Linux System
Administration

for the 2020s

The Modern Sysadmin Leaving
Behind the Culture of Build
and Maintain

Kenneth Hitchcock

r\p Ieéss

CHAPTER 1

Linux at a Glance

Where did Linux come from? Where is Linux going? Why should you not
be afraid of using Linux?

These are important questions to anyone new to Linux or anyone
who is looking to understand more about this amazing operating system.
Linux has and continues to change the world; the opportunities Linux has
already brought are astounding, but what it still has to offer is what truly
excites me. Together with open source communities, Linux will continue
to evolve, grow, and encourage innovation from millions of developers
creating new projects across the globe. With the open collaborative nature
of the open source world, we will be capable of anything. No problem can
be too big.

During this first chapter, we take a look at the differences between
community and enterprise Linux distributions. We will discuss why
enterprise Linux is preferred by some and why community distributions
are preferred by others. We will look at the different approaches some
distributions have taken in how the operating system should be managed
and understand why variations of distributions have spawned. Finally, I
hope to help you understand the possible reasons why someone would use
community or enterprise Linux distributions.

© Kenneth Hitchcock 2022 3
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_1

https://doi.org/10.1007/978-1-4842-7984-7_1#DOI

CHAPTER 1 LINUX AT A GLANCE

Brief Unix to Linux History

Long before Linux was even thought of, the world had Unix. Unix very
much like Linux was created out of necessity.

Multics, a time-sharing operating system built by a few organizations,
namely, GE, MIT, AT&T, and Bell, was not the success all had hoped it
would be. Ken Thompson, Dennis Ritchie, and his colleagues walked
away from the Multics project and started working on what we know today
as the Unix operating system. During the 1970s, various changes and
improvements were made that eventually led to Unix being taken more
seriously. New compilers were added like C, which incidentally became
the catalyst for new versions of Unix to be written with it.

One big sticking point for early Unix was around legal restrictions. Bell
Labs was not able to sell Unix as a product unfortunately. This, however,
did not stop Unix source code from miraculously making it out to the open
world. It was rumored that Ken Thompson, who had many requests for the
operating system code, finally relinquished and sent media with the Unix
code to whoever requested it, often with a note “Love Ken.” This “open”
approach would of course catch on in later years, but more of that in a bit.

As with any new software development on a new project, there will
always be different developers with different ideas on how things should
be done. Unix development was no different, so naturally standards were
nonexistent. The different development ideas and directions in the various
Unix platforms were most prevalent during the 1980s when the three major
variations of Unix came into existence. They were System V, BSD, and
Xenix. In the 1990s, common sense finally prevailed, and COSE (Common
Open Software Environment) was formed to set the standards of the Unix
operating system. With these new standards in place, the Unix operating
system went from strength to strength. Unix was being worked on as a
global effort and no longer by individuals.

The beginning of Linux is not too different from Unix. Unlike how Unix
was a fork of Multics, Linux is Unix reinvented from the ground up.

CHAPTER 1 LINUX AT A GLANCE

In the early 1990s, a Finnish student at the University of Helsinki
named Linus Torvalds became fed up with the operating system choices
available. Linus wanted to use Unix, but unfortunately or fortunately,
depending on how you see it, Unix was far too expensive for a student. Left
with only one choice, Linus started to build his kernel “Just for fun”! from
scratch.

Around the same time as Linus was writing the Linux kernel, an
American software developer by the name of Richard Stallman along with
the FSF? were developing their own operating system called GNU. Linus
and Richard Stallman along with the FSF were ultimately working toward
the same goal, though from different ends. Linus built the kernel, and
Richard with the FSF was building the utilities. The combination of these
utilities and the kernel led to the creation of the first Linux operating
system, “GNU/Linux.”

Open Source

Open source does not mean “free.” The fact that the software has no cost
does not mean the software has no value; it means the source code is open
and not locked away in a proprietary vault somewhere.

If the software has no cost, then what'’s the point, right? How can
someone make money from it?

This is where companies like SUSE, Canonical, and Red Hat make their
money. They sell subscriptions for the support of their distributions but
don’t actually sell the software. You can use Red Hat Enterprise Linux, for
example, without a subscription, and you can update the operating system
from community repositories with no problem. You can’t, however, ask

Red Hat to support you. For that, you need to pay.

Just for fun is the name of the book written by Linus Torvalds
“Free Software Foundation

CHAPTER 1 LINUX AT A GLANCE

Linux Is Everywhere

Almost everything we use today from smartphones to laptop computers or
the kiosk terminals we buy our movie tickets on at the cinema all share one
thing in common: they all use Linux. Well, almost everything. I still see the
odd Windows “BSOD” when I walk through the London underground. My
point is, we use Linux or see it almost on a daily basis without knowing it.
Linux is often used in train stations and airports for advertising boards, but
did you realize the entertainment systems used on your flights are often
Linux driven too? Maybe not the best example if you spent an eight-hour
flight with no entertainment.

Linux systems like these are easier to develop and improve, and as
the communities who maintain them are constantly working on bug fixes
or new projects, this kind of development model drives innovation and
constantly encourages investment from larger organizations to develop
new ideas.

Hardware vendors are also beginning to understand why open
source is better and are constantly looking into ways to make use of open
source tooling. This cannot be stressed enough in the mobile or cell
phone market.

In 2013, the Android market had 75% of the market share; today,
that number is still around 72%. That is still an extraordinarily large
percentage of the global smartphone market. Over five billion people use
smartphones. That is, about two thirds of the planet’s population use a
mobile device. 72% of those devices use Android. This means that almost
half of the world’s population is using Linux right now.

Smart T'Vs, tablets, home automation devices, and IoT devices are not
to be excluded either. Open source software has enabled these platforms
and gadgets to grow increasingly more popular. Companies like Google,
Amazon, and Philips are a few that have released really good products for

CHAPTER 1 LINUX AT A GLANCE

simple home automation. People who are least technical today now have
the ability to configure their home to allow lights to come on by schedule
or motion.

It still seems like something from a sci-fi film when I see that a kettle
can be set to boil water in the morning before even getting out of bed.

If that doesn’t interest you, imagine a smart device with a robotic arm
controlled by a virtual chef that can be commanded to cook your dinner
from a menu.

Itis not just the innovation in our homes that is impressive, it is the
automation that is going to change the world that excites me. I recently saw
new automation tooling to manage a vegetable garden. The software used
can detect and command a robotic system to remove weeds, water the
vegetables, and spray pesticide.

These innovative devices and ideas have deep roots in open source
and Linux. The availability of hundreds if not hundreds of thousands of
developers and hobbyists has shown that collaboration far outperforms
any proprietary software company development efforts.

These examples I mentioned are small scale now, but imagine at full
scale; imagine hundreds of acres of farmland being automated to grow
food or automated restaurants with robotic chefs that can cook anything
you can select off a menu. Yes, there is always the human factor that could
face the brunt of this innovation, and there too is an answer for that. By
automating and innovating ourselves out of jobs, we are building systems
and platforms to feed and clothe us. Just like our technology is evolving, so
must we. Where the farmer toiled in the field, they now can spend the time
enhancing the machine learning that drives the automation. The farmer
now can spend more time with their family or innovating better farming
techniques.

By following open source practices and giving back to the community,
farmers can expand and feed more people. Building community projects and
sharing with the planet only increases the ability for the eradication of starvation.
It’s these innovations that make the future bright and open new doors.

CHAPTER 1 LINUX AT A GLANCE

These ideas allow us to tackle difficult world problems and do what we
as intelligent sentient beings should do. Improve the world we live in, not
destroy it.

Community Linux Distributions

As the name implies, community Linux distributions, or “distros” as they
are better known, are developed and supported by the community for the
community.

This is great, but what does the term “community” actually mean?

Community

The “community” is a name generally given to a collective of people

who do not work for a single organization to develop a product. Well, I
suppose that is not entirely true. Some organizations like Red Hat sponsor
communities to develop and work on community products to act as their
upstream variants. These communities do prefer to focus more on the
term “project” than “product.”

Upstream

Another word thrown around in the open source world is “upstream.”
“Upstream” is a term used to describe what an enterprise product is
based on. This doesn’t mean the enterprise product is a direct copy of
the upstream product either. The upstream is considered more of the
“bleeding edge” or innovation breeding ground, typically used to prove
and test new product features before being pushed into enterprise
products.

CHAPTER 1 LINUX AT A GLANCE

If a product sponsor, like Red Hat, likes one of the upstream features,
they take the code from the community and work the new feature into
the enterprise equivalent. These features are then tested and reworked
to ensure they are enterprise grade before releasing new versions to
customers.

It is worth mentioning that the enterprise products often have different
names than their “upstream” equivalents. Take the example of Fedora
Linux. Fedora is considered the upstream for Red Hat Enterprise Linux
or RHEL.

Community Contributors

For a community to exist or provide a product, the community needs
contributors. Community contributors are typically software developers,
hobbyists, or people who enjoy building and developing projects in their
spare time. These contributors dedicate their spare time giving back code
for anyone to use. For them, it’s all about getting their work out to as many
people as possible and sharing.

Note One other thing to note is that giving back to the community
doesn’t only mean writing code. Being part of a community could be
anything, provided you can contribute to the project or community

in @ meaningful way. It could be a monetary donation or giving up
some of your time to host a meetup. Anything that can help grow the
project will have value.

CHAPTER 1 LINUX AT A GLANCE

Common Distributions

At the time of writing, there were around 600 Linux distros available, give
or take a few. Many are forks of more well-known distros, and some are
forks of forks of forks.

As mentioned a few times already, open source is all about being open
and having code available for anyone to use. This is why it’s possible for
anyone to create a new distro; in fact, there are distros that help you create
distros.

One thing all distros have in common is the Linux kernel. So it all still
comes down to what Linus is releasing. You are welcome to try to create
your own kernel; I'm sure many have tried, but sometimes it is best to not
try to reinvent the wheel, especially if it is still working well enough. There
may come a time when the kernel needs to be reengineered, but till then
we will trust in Linus.

The kernel is one of a few things that is the same across most if not all
Linux distros. Differences that do exist between Linux distros are around
package management systems. Linux distros like Red Hat Enterprise Linux,
Fedora, and CentOS/Rocky use the RPM-based package management
system. Distros like Debian and Ubuntu use their deb-based package
management system.

Another less-known packaging system that seemed to be getting a bit
of traction is Pacman. Pacman is currently being used by the gaming distro
SteamOS and Manjaro.

With all the distros available, it's important to know where each distro
came from and what that distro was built for. As mentioned earlier, Fedora
isregarded as the “upstream” for Red Hat Enterprise Linux, but this is
not what it was initially intended for. Fedora was first released in 2002 by
Warren Togami as an undergraduate project. The goal of the project was
for Fedora to act as a repository for third-party products to be developed
and tested on a non-Red Hat platform.

10

CHAPTER 1

LINUX AT A GLANCE

Other distros have been built purely for security, like Kali Linux built

and configured for penetration testing. A distro like Puppy Linux was built

to be a cutdown distro to allow users to run a “lighter” Linux on older

slower hardware.

As a small taste to that mindmap of all the Linux distros available, the

following is a small part of the distro family tree for RPM-based distros.

This table does not take into account the forks of forks of forks that have

happened from these.

RHEL/Cent0S Fedora openSUSE Mandrake
Asianux Berry Linux SUSE Linux Enterprise ~ Mandriva
Clear0S BLAG Linux Desktop Linux
Fermi Linux LTS EnGarde Secure SUSE Linux Enterprise ~ Mageia
Miracle Linux Linux Server ROSA Linux
Oracle Linux Fuduntu SUSE Studio OpenMandriva
Red Flag Linux Hanthana GeckoLinux Unity Linux
Rocks Cluster Korora
Distribution Linpus Linux
Rocky Linux Linux XP
Scientific Linux MeeGo
Amazon Linux 2 Russian Fedora

Remix

Trustix

Yellow Dog Linux

Which Distribution Is Best for You

With all the distros available, for any new users the choice of which distro

to choose could be a daunting task and may just end up scaring the

potential new user away.

11

CHAPTER 1 LINUX AT A GLANCE

So how do you go about choosing the correct distro for you?

To make the decision on what distro is best for you, you need to ask
yourself the right questions.

The following are a few questions that I like to consider when choosing
a distro. I'm sure there are many more good ones, but these I think are a
good start:

1. Is this going to be used to expand my knowledge or
just replace what operating system I currently have?

2. DolIneed to use any Windows products?
3. Will I be gaming on the platform?
4. How much control do I want from the platform?

5. How much do I want preinstalled and configured?

Before Committing

The best approach for any new user moving to Linux, who may not

be familiar with Linux or open source tools for that matter, is to do a
staged approach. Start by changing to open source tools on your current
operating system. Change to using a Firefox browser or use Thunderbird
for email. Find open source alternatives to products you currently use and
get familiar with them. Once familiar with the new tools, then switching to
Linux will seem less of a culture shock.

Tip Make a list of all the tools you use and search the Internet
for open source alternatives, then switch one by one. Try different
products if some are not right for you or spin up a virtual machine
with a distro you think works for you and test your alternative
tools there.

12

CHAPTER 1 LINUX AT A GLANCE

The Three Linux Distro Categories

In my personal opinion, there are three categories of Linux distros you

can use:

o The simpler “out-of-the-box” distros with everything
working from day one

¢ The “almost out-of-the-box” options which have almost
everything you need but require some tweaks

e The “challenge accepted” distros, where everything
from the install to configuration takes time, patience,
learning, and experience

Option One: Out-of-the-Box Distros
Easy to Understand

For new users of Linux, you will want to look at something that is simple to
install and easy to understand, something that just works well “out of the
box”” Distributions like Ubuntu, Zorin OS, and Elementary OS are simple
to use. All in some respects have similarities to Windows which could
make the switch a bit easier for users from a predominantly Windows
background.

Installation Should Not Require a Degree

The other important aspect to finding the best distro for first-time Linux
users is that the distro needs to be easy and uncomplicated to install.
There are not many hardware vendors selling laptops or desktops with
Linux preinstalled, so it’s important the user can install the distro without
getting frustrated. The install should be as simple as booting from a DVD
or USB and clicking install. A simple install will help when the inevitable

13

CHAPTER 1 LINUX AT A GLANCE

reinstall is required. No new user is going to want to install something
overly complicated involving in-depth configuration steps. A simple, next,
next, finish install will do.

Try Ubuntu

Ubuntu, for example, is a good choice for someone new to Linux. The
install is simple, the methods of creating install media are not overly
complex, and there are enough one-minute google searches to find
answers on how to create bootable media. The installation itself does not
require much thought; defaults work quite well and will leave the user with
a suitable installation.

Ubuntu configuration could involve a small learning curve for the
brand-new user. Ubuntu does however have a nice “apps store” to find
almost anything.

Applications like Wine and Lutris work quite well on Ubuntu, which
means gaming is possible with less frustration. Lutris itself is a very useful
tool in that it wraps configuration required for games to run on Linux
quite nicely. The scripts are easily found in Lutris and can be added with
relative ease.

Walk Before Running

My advice for any new user is to start with Ubuntu or something very
similar. Get familiar with how Linux works in general. Learn about
systemd, and understand how firewalls are configured.

Get familiar with installing drivers for hardware not included in the
kernel, like graphics cards. Spend time on discussion boards learning how
to figure things out for yourself.

Push yourself and learn how to configure your Linux distro as a web
server or a plex server for your home as a fun starter project.

14

CHAPTER 1 LINUX AT A GLANCE

Option Two: The Almost Qut-of-the-Box Distros

Choosing a distro that requires a bit more understanding is a good

way to take the next step in your Linux knowledge. These distros are
recommended for the user that has been using Linux for a short while
already and who may wish to start experimenting with more complex
configuration, possibly to try to incorporate work elements and
understand new features for enterprise products, and maybe even to move
your work environment to Linux.

Try Fedora, openSUSE, or Debian

If computer gaming is not important and the use of Windows products is
not required, you can consider either Fedora, openSUSE, or Debian. All are
good options to consider. They all require “tweaking” to make them right
for you, but if you are not too bothered, you can use them as is.

Personally, I prefer using Fedora. It’s the “upstream” for RHEL which
helps me for my day job, and it’s what I have been using for the past ten
years. As for the default desktop, I really don’t like Gnome or KDE, so I
have installed Cinnamon.

Fedora, however, is not great for gaming or installing Windows
products. Drivers for graphics cards are not brilliant and can be a
challenge to install sometimes. Not impossible but seems a bit more work
than Ubuntu, for example.

Installing third-party tools will also require new repositories installed
and sometimes need to be “massaged” to work. Online instructions are
not always clear, which means you need to think a bit more about what the
problem is. In most cases, it’s fairly straightforward and can be figured out
with enough patience.

15

CHAPTER 1 LINUX AT A GLANCE

Option Three: The “Challenge Accepted” Distros

If a challenge is something you prefer, then the more “difficult”
distributions might be something to consider. Using these more
challenging distros will involve experience and understanding on how to
configure the platform, often with limited help from online resources.

Using these distros may get you referred to the dreaded RTFM? when
asking for help online. It is not that the community for these distros can be
difficult, they are predominately made up of super smart people with not
much time to spare, who really are not interested in helping people who do
not want to help themselves.

Note In a later chapter, | will discuss how to ask technical
questions. Something all technical people need to learn to avoid
irritating people when asking technical questions.

With Great Power ...

These “challenge accepted” distros provide more “power” to the user
(not that other distros don’t have the ability). They provide more options
and opportunities for users to break the platform without too much
thought. These distros require taking care when running commands

or configuration changes. Running commands without knowing the
consequences will more than likely lead to a rebuild of the system.

Try Arch Linux or Gentoo

If you are still interested in the challenge, then distros like Arch Linux and
Gentoo are ones to consider. They are known to be more difficult to install
and have a sharp learning curve.

Read the Freaking Manual

16

CHAPTER 1 LINUX AT A GLANCE

These distros should be used when you are comfortable working out
issues on your own and don’t need too much guidance. You should be well
versed in finding meaningful errors and understand where to increase
verbosity when needed.

Compiling from code and rebuilding kernel modules should not
be something you have not done before either. In some cases, getting
applications or drivers to work will involve these kinds of tasks. Distros
like Arch Linux and Gentoo should be left for the die-hard fans who
wish to set themselves a challenge, so do not take them lightly if you are
predispositioned to frustration.

Enterprise Linux Distributions

Red Hat, SUSE, and Canonical (Ubuntu) have built their companies
around the paid subscription model. As the software and code are

open source, these companies cannot sell you the software. Instead,
they sell you support and enterprise-grade product updates. As a user,
you can use the products as you wish, provided you do not breach the
license agreements, that is, claiming the code is yours and turning it into
proprietary code.

Note Read the license agreements to make sure you are not
breaching any of the rules if you are unsure.

Where enterprise products really pay for themselves is around the
product updates these companies provide. These updates are vital for
companies that require enterprise support, like banks. Banks require a
high degree of security. They rely on companies like Red Hat to provide
up-to-date security updates for vulnerabilities when they are made public.

17

CHAPTER 1 LINUX AT A GLANCE

If banks did not use enterprise products and opted to use community-
based products, they would need to wait for the community to fix a
vulnerability when it is reported. This can sometimes take a couple hours
or a couple days if not weeks.

If the vulnerability was a particularly bad one, it could cost the bank
more than any software subscription ever would. It could even spell the
end for some organizations if they were to be breached because of a
vulnerability waiting to be fixed by the community.

Enterprise Linux companies may make money from the software they
support, but do not think for a minute they do not help the communities
to help develop their products. Enterprise Linux companies have become
extremely important to the communities from which they get most of their
“upstream” products. Red Hat as an example not only uses “upstream”
projects like Fedora for RHEL but also has many, many other “upstream”
projects they support. It is this support that grows the products and
promotes adoption throughout the whole industry.

Red Hat

Red Hat has a large portfolio of enterprise products from Red Hat
Enterprise Linux all the way through to the OpenShift container platform
they use as their hybrid cloud solution.

Red Hat has been developing solutions since their start in 1993 and
hasn’t stopped trying to release the next best enterprise product. Red
Hat is constantly setting the trend in enterprise open source solutions; if
Red Hat has not actively been developing new products, they have been
acquiring companies that have. An example of this is the acquisition of
StackRox recently.

Red Hat builds their business around three main product categories
that drive their business and customer adoption.

18

CHAPTER 1 LINUX AT A GLANCE

Red Hat Enterprise Linux

RHEL is the boat that started Red Hat on their journey across the turbulent
sea of migrating customer workloads to Linux. It's what keeps the company
ahead of the competition and continues to be what made Red Hat one

of the big names in the Linux world. Over the years, Red Hat has become
more than just a Linux provider and now boasts a large portfolio of
products from infrastructure products through to cloud solutions. Red Hat
has come a long way from when they were selling CDs for RHEL.

Automation

With the acquisition of Ansible in October 2015, Red Hat strengthened
their offerings to the market with one of the best automation products

yet. Red Hat not only made Ansible enterprise grade but also took the
previously proprietary Ansible Platform (Ansible Tower) and open sourced
it. The community version of Ansible Platform is called AWX.

Ansible continues to grow in popularity and continues to be one of the
most actively developed automation products in the community. There are
new modules being developed constantly to improve the product almost
on a daily basis.

Hybrid Cloud

The cloud is something all of us now know about. It is nothing new; most
organizations are actively looking at cloud options if they have not already
moved or are planning the move for future roadmaps. Red Hat is no
different.

Red Hat over the years has become very good at finding the next big
thing. This was the case with the acquisition of Makara in 2010. What
made Makara so special was because of their PaaS (Platform as a Service)
solution they were developing. In May 2011, OpenShift was announced
from this acquisition, and in 2012 OpenShift was open sourced.

19

CHAPTER 1 LINUX AT A GLANCE

OpensShift is the premier hybrid cloud solution at Red Hat; OpenShift
provides an orchestration layer for containers, which allows customers to
migrate workloads from on-premise to cloud and vice versa. Red Hat is
investing massively into OpenShift, which is constantly evolving and has
become the number one choice for most organizations when choosing a
container orchestration tool.

OpensShift is one of the key products IBM targeted for their Open
Hybrid Cloud solution when they acquired Red Hat.

Canonical

Canonical was founded in the UK by Mark Shuttleworth in 2004. Canonical
is better known for their community Linux distro called Ubuntu. Very
much like Red Hat, Canonical offers paid support subscriptions for their
products. Ubuntu, however, is not like Red Hat Enterprise Linux and
Fedora. There is only the community Ubuntu product. Canonical offers
support and break/fix where it can but does not actually have its own
distro like Red Hat does.

Canonical like Red Hat has a portfolio consisting of more than just
Linux support. Canonical offers products in the following categories.

Linux Support

The first and obvious part of Canonical’s business is around their support
for Ubuntu. As discussed before, Ubuntu is only developed by the
community and supported by Canonical for a price.

Cloud

Canonical offers support for Kubernetes, which is a container
orchestration product similar to OpenShift. For their private cloud
solution, Canonical supports and helps install OpenStack. Both products
provide cloud capabilities for Canonical.

20

CHAPTER 1 LINUX AT A GLANCE

Internet of Things

One area Canonical is different from both Red Hat and SUSE is their
support around IoT devices and embedded Ubuntu. More companies
are looking for a Linux distro for their “smart” devices and appliances.
Canonical has an edge in this market as one of the only enterprise Linux
companies to provide this level of support.

SUSE

SUSE, the third and by no means last enterprise Linux company, currently
has a slightly wider portfolio than Canonical, but not quite that of their
closest competitor, Red Hat. SUSE, like Red Hat, has their own enterprise
Linux distro. The community version of SUSE Enterprise Linux is called
openSUSE. The enterprise version of SUSE has support subscriptions
from SUSE Linux Enterprise Desktop through to SUSE Enterprise Linux for
IBM Power.

SUSE as mentioned has a slightly wider portfolio than Canonical.
Currently, SUSE has two product categories driving their business, which
may be an unfair oversimplification of their products.

Server and Desktop

The first product category is the one that SUSE has built their business on:
their enterprise Linux distribution. SUSE has many Linux variations from
Desktop through to IBM Power versions. All have different subscriptions
that can be purchased, and most if not all are driven by the “upstream”
openSUSE product.

SUSE remains a strong competitor to Red Hat Enterprise Linux in the
server operating system market. It is not uncommon to find data centers
with both SUSE and RHEL.

21

CHAPTER 1 LINUX AT A GLANCE

Cloud, Storage, and Management

Alongside their enterprise Linux offerings, SUSE has a few other products
they sell subscriptions for. SUSE has their own enterprise storage solution
based on Ceph; this is the same as what Red Hat does for their enterprise
storage solution. Ceph is also used in OpenStack and OpenShift, which
means customers could effectively have a SUSE Ceph cluster and combine
it with Red Hat solutions if they wanted to.

For cloud platforms, in particular around hybrid cloud and container
orchestration, the recently acquired Rancher (acquired in December 2020)
provides competition to Red Hat’s OpenShift.

SUSE, Red Hat, and Canonical all provide OpenStack for private cloud
capabilities. All companies support the platform and provide professional
services to deploy and configure OpenStack.

To manage SUSE Enterprise Linux, SUSE supports a product called
SUSE Manager. SUSE Manager is based on Spacewalk and SaltStack,
very similar to the first Red Hat Satellite product which too was based on
Spacewalk and Puppet.

Community vs. Enterprise

What are the reasons to use a community product vs. a supported product?
Why use a paid-for solution when you can get the same or similar for free?
The preceding questions have already been answered if you
understood the differences between enterprise and community. Using
examples always clears things up for me personally, so let’s take a
bank, for example, in particular, a bank that processes credit/debit card
transactions. There is a strong possibility that these kinds of banks are
governed by PCI DSS type compliance and regulatory requirements, often
requiring stringent controls around the security and platform vulnerability,
particularly on systems where card data will be stored. One very important

22

CHAPTER 1 LINUX AT A GLANCE

PCI DSS compliance requirement is that the customer’s platform uses
software that has been thoroughly tested and passed intensive security
scrutiny, preferably by reputable companies that have been approved by
various compliance auditors and have been accredited for their security.
For this one main very important reason, you will always find banks using
enterprise products and not community products.

A bank is one good use case for enterprise Linux, but what about
someone who does not need regulatory compliance? What about a charity
as another example? Most charities do not process credit/debit card data.
Charities also tend to have quite small IT footprints, in that they mostly
work out of cloud platforms or have limited physical hardware on-premise.
All these points make charities an ideal prospect for community products.
The charity would need employees who know how to find answers and
resolve simple enough issues. Maybe someone reading this book, for
example. As community products don’t have support numbers to call
or support desks to raise cases with, these charities would need their
employees to do the hard work instead. Remember that this would only
be for unforeseen issues and would be relatively rare. Proper test, preprod,
and production platforms tested and verified should reduce risk and
ensure enough stability.

Another use case for community products are technical people like
ourselves. Not all of us are fortunate enough to have access to corporate
accounts with unlimited subscriptions and need to have alternatives for
our own personal projects. Building our home labs or personal web servers
could be ideal for community products. We are more than happy to work
things out, and if worse came to worse, we could rebuild and restore from
backup. Ok stop laughing. Some of us actually back up our home labs
(Idon't).

The most important thing to remember about choosing a community
product over enterprise is knowing you are left to resolve the inevitable
vulnerability. Companies like Red Hat, Canonical, and SUSE are prepared
for security vulnerabilities. They have dedicated staff who find zero-day

23

CHAPTER 1 LINUX AT A GLANCE

vulnerabilities and fix them before they become public. Communities tend
to be reactive and are always behind the curve when releasing security
patches. Something large organizations like banks prefer not to have. You
and me, we can turn our labs off if we are concerned about a security issue.

Banks do not have that privilege.

Knowledge Check

For the best use of this book, you are expected to know the basics of Linux
system administration. This would include things like

e Basic Linux system commands

e Basic Linux system configuration including how to
manage storage devices and how to add new users

o Basic Linux security concepts

If you are not familiar with these things, it is advisable to do some
further reading before continuing with this book.

This book, however, is hopefully written in a way that you will still
benefit from its contents, but it will serve you better if you have a solid
Linux foundation.

Summary

In this chapter, the following subjects were introduced:
o The very brief history of Unix and Linux

o How Linux is everywhere, in your smartphone, TV, and
flight entertainment systems

e What community Linux distributions are and who
develops them

24

CHAPTER 1 LINUX AT A GLANCE

How to decide what distro is best for you

What enterprise Linux options are available and what
companies provide them

The main differences between community Linux and
enterprise Linux

25

CHAPTER 2

New Tools to Improve
the Administrative
Experience

Now that the basics have been covered in Chapter 1, we can start looking
at new ways to improve what you are currently doing. This chapter will
focus on how you as a Linux system administrator should be working, what
tools you should consider using, and how these tools can improve your
efficiency.

This chapter will start by looking at task management, how to create
background tasks, and how to work in a way that you can leave tasks
running when you need to leave for the day. We will then go on to start
looking at the basics of Ansible. With Ansible, we will only discuss the
very basics to get you started. Later in the book, we will dig further into
automation. For this chapter, it is only important to get you up to speed
with the beginnings of Ansible if you have never used it before. Then to
finish the chapter off, we will look at what consoles can be used to make
Linux configuration easier.

By the end of this chapter, you will not only know how to manage tasks
slightly better but will also have some foundational Ansible knowledge to
start automating. You will also have been shown alternative methods to
configure Linux other than the traditional command-line options.

© Kenneth Hitchcock 2022 29
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_2

https://doi.org/10.1007/978-1-4842-7984-7_2#DOI
https://doi.org/10.1007/978-1-4842-7984-7_1

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Task Management

The Linux operating system is in essence a series of files and processes
working together to assist the user in completing computational requests.
These processes need to be managed occasionally. As a user of Linuy, it is
recommended to understand how processes can be started, stopped, and,
when it is required, killed, sometimes forcibly.

Starting a Process

Starting a process can be done in a number of ways; the most common one
you will use is done by starting a service. Starting an apache web service,
for example, usually involves starting the httpd service. This service
spawns a few httpd processes depending on your configuration. A service
however is really nothing more than a script or a set of commands that
call a binary followed by parameters. When looking at your process, the
parameters are often listed after it.

Starting the apache web server as mentioned requires a service
command. With most Linux distros, this will be a systemctl command:

systemctl start httpd

To check if the service has started, you can replace the start parameter
with the status parameter, or you can check what processes are running
that match the name httpd:

ps -ef | grep httpd

The output should look something like

root 150274 1 0 22:48 ? 00:00:00 /usr/sbin/
httpd -DFOREGROUND
apache 150275 150274 0 22:48 ? 00:00:00 /usr/sbin/

httpd -DFOREGROUND

30

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

apache 150277 150274 0 22:48 ? 00:00:00 /usr/sbin/
httpd -DFOREGROUND
apache 150278 150274 0 22:48 ? 00:00:00 /usr/sbin/
httpd -DFOREGROUND
apache 150279 150274 0 22:48 ? 00:00:00 /usr/sbin/
httpd -DFOREGROUND
root 150506 108621 0 22:48 pts/2 00:00:00 grep

--color=auto httpd

Task Visualization Tooling

Viewing what processes are running is important to understanding what
your system is doing, or what is causing your system to act up. Viewing
processes can be done in a few ways. You can use utilities installed by
default, or you can use the ps command and search for your process. On
Fedora, I did not have any issues installing any of the packages mentioned
as follows.

Top

Top is installed by default on almost every Linux distro I have ever
used. Executing the command “top” should give a similar output to the
following:

top

top - 21:51:30 up 35 days, 22:34, 1 user, load average: 4.80,
5.38, 3.13

Tasks: 423 total, 1 running, 421 sleeping, 0 stopped,

1 zombie

%Cpu(s): 8.8 us, 6.9 sy, 0.0 ni, 81.9 id, 0.0 wa, 1.8 hi,
0.6 si, 0.0 st

31

CHAPTER 2

MiB Mem :

23679.7 total,

1453

10962.5 buff/cache

MiB Swap:

8192.0 total,

10835.9 avail Mem

PID USER
%MEM TIME+
3219 ken
1.0 106:56.90
1033 root
0.0 21:58.24

129564 ken
1.3 14:31.80
29109 ken
0.8 34:17.
2021 ken
0.4 37:08.53
108567 ken
0.2 0:08.86
3171 ken
2.0 66:08.40
3220 ken
0.5 28:09.36
151128 root
0.0 0:00.15
150042 root
0.0 0:08.40
14 root
0.0 1:09.19
1140 dbus
0.0 0:20.92

92

32

PR NI VIRT RES
COMMAND

20 0 17.3g 237396
chrome

-51 O 0 0
irq/136-rmi4_sm

20 0 20.6g 323744
chrome

20 0 4450712 196656
cinnamon

20 0 1051020 103268
Xorg

20 0 754204 42076
gnome-terminal-

20 0 16.9g 489020
chrome

20 0 16.5g 131584
chrome

20 0 236260 5568
top

20 0 0 0
kworker/1:2-events

20 O 0 0
rcu_sched

20 0 13396 9064

dbus-broker

.4 free,

8190.8 free,

1126

SHR

144936

123548

105148

62488

30860

192036

92976

4376

2644

NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

3.9 used,
1.2 used.
S %CPU
S 16.9
D 10.6
S 9.9
S 9.3
S 8.6
S 3.3
S 1.7
S 1.0
R 1.0
I 0.7
I 0.3
S 0.3

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

3177 ken 20 0 7768 4120
0.0 2:19.38 cgroupify
3532 ken 20 0 20.7g 404148

1.7 12:04.38 chrome
49421 systemd+ 20 O 17712 8712
0.0 1:25.22 systemd-oomd

83705 ken 20 0 20.6g 119640
0.5 0:11.45 chrome
97202 ken 20 0 20.6g 147012

0.6 0:13.16 chrome

Alternatives to Top

3304 S

123592 S

7832 S

79348 S

97388 S

0.3

0.3

There are a few alternatives to “top” if you want to try something different

(Table 2-1). Personally, I have tried and used a few but always default to

top, mostly as the systems I work on are not my own. If you have not tried

the alternatives to top in Table 2-1 before, I recommend you install and see

for yourself if they add any benefit to your way of working.

Table 2-1. Alternatives to top

Top Alternative Description

atop Interactive tool to show load and other useful information on
your system

htop Very similar to top, except you can use your mouse to scroll

vertically or horizontally

glances A monitoring utility designed to show as much information
as possible on one screen. Useful if you want to view

information about sensors

bpytop Very nice custom utility with a nice text-based interface. This
utility will require you to download the source and compile

33

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

nmon

nmon is another very useful tool to help diagnose issues on your system. It
is typically not installed by default but can be installed on most platforms.

nmon has a very clear method of showing CPU, memory, disk, and kernel,
to name a few. It’s definitely a tool I would recommend using.

Killing Processes

Occasionally, there may be a need to kill a process; this could be for
anything from a hung thread to a process with a memory leak. Before you
kill this process, always ask yourself if killing the process is the best way

of terminating your process. I do understand that sometimes there is no
other option, and the task must be killed. However, never start by forcefully
killing a process. Always start by trying to use service commands like
systemctl or similar. Some applications or utilities have their own custom
tools that can also be used. Read the official documentation or man pages
to see if there is a recommended method.

I have experienced in the past that some system administrators do not
always understand the implications of killing a process. I once worked with
a system administrator who thought it was a good idea to forcibly kill a
PostgreSQL database process as his main method of stopping the database
service. This not only scared me but showed me the system administrator
really did not understand the knock-on effect he could be inflicting on
himself if he persisted with this behavior. As a consultant working with him
at the time, I explained why this was a horrible idea and then stepped him
through proper procedure.

If you ever do have to kill a process, always try to follow the
following steps:

1. Getthe process ID by using a process viewing tool
like “top” or “ps’”

34

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Attempt to politely kill the process using the kill
command without a parameter. This will default
to using the “TERM” signal, which effectively tells
the process it is going to be killed, and if it has any
handlers, they would then attempt to run cleanup
tasks, before terminating.

kill <process id>

If the “nice” approach did not work, you can apply
the sledgehammer approach. This will forcibly kill
the process, and the terminate event cannot be
caught, meaning the process will not be able to run
any cleanup jobs.

kill -9 <process id>

There are numerous other signal options for the kill command, each

used for different situations. The “kill -1” command will give you a list of

all signals that can be used.

Zombie Processes

Let’s first understand what a zombie process is. A zombie process is when

a process has been killed, and its memory descriptor EXIT_ZOMBIE has

not been cleared by its parent process. This is normally done when the

parent process executes the wait() system call to read the dead processes’

exit status and any other information. After the wait() has completed, the

EXIT_ZOMBIE memory descriptor is cleared. When this is not done, it is

usually down to either the parent process misbehaving or bad coding.

I once heard a very simplistic explanation for killing a zombie process.

“You cannot kill something that is already dead.”

35

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

It makes perfect sense if you think about what a zombie process
actually is. It is nothing more than a memory descriptor that has not been
cleared. No amount of kill commands will clear it. You would need to find
the memory descriptor in memory and clear it yourself, which we all know,
no one is going to bother to do it. Clearing the zombie process will involve
areboot unfortunately.

Finding the underlying cause for the zombie process will involve
looking at the application whose process died. Was the code poorly
written? Did the parent process die first? In my experience, this is usually
due to system instability by having another process or application pulling
the rug from under the process.

Utilities like “top” have a dedicated area to show zombie processes. If
you see zombie processes appearing, there is a larger problem with your
system that needs to be resolved. Chapter 11, we will discuss how you go
about diagnosing issues and finding solutions.

Background Tasks

Services when started create background running tasks, largely because no
system administrator wants to have an active session running all the time
and the fact that it would just be plain silly to do so.

Background tasks can be viewed by looking at tools like top or
running the ps command, but what do you need to do to send a task to the
background? What happens when you start a long-running process and
need to do other tasks? You could open a new window or console and run
the task there. However, a better approach would be to send the current
task to the background. The following are the basic steps to send a current
running task to the background:

1. Pressthe “CTRL + Z” keys.

o This tells the Linux operating system to suspend the
current task and returns the user back to the shell.

36

https://doi.org/10.1007/978-1-4842-7984-7_11

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

2. Once back to the shell, execute the command “bg”.

¢ This command sends the current suspended task to
the background and resumes running.

If you want to bring the background task back to the foreground, you
simply execute the “fg” command.

Running Time-Consuming Tasks

As a system administrator, you will often need to run scripts or tasks that
take a long time to execute. Sometimes, running these long tasks can get
quite frustrating if you are running them on your laptop and you want to
leave for the day. Fortunately, you don’t have to wait till your task finishes
if you use the right tools.

There are a couple tools you can use to help you with time-consuming
tasks and allow you to get back to enjoying your life away from work.

Screen

A highly popular multitasking tool used by many is “screen.” Most Linux
system administrators will have used or at least know about “screen”
and will most likely already know the basics, but for those new to Linux,
“screen” is a tool that allows the user to create sessions that run as
background processes. The user can disconnect and reconnect to a session
as they wish, which means a long-running script or process can be left
running in a screen session while the user disconnects and goes home. In
the past, the task or process would have been tied to the user’s session, and
once the user disconnected, the tasks would be killed.

Screen is found in most distros and can be installed quite simply by
attempting to install a package named “screen.”

37

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

To use the screen in a very basic way, all you need to know are the
commands listed in Table 2-2.

Table 2-2. How to use “screen”

Command Description

screen Starts a new screen session

ctrl + a followed by d Disconnects you from the running screen
session but leaves the session running

screen -list Lists all the screen sessions

screen - <session name> Reconnects to the running screen session

Note It should be noted that some distros have stopped shipping
“screen” in some of their new versions, but the package is still
available in community repositories.

Tmux

With less availability of “screen,” a new tool being used is “tmux.” “tmux”
like “screen” allows a user to disconnect and reconnect to a session except
that “tmux” has quite a rich set of features. I personally now use “tmux” on
all my Linux platforms. The commands have become muscle memory, and
I am often feeling lost when I work on a system without “tmux.” It sounds
strange to say that, but as a Linux system administrator, we are often asked
to troubleshoot issues, and this involves being able to multitask. We may
need a window running a watch command with another window tailing

a log. Flipping between these windows can be chaotic when you have

tons of applications running. So to avoid this, using “tmux” allows me

38

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

to create a split screen and new windows within tmux. I am able to flip
between sessions, and best of all, I don’t have to leave the comfort of the
command line.

Very much like “screen,” there are a few basic commands you
need to know to start using “tmux.” From there, you can expand your
understanding by reading the man pages or the help.

Table 2-3 list some of the common commands you will use in your day
to day activities.

Table 2-3. How to use “tmux”

Command Description

tmux Starts a new tmux session

ctrl + b +d Disconnects you from the running session
tmux list-sessions Lists all the tmux sessions

ctrl + b + % Splits screen vertically

ctrxl + b + " Splits screen horizontally

ctrl + b +w Shows a window in tmux with all tmux sessions

for you to switch to

ctrl + b + arrow keys Allows you to resize windows

Ansible Introduction

The role of a Linux system administration has evolved over the last decade
into more of an automation engineer role. More system administrators are
writing automation code than ever before. The traditional Linux system
administration role is slowly becoming less important than it used to be.
You may be reading this book because either you are trying to learn what
you should be doing to stay relevant in the fast-moving Linux world or you
are new to Linux and want to learn how to start.

