

Mastering Linux Shell Scripting
Second Edition

A practical guide to Linux command-line, Bash scripting, and Shell programming

Mokhtar Ebrahim
Andrew Mallett

BIRMINGHAM - MUMBAI

Mastering Linux Shell Scripting
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ron Mathew
Technical Editor: Prachi Sawant
Copy Editor: Safis Editing
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: December 2015
Second edition: April 2018

Production reference: 1180418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-055-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Mokhtar Ebrahim started working as a Linux system administrator in 2010. He is
responsible for maintaining, securing, and troubleshooting Linux servers for multiple
clients around the world. He loves writing shell and Python scripts to automate his
work. He writes technical articles on the Like Geeks website about Linux, Python, web
development, and server administration. He is a father to a beautiful girl and a husband
to a faithful wife.

I would like to thank my wife for helping me with all her efforts to finish this book. Thank you, Doaa, for being a part of
that. Also, I would like to thank everyone at Packt for working with me to make sure the book is released. Last but not least,
I'd like to thank Brian Fox, the author of the bash shell, for creating such an awesome piece of software; without it, such a
book would not exist.

Andrew Mallett is the owner of The Urban Penguin, and he is a comprehensive
provider of professional Linux software development, training, and services. Having
always been a command-line fan, he feels that so much time can be saved through
knowing command-line shortcuts and scripting. TheUrbanPenguin YouTube channel,
maintained by Andrew, has well over 800 videos to support this, and he has authored
four other Packt titles.

About the reviewer
Sebastiaan Tammer is a Linux enthusiast from The Netherlands. After attaining his
BSc in Information Sciences, he graduated with MSc in Business Informatics, both
from Utrecht University. His professional career started in Java development before he
pivoted into Linux.

He has worked on number of technologies, such as Puppet, Chef, Docker, and
Kubernetes. He spends a lot of time in and around his terminal of choice: bash.
Whether it is creating complex scripting solutions or just automating simple tasks,
there is hardly anything he hasn't done with bash!

I would like to thank my girlfriend, Sanne, for all the help and support she has given me throughout the years. She has had
to endure the late nights studying, me fixing stuff (which I had inevitably broken only hours earlier), and my endless
storytelling about all those exciting new technologies. Thanks for the enormous amount of patience and love, I could not
have done it without you!

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

Mastering Linux Shell Scripting Second Edition

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the authors

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

1. The What and Why of Scripting with Bash

Technical requirements

Types of Linux shells

What is bash scripting?

The bash command hierarchy

Command type

Command PATH

Preparing text editors for scripting

Configuring vim

Configuring nano

Configuring gedit

Creating and executing scripts

Hello World!

Executing the script

Checking the exit status

Ensuring a unique name

Hello Dolly!

Running the script with arguments

The importance of correct quotes

Printing the script name

Declaring variables

User-defined variables

Environment variables

Variable scope

Command substitution

Debugging your scripts

Summary

Questions

Further reading

2. Creating Interactive Scripts

Technical requirements

Using echo with options

Basic script using read

Script comments

Enhancing scripts with read prompts

Limiting the number of entered characters

Controlling the visibility of the entered text

Passing options

Passing parameters with options

Read options values

Try to be standard

Enhancing learning with simple scripts

Backing-up with scripts

Connecting to a server

Version 1 – ping

Version 2 – SSH

Version 3 – MySQL/MariaDB

Reading files

Summary

Questions

Further reading

3. Conditions Attached

Technical requirements

Simple decision paths using command-line lists

Verifying user input with lists

Using the test shell built-in

Testing strings

Testing integers

Testing file types

Creating conditional statements using if

Extending if with else

Test command with the if command

Checking strings

Checking files and directories

Checking numbers

Combining tests

More conditions with elif

Creating the backup2.sh using elif

Using case statements

Recipe – building a frontend with grep

Summary

Questions

Further reading

4. Creating Code Snippets

Technical requirements

Abbreviations

Using code snippets

Bringing color to the Terminal

Creating snippets using VS Code

Summary

Questions

Further reading

5. Alternative Syntax

Technical requirement

Recapping the test command

Testing files

Adding logic

Square brackets as not seen before

Providing parameter defaults

Variables

Special parameters

Setting defaults

When in doubt – quote!

Advanced tests using [[

White space

Other advanced features

Pattern matching

Regular expressions

Regular expression script

Arithmetic operations using ((

Simple math

Parameter manipulation

Standard arithmetic tests

Summary

Questions

Further reading

6. Iterating with Loops

Technical requirement

for loops

Advanced for loops

The IFS

Counting directories and files

C-style for loops

Nested loops

Redirecting loop output

Controlling the loop

while loops and until loops

Reading input from files

Creating operator menus

Summary

Questions

Further reading

7. Creating Building Blocks with Functions

Technical requirements

Introducing functions

Passing parameters to functions

Passing arrays

Variable scope

Returning values from functions

Recursive functions

Using functions in menus

Summary

Questions

Further reading

8. Introducing the Stream Editor

Technical requirements

Using grep to display text

Displaying received data on an interface

Displaying user account data

Listing the number of CPUs in a system

Parsing CSV files

The CSV file

Isolating catalog entries

Understanding the basics of sed

The substitute command

Global replacement

Limiting substitution

Editing the file

Other sed commands

The delete command

The insert and append commands

The change command

The transform command

Multiple sed commands

Summary

Questions

Further reading

9. Automating Apache Virtual Hosts

Technical requirements

Apache name-based Virtual Hosts

Creating the virtual host template

First steps

Isolating lines

sed script files

Automating virtual host creation

Prompting for data during site creation

Summary

Questions

Further reading

10. AWK Fundamentals

Technical requirements

The history behind AWK

Displaying and filtering content from files

AWK variables

User-defined variables

Conditional statements

The if command

while loops

for loops

Formatting output

Further filtering to display users by UID

AWK control files

Built-in functions

Summary

Questions

Further reading

11. Regular Expressions

Technical requirements

Regular expression engines

Defining BRE patterns

Anchor characters

The dot character

The character class

Ranges of characters

Special character classes

The asterisk

Defining ERE patterns

The question mark

The plus sign

Curly braces

The pipe character

Expression grouping

Using grep

Summary

Questions

Further reading

12. Summarizing Logs with AWK

Technical requirements

The HTTPD log file format

Displaying data from web logs

Selecting entries by date

Summarizing 404 errors

Summarizing HTTP access codes

Resources hits

Identify image hotlinking

Displaying the highest ranking IP address

Displaying the browser data

Working with email logs

Summary

Questions

Further reading

13. A Better lastlog with AWK

Technical requirements

Using AWK ranges to exclude data

The lastlog command

Horizontally filtering rows with AWK

Counting matched rows

Conditions based on the number of fields

Manipulating the AWK record separator to report on XML data

Apache Virtual Hosts

XML catalog

Summary

Questions

Further reading

14. Using Python as a Bash Scripting Alternative

Technical requirements

What is Python?

Saying Hello World the Python way

Pythonic arguments

Supplying arguments

Counting arguments

Significant whitespace

Reading user input

Using Python to write to files

String manipulation

Summary

Questions

Further reading

Assessments

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
First, you'll learn about Linux shells and why we chose the bash shell. Then, you'll
learn how to write a simple bash script and how to edit your bash script using Linux
editors.

Following this, you will learn how to define a variable and the visibility of a variable.
After this, you will learn how to store command execution output into a variable,
which is called command substitution. Also, you will learn how to debug your code
using bash options and Visual Studio Code. You will learn how to make your bash
script interactive to the user by accepting input from the user using the read command.
Then, you will learn how to read options and its values if the user passed them to the
script. Following this, you will learn how to write conditional statements such as if
statements and how to use case statements. After this, you will learn how to create
code snippets using vim and Visual Studio Code. For repetitive tasks, you will see how
to write for loops, how to iterate over simple values, and how to iterate over directory
content. Also, you will learn how to write nested loops. Along with this, you will write
while and until loops. Then, we will move on to functions, the reusable chunks of
code. You will learn how to write functions and how to use them. After this, you will
be introduced to one of the best tools in Linux, which is Stream Editor. As we are still
talking about text processing, we will introduce AWK, one of the best text processing
tools in Linux that you will ever see.

After this, you will learn how to empower your text processing skills by writing better
regular expressions. Finally, you will be introduced to Python as an alternative to bash
scripting.

Who this book is for
This book targets system administrators and developers who would like to write a
better shell script to automate their work. Some programming experience is preferable.
If you don't have any background in shell scripting, no problem, the book will discuss
everything from the beginning.

What this book covers
Chapter 1, The What and Why of Scripting with Bash, will introduce Linux shells, how to
write your first shell script, how to prepare your editor, how to debug your shell script,
and some basic bash programming, such as declaring variables, variable scope, and
command substitution.

Chapter 2, Creating Interactive Scripts, covers how to read input from the user using read
command, how to pass options to your script, how to control the visibility of the
entered text, and how to limit the number of entered characters.

Chapter 3, Conditions Attached, will introduce the if statement, the case statement, and
other testing command such as else and elif.

Chapter 4, Creating Code Snippets, covers creating and using code snippets using
editors, such as vim and Visual Studio Code.

Chapter 5, Alternative Syntax, will discuss advanced testing using [[and how to perform
arithmetic operations.

Chapter 6, Iterating with Loops, will teach you how to use for loops, while loops, and until
loops to iterate over simple values and complex values.

Chapter 7, Creating Building Blocks with Functions, will introduce functions and
explains how to create a function, list builtin functions, pass parameters to functions,
and writing recursive functions.

Chapter 8, Introducing the Stream Editor, will introduce the basics of sed tool to
manipulate files, such as adding, replacing deleting, and transforming text.

Chapter 9, Automating Apache Virtual Hosts, contains a practical example of sed and
explains how to create virtual hosts automatically using sed.

Chapter 10, AWK Fundamentals, will discuss AWK and how to filter file content using it.
Also, we will discuss some AWK programming basics.

Chapter 11, Regular Expressions, covers regular expressions, their engines, and how to
use them with sed and AWK to empower your script.

Chapter 12, Summarizing Logs with AWK, will show how to process the httpd.conf Apache
log file using AWK and extract useful well-formatted data.

Chapter 13, A Better lastlog with AWK, will show you how to use AWK to output
beautiful reports using the lastlog command by filtering and processing the lastlog
output.

Chapter 14, Using Python as a Bash Scripting Alternative, will discuss Python
programming language basics and explains how to write some Python scripts as a bash
script alternative.

To get the most out of this book
I assume that you have a little programming background. Even if you don't have a
programming background, the book will start from the beginning.

You should know some Linux basics such as the basic commands such as ls, cd, and
which.

Download the example code files
You can download the example code files for this book from your account at www.packtpu
b.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/
Mastering-Linux-Shell-Scripting-Second-Edition. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it from https://www.packtpub.com/sites/default/files/downloads/Maste
ringLinuxShellScriptingSecondEdition_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringLinuxShellScriptingSecondEdition_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Edit your script so that it reads like the following complete code block
for $HOME/bin/hello2.sh"

A block of code is set as follows:

if [$file_compression = "L"] ; then

tar_opt=$tar_l

elif [$file_compression = "M"]; then

tar_opt=$tar_m

else

tar_opt=$tar_h

fi

Any command-line input or output is written as follows:

$ type ls

ls is aliased to 'ls --color=auto'

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Another very useful feature is found on the Preferences | Plugins tab"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave a review
on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback on their book. Thank
you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

The What and Why of Scripting
with Bash
Welcome to the what and why of bash scripting. In this chapter, you will discover the
types of shells in Linux and why we chose bash. You will learn what bash is, how to
write your first bash script, and how to run it. Also, you will see how to configure
Linux editors, such as vim and nano, in order to type your code.

Like in any other scripting language, variables are the basic blocks of coding. You will
learn how to declare variables such as integers, strings, and arrays. Furthermore, you
will learn how to export these variables and extend their scope outside the running
process.

Finally, you will see how to visually debug your code using Visual Studio Code.

We will cover the following topics in this chapter:

Types of Linux shells
What is bash scripting?
The bash command hierarchy
Preparing text editors for scripting
Creating and executing scripts
Declaring variables
Variable scope
Command substitution
Debugging your scripts

Technical requirements
You'll need a running Linux box. It doesn't matter which distribution you use, since all
Linux distributions are shipped nowadays with the bash shell.

Download and install Visual Studio Code, which is free from Microsoft. You can
download it from here: https://code.visualstudio.com/.

You can use VS Code as an editor instead of vim and nano; it's up to you.

We prefer to use VS Code because it has a lot of features such as code completion,
debugging, and many more besides.

Install bashdb, which is a required package for the bash debug plugin. If you are using a
Red Hat-based distribution, you can install it like this:

$ sudo yum install bashdb

If you are using a Debian-based distribution, you can install it like this:

$ sudo apt-get install bashdb

Install the plugin for VS Code, called bash debug, from https://marketplace.visualstudio.com/
items?itemName=rogalmic.bash-debug. This plugin will be used to debug bash scripts.

The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter01

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=rogalmic.bash-debug
https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter01

Types of Linux shells
As you know, Linux consists of some major parts, such as the kernel, the shell, and the
GUI interface (Gnome, KDE, and so on).

The shell translates your commands and sends them to the system. Most Linux
distributions are shipped with many shells.

Every shell has its own features, and some of them are very popular among developers
today. These are some of the popular ones:

Sh shell: This is called the Bourne shell, this was developed at AT&T labs in the
70s by a guy named Stephen Bourne. This shell offers many features.
Bash shell: Also called the Bourne again shell, this is very popular and
compatible with sh shell scripts, so you can run your sh scripts without changing
them. We are going to use this shell in this book.
Ksh shell: Also called the Korn shell, this is compatible with sh and bash. Ksh
offers some enhancements over the Bourne shell.
Csh and tcsh: Linux was built using the C language and that drove developers at
Berkeley University to develop a C-style shell in which the syntax is similar to
the C language. Tcsh adds some minor enhancements to csh.

Now we know the types of shells and we know that we are going to use bash, so what
is bash scripting?

What is bash scripting?
The basic idea of bash scripting is to execute multiple commands to automate a
specific job.

As you might know, you can run multiple commands from the shell by separating
them with semi colons (;):

ls ; pwd

The previous line is a mini bash script.

The first command runs, followed by the result of the second command.

Every keyword you type in bash scripting is actually a Linux binary (program), even
the if statement, or else or while loops. All are Linux executables.

You can say that the shell is the glue that binds these commands together.

The bash command hierarchy
When working on the bash shell and when you are sitting comfortably at your prompt
eagerly waiting to type a command, you will most likely feel that it is a simple matter
of typing and hitting the Enter key. You should know better than to think this, as
things are never quite as simple as we imagine.

Command type
For example, if we type and enter ls to list files, it is reasonable to think that we were
running the command. It is possible, but we often will be running an alias. Aliases
exist in memory as a shortcut to commands or commands with options; these aliases
are used before we even check for the file. Bash's built-in type command can come to
our aid here. The type command will display the type of command for a given word
entered at the command line. The types of command are listed as follows:

Alias
Function
Shell built-in
Keyword
File

This list is also representative of the order in which they are searched. As we can see,
it is not until the very end where we search for the executable file ls.

The following command demonstrates the simple use type:

$ type ls

ls is aliased to 'ls --color=auto'

We can extend this further to display all the matches for the given command:

$ type -a ls

ls is aliased to 'ls --color=auto'

ls is /bin/ls

If we need to just type in the output, we can use the -t option. This is useful when we
need to test the command type from within a script and only need the type to be
returned. This excludes any superfluous information, and thus makes it easier for us
humans to read. Consider the following command and output:

$ type -t ls

alias

The output is clear and simple, and is just what a computer or script requires.

The built-in type can also be used to identify shell keywords such as if, and case. The
following command shows type being used against multiple arguments and types:

$ type ls quote pwd do id

The output of the command is shown in the following screenshot:

You can also see that the function definition is printed when we stumble across a
function when using type.

Command PATH
Linux will check for executables in the PATH environment only when the full or relative
path to the program is supplied. In general, the current directory is not searched unless
it is in the PATH. It is possible to include our current directory within the PATH by adding
the directory to the PATH variable. This is shown in the following command example:

$ export PATH=$PATH:.

This appends the current directory to the value of the PATH variable; each item in the
PATH is separated using a colon. Now your PATH has been updated to include the current
working directory and, each time you change directories, the scripts can be executed
easily. In general, organizing scripts into a structured directory hierarchy is probably a
great idea. Consider creating a subdirectory called bin within your home directory and
add the scripts into that folder. Adding $HOME/bin to your PATH variable will enable you to
find the scripts by name and without the file path.

The following command-line list will only create the directory, if it does not already
exist:

$ test -d $HOME/bin || mkdir $HOME/bin

Although the preceding command-line list is not strictly necessary, it does show that
scripting in bash is not limited to the actual script, and we can use conditional
statements and other syntax directly at the command line. From our viewpoint, we
know that the preceding command will work whether you have the bin directory or not.
The use of the $HOME variable ensures that the command will work without considering
your current filesystem context.

As we work through the book, we will add scripts into the $HOME/bin directory so that
they can be executed regardless of our working directory.

Preparing text editors for
scripting
Throughout the book, we will be working on Linux Mint, and this will include the
creation and editing of the scripts. You, of course, can choose the way you wish to edit
your scripts and may prefer to make use of a graphical editor, so we will show some
settings in gedit. We will make one excursion into a Red Hat system to show
screenshots of gedit in this chapter.

Also, we will use Visual Studio Code as a modern GUI editor to edit and debug our
scripts.

To help make the command-line editor easier to use, we can enable options and we can
persist with these options through hidden configuration files. Gedit and other GUI
editors, and their menus, will provide similar functionality.

Configuring vim
Editing the command line is often a must and is part of a developer's everyday life.
Setting up common options that make life easier in the editor give us the reliability and
consistency we need, a little like scripting itself. We will set some useful options in the
vi or vim editor file, $HOME/.vimrc.

The options we set are detailed in the following list:

set showmode: Ensures we see when we are in insert mode
set nohlsearch: Does not highlight the words that we have searched for
set autoindent: We indent our code often; this allows us to return to the last indent
level rather than the start of a new line on each line break
set tabstop=4: Sets a tab to be four spaces
set expandtab: Converts tabs to spaces, which is useful when the file moves to other
systems
syntax on: Note that this does not use the set command and is used to turn on
syntax highlighting

When these options are set, the $HOME/.vimrc file should look similar to this:

set showmode

set nohlsearch

set autoindent

set tabstop=4

set expandtab

syntax on

Configuring nano
The nano text editor is increasing in importance and it is the default editor in many
systems. Personally, I don't like the navigation or the lack of navigation features that it
has. It can be customized in the same way as vim. This time, we will edit the
$HOME/.nanorc file. Your edited file should look something like the following:

set autoindent

set tabsize 4

include /usr/share/nano/sh.nanorc

The last line enables syntax highlighting for shell scripts.

Configuring gedit
Graphical editors, such as gedit, can be configured using the preferences menu, and are
pretty straightforward.

Enabling tab spacing to be set to 4 spaces and expanding tabs to spaces can be done
using the Preferences | Editor tab, as shown in the following screenshot:

You can download the example code files from your account at http://www.packtpub.com for all the Packt
Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com
/support and register to have the files e-mailed directly to you.

Another very useful feature is found on the Preferences | Plugins tab. Here, we can
enable the Snippets plugin, which can be used to insert code samples. This is shown in
the following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support

For the rest of the book, we will be working on the command line and in vim; feel free
to use the editor that you work with best. We have now laid the foundations to create
good scripts, and, although whitespace, tabs, and spaces in bash scripts are not
significant, a well-laid-out file with consistent spacing is easy to read. When we look
at Python later in the book, you will realize that in some languages, the whitespace is
significant to the language and it is better to adopt good habits early on.

Creating and executing scripts
With our editors primed and ready, we can now move quickly to creating and
executing our scripts. If you are reading this book with some prior experience, we will
warn you that we are going to start with the basics, but we will also include looking at
positional parameters; feel free to move on at your own pace.

Hello World!
As you know, it is almost obligatory to begin with a Hello World script and we will not
disappoint as far as this is concerned. We will begin by creating a new
script, $HOME/bin/hello1.sh. The contents of the file should read as in the following
screenshot:

We hope that you haven't struggled with this too much; it is just three lines, after all.
We encourage you to run through the examples as you read to really help you instill
the information with good hands-on practice.

#!/bin/bash: Normally, this is always the first line of the script and is known as the
shebang. The shebang starts with a comment, but the system still uses this line. A
comment in a shell script has the # symbol. The shebang instructs the interpreter
of the system to execute the script. We use bash for shell scripts, and we may use
PHP or Perl for other scripts, as required. If we do not add this line, then the
commands will be run within the current shell; it may cause issues if we run
another shell.
echo "Hello World": The echo command will be picked up in a built-in shell and can
be used to write a standard output, STDOUT; this defaults to the screen. The
information to print is enclosed in double quotes; there will be more on quotes
later.
exit 0: The exit command is a built-in shell, and is used to leave or exit the script.
The exit code is supplied as an integer argument. A value of anything other than 0
will indicate some type of error in the script's execution.

Executing the script
With the script saved in our PATH environment, it still will not execute as a standalone
script. We will have to assign and execute permissions for the file, as needed. For a
simple test, we can run the file directly with bash. The following command shows you
how to do this:

$ bash $HOME/bin/hello1.sh

We should be rewarded with the Hello World text being displayed on our screens. This is
not a long-term solution, as we need to have the script in the $HOME/bin directory,
specifically, to make running the script easy from any location without typing the full
path. We need to add in the execute permissions as shown in the following code:

$ chmod +x $HOME/bin/hello1.sh

We should now be able to run the script simply, as shown in the following screenshot:

Checking the exit status
This script is simple, but we still need to know how to make use of the exit codes from
scripts and other applications. The command-line list that we generated earlier, while
creating the $HOME/bin directory, is a good example of how we can use the exit code:

$ command1 || command 2

In the preceding example, command2 is executed only if command1 fails in some way. To be
specific, command2 will run if command1 exits with a status code other than 0.

Similarly, in the following extract, we will only execute command2 if command1 succeeds
and issues an exit code of 0:

$ command1 && command2

To read the exit code from our script explicitly, we can view the $? variable, as shown
in the following example:

$ hello1.sh

$ echo $?

The expected output is 0, as this is what we have added to the last line of the file and
there is precious little else that can go wrong to cause the failure to reach that line.

Ensuring a unique name
We can now create and execute a simple script, but we need to consider the name a
little. In this case, hello1.sh will be good enough and is unlikely to clash with anything
else on the system. We should avoid using names that may clash with existing aliases,
functions, keywords, and building commands, as well as avoiding names of programs
already in use.

Adding the sh suffix to the file does not guarantee the name will be unique, but, in
Linux, where we do not use file extensions, the suffix is part of the filename. This
helps you to provide a unique identity to your script. Additionally, the suffix is used by
the editor to help you identify the file for syntax highlighting. If you recall, we
specifically added the syntax highlighting file sh.nanorc to the nano text editor. Each of
these files is specific to a suffix and subsequent language.

Referring back to the command hierarchy within this chapter, we can use a type to
determine the location and type of file hello.sh:

$ type hello1.sh #To determine the type and path

$ type -a hello1.sh #To print all commands found if the name is NOT unique

$ type -t hello1.sh ~To print the simple type of the command

These commands and output can be seen in the following screenshot:

Hello Dolly!
It is possible that we might need a little more substance in the script than a simple
fixed message. Static message content does have its place, but we can make this script
much more useful by building in some flexibility.

In this chapter, we will look at the positional parameters or arguments that we can
supply to the script and in the next chapter, we will see how we can make the script
interactive and also prompt the user for input at runtime.

Running the script with
arguments
We can run the script with arguments; after all, it's a free world and Linux promotes
your freedom to do what you want to do with the code. However, if the script does not
make use of the arguments, then they will be silently ignored. The following command
shows the script running with a single argument:

$ hello1.sh fred

The script will still run and will not produce an error. The output will not change either
and will print Hello World:

Argument
Identifier Description

$0 The name of the script itself, which is often used in usage statements.

$1
A positional argument, which is the first argument passed to the
script.

${10}

Where two or more digits are needed to represent the argument
position. Brace brackets are used to delimit the variable name from
any other content. Single value digits are expected.

$#
The argument count is especially useful when we need to set the
amount of arguments needed for correct script execution.

$* Refers to all arguments.

For the script to make use of the argument, we can change its content a little. Let's first
copy the script, add in the execute permissions, and then edit the new hello2.sh:

$ cp $HOME/bin/hello1.sh $HOME/bin/hello2.sh

$ chmod +x $HOME/bin/hello2.sh

We need to edit the hello2.sh file to make use of the argument as it is passed at the
command line. The following screenshot shows the simplest use of command-line
arguments, now allowing us to have a custom message:

Run the script now; we can provide an argument as shown in the following:

$ hello2.sh fred

The output should now say Hello fred. If we do not provide an argument, then the
variable will be empty and will just print Hello. You can refer to the following
screenshot to see the execution argument and output:

If we adjust the script to use $*, all the arguments will print. We will see Hello and then
a list of all the supplied arguments. Edit the script and replace the echo line as follows:

echo "Hello $*"

This will execute the script with the following arguments:

$ hello2.sh fred wilma betty barney

And this will result in the output shown in the following screenshot:

If we want to print Hello <name>, with each name on a separate line, we will need to wait
a little until we cover looping structures. A for loop is a good way to achieve this.

The importance of correct
quotes
So far, we have used a simple double-quoting mechanism to encase the strings that we
want to use with echo.

In the first script, it does not matter if we use single or double quotes. echo "Hello World"
will be exactly the same as echo 'Hello World'.

However, this is not the case in the second script, so it is very important to understand
the quoting mechanisms available in bash.

As we have seen, using double quotes in echo "Hello $1" will result in Hello fred or
whatever the supplied value is. Whereas, if we use single quotes in echo 'Hello $1', the
printed output on the screen will be Hello $1; that is, we see the variable name and not
its value.

The idea of the quotes is to protect special characters, such as a space between the two
words; both quotes protect the space from being misinterpreted. The space is normally
read as a default field, separated by the shell. In other words, all characters are read by
the shell as literals with no special meaning. This has the knock-on effect of the $
symbol printing its literal format rather than allowing bash to expand its value. The
bash shell is prevented from expanding the variable's value as it is protected by the
single quotes.

This is where the double quote comes to our rescue. The double quote will protect all
the characters except the $, allowing bash to expand the stored value.

If we ever need to use a literal $ within the quoted string, along with variables that
need to be expanded, we can use double quotes, but escape the desired $ with the
backslash (\). For example, echo "$USER earns \$4" would print as Fred earns $4 if the
current user were Fred.

Try the following examples at the command line using all quoting mechanisms. Feel
free to up your hourly rate as required:

$ echo "$USER earns $4"

$ echo '$USER earns $4'

$ echo "$USER earns \$4"

The output is shown in the following screenshot:

Printing the script name
The $0 variable represents the script name, and this is often used in usage statements.
As we are not yet looking at conditional statements, we will get the script name printed
above the displayed name.

Edit your script so that it reads like the following complete code block for
$HOME/bin/hello2.sh:

#!/bin/bash

echo "You are using $0"

echo "Hello $*"

exit 0

The output from the command is shown in the following screenshot:

If we prefer not to print the path and only want the name of the script to show, we can
use the basename command, which extracts the name from the path. Adjust the script so
that the second line now reads as follows:

echo "You are using $(basename $0)"

The $(....) syntax is used to evaluate the output of the inner command. We first run
basename $0 and feed the result into an unnamed variable represented by the $.

The new output will appear as seen in the following screenshot:

It is possible to achieve the same results using back quotes; this is less easy to read, but
we have mentioned this as you might need to understand and modify the scripts that
have been written by others. The alternative to the $(....) syntax is shown in the
following example:

echo "You are using 'basename $0'"

Please note that the characters used are back quotes and NOT single quotes. On UK
and US keyboards, these are found in the top-left corner next to the number 1 key.

Declaring variables
Just like in any programming language, you can declare variables in bash scripts. So,
what are these variables and what are the benefits of using them?

Well, a variable is like a placeholder where you store some value for later use in your
code.

There are two kinds of variables you can declare in your script:

User-defined variables
Environment variables

User-defined variables
To declare a variable, just type the name you want and set its value using the equals
sign (=).

Check out this example:

#!/bin/bash

name="Mokhtar"

age=35

total=16.5

echo $name #prints Mokhtar

echo $age #prints 35

echo $total #prints 16.5

As you can see, to print the variable's value, you should use the dollar sign ($) before
it.

Note that there are no spaces between the variable name and the equals sign, or
between the equals sign and the value.

If you forget and type a space in between, the shell will treat the variable as if it were a
command, and, since there is no such command, it will show an error.

All of the following examples are incorrect declarations:

Don't declare variables like this:

name = "Mokhtar"

age =35

total= 16.5

Another useful type of user-defined variable is the array. An array can hold multiple
values. So, if you have tens of values you want to use, you should use arrays instead of
filling your script with variables.

To declare an array, just enclose its elements between brackets, like this:

#!/bin/bash

myarr=(one two three four five)

To access a specific array element, you can specify its index like this:

#!/bin/bash

myarr=(one two three four five)

echo ${myarr[1]} #prints two which is the second element

The index is zero based.

To print the array elements, you can use an asterisk, like this:

#!/bin/bash

myarr=(one two three four five)

echo ${myarr[*]}

To remove a specific element from the array, you can use the unset command:

#!/bin/bash

myarr=(one two three four five)

unset myarr[1] #This will remove the second element

unset myarr #This will remove all elements

Environment variables
So far, we have used variables that we didn't define, such as $BASH_VERSION, $HOME, $PATH,
and $USER. You might wonder, as we didn't declare these variables, where did they
come from?

These variables are defined by the shell for your use and they are called environment
variables.

There are many environment variables. If you want to list them, you can use the
printenv command.

Also, you can print a specific environment variable by specifying it to the printenv
command:

$ printenv HOME

We can use any of these variables in our bash scripts.

Note that all environment variables are written in capital letters, so you can declare
your variables as lower case to make it easy to differentiate your variables from
environment variables. This is not required, but is preferable.

Variable scope
Once you have declared your variable, it will be available for use in your entire bash
script without any problems.

Let's assume this scenario: you have divided your code into two files and you will
execute one of them from inside the other, like this:

The first script

#!/bin/bash

name="Mokhtar"

./script2.sh # This will run the second script

The second script looks like this:

The script2.sh script

#!/bin/bash

echo $name

Suppose that you want to use the name variable in the second script. If you try to print it,
nothing will show up; this is because a variable's scope is only limited to the process
that creates it.

