
$ 39.99 US
£ 24.99 UK
€ 36.99 EU

Prices do not include
local sales tax or VAT
where applicable

Packt Publishing

Birmingham - Mumbai

www.packtpub.com

Learn OpenOffi ce.org Spreadsheet
Macro Programming

Calc is OpenOffice.org’s spreadsheet module. Like the rest of OpenOffice.org, Calc can
be programmed using the built-in language OOoBasic. Both simple macros and complex
applications can be developed in this language by controlling Calc through its object model.
The book is compatible with StarBasic, the macro language for commercial version of
OOo—StarOffi ce.

This book teaches the OOoBasic language and the Calc object model, so that you can
manipulate spreadsheets and data from within your programs. You will also see how to create
dialog boxes and windows for friendly user interfaces, and how to integrate your spreadsheets
with other applications, for example writing spreadsheet data to a document, or capturing data
from a database, and using the spreadsheet to generate advanced calculations and reports.

What you will learn from this book
This well structured and practical tutorial will walk you though every step, and inspire you with
great ways to save time and increase your productivity using Calc.

• How to create custom Calc applications
• Creating worksheet functions, automating repetitive tasks, creating new toolbars, menus,

and dialog boxes
• A complete guide to the IDE, language, and object model
• Integrating Calc applications with other components of OpenOffi ce.org
 • Internet-based collaborative applications

Who this book is written for
You don’t need to be a programmer to use this book, but you do need to be familiar with the
concept of a program and how simple things like a loop might work. If all you have is a taster of
simple programs from high school then you will be fi ne.

Learn
O

penO
ffice.org Spreadsheet M

acro Program
m

ing
D

r. M
ark A

lexander B
ain

F r o m T e c h n o l o g i e s t o S o l u t i o n s

Learn

OpenOffi ce.org Spreadsheet
Macro Programming
OOoBasic and Calc Automation

A fast and friendly tutorial to writing macros and
spreadsheet applications

Dr. Mark Alexander Bain

Learn OpenOffice.org
Spreadsheet Macro
Programming
OOoBasic and Calc Automation

A fast and friendly tutorial to writing macros and
spreadsheet applications

Dr. Mark Alexander Bain

 BIRMINGHAM - MUMBAI

Learn OpenOffice.org Spreadsheet Macro Programming
OOoBasic and Calc Automation

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2006

Production Reference: 1041206

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-84719-097-9

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Dr. Mark Alexander Bain

Reviewer

Andrew Pitonyak

Development Editor

David Barnes

Technical Editors

Divya Menon

Saurabh Singh

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Suneet Amrute

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Design

Shantanu Zagade

About the Author

Dr. Mark Alexander Bain hasn't always been the leading authority on
open‑source software that you know him as now. Back in the late seventies he started
work as a woodsman at Bowood Estates in Wiltshire. After that he spent a number
of years working at Lowther Wildlife Park in Cumbria—it's not clear if his character
made him suitable for looking after packs of wolves, or whether the experience made
him the way he is now.

In the mid eighties there was a general downturn in the popularity of animal parks
in the UK, and Mark found himself out of work with two young sons (Simon and
Michael) but with a growing interest in programming. His wife had recently bought
him the state-of-the-art Sinclair ZX 81, and it was she who suggested that he went to
college to study computing.

Mark left college in 1989 and joined Vodafone—then a very small company—where
he started writing programs using VAX/VMS. It was shortly after that, that
he became addicted to something that was to drastically affect the rest of his
life—Unix. His demise was further compounded when he was introduced to Oracle.
After that there was no saving him. Over the next few years, Vodafone became the
multinational company that it is now, and Mark progressed from Technician to
Engineer, and from Engineer to Senior Engineer, and finally to Principal Engineer.

At the turn of the century, general ill health made Mark reconsider his career; and
his wife again came to his rescue when she saw a job advert for a lecturer at the
University of Central Lancashire. It was also she who suggested that he should think
about writing.

Today Mark writes regularly for Linux Format, Newsforge.com, and Linux Journal. He's
still teaching. And (apparently) he writes books as well.

In memory of my Father—he would've got a real real kick out of this.

Thanks to my Mother and my family for their continual (and
continuing) support and encouragement.

Thanks also to Noel Power and Michael Meeks for help with the
chapter on VBA, to Paul Hudson for introducing me to Noel and
Michael, to Andrew Pitonyak—I'm pleased that I could teach
something to even you, and to David Barnes for that email back in
May 2006.

About the Reviewer

Andrew Pitonyak is a Principal Research Scientist / Software Engineer for
Battelle Memorial Institute. He has been using OpenOffice.org since it was StarOffice
5, and he is the author of "OpenOffice.org Macros Explained", "Andrew's Macro
Document", and other OOo related documents (see http://www.pitonyak.org). He
has a Master of Science degree in computer science and another in mathematics.

In his spare time Andrew is very involved in his church, is a trained Stephen
Minister and a professional puppeteer, works on his house, and spends time with his
wife and daughter. He is an NRA‑certified firearms instructor, holds a General‑class
amateur radio license, and spends a lot of time working with his digital camera. You
can reach Andrew at andrew@pitonyak.org.

Table of Contents
Preface	 1
Chapter 1: Working with OOo's Basic IDE	 7

Before We Start	 7
Accessing the OOo IDE	 8

Controls in IDE	 11
Navigating around the IDE	 15

The Object Catalog	 15
Select Macro	 16
The OpenOffice.org Basic Macro Organizer	 18

Designing Dialogs with the IDE	 19
Summary	 24

Chapter 2: Libraries, Modules, Subroutines, and Functions	 25
Using Libraries	 25

Managing Modules using Libraries	 26
Using Libraries in a Multi-User Environment	 28
Adding a Library to the OpenOffice.org Macros Area	 33

Using Modules	 35
Writing Macros	 37

Writing Subroutines	 38
Declare Variables	 40
Assign Values to the Variables	 40
Do the Work!	 40
Inputting Variables	 40

Writing Functions	 41
Getting more Information	 41
Subroutines and Functions in Different Libraries	 42
Summary	 43

Table of Contents

[ii]

Chapter 3: The OOo Object Model	 45
Why be Interested in UNOs?	 46
Overview of the OOo Object Model	 46

The Interface	 47
The Service	 47
The Module	 48

Starting to Work with UNOs	 49
Opening and Closing Spreadsheets Automatically	 50

Online Reference Material	 54
A Real Example: Using the Table UNO to Access a Cell	 59
Services within Services	 61

Finding Included Services	 62
List of Everything You Want to Know About UNOs	 63
Summary	 65

Chapter 4: Using Macros with Spreadsheets	 67
Opening and Closing Spreadsheets	 68
Manipulating Spreadsheet Cells	 69

Using OOo's Built‑in Functions	 71
Named Worksheets and Cells 	 74

Accessing Existing Named Worksheets and Cells	 74
Creating New Named Worksheets and Cells	 75
Deleting Worksheets	 75

Working with Multiple Spreadsheets	 76
Using Ranges of Cells	 79
Summary	 79

Chapter 5: Formatting your Spreadsheets	 81
The Most Basic Formatting—Column and Row Dimensions	 82

Optimizing Column Widths 	 83
Optimizing Column Widths across a Whole Worksheet	 83
Setting Fixed Widths and Heights	 84
Hiding Columns	 84

Formatting the Printed Page	 84
Adding a Page Break	 84
Defining a Print Area	 85
Setting the Header and Footer	 85
Adding Page Numbers	 86
Setting the Page Size and Orientation	 87

Customizing Worksheet Names	 89
Updating the Document Information	 89

Table of Contents

[iii]

Formatting Cells and Ranges of Cells	 91
Changing Cell Styles	 92
Changing Cell Formats	 93

Cell Background Colors	 93
Text Colors	 93
Cell Fonts	 94
Character Heights	 94
The Underline	 94
Word Wrapping	 95
Number Formats	 95

Online Reference Material	 97
Summary	 98

Chapter 6: Working with Databases	 99
Accessing Databases	 100

Which Databases can We Use?	 100
Registering the Database as an OOo Data Source	 101
Viewing Registered Data Sources	 102
Connecting to a Database	 103
Accessing Database Tables	 103

Running Queries on the Tables	 106
Putting it All into a Spreadsheet	 108

Loading Data into Custom Worksheets	 109
Adding New Records to the Database	 113
Updating the Database	 116
Summary	 118

Chapter 7: Working with Other Documents	 119
The OpenOffice.org Chart 	 120

Inserting a Simple Chart into a Spreadsheet	 120
Formatting OpenOffice.org Charts	 122

Chart Size	 123
Chart Title	 123
Adding Chart Axis Labels	 124
Y Axis Text Orientation	 124
A fully Formatted Bar Chart	 124
Other Chart Types	 126

Using Documents from Other Sources	 127
Stock Market Analysis—Yahoo! Finance	 128

Importing an Historical CSV File from Yahoo! Finance	 130
Comparing Companies within Yahoo! Finance	 134

Processing Web Pages	 136
Summary	 140

Table of Contents

[iv]

Chapter 8: Developing Dialogs	 143
Using OpenOffice.org's Built-In Dialogs	 143

Customizing Message Boxes	 144
Customizing Input Boxes	 145

Developing your Own Dialogs	 146
Creating a Dialog	 146
Loading a Dialog	 147
Assigning Actions to a Dialog	 148
Using Information in a Dialog	 152
Populating Controls in a Dialog	 153
The Finished Dialog	 155

Finding Further Information	 159
Summary	 159

Chapter 9: Creating a Complete Application	 161
Making Macros and Dialogs Available to Everyone	 161

Creating a Global Library	 163
Using a Global Library to Automate OOo Calc	 165

Running Macros Automatically when Calc Opens	 165
Adding Macros to the OpenOffice.org Calc Menu	 168

Adding a Macro to the Menu Manually	 168
Distributing a Menu	 172

Keeping It All Hidden	 174
Running Macros from the Command Line	 176

Running Macros in Linux	 176
Running Macros in MS Windows	 176

Creating Background or Batch Processes	 177
Running Background Processes on Linux	 177
Running Background Processes on Windows	 178

Sending Emails	 180
Summary	 182

Chapter 10: Using Excel VBA	 183
The Current State 	 184

OpenOffice.org's Excel VBA Support under MS Windows	 184
OpenOffice.org's Excel VBA Support under Linux	 185

Installing SUSE Linux 10.1	 186
Building OpenOffice.org from Source	 187

Building on Linux	 187
Support your Local OpenOffice.org Issue	 188

Table of Contents

[�]

Importing an Excel Spreadsheet that Contains Macros	 189
Opening Up an Excel Spreadsheet	 190
Viewing Code without VBA Support	 190
Viewing Code with VBA Support	 190
Closing your Spreadsheet	 191

Starting to Code with Excel VBA in Calc	 192
Combining VBA Code and OOo Basic Code	 192

Comparing VBA and OOo Basic Code	 193
Simplifying Code	 193
VBA—No Strings Attached	 194
Getting the Right Cell Position	 195

Using Named Cells and Ranges	 196
Further VBA Examples	 197

Using Active Cells and Cell Offsets	 197
Using the Workbooks Object	 198
Using the Worksheets Object	 198

Further Information	 199
Summary	 199

Index	 201

Preface
What would you say if I asked you to name the thing that had the greatest impact
on Western Society in the second half of the 20th Century? Chances are you'd say the
PC—the ubiquitous Personal Computer. But that's only half the story; it wasn't
the PCs themselves that caused the revolution. After all, I got my first PC, a Sinclair
ZX 81 back in 1981, and although it made an interesting hobby, it certainly wasn't
life changing.

By the end of the 80's I was using something that anyone today would recognize
as looking like a PC, but it was still very primitive. Apart from running a word
processor called Lex-WP, it was really just an interface to VAX and Unix servers.

So, what was it that turned the PC from just a useful tool into the essential, number
one requirement for any business? One answer is Excel—we can even put a date to
the start of this revolution—November 1987.

After starting life as Multiplan, Excel became available to everyone who was running
Microsoft Windows (and who had the money). Overnight, virtually every major
business became addicted to the software; and Microsoft became the giant that we
know and love today.

It's not really a surprise that Excel was so successful. It was an application with
which you could organize your information to analyze and manipulate your data.
You could even extend the basic functionality by using macros.

And that's pretty well how things remained for the rest of the century.

However, things were about to change.

In January 1998, a new term was introduced in a meeting at Palo Alto in
California—open source. Then in 2000, Sun Microsystems informed the world
that they were going to join the open‑source community; so on 13th October, 2000,
OpenOffice.org was born.

Preface

[�]

Today, the realm of the professional spreadsheet is not just limited to those that can
afford it. Today even the smallest business or individual user can use Calc, and (as
we'll see in this book) we can take the basic application and bend it to our own will.

Now that's a revolution.

What This Book Covers
Chapter 1 introduces you to the tools that you'll need in order to write your own
macros. By the end of the chapter you'll have become acclimatized to Calc's
development environment, and you'll know which buttons to press to make your life
a little bit easier.

Chapter 2 starts to make use of the basic building blocks that you'll need for your
macros: Libraries, Modules, Subroutines, and Functions. By the end of the chapter
you'll have your first macro up and running.

Chapter 3 gives an overview of the objects that are built into Calc, and which we can
make use of in order to create macros that perform quite complex operations; we'll
see just how easy they are to use. We'll also see where to get further information on
these objects.

Chapter 4 is where we really get into writing macros. Here you'll learn how to
manipulate the contents of one (or more) spreadsheets—and after all, that's what
we're here for, isn't it?

Chapter 5 looks at how we can format the data contained in our spreadsheet—it
doesn't matter how accurate our data is, if all of the columns overlap each other
making the contents impossible to read.

Chapter 6 is an introduction to databases—how to access them, how to display the
results of queries in a spreadsheet, and how to change the contents of the
databases themselves.

Chapter 7 explains how to make use of other documents (such as charts) within Calc,
and how they can be sources of information; for instance, the contents of websites.

Chapter 8 moves away from purely writing code, and shows how you can build a
user interface—by building your own dialogs.

Chapter 9 brings everything together. By the end of the chapter you'll be able to create
and distribute a complete application.

Chapter 10 takes a look into the future of Calc, and what to do if you're moving from
Excel to Calc but don't want to have to rewrite all of your code.

Preface

[�]

What You Need for This Book
You don’t need to be a programmer to use this book, but you do need to be familiar
with the concept of a program and how simple things like a loop might work. The
book is compatible with StarBasic, the macro language for commercial version of
OOo—StarOffice.

As you progress through the book, you'll find that some of the issues we deal with
only relate to the most current versions of OOo. At the time of writing, all of the code
in Chapters 2-9 works for version 2.0.4 on Windows and 2.0.2 on Linux. Chapter 10
is another story—that really is on the cutting edge, and for that you'll need Novell's
version of OpenOffice.org.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Don't
forget that Main must be the first macro in the module."

A block of code will be set as follows:

 Dim fname as String
 Dim sname as String
 Dim username as String

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Sub click_cmd_view_symbols
 Dim oTxt_company as Object
 Dim oLstCompanySymbol as Object
 oTxt_company = oFinance_dialog.getControl("txt_company")
 oLstCompanySymbol = oFinance_dialog.getControl("lstCompanySymbol")
 oLstCompanySymbol.AddItem(oTxt_company.Text ,0)
End Sub

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of. To send us general feedback,
simply drop an email to feedback@packtpub.com, making sure to mention the book
title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Working with OOo's Basic IDE
You always know a thing is good if it's got a TLA (that's a Three Letter
Abbreviation). By the end of this chapter you will be fluent in a double TLA—the
OOo IDE. The OpenOffice.org Integrated Development Environment is our interface
into the world of writing OpenOffice.org Calc macros.

If you already know your way around OOo, then jump on to Chapter 2 where we'll
start looking at writing macros. If, however, you're still new to all of this, then spend
some time learning about the IDE. This is where we'll do all of our work—and so
in this chapter we'll spend our time getting acclimatized to it. We will see how to
manage macros, how to navigate around the IDE, and how to start designing dialogs.

And by the way, by 'OOo's Basic IDE' I don't mean that it's low-level. By 'Basic' I
mean that we'll be using OOo Basic as the programming language.

Before We Start
As you're reading this chapter, you may want to follow the examples on your own
PC. When you do, you'll probably see differences in the way that the screens look.
Don't worry—that's because the look and feel varies according to the OS (Operating
System) that you're using. For instance, here are the OOo start‑up screens for Debian
3.1 and SUSE 10.1, respectively:

Working with OOo's Basic IDE

[�]

And a little advice—before you do anything else, make sure that you save your
spreadsheet with a sensible name, something that is meaningful to the project that
you're currently working on. In this case, we'll be look at a spreadsheet for Penguin
P.I.—Private Investigator in the dark world between Windows and Linux.

Accessing the OOo IDE
With our appropriately named Calc spreadsheet open, getting into the IDE
(regardless of the OS that you're using) is simple enough:

Chapter 1

[�]

Start with creating a new Calc document and save it with the name
penguin_private_investigators.ods. Next, use Tools | Macros | Organize
Macros | OpenOffice.org Basic... to open the Basic IDE.

You'll notice that other than OpenOffice.org Basic, you actually have a choice of three
languages in which you can work:

Python (a common object-oriented programming language)
BeanShell (a Java scripting language)
JavaScript (the scripting language behind many web pages)

That's good, because it means that if you already have skills in one of these then
you don't need to learn a new programming language. However, we will be only
working in OpenOffice.org Basic, and so that's the option to choose from the menu.

As soon as you click on OpenOffice.org Basic..., you'll be presented with the
OpenOffice.org Basic Macros dialog:

It's from here that you can choose where to create your first macro. However, you've
got a choice of areas in which to create it. You can see that there are three groupings,
and each one is used for a different purpose:

1.	 My Macros: If you want a macro to be used in all of your spreadsheets then
store it here. This is useful for commonly used functionality, but don't forget
—if you email your spreadsheet to someone else, then the macros won't work
(because, of course, each user will have their own 'My Macros').

•

•

•

Working with OOo's Basic IDE

[10]

2.	 OpenOffice.org Macros: If you want to write a macro that's to be available
to spreadsheets used by all users on your system, then store it here.
'OpenOffice.org Macros' is a system directory, so on Linux you will need root
privileges to do this.

3.	 penguin_private_investigations.ods: (You will, of course, see the name
of your own spreadsheet here.) If the macro is to be embedded in the
spreadsheet, and not to be used elsewhere, then store it here. Use this storage
method if you are going to email your spreadsheet to someone else to use, or
if you're going to store it on a network drive.

So, at the moment, we're only really going to be interested either in using My Macros
or for the macro to be embedded into the spreadsheet.

When you are ready, highlight either My Macros or your new spreadsheet, then
click New. You'll now be presented with a New Module dialog box:

And what is a module? Quite simply—a module is a file in which you'll store all
of your code (we'll learn more about the structures of modules and macros in
Chapter 2).

At this point, the best bit advice I can give you is—Don't Click 'OK'. Well, not yet
anyway. Why? Because you need to break a bad habit before it starts. If you save
this module as 'Module1' then the next will be 'Module2', then 'Module3', and so
on. Well, you get the picture don't you? At the moment we have no modules, but
imagine that we've got 5, or 10, or 100, or imagine that you come back to your
modules in six months time or a year. How can you possibly remember what each
module is to be used for?

So make your life easier by naming the module sensibly (just as you did with
the spreadsheet):

Chapter 1

[11]

Now you can click OK, and you'll have a module with a name that has meaning,
whenever you come back to it.

At last! We're finally looking at the OOo Basic editor:

It's in this window that we'll be spending most of our time, because this is where
you'll write all of your macros. Notice one interesting thing: OOo kindly creates a
macro for you—Main. You can remove this if you wish; it just shows you the format
that OOo expects.

Controls in IDE
It's tempting to just jump straight in and start writing your code. However, it will be
worth your while spending some time looking at the controls of the IDE and seeing
how they can help you develop even better macros. So that's what we're going to
do next.

If there are only two buttons that you ever use in the IDE, they are these:

The Save button: Use it a lot. Don't come crying to me when you've just written 500
lines of code, accidentally introduced an infinite loop, crashed the OOo IDE, and lost
all of your work—just because you didn't press the save button (of course, if you
don't use the button make sure that you use: File | Save).

Working with OOo's Basic IDE

[12]

The Run button: Obviously once you've written some code, you'll want to see it in
action. If you click this button, then OOo will run the first macro in the module.

If you remember, we saw that screens may not always look the same—depending on
whether you're Windows or Linux, and which version of Linux you're using. This is
one of those cases. If you don't recognize the run button above, then your one may
look like the following:

If all goes well, then those are the only two buttons you'll need. Just write the code,
save it, and run it. Unfortunately this is the real world, and most people will tell you
Sod's law—If anything can go wrong, it will go wrong. There are also those that will
add an addendum—If anything can't go wrong, it will go wrong. And then there are
a lot of people who think that all the others are being just a little bit too optimistic.

If things do start to go wrong, then you may find that the Stop button comes in
handy. Clicking this button will stop the macro from running and return to edit
mode in the Basic editor window:

Occasionally you may find that you have to amend your code, but you don't want to
actually run the macro (let's say, for instance, it's a macro that writes information to a
database). If this is the case, then you can use the Compile button. This will check the
syntax of the macro without running it.

You may find that the button may look different depending on your system, for
example, we've just seen the Compile button for Linux, so here's the button
for Windows:

Having written the macro and compiled it, things may still not be running as you
think they should. Fortunately, the OOo IDE can help you analyze exactly what's
going on.

Chapter 1

[13]

If things aren't running exactly as you expected, or even if you just want to see
what's going on inside your macro, then the IDE has the tools to help you. Three
buttons that you'll find very useful are:

Step Into: This allows you to run the code one line at a time so that you can see
exactly what's going on

Step Over: As you're stepping through the code, you may come across a call to
another macro. If you don't want to step through that macro and just want to run it
as a single command, then use the Step over button.

Step Out: When you've stepped through all of the code that you want to see
running, then use this button to end and let the current macro that you're in finish
running normally.

You'll find these buttons extremely useful as you try to understand what's going
on with your macros, especially if something is going on that you don't quite
understand. You can gain even more understanding by using another button.

The Watch button: As you step through the macro the values of variables in the code
are going to change. To see these changes all you have to do is select the variable (in
code window), click the watch button, and then step through the code, and watch the
values as they are displayed in the watch window.

Now we're able to see exactly what's going on in the macro:

The marker on the left‑hand side tells you exactly where your are in the code.
The watch window at the bottom left shows you the current value of your
selected variables.
The window at the bottom right gives you information on which macros are
being called; this can be particularly useful if one macro calls another.

•

•

•

Working with OOo's Basic IDE

[14]

"Hang on", I hear you say, "What happens if I've got 100 lines of code, or 1000?
I don't want to have to step through every one of them to see the status of a variable."
Quite right too! This is where we can make use of the Breakpoints button.

Select the line of code in the macro that you want to monitor. Click the Breakpoint
button. You will see a red dot appear in the left-hand border (or you can double-click
in the left hand border to toggle a break point on or off). The Breakpoint button looks
like the following:

Now you can click the Run button—the macro will start working, but will pause on
the line where you placed the breakpoint, and you can view the Watch window and
the Calls window to see what's going on. When you're happy, you can click the Run
button again and the macro will resume its operation.

You're not just limited to one breakpoint, you can mark as many lines as you need.
If you do use a number of them, then it can become laborious to scroll through all
of the code to see where they are. To make life easier use the Manage Breakpoints
dialog, after clicking the following button:

Chapter 1

[15]

The Manage Breakpoints dialog will tell you the line numbers on which you have
breakpoints, and you can activate, deactivate, or delete them.

So far in this chapter we've covered all of the crucial elements of the OOo Basic
editor part of the IDE. We've seen what each part of the screen is for, and we've also
seen how to use the key buttons. You may now feel that you want to start actually
writing macros. If that's the case, then you're ready for Chapter 2.

However, there are still some more elements of the IDE that you'll find useful, and
are there to make your life easier.

Navigating around the IDE
In all probability you'll find that before long you've written dozens of macros. If
you're writing a more complex application, then this may even run into hundreds
of macros. When it comes to maintaining the macros, you can make this easier by
organizing your layout. For example, you could write the macros in alphabetical
order or group them according to functionality. But come on—scrolling up and
down the screen is not the most efficient way of finding the macro that you want.

So is there an easier way for us to move from macro to macro? Of course there is. In
fact there are a few ways, and we'll look at them now.

The Object Catalog
The first thing that you'll need to do is find the Object Catalog icon on the
IDE toolbar:

Working with OOo's Basic IDE

[16]

If you've got the Object Catalog open, then you just have to click on the macro that
you want to edit and OOo will move to it in the Basic IDE.

You can keep this window open while you're working; however, you will notice that
any new macros that you write will not automatically appear in it. In order for the
new macro to appear just minimize the module (penguin_pi_module in the above
example) by clicking the minus sign. Expand it again (you'll see a plus sign next to
the module name) and then the new macro name will appear in the window.

Select Macro
The next button to find on the IDE gives us access to the Select Macro dialog. You'll
need to find an icon that looks like:

If you can't see the icon above, then have a look for:

Once you've found the right button you'll be able to call up the OpenOffice.org Basic
Macros dialog:

Chapter 1

[17]

You may be thinking that this screen looks familiar. In fact, if you care to look back
to the start of this chapter, then you'll see something very similar—it looks just like
the very first dialog that we came across (if you remember, we accessed it from the
menus by clicking on Tools | Macros | Organize Macros | OpenOffice.org Basic).
There are, however, some key differences:

The Existing macros in box is now populated with the macros that
you've written.
The Run, Assign, and Edit buttons are now enabled.
There's no New button; it's been replaced by Delete.

So is this the same screen? Well, yes it is, and you can prove that to yourself by
clicking on My Macros—immediately the buttons will change so that the screen
looks like the first one that we saw. Click back on to our module and the buttons will
change back again.

You'll probably be able to guess what most of the buttons do (such as Run, Edit,
and Delete), but what about Assign...? If you click the Assign... button, then a new
window will open:

•

•

•

Working with OOo's Basic IDE

[18]

You'll find this is a very useful screen; with it you can assign any of your macros to
menu items, toolbar buttons, or even window events. For instance, by using this you
could automatically run a macro every time that you open your spreadsheet.

If you close this window (for now) and return to the OpenOffice.org Basic Macros
dialog, then there's another button that you may be wondering about—Organizer....
Click it and you'll see the screen for the OpenOffice.org Basic Macro Organizer.

The OpenOffice.org Basic Macro Organizer
A dialog that you'll see a lot of is the Basic Macro organizer:

Chapter 1

[19]

You can also get to this screen from a couple of other places as well:

There's a button on the Basic Editor toolbar. The icon varies from system to
system, but look for one of these two:

There's a menu selection on the spreadsheet—click on Tools | Macros |
Organize Dialogs....