39

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

The answer to both questions is automation and in particular
Ansible. Standard tasks like system patching or system configuration are
all automated these days and require less manual intervention. Linux
system administrators not only still need to understand how to configure
Linux but also now need to know how to automate these configurations.
Ansible is one of the most popular automation tools available today and
would greatly benefit you in your career growth if you started to become
more familiar with it. There is a dedicated chapter on automation a bit
later on in this book where we will look a bit deeper into practices around
automation. For this section, we just look briefly at the very basics of
Ansible.

Installing Ansible

Installing Ansible is fortunately not too complex compared to some other

tools you can use for automation. This really makes good sense as one of

the driving factors to use Ansible is the easier learning curve to use it.
Ansible can be installed in two ways.

Package Management

The first and simplest way to install Ansible is through your distros
package management system like dnf or apt.

Simply trying to install the Ansible package will work on most
community distros as they generally have Ansible available in their
standard repositories. Enterprise distros like Red Hat Enterprise
Linux, however, require separate subscriptions and access to different
repositories. For those distros, ensure you follow their official
documentation on how to enable the required repositories.

40

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Note Installing Ansible through a package management system
is the recommended approach as this not only installs the Ansible
binary but also prepares your Linux system with all the other
supporting Ansible configuration files, allowing you to work in the
best possible configuration.

Pip
Another way to install Ansible is through the Python preferred installer
program, or commonly known as pip. There are no subscriptions or

different repositories required other than getting pip itself installed. Once
pip is installed, Ansible can be installed via the pip install commands.

Note When installing through pip, always be sure to check the
version of Python that pip will be installing into.

Configuring Ansible

The heart of Ansible is the YAML you write that executes a task. For this,
there is very little that you need to configure. If you installed Ansible via a
package management system like dnf or apt, you will have configuration
files created for you. If you installed via pip or downloaded binaries, you
will need to create configuration files yourself.

The Ansible configuration file is called ansible.cfg and can be used
to customize Ansible within its limits. As an example, you can configure
where plugins or inventory files are stored if you wish to configure a
nonstandard environment.

41

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Configuration files however do need to be stored in specific locations
for Ansible to be able to read them if not told otherwise. There is also a
hierarchy Ansible will follow in which files Ansible will read first.

You can create Ansible configuration files in the following locations.
Itis also in this order that Ansible will read the configuration files. If it
does not find the first one, it will move on to the next. If Ansible finds no
configuration files, it will assume defaults.

o ansible.cfg file in the current directory you are
working in.

e .ansible.cfg in your user home directory.
o Create the /etc/ansible/ansible.cfg.

Ansible can also be told where to find the configuration file by setting
the ANSIBLE_CONFIG environmental variable.

Note When creating the Ansible configuration file in the user’s
home directory, it is vital that the file is called “.ansible.cfg” and not
“ansible.cfg”. If you do not start the file with the “.”, it will be ignored.

Ansible Inventory

Before using Ansible, you need to know how to target systems that Ansible
will execute commands or tasks on. In Ansible, we do this with the help

of an inventory file. If Ansible is installed from a package management
system, the default inventory file created is /etc/ansible/hosts. This file
can be used as is, or you can edit your ansible.cfg to tell Ansible where

the inventory file can be located. Another common method of specifying
where Ansible can find an inventory file is done when executing the

“ansible” or “ansible-playbook” commands with the “-i” parameter,
followed by the path to the inventory file.

42

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

The basic layout of an Ansible inventory file consists of a group name
in square brackets, followed by a list of systems that are part of a group. In
the following example, two servers are part of the “webserver” group, and
one is part of the “database” group:

[webserver]
servera
serverb

[database]
serverc

Running Ansible

The Ansible command-line tools are made up of a few binaries. The two
commonly used ones are “ansible” and “ansible-playbook.” The “ansible”
command can be used to execute single ad hoc commands directly to

a host, whereas the “ansible-playbook” command is used to execute
playbooks which can contain many Ansible tasks. An example of an ad hoc
Ansible command used to ping all hosts in your inventory file can be done
as follows:

ansible all -m ping
To run a playbook, you can use something similar to the following:
ansible-playbook -i /path/to/inventory /path/to/playbook.yaml

Ansible is relatively straightforward to run and does not require
any configuration to use it. To get familiar with Ansible, run a few ad
hoc Ansible commands to start, then move on to creating your own
playbooks.

43

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Playbooks

Once you have graduated from running Ansible ad hoc commands, you
will want to progress on to creating playbooks. Simply put, a playbook is
a way of running multiple Ansible tasks one after another. The Ansible
playbook needs to start by specifying a host or group that the tasks will
execute on. A variable file or list of variables can also be added, but for a
very simple playbook, this is not really required. The following is a basic
example of a playbook:

- name: "Install webserver"
host: webserver

tasks:
- name: "Install httpd"
yum:
name: "httpd"
state: present
Roles

Playbooks can become quite complex, and often there are times when
you will want to reuse code. This is where Ansible roles become useful.
An Ansible role is a way of using Ansible to do a specific job. This could
be as simple as installing a package or as complex as deploying an entire
cloud platform. Typically, a well-written Ansible role should execute
without issue, out of the box. A default variable should be configured,

so if the user does not set anything, the role will still run. A good Ansible
role should also include a README.md file with instructions on how to
use the role. The role should also include metadata that can be used by
Ansible Galaxy.

44

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Role Directory Structure

A role directory structure should be similar to the following, but can also
be simplified to just the task directory as a minimum. The full structure
does include additional directories that are not always needed, like the
vars directory or the templates directory:

[Role name]
-> [tasks]
--> main.yaml
-> [defaults]
--> main.yaml
-> [handlers]
--> main.yaml

-> [meta]
--> main.yaml
-> [vars]

--> main.yaml

Note Ansible role names should typically start with “ansible-role-",
then followed by what you want to call the role.

Generating Ansible Roles

Another binary that is installed as part of Ansible is the “ansible-galaxy”
binary. This binary can be used to manage Ansible roles and collections.
This includes the ability for an Ansible role skeleton to be generated. To
create a basic role structure to start you on your journey of Ansible role
development, run the following command:

ansible-galaxy init <your role name>

45

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Modules

Ansible modules are another important aspect of Ansible not many
people understand. If an Ansible role can be seen as a toolbox, the Ansible
modules can be considered the nuts and bolts.

In the “Playbooks” section a few pages back, there was a playbook
example. In the example, I used the “yum” module to install the “httpd”
package. This “yum” module is part of the standard Ansible collections
and does not require any additional installation. The “yum” module in this
example tells the system the play is being executed on (“webservers”) to
use the “yum” binary to install the “httpd” package.

Some modules are much more complex than the “yum” module and
can be more complex to use. Fortunately, Ansible documentation is fairly
good and offers a good explanation of all the parameters and options
a module generally has. To view the documentation, you can either do
a quick Internet search or use the command-line help for Ansible. An
example can be to look at the help for the yum module:

ansible-doc yum

Ansible modules are typically written with Python. They can
technically be developed with any development language, provided the
language used is capable of outputting JSON. Modules should perform
a single task and must return the outcome of the task. It is also very
important that the module be written to be idempotent.

Sharing Your Ansible

Sharing Ansible knowledge and code is what has been making Ansible
probably the best automation tool available today. The community
efforts in developing Ansible modules have been amazing with vendors

46

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

from all corners contributing code to promote Ansible adoption. It’s not
only vendors but system users like ourselves who too have been creating
Ansible modules for almost anything you can think of.

Note Once you have become more familiar with Ansible, consider
giving back your code to places like Ansible Galaxy.

Ansible Galaxy

Ansible Galaxy is an excellent way of sharing your Ansible with the world.
This not only gets your name out for others to recognize but also adds to
the ever-growing library of Ansible that can be used by everyone.

When confronted with the need to write a new Ansible role or module,
always start by searching the Ansible Galaxy for anything you could use or
at least start with.

Web Consoles

Linux system administration has traditionally consisted of logging into a
system via ssh and running various command-line commands to configure
the platform as required. This can still be done today, but with the growth
of Linux. System configuration was always going to evolve to include
easier-to-use methods to accommodate newer users to Linux while they
were learning.

Cockpit

Anyone who has built and configured Linux servers will know very well
that desktops tend to not be used much on server platforms. Most of the
time, all that is required is ssh and whatever software is needed for the

47

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

server to perform its function. For this reason, there needed to be an
alternative to a desktop for quicker and easier graphical user interface
configuration.

This is where Cockpit has become useful. Cockpit allows a Linux server
to be accessed by a web console. In the web console, the user has the
ability to configure storage, network, and various other configurations. The
user can also open a terminal session to the system and run command-
line commands.

Cockpit would normally be used on server platforms only but can be
installed on any platform that supports using cockpit.

Installation

Very much like most software installations on Linux, it is recommended
to install “cockpit” using your package management system. On Red Hat
Enterprise Linux, this would be yum or dnf, and with Ubuntu you would
use apt. The following is the installation for RHEL or Fedora:

yum install cockpit -y

Configuration

Once installed, ensure that the “cockpit” service has been enabled and
started:

systemctl enable cockpit && systemctl start cockpit
Check that “cockpit” is running:

systemctl status cockpit
netstat -nap | grep LIST

Finally, ensure that if you have your firewall running, port 9090 has
been opened for tcp traffic:

firewall-cmd --list-all

48

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Using Cockpit

Once installed and configured, you should be able to open a web browser
and enter the hostname or IP address of your Linux system with port 9090:

https://<Hostname or IP>:9090

The web console should now open and ask for credentials. The
username and password can be any local user, and if you know the root
password, you can use that too.

Within “cockpit,” you can configure your network interfaces, add
storage via NFS or iSCSI, and view logs. There are a few nice features
like the ability to join domains from the web console and view what
applications are installed on your system. Most of the configuration is self-
explanatory and simple enough to understand.

Limitations

One of the main limitations of Cockpit is that it is a web console of the
running Linux server, which simply means the server has to be running
and the “cockpit” service needs to be working. You cannot use “cockpit”
to resolve boot issues and cannot use “cockpit” to install any virtual

machines.

Alternatives to Cockpit

Where there is one project in the open source world, you can be positive
there will be many more similar to it. This is exactly the same with Linux
web console administration. While Cockpit is the common option to use
and does provide quite nice features, it would be worth mentioning some
alternatives that can be used.

49

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Note Due to the nature of Linux being open source, my
recommendations and alternatives will be nonproprietary software
and generally open source products. Even though there can be good
proprietary options, they will be for you to find and read about.

Webmin

Very much like Cockpit, you are able to configure various configuration
options like adding new users or starting and stopping services. The
downside to Webmin is the slower product update release cycle. Where
Cockpit aims to release versions every two weeks, Webmin can go long
periods without updates. This can, however, also be seen as a good thing.
Best advice would be to compare these products for yourself and see what
works best for you.

Ajenti

Another really nice web console alternative to Cockpit is Ajenti. Very much
like Webmin and Cockpit, Ajenti provides a clean and easy-to-use web
console that allows the user to configure the Linux platform it is installed
on. The same limitations are present in all of these web consoles and will
only provide configuration for the system it is installed on.

Text Consoles

If web consoles are not for you, then text Ul tools may be something more
up your alley. Text consoles or “tui” tools provide quick configuration

options for the user when they are not familiar with all the command-line
parameters. A good example is configuring authentication on RHEL back
in the day. In the early days of RHEL configuration, you would need to dig

50

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

out the help and work out all the various parameters you would need to
get your command to be successful. Running a text UI for authentication
now gives you all the options that can be selected or deselected. You don'’t
need to remember any parameters other than connection details. The
configuration is quicker and simpler with less room for error. Something I
would advise when under pressure.

Installing

There is not just one package to install for all tui consoles. Each application
would need to provide its own “tui” if the standard “tui” packages are not
installed.

Using the Linux system’s package management system, try installing
the “tui” by adding “-tui” at the end of the package name. An example of
this could be trying to use the NetworkManager text UL If the package is
not installed, try installing the following:

yum install nm-tui -y

Using

Text consoles are simple enough to use and are generally self-explanatory.
Best way to get to know them is by starting to use them. I personally have
been using the NetworkManager “tui” to configure network configuration,
mostly because it is faster and I have to remember less.

51

CHAPTER2 NEW TOOLS TO IMPROVE THE ADMINISTRATIVE EXPERIENCE

Summary

In this chapter, you were introduced to the following:

o How tasks can be managed on a Linux system and how
you can work with background tasks.

e Ansible basics and how quickly you can learn Ansible
to become proficient in a matter of hours.

o The power that comes with web consoles to
manage Linux platforms.

o Thatnot everything has to be done with a long
command and a million parameters. Text consoles can
save time and effort.

52

CHAPTER 3

Estate Management

The last chapter discussed new tooling or ways of working, and this
chapter will continue in the same vein. However, it will look at the bigger
picture of your estate: what things you should be doing and what things
you should be avoiding.

Not only during this chapter will we look at how Linux estates have
been managed by people in the past and how this can be improved on,
we will also delve into system building, system patching, and tooling you
should be using or should consider using. With this, we will briefly discuss
management software that can be used today. The main idea of this
chapter is to introduce you to how you can change your ways of working to
make your life easier when managing these large estates.

We not only will discuss technical aspects of Linux estate management
but will also look into ways to conduct proper planning and how to avoid
those awful midnight patching cycles requiring engineers to work out of
hours. This chapter will explore ideas to streamline as much of the manual
work that the traditional Linux system administration used to require. We
will discuss how you can start cultural change within your organization
and how you can start driving conversations to promote innovation and
spend less time firefighting.

Toward the end of this chapter, we will discuss common bad practices
Linux system administrators sometimes do. We will then end the chapter
with some recommended good practices Linux system administrators
should start doing if not already.

© Kenneth Hitchcock 2022 53
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_3

https://doi.org/10.1007/978-1-4842-7984-7_3#DOI

CHAPTER 3 ESTATE MANAGEMENT

Outdated Ways of Working

In my experience as a Linux consultant over the last decade, I have met
many amazing people. Some taught me new interesting things and in
some cases new ways to do things. On the other side of the scale, I have
met others that have frustrated me in their lack of progress or forward
thinking. This is not to say they were not any good; in fact, most have
been incredibly smart people who have just been stuck in situations
where the organization they were working for has just not afforded them
the opportunity to grow, learn, or try new things. My frustrations often
did not just end with the individual but also extended to the offending
organization. By not promoting growth and new innovative ways of
working, the Linux system administrators I worked with became stagnant
and bored, often ending up with them leaving the organization.

So with this in mind, here are a few examples of what I mean when I
say “outdated ways of working.”

Outdated Skills

More often than I would like, I meet Linux system administrators who
are not constantly updating skills. Some of the individuals only have
themselves to blame, and some unfortunately are not supported by the
organization they work for. Examples of this include not being familiar
with new changes and known issues in new releases of the products they
administer, often due to lack of training. Other examples include not
staying up to date with changes in the market and new trends being used
for platform management. Other issues involve organizations not wanting
Linux system administrators to introduce new technologies within their
environments. This often means the Linux system administrators would
need to experiment in home labs or sandbox environments, which some

54

CHAPTER 3 ESTATE MANAGEMENT

might not have access to. For whatever reason, the Linux sysadmins’ skills
become outdated and leave them stranded with the organization that
refuses to support them.

Keeping Knowledge to Themselves

This one is the worst of the worst. I have come across people who kept
others at arm’s length when it came to work they did. The intention

it seemed was to not show anyone else what they were doing so they
could secure their job just a bit longer. These people tend to be very
reluctant to have anyone else collaborate on any projects with them and
tend to overengineer everything they do. This is not something I would
recommend doing in today’s working environments. The more you share,
the more you learn; often, the previous point regarding outdated skills and
this one go hand in hand. If you are guilty of doing this, my advice is to
start learning as much as you can about emerging technologies and start
working with others. This not only will improve what you are doing but will
also open new avenues for you, maybe even with a different organization
and possibly a larger salary.

Over Engineering

This brings me to something I think we all have been guilty of sometimes:
making a project overly complex for the simple requirement it was
required for. If T had a penny for every time I saw something that was just
completely overengineered for simple tasks, I would be a wealthy man. Just
take a step back and ask yourself, do I really need to add all this complexity
into this script or into this piece of work? If the answer is no, then cut the
excess and keep the task simple. Use the “KISS” acronym if you have been
guilty of overengineering in the past. “Keep it simple silly.”

55

CHAPTER 3 ESTATE MANAGEMENT

Shell Scripting

We all have written our fair share of shell scripts, and, yes, sometimes

it cannot be avoided, and for those situations you just have to grin and
bear it. However, when possible, try to use newer automation tooling to
manage your systems or execute the task you wanted to do. Management
software can also be leveraged to manage systems without the use of shell
scripts. Changing your approach to using alternatives to shell scripting will
begin your transformation into larger estate management from a central
location. Not to mention, less maintenance for you to do on old shell
scripts.

New starters to your organization will also not need to hassle you to
understand what your script does; you could just redirect them to read the
official documentation on the management tool you are using.

Today, there are less and less good reasons to write shell scripts other
than quick wrapper scripts or quick scripts to test something. Scripts
should not be used for anything permanent and most definitely not for
anything in production.

Snowflakes

Every snowflake that falls to earth is unique; at least this is what I have
been told and read. This sometimes is how Linux estates have evolved.
Linux system administrators have built systems where each one has
become its own unique snowflake. Each Linux system in the estate
becomes so different with its own unique configuration, not to mention
overly complex that it becomes so bad that no one in the organization
knows what the system does or how to rebuild it. These systems scare
me more than anything. They require so much effort to work out what is
required when they need to be rebuilt and become a liability if platforms
need to be failed over to a disaster recovery site.

56

CHAPTER 3 ESTATE MANAGEMENT

Tip The first step to improving your estate management and
reducing firefighting is to get rid of as many snowflakes as possible.

Reinventing the Wheel

The best for last, writing a script or a piece of software to do something that
already exists within the operating system is an unforgivable act. Unless
there is an extremely good reason, this should be avoided. Even when
writing Ansible, always see if something does not already exist. It saves
time and your company’s money. Just don’t do it.

Build Process

The Linux build process is normally something you think about or spend
a fair bit of time doing when you are building or managing a medium to
large estate. For the home hobbyist or individual user, you tend to not

be too bothered with this process and tend to just build your system
manually. In larger estates, it is not uncommon to be asked to build ten or
a hundred systems for different reasons. Building these systems manually
is not a good option anymore with how the industry is evolving.

The days of building systems that cannot be replaced are over. Systems
are now being treated more like cloud instances. If it breaks, drop it and
redeploy. This process makes sense as it saves time and energy. No need
to try firefight the problem on the spot or even fix the root cause there
and then. Just drop the system and redeploy. Most systems send logs
externally, so troubleshooting and root cause analysis can continue later
when production is up and running.

57

CHAPTER 3 ESTATE MANAGEMENT

Twenty years ago, this way of thinking would have got you some
interesting looks and if management heard could have got you escorted
out the building. Fortunately, times have changed and today this way of
thinking is encouraged.

To understand how to improve, we need to understand what we are
doing wrong. For this, let us discuss different methods of deploying Linux
systems, what makes them worthwhile doing, and what makes them
something to avoid.

Manual Installation Methods

The first method to discuss is the good old manual deployment. This
may be fine for the odd random system you wish to test or play with but
definitely not something you want to do if you have a hundred systems to
build. You will definitely not find favor with your employer if you spend a
week doing something that should be done in 20-30 minutes.

With all the ways that systems can be built including the many different
tools or management systems you can use to build them, building systems
manually should not be one of them. However, as we are learning what to
avoid, let’s start from the beginning and get a good understanding of how
this manual process should be done and look at the manual build methods
that have been used to install Linux. Later in the chapter, we will discuss
how these processes can be streamlined.

Boot Media Install

The simplest method is using boot media to do your deployment. This
could be a DVD or USB device. The system is generally started from your
install media, and once your system boots into your Linux installer, you
typically run through the manual steps. Defaults can be selected as the
simplest option but is not recommended if you are building anything other
than a test system. Important things like disk partitioning and package

58

CHAPTER 3 ESTATE MANAGEMENT

installation could be customized for any system of importance. If you are
building a system that will be used as a template, then careful attention
should be made during this install. You really do not want to have a
template configured incorrectly, especially if it will be used to deploy the
entire estate later.

Network Install

Booting off your network through an NFS server is another method of
deploying a Linux system manually. This would still require boot media
where you will need to redirect the install to a network location. This install
method would require an NFS system running with the install media
exported and available for use. You would still need to run through the
install manually, and you would still need to ensure you do not just select
defaults if you are building a production system. This can be streamlined
if you have a kickstart file but will require some further understanding

of how kickstart files are written. Fortunately, we live in a world where
information is available freely on the Internet. There are many examples of
kickstart files and many forum questions and answers to get you started.

Templates

Even though there are ways of imaging physical machines, it won’t be
something you do very often. Virtual machines, however, are another story
all together. As you are reading this as a Linux sysadmin, I'm assuming
you already understand the process of creating a virtual machine from

a template and have most likely done a few clones in the past. If not,

the process is quite straightforward. A Linux system is generally created
and installed manually on the virtualization platform. Once built and
configured, the virtual machine is then converted to a virtual machine
image or appliance, depending on the virtualization platform you are
using. This image can be locked or converted into a template to avoid

59

CHAPTER 3 ESTATE MANAGEMENT

unwanted editing or configuration drift. From this template, new virtual
machines can be created with the operating system installed and ready for
customization.

Virtual Machine Images

If you do not want to build your own Linux image, another would be to
download an image from the vendor you choose to use for your enterprise
Linux estate. Companies like Red Hat have prebuilt images available

for download for each version of their operating system released. These
images can be imported and converted into templates; from there, you are
able to build systems. The entire process can be automated to streamline
the process even further.

Tip Using the network installation is a good way to start automating
your deployments. This could definitely improve your build process if
you are still deploying manually. Foreman is a community product, so
if you cannot use Red Hat Satellite or SUSE Manager, it definitely is
an option worth looking into.

Automated Linux Installations

Now that manual installs have been covered, we need to start discussing
how to streamline the process. The first step to reducing wasted time when
building new systems is to automate as much as possible. This should
include as much automation as possible to get your system “production”
ready. There are two approaches you can use.

60

CHAPTER 3 ESTATE MANAGEMENT

Method 1: Network Install

The first way of automating a Linux build would be to use a network install
option. For that, there are a few things that need to be available.

PXE Server

For Linux systems to build from a network, you will need to have a system
listening for build requests. This is known as a PXE boot server. This
system effectively allows a “fresh” system to boot from its network adapter
and prompt a user to select what they wish to deploy, that is, if you have
multiple builds you use. Default options can also be configured for a
system to automatically build without user intervention.

Typically, the network boot server would be something like a Red
Hat Satellite server or a Foreman server. If you choose to use your own
DHCP server, these systems do require the DHCP system to redirect the
“Next Server” option to these systems once a network address has been
allocated. Personally, I would recommend using the DHCP servers that
come with Satellite or Foreman. It makes life a bit easier to manage and
avoids having to get central DHCP systems configured. It also can reduce
complexity with firewall configuration if the traffic needs to span firewalls.
Satellite and Foreman can also be configured to listen on different network
interfaces, allowing DHCP and DNS segregation if you are concerned
about unwanted DHCP or DNS impact on your network.

Tip Red Hat Satellite and Foreman will be discussed more in depth
in the next chapter.

61

CHAPTER 3 ESTATE MANAGEMENT

Kickstart

Once a system has booted into the network installation, the PXE server
would need to be configured to deliver the installation instructions. This is
known as the kickstart file. Kickstart files are basically answer files for the
Linux installer. These files can be used for network installations and for
ISO or USB device installations.

A good kickstart file should be configured to deploy a basic installation
of the Linux distro you are using. With the main focus being around disk
layout and basic package installation, keeping a kickstart file simple
will allow you to use the same kickstart file for a variety of different
system types.

Method 2: Virtual Machine Templates

This method is mainly for building virtual machines. However, it may be
possible for physical machines to be built from images with technologies
similar to PlateSpin. For that, you would need to figure out the process
before continuing here.

For the purposes of this section, we will only be referring to virtual
machine building.

Hypervisor API

With the network installation option on the previous installation method,
you required the use of a PXE boot system. Deploying Linux systems from
templates, however, does not require the Linux operating system to be
installed as that was already done in the template. What you will need is a
method of speaking to the hypervisor that currently hosts the template for
your deployment.

62

CHAPTER 3 ESTATE MANAGEMENT

To speak to a hypervisor for system provisioning, there are a few
options available:

¢ Ansible modules
e Puppetor similar
e Custom shell script

e Management systems like Satellite, Foreman, or
SUSE Manager

With one of the preceding methods, you can automate the provisioning
process for your hypervisor to create a virtual machine from a template.
The template creation can also be automated to pull down images from
the Internet if you want to streamline further.

Ansible Examples

For the preceding process, I personally recommend using Ansible.
Ansible offers an easier learning curve and is the current market trend
for automation. The Ansible modules are already available with Ansible,
and additional modules can be added by installing the required Ansible
collections. Other than the modules, there are more than enough examples
available online to show you how to automate almost anything you can
think of. In fact, if this is something you wish to pursue, have a look at my
GitHub repositories for some basic examples on Ansible. One particular
Ansible role I have been involved in developing over the last couple years
is one called “ansible-role-cornerstone.” This Ansible role helps the user
build virtual machines in VMware and Libvirt and also allows the user to
provision cloud instances in AWS and Azure.
https://github.com/kenhitchcock

63

https://github.com/kenhitchcock

CHAPTER 3 ESTATE MANAGEMENT

Using Images

If the template deployment model is something you wish to pursue, it will
be worth understanding which approach is best to use: using a golden
image or using a catalog of images.

Golden Image

The “golden image” model involves one image or template created as the
base starting point for all systems. This image would be the central source
of truth that everything can be built with. Let’s have a look at some reasons
to use this approach vs. to not use it.

Use It

¢ Oneimage to manage and maintain.
* No chance of image sprawl creating chaos.

¢ One source of truth. You know what is in it.

Don’t Use It

o Ifyour image is not 100% correct, you can end up
with an estate of Linux systems that would need to be
rebuilt.

e Cannot be used to quickly spin up systems to be used
out of the box. Configuration would still be required.

e Minimal time saved with using a basic image.

64

CHAPTER 3 ESTATE MANAGEMENT

Note This is not an approach | would recommend anymore, largely
due to the fact that there are much better ways of automating system
builds today. This method was mostly used in the early days of Linux
estate building.

Image Catalog

This catalog can be virtual machine templates, images, or kickstart files. All
will have similar advantages and disadvantages.

If you decide to use a catalog of images or kickstart files, it is
recommended that you keep a track of what the images are used for and
how they can be used for variations. The following is a basic example:

o [Base Linux OS image]
¢ [Web server image]
e [Load balancer image]
o [Reverse proxy image]
¢ [Database server image]
o [Mysqlimage]
o [Postgresql image]

This method of managing your build process does seem like a good
idea on the surface, but it is important to understand the additional work it
can bring. Let’s break this down into some advantages and disadvantages

for comparison.

65

CHAPTER 3 ESTATE MANAGEMENT

Advantages

o Catalog of prebuilt images or kickstart files that can be
used to build systems quickly. Allowing a repeatable
build every time.

o Systems can be almost 100% configured for use after
deployment.

o Templates can be sealed to ensure no configuration
drift occurs.

Disadvantages

e Ifyou use templates for virtual machine cloning,
the templates will need to be patched and could be
forgotten.

e Image sprawl could happen, and you could end up with
a hoard of templates no one knows what they are for.

e Multiple images will need to be patched and
maintained by someone.

Build Process Flow

To improve the build process in any organization, we need to understand
the flow. Once we have a good breakdown of the flow, we can see where
things can be automated and where improvements can be made.

Basic Build Process

A rudimentary flow of a Linux system build would typically look something
like Figure 3-1. Add the approval process before the request is done and
factor in the checks for available resources, and you have a basic flow for
getting a new Linux system built.

66

CHAPTER 3 ESTATE MANAGEMENT

Requests
new
system

Virtual Yes——p-¢ from image

Yesj

Contact
Hypervisor and
No N clone image
l User notified

system
PXE boot Kickstart file Installation
. " sent ™ completed

available
Figure 3-1. Linux system build

‘ User

This solution is still used by many organizations today and has
not changed much over the last decade other than the versions of the
operating systems being installed.

What Can Be Improved

With this example of our basic build process, we have much scope for
improvement and automation. Let’s understand what can be done to

improve this process.

Automate, Automate, Automate

It really goes without saying, automate every possible manual thing you
do in your build process. This includes tasks outside of the installation
or deployment. The allocation of network addressing, dns configuration
are vital when trying to automate a full end-to-end system. Absolutely
everything you would normally do manually must be automated.

Introduce a User Request Portal

By using a user request portal of some type, you remove the need for your
engineers to be assigned basic build jobs. Not only should system builds be
automated as mentioned previously, the process to request systems should
also be streamlined.

67

CHAPTER 3 ESTATE MANAGEMENT

Integration with Other Platforms

The user portal should be able to integrate with systems like change
management platforms, where build requests can automatically be sent for
approval. Once a job has been approved, the portal should have the ability
to speak to an automation platform to kick off build jobs. Once the jobs are
complete, the user should be notified.

Simplify Resource Requirements

Using “tee shirt sizes” for system build within the user portal will reduce
complexity for end users. There will still be a requirement to determine
what resource requirements would be needed for the user’s build, but this
can be done with documentation or notes during the user request process.

Use an Automation Platform

The use of an automation platform is highly recommended when trying to
automate complete estate builds. The features provided often help make
the process a bit easier, often giving guidance and tips along the way.
Some automation platforms like Red Hat Automation Platform
could also be used by the user as a request portal to kick off approved
builds. Some customization and user access control would be required
but could be possible to a certain degree. Community versions of Red
Hat Automation Platform can be used, but remember that there will be
differences. An example would be the lack of directory services integration.
Alternative ideas and systems could involve anything from a Jenkins
Pipeline through to customer scripts or applications. There are also higher-
end paid-for products that can be used, but that will depend on your
appetite for enterprise products.

68

CHAPTER 3 ESTATE MANAGEMENT

Introduce Expiry Dates

For nonproduction or developer platforms that are only used for small jobs
or tests, introduce methods of retiring them automatically. Give the user
an option to extend if you want, but make sure unused systems expire and
are deleted. This is not always possible but should be considered when
you allow users to request new systems. Without something like this, you
can quickly reach limits on hardware, or, worse, if you are using cloud
platforms, you could incur massive costs.

Automated Build Process Flow

If all of the recommendations and more are adopted, your new build flow
should not only reduce day-to-day build work. It will also allow complete
estate rebuilds and improved recovery from disaster. The need to firefight
systems that failed will be reduced as they could just be reprovisioned and
be available for use within minutes or within the hour. With proper disaster
recovery and failover, little to no downtime should exist. Figure 3-2 takes
into account a few scenarios but should include much more around testing

Resources
available

and system customization.

New
request
from user
portal
Approved

Yes—s=| Build starts ——»

Yes

[' v
Destroy Virtual Download Submit job to
User Notified Yes—— virtual Machine < I ; Automation
. atest image
machine created platform

e ,

Virtual a .
Automated machine DNS :?al':;{mor
= testing i configured to Configured

i ress
requirements address

Virtual

Machine |-Mo
released

Test failed

Figure 3-2. Standard build process can be improved to eliminate
manual configuration

69

CHAPTER 3 ESTATE MANAGEMENT

By improving your build process, more time can be spent on more
exciting work, and it can improve innovation.

System Patching

System patching is one of the most important jobs a system administrator
should be doing. Most companies or organizations that require
accreditation can be fined or worse if systems are not patched regularly.
For this reason, patching is planned and executed regularly with most
organizations. This often means patching or updates need to be done out
of hours and within certain maintenance windows, a painful task for the
poor sysadmin assigned the job, especially when the work ends up being at
1 a.m. in the morning.

Let’s first understand what the different update types are and then
understand how patching and updates can be managed in a streamline
manner to potentially reduce out of hours work.

Update Types

Linux updates for enterprise distributions are made available to customers
who pay for subscriptions. Previously, we have gone over before, but to
reiterate, these subscriptions are what divides enterprise from community.
Enterprise Linux companies like Red Hat and SUSE will constantly be
releasing updates. These updates come in two forms: package updates
and errata.

Package Updates

Package updates make up the bulk of most system patching cycles. The
updates tend to be new features or new versions of the installed package.
Normally, during the update cycle, the package manager or package
install files would make backups of any configuration files that may be

70

CHAPTER 3 ESTATE MANAGEMENT

impacted. However, never take it for granted that this will be done. I once
came across an issue where a product was updated and overwrote the
customizations made in the configuration file. My advice would be to
always ensure you have backups in place before any update cycles are run.

Errata

Another update type commonly found with Linux updates is the errata
update. Errata are the bug fixes and security updates. These make up
probably the most important type of update you will need to install.

It is in these errata you will receive the important security fixes when
vulnerabilities are discovered in a package or file. These errata must be
applied to any production environment as soon as possible.

Note As the sysadmin of your Linux estate, ensure that you are
getting all alert emails with errata releases. Being told as soon
as a new errata is released will help you plan the patching cycle,
especially if the errata contains security fixes.

Staging

When applying patches and errata to your organization’s systems, it is
vital to know that the new updates do not cause any adverse effects to any
running systems. To reduce that risk, it makes sense to stage your updates.
What I mean by this is that your patching should have a flow from your
lowest priority systems to your highest priority systems. You would start
by patching your lowest priority systems, like a sandbox environment. Run
automated testing or have a testing team sign the platform off to confirm
nothing has broken during the latest patch cycle. Once you have the
confidence that nothing has been affected by the new patch releases, you
can proceed with your next environment (Figure 3-3).

71

CHAPTER 3 ESTATE MANAGEMENT

i

Are Updates -~ Er?v?rr:)i?g:m Tests
available? o : assed
Patched P
4 Yes
A
Production PreProd Development
Environments |- Environments Environments
Patched Patched Patched

Figure 3-3. Typical patching flow

The example flow diagram only takes into consideration tests after the
sandbox environment and does not consider packages that are different
in different platforms. For this setup, it would be beneficial to have
automated tests all the way through to preproduction environments. As
preproduction should be a mirror of production, you are best positioned
after preproduction has been patched to know if anything will break in
production after patching has been completed.

Patch Management Systems

Using a patch management platform like Spacewalk or Red Hat Satellite
will help with managing patch management cycles. These systems are
built with functionality that allow sysadmins to ring fence patches or errata
to never reach an environment.

Satellite 6, for example, has the ability to group the packages and errata
that are downloaded. These groups of packages and errata are then version
controlled and pushed to specific environments. These groups of updates
can then be migrated between the various environments, allowing you,
the sysadmin, to decide what environment gets what updates. Something
very useful if you have “trigger happy” users constantly trying to run

72

CHAPTER 3 ESTATE MANAGEMENT

“yum update” on the systems they use. Hopefully, this is never the case,
but sometimes mistakes can happen, and it is useful to be able to avoid
unnecessary downtime by not having updates available in the first place.

Table 3-1 lists a few of the commonly used patch management systems
used today.

Table 3-1. Patch management systems

System Name What Is It Used For?

Red Hat Satellite Used for RHEL 6 and up systems. Can be used for
patching and system provisioning plus more.

SUSE Manager Used for SUSE systems and can be used for patching
and system provisioning.

Note In the next chapter, | will discuss the Satellite server a bit
more in detail. If you want to know more, | recommend reading some
of the official documentation for more information.

Planning

Patch planning sounds like something you would do in your sleep, and as
most organizations do their patching out of hours, this is probably what
happens when the systems are being updated.

Having a solid plan for system patching is almost as important as the
patching itself. This plan would allow all systems to be patched in a timely
fashion and avoid the risk of systems not getting updates in time and being
exposed to the vulnerabilities they were designed to avoid.

73

CHAPTER 3 ESTATE MANAGEMENT

A good patching plan should include how patches are applied,
where the patches are coming from (patch management system), how
to check the patches were installed, and, most importantly, how to back
out the patch in the event of system issues. If the plan is foolproof, the
implementation can be done by less experienced sysadmins, allowing the
workload to be spread.

Rollback

When the rare occurrence occurs of a system patch causing more harm
than it fixes, you will need to know how to roll back the system to a working
state. This can be done in a few ways.

System Restore from Backup

Before making any changes to a system, it is good practice to back up the
system. This would involve backing up the filesystem files and directories
most important to your system. Restoring from these backups will get you
back to the state you were in before the updates, but it must be understood
this process can be quite time consuming and if patching out of hours
could be time you do not have.

Restore Snapshot

Virtual machines can be snapshotted, and typically it is a quick process.
Restoring from a snapshot can sometimes take longer if the snapshot has
been running for a longer time, but typically this process takes seconds.

74

CHAPTER 3 ESTATE MANAGEMENT

Package Management Rollback

Another relatively quick rollback method is to use the package
management system to roll back. With Red Hat Enterprise Linux or any
distro that uses yum, you have the ability to roll back using the “yum
history undo <id>” command. Other distros like Ubuntu and SUSE are a
bit more complicated.

Reinstallation of Packages

The slightly more irritating approach would be the removal and
reinstallation of the defective package. The problem with this approach

is the discovery process to find the offending package would take most

of your time if you are patching a large number of packages and systems.
Although this would solve the problem, you will be spending time you may
not have during your patch window.

Redeployment of System

The sledgehammer approach would be to blow away the system and
redeploy. Something that can be done in lower priority systems like
sandpit but definitely not something most organizations will do in

production.

Backup and Recovery

Backing up your Linux systems is something you would ordinarily do if you
build systems that cannot be redeployed easily. The idea of redeploying

a system from code is far more appealing to organizations today than
restoring from backup. However, there may be systems that cannot be
redeployed so easily in the event of disaster. For those systems, you will

75

CHAPTER 3 ESTATE MANAGEMENT

need to know what directories and files are important to back up. You will
need to understand how to restore from these backups and finally what the
best options are for faster recovery.

Important Directories and Files

There are some standard directories that are important to back up if you
need to back up at a filesystem level. These directories should include but
not be limited to the following:

/etc
/home
/root
/usr
/opt
/svr
/var (be sure to exclude logs or anything large not required)

The preceding directories should be compressed with your tool of
choice. That archive can then be pushed to a backup location. This can
be any storage type you wish; just remember that some backup locations
over a network could take longer than others. If you need the backups

completed within a certain window, choose wisely.

Virtual Machine Backups

Most virtual machine providers have the ability to snapshot virtual
machines. Snapshots however are not backups. Snapshots are there

for you to use for quick recovery while you are working on the system.
Snapshots can grow quite large as they keep track of everything the system
changes; if those changes are not kept in check, they can cause you a bit of
a problem when you need to reconsolidate the changes later.

76

CHAPTER 3 ESTATE MANAGEMENT

There are a few methods of backing up virtual machines, but most of
them basically copy the disk image of the virtual machine. Some third-
party software can manage this for you so you are able to back up live
virtual machines, but they come at a premium. Standard virtual machine
backups would require the virtual machine to be shut down first, which is
not always possible.

Virtualization platform managers should have solutions in place, but in
the event of no backups being done, ensure that you at least take snapshots
when doing potential destructive work.

Disaster Recovery

As an organization, it is vital that production platforms remain up as
much as possible. This could involve many different solutions and should
involve redundancy at all levels. When those plans fail in the completely
unprepared scenario, there needs to be a plan to recover from disaster.
The goal of disaster recovery is not to ensure all single points of failure are
covered but more how to return back to production.

Best Strategies Based on Recovery Times

Let’s explore a few disaster recovery options and discuss which ones could
suit your organization.

Replicated Data Centers

As much as running out of multiple data centers is a good idea, it too can
sometimes not be enough to avert disaster. Where multiple data centers
can work and allow true disaster recovery would be if both data centers
were mirrors of each other. Data would need to be constantly replicated,
and systems would need to be identical on both sides, or at least as close
as possible. This solution effectively means doubling up on all costs and
would require good quality connectivity between both data centers.

77

CHAPTER 3 ESTATE MANAGEMENT

Stretched Clusters

Technically, this is not a disaster recovery solution but does allow the
ability for data centers to be failover between each other, allowing reduced
downtime and giving the ability to switch data centers when maintenance
is required.

This solution, however, does require infrastructure that can be clusters.
Everything from storage through to networking equipment will need to be
configured in such a way that failover is possible.

Infrastructure As Code

As most organizations have already started to embrace the world of
automation, this method of disaster recovery should not seem completely
strange.

If everything deployed and configured in your estate is automated, all
that would need to be recovered to continue operating would be the code
to execute your automation. If this is backed up and restored across data
centers or cloud platforms, the automation could then be run to rebuild
all systems required by your organization. This approach would require a
high degree of organization and would involve a strict build process that
only allows systems to be built from code.

There is the element of actual data that would need to be restored in
the event of disaster, which in itself would need a complete book written
on the subject to address all the complexities involved in creating the
perfect solution.

