -d '' option tells read not to regard a newline (or any other character) as the

end of input; this allows a newline to be stored in a variable. The code instructs read to

stop after the first key is received (-n1) so it doesn’t read forever.

The last argument uses ${@:-_KEY} to add options or a variable name to the list of

arguments. We can see its use in the _keys function in Listing 15-3. (Note that if we use

an option without also including a variable name, the input will be stored in $REPLY.)

Chapter 15 Entry-Level Programming

267

Note  For this to work on earlier versions of bash or on the Mac OS X, add the
variable name to the read command, such as IFS= read –r –s –n1 –d'
' _KEY "${1:-_KEY}". If not, then we have to look to $REPLY for the key
press read.

The _key function can be used in a simple menu, as shown in Listing 15-3.

Listing 15-3.  simplemenu, Menu That Responds to a Single Key Press

the _key function should be defined here if it is not already

while :

do

 printf "\n\n\t$bar\n"

 printf "\t %d. %s\n" 1 "Do something" \

 2 "Do something else" \

 3 "Quit"

 printf "\t%s\n" "$bar"

 _key

 case $_KEY in

 1) printf "\n%s\n\n" Something ;;

 2) printf "\n%s\n\n" "Something else" ;;

 3) break ;;

 *) printf "\a\n%s\n\n" "Invalid choice; try again"

 continue

 ;;

 esac

 printf ">>> %s " "Press any key to continue"

 _key

done

Although _key is a useful function by itself, it has its limitations (Listing 15-4). It can

store a space, a newline, a control code, or any other single character, but what it doesn’t

do is handle keys that return more than one character: function keys, cursor keys, and a

few others.

Chapter 15 Entry-Level Programming

268

These special keys return ESC (0 × 1B, which is kept in a variable $ESC) followed by

one or more characters. The number of characters varies according to the key (and the

terminal emulation), so we cannot ask for a specific number of keys. Instead, we have to

loop until one of the terminating characters is read. This is where it helps to use bash’s

built-in read command rather than the external dd.

Listing 15-4.  _keys, Read a Sequence of Characters from a Function or

Cursor Key

_keys() #@ Store all waiting keypresses in $_KEYS

{

 _KEYS=

 __KX=

 ## ESC_END is a list of characters that can end a key sequence

 ## Some terminal emulations may have others; adjust to taste

 ESC_END=[a-zA-NP-Z∼^\$@$ESC]
 while :

 do

 IFS= read -rsn1 -d '' -t1 __KX

 _KEYS=$_KEYS$__KX

 case $__KX in

 "" | $ESC_END) break ;;

 esac

 done

}

The while : loop calls _key with the argument -t1, which tells read to time out

after one second, and the name of the variable in which to store the keystroke. The loop

continues until a key in $ESC_END is pressed or read times out, leaving $__KX empty.

The timeout is a partially satisfactory method of detecting the escape key by itself.

This is a case where dd works better than read, because it can be set to time out in

increments of one-tenth of a second.

To test the functions, use _key to get a single character; if that character is ESC, call _keys

to read the rest of the sequence, if any. The following snippet assumes that _key and _keys

are already defined and pipes each keystroke through hexdump - C to show its contents:

Chapter 15 Entry-Level Programming

269

while :

do

 _key

 case $_KEY in

 $ESC) _keys

 _KEY=ESC_KEYS

 ;;

 esac

 printf "%s" "$_KEY" | hexdump -C | {

 read a b

 printf " %s\n" "$b"

 }

 case "$_KEY" in q) break ;; esac

done

Unlike the output sequences, which work everywhere, there is no homogeneity

among key sequences produced by various terminal emulators. Here is a sample run, in

an rxvt terminal window, of pressing F1, F12, up arrow, Home, and q to quit:

 1b 5b 31 31 7e |.[11∼|
 1b 5b 32 34 7e |.[24∼|
 1b 5b 41 |.[A|

 1b 5b 35 7e |.[5∼|
 71 |q|

Here are the same keystrokes in an xterm window:

 1b 4f 50 |.OP|

 1b 5b 32 34 7e |.[24∼|
 1b 5b 41 |.[A|

 1b 5b 48 |.[H|

 71 |q|

Finally, here they are as produced by a Linux virtual console:

 1b 5b 5b 41 |.[[A|

 1b 5b 32 34 7e |.[24∼|

Chapter 15 Entry-Level Programming

270

 1b 5b 41 |.[A|

 1b 5b 31 7e |.[1∼|
 71 |q|

All the terminals tested fit into one of these three groups, at least for

unmodified keys.

The codes stored in $_KEY can be either interpreted directly or in a separate function.

It is better to keep the interpretation in a function that can be replaced for use with

different terminal types. For example, if this is run on using a Wyse60 terminal, the

source wy60-keys function would set the replacement keys.

Listing 15-5 shows a function, _esc2key, that works for the various terminals on a

Linux box, as well as in putty in Windows. It converts the character sequence into a

string describing the key, for example, UP, DOWN, F1, and so on:

Listing 15-5.  _esc2key, Translate a String to a Key Name

_esc2key()

{

 case $1 in

 ## Cursor keys

 "$CSI"A | ${CSI}OA) _ESC2KEY=UP ;;

 "$CSI"B | ${CSI}0B) _ESC2KEY=DOWN ;;

 "$CSI"C | ${CSI}OC) _ESC2KEY=RIGHT ;;

 "$CSI"D | ${CSI}OD) _ESC2KEY=LEFT ;;

 ## Function keys (unshifted)

 "$CSI"11∼ | "$CSI["A | ${ESC}OP) _ESC2KEY=F1 ;;
 "$CSI"12∼ | "$CSI["B | ${ESC}OQ) _ESC2KEY=F2 ;;
 "$CSI"13∼ | "$CSI["C | ${ESC}OR) _ESC2KEY=F3 ;;
 "$CSI"14∼ | "$CSI["D | ${ESC}OS) _ESC2KEY=F4 ;;
 "$CSI"15∼ | "$CSI["E) _ESC2KEY=F5 ;;
 "$CSI"17∼ | "$CSI["F) _ESC2KEY=F6 ;;
 "$CSI"18∼) _ESC2KEY=F7 ;;
 "$CSI"19∼) _ESC2KEY=F8 ;;
 "$CSI"20∼) _ESC2KEY=F9 ;;
 "$CSI"21∼) _ESC2KEY=F10 ;;
 "$CSI"23∼) _ESC2KEY=F11 ;;
 "$CSI"24∼) _ESC2KEY=F12 ;;

Chapter 15 Entry-Level Programming

271

 ## Insert, Delete, Home, End, Page Up, Page Down

 "$CSI"2∼) _ESC2KEY=INS ;;
 "$CSI"3∼) _ESC2KEY=DEL ;;
 "$CSI"[17]∼ | "$CSI"H) _ESC2KEY=HOME ;;
 "$CSI"[28]∼ | "$CSI"F) _ESC2KEY=END ;;
 "$CSI"5∼) _ESC2KEY=PGUP ;;
 "$CSI"6∼) _ESC2KEY=PGDN ;;
 ## Everything else; add other keys before this line

 *) _ESC2KEY=UNKNOWN ;;

 esac

 [-n "$2"] && eval "$2=\$_ESC2KEY"

}

We can wrap the _key and _esc2key functions into another function, called get_

key (Listing 15-6), which returns either the single character pressed or, in the case of

multicharacter keys, the name of the key.

Listing 15-6.  get_key, Gets a Key and, If Necessary, Translates It to a Key Name

get_key()

{

 _key

 case $_KEY in

 "$ESC") _keys

 _esc2key "ESC_KEYS" _KEY

 ;;

 esac

}

In bash-4.x, we can use a simpler function to read keystrokes. The get_key function

in Listing 15-7 takes advantage of the capability of read’s -t option to accept fractional

times. It reads the first character and then waits for one-ten-thousandth of a second for

another character. If a multicharacter key was pressed, there will be one to read within

that time. If not, it will fall through the remaining read statements before another key

can be pressed.

