O REILLY

Short Cuts

Managing RPM-
Based Systems
with Kickstart
andYum

by Ethan McCallum

Copyright © 2007 0'Reilly Media, Inc.
ISBN: 978-0-596-51382-5
Released: March 12, 2007

Managing multiple Red Hat-based sys-
tems can be easy—with the right tools.
The yum package manager and the Kick-
start installation utility are full of power
and potential for automatic installation,
customization, and updates. Here’s what
you need to know to take control of your
systems.

O REILLY" Short Cuts

Contents

Manual Versus Automated 2
Automating the Build 5
Customizing Your Kickstart

Installoooiiiiie 14
Kickstart Upgrades 22
Custom Yum Repoccoeeeenneeen. 27
Pre-Patching the Kickstart

Installationccccoeevviiiiiieeennnne, 34
Safely Automating Yum 39
ks.cfg Syntaxcccceeiiiiiiiiiiine, 42

Find more at shortcuts.oreilly.com

http://shortcuts.oreilly.com

Manual Versus Automated

Why Kickstart and Yum?

Kickstart and yum are tools to automate installation, updates, and upgrades of Li-
nux systems. Specifically, they operate on RPM-based Linux variants, such as the
Red Hat Linux line (including the Enterprise and Fedora branches) and CentOS.
Both tools have a learning curve and require some infrastructure for you to use
them to their fullest extent.

As with any tool, it’s fair to ask, “What can it do for me? Why would I take the
time to learn it?” My inspiration was, well, installing Fedora Core several times.
To see what I mean, consider some of the information you enter when you install
a Red Hat operating system (OS) by hand:

* Choose your install type (initial install or upgrade).
e Carve out your disk structure.

e Configure networking.

* Define a basic firewall.

* Choose time zone.

* Set the root password.

* Configure the boot loader.

* Choose which software to install (use the predefined groups or cherry-pick
individual products).

This list covers only the base install, too. After that you typically install third-party
RPMs, apply some local customizations, and call yum to apply any OS updates
(“patches” for the old-school among us).

Now, consider the equivalent Kickstart install. After you boot from the CD, enter:

linux ks=http://your.install.server/ks.cfg

and walk away.

To me, the latter method looks cleaner, more elegant, and less involved than its
counterpart. Instead of interacting with the OS installer, I feed it a configuration
file—that’s what the URL with the ks.cfg is all about—with answers to all of its
questions. Disk layout? In the file. Software to install? In the file. Time zone? In
the file. You get the picture. In certain cases, I can use the same config file for many
machines.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Automation tends to win out over manual processes for three core reasons, and
Kickstart is no exception:

Consistency

The manual install method involves lots of human-computer interaction, which
is tedious at best and error-prone at worst. If you split the workload between
two people, rest assured you’ll be able to tell who installed the OS on a given
machine.

Time

If some other task holds your attention—maybe you’re fighting production fires
while setting up some new servers—the manual install can stretch over several
hours while the machine waits for you to click an OK or Yes button. Initiating
a Kickstart install, by comparison, takes a few seconds. As long as you get the
URL right, you type it once and walk away.

Cost

If you’re a senior sysadmin, your company makes better use of your time (and
their money) when you handle high-level architectural work. Machine setup is
best left to junior staff members, but if they make a mistake you know you’ll
have to help clean it up.

Overall, Kickstart does for OS installs what robots and conveyor belts do for fac-
tories: it removes the human element from the process. While the machine takes
the dull, repetitive work—which computers do willingly and very well!—the hu-
man minds can focus on those tasks that require thought and innovation.

Is This Too Good to Be True?

Consider another fair question: “Is this tool right for me?” Depending on your
situation, maybe or maybe not.

Establishing a Kickstart environment requires some infrastructure and effort. Ex-
pect even more work if you want to add change control to your automated yum
updates. While most of this is up-front, one-time work, you need enough OS in-
stalls ahead of you to make Kickstart worth your time.

Some math will illustrate my point. Suppose that a fairly vanilla manual install
takes one hour. Creating and testing a simple Kickstart environment can take a
full eight-hour workday, plus an additional 5 or 10 minutes per machine if your
hardware is not consistent. This means you reap any benefit on your Kickstart
investment only after you have at least 9 or 10 (re)builds to do.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

My oversimplified math doesn’t account for a faster sysadmin who establishes a
Kickstart environment in half a day, nor any cleanup required to correct mistakes
made in a manual install. All the same, the hobbyist who installs the OS two or
three times a year won’t see the same benefits as the person who has to build a
rendering farm before Monday.

[emphasize the terms “builds” and “installs” and not “machines.” In a corporate
test lab or student computing lab, in which the machines are regularly refreshed
to a pristine state, a nightly refresh schedule adds up to 30 rebuilds per month,
per machine. With only five machines—150 installs per month—Kickstart cer-
tainly merits your attention.

Will I Be a Kickstart Guinea Pig?

One last question for evaluating new tools: “will I be alone in the world?” In other
words, who else uses this tool and are their needs similar to mine?

It’s tough to tell which mid- to large-sized shops use Kickstart. I can’t imagine who
wouldn’t, but then again, it’s a rare company that publicizes its internal infra-
structure process.

That said, a quick web search uncovers several blog and wiki sites with Kickstart
and yum sections, not to mention a couple of mailing lists. People using these tools
are certainly not alone.

As an author of Kickstart and yum articles, I sometimes get success stories from
readers. Academic institutions, small businesses, and corporate titans alike use
these tools to automate their systems management. One reader in particular boas-
ted about having Kickstarted an entire server farm before lunch. That’s a prime
example of how a large shop can leverage these tools to save countless work-hours
and maintain consistency across builds.

I'm Sold. Where Do | Get Them?

That’s the beauty: both Kickstart and yum are included in the base Red Hat (and
Fedora, and CentOS) operating systems. The tools aren’t part of the default install
—TI’ll explain later what to do—but rest assured that, as long as you have an install
CD, they’re at your fingertips.

How Do | Work All of This Magic?

Keep reading! In the coming pages, I’ll show you how to prepare an infrastructure
around Kickstart to rebuild similar machines with very little human intervention.
I’ll also show how, with a little more work and some extra tools, you can wrap
yum cronjobs in a blanket of change control to prevent surprise updates. Mix a few

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

gigabytes of storage and some scheduled jobs, and your machines will be one step
closer to managing themselves.

Automating the Build

This section explains some Kickstart basics and how to run your first automated
build. If you have a massive server build-out due by Monday morning, this chapter
is for you.

Ingredients

Mixing a Kickstart cocktail requires a target machine, a config file, and install me-
dia. The target machine is the one you’re building. The config file is a virtual you:
it holds all of the values you would have manually entered, and answers to all of
those questions posed by the installer. Install media is a fancy term for “all of the
files on the installation CD or DVD.”

You only have three dots to connect here, but Kickstart lets you decide how to
draw the lines. You could say Kickstart is painfully flexible: it can load the config
file from a CD or floppy disk, a USB key, or over the network via URL. In that last
case, it doesn’t even have to be a real file—it can be something created on the fly
by a servlet or PHP script. The target machine can load the install media from a
local hard disk, an HTTP or FTP server, or even an NFS mount. The only constant
is the target machine, and some may argue even that needn’t be real—virtual serv-
ers, such as VM Ware guest systems, build without a hitch.

All of that flexibility means you can kickstart a machine in just about any situation.
That also makes it difficult to describe a “typical” Kickstart install end-to-end. I
will focus on HTTP (web-based) install media and config files, but drop notes on
how to use other methods.

While it’s not mandatory for a Kickstart install, you need a separate workstation
at your disposal in almost every case I can imagine. You can use this to manage
config files, read online docs, and play games while you run your first Kickstart
tests. If you opt for network-based installs, this workstation can serve up the install
media and even operate a DHCP service for the target machine.

Install Media
The easy part of the process is handling the install media.

Directory structure

All Red Hat OS installations, whether automated by Kickstart or manual via the
Anaconda GUI, expect to find files in a certain structure. Consider the root of the
first install CD:

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

{product path}
|

+--base

|
+--RPMS

The product path depends on the OS you’re installing: RedHat for Red Hat Enter-
prise Server, Fedora for Fedora Core, and CentOS for CentOS. (Early versions of
Fedora Core used RedHat as the product path.) Your boot media has to match the
product you install. For example, if you boot a CentOS OS install CD, the product
path cannot be RedHat or Fedora. The installer will (rightfully) claim it can’t find
its files and ask you to enter another location.

base/ holds some metadata files. I'll cover those in more detail later.

The RPMS/ subdirectory contains, well, RPMs. An RPM is a special archive file
that contains software packaged for Red Hat systems. Whether it’s a mail client,
web browser, or window manager, every software product included in Red Hat,
Fedora, and CentOS install is bundled as an RPM. (The term “RPM” also refers
to the package management system itself—“Red Hat Package Manager”—as well
as its command-line tool, rpm.)

Filling the required directory structure is straightforward. First, pick an area with
enough space. This is typically two or three gigabytes per OS revision. You’ll need
more space to handle OS updates, but that’s a few sections away. In case it’s not
clear, this is space on a machine other than the target machine.

If you have the install CDs or DVDs (or their respective ISOs), mount them one
by one and recursively copy their contents to your local disk. For example:

mount the ISO
mount -oloop,ro /path/to/first/cd.iso /mnt

copy the files. Ignore errors about "TRANS.TBL"
cp -rp /mnt/* /some/other/local/path

umount the ISO
umount /mnt

There are many, many other ways to do this. If you’re more familiar with rsync or
even the classic find-piped-to-cpio routine, have at it. As long as you maintain the
directory structure, it doesn’t matter which command you use.

If you don’t have the ISOs or CDs handy, that’s not a problem. Pick your preferred
download mirror from the Fedora or CentOS web sites, then run an overnight,
recursive wget job to fetch the files. Consider this command line:

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

wget --progress=dot:mega --recursive
--no-parent --relative
--exclude-directories="%/SRPMS/*,*/debug/*"
--no-clobber
--directory-prefix=/where/to/put/files
http://some.mirror.site/path/to/files

wget prints a period (or “dot”) to show download progress. By default, one dot
represents one kilobyte of data. For large files this can produce a lot of needless
output, so the option --progress=dot:mega tells wget to print a dot for every 64
kilobytes of data. Per wget’s formatting, that means each line of output is three
megabytes.

The next three switches work in tandem. --recursive tells wget to follow links in
every page it downloads, recursively. --no-parent and --relative limit that recur-
sive action, so your download doesn’t branch off to other parts of that web site or
even to other web sites altogether.

Some mirror sites like to put source RPMs or special RPMs with debug info under
the main tree. The switch --exclude-directories="x/SRPMS/x,*/debug/x" tells
wget to ignore those directories.