To use the name variable, you can export it using the export command.

So, our code will be like this:

The first script

#!/bin/bash

name="Mokhtar"

export name # The variable will be accessible to other processes

./script2.sh

Now if you run the first script, it will print the name that came from the first script file.

Keep in mind that the second process or script2.sh only makes a copy of the variable
and never touches the original one.

To prove this, try to change that variable from the second script and try to access that
variable value from the first script:

The first script

#!/bin/bash

name="Mokhtar"

export name

./script2.sh

echo $name

The second script will be like this:

The first script

#!/bin/bash

name="Another name"

echo $name

If you run the first script, it will print the modified name from the second script and then
it will print the original name from the first script. So, the original variable remains as it
is.

Command substitution
So far, we have seen how to declare variables. These variables can hold integers,
strings, arrays, or floats, as we have seen, but this is not everything.

A command substitution means storing the output of a command execution in a
variable.

As you might know, the pwd command prints the current working directory. So, we will
see how to store its value in a variable.

There are two ways to perform a command substitution:

Using the backtick character (')
Using the dollar sign format, like this: $()

Using the first method, we just surround the command between two backticks:

#!/bin/bash

cur_dir='pwd'

echo $cur_dir

And the second way is written as follows:

#!/bin/bash

cur_dir=$(pwd)

echo $cur_dir

The output coming from commands can be further processed and actions can be made
based on that output.

Debugging your scripts
With the scripts as simple as we have seen so far, there is little that can go wrong or
need debugging. As the script grows and decision paths are included with conditional
statements, we may need to use some level of debugging to analyze the scripts'
progress better.

Bash provides two options for us, -v and -x.

If we want to look at the verbose output from our script and the detailed information
about the way the script is evaluated line by line, we can use the -v option. This can be
within the shebang, but it is often easier to run the script directly with bash:

$ bash -v $HOME/bin/hello2.sh fred

This is especially useful in this example as we can see how each element of the
embedded basename command is processed. The first step is removing the quotes and
then the parentheses. Take a look at the following output:

The -x option, which displays the commands as they are executed, is more commonly
used. It's useful to know the decision branch that has been chosen by the script. The
following shows this in action:

$ bash -x $HOME/bin/hello2.sh fred

We again see that the basename is evaluated first, but we do not see the more detailed
steps involved in running that command. The screenshot that follows captures the
command and output:

The previous method might be hard for beginners or people who have a programming
background in which they debugged their code visually.

Another modern way of debugging shell scripts is by using Visual Studio Code.

There is a plugin called bash debug that enables you to debug bash scripts visually, as
is the case for any other programming language.

You can step into, step over, add watches, and do all the other usual debugging stuff
you know.

After installing the plugin, from the File menu, open your shell-scripts folder. Then
you can configure the debugging process by pressing Ctrl + Shift + P and typing the
following:

Debug:open launch.json

This will open an empty file; type in the following configurations:

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": "Packt Bash-Debug",

 "type": "bashdb",

 "request": "launch",

 "scriptPath": "${command:SelectScriptName}",

 "commandLineArguments": "",

 "linux": {

 "bashPath": "bash"

 },

 "osx": {

 "bashPath": "bash"

 }

 }

]

}

This will create a debug configuration named Packt Bash-Debug:

Now insert a breakpoint and press F5, or start debugging from the Debug menu; it will
show you the list of .sh files:

Select the one you want to debug, and set a breakpoint on any line to test it, as shown
in the following screenshot:

You can add watches to watch variables' values while stepping over your lines of code:

Note that your script MUST start with the bash shebang, #!/bin/bash.

Now you can enjoy the visual method of debugging. Happy coding!

Summary
This marks the end of this chapter and you have no doubt found this useful. Especially
for those making a start with bash scripting, this chapter will have established a firm
foundation on which you can build your knowledge.

We began by ensuring that bash is secure and not susceptible to shell-shock from
embedded functions. With bash secured, we considered the execution hierarchy where
aliases, functions, and so on are checked before the command; knowing this can help
us plan a good naming structure and a path to locate the scripts.

Then we went on to illustrate the types of Linux shells and we found out what bash
scripting is.

Soon, we were writing simple scripts with static content, but we saw how easy it was
to add flexibility using arguments. The exit code from the script can be read with the $?
variable and we can create a command-line list using || and &&, which depends on the
success or failure of the preceding command in the list.

Then we saw how to declare variables and how to use environment variables. We
identified the variables' scope and saw how to export them to another process.

Also, we saw how to store commands' output in variables, which is called command
substitution.

Finally, we closed the chapter by looking at debugging the script using bash options
and VS Code. It's not really required when the script is trivial, but it will be useful later
when complexity is added.

In the next chapter, we will create interactive scripts that read the user's input during
script execution.

Questions
1. What is the problem with the following code? And how do we fix it?

#!/bin/bash

var1 ="Welcome to bash scripting ..."

echo $var1

2. What is the result of the following code?

#!/bin/bash

arr1=(Saturday Sunday Monday Tuesday Wednesday)

echo ${arr1[3]}

3. What is the problem with the following code? And how do we fix it?

#!/bin/bash

files = 'ls -la'

echo $files

4. What is the value of the b and c variables in the following code?

#!/bin/bash

a=15

b=20

c=a

b=c

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-5.html

http://tldp.org/LDP/abs/html/varassignment.html

http://tldp.org/LDP/abs/html/declareref.html

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-5.html
http://tldp.org/LDP/abs/html/varassignment.html
http://tldp.org/LDP/abs/html/declareref.html

Creating Interactive Scripts
In Chapter 1, The What and Why of Scripting with Bash, we learned how to create a
script and use some of its basic elements. These included optional parameters that we
can pass through to the script when it is executed. In this chapter, we will extend this
by using the shell's built-in read command to allow for interactive scripts. Interactive
scripts are scripts that prompt for information during the script's execution.

In this chapter, we will cover the following topics:

Using echo with options
Basic script using read
Script comments
Enhancing read scripts with read prompts
Limiting the number of entered characters
Controlling the visibility of the entered text
Passing options
Read options values
Try to be standard
Enhancing learning with simple scripts

Technical requirements
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter02

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter02

Using echo with options
So far, in this book we have been able to see that the echo command is very useful and
is going to be used in many of our scripts, if not all of them. When running the echo
command, the built-in command will be used unless we state the full path to the file.
We can test this with the following command:

$ which echo

To gain help on the built-in command, we can use man bash and search for echo;
however, the echo command is identical to the internal command, so we recommend
that you use man echo in most cases in order to display the command options.

The basic use of echo that we have seen so far will produce a text output and a new line.
This is often the desired response, so we don't need to be concerned that the next
prompt will append to the end of the echoed text. The new line separates the script
output from the next shell prompt. If we do not supply any text string to print, echo will
print only the new line to STDOUT. We can test this with the following command, directly
from the command line. We do not need to run echo or, in fact, any other command
from a script. To run echo from the command line, we simply enter the command as
shown:

$ echo

The output will show a clear new line between the command we issued and the
subsequent prompt. We can see this in the following screenshot:

If we want to suppress the new line, which is especially useful if we are to prompt
users, we can do this in the following two ways, with the help of echo:

$ echo -n "Which directory do you want to use? "

$ echo -e "Which directory do you want to use? \c"

The result will be to suppress the line feed. In the initial example, the -n option is used
to suppress the line feed. The second example uses the more generic -e option, which
allows escape sequences to be added to the text string. To continue on the same line,
we use \c as the escape sequence.

This does not look great as the final part of the script or when it is run from the

command line, as the command prompt will follow. This is illustrated in the following
screenshot:

Basic script using read
When used as part of a script that prompts for user input, the suppression of the line
feed is exactly what we want. We will begin by copying the existing hello2.sh script to
hello3.sh and build an interactive script. Initially, we will use echo as the prompt
mechanism, but, as we gradually enhance the script, we will generate the prompt
directly from the shell built-in read command:

$ cp $HOME/bin/hello2.sh $HOME/bin/hello3.sh

$ chmod +x $HOME/bin/hello3.sh

Edit the $HOME/bin/hello3.sh script so that it reads as follows:

#!/bin/bash

echo -n "Hello $(basename $0)! May I ask your name: "

read

echo "Hello $REPLY"

exit 0

As we execute the script, we will be greeted and prompted with whatever is typed.
This is echoed using the $REPLY variable in the echo statement. As we have not yet
supplied a variable name to the read built-in command, the default $REPLY variable is
used. The script execution and output are shown in the following screenshot. Take
some time to practice the script on your own system.

This little step has taken us a long way and there are many uses for a script like this;
we have all used installation scripts that prompt for options and directories as we run
through the install. We accept that it is still quite trivial, but, as we delve into the
chapter, we will get closer to some more useful scripts.

Script comments
We should always introduce commenting scripts early in the piece. A script comment
is prefaced with a # symbol. Anything after the # symbol is a comment and is not
evaluated by the script. The shebang, #!/bin/bash, is primarily a comment and, as such,
is not evaluated by the shell. The shell running the script reads the whole shebang, so it
knows which command interpreter to hand the script over to. A comment may be at
the start of a line or partway into the line. Shell scripting does not have the notion of
multi-line comments.

If you are not already familiar with comments, then please note that they are added to
the script to describe who wrote the script, when it was written and last updated, and
what the script does. They are the metadata of the script.

The following is an example of comments in scripts:

#!/bin/bash

Welcome to bash scripting

Author: Mokhtar

Date: 1/5/2018

It is good practice to comment, and add comments that explain what the code is doing
and why. This will help you and your colleagues who need to edit the script at a later
date.

Enhancing scripts with read
prompts
We have seen how we can use the built-in read to populate a variable. So far, we have
used echo to produce the prompt, but this can be passed to read itself using the -p
option. The read command will surpass the additional linefeed, so we reduce both the
line count and the complexity to some degree.

We can test this at the command line itself. Try typing the following command to see
read in action:

$ read -p "Enter your name: " name

We use the read command with the -p option. The argument that follows the option is
the text that appears in the prompt. Normally, we would make sure that there is a
trailing space at the end of the text to ensure that we can clearly see what we type. The
last argument supplied here is the variable we want to populate; we simply call it
name. Variables are case-sensitive too. Even if we do not supply the last argument, we
can still store the user's response, but this time in the REPLY variable.

When we return the value of a variable, we use $, but not when we write it. In simple terms, when reading a
variable we refer to $VAR and when setting a variable we refer to VAR=value.

The read command with syntax using the -p option is shown as follows:

read -p <prompt> <variable name>

We can edit the script so that it appears similar to the following extract from hello3.sh:

#!/bin/bash

read -p "May I ask your name: " name

echo "Hello $name"

exit 0

The read prompt cannot evaluate commands within the message string, such as those
we used before.

Limiting the number of entered
characters
We have not needed this functionality in the scripts we have used so far, but we may
need to ask users to hit any key to continue. At the moment, we have set it up in such a
way that the variable is not populated until we hit the Enter key. Users have to hit
Enter to continue. If we use the -n option followed by an integer, we can specify the
number of characters to accept before continuing; we will set 1 in this case. Take a
look at the following code extract:

#!/bin/bash

read -p "May I ask your name: " name

echo "Hello $name"

read -n1 -p "Press any key to exit"

echo

exit 0

Now the script will pause after displaying the name until we press any key; we can
literally press any key before continuing, as we accept just 1 key stroke, whereas
earlier we were required to leave the default behavior in place, as we could not know
how long an entered name would be. We have to wait for the user to hit Enter.

We add an additional echo here to ensure that a new line is issued before the script ends. This ensures that the
shell prompt starts on a new line.

Controlling the visibility of the
entered text
Even though we have limited the input to a single character, we do get to see the text
on the screen. In the same way, if we type the name, we get to see the entered text
before we hit Enter. In this case, it is just untidy, but if we are entering sensitive data,
such as a PIN or a password, we should hide the text. We can use the silent option, or -
s, to achieve this. A simple edit in the script will set this in place:

#!/bin/bash

read -p "May I ask your name: " name

echo "Hello $name"

read -sn1 -p "Press any key to exit"

echo

exit 0

Now, when we use a key to continue, it will not be displayed on the screen. We can
see the behavior of the script in the following screenshot:

Passing options
So far, we have seen in the first chapter how to read parameters from the user. Also,
you can pass options. So, what are options? And how are they different from
parameters?

Options are characters with a single dash before them.

Check out this example:

$./script1.sh -a

The -a is an option. You can check from your script if the user entered this option; if
so, then your script can behave in some manner.

You can pass multiple options:

$./script1.sh -a -b -c

To print these options, you can use the $1, $2, and $3 variables:

#!/bin/bash

echo $1

echo $2

echo $3

We should check these options, but, since we haven't discussed conditional statements
yet, we will keep it simple for now.

Options can be passed with a value, like this:

$./script1.sh -a -b 20 -c

Here the -b option is passed with a value of 20.

As you can see, the variable $3=20, which is the passed value.

This might not be acceptable to you. You need $2=-b and $3=-c.

We will use some conditional statements to get these options correct.

#!/bin/bash

while [-n "$1"]

do

case "$1" in

-a) echo "-a option used" ;;

-b) echo "-b option used" ;;

-c) echo "-c option used" ;;

*) echo "Option $1 not an option" ;;

esac

shift

done

If you don't know about the while loop, it's not a problem; we will discuss conditional
statements in detail in the coming chapters.

The shift command shifts the options one step to the left.

So, if we have three options or parameters and we use the shift command:

$3 becomes $2
$2 becomes $1
$1 is dropped

It's like an action to move forward while iterating over the options using the while
loop.

So, in the first loop cycle, $1 will be the first option. After shifting the options, $1 will
be the second option and so on.

If you try the previous code, you will notice that it still doesn't identify the values of
options correctly. Don't worry, the solution is coming; just wait a little longer.

Passing parameters with options
To pass parameters along with options simultaneously, you must separate them with a
double dash, like this:

$./script1.sh -a -b -c -- p1 p2 p3

Using the previous technique, we can iterate over the options till we reach the double
dash, then we will iterate over the parameters:

#!/bin/bash

while [-n "$1"]

do

case "$1" in

-a) echo "-a option found" ;;

-b) echo "-b option found";;

-c) echo "-c option found" ;;

--) shift

break ;;

*) echo "Option $1 not an option";;

esac

shift

done

#iteration over options is finished here.

#iteration over parameters started.

num=1

for param in $@

do

echo "#$num: $param"

num=$(($num + 1))

done

Now if we run it with parameters and options combined, we should see a list of options
and another list of parameters:

$./script1.sh -a -b -c -- p1 p2 p3

As you can see, anything passed after the double dash is treated as a parameter.

Read options values
We have seen how to identify options and parameters, but we still need a way to read
the options values correctly.

You may need to pass a value for a specific option. How can this value be read?

We will check for the $2 variable while the iteration goes through the options that we
expect a value for.

Check the following code:

#!/bin/bash

while [-n "$1"]

do

case "$1" in

-a) echo "-a option passed";;

-b) param="$2"

echo "-b option passed, with value $param"

shift ;;

-c) echo "-c option passed";;

--) shift

break ;;

*) echo "Option $1 not an option";;

esac

shift

done

num=1

for param in "$@"

do

echo "#$num: $param"

num=$(($num + 1))

done

This looks good now; your script identifies the options and the passed value for the
second option.

There is a built-in option for getting options from the users, which is using the getopt
function.

Unfortunately, getopt doesn't support options with more than one character.

There is a non-built-in program called getopt, which supports options larger than one

character, but, again, the macOS X version doesn't support long options.

Anyway, if you would like to read more about getopt usage, refer to the further reading
resources given after this chapter.

Try to be standard
You may use bash scripts from GitHub, and you may notice that there is a standard
option scheme that is followed. It's not required, but it is preferable.

These are some of the commonly used options:

-a: List all items
-c: Get a count of all items
-d: Output directory
-e: Expand items
-f: Specify a file
-h: Show the help page
-i: Ignore the character case
-l: List a text
-o: Send output to a file
-q: Keep silent; don't ask the user
-r: Process something recursively
-s: Use stealth mode
-v: Use verbose mode
-x: Specify an executable
-y: Accept without prompting me

Enhancing learning with simple
scripts
Our scripts are still a little trivial, and we have not looked at conditional statements so
we can test for correct input, but let's take a look at some simple scripts that we can
build with some functionality.

Backing-up with scripts
Now that we have created some scripts, we may want to back these up to a different
location. If we create a script to prompt us, we can choose the location and the type of
files that we want to backup.

Consider the following script for your first practice. Create the script and name
it $HOME/backup.sh:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Script to prompt to back up files and location

The files will be search on from the user's home

directory and can only be backed up to a directory

within $HOME

Last Edited: July 4 2015

read -p "Which file types do you want to backup " file_suffix

read -p "Which directory do you want to backup to " dir_name

The next lines creates the directory if it does not exist

test -d $HOME/$dir_name || mkdir -m 700 $HOME/$dir_name

The find command will copy files the match the

search criteria ie .sh . The -path, -prune and -o

options are to exclude the backdirectory from the

backup.

find $HOME -path $HOME/$dir_name -prune -o \

-name "*$file_suffix" -exec cp {} $HOME/$dir_name/ \;

exit 0

You will see that the file is commented; though, in black and white, the readability is a
little difficult. If you have an electronic copy of this book, you should see the colors in
the following screenshot:

As the script runs, you may choose .sh for the files to backup and backup as the
directory. The script execution is shown in the following screenshot, along with a
listing of the directory:

Now you can see that we can start to create meaningful scripts with trivial scripting;
although we strongly urge adding error checking of the user input if this script is for
something other than personal use. As we progress into the book, we will cover this.

Connecting to a server
Let's look at some practical scripts that we can use to connect to servers. Firstly, we
will look at ping, and in the second script we will look at prompting for SSH
credentials.

Version 1 – ping
This is something we can all do, as no special services are required. This will simplify
the ping command for console users who may not know the details of the command.
This will ping the server for just three counts rather than the normal infinite amount.
There is no output if the server is alive, but a failed server reports sever dead. Create the
following script as $HOME/bin/ping_server.sh:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Script to ping a server

Last Edited: July 4 2015

read -p "Which server should be pinged " server_addr

ping -c3 $server_addr 2>1 > /dev/null || echo "Server Dead"

The following screenshot shows successful and failed outputs:

Version 2 – SSH
Often SSH is installed and running on servers, so you may be able to run this script if
your system is running SSH or you have access to an SSH server. In this script, we
prompt for the server address and username, and pass them through to the SSH client.
Create the following script as $HOME/bin/connect_server.sh:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Script to prompt fossh connection

Last Edited: July 4 2015

read -p "Which server do you want to connect to: " server_name

read -p "Which username do you want to use: " user_name

ssh ${user_name}@$server_name

Use of the brace bracket is to delimit the variable from the @ symbol in the last line of the script.

Version 3 – MySQL/MariaDB
In the next script, we will provide the detail for a database connection along with the
SQL query to execute. You will be able to run this if you have a MariaDB or MySQL
database server on your system, or one that you can connect to. For this demonstration,
we will use Linux Mint 18.3 and MariaDB version 10; however, this should work for
any MySQL server or MariaDB, from version 5 onwards. The script collects user and
password information as well as the SQL command to execute. Create the following
script as $HOME/bin/run_mysql.sh:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Script to prompt for MYSQL user password and command

Last Edited: July 4 2015

read -p "MySQL User: " user_name

read -sp "MySQL Password: " mysql_pwd

echo

read -p "MySQL Command: " mysql_cmd

read -p "MySQL Database: " mysql_db

mysql -u"$user_name" -p$mysql_pwd $mysql_db -Be"$mysql_cmd"

In this script, we can see that we suppress the display of the MySQL password when
we input it into the read command using the -s option. Again, we use echo directly to
ensure that the next prompt starts on a new line.

The script input is shown in the following screenshot:

Now we can easily see the password suppression working and the ease of adding to the
MySQL commands.

Reading files
The read command is not only used to read inputs from the user; you can use the read
command to read files for further processing.

#!/bin/bash

while read line

do

echo $line

done < yourfile.txt

We redirect the file content to the while command to read the content using the read
command, line by line.

Finally, we print the line using the echo command.

Summary
Feel proud that you now have your I can read badge for shell scripting. We have
developed our scripts to be interactive and to prompt users for input during the script
execution. These prompts can be used to simplify user operations on the command
line. In this way, they do not need to remember the command-line options or have
passwords that end up stored in the command-line history. When using passwords, we
can simply store the value using the read -sp options.

Also, we saw how to pass options with and without values, and how to identify values
correctly. We saw how to pass options and parameters at the same time, thanks to the
double dash.

In the next chapter, we will take our time to look at the conditional statements in bash.

Questions
1. How many comments are in the following code?

#!/bin/bash

Welcome to shell scripting

Author: Mokhtar

2. If we have the following code:

#!/bin/bash

echo $1

echo $2

echo $3

And we run the script with these options:

$./script1.sh -a -b50 -c

What is the result of running this code?

3. Check the following code:

#!/bin/bash

shift

echo $#

If we run it with these options:

$./script1.sh Mokhtar -n -a 35 -p

1. What is the result?
2. What is the dropped parameter?

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_08_02.html

https://ss64.com/bash/read.html

http://www.manpagez.com/man/1/getopt/

https://ss64.com/bash/getopts.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_08_02.html
https://ss64.com/bash/read.html
http://www.manpagez.com/man/1/getopt/
https://ss64.com/bash/getopts.html

Conditions Attached

Now you can make your scripts more interactive using the read command, and you
know how to read parameters and options to lighten your inputs.

We can say that we are now into the fine print of the script. These are the details that
are written into our scripts using conditions to test if a statement should run or not. We
are now ready to add some intelligence into our scripts, so our scripts become more
robust, easier to use, and more reliable. Conditional statements can be written with
simple command-line lists of AND or OR commands together, or, more often, within
traditional if statements.

In this chapter, we will cover the following topics:

Simple decision paths using command-line lists
Verifying user input with lists
Using the test shell built-in
Creating conditional statements using if
Extending if with else
Using the test command with the if command
More conditions with elif
Using case statements
Recipe-frontend with grep

Technical requirements
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter03

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter03

Simple decision paths using
command-line lists
We have used command-line lists (|| and &&), both in Chapter 1, The What and Why of
Scripting with Bash, and in some of the scripts found in Chapter 2, Creating Interactive
Scripts. Lists are one of the simplest conditional statements that we can create, and so
we thought that it was appropriate to use them in the earlier examples before fully
explaining them here.

Command-line lists are two or more statements that are joined using either the AND or OR
notations:

&&: AND
||: OR

Where the two statements are joined using the AND notation, the second command only
runs if the first command succeeds. Whereas, with the OR notation, the second
command will run only if the first command fails.

The decision on the success or failure of a command is taken by reading the exit code
from the application. A zero represents a successful application completion and
anything other than a zero represents a failure. We can test the success or failure of an
application by reading the exit status by means of the system variables $?. This is
shown in the following example:

$ echo $?

If we need to ensure that a script is run from a user's home directory, we can build this
into the script's logic. This can be tested from the command line, and it does not have
to be in a script. Consider the following command-line example:

$ test $PWD == $HOME || cd $HOME

The double vertical bars denote an OR Boolean. This ensures that the second statement
is only executed when the first statement is not true. In simple terms, if we are not
currently in the home directory, we will be by the end of the command-line list. We
will see more on the test command soon.

We can build this into almost any command that we want and not just test. For
example, we can query to see if a user is logged into the system, and if they are, then

we can use the write command to directly message their console. Similar to before, we
can test this in the command line prior to adding it to the script. This is shown in the
following command-line example:

$ who | grep pi > /dev/null 2>&1 && write pi < message.txt

Note that you should change the user pi to your username.

If we use this in a script, it is almost certain that we will replace the username with a
variable. In general, if we need to refer to the same value more than once, then using a
variable is a good idea. In this case, we are searching for the pi user.

When we break the command-line list down, we first use the who command to list the
users who are logged on. We pipe the list to grep to search for the desired username.
We are not interested in the output from the search, just its success or failure. Bearing
this in mind, we redirect all our output to /dev/null. The double ampersand indicates
that the second statement in the list runs only if the first returns true. If the pi user is
logged on, we use write to message the user. The following screenshot illustrates this
command and the output:

Verifying user input with lists
In this script, we will ensure that a value has been supplied to the first positional
parameter. We can modify the hello2.sh script that we created in Chapter 1, The What and
Why of Scripting with Bash, to check for user input before displaying the hello text.

You can copy the hello2.sh script to hello4.sh, or simply create a new script from
scratch. There will not be a lot of typing and the script will be created as
$HOME/bin/hello4.sh, as shown:

We can ensure that the script is executable by using the following command:

$ chmod +x $HOME/bin/hello4.sh

We can then run the script with or without arguments. The test statement is looking for
the $1 variable to be zero bytes. If it is, then we will not see the hello statement;
otherwise, it will print the hello message. In simple terms, we will see the hello
message if we supply a name.

The following screenshot shows the output that you will see when you do not supply a
parameter to the script, followed by the supplied parameter:

Using the test shell built-in
It is probably time for us to pull over to the side of the scripting highway and look a
little more at the command test. This is both a shell built-in and a file executable in its
own right. Of course, we will have to hit the built-in command first, unless we specify
the full path to the file.

When the test command is run without any expressions to evaluate, then the test will
return false. So, if we run the test as shown in the following command, the exit status
will be 1, even though no error output is shown:

$ test

The test command will always return either True or False, or 0 or 1, respectively. The
basic syntax of test is as follows:

test EXPRESSION

Or, we can invert the test command with this:

test ! EXPRESSION

If we need to include multiple expressions, this can be done using AND or OR together,
using the -a and -o options, respectively:

test EXPRESSION -a EXPRESSION

test EXPRESSION -o EXPRESSION

We can also write this as a shorthand version, replacing the test with square brackets
to surround the expression, as shown in the following example:

[EXPRESSION]

Testing strings
We can test for the equality or inequality of two strings. For example, one of the ways
to test the root user is using the following command:

test $USER = root

We could also write this using the square bracket notation:

[$USER = root]

Note that you must put a space between each bracket and the inner testing condition as
previously shown.

Equally, we could test for a non-root account with the following two methods:

test ! $USER = root

[! $USER = root]

We can also test for the zero values or non-zero values of strings. We saw this in an
earlier example in this chapter.

To test if a string has a value, we can use the -n option. We can check to see if the
current connection is made through SSH by checking for the existence of a variable in
the user's environment. We do this by using test and square brackets in the following
two examples:

test -n $SSH_TTY

[-n $SSH_TTY]

If this is true, then the connection is made with SSH; if it is false, then the connection
is not through SSH.

As we saw earlier, testing for a zero string value is useful when deciding if a variable
is set:

test -z $1

Or, more simply, we could use the following:

[-z $1]

A true result for this query means that no input parameters have been supplied to the
script.

Testing integers
As well as testing string values of bash scripts, we can test for integer values and
whole numbers. Another way of testing the input of a script is to count the numbers of
positional parameters and also test if the number is above 0:

test $# -gt 0

Or using the brackets, as follows:

[$# -gt 0]

When in a relationship, the top positional parameters of the $# variable represent the
number of parameters passed to the script.

There are many tests that can be done for numbers:

number1 -eq number2: This checks if number1 is equal to number2
number1 -ge number2: This checks if number1 is greater than or equal to number2.

number1 -gt number2: This checks if number1 is greater than number2
number1 -le number2: This checks if number1 is smaller than or equal to number2
number1 -lt number2: This checks if number1 is smaller than number2
number1 -ne number2: This checks if number1 is not equal to number2

Testing file types
While testing for values, we can test for the existence of a file or file type. For
example, we may only want to delete a file if it is a symbolic link. We use this while
compiling a kernel. The /usr/src/linux directory should be a symbolic link to the latest
kernel source code. If we download a newer version before compiling the new kernel,
we need to delete the existing link and create a new link. Just in case someone has
created the /usr/src/linux directory, we can test if it has a link before removing it:

[-h /usr/src/linux] &&rm /usr/src/linux

The -h option tests that the file has a link. Other options include the following:

-d: This shows that it's a directory
-e: This shows that the file exists in any form
-x: This shows that the file is executable
-f: This shows that the file is a regular file
-r: This shows that the file is readable
-p: This shows that the file is a named pipe
-b: This shows that the file is a block device
file1 -nt file2: This checks if file1 is newer than file2
file1 -ot file2: This checks if file1 is older than file2
-O file: This checks if the logged-in user is the owner of the file
-c: This shows that the file is a character device

More options do exist, so delve into the main pages as you need to. We will use
different options throughout the book, and thus giving you practical and useful
examples.

Creating conditional statements
using if
As we have seen so far, it is possible to build simple conditions using command-line
lists. These conditional statements can be written both with and without a test. As the
complexity of the tasks increases, it becomes easier to create statements using if. This
will certainly ease both the readability of the script and the logic layout. To a degree, it
also matches the way in which we think and speak; if is a semantic in our spoken
language in the same way it is within the bash script.

Even though it will take up more than a single line in the script, with an if statement
we can achieve more and make the script more legible. That being said, let's look at
creating if conditions. The following is an example of a script using an if statement:

#!/bin/bash

Welcome script to display a message to users on login

Author: @theurbanpenguin

Date: 1/1/1971

if [$# -lt 1] ; then

echo "Usage: $0 <name>"

exit 1

fi

echo "Hello $1"

exit 0

The code within the if statement will run only when the condition evaluates to true,
and the end of the if block is denoted with fi - if backward. The color coding in vim
can be useful to aid readability, which you will see in the following screenshot:

Within the script, we can easily add in multiple statements to run when the condition is
true. In our case, this includes exiting the script with an error indicated, as well as
including the usage statement to assist the user. This ensures that we only display the
hello message if we have supplied a name of the person to be welcomed.

We can view the script execution both with and without the argument in the following

screenshot:

The following pseudocode shows the syntax of the if conditional statement:

if condition; then

 statement 1

 statement 2

fi

Indenting the code is not required, but it helps readability and is highly recommended.
Adding the then statement to the same line as the if statement, again assists with the
readability of the code, and the semicolon is required to separate the if from the then.

Extending if with else
When a script is required to continue regardless of the result of the if condition, it is
often necessary to deal with both conditions of the evaluation, what to do when it is
true as well as false. This is where we can make use of the else keyword. This allows
the execution of one block of code when the condition is true and another when the
condition is evaluated as false. The pseudocode for this is shown as follows:

if condition; then

 statement

else

 statement

fi

If we consider extending the hello5.sh script that we created earlier, it is easily possible
to allow for the correct execution, regardless of the parameter being present or not. We
can recreate this as hello6.sh, as follows:

#!/bin/bash

Welcome script to display a message to users

Author: @theurbanpenguin

Date: 1/1/1971

if [$# -lt 1] ; then

read -p "Enter a name: "

name=$REPLY

else

name=$1

fi

echo "Hello $name"

exit 0

The script now sets a named variable, which helps readability, and we can assign the
correct value to $name from the input parameter or from the read prompt; either way the
script is working well and starting to take shape.