Chapter 15 Entry-Level Programming

272

Listing 15-7.  get_key, Reads a Key and, If It Is More Than a Single Character,

Translates It to a Key Name

get_key() #@ USAGE: get_key var

{

 local _v_ _w_ _x_ _y_ _z_ delay=${delay:-.0001}

 IFS= read -d '' -rsn1 _v_

 read -sn1 -t "$delay" _w_

 read -sn1 -t "$delay" _x_

 read -sn1 -t "$delay" _y_

 read -sn1 -t "$delay" _z_

 case $_v_ in

 $'\e') _esc2key "$_v_$_w_$_x_$_y_$_z_"

 printf -v ${1:?} $_ESC2KEY

 ;;

 *) printf -v ${1:?} "%s" "$_v_$_w_$_x_$_y_$_z_" ;;

 esac

}

Whenever we want to use cursor or function keys in a script, or for any single-key

entry, we can source key-funcs and call get_key to capture key presses. Listing 15-8 is a

simple demonstration of using the library.

Listing 15-8.  keycapture, Read and Display Keystrokes Until Q Is Pressed

. key-funcs ## source the library

while : ## infinite loop

do

 get_key key

 �sa "$key" �## the sa command is from previous

chapters

 case $key in q|Q) break;; esac

done

The script in Listing 15-9 prints a block of text on the screen. It can be moved around

the screen with the cursor keys, and the colors can be changed with the function keys.

The odd-numbered function keys change the foreground color; the even-numbered keys

change the background.

Chapter 15 Entry-Level Programming

273

Listing 15-9.  key-demo, Capture Function and Cursor Keys to Change Colors and

Move a Block of Text Around the Screen

trap '' 2

trap 'stty sane; printf "${CSI}?12l${CSI}?25h\e[0m\n\n"' EXIT

stty -echo ## Turn off echoing of user keystrokes

. key-funcs ## Source key functions

clear ## Clear the screen

bar=====================================

Initial position for text block

row=$(((${LINES:-24} - 10) / 2))

col=$(((${COLUMNS:-80} - ${#bar}) / 2))

Initial colours

fg="${CSI}33m"

bg="${CSI}44m"

Turn off cursor

printf "%s" "${CSI}?25l"

Loop until user presses "q"

while :

do

 printf "\e[1m\e[%d;%dH" "$row" "$col"

 printf "\e7 %-${#bar}.${#bar}s ${CSI}0m \e8\e[1B" "${CSI}0m"

 printf "\e7 fgbg%-${#bar}.${#bar}s${CSI}0m \e8\e[1B" "$bar" \

 "" " Move text with cursor keys" \

 "" " Change colors with function keys" \

 "" " Press 'q' to quit" \

 "" "$bar"

 printf "\e7%-${#bar}.${#bar}s " "${CSI}0m"

 get_key k

 case $k in

 UP) row=$(($row - 1)) ;;

 DOWN) row=$(($row + 1)) ;;

 LEFT) col=$(($col - 1)) ;;

 RIGHT) col=$(($col + 1)) ;;

 F1) fg="${CSI}30m" ;;

 F2) bg="${CSI}47m" ;;

Chapter 15 Entry-Level Programming

274

 F3) fg="${CSI}31m" ;;

 F4) bg="${CSI}46m" ;;

 F5) fg="${CSI}32m" ;;

 F6) bg="${CSI}45m" ;;

 F7) fg="${CSI}33m" ;;

 F8) bg="${CSI}44m" ;;

 F9) fg="${CSI}35m" ;;

 F10) bg="${CSI}43m" ;;

 F11) fg="${CSI}34m" ;;

 F12) bg="${CSI}42m" ;;

 q|Q) break ;;

 esac

 colmax=$((${COLUMNS:-80} - ${#bar} - 4))

 rowmax=$((${LINES:-24} - 10))

 [$col -lt 1] && col=1

 [$col -gt $colmax] && col=$colmax

 [$row -lt 1] && row=1

 [$row -gt $rowmax] && row=$rowmax

done

�History in Scripts
In the readline functions in Chapters 6 and 12, history -s was used to place a default

value into the history list. In those examples, only one value was stored, but it is possible

to store more than one value in history or even to use an entire file. Before adding to the

history, we should (in most cases) clear it:

history -c

By using more than one history -s command, we can store multiple values:

history -s Genesis

history -s Exodus

Chapter 15 Entry-Level Programming

275

With the -r option, we can read an entire file into history. This snippet puts the

names of the first five books of the Bible into a file and reads that into the history:

cut -d: -f1 "$kjv" | uniq | head -5 > pentateuch

history -r pentateuch

The readline functions in Chapters 6 and 12 use history if the bash version is less

than 4, but read’s -i option with version 4 (or greater). There are times when it might be

more appropriate to use history rather than -i even when the latter is available. A case

in point is when the new input is likely to be very different from the default but there is a

chance that it might not be.

For history to be available, we must use the -e option with read. This also gives us

access to other key bindings defined in the .inputrc file.

�Sanity Checking
Sanity checking is testing input for the correct type and a reasonable value. If a user

inputs Jane for her age, it’s obviously wrong: the data is of the wrong type. If she enters

666, it’s the correct type but almost certainly an incorrect value. The incorrect type can

easily be detected with the valint script (see Chapter 3) or function (see Chapter 6). We

can use the rangecheck function from Chapter 6 to check for a reasonable value.

Sometimes, the error is more problematic, or even malicious. Suppose a script asks

for a variable name and then uses eval to assign a value to it:

read -ep "Enter variable name: " var

read -ep "Enter value: " val

eval "$var=\$val"

Now, suppose the entry goes like this:

Enter variable name: rm -rf *;name

Enter value: whatever

The command that eval will execute is as follows:

rm -rf *;name=whatever

Chapter 15 Entry-Level Programming

276

Poof! All the files and subdirectories are gone from the current directory. It could

have been prevented by checking the value of var with the validname function from

Chapter 7:

validname "$var" && eval "$var=\$val" || echo Bad variable name >&2

When editing a database, checking that there are no invalid characters is an

important step. For example, in editing /etc/passwd (or a table from which it is created),

we must make sure that there are no colons in any of the fields. Figure 15-1 adds some

humor to this discussion.

Figure 15-1.  Cartoon courtesy of Randall Munroe at http://xkcd.com

�Form Entry
The script in Listing 15-10 is a demonstration of handling user input with a menu and

history. It uses the key-

funcs library to get the user’s selection and to edit password fields. It has a hard-coded

record and doesn’t read the /etc/passwd file. It checks for a colon in an entry and prints

an error message if one is found.

The record is read into an array from a here document. A single printf statement

prints the menu using a format string with seven blanks and the entire array as its

arguments.

Chapter 15 Entry-Level Programming

http://xkcd.com/

277

Listing 15-10.  password, Simple Record-Editing Script

record=root:x:0:0:root:/root:/bin/bash ## record to edit

fieldnames=(User Password UID

 GID Name Home Shell)

. key-funcs ## load the key functions

IFS=: read -a user <<EOF ## read record into array

$record

EOF

z=0

clear

while : ## loop until user

presses 0 or q

do

 printf "\e[H\n

 0. Quit

 1. User: %s\e[K

 2. Password: %s\e[K

 3. UID: %s\e[K

 4. GID: %s\e[K

 5. Name: %s\e[K

 6. Home: %s\e[K

 7. Shell: %s\e[K

 Select field (1-7): \e[0J" "${user[@]}" ## print menu and prompt

 get_key field ## get user input

 printf "\n\n" ## print a blank line

 case $field in

 0|q|Q) break ;; ## quit

 �[1-7]) ;; ## menu item selected;

fall through

 *) continue;;

 esac

 history -c ## clear history

 �history -s "${user[field-1]}" ## insert current value

in history

Chapter 15 Entry-Level Programming

278

 �printf ' Press UP to edit "%s"\n' "${user[field-1]}" �## tell user

what's there

 read -ep " ${fieldnames[field-1]}: " val ## get user entry

 case $val in

 �*:*) echo " Field may not contain a colon (press ENTER)"

>&2 ## ERROR

 get_key; continue

 ;;

 "") continue ;;

 *) user[field-1]=$val ;;

 esac

done

�Reading the Mouse
On the Linux console_codes1 man page, there is a section labeled “mouse tracking.”