If you look at the form you'll see that it has three tabs—Modules, Dialogs, and
Libraries. We'll be looking at Modules and Libraries in Chapter 2, but for the time
being just remember:

Libraries are storage areas for grouping modules and dialogs.
Modules are storage areas for grouping macros.
Dialogs are used to create buttons, combo-boxes, and all the normal things
that you would expect in any GUI (Graphical User Interface).

Designing Dialogs with the IDE
You can create a dialog to provide a user interface for your macros. We'll be looking
at dialogs in depth in Chapter 8, but for now we'll see how we can create dialogs
using the IDE:

Open up the OOo Basic Macro Organizer dialog box (you can open it by any
of the methods that we've already discussed), and select the Dialogs tab.

•

•

•

•

•

•

Working with OOo's Basic IDE

[20]

Next select the library in which you want to store the dialog. In the example
on the previous page you can see that we're using the Standard library in our
penguin_private_investigators spreadsheet. Do that and you're ready to
click New to create the dialog.

If you cast your mind back to when we created our module, then you'll
remember that we didn't use the default name that OOo gave us. This is
just the same. Using the default 'Dialog1', 'Dialog2', etc. will only lead to
confusion later on. So, we will choose a sensible name—something that has
some meaning for the project:

Having chosen a suitable name you can click OK, and OOo will create the
new dialog for you:

You'll see that OOo will take you back to the Organizer dialog box and not to
the newly created dialog. This means that you can create all the dialogs that
you're going to need before you continue. Once you've created all the ones
that you want, or if you're only going to create one at the moment, then click
on Edit to continue.

•

•

•

•

Chapter 1

[21]

If you stop to look at the Macro Editor, then you'll realize that it is actually
the same Basic editor that we've already been working with. In fact, if you
look at the bottom of the screen, then you'll see a tab for the module that
we've already created, and you can easily switch between the two. This is
important because we have to write the code as a macro and then assign
the macro to an object in the dialog (such as a button, combo-box, etc.).
Technically speaking, you can configure Controls to call your macros when
Events occur.

•

Working with OOo's Basic IDE

[22]

It's easy to design your new dialog, just add the objects from the Toolbox
toolbar. (Click on the one that you want and then use the mouse to drag it to
the correct position on the dialog itself. Don't forget, if the Toolbox toolbar
is not displayed, you can use View | Toolbars | Toolbox.) If you've drawn
an object (such as a button), and then decide that it's in the wrong place, or
too big, or too small, then just click on it and you can resize or reposition it.
If you decide that you don't need it at all, then click on it and press the Delete
key on your keyboard.

With very little effort you'll end up with a professional looking dialog:

"But mine doesn't look like that", I hear you cry; "All the buttons and labels display
things like CommandButton1 and Label1". That's soon remedied—just use your
mouse to right-click on the object and then select Properties:

•

Chapter 1

[23]

Once you're in the Properties screen, edit the Label field to change the text that
you want to be displayed on the label or button. And while you're here, change the
name of the object to something more meaningful—just as we don't want modules
called Module1, Module2, or dialogs called Dialog1, Dialog2 nor do we want loads
of buttons all called CommandButton1 or CommandButton2. For instance, if we're
going to use a button to view all of Penguin P.I. cases, then name it btnViewCase or
maybe cmdViewCase.

Now, you may have noticed that there is a second tab called Events:

If you're desperate to know more about working with dialogs, and already have
some knowledge of macros, then you may now want to move on to Chapter 8. There
we'll see how to use this dialog to assign macros to any event on the dialog that
you've designed here; for example running a macro when you click on a button.

However, if not then it's time to move on to Chapter 2 where we'll look in depth at
how to use the OOo Basic IDE to write macros.

Working with OOo's Basic IDE

[24]

Summary
In this first chapter, we've had a look at all of the elements that make up the OOo
IDE, and how to call them up. If you've just opened a spreadsheet:

For the OOo Basic Editor click on Tools | Macros | Organize Macros |
OpenOffice.org Basic...
For the OOo Basic Organizer click on Tools | Macros | Organize Macros |
Organize Dialogs...

Remember that you can store modules in one of three areas—My Macros,
OpenOffice.org Macros, or embedded in the spreadsheet.

We have seen different useful buttons in the OOo Basic editor toolbar. We have also
seen how to navigate around the IDE using the Object Catalog, Select Macro, and the
OOo Organizer (remember there may be an alternative icon).

The OOo Basic editor is used for both writing macros and designing dialogs. If you
are using the OOo Basic editor to design a dialog, then change the text on an object
(such as a button or label) by using the properties window. You can also use the
properties window to assign macros to the objects.

We've now covered the OOo IDE, and you're now able to navigate around it and use
each of the elements in it. In Chapter 2 we'll be using the IDE some more when we
look at libraries, modules, subroutines, and functions.

•

•

Libraries, Modules,
Subroutines, and Functions

In Chapter 1, we learned about the OOo IDE, how to navigate around it, and how to
use the different elements built into it. In this chapter we'll carry on using the IDE,
but now we'll be learning:

How to write macros
The difference between subroutines and functions
Using variables in macros
How to make the best use of modules and libraries

By the end of Chapter 2, you'll be able to start adding your own custom functionality
into OpenOffice.org Calc.

Using Libraries
Before we start writing macros, we'll have a look at libraries—you'll recall from
Chapter 1 that macros are stored in modules, and modules themselves are stored in
libraries. Libraries can be in one of the three areas:

My Macros: The location common to all of your own macros
OpenOffice.org Macros: The system-wide location for macros
Embedded in a spreadsheet: Accessible by a single spreadsheet

You may also remember that when we came to create a module, we didn't have
to create a library; OOo did that for us, setting up one called Standard. This is a
mandatory library, and the OOo IDE will not let you delete it or rename it. Unless
you instruct the IDE otherwise, all of your new modules will be placed in Standard.

•

•

•

•

•

•

•

Libraries, Modules, Subroutines, and Functions

[26]

Now, you may think that this is all that you need to know about libraries and that
you're quite happy with using the OOo's Standard library. However, before we move
on, there are a couple of reasons why you might consider using your own libraries
and not the default one:

1.	 You want to manage your modules more effectively.
2.	 You work in a multi-user environment.

We'll have a look at both of those points in a bit more detail.

Managing Modules using Libraries
Let's think about our example company—Penguin P.I.‑Private Investigator in
the dark world between Windows and Linux. When its founder, Pygoscelis
P. Ellsworthy, started his business, he was able to work with a single spreadsheet
(penguin_private_investigators.ods). Pygoscelis wrote a number of macros and
carefully placed them in modules according to their purpose, and with the modules
placed in the Standard library. However, he soon found that these modules didn't
really fit together; some were specifically for his field operative—the famous
femme fatale� ��� Korora Blue. Others were specifically for his office clerk—Sphen
Dermersus. Pygoscelis realized that the solution was simple—split the modules into
different libraries.

If, like Pygoscelis, you wish to make use of custom libraries, then start by going up the
OOo Basic Organizer (the easiest way is to open up a spreadsheet and then click on
Tools | Macros | Organize Macros | Organize Dialogs), and select the Libraries tab.

Chapter 2

[27]

The dialog may look slightly different compared to the screenshot opposite; this may
vary according to the flavor of Linux that you're using and the particular version
of OpenOffice.org that you've got installed. The key difference that you may see is
that you won't see the Import button, instead you'll see an Append button; but don't
worry they do the same job.

Whichever style you've got just make certain that the Location shows My Macros &
Dialogues. And, as you may expect, only the Standard library exists at the moment.

So, to create your own library, just click New and you get the following dialog box:

We've seen this type of box before (when we created new modules and new dialogs)
and so you know not to use the default name, but instead change the name to
something more appropriate:

Within a few minutes you'll have all of the libraries that you need for your project:

Libraries, Modules, Subroutines, and Functions

[28]

Now you're ready to create modules in your new library:

If you're worried about modules that you've already created, just expand the
location of the existing module, and then use the mouse to drag-and-drop it into
your new library:

Having seen how useful libraries are when it comes to managing modules,
we can now have a look at why libraries become even more important in a
multi-user environment.

Using Libraries in a Multi-User Environment
Let's look at one particular Friday in the Penguin PI agency. Pygoscelis was (as
always) very busy. As soon as Korora and Sphen arrived, he called them into his
private office.

"Listen" he said, "this case is about to break. I'm meeting a contact later today—he's
got a disk with data that we need. However, it requires analyzing. You'll have
to write the macros to do that, and I'll run them tonight. Save them into your My

Chapter 2

[29]

Macros area and then I can import them into my spreadsheet." With that he put on
his false beard and left for his appointment.

Korora and Sphen spent the whole day working on their macros. Everything worked
perfectly, and at the end of the day each left a note on Pygoscelis's desk telling him
that everything had been done. Then they both headed off for the weekend.

Later that night, Pygoscelis rushed back into the office. He knew that he was being
followed, and had only minutes to run the macros. He read the note that Korora
had left him and saw that she'd created a library called ppi_field_operations. He
quickly loaded it. Outside a car screeched to a halt.

Next, he tried to import Sphen's macros. However, to his horror he found that Sphen
had used the Standard library; he was unable to import it. Then he heard a sound,
looking up he saw the handle of the door slowly turning...

I'm sure that you get the moral of the story immediately—you can import a named
library, but the standard one is going to cause you problems.

The process of loading someone else's library is actually very easy: Go to the
Libraries tab of the organizer and click Import (don't forget you may see Append
instead of Import):

It's worth thinking about the word Import for a moment. OOo will import the
library you select into the area you choose (for example My Macros or the
spreadsheet itself).

Libraries, Modules, Subroutines, and Functions

[30]

As soon as you click the Import button, OOo will present you with a dialog box. You
can use this to move to the location of the library that you're going to import; you
must of course have read rights on the directory (or folder) where the library is stored.

You'll notice that the library is actually a directory containing two files:

dialog.xlb: containing dialog indexes
script.xlb: containing module indexes

If you look in the directories, then you'll also find one or more xba files—these are
the module definition files and contain the actual macros themselves. If you examine
any of the files, then you'll find that they are written in XML (eXtensible Markup
Language). However, don't edit them yourself, leave that to the automatic processes
in OOo.

At this stage you might be experiencing a little bit of a problem: you can't find the
OOo directory at all. That's because the location where OOo stores it files varies
according to the system that you're using. For example:

Suse 10.1: /home/<user>/.ooo-2
Debian 3.1: /home/<user>/.openoffice.org2
Windows XP:
Documents and Settings/<user>/ApplicationData/OpenOffice.org

If none of these look familiar, then you'll need to search your system for the 'basic'
directory or for the name of the library. However, don't forget that if the library
belongs to another user, then they need to give you read-only access to it. Without
that the library will not be available to you.

•

•

•

•

•

Chapter 2

[31]

Once you do find the library and the owner has given you read access to it, then
select the relevant xlb file and click OK.

You've now got the choice of how you want to insert the library. You can either:

1	 Import a copy of the library: Useful if you want to make your own changes to
it. However, don't forget that the original will remain unaffected.

2.	 Create a link to the library: This gives you read-only access to the library,
meaning that you can run the macros but can't make any changes to them.

You also have the option to overwrite existing libraries. Be very careful with this, if
you have a library with the same name as the one that you're trying to import, then
you'll destroy any code already in your existing library.

This is of course the problem that Pygoscelis had with Sphen's library; both Pygoselis
and Sphen had a library named Standard in their My Macros area.

If you try to append the library, then OOo will tell you:

And if you persist and try to overwrite the Standard library, then you'll get a
polite refusal:

Libraries, Modules, Subroutines, and Functions

[32]

However, do be warned: OOo will allow you to overwrite custom libraries, so be
careful when importing.

When you have decided to use the Import button to fully import a library, you will
see it in the Organizer Library tab:

As we've already seen you can import a library as a link by marking the Insert as
reference checkbox:

This time when you look at the Organizer, you'll see that location of the new library
is shown by the library name:

The big advantage of using a reference library is that you have access to other
developers' macros, greatly extending the functionality of your own spreadsheets.

There is, of course, a disadvantage: you can't guarantee that any referenced libraries
will not be modified or even deleted. If you do rely on such a library, then you
should consider moving it into the OpenOffice.org Macros area.

Chapter 2

[33]

Adding a Library to the OpenOffice.org
Macros Area
If you've got a library (either your own or someone else's) that you want a number
of people to use, then you can (as we've seen) append it into the My Macros library
container. This works well, but there are a couple of disadvantages:

1.	 If you fully import the library, then you end up with multiple copies of each
library. The question will then arise at some point "Which is the correct
version?"

2.	 If you append the library as link, then it will be subject to change or even
deletion without your control.

The obvious solution is to append it into the OpenOffice.org Macros area.
However, if you try to do that via the Organizer, then you'll find that the Import
button is disabled:

Having tried that, it may occur to you that it would be wrong for just anyone to
be able to add files into such an important area, and this should actually be left to
a system administrator. However, even if you log on with administrator rights on
Windows or as root on Linux, you'll find exactly the same thing—the Import button
is disabled.

Libraries, Modules, Subroutines, and Functions

[34]

In fact this is a task that must be done outside of the OpenOffice.org application while
it is not running.

Before moving on, let's review what we've already learned about the structure
of libraries:

1.	 A library is stored as a directory.
2.	 The directory contains two xlb files for indexing the modules and dialogs.
3.	 The directory contains one or more xba files; these are the module definition

files and contain the macros (or dialogs).

So the solution seems obvious enough; just copy a user's library into wherever OOo
stores its own commonly accessed libraries.

However, first you need to find the location where OOo stores the libraries that
you can access via Openoffice.org Macros. From what we've seen already, you can
probably guess that this location will vary according to the particular operating
system that you're using. This time you won't need to search around the system
to find it, just look in the Libraries tab of the Organizer. There you can see the link
details for each of the global libraries:

Having found where to place the library, all you have to do is move to the directory:

cd /usr/lib/ooo-2.0/share/basic

Then copy the library into the correct location. Remember that you will have to have
system administrator authority to do this:

cp -r ~bluek/.ooo-2.0/user/basic/ppi_field_operations/ .

That's all it takes to set the library up; however, you won't be able to access it from
your own account . If you fire up OOo Calc and have a look at the Organizer, you
won't be able to see the new library—not quite yet.

Chapter 2

[35]

The list of OOo libraries that you can see is stored in your user account under the
OpenOffice.org directory. You'll need to edit this script.xlc file and it'll be located
at somewhere like:

/home/ellsworthyp/.ooo-2.0/user/basic/script.xlc

When you edit the file using your favorite editor (notepad, nano, emacs, etc.), then
you'll see that it contains the list of links to libraries, using the XML format. You just
have to add a line telling OOo where to find the new library:

<library:library library:name="ppi_field_operations"
 xlink:href="$(INST)/share/basic/ppi_field_operations/script.xlb/"
 xlink:type="simple" library:link="true" library:readonly="false"/>

Now when you restart Calc you'll find that the library is visible in the Organizer:

With this you are now able to:

Create custom libraries
Make use of other users' custom libraries
Make a library accessible to any user

And Pygoscelis? Suddenly he realized that Sphen's Standard library was a directory
with XML files. Quickly he saved it to disk, shoved it in his pocket, and headed for
the window. As his off﻿ice door burst open, he was already at the bottom of the fire-
escape—this was not over yet, not by a long way.

Using Modules
Having just dealt with Libraries, we'll recap what we learned about modules in
Chapter 1:

One or more modules can be stored in a library.
Modules can be one of two types—script (containing macros) or dialog.

•

•

•

•
•

Libraries, Modules, Subroutines, and Functions

[36]

You have to create a module before you can write any macros.
When you create a module make sure that you give it an appropriate name;
names like 'Module1', 'Module2', or 'Module3' aren't of any use to anyone.

We've also learned something new about modules while we've been
discussing libraries:

Libraries are actually directories that contain two key files—script.xlb and
dialog.xlb. These are the indexes to all of the modules in the library.
Modules are actually xba files in the library directory. These contain the
dialog definitions or the code for macros.

We're nearly ready to start writing macros, but there are a couple of points to
consider before moving on. The first is renaming modules—you may not always
name a module correctly, or you may decide that it's name isn't appropriate:

Use the Organizer to change the name of a module. Just click on the module name
(you may have to click a couple of times), and then you can change the text to
whatever is suitable for your project:

•

•

•

•

Chapter 2

[37]

While you're looking at your modules, you may decide that they are in the wrong
library, for example, if you've created them all in Standard instead of a custom
library. In such a case, you can drag‑and‑drop modules from one library to another:

You should now be confident in managing and using your libraries and modules.
All you have to do is start writing macros, and so that's exactly what we're going to
do next.

Writing Macros
You'll remember from Chapter 1 that we use the OOo Basic Editor to work
with macros:

Libraries, Modules, Subroutines, and Functions

[38]

It's here that we can edit, run, save, and debug the code. You'll also remember that
a macro is automatically created for us (Main). This is the macro that OOo will run
when we click the Run button (as long as you keep Main as the first macro in the
module).

Now, there's something that you may be wondering about in the definition of the
macro. Why does it say:

Sub Main
End Sub

and not:

Macro Main
End Macro

That's because macro is actually the generic name for Subroutines and Functions, and
it's these that we're going to write. Let's start by having a look at subroutines.

Writing Subroutines
If you look at Main, then you can see the structure of a typical subroutine:

Start the subroutine with the Sub statement.
Give the subroutine a unique name.
End the subroutine with an End Sub statement.

So, to create a new subroutine called ppi_add_user, you would write:

Sub ppi_add_user
End Sub

OK, we've got a subroutine, but it hasn't got any functionality yet. So that's the next
thing to do:

Sub ppi_add_user
 Dim fname as String ' First name
 Dim sname as String ' Surname (Last name)
 Dim username as String ' User Name
 fname = "Fred"
 sname = "Smith"
 username =lcase(sname+mid(fname,1,1))
 msgbox "User Name for " & fname & " " & sname _
 & " is " & username, 0 ,"User Name"
End Sub

•

•

•

Chapter 2

[39]

There are two ways in which you can see this in operation, and it really comes
down to personal choice. The first (and the way that I prefer to do it) is to modify the
Main subroutine:

Sub Main
 ppi_add_user
End Sub

And then click the Run button (don't forget that Main must be the first macro in
the module).

The second way is to display the Select Macro window, select the macro, and then
click on Run:

Whichever way you prefer the end result will be a message box:

Having seen the macro (or subroutine) in action, it's worth spending a little time
analyzing the code itself—by doing this, we'll see the fundamental operations that
any subroutines will need to carry out.

Libraries, Modules, Subroutines, and Functions

[40]

Declare Variables
This first thing that you need to do (in this or any other subroutine) is to declare the
variables that are going to be used:

 Dim fname as String
 Dim sname as String
 Dim username as String

The Dim statement is used to declare variables. In this case, three have been created,
each of type String.

Assign Values to the Variables
Once you've declared a variable, then you need to assign a value to it:

 fname = "Fred"
 sname = "Smith"

Do the Work!
Having declared the variables that you need and set their values, you can now get
the subroutine to carry out the job that you need:

 username =lcase(sname+mid(fname,1,1))
 msgbox "User Name for " + fname + " " + sname _
 + " is " + username, 0 ,"User Name"

In this example we're creating a user name by taking the first letter from the variable
fname and appending it on to the end of the variable sname. The result is then
displayed in a message box.

Inputting Variables
Now you're probably thinking that very few of the clients are likely to be called
Fred Smith and so the subroutine is of limited use. Fortunately, we can rewrite the
subroutine so that it can accept any surname and any first name:

Sub Main
 ppi_add_user("Fred", "Smith")
End Sub
Sub ppi_add_user (fname as String, sname as String)
 Dim username as String
 username =lcase(sname+mid(fname,1,1))
 msgbox "User Name for " + fname + " " + sname _
 + " is " + username, 0 ,"User Name"
End Sub

Chapter 2

[41]

Writing Functions
So what's the difference between a subroutine and a function? Well, very little
actually. In fact the only difference is that the function returns a result—something
that you can load into a variable. We've already seen a couple being used, like lcase
and mid in our subroutine.

To understand this better, let's convert the ppi_add_user from a subroutine into a
function:

Sub Main
 Dim fname as String
 Dim sname as String
 Dim username as String
 fname = "Fred"
 sname = "Smith"
 username = ppi_add_user(fname, sname)
 msgbox "User Name for " & fname & " " & sname _
 & " is " & username, 0 ,"User Name"
End Sub
Function ppi_add_user (fname as String, sname as String) as String
 ppi_add_user = lcase(sname+mid(fname,1,1))
End Function

There are two key things to take note of:

1.	 The function has a variable type; this is what is returned from the function
when you run it.

2.	 The function just does the core work; everything else is moved up to the
Main level.

Getting more Information
You'll have noticed that we've not gone into a great amount of detail here. For
instance:

We've seen how to declare variables, but not what the different variable
types are.
We've seen the functions lcase, mid, and msgbox in action, but there are no
technical details on them.

Quite simply, we haven't got enough room here to discuss all of the functionality
that is built into OOo and that's available to us. Fortunately, the IDE has all the
information that you require. If you need to know more, then highlight a keyword

•

•

Libraries, Modules, Subroutines, and Functions

[42]

(for example, Dim or msgbox) in the Basic Editor, and then press F1. You will see a
screen similar to the following screenshot:

You'll find that there is a complete listing of all of the OOo Basic functions that you
can use in your macros.

Subroutines and Functions in Different
Libraries
Finally, since we've gone through a lot of trouble creating libraries, let's look at using
them. Each library contains modules and each module contains macros (and/or
dialogs). You may, therefore, be wondering how you access each subroutine or
function. The answer is that OOo doesn't really care where the macros are; as long as
you have an access to a library, you have access to all of the macros that it contains.

Chapter 2

[43]

So, in the examples that we've already looked at, the Main subroutine and the
ppi_add_user function can be in completely different modules or libraries.

However, this does mean that you need to be careful with the naming of your
macros. For example, if you have two modules each containing a macro called
ppi_add_user, then you've got potential conflict—how can you guarantee which
one OOo is going to use?

If you're concerned about such a situation, then you can tell OOo to use a specific
macro by including the library and module names:

 username = ppi_field.ppi_cases.ppi_add_user(fname, sname)

With that you're able to create custom libraries, write macros, and make use of the
macros wherever you need them.

Summary
In this chapter we've covered creating and using libraries, modules, subroutines,
and functions. We have seen how to use the Organizer to create your own custom
libraries rather than using the Standard library, how to give your library a useful
name, and how to make use of other people's libraries by using the Insert button.
We have also cover adding a library to the OpenOffice.org Macros area by copying
a user's library into OOo's main area (remember to modify the script.xlc file once
you've done that).

This chapter also taught you how to store modules in libraries, give each module a
relevant name, try to group similar modules in the same library, rename modules
and move them between libraries using the Organizer. You have learned what
subroutines and functions are, how to declare variables using the Dim statement,
how to use Calc's help to find out the use of any of the OOo's inbuilt functions and
variable types.

In Chapter 3, we'll start to learn how to get the best out of Calc by using the OOo
Object Model.

The OOo Object Model
Pygoscelis didn't look back; he just ran. He didn't look back as he saw a gun sticking
out of his office window. He ran first down one alley, then down another, and then
dived into the blackness of a doorway.

Standing in the darkest corner, he forced his breath to calm. He checked his inside
coat pocket, just to make sure that the disk was safe. Relieved he relaxed, and started
to consider his options. He needed help and he needed to be objective above all.

And that's exactly what we're going to be doing in this chapter. We're go to be
objective—that's to say that we're going to start looking at OpenOffice.org's
Universal Network Objects usually referred to as UNOs. UNOs are the platform-
and language‑independent objects that make up OOo Calc, and which we can
make use of in order to make truly powerful macros, utilizing every aspect of the
OOo environment.

Now this chapter is split broadly into two sections:

The first section is practical, and will show you how to access UNOs and to
carry out some basic, but essential, activities.
The second section has no practical work for you to do; it's all reference
material. Therefore I'd be surprised if you read it from end to end in one go.
However, you will find it useful to come back to it from time to time as we
look at more advanced macros in the later chapters.

That said, it is important that you have at least read enough of this chapter so
that you:

Understand the OOo Object Model
Understand why UNOs are so useful
Know how to access and use the UNO objects
Know where to find any more information that you need

•

•

•

•

•

•

The OOo Object Model

[46]

Why be Interested in UNOs?
How do you print a Calc document? The easy answer is: Just press the print
button. Not difficult. However, the background process that you've set in motion
is complicated.

So, without that print button you'd need to have quite a bit of in-depth knowledge
about all the system interactions that need to be carried out just to produce a single
piece of paper.

But you don't have to worry about all of that when you're writing macros, you just
need to know which UNO will do all of the work for you.

Overview of the OOo Object Model
We've already learned that we're going to be working with UNOs—OpenOffice.org's
Universal Network Objects—and to understand them better, we're actually going to
start at the bottom and work our way upwards.

At its simplest level, we've got a client (your macro) that interfaces with, well, with
an interface:

Chapter 3

[47]

The Interface
Each interface is simply made up of a set of one or more methods, and you can use
these methods to:

Get or set parameters
Control the operation of any functionality that the interface defines

Every interface is contained in a service.

The Service
A service is a UNO component—the building block of OOo Calc. Each service
consists of one or more interfaces and it has a set of types associated with it (and yes,
you would be right it thinking that the interface is a type as well):

You'll find that there are four types associated with the services:

Constants
Enums

•

•

•

•

The OOo Object Model

[48]

Exceptions
Structs

It'll be obvious to you what three of the property types are used for—constants,
exceptions, and structs. But what about enums? And no, they're nothing to do with
food additives. An enum is a set of numeric values, grouped together according to
their use.

So, we've seen that:

An interface consists of one or more methods
A service consists of one or more interfaces
A set of properties (constants, enums, exceptions, and structs) is associated
with the service

You'll find that similar services and their properties are grouped together
into modules.

The Module
UNO services are grouped hierarchically into modules:

•

•

•

•

•

Chapter 3

[49]

We've now moved all the way from the most basic level of the UNO right up
to the top level, well nearly. Some of the modules that we'll use will be nested
inside another module. In fact all modules that we'll use are nested in one central
module—com.sun.star.

We've now completed the general overview of the OpenOffice.org Object Model.
You should now at least have a basic understanding of what a UNO is. We'll be
using UNOs and UNO services throughout the rest of the book, and so if you want
to see them in action, then carry on reading.

Starting to Work with UNOs
I'm sure you'll agree that the first step towards complete automation is the opening
and closing of a spreadsheet, so let's start by seeing how OOo's UNOs can help us
do that.