Test command with the if
command
You have seen how to use the test command or the short version []. This test returns
zero (true) or non-zero (false).

You will see how to check the returned result using the if command.

Checking strings
You can use the if command with the test command to check if the string matches a
specific criterion:

if [$string1 = $string2]: This checks if string1 is identical to string2
if [$string1 != $string2]: This checks if string1 is not identical to string2
if [$string1 \< $string2]: This checks if string1 is less than string2
if [$string1 \> $string2]: This checks if string1 is greater than string2

The less than and greater than should be escaped with a backslash as if it shows a
warning.

if [-n $string1]: This checks if string1 is longer than zero
if [-z $string1]: This checks if string1 has zero length

Let's see some examples to explain how if statements work:

#!/bin/bash

if ["mokhtar" = "Mokhtar"]

then

echo "Strings are identical"

else

echo "Strings are not identical"

fi

This if statement checks if strings are identical or not; since the strings are not
identical, because one of them has a capital letter, they are identified as not identical.

Note the space between the square brackets and the variables; without this space it will show a warning in
some cases.

The not-equal operator (!=) works the same way. Also, you can negate the if statement
and it will work the same way, like this:

if ! ["mokhtar" = "Mokhtar"]

The less-than and greater-than operators check if the first string is greater than or less
than the second string from the ASCII-order perspective:

#!/bin/bash

if ["mokhtar" \> "Mokhtar"]

then

echo "String1 is greater than string2"

else

echo "String1 is less than the string2"

fi

In the ASCII order, the lower-case characters are higher than the upper case.

Don't get confused if you use the sort command to sort a file or similar, and find that
the sorting order works the opposite way to the test command. This is because the sort
command uses the numbering order from the system settings, which is the opposite to
the ASCII order.

To check the string length, you can use the -n test:

#!/bin/bash

if [-n "mokhtar"]

then

echo "String length is greater than zero"

else

echo "String is zero length"

fi

To check for a length of zero, you can use the -z test:

#!/bin/bash

if [-z "mokhtar"]

then

echo "String length is zero"

else

echo "String length is not zero"

fi

We have used quotes around the tested strings, even though our string has no spaces.

In case you have a string with spaces, you MUST use quotes.

Checking files and directories
Similarly, you can check files and directories using the if statement.

Let's look at an example:

#!/bin/bash

mydir=/home/mydir

if [-d $mydir]

then

echo "Directory $mydir exists."

else

echo "Directory $mydir not found."

fi

We used the -d test to check if the path is a directory.

The rest of the tests work the same way.

Checking numbers
Also, in the same way, we can check numbers using the test and the if commands.

#!/bin/bash

if [12 -gt 10]

then

echo "number1 is greater than number2"

else

echo "number1 is less than number2"

fi

As expected, 12 is greater than 10.

All other numeric tests work the same way.

Combining tests
You can combine multiple tests and check them using one if statement.

This is done using the AND (&&) and OR (||) commands:

#!/bin/bash

mydir=/home/mydir

name="mokhtar"

if [-d $mydir] && [-n $name]; then

 echo "The name is not zero length and the directory exists."

else

echo "One of the tests failed."

fi

The if statement performs two checks, it checks if the directory exists and that the
name is not of zero length.

The two tests must return success (zero) to evaluate the next echo command.

If one of them fails, the if statement goes to the else clause.

Unlike the OR (||) command, if any of the tests returns success (zero), the if statement
succeeds.

#!/bin/bash

mydir=/home/mydir

name="mokhtar"

if [-d $mydir] || [-n $name]; then

 echo "One of tests or both successes"

else

echo "Both failed"

fi

It is clear enough that if one of the tests returns true, the if statement returns true for
the combined tests.

More conditions with elif
Moving on to where we require a greater degree of control, we can use the elif
keyword. Unlike else, elif requires an additional condition to be tested for each elif. In
this way, we can provide for different circumstances. We can add in as many elif
conditions as required. The following shows some pseudocode:

if condition; then

statement

elif condition; then

statement

else

statement

fi

exit 0

A script may make life easier for the operator by providing a simplified selection for a
more complex piece of code. Even though the script becomes gradually more complex
to meet the requirements, to the operator the execution is greatly simplified. It is our
job to enable users to run more complex operations easily from the command line
when creating scripts. Often, this will necessitate the addition of more complexity to
our scripts; however, we will be rewarded with the reliability of the scripted
application.

Creating the backup2.sh using
elif
We can revisit the script that we created to run the earlier backup. This script,
$HOME/bin/backup.sh, prompts the user for the file type and the directory in which to store
the backup. The tools used for the backup are find and cp.

With this new-found knowledge, we can now allow the script to run the backup using
the command tar and the level of compression selected by the operator. There is no
requirement to select the file type, as the complete home directory will be backed up,
with the exclusion of the backup directory itself.

The operator can select the compression based on three letters: H, M, and L. The
selection will affect the options passed to the tar command and the backup file created.
The selection of high uses bzip2 compression, medium uses gzip compression, and low
creates an uncompressed tar archive. The logic exists in the extended if statement that
follows:

if [$file_compression = "L"] ; then

tar_opt=$tar_l

elif [$file_compression = "M"]; then

tar_opt=$tar_m

else

tar_opt=$tar_h

fi

Based on the user selection, we can configure the correct options for the tar command.
As we have three conditions to evaluate, the if, elif, and else statements are
appropriate. To see how the variables are configured we can look at the following
extract from the script:

tar_l="-cvf $backup_dir/b.tar --exclude $backup_dir $HOME"

tar_m="-czvf $backup_dir/b.tar.gz --exclude $backup_dir $HOME"

tar_h="-cjvf $backup_dir/b.tar.bzip2 --exclude $backup_dir $HOME"

The complete script can be created as $HOME/bin/backup2.sh and should comprise the
following code:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

read -p "Choose H, M or L compression " file_compression

read -p "Which directory do you want to backup to " dir_name

The next lines creates the directory if it does not exist

test -d $HOME/$dir_name || mkdir -m 700 $HOME/$dir_name

backup_dir=$HOME/$dir_name

tar_l="-cvf $backup_dir/b.tar --exclude $backup_dir $HOME"

tar_m="-czvf $backup_dir/b.tar.gz --exclude $backup_dir $HOME"

tar_h="-cjvf $backup_dir/b.tar.bzip2 --exclude $backup_dir $HOME"

if [$file_compression = "L"] ; then

tar_opt=$tar_l

elif [$file_compression = "M"]; then

tar_opt=$tar_m

else

tar_opt=$tar_h

fi

tar $tar_opt

exit 0

When we execute the script, we need to select H, M, or L in upper case, as this is how the
selection is made within the script. The following screenshot shows the initial script
execution, where the selection for M has been made:

Using case statements
Rather than using multiple elif statements, a case statement may provide a simpler
mechanism when evaluations are made on a single expression.

The basic layout of a case statement is listed as follows, using pseudocode:

case expression in

 case1)

 statement1

 statement2

 ;;

 case2)

 statement1

 statement2

 ;;

 *)

 statement1

 ;;

esac

The statement layout that we see is not dissimilar to the switch statements that exist in
other languages. In bash, we can use the case statement to test for simple values, such
as strings or integers. Case statements can cater for a wide range of letters, such as [a-
f] or a through to f, but they cannot easily deal with integer ranges such as [1-20].

The case statement will first expand the expression and then it will try to match it with
each item in turn. When a match is found, all the statements are executed until the ;;.
This indicates the end of the code for that match. If there is no match, the case else
statement indicated by the * will be matched. This needs to be the last item in the list.

Consider the following script grade.sh, which is used to evaluate grades:

#!/bin/bash

#Script to evaluate grades

#Usage: grade.sh stduent grade

#Author: @likegeeks

#Date: 1/1/1971

if [! $# -eq 2] ; then

 echo "You must provide <student> <grade>"

 exit 2

fi

case ${2^^} in #Parameter expansion is used to capitalize input

 [A-C]) echo "$1 is a star pupil"

 ;;

 [D]) echo "$1 needs to try a little harder!"

 ;;

 [E-F]) echo "$1 could do a lot better next year"

 ;;

 *) echo "Grade could not be evaluated for $1 $2"

 ;;

esac

The script first uses an if statement to check that exactly two arguments have been
supplied to the script. If they are not supplied, the script will exit with an error state:

if [! $# -eq2] ; then

echo "You must provide <student><grade>

exit 2

fi

Then we use parameter expansion for the value of the $2 variable to capitalize the input
using ^^. This represents the grade that we supply. Since we are capitalizing the input,
we first try to match against the letters A through to C.

We make similar tests for the other supplied grades, E through to F.

The following screenshot shows the script execution with different grades:

Recipe – building a frontend
with grep
As a finale to this chapter, we will group a few features that we have learned together
and build a script that prompts the operator for a filename, a search string, and an
operation to carry out with the grep command. We will create the script as
$HOME/bin/search.sh, and don't forget to make it executable:

#!/bin/bash

#Author: @theurbanpenguin

usage="Usage: search.sh file string operation"

if [! $# -eq3] ; then

echo "$usage"

exit 2

fi

[! -f $1] && exit 3

case $3 in

 [cC])

mesg="Counting the matches in $1 of $2"

opt="-c"

 ;;

 [pP])

mesg="Print the matches of $2 in $1"

 opt=""

 ;;

 [dD])

mesg="Printing all lines but those matching $3 from $1"

opt="-v"

 ;;

 *) echo "Could not evaluate $1 $2 $3";;

esac

echo $mesg

grep $opt $2 $1

We start by checking for exactly three input arguments using the following code:

if [! $# -eq3] ; then

echo "$usage"

exit 2

fi

The next check uses a command-line list to exit the script if the file argument is not a
regular file, using test -f:

[! -f $1]&& exit 3

The case statement allows for three operations:

Counting the matching lines
Printing the matching lines
Printing all but the matching lines

The following screenshot shows the search of the /etc/ntp.conf file for lines beginning
with the string server. We choose the count option in this example:

Summary
One of the most important and time-consuming tasks in scripting is building all of the
conditional statements that we need to make the script usable and robust. There is an
80/20 rule that is often spoken of. This is where 20 percent of your time is spent in
writing the main script and 80 percent of the time is spent in ensuring that all of the
possible eventualities are correctly handled in the script. This is what we refer to as the
procedural integrity of the script, where we try to cover each scenario carefully and
accurately.

We started by looking at a simple test with command-line lists. If the actions needed
are simple, then these provide great functionality and are easily added. Where more
complexity is required, we add if statements.

Using the if statements, we can extend them as required using the else and elif
keywords. Don't forget that elif keywords need their own conditions to evaluate.

We saw how to use if statements with the test command, and check strings, files, and
numbers.

Finally, we saw how we can use case where a single expression needs to be evaluated.

In the next chapter, we will seek to understand the importance of reading in already
prepared code snippets. We will create a sample if statement that can be saved as a
code snippet to be read into the script at the time of editing.

Questions
1. What is the result of the following code: True or False?

if ["LikeGeeks" \> "likegeeks"]

then

echo "True"

else

echo "False"

fi

2. Which one of the following scripts is correct?

#!/bin/bash

if ! ["mokhtar" = "Mokhtar"]

then

echo "Strings are not identical"

else

echo "Strings are identical"

fi

Or

#!/bin/bash

if ["mokhtar" != "Mokhtar"]

then

echo "Strings are not identical"

else

echo "Strings are identical"

fi

3. How many commands can be used as an operator to return True in the following
example?

#!/bin/bash

if [20 ?? 15]

then

echo "True"

else

echo "False"

fi

4. What is the result of the following code?

#!/bin/bash

mydir=/home/mydir

name="mokhtar"

if [-d $mydir] || [-n $name]; then

 echo "True"

else

echo "False"

fi

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-6.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_03.html

http://wiki.bash-hackers.org/commands/classictest

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-6.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_03.html
http://wiki.bash-hackers.org/commands/classictest

Creating Code Snippets
Now we can write our conditional tests to make decisions. After your hands become
faster in coding, you will need to save some code pieces for later use, so how to save
time and effort when writing scripts?

If you like using the command line, but also like some of the features associated with
using graphical integrated development environments (IDEs), then this chapter may
reveal some new ideas to you. We can create shortcuts for commonly used script
elements using the vi or vim text editors from the command line.

In this chapter, we will cover the following topics:

Abbreviations
Using code snippets
Creating snippets using VS Code

Technical requirements
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter04

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter04

Abbreviations
We have already taken one short sojourn into the ~/.vimrc file and we will now revisit
this file to look at abbreviations or abbr controls. This file acts as the run control
mechanism for the vim text editor, which is likely to be installed on your Linux
distribution. Older distributions or Unix variants may have the original vi text editor
and will make use of the ~/.exrc file. If you are uncertain of the identity of your version
of vi and the correct run control file to use, simply enter the vi command. If a blank
page opens, it is indeed vi. However, if a new blank document opens with the vim
splash screens, then you are using the improved vim or vi.

Abbreviations allow for a shortcut string to be used in place of a longer string. These
abbreviations can be set during a vim session from the last line mode but are often set
in the control file. The shebang can be easily represented by an abbreviation, as
follows:

abbr _sh #!/bin/bash

The basic syntax of an abbreviation is shown in the following command:

abbr <shortcut><string>

Using this abbreviation, we just need to type _sh while in the edit mode. On pressing
the Enter key after the shortcut code, the full text for the shebang is printed. In reality,
pressing any key after the abbr code will expand the shortcut, not just pressing the
Enter key. Simple elements like this can add a lot to the experience of using vim as our
text editor. The following screenshot shows the updated ~/.vimrc file:

We are not limited to the single abbreviation code, as we can add more abbr entries, for
example, to support the shebang for Perl scripts at the line:

abbr _pl #!/usr/bin/perl

The use of the underscore is not required, but the aim is to keep the shortcut code
unique and not to have a typed error. We are also not limited to a single line, although
this is where abbreviations are most used. Consider the following abbreviation for an

if statement:

abbr _if if [-z $1];then<CR>echo "> $0 <name><CR>exit 2<CR>fi

Although this does work, the formatting of the if statement will not be perfect and
multiline abbreviations are far from ideal. This is where we may consider using code
snippets that we have prepared in advance.

Using code snippets
All we mean by the term code snippets is a prepared code that we can read into our
current script. This is especially easy with vim being able to read the contents of other
text files during editing:

ESC

:r <path-and-filename>

For example, if we need to read the contents of a file called if located in $HOME/snippets,
we will use the following key sequences in vim:

ESC

:r $HOME/snippets/if

The contents of this file are read into the current document below the current cursor
position. In this way, we can make the code snippets as complex as we need and
maintain the correct indentations to aide readability and consistency.

So, we will make it our duty to always create a snippets directory in our home directory:

$ mkdir -m 700 $HOME/snippets

It is not required to share the directory, so it is good practice to set the mode to 700 or
private to the user when it is being created.

When creating snippets, it is your choice to use a pseudo-code or real examples. My
preference is to use real examples that are edited to reflect the requirements of the
recipient script. The contents of a simple if snippet will be as follows:

if [-z $1] ; then

 echo "Usage: $0 <name>"

 exit 2

fi

This gives us the layout to create an if statement with a practical example. In this case,
we check to see whether $1 is unset and send an error to the user before exiting the
script. The key is in keeping the snippet short to limit the changes that need to be made
but make it easily understood and expandable as required.

Bringing color to the Terminal
If we are to display text messages to the users and operators executing the scripts, we
can provide colors to help in message interpretation. Using red as a synonym for errors
and green to indicate success makes it easier to add functionality to our scripts. Not all
but certainly a vast majority of Linux Terminals support color. The built-in command
echo, when used with the -e option, can display color to users.

To display a text in red, we can use the echo command as follows:

$ echo -e "\033[31mError\033[0m"

The following screenshot shows both the code and the output:

The red text will bring immediate attention to the text and the potential failure of the
script execution. The use of color in this way adheres to the basic principles of
application design. If you find the code cumbersome, then simply use friendly
variables to represent the colors and the reset code.

In the previous code, we used red and the final reset code to set the text back to the
shell default. We could easily create variables for these color codes and others:

RED="\033[31m"

GREEN="\033[32m"

BLUE="\033[34m"

RESET="\033[0m"

The \033 value is the escape character and [31m is the color code for red.

We need to take care while using variables, to ensure that they are properly delimited
from the text. Modifying the earlier example, we can see how this is easily achieved:

$ echo -e ${RED}Error$RESET"

We use the brace brackets to ensure that the RED variable is identified and separated from the Error word.

Saving the variable definitions to the $HOME/snippets/color file will allow them to be used
in other scripts. Interestingly, we don't need to edit this script; we can use the
command source to read these variables definitions into the script at runtime. Within the
recipient script, we need to add the following line:

source $HOME/snippets/color

Using the shell built-in source command will read the color variables into the script that
is executing at runtime. The following screenshot shows a modified version of the
hello5.sh script that we now call hello7.sh, which makes use of these colors:

We can see the effect this has when we execute the script. In the following screenshot,
you will see the execution and output both with and without a supplied parameter:

We can easily identify the success and failure of the script through the color-coded
output; the green Hello fred where we supply the parameter, and the red Usage statement
where we have not provided the required name.

Creating snippets using VS
Code
For those who love graphical IDEs, you can use VS Code as an editor for your shell
scripts. We used it as a debugger in Chapter 1, The What and Why of Scripting with
Bash. Now we will see one of its capabilities as an editor.

You can create your own snippets in VS Code as follows.

Navigate to File | Preferences | User Snippets.

Then start to type shell. This will open the shellscript.json file.

The file has two brackets ready to enter your snippets between them:

To create a snippet, type the following between the brackets on the file:
"Print a welcome message": {

 "prefix": "welcome",

 "body": [

 "echo 'Welcome to shell scripting!' "

],

 "description": "Print welcome message"

 }

You can use the following template and modify it based on your needs.

Try to use prefixes different to the shell scripting keywords to avoid confusion.

When you open any .sh file and start to type welcome, the autocompletion will show you
the snippet we have just created:

You can use any prefix you want; in our case, we used welcome so the autocompletion
starts with it.

You can add many lines to your snippet body:
"Print to a welcome message": {

 "prefix": "welcome",

 "body": [

 "echo 'Welcome to shell scripting!' ",

 "echo 'This is a second message'"

],

 "description": "Print welcome message"

 }

You can use placeholders in your snippet body to simplify code editing.

Placeholders are written like this:

$1, $2, etc,

Modify the previous snippet and add a placeholder like this:

"Print a welcome message": {

 "prefix": "welcome",

 "body": [

 "echo 'Welcome to shell scripting! $1' "

],

 "description": "Print welcome message"

 }

When you start to type welcome and after you choose the snippet, you will notice that the
cursor will stop at the exact position of the placeholder waiting for your input.

You can use choices if you forget what to type in these editable places:

 "Print to a welcome message": {

 "prefix": "welcome",

 "body": [

 "echo 'Welcome to shell scripting! ${1|first,second,third|}' "

],

 "description": "Print welcome message"

 }

After you choose this snippet in your code and hit Enter, you should see the cursor
waiting for your input with your choices:

That's very helpful!
Also, you can add a default value for the placeholder so this value will be written if
you hit Tab:

"Print a welcome message": {

 "prefix": "welcome",

 "body": [

 "echo 'Welcome to shell scripting! ${1:book}' "

],

 "description": "Print welcome message"

 }

Summary
To any administrator, script reuse will always be upmost in the quest for efficiency.
Using vim at the command line can make for very quick and effective editing of a
script and we can save typing in the use of abbreviations. These are best set within a
user's personal .vimrc file and are defined with the abbr control. Beyond abbreviations,
we can see the sense in using code snippets. These are pre-prepared blocks of code that
can be read into the current script.

Also, we had a look at the value in using color at the command line where a script will
provide feedback. In the first look, these color codes are not the friendliest, but we can
simplify the process by using variables. We created variables with color codes and
saved them to a file and by using source command, these variables will be available to
our current environment.

Finally, we saw how to create code snippets using VS Code and how to add
placeholders to simplify our code editing.

In the next chapter, we will look at other mechanisms that we can use to write test
expressions simplifying the use of integers and variables.

Questions
1. The following code creates a snippet which prints one line. How do you make the

snippet with choices?

"Hello message": {

 "prefix": "hello",

 "body": [

 "echo 'Hello $1' "

],

 "description": "Hello message"

 }

2. Which command should you use to make your code snippets available for your
use in the shell?

Further reading
Please see the following for further reading relating to this chapter:

https://code.visualstudio.com/docs/editor/userdefinedsnippets

https://brigade.engineering/sharpen-your-vim-with-snippets-767b693886db

https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://brigade.engineering/sharpen-your-vim-with-snippets-767b693886db

Alternative Syntax
So far in the scripting journey, we have seen that we can use the test command to
determine a conditional status. We have taken this a little further and discovered that
we can also make use of the single square bracket. Here, we will recap the test
command and look at the single square bracket in more detail. After having learned
more about the square bracket, we will move onto more advanced variable or
parameter management, thus providing defaults and understating quoting issues.

Finally, we are going to see that within advanced shells such as bash, Korn, and Zsh,
we can go with double brackets! Making use of the double round parenthesis and
double square bracket can simplify the overall syntax and allow the standardization of
the use of mathematical symbols.

In this chapter, we will cover the following topics:

Recapping test
Providing parameter defaults
When in doubt – quote!
Advanced tests using [[
Arithmetic operations using ((

Technical requirement
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter05

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter05

Recapping the test command
So far, we have used the built-in test command to drive our conditional statements.
Using other options with test, we can look at the returned value to determine the status
of files in the filesystem. Running the test command without any options will return a
false output:

$ test

Testing files
Commonly, we can use test to check the conditions based around files. For example, to
test whether a file is present or not, we can use the -e option. The following command
will test the existence of the /etc/hosts file:

test -e /etc/hosts

We can run this test again, but this time check that the file not only exists but is a
regular file as opposed to having some special purpose. Specific file types can be
directories, pipes, and links, among others. The option for a regular file is -f:

$ test -f /etc/hosts

Adding logic
If we need to open a file from within our script, we test that the file is both a regular
file and has the read permission set. To achieve this with test, we can also include the -
a option to AND multiple conditions together. In the following example command, we
will use the -r condition to check that the file is readable:

$ test -f /etc/hosts -a -r /etc/hosts

Similarly, the use of -o is supported to OR two conditions within an expression.

Square brackets as not seen
before
As an alternative to the test command, we can implement the same conditional tests
using the single square bracket. Repeating the previous conditional test and omitting
the command itself. We will rewrite this, as shown in the following command:

 $ [-f /etc/hosts -a -r /etc/hosts]

Many times, even as experienced administrators, we are used to language elements and
we accept them as they are. I feel many Linux administrators will be surprised to learn
that [is a command for both a shell built-in and a standalone file. Using the type
command, we can verify this:

$ type -a [

We can see the output of this command in the following screenshot confirming its
existence:

The built-in [command imitates the test command but it requires a closing bracket.

Now we know a little more about the [command, which is found in bash and the
earlier Bourne shell, we can now continue to add a little command-line list syntax. In
addition to the command-line list, we can see the desired functionality working in the
following command sample:

$ FILE=/etc/hosts

$ [-f $FILE -a -r $FILE] && cat $FILE

Having set the parameter FILE variable, we can test that it is both a regular file and is
readable by the user before attempting to list the file contents. In this way, the script
becomes more robust without the need for a complex script logic. We can see the code
in use in the following screenshot:

This type of abbreviation is quite common and is easily recognizable. We should
always be cautious of using abbreviations if they do not add readability. Our aim in
scripting should be to write clear and understandable code and avoid shortcuts if they
do not add to this goal.

Providing parameter defaults
Within bash parameters, there are named spaces in the memory that allow us access to
stored values. There are two types of parameters:

Variables
Special parameters

Variables
We already described what variables are and how to define them in Chapter 1, The What
and Why of Scripting with Bash.

Just to refresh your memory, you can define a variable by assigning a value with an
equals sign and without any spaces like this:

#!/bin/bash

myvar=15

myvar2="welcome"

So nothing new here.

Special parameters
Special parameters are the second parameter type and are managed by the shell itself
and are presented as read-only. We have come across these before in parameters such
as $0 but let's take a look at another $-. We can expand these parameters to gain an
understanding of their use, using the echo command:

$ echo "My shell is $0 and the shell options are: $-"

From the annotated text that I have added, we can understand that the $- option
represents the shell options that are configured. These can be displayed using the set -o
command but it can be read programmatically using $-.

We can see this in the following screenshot:

The options set here are as follows:

h: This is short for hashall; it allows for programs to be found using the PATH
parameter
i: This shows that this is an interactive shell
m: This is short for monitor; it allows the use of the bg and fg commands to bring
commands in and out of the background
B: This allows the brace expansion or mkdirdir{1,2}, where we create dir1 and dir2
H: This allows history expansion of running commands, such as !501 to repeat
commands from history

Setting defaults
Using either the test command or the brackets, we can provide default values for
variables, including command-line parameters. Taking the hello4.sh script we worked
with earlier, we can modify it and set the name parameter if it is zero bytes:

#!/bin/bash

name=$1

[-z $name] && name="Anonymous"

echo "Hello $name"

exit 0

This code is functional but it is our choice how we code in the default value. We can,
alternatively, assign a default value directly to the parameter. Consider the following
command, where a default assignment is made directly:

name=${1-"Anonymous"}

In bash, this is known as parameter substitution and can be written in the following
pseudo-code:

${parameter-default}

Wherever a variable (parameter) has not been declared and has a null value, the default
value will be used. If the parameter has been explicitly declared with a null value, we
will use the :- syntax, as shown in the following example:

parameter=

${parameter:-default}

By editing the script now, we can create hello8.sh to make use of bash parameter
substitution to provide the default value:

#!/bin/bash

#Use parameter substitution to provide default value

name=${1-"Anonymous"}

echo "Hello $name"

exit 0

This script and its output, both with and without a supplied value, are shown in the
following screenshot:

The hello8.sh script provides the functionality that we need, with the logic built directly
into the parameter assignment. The logic and assignment are now a single line of code
within the script and this is a major step in keeping the script simple and maintaining
the readability.

When in doubt – quote!
Having established that variables are a type of parameter, we should always keep this
in mind, especially when reading manuals and HOWTOs. Often the documentation
refers to parameters and, in doing so, they include variables, as well as the bash special
parameters, such as $1 and so on. In keeping with this, we will look at why it is
advisable to quote the parameters when we use them on the command line or within
scripts. Learning this now can save us a lot of pain and heartache later, especially
when we start looking at loops.

First, the correct term that we should use for reading the value of variables is
parameter expansion. To you and me, this is reading a variable, but to bash this
would be too simple. The assignment of a correct name, such as parameter expansion,
reduces any ambiguity to its meaning but adds complexity at the same time. In the
following example, the first line of command assigns the value of fred to the name
parameter. The second line of command uses parameter expansion to print the stored
value from memory. The $ symbol is used to allow the expansion of the parameter:

$ name=fred

$ echo "The value is: $name"

In the example, we have used the double quotes to allow echo to print the single string
as we have used spaces. Without the use of quotes, echo might have seen this as
multiple arguments, the space being the default field separator in most shells,
including bash. Often, when we do not think to use quotes, we do not see the spaces
directly. Consider the following extract of command-line code that we made use of
earlier:

$ FILE=/etc/hosts

$ [-f $FILE -a -r $FILE] && cat $FILE

Even though this worked, we may have been a little fortunate, especially if we were
populating the FILE parameter from a list of files that we had not created ourselves. It is
quite conceivable that a file can have spaces within its name. Let's now replay this
command using a different file. Consider the following command:

$ FILE="my file"

$ [-f $FILE -a -r $FILE] && cat $FILE

Even though, structurally, there has been no change to the code, it now fails. This is
because we are providing too many arguments to the [command. The failing result
will be the same even if we use the test command.

Even though we have correctly quoted the assignment of the filename to the parameter
FILE, we have not protected the spaces when the parameter is expanded. We can see the
code failing, as it is captured in the following screenshot:

We can see that this will not be ready for our scripts. Alas, what we once thought of as
robust is now in tatters and, like the Titanic, our code has sunk.

However, a simple solution is to revert to quoting parameter expansion unless
specifically not desired. We can make this ship unsinkable with a simple edit to the
code:

$ FILE="my file"

$ [-f "$FILE" -a -r "$FILE"] && cat "$FILE"

We can now proudly stand on the White Star Line dock, as we see the Titanic II get
launched in the following code example, which is captured in the following
screenshot:

It is truly amazing and sometimes just a little unbelievable what effect these tiny
quotes can have. We should never ignore the quotes when expanding variables. To
ensure that we drill home this point, we can highlight this phenomenon in another,
even simpler, example. Let's take the scenario where we now just want to remove the
file. In the first example, we do not use quotes:

$ rm $FILE

This code will produce failures as the parameter expansion will lead to the following
perceived command:

$ rm my file

The code will fail because it is unable to find the my file or the file file. Even worse, we
could potentially be deleting incorrect files if any of the names could be resolved
accidentally. However, quoting the parameter expansion will save the day, as we see in
the second example:

$ rm "$FILE"

This is correctly expanded to the desired command that we illustrate in the following

command example:

$ rm "my file"

I certainly hope that these examples demonstrate the need for care when expanding
parameters and make you aware of the pitfalls.

Advanced tests using [[
The use of the double brackets [[condition]] allows us to do more advanced condition
testing but it is not compatible with the Bourne shell. The double brackets were first
introduced as a defined keyword in the KornShell and are also available in bash and
Zsh. Unlike the single bracket, this is not a command but a keyword. The use of the
type command can confirm this:

$ type [[

White space
The fact that [[is not a command is significant where white space is concerned. As a
keyword, [[parses its arguments before bash expands them. As such, a single
parameter will always be represented as a single argument. Even though it goes against
best practice, [[can alleviate some of the issues associated with white space within
parameter values. Reconsidering the condition we tested earlier, we can omit the
quotes when using [[, as shown in the following example:

$ echo "The File Contents">"my file"

$ FILE="my file"

$ [[-f $FILE && -r $FILE]] && cat "$FILE"

We still need to quote the parameter when using cat, as you can see, and we can use
quotes within the double brackets but they become optional. Note that we can also use
the more traditional && and || to represent -a and -o respectively.