Interesting! It reads: “The mouse tracking facility is intended to return xterm-compatible

mouse status reports.” Does that mean the mouse can be used in shell scripts?

According to that man page, mouse tracking is available in two modes: X10

compatibility mode, which sends an escape sequence on button press, and normal

tracking mode, which sends an escape sequence on both button press and release. Both

modes also send modifier-key information.

To test this, printf "\e[?9h" was first entered at a terminal window. This is the

escape sequence that sets the “X10 Mouse Reporting (default off): Set reporting mode to

1 (or reset to 0)”. If the mouse button is pressed, the computer will beep and print “FB”

on the screen. Repeating the mouse click at various points on the screen will net more

beeps and “&% -(5. =2 H7 T=]C fG rJ }M.”

A mouse click sends six characters: ESC, [, M, b, x, and y. The first three characters are

common to all mouse events, the second three contain the button pressed, and the final

ones are the x and y locations of the mouse. To confirm this, save the input in a variable

and pipe it to hexdump:

$ printf "\e[?9h"

1 http://man7.org/linux/man-pages/man4/console_codes.4.html

Chapter 15 Entry-Level Programming

http://man7.org/linux/man-pages/man4/console_codes.4.html

279

$ read x

^[[M!MO ## press mouse button and enter

$ printf "$x" | hexdump -C

00000000 1b 5b 4d 21 4d 4f |.[M!MO|

00000006

The first three appear as expected, but what are the final three? According to the man

page, the lower two bits of the button character tell which button has been pressed; the

upper bits identify the active modifiers. The x and y coordinates are the ASCII values to

which 32 has been added to take them out of the range of control characters. The ! is 1, "

is 2, and so on.

That gives us a 1 for the mouse button, which means button 2, since 0 to 2 are

buttons 1, 2, and 3, respectively, and 4 is released. The x and y coordinates are 45

 (O × 4d = 77; 77 – 32 = 45) and 47.

Surprisingly, since running across this information about mouse tracking in a Linux

console_codes man page, it was found that these escape codes do not work in all Linux

consoles. They work in xterm, rxvt, and gnome-terminal on Linux and FreeBSD. They

can also be used on FreeBSD and NetBSD, via ssh from a Linux rxvt terminal window.

They do not work in a KDE konsole window.

Now we know that mouse reporting works (in most xterm windows) and can get

information from a mouse click on the standard input. That leaves two questions: How

do we read the information into a variable (without having to press Return), and how can

the button and x, y information be decoded in a shell script?

With bash, use the read command’s -n option with an argument to specify the

number of characters. To read the mouse, six characters are needed:

read -n6 x

Neither of these is adequate for a real script (not all input will be mouse clicks, and

we might want to get single keystrokes), but they suffice to demonstrate the concept.

The next step is to decode the input. For the purposes of this demonstration, we can

assume that the six characters do indeed represent a mouse click and that the first three

characters are ESC, [, and M. Here, we are only interested in the last three, so we extract

them into three separate variables using POSIX parameter expansion:

m1=${x#???} ## Remove the first 3 characters

m2=${x#????} ## Remove the first 4 characters

m3=${x#?????} ## Remove the first 5 characters

Chapter 15 Entry-Level Programming

280

Then convert the first character of each variable to its ASCII value. This uses a POSIX

printf extension: “If the leading character is a single-quote or double-quote, the value

shall be the numeric value in the underlying codeset of the character following the

single-quote or double-quote.”2

printf -v mb "%d" "'$m1"

printf -v mx "%d" "'$m2"

printf -v my "%d" "'$m3"

Finally, interpret the ASCII values. For the mouse button, do a bitwise AND 3. For

the x and y coordinates, subtract 32:

Values > 127 are signed, so fix if less than 0

[$mx -lt 0] && mx=$((255 + $mx))

[$my -lt 0] && my=$((255 + $my))

BUTTON=$((($mb & 3) + 1))

MOUSEX=$(($mx - 32))

MOUSEY=$(($my - 32))

Putting it all together, the script in Listing 15-11 prints the mouse’s coordinates

whenever we press a mouse button.

There are two sensitive areas on the top row. Clicking the left one toggles the mouse

reporting mode between reporting only a button press and reporting the release as well.

Clicking the right one exits the script.

Listing 15-11.  mouse-demo, Example of Reading Mouse Clicks

ESC=$'\e'

but_row=1

mv=9 ## mv=1000 for press and release reporting; mv=9 for press only

_STTY=$(stty -g) ## Save current terminal setup

stty -echo -icanon ## Turn off line buffering

printf "${ESC}[?${mv}h " ## Turn on mouse reporting

printf "${ESC}[?25l" ## Turn off cursor

printat() #@ USAGE: printat ROW COLUMN

{

2 www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

Chapter 15 Entry-Level Programming

http://www.opengroup.org/onlinepubs/9699919799/utilities/printf.html

281

 printf "${ESC}[${1};${2}H"

}

print_buttons()

{

 num_but=$#

 gutter=2

 gutters=$(($num_but + 1))

 but_width=$((($COLUMNS - $gutters) / $num_but))

 n=0

 for but_str

 do

 col=$(($gutter + $n * ($but_width + $gutter)))

 printat $but_row $col

 printf "${ESC}[7m%${but_width}s" " "

 printat $but_row $(($col + ($but_width - ${#but_str}) / 2))

 printf "%.${but_width}s${ESC}[0m" "$but_str"

 n=$(($n + 1))

 done

}

clear

while :

do

 [$mv -eq 9] && mv_str="Click to Show Press & Release" ||

 mv_str="Click to Show Press Only"

 print_buttons "$mv_str" "Exit"

 read -n6 x

 m1=${x#???} ## Remove the first 3 characters

 m2=${x#????} ## Remove the first 4 characters

 m3=${x#?????} ## Remove the first 5 characters

 ## Convert to characters to decimal values

 printf -v mb "%d" "'$m1"

 printf -v mx "%d" "'$m2"

 printf -v my "%d" "'$m3"

 ## Values > 127 are signed

 [$mx -lt 0] && MOUSEX=$((223 + $mx)) || MOUSEX=$(($mx - 32))

Chapter 15 Entry-Level Programming

282

 [$my -lt 0] && MOUSEY=$((223 + $my)) || MOUSEY=$(($my - 32))

 ## Button pressed is in first 2 bytes; use bitwise AND

 BUTTON=$((($mb & 3) + 1))

 case $MOUSEY in

 $but_row) ## Calculate which on-screen button has been pressed

 button=$((($MOUSEX - $gutter) / $but_width + 1))

 case $button in

 1) printf "${ESC}[?${mv}l"

 [$mv -eq 9] && mv=1000 || mv=9

 printf "${ESC}[?${mv}h"

 �[$mv -eq 1000] && x=$(dd bs=1 count=6 2>/

dev/null)

 ;;

 2) break ;;

 esac

 ;;

 *) printat $MOUSEY $MOUSEX

 printf "X=%d Y=%d [%d] " $MOUSEX $MOUSEY $BUTTON

 ;;

 esac

done

printf "${ESC}[?${mv}l" ## Turn off mouse reporting

stty "$_STTY" ## Restore terminal settings

printf "${ESC}[?12l${ESC}[?25h" ## Turn cursor back on

printf "\n${ESC}[0J\n" ## Clear from cursor to bottom of screen,

�Summary
bash has a rich set of options for interactive programming. In this chapter, we learned

how to leverage that to read any keystroke, including function keys and others that

return more than a single character.

Chapter 15 Entry-Level Programming

283

�Exercises

	 1.	 Using the key-funcs library, write a menu script that uses the

function keys for selection.

	 2.	 Rewrite the key-funcs library to include mouse handling, and

incorporate the function into the mouse-demo script.

	 3.	 The password script does minimal checking for invalid entries.

What checking would one add? How would you code it?

