» Hands-on preparation and practice
» Practical skills advancement for practitioners
» Prescriptive guidance from expert voices

CERTIFICATION STUDY COMPANION SERIES

LPIC-3 Virtualization

and Containerization
Study Guide

Certification Companion
for the LPIG-3 305 Exam

)
Antonio Vazquez

ApPress’

Certification Study Companion Series

The Apress Certification Study Companion Series offers guidance and
hands-on practice to support technical and business professionals

who are studying for an exam in the pursuit of an industry certification.
Professionals worldwide seek to achieve certifications in order to advance
in a career role, reinforce knowledge in a specific discipline, or to apply for
or change jobs. This series focuses on the most widely taken certification
exams in a given field. It is designed to be user friendly, tracking to topics
as they appear in a given exam and work alongside other certification
material as professionals prepare for their exam.

More information about this series at https://1link.springer.com/
bookseries/17100.

https://link.springer.com/bookseries/17100
https://link.springer.com/bookseries/17100

LPIC-3 Virtualization
and Containerization
Study Guide

Antonio Vazquez

Apress’

LPIC-3 Virtualization and Containerization Study Guide: Certification
Companion for the LPIC-3 305 Exam

Antonio Vazquez
Madrid, Spain

ISBN-13 (pbk): 979-8-8688-1079-4 ISBN-13 (electronic): 979-8-8688-1080-0
https://doi.org/10.1007/979-8-8688-1080-0

Copyright © 2024 by Antonio Vazquez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1080-0

This book is dedicated to my wonderful family.

Table of Contents

About the AUthorccccmmnmmmisemsmnsss s Xix
About the Technical REVIEWETcccssmsemsmmssmsmsssmsssssnsssssnsssssnsssssnsnns xxi
Acknowledgments........ccuueeemmmmssssssmsssssnsnmsssssnsssssssnnsssssssnnsssnsssnnnnnnss Xxiii
Introduction.........cccmismmmnnmnmmsmsmnssssssss - XXV
Chapter 1: Virtualization Concepts and Theoryccccunnnmnemmnnnnresssnnns 1
LT 0To 1T 0 o T 1
EMUIGLION ... e 2
Game Console EMUIALOLScoccevccernenncs e 3
Terminal EMUIATOrS.......occvvcvncserese e 4
Printer EMUIALOLS.........ccviierercsernse e s s 5
NetWOrk EMUIALOrS.......cccccrieeereren e 6
System EMUIALOTScccccerreernesereserse s 6
SIMUIATION ..ot ——— 7
Virtu@lization ... ——————— 7
Types of Virtualizationccccevevrvrsnse e 10
Pros and Cons of Virtualizationcoeeereenrencrnscsnesesee e 11
Migration of Physical to Virtual Machings...........ccccerivnsnvnnnsnsnsenesnsensennens 12
VMWare CONVEITEN ..o ecrerce e nnenens 12

1171 072 12

vii

TABLE OF CONTENTS

OPENQARM ..ot e 13
L0107 T | - 13
Migrating Virtual Machines Between Systemscccocvrnvrniennnesnnesennsenene 14
SUMMANY..c..citiir e s e s s b e e s b e aenrn 14
Chapter 2: QEMU..........cccccmmmmmnnnninnssssssssssssssssssssssssssssssssssssssnssnsnnnnnnss 15
Introduction t0 QEMUcccoriierererrrrcsr e 16
Installation on UDUNTU..........ccocreeerrreer e 16
Full System Emulation in QEMU............ccooueirennnsnnesneserese e 17
Emulating an X86 SyStem.......c.cccvvrrnrenninnnesesnse s senns 18
Emulating an ARM SYStemcccvvernrmnnnenmnssesssessssesess s sessssessnnes 29
Emulating @ SPARC SYSTEM......ccccccvvcrnennnsene s 34
User Mode Emulation in QEMU ... 41
QEMU With KVIM ...t sssss s e e sssssnas 45
QEMU NEtWOIKINGcocvereerrurerererensneesesesessssesesessssssssssessssssssssssesssssssssssssssssssens 47
USer NEtWOIKING......cocvierieererierersee s serses e s s e s sse e sesseessessesesssesnesaesnenns 48
Networking by Using TUN/TAP DEVICEScecvrerrereererserserersesessessersesessessesaes 62
Creating a Bridge for EXtErnal ACCESScuvrurrerrerersnrersesessessssessessessssessessees 68
QEMU GUESE AGENL ...ttt ettt se e s 70
QEMU MONITOTvececceresrsseeesesessssessesesesssssssesesesssssssssssessssssssssssssssssnsasssssnsens 76
Other Useful QEMU OPLioNS........cccveviininenn s sse s ssssessesaes 88
SUMMANY....ceitieerreserre e e r e e 91

Chapter 3: Xen ..o 93

Xen ArChiteCIUrE........ccvvier e ——— 93
Installation and Configuration of Xen.........ccccceerrerninnenncsc e 94
INSTAING XBN ..ot 95
L0 i o TU T 1o T OO 97
Creating a Logical Volume to Store the Virtual Machines...........ccccccevvccnnane. 98

viii

TABLE OF CONTENTS

Creating Virtual MacChiNESccvverrerevenserseresss s sessssessessessessssessessessssessessees 100

Installing a Virtual Machine by Editing a Configuration Fileccccvcevuenee. 100
(5] 113 (] (TS 130
GRUB Start Oplions ..o st se s 132
Managing Xen With XI/XM/XAPL..........oorerrrerreere e 135
Xen TroubleShOOtiNG.......cccveeerercrrerr e 144
SUMMAIY.c.veitiiriere s s s b e e e s s b e e e s e e aesae s e e naenne s 145

Chapter 4: libvirt Virtual Machine Management............ccuceenrissnnnnns 147

Introduction t0 lBVIMt.........ccoiiiiir 148
Installing libVirt ..o ————— 148
VIFE=MANAGE ...c.veereecrerceesee e e sre e ss s se s e se e sse e sense e nnnnens 149
Installing and Managing a Virtual Machine with virt-manager.................... 159
Accessing libvirt from Our OWn Programs..........ccoveeverenerensesessesesesesessesessenens 177
Accessing libvirt from a C Program.........ccocceveernnenenesesssesessesessesesessesenns 177
Accessing libvirt from a Python Program.cccecvmenresennsenesesesensenenns 180
Migrating a Virtual Machine to Another HoSt..........cccooevcnnieserescrnccseneens 182
Managing SNapSNOLSccccorerernnrns s 193
Storage PooIS and VOIUMES..........cceveernsenrnennnese s e senns 197
NEIWOIKING....cvecercerererirere s s sa e s sae e s nesn e sn s nne s 201
10 T (0] g TS 212
11] 1 TR 214
libvirt Configuration FilesSccoeerrerrercrscr e s 219
11031 0] | R 219
1103171 o o1 0]) S 220
EMU.CONT .t e e e e p e e 222
VIrtlogd.CONT ... ——————— 223
VIFIOCKO.CONT ... 223

ix

TABLE OF CONTENTS

L0103 1 T[S 223
2101 225
SUMMAIY..c..citiirire e b b e s s b e s e e b e s e e nne s 226
Chapter 5: Virtual Machine Disk Image Management...........ccccussnees 227
Virtual Disk Image FOrmats........c.c.ccovrererenernsesensesesesesssse s s sessssessnnens 228
RAW IMAGES......eoerreerreirrnesesese s sesse s ses e s ssssessssssessesssenssssnsenens 228
CCOW AN (COW2ouereieirersesie i e e sss e s sae st e saesrs e s e s s sas e s sne s 229
VIVIDK ...ttt 230
Managing Disk Images with qemu-img...........ccoovrerrrnnrnsnnnesnnsse s 230
Getting Information with gemu-img.......cccervrnnsnnnsn s 230
Creating Disk Image Files with gemu-imgccoccvvverrrenrinsnnsesenesenenne 232
Creating Overlays With emU-iMQ.........ccovrerrrenrnssnnessrese s 233
Converting Between Different Disk Formatsccueevvvesrnnernsesenenennnne, 235
Basic Usage of VirtualBox to Check the Image Disk File..........cccocevvieriernens 236
Mounting Partitions and Accessing Files Contained in Virtual Disks 241
Troubleshooting lIbgUESLTS ... 244
guestmount/guestunmount ... ——— 248

LT 0 LSS 251
VIME=COPY=IN et e 254
VIFt=COPY=0UL.....ccerrierrsisese s 255
VIFE=0iff..ees e 256
Virt-INSPECIONui it 257
Virt-fileSYSTEMS......cecrreeeeer s 258
VIFT=TESCUR ...uvveerree s e e 259
VITE=0F e ———————— 262

LT (1] TSRS 263
VIMt=SPAISIY ...ccveereecrsesese s 267

TABLE OF CONTENTS

1L T A OSSR 269

1L 72 277

LT Y] 0] OSSR 282
Open Virtualization FOrmat..........ccccvnvninnnininnnsn s 285
SUMMAIY..c..citiirire e bbb s p e e s s R r e e e nne s 290
Chapter 6: Proxmox and Open vSWitchccoovcemmmmmnnnnsnssssssssssnnnnns 291
INtroduction t0 PrOXMOX.......cccvveerrnnmrenesenenersssesessesesss e sessesesss e sessssessssessnnes 291
SyStemd-Machingdccovvevnienninnrnr e 309
L0 1= TS v OO 313
SUMMAIY . veiteererere s sere e se e e e e e s saesa e e s e s s saese e e saesaesae e s e saesaesseennesaess 318
Chapter 7: Container Virtualization Concepts.......cccusemnrrssssnnnsrsssnnns 319
System Containers and Application Containerscccccevveerrvnncnniescrenccnnn, 320
Kernel NameSPaCEScccveririnnniene st sss s 320
Mount NamMESPACES.......cccevirerrerirerir s se s s srs s snens 323
Process NamESPACEScccccvvererisinsinsesie s s s s sssssssessessessssessesnens 327
USEr NamESPACES.......cccevirirrirerie s s s s s se s snes 328
Combining Several Namespaces to Craft Our First “Container”.................. 329
Network NamMeSPACESc.cccvvererennsinese s s sss e ssessssessesnens 333

[0 1100 336
CONIOl GIOUPS ..cuevuerieieirese st s r e s e s e 341
Linux CapabilitieS.........cccvrriernrniniene s ses e 345
Security and CONTAINErS.........ccuverererernserrnee e 353
R3] = 3T R 353
ADPAIINON ...t s r e e s s re e e nnnnnnens 359
L= 1] SRR 362
SUMMAIY.c e itetriere st re e se s s s e e s e s sae s e e e e aesaeseene s e saesae e e e naennees 362