If something interrupts your wget job—ISP failures, a machine crash, or whatever
—you can always pick up where you left off. When wget sees the --no-clobber
switch, it skips files it has already downloaded. It can’t catch incomplete files this
way, though, so remove that last, partially downloaded file before you start wget
again.

Finally, the --directory-prefix switch indicates where you want wget to put the
downloaded files.

Serving it up

Having the install media properly laid out is only worthwhile if target machines
can get to it. You can copy the files to an external disk that you connect to the
target machine, but that limits you to one machine build at a time. I’d recommend
serving the install media over the network using an NFS, FTP, or HTTP service.

HTTP’s stateless nature makes it the most flexible and, arguably, the most scalable
of the network methods. A simple round-robin DNS lets you transparently balance
the load among multiple machines. With a little more DNS magic you can move
the install media from one machine to another, and target machines are none the
wiser.

In fact, the target machines don’t really care what’s on the other end of the con-
nection, as long as it talks HTTP and doesn’t return 404 errors when they request

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

files. That machine can serve your install media using Apache’s httpd, LightTPD,
or even your pet squirrel frantically hammering out signals in binary. The only
catch is that the web server software must listen on the standard port 80, due to a
limitation in Kickstart.

The web server machine’s OS doesn’t matter, either. A basic Kickstart HTTP serv-
ice can run Linux, Solaris, or even something of the Windows family. Some of the
more advanced Kickstart and yum techniques that I describe later will require a
Red Hat-based OS, however.

As an added bonus, the install media tree isn’t just for Kickstart installs. A manual
install can also load the install media from a network source. Having an internal
install media service means you can build machines from any location in the office,
without having to tote around a series of CDs.

Creating the Config File

The Kickstart config file can go by any name, but for simplicity I call it ks.cfg. This
file tells the OS installer how to configure the target machine (such as setting the
time zone and root password) and what software you want to install (that is, the
oodles and oodles of RPMs).

You have a choice on how to create ks.cfg. (There goes that Kickstart flexibility
again....) A manual install creates a ks.cfg for you. You can copy and modify the
file /root/anaconda-ks.cfg from a freshly built machine. This technique works best
if you’re building lots of similar machines (think “clone farm”) or rebuilding the
same machine several times over (“computer lab”). Reviewing an existing file can
also help you learn ks.cfg syntax.

Barring that route, Red Hat, Fedora, and CentOS all ship with a tool called Kick-
start Configurator (). Click through this GUI and it will create a ks.cfg
befitting your input. Kickstart Configurator isn’t part of the default install, though,
so you may have to install the system-config-kickstart RPM before you can use
1t.

Then run:
system-config-kickstart

to launch the tool.

If you’re running an older OS, such as Fedora Core 1, both the product and the
command are redhat-config-kickstart.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Kichkstart Configumbor

Eile Help
Basic Configuration Package Selection

Installation Method

Boot Loader Options Desktop Environments 2 Development Libraries
Partitian | rformation Applications 8 ' Development Tools
i i L -
Authentication Servers ‘€ O GNOME Software Development

Firewall Configuration

g Base System ™ 8 | Java Development
Dsolay Corfigien Languages E T KDE Software Development
Package Selection
Pre-nstallation Scrigr R - Legacy Software Dwelﬂpment
Postdnstallation Script x Ru b'f

[® X Software Development

Support for developing programs in the Java programming language.

Figure 1. A glimpse of Kickstart Configurator

If you have memorized the Kickstart documentation—and no, I haven’t—then
another option is to create ks.cfg from scratch. Fire up your preferred text editor
and get to work.

Whatever your route, it helps to be at least mildly familiar with the ks.cfg file
format. I provide a brief rundown of the directives in . In the mean-
time, is an annotated sample file.

Example 1. Sample ks.cfg

this is an 0S install (as opposed to an upgrade)
install

fetch the install media from the HTTP service
running on os-webdist.internal
url --url http://os-webdist.internal/FC5-i386-install

language support, for the install and the final 0S, respectively
lang en_US.UTF-8
langsupport --default en US.UTF-8 en US.UTF-8

basic keyboard and mouse settings
keyboard us

O RE IL LY. SllOI't CUtS Managing RPM-Based Systems with Kickstart and Yum

mouse generic3ps/2 --device psaux

configure the video card
xconfig --card "VMWare" --videoram 16384 --hsync 31.5-37.9 --vsync 50-70
--resolution 800x600 --depth 24

network: the device etho will have a static IP address of 10.10.10.237
network --device etho --bootproto static --ip 10.10.10.237

--netmask 255.255.255.0 --gateway 10.10.10.246

--nameserver 192.168.100.201

--hostname fedora-test

you can also provide an encrypted password
rootpw ThisIsPlainText

No firewall yet. We can manually set that up later.
firewall --disabled

use shadowed, md5-hashed passwords
authconfig --enableshadow --enablemd5

local time zone
timezone Europe/Paris

install the boot loader in the MBR
bootloader --location=mbr

destroy all disk partitions, and initialize any
disks that have no partitions
clearpart --all --initlabel

setup /boot as its own disk slice, then

put everything else under LVM's control
part /boot --fstype ext3 --size=75 --asprimary
part pv.00 --grow --asprimary

volgroup vgoo pv.00

logvol / --vgname=vgoo --size=2048m
logvol swap --vgname=vgo0 --size=256m

O REILLY SllOI't CUtS Managing RPM-Based Systems with Kickstart and Yum

Which RPMs should Kickstart install?
Lines that start with "@" are predefined groups, which

I'11 explain later. Everything else is an individual
RPM

%packages
® dialup
grub
kernel

Connecting the Dots

After all that hard work, it’s time to enjoy the fruits of your labor: get the client to
read ks.cfg and load the install media.

Boot!

First and foremost, your target machine must boot the OS installer. The most
common way to boot is by CD or DVD. You don’t have to download the entire
ISO for the first install CD, though. The file boot.iso (under the images/ directory)
weighs in at just a few megabytes and packs a simple boot image. Download it
from your favorite Red Hat, Fedora, or CentOS mirror site and burn it to CD.

If you're running Linux or another Unix-like OS, chances are you can use
cdrecord to write the boot.iso image to your CD or DVD media:

cdrecord dev={device} data=boot.iso -v

where {device} is your CD or DVD writer device. Depending on your OS and
hardware, this will be /dev/cdwriter, /dev/dvdwriter, or a device listed when you
run cdrecord -scanbus.

If your CD-ROM drive has seen better days, boot from a USB key, a SCSI device
such as a ZIP disk, or any other bootable media supported by your BIOS. Down-
load the image diskboot.img from a mirror site (or copy it from the first install CD,
if you have that) and write it to the device:

dd if=diskboot.img of={device}

Replace {device} with the name of your removable device, such as /dev/sda or /
dev/sdc. Be sure not to write to a partiton on that device, such as /dev/sdal or /dev/
sdc3. That won’t boot.

Do yourself a favor and double-check that device name. Then check it once more.
dd sometimes stands for Disk Destroyer because it can render a disk’s data unre-
coverable. It is a woefully unforgiving tool, and will gladly do what you say even
if that’s not what you mean. Then, you’ll say all sorts of things I can’t put in print.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Some fairly modern target machines can forego physical boot media altogether and
use technology called Pre-Execution Environment, or PXE (pronounced “pixie”).
PXE is a fancy way of saying that the BIOS can boot off the network adapter and
take instruction from a bootp or DHCP server, instead of loading an OS from disk.
Setting up a PXE service is beyond the scope of this Short Cut, though a web search
yields several online resources.

Load the configuration

Once the machine boots, it will greet you with the ever-familiar boot: prompt.
Remember that one-liner command I showed in the earlier section

p)
linux ks=http://your.install.server/ks.cfg

You don’t necessarily have to serve ks.cfg from your httpd service. The target ma-
chine can load ks.cfg from any number of places. For one, you can put it on a
diskette:

linux ks=floppy:/servers.cfg

(You can also substitute fdo for floppy.) This command tells Kickstart to use the
file server4.cfg in the root of the diskette’s filesystem. I found diskettes convenient
for my early experiments (circa Fedora Core 1) but grew weary as I tried to build
multiple machines. That, and diskettes had an awful habit of going bad on me.

Note that you can call the config file by any name. Here, I call it server4.cfg, perhaps
to build a machine called “server4.” You can store several config files on a single
piece of media—they’re at most a few kilobytes in size—and use whichever one
befits the current target machine.

An alternative to the floppy is a SCSI or USB device, such as a thumb drive. Copy
ks.cfg to that filesystem and enter:
linux ks=hd:{partition}:/ks.cfg

at the boot: prompt.

Here, {partition} refers to the device partition name, such as sdal or hdc2. The
one strike against this method is that the device naming is not always predictable.
If you have put ks.cfg on the only SCSI device in the system, it should appear
as /dev/sda. (Remember, Linux sees USB disks as SCSI disks, hence the sd desig-
nation.) If there are other SCSI or USB disks in the system, however, it’s a crap
shoot. Be prepared to cycle through sdb, sdc, and so on until you find the right one.

You can also burn ks.cfg to a CD or DVD:

linux ks=cdrom:/ks.cfg

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

[mention this method just for completeness, though I advise against it; every time
you change ks.cfg you’ll have to burn another CD. You’ll have several shiny coast-
ers by the time you’ve ironed out the kinks in your config file.

The most flexible method is to serve ks.cfg over the network via HTTP, NFS, or
FTP:

linux ks=http://your.install.server/ks.cfg

Replace http with ftp or nfs as appropriate. One benefit of the HTTP method is
that ks.cfg needn’t be a real file: you can point to a dynamic resource such as a
servlet, PHP script, CGI, or whatever. As long as the httpd service returns syntac-
tically correct, plain-text content, Kickstart doesn’t care what creates the data.

Letitrun

Whatever method you use to load ks.cfg, once it loads, it has loaded. Even a min-
imal install will take a few minutes to complete, and a watched pot never boils.
Why not take a break while it runs? Expect this to be the first of many tea (or pub)
breaks in your Kickstarted life. At least, until your manager realizes you’re not
really taking all day to build those new servers....

Troubleshooting

Full disclosure: my first Kickstart attempt didn’t go over well. Nor did the next
few. It didn’t help that the error messages were cryptic or outright confusing. Some
failures yield a stack trace from the underlying Anaconda installer’s Python code.
Tying that back to my ks.cfg or install media setup was tricky. I had to develop a
toolkit for tracking down failures.

For one, every time the target machine asks for a file via HTTP, the web server
records that request in its logs. Those logs are a goldmine of information. Suc-
cessful file fetches (HTTP code 200) trace the install process, because they show
you what files a target machine requests and when. If the web server can’t find a
file (HTTP code 404), chances are your tree of install media is out of place. By
comparison, when the web server refuses to return a file (HTTP code 403), that
indicates a file permissions problem in the install media tree.