Other advanced features
These are some of the extra features that we can include with the double brackets.
Even if we lose portability in using them, there are some great features that overcome
the loss. Remember that if we only use bash, then we can use the double brackets but
can't run our scripts in the Bourne shell. The advanced features that we gain, which are
covered in the following sections, include pattern matching and regular expressions.

Pattern matching
Using the double brackets, we can do more than just match strings, we can use pattern
matching. For example, we may need to work exclusively with Perl scripts, files that
end with .pl. We will be able to implement this easily within a condition by including
the pattern as a match, as shown in the following example:

$ [[$FILE = *.pl]] && cp"$FILE" scripts/

Regular expressions
We will talk in dept about regular expressions in a Chapter 11, Regular Expressions, but
let's take a small glimpse now.

We could rewrite the last example using a regular expression:

$ [[$FILE =~ \.pl$]] && cp "$FILE" scripts/

As the single dot or period has a special meaning in regular expressions, we need to escape it with \.

The following screenshot shows the regular expression matching working with a file
called my.pl and another called my.apl. The match correctly shows for the file that ends
in .pl:

Regular expression script
Another simple demonstration of conditional testing using regular expressions will be
to expose the US and UK spelling of color, being color and colour respectively. We
may prompt the user if they want a color or mono output for the script but at the same
time cater for both spellings. The line that will do the work in the script is as follows:

if [[$REPLY =~ colou?r]] ; then

The regular expression caters to both spellings of color by making the u optional: u?.
Furthermore, we can disable case sensitivity allowing for COLOR and color by setting
a shell option:

shopt -s nocasematch

This option can be disabled again at the end of the script with the following command:

shopt -u nocasematch

When we use the variable parameters that we have named $GREEN and $RESET, we affect
the color of the output. The color green will only be shown where we have sourced the
color definition file. This is set when we choose the color display. Selecting mono will
ensure that the variable parameters are null and have no effect.

The complete script is shown in the following screenshot:

Arithmetic operations using ((
When using bash and some other advanced shells, we can make use of the (())
notation to simplify mathematical operations with scripts.

Simple math
The double parenthesis construct in bash allows for arithmetic expansion. Using this in
the simplest format, we can easily carry out integer arithmetic. This becomes a
replacement for the let built-in. The following examples show the use of the let
command and the double parenthesis to achieve the same result:

$ a=((2 + 3))

$ let a=2+3

In both cases, the a parameter is populated with the sum of 2 + 3. If you want to write it
on a shell script, you need to add a dollar sign before the parentheses:

#!/bin/bash

echo $((2 + 3))

Parameter manipulation
Perhaps a little more useful to us in scripting is the C-style parameter manipulation
that we can include using the double parenthesis. We can often use this to increment a
counter within a loop and also put a limit on the number of times the loop iterates.
Consider the following command:

$ COUNT=1

$ ((COUNT++))

echo $COUNT

Within this example, we first set COUNT to 1 and then we increment it with the ++
operator. When it is echoed in the final line, the parameter will have a value of 2. We
can see the results in the following screenshot:

We can achieve the same result in longhand by using the following syntax:

$ COUNT=1

$ ((COUNT=COUNT+1))

echo $COUNT

This of course allows for any increment of the COUNT parameter and not just a single unit
increase. Similarly, we can count down using the -- operator, as shown in the
following example:

$ COUNT=10

$ ((COUNT--))

echo $COUNT

We start using a value of 10, reducing the value by 1 within the double parentheses.

Note that we do not use the $ to expand the parameters within the parentheses. They are used for parameter
manipulation and, as such, we do not need to expand parameters explicitly.

Standard arithmetic tests
Another advantage that we can gain from these double parentheses is with the tests.
Rather than having to use -gt for greater than, we can simply use >. We can
demonstrate this in the following code:

$((COUNT > 1)) && echo "Count is greater than 1"

The following screenshot demonstrates this:

It is this standardization, both in the C-style manipulation and tests, that makes the
double parenthesis so useful to us. This use extends to both the command line and
scripts. We will use this feature extensively when we look at looping constructs.

Summary
Within this chapter, I really hope that we have introduced many new and interesting
choices to you. This was an area with a wide range where we began by recapping the
use of test and discovered that the [is a command not a syntax construct. The main
effect that it is a command is on white space and we looked at the need to quote
variables.

Even though we may commonly call variables variables, we have also seen that their
correct name, especially in documentation, is parameters. Reading a variable is a
parameter expansion. Understanding parameter expansion can help us understand the
use of the keyword [[. The double square brackets are not commands and do not
expand the parameters. This means that we do not need to quote variables even if they
do contain white space. Moreover, we can use advanced tests with double square
brackets, such as pattern matching or regular expressions.

Finally, we looked at arithmetic expansion and parameter manipulation using the
double parenthesis notation. The biggest feature this delivers is the possibility to easily
increment and decrement counters.

In the next chapter, we will move onto the looping constructs found in bash and make
use of some of our new-found skills from this chapter.

Questions
1. How do you subtract 8 from 25 using shell scripting?
2. What is wrong with the following code? And how can you fix it?

$ rm my file

3. What is the problem with the following code?

#!/bin/bash

a=((8 + 4))

echo $a

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/LDP/abs/html/arithexp.html

http://wiki.bash-hackers.org/commands/classictest

http://tldp.org/LDP/abs/html/arithexp.html
http://wiki.bash-hackers.org/commands/classictest

Iterating with Loops
Now we can perform arithmetic operations and tests and our scripts have more control.
Sometimes, you will find that you need to perform some tasks repeatedly, such as
going through log file entries and performing an action, or maybe running a piece of
code continuously. We are busy people who have better things to do than repeat a task
100 times or more; loops are our friends.

Looping structures are the lifeblood of scripts. These loops are workhorse engines that
can iterate many times, repeating the same task reliably and consistently. Imagine
having 100,000 lines of text within a CSV file that has to be checked for incorrect
entries. A script can do this easily and accurately once developed but, in the case of a
human, the reliability factor and accuracy will fail very quickly.

So let's see how we can save our time and sanity by covering the following topics in
this chapter:

for loops
Advanced for loops
The internal field separator (IFS)
Counting directories and files
C-style for loops
Nested loops
Redirecting loop output
while loops and until loops
Reading input from files
Creating operator menus

Technical requirement
The source code for this chapter can be can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter06

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter06

for loops
All our looping controls are simple and we will begin by looking at for loops. The
word for is a keyword in bash and in terms of its working, it is similar to if. We can
use the command type to verify this, as shown in the following example:

$ type for

for is a shell keyword

As a reserved shell keyword, we can use a for loop both in scripts and directly at the
command line. In this way, we can utilize loops within and without the scripts,
optimizing the use of the command line. A simple for loop is shown in the following
example code:

for u in bob joe ; do

useradd $u

echo '$u:Password1' | chpasswd #pipe the created user to chpasswd

passwd -e $u

done

The useradd command is used to create users and the chpasswd command is used to
update passwords in batch mode.

Within a for loop, we read from the list on the right to populate the variable parameter
on the left; in this case, we will read from the list containing bob and joe into the
parameter variable u. Each item from the list is inserted into the variable, one item at a
time. In this way, as long as there are items to be processed in the list, the loop will
execute until the list is exhausted.

Practically, for us, the execution of this loop means that we will do the following:

1. Create the user bob
2. Set the password for bob
3. Expire the password so it will need to be reset on the first login for the user bob

We then loop back and repeat the process for the user joe.

We can view the preceding example in the following screenshot. After having gained
root access through sudo -i, we proceeded to run the loop and create the users:

The list that is read in the for loop can be generated dynamically or statically, as shown
in the previous example. To create dynamic lists, we could use various globbing
techniques to populate the list. As an example, to work with all files in a directory, we
could use *, as shown in the following example:

for f in * ; do

stat "$f"

done

When a list is generated, such as with file globbing, we should quote the expansion of the variable parameter.
Without the quotes, it is possible that a space will be included that will cause the command to fail. This is what
we have seen here in the stat command.

In the following examples, we isolate the filenames that begin with ba*. We then use
the stat command to print the inode metadata. The code and output are shown in the
following screenshot:

This list can also be generated from the output of another command or a pipeline of
commands. For example, if we need to print the current working directory of all
logged-in users, we could try something similar to the following:

$ for user in $(who | cut -f1 -d" ") ; do

lsof -u "$user" -a -c bash | grep cwd

done

In the previous example, we can see that the choice of name for the parameter is down
to us; we are not limited to a single character and we can use the $user name in this
example. By using lowercase, we will not overwrite the system variable $USER. The
following screenshot demonstrates the loop and the subsequent output:

The lsof command will list open files; we can search for the files opened by each user
in turn and with the bash command as the current working directory.

Working with the scripts that we have created so far, we can create a new script called
hello9.sh. If we copy the $HOME/bin/hello2.sh script to the new script, we can edit it to
make use of a for loop:

#!/bin/bash

echo "You are using $(basename $0)"

for n in $*

do

 echo "Hello $n"

done

exit 0

The loop is used to iterate through each command-line argument supplied and greet
each user individually. When we execute the script, we can see that we can now
display the Hello message for each user. This is shown in the following screenshot:

Although what we have seen here is still relatively trivial, we should now realize a
little of what we can do with scripts and loops. The arguments of this script can be the
usernames that we have already used or anything else. If we stick with the usernames,
then it will be very easy to create user accounts and set passwords, as we saw earlier.

Advanced for loops
In the previous examples, we used the for loop to iterate over simple values where each
value has no space.

As you know, if your values contain a space, you should use double quotes:

#!/bin/bash

for var in one "This is two" "Now three" "We'll check four"

do

echo "Value: $var"

done

As you can see, each value is printed as expected thanks to double quotes.

This example contains values in one line and we quote the values because they have
spaces and commas. What if the values were on multiple lines, as in a file?

What if the separator between the values we want to iterate over is something other
than a space such as a comma or a semicolon?

Here comes the IFS.

The IFS
By default, the IFS variable has the value of one of (space, newline, or tab).

Suppose that you have a file like the following and you want to iterate over its lines:

Hello, this is a test

This is the second line

And this is the last line

Let's write the for loop that will iterate over these lines:

#!/bin/bash

file="file1.txt"

for var in $(cat $file)

do

echo " $var"

done

If you check the result, it's something that we don't need:

Since the first separator the shell found is the space, the shell treats every word as a
field, but we need every line to be printed as a field.

Here we need to change the IFS variable to be newline instead.

Let's modify our script to iterate over lines correctly:

#!/bin/bash

file="file1.txt"

IFS=$'\n' #Here we change the default IFS to be a newline

for var in $(cat $file)

do

echo " $var"

done

We changed the IFS variable to newline and it works as expected.

Look at the dollar sign in the IFS definition in the preceding section, IFS=$"\n". By
default, bash doesn't interpret escape characters such as \r, \n, and \t. So, in our
example, it will be treated as an n character, so to interpret escape characters, you have
to use a dollar sign ($) before it to make it work properly.

But if your IFS is a normal character, you don't have to use the dollar sign ($) at all.

Counting directories and files
We can use a simple for loop to iterate over folder content and use an if statement to
check whether the path is a directory or a file:

#!/bin/bash

for path in /home/likegeeks/*

do

 if [-d "$path"]

 then

 echo "$path is a directory"

 elif [-f "$path"]

 then

 echo "$path is a file"

 fi

done

This is pretty straightforward script. We iterate over directory content and then we use
an if statement to check whether the path is a directory or a file. Finally, we print
beside each path whether it's a file or a directory.

We used quotes for the path variable because the file could contain a space.

C-style for loops
If you have a C language background, you will be happy to know that you can write
your for loops in C-style. This feature was taken from KornShell. The shell for loop
can be written like this:

for (v= 0; v < 5; v++)

{

 printf(Value is %d\n", v);

}

It is easy for C developers to use this syntax in for loops.

Check out this example:

#!/bin/bash

for ((v=1; v <= 10; v++))

do

 echo "value is $v"

done

The choice is yours; you have a lot of syntax styles for the for loop.

Nested loops
Nested loops means loops inside loops. Check out the following example:

#!/bin/bash

for ((v1 = 1; v1 <= 3; v1++))

do

 echo "First loop $v1:"

 for ((v2 = 1; v2 <= 3; v2++))

 do

 echo " Second loop: $v2"

 done

done

The first loop hits first, then the second loop, and this happens three times.

Redirecting loop output
You can redirect the loop output to a file using the done command:

#!/bin/bash

for ((v1 = 1; v1 <= 5; v1++))

do

 echo "$v1"

done > file

If there is no file, it will be created and filled with the loop output.

This redirection is helpful when you don't need to show the loop output on the screen
and save it to a file instead.

Controlling the loop
Having entered our loop, we may need to either exit the loop prematurely or perhaps
exclude certain items from processing. If we want to process only directories in a
listing, rather than every file of any type, then to implement this, we have loop control
keywords, such as break and continue.

The break keyword is used to exit the loop, processing no more entries, whereas the
continue keyword is used to stop the processing of the current entry in the loop and
resume the processing with the next entry.

Assuming we only want to process directories, we could implement a test within the
loop and determine the file type:

$ for f in * ; do

[-d "$f"] || continue

chmod 3777 "$f"

done

Within the loop, we want to set permissions, including the SGID and sticky bits, but
for the directories only. The * search will return all files; the first statement within the
loop will ensure that we only process directories. If the test is done for the current
loop, the target fails the test and is not a directory; the continue keyword retrieves the
next loop-list item. If the test returns true and we are working with a directory, then we
will process the subsequent statements and execute the chmod command.

If we need to run the loop until we find a directory and then exit the loop, we can
adjust the code so that we can iterate though each file. If the file is a directory, then we
exit the loop with the break keyword:

$ for f in * ; do

[-d "$f"] && break

done

echo "We have found a directory $f"

Within the following screenshot, we can see the code in action:

By working with the same theme, we can print each directory found in the listing using
the following code:

for f in * ; do

[-d "$f"] || continue

dir_name="$dir_name $f"

done

echo "$dir_name"

We can achieve a result by processing the loop item only if it is a directory and within
the loop. We can work with regular files only using the if test. In this example, we
append the directory name to the dir_name variable. Once we exit the loop, we print the
complete list of directories. We can see this in the following screenshot:

Using these examples and your own ideas, you should now be able to see how you can
control loops using the continue and break keywords.

while loops and until loops
When using the for loop, we iterate through a list; it's either the one that we create or
the one that is dynamically generated. Using the while or until loops, we loop based on
the fact that the condition becomes either true or false.

A while loop loops while the condition is true and, conversely, an until loop will loop
while the condition is false. The following command will count from 10 through to
zero, each iteration of the loop printing the variable and then reducing the value by
one:

$ COUNT=10

$ while ((COUNT >= 0)) ; do

echo -e "$COUNT \c"

((COUNT--))

done ; echo

We can see the output of this command in the following screenshot, thus confirming
the countdown to zero:

The use of the \c escape sequence used here allows the suppression of the line feed normally used with echo. In
this way, we can keep the countdown on the single line of output. I think you will agree that it's a nice effect.

The functionality of this loop can be gained using the until loop; just a quick rethink of
the logic is required, as we will want to loop until the condition becomes true.
Generally, it is a personal choice and the way the logic works best for you about which
loop to use. The following example shows the loop written with the until loop:

$ COUNT=10

$ until ((COUNT < 0)) ; do

echo -e "$COUNT \c"

((COUNT--))

done ; echo

Reading input from files
Now, it may seem that these loops can do a little more than just count down numbers.
We may want to read data in from a text file and process each line. The shell built-in
read command that we saw earlier in this book can be used to read a file line by line. In
this way, we can use a loop to process each line of a file.

To demonstrate some of these functionalities, we will use a file that contains the server
addresses. These could be hostnames or IP addresses. In the following example, we
will make use of the IP addresses of Google DNS servers. The following command
shows the contents of the servers.txt file:

$ cat servers.txt

8.8.8.8

8.8.4.4

Using the read command in the condition of the while loop, we can loop as long as we
have more lines to read from the file. We specify the input file directly after the done
keyword. For each line that we read from the file, we can test whether the server is up
with the ping command, and, if the server is responding, we append it to a list of
available servers. This list is printed once the loop closes. In the following example,
we can see that we begin to add in as many elements of scripting as we have covered
in this book:

$ while read server ; do

ping -c1 $server && servers_up="$servers_up $server"

done < servers.txt

echo "The following servers are up: $servers_up"

We can verify the operation in the following screenshot, which captures the output:

Using this kind of loop, we can start to build extremely practical scripts to process
information either fed from the command line or from scripts. It will be very easy to
replace the filename that we read with $1, representing a positional parameter passed
into the script. Let's return to the ping_server.sh script and adjust it to accept the input
parameter. We can copy the script to the new $HOME/bin/ping_server_from_file.sh file.
Within the script, we first test whether the input parameter is a file. We then create an
output file with a tile that includes the date. As we enter the loop, we append available
servers to this file and list the file at the end of the script:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Script to ping servers from file

Last Edited: August 2015

if [! -f"$1] ; then

 echo "The input to $0 should be a filename"

 exit 1

fi

echo "The following servers are up on $(date +%x)"> server.out

done

while read server

do

 ping -c1 "$server"&& echo "Server up: $server">> server.out

done

cat server.out

We can execute the script now in the following manner:

$ ping_server_from_file.sh servers.txt

The output from the script execution should be similar to the following screenshot:

Creating operator menus
We can provide a menu to the Linux operators who need limited functionality from the
shell and do not want to learn the details of command-line use. We can use their login
script to launch a menu for them. This menu will provide a list of command selections
to choose from. The menu will loop until the user chooses to exit from the menu. We
can create a new $HOME/bin/menu.sh script; the basis of the menu loop will be the
following:

while true

do

......

done

The loop we have created here is infinite. The true command will always return true
and loop continuously; however, we can provide a loop control mechanism to allow
the user to leave the menu. To start building the structure of the menu, we will need to
echo some text within the loop asking the user for their choice of command. We will
clear the screen before the menu is loaded each time and an additional read prompt
will appear after the execution of the desired command.

This allows the user to read the output from the command before the screen is cleared
and the menu is reloaded. The script will look like the following code at this stage:

#!/bin/bash

Author: @theurbanpenguin

Web: www.theurbapenguin.com

Sample menu

Last Edited: August 2015

while true

do

 clear

 echo "Choose an item: a,b or c"

 echo "a: Backup"

 echo "b: Display Calendar"

 echo "c: Exit"

 read -sn1

 read -n1 -p "Press any key to continue"

done

If you execute the script at this stage, there will be no mechanism to leave the script.
We have not added any code to the menu selections; however, you can test
functionality and exit using the Ctrl + C keys.

At this stage, the menu should look similar to the output shown in the following
screenshot:

To build the code behind the menu selection, we will implement a case statement. This
will be added in between the two read commands, as follows:

read -sn1

 case "$REPLY" in

 a) tar -czvf $HOME/backup.tgz ${HOME}/bin;;

 b) cal;;

 c) exit 0;;

 esac

 read -n1 -p "Press any key to continue"

We can see the three options that we have added to the case statement, a, b, and c:

Option a: This runs the tar command to back up the scripts
Option b: This runs the cal command to display the current month
Option c: This exits the script

To ensure that the user is logged out when exiting from their login script, we will run
the following:

exec menu.sh

The exec command is used to ensure that the shell is left after the menu.sh file is
complete. In this way, the user never needs to experience the Linux shell. The
complete script is shown in the following screenshot:

Summary
We have begun to make progress within this chapter. We have been able to join many
of the elements that we have previously used into cohesive and functional scripts.
Although the focus of this chapter has been on loops, we have used command-line
lists, if statements, case statements, and arithmetic calculations.

We opened this chapter by describing loops as the workhorse of our scripts and we
have been able to demonstrate this with for, while, and until loops. The for loop is used
to iterate through elements of a list. The list can be either static or dynamic; with an
emphasis on dynamic lists, we showed how simply these are created through file
globbing or command expansion.

Also, we saw how to iterate over complex values and how to set the IFS to iterate over
fields correctly.

We learned how to write nested loops and how to redirect loop output to files.

The while and until loops are controlled using conditions. The while loop will loop while
the supplied condition is true. The until loop will loop until the supplied condition
returns true or while it returns false. The continue and break keywords are specific to
loops and, using them along with exit, we can control the loop flow.

In the next chapter, we will look at modularizing scripts using functions.

Questions
1. How many lines will be printed on screen from the following script?

#!/bin/bash

for ((v1 = 12; v1 <= 34; v1++))

do

echo "$v1"

done > output

2. How many lines will be printed on the screen from the following script?

#!/bin/bash

for ((v=8; v <= 12; v++))

do

if [$v -ge 12]

then

break

fi

echo "$v"

done

3. What is wrong with the following script? And how can you fix it?

#!/bin/bash

for ((v=1, v <= 10, v++))

do

echo "value is $v"

done

4. How many lines will be printed on the screen from the following script?

#!/bin/bash

count=10

while ((count >= 0)) ; do

echo $count

done

$((count--))

exit 0

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/LDP/abs/html/internalvariables.html

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-7.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_03.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_05.html

http://tldp.org/LDP/abs/html/internalvariables.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-7.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_03.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_05.html

Creating Building Blocks with
Functions
In this chapter, we will dive into the wonderful world of functions. We can look at
these as modular building blocks creating powerful and adaptive scripts. By creating
functions, we add the code in a single building block isolated from the rest of the
script. Focusing on improvements of a single function is a lot easier than trying to
improve the script as a single object. Without functions, it is difficult to hone in on
problem areas and the code is often repeated, which means that updates need to happen
in many locations. Functions are named as blocks of code or scripts within scripts and
they can overcome many problems associated with more complex code.

As we make our way through the chapter, we will cover the following topics:

Introducing functions
Passing parameters to functions
Variable scope
Returning values from functions
Recursive functions
Using functions in menus

Technical requirements
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter07

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter07

Introducing functions
Functions are blocks of code that exist in memory as named elements. These elements
can be created within the shell environment, as well as within the script execution.
When a command is issued at the command line, aliases are checked first and,
following this, we check for a matching function name. To display the functions
residing in your shell environment, you can use the following command:

$ declare -F

The output will vary depending on the distribution you are using and the number of
functions you have created. On my Linux Mint, the partial output is shown in the
following screenshot:

Using the small -f option, you can display the function and the associated definition.
However, if we want to see just a single function definition, we can use the type
command:

$ type quote

The previous code example will display the code block for the quote function, if it
exists within your shell. We can see the output of this command in the following
screenshot:

The quote function in bash inserts single quotes around a supplied input parameter. For
example, we can expand the USER variable and display the value as a string literal; this
is shown in the following screenshot. The screenshot captures the command and
output:

Most code can be represented by a pseudo-code which shows an example layout.
Functions are no different and the code to create a function is listed in the following
example:

function-name() {

<code to execute>

}

Also, there is another way of defining functions, like this:

function <function-name> {

<code to execute>

}

The keyword function is deprecated for portability with the Portable Operating System
Interface (POSIX) specification, but it is still used by some developers.

Note that the () are not necessary when using the keyword function, but they are a must if you define the function
without the keyword function.

The function is created without a do and done block, as we have used in the previous
loops. It is the purpose of the curly brackets to define the code block boundaries.

A simple function to display aggregated system information is shown in the following
code. This can be created at the command line and will be resident in your shell. This
will not persist the logins and will be lost when the shell is closed or the function is
unset. To allow the function to persist, we need to add this to the login script of our
user account. The sample code is as follows:

$ show_system() {

echo "The uptime is:"

uptime

echo

echo "CPU Detail"

lscpu

echo

echo "User list"

who

}

We can print the detail of the function similar to the prior instance using the type
command; this is shown in the following screenshot:

To execute the function, we simply need to type show_system and we will see the static
text and output from the three commands: uptime, lscpu, and who. This is, of course, a
very simple function but we can start to add more functionality by allowing parameters
to be passed at runtime.

Passing parameters to functions
Earlier within this chapter, we referred to functions as scripts within scripts and we
will still maintain that analogy. Similar to how a script can have input parameters, we
can create functions that also accept parameters that can make their operation less
static. Before we work on a script, we can look at a useful function in the command
line.

One of my pet peeves is overcommented configuration files, especially where documentation exists to detail the
options available.

The GNU's Not Unix (GNU) Linux sed command can easily edit the file for us and
remove commented lines and empty lines. We are introducing the stream editor, sed,
here but we will look at it in more detail in the following chapter.

The sed command line that runs the in-place edit will be as follows:

$ sed -i.bak '/^\s*#/d;/^$/d' <filename>

We can run out forensics in the command line by breaking it down element by
element. Let's take a deeper look:

sed -i.bak: This edits the file and creates a backup with the extension .bak. The
original file will then be accessible as <filename>.bak.
/^: This caret character (^) means edit the lines that start with what after the caret.
So the caret matches the beginning of a line.
\s*: This means any amount of white space, including no spaces or tabs.
#/: This is a normal # sign. So the total expression ^\s*# means we are looking for
lines that begin with comment or spaces and a comment.
d: This is the delete action to remove matching lines.
;/^$/d: The semicolon is used to separate expressions and the second expression is
similar to the first but this time we are preparing to delete empty lines.

To move this into a function, we will simply need to think of a great name. I like to
build verbs into function names; it helps with the uniqueness and identifies the purpose
of the function. We will create the clean_file function as follows:

$ function clean_file {

 sed -i.bak '/^\s*#/d;/^$/d' "$1"

}

As within scripts, we use positional parameters to accept command-line arguments.
We can replace the hardcoded filename that we used previously with $1 within the

function. We will quote this variable to protect against spaces within the filename. To
test the clean_file function, we will make a copy of a system file and work with the
copy. In this way, we can be sure that no harm comes to any system file. We can
assure all readers that no system files were harmed during the making of this book.
The following are the detailed steps we need to follow to perform the test on the new
function:

1. Create the clean_file function as described
2. Move to your home directory using the cd command without arguments
3. Copy the time configuration file to your home directory cp /etc/ntp.conf $HOME
4. Count the number of lines in the file with the following command: wc -l

$HOME/ntp.conf

5. Now remove the commented and empty lines with clean_file $HOME/ntp.conf
6. Now recount the lines using wc -l $HOME/ntp.conf
7. Also, check the count the backup of the original file that we created: wc -l

$HOME/ntp.conf.bak

The sequence of commands is shown in the following screenshot:

We can direct the attention of the function to the required file using the argument that
was supplied while executing the function. If we need to persist this function, then we
should add it to a login script. However, if we want to test this within a shell script, we
can create the following file to do this and practice some of the other elements we have
learned. We will need to take notice that the functions should always be created at the
start of the script as they need to be stored in memory by the time they are called. Just
think that your function needs to be unlocked and loaded before you pull the trigger.

We will create a new shell script, $HOME/bin/clean.sh, and the execute permission, as
always, will need to be set. The code of the script is as follows:

#!/bin/bash

Script will prompt for filename

then remove commented and blank lines

is_file() {

 if [! -f "$1"] ; then

 echo "$1 does not seem to be a file"

 exit 2

 fi

}

clean_file() {

 is_file "$1"

 BEFORE=$(wc -l "$1")

 echo "The file $1 starts with $BEFORE"

 sed -i.bak '/^\s*#/d;/^$/d' "$1"

 AFTER=$(wc -l "$1")

 echo "The file $1 is now $AFTER"

}

read -p "Enter a file to clean: "

clean_file "$REPLY"

exit 1

We have provided two functions within the script. The first, is_file, simply tests to
ensure that the filename we have entered is a regular file. Then we declare the
clean_file function with a little added functionality, displaying the line count of the file
before and after the operation. We can also see that functions can be nested and we call
the is_file function with clean_file.

Without the function definitions, we have only three lines of code at the end of the file,
which we can see in the example code laid out in the previous code block that has been
saved as $HOME/bin/clean.sh. We first prompt for the filename and then run the clean_file
function, which in turn calls the is_file function. The simplicity of the main code is
important here. The complexity is in the functions, as each function can be worked on
as a standalone unit.

We can now test the script operation, first using a wrong filename, as we can see in the
following screenshot:

Now that we have seen the operation with an incorrect file, we can try again using an
actual file! We can use the same system file we worked on before. We need to first
return the files to their original state:

$ cd $HOME

$ rm $HOME/ntp.conf

$ mv ntp.conf.bak ntp.conf

With the file now ready, we can execute the script from the $HOME directory as shown in
the following screenshot:

Passing arrays
Not all your passed values will be single values; you may need to pass an array to the
function. Let's see how to pass an array as a parameter:

#!/bin/bash

myfunc() {

 arr=$@

 echo "The array from inside the function: ${arr[*]}"

}

test_arr=(1 2 3)

echo "The original array is: ${test_arr[*]}"

myfunc ${test_arr[*]}

From the result, you can see that the used array is returned the way it is from the
function.

Note that we used $@ to get the array inside the function. If you use $1, it will return the
first array element only:

#!/bin/bash

myfunc() {

 arr=$1

 echo "The array from inside the function: ${arr[*]}"

}

my_arr=(5 10 15)

echo "The original array: ${my_arr[*]}"

myfunc ${my_arr[*]}

Because we used $1, it returns only the first array element.

Variable scope
By default, any variable you declare inside a function is a global variable. That means
this variable can be used outside and inside the function without problems.

Check out this example:

#!/bin/bash

myvar=10

myfunc() {

 myvar=50

}

myfunc

echo $myvar

If you run this script, it will return 50, which is the value changed inside the function.

What if you want to declare a variable that is exclusive to the function? This is called a
local variable.

You can declare local variables by using the local command like this:

myfunc() {

 local myvar=10

}

To ensure that the variable is used only inside the function, let's check out the
following example:

#!/bin/bash

myvar=30

myfunc() {

 local myvar=10

}

myfunc

echo $myvar

If you run this script, it will print 30, which means that the local version of the variable
is different than the global version.

Returning values from functions
Whenever we have statements that are printed on the screen within the function, we
can see their result. However, lots of times we will want the function to populate a
variable within the script and not display anything. In this case, we use return in the
function. This is especially important when we are gaining input from users. We may
prefer the case to translate the input to a known case to make the condition testing
easier. Embedding the code in a function allows it to be used many times within a
script.

The following code shows how we can achieve this by creating the to_lower function:

to_lower ()

{

 input="$1"

 output=$(echo $input | tr [A-Z] [a-z])

return $output

}

Stepping through the code, we can begin to understand the operation of this function:

input="$1": This is more for ease than anything else; we assign the first input
parameter to a named variable input.
output=$(echo $input | tr [A-Z] [a-z]): This is the main engine of the function,
where the translation from uppercase to lowercase occurs. We pipe the input to
the tr command to convert uppercase to lowercase.
return $output: This is how we create the return value.