TABLE OF CONTENTS

Chapter 8: Linux Containers (LXC).....ccccussseessesssssnnsssssssnssssssssnnssssssnns 363
LXC ovveeereresesesesee e bbb e AR R p e e e 363
INSEAllING LXC.....ooeeiiecirccerne st 364
ConfiguriNg LXCccceeeieiernierine s sas e s sesse s ssnaes 365
LXC in RedHat/RocKy/CentOS...........ccoovvvnennnnennienne s e sessnnes 386
SECUMLY INLXC ..eveererevtesererere s rse e ses e s e sress s e ssesaesseses e ssesaessssessesaees 399
Other LXC COMMANGS.........ccccoermrermnemseseressssssssesesssssssssesessssssssssssssesssssasaes 404
XD ..vovteterrereresesese e e bbb R p e p e nrnr s 407
Creating Our First Container on LXD..........ccccvvniriinnnnncnnennsnnsesesse s sessenns 412
Managing Server and Container Configurationcccocvvsienencrerennnnnenes 416
Networking in LXD ... s s s s s e ssessessssessesnens 419
0] 1o L= I T O 424
LXD ProfileS ...c.covrerereereeresesesese e 427
Limiting the Use of Resources on LXD..........ccccocvenninncniennsnnsensessessnsensennes 432
SUMMAIY....citiiiire e s s b e e b b e s ae e e e nne s 433
Chapter 9: DOCKEFcuuceemmmssssnnmmmssssnnnssssssnsnnssssssnnnssssssnnssssssnnnnssssnnns 435
INtroduction t0 DOCKETcccevricerinerinisnns s 435
INSTAING DOCKETcveeeerererte sttt sa e e 436
DOCKEN IMAQEScoeieerieririr e s s 438
DOCKEr CONTAINETS.......cceeririrrreiese e 440
DoCKer ArCHITECIUIEcoveeereeereecre e s 445
DOCKEN VOIUMESeceeeecrireerree s snenes 450
BiNd MOUNLS ... 453
NAMEM VOIUMES......ceeecrereeree s 455
IMPTS VOIUMES ... 458
Sharing Volumes Between COntainers...........ccoveererenereserensesesesessesesensenenns 458
Using Remote VOIUMES.........ccoveirerereeren e 460
Deleting and Pruning VOIUMES...........cccorererercrnenesene e 463

xii

TABLE OF CONTENTS

DocKer NeTWOrKiNgccccvverveniniininsie e s sse s s sseas 464
Creating @ NeW NEtWOIKccoceveverrrienienssenerese s ses s sessessessesnes 467

11 T0] o1 T T 0] S 470
Customizing Our OWn CONtAINErsScccovvrrnrennesine s 471
Exporting a Container t0 an IMageccocvvvvrverievnnensessesesessesesessssessensens 471
Using a Dockerfile to Create @ Container.........cocvvvverreriererensenserereesessensenses 475
LOQQing iN DOCKETcouecererreriesinine e s sn e s s 482
Saving and Restoring CONtAINErS........c.ccovererenernsesenene s 487
Creating @ LoCal REGISIIYcccucerrererenismrsnerisse s se s s se s ssenes 492
Customizing Security OPtionS.........ccoverrisernsesnesese e 496
SUMMAIY.c.veiteiriere s e s s s a e e s s s saese e e s aeeaesee e s e saesae s e e naennees 498
Chapter 10: Container Orchestration Platformsccccenssennnrnssnnns 499
Container Orchestration.........c.cooeeeeererernessseseresse e sesnns 499
OCKET COMPOSE....cverrirerierississese e srs s se s s b b s e s ae s a e se s s aesr e e nnennens 500
Installing doCKer COMPOSEcccevvcririenisnsnes e e 500
Creating a Service with doCKer COMPOSE........cccervrrrrieriennsnsesese s seseses 502
Creating a Multi-container Service..........couovvririnnnnninnen s 506
AOCKET SWAIM ...t nr s 510
docker Swarm ArChiteCIUreccoveeererrnscrr s 510
Initializing a docker Swarm CIUSLErccccoverrnrernnenerese e 511
Adding Additional Nodes to the Swarm Cluster..........c.cccevernrererrenerensenenns 513
Deploying Services in dOCKEr SWaIMcocveevrererenerensesessesessesesessesessenens 515
OVerlay NEtWOIKSccceeeerercrereserese s s sennes 519
CONSTFAINTS ..o 520
Creating a GIohal SEIVICEcccvvrvririercrrr s 522
DOCKET SBCIELSccveeeeecrerscerree e re s e 523

LS - T G 524

xiii

TABLE OF CONTENTS

KUDBIMELES.....cvcircerrrce s 527
Kubernetes ArchiteCture..........ocovvnnrcnnsrs s 527
Installing MINIKUDEccoovrrirr 529
POGS....coee 531
First Steps with MiniKUDE........ccocevivrrrrrre e 532
Deploying a Pod in KUDEIMELES.........cccvverererreriereneesessereseesessessessessssessensens 539
(32T 0] [z =] RS 540
DEPlOYMENTS.....cocvicerr e ——————— 542
Other Kubernetes-Related tems.........c.ccovvvnnnnncnsnnnnsssesesssenes 546

HEIM e 546

OPENSHITL ... ——————————— 553

3T T ST 557

SUMMANY....ceiieerireresese s s s s e nenssnenns 563

Chapter 11: podman and Other Container-Related Tools..........ccsseees 565

INEFOTUCHION.......cccerrccc 565

Open Container INILAtIVE.......cvcvcrierererrere e enens 566

POUMAN ..ot s s e r e e s 566
Installing podman ... —————— 566
POUMAN IMAJES.....cecerererre e enas 567
POAMAN CONLAINEIS ...evevverrerererrereererserere e sesesse e se s ssessesss e ssessesassessessesses 569

DUIIAAN ... s 571

SKOPEO ..ttt e 573

FreEBSD JAilS......cccveeerrrerineseree s s e s s snenes 575

FRE. e ———————————————— 577

L0 0 T=T 72O 583

SUMMAIY.c.veitetrerere e sere s e e s s ssess e e ssessesaesesesaesaese s e ssesaesassessesaesaessssensersens 588

Xiv

TABLE OF CONTENTS

Chapter 12: Cloud Management TOOIScccvusssmnnsrssssnnssssssssnsssssssnns 589
Introduction to Cloud COmMPULINGcoveeerercrrcerrecer e 589
L0 T 1 13 2T 592

First Steps with OpenStack ..o 593
=T U0 SRR 613
Installing Terraform ... 613
Terraform ProOVIAEIS......ccoceveererereree e 616
Deploying Our Docker Infrastructure with Terraform..........cocccvvernccnennnnns 622
0o [T 0] T o ST 635
AMAzoN WED SEIVICEScccvvvererirerreserissesese s ses s se e ssssssenns 636
MICIOSOTt AZUIEvceereerereer s 637
€T ToTo L= 304 o S 637
SUMMANY ...ttt r e e r e e nr e 638

Chapter 13: Packercusseeennmmnmsssnnssnnnnns 04 1

Introduction t0 PaCKer ... 641
INSTAllNG PACKETcc.coviircreesir st 641
Packer Integrations (PIUQ=iNS).........ccovrermrenerrnerernenerese e 644
Installing a Packer Plug-In.........ccovvrinininnnnirsn e 645
BUIlding @n IMAJEcoveeerereereerreres s 646
Building a VirtualBoX IMage..........ccvvererrenernsmresesesssesesseseseses e sesesessenens 646
Building an LXC IMAQE........ccvurmrrrerenerereerssesesesesssse s sessesessesesessssessenens 651
Automating the Installation of Ubuntu to Generate an
IMmage With PACKET..........ccvrrerereer e 659
Provisioning with Packer and Integration with vagrant............cccccoovvvvviennne. 671
SUMMANY....ctivierinerisese e e e e nr e 676

TABLE OF CONTENTS

Chapter 14: cloud-init........cccursmmmrnsssnnnmmssssnnmmsssnnmmssssnessssmmm—— 677
Introduction to CloUd-iNitcccorerrerrerrerr s 677
Configuring a Local QEMU INStance...........cccvvvvnvnienennsnscness s sessesnens 678
Instance Metadata Services (IMDS)........cccuorreermnenmresernsesene e 686
DAtASOUICESeeerereeseeese s e r e s 686

L8] o T D T OSSR 686
Configuring a LXD Container INSanCecccovvvverenennensenenssessessessesessesessens 687
Managing Filesystems with cloud-init..........ccoceovvririnnnininenr e 689
Installing Software PaCKages........ccceveverrerrererensenserersesesseressessssessessessssessessees 692
SUMMANY..c..oitiiiire e r e e s ae e e e e nne s 694

Chapter 15: vagrant...........ccovcmmismmnmmmssmmssmmsssmss s s s snsnsnnns 695
Vagrant ArChItECIUTE.......ccveeerrereresesrs s e 695
Installing vagrant ..o 696
Deploying Our First Virtual Environment with vagrant.............cococcvvnievniniennenn 701

Initializing vagrant ... 702

VAGFrANT FlBS ...viivierere e s saenne 703

Running aVagrantfilecccvvririnnnininiennsnene s sesesesessessessens 704
Working with Different vagrant Environments.........cccccevvvvevennsnsenienssensensennns 707

Installing Additional vagrant BOXESccceevverierenensensesensssessessessssessessesses 709

Checking the Status of the vagrant Deploymentscccoevvvvriernnenseniennns 711

Searching for vagrant BOXEScucvvererennensenerensssessessessessssessessessssessessees 712

Provisioning With vagrant.........c.ccccevvvriniennnninne s sesessessssesessens 713

Port RedireCtion.........cccovrmiicnicnirnie s 717

Customizing Network SEHtingSccccvverrevvrnrnienie e sessesees 721

TABLE OF CONTENTS

Shared Folders in vagrant..........ccoevrevernreniennnensensesessssessesesssssssessessessssessessens 724
Managing the State of the VM from vagrant............cccccconvnnvenrincrnccnncccnnnne, 726
Deploying Multiple Virtual Machines from a Single Vagrantfilecco.c...... 728
SUMMANY....eeeerireseree s e pe e e e 734
INA@X...cuunnnnnnnnnnnsssssssnssnnssnssnssnssnnssnnnnnnnnnnnnnnn 735

xvii

About the Author

Antonio Vazquez is a Senior Linux System
Administrator with over 20 years of experience
in the IT field. As an avid champion of FOSS,
he has been using Linux for decades, holding
many professional certifications including the
LPIC-3 certification, RHCE, and many SUSE
certifications as well as non-Linux-related
topics including cloud and security. Currently,
he works for a leader in the aerospace sector,
managing the Linux/UNIX infrastructure.

Antonio is also an LPI-approved trainer who teaches students to get
LPI certified and also writes books in his spare time.

Xix

About the Technical Reviewer

Raul Arias is a professional specialized in
systems administration, IT infrastructure,
and cloud solutions, with over 20 years

of experience in the technology sector.
Throughout his career, he has worked with
some of the most important companies in
the industry, serving in both technical and
consulting roles. With extensive training in

technologies such as VMware, Citrix, Nutanix,
and Microsoft, he has gained comprehensive
expertise in the implementation, management, and migration of complex
IT environments.

Raul's career stands out for his deep technical knowledge, his ability
to manage complex IT environments, and his commitment to continuous
improvement through certification and education. He currently continues
to contribute his expertise in technological consulting, helping companies
implement efficient and secure solutions in the digital era.

Acknowledgments

I'd like to express my gratitude to the people at Apress/Springer Nature; it’s
always a pleasure working with you. I would also like to thank the Linux
Professional Institute for their great job, as well as those who are involved
in one way or another in the open source community.

xxiii

Introduction

It’s been about five years since I wrote my book on LPIC-3 300. At that time,
I had the feeling that there were too few resources available to study for any
of the LPIC-3 certifications. Today, I think that the situation has improved
slightly, but I still feel the available resources are scarce. With this book, I
attempt to help those studying for the LPIC-3 305 to better understand and
develop the skills needed to pass the exam and, more importantly, to put
them at work in the real world.

LPI certifications are vendor neutral; however, for practical reasons,
Ineeded to use Ubuntu 22 as the main operating system throughout the
book. This choice is due to the fact that Ubuntu is one of the main players
in the Linux world, together with Red Hat, SUSE, and others. Despite
having used mainly Ubuntu, most of the content you see in this book can
be applied to the most popular Linux distributions as well.

The topics covered in the book are based on the official objectives
defined by LPI. Always trying to prioritize those topics with a higher weight
in the exam. The order of the book is also closely related to the official
objectives with small variations for didactic purposes.