Second, you can add the interactive directive to ks.cfg to step through an install.
Think of this as a manual install, with your ks.cfg values as the defaults. (You must
enter the root password manually, though.) If your contfig file is syntactically cor-
rect but there’s a typo in a value—such as the wrong DNS server—the interactive
mode is how to find it.

Pair up your interactive mode with a text-mode install. The GUI is a little easier
on the eyes, but a text install lets you flip through the various virtual consoles to

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

peek behind the scenes. Alt-F2 is a shell session. (Don’t exit this; you can’t get it
back.) An Anaconda trace runs on the console at A1t-F3, and Alt-F4 is a system-
level trace of mount calls and dmesg-like output. Hit Alt-F1 to return to the main
screen.

When all else fails, try a manual install that points to your Kickstart install media.
The GUI form of the installer may yield more useful error messages, or at least put
them in a scrollable window so you can see the entire stack trace.

Customizing Your Kickstart Install

Kickstart takes a lot of the manual labor out of OS installs, which makes it a real
time-saver. This convenience can make you lazy: after that first taste of a hands-
off build, you want to further remove yourself from the process. Tweaking a
ks.cfg or typing a URL at the boot: prompt can seem like a real chore.

This section has a series of customization tips to help you enhance your Kickstart
experience.

Pre- and Postinstall Scripts

Kickstart will gladly install the base OS for you, but it’s rare that your job ends
there. More than likely, you have to further customize the machine to meet your
(or your shop’s) standards: create some canonical directory structures, install non-
RPM’d software, or update config files.

Luckily for you, Kickstart also lets you run some code before and after it does its
job in pre- and postinstall scripts, respectively. You get one of each, stored inline
in ks.cfg, in sections labeled %pre and %post. (These sections get extracted into
separate files and executed at build time.) For example:

... other Kickstart directives, such as the network config
and root password ...

postinstall script
%post
PATH=/sbin:/usxr/sbin:/bin:/usx/bin

disable printing daemons
chkconfig cups off

create our special mount point area
mkdir /mnt/SpecialMount1

disable the bundled yum repos
for file in /etc/yum.repos.d/*.repo ; do

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

mv -i ${file} ${file}-DISABLED
done

Both the %pre and %post sections run under a plain Bourne shell (/bin/sh) by de-
fault. Append the --interpreter flag to specify a different interpreter, such as /
usr/bin/perl or /usr/bin/python. Your main limitation is the tools available at the
time the scripts are run, though: a preinstall script executes in the realm of the boot
media, which includes a base toolset for rescue operations.

In all honesty, I've never needed to use a preinstall script, and I've rarely encoun-
tered them. The example in the Red Hat documentation—defining the partition
scheme based on the number of disks reported in /proc—seemed slick at first, but
[questioned how one would make the logic 100 percent foolproof. Some people
use preinstall scripts to preserve data during a Kickstart upgrade (see the

). In both cases I'd rather not let Kickstart handle this work for me—I'm
happy to do it myself.

By comparison, the postinstall script runs chrooted inside the freshly installed OS.
It therefore has access to any tools you installed on the target machine. If your OS
build included Perl or Python, then, your postinstall script could run code in those
languages. As an alternative, you can specify %post’s --nochroot flag to not run the
postinstall script inside the chroot. In this case, your postinstall script will have
the same limited toolset as the preinstall script, but you then have the option of
performing some other activities and manually invoking chroot to work inside the
chroot area.

Postinstall scripts are plenty useful. Because they can operate on the newly installed
OS, they can perform tasks you want to handle after the OS install but before the
machine reboots into full-user mode. For example, you can call chkconfig to dis-
able unneeded services:

for SERVICE in avahi-daemon avahi-dnsconfig cups ...etc... ; do

chkconfig ${SERVICE} off
done

Pre- and postinstall scripts seem like quite a blessing at close range. From a higher-
level, architectural view, however, they can grow ugly. It’s easy to get tunnel vision
and use pre- and postinstall scripts for tasks that other tools do better, all for the
sake of doingitin the build. If your pre- and postinstall scripts do more than disable
services or create directory paths, ask yourself a few questions:

Is this too complex?

Borrow a rule of thumb from larger software projects: keep it short and simple.
Code that looks too slick now will probably be brittle tomorrow. Because pre-

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

and postinstall scripts run in the context of a Kickstart build, the only way to
test a fix is to rebuild that test machine. In this case, would you rather track
down a problem in a 10-line script or something that reads like a classic novel?

Can I do this better by hand?

It’s a noble goal to offload work to Kickstart, but you’ll eventually reach a point
of diminishing returns. Try to weigh the time required to do something by hand,
as part of each build, against the design, testing, and maintenance of a deep
script. When your postinstall routine is calling an Expect wrapper so you can
install that non-RPM’d vendor software....

Can I abstract this into a separate tool?

There’s no rule that says your pre- or postinstall script can’t call something else
to do the heavy lifting. Trim your debug time by moving your logic into a sep-
arate script that you can run and debug outside of Kickstart. In turn, your %
pre and %post sections then become one-liners to invoke these external scripts.

Should I be doing this here?

Even if it works in Kickstart, is your build process the right place to create
application-level user accounts or set an automounter configuration? Is there
any chance you’d need to perform this same action on an existing host? Some
tasks work much better with a formal change-management process, such as a
homegrown rsync job or cfengine. These options are also automated, but they
are much easier to debug than something that runs only at build time.

Is this future-proof?

Remember that the scripts run in a limited environment. You don’t want to rely
too much on outside services—be they a network drive or database—because
then you have to hard-code paths, hostnames, and perhaps even passwords into
your build process. Those can all change over time, and who wants an expired
account to derail a set of Kickstart builds?

Custom package groups

A package group is a collection of related software products addressable by a single,
convenient name. You may recognize some of the default package groups, such as
“Development Libraries” and “Office/Productivity,” from the install. Package
groups are a shorthand in ks.cfg because you can specify them instead of the indi-
vidual products therein:

@ PackageGroupName

Kickstart will install all of the products in that group.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

You’re not limited to the default groups, though. You can define your own. All it
takes is a text editor and a passing understanding of XML. Under your base install
tree, note the file {product pathj/base/comps.xml, commonly known as the comps
file. (The product path is typically one of RedHat, Fedora, or Cent0S. The earlier
section describes the product path and the install tree
structure.) has an excerpt from a typical comps file.

Example 2. Excerpt from a typical comps.xml file

<comps>

<group>
<id>admin-tools</id>
<name>Administration Tools</name>
<name xml:lang="fr">Outils d'administration</name>
. other <name /> elements ...
<description> ...description, in default language... </description>
<description xml:lang="fr"> ... description, in French ... </description>
<uservisible>true</uservisible>
<packagelist>
<packagereq type="default">authconfig-gtk</packagereq>
<packagereq type="default">system-config-date</packagereq>
<packagereq type="default">system-config-date</packagereq>
<packagereq type="optional">system-config-kickstart</packagereq>
. other <packagereq /> elements ...
</packagelist>
</group>

. other <group /> elements ...
</comps>

A <group> element defines a package group. The <id> element specifies the name
that will appear in ks.cfg, whereas <name> and <description> appear during a
manual install’s package selection windows.

<name> and <description> default to English. If the OS install is running in a dif-
ferent language—for example, if you chose “French” from the menu—the installer
uses the xml:lang= attribute to find <name> and <description> elements befitting
that language choice. The excerpt in Listing 1 can also show the name and de-
scription in French (fr).

Setthe <uservisible> element to false to prevent the choice from appearing during
an interactive install. It has no impact on an automated install.

<packagelist> lists the packages that are part of this group. Each <packagereg>
element specifies a single product name. The type attribute tells you whether a
given package is included by default ("default"), is not included but can be added

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

("optional"), or cannot be removed ("mandatory"). In a manual install, you can
uncheck the packages labeled type="default" but not those labeled
type="mandatory".

You now have the information to create your own custom group. However, before
you continue, I recommend you make a backup of this file. For one, it never hurts
to have the original around in case something goes awry. With that done, it’s time
to fire up that text editor.

First, create a new <group> element and give it a fitting <id>, <name>, and
<description>. If you are feeling worldly, you can add names and descriptions in
multiple languages.

Next, specify the <uservisible> element. It wouldn’t hurt to make this true, so
you can select the new group during a manual install. (Remember, a manual install
creates a ks.cfg that you can use to build a clone farm.)

All that’s left is to pick the packages. Do yourself a favor: don’t rely on an RPM’s
name for its <packagereg> element. Instead, use the rpm tool to query the package
and get the name specified in the RPM metadata:

rpm -q--queryformat '%{NAME}\n' -p some_file.rpm

You don’t need to worry about managing package dependencies, either. Pass the
--resolvedeps flag to %packages, and Kickstart will add any prerequisite packages
behind the scenes. If your custom group includes the postgresql-pl package, for
example, Kickstart will resolve the dependencies of postgresql and postgresql-
server and install those as well.

Add the group to edit ks.cfg and run a test build. If your group’s <id> is WebSer
verHost, then put:

® WebServerHost
in the %packages section of ks.cfg.

Why would you want custom package groups? From an aesthetics perspective, it’s
cleaner to specify @ OurStandardInstall in ks.cfg than to list 40 or 50 individual
package names. From a systems management perspective, it’s cleaner: you can
create package groups to match your systems’ roles. Suppose that you define a
group called BaseBuild, which has the packages you’d install on every system. You
also have groups called DatabaseHost, DeveloperWorkstation, and Sysadmin
Laptop, which are related to machine roles. Now, you can eyeball ks.cfg to deter-
mine what sort of target machine it would build. For example:

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

%packages
® BaseBuild
® SysadminLaptop

would build a machine with software suitable for a mobile sysadmin—perhaps
some network analysis tools and WiFi drivers.

You can also layer groups as needed. If you know in advance one developer will
be writing native code tools as well as some Java-based GUIs, define fitting groups
and include:

%packages

® BaseBuild

® JavaDeveloperWorkstation
® CCplusPlusDeveloperWorkstation

in ks.cfg for his or her workstation.

In a higher-level view, custom package groups let you separate the role’s type (“web
server host”) from its definition (“requires the httpd package, plus modules X Y
and Z”). Over time you can tweak the RPMs associated with a particular group,
but the name specified in ks.cfg remains the same. Your ks.cfg files automatically
and transparently pick up the changes you make to the group definitions on the
next build.

As a final tip, I strongly recommend you create custom package groups instead of
changing the base groups. Even though all of the group definitions live in the same
file, consider your definitions an extension of what’s already there. That makes it
cleaner to move the changes to a new comps file: you just have to grab your custom
groups (hint: demarcate them with big, clear XML comments) instead of picking
through the base groups for your customizations.