The OOo Object Model

[50]

Opening and Closing Spreadsheets
Automatically
There are a couple of things that you need to know before you can use a service:

Each service is stored in a module.
All modules are stored within a central module—com.sun.star.
A service is created by using the createUnoService function.
We're going to be using the Desktop service, and this can be found in the
frame module:

So, let's look at using a UNO in a very simple subroutine that opens and closes a file:

Sub OpenAndClose
 Dim oDesk as Object
 Dim oDoc as Object
 Dim oUrl as String
 oDesk = createUnoService ("com.sun.star.frame.Desktop")
 oUrl = "private:factory/scalc"
 oDoc = oDesk.loadComponentFromURL (oUrl, "_blank", 0, Array())
 oDoc.close(true)
End Sub

OK, all that happens if you run this is that a blank Calc sheet is displayed on your
screen for a moment; not terribly useful, but it does show that you now have control
of your spreadsheets.

What about existing files? All you have to do is change "private:factory/scalc"
to the name of the spreadsheet that you want to open. Well, nearly. As you've
probably noticed the command for actually opening the spreadsheet is

•

•

•

•

Chapter 3

[51]

loadComponentFromURL—notice the FromUrl. Therefore the funtion expects an input,
something like:

file:///home/bluek/ppi_current.ods for Linux
file:///C:/ppi_docs/pi_current.ods for Windows

However, don't worry, you don't have to carry out this conversion yourself, just use
the convertToUrl function:

Sub exampleConversion
 Dim f1 as String
 Dim f2 as String

 f1 = "/home/bluek/ppi_current.ods"
 f2 = "C:\ppi_docs\ppi_current.ods"

 msgBox _
 f1 & " converts to " & convertToUrl (f1) & chr (10) & _
 f2 & " converts to " & convertToUrl (f2)
End Sub

If you run this code, then you'll see a message box showing the original file names
and their conversions:

Now, if you're anything like me, then you'll have taken this information; modified
the OpenAndClose subroutine, run it and then seen the error:

The message looks confusing, but all it means is that the macro can't find the file that
you've input, probably because it doesn't exist yet. The solution is simple, amend the
subroutine so that it:

•

•

The OOo Object Model

[52]

Checks to see if the file exists
Creates a new spreadsheet if the requested one doesn't exist
Saves the spreadsheet before it closes

So we can easily make these changes to our OpenAndClose macro:

Sub OpenAndClose
 Dim oDesk as Object
 Dim oDoc as Object
 Dim oFile as String
 Dim oUrl as String
 Dim oUrlTemp as String

 oDesk = createUnoService ("com.sun.star.frame.Desktop")
 'Change the file name to one that you can write to
 oFile = "/home/bluek/ppi_current.ods"
 oUrl = convertToUrl (oFile)

 'Check that the file exists. If it doesn't then use blank spreadsheet
 If fileExists (oFile) Then
 oUrlTemp = oUrl
 Else
 oUrlTemp = "private:factory/scalc"
 End If

 oDoc = oDesk.loadComponentFromURL (oUrlTemp, "_blank", 0, Array())

 oDoc.storeAsUrl (oUrl, Array()) 'Save the file
 oDoc.close(true)
End Sub

If you run the macro again, then you won't see any errors; the spreadsheet will
just open and then close. The only big difference is that if your spreadsheet did not
originally exist, then the macro will create it for you.

Of course, if you stop to think about it, this isn't a terribly efficient way of writing
the code. You don't want to put in this check for every spreadsheet that you open,
do you? By putting the file‑opening section into a function, you make the code
usable elsewhere (meaning that in the long run you'll have to write less code) and it
simplifies the subroutine that you've already got.

There's something else that we can do to make our lives easier. We've been creating
the Desktop service ourselves, but in fact this is done automatically when Calc opens,
and the object that is created is called StartDeskTop. This means that instead of:

•

•

•

Chapter 3

[53]

 oDesk = createUnoService ("com.sun.star.frame.Desktop")
 oDoc = oDesk.loadComponentFromURL(oUrlTemp, "_blank", 0, Array())

We can just use:

 oDoc = starDeskTop.loadComponentFromURL(oUrlTemp, _
 "_blank", 0, Array())

The result is:

Function openSpreadSheet (iFile as String) as Object
 Dim oUrl as String

 If fileExists (iFile) Then
 oUrl = convertToUrl (iFile)
 Else
 oUrl = "private:factory/scalc"
 End If

 openSpreadSheet = starDeskTop.loadComponentFromURL _
 (oUrl, "_blank", 0, Array())
End Function

Sub OpenAndClose
 Dim oDoc as Object
 Dim oFile as String
 Dim oUrl as String
 Dim oUrlTemp as String

 oFile = "/home/bluek/ppi_current.ods" 'The file you want to open
 oUrl = convertToUrl (oFile)

 oDoc = openSpreadSheet(oFile)
 oDoc.storeAsUrl(oUrl, Array())
 oDoc.close(true)
End Sub

Now that you can open and close a spreadsheet, the next obvious thing to consider is
actually changing its contents and that's what we will do in Chapter 4, Using Macros
with Spreadsheets.

However, in the meantime, we'll have a look at where we can find additional
information about UNO's.

The OOo Object Model

[54]

Online Reference Material
You may be wondering why we're interested in online reference material: what about
Calc's built‑in help system? Well, you will find it useful for general information on
how to use UNOs, but it won't tell you anything about using specific UNOs:

We need to look at OpenOffice.org's online information to learn about the actual
UNOs that are available. So it's internet‑browser time:

As soon as you look at the web page you'll realize that it contains all of the nested
modules for com.sun.star. In addition to this you may surmise (quite rightly) that
the website structure matches the top-level structure of the OOo object model that
we've been discussing in this chapter:

Chapter 3

[55]

In fact, you'll find that the website will allow you to move to any point in the
structure upwards from the current location and to the next position downwards:

If you click on any of the nested modules, you'll see all of the elements that we
would expect from the object model:

Services
Interfaces
Constants
Enums
Exceptions
Structs

•

•

•

•

•

•

The OOo Object Model

[56]

You may find that some of the modules also contain:

Further nested modules
A list of interfaces used by the services in the module

•

•

Chapter 3

[57]

We can follow the structure by clicking on any one of the services in the module.

Up until now we've only been dealing with the general structure of the UNO;
however, you'll find that the website will now start to give you much more in-depth
information:

Detailed description of the interfaces.
Detailed description of the properties that can be used with the service.
Links to related services.
Links to related developer pages. These can be useful when working out how
to use an interface. However, the examples do tend to be for C++ and Java
rather than Basic.

•

•

•

•

The OOo Object Model

[58]

Finally, you can click on the link to one of the interfaces to complete your tour of
the website.

This last page will give you:

A list of all of the methods available to the interface
Detailed descriptions of how to use each method
Links to associated developer pages for examples of using the methods

•

•

•

Chapter 3

[59]

So, we've now seen that we can use the OpenOffice.org website to:

Understand the structure of each UNO
Learn how to use the methods built into each UNO
Access developer pages to see examples of using the UNOs

The next step is to look at a real UNO and to build up a picture of it.

A Real Example: Using the Table UNO to
Access a Cell
We've only discussed generalities so far. Next we'll look at one of the UNOs that
we'll be using on a day-to-day basis as we write macros: the table. Why look at the
the table? Quite simply because that's all a worksheet is—a table. Learn to control
the table and you can control the worksheet. In particular, we'll look at how the table
UNO can be used to access a cell in the worksheet.

Our starting point is, of course, the OpenOffice.org website
http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html
and the module com.sun.star.

From there we can follow the link to the to the table module:

From the table module web page, we can see the contents of the module:

•

•

•

The OOo Object Model

[60]

However, at the moment we're only interested in the services:

Chapter 3

[61]

As you can see, there are quite a number of table‑related Services, but we're only
going to be looking at the CellRange service, and its XCellRange interface:

When we look on the interface page we can see that there are three methods for
accessing the cells:

We'll see a number of macros that use these methods when we move on to Chapter 4.
For now it's just a matter of getting used to the structure of the UNO.

Services within Services
We've seen that we can use the getCellRangeByName method through the
CellRange service in module com.sun.star.table, and you may be wondering if
you have to call up this service every time that you what to use the method. The easy
answer is 'yes, you need to'. However, sometimes this is done automatically for you.

Quite often you'll find that a service will have an included service (and of course this
is the whole point of using a component model). It means that any method only has
to be written once, and then reused wherever it is necessary.

So where else is CellRange used? In fact it is, as you would expect, re-used in the
spreadsheet service:

The OOo Object Model

[62]

So this means that if you use the spreadsheet service, then you automatically have
access to the CellRange service.

Finding Included Services
If you want to know if a service is available elsewhere as an included service, then
there are two ways of going about it:

1.	 Look through the documentation for the service that you are going to be
using and see if it includes any other services (the one that you want
access to).

2.	 Go to the documentation for the service that you want to include and see if it
has a 'Use' link enabled.

In the case of the CellRange service, you'll find that the link is enabled and that the
service is used in:

com.sun.star.sheet.SheetCellCursor

com.sun.star.sheet.SheetCellRange

com.sun.star.sheet.Spreadsheet

•

•

•

Chapter 3

[63]

List of Everything You Want to Know
About UNOs
We've learned our way around the OOo Object model, and we now know our way
around the online documentation:

However, what if you know which method you want to use, but you don't know
which service it belongs to? For example, if you remember, we started this chapter by
considering the printing process. Apart from trial‑and‑error, how can we learn about
the print method; after all there must be one, mustn't there?

The OOo Object Model

[64]

You'll be pleased to know that the answer is very simple: you can either use the 'Index'
link from any of the documentation pages, or go directly to the OOo's global index:

Here you'll find a complete A-Z of every module, service, method, constant, enum,
exception, and struct. So, if we look up 'Print' we find three references:

PRINT: Constant in constants group com.sun.star.awt.KeyFunction
Print: Property in service com.sun.star.text.BaseFrameProperties
print(): Function in interface com.sun.star.view.XPrintable

So we now know that there is a print function in the com.sun.star.view.
XPrintable interface. The next question is 'Where can this interface be used?'. The
answer is, of course, to follow the link to the XPrintable interface documentation
page, and then click on Use. From this we can learn that there are a number of
services that support the interface:

.com.sun.star.text.AdvancedTextDocument

.com.sun.star.drawing.DrawingDocument

.com.sun.star.drawing.GenericDrawingDocument

.com.sun.star.text.GenericTextDocument

.com.sun.star.text.GlobalDocument

.com.sun.star.text.HypertextDocument

.com.sun.star.sdb.OfficeDatabaseDocument

.com.sun.star.document.OfficeDocument

.com.sun.star.presentation.PresentationDocument

.com.sun.star.sheet.SpreadsheetDocument

.com.sun.star.text.TextDocument

.com.sun.star.text.WebDocument

You can see for yourself that the XPrintable interface (and therefore the print
function) is available to the whole suite of OOo documents (no surprise there then).
And to you, as you write your macros, it means that you don't have to do anything
complicated when printing a spreadsheet, you just print it.

And really, that's the whole point of the OpenOffice.org UNOs—they are there to
make your life as easy as possible.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[65]

Summary
In this chapter we've been introduced to OpenOffice.org's UNOs and the OOo object
model. We've learned that UNOs are OOo's Universal Network Objects and are the
components that give Calc all of its functionality. Each UNO consists of: Interfaces,
Services, and Types. The four types associated with services are: Constants, Enums,
Exceptions, and Structs.

We also learned where to find OOo's online documentation on UNOs, and how
they allow you to explore the structure modules, services, interfaces, methods, and
properties of each UNO:

"OK, that's enough objectivity for one day." Pygoscelis muttered under his breath, "I
know what I've got to do now."

And so do you. Move on to Chapter 4, Using Macros with Spreadsheets.

Using Macros with
Spreadsheets

The dark street was devoid of life now, and the shadows held sway, filling the
doorways and alleys with darkness. Joe Public was sensibly tucked up in bed,
either fast asleep or listening to the rain hammer against the window panes. As Joe
unconsciously snuggled closer to his warm wife, three patches of blackness sped
from the door of Pygoscelis P. Ellsworthy's office to a waiting car. Immediately it
sped off into the howling gale that was now building itself into a frenzy.

In a doorway across the street a shadow that was just a little darker stirred. For a
brief moment a face was lit as a mobile phone flicked open.

"Korora, it's Pygoscelis here. Don't talk, just listen. I have the disk, but the office has
been compromised. Make for the safe house as soon as you can. We're going to have
to rewrite the macros from scratch."

With that a shadow walked quickly down the street and into the nearest alley. In
the darkness of Pygoscelis' doorway another dark shape stirred, and spoke into its
own phone.

"He's on the move"

OK. Admit it. This is why you're reading this book, isn't it? You want to be writing
macros, macros that can manipulate your spreadsheets. In fact, you've probably
skipped straight here if you're just wanting to get on and get coding. And quite right
too. However, if you have been following the book chapter by chapter, then you
should now be able to:

Find your way around the OOo IDE
Understand using libraries, modules, subroutines, and functions
Understand the basics of using objects in OOo by making use of the
UNO services

•
•
•

Using Macros with Spreadsheets

[68]

In this chapter, we'll be bringing all of these elements together as we start to build
macros that can fully automate your spreadsheets. By the end of the chapter, you
should be confident enough to do the following:

Open and close files
Work with multiple spreadsheets
Manipulate the data within a spreadsheet
Work with built-in OOo functions
Work with cells and ranges of cells

And all this is done using the power of macros.

Opening and Closing Spreadsheets
In Chapter 3 we saw just how easy it is to open and close spreadsheets:

1.	 Use the starDeskTop object to access the spreadsheet (since Calc
automatically creates the Desktop UNO service for us).

2.	 Load the spreadsheet by using the loadComponentFromURL function.
3.	 Use the close subroutine to finish with the spreadsheet.

We also saw that we can easily control the spreadsheets themselves:

1.	 Use the fileExists function to decide whether to use an existing file or if it
doesn't exist then open a blank file.

2.	 Use the storeAsUrl subroutine to save the spreadsheet.

•

•

•

•

•

Chapter 4

[69]

Having mastered working with the opening and closing of a spreadsheet (which is
important), you're probably thinking that it's time to start manipulating the contents
of the spreadsheet—and that's exactly what we'll do next.

Manipulating Spreadsheet Cells
It would seem obvious to assume that we should be able to access the cells in the
spreadsheet using some object or function, especially because of what we learned
about OOo UNO objects in Chapter 3. And, as you would expect:

Each spreadsheet that you create contains one or more worksheets
(by default there will be three worksheets, and as a matter of interest there
can be a maximum of 256).
Each worksheet consists of a number of cells (8,192,000 of them arranged in
256 columns by 32,000 rows).

And, of course it is easy to access each worksheet and its cells:

Each worksheet can be identified by an index number (0 to 255).
Each cell can be identified by its position with a grid for which we can use
the getCellByPosition method.

•

•

•

•

Using Macros with Spreadsheets

[70]

Let's start by looking at a simple subroutine that fills the contents of a cell in a
worksheet:

Sub singleFile
 Dim oDoc as Object
 Dim oSheet as Object
 Dim oCell as Object

 oDoc = starDeskTop.loadComponentFromUrl _
 ("private:factory/scalc", "_blank",0,Array ())
 oSheet = oDoc.sheets (0)
 oCell = oSheet.getCellByPosition (0,0)
 oCell.String = now 'This function returns the current date and time
End Sub

You can see that the macro:

Opens a blank spreadsheet
Gets the first worksheet
Gets the top left cell
Writes information to the cell

So if you run this macro, you'll end up with a new spreadsheet with the current date
and time entered into a cell:

There are a couple of things we've already mentioned, and that you may have
deduced from the macro:

The worksheets have indexes associated with them, allowing us to access
them as if they were in an array. This means that in a default spreadsheet
with three worksheets, sheet(0) is the first worksheet, sheet(1) is the second,
and sheet(2) is the third.

•

•

•

•

•

Chapter 4

[71]

The cells are accessed by using the getCellByPosition function. This needs
the column number and row number to be input (and in that order).

There's something else that you may have wondered about—the line:

 oCell.String = now

The now part is obvious enough—it places the current date and time into the
cell—however, it is the way that it puts it into the cell that's interesting. Information
must be placed in a cell in one of three ways—Formula, String, Value.

This can be important. For example, let's consider these lines of code:

 oCell = oSheet.getCellByPosition (0,1)
 oCell.Value = 20
 oCell = oSheet.getCellByPosition (0,2)
 oCell.Value = 30
 oCell = oSheet.getCellByPosition (1,1)
 oCell.String = "=A2+A3"
 oCell = oSheet.getCellByPosition (2,1)
 oCell.Formula = "=A2+A3"
 oCell = oSheet.getCellByPosition (3,1)
 oCell.Value = "=A2+A3"

Although we've entered exactly the same information, the results are
completely different:

I'll leave you to work out why each of the cells behave differently (a clue: look at the
different cell types).

And finally, if you are concerned with minimizing the number of lines of code, then
you could re-write it as:

 oSheet.getCellByPosition (0,1).Value = 20
 oSheet.getCellByPosition (0,2).Value = 30
 oSheet.getCellByPosition (1,1).String = "=A2+A3"
 oSheet.getCellByPosition (2,1).Formula = "=A2+A3"
 oSheet.getCellByPosition (3,1).Value = "=A2+A3"

Using OOo's Built‑in Functions
I'm sure that you've used OOo's built‑in mathematical functions often enough
in Calc:

•

Using Macros with Spreadsheets

[72]

Well, you'll be pleased (but probably not very surprised) to learn that you can use
these in your macros as well. For example, you can try:

 oCell1 = oSheet.getCellRangeByName ("A1")
 oCell2 = oSheet.getCellRangeByName ("B1")
 oCell1.value = 23.1
 oCell2.value = SIN(oCell1.value)

You can also try:

 oCell2.formula = "=SIN(A1)"

What is the difference? The first version places the static value -0.9 into cell B1.
The second version places a formula into B1 and so changing the contents of A1 will
cause the contents of B1 to change as well.

However, be warned. This only works for a subset of the functions. For example, the
following will work:

 For r = 0 to 9
 i = r + 1
 oCell1 = oSheet.getCellByPosition (0,r)
 oCell1.Value = i
 oCell2 = oSheet.getCellByPosition (1,r)
 oCell2.Formula = "=ROMAN(A" + i + ")"
 Next r

 oLetters = Array("I","V","X","L","C","D","M")
 For r = 0 to ubound(oLetters)
 i = r + 1
 oCell1 = oSheet.getCellByPosition (2,r)
 oCell1.String = oLetters(r)
 oCell2 = oSheet.getCellByPosition (3,r)
 �������������������������������������� oCell2.Formula = "=ARABIC(C" + i + ")"
 ������ Next r

Chapter 4

[73]

This will give you an interesting output (well, I think that it's interesting anyway):

But if you try the following:

 oCell2.value =ARABIC(oCell1.String)

Then you'll get an error:

Don't worry. This doesn't mean that you've now got to write loads of functions
because you can't access those built into OOo Calc. It just means that you have to tell
OOo that you want access to all of the functions:

 oFunction = createUnoService("com.sun.star.sheet.FunctionAccess")
 oCell4.value = oFunction.callFunction("ARABIC", _
 Array(oCell3.String))

Notice that the function callFunction expects parameters to be passed in as an
array, even if there is only a single variable.

If you want to see the full list of functions available to you, then you can, of course,
see them by going to the Calc menu and clicking on Insert | Function...

Using Macros with Spreadsheets

[74]

Named Worksheets and Cells
We now know the following about worksheets and cells:

The worksheets can be accessed as if they are in an array called sheets
The cells are accessed using the getCellByPosition function

It may have occurred to you that if you're accessing an existing spreadsheet, then
there are some possible issues that may occur:

Sheets may have been added or removed
The order of the sheets may have changed

In this case, it may be better to access the sheets by using their names instead of
their indexes.

Accessing Existing Named Worksheets and
Cells
You'll f﻿﻿ind it very straightforward to access sheets by name; rather than typing:

 oSheet = oDoc.sheets (0)

•

•

•

•

Chapter 4

[75]

you can type:

 oSheet = oDoc.Sheets.getByName ("PPI Accounts")

Having accessed the correct sheet, you can also access a cell by its name rather than
its position in the grid. So, instead of:

 oCell = oSheet.getCellByPosition (0,1)

use:

 oCell = oSheet.getCellRangeByName ("Daily Total")

Creating New Named Worksheets and Cells
In our quest for automation, we've already seen that we can create any required
spreadsheets as necessary. It's also a good idea to consider using a macro to name the
sheets, add any additional ones, and set any named cells that we need.

Naming an existing sheet is simple. After having selected the sheet it's just a matter
of adding the code:

 oSheet.name = "PPI Client Details"

Adding a new sheet is nearly as easy:

 oSheet = oDoc.createInstance ("com.sun.star.sheet.Spreadsheet")
 oDoc.Sheets.insertByName ("PPI Daily Tasks", oSheet)

What about applying a name to a cell? Well, a little more involved, but by no means
complicated:

 Dim oCellAddress As new com.sun.star.table.CellAddress
 Dim oNamedRanges
 oNamedRanges = oDoc.NamedRanges
 oNamedRanges.addNewByName("Total", "$Sheet1.$A$8", oCellAddress, 0)

Deleting Worksheets
So, you've added all of the worksheets that you want and have renamed any that
you need. However, if there is that extra one left over, then you may want to delete
it. Easily done with:

 oDoc.Sheets.removeByName("Sheet3")

With that you're now able to get your macro to load the spreadsheet that you want,
or to modify one so that it contains the worksheets that you need:

Using Macros with Spreadsheets

[76]

You can name cells:

And you can fully control the contents of each cell in the spreadsheet.

So, now that we can automate a single spreadsheet, it's time to start thinking about
using macros with more that one of them.

Working with Multiple Spreadsheets
You won't find working with multiple spreadsheets any more difficult than working
with just one. It's just a matter of keeping the order right. For instance, if you're just
wanting to change the details of a number of spreadsheets one at a time, then you
can reuse objects:

Sub sequencialFiles
 Dim oDoc as Object
 Dim oDesk as Object
 Dim oSheet as Object
 Dim oCell as Object

 oDoc = starDeskTop.loadComponentFromUrl _
 ("private:factory/scalc", "_blank",0,Array())
 oSheet = thisComponent.sheets (0)
 oCell = oSheet.getCellByPosition (0,0)
 oCell.String = now

 oDoc = starDeskTop.loadComponentFromUrl _
 ("private:factory/scalc", "_blank",0,Array())
 oSheet = thisComponent.sheets (0)
 oCell = oSheet.getCellByPosition (0,0)
 oCell.String = now + 1
End Sub

Chapter 4

[77]

If you run this, then you'll first see one spreadsheet opening, its contents changing,
and then the second one opening and its contents changing:

However, if you do reuse the objects, then you must be careful; you must make sure
that you have completely finished with one spreadsheet before you move on to the
next, and this must include saving and closing each file.

You will probably find it much more effective to use separate objects for each
spreadsheet involved, giving you full control of everything:

Sub multiSheets
 Dim oURL1 as String
 Dim oURL2 as String
 Dim oDoc1 as Object
 Dim oDoc2 as Object
 Dim oCell1 as Object
 Dim OCell2 as Object

 oURL1 = "private:factory/scalc"
 oURL2 = "private:factory/scalc"

 oDoc1 = starDeskTop.loadComponentFromURL (oURL1, "_blank", 0, _
 Array())
 oDoc2 = starDeskTop.loadComponentFromURL (oURL2, "_blank", 0, _
 Array())

Using Macros with Spreadsheets

[78]

 oCell1 = oDoc1.Sheets (0).getCellByPosition (0,0)
 oCell1.String = now
 oCell1 = oDoc1.Sheets (0).getCellByPosition (0,1)
 oCell1.Value = 37.5

 oCell2 = oDoc2.Sheets (0).getCellByPosition (0,0)
 oCell2.String = now
 oCell2 = oDoc2.Sheets (0).getCellByPosition (0,1)
 oCell2.String = "Amount"
 oCell2 = oDoc2.Sheets (0).getCellByPosition (1,1)
 oCell2.String = "VAT"
 oCell2 = oDoc2.Sheets (0).getCellByPosition (2,1)
 oCell2.String = "Total"
 oCell2 = oDoc2.Sheets (0).getCellByPosition (0,2)
 oCell2.Value = oCell1.Value
 oCell2 = oDoc2.Sheets (0).getCellByPosition (1,2)
 oCell2.Value = oCell1.Value * 0.175
 oCell2 = oDoc2.Sheets (0).getCellByPosition (2,2)
 oCell2.Value = oCell1.Value * 1.175
End Sub

This time you can read from and write to each spreadsheet completely independently.

Chapter 4

[79]

Using Ranges of Cells
So far we've only worked with individual cells. However, sometimes it is useful
to work with ranges of cells. For instance, let's just copy a range of cells from one
spreadsheet to another:

 oRange1 = oDoc1.Sheets (1).getCellRangeByName ("A1:A100")
 oRange2 = oDoc2.Sheets (0).getCellRangeByName ("A1:A100")
 oRange2.setDataArray (oRange1.getDataArray ())

However, if you prefer, you can use the cells' locations to obtain the range rather
than the names:

 oRange1 = oDoc1.Sheets (0).getCellRangeByPosition (0,0,0,100)
 oRange2 = oDoc2.Sheets (0).getCellRangeByPosition (0,0,0,100)

You'll find ranges particularly useful when using some of the functions that we now
have access to:

 oCell1 = oSheet.getCellRangeByName ("A1")
 oCell2 = oSheet.getCellRangeByName ("A2")
 oCell3 = oSheet.getCellRangeByName ("A3")
 oCell4 = oSheet.getCellRangeByName ("B3")
 oCell1.Value = 36
 oCell2.Value = 57
 oCell3.Value = 42
 oRange1 = oSheet.getCellRangeByName ("A1:A3")
 'Remember to use callFunction
 oCell4.Value = _
 oFunction.callFunction("STDEV", Array(oRange1.getDataArray ()))

The end result will be:

Summary
In Chapter 4 we've looked at how we can use macros to work with spreadsheets.
You should now be confident enough to open any Calc document by making use of
the starDeskTop UNO service, to create a new spreadsheet, and to work with each
individual spreadsheet.

Using Macros with Spreadsheets

[80]

You have learned to add new worksheets, change a worksheet's name, and delete
unwanted worksheets. You now know how to access the cells in worksheets, set your
own cell names, and access the cells grouped into ranges by name or location.

So, back in the Penguin PI safe house:

A pale, wintry dawn threw its washed-out light onto the computer screen. Pygoscelis
stretched and looked across the desk at Korora.