If you have any suggestions, opinions, questions, or criticisms about
this book, you can contact me via LinkedIn at https://www.linkedin.com/
in/antoniojosevazquez/.

https://www.linkedin.com/in/antoniojosevazquez/
https://www.linkedin.com/in/antoniojosevazquez/

CHAPTER 1

Virtualization
Concepts and Theory

In this chapter, we’'ll cover the following concepts:
e Virtualization terminology
e Pros and cons of virtualization
o Variations of hypervisors and virtual machine monitors
e Migration of physical to virtual machines
e Migration of virtual machines between host systems

We will also be introduced to the following terms and utilities:
hypervisor, Hardware Virtual Machine (HVM), paravirtualization (PV),
emulation and simulation, CPU flags, /proc/cpuinfo, and migration.

Introduction

When thinking of virtualization, people usually refer to the process of
running a virtual (rather than actual) version of a machine. The concept
of virtualization, however, can be applied not only to machines but also
to storage devices, networks, etc. By using the term “virtualization” with
a broad and generic meaning, we can “virtualize” machines in many

© Antonio Vazquez 2024
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_1

https://doi.org/10.1007/979-8-8688-1080-0_1#DOI

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

different ways, by using software emulation, hardware virtualization,
containers, etc. During the course of the book, we’ll study the main
concepts and we’ll see practical examples.

Emulation

DOSBox 0.74, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX

Welcome to DOSBox wvO.74

For a short introduction for new users type: INTRO
For supported shell commands type: HELP

To adjust the emulated CPU speed, use ctrl-F11 and ctrl-Fi1Z.
To activate the keymapper ctrl-F1.
For more information read the README file in the DOSBox directory.

HAVE FUN?
The DOSBox Team http://was.dosbox.com

N>SET BLASTER=AZ20 17 D1 H5 T6

N

Figure 1-1. DOSBox

We can create a “virtual” machine by using software to emulate
another system. This has been done, for instance, to emulate classical
7.80-based personal computers like Spectrum, Amstrad, Commodore, etc.
A well-known emulator is MAME (Multiple Arcade Machine Emulator),
used to emulate classical arcade machines. DOSBox (Figure 1-1) is another
example of emulator, often used to play old DOS-based games and other
programs. Finally, we can mention QEMU (Quick Emulator), which we’ll
study in detail in Chapter 2.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

All these programs use software to emulate the behavior of every
hardware component in the original machine. Let’s see more in detail what
emulation is.

We can define an emulator as a piece of hardware or software that
enables a computer system to behave like another. Quite often emulators
just emulate a hardware architecture; if some particular firmware or
operating system is required, it needs to be provided or emulated as well.
Maybe you're familiar with some computer emulator that requires the
user to provide some ROM file to work. There are several types of emulator
depending on what they're used for. We’ll enumerate some of them.

Game Console Emulators

This is the first type of emulator we talked about earlier. There are many
emulators for different platforms, for instance, Fuse for Spectrum,
Caprice for Amstrad, Retro Virtual Machine for Spectrum and Amstrad
(Figure 1-2), PPSSPP for PlayStation Portable, PCSXR for PlayStation 1,
and so on.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Retro Virtual Machine = (= x‘

RETIRO virus

Figure 1-2. Retro Virtual Machine

Terminal Emulators

In the old times, it was quite normal having one big mainframe computer
and several “dumb” terminals. These terminals consisted only of a
keyboard and monitor and connected to the mainframe, which was in
charge of performing the actual computing. Nowadays, modern-day
computers use terminal emulators to connect remotely to other systems.
You're probably familiar with programs like PuTTY (Figure 1-3), a
multiplatform terminal emulator.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

i

Category:

ﬁ PuTTY Configuration

-7]Sl

B8 Session
Logging

=} Terminal

- Keyboard

- Bell

- Features

= Window

- Appearance

- Behaviour

- Translation

+- Selection

- Colours

[=)- Connection

- Data

- Proxy

#- S5H

- Serial

- Telnet

- Rlogin

- SUPDUP

Basic options for your PuTTYY session ‘

Specify the destination you want to connect to
Host Name (or IP address) ort

(]

Connection type:
@ SSH () Sedal () Other: |Telnet

I NS
1

Load, save or delete a stored session

Saved Sessions

Default Settings

Save

IIIg
a

Delete

Close window on ext:
() Mways () Never @ Only on clean exit

[Qpen] [Cancel

Figure 1-3. PuTTY

Printer Emulators

When an application wants to print a document, the application will need

to send the proper information to the printer using a Page Description
Language (PDL). Two of the most used PDLs are Postscript and PCL. The
Printer Command Language (PCL) was developed by Hewlett Packard.

Many printers from different manufacturers use emulation to support PCL

language.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Network Emulators

Network emulators are designed to test the performance of applications
in a real network. They allow to test routers and switches’ configurations.
Some of the most well known are GNS3 (Figure 1-4) and Cisco

Packet Tracer.

n &L @ r‘ :': "’ '_“ '!’ ':; @ 2 - . ' “‘a\ d\ ﬁ

End devices @m -| Captures [£3]
a = Hostname Interface
™ Host
ﬁ Cloud
——
S
’0 Topology Summary ®
» @ C1
X
-l > @ swi
7) v

Console ®

GNS3 management console. Running GNS3 version 0.8.7.
Copyright () 2006-2013 GNS3 Project.

=

Drag Node to Workspace (press SHIFT while dragging for multiple nodes).

Available Node types are colored and can be dragged to the Workspace. Press SHIFT while dragging a device to add multiple identical nodes.

Figure 1-4. GNS3

System Emulators

There are also programs that emulate full systems like QEMU, which
we'll discuss in detail in the next chapter, and PearPC. PearPC emulates

PowerPC systems on x86 hosts.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Simulation

A concept very similar to emulation is simulation; although in some cases
these two terms are used interchangeably, there are some differences. In

a simulator, the main goal is to make the simulator behave as close to the
original as possible.

For instance, an emulator could mimic the way another system works
but at a higher level, not going into much detail on the low level. On the
other hand, a simulator should try to mimic the way the original system
works at all levels.

There is also another difference, an emulator is designed with the
main goal of providing the same functionality of the original system,
but not so on working in the same way as the original system. That is,
emulators usually can execute any program designed for the original
system. However, as we mentioned before, simulators are more interested
in mimicking the way the original system works and less interested in
providing the functionality. For that reason, quite often programs designed
for the original system perform worse in a simulator or even don’t
work at all.

Virtualization

As we said before, initially “virtual” machines were implemented only by
the use of software, but soon Intel and AMD included in their processors
new extensions called Intel VT-x and AMD-V, respectively. This hardware-
assisted virtualization offers a better performance than a software-only
solution. In a Linux system, we can check the /proc/cpuinfo file to see

the characteristics of the processor: speed, model, CPU flags, etc. If the
processor supports hardware-assisted virtualization, the corresponding
flag will be present.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY
If we have an Intel CPU, we’ll look for the vmx flag.

antonio@antonio-HP:~$ grep vmx /proc/cpuinfo

flags Doeeeeen VX veeennn
And if we have an AMD CPU, it is the svm flag we should search for.

antonio@antonio-Aspire-A315-23:~$ grep svm /proc/cpuinfo

flags Doieeeeen SVM vevvnnnns

We could get more or less the same information with the Iscpu
command.

antonio@antonio-HP:~$ lscpu

Architecture: x86_64
Virtualization: VT-x
Flags: ..., 17/(1 G

antonio@antonio-HP:~$

antonio@antonio-Aspire-A315-23:~$% lscpu
Architecture: x86_64

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

CPU op-mode(s): 32-bit, 64-bit
Virtualization: AMD-V
Flags: ... SVM.......

antonio@antonio-Aspire-A315-23:~%

When a system has a CPU with these flags enabled, it can easily
execute virtual machines. The piece of software that hosts the virtual
machines is called the hypervisor. Sometimes, instead of the term
hypervisor, the term virtual machine monitor is used. In this case, we can
properly talk about “virtualization.”

The hypervisor manages the virtual machines, assigning the
resources they need to operate normally. There are two different types of
hypervisors:

e Type I hypervisor, also known as “bare-metal”
hypervisor: In this case, the hypervisor runs
directly on the system hardware. Examples of this
type of hypervisor are VMware ESXi, Microsoft
Hyper-V, or Xen.

o Type Il hypervisor: These hypervisors run as an
application on the operating system. A few examples
are VMware Workstation, Oracle VirtualBox
(Figure 1-5), or Microsoft Virtual PC.

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Oracle VM VirtualBox Manager - o X
File Machine Help
v d‘ ::, & ,f<>
BBH Tools {:} rz'\.,;' @ -
New Add Settings Discard Start
" \labs =] General =] preview
Name: RH8
controller (controller_-_cluster_installed) Operating System: Red Hat (64-bit)
© Powered OFf System
EP™ compute1 (compute-_cluster_installed) gasetrgecrjngry: 2043 [")A'Bk optical Fl
f © powered Off oot Order: Hard Disk, Optical, Floppy

Acceleration: Nested Paging, PAE/NX, KVM
Paravirtualization

EMl LPIC-1-1 (Antes_foreman)
-«

(& saved ™ pisplay
oy s Video Memory: 16 MB
- B 3 Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
. Recording: Disabled
EP sol-11_4-vbox
= &
(& saved Storage
Controller: IDE
sol-11 4-vbox 1 IDE Secondary Device 0: [Optical Drive] Empty
i Controller: SATA
© Powered off SATA Port 0: RH8.vdi (Normal, 20,00 GB)

Figure 1-5. Oracle VirtualBox

Types of Virtualization

We have seen previously that we can talk about “virtualization” in a broad
sense, which includes software emulation and simulation. But we should
only talk properly about “virtualization” when hardware virtualization is
present.

From this starting point, we can differentiate many types of
virtualization depending on the criteria used. Initially we can enumerate
these two types of virtualization:

e Full virtualization: The hypervisor recreates almost
every component of the original system, making it
possible for the guest OS to run unmodified.

o Paravirtualization: Access to hardware resources
is offered through a special interface. This is more
efficient because the hypervisor doesn’t need to
perform many high-cost operations needed in full

10

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

virtualization. However, the guest operating system
needs to be modified so that it can be executed in a
paravirtualized environment.

There are also other solutions that combine characteristics of full
virtualization and paravirtualization, like PVHVM or PVH. As this is an
introductory, we won’t go into much detail, but we’ll see these other
virtualization types in Chapter 3.

When using paravirtualization, we’ll talk about paravirtualized virtual
machines. And when using full virtualization, we’ll talk about Hardware
Virtual Machines, or HVM.

We should also mention here another concept, 0S-level
virtualization. In this case, the kernel allows multiple user space instances
to exist completely isolated. These instances are usually named containers
in Linux environments, although different terms are also used for the
same concept in other operating systems, like jails in FreeBSD or zones in
Solaris.

Pros and Cons of Virtualization

Using virtualization has many advantages. We can enumerate the
following:

e Cost efficiency: The hardware is much more efficiently
used; we no longer need a dedicated physical server for
every logical server.

o Easier administration: By using virtualization, we can
use snapshots to revert back changes when needed; we
can also automate many tasks by using orchestration.

o Efficient use of energy: By using less hardware, less
energy is needed, which in turn reduces costs.

11

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Unfortunately, there are also a few drawbacks that we need to know
about when considering virtualization:

o Notall software and/or hardware can be easily

virtualized.

e Hardware access is indirect and consequently less
efficient.

Migration of Physical to Virtual Machines

Virtualizing an existing physical machine, we can benefit from the
advantages of virtualization. Simplifying back up and restore operations.
This procedure is often referred to as Physical to Virtual migration or P2V
for short. There are different tools we can use for P2V. We’ll enumerate just

a few of them.