Custom RPMs

[t’s not uncommon for a site to install RPM-packaged software that’s not part of
the base OS. Expect a shop with Linux-savvy sysadmins to manage homegrown
software, or local customizations of third-party tools, using RPMs as well. You can
include those RPMs in the build process and have Kickstart install them for you,
right alongside the software that’s bundled with the OS.

This just requires another quick trip to the comps file. Create a new group, or add
the package(s) to one of your custom groups, and you’re ready to roll. Once again,
use rpm -q to get the package’s internal name for use in the <packagereq> element.
When you’re done, run the genhdlist or createrepo commands to regenerate some
metadata. I describe genhdlist and createrepo in more detail in the next two sec-
tions, and

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Dynamicks.cfg

I’'ve made a few references to using a prototype ks.cfg to build clone farms or oth-
erwise similar hardware. Kickstart does this very well, with one caveat: if the
machines are the slightest bit different—every machine has a different hostname,
right>—you have to tweak that prototype file for every build. Either that, or you
copy the prototype, such that you have one file per machine. Heaven help you if
you should get through the 20th or 30th file, only to find an error in your prototype
—and did you already use this IP address 12 machines ago? You can’t recall.

The prototype route loses its sheen on large buildouts because it tries to go two
directions at once: it mixes the things that change (hostname, IP address) with
those that don’t (disk layout, time zone). Kickstart doesn’t support macros or re-
placement variables in ks.cfg; but if your target machines load ks.cfg via URL, and
you have some programming skills, you can write a tool to generate the data on

the fly.

To implement such a tool is beyond the scope of this Short Cut, but I can walk
through the high-level design. Any such solution would mix a data store (the things
that change) with a templating solution (the things that don’t change). The data
store would hold the per-machine data, such as the IP address and hostname. You
would also need a unique identifier, perhaps the hostname, such that you could
pick up a given machine’s data. The data store could be a flat file, XML data, or a
relational database such as PostgreSQL or MySQL.

Any modern, web-friendly language has a templating solution or 12. Java has
Apache Velocity or Freemarker, PHP has Smarty, Perl has Template Toolkit. They
all follow the same mail-merge concept: create a template with placeholders for
the data, feed that and some data through the templating engine, and get a com-
plete ks.cfg in return.

In turn, to invoke the system, you pass a machine’s unique identifier as a URL
parameter. For example:

boot: linux ks=http://your.kickstart.server/gen_config?host=server25s

In this example, the CGI (or servlet, or whatever) generates a ks.cfg for the machine
server2s.

If you don’t see the strength of dynamically generated config files, skim David N.
Blank-Edelman’s Perl for System Administration. In Chapter 5, he describes a sim-
ple machine inventory system, around which he builds code to generate config
files. You could leverage such a system to generate ks.cfg on the fly.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Kickstart, running on the target machine, doesn’t care what generates the ks.cfg
data. It can’t really tell. As long as it’s syntactically correct (to satisty Kickstart)
and logically correct (to build the machine as you need it), the source of the data
is irrelevant.

To its credit, Kickstart does support a mild form of dynamic configuration. If you
specify a URL that ends in / (as though you’re requesting a directory), Kickstart
will append a unique identifier that includes the IP address. For example, given
the boot string:

linux ks=http://your.kickstart.server/configs/

and the build-time IP address of 10.10.10.101, Kickstart will request:
http://your.kickstart.server/configs/10.10.10.101-kickstart

of the server.

This route has its limitations, notably that you must know the machine’s build-
time IP address in advance. [personally prefer to use DHCP at build time and
specify the permanent IP in ks.cfg, but a DHCP service has to keep track of every
host’s hardware address in order to match the requesting MAC to the provided IP.

If you don’t already have the MAC-to-IP accounting in place, ask yourself whether
it’s worth the effort to implement it just for Kickstart builds. Chances are, you’ll
save more time and effort manually entering the IP information at build time.

Kickstart Security

Kickstart stores the target machine’s root password in ks.cfg, which may make a
lot of sysadmins uncomfortable. If you serve up ks.cfg by URL, someone with a
web browser and knowledge of your environment could pick up root access with
just a click. There are several ways to address this. Computer security is typically
at odds with convenience, however, so be prepared to make a Kickstart build a
little less hands-off.

One option is to have a temporary build-time root password that a sysadmin
changes immediately after the install. If the sysadmin misses this step of the post-
build procedure, that’s a potential risk. It’s also a hassle for the other sysadmins
who expect to access this machine using the standard root password.

You can also limit the scope of people who could possibly find the ks.cfg URL by
serving up Kickstart files from a private, internal machine instead of a public-facing
host. Take this one step further and create a private build network. This doesn’t
have to be anything fancy. Mix a portable network switch, a couple of cables, and
a laptop to serve ks.cfg and the install media.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Another option is not to put the root password in ks.cfg at all. Kickstart will prompt
you for anything it doesn’t find in ks.cfg, so the build will continue as normal except
for that one interruption. This means you’re not 100 percent removed from the
picture, but depending on your shop’s policies, being 99 percent removed may be
acceptable.

You can also store ks.cfg on removable media, such as a diskette or USB thumb
drive. This limits your ability to build several machines simultaneously, though,
because you have to connect the thumb drive to every machine as you build it.
This is a reasonable compromise if you don’t build a lot of machines on a regular
basis.

There is no right or wrong answer here. It’s all a matter of your shop’s policies and
how you feel about the tradeoffs between convenience and security.

Kickstart Upgrades

Just as Kickstart installs are easy compared to manual installs, Kickstart upgrades
are even easier. That’s because there’s a lot less for the installer to decide, and
hence, less for you to prepare. Just watch out for a few land mines.

About Kickstart upgrades

Similar to OS installs, OS upgrades involve a mass-push of RPMs. Unlike installs,
however, upgrades involve fewer decisions. You aren’t changing disk layout, nor
the root password, nor any other of the machine’s base configurations. You’re not
even adding any new software. Instead, Kickstart will determine what software is
on the target machine and install newer versions of those products. In turn, an
upgrade ks.cfg only involves a handful of parameters:

* Kickstart type (upgrade instead of install)

e Location of install media (such as url or nfs)

* Installed language support (langsupport)

* Boot loader configuration (bootloader—that is, grub)

* A few settings that matter only for the duration of the install, such as network
configuration and keyboard type.

Only the boot loader configuration is host-specific. Chances are that you can use
the same ks.cfg to upgrade most or even all of your shop.

Preparing for a Kickstart upgrade

Running a Kickstart-managed OS upgrade is similar to an install: prepare your
install media and ks.cfg, boot the target machine, and let it run.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

The earlier section, , contains instructions on how to set up
your tree of install media. Be sure to maintain the proper directory structure.

The ks.cfg for upgrades is rather short. is an annotated sample.

Example 3. A sample ks.cfg for OS upgrades

choice: upgrade or install
upgrade

where is our install media?
url--url http://your.kickstart.server/media/FC6-1i386-upgrade

upgrade language
lang en_US.UTF-8

Hit

runtime (installed) language support:

- single language: "lang en_US"

- multiple languages: "lang--default en_US en UK"
- all languages: "lang--default en_US"

Hit

language codes are available in
/usr/share/redhat-config-language/locale-list
langsupport --default en_US

keyboard type--for the install
keyboard us

upgrade in text mode, rather than GUI
text

reboot automatically after the upgrade
reboot

this network info is used for the upgrade only
network --bootproto dhcp

where to put the boot loader?
bootloader --location=mbr

notice, there's no "%packages" section. Kickstart
determines which (0S-bundled) RPMs are installed and
upgrades them accordingly.

Hit

That is to say, you can't choose to upgrade just

PostgreSQL or gcc; you get everything at once.

O REILLY SllOI't CUtS Managing RPM-Based Systems with Kickstart and Yum 23

To boot the target machine, use the boot media from the new (upgrade) OS tree.
I've learned the hard way that the boot media and the install media are closely
related. For example, if you boot from an FC4 CD when you’re upgrading to FC5,
the process will (rightfully) fail.

That’s all there is to it. Grab a test system and upgrade. When the target machine
reaches the ever-familiar boot: prompt, tell it to Kickstart based on your fancy new

ks.cfg:
boot: linux ks=http://your.kickstart.server/upgrade.cfg

You can head out for a drink while Kickstart does the work, and when you return
your machine will have a new OS. Be sure to review the upgrade logs (/root/
upgrade.log and upgrade.log.syslog) to make sure there were no problems.

Before You Turn It Loose...

I’d be remiss in my duties as an author to describe just the mechanics of a Kickstart
upgrade. That’s just part of the story. Although the tool does the heavy lifting, it’s
still up to you to plan the process.

OS upgrades aren’t quite the same as OS installs. In the former case, no one is
using the machine, so there’s no end-user impact if the install fails. The extent of
your damage is restarting the install.

By comparison, an upgrade requires you to take a machine out of service, make
some changes, and return it to its end-users. People expect the machine to work
asitdid before. The less technical they are, the less they’ll notice the changes under
the hood—unless those changes cause a problem. Kickstart gives you the power
to perform several upgrades in short order, so if you’re not careful you can have a
large mess on your hands before you know it.

Kickstart doesn’t have to put you in the dog house, though. All you have to do is
set up some safety nets. Your boss (or client, or whomever) won’t necessarily thank
you for a smooth upgrade, but you’ll spare yourself the headaches of post-upgrade
trauma.

Get a backout plan

Newton’s Third Law applies even to systems administration: for every action, there
is an equal and opposite reaction. At least, there should be an equal and opposite
reaction. You should always be able to revert a machine to its original state fol-
lowing a change. Some people call this a backout plan. 1 prefer the term time
travel. Time travel is not unlike an insurance policy: you don’t need it every day;
but when you need it, you’re glad to have it.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Consider changing a config file. Time travel is simple: make a backup of the file,
or put it in source control, before you make your change. If the change doesn’t
work, put the old file back until you can figure out the problem.

Time travel for an OS upgrade is similar, but on a larger scale: get a solid, full
backup. An upgrade changes every RPM in the system at once (minus your third-
party RPMs, of course) so there’s no going back once the process starts. If a Fedora
Core 5 to 6 upgrade fails partway through, chances are slim that the machine will
boot into a workable state of Fedora Core 5 and a half. The only realistic way to
bring a machine back to life after a failed upgrade is to wipe it clean and restore
the old data. (Before you do that, boot from a rescue CD and fetch the
system’s /root/upgrade.log and upgrade.log.syslog to help you track down prob-
lems.) Breathe easy, go home on time, try again some other day.

Time travel also helps when the upgrade itself (Kickstart) succeeds, but there’s
post-upgrade shrapnel. It’s not uncommon for third-party software to react poorly
to a system change. If that software happens to be your day job’s VPN client or
your company’s primary database engine, you’ll have to roll back your changes
with a wipe-and-restore dance.

