4

Linux Service Management
Made Easy with systemd

Advanced techniques to effectively manage, control,
and monitor Linux systems and services

/

Donald A. Tevault

Linux Service
Management Made
Easy with systemd

Advanced techniques to effectively manage, control,
and monitor Linux systems and services

Donald A. Tevault

Pack®

BIRMINGHAM—MUMBAI

Linux Service Management Made Easy

with systemd
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza
Publishing Product Manager: Vijin Boricha
Senior Editor: Arun Nadar

Content Development Editor: Rafiaa Khan
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing

Project Coordinator: Shagun Saini
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Nilesh Mohite

First published: February 2022
Production reference: 1081221

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-164-4

www . packt.com

http://www.packt.com

I'd like to thank the good folk at Packt Publishing for making the publishing
of this book such a smooth process. I'd also like to thank my cats and my
opossum for graciously allowing me to use their names in the demos.

- Donnie

Contributors

About the author

Donald A. Tevault - you can call him Donnie - got involved with Linux way back in
2006 and has been working with it ever since. He holds the Linux Professional Institute
Level 3 Security certification and the GIAC Incident Handler certification. Donnie is

a professional Linux trainer, and thanks to the magic of the internet, teaches Linux
classes all over the world from the comfort of his living room. He's also a Linux security
researcher for an IoT security company.

About the reviewer

Steve Shilling has worked in the IT industry commercially since 1987 but started with
computers back in 1982, writing basic programs and debugging games programs written
by others at a very early age. Steve has a broad knowledge covering Unix, Linux, Windows,
and mainframe systems, but primarily works in the Unix/Linux space and has worked
across many industries, including finance, retail, and insurance. Today, Steve provides
training and consultancy in DevOps, SRE, production support, and anything to do with
Linux automation or the automation of processes.

He currently works at TPS Services Ltd, specializing in IT training and consultancy,
life coaching, management training, and counseling. Steve is the author of The Grass Is
Greener - Linux as a Desktop and has also reviewed Packt books in the past.

Table of Contents

Preface

Section 1: Using systemd

1

Understanding the Need for systemd

Technical requirements 4 systemd's performance 9
The history of Linux init systems 4 systemd security 10
The shortcomings of SysV Init The systemd controversy 10
and upstart 5 Summary 12
The advantages of systemd 8 Questions 12
systemd's simplicity 8 ANSwers 13
systemd's consistency 9 .

Further reading 13
Understanding systemd Directories and Files
Technical requirements 16 Understanding the systemd
Understanding the systemd executables 20
configuration files 16 Summary 29
Understanding the systemd Questions 29
unit files 18 Answers 30
Types of unit files 19 Further reading 30

viii Table of Contents

3

Understanding Service, Path, and Socket Units

Technical requirements 32 Understanding socket units 40
Understanding service units 32 Understanding path units 43
Understanding the Apache service file 32 Summa ry 44
Understanding the Secure Shell Questions 44
service file 35
, . Answers 45

Understanding the timesyncd .
service file 37 Further reading 45
Controlling systemd Services
Technical requirements 48 Masking a service 63
Verifying the status of a service 48 Summary 63
Starting, stopping, and Questions 64
reloading services 51 Answers 65
Enabling and disabling services 54 pyrther reading 65
Killing a service 59
Creating and Editing Services
Technical requirements 68 Changing the default
Editing an existing service 68 systemd editor 85
Creating a partial edit to the [Install] Creating a new container
section 69 service with podman 86
Creating a partial edit to the sSumma ry 92
[Service] section 74 Questions 92
Creati full edit 80

reating a tull edi Answers 93
Creating a new service 83 Further reading 93

Table of Contents ix

6

Understanding systemd Targets

Technical requirements 95 Understanding target
Understanding the purpose dependencies 106
of systemd targets 96 Changing the default target 110
Understanding the structure Temporarily changing
of a target file 97 thetarget 112
Understanding the sockets.target file 97 Summary 113
Understanding dependencies in the Questions 114
sshd.service file 99

Answers 115
Comparing systemd targets to Further reading 115
SysVinit runlevels 104
Understanding systemd Timers
Technical requirements 117 real-time timers 127
Comparing systemd timers Creating timers 129
with cron 118 . .

o]) Creating a system-level timer 129
Viewing timer information 19 Creating a user-level timer 131
Understanding timer options 122 Summary 134
Understanding monotonic timers 122 Questions 135
Understanding real-time timers 125
Understanding calendar events for Answers 136

Further reading 136
Understanding the systemd Boot Process
Technical requirements 138 Understanding the systemd
Comparing SysV bootup and bootup process 139
systemd bootup 138 Analyzing bootup performance 142
Understanding SysV and systemd Some differences on Ubuntu
bootup similarities 138 Server 20.04 145

Understanding the SysV bootup process 138

x Table of Contents

Understanding systemd Summary 154
generators 147 Questions 155
Understanding mount units 148 Answers 156
Understanding backward compatibility 152 Further reading 156
Setting System Parameters
Technical requirements 157 Setting the hostname and
Setting the locale parameter 158 Machine information 169
Understanding the locale 158 Viewing the information 170
Changing the default locale on the Setting the information 173
Alma machine 161 Summar 178
Changing the default locale on Ubuntu 164 . y

Questions 178
Setting time and timezone ANswers 179
parameters 166 Further reading 179
Understanding Shutdown and Reboot Commands
Technical requirements 182 Running a job before shutting
Shutting down with systemctl 182 down 191
Halting with systemctl 186 Summary 193
Rebooting with systemctl 187 Questions 194
Using shutdown instead Answers 195
of systemctl 187 Further reading 195
Section 2: Understanding cgroups
Understanding cgroups Version 1
Technical requirements 200 Understanding the purpose

of cgroups 201

Understanding the history
of cgroups 200

Table of Contents xi

Understanding the structure of Summary 212
cgroups Version 1 202 Questions 212
Understanding the cgroup Answers 213
filesystem 210 Further reading 213
Controlling Resource Usage with cgroups Version 1

Technical requirements 216 Setting a blkio limit for Vicky 232
Understanding resource Setting a blkio limit for a service 235
controllers 217 Understanding pam_limits

Examining the resource controllers 217 and ulimit 236
Preparing for the demos 220 The ulimit command 236
Controlling CPU usage 221 Thepam_limits module 238
Controlling Vicky's CPU usage 221 Summary 239
Controlling CPU usage for a service 226 Questions 240
Controlling memory usage 230 Answers 240
Controlling blkio usage 232 Further reading 241
Understanding cgroup Version 2

Technical requirements 244 Setting resource limits on
Understanding the need for rootless containers 254
Version 2 244 Understanding cpuset 256
Version 1 complexity 244 Converting RHEL 8-type distros
Version 1 attribute filenames 246 to cgroup version 2 261
No support for rootless containers 247 Summary 262
Understanding the Questions 262
improvements in cgroup Answers 263
Version 2 248 Further reading 263

xii Table of Contents

Section 3: Logging, Timekeeping,
Networking, and Booting

14

Using journald

Technical requirements

Understanding the pros and
cons of rsyslog

Understanding the pros and
cons of journald

Understanding journald on
Ubuntu

Understanding journald on
RHEL-type systems

Using journalctl

15

268

268

270

271

275
276

Searching for and viewing log data
with journalctl

Sealing journald log files
for security

Setting up remote logging
with journald

Summary
Questions
Answers
Further reading

Using systemd-networkd and systemd-resolved

277

285

287
287
288
288
289

Technical requirements

Understanding networkd
and resolved
Understanding Netplan
on Ubuntu

Viewing installer-generated
Netplan configurations
Creating Netplan configurations

Understanding networkd
and resolved on RHEL-type
machines

292

292

293

293
297

301

Using networkctl and resolvectl 305

Viewing the networkd and
resolved unit files

Summary
Questions
Answers
Further reading

308
308
309
309
310

Table of Contents xiii

16

Understanding Timekeeping with systemd

Technical requirements 312 Understanding the Precision
Understanding the importance Time Protocol 327
of accurate time 312 Anoverview of PTP 327
Comparing NTP Installing PTP 328
implementations 312 Configuring PTP witlh software
. i i AlmalLi 2
Understanding chrony on the timestamping on Almalinux 329
. . Configuring PTP with hardware
AlmaLinux machine 314 ; .
o timestamping on AlmaLinux 330
The chronyd.serw.ce file 314 Configuring PTP with software
The chrony.conf file 316 timestamping on Ubuntu 331
Setting up a chronyd time server 318 Configuring PTP with hardware
Using chronyc 320 timestamping on Ubuntu 332
Understanding Summary 332
systemd-timesyncd 322 Questions 333
The systemd-timesyncd.service file 323 Answers 334
The timesyncd.conf file 324 .
Using timedatectl 325 Further reading 334
Configuring Ubuntu to use chrony 327
Understanding systemd and Bootloaders
Technical requirements 336 Understanding systemd-boot 349
Understanding the basic Understanding Secure Boot 355
computer architecture 337 Summary 357
Understanding GRUB2 338 Questions 357
Comparing GRUB2 on BIOS and Answers 358
EFI/UEFI systems 339 .
Y Further reading 358

GRUB2 on BIOS-based and
EFI/UEFI-based Ubuntu machines 348

xiv Table of Contents

18

Understanding systemd-logind

Technical requirements 362 Keeping user processes going
Understanding the need for a after logout 369
new Iogin service 362 Power management directives 372
. The IdleAction directives 372
Understanding
systemd-logind.service 362 Understanding loginctl 373
The Alma Linux systemd-logind.service Understanding polkit 377
file 362
Summary 384
The Ubuntu Server .
systemd-logind.service file 365 Questions 385
Understanding logind.conf 367 TS 385
nderstanding logina.con .
i , § 108 Further reading 386
Virtual terminals 368
Index

Other Books You May Enjoy

Preface

Welcome, dear reader, to the world's first comprehensive book about systemd and its
ecosystem. Although systemd has become the world's most prevalent Linux init system,
not all that much has been written about it. There is, of course, the official systemd
documentation that you can find online. But it's rather terse and doesn't give you much
in the way of practical examples. There are also some good tutorials in the form of blog
posts, but most of them just cover the basics. I've only been able to find two other books
with systemd in the title. Both of them are outdated and also just cover the basics.

My goal in writing this book has been to take you beyond the basics, to show you how to
be a more effective Linux systems administrator. In every chapter, we'll be looking under
the hood to see how systemd actually works. Rest assured, there will be plenty of hands-on
demos to show you how to make systemd sing and dance just the way you want it to.

Who this book is for

If you're a Linux systems administrator, or if you're studying to become one, you can
benefit from this book. It can also be a good study aid if you're preparing to take a Linux
certification exam, such as the ones from CompTIA, the Linux Professional Institute, or
the commercial Linux distro vendors.

What this book covers

Chapter 1, Understanding the Need for systemd, explores the history of Linux init systems
and explains why the legacy init systems needed to be replaced with something a bit more
robust. We'll also briefly look at the controversy that has surrounded the shift to systemd.

Chapter 2, Understanding systemd Directories and Files, explores the various directories
that contain systemd files. We'll also explore the various systemd unit files and
configuration files, and will explain the purpose of each type. Finally, we'll briefly look at
the executable files that are associated with systemd.

xvi Preface

Chapter 3, Understanding Service, Path, and Socket Units, examines the inner workings of
the service, path, and socket unit files. We'll examine the parts that are in each, and look at
some of the parameters that you can set. Along the way, I'll give you some pointers about
how to find information about what the various parameters are doing for you.

Chapter 4, Controlling systemd Services, explores how to control systemd services. We'll
start by looking at how to list what services are on the system and what their states are.
We'll then look at how to enable, disable, start, stop, and restart services.

Chapter 5, Creating and Editing Services, looks at how to use systemctl to create and edit
systemd service files. For those of you who need to work with Docker containers, I'll show
you a cool method for using the new podman Docker replacement to easily turn your
containers into services. We'll also look at how to reload a service file once it's been either
added or changed.

Chapter 6, Understanding systemd Targets, looks at the various systemd targets. We'll explain
what they are and the structure of a target file. We'll then compare systemd targets to the old
SysVinit runlevels, and then look at how to change a system from one target to another.

Chapter 7, Understanding systemd Timers, looks at how to create systemd timers. We'll also
compare systemd timers to the old cron system, to see which we like better.

Chapter 8, Understanding the systemd Boot Process, looks at the systemd boot process and
how it compares to the old SysVinit boot process.

Chapter 9, Setting System Parameters, looks at how to use systemd utilities to set certain
system parameters. Once you see how it's done with systemd, you just might agree that
systemd makes it easier.

Chapter 10, Understanding Shutdown and Reboot Commands, looks at how to use the
systemctl utility to shut down and reboot a Linux system. After that, we'll see whether
the old-fashioned shutdown command still works.

Chapter 11, Understanding cgroups Version 1, looks at what cgroups are and a bit about
their history. We'll then look at how cgroups can help make a Linux system more secure.

Chapter 12, Controlling Resource Usage with cgroups Version 1, looks at using cgroups to
control resource usage on a modern Linux system. This includes how to control memory
and CPU usage, as well as how to allocate resources to users.

Chapter 13, Understanding cgroups Version 2, looks at cgroups version 2. We'll see how it's
different from version 1 and how it improves upon version 1. After that, we'll take a brief
look at how to work with it. As an added bonus, we'll look at how we can easily do things
with cgroup version 2 that we can't easily do with version 1, such as creating cpusets
and assigning CPU cores to the proper non-uniform memory access (NUMA) node.

Preface xvii

Chapter 14, Using journald, looks at the basic usage of journald and how it differs from the
legacy rsyslog. We'll also look at why we still need rsyslog. Most importantly, you'll learn
how to extract and format the data you need from your system logs.

Chapter 15, Using systemd-networkd and systemd-resolved, shows you why you might want
to use systemd-networkd and systemd-resolved instead of the default Network Manager,
and how to go about doing so. We'll give you an in-depth look at how to set up systemd-
networkd for various scenarios and how the procedure differs for the Ubuntu- and Red
Hat-type distros.

Chapter 16, Understanding Timekeeping with systemd, looks at the various ways to maintain
accurate time on systemd systems. We'll look at ntp, chrony, systemd-timesyncd,
and the Precision Time Protocol. We'll discuss the pros and cons of each and how
configure them.

Chapter 17, Understanding systemd and Bootloaders, looks at using both GRUB2 and
systemd-boot to set up a machine to use EFI/UEFI mode for booting. We'll then look
at installing Pop!_OS Linux on a machine that's set up to use UEFI boot mode, and will
briefly discuss the Secure Boot feature.