"I don't know what it is," he said, "but this just doesn't look right."

And so that's what we'll be looking at in Chapter 5—formatting spreadsheets
automatically.

Formatting your
Spreadsheets

Korora stopped staring at her screen, and instead, stared at Pygoscelis.

"What do you mean that it doesn't look right?" she demanded, "The data is correct.
You know it is!"

"Yes, I know that the data is correct," he said, "but it's the formatting. It doesn't
matter how good the background information is, it is not going to be accepted unless
it looks right, and people can read it."

"But we haven't got the time." said Korora, "They may already be on their way here."

"Don't worry," he answered, "we'll get a macro to do all of the work for us."

And you know, of course, that Pygoscelis has made a couple of important
points here:

The format of a printed report can be as important as the actual contents;
what you can't read you can't understand.
If there is a lot of formatting to do, then it is much faster to let a macro format
the spreadsheet for us rather than doing it all by hand.

So, by the end of this chapter you should be able to use macros to:

Change the look and feel of a worksheet
Change the look and feel of cells and ranges of cells
Automatically update the document information
Prepare the document so that it's ready to be printed

•

•

•

•

•

•

Formatting your Spreadsheets

[82]

We'll get the macro to automatically do all of the things that you'd normally have to
do to get a spreadsheet ready to print, and we'll set off simply by making cells fit the
data that they hold.

The Most Basic Formatting—Column and
Row Dimensions
I'm sure that you've often put information into a cell and found that the column isn't
wide enough:

 oCell = oSheet.getCellByPosition (0,0)
 oCell.String = date
 oCell = oSheet.getCellByPosition (0,1)
 oCell.String = "Investigator Name"
 oCell = oSheet.getCellByPosition (1,1)
 oCell.String = "Pygoscelis P.Ellsworthy"
 oCell = oSheet.getCellByPosition (2,1)
 oCell.String = "Client Email Address"
 oCell = oSheet.getCellByPosition (3,1)
 oCell.String = "ellworthyp@penguinpi.com"

You will get a similar screenshot; of course, you can click on each cell so that you can
see what's actually displayed there

However, when you come to print the spreadsheet then you end up with
garbled nonsense:

Obviously we need to get the macro to change the width of the cells to match the
contents of the cell. Sounds complicated? No, it couldn't be simpler.

Chapter 5

[83]

Optimizing Column Widths
Optimizing the width of an individual column couldn't be easier:

 oSheet.Columns(0).OptimalWidth = True
 oSheet.Columns(1).OptimalWidth = True
 oSheet.Columns(2).OptimalWidth = True
 oSheet.Columns(3).OptimalWidth = True
 oSheet.Columns(4).OptimalWidth = True

Now (once you've run the macro) everything fits nicely:

And the printed document also becomes intelligible:

At this point you're probably thinking that this is useful, but it's a little long winded.
You don't want to have to add a line of code for every column that you're going to
put data into. And, of course, you don't have to do that—a simple loop will do the
job for you:

 For c = 0 To 3
 oSheet.Columns(c).OptimalWidth = True
 Next c

However, what if you don't know how many columns you're going to be using or
the number of columns is going to be variable? In this case, you'll need a way of
optimizing the width of every column in the worksheet.

Optimizing Column Widths across a Whole
Worksheet
We've just seen how to optimize the width of individual columns, but you may find
it more practical to optimize all of the columns at the same time:

 oSheet.getColumns.OptimalWidth = True

This time you'll find that all columns containing data will get to their optimal widths.

Formatting your Spreadsheets

[84]

And as you've probably guessed, what you can do for columns you can also do for
rows (except, of course, you'll use OptimalHeight instead of OptimalWidth).

Setting Fixed Widths and Heights
Finally you may decide that you want to use a set width for each column, rather than
just using the width of the text itself. Again, easily done:

 oSheet.Columns(0).width = 10000

Now 10000 may seem very wide for a column, but not when you consider that it's
actually measured in 100th of a millimeter; so 10000 is actually 100mm or 10 cm.

You can, as you might expect, set the height of the row as well:

 oSheet.Rows(0).height = 1

We've looked at the most basic (and essential) formatting that you'll ever
need—getting your information to fit nicely into the cells of a worksheet.

Hiding Columns
Quite often there are columns that you want to be hidden (for example, ones
containing formulae or maybe interim steps from one column to another). Hiding a
column (or row) is just a matter of unsetting the isVisible property:

 oSheet.Columns(4).isVisible = False

Next we'll just make sure that the page looks good when you print it.

Formatting the Printed Page
You may decide that you don't need any more than the basic formatting that we've
looked at so far. If that's the case, then you'll just want to print, and so we'll look a
few of the simple ways that a macro can help you

Adding a Page Break
Before printing your document you may decide that the default page breaks are not
quite in the right places. For instance, one of them may split the data that you want
to be kept together. A simple line of code allows you to add a page break exactly
where you need it:

 oSheet.Rows(1).IsStartOfNewPage = True

Chapter 5

[85]

You can tell where page breaks are by looking for blue lines in the worksheet:

Or, of course, you can always click on File | Page Preview. And don't forget—you
can create new page breaks on columns as well as rows.

Defining a Print Area
We've seen how to add a page break, and so you may be wondering how to print
just a portion of a worksheet instead of the whole of it. If you were to edit the
spreadsheet manually, you would create a print area; and it's no different with
a macro:

 Dim oPrintArea(0) as new com.sun.star.table.CellRangeAddress
 oPrintArea(0).StartColumn = 0
 oPrintArea(0).StartRow = 1
 oPrintArea(0).EndColumn = 3
 oPrintArea(0).EndRow = 1
 oDoc.Sheets(0).setPrintAreas(oPrintArea())

The end result of running the code is best seen when you print the page itself
(although selecting File | Page Preview will save you money). However, the area to
be printed will be outlined in the worksheet:

Having decided what you want to print, you may want to consider how you want
to print it.

Setting the Header and Footer
You'll already know that when you come to print a Calc document then a header
and footer are automatically added for you. By default this consists of the worksheet
name at the top of the page, and the page number at the bottom (normally in the
format 'Page n of nn'). You can easily add your own custom headers and footers
using the following code:

 oPageStyles = oDoc.StyleFamilies.getByName("PageStyles")
 oDefault = oPageStyles.getByName("Default")

Formatting your Spreadsheets

[86]

 oDefault.HeaderIsOn = True
 oHeader = oDefault.RightPageHeaderContent
 oHeader.CenterText.String = "PPI Report"
 oDefault.RightPageHeaderContent = oHeader

 oDefault.FooterIsOn = True
 oFooter = oDefault.RightPageFooterContent
 oFooter.CenterText.String = "-- CONFIDENTIAL --"
 oDefault.RightPageFooterContent = oFooter

This time the printout will have:

PPI Report top center of the page
— CONFIDENTIAL — bottom center of the page

If you're wondering why we've just overwritten the page number (after all that is
rather useful), well, the answer is easy: just so that we can see how to put it back in...

Adding Page Numbers
The page number and the page count are text fields that can be assigned to the
document. You can create the page number by using:

 oPageNumber = _
 oDoc.createInstance("com.sun.star.text.TextField.PageNumber")

You can add the page-count text-field in the same way

 oPageCount = _
 oDoc.createInstance("com.sun.star.text.TextField.PageCount")

However, we can't add this directly to the footer (or the header if that is what you
prefer). Instead we need to create a text cursor:

 oTextCursor = oFooter.RightText.createTextCursor

Now we can build up the text for the cursor, and then add it to the footer:

 oTextCursor.gotoEnd (False)
 oTextCursor.String = "Page "
 oTextCursor.gotoEnd (False)
 oFooter.RightText.insertTextContent (oTextCursor, _
 oPageNumber, True)

 oTextCursor.gotoEnd (False)
 oTextCursor.String = " of "
 oTextCursor.gotoEnd (False)

•

•

Chapter 5

[87]

 oFooter.RightText.insertTextContent(oTextCursor, _
 oPageCount, True)

Remember, this must all go before the code:

 oDefault.RightPageFooterContent = oFooter

If you add the code, re-run the macro, and have a look at the print preview you'll see:

We've only looked at two of the text fields here. After all, the page number and page
count may be enough for you. However, there are quite a few others that you have
access to. For example, some that you may also find useful are Author, Filename,
URL, User, and Wordcount.

You can get the full list from the OpenOffice.org online documentation at:

Whether or not you decide to customize the header or footer, one thing that you will
need to think about is the size of the page that you want to print.

Setting the Page Size and Orientation
Chances are that you won't want to use the default printer settings when you come
to print your spreadsheet. If your system is anything like mine, then the default is
letter format with portrait orientation, useful, but I prefer A4, and sometimes I need
to print a sheet in landscape mode. If, like me, you want to print a sheet in that way,
then you'll need to add the following code:

 oDefault.Width = 21000 'A4 Width in mm
 oDefault.Height = 29700 'A4 Height in mm

 Dim oPrintOptions(0) as new com.sun.star.beans.PropertyValue
 oPrintOptions(0).Name = "PaperOrientation"
 oPrintOptions(0).Value = _
 com.sun.star.view.PaperOrientation.LANDSCAPE
 odoc.Printer = oPrintOptions()

Do remember that we've already defined oDefault as:

 oPageStyles = oDoc.StyleFamilies.getByName("PageStyles")
 oDefault = oPageStyles.getByName("Default")

Formatting your Spreadsheets

[88]

If you prefer to use differently sized pages, then you may need to consider
encapsulating the code into a subroutine:

Sub setPaperSize (iDOc as Object, _
 optional iPaper as String, _
 optional iOrient as String)
 Dim oPaperSize(5,2)
 Dim oPageStyles as Object
 Dim oDefault as Object
 Dim oPrintOptions(0) as new com.sun.star.beans.PropertyValue

 oPageStyles = iDoc.StyleFamilies.getByName("PageStyles")
 oDefault = oPageStyles.getByName("Default")

 If IsMissing (iPaper) Then
 iPaper = "A4"
 End If
 If IsMissing(iOrient) Then
 iOrient = "PORTRAIT"
 End If

 oPaperSize ("A4",0) = 21000 'Width in mm
 oPaperSize ("A4",1) = 29700 'Height in mm
 oPaperSize ("A5",0) = 14800
 oPaperSize ("A5",1) = 21000

 oDefault.Width = oPaperSize (iPaper,0)
 oDefault.Height = oPaperSize (iPaper,1)

 oPrintOptions(0).Name = "PaperOrientation"
 if iOrient = "PORTRAIT" Then
 oPrintOptions(0).Value = _
 com.sun.star.view.PaperOrientation.PORTRAIT
 Else
 oPrintOptions(0).Value = _
 com.sun.star.view.PaperOrientation.LANDSCAPE
 End If
 idoc.Printer = oPrintOptions()
End sub

However, you may decide that you just want to use all of the default settings when
printing your document. This just leaves us with one problem—the sheet name.

Chapter 5

[89]

Customizing Worksheet Names
It's not that sheet names are actually a problem; it's just that if you use the default
printing setup, then the worksheet name will be printed at the top of the sheet, and
the default names are rather simplistic—Sheet1, Sheet2, and Sheet3. They don't really
tell you anything about the worksheets do they? Surely descriptive names such as
"Client Accounts" or "Investigator Time sheet" are much more useful—just reading
the name tells you what's going on.

So, rather than changing the header and footer of your page, you may decide to
customize the name of your worksheet instead. We'll want the macro to:

Change worksheet names
Add extra worksheets
Remove any worksheets that we don't need

Of course, you'll remember how to do this from Chapter 4. So next we'll look at an
area that is all too often overlooked—the document info.

Updating the Document Information
If you're anything like me (and any other programmer that I've ever met), then the
last thing that you'll ever think about is the document information, and by that I
mean Document author, Document title, Document subject, Document keywords.

Admit it: you just want to get on and do some programming, don't you? The
obvious answer is to let the macro do all of the work for you, by making use of the
DocumentInfo service:

 oDoc.DocumentInfo.Author = "Pygoscelis P. Ellsworthy"
 ��� oDoc.DocumentInfo.Title = "PPI Investigation"
 ��� oDoc.DocumentInfo.Subject = "PPI Macros to aid Investigation"
 oDoc.DocumentInfo.Keywords = "PPI, Investigation, Macros"

 oURL = convertToUrl ("/home/bainm/bluek/ppi_investigation.ods")
 oDoc.storeAsUrl (oUrl, Array())
 oDoc.DocumentInfo.Description = "PPI Macros to aid Investigations" _
 & chr (10) & _
 "Developed by Korora Blue and " & oDoc.DocumentInfo.Author _
 & chr (10) & chr (10) & "Created: " _
 & oDoc.DocumentInfo.CreationDate.Day _
 & "/" & oDoc.DocumentInfo.CreationDate.Month _
 & "/" & oDoc.DocumentInfo.CreationDate.Year _
 & " " & oDoc.DocumentInfo.CreationDate.Hours _

•

•

•

Formatting your Spreadsheets

[90]

 & ":" & oDoc.DocumentInfo.CreationDate.Minutes _
 & chr (10) & "Last updated: " _
 & oDoc.DocumentInfo.ModifyDate.Day _
 & "/" & oDoc.DocumentInfo.ModifyDate.Month _
 & "/" & oDoc.DocumentInfo.ModifyDate.Year _
 & " " & oDoc.DocumentInfo.ModifyDate.Hours _
 & ":" & oDoc.DocumentInfo.ModifyDate.Minutes

 oCreated = oDoc.DocumentInfo.CreationDate
 oModified = oDoc.DocumentInfo.ModifyDate
 oDoc.DocumentInfo.Description = "PPI Macros to aid Investigations" _
 & chr (10) _
 & "Developed by Korora Blue and " & oDoc.DocumentInfo.Author _
 & chr (10) & chr (10) & "Created: " _
 & oCreated.Day & "/" & oCreated.Month & "/" & oCreated.Year _
 & " " & oCreated.Hours & ":" & oCreated.Minutes & chr (10) _
 & "Last updated: " _
 & oModified.Day & "/" & oModified.Month & "/" & oModified.Year _
 & " " & oModified.Hours & ":" & oModified.Minutes

To see what the code has done for you, just click on File | Properties...:

If you're interested in investigating the other document‑information fields, then you
can find the full list online at:

Chapter 5

[91]

So far we've seen how to use macros to:

Optimize row (and column) widths and heights
Prepare the page to be printed
Update the document information

Next we'll see how to use a macro to format the cells within each worksheet.

Formatting Cells and Ranges of Cells
If you want to format a cell (or a range of cells) manually, then you select the cells
with the mouse and then click on Format | Cell...:

You may prefer to assign a style to the cell, this time using Format | Styles and
Formatting (or by pressing F11):

•

•

•

Formatting your Spreadsheets

[92]

We, of course, don't want to use either of those; we want the macro to do all of the
work for us.

You may want to change individual settings: for example, the font face, the font size,
the background, or you may want to add an underline or any other of the formatting
options that you'd normally access through the Format Cells dialog box. On the
other hand, you may find it easier just to apply a predefined style.

Changing Cell Styles
You can choose any of the styles available to your spreadsheets, and this can be
either one of the built‑in styles or it can be a custom one that you've created yourself.
When you've decided which style to use, the CellStyle method will do the work
for you. For example, to apply the Heading style to a whole row of cells just use the
following code:

 ODoc.Sheets(0).Rows(0).CellStyle = "Heading"

This, as you can probably guess, applies the Heading style to the top row of the first
worksheet. You can, if you prefer, apply a style to a single cell:

 oDoc.Sheets.getByName _
 ("PPI Client Invoice").getCellRangeByName("A1"). _
 CellStyle = "Heading"

If that line seems too much of a mouthful, then you can break it down into more
manageable chunks:

 oSheet = oDoc.Sheets.getByName("PPI Client Invoice")
 oCell = oSheet.getCellRangeByName("A1")
 oCell.CellStyle = "Heading"

Once you've applied the style that you want, you can then think about any
additional formats. For example, having set the style to Header, you may want to
add an underline. On the other hand, you may just want to use the cell formats to
create your own, custom styles.

Chapter 5

[93]

Changing Cell Formats
If you've looked at the Format Cells dialog box, then you'll already know that there
are quite a number of things you can change. For example:

Font
Typeface
Color
Relief
Alignment
Background

We'll just look at a few useful ones just to get the general idea.

Cell Background Colors
One simple way to highlight a cell is to change the background color. All you have
to do is to use the CellBackColor property, and supply it with a long number
representing the red, green, and blue components of the color. And how you get the
identifying number? You can use OOo's RGB function to make life a little bit easier:

RGB (255, 0, 0) returns the long number representing red
RGB (255, 255, 0) returns the long number representing yellow
RGB (0, 255, 0) returns the long number representing green
RGB (0, 255, 255) returns the long number representing cyan
RGB (0, 0, 255) returns the long number representing blue
RGB (255, 0, 255) returns the long number representing magenta

So, to give a cell a green background you would use:

 oCell.CellBackColor = RGB(0, 255, 0)

I'll leave you to experiment with all of the 16,777,216 possible colors.

Text Colors
Along with setting the background color, you may also set the text (or character)
color by using the CharColor property:

 ocell.CharColor = RGB (255,0,0)

You'll now have a cell with nice red letters (or numbers).

•

•

•

•

•

•

•

•

•

•

•

•

Formatting your Spreadsheets

[94]

Cell Fonts
As you'd expect, the font is very easy to change. Just use the CharFontName property.
If, for instance, you want to change the font of a whole worksheet, then you can use
the code:

 oSheet.CharFontName = "Courier"

One thing to remember, however, is that the choice of font will change the width
of the cell that contains the text. So, don't forget to set the OptimalWidth and
OptimalHeight properties after you've set the font name.

Character Heights
Another way of highlighting cells is to change the character height. As with all of
the other formatting, this can be done on the sheet, row, or column level. In this next
example we change the character height for a whole row:

 oDoc.Sheets(0).Rows(0).CharHeight = 10

As with the cell font the character height will affect the cell width and height, and
you may need to change them to be able display the cell's contents correctly.

The Underline
It may surprise you to learn that there are actually 18 different kinds of underline:

ID Name OOo Constant
0 None com.sun.star.awt.FontUnderline.NONE

1 Single com.sun.star.awt.FontUnderline.SINGLE

2 Double com.sun.star.awt.FontUnderline.DOUBLE

3 Dotted com.sun.star.awt.FontUnderline.DOTTED

4 Don't know com.sun.star.awt.FontUnderline.DONTKNOW

5 Dash com.sun.star.awt.FontUnderline.DASH

6 Long dash com.sun.star.awt.FontUnderline.LONGDASH

7 Dash dot com.sun.star.awt.FontUnderline.DASHDOT

8 Dash dot dot com.sun.star.awt.FontUnderline.DASHDOTDOT

9 Small wave com.sun.star.awt.FontUnderline.SMALLWAVE

10 Wave com.sun.star.awt.FontUnderline.WAVE

11 Double wave com.sun.star.awt.FontUnderline.DOUBLEWAVE

12 Bold com.sun.star.awt.FontUnderline.BOLD

13 Bold dotted com.sun.star.awt.FontUnderline.BOLDDOTTED

Chapter 5

[95]

ID Name OOo Constant
14 Bold dash com.sun.star.awt.FontUnderline.BOLDDASH

15 Bold long dash com.sun.star.awt.FontUnderline.BOLDLONGDASH

16 Bold dash dot com.sun.star.awt.FontUnderline.BOLDDASHDOT

17 Bold dash dot dot com.sun.star.awt.FontUnderline.BOLDDASHDOTDOT

18 Bold wave com.sun.star.awt.FontUnderline.BOLDWAVE

All you have to do is to set the property CharUnderline with the number for the
underline that you want to use:

 oCell.CharUnderline = 18

You can also use the OOo constant for underline:

 oCell.CharUnderline = com.sun.star.awt.FontUnderline.BOLDWAVE

However, of the 18 underline types only 16 actually do anything:

Type 0 is "None" i.e. no underline.
Type 4 is defined as "Don't Know" and this turns out to be the same as "None".

Word Wrapping
We've discussed the fact that we can change the cell width to fit the contents or to
have a fixed value, depending on the look and feel that we want to achieve. If you
decide to use a fixed width, then it is worth considering setting the IsTextWrapped
property to True. This will ensure that the information loaded into the cell will still
be displayed correctly, even if the entered data is wider than the displayable width
of the cell. So, for example, you could try:

 oSheet = oDoc.Sheets.getByName ("PPI Client Invoice")
 oCell = oSheet.getCellRangeByName("A1")
 oCell.String = "PPI Client Name"
 ocell.IsTextWrapped = True

The result is exactly as you would expect:

Number Formats
Having looked at formatting the characters in a cell, you may now be wondering
about formatting numbers.

•

•

Formatting your Spreadsheets

[96]

As you've probably already worked out, you only have to set a property
(NumberFormat) with a number representing the number format. However, that's
where there can be problems:

The ID for each number format may vary according to your country
and language.
Since an ID is required for each number format, how can you apply a custom
number format to a cell?

Don't worry, the tools that you need come as components of the document:

1.	 Find a number format ID by using the NumberFormats.queryKey method.

2.	 If the required number format does not exist, then you can create a new one
using the NumberFormats.queryKey method.

You'll probably want to set number formats quite regularly, so the best thing to do at
this point is to write a function to keep things simple:

Function getNumberFormat (iDoc as Object, _
 iFormat as String, _
 optional iLang as String, _
 optional iCountry as String)
 Dim oFormatId As Long
 Dim oLocale As New com.sun.star.lang.Locale

 If IsMissing (iLang) Then
 iLang = "en"
 End If
 If IsMissing (iCountry) Then
 iCountry = "gb"
 End If
 oLocale.Language = iLang
 oLocale.Country = iCountry

 oFormatId = iDoc.NumberFormats.queryKey(iFormat, oLocale, True)
 If oFormatId = -1 Then
 oFormatId = iDoc.NumberFormats.addNew(iFormat, oLocale)
 End If
 getNumberFormat = oFormatId
End Function

Now the setting of cell formats becomes very easy:

 oCell = oSheet.getCellRangeByName("A1")
 oCell.Value = 23400.3523565

 oCell = oSheet.getCellRangeByName("A2")

•

•

Chapter 5

[97]

 oCell.Value = 23400.3523565
 oCell.NumberFormat = getNumberFormat (oDoc, "£#,##0.00")

 oCell = oSheet.getCellRangeByName("B2")
 oCell.Value = -23400.3523565
 oCell.NumberFormat = getNumberFormat (oDoc, "£#,##0.00")

 oCell = oSheet.getCellRangeByName("A3")
 oCell.Value = 23400.3523565
 oCell.NumberFormat = _
 getNumberFormat (oDoc, "£#,##0.00;[RED]-£#,##0.00")

 oCell = oSheet.getCellRangeByName("B3")
 oCell.Value = -23400.3523565
 oCell.NumberFormat = _
 getNumberFormat (oDoc, "£#,##0.00;[RED]-£#,##0.00")

When you run the code, you can see the effects of assigning different number
formats to the cells:

You'll notice that the formatting for the last two cells (A3 and B3) is particularly
useful because it introduces color coding that depends on the value of the cell—
negative values are displayed in red.

Online Reference Material
In this chapter we've only covered a small amount of the formatting that is available.
If you're interested in all of the possibilities, then you can find more about cell
properties at:

You'll find more about character properties at:

Formatting your Spreadsheets

[98]

Summary
In this chapter we've learned about formatting spreadsheets and how to customize the
look and feel of: worksheets, pages prior to printing, Document Information, and Cells.

We have learned how to optimize column width, apply fixed widths to it, hide
columns and rows for a worksheet. We also dealt with adding page breaks, creating
print areas, custom headers and footers, changing page type and size, and so on
for pages to be printed. We now know how to format cells with respect to style,
background color, text color, font size, underlines, and many other formats.

And so back to the story...

Pygoscelis watched Korora as she read the newly printed sheet of paper.

"But this can't be true" she said, "I just can't believe that it's him"

"I'm sorry" said Pygoscelis, "but you've seen the data—and I don't like it any better
than you."

He looked at her staring back at him, a horrified expression on her face. All too late
he realized that she wasn't looking at him, she was looking over his shoulder at
something else. As he turned, the butt of a pistol hit him on the temple. Immediately
a sickening black pit opened up in front of him.

When he slowly came to, he became aware of two things. Something warm was
oozing down the side of his face, and that he couldn't move. His eyes were blurred,
but he tried to look around. "Korora?"

"It's OK Py. I'm here" said her voice from behind him "I'm tied to you"

As his vision cleared he saw the devastation around him. The PCs were smashed
beyond any hope of repair. And then he became aware of a face leering at him.

"Surprised, Boss?" Sphen was sitting on one of the desks idly toying with the pistol in
his hand. He grinned.

"Bit of a mess, isn't it? And all your hard work gone up in smoke. The disk and your
printouts are in there". He pointed to a smoking waste paper bin. "All I was waiting
for was for you to wake up. I want you to see the bullet coming."

Pygoscelis laughed.

"What's so funny"

"It doesn't matter what you do now. It's too late. All of the information has been
uploaded into a database. Kill us and you've lost everything."

If you're interested in learning how Pygoscelis achieved this, then carry on to
Chapter 6, Working with Databases.

Working with Databases
Sphen's grin rapidly evaporated.

"What do you mean? What database?"

"You don't think that we'd be stupid enough to store all of the information here,
do you?"

Sphen looked Pygoscelis up and down. The grin returned as he pointed the pistol at
Korora and he pulled back the hammer.

"Well, I don't need both of you to get the data back."

"Actually, you do. I only have a password for some of the data. Korora has the
password for the rest. You need both of us alive."

Sphen carefully released the hammer and put the gun into his pocket.

"OK. You've won this round. Now, about these databases..."

And so, as Sphen said, about these databases...

In Chapter 6 (as you may have guessed), we're going to be looking at how to use
Calc macros with information stored in a database. By the end of the chapter, you
should be able to:

Use a macro to connect to connect to a database
Use SQL (Structured Query Language) in a macro to extract information from
a database and use it in a spreadsheet
Use macros to add data to a database
Use macros to update data in a database

•

•

•

•

Working with Databases

[100]

What we won't be looking at is:

How to design and build a database
How to set up database connectivity using ODBC (Open
DataBase Connectivity)
The full extent of SQL—we'll only be looking at the basics, just enough for us
to read and write to a database

So let's get started by accessing a database.

Accessing Databases
Having decided that we want to use a database, it might be worth thinking about
databases in general for a moment.

If you google "What is a database?", then you'll find a myriad of definitions, but they
all boil down to the same thing—A database is a structured set of data. So, using
this definition, a database could actually be a website or text files in a directory.
However, there are limitations to this type of database:

Searching can be difficult and often slow.
It's easy for a number of people to be reading the data at the same time, but
writing to the data at the same time can cause problems.
The ways in which data can be extracted and analyzed are usually
very limited.