Don’t let a backup make you overconfident! You also have to make sure the data
is viable. If your backup software has a way to verify that your data made it to the
media, use it. If at all possible, restore the data to an empty disk to make sure you
don’t get media read errors.

This is one reason I prefer not to do OS upgrades at all. Instead, I set up a new
machine and migrate services—database, web server, whatever—there, one at a
time. That lets me run the service in parallel, on both the old and the new hardware,
while testing for issues. That also makes my rollback a one-step process: point the
end-users to the service running on the old machine.

Of course, such luxuries of hardware aren’t always possible. If you’re stuck having
to upgrade a machine in-place, master the art of time travel so you don’t have to
pull your hair out.

Tier your shop

My firm belief in finding problems is, “better now than later.” That’s because a
problem uncovered now (whatever that happens to be) typically requires less has-
sle to fix than that same problem uncovered later.

To that end, categorize your shop’s machines and upgrade accordingly. A smaller
shop may have only “test” and “production.” A larger shop may have more buck-
ets:

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

* Crash’n’burn (test) hosts are the sysadmin playground. No one relies on these
machines, so if an upgrade renders one a smoldering heap, you still get to go
home on time. Try upgrades on these first, just to make sure the process works
as expected.

e If your company creates any software in-house, chances are you have several
development machines where application teams take their code for a test run.
Upgrade these next, and give your developers a chance to address any issues
before you move forward.

* Your test team and business partners use user acceptance test (UAT, or “QA”
for Quality Assurance) machines to try software your developers have written,
as well as some third-party-vended products. UAT is a dress rehearsal for pro-
duction, so the business partners should take this opportunity to determine
whether the upgrade impacts their day-to-day work.

* Finally, production machines are the real deal. They serve content to your
customers and crunch data for your accounting team.

Each phase expands the responsibility of testing to include different parties. Ev-
eryone should have had a chance to try the new OS before it moves to production.
The production upgrade itself should be a very dull but well-scripted play. You
(and your business partners!) want that upgrade to be a non-event.

But what could go wrong?

It’s fair to ask what could possibly go wrong in an OS upgrade. Red Hat spends a
lot of time testing the software before it’s packaged into a release. The Fedora
crowd even lets the public poke at several betas before an official birth announce-
ment. Upgrades don’t typically destroy non-OS files or zap partitions. If you jump
on the bandwagon several weeks after an OS release, then, shouldn’t someone have
shaken out all of the bugs already?

Maybe. Maybe not. Internal Red Hat testing and prerelease Fedora Test cycles
should smoke out egregious errors, such as a broken installer, but even an error-
free upgrade can leave some land mines. You won’t find those until you run
through your own test cycle.

First of all, consider the kernel. It separates the hardware from the rest of the OS,
so without it your machine is an expensive doorstop. Expect an OS upgrade to
install a new, stock kernel. (Atleast, the stock version of a Red Hat-tweaked kernel.)
If you’ve built a custom kernel—for fun, for quirky hardware, for whatever reason
—you’ll have to rebuild it against the new OS version’s kernel source.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

This, by the way, is one reason to stick with stock kernels as much as possible.
You’ll have an easier upgrade path.

Changes in individual software products may also catch you off-guard. OS up-
grades tend to move from one major revision of a product to another. Your favorite
command-line tool—the one called from all of your shell scripts—can change its
options. Some fancy SQL calls that work in PostgreSQL 7 choke in version 8, and
so on. You and your end-users will want to run through any applications to make
sure the newer versions don’t pack any unwanted surprises.

Software changes can just as easily trip up your developers. Any native code that
ran under the previous OS merits a full test suite because changes in libraries (such
as OpenSSL or libcURL) can cause some nasty surprises. In a best-case scenario,
the code will fail to run because the libraries have changed too much between
versions. Worst-case, your native-code apps will load just fine (because the library
function signatures match between versions) but break somewhere in the middle
(because the functions’ innards now do something completely different with that
void * argument).

Configuration files can also complicate post-upgrade life. A change in parameter
names or default values can cause mail to bounce or, worse yet, file it under /dev/
null. If you test the new software first, you can catch this before it becomes a
problem.

Your upgrades don’t have to cause headaches. Once you’ve identified and miti-
gated the risks, you can sleep easy while Kickstart does all of the mind-numbing
work.

Custom Yum Repo

Between the initial OS install and upgrade, you still have some work to do. Software
authors release minor enhancements or bug fixes, called updates, and they can be
tough to manage by hand. This section describes a tool called yum that takes the
sting out of managing updates.

With Kickstart to install and upgrade your machines, and yum to update them,
you could end up with a lot of free time on your hands.

Note that, as of this writing, yum is supported only in Fedora and CentOS. While
it’s possible to install yum on a Red Hat Enterprise Linux (RHEL) machine, the
supported update method is a tool called up2date.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

What Is Yum?

Generally speaking, installing and updating RPMs can be a hassle. That’s because
it’s up to you to track down dependencies (and conflicts!) between packages as
you install, update, and remove software from your system. Yum is a tool that
wraps RPM installs and updates.

For example, suppose that you want to install gtkpod to manage your handheld
MP3 player. gtkpod has several dependencies, though, so unless you already have
Perl, Python, and certain MP3 utilities installed, the rpm command would fail. You
would have to fetch those dependent products’ RPMs, and their dependent RPMs,
and so on until you had satisfied the entire dependency tree. Many failed rpm -i
calls later, you finally have gtkpod installed—or you give up halfway through.

Using yum, this same operation is a one-liner:

yum install gtkpod

A few minutes later, gtkpod is ready to roll. Yum resolves all of gtkpod’s depend-
encies for you, without so much as a whimper. You hardly lift a finger.

Yum also shines in how it handles updates (sometimes called patches). In software
terms, an update is a minor change to a product, such as a bug fix or closing a
security hole. Updates to a software product are between two minor revisions,
whereas an upgrade is a move from one major release version to another.!

Software upgrades typically involve major changes and feature enhancements, and
therefore arrive less often than updates. A full-blown OS upgrade is a mass-upgrade
of software, whereas an OS update addresses a few software products at a time
based on what minor changes are available.

Given what it took to install one RPM manually, you can imagine the hassle of
updating several products at once. Using yum, this is another one-liner:

yum update

Once again, yum will track down updates, as well as their dependencies, and install
them.

How does yum work all of this magic? It first finds the RPMs installed on your
system. It compares this to the available RPMs in a repository (“repo” for short),
which is a collection of RPMs hosted on a remote web site. If there are any newer

"Exactly what is a major or minor release number depends on the product. Consider a revision scheme
X.Y.Z, such as 1.4.12. A new major-revision release may involve a change in the X or Y, compared to
the previous release. A minor revsion may involve a difference in the Y or Z. This is a general guideline,
though, and the only way to really tell what is a major release revision is to note the product’s docu-
mentation.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

RPMs (updates) in the repo, yum fetches them from the repo and installs them on
your system. If yum can’t resolve a product’s dependencies based on a repo’s con-
tents—that is, the repo’s collection is incomplete—it simply doesn’t install that
particular RPM.

The primary public repos are managed by the Fedora and CentOS teams. A default
Red Hat install includes configurations for the public repos. There are also third-
party repos, such as Fedora Extras and livna.org, which host software that com-
pliments the default OS install. With a little work, you can manage your own
internal yum repos, too.

Why Would | Want My Own Yum Repo?

Every time you invoke yum, it contacts an outside, public repo and fetches any-
where from a few kilobytes to a few hundred megabytes of data. This is suitable
for a small home setup with only a couple of machines. With more machines,
though, there are several disadvantages to using the public repos.

First on the list is bandwidth. For every machine you update, you have to fetch
another copy of the same data from the outside world. A typical X.org or
OpenOffice.org update can easily top 100 MB, so with only 10 machines you’ve
pulled an entire gigabyte of data from a mirror and through your routers. Using
an internal repo, you can save bandwidth: download once from the outside world
to your internal repo(s), then as many times as you want from the internal repo
host to other internal machines.

Related to bandwidth is speed. No Internet connection can match an internal 100
megabit or gigabit LAN.

Also consider how much more control you get when you run your own private
repos. Yum fetches the latest version of a package available from a repo, not nec-
essarily the next one up from your installed version. You can’t use the public repos
to update your machines in phases (refer to in the previous section)
because the version of product Foo that yum installs to your test systems today
may not be the same as the one it pulls into production next week. If your machines
fetch from your internal repos, though, you determine the latest RPMs that yum
sees.

Given those benefits, however, using an internal yum repo doesn’t necessarily
provide more security. RPMs carry an internal GPG signature that yum and other
RPM-related tools verify. If someone tampers with an RPM, a test of its GPG sig-
nature will fail whether that package comes from the outside world or an internal
yum repo. While you’re no more secure using your own repo, then, nor are you
any less secure.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

How Do | Set Up an Internal Yum Repo?

Considering all of yum’s magic, setting up an internal yum repo is surprisingly
painless. You copy RPMs from the public repos, generate some metadata based
on those RPMs, and tell client machines where to look for updates. You can serve
the repos (ergo, the RPMs) to other machines via HTTP, FTP, or NFS. I’ll describe
an HTTP setup in this section, though it shouldn’t take much to apply those steps
to a different setup if that’s your preference.

Directory structure

A yum repo is nothing without RPMs. Use wget or any other download tool to
fetch the files from the public repos. For maximum convenience, I recommend
that you wrap this in some sort of cron job, or at least a script you can invoke at
will.

Space requirements vary. Reserve a lot of disk space if you wish to serve repos for
several OS versions. As of this writing, my internal Fedora Core 4 and 5 repos—
mirrors of the base OS, updates, and some third-party sites—are roughly 30 G
each. The Fedora Core 6 repo is a much smaller 12 G, because that OS was just
recently released.

Adopt a hirarchical directory structure to keep this area neat and flexible. A pre-
dictable, standardized setup will make it easier to set up your yum client config
files.

[prefer to have one directory per OS version, then one subdirectory for each chip
architecture (such as 1386, x86_64, and ppc), and then one directory per mirror.
Refer to for an example.

Such a deep structure may seem overkill at first, but it lets me transparently add
mirrors and chip architectures to my repo tree. For example, I don’t run x86_64
machines today, but I'll probably buy a fancy new computer with all of my book
royalties....

Next, make this location available via your web server software. If you already have
one setup for Kickstart, it’s probably easiest to slide the yum repos right alongside
that.