VMware Converter

One of the most used tools to perform P2V migrations nowadays is
VMware stand-alone converter. This is a commercial tool very easy to use.

virt-p2v

virt-p2v converts a physical machine into a virtual machine managed by
KVM. Later in this book, we’ll study KVM and this tool with some more
detail and see an example.

12

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

openQRM

openQRM is a management platform for heterogeneous data center
infrastructures with many interesting capabilities, among them P2V and
V2V conversions.

Clonezilla

Another possibility, although not as easy as those we've seen previously,
is to clone the disk of the server we plan to virtualize. A very good tool
that we can use for this purpose is Clonezilla (Figure 1-6). Later we should
convert the disk image file to a format recognized by the hypervisor we
use. We can see a complete example at their official website.

clonezilla.ory, clonezilla.nch
Clonezilla live (Default setting
Clonezilla live (Default =
Clonezilla live with =y
Dther wodes of Clonez 2
b
Prezz [lail bg s2dit gobions
= Bo i |
w B19, HCHC, Taiwan
: Clonezilla co o
‘Free Software Labs
High-Performance Computing
Taivian

Figure 1-6. Booting Clonezilla Live

13

https://clonezilla.org/lecture-materials/016_Linux_Tag_2014_workshop/workshop/P2V-by-Clonezilla.pdf

CHAPTER 1 VIRTUALIZATION CONCEPTS AND THEORY

Migrating Virtual Machines
Between Systems

In addition to converting physical machines into virtual machines,
sometimes we might need to migrate virtual machines from a certain
hypervisor to another; this is called V2V for short. We'll see in the
upcoming chapters several practical examples.

Summary

In this brief chapter, we've studied some theoretical concepts that will help
us to better understand the upcoming sections of this book.

14

CHAPTER 2

QEMU

In this chapter, we'll see a brief introduction to some of the characteristics
of QEMU, a great emulation software that can also be used in addition to
a hypervisor to provide hardware virtualization. But QEMU has also much
more to offer.

In this chapter, we’'ll cover the following concepts:

¢ Understand the architecture of QEMU, including KVM,
networking, and storage

e Start QEMU instances from the command line
e Manage snapshots using the QEMU monitor
o Install the QEMU Guest Agent and VirtIO device drivers

e Troubleshoot QEMU installations, including
networking and storage

e Awareness of important QEMU configuration

parameters

We will also be introduced to the following terms and utilities: kernel
modules (kvm, kvm-intel, and kvm-amd), /dev/kvm, QEMU monitor,
QEMU, gemu-system-x86, ip, brctl, and tunctl.

© Antonio Vazquez 2024 15
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_2

https://doi.org/10.1007/979-8-8688-1080-0_2#DOI

CHAPTER2 QEMU

Introduction to QEMU

QEMU (Quick Emulator) is an open source emulator and virtualizer. This
great tool can perform full system emulation and user mode emulation
and even run KVM or Xen virtual machines with near-native performance.
We'll see these points in detail later.

Installation on Ubuntu

The installation of QEMU is very easy. We can search for the QEMU
packages with apt.

antonio@antonio-Laptop:~$ apt search gemu

And we'll see a lot of related packages. We just said before that QEMU
can work in two modes: full system emulation and user mode emulation.
In the listing of QEMU-related packages, we can see the following items:

gemu-system-x86/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64
[installed]

QEMU full system emulation binaries (x86)
gemu-system-arm/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64
[installed,automatic]

QEMU full system emulation binaries (arm)

As the name implies, these two packages will allow us to emulate
x86 and arm systems, respectively. In this same listing, we can also find
this line:

gemu-user/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64
[installed]
QEMU user mode emulation binaries

16

CHAPTER2 QEMU

This is the package used for user mode emulation. In my case, the
packages appear as “installed” because I installed them previously. The
installation procedure is the usual in Ubuntu.

antonio@antonio-Laptop:~$ sudo apt install gemu-system-x86

antonio@antonio-Laptop:~$ sudo apt install gemu-user

Full System Emulation in QEMU

As we mentioned before, QEMU can emulate a full system, including
a processor and various peripherals. QEMU can emulate not only the
x86 architecture but also many others such as arm, PowerPC, s390, or
SPARC. After installing the right software package for the architecture
we want to emulate, we can see there are a lot of gemu-system-xxx
commands:

antonio@antonio-Laptop:~$ gemu-system-[TAB][TAB]

gemu-system-aarch64 gemu-system-ppc64
gemu-system-alpha gemu-system-ppcé64le
gemu-system-arm gemu-system-riscv32
gemu-system-avr gemu-system-riscvé4
gemu-system-cris gemu-system-rx
gemu-system-hppa gemu-system-s390x
gemu-system-1386 gemu-system-sh4
gemu-system-m68k gemu-system-sh4eb
gemu-system-microblaze gemu-system-sparc
gemu-system-microblazeel gemu-system-sparc64
gemu-system-mips gemu-system-tricore
gemu-system-mips64 gemu-system-x86_64

17

CHAPTER2 QEMU

gemu-system-mipsé4el gemu-system-x86_64-microvm
gemu-system-mipsel gemu-system-x86 64-spice
gemu-system-nios2 gemu-system-xtensa
gemu-system-orik gemu-system-xtensaeb

gemu-system-ppc

We'll see a couple of examples in which we will emulate an x86 and a
SPARC system.

Emulating an x86 System

We'll work in this case in an Ubuntu 22 workstation, but the procedure is
similar in other Linux distributions. We already installed the software so
we're ready to start working with it.

The main command to launch the emulation is gemu-system-
(architecture-type), for example, gemu-system-x86_64. If we take a look
at the help (gemu-system-x86_64 help), we’ll see a brief description of all
the options available. This list can be overwhelmingly exhaustive at first, so
we'll see step by step the most important ones. We start by launching the
command without any parameters, so that the default values are applied.

antonio@antonio-Laptop:~$ gemu-system-x86 64

We'll see immediately a new window (Figure 2-1).

18

CHAPTER2 QEMU

QEMU B O &

Machine View

[Booting from DUD/CD...

[Boot failed: Could not read from CDROM (code 0003)
[Booting from ROM...

iPXE (PCI 00:03.0) starting execution...ok

iPXE initialising devices...ok

iPXE 1 21. 1+g1t 20220113 fbbdc3926-0Oubuntul —- Open Source Network Boot Firmware

Ieatures DHS HTTP HTTPS iSCSI NFS TFTP ULAN AoE ELF MBOOT PXE bzImage Menu PXEX]

net®: 52:54:00:12:34:56 using 82540em on 0000:00:03.0 (Ethernet) [openl
[Link:up, TX:0 TXE:® RX:0 RXE:01]
onfiguring (net® 52:54:00:12:34:
: 10.0.2.15,255.255.255.0 guw
: fecO::5054:ff:fel2:3456,64 guw feB0::2
: feB0::5054:ff:fel2:3456,64
othing to boot: No such file or directory (https://ipxe.orgs/2d03el13b)
o more network devices

o bootable device.

Figure 2-1. QEMU VM with no BOOT device

We see a clear message that says that there is no boot device. In
this example, we’ll tell QEMU to boot from a Debian 10 ISO file that we
downloaded previously from the official Debian website. If we check the
command help, we’ll see these two relevant entries:

antonio@antonio-Laptop:~$ gemu-system-x86 64 --help
QEMU emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)

-boot [order=drives][,once=drives][,menu=onloff]
[,splash=sp name][,splash-time=sp time][,reboot-
timeout=rb_time][,strict=onloff]
"drives': floppy (a), hard disk (c), CD-ROM
(d), network (n)
"sp_name': the file's name that would be passed
to bios as logo picture, if menu=on

19

https://www.debian.org/

CHAPTER2 QEMU

'sp_time': the period that splash picture last
if menu=on, unit is ms

'rb_timeout': the timeout before guest reboot
when boot failed, unit is ms

-cdrom file use 'file' as IDE cdrom image (cdrom is
ide1 master)

We see how easy it is to use an ISO file as a virtual CDROM. The -boot
parameter has many options to choose from, but for now, we only need to
specify the boot device, in our case the CDROM, that is, the “-d” option.
We launch the command again with the new options.

antonio@antonio-Laptop:~$ gemu-system-x86 64 -cdrom
antonio/isos/debian-12.5.0-amd64-DVD-1.iso0 -boot d

This time we'll see the installation menu (Figure 2-2). However, if
we choose to perform a graphical installation, the program hangs with a
black window without showing any error message. To try and get more
information about what'’s going on, we’ll close the window and relaunch
QEMU, but this time we'll select the “Install” option to perform a text
install.

20

CHAPTER 2

QEMU

Machine View

© debian 12

Debian GNU-Linux installer menu (BIODS mode)

Graphical install
Install
Advanced options

Accessible dark contrast installer menu
Help

Install with speech synthesis

Figure 2-2. Installation menu

This time we’ll see an error when creating the initramfs file
(Figure 2-3).

QEMU

21

CHAPTER2 QEMU

%]
a
o

QEMU B & &

Machine View

.4490591 Initramfs unpacking failed: write error

.1302541 Failed to execute ~/init (error -2)

.1313191 Kernel panic - not syncing: No working init found. Try passing init= option to kermne
Linux Documentation/admin-guidesinit.rst for guidance.

1316021 CPU: O PID: 1 Comm: swapper/0 Not tainted 6.1.0-18-amd64 #1 Debian 6.1.76-1

1317501 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04-01,2014
1319201 Call Trace:

1324801 <TASK>

1327951 dump_stack_lul+0x44/0x5c

1330471 panic+0x118/0x2ed

1330971 7 rest_init+0xd0/0xd0

1331381 kernel_init+0x122,/0x130

1331871 ret_from_fork+0x22/0x30

1332701 </TASK>

1337911 Kernel Offset: 0x16800000 from OxffffffffE1000000 (relocation range: OxffffffffBO0000

NN -

NNNNNNNNDNDNDN

0-OxffFFFFFEDEFELLLT)

2.1341161 —-[end Kermel panic - not syncing: No working init found. Try passing init= option

to kernel. See Linux Documentation/admin-guide/init.rst for guidance. 1-—

Figure 2-3. Error when creating the initramfs file

The initramfs file is an in-memory filesystem used during the Linux

startup procedure. As it uses RAM memory, the first thing we need to do
is to check the amount of RAM available when we launch QEMU. We can
do it by using the QEMU monitor; this is something that we'll see in more

detail later in this same chapter, but for now, we can access it by pressing
CTRL+ALT and then SHIFT and 2 (Figure 2-4).

22

CHAPTER2 QEMU

QEMU = u] X

Machine View
QEMU 6.2.0 monitor - type 'help' for more information
(qemu) [l

Figure 2-4. QEMU monitor

Later we'll review some interesting features of the QEMU monitor; for
now, we'll use it to check the amount of memory available for the virtual
machine with the info memory_size_summary command (Figure 2-5).

23

CHAPTER2 QEMU

QEMU = u] X

Machine View

QEMU 6.2.0 monitor - type 'help' for more information
(gemu) info memory s _summary
ba memory: 134217728

d memory: ©

Figure 2-5. RAM memory available with the QEMU monitor

The number we see on the screen is the amount of memory in bytes,
134217728 in this case, which is 134217728/(1024*1024)=128 MiB. In this
day and age, this value is extremely low, so we’re going to increase that
value when launching QEMU again.