And that, of course, is why most people use one of the readily available commercial
databases or preferably one of the many free and open‑source ones.

Which Databases can We Use?
I can't advise you on which database to choose. You may be in an organization that
limits you to the database that the company has already bought, for example Oracle,
MS Access, and so on.

If you have a completely open choice, then you might choose from Kexi, MySQL,
and PostgreSQL.

If you do use any of these databases, then you'll have to set up the database
connectivity, and this depends on your system and your preferences. A common one
is Open DataBase Connectivity (ODBC). You'll need to do two things:

1.	 Install the database‑specific drivers for your system.

•

•

•

•

•

•

Chapter 6

[101]

2.	 Use the database‑connectivity software for your system to set up the
connection. The software could be (for example) unixODBC for Linux or MS
ODBC on Windows.

On the other hand, since you're already using OpenOffice.org, you could just stick
with OpenOffice.org's Base database.

Registering the Database as an OOo Data
Source
Once you've set up the database connectivity, you can register it as a data source
with OpenOffice.org—this makes accessing the data just that little bit simpler. It's
easily done by going to the OOo menu and selecting File | New | Database. You'll
be given the choice of selecting an existing database (either an existing OpenOffice.
org Base file or a database connection) or you can create a completely new database.

Once you've decided what you want to do, then OOo will register the database
for you:

Working with Databases

[102]

Viewing Registered Data Sources
Undoubtedly, at some point you'll want to see a list of registered data sources. One
way is to click on View | Data Sources (or press F4).

However, you may prefer to use a macro to get the list:

Sub Main
 list_available_databases
End Sub

Sub list_available_databases
 Dim dbContext as Object
 Dim dbNames
 Dim d as Integer
 Dim dbText as String

 dbContext = createUnoService("com.sun.star.sdb.DatabaseContext")
 dbNames = dbContext.getElementNames()
 For d = 0 To UBound(dbNames())
 dbText = dbText + dbNames(d) + chr(10)
 Next d
 msgbox dbText
End Sub

The macro creates a DatabaseContext service and accesses its getElementNames
method to create an array containing the list of data sources. The macro then loops
through the array to create a string that can be displayed in a text box:

Having identified the data sources, you'll want to do something useful with them—
this means connecting to the databases and then getting information from the tables
contained in them.

Chapter 6

[103]

Connecting to a Database
We've already seen that we can use the DatabaseContext service to enable us to
see the list of registered data sources. Next, we can use the service to connect to
the database:

Sub Main
 Dim db as Object
 db = connect_to_database("ppi")

 'At the end of the session the connection should end
 'automatically
 'but it is best just to make sure of the job:
 disconnect_from_database (db)
End Sub

Sub disconnect_from_database (db as Object)
 db.close
 db.dispose()
End Sub

Function connect_to_database (dbName as String) as Object
 Dim dbContext As Object
 Dim oDataSource As Object

 dbContext = _
 createUnoService("com.sun.star.sdb.DatabaseContext")
 oDataSource = dbContext.getByName(dbName)
 connect_to_database = oDataSource.GetConnection("","")
End Function

You'll notice that the final line of the code contains two empty strings:

connect_to_database = oDataSource.GetConnection("","")

These are the spaces for a user name and a password in case you need these for
connecting to the database. If your database does need a user name and a password
(and obviously it's sensible to use them), then you would use something like:

db = oDataSource.GetConnection("bainm","nottelling")

So, that's easy enough. Next we can look at the actual tables in the database.

Accessing Database Tables
As I mentioned at the start of the chapter, we're not going to delve into the intricacies
of designing and creating the database tables. That's because the techniques and tools
that you'll have at your fingertips will vary according to the actual database that

Working with Databases

[104]

you're using. For example, if you've got MySQL or PostgreSQL, then you could
create the tables from the command line or use third‑party tools to create the
table visually.

On the other hand, if you've got MS Access or you're using OpenOffice.org's Base
application, then you will use their built-in table creation forms and wizards.

However, irrespective of the database you're using, it's worth spending the time
constructing the data structure before you start creating macros. It's easier to build
macros around well-structured data rather than trying to fit your data around
the macros.

If you are using Base, then you can build tables easily using Base's Table
Design dialog.

You can then use Base (with the table in Edit mode) to populate the tables manually
(since we haven't written a macro to do it yet) as shown in the figure below:

Of course, for the time being, you may prefer to use the database that comes with
Base—Biblio.

Chapter 6

[105]

Earlier we saw that using the DatabaseContext service allowed us to list the
available data sources and connect to any of the databases registered with
OpenOffice.org.

Next we can use the service to obtain a list of the tables in the database:

Sub Main
 Dim db As Object
 db = connect_to_database ("ppi")
 list_tables (db)
 disconnect_from_database (db)
End Sub

Sub list_tables (db as Object)
 Dim dbTables as Object
 Dim dbTableNames
 Dim opText as String

 dbTables = db.getTables
 dbTableNames = dbTables.getElementNames
 opText = join (dbTableNames , chr(10))
 msgbox opText
End Sub

You'll notice that the list_tables subroutine does not create the connection to the
database; instead the connect_to_database function returns this as the variable db.
This then represents the connection, and can be passed to any of the macros that
you write.

When you run the Main macro, you'll see the list of tables displayed.

Of course, if you're using your own database or OOo's Biblio, then you'll get a
different list—but you get the idea.

Don't forget you'll always have to run the connect_to_database; without this you
have no connection to the database. If you do want to write any stand‑alone macros
that you can run independently and which use the database, then you'll have to
include the statement

 db = connect_to_database ("ppi")

Working with Databases

[106]

In our example Main does all of the work for us—calling the subroutine to connect to
the database, and then calling a macro to list the tables. So having obtained a list of
all of the tables in the database we can now start to think about extracting data
from them.

Running Queries on the Tables
We're going to use the following simple procedure:

Connect to the database
Send a SQL statement to the database
Get a result from the database
Make use of the results

Since we've already learned how to connect to the database, let's carry on and do
the rest:

Sub Main
 Dim db As Object
 db = connect_to_database ("ppi")
 simple_query (db)
 disconnect_from_database (db)
End Sub

Function capitalize (iName as String) as String
 Dim wordStart as String
 Dim wordEnd as String

 wordStart = UCase (Mid (iName,1,1))
 wordEnd = LCase (Mid (iName,2))
 capitalize = wordStart & wordEnd
End Function
Sub simple_query (db as Object)
 Dim oSql as String
 Dim i as Integer
 Dim oRowSet as Object
 Dim oResult as String

 oSql = _
 "SELECT SURNAME, FIRSTNAME, RATE" _
 & " FROM ""investigator"""

 oRowSet = createUnoService("com.sun.star.sdb.RowSet")

 oRowSet.activeConnection = db
 oRowSet.Command = oSql
 oRowSet.execute

•

•

•

•

Chapter 6

[107]

 while oRowSet.Next
 oResult = oResult _
 & capitalize (oRowSet.getString(2)) & " " _
 & capitalize (oRowSet.getString(1)) & " " _
 & "£" & oRowSet.getFloat(3) _
 & " " & chr(13)
 wend
 msgbox oResult, ,"PPI Hourly Rate "
End Sub

You'll see from the simple_query subroutine that we create a RowSet service,
which then uses the database connection to send a SQL statement to the database
and retrieve the results. Next, we just have to loop through the RowSet extracting
information from it line by line.

There are a couple of things to consider before we move on. The first one being the
following three lines of the code:

 oRowSet.activeConnection = db
 oRowSet.Command = oSql
 oRowSet.execute

Personally, I'm perfectly happy with this, but you may prefer the With format. If so,
then you could change the code to:

 With oRowSet
 .activeConnection = db
 .Command = oSql
 .execute
 End With

The other thing is the capitalize function. This is just used to format any names
nicely (since they may have been saved as all lowercase, or all uppercase, or any
mixture of the two). The end result is as follows:

Working with Databases

[108]

Putting it All into a Spreadsheet
We've seen just how easy it is to get data out of a database. We can now look at
actually doing something useful with the information. The most obvious thing to do
is to load the data into a spreadsheet:

Sub Main
 Dim db As Object
 db = connect_to_database ("ppi")
 load_investigator (db)
 disconnect_from_database (db)
End Sub

Sub load_investigator (db as Object)
 Dim oDoc as Object
 Dim oURL as String
 Dim oSheet as Object
 Dim oCell as Object
 Dim oRowSet as Object
 Dim i as Integer

 oURL = "private:factory/scalc"
 oDoc = starDeskTop.loadComponentFromURL _
 (oURL, "_blank", 0, Array())
 oSheet = oDoc.Sheets(0)
 oSheet.Name = "PPI Investigator"

 oRowSet = get_rowset (db, sql_select _
 ("investigator", Array("SURNAME","FIRSTNAME","RATE")))

 While oRowSet.Next
 i = i + 1
 oCell = oSheet.getCellByPosition(0,i)
 'Remember to use capitalize from page 8
 oCell.String = capitalize (oRowSet.getString(2))
 oCell = oSheet.getCellByPosition(1,i)
 oCell.String = capitalize (oRowSet.getString(1))
 oCell = oSheet.getCellByPosition(2,i)
 oCell.Value = capitalize (oRowSet.getString(3))
 Wend
End Sub

You'll realize, of course, that there's nothing new here. We are just using some of
the techniques that we've learned in Chapter 4 (where we manipulated data in a
spreadsheet), Chapter 5 (where we formatted the contents of spreadsheets), and this
chapter (where we've extracted information from a database, and introduce functions
such as capitalize).

Chapter 6

[109]

However, there are a couple of functions that we call from load_investigator that
you may be wondering about. The first is the function sql_select. If you do not
prefer to create the SQL yourself, you can use this to do the job for you. All you have
to do is feed it with the table name (as a string) and the list of fields (as an array):

Function sql_select (iTable as String, iFields())
 sql_select = _
 "SELECT " & join (iFields,",") _
 & " FROM """ & iTable + """"
End Function

The other function is get_rowset. If you don't want to remember how to create a
RowSet, then you can use this to do the work for you. Just pass a SQL statement to it
and it will return the RowSet as an object to you:

Function get_rowset (db as Object, iSql as String) as Object
 Dim oRowSet as Object

 oRowSet = createUnoService("com.sun.star.sdb.RowSet")
 oRowSet.activeConnection = db
 oRowSet.Command = iSql
 oRowSet.execute

 get_rowset = oRowSet
End Function

After all this, the result is a spreadsheet containing the result of the query that you've
sent to the database:

I'm sure that you'll find these techniques very useful. However, it's rather limiting,
isn't it? You'll need a completely new macro for every set of data that you want to
load. Instead of that let's investigate a more generic approach.

Loading Data into Custom Worksheets
I don't know about you, but I enjoy using code to come up with fresh solutions to
problems. I don't particularly enjoy just typing the same old lines of code again, and
again, and again. So let's look at changing load_investigator into a macro that will
work for any data that we want to insert into the spreadsheet:

Working with Databases

[110]

Sub Main
 Dim doc as Object
 Dim db As Object

 db = connect_to_database ("ppi")
 doc = open_spreadsheet
 ppi_sheets (db, doc)
 disconnect_from_database (db)
End Sub

We're still using the connect_to_database function (for obvious reasons); however,
we've also added open_spreadsheet and ppi_sheets.

Function open_spreadsheet
 Dim oURL as String

 oURL = "private:factory/scalc"
 open_spreadsheet = starDeskTop.loadComponentFromURL (oURL, _
 "_blank", 0, Array())
End Function

You'll realize immediately that all open_spreadsheet does is encapsulate code that
we've already used often enough and open a blank spreadsheet. It's in ppi_sheets
that all of the database work is done:

Sub ppi_sheets (db as Object, iDoc as Object)
 Dim sheetName as String
 Dim fields
 Dim oRowSet as Object
 Dim r as Integer

 sheetName = "PPI Investigator"
 oRowSet = get_rowset (db, sql_select _
 ("investigator", _
 Array("SURNAME","FIRSTNAME","RATE", "'END_OF_RECORD'")))
 r = oRowSet.RowCount + 1
 load_sheet (iDoc, sheetName, oRowSet)
 capitalize_column (iDoc, sheetName,0,r)
 capitalize_column (iDoc, sheetName,1,r)
 format_column (iDoc, sheetName,2,r,"£#,##0.00")
 deleteSheets (iDoc)
End Sub

OK, nothing contentious here. You can work out from the function name what's
going on. However, you may be wondering about the 'END_OF_RECORD' used in the
SQL statement. It's not actually a field name; we're using it to mark the final record in
each row. You can see it in use in the load_sheet subroutine:

Chapter 6

[111]

Sub load_sheet (iDoc as Object, iName as String, iRowSet as Object)
 Dim oSheet as Object
 Dim oCell as Object
 Dim r as Integer
 Dim c as Integer
 Dim endMarker as String

 oSheet = iDoc.createInstance ("com.sun.star.sheet.Spreadsheet")
 iDoc.Sheets.insertByName (iName, oSheet)

 If Not isNull (iRowSet) Then
 While iRowSet.Next
 r = r + 1
 c = 1
 endMarker = ""
 While endMarker <> "END_OF_RECORD"
 oCell = oSheet.getCellByPosition(c - 1,r)
 if isNumeric (iRowSet.getString(c)) Then
 oCell.Value = iRowSet.getString(c)
 Else
 oCell.String = iRowSet.getString(c)
 End If
 c = c + 1
 endMarker = iRowSet.getString(c)
 Wend
 Wend
 End If
End Sub

The load_sheet subroutine is useful because you can use it to add a completely new
worksheet, give it an appropriate name, and load it with the contents of a RowSet.

Having loaded the data that we require, the ppi_sheets subroutine then calls
a few custom-build subroutines to carry out some formatting. The macro
capitalize_column takes the capitalize function and applies it to a portion
of a column:

Sub capitalize_column (iDoc as Object, _
 iSheetName as String, _
 iColumn as Integer, _
 iRow as Integer)
 Dim oCell as Object
 Dim oSheet as Object
 Dim r as Integer

 oSheet = iDoc.Sheets.getByName (iSheetName)

 For r = 0 to iRow
 oCell = oSheet.getCellByPosition(iColumn,r)

Working with Databases

[112]

 oCell.String = capitalize(oCell.String)
 Next r
End Sub

We can also apply number formats to any column that we want:

Sub format_column (iDoc as Object, _
 iSheetName as String, _
 iColumn as Integer, _
 iRow as Integer, _
 iFormat as String)
 Dim oCell as Object
 Dim oSheet as Object
 Dim r as Integer

 oSheet = iDoc.Sheets.getByName (iSheetName)

 For r = 0 to iRow
 oCell = oSheet.getCellByPosition(iColumn,r)
 'The getNumberFormat function was created in chapter 5
 oCell.NumberFormat = getNumberFormat (iDoc, iFormat)
 Next r
End sub

Finally, we remove any unused worksheets:

Sub deleteSheets (iDoc as Object)
 iDoc.Sheets.removeByName("Sheet1")
 iDoc.Sheets.removeByName("Sheet2")
 iDoc.Sheets.removeByName("Sheet3")
End Sub

At the end of the process we've got a formatted spreadsheet with only the
necessary worksheets:

Of course, we may have other tables in the database, for example our friend
Pygoscelis would have a table containing all the PPI cases:

Chapter 6

[113]

And to use another table we only have to add a small amount of extra code:

 sheetName = "PPI cases"
 oSql =_
 "select TITLE,DETAILS,FIRSTNAME,SURNAME,'END_OF_RECORD' " _
 & " from ""investigator"" i, ""cases"" c "_
 & " where i.ID = c.INVESTIGATOR_ID" _
 & " order by c.ID "
 oRowSet = get_rowset (db, oSql)	
 load_sheet (iDoc, sheetName, oRowSet)
 r = oRowSet.RowCount + 1
 capitalize_column (iDoc, sheetName,2,r)
 capitalize_column (iDoc, sheetName,3,r)

The SQL statement is a little more complicated this time—rather than using the
contents of a single table we're combining the contents of two tables (often referred
to as a Join query). The end result is a worksheet containing details from both tables:

You'll notice that the column widths are not optimized, but I'm not going to
do everything for you. All you have to do is create a new subroutine similar
to capitalize_column and format_column, but this time using the column's
OptimalWidth property (if you remember, we used that in Chapter 5).

Adding New Records to the Database
So far we've extracted static data from the database, but we're not limited to that.
It's easy to collect information from the spreadsheet or from manual input, and then
use it with an insert query in order to create a new set of records in a table. In this
example, we first need to select a row in the PPI Investigator worksheet.

Working with Databases

[114]

We then call the add_case macro (by clicking on Tools | Macros | Run Macro...).
The macro will obtain the investigator name from the selection and then ask the user
(e.g. Pygoscelis) for the new case details.

Sub add_case
 Dim oRange as Object
 Dim oSheet as Object
 Dim oCell as Object
 Dim surname as string
 Dim firstname as string
 Dim title as string
 Dim details as string
 Dim r as Integer

 oRange = thisComponent.getCurrentSelection.getRangeAddress	
 r = oRange.startRow
 oSheet = thisComponent.CurrentSelection.getSpreadsheet
 surname = ucase(oSheet.getCellByPosition(0,r).String)
 firstname = ucase(oSheet.getCellByPosition(1,r).String)
 If surname = "" Or firstname = "" Then
 msgbox "Please select a row containing a name "
 stop
 End If
 While title = ""
 title = inputbox ("Enter case title (enter 0 to stop)")
 Wend
 If title = 0 Then
 stop
 End If
 While details = ""
 details = inputbox ("Enter case details (enter 0 to stop)")
 Wend
 If details = 0 Then
 stop
 End If
 create_case (surname, firstname, title, details)
End Sub

You'll notice that the subroutine collects some of the information from the
spreadsheet itself.

Chapter 6

[115]

 surname = ucase(oSheet.getCellByPosition(0,r).String)
 firstname = ucase(oSheet.getCellByPosition(1,r).String)

While the rest of the data is obtained from manual input as:

 title = inputbox ("Enter case title (enter 0 to stop)")
 details = inputbox ("Enter case details (enter 0 to stop)")

The collected information is then passed on to the create_case subroutine:

Sub create_case (iSurname as String, _
 iFirstName as String, _
 iTitle as String, _
 iDetails as String)
 Dim id as Integer
 Dim oSql as String
 Dim oResult as Object
 Dim oStatement as Object
 Dim db as object

 db = connect_to_database ("ppi")

 id = investigator_id (db, iSurname, iFirstName)

 oSql = "insert into ""cases"" " _
 + "(""TITLE"",""DETAILS"",""INVESTIGATOR_ID"") values " _
 + "('" + iTitle + "','" + iDetails + "'," + id + ")"

 oStatement = db.createStatement
 oResult = oStatement.executeQuery (oSql)
 disconnect_from_database (db)
End Sub

You may wonder why the subroutine contains the line:

 db - connect_to_database ("ppi")

If you remember, previously the connection to the database was created when you
first ran Main. It was, of course, released when Main finished. However, this time
Main is not being called, and so in order for create_case to run correctly it needs its
own connection (and, of course, its own disconnection).

The subroutine finally sends an insert SQL statement to the database:

 oSql = "insert into ""cases"" " _
 + "(""TITLE"",""DETAILS"",""INVESTIGATOR_ID"") values " _
 + "('" + iTitle + "','" + iDetails + "'," + id + ")"

Working with Databases

[116]

However, before it carries out the insert, create_case obtains the field
investigator_id—a number stored in the investigator table, and we use the
investigator_id function:

Function investigator_id _
 (db as Object, iSurname as String, iFirstName as String)
 Dim oRowSet as Object
 Dim oSql
 oSql = "select ID from investigator " _
 + "where SURNAME ='" + iSurname + "'" _
 + " and FIRSTNAME = '" + iFirstName + "'"
 oRowSet = get_rowset (db, oSql)
 oRowSet.Next
 investigator_id = oRowSet.getInt(1)
End Function

You'll also notice that the function gets the information from a single table, but it is
filtered to obtain a single ID number (by adding a Where clause to the SQL).

The final point to be aware of is that we don't use the RowSet when inserting into the
database; we just create a statement and then execute the SQL:

 oStatement = db.createStatement

 oResult = oStatement.executeQuery (oSql)

Updating the Database
So far we've learned how to:

Use SQL to query the database and use the information obtained to fill
a worksheet
Use an insert SQL statement in a macro to create new records in
the database

The next thing that we can do is to update data already in the database; again by
deriving information from the spreadsheet. Let's say that Pygoscelis has changed
some of the details in his "PPI Cases" worksheet (perhaps changing one of the case
titles), then all he has to do is to click on Tools | Macros | Run Macro... to run the
macro, which will scroll through the worksheet looking for any changes:

Sub update_case
 Dim oRange as Object
 Dim oSheet as object
 Dim oRowSet as Object
 Dim oCell as Object
 Dim oSql as String

•

•

Chapter 6

[117]

 Dim r as Integer
 Dim c as Integer
 Dim oResult as Object
 Dim oStatement as Object
 Dim db as Object

 db = connect_to_database ("ppi")

 oRange = thisComponent.getCurrentSelection.getRangeAddress	
 oSheet = thisComponent.CurrentSelection.getSpreadsheet
 oRowSet = get_rowset (db, sql_select _
 ("case", Array("TITLE", "DETAILS")))
 r = 1
 oCell = oSheet.getCellByPosition(0,r)
 While oCell.String <> "" And Not oRowSet.isLast
 oRowSet.absolute(r)

 oCell = oSheet.getCellByPosition(0,r)
 If oCell.String <> oRowSet.getString(1) Then
 oSql = """TITLE"" = '" & oCell.String & "'"
 End If

 oCell = oSheet.getCellByPosition(1,r)
 If oCell.String <> oRowSet.getString(2) Then
 If oSql <> "" Then
 oSql = oSql & ","
 End If
 oSql = oSql & """DETAILS"" = '" & oCell.String & "'"
 End If
 If oSql <> "" Then
 oSql = "Update ""cases"" set " & oSql _
 & " where ""TITLE"" = '" & oRowSet.getString(1) & "'" _
 & " and ""DETAILS"" = '" & oRowSet.getString(2) & "'"
 End If
 oStatement = db.createStatement
 oResult = oStatement.executeQuery (oSql)		
 r = r + 1
 Wend
 disconnect_from_database (db)
End Sub

The process of updating the database is similar to inserting new data:

Information is obtained from the spreadsheet by making use of the
range address.
The appropriate SQL statement is built from the information.
The SQL statement is passed to the database, but again no RowSet is created.

•

•

•

Working with Databases

[118]

The main difference is that rather than taking an individual line of data from the
spreadsheet, every line is checked. The macro then compares each line with the
contents of the equivalent line in the RowSet. If there is a difference, then an update
is carried out.

Summary
In this chapter we've learned how to make use of the data stored in a database. And
so we're now able to use a macro to obtain and use data in a database, create new
records in a database, and update existing records in a database.

If you're using any database other that OpenOffice.org Base, then you'll have
to install drivers for the database that you're going to be using, configure your
ODBC software so that the database is available on your system, and register the
database with OpenOffice.org as a Data Source. You can then connect to it using the
DatabaseContext service.

With a connection in place you can extract information from the database, add new
records to tables in the database, and update existing records in the database. You
have also learned how to extract information from the database and also how to
insert a new record or update an existing one.

Anyway...

Pygoscelis ignored Sphen and slumped back in his chair. All he was really aware of
was the increasing pain in his head and Korora's heart beating through his back. He
tried to concentrate on the contents of the report now smoldering in the bin.

At last he gave in and slipped back into oblivion.

In Chapter 7 we'll be looking at how Pygoscelis created that report when we look at
'Working with Other Documents'.

Working with Other
Documents

Pygoscelis struggled for a moment and then fell silent. Sphen walked over to him,
and slapped him. Nothing. He slapped him again. Still nothing. He raised his hand
again, this time clenching his fist.

"Just leave him alone, will you!"

"Ah, Korora! I'd quite forgotten about you."

He relaxed his arm, and then moved so that he could face her.

"I must admit, I was impressed with that report. Very pretty. Almost a shame to burn
it. Tell me how did you make it? You may as well tell me; it can't do any harm now."

She looked back at him. "No", she thought to herself, "it won't do any harm, but it
may just delay you a little bit longer. Just long enough to..."

Well, we're not going to delay. We'll spend this chapter looking at how our Calc
macros can make use of other documents. In the previous chapters, we've seen that
we can:

Open an existing spreadsheet and manipulate its contents
Open a number of spreadsheets and make use of the content from one
spreadsheet in another one
Extract information from a database, manipulate the results with a
spreadsheet, and then write information back to the database

•

•

•

Working with Other Documents

[120]

By the end of the chapter, you should be able to:

Use macros to make use of OpenOffice.org Chart documents within
a spreadsheet
Use macros to open other documents, importing their contents into a usable
form, and then processing those contents

So far we've dealt with data in a tabular format. After all, that's what a spreadsheet
is. However, although useful, this is not always the best way to view the
information—very often a picture is much more effective. And that's why we're
going to start making use of OpenOffice.org Charts within a spreadsheet (all done
automatically with macros, of course).

In this chapter (and, infact, from now on) we''ll be dealing with some quite new
functionality—so you must ensure that you're running the most current versions of
OOo for all of the code to work.

The OpenOffice.org Chart
Perhaps, the most useful document that you can make use of in conjunction with
a spreadsheet is the chart. Why? Simply because—give someone ten pages of
figures and they'll be able to understand the contents, eventually; give someone
a chart representing ten pages of figures and they'll be able to understand the
contents, immediately.

So, let's look at converting a set of raw data in a spreadsheet into a
professional-looking chart.