One use of this function will be within a script that reads the user's input and simplifies
the test to see whether they choose Q or q. This can be seen in the following extract of
code:

to_lower ()

{

 input="$1"

 output=$(echo $input | tr [A-Z] [a-z])

return $output

}

while true

do

 read -p "Enter c to continue or q to exit: "

 $REPLY=$(to_lower "$REPLY")

 if [$REPLY = "q"] ; then

 break

 fi

done

echo "Finished"

Recursive functions
A recursive function is a function that calls itself from inside itself. This function is
very useful when you need to call the function to do something again from inside of it.
The most famous example for that is calculating factorials.

To calculate the factorial of 4, you multiply the number by the descending numbers.
You can do it like this:

4! = 4*3*2*1

The ! sign means factorial.

Let's write a recursive function that calculates the factorial of any given number:

#!/bin/bash

calc_factorial() {

if [$1 -eq 1]

then

echo 1

else

local var=$(($1 - 1))

local res=$(calc_factorial $var)

echo $(($res * $1))

fi

}

read -p "Enter a number: " val

factorial=$(calc_factorial $val)

echo "The factorial of $val is: $factorial"

First, we define the function which is called calc_factorial and inside it we check if the
number equals 1 and if so, the function will return 1 because the factorial of 1 equals 1.

Then we decrement the number by one and call the function from inside it and that
will call the function again.

This will continue to happen until it reaches 1 and then the function will exit.

Using functions in menus
In Chapter 6, Iterating with Loops, we created the menu.sh file. Menus are great targets to
use functions, as the case statement is maintained very simply with single-line entries,
while the complexity can still be stored in each function. We should consider creating
a function for each menu item. If we copy the previous $HOME/bin/menu.sh to
$HOME/bin/menu2.sh, we can improve the functionality. The new menu should look like the
following code:

#!/bin/bash

Author: @likegeeks

Web: likegeeks.com

Sample menu with functions

Last Edited: April 2018

to_lower() {

 input="$1"

 output=$(echo $input | tr [A-Z] [a-z])

return $output

}

do_backup() {

 tar -czvf $HOME/backup.tgz ${HOME}/bin

}

show_cal() {

 if [-x /usr/bin/ncal] ; then

 command="/usr/bin/ncal -w"

 else

 command="/usr/bin/cal"

 fi

 $command

}

while true

do

 clear

 echo "Choose an item: a, b or c"

 echo "a: Backup"

 echo "b: Display Calendar"

 echo "c: Exit"

 read -sn1

 REPLY=$(to_lower "$REPLY")

 case "$REPLY" in

 a) do_backup;;

 b) show_cal;;

 c) exit 0;;

 esac

 read -n1 -p "Press any key to continue"

done

As we can see, we still maintain the simplicity of the case statement; however, we can
develop the script to add in more complexity through the functions. For example, when
choosing option b for the calendar, we now check to see whether the ncal command is
available. If it is, we use ncal and use the -w option to print the week number. We can

see this in the following screenshot, where we have chosen to display the calendar and
install ncal:

We can also not be concerned about the Caps Lock key as the to_lower function
converts our selection to lowercase. Over time, it would be very easy to add additional
elements to the functions, knowing that we only affect that single function.

Summary
We are still making progress in leaps and bounds in script writing. I hope these ideas
stay with you and you find the code examples useful. Functions are very important for
the ease of maintenance of your scripts and their ultimate functionality. The easier the
scripts are to maintain, the more likely you are to add improvements over time. We can
define functions at the command line or within scripts but they need to be included in
the script before they are used.

The functions themselves are loaded into memory while the script is running, but as
long as the script is forked and not sourced, they will be released from memory once
the script is finished. We have touched a little upon sed in this chapter and we will look
more at using the stream editor (sed) in the next chapter. The sed command is very
powerful and we can make good use of it within scripts.

Questions
1. What is the printed value of the following code?

#!/bin/bash

myfunc() {

arr=$1

echo "The array: ${arr[*]}"

}

my_arr=(1 2 3)

myfunc ${my_arr[*]}

2. What is the output of the following code?

#!/bin/bash

myvar=50

myfunc() {

myvar=100

}

echo $myvar

myfunc

3. What is the problem with the following code? And how can you fix it?

clean_file {

 is_file "$1"

 BEFORE=$(wc -l "$1")

 echo "The file $1 starts with $BEFORE"

 sed -i.bak '/^\s*#/d;/^$/d' "$1"

 AFTER=$(wc -l "$1")

 echo "The file $1 is now $AFTER"

}

4. What is the problem with the following code? And how can you fix it?

#!/bin/bash

myfunc() {

arr=$@

echo "The array from inside the function: ${arr[*]}"

}

test_arr=(1 2 3)

echo "The origianl array is: ${test_arr[*]}"

myfunc (${test_arr[*]})

Further reading
Please see the following for further reading relating to this chapter:

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-8.html

http://tldp.org/LDP/abs/html/functions.html

https://likegeeks.com/bash-functions/

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-8.html
http://tldp.org/LDP/abs/html/functions.html
https://likegeeks.com/bash-functions/

Introducing the Stream Editor
In the previous chapter, we saw that we could make use of sed to edit files from within
our scripts. The sed command is the stream editor (sed) and opens the file line by line
to search or edit the file content. Historically, this goes way back to Unix, where
systems may not have had enough RAM to open very large files. Using sed was
absolutely required to carry out edits. Even today, we will use sed to make changes and
display data from files with hundreds and thousands of entries. It is simpler and easier
and more reliable than a human trying to do the same thing. Most importantly, as we
have seen, we can use sed in scripts to edit the files automatically; no human
interaction is required.

We will start by looking at grep and searching the files for text. The re in the grep
command is short for regular expression. Even though we are not looking at scripting
in this chapter, we will be covering some very important tools that we can use with
scripts. In the next chapter, we will see the practical implementation of sed in scripts.

For the moment though, we have enough to deal with and we will cover the following
topics in this chapter:

Using grep to display text
Understanding the basics of sed
Other sed commands
Multiple sed commands

Technical requirements
The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter08

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter08

Using grep to display text
We will be beginning this journey by looking at the grep command. This will enable us
to grasp some simple concepts of searching through the text before moving onto more
complex regular expressions and editing files with sed.

Global regular expression print (grep), or what we more commonly call the
grep command, is a command-line tool used to search globally (across all the lines in a
file) and print the result to STDOUT. The search string is a regular expression.

The grep command is such a common tool that it has many simple examples and
numerous occasions where we can use it each day. In the following sections, we have
included some simple and useful examples with explanations.

Displaying received data on an
interface
In this example, we will print just the received data from the eth0 interface.

This is the interface that is my primary network connection. If you are uncertain of your interface name, you
can use the ifconfig -a command to display all the interfaces and choose the correct interface name on your
system. If ifconfig is not found, try typing the full path, /sbin/ifconfig.

Using just the ifconfig eth0 command, a heap of data can be printed to the screen. To
show just the packets received, we can isolate the lines that contain RX packets (RX for
received). This is where grep comes in:

$ ifconfig eth0 | grep "RX packets"

Using the pipe or vertical bars, we can take the output of the ifconfig command and
send it to the input of the grep command. In this case, grep is searching for a very simple
string, RX packets. The search string is case sensitive, so we need to get this right or use
the -i option with grep to run the search as case insensitive, as shown in the following
example:

$ ifconfig eth0 | grep -i "rx packets"

A case-insensitive search is especially useful when searching for options in a configuration file, which often
have mixed cases.

We can see the result of the initial command in the following screenshot, confirming
that we have been able to isolate just the single line of output, as shown:

Displaying user account data
The local user account database in Linux is the /etc/passwd file and this is readable by
all user accounts. If we want to search for the line that contains our own data, we can
use either our own login name in the search or use parameter expansion and the $USER
variable. We can see this in the following command example:

$ grep "$USER" /etc/passwd

In this example, the input to grep comes from the /etc/passwd file and we search for the
value of the $USER variable. Again, in this case, it is a simple text, but it is still the
regular expression, just without any operators.

For completeness, we include the output in the following screenshot:

We can extend this a little using this type of query as a condition within a script. We
can use this to check whether a user account exists before trying to create a new
account. To keep the script as simple as possible and to ensure that administrative
rights are not required, creating the account will display just the prompt and
conditional test in the following command-line example:

$ bash

$ read -p "Enter a user name: "

$ if (grep "$REPLY" /etc/passwd > /dev/null) ; then

> echo "The user $REPLY exists"

> exit 1

> fi

The grep search now makes use of the $REPLY variable populated by read. If I enter the
name pi, a message will be displayed and we will exit because my user account is also
called pi. There is no need to display the result from grep; we are just looking for a
return code that is either true or false. To ensure that we do not see any unnecessary
output if the user is in the file, we redirect the output from grep to the special device file
/dev/null.

If you want to run this from the command line, you should start a new bash shell first.
You can do this by simply typing bash. In this way, when the exit command runs, it will
not log you out but close the newly opened shell. We can see this happening and the
results when specifying an existing user in the following screenshot:

Listing the number of CPUs in a
system
Another really useful feature is that grep can count the matching lines and not display
them. We can use this to count the number of CPUs or CPU cores we have on a
system. Each core or CPU is listed with a name in the /proc/cpuinfo file. We can then
search for the text name and count the output; the -c option used is shown in the
following example:

$ grep -c name /proc/cpuinfo

My CPU has four cores, as shown in the following output:

If we use the same code on another PC Model B that has a single core, we will see the
following output:

We can again make use of this in a script to verify that enough cores are available
before running a CPU-intensive task. To test this from the command line, we can use
the following code, which we execute on a PC with just a single core:

$ bash

$ CPU_CORES=$(grep -c name /proc/cpuinfo)

$ if ((CPU_CORES < 4)) ; then

> echo "A minimum of 4 cores are required"

> exit 1

> fi

We only run bash at the start to ensure that we are not logged out of the system with the
exit command. If this was in a script, this would not be required, as we would exit the
script and not our shell session.

By running this on the Model B that has a single core, we can see the results of the
script and also the indication that we do not have the required number of cores:

If you had a requirement to run this check in more than one script, then you could
create a function in a shared script and source the script holding the shared functions
within the script that needs to be checked:

function check_cores {

 [-z $1] && REQ_CORES=2

CPU_CORES=$(grep -c name /proc/cpuinfo)

if ((CPU_CORES < REQ_CORES)) ; then

echo "A minimum of $REQ_CORES cores are required"

exit 1

fi

}

If a parameter is passed to the function, then it is used as the required number of cores;
otherwise, we set the value to 2 as the default. If we define this as a function in the
shell on the Model B PC and display the details with the type command, we should see
this as shown in the following screenshot:

If we run this on a single-core system and specify the requirement of just a single core,
we will see that there is no output when we meet the requirement. If we do not specify
the requirement, then it will default to 2 cores and we will fail to meet the requirement
and we will exit the shell.

We can see the output of the function when run with the argument of 1, and then
without arguments, in the following screenshot:

We can see how useful even the basics of grep can be within the scripts and how we
can use what we have learned to start creating usable modules to add to our scripts.

Parsing CSV files
We will now look at creating a script to parse or format a CSV file. The formatting of
the file will add new lines, tabs, and color to the output, so that it is more readable. We
can then use grep to display single items from the CSV file. The practical application
here is a catalog system based on the CSV files.

The CSV file
The CSV file, or list of comma-separated values, will come from the file named tools
that we have in a current directory. This is a catalog of products that we sell. The file
content is shown in the following output:

drill,99,5

hammer,10,50

brush,5,100

lamp,25,30

screwdriver,5,23

table-saw,1099,3

This is just a simple demonstration, so we don't expect too much data, but each item in
the catalog consists of the following:

Name
Price
Units in stock

We can see that we have a drill that costs $99 and we have five units in stock. If we list
the file with cat, it is not very friendly; however, we can write a script to display the
data in a more appealing way. We can create a new script called $HOME/bin/parsecsv.sh:

#!/bin/bash

OLDIFS="$IFS"

IFS=","

while read product price quantity

do

echo -e "\33[1;33m$product \

 ========================\033[0m\n\

Price : \t $price \n\

Quantity : \t $quantity \n"

done <"$1"

IFS=$OLDIFS

Let's work through this file and look at the pertinent elements:

Element Meaning

OLDIFS="$IFS"

The IFS variable stores the file separator and this is normally a white
space character. We can store the old IFS so that we can restore it
later at the end of the script, ensuring that we return the same
environment once the script is complete, no matter how the script is

run.

IFS=","
We set the separator to a comma to match what we need with a CSV
file.

while read

product price

quantity

We enter a while loop to populate three variables that we need:
product, price, and quantity. The while loop will read the input file, line
by line, and populate each of the variables.

echo ...

The echo command displays the product name in blue with double
underscores underneath. The other variables are printed on new lines
and tabbed in.

done <"$1"
This is where we read the input file, which we pass as an argument
to the script.

The script is shown in the following screenshot:

We can execute the script with the tools catalog file located in the current directory
using the following command:

$ parsecsv.sh tools

To look at how this will display, we can view the partial output in the following
screenshot:

We are now starting to get the idea that we have a lot of power at the command line to
format files in a more readable way and a plain text file does not need to be plain.

Isolating catalog entries
If we need to search for one entry, then we need more than just one line. The entry is
in three lines. So, if we search for the hammer, we need to go to the hammer line and
the two lines that follow. We do this by using the -A option to grep, which is short for
after. We need to display the matching line and two lines after. This will be expressed
by the following code:

$ parsecsv.sh tool | grep -A2 hammer

This is displayed in the following screenshot:

Understanding the basics of sed
Having built a little foundation, we can now start to look at some of the operations of
sed. The commands will be supplied with most Linux systems and are core commands.

We will dive directly into some simple examples:

$ sed 'p' /etc/passwd

The p operator will print the matched pattern. In this case, we have not specified a
pattern so we will match everything. Printing the matched lines without suppressing
STDOUT will duplicate lines. The result of this operation is to print all the lines in the
passwd file twice. To print the modified lines only, we use the -n option:

$ sed -n 'p' /etc/passwd

Brilliant!! We have just reinvented the cat command. We can now specifically work
with just a range of lines:

$ sed -n '1,3 p ' /etc/passwd

Now we have reinvented the head command, but we can also specify the range in a
regex pattern to recreate the grep command:

$ sed -n '/^root/ p' /etc/passwd

We can see this demonstrated in the following screenshot:

Note that the caret character (^) means the beginning of the line, which means the line
must start with the word root. Don't worry; we will explain all these regex characters in
a separate chapter.

The substitute command
We have seen the p command for printing the pattern space. The p is actually a flag for
the substitute command s.

The substitute command is written like this:

$ sed s/pattern/replacement/flags

There are three common flags used with the substitute command:

p: Print the original content
g: Global replacement for all occurrences
w: Filename: send results to a file

We will now look at the substitute command or s. With this command, we can replace
one string with another. Again, by default, we send the output to the STDOUT and do not
edit the file.

To replace the default shell of the user pi, we can use the following command:

sed -n ' /^pi/ s/bash/sh/p ' /etc/passwd

We continue the earlier instance using the p command to print the matched pattern and
use the -n option to suppress STDOUT. We search for lines beginning with pi. This
represents the username. We then issue the s command to substitute text in those
matched lines. This takes two arguments: the first is the text to search for and the
second represents the text used to replace the original. In this case, we look for bash and
replace it with sh. This is simple and does work but it may not be reliable in the long
term. We can see the output in the following screenshot:

We must emphasize that, currently, we are not editing the file and are just displaying it
to the screen. The original passwd file remains untouched and we can run this as a
standard user. I mentioned in the previous example that the search may be less than
reliable as the string we are searching for is bash. This is very short and perhaps it can
be included elsewhere on a matched line. Potentially, someone's last name may be
Tabash, which includes the string bash. We can extend the search to look for /bin/bash and
replace it with /bin/sh. However, this introduces another problem: the default delimiter

is the forward slash, so we will have to escape each forward slash we use in the search
and replace strings, which is as follows:

sed -n ' /^pi/ s/\/bin\/bash/\/usr\/bin\/sh/p ' /etc/passwd

This is an option but it is not a tidy option. A better solution is to know that the first
delimiter we use defines the delimiters. In other words, you can use any character as a
delimiter. Using the @ symbol may be a good idea in this scenario, as it does not appear
in either the search or the replace string:

sed -n ' /^pi/ s@/bin/bash@/usr/bin/sh@p ' /etc/passwd

We now have a more reliable search and a readable command line to work with, which
is always a good thing. We replace just the first occurrence on each line of /bin/bash
with /bin/sh. If we need to replace more than the first occurrence, we add the g
command, for global, at the end:

sed -n ' /^pi/ s@bash@sh@pg ' /etc/passwd

In our case, it is not required but it is good to know.

Global replacement
Let's assume that we have the following sample file:

Hello, sed is a powerful editing tool. I love working with sed

If you master sed, you will be a professional one

Let's try to use sed against this file:

$ sed 's/sed/Linux sed/' myfile

Here, we use sed to replace the word sed with Linux sed:

If you check the result carefully, you will notice that sed modified the first word of
each line only.

This may not be what you want if you want to replace all occurrences.

Here comes the g flag.

Let's use it and see the results again:

$ sed 's/sed/Linux sed/g' myfile

Now all occurrences are modified.

You can port these modifications to a file using the w flag:

$ sed 's/sed/Linux sed/w outputfile' myfile

Also, you can limit the number of occurrences from the same line, so we can modify
the first two occurrences from each line only like this:

$ sed 's/sed/Linux sed/2' myfile

So, if there is a third occurrence, it will be neglected.

Limiting substitution
We saw how the g flag modifies all occurrences in the same line and this goes for the
entire file lines.

What if we want to limit our edits to a specific line? Or a specific line range?

We can specify the ending line or the line range like this:

$ sed '2s/old text/new text/' myfile

The preceding command will only modify the second line of the file. The following
command will modify only the third to the fifth lines:

$ sed '3,5s/old text/new text/' myfile

The following command will modify from the second line to the end of the file:

$ sed '2,$s/old text/new text/' myfile

Editing the file
Using the w flag, we can write our edits to a file, but what if we want to edit the file
itself? We can use the -i option. We will need permissions to work with the file but we
can make a copy of the file to work with, so we don't harm any system file or require
additional access.

We can copy the passwd file locally:

$ cp /etc/passwd "$HOME"

$ cd

We finish with the cd command to ensure that we are working in the home directory and
the local passwd file.

The -i option is used to run an in-place update. We will not need the -n option or the p
command when editing the file. As such, the command is as simple as the following
example:

$ sed -i ' /^pi/ s@/bin/bash@/bin/sh/ ' $HOME/passwd

There will be no output to the command but the file will now reflect the change. The
following screenshot shows the command usage:

We should make a backup before we make the change by appending a string directly
after the -i option and without any spaces. This is shown in the following example:

$ sed -i.bak ' /^pi/ s@/bin/bash@/bin/sh/ ' $HOME/passwd

If we want to see this, we can reverse the search and replace strings:

$ sed -i.bak ' /^pi/ s@/bin/sh@/bin/bash/ ' $HOME/passwd

This will set the local passwd file to be the same as it was before and we will have a
passwd.bak with the previous set of changes. This keeps us safe with a rollback option if
we need it.

Other sed commands
sed offers a lot of commands that can be used to insert, change, delete, and transform
text with ease. Let's see some examples of how to use these commands with sed.

The delete command
You can use the delete command d to delete lines or a range of lines from your
stream. The following command will delete the third line from the stream:

$ sed '3d' myfile

The following command will delete the third to the fifth line from the stream:

$ sed '3,5d' myfile

 This command will delete from the fourth line to the end of the file:

$ sed '4,$d' myfile

Note that the deletion happens only to the stream, not the actual file. So if you want to
delete from the actual file, you can use the -i option:

$ sed -i '2d' myfile #Permenantly delete the second line from the file

The insert and append
commands
The insert, i, and append, a, commands work the same way with just a slight
difference.

The insert command inserts the specified text before the specified line or pattern.

The append command inserts the specified text after the specified line or pattern.

Let's see some examples.

Our sample 02 file will be like this:

First line

Second line

Third line

Fourth line

To insert a line, you need to use the insert command i like this:

$ sed '2i\inserted text' myfile

To append a line, you need to use the append command a like this:

$ sed '2a\inserted text' myfile

Look at the result and check the inserted line position:

The change command
We saw how to substitute occurrences using the substitute command s. So what is the
change command and how is it different?

The change command, c, is used for changing the entire line.

To change a line, you can use the change command like this:

$ sed '2c\modified the second line' myfile

We replaced the second line with a new line.

The transform command
The transform command is used to replace any letter or a number with another, for
example, capitalizing letters or transforming numbers into different numbers.

It works like the tr command.

You can use it like this:

$ sed 'y/abc/ABC/' myfile

The transformation applies to the entire stream and can't be limited.

Multiple sed commands
In all the previous examples, we only applied one sed command to our stream. What
about running multiple sed commands?

You can do that by using the -e option and separating the commands with a semicolon
like this:

$ sed -e 's/First/XFirst/; s/Second/XSecond/' myfile

Also, you can enter every command on a separate line and you will achieve the same
result:

$ sed -e '

> s/First/XFirst/

> s/Second/XSecond/' myfile

The sed command offers great flexibility; if you use it well, you will gain a lot of
power.

Summary
Another great chapter that you have firmly under your belt and I hope it was really
useful to you. Although we wanted to concentrate on using sed, we started with how
powerful grep can be, both inside and outside our scripts. Although we have only just
touched on sed, we will start extending this in the next chapter, where we will expand
upon what we have learned.

Also, we learned how to substitute text and how to limit and globalize the substitution
and how to save the editing stream using -i.

We learned how to insert, append, delete, and transform text using sed.

Finally, we learned how to run multiple sed commands using the -e option.

In the next chapter, we will learn how to automate Apache Virtual Hosts, how to create
new virtual hosts automatically, and other cool stuff. The workhorse of all these
operations will be sed and sed scripts.

Questions
1. Suppose you have a file with the following content:

Hello, sed is a powerful editing tool. I love working with sed

If you master sed, you will be a professional one

And suppose you use the following command:

$ sed 's/Sed/Linux sed/g' myfile

How many lines will be substituted?

2. Suppose you have the same file that was used in the previous question and you
use the following command:

$ sed '2d' myfile

How many lines will be deleted from the file?

3. What is the location of the inserted line in the following example?

$ sed '3a\Example text' myfile

4. Suppose you have the same previous sample file and you run the following
command:

$ sed '2i\inserted text/w outputfile' myfile

How many lines will be saved to the output file?

Further reading
Please see the following for further reading relating to this chapter:

https://www.gnu.org/software/sed/manual/sed.html

https://linux.die.net/man/1/sed

https://www.gnu.org/software/sed/manual/sed.html
https://linux.die.net/man/1/sed

Automating Apache Virtual
Hosts
Now that we have seen a little of the stream editor (sed), we can put this knowledge
into practice. In Chapter 8, Introducing the Stream Editor, we familiarized ourselves with
some of the capabilities of sed; however, this represented just a small amount of the
power enclosed in the editor. In this chapter, we are going to exercise sed a little more
and expose ourselves to some practical uses of the tool, especially when using our bash
scripts.

In this journey, we will use sed to help us automate the creation of Apache name-based
Virtual Hosts. The Apache hosts are practical users of the sed that we demonstrated
but, more importantly, we will use sed to search for selected lines in the main
configuration. We will then uncomment those lines and save them as a template.
Having created the template, we will create new configurations from it. The concept
that we demonstrate with Apache can be applied in many different situations.

We will find that using sed in our shell scripts will allow us to easily extract template
data from the main configuration and adjust to the needs of the virtual host. In this
way, we will be able to extend the knowledge of both sed and shell scripting. In this
chapter, we are going to cover the following topics:

Apache name-based Virtual Hosts
Automating virtual host creation

Technical requirements
You will need the following:

CentOS 7.x machine
Apache 2.4.x web server installed

You can install Apache as follows:

 $ sudo yum install httpd

Then you can start the web server:

 $ systemctl start httpd

You can ensure that the service is already running by checking the status as follows:

 $ systemctl status httpd

The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter09

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter09

Apache name-based Virtual
Hosts
For this demonstration, we will be working with the httpd.conf file from an Apache 2.4
HTTPD server taken from a CentOS 7.x host. To be perfectly honest, we are far more
interested in the configuration file, as Red Hat or CentOS supply it, than the actual
configuration changes that we will make. The file will be available for download from
the code bundle of the chapter. Our purpose is to learn how we can extract data from
the system-supplied file and create a template from it. We can apply this to Apache
configuration files or any other text data file. It is the methodology we are looking at,
not the actual result.

To have some understanding of what we are trying to do, we must first look at the
/etc/httpd/conf/httpd.conf file, that is, CentOS, Red Hat Enterprise Linux, or Scientific
Linux. The following screenshot shows the virtual host section of the file that we are
interested in:

Looking at these lines, we can see that they are commented and this is all a part of a
monolithic httpd.conf. While creating virtual hosts, we normally prefer separate
configurations for each of our potential virtual hosts. We need to be able to extract this
data from the main file and at the same time uncomment it. We can then save this
uncommented data as a template.

Using this template, we will create new configuration files that represent different
named hosts that we need to have running on one instance of Apache. This enables us
to host sales.example.com and marketing.example.com on a single server. Both sales and
marketing will have their own configuration and websites, independent from each
other. Additionally, it will also be very easy to add additional sites that we need with
the template we create. It becomes the task of the main web server to read the
incoming HTTP header requests to the server and direct them to the correct site based
on the domain name used.

Our first task then will be to extract the data present between the opening and closing

VirtualHost tags, uncomment it, and save it to a template. This will only need to be done
once and will not be a part of our main script to create the virtual hosts.

Creating the virtual host
template
As we are not going to test the virtual hosts we create, we will make a copy of the
httpd.conf file and work with that locally in our home directory. This is good practice
while developing the scripts so as not to impact the working configuration. The
httpd.conf file that I am working with should be able to be downloaded with other script
resources referred to in the script from the publisher. Alternatively, you can copy it
from your CentOS host with Apache installed. Make sure that the httpd.conf file is
copied to your home directory and that you are working in your home directory.

First steps
The very first step in creating the template is to isolate the lines that we need. In our
case, this will be the lines included in the sample virtual host definition that we saw in
the earlier screenshot. This includes the opening and closing tag for the VirtualHost and
everything in between. We can use line numbers for this; however, this will probably
not be reliable, as we will need to assume that nothing has changed in the file for the
line numbers to be consistent. For completeness, we will show this before moving onto
a more reliable mechanism.

First, we will remind ourselves of how we can print the whole file with sed. This is
important, as in the next step we will filter the display and show only the lines that we
want:

$ sed -n ' p ' httpd.conf

The -n option is used to suppress the standard output and the sed command within the
quotes is p; it is used to display the pattern match. As we have not filtered anything
here, the matched pattern is the complete file. If we were to use line numbers to filter,
we could add line numbers easily with sed, as shown in the following command:

$ sed = httpd.conf

From the following screenshot, we can see that, in this system, we need to work with
just lines 355 to 361; however, I do stress again that these numbers may vary from file to
file:

Isolating lines
To display these lines encased with the tags, we can add a number range to sed. This is
easily achieved by adding those numbers to sed, as shown in the following command:

$ sed -n '355,361 p ' httpd.conf

With the range of lines specified, we have been able to easily isolate the lines that we
required, and the only lines that are now displayed are those of the virtual host
definition. We can see this in the following screenshot, which displays both the
command and the output:

The issue that we face while hardcoding in the line numbers is that we lose flexibility.
These line numbers relate to this file and maybe only this file. We will always need to
check the correct line numbers in the file that relate to the file we are working with.
This could be an issue if the lines are not conveniently at the end of the file and we
have to scroll back to try and locate the correct line numbers. To overcome these
issues, instead of using line numbers, we can implement a search for the opening and
closing tags directly:

$ sed -n '/^#<VirtualHost/,/^#<\/VirtualHost/p' httpd.conf

We are no longer using the starting number and ending number but the more reliable
starting regular expression and closing regular expression. The opening regular
expression looks for the line that begins with #<VirtualHost. The ending regular
expression is searching for the closing tag. However, we need to protect the /VirtualHost
with an escape character. By looking at the end of the regular expression, we see that it
translates to lines that begin with #\/VirtualHost, with the escaped forward slash.

If you recall from Chapter 8, Introducing the Stream Editor, we specify the lines that begin with a specified
character by using the carat (^).

By looking at the following screenshot, we can now isolate the required lines more
reliably and without knowing the line numbers. This is more desirable across edited

files, which will differ in their line numbering:

sed script files
Isolating the lines was only the first step! We still have to uncomment the lines and
then save the result as a template. Although we can write this as one single sed
command string, we can already see that it will be awkwardly long and difficult to
read and edit. Thankfully, the sed command does have the option to read its commands
from an input file, often known as a script. We use the -f option with sed to specify the
file we want to read as our control.

We have already seen that we can isolate the correct lines from the file. So, the first
line of the script configures the lines that we will work with. We implement the brace
brackets {} to define a code block immediately after the selected lines.
A code block is one or more commands that we want to run on a given selection.

In our case, the first command will be to remove the comment and the second
command will be to write the pattern space to a new file. The sed script should look
like the following example:

/^#<VirtualHost/,/^#<\/VirtualHost/ {

s/^#//

w template.txt

}

We can save this file as $HOME/vh.sed.

In the first line, we select the lines to work with, as we have previously seen, and then
open the code block with the left brace. In line 2, we use the substitute command, s.
This looks for lines that start with a comment or #. We replace the comment with an
empty string. There are no characters or spaces between the middle and end forward
slash. In English, we are uncommenting the line but, to the code, this is replacing the #
with an empty string. The final line of code uses the write command, w, to save this to
template.txt. To help you see this, we have included the following screenshot of the
vh.sed file:

We can see all of our efforts come to fruition now by ensuring that we are in the same
directory as the httpd.conf and vh.sed files that are executing the following command:

$ sed -nf vh.sed httpd.conf

We have now created the template.txt file within our working directory. This is the
isolated uncommented text from the httpd.conf file. In simple terms, we have extracted
the seven correct lines from over 350 lines of text in milliseconds, removed the
comment, and saved the result as a new file. The template.txt file is displayed in the
following screenshot:

Now we have a template file that we can begin to work with to create virtual host
definitions. Even though it's Apache that we have been looking at, the same idea of
uncommenting the text or removing the first character of selected lines can apply to
many situations, so take this as an idea of what sed can do.