We'll take a new look at the contextual help, and we'll see this option:

-m [size=]megs[,slots=n,maxmem=size]
configure guest RAM
size: initial amount of guest memory
slots: number of hotplug slots (default: none)
maxmem: maximum amount of guest memory
(default: none)

24

CHAPTER2 QEMU

So we'll use the -m parameter to launch QEMU again, this time with 2

MiB RAM.

antonio@antonio-Laptop:~$ gemu-system-x86 64 -m 2048 -cdrom \
antonio/isos/debian-12.5.0-amd64-DVD-1.iso -boot d

In this occasion, after selecting “Graphical install’, we can see that the

installation program actually starts (Figure 2-6).

QEMU = o X ‘
Machine View |

© debian 12

Select a language

Choose the language to be used for the installation process. The selected language will also be the default language for the installed system.
Language:

Bulgarian - Bunrapckm =
Burmese Eioe

Catalan - Catala

Chinese (Simplified) - ®x(E®)

Chinese (Traditional) - =x(mm)

Croatian - Hrvatski

Czech - Cedtina

Danish - Dansk

Dutch - Nederlands S

Dzongkha . Em

Esperanto - Esperanto

Estonian - Eest

Finnish - Suomi

French - Francais

Galician - Galego

Georgian - Jedaymo

German - Deutsch

Greek - EAAquika

Gujarati - ord

Hebrew - may

Hindi - fed £
Screenshot Go Back Continue

Figure 2-6. Graphical install

WEe'll choose our language and then click “Continue” to resume the

installation. We'll select the appropriate settings, country, keyboard layout,

etc. We're not going to describe here the full installation procedure as

you've probably already installed several Linux systems.

25

CHAPTER2 QEMU

At some point, we'll get to a new screen, in which we’re informed that
no disk drive was detected (Figure 2-7). This is perfectly normal, as we
haven’t specified any hard disk drive when launching QEMU. We’ll cancel
the installation at this point.

QEMU & 8¢ ‘

Machine View

© debian 12

Detect disks
[

No disk drive was detected. If you know the name of the driver needed by your disk drive, you can select it from the list.
Driver needed for your disk drive:

continue with no disk drive {

Iw-9xxx
Iw-sas
3Iw-xxxx
BuslLogic
aloou2w
aacraid
advansys
aic79xx
aicTxxx
aic9axx
am53¢974
aremsr
atp870u
beziscsi
bfa
bnx2fc
bnx2i
ch
csiostor
dc395x
dmx3191d
esas2r

Screenshot Go Back Continue

Figure 2-7. No disk drive detected

We need to define the disk that will be used by the QEMU virtual
machine. If we check again the help of the gemu-system-x86_64
command, we'll see this in the first lines:

antonio@antonio-Laptop:~$ gemu-system-x86 64 --help
QEMU emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)

26

CHAPTER2 QEMU

Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project
developers
usage: qgemu-system-x86_64 [options] [disk_image]

"disk_image' is a raw hard disk image for IDE hard disk O

We need to pass the name of a disk image to the command, and this
disk image will be assigned to the IDE hard disk 0. Of course this can be
customized with advanced options, but for now, it fits our needs. Now we
just need to create the disk image.

Disk images in QEMU are created with the gemu-img command.
Again, if we check the command help, we'll see a long list of options. This
command includes many subcommands. Later in this book, we'll study
this tool in more detail. Right now we only need to create a new disk image,
so this is the subcommand that we need to look at:

antonio@antonio-Laptop:~$ qemu-img --help

gemu-img version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)
Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project
developers

usage: gemu-img [standard options] command [command options]
QEMU disk image utility

create [--object objectdef] [-q] [-f fmt] [-b backing file]
[-F backing fmt] [-u] [-o options] filename [size]

27

CHAPTER2 QEMU

We'll create a 10 GB image, and we’ll use the qcow?2 format
(-f parameter), as recommended in the official documentation.

antonio@antonio-Laptop:~$ mkdir QEMU_VMs
antonio@antonio-Laptop:~$ cd QEMU_VMs/
antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img create -f qgcow2
debian.qcow2 10G

Formatting 'debian.qcow2', fmt=qcow2 cluster size=65536
extended 12=off compression_ type=zlib size=10737418240
lazy_refcounts=off refcount_bits=16
antonio@antonio-Laptop:~/QEMU_VMs

We can finally relaunch QEMU with all the needed parameters to finish
the installation of the operating system.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64
\> -m 2048 \
> -cdrom ../antonio/isos/debian-12.5.0-amd64-DVD-1.1iso
\> -boot d debian.qcow2

We'll select “Graphical install” and complete the installation process
as we'd do on any physical system. The process can take some time as the
default emulation is significantly slower than native performance. When
the installation finishes, we can launch QEMU again and boot from the
disk this time:

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86 64 -m 2048
\> -boot c debian.qcow2
And we'll see the login screen of our newly installed server (Figure 2-8).

28

CHAPTER2 QEMU

QEMU B 6 &

Machine View
May6 05:53

6 Antonio Vazquez

© debian 12

Figure 2-8. Debian 12 graphical login

Emulating an ARM System

As we said before, QEMU can emulate different architectures. In this
example, we’ll emulate an ARM system. This architecture is used in several
light and portable devices like mobile phones and single board computers
such as the Raspberry Pi.

To emulate an ARM system, first of all, we'll install the gemu-system-
arm package.

antonio@antonio-Laptop:~$ sudo apt install gemu-system-arm

29

CHAPTER2 QEMU

ARM-based systems are usually quite different from each other, much
more than systems based on x86 architectures. So installing a complete
OS in a QEMU instance emulating an ARM system would be possible, but
complicated and slow. Fortunately QEMU offers the possibility of using
“direct kernel loading,” that is, launching the kernel directly from the
command line by using a kernel file previously downloaded instead of
having to emulate all the boot process from the virtual disk.

To do this, we need an appropriate kernel. Luckily somebody has
already done this, and we can simply download it from the Debian site.

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.
org/~aurel32/gemu/armel/vmlinuz-2.6.32-5-versatile
--2024-05-06 22:46:49-- https://people.debian.org/~aurel32/
gemu/armel/vmlinuz-2.6.32-5-versatile

Resolving people.debian.org (people.debian.org)...
209.87.16.67, 2607:18f0:614:1::1274:67

Connecting to people.debian.org (people.debian.
0rg)I209.87.16.671:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1248532 (1,2M)

Saving to: 'vmlinuz-2.6.32-5-versatile'

vmlinuz-2.6.32-5-versatile
100%[========>] 1,19M 438KB/s in 2,8s

2024-05-06 22:46:53 (438 KB/s) - 'vmlinuz-2.6.32-5-versatile’
saved [1248532/1248532]

We'll also download the corresponding initrd file.

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.
org/~aurel32/gemu/armel/initrd.img-2.6.32-5-versatile
--2024-05-06 22:59:42-- https://people.debian.org/~aurel32/
gemu/armel/initrd.img-2.6.32-5-versatile

30

https://people.debian.org/~aurel32/qemu/armel

CHAPTER 2

Resolving people.debian.org (people.debian.org)...
209.87.16.67, 2607:f8f0:614:1::1274:67

Connecting to people.debian.org (people.debian.org)
1209.87.16.671:443... connected.

HTTP request sent, awaiting response... 200 OK
Length: 2500152 (2,4M)

Saving to: 'initrd.img-2.6.32-5-versatile'

initrd.img-2.6.32-5-versatile
100%[===========>] 2,38M 605KB/s in 4,0s

2024-05-06 22:59:48 (605 KB/s) - 'initrd.img-2.6.32-5-
versatile' saved [2500152/2500152]

Finally, we download the disk image.

QEMU

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.

org/~aurel32/qemu/armel/debian_squeeze armel standard.qcow2

--2024-05-07 05:50:30-- https://people.debian.org/~aurel32/

gemu/armel/debian_squeeze armel standard.qcow2
Resolving people.debian.org (people.debian.org)...
209.87.16.67, 2607:18f0:614:1::1274:67

Connecting to people.debian.org (people.debian.org)
1209.87.16.671:443... connected.

HTTP request sent, awaiting response... 200 OK
Length: 236730880 (226M)

Saving to: 'debian_squeeze armel standard.qcow2'

debian_squeeze armel standard.qc

100%[::::::::::::::::::::::::}] 225’76M 17,0MB/S in 225

2024-05-07 05:50:54 (10,4 MB/s) - 'debian_squeeze armel _
standard.qcow2' saved [236730880/236730880]

31

CHAPTER2 QEMU
We launch now our ARM-based Debian.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-arm -M
versatilepb -kernel vmlinuz-2.6.32-5-versatile -initrd initrd.
img-2.6.32-5-versatile debian_squeeze armel standard.qcow2
-append "root=/dev/sda1"

We'll review briefly the parameters used. We specify the machine type
“-M versatilepb” We can obtain a list of the emulated machines with the
gemu-system-arm -machine help command.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-arm
-machine help
Supported machines are:

akita Sharp SL-C1000 (Akita) PDA (PXA270)
raspio Raspberry Pi Zero (revision 1.2)
raspilap Raspberry Pi A+ (revision 1.1)
raspi2b Raspberry Pi 2B (revision 1.1)
versatileab ARM Versatile/AB (ARM926EJ-S)
versatilepb ARM Versatile/PB (ARM926EJ]-S)

We also pass the location of the kernel file (-kernel option) and the
initrd file (-initrd option). Finally, we specify the name of the disk file and
the kernel command line used (-append option).

32

CHAPTER2 QEMU

When the system boots, we'll see the login screen (Figure 2-9). The
default credentials are “root/root”. We can interact with our system in the
same way as if we were working on an x86-based Debian (Figure 2-10).

QEMU B 6 &

Machine View

10.696693] eth0: link up

ndled by console-setup).
. .done.

nily 10

Debian GNU/Linux 6.0 debian-armel ttyil

de n-armel login:

Figure 2-9. Emulating an ARM system (I)

33

CHAPTER2 QEMU

QEMU D 6 &

Machine View

amily 10

armvstejl
inclu ith t ian GNU/LI ¥ e
tribution te for h 1 I C int

ith ABSOLUTELY MO WARRANTY, to the extent

(55 UTC

root@debian-armel: “#

Figure 2-10. Emulating an ARM system (1)

Emulating a SPARC System

SPARC (Scalable Processor ARChitecture) was developed by Sun
Microsystems. It is used mainly as the hardware platform for Solaris
servers, but it supports other operating systems as well, such as Linux and
FreeBSD.

Similarly to what we did before, we need to install the corresponding
package.

antonio@antonio-Laptop:~$ sudo apt install gemu-system-sparc

34

CHAPTER2 QEMU

After installing the package, we have two commands available: gemu-

system-sparc and gemu-system-sparc64. As we did when we emulated

an ARM device, we can list the machines that can be emulated.

antonio@antonio-Laptop:~$ gemu-system-sparc -M help

Supported machines are:

LX Sun4m platform,
SPARCClassic Sun4m platform,
SPARCbook Sun4m platform,
SS-10 Sun4m platform,
SS-20 Sun4m platform,
SS-4 Sun4m platform,
SS-5 Sun4m platform,
SS-600MP Sun4m platform,
Voyager Sun4m platform,
leon3_generic Leon-3 generic
none empty machine

SPARCstation LX
SPARCClassic

SPARCbook

SPARCstation 10
SPARCstation 20
SPARCstation 4
SPARCstation 5 (default)
SPARCserver 600MP
SPARCstation Voyager

antonio@antonio-Laptop:~$ gemu-system-sparc64 -M help

Supported machines are:

niagara Sun4v platform, Niagara
none empty machine

sun4u Sun4u platform (default)
sun4v Sun4v platform

We can get an overview of how to emulate a SPARC system on the wiki

page. In the first example, we see this:

gemu-system-sparc \

-drive file=hd.qcow2,if=scsi,bus=0,unit=0,media=disk \
-drive file=cdrom.iso,format=raw,if=scsi,bus=0,unit=2,

media=cdrom,readonly=on \

-boot d

35

https://wiki.qemu.org/Documentation/Platforms/SPARC
https://wiki.qemu.org/Documentation/Platforms/SPARC

CHAPTER2 QEMU

We see some new options and others that we saw previously. We're
launching QEMU specifying a CDROM and a hard disk. We did the same
thing when we emulated an x86_64 system, but this time the syntax is
different. The -device parameter is very versatile, and we can use it to
specify many more options, such as the file used, the interface, the bus, and
so on. In this example, we're using it to define a hard disk and a CDROM
drive, but we can use this same parameter to define all sorts of devices like
network cards. Finally, we see the -boot option that we already know.