Chapter 15 Entry-Level Programming

285

�APPENDIX A

�Shell Variables
This list is excerpted from the bash man page and edited to make a stand-alone

document. The following variables are set by bash.

BASH
Expands to the full file name used to invoke this instance of bash.

BASHOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid

argument for the -s option to the shopt built-in command (see “Shell Builtin

Commands” in the bash man page). The options appearing in BASHOPTS are those

reported as on by shopt. If this variable is in the environment when bash starts up, each

shell option in the list will be enabled before reading any startup files. This variable is

read-only.

BASHPID
Expands to the process ID of the current bash process. This differs from $$ under

certain circumstances, such as subshells that do not require bash to be reinitialized.

BASH_ALIASES
An associative array variable whose members correspond to the internal list of

aliases as maintained by the alias built-in. Elements added to this array appear in the

alias list; unsetting array elements causes aliases to be removed from the alias list.

BASH_ARGC
An array variable whose values are the number of parameters in each frame of the

current bash execution call stack. The number of parameters to the current subroutine

(shell function or script executed with . or source) is at the top of the stack. When a

subroutine is executed, the number of parameters passed is pushed onto BASH_ARGC. The

shell sets BASH_ARGC only when in extended debugging mode (see the description of the

extdebug option to the shopt built-in in the bash man page).

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5

https://doi.org/10.1007/978-1-4842-9588-5

286

BASH_ARGV
An array variable containing all the parameters in the current bash execution

call stack. The final parameter of the last subroutine call is at the top of the stack; the

first parameter of the initial call is at the bottom. When a subroutine is executed, the

parameters supplied are pushed onto BASH_ARGV. The shell sets BASH_ARGV only when

in extended debugging mode (see the description of the extdebug option to the shopt

built-in in the bash man page).

BASH_ARGV0
When referenced, this variable expands to the name of the shell or shell script

(identical to $0). Assignment to BASH_ARGV0 causes the value assigned to also be

assigned to $0. If BASH_ARGV0 is unset, it loses its special properties, even if it is

subsequently reset.

BASH_CMDS
An associative array variable whose members correspond to the internal hash table

of commands as maintained by the hash built-in. Elements added to this array appear

in the hash table; unsetting array elements causes commands to be removed from the

hash table.

BASH_COMMAND
The command currently being executed or about to be executed, unless the shell is

executing a command as the result of a trap, in which case it is the command executing

at the time of the trap.

BASH_EXECUTION_STRING
The command argument to the -c invocation option.

BASH_LINENO
An array variable whose members are the line numbers in source files corresponding

to each member of FUNCNAME.

${BASH_LINENO[$i]} is the line number in the source file ${BASH_LINENO[$i+1]}

where ${FUNCNAME[$i]} was called (or ${BASH_LINENO[$i-1]} if referenced within

another shell function). The corresponding source file name is ${BASH_SOURCE[$i]}.

Use LINENO to obtain the current line number.

BASH_LOADABLES_PATH
A colon-separated list of directories in which the shell looks for dynamically loadable

built-ins specified by the enable command.

APPENDIX A SHELL VARIABLES

287

BASH_REMATCH
An array variable whose members are assigned by the =∼ binary operator to the [[

conditional command. The element with index 0 is the portion of the string matching

the entire regular expression. The element with index n is the portion of the string

matching the nth parenthesized subexpression. This variable is read-only.

BASH_SOURCE
An array variable whose members are the source file names where the

corresponding shell function names in the FUNCNAME array variable are defined. The shell

function ${FUNCNAME[$i]} is defined in the file ${BASH_SOURCE[$i]} and called from

${BASH_SOURCE[$i+1]}.

BASH_SUBSHELL
Incremented by one each time a subshell or subshell environment is spawned. The

initial value is 0.

BASH_VERSINFO
A read-only array variable whose members hold version information for this

instance of bash. The values assigned to the array members are as follows:

•	 BASH_VERSINFO[0]: The major version number (the release)

•	 BASH_VERSINFO[1]: The minor version number (the version)

•	 BASH_VERSINFO[2]: The patch level

•	 BASH_VERSINFO[3]: The build version

•	 BASH_VERSINFO[4]: The release status (e.g., beta1)

•	 BASH_VERSINFO[5]: The value of MACHTYPE

BASH_VERSION
Expands to a string describing the version of this instance of bash.

COMP_CWORD
An index into ${COMP_WORDS} of the word containing the current cursor position.

This variable is available only in shell functions invoked by the programmable

completion facilities (see “Programmable Completion” in the bash man page).

COMP_KEY
The key (or final key of a key sequence) used to invoke the current completion

function.

APPENDIX A SHELL VARIABLES

288

COMP_LINE
The current command line. This variable is available only in shell functions

and external commands invoked by the programmable completion facilities (see

“Programmable Completion” in the bash man page).

COMP_POINT
The index of the current cursor position relative to the beginning of the current

command. If the current cursor position is at the end of the current command, the

value of this variable is equal to ${#COMP_LINE}. This variable is available only in shell

functions and external commands invoked by the programmable completion facilities

(see “Programmable Completion” in the bash man page).

COMP_TYPE
Set to an integer value corresponding to the type of completion attempted that

caused a completion function to be called: TAB for normal completion, ? for listing

completions after successive tabs, ! for listing alternatives on partial word completion,

@ to list completions if the word is not unmodified, or % for menu completion. This

variable is available only in shell functions and external commands invoked by the

programmable completion facilities (see “Programmable Completion” in the bash

man page).

COMP_WORDBREAKS
The set of characters that the readline library treats as word separators when

performing word completion. If COMP_ WORDBREAKS is unset, it loses its special

properties, even if it is subsequently reset.

COMP_WORDS
An array variable (see “Arrays” in the bash man page) consisting of the individual

words in the current command line. The line is split into words as readline would split

it, using COMP_WORDBREAKS as described previously. This variable is available only in

shell functions invoked by the programmable completion facilities (see “Programmable

Completion” in the bash man page).

COPROC
An array variable (see “Arrays” in the bash man page) created to hold the file

descriptors for output from and input to an unnamed coprocess (see “Coprocesses” in

the bash man page).

APPENDIX A SHELL VARIABLES

289

DIRSTACK
An array variable (see “Arrays” in the bash man page) containing the current

contents of the directory stack. Directories appear in the stack in the order they are

displayed by the dirs built-in. Assigning to members of this array variable may be

used to modify directories already in the stack, but the pushd and popd built-ins must

be used to add and remove directories. Assignment to this variable will not change

the current directory. If DIRSTACK is unset, it loses its special properties, even if it is

subsequently reset.

EPOCHREALTIME
Each time this parameter is referenced, it expands to the number of seconds since

the Unix Epoch (see time(3)) as a floating-point value with microsecond granularity.

Assignments to EPOCHREALTIME are ignored. If EPOCHREALTIME is unset, it loses its special

properties, even if it is subsequently reset.

EPOCHSECONDS
Each time this parameter is referenced, it expands to the number of seconds

since the Unix Epoch (see time(3)). Assignments to EPOCHSECONDS are ignored. If

EPOCHSECONDS is unset, it loses its special properties, even if it is subsequently reset.

EUID
Expands to the effective user ID of the current user, initialized at shell startup. This

variable is read-only.

FUNCNAME
An array variable containing the names of all shell functions currently in the

execution call stack. The element with index 0 is the name of any currently executing

shell function. The bottommost element is main. This variable exists only when a shell

function is executing. Assignments to FUNCNAME have no effect and return an error status.

If FUNCNAME is unset, it loses its special properties, even if it is subsequently reset.

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element of

FUNCNAME has corresponding elements in BASH_LINENO and BASH_SOURCE to describe

the call stack. For instance, ${FUNCNAME[$i]} was called from the file ${BASH_

SOURCE[$i+1]} at line number ${BASH_LINENO[$i]}. The caller built-in displays the

current call stack using this information.

GROUPS
An array variable containing the list of groups of which the current user is a member.