Chapter 18, Understanding systemd-logind, looks at how to use and configure
systemd-logind. We'll also learn how to use the loginctl utility to view information about
user login sessions, to control the logind service, and to terminate sessions of troublesome
users. We'll wrap up the chapter by taking a brief look at polkit, which is an alternate way
of granting administrative privileges to certain users.

To get the most out of this book

To perform the demos in this book, you should have a good grasp of basic Linux command-
line usage and should know how to create VirtualBox virtual machines. You can download
VirtualBox from https://www.virtualbox.org/ and find the download sites for

the various Linux distros at ht tps: //distrowatch. com/. When you create the virtual
machines, allocate enough memory for the machines to run efficiently, and enough drive
space to hold everything you need for the demos. (I recommend at least 2 GB of memory for
text-mode virtual machines, and at least 4 GB for graphical-mode virtual machines, unless I
specify otherwise for specific demos. Set the virtual drive to about 20 GB.)

Software/hardware covered in the book | OS requirements

VirtualBox Windows, macOS, or Linux (any)

An AlmaLinux 8 . iso image file

An Ubuntu Server 20.04 . iso image file

A Pop!_OS Linux . iso image file

https://www.virtualbox.org/
https://distrowatch.com/

xviii Preface

When you install an Ubuntu distro, you'll automatically be added to the sudo group,
which gives you full sudo privileges. When you install AlmaLinux, you'll be given the
chance to create a password for the root user. My recommendation is to not do that and
instead just check the Make this user administrator box on the Create User screen of
the installer.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Linux-Service-Management-Made-Easy-
with-systemd. If there's an update to the code, it will be updated on the existing
GitHub repository. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

Code in Action

Code in Action videos for this book can be viewed at https://bit.ly/31jQdio0.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801811644 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.

Any command-line input or output is written as follows:
donnie@ubuntu20-04:~$ sudo systemctl daemon-reload

[sudo] password for donnie:
donnie@ubuntu20-04:~3

https://github.com/PacktPublishing/Linux-Service-Management-Made-Easy-with-systemd
https://github.com/PacktPublishing/Linux-Service-Management-Made-Easy-with-systemd
https://github.com/PacktPublishing/Linux-Service-Management-Made-Easy-with-systemd
https://github.com/PacktPublishing/
https://bit.ly/31jQdi0
https://static.packt-cdn.com/downloads/9781801811644_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801811644_ColorImages.pdf

Preface xix

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
Click Flash from Etcher to write the image.

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub. com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts

Once you've read Linux Service Management Made Easy with systemd, we'd love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1801811644

Section 1:
Using systemd

Upon completion of Part 1, you will know how to control system services, set
environment parameters, and create new systemd units.

This part of the book comprises the following chapters:

e Chapter 1, Understanding the Need for systemd

e Chapter 2, Understanding systemd Directories and Files

e Chapter 3, Understanding Service, Path, and Socket Units

e Chapter 4, Controlling systemd Services

e Chapter 5, Creating and Editing Services

e Chapter 6, Understanding systemd Targets

e Chapter 7, Understanding systemd Timers

e Chapter 8, Understanding the systemd Boot Process

e Chapter 9, Setting System Parameters

e Chapter 10, Understanding Shutdown and Reboot Commands

1

Understanding the
Need for systemd

In this first chapter, we'll first briefly look at the history of Linux init systems. We'll then
look at the shortcomings of the legacy init systems and why certain Linux engineers felt
the need to develop a new type of init system. Finally, we'll look at the controversy that
has surrounded systemd. For easy reference, here's a list of the topics:

o The history of Linux init systems
+ The shortcomings of SysV init and upstart
 The advantages of systemd

o The systemd controversy

So, with the introductory comments out of the way, let's jump in.

4 Understanding the Need for systemd

Technical requirements

For this chapter, all you need is a Linux virtual machine that runs systemd. As you read
through this chapter, you might want to look at some of the files on the virtual machine.

The history of Linux init systems

So, what is an init system? Well, init is short for initialization. An init system, then,
initializes the operating system upon bootup. After the bootup has completed, the init
system will continue working, managing system processes and services. Each system process
is assigned a process ID number, or PID. The init process is always PID 1, and every other
process that gets started on the system is either a child or a grandchild of the init process.

For many years, the SysV Init system was the primary init system for Linux-based
operating systems (SysV is short for System 5. The V is the Roman numeral for 5). SysV
init was originally developed by Bell Labs engineers for the Unix operating system, all
the way back in the early 1970s. (At that time, I was a young pup in junior high school,
and I still had a full head of hair.)

Note

There are actually a few more Linux init systems besides the ones that
I'm mentioning here. But these were the most commonly used ones in the
pre-systemd days.

SysV init worked well in its day, but it was never perfect. Nowadays, with new
high-performance hardware, SysV init has shown both its age and its deficiencies.
The first attempt to come up with something better occurred in July 2009, when Ubuntu
engineers released the first version of the upstart init system. Although it was better
than SysV, it still had its share of problems, especially the early versions which were

quite buggy.

The shortcomings of SysV Init and upstart 5

The shortcomings of SysV Init and upstart

The first problem with SysV is that of its rather lengthy boot-up times. When you boot up
a SysV machine, all of its services have to start up in sequential order. That might not be
so bad on a normal desktop machine, but it can be a bit problematic on a server that needs
to run lots of services. In that case, each service would have to wait its turn to start, which
could take a while.

The next problem with SysV is its complexity. Instead of simple, easy-to-understand
configuration files, SysV does everything with complex Bash shell scripts. The init scripts
that control system services all have to be assigned a priority number, so that services will
start and stop in the proper order. Take, for example, the init script that starts the Apache
web server on a CentOS 5 machine. First, we can see that it's a fairly lengthy script, as
shown here:

[student@localhost init.d]$ pwd

/etc/init.d

[student@localhost init.d]$ 1ls -1 httpd
-rwxr-xr-x 1 root root 3523 Sep 16 2014 httpd
[student@localhost init.d]$ wc -1 httpd

131 httpd

[student@localhost init.d]s$

You can see from the we -1 output that it consists of 131 lines. As you can see here, 37 of
those lines are comments, which still leaves us with 94 lines of actual code:

[student@localhost init.d]$ grep “# httpd | we -1
37
[student@localhost init.d]$

6 Understanding the Need for systemd

Look inside, and you'll see that it's quite complex and convoluted. Here's just the first
part of it:

httpd Startup script for the Apache HTTP Server

chkconfig: - 85 15
description: Apache is a World Wide Web server. It is used to serve \
HTML files and CGI.
processname: httpd
etc/httpd/conf/httpd. conf

Jetc/rc.d/init.d/functions

if [- / sconfig/httpd 1; then
. . /sconfig/httpd
E

start httpd in the C 1nCd1E by default.
HTTPD_LANG=%{HTTPD_LANG-"C"}

This will prevent initlog from swallowing up a pass-phrase prompt if
mod_ss1 needs a pass-phrase from the user.
INITLOG_ARGS=""

> y ‘httpd to use a server
with the thread : ! ; 1) some modules may not
work correctly with a thread-based MPM; nntdh1v PHP will refuse to start.

pachect] scri%t, server binary, and short-form for messages.
apachectl=/usr/sbhin/apachect
httpd=${HTTPD-/usr/shi fhttpd}
pro —httpd
$1df11e §)
ockfil a /s b 5YS/ I
RETVAL=0
STOP_TIMEOUT:

onf/httpd. conf
indAddress rt|AddModule|ClearModuleList|"
|RefererLog|RefererIgnore|FancyIndexing|"”
0 nfig|ResourceConfig)”
if LANG=C Prep -Eiq "A[[:space:]]*($GONE)" $CONFFILE; then
echo
echo 1>&2 " Apache 1.3 configuration directives
echo 1>&2 " pﬁease read /usr/sha dmcfhttpd—z.z. migration.html"”
failure "Apache 1.3 config directives test"
echo
exit 1
in!

The semantics of these two functions differ from the_way apachect] does
¥ th1an -- attempting to start while running is a failure, and shutdown
when not running is also a failure So we just do it the way init scripts
are expected to behave here
I
echo -n $"Starting $prog:
checkl3 || exit 1
SHTTPD_LANG daemon --pidfile=${pidfile} $httpd $0PTIO

Figure 1.1 - An old-fashioned SysV Init script

The shortcomings of SysV Init and upstart 7

Toward the end of the script, you'll see the code that stops, starts, restarts, and reloads the
Apache daemon, as shown here:

how we were called.
81" in

/null; then

ad | reload)
ad

e?p\(mﬂfigtest\fu]]gtatug]
ch

e: $prog {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful |help|configtest}"

Figure 1.2 - The start, stop, restart, reload section of an init script

This code, or code similar to this, has to be in every init script so that the human user
can control the daemon. To complicate things even more, developers didn't always write
this code consistently for different programs. So, for example, a status display for one
daemon didn't always look the same as the status display for another daemon.

Then, there's the problem of inconsistent implementation across the different families of
Linux distros. With SysV, there were at least three different methods of implementation.
Red Hat-type distros used one method, Debian-type distros used another method, and
Slackware-type distros use yet another. For example, the Red Hat way of controlling
services required using the service and chkconfig commands. When working
with Debian-type systems, I always used to have to look up the service management
commands, because I could never remember them. With Slackware, you don't have any
service management commands. To enable or disable a service on a Slackware machine,
you just set or remove the executable permission from the appropriate init script.

Runlevels were also a source of confusion, because each family of distro had its own set of
runlevel definitions. For example, here are the definitions for the graphical runlevel:

o The Red Hat family used runlevel 5.
o The Slackware family uses runlevel 4.

 The Debian family used no specific runlevel for either text mode or graphical
mode. Instead, you enabled or disabled graphical mode by enabling or disabling
the X server daemon.

8 Understanding the Need for systemd

So, you can see that this was all quite confusing, especially for anyone who worked in a
mixed environment. It should be fairly obvious that we needed something that was a bit
less confusing.

As if this weren't enough, there was also the issue of performance. SysV worked well in
its day, when computing hardware was more primitive. But, on modern hardware with
multiple CPUs that each have multiple cores, we need something a bit more robust.
Ubuntu's upstart was supposed to fix this, but it didn't quite live up to its promise.
Nowadays, Upstart is completely dead, but there are still some diehards who refuse to
give up SysV. In the enterprise, systemd is king.

The advantages of systemd

We've just seen the problems with SysV and upstart. Now, let's look at what makes
systemd better.

systemd's simplicity
In contrast to SysV, systemd is really quite simple to configure. For example, look at how
short the Apache service file is on a CentOS 7 machine with systemd:

[donnie@localhost ~]$ cd /lib/systemd/system
[donnie@localhost system]$ 1ls -1 httpd.service
-rw-r--r--. 1 root root 752 Jun 26 2018 httpd.service
[donnie@localhost system]$ wc -1 httpd.service

22 httpd.service

[donnie@localhost system]$

The advantages of systemd

9

There are only 22 lines, and 5 of those lines are comments, as you can see here:

IThe Apache HTTP Server
get remote-fs.target nss-lookup.target
nan: httpd
=man: apachect] (8

-DFOREGROUND
-k graceful

We want sys ve httpd some time to finish gracefully, but still want

g
it to kill httpd dfter TimeoutStopSec if something went wrong during the
graceful stop. Nnrmd11v systemd sends SIGTERM signal right after the
Execstop, which would ki1l httpd. wWe are sending useless SIGCONT here to give
¥ qttpd time to finish.
Ki 0 CO

[Installl] .
wWantedBy=multi-user.target
ttpd.service

Figure 1.3 — A systemd service file

I'll explain everything in the systemd files later. For now, I just want to show you that a
systemd service file is much simpler than a SysV init script. (As we'll soon see in the
upcoming chapters, it's easier to learn how to use the systemd directives than it is to
learn how to write shell-scripting code for init scripts.)

systemd's consistency

The next systemd advantage is its consistency. Yes, boys and girls, you no longer have
to remember multiple sets of system management commands for multiple families of
Linux distros. Instead, you'll now use the same commands on all Linux distros that use
systemd. So, this eliminates a major source of frustration for administrators, and for
anyone who's studying to take a Linux certification exam.

systemd's performance

In contrast to SysV, systemd can start services in parallel, rather than just one at a time

in sequence. This makes for much quicker boot-up times than for SysV. Once the machine

is booted, performance is more robust than that of SysV.

10 Understanding the Need for systemd

With systemd, we have a much cleaner way of killing processes. For example, if

you needed to use the kill command to forcefully terminate the Apache web server
service on a SysV machine, you would only terminate the Apache process itself. If the
web server process had spawned any child processes due to running CGI scripts, for
example, those processes would continue on for a while longer as zombie processes. But,
when you kill a service with systemd, all processes that are associated with that service
will also get terminated.

systemd security

An added bonus is that you can configure systemd service files to control certain aspects
of system security. Here are some of the things that you can do:

» You can create a systemd service that can restrict access to or from certain
directories, or that can only access or be accessed from certain network addresses.

By using namespaces, you can effectively isolate services from the rest of the system.
This also allows you to create containers without having to run Docker.

+ You can use cgroups to limit resource usage. This can help prevent certain types of
denial-of-service attacks.

« You can specify which root-level kernel capabilities a service is allowed to have.

With all this, you can make systemd somewhat emulate a mandatory access control
system, such as SELinux or AppArmor.

All the way around, systemd is much better than any init system that came before it.
But it hasn't made everyone happy.

The systemd controversy

If you've been in the computer world for any length of time, you may have seen that we
geeks can get quite passionate about our operating systems. In the early 1990s, I finally
replaced my text mode-only 8088 machine with one that could run a graphical interface.
I first gave Windows 3.1 a try, and quickly decided that I really hated it. So, I bought a
copy of OS/2, which I liked much better and ran for quite a few years on my home-built
486 machine. But, all of my geek buddies at work were big Windows fans, and they kept
arguing with me about how much better Windows is. I thought that they were all crazy,
and we kept getting into some rather heated arguments.

The systemd controversy 11

Then, when I got into Linux, I quickly learned that you don't want to go into any Linux
forum and ask which Linux distro is the best for a newbie to start with. All that does is
start fights, leaving the poor newbie more confused than ever. And now, the fight is over
whether or not systemd is a good thing. Here are some of the objections:

By trying to do too much, systemd violates the Unix concept of having each utility
just do one thing but having it do it well.

o It's controlled by a large corporation (Red Hat).
« It's asecurity problem.