We'll create a qcow? file that will be the hard disk used by QEMU. As
we already know, we can use qemu-img to create this file.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img create \

> -f qcow2 sparchd.qcow2 10

Formatting 'sparchd.qcow2', fmt=qcow2 cluster size=65536
extended 12=off compression type=zlib size=10 lazy
refcounts=off refcount bits=16

If we have an installation CD image, we can launch QEMU to emulate
a SPARC system like this:

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-sparc \

> -drive file=sparchd.qcow2,if=scsi,bus=0,unit=0,media=disk \

> -drive file=CD.iso,format=raw,if=scsi,bus=0,unit=2,media=cdro
m,readonly=on \

> -boot d

After a couple of minutes, we’ll see an installation screen (Figure 2-11).

36

CHAPTER2 QEMU

QEMU
Machine View

| X Solaris Install Console
The system is coming up. Please wait.
*

Select Language and Locale

The locale you select on this screen becomes the default displayed on your
desktop after you reboot the system. Selecting a locale determines how
online information is displayed for a specific locale or region (for example,
time, date, spelling, and monetary value.)

NOTE: The ASCII only option gives you the default 128-character set that
was available in previous releases. If you do not need to sendfreceive
international correspondence where you need locale-spedific alphabetic
characters (like accented or umlaut characters) the ASCII only set is
sufficient. Otherwise, you can select an ISO locale which contains a
256-character set. Selecting an ISO locale can cause a minor performance
degradation {in many cases, less than 5%).

Australia - English (1S0-8859-1)
Canada - English (IS0-8859-1)

UK - English (1S0-8859-1)

USA - English (1S0-8859-1) |,

Figure 2-11. Installing a Solaris box

We won'’t install the OS now because it’s not the purpose of this book,
but you can see a complete example of how to emulate an old SPARC
workstation here.

We can also emulate more advanced SPARC processors like
UltraSPARC T1 (codename niagara). If we remember, one of the machine
types that is supported by gemu-system-sparc64 is niagara. Let’s try to
launch a new QEMU instance with this machine type.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-sparc64 -M niagara
Could not open option rom 'nvrami': No such file or directory
gemu-system-sparc64: Unable to load a firmware for -M niagara

37

https://learn.adafruit.com/build-your-own-sparc-with-qemu-and-solaris/overview

CHAPTER2 QEMU

As we can see, we get an error message because QEMU couldn’tload a
firmware for this machine. As you know, x86-based systems have a BIOS/
UEFI that takes care of one of the first stages of the system boot. SPARC-
based systems also use a similar firmware called OpenBOOT. Both BIOS/
UEFI and OpenBOOT perform hardware initialization.

QEMU uses free firmware implementations like SeaBIOS for x86
emulated systems (Figure 2-12) and OpenBIOS for SPARC emulated
systems (Figure 2-13). However, to emulate a niagara system, we’'ll need
another specific firmware. This firmware was released by Sun under the
GNU General Public License in 2005 and can be downloaded from this
Oracle site.

QEMU = O X

Machine View
[SeaBI0S (version 1.15.0-1)

iPXE (https://ipxe.org) 00:03.0 CAGO PCIZ.10 PnP PMM+O7F8B590+07ECB590 CAOO

[Booting from Hard Disk...
[Boot failed: could not read the boot disk

[Booting from Floppy...
[Boot failed: could not read the boot disk

[Booting from DUD,/CD...

[Boot failed: Could not read from CDROM (code 0003)
[Booting from ROM...

iPXE (PCI 00:03.0) starting execution...ok

iPXE initialising devices..._

Figure 2-12. SeaBIOS

38

http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2
http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2

CHAPTER2 QEMU

QEMU 5 &

Machine View

ieloome to Ozenblos vi. i1t on Mar 18 2024 20:38
ve ‘help” for deta ifed" Informars

Tening diskia.

No valid state has been set by load or init-program

o> m

Figure 2-13. OpenBIOS

After downloading OpenSPARC, we uncompress the package.

antonio@antonio-Laptop:~/QEMU VMs$ bunzip2
OpenSPARCT1 Arch.1.5.tar.bz2

And we extract the tar archive.

antonio@antonio-Laptop:~/QEMU_VMs$ tar -xvf
OpenSPARCT1 Arch.1.5.tar

39

CHAPTER2 QEMU

A new S10image folder will be created. Inside this folder we have the
files we need to emulate a niagara SPARC system; we’ll launch a new
QEMU instance like this:

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-sparc64 -M
niagara -L S10image/ -nographic -m 256 -drive if=pflash,readonl
y=on,file=S10image/disk.s10hw2

We pass the location of the firmware with the -L parameter. When
using the -nographic option, we completely disable any graphic output
so that QEMU behaves like a command-line application. We also use the
-device option, which we already know, to define a flash device that hosts
a Solaris 10 image.

After executing, QEMU will show the “ok prompt,” something that most
Solaris admins are familiar with.

cpu Probing I/0 buses

Sun Fire T2000, No Keyboard

Copyright 2005 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.20.0, 256 MB memory available, Serial #1122867.
[m023723 obp4.20.0 #0]

Ethernet address 0:80:3:de:ad:3, Host ID: 80112233.

ok

This is not a Solaris book, so we won't describe the characteristics of
the OpenBOOT environment and the commands associated. But we can,
for example, list the devices.

ok show-disks

a) /virtual-devices@100/disk@0
q) NO SELECTION

Enter Selection, q to quit: q
ok

40

CHAPTER 2 QEMU
We can also boot the OS.

ok boot

Boot device: vdisk File and args:

Loading ufs-file-system package 1.4 04 Aug 1995 13:02:54.

FCode UFS Reader 1.12 00/07/17 15:48:16.

Loading: /platform/SUNW,Sun-Fire-T2000/ufsboot

Loading: /platform/sun4v/ufsboot

Sun0S Release 5.10 Version Generic_118822-23 64-bit

Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

Hostname: unknown

unknown console login: root

Last login: Wed Feb 8 09:01:28 on console

Sun Microsystems Inc. SunOS 5.10 Generic January 2005
#

When we’re done, we can exit QEMU with Ctrl+a x. There are many
other platforms that can be emulated with QEMU, PowerPC, alpha, etc.
But we won't explain all of them. I think that what we’ve seen so far is
enough to see the potential of this tool as a full system emulator.

User Mode Emulation in QEMU

We've already seen QEMU working as a full system emulator; let’s see now
user mode emulation.

QEMU can run single Linux programs that were compiled for a
different architecture. To use this mode, we need to install the qemu-user
package.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ sudo apt install
gemu-user

41

CHAPTER2 QEMU

Now let’s suppose we have a Linux system in a different architecture,
for example, an ARM-based SBC such as the well-known Raspberry
Pi. We could easily compile a simple program and run it locally in the
Raspberry Pi.

This would be the source code file hello.c.

pi@raspberrypi:~$ cat hello.c
#include <stdio.h>

int main(int argc)

{
printf("Hello World! I am a raspberry");

return 0;
}
We compile the source code file to generate an executable
binary file
pi@raspberrypi:~$ gcc hello.c -o hello
And we execute it
pi@raspberrypi:~$./hello
Hello World! I am a raspberry

By using the file command, we see that the binary file is a 32-bit ELF
executable for ARM.

pi@raspberrypi:~$ file hello

hello: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.26,
BuildID[sha1]=0x2e095d28174261a8daf9aaf047c82cd24b847727, not
stripped

We can copy that file to an x86-based Linux machine. And we can also
execute it thanks to QEMU. According to the official documentation, the
way to execute a binary file of a different architecture is by launching the
appropriate QEMU command, gemu-arm in this case.

42

CHAPTER2 QEMU

antonio@antonio-Laptop:~/QEMU_tests$ scp pi@192.168.1.250:/
home/pi/hello .

pi@192.168.1.250's password:

hello 100% 5462 855.8KB/s 00:00
antonio@antonio-Laptop:~/QEMU_tests$ file hello

hello: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for
GNU/Linux 2.6.26, BuildID[sha1]=285d092ea8614217f0aat9dad22
cc8472777844b, not stripped
antonio@antonio-Laptop:~/QEMU_tests$ gemu-arm hello

gemu-arm: Could not open '/lib/ld-linux-armhf.so.3': No such
file or directory

We get an error message because the executable file was dynamically
linked and our x86 system doesn’t have the dynamic libraries for the ARM
architecture. We could download a copy of the needed libraries or we
could generate a static binary instead. As the second option is simpler, this
is what we’ll do.

pi@raspberrypi:~$ gcc hello.c -static -o hello2
And we copy the executable file to our x86 system.

antonio@antonio-Laptop:~/QEMU_tests$ scp pi@192.168.1.250:/
home/pi/hello2 .

pi@192.168.1.250's password:

hello2 100% 565KB 619.2KB/s 00:00

And now we can execute successfully our minimalistic program.

antonio@antonio-Laptop:~/QEMU_tests$ gemu-arm hello2
Hello World! I am a raspberry

43

CHAPTER2 QEMU

In addition to using the gemu-arm command, we can also execute
it as we’d do with any other native binary. This is possible because,
by default, the binary format handlers for this gemu-user package are
registered with the kernel.

antonio@antonio-Laptop:~/QEMU_tests$./hello2
Hello World! I am a raspberry

Of course we can also invert the process and execute x86_64 binary
files in our ARM-based Raspberry Pi. We'll begin by compiling a simple
program. We'll generate a statically linked binary this time.

antonio@antonio-Laptop:~/QEMU_tests$ cat hello x86_64.c
#include <stdio.h>

int main(int argc)

{
printf("Hello World! I am a x86 64 PC");

return 0;
}
antonio@antonio-Laptop:~/QEMU_tests$ gcc hello x86 64.c \
> -static -o hello x86 64 static

And we copy the binary file to our Raspberry Pi.

antonio@antonio-Laptop:~/QEMU_tests$ scp hello x86 64 static
pi@192.168.1.53:/home/pi

pi@192.168.1.53's password:

hello x86_64 static 100% 879KB 1.9MB/s 00:00

If we try to execute this binary file in the Raspberry Pi before installing
the QEMU user module, we'll get this descriptive error:

pi@raspberrypi:~ $./hello x86_64 static
-bash: ./hello _x86 64 static: cannot execute binary file: Exec
format error

44

CHAPTER2 QEMU
So we'll install the gemu-user package.
pi@raspberrypi:~ $ sudo apt install gemu-user

And from now on, we can execute the program, either by using the
gemu-x86_64 command:

pi@raspberrypi:~ $ gqemu-x86_64 ./hello x86 64 static
Hello World! I am a x86 64 PC

or by executing directly the binary:

pi@raspberrypi:~ $./hello x86 64 static
Hello World! I am a x86_64 PC

QEMU with KVM

QEMU can also work with a hypervisor like KVM and Xen. In this case,
QEMU is in charge of emulating hardware, but the execution of the guest is
performed by the hypervisor. In the rest of the chapter, we’ll see how KVM
and QEMU work together. And in the next chapter, we’'ll study Xen.