Automating virtual host
creation
After having created the template, we can now use this to create virtual host
configurations. In the simplest terms, we need to replace the dummy-host.example.com URL
with the sales.example.com or marketing.example.com URL. Of course, we have to also create
the DocumentRoot directory, the directory where the web pages will be, and also add some
basic content. When we use a script to run through the process, nothing will be
forgotten and the edits will be accurate every time. The basics of the script will be as
follows:

#!/bin/bash

WEBDIR=/www/docs

CONFDIR=/etc/httpd/conf.d

TEMPLATE=$HOME/template.txt

[-d $CONFDIR] || mkdir -p $CONFDIR

sed s/dummy-host.example.com/$1/ $TEMPLATE > $CONFDIR/$1.conf

mkdir -p $WEBDIR/$1

echo "New site for $1" > $WEBDIR/$1/index.html

We can ignore the shebang in the first line; we should know this by now. We can start
our explanation on line 2 of the script:

Line Meaning

WEBDIR=/www/docs/
We initialize the WEDIR variable that we store in the path
to the directory that will hold the different websites.

CONFDIR=/etc/httpd/conf.d
We initialize the CONFDIR variable that we will use to
store the newly created virtual host configuration file.

TEMPLATE=$HOME/template.txt
We initialize the variable that we will use for the
template. This should point to the path of our template.

On a working EL6 host, this directory will exist and is

[-d $CONFDIR] || mkdir -p

"$CONFDIR"

included in the main configuration. If we are running
this as a pure test, then we can create a directory to
prove that we can create the correct configuration
within the target directory.

sed s/dummy-

host.example.com/$1/

$TEMPLATE >$CONFDIR/$1.conf

The sed command works as an engine in the script,
running the search and replace operations. Using the
substitute command in sed, we search for the dummy
text and replace it with the argument passed to the
script.

mkdir -p $WEBDIR/$1
Here, we create the correct subdirectory to house the
websites for the new virtual host.

echo "New site for $1" >

$WEBDIR/$1/index.html

In this final step, we create a basic holding page for the
website.

We can create this script as $HOME/bin/vhost.sh. Don't forget to add the execute
permission. This is illustrated in the following screenshot:

To create the sales virtual host and web page, we can run the script as shown in the
following example. We will be running the script directly as the root user.
Alternatively, you may choose to make use of the sudo command within the script:

vhost.sh sales.example.com

We can now see how easily we can create virtual hosts using a well-crafted script. The

configuration file for the virtual host will be created in the /etc/httpd/conf.d/ directory
and will be named sales.example.com.conf. The file will look similar to the following
screenshot:

The website content must have been created in the /www/docs/sales.example.com directory.
This will be a simple holding page that proves the point that we can do this from the
script. Using the following command, we can list the content or the base directory that
we use to house each site:

$ ls -R /www/docs

The -R option allows for the recursive listing. We have used the /www/docs directory
purely as this is set in the original virtual host definition that we extracted. You may
prefer to use /var/www or something similar if working in a live environment rather than
creating the new directory at the root of your filesystem. It would be a simple matter of
editing the template that we created and that too could be done with sed at the time of
template creation.

Prompting for data during site
creation
We can now use the script to create the virtual hosts and the content but we have not
allowed for any customization other than the virtual hostname. Of course, this is
important. After all, it is this virtual hostname that is used in the configuration itself as
well as in setting the website directory and the configuration file name.

It is possible that we could allow additional options to be specified during the virtual
host creation. We will use sed to insert the data as required. The sed command i is used
to insert data before the selection and a to append after the selection.

For our example, we will add a host restriction to allow only the local network access
to the website. We are more interested in inserting data into the file rather than what
we are doing with the specific HTTP configuration file. Within the script, we will be
adding read prompts and inserting a Directory block into the configuration.

To try and explain what we are trying to do, we should see something similar to the
following when executing the script. You can see from the text that we are creating
this for the marketing site and adding in restrictions as to who can access the site:

As you can see, we can ask two questions but, if needed, more of them can be added to
support customization, the idea being that the additional customization should be
accurate and reliable in the same way as the script creation was. You may also choose
to elaborate the questions with sample answers, so that the user knows how the
network address should be formatted.

To aide script creation, we will copy the original vhost.sh to vhost2.sh. We can tidy up a
few items in the script to allow for easier expansion and then add in the additional
prompts. The new script will look similar to the following code:

#!/bin/bash

WEBDIR=/www/docs/$1

CONFDIR=/etc/httpd/conf.d

CONFFILE=$CONFDIR/$1.conf

TEMPLATE=$HOME/template.txt

[-d $CONFDIR] || mkdir -p $CONFDIR

sed s/dummy-host.example.com/$1/ $TEMPLATE > $CONFFILE

mkdir -p $WEBDIR

echo "New site for $1" > $WEBDIR/index.html

read -p "Do you want to restrict access to this site? y/n "

[${REPLY^^} = 'n'] && exit 0

read -p "Which network should we restrict access to: " NETWORK

sed -i "/<\/VirtualHost>/i <Directory $WEBDIR >\

 \n Order allow,deny\

 \n Allow from 127.0.0.1\

 \n Allow from $NETWORK\

\n</Directory>" $CONFFILE

Please note that we are not running too many checks in the script. This is to keep our focus on the elements
that we are adding rather than a robust script. In your own environment, once you have the script working the
way you want, you may need to implement more checks to ensure script reliability.

As you can see, we have a few more lines. The WEBDIR variable has been adjusted to
contain the full path to the directory and, in a similar way, we have added a new
variable CONFFILE, so that we can make a reference to the file directly. If the answer to
the first prompt is n and the user wants no additional customization, the script will exit.
If they answer anything other than n for no, the script will continue and prompt the
network to grant access. We can then use sed to edit the existing configuration and
insert the new directory block. This will default to deny access but allow access from
the localhost and NETWORK variables. We refer to the localhost as 127.0.0.1 in the code.

To simplify the code for better understanding, the pseudo-code will look like the
following example:

$ sed -i "/SearchText/i NewText <filename>

Here SearchText represents the line in the file before which we want to insert our text.
Also, NewText represents the new line or lines that will be added before the SearchText.
The i command directly following the SearchText dictates that we are inserting text.
Using the a command to append will mean that the text we add will be added after the
SearchText.

We can see the resulting configuration file for marketing.example.com, as we have created
it with the additional Directory block added in the following screenshot:

We can see that we have added the new block above the closing VirtualHost tag. In the
script, this is the SearchText that we use. The Directory block we add replaces the NewText
in the pseudo-code. When we look at it, it appears more complex as we have
embedded the new lines with \n and formatted the file for easier reading with the line

continuation character \. Again, we have to emphasize that this edit is easy and
accurate once the script is created.

For completeness, we include the following screenshot of the script vhost2.sh:

Summary
In this chapter, we have seen how we can extend sed into some very cool scripts that
have allowed us to extract data from files, uncomment selected lines, and write new
configurations. Not stopping at that, we also saw how we could use sed with script that
inserts new lines into existing files. I think that sed will very quickly become your
friend and we have created some powerful scripts to support the learning experience.

You may already know this but sed has a big brother, awk. In the next chapter, we are
going to see how we can use awk to extract data from files.

Questions
1. How can you print line number 50 from an Apache configuration file?
2. How can you change the Apache default port 80 to 8080 using sed?

Further reading
Please see the following for further reading relating to this chapter:

https://httpd.apache.org/docs/2.2/

https://httpd.apache.org/docs/2.2/vhosts/examples.html

https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.2/vhosts/examples.html

AWK Fundamentals
The stream editor is not alone in its family and has a big brother, AWK. In this
chapter, we will run through the basics of AWK and explore the power of the AWK
programming language. We will learn why we need and love AWK and how we can
make use of some of the basic features before we start putting AWK to practical use in
the next two chapters. As we work our way through this, we will cover the following
topics:

The history behind AWK
Displaying and filtering content from files
AWK variables
Conditional statements
Formatting output
Further filtering to display users by UID
AWK control files

Technical requirements
The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter10

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter10

The history behind AWK
The awk command is a command suite mainstay in both UNIX and Linux. The UNIX
awk command was first developed by Bell Labs in the 1970s and is named after the
surnames of the main authors: Alfred Aho, Peter Weinberger, and Brian Kernighan.
The awk command allows access to the AWK programming language, which is
designed to process data within text streams.

There are many implementations of AWK:

gawk: Also known as GNU AWK, it is a free version of AWK and used by many
developers; we will use it in this book.
mawk: Another implementation made by a guy named Mike Brennan. This
implementation only includes a few gawk features; it was designed for speed and
performance.
tawk: Or Thompson AWK, is an implementation that works on Solaris, DOS, and
Windows.
BWK awk: Also known as nawk, it is used by OpenBSD and macOS.

Note that the awk interpreter that we will use in this book is gawk but there is a symbolic
link for it with the name awk. So awk and gawk are the same command.

You can ensure this by listing the awk binary to see where it points to:

To demonstrate the programming language that is provided with awk, we should create
a Hello World program. We know this is compulsory for all languages:

$ awk 'BEGIN { print "Hello World!" }'

Not only can we see that this code will print the ubiquitous hello message, we can also
generate header information with the BEGIN block. Later, we will see that we
can create summary information with an END code block by allowing for a main
code block.

We can see the output of this basic command in the following screenshot:

Displaying and filtering content
from files
Now, of course we all want to be able to print a little more than just Hello World. The awk
command can be used to filter content from files and, if needed, very large files. We
should begin by printing the complete file before filtering it. In this way, we will get a
feel for the syntax of the command. Later, we will see how we can add this control
information into awk files to ease the command line. Using the following command, we
will print all the lines from the /etc/passwd file:

$ awk ' { print } ' /etc/passwd

This is equivalent to using the $0 variable with the print statement:

$ awk ' { print $0 }' /etc/passwd

AWK provides us with some ready-to-use variables to extract data such as:

$0 for the entire line
$1 for the first field
$2 for the second field
$3 for the third field and so on

However, we will need to specify that in this file the field separator used is a colon,
since it's the field separator in /etc/passwd file. The awk default delimiter is a space or any
amount of spaces or tabs and newlines. There are two ways to specify the input
delimiter; these are displayed in the following examples.

The first example is easy and simple to use. The -F option works well, especially where
we do not need any additional header information:

$ awk -F":" '{ print $1 }' /etc/passwd

We could also do this within the BEGIN block; this is useful when we want to use the
BEGIN block to display header information:

$ awk ' BEGIN { FS=":" } { print $1 } ' /etc/passwd

We can see this clearly in the preceding example, in which we named the BEGIN block
and all of the code within it is corralled by the brace brackets. The main block has no
name and is enclosed within the brace brackets.

After seeing the BEGIN block and the main code blocks, we will now look at the END code
block. This is often used to display summary data. For example, if we want to print the
total lines in the passwd file, we can make use of the END block. The code with the BEGIN
and END blocks is processed just once, whereas the main block is processed for each
line. The following example adds to the code we have written so far to include the total
line count:

$ awk ' BEGIN { FS=":" } { print $1 } END { print NR } ' /etc/passwd

The awk internal variable NR maintains the number of processed lines. If we want, we
can add some additional text to this. This can be used to annotate the summary data.
We can also make use of the single quotes that are used with the AWK language; they
will allow us to spread the code across multiple lines. Once we have opened the single
quotes, we can add newlines to the command line right until we close the quote. This
is demonstrated in the next example where we have extended the summary
information:

$ awk ' BEGIN { FS=":" }

> { print $1 }

> END { print "Total:",NR } ' /etc/passwd

If we do not wish to end our AWK experience here, we can easily display a running
line count with each line, as well as the final total. This is shown in the following
example:

$ awk ' BEGIN { FS=":" }

> { print NR,$1 }

> END { print "Total:",NR } ' /etc/passwd

The following screenshot captures this command and shows a partial output:

In the first example with BEGIN, we saw that there is no reason why we cannot use the
END code block in isolation without a main code block. If we need to emulate the wc -l
command, we can use the following awk statement:

$ awk ' END { print NR }' /etc/passwd

The output will be the line count from the file. The following screenshot shows both
the use of the awk command and the wc command to count the lines in the /etc/passwd file:

As we can see, the output does tally with 28 lines and our code has worked.

Another feature that we can practice with is working on selected lines only. For
example, if we want to print only the first five lines, we will use the following
statement:

$ awk ' NR < 6 ' /etc/passwd

If we want to print lines 8 through to 12, we can use the following code:

$ awk ' NR==8,NR==12 ' /etc/passwd

We can also use regular expressions to match the text in the lines. Take a look at the
following example where we look at the lines that end in the word bash:

$ awk ' /bash$/ ' /etc/passwd

The example and the output it produces are shown in the following screenshot:

So if you want to use a regex pattern, you should use two slashes and write the pattern
between them, /bash$/.

AWK variables
We saw how to use data fields such as $1 and $2. Also, we saw the NR field, which holds
the number of processed lines, but there are more built-in variables that AWK offers to
simplify work more and more.

FIELDWIDTHS: Specifies the field width
RS: Specifies the record separator
FS: Specifies the field separator
OFS: Specifies the output separator, which is a space by default
ORS: Specifies the output separator
FILENAME: Holds the processed file name
NF: Holds the line being processed
FNR: Holds the record which is processed
IGNORECASE: Ignores character case

These variables can help you a lot in many cases. Let's assume that we have the
following file:

John Doe

15 back street

(123) 455-3584

Mokhtar Ebrahim

10 Museum street

(456) 352-3541

We can say that we have two records for two persons and each record contains three
fields. Let's assume that we need to print the name and the phone number. So how do
we make AWK process them correctly?

In this case, the fields are separated by a newline (\n) and the records are separated by
empty lines.

So if we set the FS to (\n) and the RS to empty text, the fields will be identified correctly:

$ awk 'BEGIN{FS="\n"; RS=""} {print $1,$3}' myfile

The result appears valid and appropriate.

In the same way, you can use the OFS and ORS for the output report:

$ awk 'BEGIN{FS="\n"; RS=""; OFS="*"} {print $1,$3}' myfile

You can use any text that fits your needs.

We know that NR holds the number of the processed line and FNR looks the same from
the definition, but let's explore the following example to see the difference:

Assume that we have the following file:

Welcome to AWK programming

This is a test line

And this is one more

Let's process this file using AWK:

$ awk 'BEGIN{FS="\n"}{print $1,"FNR="FNR}' myfile myfile

Here we processed the file twice for testing purposes only to see what the value of the
FNR variable is.

As you can see, the value starts from 1 for every processing cycle.

Let's see the whether NR variable is used in the same way:

$ awk 'BEGIN {FS="\n"} {print $1,"FNR="FNR,"NR="NR} END{print "Total lines: ",NR}' myfile myfile

The NR variable preserves its value during the entire processing while FNR started from
1.

User-defined variables
You can define your own variables to use in AWK programming, as with any
programming language.

You can define the variable using any text, but it MUST not start with numbers:

$ awk '

BEGIN{

var="Welcome to AWk programming"

print var

}'

You can define any type of variables and use it the same way.

You can define numbers like this:

$ awk '

BEGIN{

var1=2

var2=3

var3=var1+var2

print var3

}'

Or perform string concatenation like this:

$ awk '

BEGIN{

str1="Welcome "

str2=" To shell scripting"

str3=str1 str2

print str3

}'

As you can see, AWK is a powerful scripting language.

Conditional statements
AWK supports conditional statements such as if and while loops.

The if command
Assume you have the following file:

50

30

80

70

20

90

Now, let's filter the values:

$ awk '{if ($1 > 50) print $1}' myfile

The if statement checks every value and, if it's greater than 50, it will print it.

You can use else clauses like this:

$ awk '{

if ($1 > 50)

{

x = $1 * 2

print x

} else

{

x = $1 * 3

print x

}}' myfile

If you don't use brackets {} to enclose your statements, you can type them on the same
line with a semicolon:

$ awk '{if ($1 > 50) print $1 * 2; else print $1 * 3}' myfile

Note that you can save this code into a file and assign it to the awk command using the -f option, as we will see
later on this chapter.

while loops
AWK processes every line of your file, but what if you want to iterate over the fields
of each line itself?

You can iterate over fields using a while loop when using AWK.

Assume we have the following file:

321 524 124

174 185 254

195 273 345

Now let's iterate over the fields using a while loop.

$ awk '{

total = 0

i = 1

while (i < 4)

{

total += $i

i++

}

mean = total / 3

print "Mean value:",mean

}' myfile

The while loop iterates over the fields; we get the mean value for every row and print it.

for loops
You can use for loops to iterate over values when using AWK like this:

$ awk '{

total = 0

for (var = 1; var < 4; var++)

{

total += $var

}

mean = total / 3

print "Mean value:",mean

}' myfile

We achieved the same result but using the for loop this time.

Formatting output
We have remained faithful to the print command so far, as we have been limited in
what we require from the output. If we want to print out, say, the username, UID, and
default shell, we need to start formatting the output just a little. In this case, we can
organize the output in well-shaped columns. Without formatting, the command we use
will look similar to the following example, where we use commas to separate the field
that we want to print:

$ awk ' BEGIN { FS=":" } { print $1,$3,$7 } ' /etc/passwd

We use the BEGIN block here, as we can make use of it to print column headers later.

To understand the problem a little better, take a look at the following screenshot,
which illustrates uneven column widths:

The issue that we have in the output is that the columns do not align, as the username
is an inconsistent length. To improve on this, we can use the printf function where we
can specify the column width. The syntax for the awk statements will be similar to the
following example:

$ awk ' BEGIN { FS=":" }

> { printf "%10s %4d %17s\n",$1,$3,$7 } ' /etc/passwd

The printf formatting is included within double quotes. We also need to include the
newline with the \n. The printf function does not add a newline automatically, whereas
the print function does. We print the three fields; the first accepts string values and is
set to 10 characters wide. The middle field accepts up to 4 numbers and we finish with
the default shell field where we allow up to 17 string characters.

The following screenshot shows how the output can be improved:

We can further enhance this by adding header information. Although the code starts to
look untidy at this stage, we will later see how we can resolve this with AWK control
files. The following example shows the header information being added to the Begin
block. The semicolon is used to separate the two statements in the BEGIN block:

$ awk 'BEGIN {FS=":" ;printf "%10s %4s %17s\n","Name","UID","Shell" }

> { printf "%10s %4d %17s\n",$1,$3,$7 } ' /etc/passwd

In the following screenshot, we can see how this improves the output even further:

In the previous chapter, we saw how we can augment the output with the use of colors
in the shell. We may also use color from within AWK by adding our own functions. In
the next code example, you will see that AWK allows us to define our own functions
to facilitate more complex operations and isolate the code. We will now modify the
previous code to include green output in the header:

$ awk 'function green(s) {

> printf "\033[1;32m" s "\033[0m\n"

> }

> BEGIN {FS=":";

green(" Name: UID: Shell:") }

> { printf "%10s %4d %17s\n",$1,$3,$7 } ' /etc/passwd

Creating the function within awk allows color to be added where we require, in this
case, green text. It is easy to create functions to define other colors. The code and
output are included in the following screenshot:

Further filtering to display users
by UID
We have been able to build our skills with AWK, piece by piece, and what we have
learned has been useful. We can take these tiny steps and add them to start creating
something a little more usable. Perhaps we want to print just standard users; these are
usually users higher than 500 or 1,000 depending on your particular distribution.

On the Linux Mint distribution that I am using for this book, standard users start with
UID 1000. The UID is the third field. This is really a simple matter of using the value of
the third field as the range operator. We can see this in the following example:

$ awk -F":" '$3 > 999 ' /etc/passwd

We can show users whose UID is 101 or lower with the following command:

$ awk -F":" '$3 < 101 ' /etc/passwd

These just give you an idea of some of the possibilities available with AWK. The
reality is that we can play all day with our arithmetic comparison operators.

We have also seen that, with some of these examples, the awk statements become a little
long. This is where we can implement the awk control files. Let's take a look at these
straightaway before we get lost in a morass of syntax.

AWK control files
Just as with sed, we can simplify the command line by creating and including control
files. This also makes editing the command later more easily achievable. The control
files contain all the statements that we want awk to execute. The main thing that we
must consider with sed, awk, and shell scripts is modularization; creating reusable
elements that can be used to isolate and reuse the codes. This saves us time and work
and we get more time for the tasks that we enjoy.

To see an example of an awk control file, we should revisit the formatting of the passwd
file. Creating the following file will encapsulate the awk statements:

function green(s) {

 printf "\033[1;32m" s "\033[0m\n"

}

BEGIN {

 FS=":"

 green(" Name: UID: Shell:")

}

{

 printf "%10s %4d %17s\n",$1,$3,$7

}

We can save this file as passwd.awk.

Being able to encompass all awk statements in the one file is very convenient and the
execution becomes clean and tidy:

$ awk -f passwd.awk /etc/passwd

This certainly encourages more complex awk statements and allows you to extend more
functionality to your code.

Built-in functions
In the previous example, we defined a function called green. This leads into taking
about some built-in functions that come with awk.

AWK comes with many built-in functions such as mathematical functions:

sin(x)

cos(x)

sqrt(x)

exp(x)

log(x)

rand()

You can use them like this:

$ awk 'BEGIN{x=sqrt(5); print x}'

Also, there are built-in functions that can be used in string manipulation:

$ awk 'BEGIN{x = "welcome"; print toupper(x)}'

Summary
I hope that you have a better and clearer understanding of what you can use the AWK
tool for. This is a data-processing tool that runs through text files, line by line, and
processes the code you add. The main block runs for each line that matches the row
criteria, whereas the BEGIN and END block code is executed just once.

You've learned how to use AWK built-in variables and how to define your own
variables and use them.

Also, you have learned how to use the if, while , and for loop to iterate over data fields.

In the next chapter, we will discuss regular expressions and how to use them in sed and
AWK to gain a lot of power.

Questions
1. What is the output of the following command?

$ awk '

BEGIN{

var="I love AWK tool"

print $var

}'

2. Assume you have the following file:

13

15

22

18

35

27

Then you run the following command against this file:

$ awk '{if ($1 > 30) print $2}' myfile

How many numbers will be printed?

3. Assume that you have the following file:

135 325 142

215 325 152

147 254 327

And you run the following command:

$ awk '{

total = 0

i = 1

while (i < 3)

{

total += $i

i++

}

mean = total / 3

print "Mean value:",mean

}' myfile

What is wrong with the previous code?

4. How many lines will be printed from the following command?

$ awk -F":" '$3 < 1 ' /etc/passwd

Further reading
Please see the following for further reading relating to this chapter:

https://likegeeks.com/awk-command/

https://www.gnu.org/software/gawk/manual/gawk.html

https://likegeeks.com/awk-command/
https://www.gnu.org/software/gawk/manual/gawk.html

Regular Expressions
In this chapter, we will talk about the most mysterious part of using stream
editor (sed) and AWK. They are regular expressions, or regexes for short. In the
previous chapters, we discussed some regular expressions shyly and that's because we
don't need to dig into them without a good understanding.

If you understand how regular expressions are written, you will save a lot of time and
effort. With regular expressions, you will unleash the real power behind sed and AWK
and will use them professionally.

This chapter will cover the following aspects:

Regular expression engines
Defining BRE patterns
Defining ERE patterns
Using grep

Technical requirements
The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter11

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter11

Regular expression engines
To start with, what are regular expressions?

Regular expressions are strings that the regex engine interprets to match a specific text.
It's like an advanced way of searching.

Assume that you want to search a file for lines starting with any small letters, or you
want to search for lines that contain a number, or maybe search for lines starting with
specific text. The normal search can't be generic: the only way to do that is to use
regular expressions.

And what is the regex engine?

The regex engine is the piece of software that understands these strings and translates
them to find the matched text.

There are many regex engines out there; for example, the engines that are shipped with
programming languages such as Java, Perl, and Python. Also, the engines that Linux
tools use are sed and AWK, and the important thing for us now is to learn the types of
regex engine in Linux.

There are two types of regex engine in Linux:

The Basic Regular Expression (BRE) engine
The Extended Regular Expression (ERE) engine

Most Linux binaries understand both engines, such as sed and AWK.

grep also can understand ERE, but you have to use the -E option, which is equivalent to
using egrep.

We will see how to define a regex pattern for sed and AWK. We will start by defining
BRE patterns, so let's get started.

Defining BRE patterns
To define a regex pattern, you can type the following:

$ echo "Welcome to shell scripting" | sed -n '/shell/p'

$ echo "Welcome to shell scripting" | awk '/shell/{print $0}'

A very important thing you need to know about regex patterns in general is they are
case sensitive:

$ echo "Welcome to shell scripting" | awk '/shell/{print $0}'

$ echo "Welcome to SHELL scripting" | awk '/shell/{print $0}'

Say you want to match any of the following characters:

.*[]^${}\+?|()

You must escape them with a backslash because these characters are special characters for the regex engines.

Now you know how to define a BRE pattern. Let's use the common BRE characters.

Anchor characters
Anchor characters are used to match the beginning or the end of a line. There are two
anchor characters: the caret (^) and the dollar sign ($).

The caret character is used to match the beginning of a line:

$ echo "Welcome to shell scripting" | awk '/^Welcome/{print $0}'

$ echo "SHELL scripting" | awk '/^Welcome/{print $0}'

$ echo "Welcome to shell scripting" | sed -n '/^Welcome/p'

So, the caret character is used to check whether the specified text is at the beginning of
the line.

If you want to search for the caret as a character, you should escape it with a backslash
if you use AWK.

However, if you use sed, you don't need to escape it:

$ echo "Welcome ^ is a test" | awk '/\^/{print $0}'

$ echo "Welcome ^ to shell scripting" | sed -n '/^/p'

To match the end of the text, you can use the dollar sign character ($):

$ echo "Welcome to shell scripting" | awk '/scripting$/{print $0}'

$ echo "Welcome to shell scripting" | sed -n '/scripting$/p'

You can use both characters (^) and ($) in the same pattern to specify text.

You can use these characters to do something useful, such as search for empty lines

and trim them:

$ awk '!/^$/{print $0}' myfile

The exclamation mark (!) is called the negation character, which negates what's after
it.

The pattern searches for ^$ where the caret (^) refers to the beginning of a line and the
dollar sign ($) refers to the end of a line, which means search for lines that have
nothing between the beginning and the end which means empty lines. Then we negate
that with the exclamation mark (!) to get the other lines that are not empty.

Let's apply it to the following file:

Lorem Ipsum is simply dummy text .

Lorem Ipsum has been the industry's standard dummy.

It has survived not only five centuries

It is a long established fact that a reader will be distracted.

Now, let's see the magic:

$ awk '!/^$/{print $0}' myfile

The lines are printed without the empty lines.

The dot character
The dot character matches any character except the new line (\n). Let's use it against
the following file:

Welcome to shell scripting.

I love shell scripting.

shell scripting is awesome.

Say we use the following commands:

$ awk '/.sh/{print $0}' myfile

$ sed -n '/.sh/p' myfile

This pattern matches any line containing sh and any text before it:

As you can see, it matches the first two lines only because the third line starts with sh,
so no match for the third line.

The character class
We saw how to match any character using the dot character. What if you want to
match a specific set of characters only?

You can pass the characters you want to match between square brackets [] to match
them, and this is the character class.

Let's take the following file as an example:

I love bash scripting.

I hope it works without a crash.

Or I'll smash it.

Let's see how the character class works:

$ awk '/[mbr]ash/{print $0}' myfile

$ sed -n '/[mbr]ash/p' myfile

The character class [mbr] matches any of the included characters followed by ash, so
this matches the three lines.

You can employ it in something useful, such as matching an uppercase or a lower case
character:

$ echo "Welcome to shell scripting" | awk '/^[Ww]elcome/{print $0}'

$ echo "welcome to shell scripting" | awk '/^[Ww]elcome/{print $0}'

The character class is negated using the caret character like this:

$ awk '/[^br]ash/{print $0}' myfile

Here, we match any line that contains ash and starts neither with b nor r.

Remember that using the caret character (^) outside the square brackets means the beginning of a line.

Using character class, you specify your characters. What if you have a long range of
characters?

Ranges of characters
You can specify a range of characters to match between square brackets as follows:

[a-d]

This means the range of characters from a to d, so a, b, c, and d are included.

Let's use the same previous example file:

$ awk '/[a-m]ash/{print $0}' myfile

$ sed -n '/[a-m]ash/p' myfile

The character range from a to m is selected. The third line contains r before ash, which
is not in our range, so only the second line doesn't match.

You can use numbers ranges as well:

$ awk '/[0-9]/'

This pattern means from 0 to 9 is matched.

You can write multiple ranges in the same bracket:

$ awk '/[d-hm-z]ash/{print $0}' myfile

$ sed -n '/[d-hm-z]ash/p' myfile

In this pattern, from d to h and from m to z are selected and since the first line contains b
before ash, only the first line doesn't match.

You can use the ranges to select all uppercase and lowercase characters as follows:

$ awk '/[a-zA-Z]/'

Special character classes
We saw how to match a set of characters using the character class, then we saw how to
match a range of characters using character ranges.

Actually, the ERE engine offers ready-to-use classes to match some common sets of
characters as follows:

[[:alpha:]] Matches any alphabetical character

[[:upper:]] Matches A–Z uppercase only

[[:lower:]] Matches a–z lowercase only

[[:alnum:]] Matches 0–9, A–Z, or a–z

[[:blank:]] Matches space or Tab only

[[:space:]] Matches any whitespace character: space, Tab, CR

[[:digit:]] Matches from 0 to 9

[[:print:]] Matches any printable character

[[:punct:]] Matches any punctuation character

So, if you want to match uppercase characters, you can use [[:upper:]] and it will work
exactly as the character range [A-Z].

Let's test one of them against the following example file:

checking special character classes.

This LINE contains upper case.

ALSO this one.

We will match the uppercase characters to see how it works:

$ awk '/[[:upper:]]/{print $0}' myfile

$ sed -n '/[[:upper:]]/p' myfile

The uppercase special class makes it easy to match any line that contains uppercase
letters.

The asterisk
The asterisk is used to match the existence of a character or a character class zero or
more times.

This can be useful when searching for a word with multiple variations or that has been
misspelled:

$ echo "Checking colors" | awk '/colou*rs/{print $0}'

$ echo "Checking colours" | awk '/colou*rs/{print $0}'

If the character u doesn't exist at all or exists, that will match the pattern.

We can benefit from the asterisk character by using it with the dot character to match
any number of characters.

Let's see how to use them against the following example file:

This is a sample line

And this is another one

This is one more

Finally, the last line is this

Let's write a pattern that matches any line that contains the word this and anything
after it:

$ awk '/this.*/{print $0}' myfile

$ sed -n '/ this.*/p' myfile

The fourth line contains the word this, but the first and third lines contain a capital T,
so that it doesn't match.