Inserting a Simple Chart into a Spreadsheet
Obviously, the first thing to do is to enter the information into a spreadsheet, either
from another spreadsheet, from a database, or (if you really must) manually:

•

•

Chapter 7

[121]

Next, we need to select the data in the spreadsheet; and remember that after selecting
the data with the mouse, you can either click on Tools | Macros | Run Macro... or
go back to the Macro editor and click on the Run button, then run your macro:

Sub Main
 simple_chart
End Sub

Sub simple_chart
 Dim oRange as Object
 Dim oSheet as Object
 Dim oCharts as Object
 Dim cTitle as String
 Dim oRect As New com.sun.star.awt.Rectangle
 Dim oRangeAddress(1) As New com.sun.star.table.CellRangeAddress

 cTitle = "PPI Cases"

 oRange = thisComponent.getCurrentSelection.getRangeAddress
 oSheet = thisComponent.CurrentSelection.getSpreadsheet
 oCharts = oSheet.Charts

 'Set Y azis Data
 oRangeAddress(1).Sheet = oRange.Sheet
 oRangeAddress(1).StartColumn = oRange.StartColumn
 oRangeAddress(1).EndColumn = oRange.StartColumn
 oRangeAddress(1).StartRow = oRange.StartRow
 oRangeAddress(1).EndRow = oRange.EndRow

 'Set X axis Data
 oRangeAddress(0).Sheet = oRange.Sheet
 oRangeAddress(0).StartColumn = oRange.StartColumn + 1
 oRangeAddress(0).EndColumn = oRange.EndColumn
 oRangeAddress(0).StartRow = oRange.StartRow
 oRangeAddress(0).EndRow = oRange.EndRow

 oCharts.addNewByName(cTitle,oRect,oRangeAddress(),TRUE, TRUE)
End Sub

If you read through the macro, then you'll soon realize that the key line is:

 oCharts.addNewByName(cTitle,oRect,oRangeAddress(),TRUE, TRUE)

This is the line of code that actually creates the chart, and all of the previous lines are
involved in setting up the required inputs to the chart creation. The inputs that you
need to be aware of are:

A title for the chart—this is just used to reference the chart, it isn't displayed.•

Working with Other Documents

[122]

A com.sun.star.awt.Rectangle—this is used to define the size and
position of the chart within the spreadsheet.
A com.sun.star.table.CellRangeAddress—to define the ranges of data to
be used for the Y axis and the X axis. As you can see the ranges are defined
in exactly the same way that we've defined ranges before, by setting the start
and end rows and columns.

Before long you'll have an OpenOffice.org chart inserted into the spreadsheet:

OK. I admit it; it doesn't look very impressive. But it does show you how easy it is
to create a chart using the data in a spreadsheet. Next, we need to start looking at
making the chart look a little bit nicer.

Formatting OpenOffice.org Charts
If you were creating this chart manually you'd probably:

Use the mouse to increase the area of the chart to make it more readable
Add an appropriate title
Put labels on the X axis and the Y axis
Change the format of the dates (on the Y axis), so that you can actually tell
what the date is

And so, that's what we'll do, but by using a macro.

•

•

•

•

•

•

Chapter 7

[123]

Chart Size
The chart that we've just created looks a little small, doesn't it? Fortunately, we can
easily change this by making use of the com.sun.star.awt.Rectangle used in the
creation of the chart:

 oRect.Width = 20000
 oRect.Height = 10000

Note that the width and height are both defined in 1/100th of an mm, so the settings
above give a width of 20cm and a height of 10cm.

This must, of course, be placed before the line:

 oCharts.addNewByName(cTitle,oRect,oRangeAddress(),TRUE, TRUE)

Now, if you try this without removing the first chart that we created, then you're
going to get an error:

This is, of course, because we create the chart with a name and we must always have
uniquely named objects. The following is an easy answer to get the macro to remove
the existing chart (if it exists) before we create a new one:

 if oCharts.hasByName(cTitle) Then
 oCharts.RemoveByname(cTitle)
 end if

If you now re-run the macro (after having ensured that the correct cells have been
selected in the spreadsheet), then a new chart will be displayed—whether or not
you've already got one displayed.

Chart Title
Setting the chart title (the displayed text) is maybe more involved than you might
expect, but is by no means difficult:

Working with Other Documents

[124]

 Dim oChart As Object

 oChart = oCharts.getByName(cTitle).embeddedObject
 oChart.HasMainTitle = True
 oChart.Title.string = cTitle

Also remember to add the above code after the line:

 oCharts.addNewByName(cTitle, oRect, oRangeAddress(), TRUE, TRUE)

Remembering that we've already set cTitle:

 cTitle = "PPI Cases"

This time rather than seeing 'Main title' at the top of the chart you will see
'PPI Cases'.

Adding Chart Axis Labels
T��he labels for the X axis and the Y Axis are at least as important as the Chart Title;
without these, the divisions on the chart are meaningless. After all, what does 0, 1, 2,
3, etc., actually mean? Number of elephants? Number of apples? So, to remove the
possibility of confusion, just add the labels, especially since it is so easy to do:

 oChart.diagram.HasXAxisTitle = True
 oChart.diagram.XAxisTitle.string = "Date"
 oChart.diagram.HasYAxisTitle = True
 oChart.diagram.YAxisTitle.string = "Number of Cases"

Y Axis Text Orientation
The text orientation for text on the Y axis can make a big difference to understanding
the information, and dates look better if they are kept to a single line:

 oChart.diagram.XAxis.TextBreak = False
 Chart.diagram.XAxis.TextRotation = 27000

And as you've probably guessed, the rotation is measured in 1/100th of a degree.

A Fully Formatted Bar Chart
After all this, you have a nicely formatted, professional looking chart in
your spreadsheet:

Chapter 7

[125]

Also, just to make sure that you know the order in which things need to be done,
here is the complete code for the macro:

Sub nicer_chart
 Dim oRange as Object
 Dim oSheet as Object
 Dim oCharts as Object
 Dim oChart As Object
 Dim cTitle as String
 Dim oRect As New com.sun.star.awt.Rectangle
 Dim oRangeAddress(1) As New com.sun.star.table.CellRangeAddress

 cTitle = "PPI Cases"

 oRange = thisComponent.getCurrentSelection.getRangeAddress
 oSheet = thisComponent.CurrentSelection.getSpreadsheet
 oCharts = oSheet.Charts

 if oCharts.hasByName(cTitle) Then
 oCharts.RemoveByname(cTitle)
 end if

 'Set Y azis Data
 oRangeAddress(1).Sheet = oRange.Sheet
 oRangeAddress(1).StartColumn = oRange.StartColumn
 oRangeAddress(1).EndColumn = oRange.StartColumn
 oRangeAddress(1).StartRow = oRange.StartRow
 oRangeAddress(1).EndRow = oRange.EndRow

Working with Other Documents

[126]

 'Set X axis Data
 oRangeAddress(0).Sheet = oRange.Sheet
 oRangeAddress(0).StartColumn = oRange.StartColumn + 1
 oRangeAddress(0).EndColumn = oRange.EndColumn
 oRangeAddress(0).StartRow = oRange.StartRow
 oRangeAddress(0).EndRow = oRange.EndRow

 'The default chart is a little small - so make it bigger
 oRect.Width = 20000
 oRect.Height = 10000

 oCharts.addNewByName(cTitle,oRect,oRangeAddress(),TRUE, TRUE)
 oChart = oCharts.getByName(cTitle).embeddedObject
 oChart.HasMainTitle = True
 oChart.Title.string = cTitle

 'More formating
 oChart.diagram.XAxis.TextRotation = 27000
 oChart.diagram.XAxis.TextBreak = False
 oChart.diagram.HasXAxisTitle = True
 oChart.diagram.XAxisTitle.string = "Date"
 oChart.diagram.HasYAxisTitle = True
 oChart.diagram.YAxisTitle.string = "Number of Cases"
End Sub

Of course, that's not to say that you can't improve on this macro, for example:

The data is limited to the cells that you manually select; instead you could
have the range as an input to the subroutine.
The labels and titles are all hard-coded, again these may be better as
string inputs.
The size of the rectangle for the chart could also be an input rather than fixed.

Other Chart Types
At this stage, you're probably wondering about other chart types. After all, there's
nothing in the code about them at all. Is the bar chart the only one available? Well, of
course not; that's just the default type.

If you want to use a different type, then you just state which of the chart's diagram
services you want to use. For example:

oChart.diagram = _
 oChart.createInstance("com.sun.star.chart.LineDiagram")

•

•

•

Chapter 7

[127]

This code results in the chart being presented as a line diagram:

You've actually got a choice from:

AreaDiagram
BarDiagram (the default)
DonutDigram
LineDiagram
NetDiagram
PieDiagram
StackableDiagram
StockDiagram
XYDiagram

Again, you can improve the macro (if you wish) by inputting the diagram type.

Using Documents from Other Sources
We've already learned how to use data stored in:

A spreadsheet
Other spreadsheets on the system
A database

•

•

•

•

•

•

•

•

•

•

•

•

Working with Other Documents

[128]

We've also learned how to make use of a chart document with our data. Next we'll
look at data from other sources and make use of that.

Stock Market Analysis—Yahoo! Finance
So what data shall we use? Let's see if we can make a fortune on the stock markets:

Are there any shares that you're particularly interested in? How about looking at the
performance of the London Stock Exchange:

Chapter 7

[129]

Along with the daily data, the service allows you to view historical data:

Working with Other Documents

[130]

Now, how about doing all of that automatically?

Importing an Historical CSV File from Yahoo!
Finance
Before importing the .csv file automatically, we first need to understand how to do
it manually. If you spend some time looking at the Yahoo! Finance website, then you
find that the historical .csv file for a company can be accessed using the same URL.
All you have to do is to change the s input to the code for the company that you're
interested in:

You'll find that you now have a choice:

Save the file to disk
Open the file using an application

If you choose OpenOffice.org Calc for the latter, then you'll be presented with the
Text Import Wizard:

•

•

Chapter 7

[131]

Next, you need to tell the wizard about the delimiter that the file is using to separate
the columns (in this case it is a CSV file), OpenOffice.org Calc can then interpret
the contents of the file correctly. Once you'v set the delimiters (or just left the
defaults), then you can press OK, and a few moments later you'll have a spreadsheet
containing the stock market details for the company that you've chosen.

Now that we've seen how to import a CSV file manually, it seems appropriate to creat
a macro to do all that for us. Remember—for the following code to operate correctly,
you must be using the most currect version of OpenOffice.org (2.0.4 on Windows or
2.0.2 on Linux). And don't worry when you run it—it does take a while to process all
of the data:

Sub Main
 get_stock_price_history "MSF.L"
End Sub

Sub get_stock_price_history (iCompany_symbol as String)
 Dim oUrl as String
 Dim oDoc as Object
 Dim oPropertyValue(0) As New com.sun.star.beans.PropertyValue

 oUrl = "http://ichart.finance.yahoo.com/table.csv" _
 & "?s="& iCompany_symbol &"&e=.csv"

 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "44"
 oDoc = starDeskTop.loadComponentFromURL(oUrl, "_blank", 0, _
 oPropertyValue)
End Sub

I'm sure that you can follow the macro quite easily as you've seen most of the code
used in other subroutines and functions. There are just two lines that you may have
to think about:

 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "44"

You're probably wondering what the 44 stands for. Quite simply—it's the ASCII
code for a comma.

Working with Other Documents

[132]

Now if you run the macro, you'll end up with something like:

With the data correctly imported, you can either manually select an area of data, or if
you've modified the nicer_chart macro to accept X and Y inputs, then you can run:

Sub Main
 yColumn = 0
 yStartRow= 0
 yEndRow = 18
 xStartColumn = 1
 xEndColumn = 4
 xStartRow= 0
 xEndRow = 18
 Nicer_chart(yColumn, yStartRow, yEndRow, _
 xStartColumn, xEndColumn, xStartRow, xEndRow)
End Sub

Chapter 7

[133]

Now you're able to import the historical .csv file and display the results in a chart:

However, there's just one problem with the chart—it is reversed, i.e. the dates go
from right to left instead of left to right. This is because the dates are in descending
order in the spreadsheet. So all you have to do is to add a macro to sort the data
for you:

Sub Main
 get_stock_price_history "MSF.L"
 range_sort "A1:G201"
End Sub

Sub range_sort(iSortArea as String)
 Dim oSortField(0) As New com.sun.star.table.TableSortField
 Dim oPropertyValue(1) As New com.sun.star.beans.PropertyValue
 Dim oRange as Object

 oRange = ThisComponent.Sheets(0).getCellRangeByName(iSortArea)

 oSortField(0).Field = 0
 oSortField(0).IsAscending = True
 oSortField(0).IsCaseSensitive = False
 oPropertyValue(0).Name = "SortFields"
 oPropertyValue(0).Value = oSortField
 oPropertyValue(1).Name = "ContainsHeader"
 oPropertyValue(1).Value = True

 oRange.sort(oPropertyValue)
End Sub

Working with Other Documents

[134]

When you put it all together, you've got a nice picture of how Microsoft has been
doing in the London Stock Exchange for the past few months:

Now can anyone tell me—does that mean we should be buying or selling?

Comparing Companies within Yahoo! Finance
We've seen how to import a .csv file from Yahoo! Finance to view the historical
performance of a company, but what about looking at how all of our shares are
doing currently?

Just like the historical .csv, you just need to use the correct URL to access the data:

As before, we need to enter a code (or symbol) for each company of interest,
for example:

MSFT: Microsoft on the Nasdaq Market
RHAT: Red Hat on the Nasdaq Market
NOVL: Novell on Nasdaq

If you're not sure of the code, then there is a look-up facility on the website.

•

•

•

Chapter 7

[135]

You may also be wondering about a portion of the URL—f=sl1d1. These are some
of the fields that will be included in the .csv file:

s: company symbol
l1: Last trade price
d1: Last trade date

There are a few different fields that you can use; refer to the
Yahoo! Finance website to learn about all of the others.

So, the only thing that you need to do now is to it add a macro to import the
information:

Sub Main
 get_stock_price(array("MSFT","RHAT","NOVL"))
End Sub

Sub get_stock_price (iCompany_symbols)
 Dim oUrl as String
 Dim oDoc as Object
 Dim oSymbols as String
 Dim oFields as String
 Dim oPropertyValue(0) As New com.sun.star.beans.PropertyValue

 oSymbols = join (iCompany_symbols,"&s=")
 oFields = "sl1d1"

 oUrl = "http://finance.yahoo.com/d/quotes.csv" _
 & "?s="& oSymbols & "&f=" & oFields &"&e=.csv"

 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "44" 'Use a comma as the field separator
 oDoc = starDeskTop.loadComponentFromURL(_
 oUrl, "_blank", 0, oPropertyValue)
End Sub

The new, current data will now be loaded into a spreadsheet:

•

•

•

Working with Other Documents

[136]

I know you can see the problem with the data already. You can't? It's quite simple.
There are no headers on the columns, which means that you won't be able to show
the information in a chart. Fortunately, it just takes a couple of lines of code to do
the job:

 oDoc.Sheets(0).getRows.insertByIndex(0,1)
 oDoc.Sheets(0).getCellByPosition (1, 0).String = "Share Value"

Now you can use a macro to display the data in a chart:

Of course, you may prefer to combine the .csv importation subroutine with the one
for the historical .csv file. If you do, then you'll need to remember that:

The historical .csv can only handle one company at a time, whereas the
current .csv can handle as many companies as you need.
The historical .csv is downloaded from http://ichart.finance.yahoo.com,
whereas the current .csv is downloaded from http://finance.yahoo.com.
The historical .csv is imported with column headers, whereas the current
.csv is imported without column headers.

Processing Web Pages
To start with a question—how do you get a macro to open a blank Calc document?
Hopefully, you'll answer that you use the function that we wrote in Chapter 6:

Function open_spreadsheet
 Dim oURL as String

•

•

•

Chapter 7

[137]

 oURL = "private:factory/scalc"
 open_spreadsheet = starDeskTop.loadComponentFromURL (oURL, _
 "_blank", 0, Array())
End Function

So here's another question—How do you get a macro to open a blank Writer
document? Not sure? Let me give you a clue—you can use the same subroutine, but
you have to change one word. Give up? Just change:

 oURL = "private:factory/scalc"

To:

 oURL = "private:factory/swriter"

From this I'm sure you can deduce that it's the URL that determines how a file is
opened; this is true for both new, blank files, and existing documents.

So what happens when you try process a web page, for example:

which (when you look at it through a browser) gives you:

Working with Other Documents

[138]

If you try to open a web page through a macro, for instance:

 oUrl = "http://finance.yahoo.com/lookup?s=novell&t=S&m=ALL"
 oDoc = oDesk.loadComponentFromURL(oUrl, "_blank", 0, Array())

This will be opened in the OpenOffice.org Web Writer application:

Unfortunately, this doesn't really do us much good, especially if we want to extract
any information from the web page (for example, the list of symbols). Of course, we
could go off and learn all about the web writer, but since we're already working with
Calc, it seems sensible to import the page into Calc, and then process it. So that is
what we'll do.

We've already seen that we can import a .csv file by using the FilterOption
setting:

 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "44" 'Use a comma as the field separator
 oDoc = oDesk.loadComponentFromURL(oUrl, "_blank", 0, _
 oPropertyValue)

However, just doing that won't help with a web page, due to the .html suffix,
OpenOffice.org automatically interprets HTML documents as a web page and not
a spreadsheet. We, therefore, need to tell the macro specifically how to open
the document:

 oPropertyValue(1).Name = "FilterName"
 oPropertyValue(1).Value = "Text - txt - csv (StarCalc)"

Now we can write a macro that can take any web page and process the data
contained with in it:

Chapter 7

[139]

Sub Main
 get_symbols "novell"
End Sub

Sub get_symbols (icompany as String)
 Dim oUrl as String
 Dim oDoc as Object
 Dim oSheet as Object
 Dim oCell as Object
 Dim i as Integer
 Dim r as Integer
 Dim rows()
 Dim fields()
 Dim field()
 Dim result as String
 Dim oPropertyValue(1) As New com.sun.star.beans.PropertyValue

 oUrl = "http://finance.yahoo.com/lookup?s=" & icompany & _
 "&t=S&m=ALL"
 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "94" 'use a caret as a field separator
 oPropertyValue(1).Name = "FilterName"
 oPropertyValue(1).Value = "Text - txt - csv (StarCalc)"

 oDoc = starDeskTop.loadComponentFromURL(_
 oUrl, "_blank", 0, oPropertyValue)

 'Get the cell that we need to process
 oCell = oDoc.Sheets(0).getCellByPosition (0,54)

 'Get the number of symobls
 rows = split (ocell.String,"Showing 1 - ")
 fields = split (rows(1),"of")

 Dim symbol(fields(0))

 'Get the symbols for the company
 rows = split (ocell.String,"</tr>")
 For i = 0 To cInt (fields(0)) - 1
 fields = split (rows(i+3),"s=")
 field = Split(fields(1),"""")
 symbol(i) = field(0)
 Next i

 oDoc.Close(True) 'Edit this line out to view the preprocessed data

 msgbox join(symbol, chr(10))
End Sub

Working with Other Documents

[140]

The end result is a message box containing the list of symbols for a company:

You'll notice that the macro:

Specifically loads the web page as a Calc document
Processes cells within the new spreadsheet by splitting the data into arrays
Each array is created according to the HTML structure in particular cells

This is one of those cases where you can't write a generic macro. You need to
understand the structure of the web page that you want to import and then build the
macro around that structure.

Summary
In this chapter we've seen that documents such as the OOo Chart can be used within
Calc using the chart service that comes with every spreadsheet. The charts are bar
graphs by default, but you can change this by setting the diagram object

CSV files can be imported by making use of the FilterOptions parameter when
opening a document. Other document types can be loaded, but you must specify this
by setting the FilterName property.

"Well, that interesting", said Sphen, "Thank you for the information, but I must love
you and leave you. Don't worry though, I'll be back to finish the conversation."

He went back around to Pygoscelis, and slapped him again. "Still out cold", Sphen
observed "And I thought you were so tough".

With that he turned and left the room. Immediately Korora felt a stirring behind her.

•

•

•

Chapter 7

[141]

"I think you should be able to free your hands now; I've been working on the ropes
while you two have been chatting. Then when you've done that have a look behind
the filing cabinet."

Korora found that indeed her hands were free, and she was able to untie her legs
herself. Then she looked where Pygoscelis had directed her, and found a laptop. This
she placed on the desk, and then helped her boss over to it.

"Open up emergency.ods, it'll open a dialog box. Just click on the button that
you see.'

And in Chapter 8 we'll see just how we can create forms in Calc as well.

Developing Dialogs
Korora opened up the spreadsheet just as Pygoscelis had instructed. She expected to
see a mass of figures or maybe a chart. Instead she saw a dialog. It contained a single
button called Run Emergency Macros.

She clicked the button, and watched as spreadsheets were opened, populated with
data, and then closed again. After a few minutes, a single message was displayed on
the screen:

All macros have been run. Have a nice day.

And that's what Chapter 8 is all about—learning how to create dialogs.

At this stage you should be confident in running macros by either calling the
macro by clicking on Tools | Macros | Run Macro... or calling a macro from the
Main subroutine.

By the end of Chapter 8, you will be able to:

Create custom dialogs
Run macros from your dialogs
Use the results of macros in your dialogs
Customize OpenOffice.org's built-in dialogs

We'll start with the easiest of these: OpenOffice.org's own dialogs.

Using OpenOffice.org's Built-In Dialogs
As you probably already know OpenOffice.org has two dialogs for you to
use—message boxes and input boxes.

•

•

•

•

Developing Dialogs

[144]

In fact we've used both of these in various macros already, but it's worth just
reviewing them and looking at some aspects of using them that we haven't
already covered.

Customizing Message Boxes
The message box can, of course, be used to relay a piece of information to the users
of your macros:

 msgbox _
 "A message box is a simple way to display information." _
 & chr (10) _
 & "Remember that you can learn more by selecting ""msgbox""" _
 & chr (10) _
 & "in the Macro Editor and then pressing the <F1> key"

I'm sure that you've used message box in that way plenty of times. But you may not
know that you can easily make the message box even more informative:

 msgbox _
 "You can change the way that the message box is displayed," _
 & chr (10) _
 & "as well as adding your own title.", 48, "Macro Message Box"

In both of these examples we've used the message box to display something that we
want the user to know about. However, did you know that you can get a message
box to return data to your macro as well?

Sub	message_box_return
 Dim msg_text as String
 Dim msg_return as Integer

 msg_text = "Do you want the macro to run again?"

Chapter 8

[145]

 msg_return = msgbox (msg_text, 4 + 16, "Macro Confirmation")
 If msg_return = 6 Then
 message_box_return
 End If
End Sub

You'll notice that along with getting a return value from message box, we're
combining box types; we've used 4 + 16 which translates as a Yes/No box with a
Stop icon (you may also notice that your computer beeps as well).

For the full list of possible return values and box types, have a look at OpenOffice.
org Calc's built‑in help (remember you can type 'msgbox' into the basic editor, use
the mouse to select it, and then press the F1 key).

Customizing Input Boxes
Unlike the message box, the input box is only a function (obvious really, when you
think about it). Basically the customization that you're limited to is:

•	 Setting a default value for the text

•	 Changing the title of the box

•	 Changing the displayed text

For instance:

 msg_text = "Enter the required information "
 msg_title = "Required Input"
 msg_default = "N/A"
 input_text = inputbox (msg_text, msg_title, msg_default)

Developing Dialogs

[146]

Now you may find that the input box and the message box are the only inputs that
you'll ever need for your macros. However, you may decide that you need additional
controls such as:

Combo-boxes
List boxes
Buttons to carry out custom functions

If that's the case, then you need to consider creating your own custom dialogs.

Developing your Own Dialogs
You may remember that we first came across dialogs way back in Chapter 1,
when we started getting used to OpenOffice.org's IDE. (Refer to Chapter 1, section
Designing Dialogs with the IDE.)

Creating a Dialog
In Chapter 1 we saw how to create a dialog. Here we'll create a dialog named
Chapter8_finance_dialog:

1.	 Create a new dialog by clicking on Tools | Macros | Organize Dialogues...

2.	 Edit this new dialog, and add any controls that we require from the
IDE's toolbox:

•

•

•

Chapter 8

[147]

So, we can build a dialog, but what can we actually do with it? Well, for a start let's
call up the dialog and see what happens when we click a button.

Loading a Dialog
Having created your brand-new dialog, you're going to want to see it action. To do
this you're going to have to write a macro to load the dialog:

Option Explicit

Dim oFinance_dialog as Object

Sub Main
 show_finance_dialog
End Sub

Sub show_finance_dialog

Developing Dialogs

[148]

 basicLibraries.loadLibrary("Tools")
 'loadDailog needs the library and dialog names
 oFinance_dialog = loadDialog("calc_macros", _
 "Chapter8_finance_dialog")
 oFinance_dialog.execute
End Sub

And if you run this code it will, of course, display your new dialog:

OK. You can display the dialog, and you can click any of the buttons that you've
added, but they won't do anything yet. But that's only because we haven't told them
what to do.

Well, that's not altogether true—the dialog does one thing—if you press Esc, then the
dialog will close.

So, let's start making the dialog more interesting.

Assigning Actions to a Dialog
Just as Korora found, the most common thing you'll do with a dialog is to click on a
button to run something; we'll have a look at how to do this.

First we'll need to go back to writing some more code. Why? Because there are two
stages to assign an action to one of the buttons on your dialog:

1.	 Create the macro that you want to run when you click on the button
2.	 Assign the macro to your button

By now you should be building quite a body of different macros—both ones that
you've copied from the book and ones that you've come up with by yourself. You
just need one more macro, the one that is called by your button, and which itself
calls the macro that you actually want. In this case we're using the get_symbols
subroutine from Chapter 7:

Chapter 8

[149]

Sub click_cmd_view_symbols
 get_symbols "google"
End Sub

Next we need to give the button a suitable name. Do this via the button's
property dialog:

You'll have noticed that macro and the button have similar names. There's no law
that says that you have do this. It's just that you'll find it much easier to manage your
work if you name a macro to show that it's associated with an event of a button e.g.
click_cmd_view_symbols (the macro) and cmd_view_symbols (the button). You
may, of course, use your own naming system.

Developing Dialogs

[150]

Now, keep the properties window open and move to its Events tab:

You now need to decide which event is going to trigger the macro. Typically for a
button to be used with the mouse, this will be Mouse button pressed. Click on the
'three dots' button and you can then assign your macro to your button:

Chapter 8

[151]

Once you've selected the appropriate macro, and clicked OK, then you'll be able to
see the new details in the Assign Macro window:

And to prove that it works, all you have to do is run the macro that loads your
dialog, click the button that you've just assigned the macro to, and see if you get the
expected result:

I'm sure that you'll find this very useful. You can now run any of your macros at the
touch of a button. However, I'm also sure that you can see one major limitation—
what happens if you need to see the symbols for any other company than Google?
At the moment you will need to go back to the Basic Editor and amend the macro—
which rather defeats the whole purpose of using a dialog.

Developing Dialogs

[152]

The answer is, of course, to read information in from the dialog itself and then use
this in your macro rather than use hard-coded text.

Using Information in a Dialog
Probably the most common way to enter information in the dialog is via a TextField:

Now you can't just add a TextField to your dialog, and then use it directly in your
code. For example, chances are the first thing that you'll try is:

Sub click_cmd_view_symbols
 get_symbols txt_company.Text
End Sub

And all you'll end up with is some error messages and a general feeling of
frustration.