Load the URL in a browser to make sure the files are visible at the location you
expect. For example:

http://your.yum.server/repos/FC6/i386/0s-updates/

Even a handful of yum repos will use a lot of space. Whether you back up this area

is up to you. I’d rather keep an extra 60 or 80 gigabytes of static data on my backup
system rather than recreate it. On the other hand, there’s nothing in a yum repo

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

i--Drepos
i--DFCIS
--[i386
%ufﬁfedora_exnas
%--Dhomegrawn
+ = livna.org
+-[J os-updates
--ix86_64
--[i386
+-[Dfedora_extras
f--Dhomegrcwn
%utﬁhvnaurg
+- 3 os-updates

Figure 2. Yum repo directory structure

you can’t recreate. You can safely omit the yum repos from your backups if you’re
prepared to re-download everything in the event of a disk crash (or sysadmin crash,
such as an errant rm -r or mkfs).

Generating metadata

Yum doesn’t download all of a repo’s RPMs to see what is available. Instead, it
fetches special metadata files that explain what a given repo offers.

Use the createrepo command to create metadata files for your repo. (Install the
createrepo RPM on the machine that will host the yum repos, if it isn’t already
there.) You run createrepo on each would-be repo. For example:

create a repo of our 0S updates mirror
createrepo /path/to/FC5/1386/0s-updates

... then one for our Fedora Extras mirror
createrepo /path/to/FC5/i386/fedora_extras

... and wrap up with our internal copy of livna.org's offerings

createrepo /path/to/FC5/1386/1ivna.org

createrepo will recursively scan the specified directory for RPM files and extract
metadata into XML files. It stores those XML files in a subdirectory repodata just
below the specified directory.

Each repodata directory represents a single repo. In the above example, there are
three repos for Fedora Core 6, 1386 architecture: os-updates, fedora_extras, and
livna.org. Have no fear: you don’t have to manually point yum to each individual
repo. You can configure yum to search several repos at once. Subdividing them as
[have demonstrated helps you keep track of a given package’s source.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Configuring the clients

The last step is to point your client machines to your shiny new yum repo(s). Note
the files in /etc/yum.repos.d: yum automatically picks up any file with a .repo ex-
tension, so you don’t have to take any extra steps for yum to find your config file.

[suggest that you give your file a descriptive name, such as internal-defs.repo, so
you and your fellow sysadmins can easily spot it with a glance. I also recommend
that you do not change the existing .repo files—the ones that shipped with the OS
and point to the CentOS or Fedora mirrors—to point to your own repos. This will
cause confusion later, because most sysadmins will assume those files have nothing
to do with your site-specific repos.

Consider this sample repo contfig file:

[internal-os-updates]

name=Fedora Core $releasever - $basearch - 0S updates
baseurl=http://your.yum.server/FC$releasever/$basearch/os-updates
enabled=1

gpgcheck=0

[internal-livna]

name=Fedora Core $releasever - $basearch - livna.org
baseurl=http://your.yum.server/FC$releasever/$basearch/livna.org
enabled=1

gpgcheck=0

[internal-extras]

name=Fedora Core $releasever - $basearch - Fedora Extras
baseurl=http://your.yum.server/FC$releasever/$basearch/fedora_extras
enabled=1

gpgcheck=0

This file defines three repositories: one for OS updates (updated RPMs for the base
OS), one mirror of the repo at livna.org, and another mirror of Fedora Extras. Use
the repository ID, inside square brackets, to enable or disable the repo on the fly
using yum’s --enablerepo or --disablerepo flags, respectively. The repo name is a
human-readable description of this repo.

Yum uses the baseurl directive to find the repo. This can be an HTTP (http://),
FTP (ftp://), or filesystem (file:///). The baseurl points to the base of the repo.
That is, yum expects the repodata directory to exist just beneath this path. You
can specify multiple base URLSs, separated by spaces, and yum will try each one.
As an alternative, use the mirrorlist directive to tell yum to pull the list of URLs
from an external file.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Words with the $ prefix are variables. These are assigned by yum at runtime.
$basearch expands to the base machine architecture, such as x86_64 for 64-bit
machines or 1386 for machines that run the various Intel-compatible x86 family
chips (such as 386, 486, Pentium 586, 686, and so on). $releasever is the major
release version, such as 5 for Fedora Core 5. Variables help you use a single config
file across multiple machines, and multiple versions of the same OS. For example,
this sample file will work whether it is run on a Fedora Core 4, 5, or 6 machine.
(Refer to the yum documentation for other variables.)

The enabled directive tells yum whether to use this repo (value of 1) or ignore it
(0). Enable or disable a repo at runtime using yum’s --enablerepo or
--disablerepo command-line flags, respectively.

The gpgcheck directive tells yum whether to verify an RPM’s GPG signature (1) or
bypass the check (0). The value is based on a mix of personal preference and sit-
uation. If your RPM download script already checks the signatures as it copies a
file to the repo space (that is, it calls rpm --checksig on each RPM), then it’s rea-
sonable to not bother with the check on the yum client machines. On the other
hand, if you are concerned that someone may tamper with your internal repo—
which would imply other security problems, by the way—then enable the GPG
check. Note that certain third-party RPMs have no signature, so yum will refuse
to install those packages if you enable the check.

Next, disable the other repos. (You don’t want yum to contact the public mirrors
again.) Recall that yum automatically picks up any file with a .repo extension
in /etc/yum.repos.d. For each repo in those files (except your new, internal repo,
of course) specify the enabled=0 directive. People sometimes define repos inline
in /etc/yum.contf, so disable any repos there, too.

Using Your Internal Yum Repo

Before you configure every machine in your shop to point to your new yum repos,
take one machine for a test drive. As root on a client machine, run:

yum list

...to see what RPMs are available in the repos. Next, enter:

yum update

...to have yum fetch and install updated RPMs. This will prompt you before yum
updates anything. To bypass the prompt, such as in a script, use yum’s -y switch:

yum -y update

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

If you have a lot of machines, even typing yum -y update can wear you down. yum
includes a service and some cron jobs that will happily run the updates for you.
To enable them, run the commands as root:

chkconfig --add yum

chkconfig yum on
service yum start

Fedora Core 6 uses a slightly different method. Instead of a cronjob, it includes
the yum-updatesd daemon:
chkconfig --add yum-updatesd

chkconfig yum-updatesd on
service yum-updatesd start

That said, I'm not a fan of letting machines blindly update themselves. Even a
minor RPM update merits some level of testing, lest a nasty surprise slip into a
production system. The later section explains how to wrap
automated yum updates in a layer of change control so you can reap the benefits

of both worlds.

Pre-Patching the Kickstart Installation

As much as I like yum, I don’t like having to call it immediately after a Kickstart
install to patch the OS. Can’t I just install the OS with the updates pre-applied?
The answer is an emphatic yes. This section explains how. (Hint: it’s more so-
phisticated than a call to yum update from a postinstall script.)

Eliminate the Middle Man

yum keeps your system up to date between Kickstart’s OS installs and upgrades.
The Kickstart/yum duo eliminates a lot of your manual labor, but there’s still room
for improvement. An OS release that’s a few months old can have a couple of
gigabytes in updates. Building a machine, then, means you have to follow up a
Kickstart install with an immediate call to yum update.

You could invoke yum from a postinstall script, but that would address just the
symptom and not the disease. You would still have to wait for the build-plus-
update process to complete before you could release a machine to its end-users. If
you’re building several machines at once, this scenario also yields a fair amount of
network traffic. A more efficient build process would have Kickstart use the up-
dated RPMs in the first place, during the OS install (or upgrade). In other words,
Kickstart would use a prepatched tree of install media.

This is certainly possible, and with the right tools and a little scripting skill, it’s
downright easy. You just have to put the updated RPMs in the install tree and

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

regenerate some metadata. The first step can be tricky, but it’s possible to create
a tool that does the hard work for you.

Like Kickstart itself, the value of the prepatched solution is its efficiency. If you’re
building a lot of machines—such as a clone farm, or a nightly rebuild in a lab
environment—you would benefit from the savings in time. For target machines
that are geographically separate from your Kickstart server—in a remote office, for
example—the bandwidth savings will reduce traffic on your long-distance net-
work. You can certainly use a prepatched tree in other, perhaps smaller-scale
situations, but you won’t reap quite the same ratio of effort to outcome.

Preparing Your Prepatched Install Tree

Directory structure

Directory structure is important if you’re building an updated install tree. For one,
you must organize your files such that they’re easy to find and manage. That means
keeping the original OS install files and your yum repos in the same location.
Consider the following structure, which builds on the layout I presented in the
previous section to include the original OS install files:

distros

+- FC6

+- 1386

+- 0S

+- Fedora

+- base

|
+- RPMS

|

|

|

|

|

|

|

+- os-updates
|

+- fedora_extras
|

+- livna.org

|

+- homegrown
X86_64

+- ..

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
+_

O REILLY SllOI't CUtS Managing RPM-Based Systems with Kickstart and Yum 35

The os directory holds the original OS install files. In this example, all artifacts
related to Fedora Core 6—install media, updates, and third-party yum repos—are
in a single place. This isn’t a hard requirement for a prepatched install tree, but
using such a layout means you won’t have to fish around for files when you mix
them into a prepatched install tree later.

Second, the directory structure is important in creating the new prepatched tree.
This directory must also be web-accessible, and must mirror the layout used by
the original install media. The following outlines a directory layout for a prepatch-
ed Fedora Core 6 install under 1386 architecture. Kickstart clients will point to the
fc6-i386-prepatched-install directory. Notice that it has the same Fedora, base, and
RPMS directories as the original OS install media:

+- fc6-1386-prepatched-install

|

| +- Fedora
| |

| +- base
|

|

|
+- RPMS

(Of course, change the Fedora product path to CentOS or RedHat to match your
install media.)

Also notice that I’ve created a new directory for the prepatched install. The original
OS files, under FC6/i386/0s in Figure 1, remain untouched. You want to separate
the pristine, original Red Hat content from your own tweaks. The original content
serves as your baseline should something go awry.

The base directory holds some metadata. Remember that for a moment. First, fill
the RPMS directory with, well, the RPMS.

Introducing novi: sorting the RPMs

Populating the RPMS directory is the tricky part. On one hand, yum gracefully
accepts multiple versions of the same RPM in the same tree. If yum sees Product]-
MU versions 1.1 and 1.2 in a repo, it will hand you the latter version. By
comparison, the Anaconda installer (ergo, Kickstart) doesn’t do that kind of math.
[t wants to see one version of each RPM in the install media tree. If you want a
prepatched OS install, you have to help Anaconda along.

One way to do this is to mix the original RPMS and updates into the RPMS direc-
tory and manually weed out the older versions. Please spare yourself the trouble.
You’ll lose all of the time you saved by using Kickstart and yum in the first place.
Remember how painful it was to track down dependencies for a single RPM (see
the earlier section,)? Imagine doing that for all of them.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

[say, leave that grunt work to computers. They have no problem crunching
through mindless, repetitive tasks while you’re at the pub. I didn’t find a tool that
would create the install tree the way Anaconda needed it, so I wrote it myself and
named it novi.