Cloud

Very much like having another data center, using cloud platforms like AWS
or Azure can provide an excellent platform for disaster recovery. Having
an entire cloud platform automated to build a replica of our on-premise

78

CHAPTER 3 ESTATE MANAGEMENT

systems could provide an ideal fast failover. Ideally, this platform if not
used for production could be turned off to save costs. Then in the event of
disaster, the cloud environment could be powered and traffic redirected
while issues on-premise are resolved. This solution would require massive
investment on your part to ensure configuration is replicated from the
on-premise systems, and you would still need to work out how data can be
replicated to ensure no data is lost. Out of all the disaster recovery options,
this one could be one of the cheaper options, as once the platform is built,
it could be powered off. Factoring only data costs and the cost of reserving
IP addresses, the cloud platform could potentially lie dormant until
required.

Common Bad Practices

Before looking at a few good practices for estate management, let’s look at
some examples of some not so good practices.

Virtual Machine Templates

Previously, we spoke about using virtual machine templates to build Linux
systems. This in itself is not a bad practice, but the neglect of maintaining
the templates can be. Using a single template and not patching it or
resolving vulnerabilities can leave your estate open to deploying systems
that will fail compliance scanning.

If you use virtual machine templates as your Linux build process, ensure
that you keep on top of keeping your templates in order. Build a regular
schedule job into your work plan that cannot be skipped for someone to
check the state of the templates and ensure they remain up to date.

79

CHAPTER 3 ESTATE MANAGEMENT

Patching or Lack Thereof

Sometimes, system patching falls behind and on very rare occasions gets
forgotten. Having systems up to date is extremely important if systems

are accessible from the outside world. It goes without saying that if a
known vulnerability is not patched on your system, you are potentially
opening yourself and your organization up for disaster. Even platforms

not accessible from the outside world should be patched and updated
regularly. These systems seem secure, but if an intruder were even able to
access your network, having all your systems as secure as possible would at
least make it harder for any further damage to be done.

Firewall Disabled

Local Linux firewalls can be a pain to maintain and configure when
running thousands of systems, but their importance cannot be stressed
enough. Just like patching systems in a secure network reduces the risk of
further damage if an intruder did even manage to breach your network,
local Linux firewalls could provide another inconvenience for the would-
be intruder.

Automate the firewall configuration on build and use configuration
management platforms to ease the pain of managing these firewalls. They
could make the difference one day.

SELinux Disabled or Permissive

More often than not, when I visit new customers, I find they have disabled
SELinux or not set SELinux to enforcing mode on their systems, sometimes
due to the fact that they don’t know how to configure SELinux or haven’t
understood the benefits.

80

CHAPTER 3 ESTATE MANAGEMENT

Having as many options available to ensure a system remains secure
can only be an advantage to any organization. Setting SELinux to enforcing
mode is often a requirement of compliance scanning. Getting used to
using SELinux now will make life that much better when you are forced to
enable it later.

Using Community Repositories

Using enterprise Linux distributions like Red Hat Enterprise Linux is not
restricted to only using Red Hat repositories. Community repositories
like EPEL can be enabled and used if you want to. Sometimes, this is

for a good reason like requiring a package not available in Red Hat
repositories, and sometimes it can be enabled because an organization
wishes to use cutting-edge packages, which, when supported by yourself
entirely and your organization, is fine. It is not okay though if you are
reliant on using enterprise support. The problem would be potentially
contaminating a system to the extent that it became unsupported until
you remove nonsanctioned packages and updates. This could provide
major headaches when raising support cases when you have problems in
production.

Scripts, Scripts, and More Scripts

Using bash or shell scripts to manage your platform can seem like a great
idea but can easily spin out of control. New starters and leavers all create
their own scripts, and soon before you know it, no one knows what is used
for what anymore. Worse than that, some of these scripts are less than
desirable and in some cases are outright dangerous.

Management platforms should be used as much as possible, and all
scripts should be in the form of automation executed from an automation
platform.

81

CHAPTER 3 ESTATE MANAGEMENT

Running As Root

Logging in to a system as root is not something anyone should be doing in
a production environment. Production does not always mean customer-
facing systems either. Development environments with developers
actively working can also be regarded as production. Logging in directly

as root removes any audit trails and gives full permissions for someone to
accidentally cause an issue. Always log in with your own credentials and su
to root if you need to. This practice needs to be followed by everyone and
not just standard users.

Good Practices

The following are some of my personal opinions on what constitutes estate
management good practices.

Building Throwaway Systems

Any system you build should be built in such a way that it could be
possible to delete and redeploy. Yes, some systems will take time to
redeploy, but if built in a standard repeatable way from a trusted source,
you should have the confidence to throw any system away and redeploy.
Changing your personal and organization’s culture into a cloud-
oriented working model will help and drive innovation. Firefighting and
troubleshooting should be reduced, freeing you up to spend more time
doing things that interest you more.

82

CHAPTER 3 ESTATE MANAGEMENT

Automate As Much As Possible

This one’s self-explanatory, but whenever possible try to automate what
you do. The idea of manually doing anything today just seems strange

as chances are you will need to repeat the job at one point or the other.
Having automation in place just streamlines everything and also provides
a good source of documentation for any new starters. Besides, writing
automation code is far more exciting and interesting than clicking next on
an install.

Search Before Creating

Before diving head on into writing a new Ansible role or any kind of script,
always do your due diligence and check if someone has not already done
it for you. The chances are you will find what you are looking for and save
yourself time and effort. Reinventing the wheel is just a waste of time, and
in most cases the content you find has taken a while to create with a fair
amount of effort and thought.

Sharing Knowledge and Collaborating

Share what you learn with your work colleagues and try to involve as many
people as you can in work projects. Run workshops and build interest in
what you do. This will open the door for your managers to give you more
time to innovate and show your value to your organization. Please do not
feel that what you learn should be kept only to yourself; you never know

if someone can offer an alternative view with an interesting twist to make
something better. Remember, open source is more than code available. It is
collaboration and being open.

83

CHAPTER 3 ESTATE MANAGEMENT

Source Control

Anything you develop to manage your estate should be stored in a source
control platform like Git. The code should have code review done and
should absolutely never be executed in production until rigorous testing
has been done. We all have the best intentions when we write code and
can often be blinded by the mistakes we make. A second pair of eyes can
sometimes be all the difference.

Reassessing System Requirements

When running a large virtual machine estate, the resources required may
not always reflect the resources requested for the original builds. Using
estate monitoring tooling will help you stay on top of systems that don’t
actually require the resources they were allocated. This could allow you
to free up the unused resources for other systems. This of course will not
matter too much if your virtualization platform was configured to reclaim
unused resources automatically.

Summary

In this chapter, you were introduced to the following topics and

discussion points:

o Some outdated ways of working that have been
adopted over the years. Things to avoid

¢ The Linux build process and how it can be
improved. What are some of the problems that can
be encountered and what can be done to improve
the process

e The processes involved in Linux system patching and
the importance of staying up to date

84

CHAPTER 3 ESTATE MANAGEMENT

Backup and recovery options including ideas around
disaster recovery

Common bad practices and things that should ideally

not be done when managing Linux estates

Good practices and recommendations on things to
start doing

85

CHAPTER 4

Estate Management
Tools

Managing larger Linux estates can be challenging if not done properly.
Trying to manage thousands of Linux systems following techniques and
tooling from 20 years ago will leave you in a heap of trouble, none so much
when compliance scanning shows holes in your environment. Not only
will you find mass amounts of security vulnerabilities that could give any
security person heart palpitations, it will also leave you with a depressing
amount of remediation work.

To avoid these issues, the use of management software is highly
recommended. Even with a modest amount of Linux systems to manage,
management platforms will only make life easier. The day-to-day tasks can
be automated, the build process streamlined, and the dreaded security
remediation offloaded to the management platform to handle for you.

Some tooling does come with a cost, and for that reason, it is important
to also know what community options are available. Very much like we
discussed in the earlier chapters, we will do a similar comparison. The
idea behind this chapter is to get you familiar with management platforms,
what they are used for, and how they can make your life easier as a Linux
sysadmin.

© Kenneth Hitchcock 2022 87
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_4

https://doi.org/10.1007/978-1-4842-7984-7_4#DOI

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Management Systems

There are two kinds of management systems we will look at in this chapter:
Linux platform management systems and automation platforms. For each
type of management system, [will explain what the system does and the
basic concepts of the tool. To be very clear from the start, this book is not
an official guide on how to use these platforms. All I am trying to do is get
you familiar with what the tools do and how they could benefit you.

Linux Platform Tools

The first and most important management tool you should be using if you
are not already using one is the Linux platform management tool. This tool
is the center of your estate and controls a big part of what Linux sysadmins
should be doing. This tool should have some if not all of the following
functionality:

o Package syncing from external repositories

» Ability to segregate packages by environment

e Linux build and kickstart capabilities

o Compliance scanning and reporting

o Configuration drift control

o Platform monitoring and logging

o Integration into virtualization or cloud platforms
» Ability to work in a disconnected environment

e Must be scalable and reliable

88

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Obviously, you don’t always need all the preceding functionality, but

it does help to have the features available in case you start evolving your

ways of working. An example of this could be your organization’s decision

to start using more cloud facilities. Having a tool with cloud provisioning

abilities will save you having to use another platform or writing your own.

Linux Platform Tools Available

Table 4-1 provides a list of some of the more common Linux platform tools

you can use to manage small to large Linux estates.

Table 4-1. Linux platform management options

Product Description

Red Hat The premier enterprise Linux estate management tool from

Satellite Red Hat. Used to manage estates of RHEL 6 and upward. The
product has been around for almost two decades at the time of
writing

Foreman A community product used for managing the Linux system
build process. Foreman is the upstream for Red Hat Satellite 6

Katello A community product that provides content management for
Foreman. Katello is another product used by Red Hat Satellite 6
as its upstream equivalent

Pulp A community product that manages package repositories

SUSE Manager

for Linux systems. Pulp like Foreman and Katello is another
upstream product for Red Hat Satellite 6

The enterprise product from SUSE to manage SUSE platforms.
SUSE Manager is based on the community product Uyuni,
which in itself is a fork of the Spacewalk project

(continued)

89

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Table 4-1. (continued)

Product Description

Spacewalk Spacewalk has in the past been used as the upstream for Red
Hat Satellite 5. Today, it remains a community Linux platform
management tool that has been abandoned by its developers

Uyuni A community platform management system that provides
system provisioning and patch management capabilities.
Configuration management is managed by SaltStack and
features the ability to run compliance scanning. Uyuni is a fork
of the Spacewalk product with integrated SaltStack. Uyuni is
also the upstream for SUSE Manager

EurolLinux Another community Linux estate management tool which
appears to be also forked from Spacewalk with SaltStack
integration

Note The Spacewalk forked platforms are mostly the same other
than the inclusion of SaltStack. If you decide to use one of them, the
decision will need to be based on product fix frequency to ensure you
have bug fixes and vulnerability patching available.

Selecting Your Linux Platform Tool

With most things in the open source world, there are enterprise products
and community products. Depending on your organization’s requirements
and budget restrictions, you may be limited in your choices. To understand
how to make the correct decision on which tool you should be using, let’s
look at what you need to ask yourself:

90

CHAPTER 4 ESTATE MANAGEMENT TOOLS

e Support: Do I need support from an enterprise vendor
if I encounter issues, or am I happy to work with
communities and their forums to get my answer?

e Linux distros: What Linux distributions am I managing?
Do they have enterprise subscriptions that need to be
managed?

o Features: What features can I not do without? Am
I happy to use multiple platforms to provide all
the features I want, or do I require a tool that has
everything in one place?

The Decision

The product you use will be heavily weighted by your organization’s
needs. Often, regulatory compliance will dictate if you use enterprise vs.
community products. Feature the product should have, tend to be dictated
by decision makers above you who do not understand what you as a Linux
sysadmin does or what the products do, leaving you potentially with a
product that will be more of a hindrance than a help.

My advice with the above is to build a case for the product you feel
is correct not only for you but your organization. For that, you will need
to be decisive in your decision and show a clear good reason or reasons
for why the product you prefer to use is the best for the job. If the product
is an enterprise product, you will also need to justify costs and prove
it is better than its competitors. Depending on your company’s way of
working, a presentation with advantages and disadvantages should be a
useful exercise, possibly with a comparison of features between different
products.

91

CHAPTER 4 ESTATE MANAGEMENT TOOLS

To support your decision and to build your case, you must be confident
the product is the right product for you. To do this, you must be familiar
with it and understand its limitations. This can be achieved by doing the
following:

¢ Have the vendor demo the product: If the product is
a paid-for product, ask the vendor to come visit you.
Request a demo of the product to be shown to you and
your company'’s decision makers. This will increase
your chances of getting the product you want if it has
more visibility within your organization. Decision
makes will then have all the information available to
them to make an informed decision.

e Proof of concept: Another useful way to understand
how a platform tool works is by building a proof of
concept system to test. If you are wanting to test an
enterprise product, speak to the vendor and request
a demo subscription or license. Community products
normally do not require subscriptions, but some might
require or request a donation.

Tip Itis advisable to test a slightly older version of a community
product for your PoC testing. This should reduce some pain that can
come from bleeding edge technologies. Stick to stable branches
when you are still learning.

92

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Satellite Server

The first and probably the one most people will know is the Red Hat
flagship management system: Red Hat Satellite server. Originally released
in 2002, Satellite was based on the upstream Spacewalk community project
until Satellite 6.x was released in 2014. Since then, Satellite 6 has been
based on a number of upstream products all combined together to provide
the latest Red Hat platform management system.

Satellite 5

Red Hat Satellite 5.x worked quite well as an overall Linux estate
management system. Satellite provided patch management, system
deployment, compliance scanning, configuration management, and
general estate management functionality.

Some interesting points I always ended up spending more time on
were around system deployment and configuration management. Both

were problematic in one way or another to use.

Configuration Management

Over the course of its life, Satellite 5.x improved from version to version
but had one major issue: its configuration management system. This
attempt at configuration management was just awful. The configuration
management used a concept of storing configuration files that would be
pushed to client systems. Unfortunately, this had the habit of sprawling
into chaos as more and more config files were stored. The config could be
versioned, but it was extremely painful to manage and often ended up in a

real mess.

93

CHAPTER 4 ESTATE MANAGEMENT TOOLS

System Deployment

The system deployment used in early Satellite used Cobbler along with
PXE boot mechanisms. Getting the deployment system to work sometimes
proved to be quite challenging at times. I spent many hours tweaking
config to get systems to deploy only to later find out I didn’t set correct
permissions or I was missing a package. Later versions improved and
became easier to install. Possibly a combination of me gaining experience
and the documentation improving.

Satellite 6

The current major release of the Satellite server is version 6.x. Satellite 6.x
is based on a combination of products including the following:

¢ Foreman
o Katello

e Pulp

e Hammer

e Candlepin

Content Management

The best feature for me that was introduced with Satellite 6 was the
complete overhaul of the content management system. Previously in
Satellite 5 and in Spacewalk systems, the content was segregated into
“channels” These “channels” required cloning from one to the other

to create a staging flow for you to apply content from dev to test to
production. If this doesn’t make sense, don’t worry; it confused enough
people when I tried to show them in the past. I will break it down a bit
more in the “Spacewalk” section a bit later to explain a bit more.

94

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Content Views

Fortunately, Satellite 6.x has provided a better solution with the help of
Katello. The new system no longer uses “channels” but instead uses a new
concept called “content views.” A “content view” is a collection of content
that Satellite can provide to a system. This content can contain puppet
modules, Ansible roles, or standard yum repositories. Where a “content
view” really shines is in its ability to be versioned. This means, as new
packages are downloaded on Satellite or new puppet modules are added,
the “content views” previously versioned are unaffected. Meaning any
systems allocated to these “content views” will not see the new content.
Perfect if you wish to stage your content through your life cycles.

Tip As content views grow, they can take longer to publish.
Keeping the content view small can help with this, or you can enable
download on demand.

Life Cycles

Content views are useful to group content, but they do need to be used by
systems. To do that, registered systems are added to different life cycles.
These life cycles can be called whatever you like, but generally they are
given boring names as follows:

Library (Default) » Development » Test UAT » Pre Production »
Production

Content views are then associated with life cycles which in turn are
associated systems.

95

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Content Management Flow

A basic example of content being updated and being applied to a life cycle

environment is shown in Figure 4-1.

Does a content

content?

Promote new version

Mew Content Publish new from Library Life

Addeld_ to version ™| cycle to first life cycle
Satellite No environment
¥ I W
Create
content view
if systems
require the
content

Does new
content cause any
issues?

Yes.

No

v

Promote to
next
environment

Figure 4-1. Typical life cycle environment

The basic flow in Figure 4-1 shows how content views are updated,
published, and pushed into different life cycle environments, thus allowing
the migration of content like package updates or errata to be moved from

test through to production environments.

Tip Content views can be nested. They are called composite
content views.

96

CHAPTER 4 ESTATE MANAGEMENT TOOLS

System Provisioning

With the introduction of using Foreman instead of Cobbler, the Linux
deployment process has been simplified in one extent and complicated
in another. The complexity has mostly been brought in around ensuring
that organizations and locations have been configured for all components
of the provisioning process. Things like “operating systems” and “network
subnets” all need to be added to the correct “organization” and “location.”
Once you have gotten your head around the grouping issues, the rest of
the configuration becomes a bit more straightforward than the previous
Cobbler configuration.

One major thing to note about the system provisioning process is
that when you deploy your Satellite, you do need to ensure that you add
the features for system deployment. The official Red Hat documentation
explains the process quite clearly and provides all the parameters you
will need. If you prefer to not use the documentation, you can also look
atthe “satellite-installer --help” command for more parameters.
They are self-explanatory and should make sense when you see them.
My recommendation is to stick to the official documentation when you
install your Satellite for the first time. Once you have one done, the help
command is useful to remind you of what you need.

System Patching

Patching systems registered to Satellite are no different to previous Satellite
versions. The systems still need to run “yum update” to get the latest
content. Remote execution can also be used like it used to be used in
Satellite 5.x for mass execution across the entire estate. Personally, I would
recommend using your automation platform to do this, but this would be
up to you on how you wish to manage your estate.

97

CHAPTER 4 ESTATE MANAGEMENT TOOLS

The biggest change from previous Satellite versions remains around
the “content view” versions. When new content is available and you wish
to deploy across your estate, remember to follow the content management
flow diagram further up in the chapter. Once your “content view” has been
promoted to your system’s life cycle environments, you will be able to
execute your system updates.

Configuration Management

Configuration management has drastically been improved with Satellite
6 from Satellite 5. Early versions of Satellite 6.x only used “Puppet” for
configuration management and SOE (Standard Operating Environment).
One downside of Puppet is that Puppet requires puppet agents running
on client systems. These agents often need to be configured to check in to
the Satellite Puppet master to ensure they are kept in line with expected
configuration.

The Puppet content would be stored within the “content view”
associated with the client system registered to the Satellite server. The
Puppet client would then check in with the Satellite Puppet master and
would then run through the content available to check if anything new
needs to be applied or corrected. If the Puppet agent was stopped on the
client system, the configuration would not be applied.

Later versions of Satellite 6 introduced Ansible as another option for
configuration management, which, very similar to Puppet configuration,
required a “content view” to contain all the Ansible roles and configuration
you wished your system to be configured with.

The Puppet or Ansible configuration would also be version controlled
with “content views” and would also require publishing and promoting for
updated content to be made available to the systems registered to Satellite.

98

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Reasons to Use Satellite

o Ability to provision RHEL systems with an easier-to-use

provisioning platform

» Ability to stage patching and updates across
environments

o Enterprise product with continued support and feature
enhancements

o Integrated compliance scanning and remediation

o Configuration management with Puppet or Ansible

Reasons to Not Use Satellite

e Costs involved could be out of range for a small

organization.

e Notrecommended for tiny estates of less than 30
systems or so.

e Notideal for non-Red Hat systems.

SUSE Manager

SUSE Manager 4.x is the latest SUSE Linux platform management tool.
SUSE Manager 4.x is based on the community product Uyuni (ya - uni).

Uyuni

Uyuni was originally forked from the Spacewalk project but started to
divert so much from the original Spacewalk project that it has started to
become a tool of its own, which is refreshing to know as Spacewalk has
been around for a long time and had its fair share of issues.

99

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Where Spacewalk failed with its poor configuration management, Uyuni
excelled by scrapping the old configuration management tool and replacing
it with SaltStack. This decision was a stroke of genius and possibly a good
decision why Uyuni is the SUSE Manager upstream project.

Support

Uyuni and SUSE Manager have their own challenges I'm sure, and those
with more experience with this tool may know all about them. The SUSE
Manager configuration is not drastically too dissimilar to Red Hat Satellite
and is self-explanatory. Both products have excellent documentation and
provide enterprise support.

SUSE Manager Configuration

One of the first things that needs to be done with SUSE Manager is

to register your account so packages can be synced for your SUSE
environments, very much like Red Hat Satellite. The downloaded content
is then sorted into “channels,” which is the same concept used from
Spacewalk. A new concept of life cycles has been introduced which
improves how the added content can be managed to provide updates
across environments. This new approach streamlines the process instead
of having to do the “channel” sync that Spacewalk used to require.

If you are a SUSE organization, SUSE Manager 4 is the tool you should
consider using for your environment. Read the official documentation,
build a proof of concept system, and compare its functionality with what
else is available.

Reasons to Use SUSE Manager

e You can provision SUSE systems with a central
provisioning platform.

o Ability to stage patching and updates across

environments.

100

CHAPTER 4 ESTATE MANAGEMENT TOOLS

o Enterprise product with continued support and feature
enhancements.

o Configuration management with SaltStack.

Reasons to Not Use SUSE Manager

e Where costs exceed the usefulness
e Using non-SUSE distros that need to be managed

e Managing a small estate of less than 30 or so systems

Foreman

Foreman is one of the main upstream projects for Red Hat Satellite 6.x.
The main function of Foreman is to assist with the provisioning of Linux
systems; however, Foreman does have the ability to be extended in its
functionality by adding plugins.

Provision Hypervisors

One nice feature of Foreman is that it has the ability to provision not only
Linux platforms but also virtualization hypervisors. A very handy ability if
you are looking at automating your estate to the “nth” degree.

Plugins

Foreman, however, by itself does not assist in content management or
configuration management like Satellite 6.x. For that, you will need to
combine Foreman with extra plugins. The plugins range from Katello for
content management all the way through to configuration management

101

CHAPTER 4 ESTATE MANAGEMENT TOOLS

and automation with Chef. As Foreman is a community project, new
plugins are being made available all the time, and the functionality is
constantly growing.

Open Source Does Need Money Too

Foreman is a community product that does not require subscriptions
or licensing. The project does accept donations if you like what they are
doing. If you are up for it, you can contribute to the project and provide
some valuable resource in any way you can.

Spacewalk

As the management tool that started it all for Linux platform management,
Spacewalk deserved to be mentioned, be it only briefly.

Abandoned

Spacewalk unfortunately has been abandoned by its developers and has
been left to others to fork and evolve the project. Uyuni is one such project
that has taken what Spacewalk started and is currently building quite a
nice-looking tool. Canonical, the Ubuntu distro companyj, is another that is
using a Spacewalk variation for its platform management.

Why It Was Good

What made Spacewalk such a great product at the time was its ability to
manage Linux systems at large. Systems could be grouped, and remote
execution could be sent to all the systems at once, a very useful ability
when you had hundreds of systems to patch or to install packages. This
was before the days of Ansible and even Puppet slightly. As mentioned a
few times, the Spacewalk configuration management was awful to use, but
it did provide functionality to keep configuration in line if you did not run a

102

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Puppet environment. As Puppet was on the slightly difficult side to master
and understand, configuration management in Spacewalk was a nice tool
to have even if it was not the best.

Network Provisioning

Spacewalk also introduced more people to Cobbler and kickstart
deployment, taking Linux system building to a new era of deployment.
Having the ability to boot a system off the network and selecting a kickstart
file to use really took some of the pain away from running around with
physical media. The fact that the kickstart files would automate the install
made life even easier, and those who were up for the challenge could
create their own snippets of code to configure the newly built system that
bit further.

Environment Staging

Environment management with channels meant that package cloning
could ensure that environments did not get updates unless the Linux
sysadmins deemed it so. This was the same with errata and bug fixes.

Thank You for Your Service

Spacewalk served its purpose well for a long time, but with the
introduction of Foreman and other such products, it has come time for
Spacewalk to retire as it was. New versions like Uyuni have taken what
Spacewalk was and evolved it into something new and exciting again.

Provisioning Tools

Another type of management system that can be used to manage
your estate is a dedicated provisioning tool. Technically, Foreman is a
provisioning tool and so is Satellite, but a dedicated provisioning tool

103

CHAPTER 4 ESTATE MANAGEMENT TOOLS

would act as a single interface into all aspects of your portfolio. If you
deployed on-premise in the cloud, having a provisioning tool would mean
that all operations could be executed from one location.

Cloudforms

Red Hat Cloudforms is an enterprise provisioning tool based on the
ManagelQ upstream project. Red Hat acquired ManagelQ in December
0f 2012 and continued to drive the adoption of Cloudforms through the
next decade.

Single Pane of Glass

Cloudforms has always been described as the single pane of glass into
your estate. Cloudforms has the ability to integrate into VMware, RHV, and
various cloud providers like AWS and Azure for provisioning but also could
integrate with Red Hat Satellite and Ansible Tower, giving you even more
control of your estate.

State Machines

With the integration options available, virtual machines and cloud
instances can be created with what is known as a “state machine.” A “state
machine” is written with Ruby on rails code to provide the automation
steps required to build and configure your virtual machine or cloud
instance. In the newer releases of Cloudforms, the ability to use Ansible
instead of Ruby on rails has become available.

A rather large downside of state machine development was the
complex setup required to get it to work. This was not something that came
out of the box and often required someone with experience to assist in
getting it to work. Even then, the process was still complicated.

104

CHAPTER 4 ESTATE MANAGEMENT TOOLS

User Request Portal

Cloudforms or ManagelQ has the ability to be used as a provisioning
request portal, which if configured can be restricted for nontechnical
users to use and request platforms without knowing anything about the
underlying configuration required. Custom forms and screens can be
configured to allow nontechnical users to fill in and request systems.
Behind these simple screens are the state machines and automation
configured to execute the tasks.

Chargeback

Another really nice facility is the ability to control chargeback for any
systems that are being built in the estate. Cost centers or similar can be
configured to manage estate costs and can be billed to different teams or
departments.

Request Approvals

When users request a new system or platform, approvals can be configured
that need to be passed before any automation can be executed. Multiple
layers of approvals can also be configured, allowing change control teams
to approve builds. Something very useful if you want to stay in control of
what is built.

Advantages

e Verysimple to install as Cloudforms is deployed from a
template appliance.

¢ Cloudforms is a feature-rich tool with many
possibilities.

o Ability to interface with many systems and provide a
single management tool to manage them all.

105

CHAPTER 4 ESTATE MANAGEMENT TOOLS

o Complete data centers can be provisioned once the
appliance has been deployed.

o Custom user portals can be used for users to request
systems.

o Integration with platforms like ServiceNow.

Disadvantages

e Cloudforms has a steep technical learning curve.

o The configuration is not the easiest to understand,
and it takes time getting used to it, but once users are
familiar with it, the possibilities are endless.

o Feature development has also been slowing down in
recent years, possibly indicating that the end for the
product is near.

Terraform

Terraform is another interesting product to use if you wish to provision to
different platforms. Provided by HashiCorp, Terraform is an open source
infrastructure as code solution that has the ability to provision across
multiple environments such as AWS or Azure.

Products Available

HashiCorp provides a few options for using Terraform outside of their
enterprise support.

106

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Community CLI

There is the standard community CLI option that is available to everyone
who wishes to learn and use it. Most if not all Terraform functionality is
available for you to start using the platform from day one.

Terraform Cloud Platform

Another way of using Terraform for free is through the “free” tier of the
Terraform cloud solution. This is a HashiCorp managed service that offers
some basic functionality in the free tier but also offers extended features
for some of the paid-for services.

API and Extracting Useful Information

With all the management tools available today, it can become quite
cumbersome to use different tools for different jobs. To get around this,
I have seen some organizations build their own “abstraction” layer. This
layer typically is a custom application written using Python or similar
development language that communicates with other management
platforms through their API.

Don’t Reinvent the Wheel

There are tools already available that can connect to other systems
through their API. Cloudforms and ManagelQ are tools that can be used
off the shelf to do quite a bit of the API integration to other platforms.

The only downside to these tools is that they are structured more around
deployment of systems. Automation and patching type tasks might need a
bit tweaking to get going.

107

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Why to Not Write Your Own Tool

Writing your own custom tool that leverages different tools through their
API does have some major advantages, but it comes with the heavy price of
internal development. This cost of time and effort often ends any potential
chance of anything being created. Even if an organization does authorize
the time and effort, another major blocker could be the lack of skills in
house to develop this product. This would mean further training or time
required to skill up.

Best Tools to Use

The best tools to use for API access would be something that gives you

the ability to connect to the platform and have the functionality displayed
in a way that makes sense to you out of the box. Does this tool exist?
Unfortunately not. This is why people have traditionally written their own
API calling tools and mapped the API requests to application functionality.
If you are looking for a tool to reduce your development effort, you could
use some of the following.

Pipeline Tooling

Jenkins or Tekton could be a useful way of connecting to the management
systems API to automate deployments or system patching. The API calls
can be triggered, and the events could be caught; from that, different logic
could be used to determine next actions. This could be an interesting way
to introduce self-healing capabilities in your estate.

108

CHAPTER 4 ESTATE MANAGEMENT TOOLS

Automation Platforms

Using Ansible or similar is a cleaner and better approach to contacting
the management systems API. Ansible, for example, has plenty modules
available that already speak to different management tools through

their API. An example of this is the new Satellite modules that are now
available for users to automate Satellite configuration. Something useful
for managing your patching cycles when you can automate the promotion
and publishing of content views.

Shell Scripts

Not the best solution but it is something you could use if all you wanted
to do was automate some basic tasks. Personally, I would not take this
approach; I would rather write some Ansible to do the work for me.

Summary

In this chapter, you were introduced to the following:

o Linux estate management platforms to streamline
the Linux build process, patching, and configuration
management

o The different estate management tools available today
and why to use or not to use them

e Cloud provisioning tools like Cloudforms, ManagelQ,
and Terraform

o Using the management tooling API to streamline their
usage and build their functionality into your day-to-day
automation

109

CHAPTER 5

Automation

This is the first chapter in which we will target a specific discipline,
automation.

In this chapter, we will delve into the dark arts of manipulating systems
by the hundreds if not thousands. We will discuss what the best tools are
and why you should use them or avoid them. We will look at how these
tools differ from each other so you can make an informed decision of
which tool works best for you. We will then look at what the market trends
are for these products and why some people prefer one tool over the other.

This chapter discusses automation in general and does not focus
on one particular product. The idea is to understand the concepts of
automation and how they should be applied in the best possible way.

We will discuss topics such as “when you should automate vs. when you
should not” We will explore using techniques to automate automation and
when that should be done.

Finally, we will end the chapter discussing best practices and using
shell scripting, in which we will discuss different shell scripting languages
that can be used.

Automation in Theory

Automation should not be anything new to most people reading this.
There has always been some form of automation in what we have done in
the past, be it custom shell scripts or some management tool scheduled to
kick off a job.

© Kenneth Hitchcock 2022 111
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_5

https://doi.org/10.1007/978-1-4842-7984-7_5#DOI

CHAPTER 5 AUTOMATION

Automation has evolved quite a bit over the last decade, with new
tooling and automation platforms being developed. The days of using
custom scripts that are executed from cron jobs are coming to an end if
not already. Complex automation solutions are now managing everything
from system builds to self-healing systems.

Automation does not only have to be technical either. Most
organizations are now looking at solutions to automate business processes
along with their technical estate management. Building in automation
to create change requests or raise support tickets is becoming more a
requirement than a luxury. The time and effort saved is what brings more
organizations to the realization that having no full-stack automation in the
pipeline spells disaster for keeping up with competitors.

Idempotent Code

The number one thing that all automation should be adhering to is
ensuring that the code written is idempotent. This effectively means that
the code will only make a change if the state does not match the required
state from the automation platform.

An example of this could be updating a system package. If the system
has a package installed that is already at the latest version, you would not
want the automation task to do anything except confirm the package is
at the version requested. By not doing anything but confirming the state
of the package, the system remains untouched. If the package required a
service restart, the reinstallation or updating of the package could have
resulted in a tiny outage. This is possibly a poor example as handles can
also be used to ensure there are no outages.

Always remember when writing automation code:

“Is my code idempotent?”

112

CHAPTER 5 AUTOMATION

Knowing When and When Not to Automate

Half the battle when writing automation code is knowing what to automate
and what should not be automated. My general rule of thumb has always
been to automate anything I'm going to repeat at some point, which with
my line of work is always on the cards.

It seems obvious to write automation only for repeatable tasks, but
what about writing automation to build something that is only needed
once? This can be a bad thing if not thought out to why you are doing it,
but it can also make perfect sense.

“After spending all that time getting your automation to work, you
could have just installed the system yourself manually and saved a heap
of time.”

This could be the typical thing your manager could say to you when
they find out how much effort went into writing the code you wrote for
something that will only be built once.

The argument you should follow up with to why automating something
that will only be used once is the fact that you are building the estate from
code and you are preparing for possible rebuilds in the event of disaster.

According to Gartner, organizations that don’t automate are likely to
see a 25% drop in their customer retention. Automation is rapidly growing
everywhere, and if you or your organization falls behind, you are at risk of
being outrun by your competitors.

To fully understand when or when not to automate, let’s look at some
reasons for and against automation.

Reasons to Automate

To automate should be the default today; however, if you need reasons,

here are a few worth mentioning:
o Repeatable and predictable builds

¢ Infrastructure as code

113

CHAPTER 5 AUTOMATION

e Code as documentation

o Time and cost savings

e Organizational culture change
e Reduced risk

+ To encourage innovation

Reasons Not to Automate

It is hard to think of reasons not to automate anything today, but
sometimes there are reasons, even if they are not very good ones:

o Asingle task that won'’t ever be repeated. Even then,
there are reasons to automate this too.

e Organization has not matured yet to accept
automation.

o No skills available or time for training.

These preceding points are not really good reasons, but more excuses
in my personal opinion. The world of estate management and estate
building is rapidly changing today, and not automating should not be an
option. As Linux sysadmins, our job has changed whether we like it or not.
We no longer are Linux sysadmins, we are now automation engineers.

State Management

Another very important thing to understand about different automation
platforms is their ability to manage system state. Some platforms only check
state when code is being executed for a specific task, whereas other platforms
constantly check the systems they manage for its current state to see if
anything has been changed. When state change is detected, the configuration
is updated to match the desired state from the automation platform.

114

CHAPTER 5 AUTOMATION

Tip Using a platform that constantly checks system state based
on desired state will ensure you run an environment that will
remain standard. This is very useful when you have different people
who could potentially make system changes that could cause
system outages. This approach will also reduce the chance of
configuration drift.

Automation Tooling

We can all agree automation is not going away anytime soon, and to not be
left behind, it is important to understand what tooling you should be using.
Adopting automation practices will require a set of tools and development
languages that you will need to learn; which ones to use will require you to
make an informed decision.

Over the next few pages, we will discuss the different options available
for you today and discuss what makes them good or bad to use.

Automation Scripting Languages

Before we start looking into the different tooling, it is worth understanding
the different types of automation scripting languages that can be used to
write automation code: YAML, Ruby, Python, and shell scripting.

YAML

“YAML Ain’t Markup Language” is the main language used by automation
platforms such as Ansible and SaltStack. YAML is one of the easier
scripting languages to learn as most of the syntax is quite simple to

understand and remember.

115

CHAPTER 5 AUTOMATION

These Are Not the Spaces You Are Looking For

YAML is notorious for complaining about formatting, which is one area
that can annoy people when they first learn to code with YAML. The
indentation needs to be 100% correct, else your code will not run.

YAML does not like the use of the tab character and only accepts
standard space characters for indentation. The tab character in most
editors is replaced with the corresponding number of spaces to make this
process seem like the tab values have been used.

YAML in Action

The following two examples use the popular automation platforms Ansible
and SaltStack. Both examples provide the same result, which is to install
the “httpd” package.

Ansible

- name: "Build Linux Web server"
hosts: webservers
become: true

tasks:
- name: "Install latest apache httpd package"
ansible.builtin.yum:
name: httpd
state: latest

116

CHAPTER 5 AUTOMATION

SaltStack

websetup:
pkg:
- installed
- pkgs:
- apache2

These examples use similar formatting, and both are indented in a
very similar way. From these examples, the logic is easily understood and
fairly easily manipulated to install other packages. These examples use a
basic package module provided, but many other modules are available to
do so much more. A quick google search often lands you right on the latest
documentation you can follow.

Ruby

Ruby is a high-level all-purpose programming language that was designed
to be a true object-oriented language. Ruby is similar in ways to Perl and
Python except how it handles its instance variables. Ruby keeps these
variables private to the class and only exposes them through accessor
methods like “attr_writer” or “attr_reader.”

The following is a basic example of Ruby code. It is not often you would
write Ruby code for automation tasks unless you needed to write a new
function or something along those lines:

#!/usr/bin/ruby
def build(opt1l = "Linux", opt2 = "Windows")
puts "The system that will be built is #{opt1}"
puts "The system that will be built is #{opt2}"
end
build

117

CHAPTER 5 AUTOMATION

The following is an example of a puppet module code. Puppet includes
two Ruby APIs for writing custom functions. There is more to a puppet
module than the following, but just to give you a basic feel for what the
code looks like, I thought it would be worth seeing an example:

class helloworld (
$file path = undef

N
notify { "Hello world!": message => "I am in the
${environment} environment"}
unless $file path == undef {
file{ $file path :
ensure => file,
content => "I am in the ${environment} environment",
}
}
}
Python

Python is used in a few ways to automate tasks. You can use Python to
write your own scripts in the same vein that you could write Ruby or
any other scripting language. Python, however, tends to be used mostly
for the modules or functions used by the likes of Ansible and SaltStack.
Below is a snippet of some basic Python code.

Python Module example
def add(x, y):
"""This application returns the result of x + vy

result = x +y
return result

print("The value of my python function is", add(3,4))

118

CHAPTER 5 AUTOMATION

Shell Scripting

Shell scripting can be used for automation but is not recommended,
mostly due to the fact that other automation languages and tooling have
such arich array of modules that connect to most platforms through
their API.

Shell scripting by default does not really work well as an idempotent
scripting language. To implement idempotence would mean a fair bit of
extra coding.

Note Most of the automation code that generally gets written these
days are YAML for platforms like Ansible and SaltStack. The other
variations are Ruby type code for Puppet and Chef. It is not common
to get down and dirty writing Ruby or Python modules.

Automation Platforms

With a basic idea of what the automation scripting languages look like, it
now makes sense to talk about some of the automation tooling you can use
that leverages the previously discussed scripting languages.

Automation in Estate Management Tools

In Chapter 4, we spoke about Linux platform management tools, and I
mentioned that some have built-in automation tooling. In most cases and
traditionally in the past, the automation facilities failed to provide enough
functionality for them to be regarded as an outright automation platform.
There are exceptions to this now today with updated management tooling
like Uyuni which has included the use of SaltStack. How much of the
SaltStack features are available remains to be tested.

119

https://doi.org/10.1007/978-1-4842-7984-7_4

CHAPTER 5 AUTOMATION

However, to work around the lack of automation features that may
be missing from estate management tools like Red Hat Satellite, it is
recommended to look at using an automation platform that is dedicated
to manage all your estate’s automation needs. These platforms should
include all the features for you to fully automate your estate.

Reasons to Use

e Already in place

e No budget for other tooling
o Skills in place already

o Savetime

e Hasagood integrated automation tool with enough
features to get started

Reasons Not to Use

e Limited functionality
¢ Added complexity

e Require separation with RBAC

Ansible Automation Platform

Ansible is no doubt making a strong case to be the market-leading
automation tool, well at least at the time of writing this book. Ansible’s
growth has been impressive over the last few years and has been gaining
in popularity with more users and organizations each day. The growth of
the community and the adoption of vendors across the board to create
modules for Ansible continue to justify why many people are choosing
Ansible as the automation tool of choice.

120

CHAPTER 5 AUTOMATION

Without trying to predict the future, I firmly believe Ansible is going to
be around for a while. The reason I say this is down to a few things:

1. Red Hat, which acquired Ansible in October of 2015,
is fully behind Ansible and its development. There
are constant improvements happening all the time,
and clearly they have big plans for its future.

2. The Ansible learning curve is far more forgiving than
other products in the same area. People just prefer
to use something that doesn’t require a master’s
degree to understand it.

3. Community adoption is growing almost by the
day with more and more vendors providing new
modules all the time.

Agentless

Ansible does not require any agents to manage its client systems.
Connections are made to client systems via ssh on Linux or Unix-based
systems and WinRM if connecting to a Windows system. Authentication
can be done by entering the system’s password when executing the Ansible
or through the use of ssh keys. Most Linux sysadmins tend to use the ssh
option, mostly as the connections to the Linux or Unix systems will be
seamless and not prompt for a password. This could be a major irritation if
you are running a playbook against a hundred systems.