The second line contains the word and text after it, whereas the fourth line contains the
word and nothing after it, and in both cases, the asterisk matches zero or more

instances.

You can use the asterisk with the character class to match the existence of any
character inside the character class for one time or none at all.

$ echo "toot" | awk '/t[aeor]*t/{print $0}'

$ echo "tent" | awk '/t[aeor]*t/{print $0}'

$ echo "tart" | awk '/t[aeor]*t/{print $0}'

The first line contains the character o two times, so it matches.

The second line contains the n character, which doesn't exist in the character class, so
there is no match.

The third line contains the characters a and r, once for each, and they exist in the
character class, so that line matches the pattern too.

Defining ERE patterns
We saw how easy it is to define BRE patterns. Now, we will see some ERE patterns,
which are more powerful.

ERE engines understand the following patterns besides BRE patterns:

Question marks
Plus signs
Curly braces
Pipe characters
Expression grouping

By default, AWK supports ERE patterns, and sed needs -r to understand these
patterns.

The question mark
The question mark matches the existence of the preceding character or character class
zero or one time only:

$ echo "tt" | awk '/to?t/{print $0}'

$ echo "tot" | awk '/to?t/{print $0}'

$ echo "toot" | awk '/to?t/{print $0}'

$ echo "tt" | sed -r -n '/to?t/p'

$ echo "tot" | sed -r -n '/to?t/p'

$ echo "toot" | sed -r -n '/to?t/p'

In the first two examples, the character o exists zero and one time, whereas in the third
example, it exists two times, which doesn't match the pattern

In the same way, you can use the question mark with the character class:

$ echo "tt" | awk '/t[oa]?t/{print $0}'

$ echo "tot" | awk '/t[oa]?t/{print $0}'

$ echo "toot" | awk '/t[oa]?t/{print $0}'

$ echo "tt" | sed -r -n '/t[oa]?t/p'

$ echo "tot" | sed -r -n '/t[oa]?t/p'

$ echo "toot" | sed -r -n '/t[oa]?t/p'

The third example only doesn't match because it contains the o character two times.

Note that when using the question mark with the character class, it doesn't need to
have all of character class in the text; one is enough to pass the pattern

The plus sign
The plus sign matches the existence of the preceding character or character class one
time or more, so it must exist at least once:

$ echo "tt" | awk '/to+t/{print $0}'

$ echo "tot" | awk '/to+t/{print $0}'

$ echo "toot" | awk '/to+t/{print $0}'

$ echo "tt" | sed -r -n '/to+t/p'

$ echo "tot" | sed -r -n '/to+t/p'

$ echo "toot" | sed -r -n '/to+t/p'

The first example doesn't have an o character, and that's why it's the only example that
has no match.

Also, we can use the plus sign with the character class:

$ echo "tt" | awk '/t[oa]+t/{print $0}'

$ echo "tot" | awk '/t[oa]+t/{print $0}'

$ echo "toot" | awk '/t[oa]+t/{print $0}

$ echo "tt" | sed -r -n '/t[oa]+t/p'

$ echo "tot" | sed -r -n '/t[oa]+t/p'

$ echo "toot" | sed -r -n '/t[oa]+t/p'

The first example only doesn't match because it contains no o character at all.

Curly braces
The curly braces define the number of existence of the preceding character or character
class:

$ echo "tt" | awk '/to{1}t/{print $0}'

$ echo "tot" | awk '/to{1}t/{print $0}'

$ echo "toot" | awk '/to{1}t/{print $0}'

$ echo "tt" | sed -r -n '/to{1}t/p'

$ echo "tot" | sed -r -n '/to{1}t/p'

$ echo "toot" | sed -r -n '/to{1}t/p'

The third example doesn't contain any matches because the o character exists two
times. So, what if you want to specify a more flexible number?

You can specify a range inside the curly braces:

$ echo "toot" | awk '/to{1,2}t/{print $0}'

$ echo "toot" | sed -r -n '/to{1,2}t/p'

Here, we match the o character if it exists one or two times.

Also, you can use the curly braces with the character class:

$ echo "tt" | awk '/t[oa]{1}t/{print $0}'

$ echo "tot" | awk '/t[oa]{1}t/{print $0}'

$ echo "toot" | awk '/t[oa]{1}t/{print $0}'

$ echo "tt" | sed -r -n '/t[oa]{1}t/p'

$ echo "tot" | sed -r -n '/t[oa]{1}t/p'

$ echo "toot" | sed -r -n '/t[oa]{1}t/p'

As expected, if any of the characters [oa] exists for one time, the pattern will match.

The pipe character
The pipe character (|) tells the regex engine to match any of the passed strings. So, if
one of them exists, that is enough for the pattern to match. It's like a logical OR between
the passed strings:

$ echo "welcome to shell scripting" | awk '/Linux|bash|shell/{print $0}'

$ echo "welcome to bash scripting" | awk '/Linux|bash|shell/{print $0}'

$ echo "welcome to Linux scripting" | awk '/Linux|bash|shell/{print $0}'

$ echo "welcome to shell scripting" | sed -r -n '/Linux|bash|shell/p'

$ echo "welcome to bash scripting" | sed -r -n '/Linux|bash|shell/p'

$ echo "welcome to Linux scripting" | sed -r -n '/Linux|bash|shell/p'

All the previous examples have a match, since any of the three words exists in each
example.

There are no spaces between the pipes and the words.

Expression grouping
You can use parentheses () to group characters or words to make them one piece in the
eyes of the regex engine:

$ echo "welcome to shell scripting" | awk '/(shell scripting)/{print $0}'

$ echo "welcome to bash scripting" | awk '/(shell scripting)/{print $0}'

$ echo "welcome to shell scripting" | sed -r -n '/(shell scripting)/p'

$ echo "welcome to bash scripting" | sed -r -n '/(shell scripting)/p'

Since the shell scripting string is grouped with parentheses, it will be treated as a single
piece.

So, if the entire sentence doesn't exist, the pattern will fail.

You may have realized that you can achieve that without parentheses like this:

$ echo "welcome to shell scripting" | sed -r -n '/shell scripting/p'

So, what is the benefit of using parentheses or expression grouping? Check the
following examples to know the difference.

You can use any of the ERE characters with the grouping parentheses:

$ echo "welcome to shell scripting" | awk '/(bash scripting)?/{print $0}'

$ echo "welcome to shell scripting" | awk '/(bash scripting)+/{print $0}'

$ echo "welcome to shell scripting" | sed -r -n '/(bash scripting)?/p'

$ echo "welcome to shell scripting" | sed -r -n '/(bash scripting)+/p'

In the first example, we search for the whole sentence bash scripting for zero or one

time using the question mark, and because the whole sentence doesn't exist, the pattern
succeeds.

Without expression grouping, you won't get the same result.

Using grep
If we wanted to talk properly about grep, an entire book would not be enough. grep
supports many engines along with BRE and ERE. It supports engines such as Perl-
compatible regular expression (PCRE).

The grep is a very powerful tool that most system administrators use every day. We just
want to enlighten the point of using BRE and ERE patterns as we did with sed and
AWK.

grep tool understands BRE patterns by default, and if you want to use ERE patterns,
you should use the -E option.

Let's work with the following example file and use a BRE pattern:

Welcome to shell scripting.

love shell scripting.

shell scripting is awesome.

Let's test a BRE pattern:

$ grep '.sh' myfile

The results are colored in red.

Let's test an ERE pattern:

$ grep -E 'to+' myfile

All other ERE characters can be used in the same way.

Summary
In this chapter, we covered regular expressions and the regex engines BRE and ERE.
We learned how to define patterns for them.

We learned how to write these patterns for sed, AWK, and grep.

Also, we saw how the special character classes make it easy to match sets of
characters.

We saw how to use the powerful ERE patterns and how to group expressions.

Finally, we saw how to use the grep tool and how to define BRE and ERE patterns.

In the next two chapters, we will see some practical examples for AWK.

Questions
1. Assume that you have the following file:

Welcome to shell scripting.

I love shell scripting.

shell scripting is awesome.

Say you run the following command:

$ awk '/awesome$/{print $0}' myfile

How many lines will be printed in the output?

2. How many lines will be printed if we use the following command against the
previous file?

$ awk '/scripting\..*/{print $0}' myfile

3. How many lines will be printed if we use the following command against the
previous sample file?

$ awk '/^[Ww]?/{print $0}' myfile

4. What is the output of the following command?

$ echo "welcome to shell scripting" | sed -n '/Linux|bash|shell/p'

Further reading
Please see the following for further reading related to this chapter:

https://www.regular-expressions.info/engine.html

http://tldp.org/LDP/Bash-Beginners-Guide/html/chap_04.html

https://www.regular-expressions.info/engine.html
http://tldp.org/LDP/Bash-Beginners-Guide/html/chap_04.html

Summarizing Logs with AWK
In the previous chapter, we talked about regular expressions and we saw how to use
them to empower sed and AWK. In this chapter, we will discuss some practical
examples of using AWK.

One of the tasks that AWK is really good at is filtering data from log files. These log
files may be many lines in length, perhaps 250,000 or more. I have worked with data
with over a million lines. AWK can process these lines quickly and effectively. As an
example, we will work with a web server access log with 30,000 lines to show how
effective and well-written AWK code can be. As we work our way through the
chapter, we will also see different log files and review some of the techniques that we
can employ with the awk command and the AWK programming language to help with
the reporting and administration of our services. In this chapter, we will cover the
following topics:

HTTPD log file format
Displaying data from web logs
Displaying the highest ranking client IP addresses
Displaying the browser data
Working with email logs

Technical requirements
The source code for this chapter can be downloaded from here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter12

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter12

The HTTPD log file format
When working with any file, the first task is to become familiar with the file schema.
In simple terms, we need to know what is represented by each field and what is used to
delimit the fields. We will be working with the access log file from an Apache HTTPD
web server. The location of the log file can be controlled from the httpd.conf file. The
default log file location on a Debian-based system is /var/log/apache2/access.log; other
systems may use the httpd directory in place of apache2.

The log file is already in the code bundle, so you can download it and use it directly.

Using the tail command, we can display the end of the log file. Although, to be fair,
the use of cat will do just as well with this file, as it will have just a few lines:

$ tail /var/log/apache2/access.log

The output of the command and the contents of the file are shown in the following
screenshot:

The output does wrap a little onto the new lines, but we do get a feel of the layout of
the log. We can also see that even though we feel that we access just one web page, we
are in fact accessing two items: the index.html and the ubuntu-logo.png. We also failed to
access the favicon.ico file. We can see that the file is space separated. The meaning of
each of the fields is laid out in the following table:

Field Purpose

1 Client IP address.

2
Client identity as defined by RFC 1413 and the identd client. This is not
read unless IdentityCheck is enabled. If it is not read, the value will be with a
hyphen.

3 The user ID of the user authentication if enabled. If authentication is not
enabled, the value will be a hyphen.

4 The date and time of the request in the format of
day/month/year:hour:minute:second offset.

5 The actual request and method.

6 The return status code, such as 200 or 404.

7 File size in bytes.

Even though these fields are defined by Apache, we have to be careful. The time, date,
and time zone is a single field and is defined within square braces; however, there are
additional spaces inside the field between that data and the time zone. To ensure that
we print the complete time field if required, we need to print both $4 and $5. This is
shown in the following command example:

$ awk ' { print $4,$5 } ' /var/log/apache2/access.log

We can view the command and the output it produces in the following screenshot:

Displaying data from web logs
We have already had a preview of how we can use AWK to view the log files from the
Apache web server; however, we will now move onto our demonstration file that has
greater and more varied content.

Selecting entries by date
Having seen how we can display the date, we should perhaps look at how we print
entries from just one day. To do this, we can use the match operator in awk. This is
denoted by the tilde or squiggly line, if you prefer. As we only need the date element,
there is no need for us to use both the date and time zone field. The following
command shows how to print entries from September 10, 2014:

$ awk ' ($4 ~ /10\/Sep\/2014/) ' access.log

For completeness, this command and partial output is shown in the following
screenshot:

The round brackets or parentheses embrace the range of lines that we are looking for
and we have omitted the main block, which ensures that we print the complete
matching lines from the range. There is nothing stopping us from further filtering on
the fields to print from the matching lines. For example, if we want to print out just the
client IP address that is being used to access the web server, we can print field 1. This
is shown in the following command example:

$ awk ' ($4 ~ /10\/Sep\/2014/) { print $1 } ' access.log

If we want to be able to print the total number of accesses on a given date, we could
pipe the entries through to the wc command. This is demonstrated in the following:

$ awk ' ($4 ~ /10\/Sep\/2014/) { print $1 } ' access.log | wc -l

However, if we want to use awk to do this for us, this will be more efficient than starting
a new process and we can count the entries. If we use the built-in variable NR, we can
print entire lines in the files, not just those within the range. It is best to increment our
own variable in the main block instead of matching the range for each line. The END
block can be implemented to print the count variable we use. The following command
line acts as an example:

$ awk ' ($4 ~ /10\/Sep\/2014/) { print $1; COUNT++ } END { print COUNT }' access.log

The output of the count from both wc and the internal counter will give us 16205 as a
result from the demonstration file. We should use the variable increment within the

main block if we want to count and nothing else:

$ awk ' ($4 ~ /10\/Sep\/2014/) { COUNT++ } END { print COUNT }' access.log

We can see this in the following output:

Summarizing 404 errors
The status code of the request page is shown in field 9 of the log. The 404 status will
represent the page not found error on the server. I am sure we have all seen that in our
browsers at some stage. This may be indicative of a misconfigured link on your site or
just produced by a browser searching for the icon image to display in tabbed browsers
for the page. You can also identify potential threats to your site by requests looking for
standard pages that may give access to additional information on PHP driven sites,
such as WordPress.

Firstly, we can solely print the status of the request:

$ awk '{ print $9 } ' access.log

We can now extend the code a little as well as ourselves and just print the 404 errors:

$ awk ' ($9 ~ /404/) { print $9 } ' access.log

We can extend this a little further by printing both the status code and the page that
was being accessed. This will need us to print field 9 and field 7. Simply put, this will
be as shown in the following code:

$ awk ' ($9 ~ /404/) { print $9, $7 } ' access.log

Many of these failed accessed pages will be duplicated. To summarize these records,
we can use the command pipeline to achieve this with the sort and uniq commands:

$ awk ' ($9 ~ /404/) { print $9, $7 } ' access.log | sort -u

To use the uniq command, the data must be pre-sorted; hence, we use the sort command
to prepare the data.

Summarizing HTTP access
codes
It is time for us to leave the pure command line and start working with the AWK
control files. As always, when the complexity of the required result set increases, we
see an increase in the complexity of the awk code. We will create a status.awk file in our
current directory. The file should look similar to the following file:

{ record[$9]++ }

END {

for (r in record)

print r, " has occurred ", record[r], " times." }

First, we will strip down the main code block and this is very simple and sparse. This
is a simple way to count each unique occurrence of a status code. Instead of using a
simple variable, we feed this into an array. The array in this case is called a record. An
array is a multi-values variable and the slots in the array are known as keys. So we will
have a collection of variables stored in the array. For example, we expect to see entries
for record[200] and record[404]. We populate each key with their occurrence count. Each
time we find a 404 code, we increment the count that is stored in the associated key:

{ record[$9]++ }

In the END block, we create the summary information using a for loop to print out each
key and value from the array:

END {

for (r in record)

print r, " has occurred ", record[r], " times." }

To run this, the associated command line will be similar to the following:

$ awk -f status.awk access.log

To view the command and output, we have included the following screenshot:

We can take this further and focus on the 404 errors. You could, of course, choose any
of the status codes. We can see from the results that we have 4382 404 status codes. To
summarize these 404 codes, we will copy the status.awk to a new file named 404.awk. We
can edit the 404.awk adding an if statement to work only on the 404 codes. The file
should be similar to the following code:

{ if ($9 == "404")

 record[$9,$7]++ }

END {

for (r in record)

print r, " has occurred ", record[r], " times." }

If we execute the code with the following command:

$ awk -f 404.awk access.log

The output will be similar to the following screenshot:

Resources hits
You can check how many times a specific page or a resource was requested using
AWK:

$ awk '{print $7}' access.log | sort | uniq -c | sort -rn

The preceding command will sort the requested resources from the highest requested
resource to the lowest:

The resources could be images, text files, or CSS files.

If you want to look at the requested PHP files, you can use grep to get PHP files only:

$ awk ' ($7 ~ /php/) {print $7}' access.log | sort | uniq -c | sort -nr

Alongside each page, there is the number of hits.

You can grab any statistics from the log file and get unique values and sort them the
same way.

Identify image hotlinking
As we talk about resources, there is a problem that you may face, which is image
hotlinking. It's about using your images from other servers by linking to them. This
behavior of image hotlinking can leak your bandwidth.

And since we are talking about AWK, we will see how to use AWK to find out how it
is using our images:

$ awk -F\" '($2 ~ /\.(png|jpg|gif)/ && $4 !~ /^https:\/\/www\.yourdomain\.com/){print $4}' access.log | sort | uniq -c | sort

Note that you can prevent image hotlinking by a small .htaccess file if you are using
Apache, by checking if the referrer is not your domain:

RewriteEngine on

RewriteCond %{HTTP_REFERER} !^$

RewriteCond %{HTTP_REFERER} !^https://(www\.)yourdomain.com/.*$ [NC]

RewriteRule \.(gif|jpg|jpeg|bmp|png)$ - [F]

Displaying the highest ranking
IP address
You should now be aware of some the powers of awk and how immense the language
structure is in itself. The data we have been able to produce from the 30,000 line file is
truly powerful and easily extracted. We just need to replace the field we have used
before with $1. This field represents the client IP address. If we make use of the
following code, we will be able to print each IP Address and also the number of times
it has been used to access the web server:

{ ip[$1]++ }

END {

for (i in ip)

print i, " has accessed the server ", ip[i], " times." }

We want to be able to extend this to show only the highest ranking IP address, the
address that has been used the most to access the site. The work, again, will mainly be
in the END block and will make use of a comparison against the current highest ranking
address. The following file can be created and saved as ip.awk:

{ ip[$1]++ }

END {

for (i in ip)

 if (max < ip[i]) {

 max = ip[i]

 maxnumber = i }

print i, " has accessed ", ip[i], " times." }

We can see the output of the command in the following screenshot. Part of the client
IP address has been obscured as it is from my public web server:

The functionality of the code comes from within the END block. On entering the END
block, we run into a for loop. We iterate through each entry in the ip array. We use the
conditional if statement to see whether the current value that we are iterating through
is higher than the current maximum. If it is, this becomes the new highest entry. When
the loop has finished, we print the IP address that has the highest entry.

Displaying the browser data
The browser that is used to access the website is contained within the log file in field
12. It may be interesting to display the list of browsers used to access your site. The
following code will assist you in displaying the list of accesses by the reported
browser:

{ browser[$12]++ }

END {

 for (b in browser)

 print b, " has accessed ", browser[b], " times."

 }

You can see how we can create little plugins to awk with these files and adjust the field
and array names to suit. The output is shown in the following screenshot:

Interestingly, we see that Mozilla 4 and 5 make up the majority of the requesting
client. We see that Mozilla 4 is listed here 1713 times. The Mozilla/5.0 entry here is
malformed with an extra double quote. It appears later with 27,000 accesses.

Working with email logs
We have worked with logs from the Apache HTTP web server. The reality is that we
can apply the same ideals and methodology to any log file. We will take a look at
Postfix mail logs. The mail log holds all activity from the SMTP server and we can
then see who has been sending emails to whom. The log file is usually located at
/var/log/mail.log. I will access this on my Ubuntu 15.10 server that has a local email
delivery. All this means is that the STMP server is listening only to the localhost
interface of 127.0.0.1.

The log format will change a little depending on the type of message. For example, $7
will contain from logs on outbound messages, whereas inbound messages will contain
to.

If we want to list all the inbound messages to the SMTP server, we can use the
following command:

$ awk ' ($7 ~ /^to/) ' /var/log/mail.log

As the string to is very short, we can add identification to it by ensuring that the field
begins with to using the ^. The command and output is shown in the following
screenshot:

It will be easy to extend the to or from searches to also include usernames. We can see
the format of the delivered or received mail. Working with the same template we used
with the Apache logs, we can easily display the highest recipient or sender.

Summary
We now have some heavy ammunition behind our text processing and we can begin to
understand just how powerful AWK can be. Working with real data is particularly
useful in gauging the performance and accuracy of our searches. Having begun
working with simple Apache entries on the newly installed Ubuntu 15.10 Apache web
server, we soon migrated to the larger sample data from a live web server. With 30,000
lines, this file gives us some real meat to work with and in no time, we were able to
produce credible reports. We closed up the return to the Ubuntu 15.10 server to
analyze the Postfix SMTP logs. We can see that we can very much drag and drop the
technology that we have previously used into the new log files.

Next up, we stick with AWK and look at how we can report on the lastlog data and on
flat XML files.

Questions
1. Which field in the access_log file contains the IP address?
2. What is the command used to count the lines processed by AWK?
3. How do you get IP addresses of unique visitors from the Apache access log file?
4. How do you get the most visited PHP page from the Apache access log file?

Further reading
Please see the following for further reading relating to this chapter:

https://httpd.apache.org/docs/1.3/logs.html

https://httpd.apache.org/docs/1.3/logs.html

A Better lastlog with AWK
We have already seen, in Chapter 12, Summarizing Logs with AWK, how we can create
complex reports from large amounts of data mined from purely text files. Similarly, we
can create extensive reports using the output from standard command-line tools, such
as the lastlog tool. In itself, lastlog can report the last login time for all users. Often,
though, we may wish to filter the output from lastlog. Perhaps you need to exclude user
accounts that have never been used to log in to the system. It may also be irrelevant to
report on root, as the account may be predominately used for sudo only and not used to
record regularly for standard logins.

In working through this chapter, we will work with lastlog and formatting XML data.
As this is the last chapter in which we investigate AWK, we will configure record
separators. We have already seen the use of field separators in AWK but we can
change the default record separator from a newline to something more specific to our
needs. More specifically, within this chapter we will cover:

Using AWK ranges to exclude data
Conditions based on the number of fields
Manipulating the AWK record separator to report on XML data

Technical requirements
The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter13

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter13

Using AWK ranges to exclude
data
So far in this book, we have predominately looked at including data with ranges either
for sed or for awk. With both of these tools, we can negate the range so that we exclude
the specified rows. For a perfect explanation, we will use the output from the lastlog
command. This will print all the login data for all the users, including accounts that
have never been logged in. These accounts that have never been logged in might be
service accounts or for new users that have not logged into the system so far.

The lastlog command
If we look at the output from lastlog, when it is used without any options, we can begin
to understand the issue. From the command line, we execute the command as a
standard user. There is no requirement to run it as the root account. The command is
shown in the following example:

$ lastlog

The partial output is shown within the following screenshot:

We can see, even from this limited output, that we have a cluttered output due to the
virtual noise being created by the accounts that have not logged in. It is possible to
alleviate this to some degree using the lastlog options but it may not entirely resolve
the issue. To demonstrate this, we can add an option to lastlog to show standard users
only and filter out other system and services users. This may vary on your system but
on the sample CentOS 6 host that I am using, the first user will be UID 500. On
CentOS 7, standard users UID starts from 1000.

If we use the lastlog -u 500-5000 command, we will only print data for those users with a
UID within this range. On the simple demonstration system, we have just three user
accounts for which the output is acceptable. However, we can understand that we may
still have some clutter due to these accounts that have not yet been used. This is shown
in the following screenshot:

In addition to the superfluous data being printed from Never logged in accounts, we may
only be interested in the Username and Latest fields. This is another reason to support the
need to use AWK as our data filter. In this way, we can provide both horizontal and
vertical data filtering, rows, and columns.

Horizontally filtering rows with
AWK
To provide this filtering using AWK, we will pipe the data from lastlog directly to awk.
We will make use of a simple control file, initially providing the horizontal filtering or
reducing the rows that we see. First, the command pipeline will be as simple as the
following command example:

$ lastlog | awk -f lastlog.awk

Of course, the complexity is abstracted from the command line and concealed within
the control file that we use. Initially, the control file is kept simple and reads as
follows:

!(/Never logged in/ || /^Username/ || /^root/) {

 print $0;

}

The range is set up as we have seen previously and precedes the main code block.
Using the exclamation mark in front of the parentheses negates or reverses the selected
range. The double vertical bar acts as a logical OR. We do not include lines that contain
Never logged in, nor do we include lines that start with Username. This removes the header-
line that is printed by lastlog. Finally, we exclude the root account from the display.
This initiates the rows that we work with and the main code block will print those
lines.

Counting matched rows
We may also want to count the number of rows returned by the filter. For example,
using the internal NR variable will show all rows and not just matched rows; for us to be
able to report the number of users that have logged in, we must use our own variable.
The following code will maintain the count within the variable that we name cnt. We
increment this using the C style ++ for each iteration of the main code block.

We can use the END code block to display the closing value of this variable:

!(/Never logged in/ || /^Username/ || /^root/) {

 cnt++

 print $0;

}

END {

 print "========================"

 print "Total Number of Users Processed: ", cnt

}

We can see from the following code and output how this appears on my system:

From the display output, we can now see that we show only users that have logged in
and, in this case, it is just the single user. However, we may also decide that we want
to abstract the data further and display only certain fields from the matched rows. This
should be a simple task but it is complicated, as the number of fields will vary
depending on how the login was executed.

Conditions based on the number
of fields
If a user logs onto the server's physical console directly rather than logging on through
a remote or graphical pseudo-terminal, then the lastlog output will not display the host
field. To demonstrate this, I have logged on to my CentOS host directly to the tty1
console and avoided the GUI. The output from the previous AWK control file shows
that we now have the users tux and bob; bob though lacks the host field as he is
connected to a console:

Although in itself it's not an issue, it will be if we want to filter the fields and the two
row's field numbers will vary where a field is omitted from some lines. For lastlog, we
will have 9 fields for most connections and only 8 fields for those that connect directly
to the server console. The goal for the application is that we print the username and the
date, but not the time of the last login. We will also print our own header in the BEGIN
block. To ensure that we use the correct placements we will need to count the fields in
each row using the NF internal variable.

For the 8 fields' lines we want to print fields 1, 4, 5, and 8; for the longer lines with
additional host information, we will use fields 1, 5, 6 and 9. We will also use printf so
that we can align the column data correctly. The control file should be edited, as
shown in the following example:

BEGIN {

printf "%8s %11s\n","Username","Login date"

print "===================="

}

!(/Never logged in/ || /^Username/ || /^root/) {

cnt++

if (NF == 8)

 printf "%8s %2s %3s %4s\n", $1,$5,$4,$8

else

 printf "%8s %2s %3s %4s\n", $1,$6,$5,$9

}

END {

print "===================="

print "Total Number of Users Processed: ", cnt

}

We can see the command and the output it produces in the following screenshot. We
can see how we can create a more suitable display based on information that we want
to focus on:

If we look at the output, I have chosen to display the date before the month so we do
not display the fields in numerical order. This, of course, is a personal choice and
customizable to suit the way you feel the data should be displayed.

We can use the principles of what we have seen in the lastlog control file with output
from any command and you should practice with the commands that you want to filter
the data from.

Manipulating the AWK record
separator to report on XML
data
So far, while we have been working with AWK we have limited ourselves to working
with individual rows, with each new row representing a new record. Although this is
often what we want, where we work with tagged data, such as XML where an
individual record may span multiple lines. In this case, we may need to look at setting
the RS or record separator internal variable.

Apache Virtual Hosts
In Chapter 9, Automating Apache Virtual Hosts, we worked with Apache Virtual Hosts.
This uses tagged data that defines the start and end of each virtual host. Even though
we prefer to store each virtual host in its own file, they can be combined into a single
file. Consider the following file that stores the possible virtual host definitions; this can
be stored as the virtualhost.conf file, as shown:

<VirtualHost *:80>

DocumentRoot /www/example

ServerName www.example.org

Other directives here

</VirtualHost>

<VirtualHost *:80>

DocumentRoot /www/theurbanpenguin

ServerName www.theurbanpenguin.com

Other directives here

</VirtualHost>

<VirtualHost *:80>

DocumentRoot /www/packt

ServerName www.packtpub.com

Other directives here

</VirtualHost>

We have the three virtual hosts within a single file. Each record is separated by an
empty line, meaning that we have two new line characters that logically separate each
entry. We will explain this to AWK by setting the RS variable as follows: RS="\n\n".
With this in place, we can then print the required virtual host record. This will be set in
the BEGIN code block of the control file.

We will also need to dynamically search the command line for the desired host
configuration. We build this into the control file. The control file should look similar
to the following code:

BEGIN { RS="\n\n" ; }

$0 ~ search { print }

The BEGIN block sets the variable and then we move onto the range. The range is set so
that the record ($0) matches (~) the search variable. We must set the variable when awk is
executed. The following command demonstrates the command line execution where
the control file and configuration file are located within our working directory:

$ awk -f vh.awk search=packt virtualhost.conf

We can see this more clearly by looking at the command and the output that is
produced in the following screenshot:

XML catalog
We can extend this further into XML files where we may not want to display the
complete record, but just certain fields. Consider the following product catalog:

<products>

<product>

<name>drill</name>

<price>99</price>

<stock>5</stock>

</product>

<product>

<name>hammer</name>

<price>10</price>

<stock>50</stock>

</product>

<product>

<name>screwdriver</name>

<price>5</price>

<stock>51</stock>

</product>

<product>

<name>table saw</name>

<price>1099.99</price>

<stock>5</stock>

</product>

</products>

Logically, each record is delimited as before with the empty line. Each field though is
a little more detailed and we need to use the delimiter as follows: FS="[><]". We define
either the opening or closing angle bracket as the field delimiter.

To help analyze this, we can print a single record as follows:

<product><name>top</name><price>9</price><stock>5</stock></product>

Each angle brace is a field separator, which means that we will have some empty
fields. We could rewrite this line as a CSV file:

,product,,name,top,/name,,price,9,/price,,stock,5,/stock,,/product,

We just replace each angle bracket with a comma; in this way it is more easily read by
us. We can see that the content of field 5 is the top value.

Of course, we will not edit the XML file, we will leave it in the XML format. The
conversion here is just to highlight how the field separators can be read.

The control file that we use to extract data from the XML file is illustrated in the

following code example:

BEGIN { FS="[><]"; RS="\n\n" ; OFS=""; }

$0 ~ search { print $4 ": " $5, $8 ": " $9, $12 ": " $13 }

Within the BEGIN code block, we set the FS and RS variables as we have discussed. We
also set the Output Field Separator (OFS) or to a space. In this way, when we print the
fields we separate the values with a space rather than leaving in the angle brackets.
The range makes use of the same match as we used before when looking at the virtual
hosts.