The name novi comes from the Russian word HOBbI, which means new. (It’s
common to use the Latin character y as an equivalent of the Cyrillic uri, or bI, but
[wanted something a little different.) Novi scans a tree of RPMs and extracts the
newest (latest version) of each product. You can use novi to create a prepatched
OS install tree.

(There may be other such tools, but [haven’t found one yet.)

Novi’s command-line syntax is straightforward: point it to one or many trees of
RPMs, and tell it where to put the latest-version RPMs of that set. For example:
novi -a {action} \

-t {toplevel dir of prepatched tree} \

{directory #1 of RPMs} \

{directory #2 of RPMs} \
{more RPM directories...}

Given the directory structure described earlier, that would be:

novi -a hardlink \
-t/fc6-i386-prepatched-install/Fedora/RPMS \
..../FC6/0s/Fedora/RPMS \
..../FC6/updates

This tells novi to scan the base OS install and updates directories for RPMS. Tt will
sort out the latest version of each product, and hard-link those RPMS to the Fedora/
RPMS subdirectory of your prepatched install tree. Hard-linking saves space and
I/O time, because it creates pointers to the original files instead of copying them.

Novi is available for download from my web site [http://
www.ExMachinaTech.net]. The site also hosts novi documentation and examples.

Grab a quick drink while novi churns your hard drive, then generate your meta-
data.

Similar to yum, Anaconda (ergo, Kickstart) uses files of RPM metadata to deter-
mine what software products are in the install tree. The final step in creating a
prepatched install tree is to regenerate this metadata based on your new, novi-
populated RPMS directory.

To start, copy the contents of the base directory from the original install tree to
your new tree:

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

http://www.ExMachinaTech.net

cp -ip /path/to/FCé6/0s/Fedora/base/* \
/path/to/fc6-1386-prepatched-install/Fedora/base

Fedora Core 6 has moved a file outside of the base directory. Be sure to copy images/
stage2.img to your tree, as well:

mkdir /path/to/fc6-i386-prepatched-install/images

cp -ip /path/to/FC6/0s/Fedora/images/stage2.img \
/path/to/fc6-1386-prepatched-install/images

For Fedora Core 5 and 6, run createrepo on the top-level directory of your pre-
patched install tree:

cd /path/to/fc6-1i386-install
createrepo -g Fedora/base/comps.xml ${PWD}

The -g flag is new. It tells createrepo to include some information about the comps
file in the usual repo metadata. (If you’ve been skipping around, see the earlier
section for more about this file.) Should an install complain
that it can’t find “group data,” it’s really telling you that you forgot to run
createrepo with the -g switch.

The CentOS 4 installer is a little older, more like the Fedora Core 3 setup, so it
doesn’t use the repo metadata for this step. Instead, it uses the old-style hdlist files.
To regenerate these, run the genhdlist command on the top-level directory of your
prepatched install tree:

genhdlist /path/to/centos4-i386-install

Note that the hdlist files include RPM filenames in addition to the product names
and versions. If your install tells you that it can’t find package Foo v1.1.1 and you
have Foo v1.1.2 in your prepatched tree, you forgot this step.

Take it for a spin

After all that hard work, why not take your new, prepatched install for a test drive?
Grab a test machine and point it to the new tree. Assuming the FC6 examples
above, specify the repo URL in your ks.cfg file:

url --url=http://your.kickstart.server/fc6-i386-install/

at the ever-familiar boot: prompt. A short while later, your machine will (re)enter
the world complete with the latest updates already applied. While the install runs,
you can take a few minutes to calculate how much time you’ve saved by adopting
Kickstart, yum, and a prepatched install process.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Safely Automating Yum

Scheduled, unattended updates may yield surprises. (While great for parties and
gifts, surprises are often unwelcome in the infrastructure realm.) This section ex-
plains how to bask in the convenience of automated yum updates yet mitigate the
risks.

Automating Yum’s Updates

It’s hardly a challenge to run yum update now and then on your machines. The
more machines you have, though, the more time you spend on accounting: did I
update machine X or machine Y last week? Did I ever update machine Z?

Yum includes some cron jobs to automatically invoke OS updates. Enable them,
and you no longer have to remember to run the updates yourself. Then again, do
you really want that? Previous sections have touched on the potential risks of OS
updates, and the need for testing. Chances are that you already have a cronjob that
pulls updated RPMs from the public repos and into your local yum repos. If you
automate the yum updates as well, you lose the testing phase because your ma-
chines will just pick out the newest RPMs from the repo. Will tomorrow’s (cron’d)
yum update bring a new quirk or expose an incompatibility with a vended product?

Strange though it may seem, you can have the best of both worlds. By building on
some concepts from the previous section, your involvement in enterprise change
control boils down to flipping some symbolic links. You just have to treat a col-
lection of updates as a single release.

Cutting a Release

Having spent my career in or around software development teams, I tend to think
in terms of product release cycles: “What’s still in a test phase?” versus “What’s
stable, so we can release it to a customer?”

Just about any software, whether shrink-wrapped or downloaded, free or com-
mercial, has a version number. In turn, that version number is tied to a given set
of features and maybe some bugs. (The latter is especially true if said product is
more than a few weeks old.) A major revision (“version 1”) has new features and
sweeping changes, whereas a minor revision (“version 1.1” or even “1.2.13”) is one
or more bug fixes for a major revision.

The same version concept holds true for operating systems. The catch is that, in
the Red Hat world, the OS only gets a major release number: 4, 5, 6, and so on.
There’s no such thing as Fedora Core 4.2 or 5.1. Instead, the bug fixes within a
given release come through the comprised products—the RPMs—not the OS it-
self. This lack of an explicit service pack level is both a blessing and a curse. The

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

blessing is that Red Hat doesn’t make you wait for a monthly or quarterly all-
encompassing update. If Product X has an update that’s ready to roll today, Red
Hat can release it today.

The curse is that, if you crave change control, you have to roll your own service
packs, minor revisions, or whatever you choose to call them. Luckily, this is
straightforward and almost easy. Remember the prepatched install tree from the
earlier section, ? Simply tack some identifier,
or label, on the end of the directory name and voild you have a release.

There are myriad ways to devise a label. The best guidelines I can give you are to
be consistent, and choose a scheme that natually lends itself to easy incrementing
—such as letters or numbers.

[personally prefer to use the date as my labels; they represent all of the OS updates

up to a certain point in time. For example, if I create an install tree for Fedora Core
5, 1386 architecture, with all of the OS updates as of 2006/12/18, I would name
that directory fc5-i386-20061218.

[would then build a prepatched install tree in this directory, and run createrepo
at the top to yum-enable it. Then, I could Kickstart new machines and update
existing machines to the “Fedora Core 5, 1386 architecture, 20061218 release.

As long as I point Kickstart and yum clients to this tree, I can test against just this
release. I can download new updates in preparation for a future release, but ma-
chines won’t see that release tree until I explicitly point them to it.

Adding the Change Control

It’s painful (and error-prone) to update the yum client configurations manually
every time you cut a new release, though. That’s where the magic of symbolic links
completes the picture. Create a symbolic link, as from fc6-i386-latest to fc6-
i386-20061218 and point all of the yum configs—that is, the baseurl directive in
the yum repo definition file, in /etc/yum.repos.d—to the URI fc5-1386-1atest. The
link’s target will change when I cut a new release—perhaps on 2006/12/21—but
yum is none the wiser. Behind the scenes, fellow sysadmins can glance at the di-
rectories and see that we’ve updated all machines to the 2006/12/18 release.

In a small shop, having just a -latest symlink will suffice. Larger, more conservative
shops may want a more formal test cycle. This only requires a couple more sym-
bolic links and changes to the machines’ yum configurations:

* Test machines point directly to the dated directories. Sysadmins manually
update the yum configs to test-drive each new release.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

* Development hosts point to a symlink named -dev, such as fc5-i386-dev. The
yum baseurl configuration directive points to the URL:
http://your.yum.server/..../fc5-i386-dev
e UAT machines point to a similar symlink, with a -uat suffix.

* Production hosts point to -production symlink. The paranoid among us may
even split production into alternate groups, such as -production-A and -pro-
duction-B.

In turn, to promote a given release—a dated directory—point one of the named
symlinks to it. After you’ve kicked around release 20061218 in the lab, point the
dev link to it, as in fc6-i386-dev to fc6-i386-20061218.

You can now run yum update on a (properly configured) dev machine all you want.
The named symbolic link is a set of blinders for yum: it will only see the yum repo
tree behind its named symbolic link. Logically following, the same concept applies
to UAT and production.

In turn, then, you can safely enable yum’s cron jobs. You will never be surprised
by an OS update because you know in advance what’s init. You're free to let yum’s
cron jobs run unattended and, largely, unwatched because your change control is
at the server level, not the client level.

Before You Start...

It’s easy to let your change control process lull you into a false sense of confidence.
There are still two gotchas to automating yum, though they’re easy to tackle if you
plan ahead.

The first gotcha is related to time. As a sysadmin, you’re still on the hook to define
and publish an update schedule. You know when the cron jobs are set to run, but
what about your business partners? Having a regular, well-known maintenance
window follows the Principle of Least Surprise: people know that, from 11 p.m.
to 4 a.m., the systems may be out of service.

Also, will yum collide with other cron jobs? Try to schedule yum to run after busi-
ness-critical functions—whether they be end-of-day runs or even your backups—
are complete. In the rare event that an update goes awry even after all of your
testing, you will have less distracting pressure to recover a system if no one needs
it for several more hours.

Second, vended software is sometimes slow to catch up to changes in the OS.
Chances are, you don’t have much leeway to prod these products’ vendors. If your
testing reveals that a given OS update conflicts with a vended package, then you
should disable that machine’s yum cronjobs.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

On a related note, this is one more reason to create test environments for your
vended products. Similar to an OS upgrade, the only straightforward and reliable
means to undo a yum update is to restore from backup. (Yes, you could hand-tinker
with the RPM system and force some package downgrades, but that may lead to
an even greater mess.)

These two gotchas are easy to address before they become an issue. Resolve these
in advance, and you can sleep easy while yum does your work for you.

ks.cfg Syntax

This final section describes the ks.cfg parameters I mentioned in the earlier section

Fora more detailed reference, please see the Red Hat Linux 9 Customization Guide
on Red Hat’s web site [http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/custom-guide/s1-kickstart2-options.html]. This document refers to an
ancient Red Hat release, but it is nonetheless still relevant.

Installation Type

The first entry in a ks.cfg describes the installation type. It is either install for a
fresh install, or upgrade for an upgrade.