If ssh keys are not a possibility, there are other options that can be
used, but this would require all the systems to authenticate to a central
location. Else you will be stuck with entering different passwords for
different systems.

121

CHAPTER 5 AUTOMATION

Potential Security Hole

Ansible environments can potentially have a big security hole for an estate
if ssh keys are not managed correctly. If a Linux sysadmin, for example, has
ssh keys on their system which can access any system in the estate, there

is potentially a big problem if someone gets unauthorized access to their
system. For this reason, great care needs to be taken to ensure security of
this system. Using system vaults could mitigate this risk as an example.

Using Ansible

Ansible is available in both enterprise and community versions. Both
enterprise and community products have two “types” of Ansible that
can be installed. There is the graphical interface that can be used and a

command-line version.

Command Line

In Chapter 2, we briefly discussed how the Ansible command-line tool
can be installed and used. We covered how there are added benefits of
installing with a package management system like Yum vs. installing via
pip. We also discussed how to run some basic commands.

The Ansible command line is often referred to as Ansible Core, but the
naming might be changing if not changed already. Red Hat is working hard
at making Ansible better all the time and is constantly working on how
Ansible can be used or integrated with other products; for this reason, the
name may change to fit the usage.

One thing to remember: If you choose to use the command-line
version of Ansible only, it does not matter too much if you use the
community or enterprise version from a functionality point of view. Both
products have the same functionality last time I checked. The biggest issue
would come around support if you needed help.

122

https://doi.org/10.1007/978-1-4842-7984-7_2

CHAPTER 5 AUTOMATION

Recommendation Using the graphical tool for Ansible is the
recommended approach, mainly as you have functionally not easily
replicated with the command-line tool.

Graphical User Interface

What seems to be attracting new users to Ansible is the graphical user
interface that can be used with Ansible Automation Platform. As with
anything that gains popularity, developers look at use cases and adapt
based on demand. With that, it is becoming more likely that new versions
of Ansible will be driven more from the graphical tools than the command
line. For this reason, the current Ansible Tower tool is the recommended
approach when learning Ansible for the first time.

Reasons to Use Ansible

e Simple to learn and get started

e Growing community with massive code resources
available

¢ Excellent documentation and examples

o Ability to manage anything you can open a remote
connection to

o Flexible
e Scalable
o Enterprise support

e New features being developed that may not make
it to AWX

123

CHAPTER 5 AUTOMATION

Reasons Not to Use Ansible

o Ifyoudon’t need enterprise-level products, this may
not be for you.

» Ansible Tower licensing can be on the expensive side
if you have thousands of systems to monitor with a
small budget.

e Might not be required if you have a small number of
systems to manage.

e SSH key security-related issues.

e Lack of understanding system state before tasks are
executed.

AWX

When Red Hat acquired Ansible, Ansible Tower had not been open
sourced. To correct this, Red Hat developers and engineers worked on
open sourcing Ansible Tower as fast as possible. The resulting product is
the AWX project.

AWX is almost the same as its enterprise equivalent (Ansible
Tower), except for a few enterprise features. An example is role-based
authentication has been excluded from the community version. If a user
required these features, they would need to purchase an Ansible Tower

license.

Reasons to Use AWX

e Simple to learn and get started

e Growing community with massive code resources
available

o Excellent documentation and examples

124

CHAPTER 5 AUTOMATION

e Ability to manage anything you can open a remote
connection to

e Community product with no costs

o Flexible

Reasons Not to Use AWX

o Ifyourequire enterprise features, you will need to
consider either Ansible Automation Platform or
another product.

e Less testing and work done on AWX than there is on
Ansible Tower.

e Notrecommended for production environments.

¢ Not all security components of AWX have been through
security checks like what is done with Ansible Tower.

e Directin-place upgrades between versions are not
supported.

e SSH key security-related issues.

o Lack of understanding system state before tasks
are executed.

SaltStack

Another python-based configuration management tool that can be used
is SaltStack. SaltStack comes in both community versions and enterprise
supported versions.

125

CHAPTER 5 AUTOMATION

Server to Client Communication

Unlike Ansible, SaltStack can be configured to run in a few ways when
connecting to the system it manages:

e Direct SSH
e Agentand server

o Agentonly with no management server

Remote Execution

In a similar way to how Ansible connects to systems and runs ad hoc
commands, SaltStack has the ability to execute remote execution
commands. This functionality is very similar in what the Satellite server
currently does and what the Spacewalk server used to do.

Configuration Management

SaltStack is a bit more traditional in how configuration management

has been done in the past. Configuration is managed on the SaltStack
master and pushed to systems that have changed or require updated
configuration. The SaltStack master system controls the state of its clients
(minions) that it manages through both understanding the state the
system needs to be and the events that have been triggered on the minion
system that the master is watching. If anything changes that should not,
the SaltStack master reverts the unauthorized changes.

Uses a Message Bus

Salt uses a different approach than some other products in that it uses a
message bus ZeroMQ. When a client system or minion triggers an event,

a message is created on the message bus for the master server to act on
when it is ready. This method of using a message bus allows a vast number
of systems to be managed by one master.

126

CHAPTER 5 AUTOMATION

Reasons to Use SaltStack

e Less of a steep learning curve.
e Modular approach.

e Massively flexible.

e Scalable.

e Performs well at scale. Thousands of minions can
be managed at the same time with quite efficient
performance.

« Event-driven configuration management.
o Improved security over other products.

o Featurerich.

Reasons to Not Use SaltStack

e Due to a slower release cycle, it could potentially not be
for faster moving environments.

e There have been issues in the past with modules
not being able to manage their own dependencies.
Requiring users to run separate virtual environments.

o Not the best support for non-Linux systems.
o Installation and configuration can be more challenging.

¢ Documentation can be difficult to understand and use.

Puppet

Puppet is a Ruby-based configuration management system that was used
quite a bit more before the introduction of Ansible.

127

CHAPTER 5 AUTOMATION

Red Hat and Puppet

Satellite 6.x first used Puppet for its configuration management but later
introduced the choice to use Ansible. Puppet has not been removed and
is still available for users who invested large amounts of time developing
puppet modules, but it should not be taken for granted that Puppet’s
availability in Satellite will remain there forever.

Server Agent Based

Puppet requires a Puppet master to manage the state of all the systems it
manages. All clients are also required to have an agent running to check in
with the Puppet master.

Potential Lower Adoption

Products like Ansible and SaltStack have introduced less of a steep learning
curve for users and are posing a strong threat to products like Puppet and
Chef. It does not help that Red Hat has also started to introduce Ansible

in as many of their products as possible to further drive the popularity of
Ansible. SaltStack has also been included in newer versions of Spacewalk
clones used by SUSE and Ubuntu. The popularity of these distros and their
respective management software does not bode well for Puppet.

Enterprise and Community

Puppet has both community and enterprise versions available to
accommodate users across the board. Enterprise support is available for
corporate organizations that require support agreements for compliance
or regulatory reasons, and there are community versions available for the
users that do not require support.

128

CHAPTER 5 AUTOMATION

Reasons to Use Puppet

State-based configuration management. Clients
are constantly checking in to Puppet masters for
configuration changes.

Excellent community support. Example code readily
available.

Installation is painless and simple.
Runs on almost every operating system available.

Idempotent platform.

Reasons to Not Use Puppet

Chef

Ruby support is declining.
Ruby-based command-line interface.

Steep learning curve to develop custom Puppet
modules.

Code can be complex and convoluted.

Less control than other products.

Probably one of the most widely used products for configuration

management behind Puppet is Chef. Chefis a Ruby-based product like

Puppet and works in a server agent architecture. Chef originally was a

mixture of proprietary and open source components; however, since April

2019 Chef declared they would be open sourcing everything that is Chef.

True to their work, today at the time of writing Chef has a community

version of their configuration management tool available for download

and use.

129

CHAPTER 5 AUTOMATION

Ways to Use Chef

Chef currently has three ways users can use their automation platform.

Managed Service

A managed service is available from Chef for the organization or small
business that does not wish to build any on-premise systems. There are
additional costs involved as with any managed service.

On-Premise

For the organization that has a closed network or wishes to manage

their own estate entirely from on-premise, Chef does offer the ability to
download and install the infrastructure yourself. Additional costs are
involved if you want support, and the pricing model has moved from price
for the system to price per node managed per month.

Community

As Chef is now open source, the community open source version of Chef is
available for download and use but does come with the standard warning
of no support.

Reasons to Use Chef

o Nice integration with Git

o Plenty community modules and recipes
available online

e Flexible
e Tools available to reduce installation complications

e State-based configuration management like Puppet

130

CHAPTER 5 AUTOMATION

Reasons to Not Use Chef

e Ruby support is declining.
e Steep learning curve for new users.
e No push capabilities.

¢ Documentation has not been as good as other
products.

o Enterprise support and on-premise costs can ramp up
if large estates are being used.

o Notideal for organizations with small estates.

Making the Decision

Making a decision on what automation tooling to be used can be a difficult
one if you are new to automation. The following are some pointers you can
use to come to the correct decision for you.

Market Trends

Looking at what the current trends are in the market or with your
competitors can help you make a slightly more informed decision. I'm
not advocating that you follow the herd for good or worse, I'm suggesting
you look at what is working or not working for others. The market trends
do not tell you how much effort has gone into setting the environment
up nor does it show you the return of investment, but it does give you a
better idea if one product is being used more than another. The last thing
you want to do is invest time into something that will get replaced in
6-12 months.

131

CHAPTER 5 AUTOMATION

See for Yourself

Installing and testing each platform for yourself is something I would
recommend you do if you are unsure which product is right for you. My
recommendation would be to take a simple use case, like building a
web server. Not to install the operating system but simply just installing
and starting services to turn a system into a web server. The tasks are
simple and should be easily found in official documentation of each of
the different products. This approach will then allow you to see how the
products compare. You can then compare things like

¢ Documentation.

e How easy is the platform to install?

o How simple is the code to write and run?

o How steep was the learning curve to get started?

These points will help when you present your findings to your
organization’s holders and justify the time spent in trialing the different
products.

Enterprise vs. Community vs. Cost

Do you require an enterprise product or can you use a community
product? This question is normally answered within milliseconds of
asking this question with some organizations, largely due to compliance
regulatory requirements or other similar reasons. Whatever the reason
to use whichever product, there is another very important aspect to
think about.

The true cost that product will bring. This is not always the licensing
or subscription cost from vendors but the cost of effort to get the platform
in position to be effective for your organization. Many people are sold
products by vendors based on nice examples and prebuilt use cases.

132

CHAPTER 5 AUTOMATION

These vendors can neglect to explain the training required or the time it
will take to get everything in a position to be useful. This can mislead new
users in thinking the platform comes configured out of the box, almost
always ending up with a platform not being used. When you spend your
time testing and trialing products, ensure you factor in the effort that will
be required to get your organization in a position where they can be using
the product as effectively as possible.

Product Life Cycle

Road map information about a product is almost as important as the
product itself. The product can offer all the greatest functionality and seem
very appealing, but if the product you choose only has a short life cycle and
will not have any new versions released, you are wasting your time and
possibly your organization’s money. Before committing to any product,
ensure that the road map looks healthy.

Automation with Management Tools

To expand a bit more around using the automation tooling that is shipped
with some of the various management tools, let’s discuss what you can do

to improve your estate management.

State Management

One very important feature you want from your automation platform or
estate management tool is the ability to keep your estate’s state managed.
You want to configure your estate management or automation platform
tool to monitor and correct any configuration drift that may occur.
Whether it is by accident or through malice intent, you want to make
sure that you have no nasty surprises next time there is a system reboot.

133

CHAPTER 5 AUTOMATION

Controlling the state of all your systems will ensure your systems run
exactly as they were when first built and tested. This is crucial in reducing
firefighting further down the line.

Enterprise Products

Estate management tools that provide the best standard operating
environment configuration capabilities are usually enterprise products
unfortunately. Red Hat’s “Satellite server” product or SUSE'’s “SUSE
Manager” product is among the best choices for a Linux estate today. Both
will either include Puppet or SaltStack. These products are quite good at
allowing you to manage the “state” of your systems in your estate. Their
implementation is quite different and will require some upskilling time.
The positive thing though is the documentation is quite good, and as you
are paying for the service, support is also available if you need help with
anything. Most support companies will do their best to help, up to a point.
Enterprise support does not mean the vendor will provide professional
services for free, but they will do their best to keep you happy. In the

end, you are paying for a product, and it is at their interest that you keep

using it.

Use Case Example

To understand why using something is important, it often helps to see an
example. Here is a basic example of a situation where a standard operating
environment can prevent major issues later down the line.

134

CHAPTER 5 AUTOMATION

The Platform Tool

In this example, we are using the Red Hat estate management tool,
“Satellite server 6.x.” This is the latest version of the Satellite system
Red Hat is developing. This example could also make use of SaltStack if
you prefer. Just adjust the naming and functionality accordingly in your

mind’s eye.

The Platform Tool Configuration

Red Hat Satellite 6 has the ability to configure content views with specific
Puppet modules. These modules can be further enhanced with smart
parameters that help manage the configuration of your estate.

In this example, a lead Linux sysadmin was smart enough to include
a puppet module that controls the configuration of the estate’s standard
ssh_config file. This keeps the entire estate configured in such a way that
no one can log in as root.

All systems in the estate are configured to run Puppet agents that check
in with the Puppet master periodically.

The Mistake

Where this use case is interesting is when a simple mistake is made.

A new Linux sysadmin has been given the task of debugging a login
issue on one of the preproduction systems in the estate. During the
debugging process, a simple typo was accidentally entered into the
ssh_config file. Unfortunately, the typo, if enforced, could cause the sshd
service to fail on restart. As the Linux sysadmin is unaware of this change
to the ssh_config file, they do not restart any services as they don’t believe
anything was changed. Why would they restart services, especially if they
don’t want to cause any unwanted outages, no matter how small.

135

CHAPTER 5 AUTOMATION

Laying in the Shadows Waiting

If left unchecked, the unwanted change made by the Linux sysadmin will
be applied during the next maintenance window. Usually, during these
maintenance windows, updates or patches are normally applied. In most
cases, a system restart would take place. As this previously undetected typo
was laying in the shadows waiting, it would be at this stage that the then
sleeping issue would be woken to rear its ugly head. If nothing was done

to correct this problem before the system restarted, the ssh daemon would
now be in a defunct state after the reboot, not allowing anyone to log in

via ssh.

Safety Net

Due to the fact that the organization was smart enough to have a
configuration management tool listening for unwanted configuration
changes, the sysadmin’s typo never matured into a problem.

The victim system’s local Puppet agent checked in with the Puppet
master on the Red Hat Satellite server shortly after the Linux sysadmin’s
typo and brought the configuration back inline with what was deemed
to be the correct configuration when Puppet was configured for the
environment.

If it were not for the safety net, a simple mistake like a typo could have
caused a delay in any debugging for any outages that may have occurred
after the problem was created. If this were a production system and an
outage was extended because of sloppy work, there could have been bigger
implications for the unfortunate Linux sysadmin.

Yes, this example had ways of circumventing the issue by logging in to
a console, but what if this configuration was something a bit more serious
like grub configuration? This would have meant the system may not have
booted after its scheduled reboot, effectively creating a problem where
there never should have been one in the first place.

136

CHAPTER 5 AUTOMATION

Setting Up a SOE

To avoid issues similar to the use case explained, it is vital that the estate
configuration state is managed. To have a successful SOE platform
configured, you will need to make sure you have your estate management
tool configured in accordance with good practices. This will require proper

planning, preparation, and in some cases organization culture change.

Build from a Standard

To build your systems that will be managed by your SOE environment, you
need to ensure you do the following:

e Build from a standard system build template/image or
kickstart file.

e New systems should be built with all the required
agents or services to register your new system to your
configuration management platform.

o Ensure your systems are registered to correct
environments and let the configuration management
bring the configuration in line.

e Updated configuration drift to reflect configurations’
current state. This way, if anything changes, you will
have a log of the event.

Source Control

Any code that is being written to manage your estate should go
through a proper code development process. This means the following
should happen:

o All code for any automation should be stored in a
source control platform such as Git.

137

CHAPTER 5 AUTOMATION

e All code should be passed through a linting system to
check basic formatting and syntax issues.

¢ Changes should be done via pull requests or merge
requests.

o Two different people should be involved in

code review.

e Code should never be pushed into a production
environment without going through a staged testing
process.

Phased Testing

Phased testing or staged testing is the process of testing your automation
and configuration management through different environments before
reaching production. The approach should be similar to the following.

Code Development

e Code developed and tested in a sandbox environment.

e Atestplan for the new configuration management
should be built that explains what the configuration
change will look like and how it can be validated.

Code Testing and Peer Reviewed

e New code is committed to a local Git repository that
has webhooks or similar into a pipeline tool that runs
basic limiting or syntax testing. If the code passes its
test, only then is a new merge or pull request opened
for peer review.

e Asecond person should peer review code and approve
any merge or pull requests.

138

CHAPTER 5 AUTOMATION

Code Promotion

e Code can then be promoted into the first live
testing environment. Usually, this is a development
environment or similar. Remember development
environments are still live as they have users on
them, so caution is recommended. If possible, avoid
environments that can’t have downtime ideally.

o The set test plan should now be followed to ensure that
nothing has been broken or caused any issues.

o Ifeverything has worked as expected and the change
has been signed off as successful, promote the code to
your next environment.

Automate the Automation

Once you have your automation platform in place and you are familiar
with automation practices, you will want to start evolving your practices to
include more avenues of automation.

Self-Healing

Having your platform fully automated is an amazing achievement that any
Linux sysadmin should be proud of. Taking the next step is what will bring
your worth to your organization to a whole new level.

Building a platform that can heal itself when disaster strikes is the
next major advancement all Linux sysadmins should start doing. In the
past, giving your platform the ability to recognize system outages and
apply solutions without you having to lift a finger is something only sci-fi
movies did. Today, you can do this with an array of tools or self-developed
techniques.

139

CHAPTER 5 AUTOMATION

Self-Healing Layers

There are a few layers at which self-healing can occur. There is a hardware
layer, the “platform” layer, and finally the application layer.

Each of these layers has its own areas of failure and has its own
methods of recovery. If we start from the bottom up, let’s look at the
hardware layer.

Removing All Single Points of Failure

Hardware can be a tricky thing to self-heal if you do not have redundancy.
If a physical disk or motherboard dies, no amount of automation or smart
tooling is going to save you if you don’t have a spare system to failover to.
The first thing you always do is look at your single points of failure. For this
reason, you need to have backup hardware for everything running in your
estate. Sounds expensive, right? It is, but you tend to only do this level of
smart estate recovery for organizations that cannot afford downtime.

Ken’s Law 1 Money should not be a factor if the amount to be lost
because of downtime exceeds the money for redundancy hardware.

Hardware Layer Self-Healing

Most organizations do not run on a single set of hardware devices or at
least should not be. There are usually secondary or tertiary devices for
failover to occur that can be used.

Where the clever bit comes is in how you recognize the hardware
failure and how you switch from malfunctioning hardware to healthy
hardware.

140

CHAPTER 5 AUTOMATION

You would need clever logic that would need to pay attention to
platform monitoring and logging tools. These tools can bring the attention
of your self-healing platform to alerts, events, and logs. Not only should all
hardware be reporting the health of its own components, hardware should
also be looking for clues on how hardware closest to it is performing.

In the event of hardware failure, the self-healing system should
have automated decision points to run specific actions. In the event of
a completely unknown situation occurring, a fail-safe option should
be triggered which could be as simple as flagging a major incident and
getting a human involved. Learning from these incidents will improve
your platform, so don’t be disheartened while you are still perfecting the
platform. It is impossible to predict every possible scenario.

The basic flow of your automation healing for your hardware should be
similar to the following.

Reporting
1. Monitoring and logging systems should receive the

event of hardware not checking in.

2. Estate management tools should also be notified of
suspected hardware failure.

Ensuring Platform Availability

1. Failover should automatically occur to ensure there

is limited or no downtime.

2. Iffailover fails, the process will break down into
an outage. A major incident should be raised, and
someone should be called out.

141

CHAPTER 5 AUTOMATION

Automated Recovery

142

Automated recovery can start once a failover has
occurred.

First pass of automated investigation should be
triggered. That is, can any other hardware closest to
the system reach the failed system?

If the decision has been reached that the hardware
has failed, first attempt at recovery should be
started. This could be accessing the API of power
management that controls the hardware and doing
a cold restart to see if hardware recovers.

After an allotted time, a second pass of investigation
should be triggered to see if the failed hardware has
started responding.

If the hardware has recovered, a full set of
automated tests should be run to confirm the health
of the system. If passed, the platform can fail back to
the previously suspected hardware failure.

If hardware still remains unresponsive, the logic
should make the decision to either scrap the
current hardware by turning it off and provisioning
a new system from spare hardware or rebuild the
failed system.

a. If a rebuild of the current system is selected, a check
will need to be done to see if the defunct hardware
can be reached post reboot via a network boot
option. If the system can be reached from a network
boot, an automated rebuild process can begin.

CHAPTER 5 AUTOMATION

b. If the decision is to scrap the failed hardware,
the automated self-healing platform will need to
contact the power management API and boot spare
hardware. A network build of an operating system
will need to be done, followed by configuration as
per estate configuration to bring the system back
online for workload.

7. Whichever option is chosen from step 6, the
recovered system will need to rejoin any clusters
and mark the system as available for failback
to occur.

Platform Layer Self-Healing

With the complexity of hardware self-healing, it may not be a surprise to
you to know that the platform layer does tend to come with a degree of its
own self-healing capabilities. “Platforms” are often either orchestration
layers like OpenShift or Tanzu if you are using containers or they could
be virtualization platforms like VMware or Red Hat virtualization. These
platforms are designed to naturally ensure they keep workload working
by allowing workload to failover from nodes that stop responding. That
combined with load balancers and redundant networking should allow the
platform to remain quite resilient.

That is where the self-healing mostly ends for these platforms. It is
up to your clever estate self-healing logic to return the entire platform
to working order. In the hardware self-healing section, we spoke about
rejoining hardware to clusters. This is where your intelligent logic should
come into play. Like hardware self-healing, there should be a sequence of
steps that are automatically followed to ensure the platform self-heals:

1. Check for hardware availability. A record should
exist of systems available for use. This is where
your rebuilt system or newly built system should

143

CHAPTER 5 AUTOMATION

report they are available for use. For those familiar
with OpenStack, this is like a bare metal server list
reporting its availability state.

2. Remove failed system. Systems that were marked as
dead should be removed from clusters and have any
cleanup work completed before the new hardware
is added.

3. Add to cluster. The available system should then be
configured as a new node or host. The configuration
should include adding the system to the cluster and
testing a workload. Provided all passed, workload
can be scheduled back on the node or host.

Application Layer Self-Healing

Application self-healing should be down to the application server that
hosts the application generally, but if you were to think more about the
inner workings of the application, additional self-healing could be done.

Improving the application data health or connectivity to databases
could be controlled with automation. If a database server became
unavailable, rebuilds could occur and databases replicated. There are a fair
number of things that can be done, but ideally if your application is simple
enough, all that would be required would be to redeploy and redirect
traffic.

For more complex applications, developers would need to build in
functionality for applications to recover from failure. This subject is best
left for the developers.

144

CHAPTER 5 AUTOMATION

When to Self-Heal

Building your automation and self-healing platform should be based on
when you want self-healing to occur. Do you want to pay attention only
when a failure has occurred, or do you want to watch for signs that a
problem is immanent?

Do you want to be proactive or reactive?

I'm sure you can agree that it is much better to catch a problem before
it can become a bigger issue later on. By being proactive, you can then
have your self-healing system resolve issues in a less intrusive manner.
This could allow your system or systems to properly shut down and
rebuild. Failovers can then be scheduled when traffic has decreased, and
nodes can then be drained gracefully instead of forcefully. By allowing
rebuilds to occur in a controlled manner, outages can be scheduled to
accommodate organizational processes like proper change control. With
this flow, everything can be automated including the admin work to get
platform change approval.

How to Implement Self-Healing

Talking about self-healing in theory is simple enough, but how do you go
about implementing a solution like this for your estate? To fully discuss
self-healing techniques and do it proper justice, we would definitely
require another full book. However, let’s look lightly into how you may get
started with a few breadcrumbs for you to further investigate.

Gates

Just like you need gates to control the water flow in a canal, you will need
gates to control your self-healing environments. These gates should be
stop points to validate what has just happened. You wouldn’t want to start
a lengthy process of remediation if a simple solution was not checked first.
That is, has a reboot worked?

145

CHAPTER 5 AUTOMATION

Gates don’t have to be technical configuration either. A highly
regulated organization may not want clever logic going around rebuilding
systems without being approved. For this, you could introduce a change
control gate. A proactive self-healing platform could identify a potential
problem and raise a change request. If the change request is approved,
the remediation actions would then continue, within a regulated
change window.

Another useful gate could be to pause after a failed system has been
rebuilt before failing traffic back over to it, in case an underlying issue has
not been detected.

Gates in general should be the first things you build when developing
your self-healing platform. Think of them as diagnostic stops while you are
proving your logic works.

Tooling: Automation and State Management

Using a combination of state management tools and automation
platforms, you should be more than capable of stringing together enough
logic to do some interesting self-healing. You will need to work out how
to parse logs for important information. Having a log gathering system
like Splunk that is constantly being scraped would allow you to build a
database of potential issues. If your self-healing logic matches anything
that could be a problem, you could then report an issue to a message
bus. Another big part of your self-healing estate could then monitor
the message bus for different kinds of jobs that would need self-healing
jobs run.

Configuration and applications running together could quickly get
overly complex. Take enough time and design your approach before you
start building to see if this is the best option for you.

146

CHAPTER 5 AUTOMATION

Machine Learning

Another way of developing your own self-healing platform could be done
by teaching it to understand what to do under certain conditions. For
this, you need to build a neural network of scenarios. That could include
looking at logs, alerts, and events. Your self-healing logic should then
weigh the percentage of data that is matched to a condition that will
trigger a sequence of automation tasks. Tasks can then be run from estate
management tools and automation platforms. Most of the tools available
today also have the ability to integrate with service desk platforms to raise
incidents and even have the capability to initiate communication with a
standby engineer.

Machine learning though is a steep learning curve and requires a
certain aptitude to master. If it is something you are interested in, spend
some time playing with a few basic examples and take it from there.

The Internet is a great place to learn from and is full of people with nice
examples you can try.

One important note about starting with machine learning is that
you will need some hefty number crunching hardware to compile your
machine learning programs. If you are fortunate to have a decent GPU, you
could start with that. Adding more GPUs will decrease your compilation
time, but with the general shortage of GPUs today, you could face an uphill
struggle with this one.

Tip Don’t be afraid of secondhand hardware; using someone else's
unloved older hardware may still help you when you are getting
started and will save you some money too.

147

CHAPTER 5 AUTOMATION

Off-the-Shelf Products

If you have the budget and don’t have the time or patience to build your
own platform, you could look at some of the “off-the-shelf” options.

These products can provide a fair bit of functionality but may not give
you everything you may need. Pay close attention to what is included out
of the box and what you need to configure yourself. It could be a glorified
automation engine that still requires you to write logic, or worse. Buy some
of the organization’s professional services to build the logic for you.

Dynatrace

One product I have heard about in the past is Dynatrace. I know very little
about the product as I have never used it before and am not making any
recommendations based on what I know, so I will leave it up to you to
research and check for yourself. I only remember Dynatrace because I
attended a presentation at Red Hat Summit in Boston a couple years back.

During the presentation, the presenter explained how they used
Dynatrace to manage their own estate, and while the presentation was
happening, there was an outage with one of their web servers (possibly
staged for effect). The Dynatrace platform basically kicked in and started
running its diagnostics and potential remediation work. It did however
notify the presenter there was a problem, which I guess any monitoring
platform could do anyways.

The impression I got though was that Dynatrace could do some smart
things and could potentially be a good option. Like I mentioned, do your
own checking and testing before jumping in with both feet.

148

CHAPTER 5 AUTOMATION

Automation Best Practices

There is ultimately no list of all the best practices you can follow when it
comes to automating your estate. The best advice in this regard would
be to understand all the best practices for the automation platform you
decide to use. Get familiar with configuration file locations and how they
should be configured.

Do Not Reinvent the Wheel, Again ...

This is an area many people fail in, and I'm sure you are getting tired of
me mentioning it as I have spoken about this now at least a few times.
It’s something too many people keep doing, including myself, so by
mentioning it all the time I'm hoping by the end of this book, it would be
so drilled into you that you never try to reinvent anything again.

Always avoid trying to develop everything from scratch, especially if
you can get something similar if not identical to what you want online.
There really is no reason to spend time on something that already exists.
By all means, take the code and adjust it to fit what you want to do, but
do not just develop from the beginning every time. I do understand there
will be times when writing a role or puppet module might be quicker, but
always ask yourself honestly.

“How long will this take to write?”

If the answer is longer than five minutes, you know you are then
spending time where you may not need to. You are better off spending that
extra time testing and perfecting your platform configuration.

Code Libraries

Most if not all major automation platforms have vast libraries of online
examples and code you can download. If your first step is to make a
decision on which automation platform to use, your next step should be to
find the equivalent online library of code or modules.

149

CHAPTER 5 AUTOMATION

Ansible

In the Ansible world, you can make use of the Ansible Galaxy. The Ansible

Galaxy has a vast array of different Ansible roles you can search for and use

by the tags people have associated with them.
https://galaxy.ansible.com/

Puppet

Like Ansible, Puppet has a great library similar to Ansible Galaxy called
Puppet Forge.
https://forge.puppet.com/

SaltStack

SaltStack doesn’t quite have the same setup but does have a GitHub
location called SaltStack formulas with tons of content.
https://github.com/saltstack-formulas

Note Ansible is my personal choice; this is why | use it as an
example quite often. | try not to recommend anything directly as |
want to avoid being biased toward one particular vendor or product.
Always make your own decision based on an informed opinion.

Metadata

Once you get yourself in a position to contribute code back to the
community you have chosen to follow, make sure you understand how to
format and build your code so the correct metadata can be used to catalog
your work. Nothing is more frustrating than providing code that no one
can find or use.

150

https://galaxy.ansible.com/
https://forge.puppet.com/
https://github.com/saltstack-formulas

CHAPTER 5 AUTOMATION

Using examples from your chosen provider can help get you started.
Download an example and “borrow” the code from there.

Things to Avoid

A few things to avoid when automating, no matter what platform you
decide to use.

Shell Scripts

If possible, use modules and code provided by your automation tool

of choice. Ansible as an example has a rich library of Ansible modules
available. Not everything is installed by default anymore but can be
installed with Ansible collections. Similar approaches may be available
with other platforms. Always investigate what the best way to run a task is
before you resort to a shell script.

Shell scripts tend to be non-idempotent and would require further
code to ensure they were. Using a prebuilt module that speaks to a
platform API or similar would handle all the extra coding for you and leave
you with neat clean code.

Restarting Services When Not Required

If your automation code has a service restart task, never restart just for the
sake of restarting. Use control code that checks if the service actually needs
to be restarted. Even though it could be a slight dip in service, it poses a
risk if configuration is not correct. Some services could refuse to start, and
you end up with an outage.

151

CHAPTER 5 AUTOMATION

Using Old Versions

Seems obvious, but make sure you are using the latest possible version
of the automation tool you have chosen. Documentation may not always
update if code you are writing is going to be deprecated.

Correct Version Documentation

Read the latest documentation or at least the documentation that matches
the version of the automation tool you are using. Code changes and
modules become deprecated, so following old examples or old knowledge
base articles can set you back when you need to refactor your code later
down the line.

Good Practices

As there are things you should always avoid when writing automation
code, there are also a few good practices you should include in your
working methods.

Debugging

Remember to remove extra debugging steps or tasks added to your code.

It may be useful when you are testing and developing your code but can
look untidy when used in production. It could also get you some unwanted
questions from people who do not understand why there are red lines
everywhere when they execute your automation tasks.

Don't Forget README

Documenting your code for others to use is very important when you are
not working alone. The whole point of automation is saving time; spending
that time explaining to others how to use your code is counterintuitive.

152

CHAPTER 5 AUTOMATION

It is also well recommended when you are sharing code online through

different sharing portals. Getting used to doing it when you start is the best

way to continue doing it.

Source Control

Commit your code to GitHub/GitLab or whichever git provider you prefer,

but do it often and always before you stop for the day. Not only is your code

safe but also allows you to build a portfolio of your work for others to use.

Summary

In this chapter, we discussed the following:

The theory points around automation, when to
automate and when not to.

What it means to develop code that is idempotent.

Various automation platforms available today. Why you
would use them and why you would not use them.

What standard operating environments are and how
you could configure your estate to be one.

How hardware, system platforms, and applications
could be configured to self-heal.

Automation best practices and things that should
be avoided.

153

CHAPTER 6

Containers

This chapter goes in a slightly different direction from previous chapters.
This will be the first chapter where we discuss organization workload
and how to manage that workload. Previously, we discussed platforms,
automation, and general Linux system administration. We will touch a
bit more on platforms toward the end of this chapter but will be more
structured around the major topic of this chapter: containers.

This chapter will delve into the world of containerization and how you
can manage workloads within them. We will discuss what containers are,
how you can get started with them, what you should be doing to manage
them, and the dos and don'ts. Finally, we will end the chapter on how you
can manage a full estate of containers using tools available today.

The goal of this chapter is to help you get a basic understanding of
containers and the orchestration tools you can use to manage them.

Getting Started

As a Linux sysadmin, you have most likely already heard of containers; you
may already be using them in your organization.

Containers are the next major evolution in Linux estates. It is
important that as a Linux sysadmin you are fully aware of what they are,
how they are built, and, most importantly, how they are managed.

Simply put, a container is a set of one or more processes and files
managed within its own isolated environment.

© Kenneth Hitchcock 2022 155
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_6

https://doi.org/10.1007/978-1-4842-7984-7_6#DOI

CHAPTER6 CONTAINERS

Virtual Machine vs. Container

Where a virtual machine is a complete operating system with its own files
and resources, a container is an isolated part of an operating system that
not only has its own binaries and files but also shares libraries and binaries
with its host operating system. Containers are created and run on top of a
system layer known as a container runtime (Figure 6-1).

Application Application
Application Application
Binaries Binaries
) and_ . and_ Binaries Binaries
Libraries Libraries and and
Libraries Libraries
i Windows
Linux OS) .
os Container Container
Virtual Machine Virtual Machine Container Runtime

Hypervisor Linux

Hardware Hardware

Figure 6-1. demonstrates the different layers required for virtual
machines and containers

The differences between a virtual machine and a container are shown
in Figure 6-1.

Container History

The idea of a container is not a new concept at all and as a concept has
been around longer than Linux itself. Containers started their conceptual
journey in the late 1970s and early 1980s with the first introduction of using
chroot to create isolated environments. Later in the early 2000s, Solaris and
FreeBSD expanded the idea with practical implementations of platforms
that provided segregation.

156

CHAPTER6 CONTAINERS

It was not until Google later introduced the ability to separate
resources like CPU and memory by introducing Cgroups that the world of
containers really started to grow. With the concept of Cgroups, the likes of
LXC (Linux containers) and systemd-nspawn could create their own early
forms of containers. LXC looked at creating full system containers where
systemd-nspawn could manage namespaced processes and be controlled
by systemd. Both were the early leaders in containers. Docker based much
of their early development using LXC but later dropped LXC in favor of
starting a container standard. This was the birth of the Open Container
Initiative (OCI) and became the standard for all container runtimes.

There are a number of container runtimes that can be used today to
create containers, largely due to the fact that all container runtimes follow
this standard.

Container Runtimes

Container runtimes are what makes it possible to run a container on your
system. A container runtime allows the container to speak to the host
kernel and run processes.

The original container runtimes were simple and could run in isolated
environments, but over time these runtimes have become more complex
and have evolved where multiple layers are required to manage containers
in complex environments. For you to understand the full flow of how
containers are created and managed today, there are three categories you
need to understand about container runtimes:

¢ Low-level runtimes or OCI runtimes
¢ Container runtime interfaces

o Container engines

157

CHAPTER6 CONTAINERS

Low-Level or OCI Runtimes

At the lowest level when using containers are the OCI runtimes. OCI
runtimes focus mainly on the container life cycle. This is the basic creation
and running of containers.

Low-level runtimes have two variations, native and “virtualized.”

Native Runtimes

Native OCI runtimes run their processes on the same kernel of the host
system where the OCI runtime is running.

Note Due to the fact that the host shares its kernel with the native
runtime, there is a concern that a compromised container could
impact the host it is running on. For this reason, you should always
understand all the security issues that you could potentially be
building into your containers.

Some examples of native OCI runtimes are runc, crun, and containerd.

Virtual and Sandboxed Runtimes

Unlike native runtimes, virtual and sandboxed runtimes are more isolated
from the host kernel.

Sandbox Runtimes

Sandbox runtimes create a proxy layer referred to as a unikernel which
proxies requests to the host kernel, reducing possible issues if a container
were ever compromised. Sandbox runtimes available as of writing are
gVisor and nabla-containers.

158

CHAPTER6 CONTAINERS

Virtual Runtimes

Instead of using a proxy layer, virtual runtimes create a virtual machine to
use instead of the host kernel. These runtimes can be slower but provide
another strong layer of protection. Virtual runtimes available as of writing
are Katacontainers, Sysbox, and Firecracker-containerd, to name a few.

Container Runtime Interface

With the growth of container workloads and the evolution of tools like
Kubernetes, there became a need to move away from hardcoded runtimes
that were built into the kubelet daemons. The idea was to create a new
interface that allowed tools like Kubernetes to speak to any container
runtimes without needing to recompile kubelets each time a new runtime
was used. This new interfacing allowed greater flexibility to switch out
native runtimes.

A CRI needs to be able to do the following:

e Start and stop pods

e Manage start, stop, and kill type operations
within a pod

e Pull and push images from container registries
e Assistin metric and log retrieval

There are two main CRI options today that are capable of doing the
preceding steps. They are containerd and CRI-O.

Containerd

A high-level runtime developed by Docker with runc under the covers,
Containerd contains all the functionality of a CRI and is regarded as a good
example of a CRI.

159

CHAPTER6 CONTAINERS

CRI-0

CRI-O is a slimmer implementation of a CRI. Red Hat is currently
supporting the integration of CRI-O into Kubernetes and their OpenShift
product. Docker was removed in favor of moving to a CRI type
architecture, thus enabling the flexibility of switching low-level runtimes.

Container Engines

The final category of container runtimes you need to understand is the
layer where you can actually do some container creation. This layer is the
container engine. Just like a virtual machine requires a hypervisor to run
on, containers require a container engine.

From the diagram in the “Virtual Machine vs. Container” section, you
can see where the container engine layer exists between containers and
the operating system. This is the container engine.

Table 6-1 lists the two common container engines that are used today;
they are Docker and Podman. Throughout this chapter, we will be using
Podman as the container engine for any container examples or exercises.

Table 6-1. Container engine examples

Tool Name Description

Docker Released in March of 2013. One of the first mass used container
runtimes

Podman Unlike Docker, Podman does not run an underlying daemon to run
containers

160

CHAPTER6 CONTAINERS

Docker

Today when I speak to people about containers, they often still refer to
containers as “Docker containers.” Docker was the first real container
engine most people used; many still use Docker and still swear by it.

If you are a Docker or Podman person, it does not matter too much if
you are just using it on your laptop or test lab; in the end, all you want to do
is create a container based on an image.

Docker, however, has become a bit more difficult to install since I first
used it. In the past, the Docker binaries could be installed with dnf or
yum, but now you may need to have separate repositories enabled or have
special subscriptions. If Docker is the choice you wish to go with, you will
need to read the documentation.

I have managed to install “Docker” on my Fedora system using the
following command:

dnf install docker -y

Once Docker has been installed, you may want to read the man pages
on how Docker is used.

You will need to understand how to start a container, find out if the
container is running, and how to delete the container when you are done.
Table 6-2 lists some of the docker parameter options that can be used.

161

CHAPTER6 CONTAINERS

Table 6-2. Docker example options from Docker help

Tool Name Description

start Start one or more stopped containers
stop Stop a container
ps List running containers

attach Attach local standard input, output, and error streams to a running
container

search Search the Docker registries for a container image

history Show the history of an image

images Show all the images that have been pulled to your local system
create Create a new container

build Build an image from a Dockerfile

events Get real-time events from the server

kill Kill one or more running containers
mi Remove container image
Podman

Podman came a while after Docker and is similar to Docker in how
containers are created and managed. One major difference between
Podman and Docker is that Podman does not require a service or daemon
to be running. This is due to the fact that Docker runs on top of a runc
container, whereas Podman does not. Instead, Podman directly uses runc
containers.

All Docker commands should work with Podman; the help and man
pages from Podman will also be a great source of information when you

are starting.

162

CHAPTER6 CONTAINERS

Podman and Docker can use the same images and Dockerfiles, so if
you find any Docker examples they should work with Podman too.