Kernel-based virtual machine (KVM) is a Linux kernel module that
makes it possible for the Linux kernel to work as a hypervisor. Beginning
with kernel version 2.6.20 it is included in the official kernel mainline. It
relies on processors with hardware virtualization extensions, such as Intel
VT or AMD-V. In order to take advantage of it, we must check that our
CPU actually supports that feature. As we saw in Chapter 1, this is done by
searching for the corresponding CPU flag, vinx for Intel-based processors
and svim for AMD-based processors.

antonio@antonio-Laptop:~$ grep -E '(vmxisvm)' /proc/cpuinfo
flags N VX weeenn.

45

CHAPTER2 QEMU

KVM complements perfectly QEMU, making it possible for QEMU to
take advantage of the processor virtualization extensions. KVM is included
in modern distributions so we don’t need to install the module itself, but
we'll check that the module is actually loaded.

antonio@antonio-Laptop:~$ lsmod | grep kvm

kvm_intel 487424 O
kvm 1409024 1 kvm_intel
irgbypass 12288 1 kvm

antonio@antonio-Aspire-A315-23:~/QEMU VMs$ lsmod | grep kvm

kvm_amd 98304 0
ccp 86016 1 kvm_amd
kvm 655360 1 kvm_ amd

To enable KVM acceleration when launching QEMU, we just need to
specify either the —-accel kvin parameter or the formerly used -enable-kvm
parameter.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86 64 -m 1024
-boot c --accel kvm debian.qcow2

We might get this error message:

Could not access KVM kernel module: Permission denied
gemu-system-x86_64: failed to initialize KVM: Permission denied

As normal users don’t have access to /dev/kvm, we either run QEMU
with root privileges or grant permissions on /dev/kvm to the current user.
After successfully launching QEMU with KVM, we’ll immediately

notice that the performance is much better.

46

CHAPTER2 QEMU

QEMU Networking

A server without networking would be pretty much useless these days,
so when working with QEMU virtual machines, we need to take this into
account as well. The QEMU wiki has a lot of useful information that we’ll
try to summarize here.

To have an operational network in the VM, we need a network
backend. This network backend defines how the emulated network
interface interacts with the host’s network. Currently there are four
different network backends that can be used with QEMU:

e User networking: This is the default backend; we'll see
it in the upcoming section.

o TAP networking: This is probably the best option
when we need to further customize the network
configuration beyond the functionality provided by
user networking. We will also study this backend in
more detail later in this chapter.

e VDE: This backend uses the Virtual Distributed
Ethernet, which provides virtual software-defined
network interface cards (NIC). Although this backend
is a perfectly valid solution, it is usually not the
preferred option, as TAP networking provides the same
functionality and it is easier to set up.

o Socket networking: It’s used to create a network of
guests that can see each other. Due to its simplicity
and limited usefulness, it’s rarely used, being TAP
networking the preferred choice.

47

https://wiki.qemu.org/Documentation/Networking

CHAPTER2 QEMU

User Networking

By default, without specifying any networking-related option, QEMU will
use “user networking,” also called SLIRP. In this case, the guest system
will be assigned an IP address in the 10.0.2.0/24 network. The IP address
10.0.2.2 will be used as the default gateway, and 10.0.2.3 will serve as

a DNS server. Optionally we could also launch a Samba server. This is
represented in Figure 2-14, taken from the QEMU wiki.

'QEMU User Networking
(SLIRP)

| Guest
Operating System

| Virtual

Network

Device
10.0.2.15

Gateway DNS SMB (optional)

Host network

Figure 2-14. QEMU user networking (image under GNU Free Doc
License)

From the guest, we can check this from the command line
(Figures 2-15 and 2-16).

48

https://wiki.qemu.org/images/9/93/Slirp_concept.png
https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt
https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt

CHAPTER2 QEMU

QEMU = o X

Machine View
Activ

rminal May15 13:56 HZ 00

antonio@debian: ~ Q= x

antonio@debian:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
link/loopback @@:00:00:00:90:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host noprefixroute
valid_1ft forever!preferred_1ft forever
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP grou
p default qlen 1000
link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
altname enp@s3
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute ens3
valid_1ft 86346sec preferred_1ft 86346sec
inet6 fec®::a54d:30d2:cf94:4be/64 scope site temporary dynamic
valid_1ft 86349sec preferred_1ft 14349sec
inet6 fec@::5054:ff:fel2:3456/64 scope site dynamic mngtmpaddr noprefixroute

valid_1ft 86349sec preferred_l1ft 14349sec
inet6 fe8@::5054:ff:fel2:3456/64 scope link noprefixroute
valid_1ft forever preferred_1ft forever
antonio@debian:~$

Figure 2-15. User networking default IP configuration

49

CHAPTER2 QEMU

QEMU = o X

Machine View

Activities [Terminal May 15 20:01

antonio@debian: ~

antonio@debian:~$ ip route

default via 10.0.2.2 dev ens3 proto dhcp src 10.0.2.15 metric 100

10.0.2.0/24 dev ens3 proto kernel scope link src 10.0.2.15 metric 1@@
antonio@debian:~$ dig @10.9.2.3 a +noall +answer www.apIress.com

Weiw . apress. com. 86400 IN CNAME default.cdn.springernature.io.
default.cdn.springernature.io. 12614 IN CNAME springer2.map.fastly.net.
springer2.map.fastly.net. 21 IN A 151.101.132.95
antonio@debian:~$

Figure 2-16. QEMU user networking. DNS server and
default gateway

The default gateway will be located by default at the 10.0.2.2 IP address
(Figure 2-16). We can use this address to access services running in the

host. For instance, let’s assume we are running an http server on the host.

antonio@antonio-Laptop:~/QEMU_VMs$ python3 -m http.server 8888
Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) ...

In this case, we can access the http server from the QEMU VM by
launching a web browser and pointing it to the 10.0.2.2 IP address and the
8888 port (Figure 2-17).

50

CHAPTER2 QEMU

QEMU . O &
Machine View
Activities © Firefox ESR May15 21:24 Z 00
< Directory listing for / X o+ v x
— C O & 10022 o © &H =

Directory listing for /

« bin/
« BINARY SLA.txt
« BSD+ License.txt
« debian.qcow2
« debian_squeeze_armel standard.qcow2
« GPLv2 License OpenSPARCT1.txt
« hypervisor/
« initrd.img-2.6.32-5-versatile
« legion/
« obp/
« OpenSPARCT1 Arch.1.5.tar
. QppnhP—\R(Tl §—\\Lrshm
ADME

. R DME_ hypervisor

« README.legion

« README.obp

» README.sam

e rst/

« S10image/

* sam-t1/

» sparchd.qcow2

» THIRDPARTYLICENSEREADME.txt
o vmlinuz-2

32-5-versatile

Figure 2-17. Accessing the host web server from the guest system

This automatic network configuration can be all we need in certain
situations, but sometimes we’ll need to customize the network settings.
We'll see the parameters we need to define the network settings. To start
with, we’ll open the QEMU monitor, as we saw before in this chapter
(pressing CTRL+ALT and then SHIFT and “2”). And we’ll type “info
network” (Figure 2-18).

51

CHAPTER2 QEMU

QEMU = u] X

Machine View

QEMU 6.2.0 monitor - type 'help' for more information

(gemu) info network

hub ©

\ hub@portl: #netl74: Xx=0, = 0.0.2.0, ct=off

\ hubOport0: el1000.0: ’ odel=e1000,ma 52:54:00:12:34:56
(gemu) t]

Figure 2-18. Network configuration in the QEMU monitor

We can see clearly the IP address as well as many other settings that
will help us understand how to define the networking in QEMU.

If we list the options of the command gemu-system-x86_64, we’ll see
among many others this option:

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -help

-nic none use it alone to have zero network devices
(the default is to

provided a 'user' network connection)

52

CHAPTER2 QEMU

We can launch QEMU with the “-net none” option if we don’t want
to have any network device. The help text says clearly that by default
a ‘user’ network connection is provided. This type of connection used
to be specified with the “-net nic -net user” option, but this syntax is
deprecated. If we consult the QEMU wiki or the man pages, we’ll see that
now the preferred syntax is to use the “-netdev” option.

Let’s launch QEMU with the same default configuration. But this
time we'll explicitly use the network-related parameters in the command
line. This will help us to better understand how to set up more advanced
network settings in QEMU. As we said, we need to use the “-netdev”
parameter.

If we check the man page of gemu-system-x86_64 and search for the
“-netdev” option, we'll see this line:

-netdev user,id=id[,option][,option][,...]
Configure user mode host network backend which requires no
administrator privilege to run.

We use “user” to tell that we want to use a “user network,” and we must
assign an id. This id will be used to associate the backend we just defined
with a device, a network device to be exact.

If we look at the man page again and search for the “-nic” option,
which configures the network backend and the network device in one go,
we'll see an example:

gemu-system-x86_64 -netdev user,id=n1,ipvé=off -device e1000,ne
tdev=n1,mac=52:54:98:76:54:32

gemu-system-x86_64 -nic user,ipv6=off,model=e1000,m
ac=52:54:98:76:54:32

53

CHAPTER2 QEMU

We can list the different network device models with the “-device list”
option. We'll see the different models for “USB devices,” “network devices,”
“storage devices,” and so on. These are some of the network device models
supported by QEMU.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86 64
-device help

Network devices:
name "e1000", bus PCI, alias "e1000-82540em", desc "Intel
Gigabit Ethernet"

name "pcnet", bus PCI
name "rt18139", bus PCI

name "vmxnet3", bus PCI, desc "VMWare Paravirtualized
Ethernet v3"

Depending on the device model, we can use a series of options; we
can list these options with the gemu-system-x86_64 -device model,help.
By comparing the e1000 and the rtl8139 devices, we’ll see some minor
differences.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86 64 -device
€1000, help
€1000 options:

54

CHAPTER2 QEMU

acpi-index=<uint32> - (default: 0)

addr=<int32> - Slot and optional function number,
example: 06.0 or 06 (default: -1)

autonegotiation=<bool> - on/off (default: true)

bootindex=<int32>

extra_mac_registers=<bool> - on/off (default: true)

failover pair id=<str>

init-vet=<bool> - on/off (default: true)

mac=<str> - Ethernet 6-byte MAC Address,
example: 52:54:00:12:34:56

migrate tso props=<bool> - on/off (default: true)

mitigation=<bool> on/off (default: true)

multifunction=<bool> on/off (default: false)

ID of a netdev to use as a backend

(default: 1)

netdev=<str>
rombar=<uint32>
romfile=<str>

romsize=<uint32> (default: 4294967295)
x-pcie-extcap-init=<bool> - on/off (default: true)
x-pcie-1lnksta-dllla=<bool> - on/off (default: true)

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -device
rt18139,help
rt18139 options:
acpi-index=<uint32> (default: o)
addr=<int32> - Slot and optional function number,
example: 06.0 or 06 (default: -1)

bootindex=<int32>

failover pair id=<str>

mac=<str> - Ethernet 6-byte MAC Address,
example: 52:54:00:12:34:56

multifunction=<bool> on/off (default: false)

netdev=<str> - ID of a netdev to use as a backend

55

CHAPTER2 QEMU

rombar=<uint32> - (default: 1)
romfile=<str>
romsize=<uint32> - (default: 4294967295)

x-pcie-extcap-init=<bool> - on/off (default: true)
x-pcie-1nksta-dllla=<bool> - on/off (default: true)

Now that we understand the parameters needed, let’s launch gemu-
system-x86_64 again.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ qgemu-
system-x86_64 -m 2048 \

> -accel kvm -netdev user,id=my_network \

> -device e1000,netdev=my network debian.qcow2

The system will boot up normally. If we open the QEMU monitor again
and type “info network’, we’ll see the information in Figure 2-19.