+ Its journald component saves system logs to a binary format, which some people
believe is more easily corrupted than the plain-text files that rsyslog creates.

If you look at things objectively, you might see that the objections aren't so bad:

+ Yes, the systemd ecosystem includes more than just the init system. It also
includes network, bootloader, logging, and log-in components. But those components
are all optional, and not all Linux distros use them in a default setup.

o It was created primarily by Red Hat, and the project leader is a Red Hat employee.
But Red Hat released it under a free-as-in-speech software license, which means
that no one company can ever take full control of it. Even if Red Hat were to
suddenly decide that future versions of systemd were to be proprietary, the free
code is still out there, and someone would fork it into a new free version.

« Yes, there have been some security bugs in systemd. But that's also true of
OpenSSL, the Bash shell, and even the Linux kernel itself. To complain about
systemd's security would only be valid if the bugs hadn't gotten fixed.

+ The journald component does create log files in a binary format. But it's still
possible to run rsyslog on systemd distros, and most do. Some distros, such as
the Red Hat Enterprise Linux 8 family, use journald to gather system information
and then just have journald pass the information to rsyslog in order to create
normal text files. So, with RHEL 8, we have the best of both worlds.

Soon after the release of systemd, some people who had never even tried it put up blog
posts that explained why systemd was pure evil and that they would never use it. A
few years ago, I created a systemd tutorial playlist on my BeginLinux Guru channel

on YouTube. The first video is called Why systemd?. Quite a few people left comments
about why they would never use systemd and said that they would change to either a
non-systemd Linux distro or to a FreeBSD-type distro in order to avoid it.

The bottom line is this: all enterprise-grade Linux distros now use systemd. So, I think
that it might be here to stay.

12 Understanding the Need for systemd

Summary

In this first chapter, we've looked at the history of the most common Linux init systems.
We've seen the ways in which the legacy init systems are deficient, and we've seen

why systemd is a much better replacement. We wrapped things up by looking at the
objections against systemd.

One of the challenges of learning systemd is that, until now, there hasn't been any real
comprehensive documentation about it. There's basic usage documentation on the Red Hat
website, but it doesn't even cover all components of the systemd ecosystem. There are
only two systemd-specific books that I could find, which are a few years old. (One book
is specific to Fedora, the other is specific to Ubuntu.) Even those books leave some things
out. So, the challenge I've set for myself is to create a comprehensive, hands-on guide for all
things systemd. In the chapters that follow, I'll do my best to accomplish that goal.

In the next chapter, we'll go on a quick tour of the systemd directories and files. I'll see
you there.

Questions

1. Who created the original SysV init system?
a. Bell Labs
b. Red Hat
c. Debian
d. Ubuntu

2. Which of the following is true about SysV?
a. It's a modern, robust init system.
b. When booting a machine, it can start services in parallel.
c. When booting a machine, it can only start services sequentially.
d. It has security features that systemd doesn't have.

3. Which of the following is not true about systemd?

a. It has security features that can somewhat emulate a mandatory access
control system.

b. It can start services in parallel.
c. It can use cgroups to limit resource usage.

d. It's a legacy system that needs to be replaced.

Answers 13

Answers
1. A
2. C
3. D

Further reading

An overview of Linux init systems:

https://www.tecmint.com/best-linux-init-systems/

Why init needed to be replaced with systemd:

https://www.tecmint.com/systemd-replaces-init-in-linux/
Red Hat's systemd documentation:
https://access.redhat.com/documentation/en-us/red hat

enterprise linux/8/html/configuring basic system settings/
index

Some arguments against systemd:

https://textplain.net/blog/2015/problems-with-systemd-and-
why-i-like-bsd-init/

https://www.theregister.com/2014/10/21/unix greybeards_
threaten debian fork over systemd plan/

https://www.tecmint.com/best-linux-init-systems/
https://www.tecmint.com/systemd-replaces-init-in-linux/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/index
https://textplain.net/blog/2015/problems-with-systemd-and-why-i-like-bsd-init/
https://textplain.net/blog/2015/problems-with-systemd-and-why-i-like-bsd-init/
https://www.theregister.com/2014/10/21/unix_greybeards_threaten_debian_fork_over_systemd_plan/
https://www.theregister.com/2014/10/21/unix_greybeards_threaten_debian_fork_over_systemd_plan/

2

Understanding
systemd Directories
and Files

In this chapter, we'll explore the various systemd unit files and configuration files and
explain the purpose of several types. We'll briefly look at some of the executable files that
are associated with systemd. Along the way, we'll also look at the directories where these
files live.

These are the topics we will cover in this chapter:
+ Understanding the systemd configuration files
 Understanding the systemd unit files

« Understanding the systemd executables

The topics in this chapter comprise basic foundational knowledge of systemd. We'll be
building upon this foundation in the chapters to come.

If you're ready, let's go.

16 Understanding systemd Directories and Files

Technical requirements

If you'd like to follow along with what I'm doing, you'll need a couple of virtual

machines (VMs). Here, I'm using Ubuntu Server 20.04 for the Ubuntu side of things, and
AlmaLinux 8 for the Red Hat side of things. (You'll also see me using Fedora to point out a
couple of things, but you won't need a Fedora VM yourself.)

Check out the following link to see the Code in Action video: https://bit.ly/3xL4os5

Understanding the systemd configuration files

In this section, we'll look at the configuration files that control how the various
components of systemd operate. If you want to follow along with your own VM, it won't
much matter which distro you have because things will be mostly the same across all
systemd-enabled distros. Okay—so now you're yelling at me, saying:

Mostly the same? Why, Donnie, you told us before that systemd is implemented consistently
across all distros! What gives?

Well, it is consistent, in that the management and control commands are the same across
all distros, but the systemd ecosystem includes several different components besides just
the init system. These components are optional, and some Linux distros don't use all of
them in a default configuration. Several of these components have configuration files in
the /etc/systemd/ directory, as you can see here:

[donnie@localhost systemd] $ pwd

/etc/systemd

[donnie@localhost systemd]$ 1ls -1 *.conf

-rw-r--r--. 1 root root 720 May 31 2016 bootchart.conf
-rw-r--r--. root root 615 Mar 26 2020 coredump.conf
root root 1041 Mar 26 2020 journald.conf
root root 1042 Mar 26 2020 logind.conf

root root 584 Mar 26 2020 networkd.conf

-rw-r--r--.
-rw-r--r--.
-YW-Y--r--.
-YW-r--r--. root root 764 Mar 26 2020 resolved.conf
-rw-r--r--. root root 790 Mar 26 2020 sleep.conf
-rw-r--r--. root root 1762 Mar 26 2020 system.conf

1
1
1
1
-rw-r--r--. 1 root root 529 Mar 26 2020 pstore.conf
1
1
1
1l root root 677 Mar 26 2020 timesyncd.conf

-rw-r--r--.
-rw-r--r--. 1 root root 1185 Mar 26 2020 user.conf

[donnie@localhost systemd] $

https://bit.ly/3xL4os5

Understanding the systemd configuration files 17

The t imesyncd. conf file, which you see second from the bottom in the preceding code
snippet, is one of those components that you won't see everywhere. It's for the service
that synchronizes the machine's time to a trusted external source. You see it here, but you
won't see it on either Red Hat Enterprise Linux (RHEL) or any of RHEL's free-of-charge
derivatives. That's because RHEL-type distros use an alternate time-synchronization
service called chronyd, and just because you see a configuration file here for a particular
systemd component doesn't necessarily mean that that component is being used. On
the Fedora machine from which I took the preceding code snippet, the networkd,
resolved, and timesyncd components are all disabled. (As with the RHEL distros,
Fedora uses chronyd for time-keeping, but it still has the t imesyncd component
installed.) On the other hand, if you look at the newest versions of Ubuntu Server, you'll
see that these optional components are enabled by default. (We'll see later how to tell if a
service is either enabled or disabled.)

Okay—Tlet's talk about what's in these configuration files. We'll start by looking at the
system. conf file, which sets the configuration for the systemd init process. (For
space reasons, I can only show part of the file here. You can view the whole file on your
VM by doing less /etc/systemd/system.conf.) Here's a snippet:

[Manager]

#LogLevel=info
#LogTarget=journal-or-kmsg
#LogColor=yes
#LogLocation=no

#DefaultLimitNICE=
#DefaultLimitRTPRIO=
#DefaultLimitRTTIME=

Now, I'm not going to explain this file line by line because I don't want you to hate me for
boring you to death. But seriously, in normal circumstances, you might not ever have to
change any of these configuration files. If you think that you might need to do anything with
them, your best bet is to read their associated man pages, which will have a breakdown of
what each of these parameters is doing for you. The trick is that for most of these files, you'll
have to add the systemd- text string to the front of the filename to find its man page. For
example, to look at the man page for the system. conf file, type the following:

man systemd-system.conf

18 Understanding systemd Directories and Files

Also, you might have noticed that in all of these configuration files, every line is
commented out. That doesn't mean that those lines have no effect. Instead, it means that
these are the default parameters that are compiled in. To change something, you would
uncomment the line for the desired parameter and change its value.

Pro tip

You can use the apropos command to find all man pages with a specific
text string in either the man page name or man page description. For example,
to find all pages that match the sy stemd string, just type the following:
apropos systemd.

You can also typeman -k systemd, which is a synonym for apropos
systemd. (I got into the habit early on of always typing apropos, and I've
never broken this habit.) If nothing comes up when you try this, you might have
to rebuild the man page database, which you'll do by typing sudo mandb.

All right—TI think we've talked enough about the configuration files. Next up, we'll talk
about the systemd unit files.

Understanding the systemd unit files

Instead of using a set of complex Bash shell scripts, the systemd init system controls
system and service operations with various types of unit files. Each unit file has a filename
with a filename extension that describes which type of unit it is. Before we look at these
files, let's see where they live.

The /1ib/systemd/system/ directory is the default location for unit files that either
come with the operating system or come with any packages that you might install. There
might be times when you'll either need to modify some of these unit files or even create
your own, but you won't do that in this directory. Instead, you'll do that in the /etc/
systemd/system/ directory. Any unit files in this directory that have the same name as
unit filesin /1ib/systemd/system/ take precedence.

Understanding the systemd unit files 19

Tip

You can read about unit files by typing the following: man systemd.unit.
At the bottom of this man page, you'll see where it refers you to other man
pages for each specific type of unit file. You'll soon see that the trickiest part
about this is having to search through the various man pages whenever you
need to look up something about a particular unit-configuration parameter.

To make things easier, you can look up a specific directive in the systemd.
directives man page, which will direct you to the man page that contains
information about that directive.

Now that you know where the unit files are, let's look at what they are.

Types of unit files

In the /1ib/systemd/system directory, you'll see various types of unit files that each
perform a different function. Here's a list of the more common types:

» service: These are the configuration files for services. They replace the
old-fashioned init scripts that we had on the old System V (SysV) systems.

» socket: Sockets can either enable communication between different system
services or they can automatically wake up a sleeping service when it receives a
connection request.

« slice: Slice units are used when configuring cgroups. (We'll look at these in Part
2, Understanding cgroups.)

« mount and automount: These contain mount point information for filesystems
that are controlled by systemd. Normally, they get created automatically, so you
shouldn't have to do too much with them.

» target: Target units are used during system startup, for grouping units and for
providing well-known synchronization points. (We'll cover these in Chapter 6,
Understanding systemd Targets.)

« timer: Timer units are for scheduling jobs that run on a schedule. They
replace the old cron system. (We'll work with these in Chapter 7, Understanding
systemd Timers.)

20 Understanding systemd Directories and Files

o path: Path units are for services that can be started via path-based activation.
(We'll cover service, path, and socket units in Chapter 3, Understanding Service,
Path, and Socket Units.)

« swap: Swap units contain information about your swap partitions.

That's about it for the basic description of our unit files. We'll go into the nitty-gritty
details about them in subsequent chapters.

Understanding the systemd executables

Normally, we would search for a program's executable files in either abin/ or an sbin/
directory, and you will indeed find some of the systemd utility executable files there, but
most of the systemd executables are found instead in the /1ib/systemd/ directory.
To save space, here's just a partial listing:

donnie@donnie-TB250-BTC:/lib/systemds 1ls -1
total 7448

-rw-r--r-- 1 root root 2367728 Feb 6 2020 libsystemd-
shared-237.so

drwxr-xr-x 2 root root 4096 Apr 3 2020 network
-rw-r--r-- 1 root root 699 Feb 6 2020 resolv.conf
-rwxr-xXxr-x 1 root root 1246 Feb 6 2020 set-cpufreq
drwxr-xr-x 24 root root 36864 Apr 3 2020 system
-rwXr-xr-x 1 root root 1612152 Feb 6 2020 systemd
-rwxr-xXr-x 1 root root 6128 Feb 6 2020 systemd-ac-
power

-rwxr-xXxr-x 1 root root 18416 Feb 6 2020 systemd-
backlight

-rwxr-xXr-x 1 root root 10304 Feb 6 2020 systemd-
binfmt

-YwXr-xXr-x 1 root root 10224 Feb 6 2020 systemd-
cgroups-agent

-YwXr-xr-x 1 root root 26632 Feb 6 2020 systemd-
cryptsetup

Understanding the systemd executables 21

You see that the executable for systemd itself is here, as well as the executables for
the services that systemd runs as part of its own system. On some Linux distros,
you'll see symbolic links in either the /bin or /usr/bin directories that point to
some of the executable files here. For the most part, you won't directly interact with
these files, so let's move on to something that you will interact with.

The systemct1 utility is for controlling systemd, and you'll use it a lot. It's a
multi-purpose tool that can do a lot of things for you. It lets you view the different
units and the status of the units, and either enable them or disable them. For now,
we'll look at some systemctl commands that allow you to view different types of
information. Later, we'll talk about using systemct1 to control and edit specific
units. If you'd like to follow along, fire up a VM and start getting your hands dirty.

One thing to notice is that some systemctl commands require root privileges,
and others don't. If you're just looking at system or unit information, you can do
that with your normal user permissions. If you need to change a configuration,
you'll need to assume the awesome powers of root. Okay—let's get started.