Installing Podman is as simple as running your install command
for your local package management system. In the case of Fedora, the
command to install Podman is

dnf install podman -y
To check the man pages for Podman, you can run
man podman

If the man pages are too long to read and you just want to get
started, run

podman help

Similar to Docker, you can search for images, and you can list local
images and containers. If you have any Dockerfiles, you can use those
to build custom images if you like, and most importantly you can create
containers.

Podman is simple enough to get your head around, and there are
plenty of examples for both Podman and Docker online.

If you are not familiar with either Docker or Podman, do not worry too
much. We will be running through some practical examples for you to try
shortly.

Container Images

If you were to build a virtual machine, you would need to create a “virtual
machine shell” in your hypervisor, boot the virtual machine, and install
an operating system. Containers, as they share libraries with the operating
system, typically do not need their own operating system installed.
Instead, container images are created with the files and libraries required
for the container to run its workload.

163

CHAPTER6 CONTAINERS

An example could be a container image that is going to be used as a
nginx web server. The basic configuration and libraries will need to be
installed within the image as not all hosts that will run container runtimes
would have nginx installed. The same can be said for any application
server binaries that may be required.

It’s this ability to ship the binaries and files for an application that
really allows containers to be completely portable. More on that further in
this chapter.

Container Registries

You can imagine that container image variations could grow quite large;
just by thinking of a few examples alone, you can see the number growing.
For that reason, it is important to store these images for later use. No one
will want to create a new image each time they have a particular workload
they wish to deploy. If you have had any experience building application
servers, you will understand that some configuration can be quite time
consuming. Having to repeat the configuration process for each new
environment is not something I would recommend.

This is where container registries become useful; they not only
store the custom images that you create for your organization but also
the libraries of downloaded images for particular workloads you may
have. Instead of building a php image, for example, you could find a php
container image with everything available to run your php application.

Container registries are available to you in a few ways. There are
cloud or Internet registries where you can pull images you may need. You
can then customize these images and push them to your private cloud
repositories if you choose, or you can push them to your local on-premise
registries.

164

CHAPTER6 CONTAINERS

Cloud Registries

Cloud registries are a great way to work with images if you have a small
estate to manage. Just like it does not make sense to build an estate
management platform for a small number of systems in your estate, the
same is true for a small container estate. If all you are using containers for
is some basic applications that do not change often, hosting your images in
a cloud registry makes perfect sense.

Companies like IBM and Google have cloud registry options for
you to host your container images. Depending on your organization
requirements, Google could be a good place to start. They offer a $300 free
tier for testing Google services which include registry options. After the
trial is finished, there will of course be a cost involved; just like evaluating
estate management tools, you will need to work out what works best
for you.

Local Registries

If you have a deeper requirement for container image storage, you may
want to consider looking at on-premise container registry options. The
options available will drastically depend on the level of service you will
need. This could be as simple as just having a place to store container
images in a disconnected or air-gapped environment, or it could be more
complex in that you require image scanning for security reasons. Whatever
your requirements, trial and test to confirm what works for you.

Container Registry Providers

There are a number of options you can choose if you need a container
registry. Just like most things we have discussed so far in this book, there
are community products, and there are enterprise products.

165

CHAPTER6 CONTAINERS

With community products, you get basic functionality and in most cases
quite nice features. With enterprise products, you gain all the goodness
around security and compliance scanning.

When choosing, you will need to consider everything again from price
to features.

Containers in Practice

Now with the basics of containers covered in theory, let's get some hands-

on experience with creating container workloads.

Prerequisites

For this section of the book, you will need to have the following available to
you if you wish to test some of the configuration that will be discussed.

Shopping List
e A Linux system with root privileges

e Access to the Internet from the Linux system

o Ability to install packages

System Prep

Before we can create any of the containers or configurations, you need to
prep the system you will be using.

Install Packages

Install the Podman, Docker, or whichever runtime packages using the
official documentation if you are not familiar with the process. In most
cases, this will be as simple as running “dnf install podman -y” or “apt-
get -y install podman”

166

CHAPTER6 CONTAINERS

The Docker installation may be a bit different from Podman as you
may need to enable extra repositories to get the required packages. Check
the official documentation to be sure.

Note For this section, | will be using Podman; for that reason, it may
be worth using Podman to avoid extra config or google searching.

Creating Containers

Over the next few pages, we will cover the basic hands-on experience you
will need to start working with basic containers. The goal for this section is
not to make you a container specialist but more to show you how to create
a simple container environment to gain experience with.

Warning The following exercises are not meant to be used for
production or live environments. They are not resilient enough and
would cause you more problems than what they are worth. For
production type environments, you will need to look more at container
orchestration tooling.

Pulling a Container Image

Before a container can be created or run, you will need to pull a base
image from a cloud registry or, if you are ahead of the curve, from a local
registry.

To pull the correct image from a registry, you should know what the
container workload will run. Is the container going to be a nginx server?
Are you going to run a php application? Or do you have something entirely
different in mind?

167

CHAPTER6 CONTAINERS

Finding Container Images

Once you know what type of container you will run, you can search for a
container image that closely resembles your intended workload. If you
wanted to find a nginx image to run a basic web server container, you
would run something similar to the following:

#podman search nginx

The output would list all the available images that contain the nginx
keyword. Pay attention to the number of stars and if the image is from an
official source:

INDEX NAME DESCRIPTION
STARS OFFICIAL

docker.io docker.io/library/nginx Official build of Nginx.
15732 [0K]

...output reduced

Pulling the Container Image

From the list of available container images you discovered with the
podman search command, you can now pull or download the image to
your local system. It is this process that will allow you to use the image
locally for any containers you wish to run.

To pull a container image from the previous search command, you can

use a command very similar to the following:
podman pull docker.io/library/nginx
The output should look similar to the following:

#root@localhost ~]# podman pull docker.io/library/nginx
Trying to pull docker.io/library/nginx:latest...
Getting image source signatures

168

CHAPTER6 CONTAINERS

Copying blob fca7e12d1754 [==============)-------] 20.6MiB / 25.4MiB
Copying blob 858292fd2e56 done
Copying blob 1c84ebdff681 done
Copying blob a4723e260b6f done
Copying blob b380bbd43752 done
Copying blob 745ab57616cb done

Container images can be downloaded as archive files if you need to
save them to a portable storage device for another system.
Local Container Images

To see what container images you have downloaded, you can run a
command similar to the following. These images can be used to create
containers on your local system.

podman images
The output should be similar to the following:

[root@localhost ~]# podman images

REPOSITORY TAG IMAGE ID
CREATED SIZE
docker.io/library/nginx latest 87294228133

3 weeks ago 138 MB

Running a Container

If you found the container image you wish to use and have managed to
download or pull it successfully, you can run a basic container instance of that
image on your test system. To run a basic nginx container from the previously
downloaded nginx image, you run a command similar to the following:

[root@localhost ~]# podman run -d --name kentest -p 8080:80 nginx

169

CHAPTER6 CONTAINERS

The output would be the ID of the container that gets created:
95bf289585a8caef7e9b9aebbac0918e99aaac64d46b461180484c8dd1iefatas

The “-d” option in the command tells podman to detach from the
running container and leave it to run in the background. The “-p” sets the
port that the container will listen on.

Running Containers

Once you have created your container, you may want to see if it is running.
The simplest way of doing this is to run a container list command as per
the following:

[root@localhost ~]# podman container list
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

95bf289585a8 dock.... nginx... 7 sec... Up
0.0.0.0:8080->80/tcp kentest

From the list, you can see all the containers you have managed to start
on your local system. The nginx example is running on all interfaces and
listening on port 8080.

Welcome to nginx! — Mozilla Firefox

Welcome to nginx! X +

&« C @ O O 127.00.1

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 6-2.
170

CHAPTER6 CONTAINERS

The screenshot in Figure 6-2 shows the nginx serving requests on the
localhost on port 8080.

Custom Images and Containers

Now that we know how to download and run basic containers from online
image registries, we can explore how to customize an image to host your
own workload.

Create a Podman Image Registry

The custom images created in the next few sections will need to be stored
in a local registry. Without having to purchase or pay for any online service
to act as a container registry, we can set up one on your local system. For
this, we will create a basic podman registry and push our new images to
the local container run registry.

Create a Directory for Data to Be Stored

mkdir -p /var/lib/registry

Create Registry Container

The command to create the running container is as follows; included in
the command is a “-v” parameter, which tells the container to mount a
directory from the host system to the running container. In this case, this
is there to help the container registry retain container images when the
container is restarted.

podman run --privileged -d --name registry -p 5000:5000 -v /
var/lib/registry:/var/lib/registry --restart=always registry:2

171

CHAPTER6 CONTAINERS

Set Podman to Use Insecure Registry

As container registries normally want to be secured, you need to tell
podman to use an insecure registry. You can configure your registry
to use a signed certificate, but for that you should follow the podman
documentation.

To set podman to use an insecure registry, you will need to edit the
“/etc/containers/registries.conf” file and find the “[registries.insecure]”
section. Under the “[registries.insecure]” section, find the line “registries =
[]” and update it to “registries = ['localhost:5000']"

Finally, after saving the registries.conf file, you will need to restart the
podman service:

systemctl restart podman

Using the Podman Registry

Now with your own local podman registry configured from the previous
section, you are now able to add your own images to it for safekeeping.
You can then pull images from your own registry when building new
applications or images.

Tagging Images

The first thing you will need to do when you have local images downloaded
is to tag them with your internal podman registry. This way, you can
instruct podman to push images to the local registry instead of a remote
registry. Think of it as a way to change the path of a container image.

To tag an image, you run the podman tag command. If we take the
example of nginx that we have been using so far, we can tag the nginx
image with the following command:

podman tag docker.io/library/nginx localhost:5000/nginx

172

CHAPTER6 CONTAINERS

Pushing Images

With the nginx image tagged, the next step is to push or upload the
nginx image to the local repository. This can be done with the following
command:

podman push localhost:5000/nginx

Remote Registries

If you created a podman registry on a different host and exposed the
registry on the network interface instead of the loopback address, you can
tag and push your images to that address too if you wish. Just be sure to
open any firewall ports to allow traffic through to the podman registry.

The same can be said for any on-premise image registry; as long as you
have the ability and permissions to push images, the podman tagging and
push commands will allow you to use local registries.

Customize an Image

So far, all we have done is use container images as they are without adding
any of our own customizations.

What good would a web server be without any content, right? The
same can be said for container images; what’s the point of running a nginx
or apache web server if you don't host any web content on them?

Let's have a look at how to add our own custom content to a

web server.

Dockerfile

To understand how to add some basic customizations to a container
image, we will need to use a build file. This build file is most commonly
referred to as a Dockerfile. Both Podman and Docker can use Dockerfiles.

173

CHAPTER6 CONTAINERS

These Dockerfiles are used to create any customizations you would like
in your container image. Think of these files as image install files.

To use a Dockerfile, all you need to do is create a new file called
Dockerfile. Do not change the name or add any extensions. The file needs
to exist in the current directory, or you need to specify the location when
you run the podman build command.

Example

Like before, let’s run through an example. For this example, we are going
to build a CentOS image with apache httpd installed on it. Once the web
server packages are installed, the example will pull down an example
HTML file from my GitHub account. Finally, we will run a new container
with the new image.

Pull Down Cent0S Image
Before we start, you will need to pull down a version of CentOS:

podman pull docker.io/library/centos

Dockerfile

Next, you will need to create a Dockerfile. Remember that the Dockerfile
should be named exactly as “Dockerfile.” Ensure that you are in the same
directory as your Dockerfile when you try to build your new image.

The Dockerfile in my example will pull the latest CentOS image it can
find if you have not already pulled one. Once the image is available, yum
will install both the “httpd” and “git” packages. These will make up all the
packages required for our custom image. Feel free to add anything else you
want to use like PHP. Once the packages are installed, a git clone will pull
down the source code for our web content and move it to the /var/www/
html directory for the web server to use. In this example, I wrote a very
basic HTML page. This can be anything you wish, so change with your own
content if you want to try something a bit different.

174

CHAPTER6 CONTAINERS

The following is what the Dockerfile I used looks like:

FROM centos:latest

RUN yum -y install httpd git; \

git clone https://github.com/kenhitchcock/basicwebapp.git; \
mv basicwebapp/index.html /var/www/html/index.html

CMD ["/usr/sbin/httpd", "-D", "FOREGROUND"]

EXPOSE 80

Build Image

To build the image based on our earlier Dockerfile , you need to ensure
you are in the same directory as your Dockerfile, then run the podman

build command:

podman build -t centos .

Note The “.” tells the podman command to use the current
directory. This is why you need to be in the same directory as the
Dockerfile when you run the build command. The name of the image
built can be anything you want, just change the text after the “-t”
parameter. This example uses the CentOS name.

Create Container

With the newly built container image and the custom content, we can run

and test the new image:

podman run -p 80:80 -dit localhost/centos

175

CHAPTER6 CONTAINERS

Challenge The default port for the apache web server is 80.As a
challenge, try and find out how to customize your Dockerfile to use a
different port.

Confirm Container Is Running

To double-check that your container has actually started, you can run the
following command:

podman ps

The output should be similar to the following:

podman ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

08832f29f46e localhost/centos:latest /usr/sbin/httpd -...
24 hours ago Up 12 minutes ago 0.0.0.0:80->80/tcp elated jepsen
Delete Container

To delete a container, you first need to stop the container, and then you can
delete it. This can be done with similar commands to the following:

podman stop 08832f29f46e
podman rm 08832f29f46e

The output should be similar to

podman rm 08832f29f46e
08832f29f46edabbbdd41227a542bt4941926831d099a0a83ee8838bfe71fdf9

176

CHAPTER6 CONTAINERS

Container Practices

With a better understanding of what containers are and how to manage
them, you now need to understand what constitutes good and bad practices.

Cloud Native

The first thing you need to understand when working with containerized
workloads is what cloud native means.

The simplest explanation of cloud native is that it is the practice
of using cloud technologies to deploy workloads in a lightweight and
fast manner.

Cloud-native tools typically involve using automation, scalable
platforms in private or public clouds, containers, service meshes, and
generally with immutable infrastructure. The use of these tools and many
others can enable high rates of product workload releases. Netflix is an
excellent example of this. Netflix releases around 100 production releases
in a day through lightweight, fast workloads that are streamlined to
production by using automation and other tooling.

Good Practices
Keep It Small

The number one rule to running any container or cloud-native workload is
to keep the workload as small as possible. It is not recommended to create
workloads that are in the gigabyte size range. The smaller the workload,
the better for deployment and scalability. If your workload demands
higher sizing, then potentially you need to rearchitect how the workload is
written. This could be breaking the workload down into microservices and
working from there.

Always push back if you are forced to create large workload deployments.
The benefits of running smaller workloads will pay off in the long term.

177

CHAPTER6 CONTAINERS

Dynamic Deployment

Workload deployment should never be done manually. Code should be
committed to your source control and pushed through to production.
Make use of pipelining tools, source control webhooks, and anything else
that can trigger workload deployment.

A basic example of what this should look like can be seen in Figure 6-3.

Deployed to test
Or producton

Figure 6-3.

178

CHAPTER6 CONTAINERS

Scalable

Any workload or application that will be deployed in a cloud type
environment or be considered cloud native must be scalable. The ability to
scale up when demand increases is vital to good cloud working practices.
If the workload you are deploying cannot scale dynamically, you need to
consider rearchitecting the workload. Not being able to scale dynamically
is symptomatic of dated workloads and potentially old code.

“Does It Cloud”?

Just because you are deploying into a cloud platform does not mean

your workload is cloud native. There are many other things that make
workloads cloud native, but the three questions you should ask when you
want to know if your workload is for the cloud are

o Isthe workload small?
¢ Can the workload be scaled?
e Can the workload be dynamically deployed?

With the preceding questions, you can now ask yourself, “does it
cloud”? If your answer is no to any of the questions, you have work to do
before you can migrate or deploy to a cloud environment effectively.

Do not fall into the trap by trying to build virtual machines into
containers or into cloud-native style hyperscalers. Just because you can
does not always mean you should. The pitfalls to doing this will come back
to bite you later on when you are not able to take advantage of the benefits
of cloud computing. Large workloads can be inefficient and wasteful,
negating the cost saving you may have been expecting.

If you need big workloads, then container or cloud platforms may
not be what you need right now. Take a step back and look carefully at
the workload first, refactor code, and break monoliths down into smaller
applications that can “cloud” as the cloud was intended.

179

CHAPTER6 CONTAINERS

Bad Practices

There are many good practices and many bad practices. These are referred
to as antipatterns. Here are a couple more common practices that should
be avoided when possible.

Containers Are Not Virtual Machines

Containers are not the same as virtual machines and should not be
treated the same. A container is a cutdown entity that has one purpose.
This practice ensures cloud principles stay intact. If you are trying to
replicate what a virtual machine does, then you may not be ready to use
containers yet.

Different Images

The temptation can be to use different images for different environments,
as it seems like a more secure method of building workload images.
However, building test images for test, development images for
development, and production images for production opens the possibility
for differences to occur that are not tested and signed off. It is very possible
that an image used in your test environment could have no vulnerabilities,
but an image used in production does. For this reason, migrate the
application-baked images through your environments. This way, you
ensure security checks are done, and code is properly tested and most
importantly signed off for production use (Figure 6-4).

180

CHAPTER6 CONTAINERS

Deplay, test and
promote o next

environment

Figure 6-4.

The basic idea on how images are tested and promoted should be
similar to Figure 6-4.

Production Builds from Code

This point is similar to the previous one. Do not bake your container
images directly into production. Your images should be built in
development and then promoted through your different staging
environments. You could end up with a situation where different code

is deployed to different systems. Having a single entry point into your
production environment from a central image registry will greatly reduce
the risk of this happening. You are also then assured that the code tested is
the code deployed.

Hardcoded Secrets or Configuration

Applications should be agnostic of platform configuration or secrets. The
need to hardcode anything should be an alarm bell that the application
is not cloud native. Configuration and secrets should be managed by the
platform the application will be deployed on; anything else is generally
regarded as a bad practice and a potential security risk.

181

CHAPTER6 CONTAINERS

Building Idempotent Containers

Building a container should be an idempotent process. Your Dockerfiles
should not be trying to make changes external to the image it is building.
There should not be any code being committed or any external changes
being pushed. Simply put, a container build should follow a flow similar to

Download any | ‘ .
dependencies Rmmmgsglmsz

Building container images should only focus on what is required for

Figure 6-5.

Figure 6-5.

the container to run. The flow should be as simple as what is shown in
Figure 6-5.

Container Development

In this chapter so far, we have touched briefly on how containers can be
developed. We have explored some simple good and bad practices and
hopefully given you a good idea what cloud native is. For this section, let’s
understand how you can create a meaningful workload using container
development.

Development Considerations
Coding Languages

Writing code for containers is no different than writing code for your local
development environment or laptop. You can still choose and use your
favorite development language and can still push code to your favorite

182

CHAPTER6 CONTAINERS

source control platform. There is no hard and fast rule that says you cannot
use one particular language or the other. However, not all development
languages are created equally. Using older languages may not translate

to the cloud as effectively as newer ones. Before starting to write any new
application, spend some time looking at some of the following options.
Table 6-3 lists a few development language options that are used today
within containerized applications.

Table 6-3. Development languages or frameworks

Language Name Description

Quarkus API Java framework optimized for cloud environments
React Java framework for Ul development

Python, Ruby General-purpose high-level programming languages
Golang Fast and robust, often used for loT devices

.Net If you need to stick to Microsoft-based languages
Code Editor

To write useful code, you need to practice and have an editor that works
well enough without breaking the bank. There are a few available you can
use, but it always comes down to personal preference and what features
you are willing to live without. Table 6-4 lists a few code editor options that
can be used.

183

CHAPTER6 CONTAINERS

Table 6-4. Code editors

Tool Name Description

VSCode Free to use, simple to understand, and has a great selection of
plugins and add-ons

Eclipse Great editor with the ability to add application servers for code
testing. Generally a Java developer tool

NetBeans Another Java editor

Notepad++ More advanced than your standard text editors, a useful option
when you have limited choices

Vim Not always installed on Linux systems but can be used to develop

Nano, Emacs

code. Plugins can be installed but tend to be more limited than GUI
options

More command-line editors can be used, but can lack the rich
features a GUI tool can offer

Tip VSCode is free to use, has great plugins, and is quite simple to
use. Before you spend too much time with other editors, try VSCode
and change if you find something better.

Source Control

No matter which source control platform you wish to use, just make

sure you use one. Not using source control is a massive mistake for any

developer or organization. You lose the ability to peer review code in an

effective centralized manner, and you risk the loss of code. It is not worth

taking the risk. Table 6-5 lists source control options that can be used to

control your source code.

184

CHAPTER6 CONTAINERS

Table 6-5. Source control options

Tool Name Description

Git Basic git can be deployed on any Linux system;
code can be pushed and pulled

GitHub Internet-based Git source control platform

GitLab Similar to GitHub, except you can run your own
GitLab on-premise

Bitbucket Another Git product that can be run on-premise

Subversion Popular option prior to Git and currently losing
popularity

Mercurial Handles projects of all sizes, a free distributed

control management service

Microsoft Team Foundation Source control system developed by Microsoft
Server

Note Git is probably the most popular source control system today.
Get familiar with it asap.

Container Tooling

Once you have your code developed and container ideas in place, you
will want to start working on streamlining your container image creation.
There are many ways to do this, both right and not so right. You will also
have a fair few tools you can choose from.

185

CHAPTER6 CONTAINERS

CI/CD

The first area to look into is your container delivery system. This is known
as your continuous integration and continuous delivery system. These will
help deploy your workload into your various environments and give you
the flexibility to do much more with your container images or workload
deployment. Table 6-6 lists a few options available for CI/CD pipelines.

Table 6-6. CI/CD options

Tool Name Description

Jenkins Popular free open source tool that's easy enough to use and has
loads of plugin options

TeamCity Integration with Visual Studio, useful for Windows development and
testing. Has both free and proprietary options

GitLab Has the ability to build and run tasks directly from your GitLab
repositories

Travis CI Can automatically detect commits in GitHub and run tests on a
hosted Travis Cl platform

Tekton Another open source CI/CD tool that supports deployments across
different cloud or on-premise platforms

Jenkins Example

Jenkins is one of the more popular pipelining tools to use today and is
free to use for testing. To see what Jenkins pipeline code looks like, the
following is a basic example using pseudo code:

186

CHAPTER6 CONTAINERS

node {
def app

stage('Clone repository') {
/* Basic comment about cloning code*/
checkout scm

}

stage('Build image') {
/* Build your container image */
app = docker.build("jenkinsproject/helloworld")

}

stage('Test image') {
/* Run your unit testing of some type */
app.inside {
sh 'echo "Tests passed"'

}

stage('Push image') {
/* With a verified image, push your image to a registry */
docker.withRegistry('https://someregistry.com’,
'registry-credentials’) {
app.push("${env.BUILD NUMBER}")
app.push("latest")

From this Jenkins example, you can see that stages are used in the
pipeline; you can add as many as you like for different tasks. You may want
to add a stage for security image scanning as an example. Ideally, you want
to build in as much automation and testing as possible.

187

CHAPTER6 CONTAINERS

Challenge As a learning challenge, deploy a Jenkins container on
your sandbox environment or laptop. See if you can write your own
custom Jenkins file to build a new container image that is triggered
from your source code being updated in git.

Dedicated Image Builders

Make use of non-Docker components to build container images. Tools
like Buildah (https://buildah.io/) and Kaniko (https://github.
com/GoogleContainerTools/kaniko) are more secure as they run each
command in the Dockerfile in userspace. Both Buildah and Kaniko do not
require the Docker daemon to be running to build images.

Image Registry

As you develop your applications and container content, you will need a
place to store these images. It is ok if you want to test and build when you
need to, but as a good practice, it is recommended to start storing your
container images as you start building your application portfolio. This
practice is highly recommended if you are going to be deploying anything
into a live environment.

Previously in this chapter, we discussed how to build a podman
image registry; to extend on that, look at providing storage to ensure your
containers are not ephemeral. Podman, for instance, has the ability to
create volumes; those volumes can be mounted in your container when
you create them.

Using orchestration platforms like OpenShift or Kubernetes can
provide image registries but are often ephemeral by default. Ensure you
have storage volumes mounted so you do not lose any of your images.

188

https://buildah.io/
https://github.com/GoogleContainerTools/kaniko
https://github.com/GoogleContainerTools/kaniko

CHAPTER6 CONTAINERS

Development Editor Plugins

Using your development editor of choice, find and install plugins that
help with container development debugging. Plugins that can assist with
Dockerfile or Jenkinsfile creation will definitely help as you are starting out.

Tip VSCode is a great option if you need something that’s free and
easy to use. Overall, for me it’s a winner, but test it for yourself.

Linting Tools

Before pushing or committing any type of code, be it YAML or Dockerfiles,

make use of linting tools. For Dockerfiles, there is a nice online linting tool

you can copy and paste your Dockerfile content to be checked.
www.fromlatest.io/#/

DevSecOps

A keyword in today's world of platform management is DevOps. DevOps
is a vital set of practices and tools that bridge the gap between developers
and operational teams. DevSecOps is an addition to this concept, where
everyone is responsible for security.

DevSecOps Tooling

DevSecOps empowers both developers and operational teams to
understand security requirements and build security into their tooling.

189

http://www.fromlatest.io/#/

CHAPTER6 CONTAINERS

Pipelines

In a standard situation where there are no DevOps or DevSecOps practices
used, security teams are required to scan and report issues every time

a new system or platform is built. Security teams are responsible for

the organization’s security and the ones who would have to answer the
difficult questions if a breach is ever experienced. For this reason, they are
meticulous in their scanning and ensuring no vulnerabilities are exposed
in live environments. This process can involve additional security tools
and can take time to be completed. This can also be a frustrating job if new
platforms or systems are released constantly.

By following DevSecOps practices, security considerations can be built
into pipeline or image building tools. With this process, developers and
operational teams take responsibility for security, thus greatly reducing
back and forth with security teams.

Security Gates

With security built into pipeline tools like Jenkins, security gates can be
built where if an image fails a security scan for whatever reason, the build
process can be stopped, allowing remediation to occur before being
released into a live environment.

GitOps

Another keyword in today’s estate management and container platform
management is GitOps.

“GitOps is an operational framework that takes DevOps best practices
used for application development such as version control, collaboration,
compliance, and CI/CD tooling, and applies them to infrastructure
automation.”

https://about.gitlab.com/topics/gitops/

190

https://about.gitlab.com/topics/gitops/

CHAPTER6 CONTAINERS

GitOps Toolbox

Some useful tools that can help you along your GitOps learning are as
follows. There are many other tools and variations you can use, but as this
subject can be one for a book on its own, I have mentioned only a few.

Git
The first step to using GitOps is to start using Git. This can be GitLab,

Bitbucket, or GitHub, any Git platform that allows the ability for CI/CD
pipelines to detect merge requests.

Infrastructure As Code

Technically not a tool, however, everything you write to automate or
configure your platform should be in the form of code. That could be
YAML for your OpenShift or Kubernetes configurations or Ansible to build
a new system. Everything should be built or configured from code; no
manual configuration should be used anywhere.

Pipeline Tools

Choose your pipeline tool and configure it to detect merge or pull requests
in your git environment. Every time a new change is made, the pipeline
should be kicked off to build or deploy new application versions or build
new systems.

ArgoCD

Another GitOps tool being used more and more is ArgoCD. ArgoCD helps
with GitOps workflows and can be used as a stand-alone tool or as a part of
your CI/CD pipeline.

191

CHAPTER6 CONTAINERS

ArgoCD along with Git acts as a “source of truth” when configuring
OpenShift or other Kubernetes variants. It’s useful to maintain the state
of your container orchestration platforms. It’s very similar to how estate
management tools like SaltStack maintain the state of systems within the
estate it manages.

ArgoCD works with Git by paying attention to any configuration file
changes through the means of pull or merge requests. When a change is
merged in Git, ArgoCD pulls the new configuration and configures the
platform the configuration is meant for (Figure 6-6).

Developer

Commits code

0 ArgoCD Pulls changes

Git

—00

ArgoCD syncs
configuration kubernetes OPENSHIFT

Figure 6-6.

Figure 6-6 shows the basic flow an ArgoCD configuration should take.

Container Orchestration

A few containers can quickly spiral into hundreds if not thousands in
environments where applications are being deployed on a regular basis. To
manage this kind of growth, the need for container orchestration becomes
more important. Tools like Kubernetes, Docker Swarm, and OpenShift
provide the ability for administrators to manage large estates of container

192

CHAPTER6 CONTAINERS

workloads and ensure their availability. Each tool has its own advantages
and disadvantages and could be discussed in such length it would take
many more chapters to cover; however, as we are not focusing too much
on container orchestration at the moment, let’s just touch on the basics
for now.

What Does It Do?

Container orchestration is the layer that must exist above containers before
they are used by end users. A good container orchestration tool should
have the following properties:

e Scalable
e Flexible
e Secure

e Automated
o FEasytouse

These properties ensure that container workload can be managed
effectively and securely, has the ability to plug in to CI/CD systems, and
has content updated dynamically.

Why Not Use Podman?

The difference between using something like Podman to host an array
of pods and Kubernetes as an example is Podman does not give you the
ability to monitor performance and adjust the quantity of pods to handle
additional load automatically.

Podman does not have the flexibility to create isolated networks
between different nodes for specific workload.

193

CHAPTER6 CONTAINERS

All these higher-level configuration and automation services that are
provided by orchestration layers like Kubernetes or OpenShift are meant
for large estate deployments. Podman has the ability to host a multitude
of pods with many containers inside but lacks the ability to manage these
pods at scale. Adding more nodes and connecting pod networks would
prove more complicated and would defeat the purpose of a container
orchestration layer being easy to use.

Podman is useful for local or small deployments but not meant for
anything at scale. You can develop your own wrapping tools to manage
Podman, but you would just be reinventing the wheel. The best thing to
do would be to invest your time using Kubernetes or another enterprise
product like OpenShift if you can get your hands on it. Failing that, you can
also use the community product called OKD.

Orchestration Options
Kubernetes

Kubernetes, or K8s, is an open source project that was originally developed
by Google and based on their original “Borg” system (cluster manager
system).

Red Hat was one of the first contributors to Kubernetes before it was
officially launched.

In 2015, Google donated the Kubernetes project to the CNCF (Cloud
Native Computing Foundation).

Kubernetes Forks

As Kubernetes is open sourced, there are many downstream variations

of Kubernetes today like Red Hat’s OpenShift, VMware’s version of
Kubernetes, and many cloud platforms like AWS and Azure providing their
own managed services.

194

CHAPTER6 CONTAINERS

These cloud managed services allow end users to deploy their
container workloads without the need to build their own orchestration
platform or manage any of the systems associated with it. Users sign up for
an account, get allocated resources, and deploy workloads.

Where OpenShift and Kubernetes can be deployed in the cloud and
on-premise, they need to be installed, configured, and managed going
forward. This is useful if you need to deploy very large estates and are
happy to do all the administration yourself.

Master Components

Kubernetes has a few fundamental cluster components that enable it to
provide the orchestration for pods and the containers within.

The Control Plane

The control plane consists of the following:

o The ETCD key value database that stores all the cluster
configuration

o The API server that provides the Kubernetes API via
JSON over http

e The scheduler which is responsible for scheduling
workload on nodes

o The controller manager used to manage different
Kubernetes controllers

The control plane is provided by a cluster of master nodes; these nodes
replicate configuration between them to ensure the control continues to
provide the cluster functionality.

195

CHAPTER6 CONTAINERS

Nodes

Nodes are the workers of the Kubernetes clusters. They are responsible
for hosting the container workload users deploy. Nodes consist of a few
subcomponents:

o Kubelet ensures the state of the node and the health of

containers running on it.

o Kube-proxy is responsible for routing traffic to your
containers.

¢ Container runtime.

Namespaces

Namespaces are designed to provide a way to segregate one Kubernetes
cluster so multiple users could deploy workloads without being able to
communicate with each other.

Daemonsets

Normally, the scheduler is responsible for placing pods on nodes where
resources are available to ensure that not only one node gets overloaded.
Daemonsets, however, are used when you need to force a pod to run on
each node. This is often the case with logging containers.

Worker Node Components

Workload objects are what is deployed and used on worker nodes. The
following are used on most if not all worker nodes.

Pods

Containers are run within pods; these pods are what are spawned on
worker nodes. Typically, one container is run within one pod, but this is
not a hard and fast rule.

196

CHAPTER6 CONTAINERS
Services

Services are what binds multiple pods of the same application together.
When multiple pods are spawned on different worker nodes, you need
to balance traffic between them. A service is the layer that provides that

“service”

Volumes

By default, all containers are ephemeral, which means they have no way
to store their data after a pod restart or recreation. By mounting volumes
or persistent volumes to pods, you are to recover any data from previously
destroyed or restarted pods.

Configmaps

Within containers, you sometimes need to configure configuration files.
A web server, for instance, may need to be configured with details about
the website it is hosting. Configmaps give you the ability to abstract the
configuration from the container image to the orchestration platform.
When a pod is deployed with a configmap, the configuration is then
applied during the deployment phase, similar to how Dockerfiles can be
used to configure the container image.

OpenShift

Before OpenShift was OpenShift, it was a PaaS product by a company
called Makara. Red Hat acquired Makara in 2010 for the Paa$ platform
which was proprietary at the time based on Linux container technology.

197

CHAPTER6 CONTAINERS

Early OpenShift

Prior to OpenShift 3.0, the Red Hat PaaS platform was proprietary and
custom developed. It took two years after the acquisition for Red Hat to
release the first open sourced version and then three years after that to
move away from the custom platform to a more “mature” Kubernetes at
the time.

OpenShift 3.0 was the first release where Red Hat used Docker for the
container runtime and Kubernetes for the orchestration layer.

OpenShift 3.11 was the last minor release of OpenShift 3 and the last
version where Docker was used as the container runtime.

Current OpenShift

Red Hat currently has OpenShift 4.9 generally available for public use. The
detachment of the “hardcoded” Docker has allowed OpenShift 4.x to move
to a container runtime interface approach where any low-level container
runtime can be used.

OpenShift has matured to become the leading container orchestration
platform for the enterprise and thus has become the number one
container orchestration product for many organizations. Red Hat’s
continued investment continues to grow OpenShift new functionality and
acquisitions.

Advanced Cluster Security (StackRox), Advanced Cluster Management,
monitoring, logging, and many other enterprise-grade features make
OpenShift the go-to product for any serious hybrid cloud organization.

OpenShift Components

As OpenShift is based on Kubernetes, most of the components are very
similar and named in a very similar manner. There are of course some

variations, like namespaces in Kubernetes are referred to as projects in

198

CHAPTER6 CONTAINERS

OpenShift. The kube command with Kubernetes is the “oc” command
with OpenShift, but most importantly the following are some of the major
differences.

Product

OpensShift is a product, not a project like Kubernetes. Kubernetes is a
community project that anyone can contribute to. These changes do make
their way into OpenShift if Red Hat deems them useful.

Enterprise

The enterprise vs. community argument again, OpenShift is an enterprise
product where Kubernetes is a community project. There are paid
enterprise support options that companies like Google provide but are still
based on the community project.

Security

OpenShift has been built with security in mind, opening the adoption for
more security conscious organizations. The recent acquisition of StackRox
has only strengthened this argument even more.

Web Console

OpenShift has a web console by default. Kubernetes requires you to deploy
it separately and have the cluster kube-proxy direct traffic to the console.

Many More

Without listing all the differences, there are other features like image
management and enterprise storage solutions that Red Hat OpenShift
provides over Kubernetes. If you are interested, you should do as
recommended with most products in this book. Build a proof of concept
and compare the differences for yourself.

199

CHAPTER6 CONTAINERS

Summary

In this chapter, you were introduced to the following:

200

An overview of what containers are, their runtimes,
how to build a container, and how containers are
customized

Some practical uses of containers and how to create a
local container registry

What cloud native means and the various good and bad

practices of using containers

Different container tooling along with DevSecOps and
GitOps practices

Container orchestration and what options are available
for you to use

CHAPTER 7

Monitoring

What are some of the most important features any new Linux system must
have before it can be accepted into your organization’s production or live
estate? The common answers given are monitoring, logging, and security.
For good reason too, any system that is not being monitored, logged, or
secure is just a recipe for disaster and in almost every single case will be
rejected by any serious operations team.

This chapter will take a deeper look at one of the first things a Linux
system should have: monitoring. We will discuss tools that have been used
in the past and what tools are available out of the box with most Linux
distros. We will then look at some of the newer tools and trends that have
been used within the last five years.

Finally, we will discuss what developers and applications require from
a monitoring point of view, how applications can be better monitored, and
how to initiate discussions with developers on how to develop applications
to support this. This chapter will not give you all the answers to all the
different monitoring use cases. It will give you ideas on what you could be
doing and what tooling could help with some of your current monitoring
questions. It may even create a few questions you did not realize you
needed to ask.

© Kenneth Hitchcock 2022 203
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_7

https://doi.org/10.1007/978-1-4842-7984-7_7#DOI

CHAPTER 7 MONITORING

Linux Monitoring Tools

Almost as long as Linux has been around, there have been tools to monitor
what is happening on the system. These tools could be as basic as the
“top” command or as complex as using systemtap to understand what the
kernel is doing when a new device is added to your system.

Once you know the basics on how to use a Linux system, the next
logical step should always be to know how to confirm your system is
healthy and how to ensure it stays that way. For this, there are numerous
different tools that can show your system state.

Process Monitoring
Default Process Commands, ps and top

By default, on most if not all Linux distros, you will find both the “top” and
“ps” commands. They not only show you all the processes running on your
system but also give you the process ID number that can be used to kill a
defunct or hung process.

If you are not sure a particular process is running, for instance, the
apache web service, you can run a command similar to the following:

ps -ef | grep httpd

The “top” or the alternative commands could also be used, but you
may struggle to search through the list for your process. Using “ps” and
“grep” will give you a quicker and cleaner output.

Note During Chapter 2, we looked at “top” and a few other tools
that could be used to find running processes on your system. We
also discussed how to Kill processes and how to identify zombie
processes.

204

https://doi.org/10.1007/978-1-4842-7984-7_2

CHAPTER 7 MONITORING

Pstree

A quick and nice tool to see all the processes and the parents of each
process is the “pstree” command. The following is a basic output of pstree
with a reduced output:

pstree

systemd——ModemManager 3*[{ModemManager}]
NetworkManager 2*[{NetworkManager}]
F—abrt-dbus 2*[{abrt-dbus}]
|—3*[abrt-dump-journ]
|—abrtd 2*[{abrtd}]

. [reduced for length]

|—thermald {thermald}
—udisksd——a4*[{udisksd}]
—upowerd 2*[{upowerd}]
—uresourced 2*[{uresourced}]
L—wpa_supplicant

Resource-Hungry Processes

The “ps” command is useful for another reason. I'm sure you have
experienced a process that has been CPU or memory intensive. Finding
that offending process can sometimes be a bit tricky if you are trying

to figure out how processes are consuming resources from the “top” or
similar commands. The following are two “ps” commands you can use to
find the top five CPU- and memory-intensive processes.

Memory-Intensive Processes

ps -auxf | sort -nr -k 4 | head -5

205

CHAPTER 7 MONITORING

CPU-Intensive Processes

ps -auxf | sort -nr -k 3 | head -5

Tip Look at the ps --help and ps man pages for more options to
use with ps.

Disk and 10

There could be a situation where you have slow disk performance or disks
filling up. Some useful tools that can be used for disk and 10 monitoring
that are still used today are tools like “iostat,” “iotop,” “du,” and “df”

iostat and iotop

“iostat” and “iotop” are basic tools that give you information about your
input-output systems:

iostat
Linux 5.13.4-200.fc34.x86 64 (localhost.
localdomain) 22/11/21 _X86_64_ (4 CPU)

avg-cpu: %user Z%nice %system %iowait %steal %idle
28.17 0.06 12.21 0.11 0.00 59.46

Device tps kB_read/s kB_wrtn/s kB_dscd/s
kB _read kB wrtn kB_dscd

dm-0 1.16 1.79 59.42 24.16
16712024 554638596 225476964

nvmeOn1 1.15 1.79 59.43 24.24
16724756 554741532 226295700

zramo 0.20 0.16 0.64 0.00
1482776 6013392 0

206

iotop

Total DISK READ:
Current DISK READ:

TID PRIO USER DISK READ DISK WRITE
COMMAND
733973 be/4 ken 0.00 B/s 57.50 K/s

chrome --type=utility --utility-sub-type=network.mojom.