If we need to search for the product drill from within the catalog, we can use the
command in the following example:

$ awk -f catalog.awk search=drill catalog.xml

The following screenshot shows the output in detail:

We have now been able to take a rather messy XML file and create readable reports
from the catalog. The power of AWK is highlighted again and, for us, the last time
within this book. By now, I hope you too can start to make use of this on a regular
basis.

Summary
We had three chapters where we used AWK, starting with some basic usage
statements in Chapter 10, AWK Fundamentals where we became comfortable with AWK.
In Chapter 12, Summarizing Logs with AWK, and this chapter, we started building our
bespoke applications.

Specifically, in this chapter we saw how we could create reports from the output of
standard commands, such as lastlog. We saw that we could negate ranges and
additionally make use of the OR statement. We then built an application that will allow
us to query XML data.

For the next two chapters, we will move away from shell scripts and look at scripts
using perl and Python so we can compare these scripting languages and make
appropriate choices.

Questions
1. How do we get the users who never logged into the system?
2. From the previous question, how do you count the number of users who never

logged in?
3. How many lines will be printed from the following command?

Further reading
Please see the following for further reading relating to this chapter:

https://linux.die.net/man/8/lastlog

https://en.wikipedia.org/wiki/Lastlog

https://linux.die.net/man/8/lastlog
https://en.wikipedia.org/wiki/Lastlog

Using Python as a Bash
Scripting Alternative
In the previous chapter, we saw a practical example of using AWK and we saw how to
process lastlog output to produce better reports. In this chapter, we will take a look at
another scripting alternative for bash. We will talk about Python. Python is another
scripting language and the newest that we have looked at so far. Similar to bash,
Python is an interpreted language and makes use of the shebang. Although it does not
have a shell interface, we can access a console called REPL where we can type Python
code to interact with the system. In this chapter, we will cover the following topics:

What is Python?
Saying Hello World the Python way
Pythonic arguments
Significant whitespace
Reading user input
String manipulation

Technical requirements
The source code for this chapter can be downloaded here:

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter14

https://github.com/PacktPublishing/Mastering-Linux-Shell-Scripting-Second-Edition/tree/master/Chapter14

What is Python?
Python is an object-oriented interpreted language that is designed to be easy to use and
to aid Rapid Application Development. This is achieved by the use of simplified
semantics in the language.

Python was created at the end of the 1980s, towards the very end of December 1989,
by the Dutch developer Guido van Rossum. The majority of the design of the language
aims for clarity and simplicity, and one of the main rules of the Zen of Python is:

There should be one, and preferable only one, obvious way to do it.

Often systems will have both Python 2 and Python 3 installed; however, all newer
distributions are switching to Python 3. We will be working with Python 3.

Since we are using Linux Mint, it comes shipped with Python 3 already.

If you are using another Linux distribution or Python 3 is not found for any reason,
you can install it like this:

On RedHat based distributions:

$ sudo yum install python36

On Debian based distributions:

$ sudo apt-get install python3.6

Although there is no shell, we can interact with Python using REPL—read, evaluate,
print, and loop. We can access this by typing python3 in the command line or python36 if
you are using CentOS 7. You should see something similar to the following
screenshot:

We can see that we are presented with the >>> prompt and this is known as the REPL
console. We should emphasize that this is a scripting language and, like bash and Perl,
we will normally execute code through the text files that we create. Those text files

will normally be expected to have a .py suffix to their name.

While working with REPL, we can print the version independently by importing a
module. In Perl, we will use the keyword; in bash we will use the command source;
and in Python we use import:

>>>import sys

With the module loaded, we can now investigate the object-oriented nature of Python
by printing the version:

>>> sys.version

We will navigate to the sys object within our namespace and call the version method
from that object.

Combining these two commands, we should see the following output:

To close this section describing Python, we should take a look at the Zen of Python.
From REPL, we can type import this, as shown in the following screenshot:

This is far more than just the Zen of Python; it's actually a good rule for all
programming languages and a guide for developers.

Finally, to close the REPL, we will use Ctrl + D in Linux or Ctrl + Z in Windows.

Saying Hello World the Python
way
The code we write in Python should be clear and uncluttered: sparse is better than
dense. We will need the shebang on the first line and then the print statement. The print
function includes the newline and we do not need semicolons at the end of the line. We
can see the edited version of $HOME/bin/hello.py in the following example:

#!/usr/bin/python3

print("Hello World")

We will still need to add the execute permission, but we can run the code as earlier
using chmod. This is shown in the following command but we should be a little used to
this now:

$ chmod u+x $HOME/bin/hello.py

Finally, we can now execute the code to see our greeting.

Similarly, you can run the file using the Python interpreter from the command line like
this:

$ python3 $HOME/bin/hello.py

Or in some Linux distributions, you can run it like this:

$ python36 $HOME/bin/hello.py

Again, knowing at least one language makes it easier to adapt to others and there aren't
many new features in this.

Pythonic arguments
We should know by now that we will want to pass command-line arguments to Python
and we can do this using the argv array. However, we are more like bash; with Python
we combine the program name into the array with the other arguments.

Python also uses lowercase instead of uppercase in the object name:

The argv array is a part of the sys object
sys.argv[0] is the script name
sys.argv[1] is the first argument supplied to the script
sys.argv[2] is the second supplied argument and so on
The argument count will always be at least 1, so, keep this in mind when
checking for supplied arguments

Supplying arguments
If we create the $HOME/bin/args.py file we can see this in action. The file should be
created as follows and made executable:

#!/usr/bin/python3

import sys

print("Hello " + sys.argv[1])

If we run the script with a supplied argument, we should see something similar to the
following screenshot:

Our code is still quite clean and simple; however, you may have noticed that we
cannot combine the quoted text in the print statement with the argument. We use the +
symbol to join or concatenate the two strings together. As there is no specific symbol
to denote a variable or any other type of object, they cannot appear as static text within
quotes.

Counting arguments
As previously mentioned, the script name is the first argument at index 0 of the array.
So, if we try to count the arguments, then the count should always be at the very least
1. In other words, if we have not supplied arguments, the argument count will be 1. To
count the items in an array, we can use the len() function.

If we edit the script to include a new line we will see this work, as follows:

#!/usr/bin/python3

import sys

print("Hello " + sys.argv[1])

print("length is: " + str(len(sys.argv)))

Executing the code as we have earlier, we can see that we have supplied two
arguments—the script name and then the string Mokhtar:

If we try and have a single print statement to print the output and the number of
arguments, then it will produce an error because we can't concatenate integers with
strings. The length value is an integer and this cannot be mixed with strings without
conversion. That's why we used the str function to convert the integer to a string. The
following code will fail:

#!/usr/bin/python3

import sys

print("Hello " + sys.argv[1] + " " + len(sys.argv))

If we try to run the script and omit to supply an argument, then there will be a null
value in the array when we reference index 1. This will give an error, as shown in the
following screenshot:

We of course need to handle this to prevent the error; enter the concept of significant
whitespace.

Significant whitespace
A major difference between Python and most other languages is that additional
whitespace can mean something. The indent level of your code defines the block of
code to which it belongs. So far, we have not indented the code we have created past
the start of the line. This means that all of the code is at the same indent level and
belongs to the same code block. Rather than using brace brackets or the do and done
keywords to define the code block, we use indents. If we indent with two or four
spaces or even tabs, then we must stick to those spaces or tabs. When we return to the
previous indent level, we return to the previous code block.

This seems complex but it is really quite simple and keeps your code clean and
uncluttered. If we edit the arg.py file to prevent unwelcomed errors, if an argument is
not supplied, we can see this in action:

#!/usr/bin/python3

import sys

count = len(sys.argv)

if (count > 1):

 print("Arguments supplied: " + str(count))

 print("Hello " + sys.argv[1])

print("Exiting " + sys.argv[0])

The if statement checks if the argument count is greater than 1 or not. We now store
for ease, the argument count has its own variable, which we call count. The code block
starts with the colon and then all of the following code that is indented with four
spaces is part of the code that will execute when the condition returns to true.

When we return to the previous indent level, we return to the main code block and we
execute the code regardless of the status of the condition.

We can see this illustrated in the following screenshot, where we can execute the script
with and without the argument:

Reading user input
If we want the welcome message to greet us by name, no matter whether we supply the
argument to the script or not, we can add in a prompt to capture the data while the
script is running. Python makes this simple and easy to implement. We can see, from
the edited file shown in the screenshot that follows, how this is achieved:

We make use of a new variable in the script that we set in the main block, initially, to
be an empty string. We set it here to make the variable available to the complete script
and all code blocks:

The input function in Python 3 (or raw_input in Python 2) can be used to get user input.
We store that input in the name variable. If we have supplied an argument we pick it up
on the code in the else block and set the name variable to the first supplied argument. It
is this that is used in the print statement back in the main block.

Using Python to write to files
To add some variety to this chapter, we will now look at printing this data to a file.
Again using Python, this is quite a simple and easy way to pick up. We will start by
making a copy of our existing args.py. We will copy this to $HOME/bin/file.py. The new
file.py should read similar to the following screenshot and have the execute permission
set:

You will notice that we have just altered the final lines and instead of print we now
open a file. We also see more of the object-orientated nature of Python, whereby it
dynamically assigns the write() and close() methods to the object log, as it is seen as an
instance of a file. When we open the file, we open it up for the purpose of appending,
meaning that we do not overwrite the existing content if it is already there. If the file is
not there, we will create a new file. If we use w, we will open the file for writing, which
might translate to overwriting, so take care.

You can see that this is an easy task; this is why Python is used in many applications
and is taught widely in schools.

String manipulation
Dealing with strings in Python is very simple: you can search, replace, change
character case, and perform other manipulations with ease:

To search for a string, you can use the find method like this:

#!/usr/bin/python3

str = "Welcome to Python scripting world"

print(str.find("scripting"))

The string count in Python starts from zero too, so the position of the word scripting is
at 18.

You can get a specific substring using square brackets like this:

#!/usr/bin/python3

str = "Welcome to Python scripting world"

print(str[:2]) # Get the first 2 letters (zero based)

print(str[2:]) # Start from the second letter

print(str[3:5]) # from the third to fifth letter

print(str[-1]) # -1 means the last letter if you don't know the length

To replace a string, you can use the replace method like this:

#!/usr/bin/python3

str = "Welcome to Python scripting world"

str2 = str.replace("Python", "Shell")

print(str2)

To change the character case, you can use upper() and lower() functions:

As you can see, working with strings in Python is very simple. Python as an alternative
scripting language is an awesome choice.

The power of Python lies in the libraries available out there. Literally, there are
thousands of libraries for everything you can imagine.

Summary
This now finishes our look at Python and it certainly has been a brief tour. We can
again emphasize the similarities that you will see in many languages and the
importance of learning any coding language. What you learn in one language will help
in most other languages that you come across.

What we learn from the Zen of Python will help us design and develop great code. We
can print the Zen of Python using the following Python code:

>>>import this

We can type the code on the REPL prompt. Keeping your code clean and well spaced-
out will aid readability and ultimately this will help with code maintenance.

We have also seen that Python likes you to be explicit in your code and will not
implicitly convert data types.

Finally, we saw how to manipulate strings using Python.

We are also at the end of the book but hopefully, the start of your scripting career.
Good luck and thank you for reading.

Questions
1. How many characters will be printed from the following code?

#!/usr/bin/python3

str = "Testing Python.."

print(str[8:])

2. How many words will be printed from the following code?

#!/usr/bin/python3

print(len(sys.argv))

Solution: Nothing

3. How many words will be printed from the following code?

#!/usr/bin/python3

import sys

print("Hello " + sys.argv[-1])

Further reading
Please see the following for further reading relating to this chapter:

https://www.python.org/about/gettingstarted/

https://docs.python.org/3/

https://www.python.org/about/gettingstarted/
https://docs.python.org/3/

Assessments

Chapter 1
1. The error is in the second line: There should be no spaces in the variable

declaration.

#!/bin/bash

var1="Welcome to bash scripting ..."

echo $var1

2. The result will be Tuesday because the array is zero based.
3. There are two errors here: the first error is the space in the variable declaration

and the second error is the usage of single quotes where we should use backticks
instead.

Solution:

#!/bin/bash files='ls -la' echo $files

4. The value of b variable will be c and the value of c will be a.

Since we didn't use dollar signs in the assignment lines, the variable will take
the character value instead of the integer value.

Chapter 2
1. Three

This is because the whole bash shebang is primarily a comment, so there are
three lines of comment.

2. There is no space between the option -b and its value, so it will be treated as an
option.

-a

-b50

-c

3. 1

Four

This is because we have five passed parameters and we use the shift to drop a
parameter.

4. 2

-n

This is because it's on the left and the shift command drops parameters from
the left.

Chapter 3
1. False

Since lower-case characters have a higher ASCII order, the statement will
return False.

2. Both are correct and will return the same result, which is Strings are not identical.
3. Three

We can use the following:

-ge: Greater than or equal to
-gt: Greater than
-ne: Not equal to

4. True

Since one test is enough to return true, so we can be sure that the second test
will return true.

Chapter 4
1. We can make the following changes :

"Hello message": {

 "prefix": "hello",

 "body": [

 "echo 'Hello ${1|first,second,third|}' "

],

 "description": "Hello message"

 }

2. The source command.

Chapter 5
1. By using ((:

#!/bin/bash

num=$((25 - 8))

echo $num

2. The problem is with the space in the filename. To fix it, put the filename between
quotes:

$ rm "my file"

3. There is no dollar sign before the parentheses:

#!/bin/bash

a=$((8 + 4))

echo $a

Chapter 6
1. No lines. Since the loop output is redirected to a file, nothing will appear on the

screen.
2. Four. The loop will start at 8 and continue until it reaches 12, it will match the

condition which is greater than or equal, and it will break the loop.

3. The problem is with the comma in the for loop definition. It should be semicolon
instead. So the correct script should be as follows:

#!/bin/bash

for ((v=1; v <= 10; v++))

do

echo "value is $v"

done

4. Since the decrement statement is outside the loop, the count variable will be the
same value, which is 10. It's an endless loop, it will print 10 forever, and to stop it,
you need to press Ctrl + C.

Chapter 7
1. Since we used the $1 variable not $@, the function will return the first element only.
2. 50. Yes, it's a global variable, but because we printed the value before the function

call, the variable isn't affected.
3. Missing brackets () or adding the keyword function before the function name. It

should be written like this:

clean_file() {

 is_file "$1"

 BEFORE=$(wc -l "$1")

 echo "The file $1 starts with $BEFORE"

 sed -i.bak '/^\s*#/d;/^$/d' "$1"

 AFTER=$(wc -l "$1")

 echo "The file $1 is now $AFTER"

}

4. The problem is in the function call. We shouldn't use brackets () during a function
call. Brackets should only be used in function definitions. The correct code will
be like this:

#!/bin/bash

myfunc() {

arr=$@

echo "The array from inside the function: ${arr[*]}"

}

test_arr=(1 2 3)

echo "The origianl array is: ${test_arr[*]}"

myfunc ${test_arr[*]}

Chapter 8
1. None. Because you are searching for Sed with a capital letter which does not exist
2. None. The delete command d only deletes lines from the stream, not the file. To

delete from the file, you can use the -i option.
3. Fourth line. Because we used append command a, it will be inserted after the

specified position.
4. None, because the w flag is only used with the substitute command s.

Chapter 9
1. You can use the following command to print line number 50:

$ sed -n '50 p ' /etc/httpd/conf/httpd.conf

2. You can use following command to change Apache default port 80 to 8080:

$ sed -i '0,/Listen [0-9]*/s//Listen 8080/' /etc/httpd/conf/httpd.conf

We search for Listen, where it defines the Apache default port, search for the
number beside it, and change it to Listen 8080.

Chapter 10
1. Nothing

You should use the variable name without the dollar sign to print it.

2. Solution: zero

Because you should print $1 instead of $2 where $1 is the first field.

3. The while loop should iterate with i value less than 4 not 3.
4. 1

Because the only user that has UID less than 1 is root (UID=0), so one line will be
printed.

Chapter 11
1. 0 lines

Because there is a period after the word awesome, if you want to print that line,
you can use the following command:

$ awk '/awesome\.$/{print $0}' myfile

2. 2 lines

Since we search for the line that contains the word scripting. With a period after
it followed by any text, this pattern only exists in two lines because the third
line doesn't contain a period after the word.

3. 3 lines

As we used the question mark that means the character class is not a must for
the pattern to match.

4. Nothing

As we used the pipe symbol, which is an ERE character, and as we used sed,
we must use the -r option for sed to turn the extended engine on.

Chapter 12
1. Field 1
2. You can use print NR or alternatively pipe the output to wc -l

We must use -l otherwise, it will count words instead.

$ awk '{print $1}' access.log | sort | uniq -c

$ awk '{print $7}' access.log | grep 'php' | sort | uniq -c | sort -nr | head -n 1

You should use head -n 1 to get the one page only.

Chapter 13
1. Use the lastlog command

$ lastlog | awk ' /Never logged/ { print $1}'

2. Use the wc command

$ lastlog | awk ' /Never logged/ { print $1}' | wc -l

3. Zero. Because the line ends with two asterisks.

Chapter 14
1. 8
2. Since we are using the sys module, we should import it first.

So the correct code should look like this:

#!/usr/bin/python3

import sys

print(len(sys.argv))

3. 2

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Linux Security and Hardening
Donald A. Tevault

ISBN: 978-1-78862-030-7

Use various techniques to prevent intruders from accessing sensitive data
Prevent intruders from planting malware, and detect whether malware has been
planted
Prevent insiders from accessing data that they aren't authorized to access
Do quick checks to see whether a computer is running network services that it
doesn't need to run
Learn security techniques that are common to all Linux distros, and some that are
distro-specific

Linux Shell Scripting Cookbook
Clif Flynt, Sarath Lakshman, Shantanu Tushar

ISBN: 978-1-78588-198-5

Interact with websites via scripts
Write shell scripts to mine and process data from the Web
Automate system backups and other repetitive tasks with crontab

https://www.packtpub.com/networking-and-servers/mastering-linux-security-and-hardening
https://www.packtpub.com/networking-and-servers/linux-shell-scripting-cookbook-third-edition

Create, compress, and encrypt archives of your critical data.
Configure and monitor Ethernet and wireless networks
Monitor and log network and system activity
Tune your system for optimal performance
Improve your system's security
Identify resource hogs and network bottlenecks
Extract audio from video files
Create web photo albums
Use git or fossil to manage revision control and interact with FOSS projects
Create and maintain Linux containers and Virtual Machines
Run a private Cloud server

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Table of Contents

Title Page 2
Copyright and Credits 3

Mastering Linux Shell Scripting Second Edition 4
Packt Upsell 5

Why subscribe? 6
PacktPub.com 7

Contributors 8
About the authors 9
About the reviewer 10
Packt is searching for authors like you 11

Preface 19
Who this book is for 20
What this book covers 21
To get the most out of this book 23

Download the example code files 24
Download the color images 25
Conventions used 26

Get in touch 27
Reviews 28

The What and Why of Scripting with Bash 29
Technical requirements 30
Types of Linux shells 31
What is bash scripting? 32
The bash command hierarchy 33

Command type 34
Command PATH 36

Preparing text editors for scripting 37
Configuring vim 38
Configuring nano 39
Configuring gedit 40

Creating and executing scripts 42
Hello World! 43
Executing the script 44
Checking the exit status 45

Ensuring a unique name 46
Hello Dolly! 47

Running the script with arguments 48
The importance of correct quotes 50

Printing the script name 52
Declaring variables 53

User-defined variables 54
Environment variables 56

Variable scope 57
Command substitution 59
Debugging your scripts 60
Summary 66
Questions 67
Further reading 68

Creating Interactive Scripts 69
Technical requirements 70
Using echo with options 71
Basic script using read 73
Script comments 74
Enhancing scripts with read prompts 75
Limiting the number of entered characters 76
Controlling the visibility of the entered text 77
Passing options 78

Passing parameters with options 80
Read options values 81

Try to be standard 83
Enhancing learning with simple scripts 84

Backing-up with scripts 85
Connecting to a server 87
Version 1 – ping 88
Version 2 – SSH 89
Version 3 – MySQL/MariaDB 90
Reading files 91

Summary 92
Questions 93
Further reading 94

Conditions Attached 95

Technical requirements 96
Simple decision paths using command-line lists 97

Verifying user input with lists 99
Using the test shell built-in 100

Testing strings 101
Testing integers 102
Testing file types 103

Creating conditional statements using if 104
Extending if with else 106
Test command with the if command 107

Checking strings 108
Checking files and directories 110
Checking numbers 111
Combining tests 112

More conditions with elif 113
Creating the backup2.sh using elif 114

Using case statements 116
Recipe – building a frontend with grep 118
Summary 120
Questions 121
Further reading 122

Creating Code Snippets 123
Technical requirements 124
Abbreviations 125
Using code snippets 127

Bringing color to the Terminal 128
Creating snippets using VS Code 130
Summary 134
Questions 135
Further reading 136

Alternative Syntax 137
Technical requirement 138
Recapping the test command 139

Testing files 140
Adding logic 141
Square brackets as not seen before 142

Providing parameter defaults 144

Variables 145
Special parameters 146
Setting defaults 147

When in doubt – quote! 149
Advanced tests using [[152

White space 153
Other advanced features 154

Pattern matching 155
Regular expressions 156
Regular expression script 157

Arithmetic operations using ((158
Simple math 159
Parameter manipulation 160
Standard arithmetic tests 161

Summary 162
Questions 163
Further reading 164

Iterating with Loops 165
Technical requirement 166
for loops 167
Advanced for loops 170
The IFS 171
Counting directories and files 173
C-style for loops 174
Nested loops 175
Redirecting loop output 176

Controlling the loop 177
while loops and until loops 179
Reading input from files 180
Creating operator menus 183
Summary 185
Questions 186
Further reading 187

Creating Building Blocks with Functions 188
Technical requirements 189
Introducing functions 190
Passing parameters to functions 193

Passing arrays 196
Variable scope 197
Returning values from functions 198

Recursive functions 199
Using functions in menus 200
Summary 202
Questions 203
Further reading 204

Introducing the Stream Editor 205
Technical requirements 206
Using grep to display text 207

Displaying received data on an interface 208
Displaying user account data 209
Listing the number of CPUs in a system 211
Parsing CSV files 213

The CSV file 214
Isolating catalog entries 217

Understanding the basics of sed 218
The substitute command 219
Global replacement 221
Limiting substitution 223
Editing the file 224

Other sed commands 225
The delete command 226
The insert and append commands 227
The change command 228
The transform command 229

Multiple sed commands 230
Summary 231
Questions 232
Further reading 233

Automating Apache Virtual Hosts 234
Technical requirements 235
Apache name-based Virtual Hosts 236

Creating the virtual host template 238
First steps 239
Isolating lines 240

sed script files 242
Automating virtual host creation 244

Prompting for data during site creation 247
Summary 250

Questions 251
Further reading 252

AWK Fundamentals 253
Technical requirements 254
The history behind AWK 255
Displaying and filtering content from files 257
AWK variables 260

User-defined variables 262
Conditional statements 264

The if command 265
while loops 267
for loops 268

Formatting output 269
Further filtering to display users by UID 271
AWK control files 272

Built-in functions 273
Summary 274
Questions 275
Further reading 276

Regular Expressions 277
Technical requirements 278
Regular expression engines 279
Defining BRE patterns 280

Anchor characters 281
The dot character 283
The character class 284
Ranges of characters 286
Special character classes 287
The asterisk 289

Defining ERE patterns 291
The question mark 292
The plus sign 293
Curly braces 294

The pipe character 296
Expression grouping 297

Using grep 299
Summary 300
Questions 301
Further reading 302

Summarizing Logs with AWK 303
Technical requirements 304
The HTTPD log file format 305
Displaying data from web logs 307

Selecting entries by date 308
Summarizing 404 errors 310
Summarizing HTTP access codes 311
Resources hits 313
Identify image hotlinking 315

Displaying the highest ranking IP address 316
Displaying the browser data 317
Working with email logs 318
Summary 319
Questions 320
Further reading 321

A Better lastlog with AWK 322
Technical requirements 323
Using AWK ranges to exclude data 324

The lastlog command 325
Horizontally filtering rows with AWK 326
Counting matched rows 327

Conditions based on the number of fields 328
Manipulating the AWK record separator to report on XML data 330

Apache Virtual Hosts 331
XML catalog 333

Summary 335
Questions 336
Further reading 337

Using Python as a Bash Scripting Alternative 338
Technical requirements 339
What is Python? 340

Saying Hello World the Python way 342
Pythonic arguments 343
Supplying arguments 344
Counting arguments 345
Significant whitespace 347

Reading user input 348
Using Python to write to files 349
String manipulation 350
Summary 352
Questions 353
Further reading 354

Assessments 355
Chapter 1 356
Chapter 2 357
Chapter 3 358
Chapter 4 359
Chapter 5 360
Chapter 6 361
Chapter 7 362
Chapter 8 363
Chapter 9 364
Chapter 10 365
Chapter 11 366
Chapter 12 367
Chapter 13 368
Chapter 14 369

Other Books You May Enjoy 370
Leave a review - let other readers know what you think 372

	Title Page
	Copyright and Credits
	Mastering Linux Shell Scripting Second Edition

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	The What and Why of Scripting with Bash
	Technical requirements
	Types of Linux shells
	What is bash scripting?
	The bash command hierarchy
	Command type
	Command PATH

	Preparing text editors for scripting
	Configuring vim
	Configuring nano
	Configuring gedit

	Creating and executing scripts
	Hello World!
	Executing the script
	Checking the exit status
	Ensuring a unique name
	Hello Dolly!
	Running the script with arguments
	The importance of correct quotes

	Printing the script name

	Declaring variables
	User-defined variables
	Environment variables

	Variable scope
	Command substitution
	Debugging your scripts
	Summary
	Questions
	Further reading

	Creating Interactive Scripts
	Technical requirements
	Using echo with options
	Basic script using read
	Script comments
	Enhancing scripts with read prompts
	Limiting the number of entered characters
	Controlling the visibility of the entered text
	Passing options
	Passing parameters with options
	Read options values

	Try to be standard
	Enhancing learning with simple scripts
	Backing-up with scripts
	Connecting to a server
	Version 1 – ping
	Version 2 – SSH
	Version 3 – MySQL/MariaDB
	Reading files

	Summary
	Questions
	Further reading

	Conditions Attached
	Technical requirements
	Simple decision paths using command-line lists
	Verifying user input with lists
	Using the test shell built-in
	Testing strings
	Testing integers
	Testing file types

	Creating conditional statements using if
	Extending if with else
	Test command with the if command
	Checking strings
	Checking files and directories
	Checking numbers
	Combining tests

	More conditions with elif
	Creating the backup2.sh using elif

	Using case statements
	Recipe – building a frontend with grep
	Summary
	Questions
	Further reading

	Creating Code Snippets
	Technical requirements
	Abbreviations
	Using code snippets
	Bringing color to the Terminal

	Creating snippets using VS Code
	Summary
	Questions
	Further reading

	Alternative Syntax
	Technical requirement
	Recapping the test command
	Testing files
	Adding logic
	Square brackets as not seen before

	Providing parameter defaults
	Variables
	Special parameters
	Setting defaults

	When in doubt – quote!
	Advanced tests using [[
	White space
	Other advanced features
	Pattern matching
	Regular expressions
	Regular expression script

	Arithmetic operations using ((
	Simple math
	Parameter manipulation
	Standard arithmetic tests

	Summary
	Questions
	Further reading

	Iterating with Loops
	Technical requirement
	for loops
	Advanced for loops
	The IFS
	Counting directories and files
	C-style for loops
	Nested loops
	Redirecting loop output
	Controlling the loop

	while loops and until loops
	Reading input from files
	Creating operator menus
	Summary
	Questions
	Further reading

	Creating Building Blocks with Functions
	Technical requirements
	Introducing functions
	Passing parameters to functions
	Passing arrays

	Variable scope
	Returning values from functions
	Recursive functions
	Using functions in menus
	Summary
	Questions
	Further reading

	Introducing the Stream Editor
	Technical requirements
	Using grep to display text
	Displaying received data on an interface
	Displaying user account data
	Listing the number of CPUs in a system
	Parsing CSV files
	The CSV file
	Isolating catalog entries

	Understanding the basics of sed
	The substitute command
	Global replacement
	Limiting substitution
	Editing the file

	Other sed commands
	The delete command
	The insert and append commands
	The change command
	The transform command

	Multiple sed commands
	Summary
	Questions
	Further reading

	Automating Apache Virtual Hosts
	Technical requirements
	Apache name-based Virtual Hosts
	Creating the virtual host template
	First steps
	Isolating lines
	sed script files

	Automating virtual host creation
	Prompting for data during site creation

	Summary
	Questions
	Further reading

	AWK Fundamentals
	Technical requirements
	The history behind AWK
	Displaying and filtering content from files
	AWK variables
	User-defined variables

	Conditional statements
	The if command
	while loops
	for loops

	Formatting output
	Further filtering to display users by UID
	AWK control files
	Built-in functions

	Summary
	Questions
	Further reading

	Regular Expressions
	Technical requirements
	Regular expression engines
	Defining BRE patterns
	Anchor characters
	The dot character
	The character class
	Ranges of characters
	Special character classes
	The asterisk

	Defining ERE patterns
	The question mark
	The plus sign
	Curly braces
	The pipe character
	Expression grouping

	Using grep
	Summary
	Questions
	Further reading

	Summarizing Logs with AWK
	Technical requirements
	The HTTPD log file format
	Displaying data from web logs
	Selecting entries by date
	Summarizing 404 errors
	Summarizing HTTP access codes
	Resources hits
	Identify image hotlinking

	Displaying the highest ranking IP address
	Displaying the browser data
	Working with email logs
	Summary
	Questions
	Further reading

	A Better lastlog with AWK
	Technical requirements
	Using AWK ranges to exclude data
	The lastlog command
	Horizontally filtering rows with AWK
	Counting matched rows

	Conditions based on the number of fields
	Manipulating the AWK record separator to report on XML data
	Apache Virtual Hosts
	XML catalog

	Summary
	Questions
	Further reading

	Using Python as a Bash Scripting Alternative
	Technical requirements
	What is Python?
	Saying Hello World the Python way
	Pythonic arguments
	Supplying arguments
	Counting arguments
	Significant whitespace
	Reading user input
	Using Python to write to files
	String manipulation
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