We'll first list the active units that systemd currently has in memory. We'll do that
with the systemctl list-units command. It's a very long output, so I'll just
show you the first few lines here:

[donnie@localhost ~]$ systemctl list-units

UNIT
LOAD ACTIVE SUB DESCRIPTION

proc-sys-fs-binfmt misc.automount
loaded active waiting Arbitrary Executable File Formats
File System Automount Point

sys-devices-pci0000:00-0000:00:17.0-ata3-host2-
target2:0:0-2:0:0:0-block-sda-sdal.device loaded active
plugged WDC WDS250G2BOA-00SM50 1

sys-devices-pci0000:00-0000:00:17.0-ata3-host2-
target2:0:0-2:0:0:0-block-sda-sda2.device loaded active
plugged WDC_WDS250G2BOA-00SM50 2

sys-devices-pci0000:00-0000:00:17.0-ata3-host2-
target2:0:0-2:0:0:0-block-sda.device loaded active
plugged WDC_WDS250G2B0A-00SM50

sys-devices-pci0000:00-0000:00:1b.2-0000:02:00.1-sound-
cardl.device loaded active plugged
GP104 High Definition Audio Controller

22 Understanding systemd Directories and Files

sys-devices-pci0000:00-0000:00:1b.3-0000:03:00.1-sound-
card2.device loaded active plugged
GP104 High Definition Audio Controller

This is the automount section, which shows the various devices that have been
mounted. As you can see, this covers more than just storage devices.

Next, we have the mount, path, and scope units, as follows:

- .mount

loaded active mounted /
boot .mount

loaded active mounted /boot

dev-hugepages .mount
loaded active mounted Huge Pages File System

dev-mgueue .mount
loaded active mounted POSIX Message Queue File System

home . mount

loaded active mounted /home
run-user-1000.mount

loaded active mounted /run/user/1000

sys-fs-fuse-connections.mount
loaded active mounted FUSE Control File System

sys-kernel-config.mount

loaded active mounted Kernel Configuration File System
sys-kernel -debug.mount

loaded active mounted Kernel Debug File System
tmp . mount

loaded active mounted Temporary Directory (/tmp)
var-lib-nfs-rpc pipefs.mount

loaded active mounted RPC Pipe File System

cups .path

loaded active running CUPS Scheduler
systemd-ask-password-plymouth.path

loaded active waiting Forward Password Requests to
Plymouth Directory Watch

Understanding the systemd executables 23

systemd-ask-password-wall.path
loaded active waiting Forward Password Requests to Wall
Directory Watch

init.scope
loaded active running System and Service Manager

session-1.scope
loaded active abandoned Session 1 of user donnie

session-3.scope
loaded active abandoned Session 3 of user donnie

session-4.scope
loaded active running Session 4 of user donnie

Note here that there's a mount unit for each partition on your drive.

Keep scrolling down, and you'll see the same kind of display for the service, slice,
socket, swap, target, and timer units. At the bottom, you'll see a brief explanation of
the status codes and a short summary, as follows:

LOAD = Reflects whether the unit definition was

properly loaded.

ACTIVE = The high-level unit activation state, i.e.
generalization of SUB.

SUB = The low-level unit activation state, wvalues
depend on unit type.

182 loaded units listed. Pass --all to see loaded but
inactive units, too.

To show all installed unit files use 'systemctl list-
unit-files'.
lines 136-190/190 (END)

Use the --all option to also see units that are not active, like so:

[donnie@localhost ~]$ systemctl list-units --all
UNIT

LOAD ACTIVE SUB DESCRIPTION

® boot.automount

not-found inactive dead boot .automount

proc-sys-fs-binfmt misc.automount
loaded active waiting Arbitrary Executable File
Formats File System A

24 Understanding systemd Directories and Files

dev-block-8:2.device

loaded active plugged WDC WDS250G2BOA-00SM50 2
dev-disk-by\x2did-ata\x2dwDC_

WDS250G2B0A\x2d00SM50_ 181202802064 .device

loaded active plugged WDC WDS250G2B0OA-00SM50
dev-disk-by\x2did-ata\x2dWDC WDS250G2B0A\

x2d00SM50_ 181202802064 \x2dpartl.device

loaded active plugged WDC_WDS250G2B0OA-00SM50 1
dev-disk-by\x2did-ata\x2dWDC_WDS250G2B0A\

X2dOOSM50_l81202802064\X2dpart2.device

loaded active plugged WDC_WDS250G2BOA-00SM50 2

That was luck. We found an inactive unit right at the very top.

You can also view specific types of units with the -t option. For example, to see just
the service units, run the following command:

[donnie@localhost ~]$ systemctl list-units -t service
UNIT
LOAD ACTIVE SUB DESCRIPTION

abrt-journal-core.service
loaded active running Creates ABRT problems from
coredumpctl messages

abrt-oops.service

loaded active running ABRT kernel log watcher
abrt-xorg.service

loaded active running ABRT Xorg log watcher
abrtd.service

loaded active running ABRT Automated Bug Reporting Tool
alsa-state.service

loaded active running Manage Sound Card State (restore
and store)

atd.service

loaded active running Deferred execution scheduler
auditd.service

loaded active running Security Auditing Service
avahi-daemon.service

loaded active running Avahi mDNS/DNS-SD Stack

Understanding the systemd executables 25

You can view the other units in the same way.

Now, let's say that we just want to see the services that are dead. We can do that with
the - -state option, like so:

[donnie@localhost ~]$ systemctl list-units -t service
--state=dead

UNIT LOAD ACTIVE
SUB DESCRIPTION

abrt-vmcore.service loaded

inactive dead Harvest vmcores for ABRT

alsa-restore.service loaded
inactive dead Save/Restore Sound Card State

auth-rpcgss-module.service loaded
inactive dead Kernel Module supporting RPCSEC GSS

e autofs.service not -found
inactive dead autofs.service

blk-availability.service loaded
inactive dead Availability of block devices

dbxtool.service loaded
inactive dead Secure Boot DBX (blacklist) updater

dm-event .service loaded
inactive dead Device-mapper event daemon

dmraid-activation.service loaded
inactive dead Activation of DM RAID sets

dnf -makecache.service loaded
inactive dead dnf makecache

dracut-cmdline.service loaded
inactive dead dracut cmdline hook

By running systemctl --state=help,you'll see alist of all of the different
states that you can view for the different unit types.

In addition to seeing the units that are currently in memory, you can also see the
unit files that are installed on the system by running the following command:
[donnie@localhost ~]$ systemctl list-unit-files
UNIT FILE STATE

proc-sys-fs-binfmt misc.automount
static

26 Understanding systemd Directories and Files

- . mount

generated

boot .mount
generated
dev-hugepages.mount
static

dev-mgueue .mount
static

home . mount
generated

proc-fs-nfsd.mount
static

session-1.scope
transient

session-3.scope
transient

session-4.scope
transient

abrt-journal-core.service
enabled

abrt-oops.service
enabled

abrt-pstoreoops.service
disabled

abrt-vmcore.service
enabled

abrt-xorg.service
enabled

abrtd.service
enabled

Here, you see some things that may seem rather strange. At the top, you see some
mount files that are in a generated state. These files live in the /run/systemd/
units/ directory and are automatically generated by systemd. To create these mount
files, systemd reads the /etc/£fstab file every time you either boot the machine or
manually reload the £stab file.

Understanding the systemd executables 27

Unit files in a static state are ones that you can neither enable nor disable. Rather, other
units will call in these static units as dependencies.

Unit files in a transient state deal with things that are, well, transient. Here, we see
three scope units that are managing three user sessions. When a user logs out of a session,
one of these units will disappear.

And of course, units that are in an enabled state will automatically start upon booting
the machine, and units that are in a disabled state won't.

To see if just one individual unit is either enabled or active, you can use the is-enabled
and is-active options with systemct1. A while back, I told you that the networkd,
resolved, and timesyncd services were all disabled on my Fedora machine. Here's
how to prove that:

[donnie@localhost ~]$ systemctl is-enabled systemd-timesyncd
disabled

[donnie@localhost ~]$ systemctl is-enabled systemd-networkd
disabled

[donnie@localhost ~]$ systemctl is-enabled systemd-resolved
disabled

[donnie@localhost ~]1$%

And here's how to prove that they're not active:

[donnie@localhost ~]$ systemctl is-active systemd-timesyncd
inactive

[donnie@localhost ~]$ systemctl is-active systemd-resolved

inactive

[donnie@localhost ~]$ systemctl is-active systemd-timesyncd
inactive

[donnie@localhost ~]1$%

On the other hand, the NetworkManager service is enabled and active on my Fedora
machine, as you can see here:

[donnie@localhost ~]$ systemctl is-enabled NetworkManager
enabled

[donnie@localhost ~]$ systemctl is-active NetworkManager
active

[donnie@localhost ~1$%

28 Understanding systemd Directories and Files

Now, I'll leave it to you to verify all of this on the Ubuntu machine.

You can also see information about just one type of unit file. Here, we'll just look at
information about the swap unit files:

[donnie@localhost units]$ systemctl list-unit-files -t swap
UNIT FILE STATE

dev-mapper-fedora localhost\x2d\x2dlive\x2dswap.swap generated

1l unit files listed.

[donnie@localhost units]$

Just as it did with the mount unit files, systemd generated this file by reading the /etc/
fstab file.

Earlier, I showed you the /etc/systemd/system. conf file, which sets the global
configuration for systemd. With the show option, you can see the actual running
configuration by doing systemctl show. Here's the partial output:

[donnie@localhost ~]$ systemctl show
Version=v243.8-1.fc31

Features=+PAM +AUDIT +SELINUX +IMA -APPARMOR +SMACK
+SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4
+SECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -IDN +PCRE2 default-
hierarchy=unified

Architecture=x86-64

Tainted=local-hwclock
FirmwareTimestampMonotonic=0
LoaderTimestampMonotonic=0
KernelTimestamp=Thu 2021-03-11 11:58:01 EST
KernelTimestampMonotonic=0

DefaultLimitRTPRIOSoft=0
DefaultLimitRTTIME=infinity
DefaultLimitRTTIMESoft=infinity
DefaultTasksMax=4608
TimerSlackNSec=50000
DefaultOOMPolicy=stop

Summary 29

Use the - -property= option to view just one item, like so:

[donnie@localhost ~]$ systemctl show
- -property=DefaultLimi tSIGPENDING

DefaultLimitSIGPENDING=15362
[donnie@localhost ~]$%

There is a man page for systemct1, and you're welcome to peruse it. But if you just need
a quick reference, run systemctl -h.

All right—TI think that's enough for now. So, let's wrap this chapter up and put a bow on it,
shall we?

Ssummary

Okay—we've hit the ground running and have covered quite a few concepts. We covered
the various types of configuration files and unit files and saw where they live. We ended by
using the systemctl command to view information about our running system.

In the next chapter, we'll expand on this by showing you the inner workings of the service,
path, and socket unit files. I'll see you there.

Questions

1. Which of the following commands tells you what the running systemd
configuration is?

a.systemctl list
b. systemctl show
C. systemd show
d. systemd list
2. Which of the following statements is true?
a. To configure your drive partitions, you need to hand-configure the mount units.

b. The mount units for your drive partitions get generated automatically when
systemd reads the fstab file.

c. The mount units for your drive partitions are static units.

d. No mount units are needed for your drive partitions.

30 Understanding systemd Directories and Files

3. Which of the following will tell you if the NetworkManager service is running?
a. systemctl active NetworkManager
b. systemd active NetworkManager
C.systemd enabled NetworkManager
d. systemctl is-enabled NetworkManager

e. systemctl is-active NetworkManager

Answers
1. a
2. b
3. ¢

Further reading

systemd units and unit files:

https://www.digitalocean.com/community/tutorials/
understanding-systemd-units-and-unit-files

https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files
https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files

3

Understanding
Service, Path, and
Socket Units

In this chapter, we'll examine the inner workings of the service, path, and socket unit files.
We'll examine the parts that are in each and look at some of the parameters that you can
set. Along the way, I'll give you some pointers about how to find information about what
the various parameters are doing for you.

In this chapter, we will cover the following topics:

+ Understanding service units
« Understanding socket units
+ Understanding path units
At some point in your Linux administrator career, you could be tasked with modifying

existing units or creating new ones. The knowledge in this chapter can help you with that.
So, if you're ready, let's go.

32 Understanding Service, Path, and Socket Units

Technical requirements

As always, I'll be doing the demos on an Ubuntu Server 20.04 virtual machine and
an Alma Linux 8 virtual machine. Feel free to fire up your own virtual machines to
follow along.

Check out the following link to see the Code in Action video: https://bit.1ly/2ZQBHh6

Understanding service units

Service units are the equivalent of init scripts on old SysV systems. We'll use them

to configure our various services, which we used to call daemons in the old days. A
service can be pretty much anything that you want to start automatically and run in

the background. Examples of services include Secure Shell, your web server of choice,

a mail server, and various services that are required for proper system operation. While
some service files can be short and sweet, others can be fairly lengthy, with more options
enabled. To read about all of these options, just type the following:

man systemd.directives

The descriptions for all of the parameters that you can set are spread over several different
man pages. This systemd.directives man page is an index that will direct you to the
proper man page for each parameter.

Rather than trying to explain every parameter that service files can use, let's look through
a few example files and explain what they're doing.

Understanding the Apache service file

We'll start with the service file for the Apache web server. On my Ubuntu Server 20.04
virtual machine, it is the /1ib/systemd/system/apache2.service file. The first
thing to note is that service unit files are divided into three sections. The top section is the

[Unit] section, which contains parameters that can be placed in any type of unit file. It
looks like this:

[Unit]
Description=The Apache HTTP Server
After=network.target remote-fs.target nss-lookup.target

Documentation=https://httpd.apache.org/docs/2.4/

https://bit.ly/2ZQBHh6

Understanding service units 33

Here, we see these three parameters:

« Descriptions=: Okay, this one should be fairly self-explanatory. All it does is tell
the human user what the service is. The systemctl status command pulls its
description information from this line.

» After=: We don't want Apache to start until certain other things have happened.
We haven't talked about target files yet, but that's okay. For now, just know that
we want to prevent Apache from starting until after the network, any possible
attached remote filesystems, and the Name Switch Service are available.

« Documentations=: Here's another one that's self-explanatory. It just shows where
to find the Apache documentation.

To read about the options that you can place in the [Unit] section of any unit file, just
type the following:

man systemd.unit

Next, we have the [Service] section, where things get a bit more interesting. It contains
parameters that can only be placed in a service unit file, and looks like this:

[Servicel

Type=£forking
Environment=APACHE STARTED BY SYSTEMD=true
ExecStart=/usr/sbin/apachectl start
ExecStop=/usr/sbin/apachectl stop
ExecReload=/usr/sbin/apachectl graceful
PrivateTmp=true

Restart=on-abort
In this particular file, we see these parameters:

« Type=: There are several different service types that you'll see described in the
systemd.service man page. In this case, we have the forking type, which
means that the first Apache process that starts will spawn a child process. When
Apache startup is complete and the proper communication channels have been set
up, the original process—the parent process—will exit and the child process will
carry on as the main service process. When the parent process exits, the systemd
service manager will finally recognize the service as having fully started. According
to the man page, this is the traditional behavior for Unix services, and systemd
just carries on the tradition.