CHAPTER 7

0.00 B/s | Total DISK WRITE:
0.00 B/s | Current DISK WRITE:

SWAPIN

0.00 %

MONITORING

108.61 K/s

3.19 K/s
I0>

0.00 %

NetworkService --field-trial-han~be2ad25, --shared-files=v8
context_snapshot data:100 --enable-crashpad [ThreadPoolForeg]
729143 be/4 root 0.00 B/s 51.11 K/s
[kworker/u8:6-btrfs-endio-write]

du and df

These are used to show disk usage and where disks are mounted:
df -h

Filesystem Size Used Avail Use’% Mounted on
devtmpfs 12G 0 12G 0% /dev

tmpfs 12G 181M 12G 2% /dev/shm

tmpfs 4.7G 2.0M 4.7G 1% /run

/dev/dm-0 238G 93G 144G 40% /

tmpfs 126G 61M 212G 1% /tmp

/dev/dm-0 238G 93G 144G 40% /home

1 be/4 root 0.00 B/s 0.00 B/s
systemd rhgb --system --deserialize 51
2 be/4 root 0.00 B/s 0.00 B/s
[kthreadd]

3 be/0 root 0.00 B/s 0.00 B/s
[rcu_gp]

4 be/0 root 0.00 B/s 0.00 B/s

[rcu_par gp]

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

0.00 %

207

CHAPTER 7 MONITORING

/dev/nvmeOnipl 976M 272M 638M 30% /boot

tmpfs 2.4G 216K 2.4G 1% /run/user/1000
du -h /etc

0 /etc/.java/.systemPrefs

8.0K /etc/.java/deployment

8.0K /etc/.java

0 /etc/NetworkManager/conf.d

0 /etc/NetworkManager/dispatcher.d/no-wait.d
0 /etc/NetworkManager/dispatcher.d/pre-down.d
0 /etc/NetworkManager/dispatcher.d/pre-up.d

0 /etc/NetworkManager/dispatcher.d

0 /etc/NetworkManager/dnsmasq-shared.d

0 /etc/NetworkManager/dnsmasq.d

28K /etc/NetworkManager/system-connections

32K /etc/NetworkManager

... [reduced for length]

80K /etc/gimp/2.0

80K /etc/gimp

28K /etc/pcp/derived

28K /etc/pcp

37M /etc/

CPU

CPU statistics on your system can be checked using a number of tools both

shipped with your distro and tools that you can install quite easily. The

following are two of the more common tools used.

208

CHAPTER 7 MONITORING

Top

Most Linux sysadmins will use the top command and press the “1” key.
This will give a similar output to the following:

top - 23:56:10 up 108 days, 1:38, 1 user, load average:
1.31, 1.73, 1.54

Tasks: 373 total, 2 running, 370 sleeping, 0 stopped,

1 zombie

%Cpuo : 10.0 us, 2.3 sy, 0.0 ni, 87.0 id, 0.0 wa, 0.3 hi,
0.3 si, 0.0 st

%#Cpul : 6.6 us, 7.9 sy, 0.0 ni, 83.8 id, 0.0 wa, 1.0 hi,
0.7 si, 0.0 st

%Cpu2 : 10.7 us, 3.3 sy, 0.0 ni, 85.3 id, 0.0 wa, 0.3 hi,
0.3 si, 0.0 st

%#Cpu3 : 10.3 us, 3.6 sy, 0.0 ni, 83.4 id, 0.3 wa, 2.0 hi,
0.3 si, 0.0 st

MiB Mem : 23679.7 total, 3091.2 free, 13131.6 used,

7456.8 buff/cache

MiB Swap: 8192.0 total, 6207.6 free, 1984.4 used.

8940.7 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM
TIME+ COMMAND
2021 ken 20 0 1448452 123008 73736 S 18.2 0.5
252:05.89 Xorg

728039 ken 20 0 749048 52472 36696 S 6.9 0.2

6:54.61 gnome-system-mo

From the preceding output, you can see that I have four cores in my
laptop. The load average can be seen to be around 1.33, which means that
around 1.33 of my four CPUs are currently being used to run processes.

209

CHAPTER 7 MONITORING

mpstat

Another useful command for CPU statistics is the mpstat command. The
“mpstat” command displays activities for each available CPU.
To see all the stats per CPU, you can run the following command:

mpstat -P ALL

Memory

A few ways to check system memory include looking at the /proc/meminfo
file or running commands like “free” or “top.” The following are a few

things you can do on your system to understand more about its memory.

Free

Basic utility that gives all the information required about your
system’s memory:

free -h

total used free shared buff/cache available
Mem: 23Gi 12Gi 3.2Gi 1.2Gi 7.2Gi 8.8Gi
Swap: 8.0Gi 1.9Gi 6.1Gi

Page Size

If you need to find out your system’s page size, you can use the following
commands:

getcont PAGESIZE

210

CHAPTER 7 MONITORING

Huge Page Size

When doing application server tuning, you may be asked to enable or
check if HugePage sizing has been enabled. You can check this in the /
proc/meminfo file:

cat /proc/meminfo |grep Hugepage
Hugepagesize: 2048 kB

pmap

Another useful tool is the “pmap” utility. “pmap” reports a memory map of a
process. “pmap” can be quite useful to find causes of memory bottlenecks.

Virtual Memory

It does occasionally happen that you need to investigate issues around
virtual memory or slabinfo. The “vmstat” tool is useful for this kind of
investigation.

vmstat

The vmstat tool can be run to give you different information about
your system.
Running a basic vmstat command as follows:

vmstat

will give you the following output, which is explained in Table 7-1:

procs ----------- memory---------- --- swap-- ----- io----
-system-- ------ cpu-----
r b swpd free buff cache si so bi bo in cs

us sy id wa st
0 0 2032024 2086144 1056 8923084 2 8 21 701 40 50
281259 0 0

211

CHAPTER 7 MONITORING

Table 7-1. vmstat output explained

vmstat Column Description

T The number of processes waiting for runtime
b The number of processes in uninterruptible sleep
swpd Virtual memory used

free Idle memory

buff Memory used as buffers

cache Memory used as cache

si Memory swapped in from disk

S0 Memaory swapped to disk

bi Blocks received from a block device

bo Blocks sent to a block device

in Interrupts per second

cs Number of context switches per second

us Percentage of time running non-kernel code
sy Percentage of time running kernel code

id Percentage of time spent idle

e Percentage of time spent waiting for 10
Network

Tools to monitor network configuration or traffic are really useful when
you need to troubleshoot issues or confirm a port is listening for traffic.
The following are a few tools I have used in the past.

212

CHAPTER 7 MONITORING

Netstat

One of the first tools I tend to use when I need to check if a port is listening
for traffic is the “netstat” command.

The “netstat” command will show you network connections,
interface statistics, and more. The most common commands I use to check
what ports are listening are as follows:

nestat -nap | grep LIST
netstat -planet

Note Netstat is still part of the net-tools package but at some point
will be removed as netstat is now obsolete; it is preferred to use the
ss command instead.

SS

”

To get some quick information about socket statistics, you can use the “ss
command.

To view all TCP and UDP sockets on a Linux system with ss, you can
use the following command:

ss -t -a

iptraf-ng

If you prefer to use initiative tools to view network statistics, you can use
the “iptraf” command. “iptraf” is useful to monitor various network
statistics including TCP info, UDP counts, interface load info, IP checksum
errors, and loads of other useful information (Figure 7-1).

iptraf-ng

213

CHAPTER 7 MONITORING

Figure 7-1.

Figure 7-1 is what you are presented with when you open iptraf-ng.

This tool has helped me on a few occasions where I needed to monitor
the traffic out of a particular interface. It is not installed by default but
definitely worth using if you are not already.

From the main screen, you can select to monitor IP traffic; from there,
you select the interface you want to monitor, then watch the connectivity
over that interface.

Tepdump

Most if not all network engineers will use wireshark to monitor traffic
on their network. The “tcpdump” command allows the Linux sysadmin
to dump traffic on a particular network interface, all interfaces, or for a
particular service like DHCP or DNS.

214

CHAPTER 7 MONITORING

If you wanted to monitor all traffic on interface eth0 for anything
sending traffic to port 80, in the case of a web server, you could run a
similar command:

tcpdump -n -i etho -s 0 -w tcpdumpoutput.txt src or
dst port 80

The output file from the preceding command can then be opened
using the wireshark tool (Figure 7-2).

tepdumpoutput.tet

File Edit view Go

A0 4 ©

3 9.856271
4 B.B56625
51

Figure 7-2.

Note A useful way to look for anything that could be transmitting on
your network in clear text.

215

CHAPTER 7 MONITORING

NetHogs

If you were experiencing high bursts of network load on a Linux system

U

and wanted to know who could be responsible, you can try the “nethogs’
tool to see which PID is causing a bandwidth situation (Figure 7-3).

nethogs

NetHogs versicn 8.8.6

PROGRAM SENT RECEIVED
Jusr/libed/firefox/firefox wip58s
3228 ken fopt/goeqle/chrome/chrome --type=utility --utility-sub-type=n.. wlp58s B.811 B.812 KB/sec|
7 root 192.168.5.147:9696-192.168.5.159:38374 0.000 0.000 KB/sec|
7 root unknown TCP 0.000 0.000 KB/sec|

Figure 7-3.

NetHogs groups bandwidth by process name such as Firefox and

chrome as you can see in Figure 7-3.

iftop

This is a simple command very similar to “top” but for interface

information (Figure 7-4).

iftop

216

CHAPTER 7 MONITORING

. }E,SKb ZIS,SKb ??.SKb 50.0Kb 62.5KE
host. localdomain => 7.91.93.34.bc.googleusercontent.com 8b 2.29xb 1.64Kb
= 8b 8.46Kb 6.04Kb
Lhost. localdomain == dns.google 628b 1.64Kb 1.17Kb
<= 626b 1.89Kb 1.35Kb
calhost. localdomain =» 137.39.190.35.bc.googleusercontent . com 8b 761b 543b
<= eb 558b 399b
calhost. localdomain => Lhr4gs28-in-f10.1eld.net ob 694b 495b
<= b 499b 357b
224.8.0.251 == 192.168.5.182 b eb ob
o= 8b 1.12Kkb 822b
localhost. localdomain == Lhraés27-in-f16.1e180.net ob 396b 283b
= 8b 222b 158b
255.255.255.255 => 192.168.5.185 ob ob ab
<= 812b 487b 464b
localhost. localdomain => 192.168.5.102 eb 221b 158b
<= eb 57b 112b
255,255,255,255 => 192.168.5.117 ob b ab
<= ob 346b 247b
224.0.0.251 == 192.168.5.121 ob b ab
== ob 326b 233b
224.0.0.251 =» 192.168.5.122 ob ab ab
<= ob 326b 233b
255.255.255.255 =» 192.168.5.187 eb ab ab
< 812b 325b 348b
255.255.255.255 => 192.168.5.154 eb ab ab
<= eb 320b 229b
255,255,255, 255 => 192.168.5.116 ob ab ab
<= ob 168b 114b
192.168.5.255 => 192.168.5.18 ob b ab
<= ob 157b 112b
cum: 8.8BKE peak: 18.7Kb rates: 876b 6.40Kb 4.57Kb
i 38.6Kb 2.35kb 15.6Kb 11.3Kb
TOTAL : 27.8KB 47.3Kb 3.28Kb 22.8Kb 15.9Kb

Figure 7-4.

From Figure 7-4, you can see the layout of iftop is similar to the regular
top output, except more focused on network data.

Graphical Tools
Gnome System Monitor

Linux desktops like Gnome are not without their own monitoring tools you
can use. Those familiar with Windows will know about “task manager,” a
simple tool that gives you a basic rundown of what processes are running
and the current performance of your system. The Gnome system monitor
is not massively different. The first tab gives you a process list, the second
tab lists your CPU and memory resources being used, and the last tab gives
you a breakdown of your mounted filesystems (Figure 7-5).

217

CHAPTER 7 MONITORING

Q S

Process Name se Memory Disk read total [

X abrt-applet

B
B
B
B
B

0.00
0.00
0.00
0.00
B3 blueberry-obex-agent e 0.00
blueberry-tray e 0.00
Bl cat e 0.00
[cat e 0.00
B cgroupify
B cgroupify ¢ 0.
B chr —enab e 0.56
B chrome -t roce (e 0.00

B chrome --type e eld-trial-I ke 0.00

Figure 7-5.

From Figure 7-5, you can see all processes currently running on your
Linux system.

Ksysguard

If the Gnome tool does not work for you, you can also use the KDE tool
called ksysguard. The difference between the Gnome system monitor and
the KDE ksysguard tool is that ksysguard has the ability to monitor remote
systems. New tabs can be created, and different resources from remote
systems can be monitored. Useful for a quick and simple monitoring tool
with little to no real effort to configure (Figure 7-6).

218

CHAPTER 7 MONITORING

System Monitor

File View Settings Help

Process Table

chrome

chrome

chrome

goa-daemon ken 67,168 K

5 processes Memory: 12.2 GiB / 23.1 GiB Swap: 1.9 ¢C

Figure 7-6.

Similar to the Gnome system monitor, you can also view all the
processes running on your system, as demonstrated in Figure 7-6.

Historical Monitoring Data

So far, we have looked at some useful monitoring tools that can be used on
a Linux distro but all with one issue (except maybe tcpdump). None of the
tools keep historical data. The statistics shown are real-time data from your
system at the current time. A simple example of wanting to see what CPU
load was like from a previous day. Top and other such commands would
not be of any use.

219

CHAPTER 7 MONITORING

This is why the previous tools mentioned are for current system activity
and real-time system checking. Trying to use them for root cause analysis
after an issue has occurred will leave you with limited options.

Sar

A useful tool to query history system metrics is “sar.” The “sar” utility is
installed with the sysstat package. Along with “sazr,” the sysstat package has
a few other utilities like iostat, mpstat, and nfsiostat, to name a few.

The “sar” utility stores system statistics and metrics within local
system files that can be queried later for system statistics. The sar files can
be found at the following location:

/var/log/sa/
Common sar parameters are explained in Table 7-2.

Table 7-2. sar options

Switch Description

d Block device statistics
T Memory utilization

u CPU utilization

F Filesystem statistics

Performance Co-Pilot

A utility that is a bit better to use in my opinion over “sar” is the tools
installed with the pcp package. The pcp package installs a few useful tools
for metric querying and metric collection. Table 7-3 lists the tools installed
with the pcp package.

220

CHAPTER 7 MONITORING

Table 7-3. pcp tools

Name Description

pmstat Live information about your system, CPU, memory, etc.
pminfo Lists the metrics that can be queried
pmval Views the metric data

pmlogger Stores the metric data into files that can be queried later by pmval

vnstat

Not to forget network metrics, the vnstat tool is another useful tool to keep
historical network information. vnstat keeps a log of hourly, daily, and
monthly network traffic for the selected interface or interfaces.

Central Monitoring

With a good understanding now of local monitoring and metric collection
tools, we can now move on to central monitoring tools available in the
open source world. These are the tools that can be used to monitor your
entire estate from a single location with historical data being kept for
potential root cause analysis later down the line.

Nagios

The first tool that many people may know and have come to use at some
point is Nagios. Nagios is another one of those open source names that is

recursive. Nagios means “Nagios ain’t going to insist on sainthood.”

221

CHAPTER 7 MONITORING

Versions

Nagios has both a community and a paid-for product that can be installed
on most Linux distros. CentOS and RHEL, however, are the supported
platforms at this stage for the Enterprise Nagios XI product. Nagios Core,
however, can be installed on quite a few different Linux distros. It’s always
best to discuss these options with the vendor if you ever decide to use the
paid-for product.

Core

The community supported edition of Nagios is the Core release which
gives you the basic monitoring capabilities of Nagios but requires you to
use community forums for help and support.

Nagios XI

The enterprise or paid-for solution of Nagios comes with the standard core
components plus more. This also includes all the support for the product

via phone and email.

Agent Based

Nagios consists of a server and agent-based deployment with a few options
around agents that can be used.

NRPE

Nagios Remote Plugin Executor (NRPE) uses scripts that are hosted on the
client systems. NRPE can monitor resources like disk usage, system load,
or total number of logged in users. Nagios periodically polls the agent on
the remote systems using the check_nrpe plugin.

222

CHAPTER 7 MONITORING

NRPE can also communicate with Windows agent add-ons, allowing
Nagios to execute scripts and check metrics on remote Windows
machines.

Note NRPE has since been deprecated and is here only for
information.

NRDP

NRDP or Nagios Remote Data Processor is another Nagios agent you can
use. NRDP comes with a flexible data transport mechanism and processor
allowing NRDP to be easily extended and customized. NRDP uses
standard ports and protocols (HTTP and XML) and can be used in place of
NSCA (Nagios Service Check Acceptor).

NSClient++

A Windows agent for Nagios, NSClient++ listens on TCP ports through to
12489. The Nagios plugin that is used to collect information from this add-
on is called check_nt.

NSClient++ is similar to NRPE, as it allows Nagios to monitor memory
usage, CPU load, disk usage, etc.

NCPA

The final agent that can be used is the NCPA agent. The NCPA or Nagios
Cross Platform Agent is an open source project maintained by Nagios
Enterprises.

NCPA can be installed on Windows and Linux. Unlike other agents,
NCPA makes use of the API to gather information and metrics for Nagios.
Active checks are done through the API of the “NCPA Listener” service,
while passive checks are sent via the “NCPA Passive” service.

223

CHAPTER 7 MONITORING

Nagios Forks

There are a number of forks from Nagios that can also be used. Some of the
forks of Nagios are as follows:

o Icinga
¢ Naemon
¢ Shinken

All will share a similarity with Nagios but over time have evolved into
their own solutions. Icinga, for instance, has been developing its own
features for well over a decade now.

Installation

The installation for Nagios can be done in a few ways and is well
documented on the Nagios documentation site:

o Follow the official documentation and run steps
one by one.

e Build a virtual machine and run automation scripts.
o Pull a Nagios container image and run a container.

The recommended approach would be to use automation tooling like
Ansible to deploy Nagios within a dedicated system, but for quick testing
and playing, use a container.

Prometheus

Prometheus is an open source alerting and event monitoring system that
stores data in a time series database. Prometheus is a central location

for metric data to be stored and is usually paired with other software to
provide an overall monitoring solution.

224

CHAPTER 7 MONITORING

Exporters

Exporters are what gets data to Prometheus’s time series database.
Multiple exporters can be used on client or server systems. There are
dedicated exporters for different purposes; in the case of getting node
information, there is a dedicated node_exporter that will export local
system metrics like CPU or memory utilization.

Alert Tool

Any monitoring platform worth its weight in salt must have a way to tell
Linux sysadmins when there is a problem. This is typically your alerting
tool. A useful open source tool is Alertmanager, which can be used to
trigger alerts based on Prometheus metrics.

Dashboarding

Even though Prometheus does have a web Ul that can be used to query
metrics, it makes more sense to send metrics to a dashboarding tool.
Grafana, for instance, is a good choice for this and is one of the more
popular open source tools available today.

Query Language

PromQL is the query language used to create dashboards and alerts.

Installation

In the same way it is recommended to install Nagios, I would recommend

to install Prometheus. The documentation is very clear and well thought
through. The installation steps are simple enough if you want to do it
manually, but I would still advise the automated method. The Internet is full
of Ansible roles to do it for you, or if you prefer, there are also container images
that can be used to deploy a container if you want the prebuilt option.

225

CHAPTER 7 MONITORING

Kubernetes or OpenShift

Platforms like Kubernetes or OpenShift can also have Prometheus
deployed on them, but they tend to be used for the platform itself. You
would need to create a new namespace and deploy your own Prometheus
and Grafana to use for external system monitoring.

Configuration

Once installed, Prometheus does not require much configuration to get
started. A simple YAML file normally named prometheus.yaml can be used
for all configurations. A basic configuration from the official Prometheus
site is as follows:

global:
scrape_interval: 15s
evaluation_interval: 15s

rule files:
- "first.rules"
- "second.rules"

scrape_configs:
- job_name: prometheus
static_configs:
- targets: ['localhost:9090"]

Global

The global section is for Prometheus global configuration. General
configuration to tell Prometheus how often to scrape, for instance.

226

CHAPTER 7 MONITORING

Rule_files

The rule_files section is for custom rules we want Prometheus to use. The
example configuration in this case does not have any rule_files to use.

Scrape_configs

The scrape_configs section tells Prometheus what metrics to gather. In the
configuration example, the localhost will be contacted on port 9090 and
will search for metrics on the /metrics endpoint.

Starting Prometheus

Typically, monitoring platforms should be started from a service, and
Prometheus can be configured to do so too. When starting Prometheus,
you should have at least one parameter specified, and that is the name of
the Prometheus configuration file you are using.

To start Prometheus manually, you can run the following command
from the Prometheus installed directory:

./prometheus --config.file=prometheus.yml

Thanos

Prometheus monitoring is quite good on its own and can provide
everything you might want from a simple monitoring platform, except
maybe long historical data or high availability.

This is where Thanos can be utilized. Thanos has been designed to
provide a highly available solution that can keep an unlimited metric
retention from multiple Prometheus deployments.

Thanos is based on Prometheus and requires at least one Prometheus
instance within the same network as itself. Thanos manages the metric
collection and querying through a series of components.

227

CHAPTER 7 MONITORING

Sidecar

A sidecar is the component that allows Thanos to connect to a Prometheus
instance. It can then read data for querying or for uploading to cloud
storage.

Store Gateway

This allows the querying of metric data inside a cloud object
storage bucket.

Compactor

This compresses or compacts data and applies retention on the data stored
in a cloud storage bucket.

Receiver

This is the component responsible for receiving data from Prometheus’s
remote-write function. The receiver can also expose metrics or upload it to
cloud storage.

Ruler/Rule

This is used to evaluate recordings and alerting rules against data in Thanos.

Querier

This makes use of Prometheus’s vl API to pull and query data from
underlying components.

Query Frontend

By using Prometheus’s vl API, the query frontend can evaluate PromQL
queries against all instances at once.

228

CHAPTER 7 MONITORING

Thanos Basic Layout

Figure 7-7 is a very basic illustration of how the various Thanos
components speak to each other.

-] .
Front end . =8 B
Monitoring platform
Query :
: -g-PromcthcuS
-I‘l
j S—
Ruler J =
Figure 7-7.

Enterprise Monitoring

Monitoring for large organizations with different teams is normally a
contentious subject, mostly because different teams all want to use a tool
that suits them better. There are some excellent proprietary Windows
tools, and then there are quite good open source Linux tools too that can
be used. As this book is focused on open source technologies and the
adoption of Linux, let’s have a brief look at some open source enterprise
monitoring tools that you could use.

229

CHAPTER 7 MONITORING

Zabbix

A great enterprise-grade monitoring tool that can be used to monitor your
estate is Zabbix. Zabbix pride themselves in the fact that they can monitor
anything from server platforms through to network systems. Zabbix is

a server- and agent-based system but can also monitor some facilities
without the use of an agent.

Enterprise Support

Zabbix has a paid support facility that can be used for enterprise support,
or you can support yourself through community forums.

Installation

The installation is relatively simple and is well documented on the Zabbix
website. They have a really nice way of presenting the installation steps
through a series of selection boxes based on your preferences.

Useful Features

There are a few really nice features that Zabbix can provide. Examples of
these include the ability to monitor Java-based applications directly over
JMX, the ability to monitor virtual machines with VMware tooling, and the
ability to integrate with systems management tools like Puppet or Chef.

CheckMk

Another good enterprise monitoring tool is CheckMk. CheckMk is a
scalable solution like Zabbix that can monitor a wide variety of systems
from standard Linux platforms through to IoT devices.

230

CHAPTER 7 MONITORING

Enterprise Support

CheckMk offers both a free version with unlimited monitoring where you
support yourself and an enterprise paid-for solution with added features.

Installation

The major enterprise Linux distros are supported, and the CheckMk
documentation has well-documented steps for whichever distro you
are using.

Useful Features

CheckMk has been building their platform with the future in mind. They
have built in the facilities to monitor Docker, Kubernetes, and Azure, to
name a few.

The overall solution is scalable and will work well in large
organizations with a distributed layout (multiple data centers).
Automation has been one of the main development points to ensure that
configuration and setup is as simple as possible.

OpenNMS

The first monitoring tool I ever installed was OpenNMS many years back
when I first got into open source technologies. Researching for this book,
I'was quite impressed to see that not only was OpenNMS still a developed
product, but it also looked pretty impressive.

Enterprise Support

Like most enterprise platforms, there are generally two options: a “free”
version with community support and an enterprise paid version.

231

CHAPTER 7 MONITORING

The OpenNMS versions are as follows:

e Horizon: The community-driven and
supported version

e Meridian: The subscription-based service that provides
the latest stable enterprise release

Installation

The installation of OpenNMS is not as simple as maybe some of the other
tools available but in the same breath is not drastically difficult to install
either. The official documentation is clear enough and does step you
through everything you need to do. There is also a gopod community forum
for questions if you get stuck.

Useful Features

One feature that really jumps out is that OpenNMS uses Grafana as a
dashboarding tool, which, in my opinion, was an excellent move, largely
due to the fact that more and more of today’s users are developing their
own dashboards.

OpenNMS metrics can also be collected with a wide variety of methods
including JMX, WMI, HTML, XML, and more.

Dashboards

One aspect of monitoring that is almost as important as the metrics being
collected is the ability to view metrics in a format that makes sense. This is
where dashboarding tools are vital.

232

CHAPTER 7 MONITORING

Over the years, I have come across a few monitoring tools that
were and still are very good but just look awful in a browser. With some
application monitoring tools, I also found the dashboards to be very
difficult to configure. Sizing windows was a nightmare, and connecting
external tools was always not possible.

It seems that I was not the only one to suffer with these tools, and some
smart people have started developing dedicated dashboarding tools that
can integrate with a variety of tools.

Dashboarding Tools

Table 7-4 lists a few dashboarding tools that can be used today.

Table 7-4. Dashboarding tools

Name Description

Grafana The most popular dashboarding tool available today. Originally
released in 2013

Chronograf A very good tool if most of your metrics are pulled from an InfluxDB

database
Netdata A plugin-based dashboarding tool that supports push and pull
architectures for metric displaying
Kibana Largely used with Elasticsearch and Logstash to form the ELK stack
Grafana

As Grafana is the most popular tool todayj, it is worth exploring what
Grafana has to offer.

233

CHAPTER 7 MONITORING

What Is Grafana

Grafana is an open source plugin-based dashboarding tool that has a wide
range of data source options that can be used to display metrics without
duplicating any data. Grafana can be deployed on almost all platforms
used today, from Windows through to Debian (Figure 7-8).

Figure 7-8.

A basic example of a Grafana dashboard can be seen in Figure 7-8.

Using Grafana

There are a few ways to use Grafana:
o Install your own environment on-premise.

o Use the managed Grafana cloud service.

234

CHAPTER 7 MONITORING

Cloud Service

If you do not want to run your own Grafana instance on-premise, you
can run your dashboarding in the cloud. The free forever plan includes
Grafana, 10K Prometheus series, 50 GB logs, and more.

On-Premise Installation

Grafana can be deployed in a few ways:

e Manual installation following the official
documentation on the Grafana documentation page.

e Use podman to pull a Grafana container image with
Grafana prebuilt and run a Grafana container.

Recommendation Use an automation tool like Ansible and
download a prebuilt Ansible role to do the deployment for you.

Data Sources

Before you can create a dashboard, you will need to have a source from
where metric data will be pulled. These are your data sources. You will
need to create a data source before attempting to create a dashboard.
Grafana supports a number of data sources that include some of the
following:

e Alertmanager
e AWS CloudWatch
e Azure Monitor

o Elasticsearch

235

CHAPTER 7 MONITORING

e InfluxDB

« MySQL

o PostgreSQL
e Prometheus

o Jaeger

Dashboard Creation

Once you have your data source, you are ready to start creating
dashboards. Grafana has the ability to create many different dashboards,
and these can be created from the main Grafana screen when you
firstlog in.

Dashboards can be imported and exported if you wish to download
prebuilt dashboards or if you wish to share your configuration.

Panels

Once you have your first dashboard, you will want to start creating your
metric visualization. For this, dashboards use panels. Multiple panels can
be used to display the metrics of your choice from your preconfigured data
source. Each panel has a query editor specific to the data source selected
in the panel (Figure 7-9).

Graphite test

I.--Illlii.i
)1 | ¥
] (] {0

= backend_02 == backend 03 backend_0«

Figure 7-9.

236

CHAPTER 7 MONITORING

Panels can be duplicated for quick configuration and can be
customized to use different colors for your time series data as
demonstrated in Figure 7-9.

Rows

To arrange all your panels, you need to create rows; rows are your logical
dividers for all your panels. Panels can be dragged into different rows for

simple organization.

Save

Always remember to save your dashboards when you have added new panels
or rows. If you happen to open a new dashboard, your changes will be lost.

Application Monitoring

A special kind of monitoring that can be a bit more trickier and often more
expensive on both resource and time is application monitoring. Application
monitoring requires both infrastructure tooling and developers who develop
their applications to expose metrics that can be monitored.

Tracing Tools

Tracing tools are used to “trace” the execution path of an application and
its transaction by the use of specialized logging. Typically, these are used
by developers to aid in pinpointing where a particular issue occurs.
Tracing should not be confused with event monitoring. Event
monitoring is primarily used by Linux sysadmins for high-level
troubleshooting and is normally not too “noisy.” Where, with
“tracing” noise is good. The more information, the more accurate the
troubleshooting can be to narrow down the root cause.

237

CHAPTER 7 MONITORING

There are a few tracing tools available today that can be used.
Proprietary platforms like AppDynamics are excellent tools with rich
features but come with hefty price tags. Fortunately, there are also open
source alternatives, and as we are primarily focused on all that is open
source, we can just move past those that are not.

Jaeger

Originally open sourced by Uber, Jaeger is inspired by the OpenZipkin and
Dapper projects used for monitoring and troubleshooting microservices-
based distributed systems. With that, Jaeger promises to help solve the
following issues:

o Distributed transaction monitoring

e Performance and latency optimization
e Root cause analysis

o Service dependency analysis

o Distributed context propagation
Zipkin
Before Jaeger, Zipkin was developed as an open source project based on
the Google Dapper project. Zipkin is a Java-based application that provides
an interface for users to view tracing data from a range of data backends.
Zipkin supports transport mechanisms like RabbitM(Q and Kafka.
Zipkin can be deployed as a container or run locally by downloading

the latest binaries. All of these steps are well documented on the Zipkin
official site.

238

CHAPTER 7 MONITORING

Exposing Metrics

Monitoring tools are only as good as the data they can collect. For standard
platform monitoring, the metrics can be pulled using agents which in

turn speak to the system they are running on to return the data they need.
Applications, however, need to expose the data from within the application
so the monitoring agent can pass the data to the monitoring platform.
From there, alerts can be configured along with any dashboards.

How to Speak “Developer”

As Linux sysadmins, we need to build monitoring systems that incorporate
application metrics; for this, developers need to ensure code is written to
expose metrics. The same is true for developing applications that can be
traced using tracing software like Jaeger.

Having conversations with developers and building proof of concept
applications to show the benefits of tracing along with exposed application
metrics is essential when trying to diagnose issues. As your application
portfolio grows, having these tools will greatly reduce potential downtime
and firefighting. Building these good practices early is well worth the effort
than trying to retrofit them later. This may be more difficult if you are using
a third party for your application.

Summary

In this chapter, you were introduced to the following:

e What monitoring tools can be run from a standard
Linux distro

e Graphical alternative monitoring tools that can be used
from a Linux desktop

239

CHAPTER 7 MONITORING

o What tooling can be used to store historical metric data
on a standard Linux distro

e Central monitoring solutions like Nagios, Prometheus,
and Thanos

o Enterprise monitoring open source tools such as
OpenNMS and CheckMk

o Dashboarding tools that can be used to display metric
data in a nice neat manner

e Application monitoring tools used for tracing and
how important application metrics are for estate
management

240

CHAPTER 8

Logging

In this chapter, we focus on a topic where we spend most of our time
troubleshooting as a Linux sysadmin: logs.

We will explore different logging systems that you can use, how to
read logs, how to increase the information we get from logs, and how we
look after our systems so logs do not cause us more issues. Finally, we will
explore how logs should be offloaded to external logging systems in a neat
and secure manner.

Linux Logging Systems

There are a few different options that can be used for system and
application logs. By default, all Linux systems are installed with syslog to
manage local logs. There are a few alternatives to syslog that can be used,
or you can develop your own if you choose.

The two logging systems we will look at briefly are Rsyslog and Fluentd.

Rsyslog

Installed by default on all Linux systems and almost always used, Rsyslog
is an incredibly fast logging system with the ability to receive logs from
almost everything running on a Linux platform. Rsyslog has the ability to
not only receive logs from just about everywhere, it can also offload logs to
numerous destinations from files through to MongoDB.

© Kenneth Hitchcock 2022 241
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_8

https://doi.org/10.1007/978-1-4842-7984-7_8#DOI

CHAPTER 8 LOGGING

Modular

Rsyslog has been designed in a modular way, allowing users to choose
what they want to use with rsyslog. There are a number of modules
currently available that range from snmp trap configuration through to
kernel logging. For a full list of all the different modules you could use, look
at the rsyslog official website:
www.rsyslog.com/doc/v8-stable/configuration/modules/index.html

Installation

If for some very strange reason rsyslog is not installed by default, you can
install from your standard package management system, like dnf or apt:

dnf install rsyslog

You can also run an rsyslog container if you choose that could be used
as a central logging system. More thought will need to be done around
storage and connectivity.

Service

The rsyslog service is enabled and started by default but can be stopped or
disabled in the standard systemd manner:

systemctl status rsyslog

Configuration Files

The configuration files for rsyslog are handled through two configuration

locations:

o The overall central configuration file “/etc/
rsyslog.conf”

o The “d” directory for custom configuration files to be
stored “/etc/rsyslog.d/”

242

http://www.rsyslog.com/doc/v8-stable/configuration/modules/index.html

CHAPTER 8 LOGGING

Rsyslog configuration has three main sections you need to be
familiar with:

¢ Global directives
o Templates

e Rules and actions

Global Directives

General global configuration for rsyslog. Examples include the enabling
and disabling of additional modules and library locations.

Templates

Templates give you the ability to format how you want logs to be recorded
and allow dynamic file name generation. It’s a useful configuration if you
are building a central rsyslog system and want to record the hostname of
the system sending logs.

Rules

Rules consist of selectors and actions. These are the fields that set what will
be logged and where the logs will be sent.

Selector Field

The selector field consists of two parts, the facility and priority. These two
parts are divided by the “” character.

The following entries are valid facility types: auth, authpriv,
cron, daemon, kern, Ipr, mail, news, syslog, user, uucp, and local0
through local?.

The following entries are valid priorities that can be used: debug, info,

notice, warning, err, crit, alert, emerg.

243

CHAPTER 8 LOGGING

The wildcard character of “*” can be used to substitute either or both
the facility and priority of the sector field.
Examples of the selector field can be “*.*’] “aquth.*’ and “auth.debug”

Action Field

The action field is typically made up of where the location of the log file
will be. However, other actions can also be applied to a particular selector
if you choose. Examples of this could be writing to a database or sending
the log files to a remote logging system.

Actions can be quite flexible too; different protocols, ports, and
interfaces can be configured to send logs to remote systems. It’s useful if
you run a dedicated logging network to not impact a production network.

Tip Make use of different selectors to monitor systems for critical
errors in separate files. These logs can then be exported to a remote
system for immediate alerts on dashboards.

Fluentd

Fluentd is an open source project that was originally created by a company
called Treasure Data.

Plugin Based

Written in C and Ruby, Fluentd gives the user the ability to be flexible in
how Fluentd can be used. With over 125 plugins for both input and output,
Fluentd can be used with almost any system or cloud provider available.

244

CHAPTER 8 LOGGING

Used at Scale

Running a large-scale environment with Fluentd is entirely possible
with user cases reporting that Fluentd can handle over 50,000 systems
sending data.

Installation

Fluentd can be installed in a few ways: standard package installation,

installed from source, or run from a container.

Prerequisites

Before installing Fluentd, there are a few prerequisites that are required:
e Configure NTP.
¢ Increase maximum file descriptors to 65535.

e Optimize network kernel parameters for performance-

sensitive environments.
o Use sticky bit symlink/hardlink protection.

More information about these prerequisites can be found in the official
installation documentation from Fluentd.

Manual Installation

Depending on your system, installing Fluentd can be done by either
running a script that matches your distro or installing the required
Ruby gems. The recommendation is to use the gem installation for
nonsupported platforms, and for supported platforms such as RHEL, to
install using the scripts provided by Fluentd.

The official documentation should always be followed for the
detailed steps.

245

CHAPTER 8 LOGGING

Container Deployment

Fluentd can also be deployed as a container and is often deployed in this
fashion. The official documentation does highlight all the steps in detail
that need to be followed for a successful deployment.

The basic high-level steps are as follows:

1. Pull the Fluentd container image from a reliable or
trusted source.

2. Create a basic fluentd.conf configuration file.

3. Run the container and send logs.

Note There will be more steps than just the preceding steps. Also,
don’t forget your firewalls.

Configuration

The main configuration file for Fluentd is the fluentd.conf file.
Configuration parameters can be found in the official online
documentation or man pages. A basic configuration file looks similar to
the following:

<source>
@type http
port 9880
bind 0.0.0.0
</source>
<match **>
@type stdout
</match>

246

CHAPTER 8 LOGGING

Understanding Logs

Having logs available is the first step to finding or preventing a problem.
Understanding what the logs are actually telling you is another very
important step.

Where Are the Log Files

On all major enterprise Linux distros, log files are typically stored in the
“/var/log” directory. This directory should normally be mounted on

a separate disk partition to avoid the root filesystem from filling if any
runaway logging occurs.

Tip /var/log should always be on a separate partition if you are
following any hardening guidelines.

How to Read Log Files

Logs can be viewed with a variety of tools installed on your Linux distro.
On a vanilla system, you will at least have access to the “vi” tool, but you
can install and use any text editor you are more comfortable with.

Warning Do not open large log files that are many gigabytes in
size using tools like vim on a production system. The file contents will
consume large portions of memory and potentially cause you issues.
Copy the large logs to a different system to avoid any issues.

247

CHAPTER 8 LOGGING

Infrastructure Logs

Logs that tell you all about your Linux system’s events, services, and
system are your infrastructure logs. These logs are the standard logs that
are configured in your rsyslog.conf configuration file and tell you all about
what your system is doing in the background. These are the logs that will
be used to troubleshoot any system issues and can be used to look for
issues before they occur.

Important Logs

Logs that should be monitored for system issues are as follows.

/var/log/messages

This log is used to store all the generic events and information about your
system. Other distros like Ubuntu or Debian use a log file named syslog
instead. This log should always be one of the first places you check if you
need to troubleshoot any issues. It may not have all the information but
can get you started when you do not know where to begin.

/var/log/secure

This log file is used for authentication events. This log or the /var/log/
auth.log in Ubuntu and Debian is the best place to start troubleshooting
authentication failures or login attempts.

/var/log/boot.log

This one is fairly straightforward in its purpose. This is used to
troubleshoot boot-related issues. It's a useful log to use to see how long a
system has been down for.

248

CHAPTER 8 LOGGING

/var/log/dmesg

This is used to log information about system hardware changes and
failures. It’s very useful if you are having problems detecting new hardware
being added or removed.

/var/log/yum.log

If using a distro that uses yum as its package management system, you can
see a history of all packages added, updated, or removed.

/var/log/cron

This is a simple log to capture all cron-related tasks that have run
successfully or failed.

Application Logs

Depending on your application or what application server you use, the log
files could be stored anywhere. Application developers need to ensure that
important information is logged to troubleshoot issues or track events. The
ability to increase or decrease verbosity should also be included.

Good Practice

Some good practices for application logging should include the following.

Use /var/log Directory for Logs

Ensure that all logs end up in the /var/log directory, preferably under a
subdirectory dedicated for the application. Applications can have their
directories symlinked to the /var/log directory if the application is not able
to adjust where logs are sent.

249

CHAPTER 8 LOGGING

Security

Logs that contain sensitive information should be secured when keeping a
long history. Permissions to the log directory should be locked to users and
groups authorized to read the logs. The use of ACLs could help to keep the
logs secure.

Warn or Above

Logs in production should never be left in debug mode. Logs should only
be set to warning or error. This will keep the logs small and only report if
there is an issue looming or report errors. Setting log levels too low can
leave you with your /var/log disk filling up.

Warning Debugging in production is never a good idea. If the need
to do this is frequent, your application is not being tested correctly
and should be recommended to not deploy new versions unless
rigorously tested.

Increasing Verbosity

When problems occur, there may be a need to get more information than
what has been provided.

Log Verbosity Levels

Well-written applications or platforms all tend to have the ability to
increase or decrease log verbosity. The following log levels are typically
available for users to use when setting logging levels:

o Fatal

e Error

250

CHAPTER 8 LOGGING

e Warn

o Info

e Debug
e Trace

The default settings for a production application or platform should
normally be set to “Warn” or “Error.” As previously advised, it is not
recommended to debug in production for two reasons:

1. Switching on debugging often requires an
application or platform restart, something not easily
done while live traffic is on the platform.

2. Debugging will increase the disk usage and add
additional load on the system. If the application
or platform has a major problem, the debugging
logs can grow quickly and potentially fill any
logging disks.

However, when the very very rare need does arise, setting the log
verbosity to “Debug” will definitely log more information but will be
limited to what the application or platform deems as a debugging message.
To get the information you need, it is best to start from “Warn” and work
down to “Trace” until you have the information you need. Once done,
always set the logging level back to “Warn” or “Error”

Log Maintenance

A good Linux sysadmin ensures that all logs are rotated and archived when
not being used. A great Linux sysadmin builds log maintenance into all
system configuration automation and never has to worry about it again.