Install Media
The keywords url, harddrive, nfs and cdrom tell Kickstart where to find the install
media.

url --url={target URL}

Use this to fetch install media from a remote web server (http://) or FTP server
(ftp://). The web server option is the most flexible of the methods listed here,
as it lets you call a server-side program (CGI, Servlet, PHP, etc.) to generate
ks.cfg on the fly.

harddrive --partition={partition} --dir={directory}
Kickstart will mount the disk partition (such as /dev/hdd1) and look for the

install media under the specified directory. Note that you don’t specify the
leading /dev/, just the device name itself.

nfs --server={NFS server} --directory={dir}
Similar to the harddrive parameter, except Kickstart mounts an area from the
specified NFS server instead of a local disk partition.

cdrom

Pull the data from a CD or DVD.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/s1-kickstart2-options.html

Note that the target URL or directory specifies the top level of the install media.
This URL or directory must have the product path (RedHat, Fedora, or CentOS)
as an immediate subdirectory.

If your DHCP server doesn’t assign nameservers, use raw [P addresses for the
url and nfs installations.

For nfs or url installs on multihomed target machines, add the ksdevice kernel
parameter at the boot prompt:

linux ks=.... ksdevice=eth1

Kickstart will otherwise pause to ask you which NIC to use.

Languages and Input

lang and mouse indicate the language and mouse type, respectively, the installer
will use. By comparison, langsupport and keyboard set the runtime (installed) lan-
guage support and keyboard type.

The install-time language and mouse settings don’t matter for Kickstart installa-
tions since you don’t interact with the installer.

On the other hand, if you’re manually stepping through an installation (for debug
purposes), then enter useful values here. Assuming standard desktop hardware
and an English-speaking sysadmin, these values should suffice:

lang en_US.UTF-8
mouse generic3ps/2

Refer to /usr/share/redhat-config-language/locale-list for the list of valid languages.

The runtime (permanent) language and keyboard settings certainly do matter.
Specify a single language (en_US) or a default plus other languages (--default en_US
en UK fr FR). Specifying only a default (--default en_US) installs support for all
languages.

langsupport --default en_US.UTF-8keyboard us

Video

For a workstation build you’ll likely use xconfig to configure your video card and
monitor.

xconfig --card "VMWare" --videoram 16384 --hsync 31.5-37.9
--vsync 50-70 --resolution 800x600 --depth 16

(I've split the above line for readability; it should be a single line in ks.cfg.)

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

xconfig takes the card’s name (listed in /usr/share/hwdata/Cards) and video RAM
in kilobytes. The remaining parameters specify the monitor’s horizontal and ver-
tical sync rates, resolution, and color depth in bits.

Use the skipx directive to skip this step (say, for headless servers). You can man-
ually configure X later.

Networking

The network directive configures the target host’s network information. If you
booted from a DHCP server for a url or nfs install, network will set the machine’s
permanent configuration. On the other hand, if you load ks.cfg from local media,
network configures the build-time and permanent network settings.

Consider the directive:

network --device etho --bootproto static --ip 10.10.10.237
--netmask 255.255.255.0 --gateway 10.10.10.254
--nameserver 10.10.10.11,10.0.0.23,10.1.0.34
--hostname fci-test
This configures the interface etho with a static IP address of 10.10.10.237. Notice

that the nameserver selection accepts a comma-separated list of IP addresses.

Configure other interfaces by specifying different devices with --device. You
needn’t supply any network information when --bootproto is dhcp or bootp.

Authentication
Set the root password with the rootpw directive. There are two forms:

rootpw PlainText

rootpw --iscrypted 1NaC1$X5jR1REy9DGNTCXjHp0O75/

The first form uses the supplied value as the root password, which it then stores
in /etc/shadow as an MD5-hashed value. The second form, which uses the --
iscrypted flag, tells Kickstart you have already hashed the password. That is, copy
the supplied value verbatim to /etc/shadow. Using the latter form saves you from
exposing your root password directly in ks.cfg, but in theory, a person who has
access to the MD5-hashed version could still try to reverse it. This is one reason,
as mentioned inthe earlier section, , to use a
special build-time root password that you can later reset: it limits your exposure
in the event that ks.cfg is intercepted.

There are several ways to hash the password in advance, such as copying an existing
entry from /etc/shadow or using OpenSSL’s passwd module:

$ openssl passwd -1 -salt "NaCl" "don’t use this"

Without the --iscrypted flag, Kickstart will use the specified password as is.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

On a related note, authconfig determines how to authenticate users. This line sets
the target host to use MD5-hashed passwords from the local /etc/passwd and /etc/
shadow files:

authconfig --enableshadow --enablemds

There are other authentication options, such as NIS, LDAP, and Kerberos 5.

Firewall

The firewall directive sets up a rudimentary ruleset, which is useful for a machine
that will talk to the outside world:

firewall --enabled --trust=etho --http --ssh

This rule explicitly trusts traffic from interface etho. The firewall will permit in-
coming SSH (port 22/tcp) and HTTP (80/tcp) traffic on all interfaces.

Specify firewall --disabled to manually configure the firewall later or to skip it
altogether. More often than not, it’s easier to set up the firewall yourself after the
install and per the machine’s role(s), rather than trying to piece it together at build
time.

Time Zone
Set the machine’s time zone with the timezone directive:
timezone Europe/Paris

Valid time zones are in the TZ column of the file /usr/share/zoneinfo/zone.tab.

Boot Loader

The bootloader directive sets the location of the GRUB boot loader. This line places
it in the master boot record (MBR):

bootloader --location=mbr
If you don’t want a boot loader, specify --location=none. Remove an old boot
loader from the MBR with the separate zerombr directive.

Disks

Disk setup is the most complex part of a ks.cfg because there are so many machine-
and environment-dependent choices.

clearpart removes disk partitions.

clearpart --all --drives=sda --initlabel

clearpart can remove only Linux partitions (--1inux) or all existing partitions (--

all). It removes partitions from all drives unless you specify the --drives flag. The
--initlabel flag works for previously unused disks or disks with foreign partition

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

schemes: it clears out the old partitions and sets up a scheme that Linux can un-
derstand.

Omit clearpart to preserve existing partition boundaries.

part sets up partitions. The sample ks.cfg uses a simple two-partition layout and
has a separate swap partition:

part /boot --fstype ext3 --size=100 --ondisk=sda --asprimary

part / --fstype ext3 --size=1024 --grow --ondisk=sda --asprimary

part swap --size=128 --grow --size=256 --ondisk=sda --asprimary

The first parameter specifies the mount point, here /boot, /, and swap. (Linux
doesn’t really mount swap space, but that’s a minor technicality.) Set the file-
system type with the --fstype flag. The sample uses ext3. Other options include
ext2 and vfat (as used in Windows). Swap doesn’t use a file-system type.

Specify a partition’s size in megabytes using the --size flag. Specify the partition’s
physical disk with the optional --ondisk flag. Mark your primary partitions with
--asprimary.

part’s --onpart and --noformat flags preserve existing partitions between Kickstart
installs. For example, here’s how to mount the preexisting hda7 as /home:

part /home --fstype ext3 --size 1024 --onpart hda7 --noformat

Note that this won’t shuffle data to another part of the disk if other partition sizes
change. Instead, it tells Kickstart to leave hda7’s partition boundaries intact and
to skip creating a new filesystem there using mkfs.

Here is a simple one-disk LVM setup:

part /boot --fstype ext3 --size=75 --asprimary
part pv.00 --size=1 --grow --asprimary

volgroup vgroot pv.00
logvol / --name=root.fs --vgname=vgroot --size=1024
logvol swap --name=swap.vol --vgname=vgroot --size=256

The second part directive sets up a partition as an LVM physical volume (PV). The
--grow flag grows this partition to the maximum allowable size, so that you needn’t
know the disk’s size ahead of time. part still requires a size, though, so it uses a
bogus PV partition size of 1 MB.

logvol is LVM’s part equivalent: it accepts the logical volume’s mount point and
size, in addition to the volume group to which it belongs. logvol’s --name flag
names the volume.

Note that the generated /root/anaconda-ks.cfg on the target host comments out
disk layout.

O REILLY SllOl't CutS Managing RPM-Based Systems with Kickstart and Yum

Rebooting

The reboot directive forces the target host to reboot when the installation com-
pletes. Don’t forget to remove the installation media, lest the machine reboot right
back into the installer.

Troubleshooting

Use the interactive directive to work through a troublesome Kickstart configu-
ration. Kickstart will use the values from your ks.cfg but let you manually click
through screens.

Package Selection

The %packages directive specifies which RPMs to install on the target host. You
may select packages individually or en masse as groups. To specify a group, prefix
the name with the @ symbol and a space. Precede a name with a minus symbol
(-) to exclude that package from the group.

%packages

® dialup

kernel

grub
e2fsprogs

The Fedora/base/comps.xml file, from the install media, defines package groups.
Package selection is another area in which it is easiest to perform a manual instal-

lation once, then mine the resultant /root/anaconda-ks.cfg file for information.

Pre- and Postinstall Scripts

The %pre and %post directives mark the beginning of pre- and postinstall scripts,
respectively. See the earlier section for details.

O REILLY SllOI't CUtS Managing RPM-Based Systems with Kickstart and Yum 47

	Manual Versus Automated
	Why Kickstart and Yum?
	Is This Too Good to Be True?
	Will I Be a Kickstart Guinea Pig?
	I’m Sold. Where Do I Get Them?
	How Do I Work All of This Magic?

	Automating the Build
	Ingredients
	Install Media
	Directory structure
	Serving it up

	Creating the Config File
	Connecting the Dots
	Boot!
	Load the configuration
	Let it run

	Troubleshooting

	Customizing Your Kickstart Install
	Pre- and Postinstall Scripts
	Custom package groups
	Custom RPMs
	Dynamic ks.cfg
	Kickstart Security

	Kickstart Upgrades
	About Kickstart upgrades
	Preparing for a Kickstart upgrade
	Before You Turn It Loose…
	Get a backout plan
	Tier your shop
	But what could go wrong?

	Custom Yum Repo
	What Is Yum?
	Why Would I Want My Own Yum Repo?
	How Do I Set Up an Internal Yum Repo?
	Directory structure
	Generating metadata
	Configuring the clients

	Using Your Internal Yum Repo

	Pre-Patching the Kickstart Installation
	Eliminate the Middle Man
	Preparing Your Prepatched Install Tree
	Directory structure
	Introducing novi: sorting the RPMs
	Take it for a spin

	Safely Automating Yum
	Automating Yum’s Updates
	Cutting a Release
	Adding the Change Control
	Before You Start…

	ks.cfg Syntax
	Installation Type
	Install Media
	Languages and Input
	Video
	Networking
	Authentication
	Firewall
	Time Zone
	Boot Loader
	Disks
	Rebooting
	Troubleshooting
	Package Selection
	Pre- and Postinstall Scripts