34 Understanding Service, Path, and Socket Units

e Environment=: This sets an environmental variable that affects the behavior of
the service. In this case, it tells Apache that it was started by systemd.

« ExecStarts, ExecStop=, and ExecReload=: These three lines just point the
way to the Apache executable file, and specify the command arguments for starting,
stopping, and reloading the service.

o PrivateTmp=: Many services write temporary files for various reasons, and you're
probably used to seeing them in the /tmp/ directory that everyone can access. Here
though, we see a cool systemd security feature. When set to t rue, this parameter
forces the Apache service to write its temporary files to a private /tmp/ directory
that nobody else can access. So, if you're concerned that Apache might write
sensitive information to its temporary files, you'll want to use this feature. (You can
read more about this feature, as well as other security features, on the systemd.
exec man page.) Also, note that if you leave this parameter out altogether, it will
default to false, which means that you won't have this protection.

o Restart=: Sometimes, you might want a service to automatically restart if it stops.
In this case, we're using the on-abort parameter, which just means that if the
Apache service were to crash with an unclean signal, systemd would automatically
restart it.

Okay, that's it for the [Service] section. Let's move on to the [Install] section,
which looks like this:

[Install]

WantedBy=multi-user.target

The nomenclature for this seems a bit weird because it doesn't seem like we're installing
anything here. What this actually does is control what happens when you enable or
disable a unit. In this case, we're saying that we want the Apache service to be enabled for
the multi-user. target unit, which will cause the service to automatically start when
the machine boots into the multi-user target. (We'll cover targets and the boot-up process
later. For now, just understand that the multi-user target is when the machine is fully
booted and ready for use. For you SysV veterans, the target in this case is akin to a

SysV runlevel.)

Understanding service units 35

Understanding the Secure Shell service file

For something a bit different, let's look at the service file for the Secure Shell service,
which on this Ubuntu machine is the /1ib/systemd/system/ssh.service file.
Here's the [Unit] section:

[Unit]

Description=0OpenBSD Secure Shell server
Documentation=man:sshd(8) man:sshd config(5)
After=network. target auditd.service
ConditionPathExists=!/etc/ssh/sshd not to be run

In the [Unit] section, we see the ConditionPathExists= parameter, which we
didn't see before. It checks for either the existence or non-existence of a file. In this case,
we see an exclamation point (!) in front of the path to the file, which means that we're
checking for the non-existence of the named file. If systemd finds it there, it won't start
the Secure Shell service. If we were to remove the exclamation point, then systemd
would only start the service if the file were there. So, if we wanted to prevent the Secure
Shell service from starting, all we'd have to do is create a dummy file in the /etc/ssh/
directory, like so:

sudo touch /etc/ssh/sshd not to be run

I'm not sure how useful this feature really is, because it's just as easy to simply disable the
service if you don't want it to run. But, if you think that you might ever need this, it's there
for you.

Next up is the [Service] section:

[Servicel
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify

RuntimeDirectory=sshd

RuntimeDirectoryMode=0755

36 Understanding Service, Path, and Socket Units

In the [Service] section, we see a few new parameters:

EnvironmentFile=: This parameter causes systemd to read a list of
environmental variables from the specified file. The minus sign (-) in front of the
path to the file tells systemd that if the file doesn't exist, don't worry about it and
start the service anyway.

ExecStartPre=: This tells systemd to run a specified command before it starts
the service with the ExecStart= parameter. In this case, we want to run the sshd
-t command, which tests the Secure Shell configuration to ensure that it's valid.

KillMode-=: I've already told you that one of the beauties of systemd is its ability
to stop all processes of a service if you have to send a kill signal to it. That's the
default behavior if you don't include this parameter in your service file. Sometimes
though, you might not want that. By setting this parameter to process, a kill
signal will only kill the main process for the service. All other associated processes
will remain running. (You can read more about this parameter on the systemd.
kill man page.)

Restart=: This time, instead of automatically restarting a stopped service
on-abort, it will now restart it on-failure. So, in addition to restarting the
service because of an unclean signal, systemd will also restart this service because
of an unclean exit code, a timeout, or a watchdog event. (A watchdog, in case
you're wondering, is a kernel feature that can restart a service upon some sort of
unrecoverable error.)

RestartPreventExitStatus=: This prevents the service from automatically
restarting if a certain exit code is received. In this case, we don't want the service
to restart if the exit code is 255. (For more information about exit codes, see the
SEXIT CODE, $EXIT STATUS_ section of the systemd.exec man page.)

Type-=: For this service, the type is not i fy, instead of forking as we saw in the
previous example. This means that the service will send a notification message when
the service has finished starting. After it sends the notification message, systemd
will continue loading the follow-up units.

RuntimeDirectory=and RuntimeDirectoryMode=: These two directives
create a runtime directory under the /run/ directory, and then set the permissions
value for that directory. In this case, we're setting the 0755 permission on the
directory, which means that it will have read, write, and execute permissions for the
directory's owner. Everyone else will only have read and execute permissions.

Understanding service units 37

Finally, here's the [Install] section:

[Installl
WantedBy=multi-user.target

Alias=sshd.service

Inthe [Install] section, we see the Alias= parameter, which can be quite handy.
That's because certain services can have different names on different Linux distros. For
example, the Secure Shell service is sshd on Red Hat-type systems and just ssh on
Debian/Ubuntu systems. By including this Alias=sshd.service line, we can control
the service by specifying either name.

Understanding the timesyncd service file

For the last example, I want to show you the service file for the t imesyncd service. This
isthe /1ib/systemd/system/systemd-timesyncd. service file. First, the
[Unit] section:

[Unit]

Description=Network Time Synchronization
Documentation=man:systemd-timesyncd.service (8)
ConditionCapability=CAP SYS TIME
ConditionVirtualization=!container
DefaultDependencies=no

After=systemd-sysusers.service

Before=time-set.target sysinit.target shutdown.target
Conflicts=shutdown. target

Wants=time-set.target time-sync.target

For this file, I mainly just want to focus on the security-related parameters. In the [Unit]
section, there's the ConditionCapability= parameter, which I'll explain in a
moment. The Wants= line, which isn't security-related, defines the dependency units for
this service. If these dependency units aren't running when this service gets started, then
systemd will attempt to start them. If they fail to start, this service will still go ahead and
start anyway.

38 Understanding Service, Path, and Socket Units

Next, we'll look at the [Service] section, where we'll see more security-related
parameters. (For space reasons, I can only place part of the file here, so feel free to view it
on your own virtual machine.):

[Servicel

AmbientCapabilities=CAP_ SYS TIME
CapabilityBoundingSet=CAP_SYS TIME
ExecStart=!!/1ib/systemd/systemd-timesyncd
LockPersonality=yes

MemoryDenyWriteExecute=yes

ProtectSystem=strict

Restart=always

RestartSec=0
RestrictAddressFamilies=AF UNIX AF INET AF INET6
RestrictNamespaces=yes
RestrictRealtime=yes
RestrictSUIDSGID=yes
RuntimeDirectory=systemd/timesync
StateDirectory=systemd/timesync
SystemCallArchitectures=native
SystemCallErrorNumber=EPERM
SystemCallFilter=@system-service @clock
Type=notify

User=systemd-timesync

WatchdogSec=3min

Understanding service units 39

The AmbientCapabilities= and the CapabilityBoundingSet= parameters
are all set to CAP_SYS TIME, as is the ConditionCapability= parameter

in the [Unit] section. Toward the end of the [Service] section, we see the
User=systemd-timesync line, which tells systemd to run this service under a
non-privileged account. But, setting the system time requires root privileges, which
the systemd-timesync user doesn't have. We can fix that by assigning a root-level
kernel capability to this user. In this case, we're allowing this user to set the system
time, but nothing else. Some systems though, might not be able to implement the
AmbientCapabilities= directive. So, the double-exclamation points (! !) in the
ExecStart= line tell systemd to run the indicated service with minimum privileges.
Be aware that this double-exclamation point option only takes effect if the system can't
deal with the AmbientCapabilities= directive.

Note

You can read more about kernel capabilities by typing man

capabilities. Animportant thing to understand about kernel capabilities
is that they can vary across different CPU architectures. So, the set of
capabilities that can be used with an ARM CPU won't be the same as the set of
capabilities on an x86_64 CPU.

Read down through the rest of the [Service] section, and you'll see a lot of parameters
that are obviously for enhancing security. I'm not going to go over all of them, because for
most of them, you can tell what they're doing just by looking at their names. For the few
that aren't so obvious, I would encourage you to consult the man pages. These security
settings are a powerful feature, and you can see here that they're pretty much doing the
same job as a mandatory access control system.

And finally, we have the [Install] section:
[Installl]

WantedBy=sysinit.target
Alias=dbus-org.freedesktop. timesyncl.service

The main thing to see here is that this service is wanted by the sysinit.target, which
means that it will come up during the system initialization process.

40 Understanding Service, Path, and Socket Units

We've only scratched the surface for what we can do with service files. But there are so
many different parameters that scratching the surface is all we can reasonably expect to
do. Your best bet is to skim over the man pages to get a good feel for things and to consult
the man pages whenever you have questions.

Next, we'll cover socket units. (Fortunately, that section won't need to be quite as long.)

Understanding socket units

The socket unit files are also in the /1ib/systemd/system/ directory, and their
filenames end with . socket. Here's a partial list of them on one of my Ubuntu
Server machines:

donnie@ubuntu20-10:/lib/systemd/system$ 1ls -1 *.socket
-rw-r--r-- 1 root root 246 Jun 1 2020 apport-forward.socket
-rw-r--r-- 1 root root 102 Sep 10 2020 dbus.socket

-rw-r--r-- 1 root root 248 May 30 2020 dm-event.socket
-rw-r--r-- 1 root root 197 Sep 16 16:52 docker.socket
-rw-r--r-- 1 root root 175 Feb 26 2020 iscsid.socket
-rw-r--r-- 1 root root 239 May 30 2020 lvm2-lvmpolld.socket
-rw-r--r-- 1 root root 186 Sep 11 2020 multipathd.socket
-rw-r--r-- 1 root root 281 Feb 2 08:21 snapd.socket
-rw-r--r-- 1 root root 216 Jun 7 2020 ssh.socket

-rw-r--r-- 1 root root 610 Sep 20 10:16 systemd-udevd-kernel.
socket

-rw-r--r-- 1 root root 126 Aug 30 2020 uuidd.socket
donnie@ubuntu20-10:/1lib/systemd/system$

The socket units can do a couple of things for us. First, they can take the place of the
legacy inetd and xinetd superserver daemons that were on the old SysV systems. This
means that instead of having a server daemon run full-time, even when it isn't needed,
we can leave it shut down most of the time, and only start it when the system detects an
incoming network request for it. For a simple example, let's look at the ssh. socket file
on an Ubuntu machine:

[Unit]
Description=0OpenBSD Secure Shell server socket

Before=ssh.service

Understanding socket units 41

Conflicts=ssh.service
ConditionPathExists=!/etc/ssh/sshd not to be run

[Socket]
ListenStream=22
Accept=yes

[Installl]
WantedBy=sockets.target

Even though this socket file gets installed by default, it's not enabled by default. On a
default configuration of Ubuntu, the Secure Shell service runs all the time. In the [Unit]
section, we see these two interesting directives:

+ Before=ssh.service: This tells systemd to start the socket before starting the
Secure Shell service.

e Conflicts=ssh.service: This tells systemd to not allow the Secure Shell
service to run normally if this socket is enabled. If you were to enable this socket,
the normal SSH service would get shut down.

In the [Socket] section, we see that the socket listens on port 22/t cp, which is the
default port for Secure Shell. The Accept=yes line is a bit deceiving because it doesn't
mean exactly what you would think. It really means that the service will spawn a new
instance for every incoming connection. According to the systemd. socket man page,
this setting should only be used for services that were designed to work under the old
inetd and xinetd schemes. For better performance, new services should be designed to
not behave like this.

To demonstrate how this works, I first want to show you that the ssh service on my
Ubuntu VM is running normally:

donnie@ubuntu20-10:~$ sudo systemctl is-active ssh
active

donnie@ubuntu20-10:~$

So, it's act ive, which means that it's running as a normal daemon. Now, let's enable
ssh.socket, and then look at the difference:

donnie@ubuntu20-10:~$ sudo systemctl enable --now ssh.socket

Created symlink /etc/systemd/system/sockets.target.wants/ssh.
socket -» /lib/systemd/system/ssh.socket.

42 Understanding Service, Path, and Socket Units

donnie@ubuntu20-10:~$ sudo systemctl is-active ssh
inactive
donnie@ubuntu20-10:~$

So, as soon as I enable this socket, the Conf1icts= line automatically shuts down the
ssh service. But I can still connect to this machine because the socket will automatically
start the SSH service just long enough to service the connection request. When the service
is no longer needed, it will automatically go back to sleep.

Secondly, note that this socket doesn't mention which service to start, or where its
executable file is. That's because the socket, when activated, will just pull that information
from the ssh. service file. You don't have to tell it to do that, because the default
behavior for any socket file is to get its information from a service file that has the same
prefix in the filename.

Finally, socket units can enable communication between operating system processes. For
example, a socket can take messages from various system processes and pass them to the
logging system, as we see here in this systemd-journald. socket file:

[Unit]
Description=Journal Socket

Documentation=man:systemd-journald.service(8) man:journald.
conf (5)

DefaultDependencies=no

Before=sockets.target

IgnoreOnIsolate=yes

[Socket]
ListenStream=/run/systemd/journal/stdout
ListenDatagram=/run/systemd/journal/socket
SocketMode=0666
PassCredentials=yes
PassSecurity=yes
ReceiveBuffer=8M

Service=systemd-journald.service

Understanding path units 43

We see here that instead of listening to a network port, this socket listens for TCP

output from /run/systemd/journal/stdout, and for UDP output from /run/
systemd/journal/socket. (The ListenStream= directive is for TCP sources, and
the ListenDatagram= directive is for UDP sources. The systemd. socket man page
doesn't make that clear, so you have to do some DuckDuckGo searching to find this out.)