251

CHAPTER 8 LOGGING

If you have never managed logs before, then one of the following is
most likely true:

¢ You have been lucky so far.

e The platform you support does not log enough
information for it to be a problem.

e Logs are forwarded to a dedicated logging platform
managed by someone else.

Log Management Tools
Logrotate

The first step for any Linux sysadmin when it comes to log maintenance is
to configure Logrotate. Logrotate can rotate, compress, and mail log files.
Logrotate is managed by the following configuration file and directories:

e /etc/logrotate.conf
o Used for global configuration
o /etc/logrotate.d

o Custom configuration files

Installation

Logrotate is installed by default on all enterprise Linux distros and most
community distros.

Logrotate provides documentation through its man pages that will give
you more than enough information to get started, including examples.

252

CHAPTER 8 LOGGING

Log Forwarding

Log forwarding is the preferred option for most people today. Enterprise
tools like Fluentd are a great way to offload local logs to a central location.
It removes the need for local systems to retain logs for extended periods
and reduces the disk footprint.

Central Logging Systems

There are a few central logging systems that can be used today, both
proprietary and open source. The big names in central logging over the last
decade have been Splunk, SolarWinds, Rsyslog, ElasticStack, and Fluentd.
The last three are open source and worth spending time to learn about.

Elastic Stack

Also known as ELK stack, Elastic Stack is made up of four tools listed in
Table 8-1.

Table 8-1. Elastic Stack tools

Tool Description

Elasticsearch Used for log analytics and searching

Kibana A user interface for Elasticsearch

Logstash Used for log ingestion

Beats Agents that are used to send logging information to Logstash
Fluentd

Fluentd can be used as a replacement for local logging, as previously
discussed in this chapter, and can also be used as a centralized logging
platform. To use Fluentd as a central logging platform, you need to have
two elements in your network.

253

CHAPTER 8 LOGGING

Log Forwarders

A log forwarder monitors logs on a local system, filters the information that
isrequired, and then sends the information to a central system. In the case
of Fluentd, this would be a log aggregator.

Fluentd has a log forwarder called Fluent Bit which is recommended
by Fluentd to use.

An example of a Fluentd forwarder configuration would look similar to
the following:

<source>
@type forward
port 24224
</source>
<source>
@type http
port 8888
</source>
<match example.**>
@type forward
<server>
host 192.168.100.1
port 24224
</server>
<buffer>
flush_interval 60s
</buffer>
</match>

254

CHAPTER 8 LOGGING

Log Aggregators

The destination for log forwarders would be the log aggregators. They are
made up of daemons constantly running and accepting log information to
store. The logs can then be exported or migrated to cloud environments for
off-site storage.

A Fluentd log aggregate configuration example could look similar to
the following:

<source>
@type forward
port 24224
</source>
Output
<match example.**>
Do some stuff with the log information
</match>

Rsyslog

If you do not want to use anything outside of what is provided on a
standard enterprise Linux distro, you can stick to using Rsyslog for
centralized logging.

Rsyslog Aggregator

Very similar in how Fluentd is configured to use log forwarders and
aggregators, Rsyslog can be configured to do the same. Rsyslog can be
configured to send and receive logs over either tcp or udp. Rsyslog can also
be configured to send and receive logs securely using certificates.

255

CHAPTER 8 LOGGING

As a minimum for an Rsyslog server to receive logs as a central logging
system, you need to ensure the following are in place:

1. Firewall disabled or configured to allow either tcp/
udp ports 514 or 6514 depending if you are using the
certificate method of forwarding logs.

2. IfSELinux is enabled, you will need to configure
SELinux to allow rsyslog traffic to log messages to
your central system:

semanage -a -t syslogd port t -p tcp 514
semanage -a -t syslogd port t -p udp 514

3. Configure NTP.

4. Configure rsyslog.conf to enable modules to
receive logs:

$ModLoad imtcp
$InputTCPServerRun 514

5. Restart the rsyslog service.

Rsyslog Forwarders

To send logs to a central Rsyslog server, you need to also configure the
rsyslog.conf file on your Linux client systems to send logs to the central
server. A simple configuration to send all logs centrally using tcp is as
follows:

. @0@192.168.0.1:514

Note Asingle @ is used for udp, whereas two @@ are used to
send via tcp.

256

CHAPTER 8 LOGGING

As with the central Rsyslog server, once the configuration file rsyslog.

conf has been updated the rsyslog service will need to be restarted:

systemctl restart rsyslog

Summary

In this chapter, you were introduced to the following:

Different Linux logging systems including how rsyslog
can be replaced by Fluentd

How to understand logs and where to find them

What the important logs in a Linux system are and what
these logs are used for

Log maintenance and what tools can be used to keep
logs from filling up your Linux system

What can be used to send logs to a central
logging system

257

CHAPTER 9

Security

Security is one of the most important subjects that can be discussed as a
Linux sysadmin. All organizations require at least a minimal amount of
security to avoid being exposed or sabotaged by random hackers looking
for an easy target.

Larger organizations like banks need to focus heavily on security
and need to ensure that they are protected at all costs. This will involve
ensuring systems are hardened to the nth degree.

This chapter will focus on how security can be enforced and how
systems can be checked to ensure they comply not only with good security
practices but also meet compliance regulations. In this chapter, we will
explore different tools that can be used from the open source community
to build secure platforms and how to validate that systems are indeed as
secure as possible.

Finally, we will discuss DevSecOps and how the change in culture can
improve security. We will look at how today's DevSecOps practices have
improved the process in securing Linux systems.

Linux Security

The traditional approach to building and configuring a secure Linux
environment would have been to make use of firewalls, SELinux, and in

some cases antivirus software.

© Kenneth Hitchcock 2022 259
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_9

https://doi.org/10.1007/978-1-4842-7984-7_9#DOI

CHAPTER9 SECURITY

Today, however, we have more than just standard Linux systems
deployed in our estates. There are container images, virtual machine
images, and cloud instance images, to name a few. How are vulnerabilities
checked on these images and how are third-party software checked that
are used to run your organization's applications?

How do you as a Linux sysadmin manage these risks in a way that
does not stop you from doing your day job? What tools can be used to
streamline this process and ensure everything that is released into your
estate is secure?

Let's start by looking at the standard Linux security that can be
configured on your Linux distros without too much effort. Then look at
how cultural change and new tooling can streamline this process for new
builds and deployments.

Standard Linux Security Tools

Out of the box, most Linux distros will have tooling installed or be available
to install that would allow you to secure the platform to a basic level. The

common tools are the firewall, SELinux, and some intrusion detection.

Firewall

The basic description of a Linux firewall is that it is the Netfilter toolset that
allows access to the network stack at the Linux kernel module level.

To configure the ruleset for Netfilter, you require a ruleset creation
tool. By default, all enterprise Linux systems have a firewall ruleset tool
installed, with the exception of certain cloud image versions. These images
tend to be more cutdown and do not always include the firewall tooling.
This is due to the fact that the protection should be handled at the cloud
orchestration layer.

260

CHAPTER9 SECURITY

Most Linux distros either have iptables or firewalld installed as their
ruleset tool. Both options have a high degree of configuration that can be
used to secure your Linux system.

Iptables

Previous Linux distros and a few that have decided to not move forward
with systemd still use the firewall ruleset configuration tool known as
iptables. Iptables can get complex, but if you have a basic understanding
and know how to check if a rule has been enabled, you are well on your
way already (Table 9-1).

Table 9-1. Basic iptables commands

LVM Command Description

iptables -L -n List all rules in all chains in numerical
format

iptables --help Help on what parameters are available

iptables -A INPUT -p tcp --dport Example of adding tcp port 22
22 -j ACCEPT

iptables -F Flush all rules from the iptables
configuration

iptables-save > /etc/iptables/ Save iptables configuration on Debian/
rules.v4 Ubuntu

iptables-save > /etc/sysconfig/ Save iptables configuration on RHEL
iptables

261

CHAPTER9 SECURITY

Firewalld

If you are using an enterprise version of Linux, chances are you most likely

will be using systemd. With systemd, you will be using firewalld as the

ruleset configuration tool for Netfilter.

Firewalld was designed to be simpler and easier to use than iptables.

Firewalld like iptables has a few commands all Linux system administrators

should know. Table 9-2 lists some basic commands to remember.

Table 9-2. Basic firewalld commands

LVM Command

Description

firewall-cmd --list-all

firewall-cmd --add-port=80/tcp
--permanent

firewall-cmd --add-service=ssh
--permanent

firewall-cmd --help

firewall-cmd --reload

List all rules currently configured

Open tcp port 80

Open port 22 by referencing the
service name

Help

Reload firewall to enable the new rules

Tip When possible, use firewall-cmd and never disable the firewall
service. Instead, understand what ports are required and open the
ports than leaving an entire system open.

SELinux

Another measure of security used on most Linux distros is SELinux,

originally conceptualized and worked on by the US National

Security Agency.

262

CHAPTER9 SECURITY

In summary, SELinux is a Linux kernel security module that allows
access to parts of the Linux operating system.

If you imagine your Linux system being a secure building, the outside
fencing and walls, gates, main doors, and windows act as your firewall.
The inside of the secure building, along with its rooms and facilities, is
governed by the on-duty security personnel. It is the job of the security
personnel to check who has access to what rooms and what facilities. The
security team would, in this case, be acting as SELinux.

Just as you need to understand the basics of your Linux firewall, you
too need to understand the basics of SELinux (Table 9-3). For now, all you
need to know is how to enable, disable, and restore basic configuration.
The more complicated configuration will come with experience.

Table 9-3. Basic SELinux commands

LVM Command Description

getenforce Display current SELinux state
setenforce 0 Temporarily disable SELinux
setenforce 1 Temporarily enable SELinux
/etc/selinux/config Configure permanent state of SELinux

restorecon -Rvv /path/ Restore the SELinux configuration set by current
to/file labels on the directory

There are two kinds of intrusion detection that can be used for any
server estate: host-based intrusion detection and network-based intrusion
detection. For the purposes of this book, we will only discuss what we can
deploy on our Linux platforms.

263

CHAPTER9 SECURITY

Host-Based Intrusion Detection

Often overlooked and not configured by most Linux sysadmins is some
form of host-based intrusion detection. On most Linux enterprise distros,
there should at least be one of the following options to install. If not, you
may need to install from a community repository like EPEL.

Table 9-4 lists a few options that can be used for host-based intrusion
detection.

Table 9-4. Intrusion detection options

Tool Name Description

Aide The advanced intrusion detection environment is available with
standard repositories

Fail2ban Another popular intrusion detection solution but needs to be
installed from EPEL repositories on certain distros

Samhain Both an integrity checker and host intrusion detection system

Warning When installing from a community repository, always
check with your Linux vendor if they will support the platform if you
install third-party tools.

Recommended Linux Security Configurations

If you need to quickly build a Linux system and want to ensure it is as
secure as possible, you should at least configure the following.

264

CHAPTER9 SECURITY

Disable Root Login

Disable the ability to log in to root through ssh by editing the sshd_config.
You will still be able to log in via a console or if you need to rescue your
system through single user mode.

Minimal Install

Install your Linux server with the minimal packages selected. It is better to
start from a basic build and add the packages you need after. Less is more
when it comes to secure Linux server building.

Disk Partitions

Table 9-5 lists all the separate disk partitions that should be configured
with the respective mount options.

Table 9-5. Disk layout and mount options

Disk Mount Options

/var

/var/log

/var/log/audit

/var/tmp Mount to same disk as /tmp
/tmp nodev, nosuid, noexec
/home nodev

/dev/shm nodev, nosuid, noexec

removable media nodev, nosuid, noexec

265

CHAPTER9 SECURITY

Disk Encryption

Only consider the use of disk encryption if the server can easily be taken
out of a data center or server room. This would apply to laptops or any
portable systems. A common disk encryption tool that can be used

is LUKS.

No Desktop

Do not install a Linux desktop or “X Windows System.” If it is installed,
remove both the desktop and the “X Windows System” packages.

Remember Set your run level to 3 before attempting to remove
packages.

Encrypt Network Communications

Use encrypted communications where possible. Use certificates or keys
when opening ssh connections. Mount network filesystems using secure
methods without transmitting clear text passwords.

Remove and Disable Insecure or Unused Services

Remove potential insecure packages like telnet or ftp and use secure
versions like sftp. It is also recommended to remove or disable unused
services.

Apply Updates and Patch Kernel

Sounds obvious, but ensure that your Linux system has been patched to
the latest possible level. Upgrade kernels and remove any old kernels once
you have confirmed your system is working perfectly with the new kernel.

266

CHAPTER9 SECURITY

SELinux and Firewall

Ensure that both SELinux and the Linux firewall are enabled and have the

necessary configurations in place.

Improved Authentication Configuration

If you are forced to use local users, configure password aging for Linux user
accounts, ensure that no previously used passwords can be used, and lock
accounts after failed logins. Finally, ensure that no accounts have empty
passwords.

If possible, make use of a central user authentication service like an
LDAP server using Kerberos authentication.

Check for Open Ports

Check what ports are currently open and verify if any ports should not
be open. A very useful command to check what ports are open on the
localhost is as follows:

nmap -sT -0 localhost

World Writable Files

Check that there are no world writable files or directories. A useful
command to check this is as follows:

find /dir -xdev -type d \(-perm -0002 -a ! -perm -1000 \) -print

Files Not Owned by Anyone

Any files on a Linux system not owned by anyone can pose a potential
security risk. Check for any of the files with the following command:

find /dir -xdev \(-nouser -o -nogroup \) -print

267

CHAPTER9 SECURITY

ACLs

Configure specific permissions to disks and files using ACLs for users
that need access to the system. Do not open system-wide permissions for
nonadmin users.

Send Logs to Central Logging Service

Configure all your Linux systems to send logs to a central logging service.
This will ensure that you keep track of all login attempts before logs can
be wiped.

Intrusion Detection

Install and configure an intrusion detection tool like Aide or Fail2ban. If
using Aide, be sure to copy the database to a secure location off the server
that is being monitored. This can be used later for comparison purposes.

Application Server Security

If the Linux system will be used as a web server or application server,

ensure that certificates are configured for secure communication.

DevSecOps

All these security steps are only as good as the people who apply them.
If an organization has not embraced the fact that security is not just the
responsibility of the security team, there will be opportunities for the
unsavory types out there when a security slip-up occurs. This is why there
has to be an evolution in the cultural view of security.

One of the biggest changes in organizations culturally over the last
few years has been exactly this. The understanding that everyone is
responsible for security.

268

CHAPTER9 SECURITY

What Is It?

In the same vein that DevOps is a set of practices and tools designed

to bring development and operational teams together by embracing
development practices, DevSecOps aims to align everyone within an
organization with security practices and tools (Figure 9-1). Basically, it’s
representing that everyone is responsible for security.

\

\ Development
© teams

/ Operational
[teams

Security teams

Figure 9-1. Venn diagram where the different teams meet to create
DevSecOps

Everyone Is Responsible for Security

Just as everyone needs to be vigilant for potential attackers through social
engineering and understanding simple security practices for physical
security, DevSecOps strives to get everyone thinking about security in all
aspects of their technical work.

269

CHAPTER9 SECURITY

From deploying new code or building new systems, everything needs
to flow through security gates before being released. Pulling third-party
content from the Internet needs to be scanned and tested before release.

Security needs to be treated as an evolving entity. Threats need to be
detected, and platform remediation needs to be done when problems are
found. The process of managing security should follow a similar flow to
that shown in Figure 9-2.

Security Life
cycle

. "e
O\
re™®

Figure 9-2. The cycle of security

Environments are scanned, scans are reviewed, issues are remediated,
changes required are observed, and finally the changes are applied to not
repeat the issues experienced.

270

CHAPTER9 SECURITY

Tools

Linux sysadmins, developers, and users need to be conscious that anything
new that is added to a Linux estate must meet security requirements.
Running scans and tests manually will not support this cultural shift and
will leave you in a position where security is swiped to the side.

All these security checks need to be done in an automated manner.
When security issues are detected, the process should be stopped and
remediated. If building a new container image, for instance, it is pointless
building an insecure container image and wasting storage. It is best to stop,
fix the issue, and rerun the build.

Security Gates

One good way to incorporate DevSecOps practices would be to build
security gates into pipeline tools such as Jenkins or Tekton (Figure 9-3).

(Code pushe%?;ymax chec% Image pulle%lmage bake%secuﬂy ga%mage push% Adpé’;'lf)‘;‘fé%”

Figure 9-3. Code is pushed, checked, and baked with a pulled image

The resulting image that will be used to deploy a new container is
checked before being deployed. If the security gate finds a vulnerability,
the process is stopped, and the deployment is failed, thus preventing
security holes being deployed into a live environment.

Any automation tool could be used to include security gates. Ansible
Tower, for instance, has the ability to make use of workflows. Red Hat
Satellite or Uyuni has an automated build process that could also be used.

271

CHAPTER9 SECURITY

Third-Party Tools

Using third-party tools to scan and check code is highly recommended for
your security gates. Using products like SonarQube has the ability to scan
for vulnerabilities and check code for syntax issues.

System Compliance

There are numerous reasons for systems to be compliant. The ability to
be able to store credit card details for one dictates how systems should
be secured within financial organizations. Failure to do so would mean
financial penalties or worse.

For systems to be compliant, there are hardening requirements that
need to be followed. These requirements need to be applied to all systems
and have evidence provided when audit time arises.

System Hardening

Hardening a Linux system is a process of removing any potential attack
surfaces your system may have.

There are many areas that a system can be exposed for a would-be
attacker to use. For example, a recently discovered vulnerability has been
shown to allow a non-root user the ability to exploit a vulnerability in the
sudoedit command. This vulnerability allows the user to run privileged
commands without authorization.

Finding these kinds of vulnerabilities and remediating them before
being exposed is the most important thing we as Linux sysadmins can do.
Reducing the chance of the problem happening in the first place is even
more important when building hundreds if not thousands of systems. This
is why system hardening and system vulnerability scanning are vital to
ensuring your systems are as secure as possible before going live.

272

CHAPTER9 SECURITY

Hardening Standards

There are a number of standards that can be used today to harden your
Linux estate. The two main ones used are CIS and STIGs. Both are very
similar, largely due to the fact that there are only so many security tweaks
one can do. Both, however, do serve as a good starting point to secure your
platforms to a good standard.

There are a few other standards that must also be followed for different
organizations such as NIST 800-53 for US federal agencies and PCI DSS
for financial organizations or anyone that wants to store credit/debit card
details. These standards are typically applied over and above the STIGs or
CIS guidelines.

Center for Internet Security

If you have spent any time doing system hardening in the past, you may
already be familiar with CIS standards. CIS is a nonprofit organization
aiming to keep the connected world as secure as possible. CIS provides
their security guides for free to anyone who needs them and also provides
a paid-for service where CIS can provide already hardened resources like
system images.

As Linux sysadmins, it is enough to download the hardening guides
and follow the steps to securing your platform. The guides are quite well
written; they explain what the security configuration is for and how to
remediate your platform if found to be vulnerable. The guides even give
you the commands to run.

In the past, I have written shell scripts by copying and pasting the
commands from these guides. Today, there are much better ways of doing
this, which I will cover shortly in this chapter.

273

CHAPTER9 SECURITY

Security Technical Implementation Guides

Very much like CIS, there are STIG guides you can follow to harden your
platforms too. These guides are also available for free but are a bit more
structured with US government requirements more in mind.

STIG guides are also not as varied as CIS guides. STIG guides may not
have guides for community-based platforms or applications compared
to CIS. The use of generic guides would have to be used where CIS has
dedicated guides that can be used.

Hardening Linux

There are a few ways to harden your Linux systems.

Manual Configuration

The last way I would ever harden a Linux system would be by doing it
manually. The sheer number of hardening steps that need to be followed
would keep you busy till the cows come home. Most hardening guides are
well over 100 pages long and are far from a riveting read.

If the need arose that a system had to be hardened by hand, then the
best tool you could follow would be the hardening guides available on the
Internet like CIS.

Each of the different hardening guides available all comes with
commands to determine if a system is vulnerable and, if the vulnerability
is in fact present, also provides the remediation commands. Your friend in
this case would be to copy and paste until you have got to the end of the
extensive guide.

My advice would be to push back as hard as possible on doing
anything manually. The time it would take would far exceed what time it
would take to set up the next method of hardening a system.

274

CHAPTER9 SECURITY

Automation

Automation is your friend. The Internet is awash with content written by
Linux sysadmins like you that need to harden systems. Chances are you
will find some Ansible or Puppet that will do exactly what you want. You
also will have the added benefit of the process being repeatable, which
could be very handy when your boss tells you to harden another five
systems.

Tip Remember to search those Internet resource galaxies like
Ansible Galaxy or Puppet Forge for content.

OpenSCAP

Where Internet-downloaded automation might fail you slightly is if you
need to replicate configuration from a different already hardened system.
There may be a particular system that has specific hardening that does not
have all hardening applied for a good reason.

How would you then go about running your standard hardening to
accommodate the same settings?

For this use case, you can make use of OpenSCAP. OpenSCAP has the
ability to scan a system or systems and generate a report of the system’s
configuration. This configuration can be compared to another system, and
a subsequent report can be run to list the differences.

The absolutely amazing thing about OpenSCAP is that it can also
generate Ansible or Puppet code to remediate the differences for you,
saving you from having to write your own automation.

OpenSCAP can be run with CIS profiles out of the box and can also
use other profiles. Most if not all will present you with the remediation of
vulnerabilities through Ansible or Puppet.

275

CHAPTER9 SECURITY

OpenSCAP will require you to have the OpenSCAP workbench tool
installed on the Linux desktop to allow you to configure profiles.

Tip Before starting to write automation code, check if OpenSCAP
cannot do it for you.

Vulnerability Scanning

Keeping an eye on your estate and ensuring that there are no
vulnerabilities is vital to ensuring that you do not have any nasty surprises
waiting.

Linux Scanning Tools
OpenVAS

A tool many system administrators would have heard about at some
point in their career is Nessus. OpenVAS is a fork of Nessus before
Nessus became close sourced by Tenable. OpenVAS (Open Vulnerability
Assessment System) is the scanner component of a larger set of tools
called Greenbone Vulnerability Manager.

OpenVAS also obtains the tests required to detect vulnerabilities from
alive feed that has a good history and gets updated daily.

OpenSCAP

OpenSCAP is another very good vulnerability scanning tool that is more
than just a scanning tool as previously discussed. OpenSCAP has the
ability to use multiple profiles and can be fully customized to scan based
on your organization's requirements.

276

CHAPTER9 SECURITY

ClamAV

If you need an open source antivirus, ClamAV can assist with the detection
of viruses, trojans, and many other types of malware. ClamAV can be used
to scan personal emails or files for any malicious content. ClamAV can also
serve as a server-side scanner.

The “paid-for” ClamAV product does an automatic and regular update
of its database, in order to be able to detect recent threats. The community
product requires some further configuration with cron jobs.

Container Image Scanning Tools

Running Linux estates today requires the management of more than
standard Linux systems. Containers and the images they are built from
need to be scanned for vulnerability just the same as standard Linux

systems.

Harbor

Technically, a container image repository. Harbor is an open source
project that provides role-based access to its container registry with the
ability to scan images for vulnerabilities. VMware has adopted Harbor as
their container registry for their Tanzu Kubernetes platform.

Role-Based Access

Harbor secures artifacts with policies and role-based access control,
ensuring images are scanned and free from vulnerabilities.

277

CHAPTER9 SECURITY

Trivy

Harbor prior to version 2.2 used Clair as its vulnerability scanner but

has since moved on to use Trivy. Harbor can also be connected to more
than one vulnerability scanner. By connecting Harbor to more than one
scanner, you widen the scope of your protection against vulnerabilities.

Single or Multiple Images

Harbor can be initiated to scan a particular image or on all images in the
Harbor environment. Policies can also be set to automatically scan all

images at specific intervals.

JFrog Xray

JFrog Xray is a vulnerability scanning tool provided by JFrog. Xray is
natively integrated with Artifactory to scan for vulnerabilities and software
license issues. Xray is able to scan all supported package types from
binaries to container images.

Deep Scanning

Deep scanning allows Xray to scan for any threats recursively through
dependencies of packages or artifacts in Artifactory, before being released
for live deployments.

Clair

Clair (from a French term that means clear) is an open source project
which offers static security and vulnerability scanning for container images
and application containers.

278

CHAPTER9 SECURITY

Supported Images

The currently supported images that Clair can scan for vulnerabilities
include all the major enterprise distros discussed in this book. They are as

follows:
e Ubuntu
e Debian
¢ RHEL
e SUSE
e Oracle

Clair also supports the following images that are being used today in
different environments:

e Alpine
¢ AWS Linux
¢ VMware Photon

e Python

Enterprise Version

Clair is currently the vulnerability scanning tool that is used within the
Red Hat Quay (pronounced “kway” not “key”) product. Clair provides an
enterprise-grade vulnerability scanning tool for the Red Hat supported
container registry.

Continuous Scanning

Clair scans every image pushed to Quay and continuously scans images to
provide a real-time view of known vulnerabilities in your containers.

279

CHAPTER9 SECURITY

Dashboard

Clair too has a detailed dashboard showing the state of container images
stored within Quay.

Pipeline

Working in DevSecOps methodology, the Clair API can be leveraged in
pipeline tooling like Jenkins or Tekton to scan images being created during
the baking phase.

Container Platform Scanning Tools

Red Hat Advanced Cluster Security for
Kubernetes (StackRox)

One of the more recent acquisitions to Red Hat has been the inclusion
of StackRox into Red Hat’s portfolio. StackRox currently is the upstream
project for the Red Hat ACS product but continues to have a community
version available for nonsupported platforms.

Red Hat'’s enterprise equivalent of StackRox provides the following
features.

Vulnerability Scanning

The ability to find and fix vulnerabilities in containers running within
Kubernetes or OpenShift platforms.

Compliance Scanning

Supported by informative dashboarding, Red Hat ACS can scan containers
and images to ensure they meet compliance requirements from standards

like CIS, PCI, or NIST, to name a few examples.

280

CHAPTER9 SECURITY

Network Segmentation

Ability to enforce network policies and tighter segmentation of allowed
network traffic in and out of Kubernetes or OpenShift environments.

Risk Profiling

All risks detected from deployments within Kubernetes or OpenShift can

be viewed in a priority list for remediation.

Configuration Management

Used to not only manage the security and vulnerabilities of container
workload within Kubernetes or OpenShift. Red Hat ACS can also harden
the cluster components through the configuration management.

Detection and Response

By using a combination of rules, allowlists, and baselining, Red Hat ACS is
able to identify suspicious activity and take action to prevent attacks.

Falco

Created by Sysdig, Falco is another open source threat detection solution
for Kubernetes and OpenShift type environments. Falco can detect any
unexpected behaviors in applications and alerts you about the threats in
runtime.

Falco has the following features.

Flexibly Rules Engine

By using syntax similar to tcpdump, Falco can build rules using the libscap
and libsinsp libraries to pull data from Kubernetes/OpenShift API servers
or container runtime environments. Rules can then be created from

metadata on specific namespaces or container images.

281

CHAPTER9 SECURITY

Immediate Alerting

Reduce risk to your estate with immediate alerts allowing quicker
remediation of vulnerabilities.

Current Detection Rules

Up-to-date detection rules based on the latest CVEs or known
vulnerabilities. As soon as the security platform knows of a vulnerability,
so will you.

Aqua Security

Aqua Security is designed to protect applications that are built
using cloud-native containers and being deployed into hybrid cloud
infrastructure like Kubernetes or OpenShift.

Aqua Security has the following features.

Developer Guidance

Aqua Security guides developers in building container images that are
secure and clean by ensuring they don’t have any known vulnerabilities
in them. Aqua Security even checks that the container images being
developed do not have any known passwords or secrets and any kind of
security threat that could make those images vulnerable.

Informative Dashboarding

Aqua Security has a clear and useful dashboard that provides real-

time information about the platform being managed with all the issues
discovered. If any vulnerability is found, Aqua Security reports the issues
back to the developer with recommendations on what is required to fix the

vulnerable images.

282

CHAPTER9 SECURITY

Summary

In this chapter, you were introduced to the following:

Standard Linux security tools that should be used and
never disabled

Linux configuration that should be used as a minimum
when securing a new system

The understanding of what DevSecOps is and how this
new practice needs to be embraced by everyone within

an organization
System compliance and Linux hardening

Guides that can be used to harden Linux systems to

meet compliance requirements

Vulnerability scanning tools

283

CHAPTER 10

Maintenance Tasks
and Planning

Any Linux sysadmin will be familiar with the dreaded maintenance
required for Linux estates. In this chapter, we will discuss the various
maintenance jobs that should be done when managing a Linux estate.
We will look at what actual maintenance work should be done, when the
maintenance jobs should be run, and how to plan maintenance to cause
the least amount of downtime.

This chapter will also briefly look at how maintenance tasks and
bureaucratic tasks can be synced to reduce the overall pain that
routine maintenance can sometimes bring. Finally, we will discuss
how automation should be used to improve the overall maintenance
experience for everyone involved.

What Maintenance Should Be Done

There are a number of checks that should be done on a Linux server. Some
may not need to be done each maintenance cycle, but some will need to
be done as often as possible. There may even be times you need to run
emergency maintenance.

© Kenneth Hitchcock 2022 285
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_10

https://doi.org/10.1007/978-1-4842-7984-7_10#DOI

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Note To determine if maintenance is critical, pay attention to your
monitoring for signs of potential issues looming. Examples of this
could be disks getting close to being filled up.

Patching

The number one reason for maintenance will be patching and system
updates. It cannot be stressed how important this process is and should
never be neglected. Patching not only contains package updates and fixes
but also provides vulnerability remediation.

Staging

It is never a good idea to patch your production/live or customer-facing
environments before confirming that nothing will break with the current
round of updates.

This is why a staged approach to patching should always be taken.
Determine the order in which you want to patch your environments and
patch them in stages.

Figure 10-1 is an example of a patching order I have typically used in
the past.

Sandboxx Dev X Test X Pre ProdX Productior>

Figure 10-1. Patching order

286

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Sandbox

Start with a sandbox type environment with at least one system that runs
similar or close to the same applications as your production environment.
This environment should not be user facing or require change control
approval to work on. The entire environment should be disposable

and automated. Sandbox is your environment and is there to prove
configuration will not cause issues in other environments.

Automated Testing

If possible, make use of automated testing to prove updates or patch
configuration has not broken functionality of your test application. There
are numerous options available both open source and proprietary that
can be used to automate application testing. Speak to your organization’s
developers or reach out to who provides your applications. They will more
than likely give you recommendations on what you should use.

Here are some options you can also look into that could help:

e Selenium
o Katalon Studio
o Appium (for mobile applications)

¢ Robotium

Automated Patching

If your patching process is well planned and platform testing can be
automated, there really is little stopping you from automating your actual
patching grunt work.

287

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Make use of automation tooling like Ansible Tower or Jenkins or
anything that allows you to run stages or workflows. This way, you are able

to run the following in stages:
e Prechecks
e Confirm failovers have occurred
o Patch operating system files
e Reboots

e Automated testing

Rollback

Pipelines or workflow tooling can also apply rollbacks if problems are
detected, ensuring when the maintenance window closes, nothing is left
in a problematic state. Automation is great, but building in as much risk
management is going to save you having to explain why an environment

was broken by your automation.

Hint You want to make sure you have as much risk reduction in
place to ensure your automation is not blamed for system outages.
This is what makes your life easier and should be safeguarded from
the naysayers.

Filesystem

One area that can grow and cause concern over time if not well maintained
is your filesystems. Filesystems not only store logs, they also store files
users leave behind in their home directories. Paying attention to your
filesystems before they become a problem is crucial to not having

preventable outages.

288

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Cleanup

During your system maintenance, it is definitely worth running through

the following different filesystems and checking if there are any files that

are no longer required. Removing these files and any temporary files are

recommended.

Check for Errors

Once you have checked for unused files and cleared as much as possible, it

is well worth running a filesystem health check. This will help identify any

possible underlying issues before they become a problem further down

the line.

Filesystem Check Commands

The commands in Table 10-1 are very useful when running filesystem

maintenance or generally looking to resolve disk issues.

Table 10-1. Basic filesystem check commands

Linux Command

Description

du -k /var/log | sort -n |
tail -10

find . -type f -size +100M -1s

find /var/log -mtime +90 -ls
-exec ™m {} \;

N

tar -zcvf var_log. date +%Y%m¥%d
.tar.gz /var/log/*.log

Check for the ten largest files in a
directory

Find any files in the current directory
larger than 100MB

Find any files older than 90 days and
remove them

Create a tar file of all the log files in
the /var/log directory

289

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Firewall

Firewall checks are just there to ensure no unexpected new rules have
made their way into your Linux system. Technically, these should be
managed by configuration management tools, but in the case when you do
not have a running SaltStack or Puppet, checking the firewall is a quick and
simple task. Doing it during a maintenance window just means you can
remove any unwanted changes, provided you are covered by any change
control.

Important Firewall rules should always be recommended by
internal architects who have designed the platform. If any rules have
appeared that don’t make sense, refer back to the original designs to
confirm they should be there.

Backups

This one really goes without saying. Backups should be done for any
systems that cannot be rebuilt from code and done within acceptable time
frames. Virtual machines can be backed up in their entirety, but physical
systems will need to have specific directories backed up based on the
function of the server.

During your maintenance window, double-check that all backups have
been running and that a recent backup is in place.

Important Before patching or doing anything to your system that
could leave you in a down state, ensure that you have a recent
backup to restore from.

290

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

How often your estate should have maintenance done will depend on a
few factors:

1. How often do you wish to patch your environment?

2. Do you have problems with disks filling up or disks
getting corrupt?

3. Do you have unexpected configurations appearing
on your platforms?

Two of the preceding points would indicate you have bigger problems
in your estate than maintenance; dealing with those first would be the
recommendation before trying to solve symptoms.

As Often As Possible

The obvious task that should be done on a regular basis is patching. Patch
cycles depend on the organization’s policies, which could be every 7 days
or every 90 days. Ninety days is far too long in my opinion and should be
pushed down to a minimum of 30 days, but that too is a bit long.

If you were given the decision to make, I would recommend patching
as often as possible. Automation should be used and should help reduce
the human factor with regular maintenance. By running very regular
maintenance and patching, you reduce any possible risk posed by a newly
discovered vulnerability.

No Live Patching Without Testing

Regular patching will also allow you to use a staged approach to
your patching process, thus reducing possible issues with untested
configuration or updates.

291

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Structure

By having a regular maintenance window for each environment, you can
plan and structure how updates are applied and tested. Doing this, you
drastically reduce the possibility of issues in your live environments both
from bugs and vulnerabilities.

How Should Maintenance Be Done

Quite simple, automated maintenance is the way forward today. The
human factor needs to be reduced in how we maintain and build our
platforms. This is the only way you can truly scale. Having one person or a
team of people running maintenance is crazy, let alone if maintenance is
going to be done on a regular basis like it should be done.

Automation

I'm sure I mentioned automation enough times now for you to be
sick of the term, and I'm also fairly confident most of you are already
automating by now.

To state the obvious, automating maintenance is about as important
as automating your build process. The following are items you should be

automating:
e Backups
e Patching

o Disk cleanup
o Disk checking
o Firewall and SELinux configuration

e Software removal

292

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

A few of the preceding items should be managed by configuration
management tools, but if you are not using any, then your maintenance
automation should take care of them.

Your automation should also be run in a similar order to the following:

1. Check and confirm a recent backup has been taken.
2. Apply any system updates.

3. Run automated testing to confirm updates have not
broken anything.

4. Disk cleanups.
5. Configuration checks.
6. Roll back updates if testing failed.

7. Update monitoring or generate reports to
reflect status.

Zero Downtime Environments

If your environments are regarded as critical and can afford zero
downtime, you will need to be running either multiple data centers or
multiple environments per site in a blue/green style deployment.

Blue/Green

This method would involve switching traffic to either blue or green and
then patching the nonlive environment.

The blue/green approach does give you the ability to update directly
into your live environments if you wish, as you technically are not updating
the “live” side. Provided you do all your due diligence and ensure the
environment you are patching is 100% running before switching back, you
should never experience an outage.

293

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Once you have completed maintenance on one side, you can apply the
same maintenance to the second. As you have already proven there to be
no issue, you should be perfectly ok to proceed with your second site.

I would personally still recommend taking a staged approach, but if
you are pressed for time, you do at least have the protection of your second
environment you can switch back to.

Failover

Running multiple data centers is another common approach to reducing
single points of failure. Failing your live traffic to your second data center
will allow maintenance to happen with zero downtime to live traffic.

The same principles of maintenance should apply before failing back
to your primary data center and patching your secondary site.

Maintenance Planning

The execution is only as good as the plan. There are a couple of important

things to consider for any maintenance planning.

Agree Maintenance Window

Find a regular time slot for maintenance per environment. Automate the
bureaucratic red tape to ensure maintenance can run in these regular
times. By finding and planning a known time slot with your organization,
you will always be able to apply updates and changes without needing to
argue why each time.

This does not mean you have to run maintenance each time, you just
have the freedom to do it when required.

294

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

If you have automated the process, then even better. Your environment
can then constantly stay up to date and run as smoothly as possible,
reducing the need to constantly fix issues and allowing you more time to
focus on the more exciting things.

Bite-Size Chunks

If you have a large amount of maintenance to do and have not automated
the process yet, break your maintenance down into bite-size chunks.

Rather run multiple small maintenance windows than one large window.

Remember Tired eyes help no one.

Art of Estimating

Be careful how you calculate the time required to complete a task. Rather
overestimate and finish early than underestimate and put yourself under
pressure. Speak to other Linux sysadmins for help on estimating time
when planning.

Automating Process and Task Together

Automation is not only about technical task implementation. Today,
itis possible to automate the “red tape” processes within your
organization too.

In the case of system maintenance, this functionality can be nicely
tied with task automation. All the approvals can be automated and
fed into your technical automation platform to go ahead when the
maintenance window arrives. Not only do you not have to do the manual
technical implementations anymore, you can also avoid doing the
bureaucratic work.

295

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Process Automation

There are a few different products and projects available today to assist you
in automating processes, but one worth mentioning is Red Hat Process
Automation Manager, or PAM.

Red Hat PAM

Red Hat PAM provides the tooling to automate business processes and
decisions. By using advanced business rules and process engines, along
with complex event processing and case management, Red Hat PAM can
help solve complex planning and scheduling problems. PAM utilizes the
full capabilities of Drools, a powerful and widely used open source rules
engine. PAM can even assist in solving complex optimization problems, by
using the built-in solver tool.

Like most other Red Hat products, the upstream project for Red Hat
PAM is the jBPM project, a fully open source product that can be used with
community support.

Warning Red Hat PAM is the tool you will need to use to develop
your process tasks, just as you would with Ansible when automating
technical tasks.

296

CHAPTER 10 MAINTENANCE TASKS AND PLANNING

Summary

In this chapter, you were introduced to the following:

What Linux system maintenance needs to be done
When Linux maintenance should be run

Methods of running maintenance with zero downtime
How to plan Linux maintenance

How to automate maintenance processes and technical
tasks together

297

CHAPTER 11

Troubleshooting

Troubleshooting can be a difficult skill to master if you do not understand
the correct approach. Just digging through logs or configuration files may
help resolve simple issues, but understanding how to find the root cause
of an issue is where the real skill comes. In this chapter, we will look at how
a problem should be looked at, how the problem should be analyzed, and
finally how you should act on the information you have seen. Taking your
time to understand before guessing is paramount to solving your problem
quicker and more efficiently.

Once we have been through how a problem should be approached,
we will discuss the proper etiquette that should be used when asking
questions in the community. Learning to not ask others to do your work for
you or at least framing your questions in such a manner that it seems like
you have at least tried is the first step. In this chapter, we will go through
the best way to go about asking for help.

Finally, we will address the not so good ways of troubleshooting that
you should try to avoid.

See, Analyze, Then Act

The art to becoming an effective troubleshooter is to become an
investigator. Follow the clues and ask the right questions. Pay attention
to every small detail and most importantly understand why the problem

© Kenneth Hitchcock 2022 301
K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_11

https://doi.org/10.1007/978-1-4842-7984-7_11#DOI

CHAPTER 11 TROUBLESHOOTING

occurred in the first place. Too often, bandages are applied to symptoms,
and the underlying issues are not fixed. Fix the root cause and you save
yourself all the pain later.

Understand the Problem

To fully understand how to fix a problem, you need to understand what the
effects of the problem are; this will most likely give you your first clue as to
where to start looking.

To effectively problem-solve, you need to understand what you are
troubleshooting, pointless guessing if you don’t know how it all works in
the first place. You will only get part of the answer and potentially end up
wasting time looking for the answer in the wrong place.

If you have a network issue, for instance, but have no idea how to trace
network traffic, you are better off getting someone who does know to work
with you on the issue. Learning as you go is how we gain experience, so
don’t be afraid to ask for help. Just do it properly; we will cover that shortly.

Know Where to Start

Knowing where to start is half the battle to get you to the bottom of the
issue. Starting from the top sounds like a cliché, but it is how you work your
way through the evidence to follow the breadcrumbs that will eventually
lead you to the root cause.