Assignments to GROUPS have no effect and return an error status. If GROUPS is unset, it

loses its special properties, even if it is subsequently reset.

APPENDIX A SHELL VARIABLES

290

HISTCMD
The history number, or index in the history list, of the current command. If HISTCMD

is unset, it loses its special properties, even if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine on which

bash is executing. The default is system dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number

representing the current sequential line number (starting with 1) within a script or

function. When not in a script or function, the value substituted is not guaranteed

to be meaningful. If LINENO is unset, it loses its special properties, even if it is

subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on which bash is

executing, in the standard GNU cpu-company-system format. The default is system

dependent.

MAPFILE
An array variable (see “Arrays” in the bash man page) created to hold the text read by

the mapfile built-in when no variable name is supplied.

OLDPWD
The previous working directory as set by the cd command.

OPTARG
The value of the last option argument processed by the getopts built-in command

(see “Shell Builtin Commands” in the bash man page).

OPTIND
The index of the next argument to be processed by the getopts built-in command

(see “Shell Builtin Commands” in the bash man page).

OSTYPE
Automatically set to a string that describes the operating system on which bash is

executing. The default is system dependent.

APPENDIX A SHELL VARIABLES

291

PIPESTATUS
An array variable (see “Arrays” in the bash man page) containing a list of exit status

values from the processes in the most recently executed foreground pipeline (which may

contain only a single command).

PPID
The process ID of the shell’s parent. This variable is read-only.

PWD
The current working directory as set by the cd command.

RANDOM
Each time this parameter is referenced, a random integer between 0 and 32767 is

generated. The sequence of random numbers may be initialized by assigning a value to

RANDOM. If RANDOM is unset, it loses its special properties, even if it is subsequently reset.

READLINE_LINE
The contents of the readline line buffer, for use with “bind -x” (see "Shell Builtin

Commands" in the bash man page).

READLINE_MARK
The position of the mark (saved insertion point) in the readline line buffer, for use

with “bind -x” (see "Shell Builtin Commands" in the bash man page). The characters

between the insertion point and the mark are often called the region.

READLINE_POINT
The position of the insertion point in the readline line buffer, for use with “bind -x”

(see "Shell Builtin Commands" in the bash man page).

REPLY
Set to the line of input read by the read built-in command when no arguments are

supplied.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation

is returned. If a value is assigned to SECONDS, the value returned upon subsequent

references is the number of seconds since the assignment plus the value assigned. If

SECONDS is unset, it loses its special properties, even if it is subsequently reset.

SHELLOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid

argument for the -o option to the set built-in command (see “Shell Builtin Commands”

in the bash man page). The options appearing in SHELLOPTS are those reported as on by

set -o. If this variable is in the environment when bash starts up, each shell option in

the list will be enabled before reading any startup files. This variable is read-only.

APPENDIX A SHELL VARIABLES

292

SHLVL
Incremented by one each time an instance of bash is started.

SRANDOM
This variable expands to a 32-bit pseudorandom number each time it is referenced.

The random number generator is not linear on systems that support /dev/urandom or

arc4random, so each returned number has no relationship to the numbers preceding it.

The random number generator cannot be seeded, so assignments to this variable have

no effect. If SRANDOM is unset, it loses its special properties, even if it is subsequently reset.

UID
Expands to the user ID of the current user, initialized at shell startup. This variable is

read-only.

The following variables are used by the shell. In some cases, bash assigns a default

value to a variable; these cases are noted in the following sections.

BASH_COMPAT
The value is used to set the shell's compatibility level. See SHELL COMPATIBILITY

MODE below for a description of the various compatibility levels and their effects. The

value may be a decimal number (e.g., 4.2) or an integer (e.g., 42) corresponding to

the desired compatibility level. If BASH_COMPAT is unset or set to the empty string, the

compatibility level is set to the default for the current version. If BASH_COMPAT is set to a

value that is not one of the valid compatibility levels, the shell prints an error message

and sets the compatibility level to the default for the current version. The valid values

correspond to the compatibility levels described below under SHELL COMPATIBILITY

MODE. For example, 4.2 and 42 are valid values that correspond to the compat42 shopt

option and set the compatibility level to 42. The current version is also a valid value.

BASH_ENV
If this parameter is set when bash is executing a shell script, its value is interpreted

as a file name containing commands to initialize the shell, as in ∼/.bashrc. The value of

BASH_ENV is subjected to parameter expansion, command substitution, and arithmetic

expansion before being interpreted as a file name. PATH is not used to search for the

resultant file name.

BASH_XTRACEFD
If set to an integer corresponding to a valid file descriptor, bash will write the trace

output generated when set -x is enabled to that file descriptor. The file descriptor is

closed when BASH_XTRACEFD is unset or assigned a new value. Unsetting BASH_XTRACEFD

APPENDIX A SHELL VARIABLES

293

or assigning it the empty string causes the trace output to be sent to the standard error.

Note that setting BASH_XTRACEFD to 2 (the standard error file descriptor) and then

unsetting it will result in the standard error being closed.

CDPATH
The search path for the cd command. This is a colon-separated list of directories in

which the shell looks for destination directories specified by the cd command. A sample

value is .:∼:/usr.

CHILD_MAX
Sets the number of exited child status values for the shell to remember. bash will

not allow this value to be decreased below a POSIX-mandated minimum, and there is a

maximum value (currently 8192) that this may not exceed. The minimum value is system

dependent.

COLUMNS
Used by the select built-in command to determine the terminal width when

printing selection lists. This is automatically set upon receipt of a SIGWINCH.

COMPREPLY
An array variable from which bash reads the possible completions generated by a

shell function invoked by the programmable completion facility (see “Programmable

Completion” in the bash man page).

EMACS
If bash finds this variable in the environment when the shell starts with value t, it

assumes that the shell is running in an emacs shell buffer and disables line editing.

ENV
Expanded and executed similarly to BASH_ENV (see “Invocation" in the bash man

page) when an interactive shell is invoked in POSIX mode.

EXECIGNORE
A colon-separated list of shell patterns (see Pattern Matching) defining the list of

file names to be ignored by command search using PATH. Files whose full pathnames

match one of these patterns are not considered executable files for the purposes of

completion and command execution via PATH lookup. This does not affect the behavior

of the [, test, and [[commands. Full pathnames in the command hash table are not

subject to EXECIGNORE. Use this variable to ignore shared library files that have the

executable bit set but are not executable files. The pattern matching honors the setting of

the extglob shell option.

APPENDIX A SHELL VARIABLES

294

FCEDIT
The default editor for the fc built-in command.

FIGNORE
A colon-separated list of suffixes to ignore when performing file name completion

(see READLINE in the bash man page). A file name whose suffix matches one of the entries

in FIGNORE is excluded from the list of matched file names. A sample value is .o:∼.

FUNCNEST
If set to a numeric value greater than 0, it defines a maximum function nesting level.

Function invocations that exceed this nesting level will cause the current command

to abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of file names to be ignored by

pathname expansion. If a file name matched by a pathname expansion pattern also

matches one of the patterns in GLOBIGNORE, it is removed from the list of matches.

HISTCONTROL
A colon-separated list of values controlling how commands are saved on the history

list. If the list of values includes ignorespace, lines that begin with a space character are

not saved in the history list. A value of ignoredups causes lines matching the previous

history entry to not be saved. A value of ignoreboth is shorthand for ignorespace and

ignoredups. A value of erasedups causes all previous lines matching the current line to

be removed from the history list before that line is saved. Any value not in the previous

list is ignored. If HISTCONTROL is unset or does not include a valid value, all lines read

by the shell parser are saved on the history list, subject to the value of HISTIGNORE. The

second and subsequent lines of a multiline compound command are not tested and are

added to the history regardless of the value of HISTCONTROL.

HISTFILE
The name of the file in which command history is saved (see HISTORY in the bash

man page). The default value is ∼/.bash_history. If unset, the command history is not

saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is

assigned a value, the history file is truncated, if necessary, by removing the oldest entries

to contain no more than that number of lines. The default value is 500. The history file is

also truncated to this size after writing it when an interactive shell exits.