In order to make use of dialog controls from within your macros, you need to:

Define a global variable that will represent the dialog (as we've already done)
Access the contents of the control from the macro

So, the code for the button click now becomes:

Sub click_cmd_view_symbols
 Dim oTxt_company as Object
 oTxt_company = oFinance_dialog.getControl("txt_company")
 get_symbols oTxt_company.Text
End Sub

This time, when you load the macro and click the button, you'll see the output that
you originally expected:

•

•

Chapter 8

[153]

I think that you'll agree that this is now starting to get the kind of behavior that you
would expect from any typical dialog. However, it's still rather limited at present.
For example, the message‑box output is useful, but it would be even more useful if
the results were actually used in the dialog itself.

Populating Controls in a Dialog
We've seen how easy it is to obtain information from a dialog and then make use of it
in a macro. You'll find that this can work both ways—information from a macro can
also be used in a dialog. It's just a matter of deciding how you want to use it.

If you're extracting a list of items from your macro (such as the Yahoo! Finance
company symbols), then you may want to consider loading them into a ListBox:

Developing Dialogs

[154]

You'll remember from using the TextField that we will need to:

Define a global variable that will represent the dialog
Use the getControl method to access the dialogs

So, if you do want to see the ListBox in action then just try:

Sub click_cmd_view_symbols
 Dim oTxt_company as Object
 Dim oLstCompanySymbol as Object
 oTxt_company = oFinance_dialog.getControl("txt_company")
 oLstCompanySymbol = oFinance_dialog.getControl("lstCompanySymbol")
 oLstCompanySymbol.AddItem(oTxt_company.Text ,0)
End Sub

If you click on the button, then whatever is in the TextField gets added to the ListBox:

From that you can see how to load information into a Listbox making use of the
AddItem method:

 lstCompanySymbol.AddItem(txt_company.Text ,0)

And for our next trick we can consider loading the ListBox with the output from the
get_symbols macro. At the moment that's not possible because the output is just a
message box. So the first thing to do is to change get_symbols from a subroutine to
a function:

Function get_symbols (icompany as String) as Array

Also, rather than the message box we'll return an array of company symbols:

 get_symbols = symbol
End Function

There's one other change that you may wish to make. I'm sure that you've noticed
(and how could you miss it) that the get_symbols macro opens up a spreadsheet in
order to collect the list of company symbols. Doesn't look very professional, does it?
We can improve on this by hiding the spreadsheet when it's loaded.

•

•

Chapter 8

[155]

You'll need to amend get_symbols so that it is able to use another PropertyValue:

 Dim oPropertyValue(2) As New com.sun.star.beans.PropertyValue

And then set the PropertyValue so that it hides the document.

 oPropertyValue(2).Name = "Hidden"
 oPropertyValue(2).Value = True

With that done we can change the button‑click macro so that it loads the array from
get_symbols directly into the ListBox:

oLstCompanySymbol = oFinance_dialog.getControl("1stCompanySymbol")
oLstCompanySymbol.AddItems (get_symbols (oTxt_company.Text), 0)

You'll notice here that instead of AddItem (which is used for loading individual
items) we're using AddItems (used for loading sequences).

Our end result is a dialog that allows us to view the Yahoo! Finance symbols for any
company listed with them:

The Finished Dialog
So far we've seen how to:

Create a TextField on a dialog, and use information entered in it as an input
variable for a macro
Use the results from a macro to populate a ListBox in a dialog

We'll finish by adding another button; this will run a macro that uses data from the
ListBox that we've just seen how to populate.

Obviously the first thing to do is to add a button to the dialog, give it a suitable
name, and set its label:

•

•

Developing Dialogs

[156]

Next it's time for us to create the macro that will be assigned to the button, again
giving it a name that tells us which action and which button it's associated with:

Sub click_cmd_view_stock_value

End Sub

With the framework for the macro in place, we can assign it to the button (refer to the
section Assigning Actions to a Dialog):

Then we can go back to completing the macro itself:

Sub click_cmd_view_stock_value
 Dim oLstCompanySymbol as Object
 oLstCompanySymbol = oFinance_dialog.getControl("lstCompanySymbol")
 get_stock_price Array(oLstCompanySymbol.getSelectedItem)
End Sub

You'll no doubt remember get_stock_price from Chapter 7, and using it in
conjunction with the dialog you get:

Chapter 8

[157]

Of course, to really complete the dialog you could always place the share value back
into the dialog itself.

The first thing to do is to amend the get_stock_price macro to change it to a
function and to hide the spreadsheet:

Function get_stock_price (iCompany_symbols) as Double
 Dim oUrl as String
 Dim oDoc as Object
 Dim oCell as Object
 Dim oSymbols as String
 Dim oFields as String

 Dim oPropertyValue(1) As New com.sun.star.beans.PropertyValue
 oSymbols = join (iCompany_symbols,"&s=")
 oFields = "sl1d1"

 oUrl = "http://finance.yahoo.com/d/quotes.csv" _
 & "?s="& oSymbols & "&f=" & oFields &"&e=.csv"

 oPropertyValue(0).Name = "FilterOptions"
 oPropertyValue(0).Value = "44"
 oPropertyValue(1).Name = "Hidden"
 oPropertyValue(1).Value = True

 oDoc = starDeskTop.loadComponentFromURL(_

Developing Dialogs

[158]

 oUrl, "_blank", 0, oPropertyValue)
 oCell = oDoc.Sheets(0).getCellByPosition (1,0)
 get_stock_price = oCell.Value
 oDoc.Close(True)
End Function

Next you'll need to put the result somewhere—for instance another TextField:

Now you'll need to change click_cmd_view_stock_value so that the result of the
new function is written to your TextField:

 oTxt_stock_value.Text = _
 get_stock_price(Array(oLstCompanySymbol.getSelectedItem))

Don't forget that you'll need use oFinance_dialog's getControl method to access
txt_stock_value from the macro (just as we did with the previous TextField
and the ListBox). Once you've done that, then you can use the dialog with it's
complete functionality:

Chapter 8

[159]

Finding Further Information
Although we've created a complete and fully working dialog, we haven't covered
all of the controls that are available to us. In fact we haven't even covered all of
the functionality of the controls that we have used. As always, you can investigate
further with OpenOffice.org's online documentation:

Summary
In this chapter we've seen how to customize OpenOffice.org's built-in dialogs:
message box and input box.

Although the message and input boxes are very useful, you will probably find that
they do not give you enough flexibility—you'll find that often the best results are
achieved by creating your own custom dialogs. We began with creating a new dialog
and adding controls from the toolbox, and then assigned macros to the controls. We
are now able to obtain information from dialog and put it in a macro or we can also
use information from a macro in a dialog.

"It's done" said Korora, "What do we do now?"

"Well, I don't know about you—but I'm getting out of here, and then we need to pull
all of this together."

And that's what we'll be doing in Chapter 9; we'll pull everything together to
produce a single application—one that you could roll out to anyone.

Creating a Complete
Application

In Chapter 8 we saw Korora opening up a spreadsheet that contained a dialog. She
pressed a single button in the dialog, and this ran a series of macros that opened,
processed, and closed other spreadsheets.

And we've ourselves seen that we can create our own custom dialogs, making the
control of our macros much easier for anyone who isn't an expert in Calc Macros.

Let's face it: would you really trust one of your directors with the macros that you've
so carefully created?

So, in Chapter 9 we'll be looking at how to create an application within OpenOffice.
org Calc that anyone can use. By the end of this chapter, you'll be able to:

Make your Calc macros available to other users within your organization
Customize the OpenOffice.Org Calc menu to enable access to your macros
and dialog boxes
Call macros and dialog boxes direct from the command line
Do any processing of spreadsheets in the background

In other words, we'll be creating a complete, working application.

Making Macros and Dialogs Available to
Everyone
If you throw your mind way back to Chapter 2, then you'll remember that we saw
that libraries can be in one of three locations:

•

•

•

•

Creating a Complete Application

[162]

My Macros and Dialogs for personal libraries
OpenOffice.org Macros and Dialogs for global libraries
Each individual spreadsheet

Now, if you want to distribute your macros and dialogs to other people, then the
most obvious solution may seem to be to include the library in the spreadsheet. And,
indeed, if your potential user doesn't have access to your network, then this may be
your only solution.

However, there is a major drawback in including your library in the spreadsheet. By
doing this you effectively loose control of the code. In fact, all control of the code is
lost by doing this. Imagine this scenario:

1.	 You email the spreadsheet (plus library) to Jill.
2.	 Jill changes some of the code and emails the spreadsheet to Bob.
3.	 Bob changes some of the code and emails the spreadsheet to Jane.
4.	 Jane runs macros, but they give incorrect answers and cost the

company £100,000.
5.	 Jane complains to your boss that your macros are rubbish.
6.	 You get the sacked.

Not really what we want to happen, is it? Instead, let's imagine this scenario:

1.	 You instruct Jill on how to run the centrally stored macros.
2.	 Jill tells you about some changes that are needed. You carry out the changes

and tell Bob.
3.	 Bob tells you about some more changes that are needed. You carry out the

changes and tell Jane.
4.	 Jane runs the macros, makes use of the information provided and saves the

company £100,000.
5.	 Jane extols your value to your boss.
6.	 You get a pay rise.

All because the changes to the macros were properly controlled. So that, of course,
brings us back to OpenOffice.org Macros and Dialogs.

Let us just remind ourselves how to go about moving a library from My Macros and
Dialogs to OpenOffice.org Macros and Dialogs.

•

•

•

Chapter 9

[163]

Creating a Global Library
Hopefully, you'll remember from Chapter 2 that a library is just a directory, a
directory that contains a set of files:

script.xlb: An index of all of your macro modules
one or more xba files: One for each macro module
dialog.xlb: An index of all of your dialog boxes
one or more xdl files: One for each dialog box that you've got.

So, if you were to look into a library directory, then you'd see something like this:

Stage one of creating a global library is to move this directory into your system's
OpenOffice.org Macros and Dialogs area. If you remember, this will depend on your
operating system (Linux or Windows) and the particular distribution/version that
you're using.

We learned in Chapter 2 that with that done you just need to update your user's
script.xlc file (remember its location will depend on your particular system). Since
we're also dealing with dialog boxes now we'll also have to update the dialog.xlc
file. And just to remind you, you should add a line to each file. To script.xlc you
need to add something like (but remember to make a copy before you edit the file):

<library:library library:name="calc_macros"
xlink:href="$(INST)/share/basic/calc_macros/script.xlb/"
xlink:type="simple" library:link="true" library:readonly="false"/>

•

•

•

•

Creating a Complete Application

[164]

To dialog.xlc you need to add something like:

<library:library library:name="calc_macros"
xlink:href="$(INST)/share/basic/calc_macros/dialog.xlb/"
xlink:type="simple" library:link="true" library:readonly="false"/>

Whether you do this manually or whether you write a script to do it depends on the
number of users that you've got and, of course, your personal preferences.

The end result? You'll have changed this:

To this:

Chapter 9

[165]

More importantly, any user whose .xlc files you update will have access to your
global macros and dialog boxes—and don't forget that they won't be able to see the
macros and dialog boxes until you've updated their .xlc files.

Using a Global Library to Automate OOo
Calc
In every example that we've looked at so far, we've run the macros from one of
two places:

The Basic Editor by pressing the Run button
OOo Calc by clicking Tools | Run Macro...

This is useful, saving you a lot of time by manipulating any spreadsheets for you.
However, we can still make life easier by running macros automatically.

Running Macros Automatically when Calc
Opens
We've already seen that we can assign macros to events such as using a button on a
dialog, so it shouldn't come as any surprise to find that we can also assign macros to
events such as the opening of a document. Just open your Calc document and click
on Tools | Customize..., then go to the Events tab and click on Assign Macro:

•

•

Creating a Complete Application

[166]

Once you've selected which macro you want to run when you open the document,
then you need to use the OK button in the Customize dialog:

Chapter 9

[167]

What next? After you click OK nothing obvious happens, you just return to the Calc
spreadsheet. That is, of course, because the macro only runs when you open the
document. So, close the spreadsheet, and then open it up again:

Creating a Complete Application

[168]

Now your users don't even need to know how to run a macro, all they have to do is
open the spreadsheet and the macro will run itself, assuming of course that:

Each user's dialog.xlc and script.xlc files have been amended to include
any required global libraries.
Each user (on Linux) has read access to the Calc spreadsheet that you've set
to run the macro.

Adding Macros to the OpenOffice.org
Calc Menu
You may, of course, decide that you prefer to provide an easy way of running
macros. If that's the case, then you might consider adding the macros to OpenOffice.
org Calc menus.

Adding a Macro to the Menu Manually
We've seen that a macro can be run as soon as you open a spreadsheet, but that's
only good for a single macro. However, if you want control of a number of macros,
then you can add the macro to one of OpenOffice.org Calc's menus. Even better you
can add a completely new menu.

•

•

Chapter 9

[169]

Again you need to click on Tools | Customize...; however, this time you'll need the
Menus tab, then use the New..; button to open the New Menu dialog :

Once you've created your new menu (by pressing OK), you can start adding your
macros to it. You'll need to make sure that the new menu is shown in the Menu
combo box, and then you can click on Add. You can then add macros by using the
Add Commands dialog:

Creating a Complete Application

[170]

However, you'll notice that the element added to the menu has the same name as the
macro. So in my example the menu will display show_finance_dialog. Obviously
this doesn't look particularly nice (or professional for that matter):

Chapter 9

[171]

Changing this is simple—just select the menu entry from the list and then click on
Modify. You can then change the name to something more meaningful (or maybe
just better formatted):

Creating a Complete Application

[172]

When you've finished you'll have a custom menu from which you can call
your macros:

You will find, however, that there is a disadvantage with managing your macros
in this way. You'll have to follow this process for everyone else who also wants
to have a similar menu. Fine for a small number, but not really suitable for a
larger organization.

Distributing a Menu
Having created (and, of course, tested) your menu, you may want to make it
available to other people in your organization. We've seen that it is easy to add
custom menus from which we can run macros. So an obvious answer is to go to each
person that you want to be able to use your menus and add the menus manually; but
it is a bit time consuming.

If that seems a bit long winded, then a second option may be to write a macro to do
the job for us. We've already learned how to run a macro on opening a spreadsheet.
This macro could check to see if the custom menu already exists, if it doesn't, then
the macro could add it.

However, there is a still simpler solution (and that's the kind that I like).

Chapter 9

[173]

When you add your custom menu, you might expect it to be saved in some complex,
unintelligible format. Well, you'd be wrong. The information is stored in a simple
XML file. All you have to do is find the file.

If you're using Linux then look in:

~/.ooo-2.0/user/config/soffice.cfg/modules/scalc/menubar

If you're using Windows, then you'll need to look in someplace like:

C:\Documents and Settings\<username>\Application Data\ OpenOffice.
org2\user\config\soffice.cfg\modules\swriter\menubar

In both cases you'll find a file called menubar.xml. If you scroll through this file, then
towards the end you'll find something like:

 <menu:menu menu:id="vnd.openoffice.org:CustomMenu1" menu:label="PPI">
 <menu:menupopup>
 <menu:menuitem
 menu:id=
 "vnd.sun.star.script:calc_macros.Chapter8_macros.
 show_finance_dialog?language=Basic&location=application"
 menu:helpid=
 "vnd.sun.star.script:calc_macros.Chapter8_macros.
 show_finance_dialog?language=Basic&location=application"
 menu:label="Show Finance Dialog"/>
 </menu:menupopup>
 </menu:menu>

Having got to this point, you'll realize that we can now do a few things:

A menubar.xml containing your custom menus can be copied into anyone's
menubar folder.
On Linux you can create a link to a central menubar.xml file.

It also means that you can bypass the manual menu creation by editing this file
directly. For instance you could change the above code to:

<menu:menu menu:id="vnd.openoffice.org:CustomMenu1" menu:label="PPI">
 <menu:menupopup>
 <menu:menuitem
 menu:id=
"vnd.sun.star.script:calc_macros.Chapter8_macros.show_finance_dialog?
 language=Basic&location=application"
 menu:helpid=
"vnd.sun.star.script:calc_macros.Chapter8_macros.show_finance_dialog?
 language=Basic&location=application"

•

•

Creating a Complete Application

[174]

 menu:label="Show Finance Dialog"/>
 <menu:menuitem
 menu:id=
"vnd.sun.star.script:calc_macros.Chapter6.Main?
 language=Basic&location=application"
 menu:helpid=
"vnd.sun.star.script:calc_macros.Chapter6.Main?
 language=Basic&location=application"
 menu:label="Open PPi Sheets"/>
 </menu:menupopup>
 </menu:menu>

If you restart OpenOffice.org Calc, then you'll find that the custom menu has changed:

Now you're able to provide a complete application for yourself and for any other
users of your system. Your macros can be run without the user having to have any
knowledge of the background works of OpenOffice.org Calc.

Keeping It All Hidden
In Chapter 8 we saw some macros that hid spreadsheets in the background while
they were being processed. I'm sure that you'll agree that this is incredibly useful.
It means that you (and more importantly any of your users) don't get to see the
spreadsheet opening and closing while the macro does it work. What we want to do
is to be able to get the macro to do its processing invisibly, just leaving us with the
updated spreadsheet at the end. And so we'll have look at this in a bit more depth.

Chapter 9

[175]

You'll remember that we load a document using the loadComponentFromURL function.
You may also have noticed that we use an empty array for the last argument:

 openSpreadSheet = oDesk.loadComponentFromURL _
 (oUrl, "_blank", 0, Array())

This empty array is actually a placeholder for any parameters that we want to pass,
and which govern how the spreadsheet is opened. In this case we're going to set the
Hidden property to True so that nothing is actually displayed, and everything is
done in the background:

Function openSpreadSheet (oFile as String, _
 Optional oInvisible as boolean) as Object
 Dim oUrl as String
 Dim oPropertyValue As New com.sun.star.beans.PropertyValue
 If fileExists (oFile) Then
 oUrl = convertToUrl (oFile)
 Else
 oUrl = "private:factory/scalc"
 End If

 If not IsMissing(oInvisible) and oInvisible = true Then
 oPropertyValue.Name = "Hidden"
 oPropertyValue.Value = true
 End If

 openSpreadSheet = starDeskTop.loadComponentFromURL _
 (oUrl, "_blank", 0, Array(oPropertyValue))
End Function

All you have to do it to amend any macros that call the modified function:

 oDoc1 = openSpreadSheet(oFile1, true)

If you now call the macro from the command line (which we learn to do in the
following section, Running Macros from the Command Line), then nothing will
happen—visibly anyway. However, if you view your spreadsheet, then you'll find
that it has actually been updated. For example:

bluek@aeneas:~> ls -l ~/ppi
-rw-r--r-- 1 bluek users 6077 2006-07-27 14:24 ppi_current.ods
bluek@aeneas:~> oocalc "macro:///ppi_general.ppi_accounts.main"
bluek@aeneas:~> ls -l ~/ppi
-rw-r--r-- 1 bluek users 6076 2006-07-27 14:36 ppi_current.ods

Creating a Complete Application

[176]

Running Macros from the Command Line
We've seen that we can hide a spreadsheet; and at this point it may occur to you that
it may be useful to bypass Calc altogether to run your macros. In other words, you
might want to run your macros directly from the command line.

Running Macros in Linux
If you're using Linux, then you can run the main subroutine in module admin in
library ppi by typing:

oocalc "macro:///ppi.admin.main"

When your run the macro, you should see exactly the same output as when you run
the macro from within Calc.

Running Macros in MS Windows
If you're using Windows, then you'll have to find out where OOo is installed, but the
command should look something like:

C:"Program Files"\"OpenOffice.Org2"\program\scalc
macro:///ppi.admin.main

Chapter 9

[177]

Creating Background or Batch Processes
Now that we can call macros from the command line, and we can carry out the
processing without any display being shown, we can start thinking about running
OpenOffice.org Calc macros automatically. This means that you won't even have to
do anything yourself (once the processes are running), you just need to leave your
PC on and doing all of the work itself.

Running Background Processes on Linux
If you're using Linux, then you're going to be interested in the commands at
and crontab:

at: This carries out a task at a predefined time,
crontab: This carries out tasks at regular times: every day at 3:00PM, the first
Monday of every month, etc.

Let's say, for example, that you've had a grueling day (a bit like Pygoscelis) and
you're desperate for sleep, but you need that report for first thing tomorrow
morning. Don't worry, just use at and then head off to bed:

ellsworthyp@aeneas:~> at 8:00 tomorrow
warning: commands will be executed using /bin/sh
at> ellsworthyp@aeneas:~> at 8:00 tomorrow
warning: commands will be executed using /bin/sh
at> oocalc "macro:///ppi_general.ppi_accounts.main"
at> <EOT>
job 8 at 2006-07-28 08:00

The <EOT> is used to tell at that you've entered all the commands that you need and
is generated by entering Ctrl+D.

If you want to see what is due to run, then use the command at -l:

bluek@aeneas:~> at -l
10 2006-07-31 08:00 a bluek

After all that, if you decide that you don't want the command to run, then you can
remove it from the queue:

bluek@aeneas:~> at -r 10

Where 10 is, of course, the job number.

And what if you need this report running every morning? Fine, just use crontab.
And the hardest thing about crontab is remembering the order of the fields that
it requires:

•

•

Creating a Complete Application

[178]

So to run the script at 8:00 every morning you'll need to type:

 ellsworthyp@aeneas:~> crontab -�e
0 8 * * * oocalc "macro:///ppi_general.ppi_accounts.main"

This runs at minute zero, 8 AM, every day of the month, every month, and every
day of the week. The star (*) is a placeholder and means 'every', i.e. every day, every
month, etc.

Just like at, you can see what's due to run:

bluek@aeneas:~> crontab -l
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.XXXXgdXvC5 installed on Fri Jul 28 10:45:44 2006)
(Cron version V5.0 -- $Id: crontab.c,v 1.12 2004/01/23 18:56:42
vixie Exp $)
0 8 * * * oocalc "macro:///ppi_general.ppi_accounts.main"

And for removing a job (once you don't need it any more), you'll have to used
crontab -e again, and remove the entry manually.

Running Background Processes on Windows
If you want to set up a background process and you're using Windows, then
there's a wizard for you to use. You'll need to go to the Control panel and then
Scheduled Tasks:

Chapter 9

[179]

You'll find that the folder contains:

An icon for every scheduled task that you create; clicking on these allows
you to modify details such as the time to run the task
An icon entitled Add Scheduled Task

If you click on the Add Scheduled Task, then this will start the wizard:

All you have to do is to enter the appropriate details as needed:

If you remember, the Windows command for running a macro directly is:

C:"Program Files"\"OpenOffice.Org2"\program\scalc
macro:///ppi.admin.main

•

•

Creating a Complete Application

[180]

However, the wizard will only allow you to select the scalc application itself,
without the macro details. The answer is quite simple:

Select scalc as the application to use and then carry on through the wizard
until you've entered all of the information that is required.
Once you've finished with the wizard, click on the new icon that will have
been created for you.

Now you can enter the details for the macro that you want the scheduler to run:

Having created a useful application, we'll have a quick look at one of the things that
can turn a good application into a great one.

Sending Emails
No self‑respecting application can really do without the ability to email a file:

Sub send_email
 Dim eMailAddress as String
 Dim eSubject as String
 Dim eMailer as Object
 Dim eMailClient as Object
 Dim eMessage as Object

•

•

Chapter 9

[181]

 eMailAddress = "mark.bain@linuxtalk.co.uk"
 eSubject = "Test email"

 eMailer = createUnoService("com.sun.star.system.SimpleCommandMail")

 eMailClient = eMailer.querySimpleMailClient()

 eMessage = eMailClient.createSimpleMailMessage()

 eMessage.setRecipient(eMailAddress)
 eMessage.setSubject(eSubject)
 eMessage.setAttachement _
 (Array(convertToUrl("/home/bainm/bluek/ppi_current.ods")))
 eMailClient.sendSimpleMailMessage (eMessage, _
 com.sun.star.system.SimpleMailClientFlags.NO_USER_INTERFACE)
End Sub

Of course, you realize that this macro won't work in Windows. Fortunately you just
need to change one line:

 eMailer = createUnoService("com.sun.star.system.SimpleCommandMail")

The above line needs to be changed to:

 eMailer = createUnoService("com.sun.star.system.SimpleSystemMail")

Oh, and one other thing, if you're using Linux, then you'll need to set the default
email client. Just click on Tools | Options... | Internet | Email and tell OpenOffice.
org which email application you're using:

Creating a Complete Application

[182]

Summary
In Chapter 9 we've looked at how to turn you're individual macros into complete
applications that you can even distribute to other people. A key step in creating
a complete application that others can use is to make both your macros and your
dialogs global.

Rather than running macros manually, we can now assign then to events such as
opening a document. We can also assign macros to menus, and distribute these
menus. We can run macros from the command line and automate running macros
using at and crontab. Finally, we also learned how to use macros to send emails.

Korora pushed the door open and the rising sun blazed in blinding them both. As
their eyes became accustomed to the bright light, they became aware of figures in the
car park, one of them sprawled on the tarmac.

"Well, Py, you look a bit worse for wear."

Pygoscelis squinted at the policeman leaning against a squad car.

"Hi Rocky. I take it that you got my note then."

"Yeah, nice piece of work that, not like this one. Take him away."

The spread-eagled body of Sphen was hoisted up and shoved into one of the black
and whites.

Korora looked at her boss "I'm sure that you can see into the future."

And that's what we're going to do in our final chapter. We're going to have a look at
the future of OpenOffice.org Calc.

Using Excel VBA
"One of the biggest barriers to OpenOffice adoption is lack of macro
interoperability. In the enterprise space generally the most mission‑critical
macros exist in Excel spreadsheets. To eliminate or lower this barrier,
clearly will ease adoption of OpenOffice.

MS's marketing would have you believe that OO.o is only useful for a few
staff, for taking basic notes. One of [Novell]'s clients using OO.o on their
bank, told us "There's only a tiny minority of people who can't use OO.o".
And when pressed on that tiny minority — the sticking point was Excel
macros, and having re-tested with Novell's VBA macro support, even that
tiny minority looks like disappearing."

Email from Noel Power, OpenOffice Developer, Novell, June 2006

In all of the chapters so far, we've seen what you can do with a current version of
OpenOffice.org. However, in this chapter we're going to have a look into the future
of OpenOffice.org Calc, and we're going to see how to bring that future onto your
own desktop. In that future is OpenOffice.org's Excel VBA support.

By the end of this chapter, you will:

Understand the requirements for making use of OpenOffice.org's Excel
VBA support
Be able to import an Excel spreadsheet and make use of any macros
contained in the spreadsheet
Be able to create your own macros using the Excel VBA language structure

•

•

•

Using Excel VBA

[184]

The Current State
You'll be pleased to know that you're at the cutting edge of technology here—right at
the edge—and that makes the picture a little variable.