There's no Accept=yes directive here, because, unlike the Secure Shell service that
we saw earlier, the journald service doesn't need to spawn a new instance for every
incoming connection. By leaving this setting out, it defaults to a value of no.

The PassCredentials=yes line and the PassSecurity=yes line cause the
sending process to pass security credentials and security context information to the
receiving socket. These parameters also default to no if you leave them out. To enhance
performance, the ReceiveBuffer= line sets aside 8 MB of buffer memory.

Finally, the Service= line specifies the service. According to the systemd. socket
man page, this can only be used if Accept=no is set. The man page also says that this
usually isn't needed, because by default the socket will still reference the service file
that has the same name as the socket. But if you do use this, it might pull in some extra
dependencies that it might not otherwise pull in.

Understanding path units

You can use a path unit to have systemd monitor a certain file or directory to see when it
changes. When systemd detects that the file or directory has changed, it will activate the
specified service. We'll use the Common Unix Printing System (CUPS) as an example.

Inthe /1ib/systemd/system/cups.path file, we see this:

[Unit]
Description=CUPS Scheduler

PartOf=cups.service

[Path]

PathExists=/var/cache/cups/org.cups.cupsd

[Install]

WantedBy=multi-user.target

The PathExists= line tells systemd to monitor a specific file for changes, which in
this case is the /var/cache/cups/org. cups. cupsd file. If systemd detects any
changes to this file, it will activate the printing service.

44 Understanding Service, Path, and Socket Units

Summary

All right, we've made it through another chapter, which is a good thing. In this chapter,
we examined the structure of the service, socket, and path unit files. We saw the three
sections of each type of unit and looked at some of the parameters that we can define
for each of those sections. Of course, it's pretty much impossible to explain every single
available parameter, so I've just shown you a few examples. And I'll show you more
examples in the next few chapters.

An important skill for any IT administrator is knowing how to look up things that you
don't know. That can be a bit of a challenge with systemd, because things are spread out
over quite a few man pages. I've given you some tips on how to use the man pages to find
what you need, which will hopefully be of some help.

The next skill you'll want to acquire is that of controlling service units, which is the topic
of the next chapter. I'll see you there.

Questions
1. Which kind of unit monitors files and directories for changes?

a. system
b. file
c. path
d. timer
e. service
2. A socket unit can:
a. automatically notify the user if a network request comes in
b. automatically set up communication between Linux and Windows machines
c. listen for network connections, and act as a firewall

d. automatically start a network service when it detects a connection request for
that service

3. What is the purpose of the [Install] section?
a. It defines what other packages are to be installed when you install a service.
b. It defines what happens when you enable or disable a unit.
c. It defines parameters that are specific to an install unit.

d. It defines parameters that are specific to a service unit.

Answers 45

Answers
1. ¢
2. d
3. b

Further reading

Systemd socket units:

https://www.linux.com/training-tutorials/end-road-systemds-
socket-units/

The difference between ListenStream= and ListenDatagram=:

https://unix.stackexchange.com/questions/517240/systemd-sock-
et-listendatagram-vs-listenstream

Monitoring paths and directories:

https://www.linux.com/topic/desktop/systemd-services-
monitoring-files-and-directories/

https://www.linux.com/training-tutorials/end-road-systemds-socket-units/
https://www.linux.com/training-tutorials/end-road-systemds-socket-units/
https://unix.stackexchange.com/questions/517240/systemd-socket-listendatagram-vs-listenstream
https://unix.stackexchange.com/questions/517240/systemd-socket-listendatagram-vs-listenstream
https://www.linux.com/topic/desktop/systemd-services-monitoring-files-and-directories/
https://www.linux.com/topic/desktop/systemd-services-monitoring-files-and-directories/

4

Controlling systemd
Services

Now that we've seen what systemd services are, it's time to learn how to control them. In
this chapter, we're going to do just that. Specifically, we'll cover the following skills:

« Verifying the status of a service

« Starting, stopping, and reloading services
+ Enabling and disabling services

« Killing a service

« Masking services

These are good skills to have, because you'll be practicing them a lot in your routine as a
Linux server administrator. So, if you're ready, let's get started.

48 Controlling systemd Services

Technical requirements

All you need for this chapter is a virtual machine of some sort, with full sudo privileges for
your own user account. For my demos, I'll be using the brand-new AlmaLinux 8 for the
Red Hat (RHEL) side of things and Ubuntu Server 20.04 for the Ubuntu side.

Check out the following link to see the Code in Action video: https://bit.ly/30ev29P

A word about CentOS Linux

I know, you're probably used to seeing CentOS Linux for these demos. But, at
the end of 2020, the Red Hat company announced that they would end support
for the enterprise-ready version of CentOS 8 at the end of 2021. Its replacement,
CentOS Stream, is a rolling-release distro that you might not want to use in

the enterprise. Fortunately, there are suitable enterprise-ready replacements

for CentOS 8 from other organizations, which include Oracle Enterprise Linux
8, Springdale Linux 8, and Alma Linux 8. At the time of writing, Rocky Linux

8 is in the planning stages and will eventually be released by a founder of the
original CentOS project. At this point, it's impossible to know which one will
become the most popular replacement for CentOS. (Of course, there's also Red
Hat Enterprise Linux 8 (RHEL 8), but you'll need to purchase a subscription in
order to do anything meaningful with it.)

This is going to be hands-on, folks. So, if you're feeling spry, fire up a virtual machine and
follow my lead.

Verifying the status of a service

I'll be using Alma Linux for this first demo, for a reason that will become clear in just a
moment. First, let's install the Apache web server by doing the following:

sudo dnf install httpd

Before you can start using Apache, you'll want to know whether it's enabled, so that it will
automatically start when you reboot the machine. You'll also want to know whether it's
active, which just means that it's running.

To see whether it's enabled, do the following:

[donnie@localhost ~]$ systemctl is-enabled httpd
[sudo] password for donnie:

disabled

[donnie@localhost ~18%

https://bit.ly/3oev29P

Verifying the status of a service 49

Here, you see why I'm using a RHEL-type distro for this. When you install a service on
any RHEL-type machine, it's normally disabled by default. When you install a service
on Ubuntuy, it's normally enabled by default. So, by doing this on Alma Linux, I can give
you more to look at.

Next, let's see whether Apache is running, by doing the following:

[donnie@localhost ~]$ systemctl is-active httpd
inactive
[donnie@localhost ~]$

Okay, it isn't. Now, let's look at both things at once:

[donnie@localhost ~]$ systemctl status httpd
httpd.service - The Apache HTTP Server
Loaded: loaded (/usr/lib/systemd/system/httpd.service;
disabled; vendor preset: disabled)
Active: inactive (dead)
Docs: man:httpd.service (8)
[donnie@localhost ~]$

There are a couple of things that I want you to note about these commands. Firstly, if you
just want to view information about services, you don't need sudo privileges. Secondly, if
you want to do anything with a service, you don't need to append the . service filename
extension. I mean, you can if you want to, and it won't hurt anything, but you don't have
to. If there are multiple types of unit files with the same name, systemct1 will always
invoke the . service unit by default. For example, the Common Unix Printing System
(CUPS) hasa . service unit, a . path unit, and a . socket unit, as you can see here:

[donnie@localhost ~]$ 1ls -1 /lib/systemd/system/cups.*
-r--r--r--. 1 root root 142 Aug 27 2020 /lib/systemd/system/
cups.path

-r--r--r--. 1 root root 248 Aug 27 2020 /lib/systemd/system/
cups.service

-r--r--r--. 1 root root 136 Aug 27 2020 /lib/systemd/system/
cups.socket

[donnie@localhost ~1$%

50 Controlling systemd Services

Without a filename extension, systemct1 will show information about cups .
service, as shown next:

[donnie@localhost ~]$ systemctl status cups
cups.service - CUPS Scheduler
Loaded: loaded (/usr/lib/systemd/system/cups.service;
enabled; vendor preset: enabled)
Active: active (running) since Tue 2021-03-30 16:37:18 EDT;
33min ago
Docs: man:cupsd(8)
Main PID: 989 (cupsd)
Status: "Scheduler is running..."
Tasks: 1 (limit: 11274)
Memory: 3.2M
CGroup: /system.slice/cups.service
L-989 /usr/sbin/cupsd -1
Mar 30 16:37:18 localhost.localdomain systemd[1l]: Starting CUPS
Scheduler...

Mar 30 16:37:18 localhost.localdomain systemd[1l]: Started CUPS
Scheduler.

Mar 30 16:38:14 localhost.localdomain cupsd[989]: REQUEST
localhost - - "POST / HTTP/1.1" 200 362 Create-Printer-
Subscriptions successful-ok

[donnie@localhost ~]1$

This shows a lot more information about a running service than what the is-active
option does. The cups . service - CUPS Scheduler line at the top comes

from the Description=CUPS Scheduler linein the [Unit] section of

the cups . service file, and information about the man page comes from the
Documentation=man:cupsd (8) line. The Main PID: line shows that the main
CUPS process has a Process Identification Number (PID) of 989. Verify that with this
handy ps aux command:

[donnie@localhost ~]1$% ps aux | grep 'cups'

root 989 0.0 0.5 340316 10196 ? Ss 16:37
0:00 /usr/sbin/cupsd -1
donnie 8352 0.0 0.0 221904 1072 pts/1 R+ 18:02

0:00 grep --color=auto cups
[donnie@localhost ~]$

Yes indeed, it is PID 989.

Starting, stopping, and reloading services 51

Don't worry about that CGroup : line for now. We'll talk about cgroups later.

The final thing you see is system log entries that got created when the service started. On a
RHEL-type system, you'll see them in the /var/log/messages file. On Debian and its
oftspring, such as Ubuntu, you'll see them in the /var/log/syslog file.

To see information about the other types of units, you'll need to append the filename
extension, as shown:

[donnie@localhost ~]$ systemctl status cups.path
cups.path - CUPS Scheduler

Loaded: loaded (/usr/lib/systemd/system/cups.path; enabled;
vendor preset: enabled)

Active: active (running) since Tue 2021-03-30 16:37:12 EDT;
1h 16min ago

Mar 30 16:37:12 localhost.localdomain systemd[1l]: Started CUPS
Scheduler.

[donnie@localhost ~]8%

This makes for a shorter display, since there's less to show about . path units.

All right, we're off to a good start. Let's get back to that Apache service and see what we
can do with it.

Starting, stopping, and reloading services

We've already seen that when you install a service on a RHEL-type distro, such as Alma
Linux, the service is normally disabled and not active by default. So now, I'll give you three
guesses about what the command is to start a service.

Give up? Okay, here's how we start Apache:

[donnie@localhost ~]$ sudo systemctl start httpd
[sudo] password for donnie:
[donnie@localhost ~]1$%

Well, that's easy enough. Let's take a look at the status. Here's the first part of the
command output:

[donnie@localhost ~]$ sudo systemctl status httpd
httpd.service - The Apache HTTP Server

Loaded: loaded (/usr/lib/systemd/system/httpd.service;
disabled; vendor preset: disabled)

52 Controlling systemd Services

Active: active (running) since Tue 2021-03-30 18:35:05 EDT;
lmin 8s ago

Docs: man:httpd.service(8)
Main PID: 8654 (httpd)
Status: "Running, listening on: port 80"

You see here that the service is active, but that it's also still disabled. This means that
it T were to reboot the machine, the service won't automatically start. To see more
information, use the ps aux command, as follows:

[donnie@localhost ~]1$ ps aux | grep httpd

root 8654 0.0 0.6 275924 11196 ? Ss 18:35
0:00 /usr/sbin/httpd -DFOREGROUND
apache 8655 0.0 0.4 289796 8160 ? S 18:35
0:00 /usr/sbin/httpd -DFOREGROUND
apache 8656 0.0 0.5 1347588 10032 ? sl 18:35
0:00 /usr/sbin/httpd -DFOREGROUND
apache 8657 0.0 0.5 1347588 10032 ? sl 18:35
0:00 /usr/sbin/httpd -DFOREGROUND
apache 8658 0.0 0.6 1478716 12080 ? Sl 18:35
0:00 /usr/sbin/httpd -DFOREGROUND
donnie 8924 0.0 0.0 221904 1044 pts/1 R+ 18:39

0:00 grep --color=auto httpd
[donnie@localhost ~18%

The first process listed here as PID 8654 belongs to the root user and is the main process
that we see in the systemctl status output. The next four processes, with PIDs
8655 through 8658, are used whenever someone connects to a website on this server
and belong to the non-privileged apache user. This is a security feature that's been built
into Apache for pretty much forever and has nothing to do with systemd. Running these
processes under a non-privileged user account helps prevent attackers from taking over
the system for their own nefarious purposes.

Note

If you want to see what the rest of the pss output means, view the ps man page
by doing:

man ps

Starting, stopping, and reloading services 53

To stop the Apache service, just do sudo systemctl stop httpd. (Yeah,Ibetyou
didn't see that one coming.)

If you change the configuration of a running service, you'll need to reload it. You can

do that with the restart option, which will restart the service and cause the new
configuration to be reloaded. Certain services, such as Apache, also have the reload
option. This will read in the new configuration without interrupting the running service.
Be aware, though, that you can't always use reload. With Apache, for example, you
can use reload to reload changes to website configuration files, but you'll need to use
restart to read in certain changes to the Apache configuration, such as when you
enable or disable an Apache module. To see whether reload works for any particular
service, try consulting the documentation for that service.

The specific commands to start, stop, restart, or reload a service can be defined in its
associated . service file. Here are the relevant lines from the httpd. service file on
the Alma machine:

[Servicel

ExecStart=/usr/ Sbin/httpd SOPTIONS -DFOREGROUND
ExecReload=/usr/sbin/httpd $OPTIONS -k graceful

For now, don't worry about what the start and reload options you see here mean, because
that knowledge is specific to Apache, rather than to systemd. What I do want you to
notice is the ExecReload= line. We see here that Apache has its own built-in way of
reloading its configuration. Contrast that with what you see in this sshd. service file,
which is also from the Alma machine:

[Servicel

ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO POLICY
ExecReload=/bin/kill -HUP $MAINPID

54 Controlling systemd Services

Here, we see that the Secure Shell service doesn't have its own internal mechanism for
reloading its configuration. Instead, it relies on the old-fashioned ki11 utility that's been
in Linux almost forever. Realize though that ki1l doesn't always mean to kill. When you
use the ki1l utility, it sends a signal to a process to make it do something. Normally, you
would send a signal that really would kill the process. But you can also use it to send the
HUP signal to a service, which will cause the service to reload its configuration without
service interruption. (In case you're wondering, HUP is an acronym for Hang Up. The
original purpose of this signal was to inform running programs when a serial line was
dropped. However, the purpose of the HUP signal has since been changed to what it is
now.) The SMAINPID instance that you see is an environmental variable that systemd
uses to access the PID number of the main Secure Shell process.