Asking the right questions in the beginning will give you ideas where
to start digging. When issues are described as “it’s broken” or “it’'s down,”
it means your questions need to be simple to start with, then become
more complex as you dig further. Remember to base your questions on the
knowledge level of the people you are working with and to be patient.

302

CHAPTER 11 TROUBLESHOOTING

Standard Questions to Ask When Starting

When you are new to a problem, you need to understand the problem from
the perspective of the person who reported the issue. For that, you should
ask your standard questions we all learned in IT school. Questions similar
to the following:

e Canyou show me what is happening?
o Isthe problem repeatable or intermittent?

¢ Has anything changed?

Note There is nothing wrong with asking yourself these questions.
If anything, it may allow you to deepen your understanding of
the issue.

Explain the Problem

When a problem is complex, it requires deep thought, questioning, and
understanding. Only through explanation does it become clearer. By going
through multiple sessions of explaining and questioning, you increase
your knowledge of the problem until you get your answer.

Here are some techniques you can use to explain your problem.

Explain to Yourself

We have known for decades that explaining a problem to ourselves can
greatly increase our chances of solving it. By explaining the problem

to yourself, you gain new knowledge about the issue, you ask yourself
questions, and you challenge yourself to what you understand about the
issue. Speak aloud to yourself if it helps and continue to talk to yourself
about the issue. Don’t stew in silence, find a quiet room if you have to, and
thrash out the issue.

303

CHAPTER 11 TROUBLESHOOTING

Rubber Duck

If after explaining the problem to yourself you still don’t have something
tangible, grab an inanimate object (rubber duck) and explain your
problem to it. Just the process of explaining for a second time may help.

Another Person

If the rubber duck option fails, try explaining your problem to another
person; they don’t even have to be technical. In fact, it may be better if they
are not. This will allow you to simplify your explanation so they understand
and possibly in the process help you uncover something you may have
overlooked because it was so simple.

Use Tools

Using a whiteboard or scrap paper when explaining will also allow you to
get the ideas and thoughts out of your head. Rereading the explanation
back to yourself may add further clarity.

Break Down the Problem

Complex problems will involve many different moving parts.
Understanding these parts piece by piece will not only give you more
clarity about the problem but will also allow you to start eliminating
possible causes.

Break the problem down to the individual parts and start explaining
to yourself what these parts do, ask if the problem could exist within each
part, and then eliminate what could not be the problem.

Using a whiteboard or piece of paper is a great way of visualizing your
problem at the different components.

304

CHAPTER 11 TROUBLESHOOTING

Onions, They Have Layers

While you are breaking down the problem, remember to consider all
the layers involved. If you are experiencing an application issue, look
at everything from the application down to the physical hardware. By
eliminating all the impossible, you are left with the most probable.

The Five Whys

While not everyone likes to talk to themselves or involve inanimate objects,
there is another similar way you can use to approach troubleshooting
complex issues: a technique called the five “whys.”

In this approach, the troubleshooter goes through five questions as to
why something has gone wrong.

Example

If we take a scenario where your organization’s internal intranet won’t load
after the evening maintenance, the “whys” shown in Figure 11-1 can be asked.

Updates
applied and

system
rebooted

'Web server not
listening on any
ports.

Intranet Down

Person who
made change
never restarted
service to test.

Web server
service won't
start after boot

Syntax error in
configuration
file

Why?

Figure 11-1. Example of the flow that whys should follow when
trying to determine an underlying issue

305

CHAPTER 11 TROUBLESHOOTING

The intranet is down. Why? Updates were applied and the system
rebooted. Why? The web server was not listening on any ports. Why? The
web server service will not start after boot. Why? There’s a syntax error in
the configuration file. Why? The final why is what brings you to your root
cause. Someone had made a change to the web server configuration and
did not test the syntax. The change was never applied by restarting the web
service, and only when the web server was rebooted after system updates
were applied did the true problem manifest itself.

In this example, the problem was down to an undocumented change
that happened to the intranet web server. The change was never tested in
a syntax check, and the service was never restarted to apply the change.
After the server updates and reboot, the web server tried to start on boot
but failed due to a syntax error.

Theorize Based on Evidence

During the journey of troubleshooting difficult or intermittent issues,
you may need to come up with different avenues of where to investigate.
Each avenue will need to be investigated and require evidence to prove
it is the smoking gun before the fix can be applied to the affected live

environment.

306

CHAPTER 11 TROUBLESHOOTING

Hypothesis Building

The workflow shown in Figure 11-2 can help with your root cause analysis

by building a series of hypotheses.

Form new Gather the issue be
hypothesis evidence | ™ reproduced in a test
environment

A

Yes

Fix the issue
from your
hyposthesis

Does your
hypothesis fix the
overall issue

Plan remediation for the

MNo.
live environment

Figure 11-2. Flow that should be followed when building a
troubleshooting hypothesis

Tip Before building your hypothesis, don’t be too quick to discount
the improbable unless you know 100% for sure it cannot be the
problem.

Build Your Theory

A good theory should always start with a good hypothesis or an educated
guess. To test the hypothesis, all the information about the suspected
area needs to be gathered. This could include configuration files, system
load, memory usage, or anything that could help you reproduce the issue

experienced in the live environment.

307

CHAPTER 11 TROUBLESHOOTING

Causality

When building your hypothesis, avoid falling into a trap of not
understanding the cause and effect of a component, for example, blaming
the kernel version because a new graphics card failed to load. Even though
the kernel is responsible for device drivers, it still requires the driver

from the hardware manufactured compiled in the kernel.

Prove Your Theory

As debugging and testing in a live environment is never a good idea,
your theory will need solid evidence to back your claim before you can
apply anything to a live environment. For this reason, you need to prove
your theory.

Reproduce the Issue

To prove your theory, you first must reproduce the issue. With your
evidence gathered, you must try to replicate the same conditions as the live
environment and see if you can experience the same issues. If you cannot
reproduce the issue, it is possible you have the wrong theory, or you have
not gathered all the evidence.

Fix in the Test Environment

Ifyou are able to reproduce the issue, you can test your potential fix and
prove the problem has been resolved. The whole process should ideally be
repeatable.

Remediation

Finally, with your theory proved and a solution prepared, the live

environment can be remediated with little to no risk.

308

CHAPTER 11 TROUBLESHOOTING

Ask for Help

Early in my career, I was told to always ask for help and not to waste more
time than what was required to solve a problem. If I was stuck, I should not
“bash my head” for too long before asking. After all, we all are still learning;
we work in an industry that is constantly moving and changing. Someone
sitting next to you or on the Internet may already have experienced

the same problem you have and may have the answer you may be
struggling with.

What to Do Before Asking for Help

When you ask for help, you are asking someone to give up some of their
time to help you with your problem. The person helping you has to spend
energy understanding your problem; they need to think of a possible
solution they may have used in the past and then try to explain it to you in
a way you can understand.

For that effort, you as the requester should have at least done the
following before you even asked the question:

e Tried to fix the problem and failed

¢ Read the documentation supplied by the software or

hardware vendor

o Searched the Internet for examples of what others have
tried and checked that no one has already asked the
question you want help on

Training

If you are fortunate enough to have access to training materials, check if
there is anything you may have been taught in exercises that could assist.

309

CHAPTER 11 TROUBLESHOOTING

If you never had any training, speak to your organization’s manager
to get you on appropriate training courses. Failing that, there are plenty of
online resources you can also make use of to learn.

How to Ask for Help

The following are some very important points you need to consider when
asking for help.

Proper Grammar

Use proper grammar and spelling where possible. If English is not your
first language, then do the best you can and start your question with
something similar to this:

“I am sorry for my bad English, I hope my question makes sense.”

Try to avoid using slang and use the proper spelling of words where
possible. Remember you are asking for help, make sure your question is as
clear as it can be.

Spelling

Spell-check your questions using whatever tool you have available. Google
Docs has decent spell-checking (I hope, as this book was written in it), and
it’s free.

Either write or copy your question to a new document and check for
both grammar and spelling mistakes.

How to Phrase Your Questions

Now with the use of correct spelling and grammar understood, you need to
understand the importance of how your questions should be phrased.

Simply asking “Does anyone know why my graphics card does not
work on my Linux desktop?” is not enough or well written.

310

CHAPTER 11 TROUBLESHOOTING

Asking a question that prompts people to immediately ask you
for more details is not going to get you the answer you want or any
answer at all.

Changing your question to include the following bits of information
will get you a much better response:

o State what you have tried.

e Give the details of all the components, like the make
and model of the graphics card. Tell the readers what
Linux distro you are using.

o Explain that you have read documentation and been
through other examples.

e Bevery specific about your issue in the main body
of your question and give a single line on top
summarizing your problem.

A Better Question

Radeon RX 5700xt driver will not work with Fedora 34

I am currently trying to install the Radeon RX 5700XT graphics card in
my fresh install of Fedora 34. After reading the official documentation on the
AMD site and checking the help of the install command, I am still not able to
find a solution.

I have tried running the commands

./amdgpu-install-pro --opencl=pro,legacy

and ./amdgpu-install-pro --opencl=rocr,legacy
but both give me the error.

“Cannot find device”

Here is the output of my log file.

“Log files entries”

311

CHAPTER 11 TROUBLESHOOTING

Any help would be greatly appreciated or any documentation you may
have that I may have missed would also be very helpful.

Tip Do not rush your question; take time to ask the question in a
clear and nonvague manner. People will respond to a question that
has been asked by someone who took the time and effort to ask
correctly.

Where to Ask Questions

How to ask questions is vital to getting a positive response, but where to
ask the correctly worded questions is equally important.

Correct Area

People really do not like being asked questions about subjects that are not
relevant to the area you are asking your question in. Make sure you select
the correct forum or chat room or even support email before you ask your
question.

The general polite response will redirect you to the correct place, but
someone with less patience may pass a slightly more sarcastic answer. So
do avoid embarrassment or at least wasting your time. Ask your questions
where they should be asked.

Forums

If you have a problem with a particular product or project, check if they
have a forum you can ask questions on. Be sure to first check if your
question has not already been asked.

312

CHAPTER 11 TROUBLESHOOTING

GitHub, Stack Overflow

There are numerous sites where you can ask technical questions around
anything you may be struggling with. Stack Overflow is a common site
where I find answers, but places like GitHub can also offer some good
insights.

Support Cases

If your problem is around an enterprise product that you or your
organization is paying subscriptions for, raise a support case with their
help desks. This is after all what you are paying for.

Be sure however to be very clear on what your problem is. Attach log
files and potentially diagnostic outputs where possible. Just by adding all
the relevant files, you can sometimes get your problem solved quicker.

Things to Avoid When Troubleshooting

Troubleshooting is usually something we don’t do for fun; it normally has
time pressure associated with it for you to resolve the problem as soon as
possible.

To avoid wasting time, there are a few things you should always try
to avoid.

Live Debugging

Do not debug in live environments; anyone who says that live debugging
is ok is treading on very thin ice. All it takes is one syntax error or one
configuration file to be left in debug mode to cause an outage.

There is a reason why test environments and nonproduction
environments are built. Use them to find the root cause, not your live
environment.

313

CHAPTER 11 TROUBLESHOOTING

Correlation vs. Causation

When you are looking for the root cause of your problem, focus on where
the issue could possibly lie by applying logical thinking. Break down the
problem from components that could potentially be responsible, and
avoid focusing on components that rely on the possibly faulty components.
Basically, avoid wasting time on areas that could be a victim of the root
cause and not the cause of it.

With the case of a service not starting, do not waste your time looking
at the service file if you have not checked the application configuration
first. I am not saying don’t check the service file for syntax issues or
potential changes, just do not prioritize it.

Being a Lone Wolf

Do not suffer in silence; ask for help and work in pairs. Two sets of eyes
are always going to be better than one. Two brains think differently
and will approach problems from different angles. Do not spend hours
fighting alone.

Guessing and Lying

This is really related to troubleshooting with a group. If you are responsible
for something that has happened and you have asked for help to get you
out of a jam, be 100% honest and do not guess where you possibly made a
mistake.

Owning up to a mistake will often just be treated as just that, “a
mistake.” Lying about the problem and causing delay with your lack of
honesty will most likely not end well for you. Embrace your blunder and
learn from it.

314

CHAPTER 11 TROUBLESHOOTING

Ghosts

Not everyone understands the term “red herring,” but it is a term we use in
the UK to refer to something that does not exist. A phantom. Avoid looking
for something that is unlikely to be the root cause of your problem. Keep
applying logical thinking when you are hunting your root cause.

All the Small Things

Do not think all big problems have big causes. Do not forget to check
simple things like DNS or has the disk filled up?

Often, it is the things we least expect that can cause the biggest issues;
stick to basics and work up from there.

Keep Track of What You Have Tried

Albert Einstein said, “the definition of insanity is doing the same thing
over and expecting different results.” Nothing is further from the truth
when it comes to troubleshooting. If you have a forgetful nature, keep a log
of where you checked and the results. This way, you will avoid repeating
yourself and wasting time.

Measure Twice, Gut Once

This old saying is true for applying solutions too. Applying dirty
workarounds for the sake of getting things to work instantly but later
having to fix the same issue in a short period of time is a fool’s errand.
Finding the root cause and applying a permanent fix should be your first

priority.

315

CHAPTER 11 TROUBLESHOOTING

If your live environment is down, you should ideally be running
in your disaster recovery site or within your secondary site. If this is
not the case, then there are larger problems than an outage I would be
concerned about.

What makes more sense?

Fixing the problem so it will not break again or applying a workaround
that will cause another outage?

Arguing the point to take that bit longer to fix the underlying issue is far
better than explaining why the live environment went down again.

Do Not Forget Your Retrospective

The ultimate goal of troubleshooting is to find the root of a problem. The
secondary goal though should be to never have it happen again. For this,
having a discussion with all involved and planning how to avoid the issue
is crucial.

Document the issue and how the problem was resolved. Having
something to refer back to if the problem did somehow ever happen again
will save time.

Summary

In this chapter, we explored the following about troubleshooting:

e Learn to understand your problem, by explaining to
yourself and “others.”

e Break your problem down to the smallest components
and work from there.

e The five whys and how simply asking why one thing is
broken can help you find the main culprit.

316

CHAPTER 11 TROUBLESHOOTING

How to build a theory on what could be causing your
problem and proving your theory before applying any
solution to your live environment.

The correct ways to ask for help, including what you
should do before you ask for help.

Things to avoid when troubleshooting.

317

CHAPTER 12

Advanced
Administration

This final chapter of Linux System Administration for the 2020s is going to
explore ways that you, the Linux sysadmin, can dig deeper into the Linux
operating system to find the information you need.

This chapter will start by looking into system analysis and help you
understand how to get more information from your Linux system without
having to spend hours doing so. We will discuss what tools can be used to
both extract and decipher system information for you to get your answers
that bit quicker.

When system analysis tools and techniques do not give you all the
information you need, the use of additional tools is required to get more.
We will spend the remainder of this chapter looking at how you can extract
the last drops of information out of your Linux operating system.

System Analysis

As a Linux system administrator, you will have spent time looking through
configuration files and general system health to try to pinpoint the source
of a user's problem. This process can normally be painful and can take
time you do not want to spend. Having the correct tools can go a long way
in helping get to the bottom of an issue and allow you to focus on more
interesting things.

© Kenneth Hitchcock 2022 319

K. Hitchcock, Linux System Administration for the 2020s,
https://doi.org/10.1007/978-1-4842-7984-7_12

https://doi.org/10.1007/978-1-4842-7984-7_12#DOI

CHAPTER 12 ADVANCED ADMINISTRATION

Here are some quick tools you can use to get information about a
Linux system.

Tools for the Sysadmin

Maintaining or running a Linux estate can be a simpler job if you have
the right tools available and know how to use them in a way that makes
sense to you.

Sosreport

With all enterprise Linux systems, “sosreport” is used to extract
information for support teams. Sosreport is a plugin-based tool that can be
run with different parameters to export different information. Sosreport’s
output is often requested by enterprise support teams when support cases
are raised and is always worth uploading whenever a new support case
is raised.

Sosreports are an archive of the problematic system configuration
and logs. Support teams are able to use the sosreport to better
understand the problems being experienced without requesting different
configuration files.

A sosreport can be created without specifying any parameters as
follows, but can also have additional parameters passed to cut down the
output or increase what is extracted:

sosreport

As a Linux sysadmin, you may wish to use sosreports for your own
diagnosis queries. Sosreports can be extracted manually if you wish to look
into a user's problem from your own test system.

If manual extraction of sosreports does not interest you, there are tools
that can be used to extract and summarize the configuration within the
reports.

320

CHAPTER 12 ADVANCED ADMINISTRATION

XS0S

One such tool is xsos, developed and maintained by community members;
xsos can take sosreport inputs and create a nice summary of the system.
For support staff, this saves more time than most realize as there is no need
to extract or sift through configuration files for a quick overview.

To run a basic test of xsos, you can run the following command:

curl -Lo ./xsos bit.ly/xsos-direct; chmod +x ./xsos; ./
Xs0s -ya

The preceding command will only output details from the system you
are running it from. If you want to view a sosreport output, you will need to
install the xsos tool and pass the path to your sosreport.

The basic xsos report will output the following areas:

e Summarized dmidecode output

e Operating system details

e Kdump configuration

e CPU details

e Interrupts and softirq

¢ Memory

o Storage

e LSPCI

o Network information including firewall

o Kernel tuning configuration

321

CHAPTER 12 ADVANCED ADMINISTRATION

Tip Automate your Linux systems to automatically generate these
reports on a regular basis and upload the output to a central share.
If you ever have a major issue, you can refer to these sosreports for
clues to what could have gone wrong.

System Information

All the device information about your Linux system can be found in the
“/proc” directory. In the “/proc’, there are different files like “meminfo”

or “cpuinfo” which will show you the relevant information about each
component. The “cpuinfo” file, for instance, will show you all the information
about all the CPUs attached to your Linux system including CPU flags.

Shortcut Tools

If digging through “/proc” files is not for you, the tools listed in Table 12-1
can also be used to get basic information about your Linux system. Being
familiar with these tools will allow you to gain quick access to device
information when you need to diagnose any issues quickly.

Table 12-1. Basic Linux system tools for hardware information

Linux Command Description

1shw Will list a full summary of all hardware recognized by your system
1scpu Summary of all CPU information, similar to running

cat /proc/cpuinfo
1sblk Quick list of all storage devices attached
lsusb List of all USB devices plugged into your Linux system
Ispci Lists all the PCI controllers and devices plugged into PCI slots
lsscsi Lists all the scsi and sata devices attached to your system

322

CHAPTER 12 ADVANCED ADMINISTRATION

More Details

If the details are not enough in the shortcut tools, you can use the tools
listed in Table 12-2 to give you that bit more.

Table 12-2. Tools for a bit more details

Linux Command Description

hdparm Prints out details like geometry for a storage device

dmidecode Can be used to give more in-depth information about
your systems. Using the “-t” parameter followed by either
“memory,” “processor,” “system,” or “bios” will give you more
details around each one

” o«

System Tracing

Learning what is happening under the covers is what sometimes is needed
when you are stuck with a stubborn issue. There are a few tools that can
help you as the Linux sysadmin get these lower-level details.

Strace

An extremely useful tool to see what is happening with a process or
running application is “strace.” Strace can be run as a prefix to a command
or application and can also be attached to a running “pid.

Installation

Strace is available in most common repositories in almost all Linux distros.
In the case of Fedora, strace can be installed as follows:

dnf install strace -y

323

CHAPTER 12 ADVANCED ADMINISTRATION

The following command will show you everything that happens when
you run the free command:

strace free -h

Output to a File

A very useful thing to do when using strace is to send the output to a file;
from there, you can search for strings or values.

To output a strace command to a file, you can run a similar command
to the following:

strace -o testfile.txt free -h

The output file can then be viewed in a text editor and in some cases
may even display different calls in different colors to make interpreting
slightly easier.

What to Look For

The following are some useful things to look for with strace:

e Any files trying to be opened but do not exist or
showing potential permission denied -13 errors

o Files being written to that have permission issues

e Network traffic from a process or application
transmitting over the network

Useful Strace Parameters

Table 12-3 lists some useful parameters you can use with strace.

324

CHAPTER 12 ADVANCED ADMINISTRATION

Table 12-3. Strace parameters

Parameter Description
-p Allows strace to be attached to a running pid
-C Creates a summary of all the different system calls that were

run for the process
-t Shows a timestamp of when each line was run

-e trace=open Filters all system calls to only include open calls. Other options
include all, write, signal, abbrev, verbose, raw, and read

-q -e trace= Allows trace to be set to file, process, memory, network, and
signal

Systemtap

Another nice tool to extract information from your Linux system is

”

“systemtap.” Systemtap is a scripting language that uses files with the “stp
extension. Systemtap can be used to diagnose complex performance or
functional problems with kernel-based Linux platforms.

Installation

Systemtap can be installed manually or can be installed using the
automated installation method.

Manual Install

The basic packages needed for systemtap are systemtap and systemtap-
runtime. On a RHEL system, the following command will install your
packages:

yum install systemtap systemtap-runtime -y

325

CHAPTER 12 ADVANCED ADMINISTRATION

Automated Install

Stap-prep is a simple utility that will work out the requirements for
systemtap and install them for you. To use stap-prep, you need to install
the package “systemtap-devel”.

Once you have installed the systemtap-devel package, run the
command stap-prep. The required files for the current running kernel will
be installed.

Systemtap Users

If you are using the normal Linux kernel module backend, you can run
"stap" as root. However, if you want to allow other users to create and
run systemtap scripts, the following users and matching groups must be

created:
e stapusr
e stapdev

Any users in “stapdev” and “stapusr” group will be able to run
systemtap as if with root privileges. Users in “stapusr” only may launch
(with “staprun”) precompiled probe modules.

Users in the “stapusr” group may also be permitted to create basic
unprivileged systemtap scripts of their own.

Systemtap Scripts

On all systems where systemtap is installed, you will have access to
example scripts. These can be found at the following location:

/usr/share/systemtap/examples/

326

CHAPTER 12 ADVANCED ADMINISTRATION

Running Systemtap Scripts

As mentioned, systemtap files are saved with .stp extensions and are run
using the stap command.

To test systemtap, use the examples provided like the disktop.stp
example script. This script shows what processes are currently writing to
disk. The script can be found at

/usr/share/systemtap/examples/io/disktop.stp

What this script does is probe the kernel for information about the
block devices attached:

stap -v /usr/share/systemtap/examples/io/disktop.stp

Once the script is running, you will see the script probing the kernel for
any disk operations.
To test this, run on a DD command similar to the following in a

new window:

dd if=/dev/zero of=file.txt count=1024 bs=1048576

Cross Instrumentation

Often in live environments, it may not be possible to install all the
systemtap packages to run probes or tests. For this reason, it is possible
to create systemtap modules and execute them by only installing the
systemtap-runtime package.

This would allow one system to be used as the compiler that can be
used to compile the systemtap instrumentation modules. The kernel
versions would need to match however, and the systems would need to
be the same architecture. To build different modules for different kernel
versions, just reboot the build system into a different kernel.

327

CHAPTER 12 ADVANCED ADMINISTRATION

To create a cross-instrumentation iotop module, you can run the

command:
stap -p 4 -m iotop /usr/share/systemtap/examples/io/iotop.stp

Once created, these modules then need to be copied by a sysadmin to
/lib/modules/"uname -1’ /systemtap of the system you want to execute the

module on.

System Tuning

Another important aspect of Linux system administration is understanding
how to tune a Linux system for the task it needs to perform.
This process can be difficult if you have no guidance from any of the

vendors or if you are new to managing Linux systems.

Tuned

The process of tuning your Linux system can involve an in-depth
understanding of kernel parameters and system configuration. However,
there is a very nice tool called “tuned” which has the ability to tune a
system using different profiles.

Installation

Tuned can be simply installed with yum on a RHEL system as per the
following:

yum install tuned

Tuned will also need to have the service enabled and started:
systemctl enable tuned
systemctl start tuned

328

CHAPTER 12 ADVANCED ADMINISTRATION

Using Tuned

Tuned has a number of profiles that are provided with it during the
installation. To see the current active profile, you can run the following
command:

tuned-adm active

To list all available profiles, you can run the command
tuned-adm list

Finally, to switch to a different profile, you can run

tuned-adm profile <name of profile>

Summary

In this chapter, you were introduced to the following:

¢ Linux system analysis tools such as sosreports and how
to read them in a quick and easy manner

o Standard system tools that can be used to extract
system information

e System tracing tools such as strace and systemtap

o System tuning in a simple way using the tuned utility

329

	Chapter 1: Linux at a Glance
	Brief Unix to Linux History
	Open Source
	Linux Is Everywhere
	Community Linux Distributions
	Community
	Upstream
	Community Contributors
	Common Distributions

	Which Distribution Is Best for You
	Before Committing
	The Three Linux Distro Categories
	Option One: Out-of-the-Box Distros
	Easy to Understand
	Installation Should Not Require a Degree
	Try Ubuntu
	Walk Before Running

	Option Two: The Almost Out-of-the-Box Distros
	Try Fedora, openSUSE, or Debian

	Option Three: The “Challenge Accepted” Distros
	With Great Power …
	Try Arch Linux or Gentoo

	Enterprise Linux Distributions
	Red Hat
	Red Hat Enterprise Linux
	Automation
	Hybrid Cloud

	Canonical
	Linux Support
	Cloud
	Internet of Things

	SUSE
	Server and Desktop
	Cloud, Storage, and Management

	Community vs. Enterprise
	Knowledge Check
	Summary

	Chapter 2: New Tools to Improve the Administrative Experience
	Task Management
	Starting a Process
	Task Visualization Tooling
	Top
	Alternatives to Top
	nmon

	Killing Processes
	Zombie Processes
	Background Tasks
	Running Time-Consuming Tasks
	Screen
	Tmux

	Ansible Introduction
	Installing Ansible
	Package Management
	Pip

	Configuring Ansible
	Ansible Inventory
	Running Ansible
	Playbooks
	Roles
	Role Directory Structure
	Generating Ansible Roles

	Modules
	Sharing Your Ansible
	Ansible Galaxy

	Web Consoles
	Cockpit
	Installation
	Configuration
	Using Cockpit
	Limitations

	Alternatives to Cockpit
	Webmin
	Ajenti

	Text Consoles
	Installing
	Using

	Summary

	Chapter 3: Estate Management
	Outdated Ways of Working
	Outdated Skills
	Keeping Knowledge to Themselves
	Over Engineering
	Shell Scripting
	Snowflakes
	Reinventing the Wheel

	Build Process
	Manual Installation Methods
	Boot Media Install
	Network Install
	Templates
	Virtual Machine Images

	Automated Linux Installations
	Method 1: Network Install
	PXE Server
	Kickstart

	Method 2: Virtual Machine Templates
	Hypervisor API

	Ansible Examples

	Using Images
	Golden Image
	Use It
	Don’t Use It
	Image Catalog
	Advantages
	Disadvantages

	Build Process Flow
	Basic Build Process
	What Can Be Improved
	Automate, Automate, Automate
	Introduce a User Request Portal
	Integration with Other Platforms
	Simplify Resource Requirements

	Use an Automation Platform
	Introduce Expiry Dates

	Automated Build Process Flow

	System Patching
	Update Types
	Package Updates
	Errata

	Staging
	Patch Management Systems
	Planning
	Rollback
	System Restore from Backup
	Restore Snapshot
	Package Management Rollback
	Reinstallation of Packages
	Redeployment of System

	Backup and Recovery
	Important Directories and Files
	Virtual Machine Backups
	Disaster Recovery
	Best Strategies Based on Recovery Times
	Replicated Data Centers
	Stretched Clusters
	Infrastructure As Code
	Cloud

	Common Bad Practices
	Virtual Machine Templates
	Patching or Lack Thereof
	Firewall Disabled
	SELinux Disabled or Permissive
	Using Community Repositories
	Scripts, Scripts, and More Scripts
	Running As Root

	Good Practices
	Building Throwaway Systems
	Automate As Much As Possible
	Search Before Creating
	Sharing Knowledge and Collaborating
	Source Control
	Reassessing System Requirements

	Summary

	Chapter 4: Estate Management Tools
	Management Systems
	Linux Platform Tools
	Linux Platform Tools Available
	Selecting Your Linux Platform Tool
	The Decision
	Satellite Server
	Satellite 5
	Configuration Management
	System Deployment

	Satellite 6
	Content Management
	Content Views
	Life Cycles
	Content Management Flow
	System Provisioning
	System Patching
	Configuration Management
	Reasons to Use Satellite
	Reasons to Not Use Satellite

	SUSE Manager
	Uyuni
	Support
	SUSE Manager Configuration
	Reasons to Use SUSE Manager
	Reasons to Not Use SUSE Manager

	Foreman
	Provision Hypervisors
	Plugins
	Open Source Does Need Money Too

	Spacewalk
	Abandoned
	Why It Was Good
	Network Provisioning
	Environment Staging
	Thank You for Your Service

	Provisioning Tools
	Cloudforms
	Single Pane of Glass
	State Machines
	User Request Portal
	Chargeback
	Request Approvals
	Advantages
	Disadvantages

	Terraform
	Products Available
	Community CLI
	Terraform Cloud Platform

	API and Extracting Useful Information
	Don’t Reinvent the Wheel
	Why to Not Write Your Own Tool

	Best Tools to Use
	Pipeline Tooling
	Automation Platforms
	Shell Scripts

	Summary

	Chapter 5: Automation
	Automation in Theory
	Idempotent Code
	Knowing When and When Not to Automate
	Reasons to Automate
	Reasons Not to Automate

	State Management

	Automation Tooling
	Automation Scripting Languages
	YAML
	These Are Not the Spaces You Are Looking For
	YAML in Action
	Ansible
	SaltStack

	Ruby
	Python
	Shell Scripting

	Automation Platforms
	Automation in Estate Management Tools
	Reasons to Use
	Reasons Not to Use

	Ansible Automation Platform
	Agentless
	Potential Security Hole
	Using Ansible
	Command Line

	Graphical User Interface
	Reasons to Use Ansible
	Reasons Not to Use Ansible

	AWX
	Reasons to Use AWX
	Reasons Not to Use AWX

	SaltStack
	Server to Client Communication
	Remote Execution
	Configuration Management
	Uses a Message Bus
	Reasons to Use SaltStack
	Reasons to Not Use SaltStack

	Puppet
	Red Hat and Puppet
	Server Agent Based
	Potential Lower Adoption
	Enterprise and Community
	Reasons to Use Puppet
	Reasons to Not Use Puppet

	Chef
	Ways to Use Chef
	Managed Service
	On-Premise
	Community

	Reasons to Use Chef
	Reasons to Not Use Chef

	Making the Decision
	Market Trends
	See for Yourself
	Enterprise vs. Community vs. Cost
	Product Life Cycle

	Automation with Management Tools
	State Management
	Enterprise Products
	Use Case Example
	The Platform Tool
	The Platform Tool Configuration
	The Mistake
	Laying in the Shadows Waiting
	Safety Net

	Setting Up a SOE
	Build from a Standard
	Source Control
	Phased Testing
	Code Development
	Code Testing and Peer Reviewed
	Code Promotion

	Automate the Automation
	Self-Healing
	Self-Healing Layers
	Removing All Single Points of Failure
	Hardware Layer Self-Healing
	Reporting
	Ensuring Platform Availability
	Automated Recovery

	Platform Layer Self-Healing
	Application Layer Self-Healing

	When to Self-Heal
	How to Implement Self-Healing
	Gates
	Tooling: Automation and State Management
	Machine Learning
	Off-the-Shelf Products
	Dynatrace

	Automation Best Practices
	Do Not Reinvent the Wheel, Again …
	Code Libraries
	Ansible
	Puppet
	SaltStack

	Metadata

	Things to Avoid
	Shell Scripts
	Restarting Services When Not Required
	Using Old Versions
	Correct Version Documentation
	Good Practices
	Debugging
	Don't Forget README
	Source Control

	Summary

	Chapter 6: Containers
	Getting Started
	Virtual Machine vs. Container
	Container History
	Container Runtimes
	Low-Level or OCI Runtimes
	Native Runtimes
	Virtual and Sandboxed Runtimes
	Sandbox Runtimes
	Virtual Runtimes

	Container Runtime Interface
	Containerd
	CRI-O

	Container Engines
	Docker
	Podman

	Container Images
	Container Registries
	Cloud Registries
	Local Registries

	Container Registry Providers

	Containers in Practice
	Prerequisites
	Shopping List
	System Prep
	Install Packages

	Creating Containers
	Pulling a Container Image
	Finding Container Images
	Pulling the Container Image
	Local Container Images

	Running a Container
	Running Containers

	Custom Images and Containers
	Create a Podman Image Registry
	Create a Directory for Data to Be Stored
	Create Registry Container
	Set Podman to Use Insecure Registry

	Using the Podman Registry
	Tagging Images
	Pushing Images
	Remote Registries

	Customize an Image
	Dockerfile
	Example
	Pull Down CentOS Image
	Dockerfile
	Build Image
	Create Container
	Confirm Container Is Running
	Delete Container

	Container Practices
	Cloud Native
	Good Practices
	Keep It Small
	Dynamic Deployment
	Scalable
	“Does It Cloud”?

	Bad Practices
	Containers Are Not Virtual Machines
	Different Images
	Production Builds from Code
	Hardcoded Secrets or Configuration
	Building Idempotent Containers

	Container Development
	Development Considerations
	Coding Languages
	Code Editor
	Source Control

	Container Tooling
	CI/CD
	Jenkins Example

	Dedicated Image Builders
	Image Registry
	Development Editor Plugins
	Linting Tools

	DevSecOps
	DevSecOps Tooling
	Pipelines
	Security Gates

	GitOps
	GitOps Toolbox
	Git
	Infrastructure As Code
	Pipeline Tools
	ArgoCD

	Container Orchestration
	What Does It Do?
	Why Not Use Podman?
	Orchestration Options
	Kubernetes
	Kubernetes Forks
	Master Components
	The Control Plane
	Nodes
	Namespaces
	Daemonsets

	Worker Node Components
	Pods
	Services
	Volumes
	Configmaps

	OpenShift
	Early OpenShift
	Current OpenShift
	OpenShift Components
	Product
	Enterprise
	Security
	Web Console

	Many More

	Summary

	Chapter 7: Monitoring
	Linux Monitoring Tools
	Process Monitoring
	Default Process Commands, ps and top
	Pstree
	Resource-Hungry Processes
	Memory-Intensive Processes
	CPU-Intensive Processes

	Disk and IO
	iostat and iotop
	du and df

	CPU
	Top
	mpstat

	Memory
	Free
	Page Size
	Huge Page Size
	pmap

	Virtual Memory
	vmstat

	Network
	Netstat
	ss
	iptraf-ng
	Tcpdump
	NetHogs
	iftop

	Graphical Tools
	Gnome System Monitor
	Ksysguard

	Historical Monitoring Data
	Sar
	Performance Co-Pilot
	vnstat

	Central Monitoring
	Nagios
	Versions
	Core
	Nagios XI

	Agent Based
	NRPE
	NRDP
	NSClient++
	NCPA

	Nagios Forks
	Installation

	Prometheus
	Exporters
	Alert Tool
	Dashboarding
	Query Language
	Installation
	Kubernetes or OpenShift

	Configuration
	Global
	Rule_files
	Scrape_configs

	Starting Prometheus

	Thanos
	Sidecar
	Store Gateway
	Compactor
	Receiver
	Ruler/Rule
	Querier
	Query Frontend
	Thanos Basic Layout

	Enterprise Monitoring
	Zabbix
	Enterprise Support
	Installation
	Useful Features

	CheckMk
	Enterprise Support
	Installation
	Useful Features

	OpenNMS
	Enterprise Support
	Installation
	Useful Features

	Dashboards
	Dashboarding Tools
	Grafana
	What Is Grafana
	Using Grafana
	Cloud Service
	On-Premise Installation
	Data Sources
	Dashboard Creation
	Panels
	Rows
	Save

	Application Monitoring
	Tracing Tools
	Jaeger
	Zipkin

	Exposing Metrics
	How to Speak “Developer”

	Summary

	Chapter 8: Logging
	Linux Logging Systems
	Rsyslog
	Modular
	Installation
	Service
	Configuration Files
	Global Directives
	Templates
	Rules
	Selector Field

	Action Field

	Fluentd
	Plugin Based
	Used at Scale
	Installation
	Prerequisites
	Manual Installation
	Container Deployment

	Configuration

	Understanding Logs
	Where Are the Log Files
	How to Read Log Files
	Infrastructure Logs
	Important Logs
	/var/log/messages
	/var/log/secure
	/var/log/boot.log
	/var/log/dmesg
	/var/log/yum.log
	/var/log/cron

	Application Logs
	Good Practice
	Use /var/log Directory for Logs
	Security
	Warn or Above

	Increasing Verbosity
	Log Verbosity Levels

	Log Maintenance
	Log Management Tools
	Logrotate
	Installation

	Log Forwarding
	Central Logging Systems
	Elastic Stack
	Fluentd
	Log Forwarders
	Log Aggregators

	Rsyslog
	Rsyslog Aggregator
	Rsyslog Forwarders

	Summary

	Chapter 9: Security
	Linux Security
	Standard Linux Security Tools
	Firewall
	Iptables
	Firewalld
	SELinux
	Host-Based Intrusion Detection

	Recommended Linux Security Configurations
	Disable Root Login
	Minimal Install
	Disk Partitions
	Disk Encryption
	No Desktop
	Encrypt Network Communications
	Remove and Disable Insecure or Unused Services
	Apply Updates and Patch Kernel
	SELinux and Firewall
	Improved Authentication Configuration
	Check for Open Ports
	World Writable Files
	Files Not Owned by Anyone
	ACLs
	Send Logs to Central Logging Service
	Intrusion Detection
	Application Server Security

	DevSecOps
	What Is It?
	Everyone Is Responsible for Security
	Tools
	Security Gates
	Third-Party Tools

	System Compliance
	System Hardening
	Hardening Standards
	Center for Internet Security
	Security Technical Implementation Guides
	Hardening Linux
	Manual Configuration
	Automation
	OpenSCAP

	Vulnerability Scanning
	Linux Scanning Tools
	OpenVAS
	OpenSCAP
	ClamAV

	Container Image Scanning Tools
	Harbor
	Role-Based Access
	Trivy
	Single or Multiple Images
	JFrog Xray
	Deep Scanning
	Clair
	Supported Images
	Enterprise Version
	Continuous Scanning
	Dashboard
	Pipeline

	Container Platform Scanning Tools
	Red Hat Advanced Cluster Security for Kubernetes (StackRox)
	Vulnerability Scanning
	Compliance Scanning
	Network Segmentation
	Risk Profiling
	Configuration Management
	Detection and Response
	Falco
	Flexibly Rules Engine
	Immediate Alerting
	Current Detection Rules
	Aqua Security
	Developer Guidance
	Informative Dashboarding

	Summary

	Chapter 10: Maintenance Tasks and Planning
	What Maintenance Should Be Done
	Patching
	Staging
	Sandbox
	Automated Testing
	Automated Patching
	Rollback

	Filesystem
	Cleanup
	Check for Errors
	Filesystem Check Commands

	Firewall
	Backups
	As Often As Possible
	No Live Patching Without Testing
	Structure

	How Should Maintenance Be Done
	Automation
	Zero Downtime Environments
	Blue/Green
	Failover

	Maintenance Planning
	Agree Maintenance Window
	Bite-Size Chunks
	Art of Estimating

	Automating Process and Task Together
	Process Automation
	Red Hat PAM

	Summary

	Chapter 11: Troubleshooting
	See, Analyze, Then Act
	Understand the Problem
	Know Where to Start
	Standard Questions to Ask When Starting

	Explain the Problem
	Explain to Yourself
	Rubber Duck
	Another Person
	Use Tools

	Break Down the Problem
	Onions, They Have Layers

	The Five Whys
	Example

	Theorize Based on Evidence
	Hypothesis Building
	Build Your Theory
	Causality

	Prove Your Theory
	Reproduce the Issue
	Fix in the Test Environment

	Remediation

	Ask for Help
	What to Do Before Asking for Help
	Training

	How to Ask for Help
	Proper Grammar
	Spelling
	How to Phrase Your Questions
	A Better Question

	Where to Ask Questions
	Correct Area
	Forums
	GitHub, Stack Overflow
	Support Cases

	Things to Avoid When Troubleshooting
	Live Debugging
	Correlation vs. Causation
	Being a Lone Wolf
	Guessing and Lying
	Ghosts
	All the Small Things
	Keep Track of What You Have Tried
	Measure Twice, Cut Once
	Do Not Forget Your Retrospective

	Summary

	Chapter 12: Advanced Administration
	System Analysis
	Tools for the Sysadmin
	Sosreport
	xsos
	System Information
	Shortcut Tools
	More Details

	System Tracing
	Strace
	Installation
	Output to a File
	What to Look For
	Useful Strace Parameters

	Systemtap
	Installation
	Manual Install
	Automated Install
	Systemtap Users

	Systemtap Scripts
	Running Systemtap Scripts
	Cross Instrumentation

	System Tuning
	Tuned
	Installation
	Using Tuned

	Summary