APPENDIX A SHELL VARIABLES

295

HISTIGNORE
A colon-separated list of patterns used to decide which command lines should be

saved on the history list. Each pattern is anchored at the beginning of the line and must

match the complete line (no implicit * is appended). Each pattern is tested against the

line after the checks specified by HISTCONTROL are applied. In addition to the normal

shell pattern matching characters, & matches the previous history line. & may be escaped

using a backslash; the backslash is removed before attempting a match. The second and

subsequent lines of a multiline compound command are not tested and are added to the

history regardless of the value of HISTIGNORE.

HISTSIZE
The number of commands to remember in the command history (see HISTORY in the

bash man page). The default value is 500.

HISTTIMEFORMAT
If this variable is set and not null, its value is used as a format string for strftime(3)

to print the time stamp associated with each history entry displayed by the history

built-in. If this variable is set, time stamps are written to the history file so they may be

preserved across shell sessions. This uses the history comment character to distinguish

timestamps from other history lines.

HOME
The home directory of the current user; the default argument for the cd built-in

command. The value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same format as /etc/hosts that should be

read when the shell needs to complete a hostname. The list of possible hostname

completions may be changed while the shell is running; the next time hostname

completion is attempted after the value is changed, bash adds the contents of the new

file to the existing list. If HOSTFILE is set but has no value, bash attempts to read /etc/

hosts to obtain the list of possible hostname completions. When HOSTFILE is unset, the

hostname list is cleared.

IFS
The internal field separator that is used for word splitting after expansion and to split

lines into words with the read built-in command. The default value is ''''.

APPENDIX A SHELL VARIABLES

296

IGNOREEOF
Controls the action of an interactive shell on receipt of an EOF character as the sole

input. If set, the value is the number of consecutive EOF characters that must be typed as

the first characters on an input line before bash exits. If the variable exists but does not

have a numeric value or does not have a value, the default value is 10. If it does not exist,

EOF signifies the end of input to the shell.

INPUTRC
The file name for the readline startup file, overriding the default of ∼/.inputrc (see

READLINE in the bash man page).

INSIDE_EMACS
If this variable appears in the environment when the shell starts, bash assumes that

it is running inside an emacs shell buffer and may disable line editing, depending on the

value of TERM.

LANG
Used to determine the locale category for any category not specifically selected with

a variable starting with LC_.

LC_ALL
This variable overrides the value of LANG and any other LC_ variable specifying a

locale category.

LC_COLLATE
This variable determines the collation order used when sorting the results of

pathname expansion and determines the behavior of range expressions, equivalence

classes, and collating sequences within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of

character classes within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings

preceded by a $.

LC_NUMERIC
This variable determines the locale category used for number formatting.

LC_TIME
This variable determines the locale category used for data and time formatting.

APPENDIX A SHELL VARIABLES

297

LINES
Used by the select built-in command to determine the column length for printing

selection lists. This is automatically set upon receipt of a SIGWINCH.

MAIL
If this parameter is set to a file name and the MAILPATH variable is not set, bash

informs the user of the arrival of mail in the specified file.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds.

When it is time to check for mail, the shell does so before displaying the primary prompt.

If this variable is unset or set to a value that is not a number greater than or equal to zero,

the shell disables mail checking.

MAILPATH
A colon-separated list of file names to be checked for mail. The message to be

printed when mail arrives in a particular file may be specified by separating the file name

from the message with a ?. When used in the text of the message, $_ expands to the name

of the current mail file. Here’s an example:

MAILPATH='/var/mail/bfox?"You have mail":∼/shell-mail?"$_ has mail!"'

bash supplies a default value for this variable, but the location of the user mail files

that it uses is system dependent (e.g., /var/mail/$USER).

OPTERR
If set to the value 1, bash displays error messages generated by the getopts built-in

command (see “Shell Builtin Commands” in the bash man page). OPTERR is initialized to

1 each time the shell is invoked or a shell script is executed.

PATH
The search path for commands. It is a colon-separated list of directories in which the

shell looks for commands (see “Command Execution” in the bash man page). A zero-

length (null) directory name in the value of PATH indicates the current directory. A null

directory name may appear as two adjacent colons or as an initial or trailing colon. The

default path is system-dependent and is set by the administrator who installs bash. A

common value is /usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin.

POSIXLY_CORRECT
If this variable is in the environment when bash starts, the shell enters POSIX mode

before reading the startup files, as if the --posix invocation option had been supplied. If

it is set while the shell is running, bash enables POSIX mode, as if the command set -o

posix had been executed.

APPENDIX A SHELL VARIABLES

298

PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM
If set to a number greater than 0, the value is used as the number of trailing directory

components to retain when expanding the \w and \W prompt string escapes (see

“Prompting” in the bash man page). Characters removed are replaced with an ellipsis.

PS0
The value of this parameter is expanded (see “Prompting” in the bash man page)

and displayed by interactive shell after reading a command and before the command is

executed.

PS1
The value of this parameter is expanded (see “Prompting” in the bash man page) and

used as the primary prompt string. The default value is "\s-\v\$ ".

PS2
The value of this parameter is expanded as with PS1 and used as the secondary

prompt string. The default is "> ".

PS3
The value of this parameter is used as the prompt for the select command (see “Shell

Grammar” earlier).

PS4
The value of this parameter is expanded as with PS1, and the value is printed before

each command bash displays during an execution trace. The first character of PS4 is

replicated multiple times, as necessary, to indicate multiple levels of indirection. The

default is "+ ".

SHELL
The full pathname to the shell is kept in this environment variable. If it is not set

when the shell starts, bash assigns to it the full pathname of the current user’s login shell.

TIMEFORMAT
The value of this parameter is used as a format string specifying how the timing

information for pipelines prefixed with the time reserved word should be displayed. The

% character introduces an escape sequence that is expanded to a time value or other

information. The escape sequences and their meanings are as follows; the braces denote

optional portions.

•	 %%: A literal %.

•	 %[p][l]R: The elapsed time in seconds.

APPENDIX A SHELL VARIABLES

299

•	 %[p][l]U: The number of CPU seconds spent in user mode.

•	 %[p][l]S: The number of CPU seconds spent in system mode.

•	 %P: The CPU percentage, computed as (%U + %S) / %R. The optional

p is a digit specifying the precision, the number of fractional digits

after a decimal point. A value of 0 causes no decimal point or fraction

to be output. At most three places after the decimal point may be

specified; values of p greater than 3 are changed to 3. If p is not

specified, the value 3 is used. The optional l specifies a longer format,

including minutes, of the form MMmSS.FFs. The value of p determines

whether the fraction is included. If this variable is not set, bash acts

as if it had the value $'\nreal\t%3lR\nuser\t%3lU\nsys%3lS'. If the

value is null, no timing information is displayed. A trailing newline is

added when the format string is displayed.

TMOUT
If set to a value greater than 0, TMOUT is treated as the default timeout for the read

built-in. The select command terminates if input does not arrive after TMOUT seconds

when input is coming from a terminal. In an interactive shell, the value is interpreted

as the number of seconds to wait for input after issuing the primary prompt. bash

terminates after waiting for that number of seconds if input does not arrive.

TMPDIR
If set, bash uses its value as the name of a directory in which bash creates temporary

files for the shell’s use.

auto_resume
This variable controls how the shell interacts with the user and job control. If this

variable is set, single-word simple commands without redirections are treated as

candidates for resumption of an existing stopped job. There is no ambiguity allowed;

if there is more than one job beginning with the string typed, the job most recently

accessed is selected. The name of a stopped job, in this context, is the command line

used to start it. If set to the value exact, the string supplied must match the name of a

stopped job exactly; if set to substring, the string supplied needs to match a substring

of the name of a stopped job. The substring value provides functionality analogous to

the %? job identifier (see “Job Control” in the bash man page). If set to any other value,

the supplied string must be a prefix of a stopped job’s name; this provides functionality

analogous to the %string job identifier.