Optionally, you can have a line that defines what happens when you issue a stop
command. You don't see that here on Alma Linux, but you do see it in the apache2.
service file on Ubuntu as shown here:

[Service]

ExecStart=/usr/sbin/apachectl start
ExecStop=/usr/sbin/apachectl stop
ExecReload=/usr/sbin/apachectl graceful

You haven't seen an ExecRestart= parameter, because there isn't one. Restarting a
service just consists of stopping it, and then starting it again.

Next up, we'll look at how to enable and disable services.

Enabling and disabling services

It's all well and good that we have Apache running, but if we were to reboot our Alma
Linux machine, Apache won't start until you start it manually. To begin this demo, first
stop Apache with this:

sudo systemctl stop httpd

Enabling and disabling services 55

Now, enable it by doing this:

[donnie@localhost ~]1$ sudo systemctl enable httpd

Created symlink /etc/systemd/system/multi-user.target.wants/
httpd.service » /usr/lib/systemd/system/httpd.service.
[donnie@localhost ~1$%

When we enable the Apache service, we create a symbolic link in the /etc/systemd/
system/multi-user.target.wants/ directory that points back to the httpd.
service file. Now, I've been telling you all along that the unit files are in the /1ib/
systemd/system/ directory. But the eagle-eyed among you will notice that the symbolic
link points to the service file in the /usr/1ib/systemd/system/ directory. That's
because the newer versions of many Linux distros have gotten rid of certain top-level
directories and now just use the corresponding directories that have always been under the
/usr/ directory. But the Linux gurus in the sky have been nice enough to accommodate
old codgers like me who are used to having those top-level directories. They did this by
creating symbolic links in the root level of the filesystem, which you can see here:

[donnie@localhost /1$ pwd

/

[donnie@localhost /]1$ 1ls -1 lib*

lrwxrwxrwx. 1 root root 7 Aug 14 2020 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Aug 14 2020 1lib64 -> usr/libé64
[donnie@localhost /1%

So, if you're like me and keep forgetting that those top-level directories are no longer
there, it's okay. The symbolic links work just fine. But, I digress.

Go into the /etc/systemd/system/multi-user.target.wants/ directory, and
you'll see the symbolic link that got created with our systemctl enable command, as
shown here:

[donnie@localhost ~]$ cd /etc/systemd/system/multi-user.target.
wants/

[donnie@localhost multi-user.target.wants]$ 1ls -1 httpd.service

lrwxrwxrwx. 1 root root 37 Mar 30 19:22 httpd.service -> /usr/
lib/systemd/system/httpd.service

[donnie@localhost multi-user.target.wants]$

56 Controlling systemd Services

Okay, so you're now wondering what that multi-user.target.wants thing is all
about. Well, I'll cover the . target concept in detail later. For now, just accept that the
multi-user target is the runlevel in which the operating system is fully booted and is

ready for normal operations. The /etc/systemd/system/multi-user.target.
wants/ directory contains the symbolic links for units that will automatically start
whenever the operating system goes into multi-user mode. This directory mostly contains
symbolic links to service units, but it can sometimes have links to other types of units. On
this Alma Linux machine, there's also a link to the cups . path unit, as shown here:

[donnie@localhost multi-user.target.wants]l$ 1ls -1 cups*
lrwxrwxrwx. 1 root root 33 Feb 11 18:14 cups.path -> /usr/lib/
systemd/system/cups.path

lrwxrwxrwx. 1 root root 36 Feb 11 18:14 cups.service -> /usr/
lib/systemd/system/cups.service

[donnie@localhost multi-user.target.wants]$

To determine where a symbolic link should be created, the systemctl enable
command pulls in the setting from the [Install] section of the service file. At the
bottom of the httpd. service file on the Alma machine, you see this:

[Installl]
WantedBy=multi-user.target

At the bottom of the accounts-daemon. service file, you'll see this:

[Installl]
WantedBy=graphical.target

The symbolic link for this service, when it's enabled, is in the /etc/systemd/system/
graphical.target.wants/ directory.

Be aware that when you enable a service that isn't already running, the service doesn't
automatically start until you reboot the machine. You can see that here:

[donnie@localhost multi-user.target.wants]$ systemctl
is-enabled httpd

enabled

[donnie@localhost multi-user.target.wants]$ systemctl is-active

Enabling and disabling services 57

httpd
inactive

[donnie@localhost multi-user.target.wants]$

You can issue a separate start command to start the service, or you can use the enable
- -now option to enable and start the service with just a single command, as shown here:

[donnie@localhost multi-user.target.wants]$ sudo systemctl
enable --now httpd

Created symlink /etc/systemd/system/multi-user.target.wants/
httpd.service » /usr/lib/systemd/system/httpd.service.

[donnie@localhost multi-user.target.wants]$

When you disable a unit, the symbolic link for it gets removed. We can see that here with
the Apache service:

[donnie@localhost multi-user.target.wants]$ sudo systemctl
disable httpd

[sudo] password for donnie:

Removed /etc/systemd/system/multi-user.target.wants/httpd.
service.

[donnie@localhost multi-user.target.wants]$ 1ls -1 httpd*
ls: cannot access 'httpd*': No such file or directory

[donnie@localhost multi-user.target.wants]$

If the service is running, it will remain running after you issue the disable command.
You can issue a separate stop command or use the disable --now option to disable
and stop the service at the same time.

Now, for you Ubuntu fans, here's the command to install Apache on your Ubuntu machine:

sudo apt install apache2

If you look at the official documentation on the Apache website, you'll see that the official
way of doing business is to have ht tpd as the name of the Apache service. For some
strange reason that I've never figured out, Debian developers have always marched to the
beat of a different drummer in a few different ways. Ubuntu is derived from Debian, so
Ubuntu developers generally carry on with Debian traditions. At any rate, you can try out
the preceding commands on an Ubuntu machine and just replace ht tpd with apache?2.
The only real difference you'll see is that after you initially install Apache on Ubuntu, the
service will already be enabled and running.

58 Controlling systemd Services

Another cool thing you can do is to disable the manual start, stop, and restart functions of
a service. The best example of this is the auditd service on RHEL-type machines. In the
[Unit] section of the auditd. service file on my Alma machine, we see the line that

does that:

[Unit]

Trying to restart the service gives me the following error message:

[donnie@localhost ~]$ sudo systemctl restart auditd
Failed to restart auditd.service: Operation refused, unit
auditd.service may be requested by dependency only (it is
configured to refuse manual start/stop).

See system logs and 'systemctl status auditd.service' for
details.

[donnie@localhost ~]$

Curiously, though, I can manually stop or restart the auditd service just fine if I use the
old-fashioned service command from the SysV days, as we see here:

[donnie@localhost ~]$ sudo service auditd restart
Stopping logging:

OK 1]

Redirecting start to /bin/systemctl start auditd.service

[donnie@localhost ~]1$

I can understand why we'd want to restrict the ability to stop or restart auditd, since it
is related to system security. But I've never understood why RHEL maintainers prevent
users from doing it with systemct1, yet still allow us to do it with service. It's just
one of those things that makes you go Hmmmmm. It's also interesting to note that when
you install auditd on Ubuntu, you won't see the line that disables these functions. So, on
Ubuntu, you can stop and restart auditd with systemct1 in the normal manner.

Killing a service 59

Next, let's look at the proper way to kill a service.

Killing a service

It's sad, I know, but even on Linux things can sometimes crash. A great example is the
Firefox web browser. Have you ever accidentally landed on a malicious web page that
completely locked up your browser? I mean, you can't close the tab, there's an obnoxious
noise blaring out of your computer speakers, and you can't close the browser in the
normal way. You're just stuck. (Don't be embarrassed about it if you have, it's happened to
all of us.) On a Linux machine, you'd get out of that by opening a terminal, using ps aux
| grep firefox to find the PID for Firefox, and then issuing a kill command. For
example, let's say that the PID for Firefox is 3901. To kill it, just do:

kill 3901

By default, this will send a number 15, or SIGTERM, signal to Firefox, which will give the
process a chance to clean up after itself by shutting down any associated files or network
connections. Sometimes, if a process is locked up really badly, the number 15 signal
won't do the trick. For times like these, you'll need to pop the cork off a bottle of strong
medicine and use the number 9, or SIGKILL, signal, like so:

kill -9 3901

The number 9 signal is something you don't want to use unless you absolutely have
to. It stops processes dead in their tracks, without giving them time to clean up after
themselves.

Note

For more information about the various Linux signals, you'll want to look at
the signal man page on your Ubuntu machine. (For some reason, the man page
on the Alma Linux machine doesn't have nearly as much information.) The
command is:

man signal

60 Controlling systemd Services

Back in the SysV days, you would use the same method to kill troublesome services, except
that you'd need sudo privileges to do it, because services don't run under your own user
account. The problem with that is that some services spawn more than one active process,
and a normal kill command might not shut them all down. Those services might linger
on as zombie processes until the operating system finally reaps them and gets rid of them.
(When I say reaps, think of the Grim Reaper who drives stakes into the hearts of zombies to
finally kill them off. Oh, wait. The stake in the heart thing is for vampires, so never mind.)
A good example of this would be the Apache service. We've already seen that the Apache
service spawns multiple processes when it starts, and that's just on a machine that isn't yet
running active websites. On an actual production web server, Apache might spawn multiple
other processes for CGI scripts, PHP scripts, or whatever else. If you ever need to kill Apache,
you'll want to make sure that those script processes also get killed, especially if they might

be doing something malicious. On my Ubuntu machine with systemd, I'll do that with the
sudo systemctl kill apache2 command. The results should look like this:

donnie@ubuntu2004:~$ systemctl is-active apache2
active

donnie@ubuntu2004:~$ sudo systemctl kill apache2
donnie@ubuntu2004:~$ systemctl is-active apache2
inactive

donnie@ubuntu2004:~$

As with the normal ki1l command, this sends a number 15, or SIGTERM, signal by
default. If you need to send another signal, use the - s option along with the signal name.
To see what happens with that, I'll start Apache back up on my Ubuntu machine, and send
it the number 9, or SIGKILL signal, like this:

donnie@ubuntu2004:~$ systemctl is-active apache2

active

donnie@ubuntu2004:~$ sudo systemctl kill -s SIGKILL apache2
donnie@ubuntu2004:~$ systemctl is-active apache2

active

donnie@ubuntu2004:~$

Killing a service 61

Oh, dear. That didn't do anything for us, did it? To see why, let's look in the apache?2.
service file. In the [Service] section, you'l find the answer:

[Servicel

Restart=on-abort

The last line in the [Service] section, the Restart=on-abort line, causes Apache
to automatically restart if it receives an unclean kill signal. It so happens that SIGKILL is
considered unclean. You can see the explanation for this in the systemd. service man
page. Open the page and scroll down to Table 2, and you'll find the different options for
the Restart= parameter as follows:

Clean exit code or
signal

Unclean exit code

Unclean signal

Figure 4.1 - Table 2 from the systemd.service man page

In the paragraphs just above and just below Table 2, you'll see explanations for the
different options and how they affect using the various kill signals.

Back on the Alma Linux machine, things are a bit different. In its httpd . service file,
there's no Restart= line. Instead, we see these lines:

[Servicel

Send SIGWINCH for graceful stop
KillSignal=SIGWINCH
KillMode=mixed

62 Controlling systemd Services

The KillSignal= line changes the default kill action from SIGTERM to SIGWINCH.
This is curious, because SIGWINCH is supposed to kill a process only if the terminal
window from which the process is running gets resized. Apache normally doesn't run
from a terminal window. Still, somebody at Red Hat apparently decided that STGWINCH
would be the appropriate signal for killing Apache gracefully, so that's how it is. The
KillMode=mixed line tells systemd to send a SIGTERM signal to the main Apache
process but to send SIGKILL to the remaining processes in the Apache control group.
The systemd.kill man page doesn't say what this line does when the preceding
KillSignal= line is set to SIGWINCH, but I would assume that it will replace SIGTERM
with SIGWINCH. Anyway, let's try to kill Apache on the Alma machine, just to see

what happens:

[donnie@localhost ~]$ systemctl is-active httpd
active

[donnie@localhost ~]$ sudo systemctl kill httpd
[sudo] password for donnie:

[donnie@localhost ~]$ systemctl is-active httpd
inactive

[donnie@localhost ~18%

It looks just the same as it did on the Ubuntu machine. Send Apache a SIGKILL though,
and you'll see something different as shown here:

[donnie@localhost ~]$ sudo systemctl kill -s SIGKILL httpd
[donnie@localhost ~]$ systemctl is-active httpd

failed

[donnie@localhost ~]$

Without the Restart=on-abort line that Ubuntu has in its apache2 . service file,
the Apache service on Alma won't automatically restart when it receives the SIGKILL
signal. Note that the is-active output shows failed rather than inactive, asit
does when you use SIGTERM or SIGWINCH. Either way, the service isn't running, so the
end result is the same.

Okay, that's all good. But what if you want to prevent a service from ever running? Well,
you'd mask it, which is what we'll look at next.

Masking a service

63

Masking a service

Now, let's say that you have a service that you never want to start, either manually or
automatically. You can accomplish this by masking the service, like this:

[donnie@localhost ~]$ sudo systemctl mask httpd
Created symlink /etc/systemd/system/httpd.service -» /dev/null.
[donnie@localhost ~]$%

This time, instead of creating a symbolic link that points back to the service file, we've
created one that points to the /dev/null device. Let's try to start our masked Apache
service to see what happens:

[donnie@localhost ~]$ sudo systemctl start httpd
Failed to start httpd.service: Unit httpd.service is masked.
[donnie@localhost ~]1$

If you change your mind, just use the unmask option.

Summary

We've covered a good bit of ground in this chapter, and even got to do some cool
hands-on stuff. We looked at how to start, stop, restart, and reload services. We also
looked at how to enable and disable services and looked at the symbolic links that get

created when we enable a service. We wrapped things up by showing how to kill a service,

and then how to mask a service. As a side benefit, we saw what some service parameters
can do for us and how the maintainers of different Linux distros can set up services to
behave differently on different distros.

But what if you don't like the way that a service is set up on the distro that you're using?