Why is the picture variable? Because, of course, OpenOffice.org is Open Source,
which means that anyone (even you) can obtain the source code and make their own
changes (and hopefully improvements).

And that's exactly what Novell has done for its SUSE Linux 10.1 product:

At this point you're probably thinking that this is all very interesting, but also
wondering how it helps you exactly.

OpenOffice.org's Excel VBA Support under
MS Windows
Unfortunately, as I'm writing this, Excel VBA support is not yet available in the
Windows version of OpenOffice.org. However, to quote Noel Power, OpenOffice.org
developer at Novell:

"This year at OOoCon I had some frank discussions with some of the Sun developers
and there at least seems to be some willingness to align their solution and ours. We
hope to increase the pace of our upstreaming efforts and aim to have the initial effort
completed in the next couple of months."

So, by the time you read this there is every change that you should be able to
download a fully released version of OpenOffice.org with VBA support. If
that's the case, then all you have to do is install the latest version from the
OpenOffice.org website.

Chapter 10

[185]

However, if that's not the case, then you can still download Novell's version:

OpenOffice.org's Excel VBA Support under
Linux
If you're a Linux user, then you'll find that the situation is very similar to that of a MS
Windows user. So, it means that you can't just go to the OpenOffice.org website and
download the installation files.

Just like Windows, the current mainstream Linux version of OpenOffice.org doesn't
include Excel VBA support. Fortunately that's not the end of the story.

As we've already found out, the OpenOffice.org version with Excel VBA support has
been produced by Novell, and Novell includes this in its SUSE Linux 10.1 product.
Therefore, if (like me) you already use SUSE Linux 10.1, then you can just jump
straight on to the section Importing an Excel Spreadsheet containing Macros. If not then
you may still have some work to do. However, some Linux distros like Red Hat,
Debian, Madriva, Gentoo, Arl Linux, DroplineGNOME, Frugalware, QiLinux, and
Ubuntu, already make use of the Novell code:

So, what if your distro doesn't use the Novell code? How do you go about being able
to use VBA support?

You've got four choices:

1.	 Migrate to a version of Linux that supports VBA. If you do this, then the
correct version of OpenOffice.org automatically comes with it. If you're new
to Linux or want to migrate, then read the section Installing SUSE Linux 10.1.

2.	 If you don't want to migrate and you're confident in working with Linux,
then download Novell's source code and build it yourself. This is outlined in
the section Building OpenOffice.org from Source.

Using Excel VBA

[186]

3.	 Try to convince the producers of your Linux distro to incorporate Novell's
version of OpenOffice.org into their own.

4.	 Like Windows users try to convince Sun to incorporate Novell's version
of OpenOffice.org into the mainstream version and jump on to the section
Support your Local OpenOffice.org Issue.

There are, of course, pros and cons to each of the solutions:

Installing another version of Linux may be the most immediate and
straightforward choice, but if you've already invested a large amount of time
installing a particular brand of Linux on one or more computers, then you
may not be too happy to start it all from scratch again.
Building OpenOffice.org from source is a good option if you have experience
in doing this type of thing before, or if you're wanting to learn more about
Linux. Don't forget that this version has been built and tested on SUSE Linux.
There's no guarantee that it will automatically work with yours.
Convincing the owners of a distro (or for that matter, Sun) to incorporate
the Novell code may be a bit of an uphill struggle, although things are
progressing well at the moment.

Anyway, we'll now have a look at the different options in a little more depth.

Installing SUSE Linux 10.1
Now, if you're not committed to any particular Linux distribution, or if you want
to migrate from Windows to Linux, then by far the easiest thing for you to do is to
install a Linux version that contains OpenOffice.org with VBA support.

You'll find that installing Linux is very easy and will not take a great amount of time
(whichever one you choose). Some of the distros even have a 'Live disk' available,
meaning that you're able to test out Linux without having to fully install it on
your PC.

However, since we know that SUSE Linux 10.1 definitely supports Excel VBA, that's
the one we'll look at for now.

SUSE Linux 10.1 is a mature and stable rendition of Linux, and so you'll find
installation very straightforward. First go to the SUSE download site and select the
mirror site nearest your location:

•

•

•

Chapter 10

[187]

Having downloaded your installation CDs, you can then just follow the online
installation instructions and have your SUSE Linux installed:

Building OpenOffice.org from Source
If you're feeling confident, and if you've got the time to do it, then you may consider
building your own version of OpenOffice.org.

Building on Linux
When you come to build OpenOffice.org on Linux, you'll be pleased to know that the
instructions are all online and just waiting for you to follow.

Using Excel VBA

[188]

How successful you are, will depend on (unsurprisingly) the OpenOffice.org
dependencies. If your distro matches SUSE fairly well, or if you're able to install any
extra files that OpenOffice.org requires, then the process should be fairly painless.

Of course, once you have managed to get this version of OpenOffice.org running,
don't forget to tell the rest of the Linux community about it—whether that be via
your distro forums, the Novell developers, or your own website.

Support your Local OpenOffice.org Issue
Now, you may have gotten to this stage and decided that:

You're a Windows user and you want (or have) to stay that way.
You're a Linux user but you don't want to (or can't) migrate to SUSE
Linux 10.1.
You can't build your own version of OpenOffice.org.

If that's the case then you may prefer to go online and vote for the issues that Novell
have raised with OpenOffice.org at http://wiki.services.openoffice.org/
wiki/VBA:

•

•

•

Chapter 10

[189]

The more support that the issues receive, the more likely it is that the VBA support
will be brought into the mainstream OpenOffice.org.

Importing an Excel Spreadsheet that
Contains Macros
Hopefully by now you've either:

Migrated to a suitable Linux distro
Managed to compile the Novell source code
Started using Sun's mainstream OpenOffice.org containing Excel
VBA support

•

•

•

Using Excel VBA

[190]

Opening Up an Excel Spreadsheet
Obviously the first thing that you'll want to do is to carry out the difficult task of
importing an Excel spreadsheet that contains working macros. Difficult? No, just
use File | Open... as you would with any other Excel file that you wanted to use in
OpenOffice.org Calc.

Viewing Code without VBA Support
If you haven't been able to enable VBA support then don't despair. You can still load
the Excel spreadsheet; you won't get any errors from the code trying to run. Why?
All becomes clear if you view the code in the Basic Editor:

You'll notice that all of the VBA code has been turned into comments (as denoted by
the Rem at the start of each line). You may also notice that the whole module has been
turned into a single subroutine.

It's now down to you to manually convert the VBA code into OpenOffice.org Basic.

Viewing Code with VBA Support
If you have a version of OpenOffice.org with Excel VBA support, then you'll notice
something immediately—any macros set to run at load time will run straightaway

Chapter 10

[191]

and without any errors. You'll also notice a big difference when you look at the code
in the Basic Editor—all of the code is treated as normal OpenOffice.org Basic code,
and the only commented-out code is the code that's meant to be commented out:

Closing your Spreadsheet
When you come to close the Excel spreadsheet you may be surprised to be told that
the file has been modified, even if you know that no changes have been made:

You may not have changed the file, but Calc has. Calc adds a line of code to every
module that it recognizes as having VBA code:

Option VBASupport 1

This line of code is essential; without it no VBA code will be run by Calc.

Using Excel VBA

[192]

Starting to Code with Excel VBA in Calc
We've spent a lot of time looking at:

What you need to do in order to enable VBA support in OpenOffice.org Calc
How to import an Excel spreadsheet into OpenOffice.org Calc

If you're already experienced in Excel VBA, then you'll be champing at the bit to get
on and start developing your own macros. In fact, you've probably received your
first error message:

Don't panic. We've already learned that Calc automatically adds a line of code to
every module that it imports and which contains VBA code. In order to write VBA
code yourself, you need to do the same. So, at the start of every module (where you
want to use VBA code) you need to add:

Option VBASupport 1

Combining VBA Code and OOo Basic Code
Of course, a question may occur to you at this point—how will this affect all of your
existing OpenOffice.org Basic code? The answer is that it won't. In fact, once you've
set the VBASupport option, OpenOffice.org Basic code and VBA code will co-exist
quite happily. For example:

Option Explicit
Option VBASupport 1

Sub Main
 loadCells
End Sub

Sub loadCells
 'Standard OpenOffice.org Basic

•

•

Chapter 10

[193]

 Dim Sheet as Object
 Dim Cell as Object

 Sheet = thisComponent.Sheets("Sheet1")
 Cell = Sheet.getCellByPosition(1,1)
 Cell.String = "B2"
 Cell = Sheet.getCellByPosition(1,2)
 Cell.String = "B3"

 'VBA code
 Sheets("Sheet1").Activate
 Cells(1,1).Value = "A1"
 Cells(1,2).Value = "B1"
End Sub

If you run the code from an open spreadsheet, then you'll see:

As you can see the combinations of VBA and OOo Basic code will run quite happily,
but there are differences in the way that that they run.

Comparing VBA and OOo Basic Code
If you look through the VBA code and OOo Basic code we've seen so far, you'll see
that there are a number of obvious differences:

There appear to be more lines of OOo Basic code required to do the same job.
In VBA, a cell can contain either values or formulas, but not strings.
The cell positioning is different.

Simplifying Code
In actual fact, you can re-write the OOo Basic code so that it uses (almost) the same
number of lines as VBA:

 'Standard OpenOffice.org Basic
 Dim Sheet as Object

 Sheet = thisComponent.Sheets("Sheet1")
 Sheet.getCellByPosition(1,1).String = "B2"
 Sheet.getCellByPosition(1,2).String = "B3"

•

•

•

Using Excel VBA

[194]

 'VBA code
 Sheets("Sheet1").Activate
 Cells(1,1).Value = "=2*3"
 Cells(1,2).Value = "B1"

You can even re-write it so that it uses less lines of code than the VBA:

 'Standard OpenOffice.org Basic
 thisComponent.Sheets("Sheet1").getCellByPosition(1,1).String = "B2"
 thisComponent.Sheets("Sheet1").getCellByPosition(1,2).String = "B3"

 'VBA code
 Sheets("Sheet1").Activate
 Cells(1,1).value = "A1"
 Cells(1,2).Value = "B1"

However, I'm sure that you'll agree that each of the lines is made much more
complex. VBA support induces some extra objects for us to play with and (as we've
just seen) these can help us simplify the code.

VBA—No Strings Attached
We've already learned that if we're using OOo Basic, then we can assign one of three
types to a cell: formula, string, and value. However, if we're using VBA then we can
only assign one of two types: formula and value (this does incorporate strings).

If you do try to assign cell as a string, then you'll just get an error when you try to
run the code:

So, to write to cells in VBA use:

 Cells(1,1).value = 20
 Cells(2,1).Value = 30
 Cells(3,1).Value = "Total"
 Cells(4,1).Formula = "=A1+A2"

Chapter 10

[195]

Which will produce:

And you might be interested to know that you can even dispense with value:

 Cells(1,1) = 20
 Cells(2,1) = 30
 Cells(3,1) = "Total"
 Cells(4,1).Formula = "=A1+A2"

Getting the Right Cell Position
I'm sure you remember that we can write to a cell by using getCellByPosition:

 thisComponent.Sheets("Sheet1").getCellByPosition(1,1).Value = 100

Also, you need to enter the co-ordinates as the column and then the row. This means
that in order to write to a single column you'd use:

 Dim r as Integer
 For r = 1 to 10
 thisComponent.Sheets("Sheet1").getCellByPosition(1,r).Value = r
 Next r

This would, of course, be seen as the following:

You'll have realized by now that the standard OOo getCellByPosition requires the
column and row numbers to be passed to it (and in that order). However, when you
use the VBA Cells object, you'll find that it requires the row number first followed
by the column number (i.e. the order is reversed). For example::

Using Excel VBA

[196]

 Dim r as Integer
 Sheets("Sheet1").Activate
 For r = 1 to 10
 Cells(r,1) = r
 Next r

This time you'll see:

You'll also have noticed something else here: In the VBA code column A is 1, and in
the OOo Basic code column A is 0.

Using Named Cells and Ranges
We've just seen how to access a cell by its position, and, of course, we can use
standard OOo Basic code to make use of a cell's name:

 thisComponent.Sheets("Sheet1").getCellRangeByName("C9").Value = 20

You'll find that VBA is no different, and is actually a little simpler:

 Range("C10") = 10

On top of the Range object, VBA support allows you to do some quite interesting
things. For example, you can write directly to a whole range of cells with a single line
of code:

 Range("A1:D10") = 20

The display on the screen will be as shown below:

Chapter 10

[197]

OK, that's nice, but actually you want to be writing to cells within the range, don't
you? This next little bit of code shows you exactly how to do this:

 Dim i as Integer
 Sheets("Sheet1").Activate
 For i = 1 to 16
 Range("A1:D4").cells(i) = i
 Next i

This will lead to the following display:

Further VBA Examples
So far we've looked at writing into cells in a spreadsheet using standard OOo Basic
and using the objects that VBA support introduces into OpenOffice.org. We can now
look at some of the other objects that can make our lives much easier.

Using Active Cells and Cell Offsets
We've already seen how to activate a cell, but we can also make a cell the main
center of attention and then we can use cells relative to the selected one by using the
cell offset:

 Sheets("Sheet1").Activate
 Range("B3").Select
 ActiveCell.Offset(0,-1) = "Left"
 ActiveCell.Offset(0,1) = "Right"
 ActiveCell.Offset(-1,0) = "Up"
 ActiveCell.Offset(1,0) = "Down"

Using Excel VBA

[198]

This will result in following screen being displayed:

Using the Workbooks Object
A key object that you'll be able to use is workbooks—this represents a complete
spreadsheet. So, what's the first thing that you'll want to do? Open up a spreadsheet,
of course:

 Workbooks.Open "/home/bluek/ppi_investigation.ods"

And, you can use the workbooks object to close a spreadsheet as well:

 Workbooks.Close "/home/bluek/ppi_investigation.ods"

Interestingly the workbooks object contains an array of Workbooks.

 Dim wBook as Workbook
 Dim wList as String

 For Each wBook In Workbooks
 wList = wList & wBook.Name & chr(13)
 Next wBook
 msgbox Workbooks.Count & " files open:" & chr(13) & chr(13) & wList

This will display the following message box:

Using the Worksheets Object
Having used the workbook object (representing a complete spreadsheet), it won't
be any surprise for you to learn that there are worksheet objects (representing
individual sheets in the spreadsheet):

Chapter 10

[199]

 Workbooks("ppi_current.ods").Worksheets("Sheet2").Range("A1") = _
 Now()

Of course, if you're just wanting to write to the most recently accessed spreadsheet,
then you can just use:

 Worksheets("Sheet2").Range("A1") = Now()

Further Information
We're not going to do any more than dip our toes into the world of Excel VBA. After
all, you'll probably fit into one of the following groups:

You already know how to program using Excel VBA—if that's the case, then
you don't need me to tell you anything more.
You don't know how to program using Excel VBA, but from what you've
seen it seems a good idea—if that's the case, then that's more than what we
can cover in a single chapter.

The examples we've covered in this chapter should enable you to create your own
macros. However, if you want to learn more, then there are number of Internet sites
devoted to supplying Excel VBA tutorials and examples; just do a quick Google
search and you'll see that you're spoiled for choice.

Summary
In this chapter we've had a look at OpenOffice.org's Excel VBA support.

We've seen that (at the time of writing) VBA support is not yet incorporated into
the released version of OpenOffice.org. However, we've also seen that through the
Novell developers' efforts this is likely to change in the near future; in fact, by the
time that you're reading this the situation may be completely different.

We have seen how Linux users can obtain the Novell OpenOffice.org source code
and build it themselves to start using VBA support. They could even migrate to a
version of Linux that uses OpenOffice.org with VBA support. Dedicated Windows
users can check on the OpenOffice.org website for the current version or they can
download and install Novell's own branded version of OpenOffice.org for Windows.

Finally, we have seen how to import Excel spreadsheets and use them exactly like
Calc spreadsheets and how to use VBA in OpenOffice.

•

•

Index
C
controls in IDE

breakpoint button 14
compile button 12
run button 12
save button 11
step into 13
step out 13
step over 13
stop button 12
watch button 13

D
database

about 100
accessing 100
as OOo data source, registering 101
connecting to 103
connectivity for OOo 100
data into spreadsheet, putting 109
data loading into custom worksheets

109-113
data loading into spreadsheet 108, 109
for OOo 100
new records, adding 113-116
registered data sources, viewing 102
tables, accessing 103-105
tables, running queries 106, 107
updating 116, 117

database tables
accessing 103-105
queries 106, 107

dialogs
actions, assigning 148-152

built-in dialogs 143-146
controls, populating 153, 154
creating 146, 147
finished dialog 155-158
global library, creating 163-165
information in dialog, using 152, 153
loading 147, 148
making available to everyone 161, 162
more information, finding 159

L
libraries

about 25, 26
functions, in different libraries 42
in multi-user environment 28-33
modules, managing 26-28
OOo macros area, adding to 33-35
subroutines, in different libraries 42

M
macros

adding to OOo Calc menu 168-174
adding to OOo Calc menu, distributing

menu 172-174
adding to OOo Calc menu, manually

168-172
assigning values to variables, subroutines

40
background processes, creating 177
background processes, running on Linux

177, 178
background processes, running on

Windows 178-180
batch processes, creating 177
batch processes, running on Linux 177, 178

[202]

batch processes, running on Windows
178-180

command line, running from 176
declaring variables, subroutines 40
emails, sending 180, 181
functions, writing 41
global library, creating 163-165
global library, using to automate OOo Calc

165
hiding 174
inputting variables, subroutines 40
Linux, running in 176
making available to everyone 161, 162
MS Windows, running in 176
running automatically 165-168
subroutines, writing 38-40
using 37-41

modules
about 10
renaming 36

O
object model

interface, overview 47
module, overview 49
overview 46-49
service, overview 47, 48

ODBC 100
OOo IDE

about 7
accessing 8, 9
basic macro organizer 18, 19
controls 11-15
dialogs, designing 19-23
first macro, creating 9
language support 9
libraries, adding to OOo macros area 33-35
libraries, using 25-35
macro, selecting 16-18
macros, using 37-41
macros groupings 9
module 10
modules, using 35-37
modules managing, libraries 26-28
multi-user environment, libraries 28-32
my macros, macros groupings 9

navigating 15
object catalog 15, 16
OpenOffice.org macros, macros groupings

10
penguin_private_investigations.ods, macros

groupings 10
start-up screen for Debian 3.1 7, 8
start-up screen for SUSE 10.1 7, 8

OpenOffice.org
basic macro organizer 18, 19
building from source 187
building on Linux 187
built-in dialogs, using 143-146
built-in functions, using 71, 73
chart 120
chart, formatting 122-126
chart, inserting 120-122
customizing input boxes, built-in dialogs

145, 146
customizing message boxes, built-in dialogs

144, 145
Excel spreadsheet containing macros,

importing 189
Excel VBA support under Linux 185, 186
Excel VBA support under Windows 184
local OOo issue, supporting 188, 189
object model 46-49
UNO, about 45

OpenOffice.org charts
bar chart, formatted 124, 125
chart axis labels, adding 124
chart size, formatting 123
chart title, formatting 123
comparing companies within Yahoo!

finance 134-136
documents from other sources, using

127-136
historical CSV files from Yahoo! finance,

importing 130-133
inserting into spreadsheets 120-122
other chart types 126
web pages, processing 136-140
Y axis text orientation 124

OpenOffice.org Excel VBA support
active cells and cell offsets, VBA example

197
Excel spreadsheet, opening 190

[203]

Excel spreadsheet containing macros,
importing 189

spreadsheet, closing 191
under Linux 185
under MS Windows 184
VBA code and OOo basic code, combining

192
VBA code and OOo basic code, comparing

193
VBA code and OOo basic code, simplifying

193
VBA examples 197
viewing code without VBA support 190
viewing code with VBA support 190
workbooks objects, VBA example 198
worksheets objects, VBA example 198

OpenOffice.org Integrated Development
Environment. See OOo IDE

S
spreadsheets

basic formatting 82-84
built-in functions, using 72, 73
cell ranges, using 79
cells, accessing 74
cells, creating 75
cells, manipulating 69-73
cells and cell ranges, formatting 91-97
chart, inserting 120-122
closing 68
existing named worksheets, accessing 74
multiple spreadsheets, working with 76-78
named worksheets and cells 74
new named worksheets, creating 75
opening 68
printed page, formatting 84-88
worksheets, deleting 75

spreadsheets, formatting
adding page break, printed page 84, 85
adding page numbers, printed page 86, 87
cell background color, changing 93
cell fonts, changing 94

cell formats, changing 93-97
cell styles, changing 92
cell text color, changing 93
character heights, changing 94
column widths, basic formatting 83
defining print area, printed page 85
document information, updating 89, 90
fixed heights, basic formatting 84
fixed widths, basic formatting 84
hiding columns, basic formatting 84
number formats 95-97
online reference material 97
setting footer, printed page 85
setting header, printed page 85, 86
setting page size, printed page 87, 88
underline types 94, 95
word wrapping 95
worksheet names, customizing 89

SUSE Linux 10.1
installing 186, 187

U
Universal Network Objects. See UNO
UNO

about 45
accessing a cell, table UNO used 59-61
included services, finding 62
list of information documents 63, 64
online reference material 54-60
services within services 61
spreadsheets, closing automatically 50-53
spreadsheets, opening automatically 50-53
working with 49-53

V
VBA code versus OOo basic code

cell position 195, 196
code, simplifying 193
named cells 196
no string type in VBA 194
rangers 196

	Learn OpenOffice.org Spreadsheet Macro Programming
	Table of Contents
	Preface
	Chapter 1: Working with OOo's Basic IDE
	Before We Start
	Accessing the OOo IDE
	Controls in IDE
	Navigating around the IDE
	The Object Catalog
	Select Macro
	The OpenOffice.org Basic Macro Organizer

	Designing Dialogs with the IDE
	Summary

	Chapter 2: Libraries, Modules, Subroutines, and Functions
	Using Libraries
	Managing Modules using Libraries
	Using Libraries in a Multi-User Environment
	Adding a Library to the OpenOffice.org Macros Area

	Using Modules
	Writing Macros
	Writing Subroutines
	Declare Variables
	Assign Values to the Variables
	Do the Work!
	Inputting Variables

	Writing Functions

	Getting more Information
	Subroutines and Functions in Different Libraries
	Summary

	Chapter 3: The OOo Object Model
	Why be Interested in UNOs?
	Overview of the OOo Object Model
	The Interface
	The Service
	The Module

	Starting to Work with UNOs
	Opening and Closing Spreadsheets Automatically

	Online Reference Material
	Services within Services
	Finding Included Services

	List of Everything You Want to Know About UNOs
	Summary

	Chapter 4: Using Macros with Spreadsheets
	Opening and Closing Spreadsheets
	Manipulating Spreadsheet Cells
	Using OOo's Built‑in Functions

	Named Worksheets and Cells
	Accessing Existing Named Worksheets and Cells
	Creating New Named Worksheets and Cells
	Deleting Worksheets

	Working with Multiple Spreadsheets
	Using Ranges of Cells
	Summary

	Chapter 5: Formatting your Spreadsheets
	The Most Basic Formatting—Column and Row Dimensions
	Optimizing Column Widths
	Optimizing Column Widths across a Whole Worksheet
	Setting Fixed Widths and Heights
	Hiding Columns

	Formatting the Printed Page
	Adding a Page Break
	Defining a Print Area
	Setting the Header and Footer
	Adding Page Numbers
	Setting the Page Size and Orientation

	Customizing Worksheet Names
	Updating the Document Information
	Formatting Cells and Ranges of Cells
	Changing Cell Styles
	Changing Cell Formats
	Cell Background Colors
	Text Colors
	Cell Fonts
	Character Heights
	The Underline
	Word Wrapping
	Number Formats

	Online Reference Material
	Summary

	Chapter 6: Working with Databases
	Accessing Databases
	Which Databases can We Use?
	Registering the Database as a OOo Data Source
	Viewing Registered Data Sources
	Connecting to a Database
	Accessing Database Tables
	Running Queries on the Tables

	Putting it All into a Spreadsheet
	Loading Data into Custom Worksheets

	Adding New Records to the Database
	Updating the Database
	Summary

	Chapter 7: Working with Other Documents
	The OpenOffice.org Chart
	Inserting a Simple Chart into a Spreadsheet
	Formatting OpenOffice.org Charts
	Chart size
	Chart Title
	Adding Chart Axis Labels
	Y Axis Text Orientation
	A fully Formatted Bar Chart
	Other Chart Types

	Using Documents from Other Sources
	Stock Market Analysis—Yahoo! Finance
	Importing an Historical CSV File from Yahoo! Finance
	Comparing Companies within Yahoo! Finance

	Processing Web Pages
	Summary

	Chapter 8: Developing Dialogs
	Using OpenOffice.org's Built-In Dialogs
	Customising Message Boxes
	Customising Input Boxes

	Developing your Own Dialogs
	Creating a Dialog
	Loading a Dialog
	Assigning Actions to a Dialog
	Using Information in a Dialog
	Populating Controls in a Dialog
	The Finished Dialog

	Finding Further Information
	Summary

	Chapter 9: Creating a Complete Application
	Making Macros and Dialogs Available to Everyone
	Creating a Global Library

	Using a Global Library to Automate OOo Calc
	Running Macros Automatically when Calc Opens

	Adding Macros to the OpenOffice.org Calc Menu
	Adding a Macro to the Menu Manually
	Distributing a Menu

	Keeping It All Hidden
	Running Macros from the Command Line
	Running Macros in Linux
	Running Macros in MS Windows

	Creating Background or Batch Processes
	Running Background Processes on Linux
	Running Background Processes on Windows

	Sending Emails
	Summary

	Chapter 10: Using Excel VBA
	The Current State
	OpenOffice.org's Excel VBA Support under MS Windows
	OpenOffice.org's Excel VBA Support under Linux

	Installing SUSE Linux 10.1
	Building OpenOffice.org from Source
	Building on Linux
	Support your Local OpenOffice.org Issue

	Importing an Excel Spreadsheet that Contains Macros
	Opening Up an Excel Spreadsheet
	Viewing Code without VBA Support
	Viewing Code with VBA Support
	Closing your Spreadsheet

	Starting to Code with Excel VBA in Calc
	Combining VBA Code and OOo Basic Code

	Comparing VBA and OOo Basic Code
	Simplifying Code
	VBA—No Strings Attached
	Getting the Right Cell Position
	Using Named Cells and Ranges

	Further VBA Examples
	Using Active Cells and Cell Offsets
	Using the Workbooks Object
	Using the Worksheets Object

	Further Information
	Summary

	Index