APPENDIX A SHELL VARIABLES

300

histchars
The two or three characters that control history expansion and tokenization (see

“History Expansion” in the bash man page). The first character is the history expansion

character, the character that signals the start of a history expansion, normally !. The

second character is the quick substitution character, which is used as shorthand for

rerunning the previous command entered, substituting one string for another in the

command. The default is ^. The optional third character is the character that indicates

that the remainder of the line is a comment when found as the first character of a word,

normally #. The history comment character causes history substitution to be skipped for

the remaining words on the line. It does not necessarily cause the shell parser to treat the

rest of the line as a comment.

APPENDIX A SHELL VARIABLES

301

Index

A
Arguments, 13, 14
Associative arrays, 81, 83

B
Bash extensions, 50
Bourne shell, 67, 85, 97, 102
Bourne-type shell, 152
Bugs, 174

comments, 160, 161
debugging script, 169, 171–173
document code, 164
format code, 164, 165
function definition, 162
grouping commands, 166
K.I.S.S. principle, 165
process information, 163
runtime configuration/options, 162
structured programming, 160
test, 167, 168
typing errors, 159
variable initialization, 161

Built-in shell command, 25

C
cd command, 2, 175, 293
cdm function, 177
Cluster SSH, 205
Command line

calc, 186

cd function, 176
cdm, 177
cp, mv, 183
directory stack, 175
dirs built-in command, 178
fifteen puzzle, 189–194
filesystem functions, 181
games, 188, 189, 195
k function, 187
lsr, 182
md, 184
menu, 179, 180
pd function, 177
pr1, 184, 185
single-letter command, 181
sman, 186
sus, 187

Command-line parsing
arguments, 41
command substitution, 51
expansion, 4

arithmetic expression, 48, 50
brace, 44–46
parameter/variable, 47
pathname, 53
tilde, 46

parsing options, 55–58
process substitution, 54
quoting, 42, 43
word splitting, 51, 52

Control sequence introducer (CSI), 251
Command substitution, 24, 25

© Jayant Varma, Chris F. A. Johnson 2023
J. Varma and C. F. A. Johnson, Pro Bash, https://doi.org/10.1007/978-1-4842-9588-5

https://doi.org/10.1007/978-1-4842-9588-5

302

Compound command, 88
Concatenation, 98
cp command, 183
cut command, 122

D
Data manipulation, 219
Data processing

arrays, 219
block file formats, 245, 246
data file formats, 240
delimiter-separated values, 241–243
fixed-length fields, 244
indexed array, 219, 220
insertion sort function, 223
line-based records, 240
programming structures, 247
reading array, memory, 226, 227
searching array, 224, 225
single-string grids, 229

function, 231
getgrid, 232
gridindex, 231
initgrid, 229, 230
putgrid, 231, 232
rshowgrid, 234, 235
showgrid, 233

sort command, 221, 222
two dimensional grids, 228, 235–237

functions, 237–240
dirs built-in command, 178

E
Echo, 14, 15
Entry-level programming

form entry, 276, 277

history library, 265
history-s, 274
key-funcs library, 266–268,

270–272, 274
mouse tracking, 278–282
sanity checking, 275, 276
single-key entry, 265

Escape sequences, 16

F
File descriptors (FDs), 21
File operations and commands

awk, 127–129
cat, 118, 119
cut, 122
dotglob, 132
external commands, 115, 117, 136
extglob, 132
failglob option, 131
file name expansion

options, 130, 131
globstar, 135
grep, 124, 125
head, 119, 120
ls command, 121
nocaseglob option, 134
nullglob, 131
patterns, 133, 134
reading file, 116, 117
regular expressions, 124
sed, 125–127
shell options, 136
touch, 120
wc, 123

Format specifiers, 16
FORMAT string, 16
FUNCNAME array, 287

INDEX

303

G
grep command, 164

H
help command, 139
$HOME directory, 4

I, J
Input field separator (IFS), 177
Input/output (I/O) streams

command, 21
pipelines, 24
reading input, 23
redirection operator, 21, 22

Internet Protocol (IP), 86
Iteration, 27

K
k function, 187
King James version (KJV), 117

L
Line continuation, 20, 25
Looping/branching

[[...]] evaluate expression, 31
arithmetic expression, 31
break, 38
case statement, 35
conditional execution, 32
conditional operators, AND/OR, 34, 35
continue, 39, 40
exit status, 27, 28
if command, 32, 33
string tests, 29
test command, 28

file tests, 28
integer tests, 29
testing expressions, 28
types of loops, 36

for, 38
until, 37
while, 36

M
_max_length function, 256
md function, 184

N, O
nameref property, 92
Numbered parameters, 12

P
Parameters

positional, 12
special, 13
types, 11

PATH directories, 4
pd function, 177
Pipelines, 24, 25
Poor Man’s Arrays

assignment, 150, 151
associative arrays, 148, 149
built-in command, 154
pwd prints, 155
setting multiple variables,

command, 151, 152
unalias, 155–157

Portable game notation (PGN), 245
Positional parameters, 11, 12, 25, 82
POSIX mode, 297
POSIX shell, 71, 97, 102, 265

INDEX

304

pr1 function, 184
printat command, 253
printat function, 250
print_block function, 257
print_config function, 212
printf, 15, 259

escape sequence, 16
fomat specifiers, 16–18
FORMAT string, 16
printing variable, 20
width specification, 18–20

Process identification number (PID), 13
put_block function, 255
put_block_at functions, 256

Q
qa function, 211

R
readline function, 213
Real programming language, 95
Regular expressions, 124
Reserved words

commands, 157
deprecated commands, 158
help, display information, 139, 140
keywords, 139
reads a line, input stream, 142–148
time, print time, 141

Runtime configuration
arguments, 198
bits/pieces, 215, 216
Cluster SSH, 205
code, 217
command-line options, 197, 198
configuration files, 200, 201

default configuration, 205, 206
die function, 207
directory hierarchy, 204
environment variables, 203
function definitions, 207
menu function, 207
menus, 198
parse command-line options, 214, 215
print_config function, 212
qa function, 211
Q&A function, 199
readline function, 213
screen variables, 206
script information, 205
scripts, 202, 203
settings menu, 208–210
variables, 197

S
Scalar variables, 78, 83
screen-funcs library, 250
Screen manipulation

block of text, 255–257, 259
CSI, 251
priming canvas, 251–253
rendition modes/colors, 253, 254
rolling dice, 260–262
scrolling text, 259
stretching canvas, 250
teletypewriter vs. canvas, 250
termcap or terminfo database, 249
terminal screen, 263

Shebang/hash-bang, 7, 8
Shell function

command line, 85
commands, 95
compound command, 88

INDEX

305

definition, 85
exit codes, set different, 89
function libraries, 92
print result, 90, 91
results, 89
sample script, 93–95
syntax, 85–88
variables, 91, 92

Shell script
command, 2
creating file/running script, 5
definition, 1
Hello, World, build, 7
Hello World code, 2
naming, 3, 4
selecting directories, 4
text editor, 6
variables, 9

Shell variables
Bash, 285–287, 298, 300
HOSTFILE, 295
TMOUT, 299

sman function, 186
sort command, 221
Special parameters, 11
Standard algebraic notation (SAN), 167
String manipulation

case conversion, 102–104
comparing contents, 105
concatenation, 98
directory, 97
examples, 108
external command, 97
functions, 113
index function, 111, 112
insert one string into another, 107
overlaying, 108
processing character, 100, 101

repeat character, given length,
99, 100

reversal, 101
trim unwanted characters, 110
valid variable name, check, 106

Strings, 29

T
Tic-tac-toe grid, 230, 235

U
Unix command, 4
Unix shell, 61

V
Variables, 13

arrays, 78
assignments, 80
associative arrays, 81
Bourne shell, 70, 71
displaying arrays, 79
integer-indexed arrays, 79
interpreted script, 63
names, 61, 62
parameter expansion

bash, 74–76
bash 4.0, 76, 77
Bourne shell, 67–70
POSIX shell, 71–73

positional parameters, 77, 78
shell, 65
subshells, 64

W, X, Y, Z
wrap function, 257

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Hello, World: Your First Shell Program
	What Is a Shell Script?
	The Hello World Code
	The Hello World Program File
	Naming the Script File
	Selecting a Directory for the Script
	Creating the File and Running the Script
	Choosing and Using a Text Editor
	Building a Better “Hello, World!”
	Summary
	Commands
	Concepts
	Variables
	Exercises