No worries. We'll discuss that in the next chapter, when we talk about editing and creating

service unit files. I'll see you there.

64 Controlling systemd Services

Questions

1.

When you run the sudo systemctl enable httpd command, what will that
do for you?

a. It will start the ht tpd service.

b. It will cause httpd to start when you boot the machine and will also do an
immediate start.

c. It will only cause httpd to start when you reboot the machine.

d. It creates a symbolic link in the /1ib/systemd/system/ directory.
What is the effect of using the normal ki1l command on a service?

a. It will shut down the service cleanly.

b. It will shut down the main service process, but it might not shut down the
spawned processes.

c. It won't shut down a service.

d. You can use ki1l without sudo privileges to shut down a service.

What is the SIGTERM signal?

a. It kills a process dead in its tracks without giving it a chance to clean up after itself.
b. It kills a process when it detects that a terminal window has been resized.
c. It restarts a process.

d. It kills a process gracefully, giving it time to clean up after itself.

How would you enable and start the ht tpd service with just one command?
a. You can't

b. sudo systemctl enable httpd

c. sudo systemctl start httpd

d. sudo systemctl start --now httpd

e. sudo systemctl enable --now httpd

What does the ExecRestart= parameter do for us?

a. It defines how to restart the service.

b. It defines how to reload the service configuration.

c. Nothing, because this parameter doesn't exist.

d. It defines how to start a service.

Answers 65

Answers
1. ¢
2. b
3. d
4, e
5. ¢

Further reading

My Managing Services video: https://youtu.be/IubDmg75n6FU

How to manage systemd services: https://www.howtogeek.com/216454/
how-to-manage-systemd-services-on-a-linux-system/

https://youtu.be/IuDmg75n6FU
https://www.howtogeek.com/216454/how-to-manage-systemd-services-on-a-linux-system/.
https://www.howtogeek.com/216454/how-to-manage-systemd-services-on-a-linux-system/.

5

Creating and Editing
Services

We've just seen what systemd services are and how to control them. Sometimes though,
you might need to either alter the behavior of a service or create a completely new one. In
this chapter, we'll look at the proper way to edit services. Then, we'll look at how to create
a new one. The specific topics of this chapter are as follows:

« Editing an existing service
« Creating a new service
 Changing the default systemd editor

+ Creating a new container service with podman

So, if you're ready, let's jump in.

68 Creating and Editing Services

Technical requirements

As before, I'll be using an Alma Linux 8 virtual machine and an Ubuntu Server 20.04
virtual machine. To perform the Secure Shell exercise, you'll need to go into the
VirtualBox network settings for both virtual machines and choose Bridged Adapter from
the Attached to drop-down list. Then, expand the Advanced menu and choose Allow
All from the Promiscuous Mode drop-down list. When you boot up the virtual machine,
obtain its IP address by opening a terminal and typing ip a. That way, you'll be able to
remotely log into your virtual machines from the command line of your host machine.

Check out the following link to see the Code in Action video: https://bit.1ly/3xP0OyOH

Editing an existing service

We've seen that the unit files for our services live in the /1ib/systemd/system/
directory, so your first instinct might be to go there and edit files in your favorite text
editor. You don't want to do that though, even though it would work. If you were to do a
system update, it might overwrite the files that you edited, and you'd lose your changes.

The proper way to do this is to create edited versions of your service files in the /etc/
systemd/system/ directory. You can do that with your favorite text editor, the same as
you would with any other configuration file. Indeed, that's the way that you used to have to
do it. When Red Hat released RHEL 7.2, they added an edit function to the systemctl
command, which makes life much easier. (Of course, that edit function is now available
on all Linux distros that run systemd.)

Note

It has been brought to my attention that some people prefer to add their own
custom unit files to the /1ib/systemd/system/ directory so that they'll
be alongside the unit files that get installed by the operating system. If you're
one of those people, please understand that this is not good practice. By doing
this, you risk getting your custom unit files either deleted or overwritten when
you do a system update. Also, keeping your custom unit files in the /etc/
systemd/system/ directory will make it much easier for you to keep
track of which unit files you've added, and which ones were installed by the
operating system.

https://bit.ly/3xP0yOH

Editing an existing service 69

Now, you might be wondering how you can know what changes you can make to a service
file. The most simplistic answer is to read the man pages for the various unit types and
look at all the parameters and options that you can add, delete, or modify. If you're like
me though, you'll start reading these man pages and soon find that they're the perfect cure
for insomnia. Don't get me wrong, the man pages are definitely useful. But if you want

to really learn how to make services sing and dance the way you want them to, the most
painless way to do it is to look at the service files that are already on your system and see
how they're set up. Then, look at the parameters that are listed in those files, and look
them up in the appropriate man pages to see what they're doing for you. As we go through
this chapter, I'll give you plenty of examples of what I'm talking about.

When you use the systemctl edit function, you can either partially edit the file or
edit the entire file. By default, you'll do a partial edit. Let's begin with the simplest example
I can think of.

Creating a partial edit to the [Install] section

Let's fire up the Ubuntu server virtual machine and add an Alias= line to the
apache2.service file. Start by doing this:

sudo systemctl edit apache2

What you'll get looks something like this:

File Edit Tabs

GNU nano 4.8

Get Help
Exit

Y Write Out E Where Is

lY Cut Text Justify Cur Pos Undo
lil Read File Replace lY Paste Text To Spell Go To Line Redo

Figure 5.1 - The systemd service editor on Ubuntu

70 Creating and Editing Services

Yeah, that doesn't look like much, does it? It's just an empty file opened in the nano text
editor. Don't worry, though. All we're going to do here is to add one parameter, and we don't
need to see the whole service file to do that. Since we're working with Ubuntu, the name of
the Apache service is apache2. Let's say that you've just come over from the Red Hat world,
and you're used to always using ht t pd as the Apache service name. Consequently, you

get frustrated when you always instinctively type the wrong service name on the Ubuntu
machine. It's kind of like if you've been used to driving with a standard transmission all

your life, and then you start stomping around for a clutch when you get into a car with an
automatic transmission. (Well, that's what I do, anyway.) We can easily fix that, but let's first
look at an example that we already have.

In another window, look at the [Install] section of the ssh.service file on the
Ubuntu machine, as shown here:

[Installl
WantedBy=multi-user.target

Alias=sshd.service
That Alias= line at the end is our example. Now, over in the nano window, type this:

[Installl]
Alias=httpd.service

Save the file and exit the editor by doing a Ctrl + X sequence. When it asks if you want to
save the modified buffer, hit the y key. Then, just hit the Enter key to accept the default
filename. Next, look inside the /etc/systemd/system/ directory. You'll see that we've
just created a new apache2.service.d directory:

donnie@ubuntu20-04:/etc/systemd/system$ 1ls -1
total 104

drwxr-xr-x 2 root root 4096 Apr 5 16:55 apache2.service.d

Editing an existing service 71

Inside that directory, you'll see the following override. conf file:

donnie@ubuntu20-04:/etc/systemd/system/apache2.service.d$ 1ls -1
total 4

-rw-r--r-- 1 root root 30 Apr 5 16:55 override.conf
donnie@ubuntu20-04:/etc/systemd/system/apache2.service.ds$

This file contains the parameter that we've just added, which looks like this:

[Install]

Alias=httpd.service

That's it — the entire file. When we start Apache, this parameter will get added to what's
already in the original service file. The beauty of this is that if the original service file were
to get replaced by a system update, you'd get the changes that were made by the update,
and you'd still have this modification.

But, before you can use this modification, you'll need to load it into the system. Do that
by doing:

donnie@ubuntu20-04:~$ sudo systemctl daemon-reload
[sudo] password for donnie:
donnie@ubuntu20-04:~$

Any time you modify or add a service file, you'll need to do a daemon-reload. When you
add an Alias=, you'l also need to create a symbolic link for it in the /etc/systemd/
system/ directory. You can create it manually with an 1n -s command, but you don't
have to. When you add an Alias= line to the [Install] section of a service file, the link
will get created automatically when you enable the service. On the Ubuntu machine, the
Apache service is already enabled and running, so we'll just disable it and enable it again.
(Note that there's no need to stop the service.) So, let's first disable Apache, like this:

donnie@ubuntu20-04:/etc/systemd/system$ sudo systemctl disable
apache2

Synchronizing state of apache2.service with SysV service script
with /lib/systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install disable apache2

Removed /etc/systemd/system/multi-user.target.wants/apache2.
service.

donnie@ubuntu20-04:/etc/systemd/system$

72 Creating and Editing Services

Now, we'll enable it again, like this:

donnie@ubuntu20-04:/etc/systemd/system$ sudo systemctl enable
apache2

Synchronizing state of apache2.service with SysV service script
with /lib/systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install enable apache2

Created symlink /etc/systemd/system/httpd.service - /lib/
systemd/system/apache2.service.

Created symlink /etc/systemd/system/multi-user.target.wants/
apache2.service » /lib/systemd/system/apache2.service.

donnie@ubuntu20-04:/etc/systemd/system$

You can see in the output that the enable command reads in the Alias= line that

we inserted into the [Install] section, and creates an httpd.service link that
points back to the original apache2. service file. We can verify that with this 1s -1
command as follows:

donnie@ubuntu20-04:/etc/systemd/system$ 1ls -1 httpd.service

lrwxrwxrwx 1 root root 35 Apr 5 17:39 httpd.service -> /lib/
systemd/system/apache2.service

donnie@ubuntu20-04:/etc/systemd/system$

Now comes the moment of truth. Can we now control Apache on our Ubuntu machine by
invoking the ht tpd service name? Let's see:

donnie@ubuntu20-04:~$ systemctl status httpd
e apache2.service - The Apache HTTP Server

Loaded: loaded (/lib/systemd/system/apache2.service;
enabled; vendor preset: enabled)

Drop-In: /etc/systemd/system/apache2.service.d
L override.conf

Active: active (running) since Mon 2021-04-05 17:19:08
UTC; 34min ago

Editing an existing service 73

Oh, yeah. It works like a champ. (Don't you just love it when a plan comes together?) To
see the service file along with your new edit, use systemctl cat, like this:

donnie@ubuntu20-04:~$ systemctl cat apache2
/lib/systemd/system/apache2.service
[Unit]

Description=The Apache HTTP Server

[Installl]
WantedBy=multi-user.target

/etc/systemd/system/apache2.service.d/override.conf
[Installl]

Alias=httpd.service

donnie@ubuntu20-04:~$

The top part of the output shows the original service file, and the bottom part shows the
override.conf file that you created.

Of course, you can also go the opposite way with this. If you're used to doing things the
Ubuntu way and suddenly find yourself administering Apache on a RHEL-type machine,
you can add an Alias=apache2.service line to the httpd. service file, and
then disable and re-enable Apache in order to create the link. The only difference in the
procedure is that on the Ubuntu machine, systemctl edit invokes the nano text
editor, and on RHEL-type machines, it might invoke the vi text editor. (The RHEL-type
distros just recently switched from vi to nano as the default systemd editor.)

Pro tip

Remember that whatever changes you make to the [Install] section of a
service file affects what happens whenever you enable or disable that service.

Okay, now that we've added a cool option to the [Install] section, let's add a few to
the [Service] section.

74 Creating and Editing Services

Creating a partial edit to the [Service] section

Let's continue on with our Ubuntu Server virtual machine, and just add to what we've
already done. This time, we'll add a few options to the [Service] section that will beef
up security a bit. Before we do that though, let's see how secure Apache really is. We'll do
that with the systemd-analyze utility.

On the systemd-analyze man page, you'll see that there are quite a few uses for this
utility. For now, we'll just cover the security option. Let's start by checking the overall
security profile for the services on our Ubuntu VM by doing:

donnie@ubuntu20-04:~$ systemd-analyze security

UNIT EXPOSURE PREDICATE HAPPY
accounts-daemon.service 9.6 UNSAFE @9
apache2.service 9.2 UNSAFE @9
apport.service 9.6 UNSAFE @9

©

systemd-udevd.service 8.4 EXPOSED C)
thermald.service 9.6 UNSAFE @9
unattended-upgrades.service 9.6 UNSAFE @9
user@1000.service 9.4 UNSAFE @9
uuidd.service 4.5 OK @
vgauth.service 9.5 UNSAFE @9

donnie@ubuntu20-04:~$

This command checks the security and sandboxing settings for each service and assigns an
EXPOSURE score to each. The higher the score, the less safe the service is. So, this is like
the game of golf, where you want to get the lowest score possible. The HAPPY column is
supposed to show little face emoticons with varying degrees of happy or sad expressions,
but the faces don't show when pasted into this book. That's okay though, because you can
see them for yourself on your virtual machine.

Now, before you get too excited about seeing that a service is marked as UNSAFE, as we see
here for the Apache service, you need to understand that this only examines the security
settings in the service files. It doesn't account for any security settings that might be in

the service's own configuration files, security options that are encoded into the service
executable file, or any Mandatory Access Control (MAC) options that might be in effect.
Still, though, this is a useful tool for suggesting ways to enhance your security settings.

Editing an existing service

75

Next, let's look at some suggestions for the Apache service:

donnie@ubuntu20-04:~$ systemd-analyze security apache2

NAME
DESCRIPTION
EXPOSURE

X PrivateNetworks=
Service has access to the host's network
0.5

X User=/DynamicUser=

Service runs as root user

0.4

X CapabilityBoundingSet=~CAP SET (UID|GID|PCAP)
Service may change UID/GID identities/capabilities
0.3

X CapabilityBoundingSet=~CAP SYS

ADMIN Service has administrator
privileges 0.3

X CapabilityBoundingSet=~CAP SYS

PTRACE Service has ptrace() debugging
abilities 0.3

There's too much output to show here in its entirety, but that's okay. Let's scroll down a bit

and show some settings that are a bit more relevant to what we want to do:

v PrivateMounts=

Service cannot install system mounts

v PrivateTmp=

Service has no access to other software's temporary files
X PrivateUsers=

Service has access to other users

0.2

X ProtectClock=

Service may write to the hardware clock or system clock
0.2

76 Creating and Editing Services

X ProtectControlGroups=

Service may modify the control group file system
0.2

X ProtectHome=

Service has full access to home directories
0.2

X ProtectSystem=
Service has full access to the 0S file hierarchy
0.2

When you see an X in front of an entry, it means that an unsafe setting is in effect. Having a
checkmark in front of an entry means that that parameter is configured with a safe setting.
But, if you go in all willy-nilly and change the unsafe settings to safe ones, you'll break the
service so that it will no longer ru