	Chapter 2: Input, Output, and Throughput
	Parameters and Variables
	Positional Parameters
	Special *@#0$?_!- Parameters
	Variables
	Arguments and Options
	Why You Should Avoid echo
	printf: Formatting and Printing Data
	Escape Sequences
	Format Specifiers
	Width Specification
	Printing to a Variable
	Line Continuation
	Standard Input/Output Streams and Redirection
	Redirection: >, >>, and <
	Reading Input
	Pipelines
	Command Substitution
	Summary
	Commands
	Concepts
	Exercises

	Chapter 3: Looping and Branching
	Exit Status
	Testing an Expression
	test, a.k.a. […]
	File Tests
	Integer Tests
	String Tests
	[[…]]: Evaluate an Expression
	Enhancements over Test
	((…)): Evaluate an Arithmetic Expression
	Conditional Execution
	if
	Conditional Operators: && and ||
	case
	Looping
	while
	until
	for
	break
	continue
	Summary
	Commands
	Concepts
	Exercises

	Chapter 4: Command-Line Parsing and Expansion
	Quoting
	Brace Expansion
	Tilde Expansion
	Parameter and Variable Expansion
	Arithmetic Expansion
	Command Substitution
	Word Splitting
	Pathname Expansion
	Process Substitution
	Parsing Options
	Summary
	Commands
	Exercises

	Chapter 5: Parameters and Variables
	The Naming of Variables
	The Scope of a Variable: Can You See It from Here?
	Shell Variables
	Shell Variables
	Parameter Expansion
	Bourne Shell
	${var:-default} and ${var-default}: Use Default Values
	${var:+alternate} and ${var+alternate}: Use Alternate Values
	${var:=default} and ${var=default}: Assign Default Values
	${var:?message} and ${var?message}: Display Error Message If Empty or Unset
	POSIX Shell
	${#var}: Length of Variable’s Contents
	${var%PATTERN}: Remove the Shortest Match from the End
	${var%%PATTERN}: Remove the Longest Match from the End
	${var#PATTERN}: Remove the Shortest Match from the Beginning
	${var##PATTERN}: Remove the Longest Match from the Beginning
	bash
	${var//PATTERN/STRING}: Replace All Instances of PATTERN with STRING
	${var:OFFSET:LENGTH}: Return a Substring of $var
	${!var}: Indirect Reference
	bash-4.0
	${var^PATTERN}: Convert to Uppercase
	${var,PATTERN}: Convert to Lowercase
	Positional Parameters
	Arrays
	Integer-Indexed Arrays
	Displaying Arrays
	Assigning Array Elements
	Associative Arrays
	Summary
	Commands
	Concepts
	Exercises

	Chapter 6: Shell Functions
	Definition Syntax
	Compound Commands
	Getting Results
	Set Different Exit Codes
	Print the Result
	Place Results in One or More Variables
	Function Libraries
	Using Functions from Libraries
	Sample Script
	Summary
	Commands
	Exercises

	Chapter 7: String Manipulation
	Concatenation
	Repeat Character to a Given Length
	Processing Character by Character
	Reversal
	Case Conversion
	Comparing Contents Without Regard to Case
	Check for Valid Variable Name
	Insert One String into Another
	Examples
	Overlay
	Examples
	Trim Unwanted Characters
	Examples
	Index
	Summary
	Commands
	Functions
	Exercises

	Chapter 8: File Operations and Commands
	Reading a File
	External Commands
	cat
	head
	touch
	ls
	cut
	wc
	Regular Expressions
	grep
	sed
	awk
	File Name Expansion Options
	nullglob
	failglob
	dotglob
	extglob
	?(pattern-list)
	*(pattern-list)
	@(pattern-list)
	+(pattern-list)
	!(pattern-list)
	nocaseglob
	globstar
	Summary
	Shell Options
	External Commands
	Exercises

	Chapter 9: Reserved Words and Built-In Commands
	help, Display Information About Built-In Commands
	time, Print Time Taken for Execution of a Command
	read, Read a Line from an Input Stream
	-r, Read Backslashes Literally
	-e, Get Input with the readline Library
	-a, Read Words into an Array
	-d DELIM, Read Until DELIM Instead of a Newline
	-n NUM, Read a Maximum of NUM Characters
	-s, Do Not Echo Input Coming from a Terminal
	-p PROMPT:, Output PROMPT Without a Trailing Newline
	-t TIMEOUT, Only Wait TIMEOUT Seconds for Complete Input
	-u FD: Read from File Descriptor FD Instead of the Standard Input
	-i TEXT, Use TEXT As the Initial Text for Readline
	eval, Expand Arguments and Execute the Resulting Command

	Poor Man’s Arrays
	Setting Multiple Variables from One Command
	type, Display Information About Commands
	builtin, Execute a Built-In Command
	command, Execute a Command or Display Information About Commands
	pwd, Print the Current Working Directory
	unalias, Remove One or More Aliases
	Deprecated Built-Ins
	Dynamically Loadable Built-Ins

	Summary
	Commands and Reserved Words
	Deprecated Commands

	Exercise

	Chapter 10: Writing Bug-Free Scripts and Debugging the Rest
	Prevention Is Better Than Cure
	Structure Your Programs
	Comments
	Initialization of Variables
	Function Definitions
	Runtime Configuration and Options
	Process Information
	Document Your Code
	Format Your Code Consistently
	The K.I.S.S. Principle
	Grouping Commands
	Test As You Go
	Debugging a Script
	Summary
	Exercises

	Chapter 11: Programming for the Command Line
	Manipulating the Directory Stack
	cd
	pd
	cdm
	dirs Built-In Command
	menu
	Filesystem Functions
	l
	lsr
	cp, mv
	md
	Miscellaneous Functions
	pr1
	calc
	Managing Man Pages
	sman
	sus
	k
	Games
	The fifteen Puzzle
	Summary
	Exercises

	Chapter 12: Runtime Configuration
	Defining Variables
	Command-Line Options and Arguments
	Menus
	Q&A Dialogue
	Configuration Files
	Scripts with Several Names
	Environment Variables
	All Together Now
	Script Information
	Default Configuration
	Screen Variables
	Function Definitions
	Function: die
	Function: menu
	The Upload Settings Menu
	Function: qa
	Function: print_config
	Function: readline
	Parse Command-Line Options
	Bits and Pieces
	Summary
	Exercises

	Chapter 13: Data Processing
	Arrays
	Holes in an Indexed Array
	Using an Array for Sorting
	Insertion Sort Function
	Searching an Array
	Reading an Array into Memory
	Two-Dimensional Grids
	Working with Single-String Grids
	Function: initgrid
	Function: gridindex
	Function: putgrid
	Function: getgrid
	Function: showgrid
	Function: rshowgrid
	Two-Dimensional Grids Using Arrays
	Function: initagrid
	Function: putagrid
	Function: getagrid
	Function: showagrid
	Function: rshowagrid
	Data File Formats
	Line-Based Records
	Delimiter-Separated Values
	Fixed-Length Fields
	Block File Formats
	Summary
	Exercises

	Chapter 14: Scripting the Screen
	Teletypewriter vs. Canvas
	Stretching the Canvas
	Control Sequence Introducer
	Priming the Canvas
	Moving the Cursor
	Changing Rendition Modes and Colors
	Placing a Block of Text on the Screen
	Scrolling Text
	Rolling Dice
	Summary
	Exercises

	Chapter 15: Entry-Level Programming
	Single-Key Entry
	Function Library, key-funcs
	History in Scripts
	Sanity Checking
	Form Entry
	Reading the Mouse
	Summary
	Exercises

	Appendix A: Shell Variables
	Index