56

CHAPTER2 QEMU

QEMU = O &

Machine View

QEMU 6.2.0 monitor - type 'help' for more information
(gemu) info n
€l000.0: in 0, nic, 00 acaddr=52:54:00:12:34:56

y network: 0, type e 0.0.2.0,restrict=off

Figure 2-19. QEMU monitor network settings

We'll stop the VM and launch a new QEMU instance. But this time
we'll customize some parameters.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -m
2048 -accel kvm -netdev user,id=my network2,net=192.168.7
4.0/24,dhcpstart=192.168.74.17 -device rtl8139,netdev=my_
network2,mac=52:54:00:77:77:77 debian.qcow2

We have added a couple of options to the -netdev parameter: net, to
use a specific network address instead of the default, and dhcpstart, to use
the built-in DHCP server included in QEMU, specifying the first available
IP address too. We also used a different network device model (rtl8139),
and we added the mac option to define the MAC address to use.

57

CHAPTER2 QEMU

After booting up the VM, we open the QEMU monitor again, and
we see the network settings with “info network”. As expected, we get the
information we provided on the command line (Figure 2-20).

QEMU = O &

Machine View

QEMU 6.2.6 1 - type 'help' for more information

=rtl8139,macaddr=
,net=192.168.74.0,

Figure 2-20. QEMU monitor customized network settings

And if we execute “ip a” in the console, we'll see that the IP address is
the first available IP defined in the DHCP scope (Figure 2-21).

58

CHAPTER2 QEMU

QEMU B 6 &

Machine View

Activities (] Terminal May17 22:53

antonio@debian: ~ Qi =

antonio@debian:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_1ft forever
inet6 ::1/128 scope host noprefixroute
valid_1ft forever preferred_lft forever
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP grou
p default qlen 100@
link/ether 52:54:00:77:77:77 bxd ff:ff.ff:ff.ff.ff
altname enp@s3
inet 192.168.74.17/24 brd 192.168.74.255 scope global dynamic noprefixroute
ens3
valid_1ft 85767sec preferred_l1ft 85767sec
inet6 fec®::7@9e:e@a7:d144:8152/64 scope site temporary dynamic
valid_1ft 86054sec preferred_lft 14054sec
inet6 fec@::5@54:ff:fe77:7777/64 scope site dynamic mngtmpaddr noprefixroute

valid_1ft 86054sec preferred_lft 14054sec
inet6 fe8@::5054:ff:fe77:7777/64 scope link noprefixroute
valid_1ft forever preferred_lft forever
antonio@debian:~$

Figure 2-21. IP address

QEMU Port Forwarding

When using user networking, we can also forward ports from the host
to the virtual machine, so that every connection to a certain port in the
host will be forwarded to the VM. For example, we can forward every
connection to the host port 10022 to the VM port 22.

If we look again at the man page, in the options available in user
networking, we’'ll see the following line:

hostfwd=[tcpludp]:[hostaddr]:hostport-[guestaddr]:guestport

59

CHAPTER2 QEMU

The syntax is very easy; we can specify the protocol used (tcp by
default), the host address and port, as well as the guest address and port.
As we said before, in our example, we'll redirect all connections to TCP
port 10022 in any address of the host to TCP port 22 in the guest.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -m 2048
-accel kvm -netdev user,id=my network,hostfwd=tcp::10022-:22
-device e1000,netdev=my network debian.qgcow2

If we check the listening port in the host, we’ll see that the QEMU
binary is the one that is actually listening.

antonio@antonio-Laptop:~/QEMU_VMs$ lsof -i :10022

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
gemu-syst 102743 antonio 16u IPv4 2215091 oto TCP
*:10022 (LISTEN)

Now we can easily connect with ssh to the virtual machine.

antonio@antonio-Laptop:~/QEMU_VMs$ ssh -p 10022 antonio@
localhost

The authenticity of host '[localhost]:10022
([127.0.0.1]:10022)" can't be established.

ED25519 key fingerprint is SHA256:jA05MUsqGOYePF3fs+ReUFOPYITIp
PW6FZEtkDO3v00.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/
[fingerprint])? yes

Warning: Permanently added '[localhost]:10022' (ED25519) to the
list of known hosts.

antonio@localhost's password:

Linux debian 6.1.0-18-amd64 #1 SMP PREEMPT_DYNAMIC Debian
6.1.76-1 (2024-02-01) x86_64

60

CHAPTER2 QEMU

The programs included with the Debian GNU/Linux system are free
software;

the exact distribution terms for each program are

described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to
the extent
permitted by applicable law.
antonio@debian:~$ ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred lft forever
inet6 ::1/128 scope host noprefixroute
valid 1ft forever preferred 1ft forever
2: ens3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc fq_
codel state UP group default qlen 1000
link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
altname enp0s3
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic
noprefixroute ens3
valid 1ft 86213sec preferred 1ft 86213sec
inet6 fec0::2555:6d54:8617:8239/64 scope site
temporary dynamic
valid 1ft 86216sec preferred 1ft 14216sec
inet6 fec0::5054:ff:fe12:3456/64 scope site dynamic
mngtmpaddr noprefixroute
valid 1ft 86216sec preferred 1ft 14216sec
inet6 fe80::5054:ff:fe12:3456/64 scope link noprefixroute
valid 1ft forever preferred 1ft forever
antonio@debian:~$

61

CHAPTER2 QEMU

Networking by Using TUN/TAP Devices

Using the default user networking mode can be enough for certain
purposes, but it has many limitations. To overcome those limitations, we
can use TUN/TAP devices. TUN/TAP devices are kernel-based virtual
network devices entirely supported in software. TUN devices work at the
network layer, whereas TAP devices work at the data link layer.

In order to create a TUN/TAP device, we'll need the tunctl command,
which is included in the uml-utilities package.

antonio@antonio-Laptop:~$ apt search tunctl

Sorting... Done

Full Text Search... Done

uml-utilities/jammy 20070815.4-1 amd64
User-mode Linux (utility programs)

antonio@antonio-Laptop:~$ sudo apt install uml-utilities

Once installedthe package, we can use the tunctl command. We can
use it to create a persistent TUN/TAP device owned by user antonio.

antonio@antonio-Laptop:~$ tunctl -u antonio
TUNSETIFF: Operation not permitted
antonio@antonio-Laptop:~$ sudo tunctl -u antonio
Set 'tap0' persistent and owned by uid 1000
antonio@antonio-Laptop:~/QEMU_VMs$ ip link show dev tapO
13: tap0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
mode DEFAULT group default gqlen 1000
link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

We are now ready to use the tap device with QEMU; in order to do
that, we need to specify the netdev and dev parameters, as we saw before
when we talked about user networking. If we take a look again at the man

62

CHAPTER2 QEMU

page of gemu-system-x86_64, we'll see the following line regarding TAP
networking:

-netdev tap,id=id[,fd=h][,ifname=name][,script=Ffile]
[,downscript=dfile][,br=bridge][,helper=helper]
Configure a host TAP network backend with ID id.

The syntax is very similar to what we have already seen when studying
user network. The main difference is that we must use “-netdev tap”
instead of “-netdev user” Next we'll see a practical example, but first we’ll
delete the tap0 interface we created manually because when using TAP
networking, QEMU itself takes care of creating the TAP interfaces.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo tunctl -d tapo
Set 'tap0' nonpersistent

We'll clarify all these concepts with an example. We launch a QEMU
instance with the following options:

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -accel
kvm -m 2048 -netdev tap,id=tap_network -device virtio-
net,netdev=tap network debian.qcow2

gemu-system-x86 64: -netdev tap,id=tap network: could not
configure /dev/net/tun: Operation not permitted

We see QEMU tried to create the TUN/TAP device, but it couldn’t
because we need sudo permissions to achieve that. We'll launch the
instance again with sudo.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU VMs$ sudo gemu-
system-x86_64 -accel kvm -m 2048 -netdev tap,id=tap_network
-device virtio-net,netdev=tap network debian.qcow2

W: /etc/gemu-ifup: no bridge for guest interface found

63

CHAPTER2 QEMU

This time the VM will boot. The options used are basically the same as
those we used with user network, but using TAP network instead. Besides
we use this time a different device, virtio-net, a paravirtualized (Chapter 1)
device. Right after launching the instance, we see a warning about a
missing bridge that we can ignore for now.

Once the system is booted, we'll see a “Connection failed” message
(Figure 2-22).

QEMU = & &
Machine View

May 18 12:30

ction failed

Antonio Vazquez

© debian 12

Figure 2-22. QEMU instance using TAP network

As we have done several times before, we can also use the QEMU
monitor to get more information about the network (Figure 2-23).

64

CHAPTER2 QEMU

QEMU = O &

Machine View
- type 'help' for more information

(qemu)

Figure 2-23. QEMU monitor. Networking info

We can also check the network configuration from the console. We'll
see that the ip interface exists in the guest (Figure 2-24).

65

CHAPTER2 QEMU

QEMU B E

Machine View

Activities [Terminal May 18 12:49

antonio@debian: ~ Q = x

antonio@debian:~$ ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
t qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_1ft forever
inet6 ::1/128 scope host noprefixroute
valid_1ft forever preferred_lft forever
: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fg_codel state UP grou
p default qlen 100@
link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff.ff.ff
altname enp@s3

: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT

group default gqlen 1000

link/loopback 00:00:00:00:00:00 brd 20:00:00:00:00:00
2: ens3: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 150@ qdisc fq_codel state UP mode
DEFAULT group default qlen 1e@@

link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff.:ff.ff

altname enp@s3
antonio@debian:~$ I

Figure 2-24. IP settings

In the host, we can see that QEMU has created successfully the tap
interface.

antonio@antonio-Laptop:~/QEMU VMs$ ip address show dev tapO
14: tap0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
fq_codel state UNKNOWN group default glen 1000

link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

inet6 fe80::420:7aff:feac:2938/64 scope link

valid 1ft forever preferred 1ft forever

antonio@antonio-Laptop:~/QEMU VMs$ ip link show dev tapo
14: tap0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
fq_codel state UNKNOWN mode DEFAULT group default qlen 1000

link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

66

CHAPTER2 QEMU

The interfaces exist in both sides of the connection, but they don’t have
any IP address assigned. We'll set an IP address for each interface. We'll
begin in the host side.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip address add
10.7.7.1/24 dev tapo
antonio@antonio-Laptop:~/QEMU VMs$ ip address show dev tapO
14: tap0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
fq_codel state UNKNOWN group default glen 1000
link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff
inet 10.7.7.1/24 scope global tapo
valid 1ft forever preferred 1ft forever
inet6 fe80::420:7aff:feac:2938/64 scope link
valid 1ft forever preferred 1ft forever

And we do the same thing on the guest.

antonio@debian:~$ su - root
Password:
root@debian:~# ip address add 10.7.7.2/24 dev ens3
root@debian:~# ip address show dev ens3
2: ens3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
fq_codel state UP group default glen 1000

link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff

altname enp0s3

inet 10.7.7.2/24 scope global ens3

valid 1ft forever preferred 1lft forever

We must also make sure that the interfaces are active in both sides with
the “ip link show” command; if that’s not the case, we’ll activate them.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip link set tapO up

root@debian:~# ip link set ens3 up

67

CHAPTER2 QEMU
After that, we should be able to ping the interfaces.

root@debian:~# ping -c 1 10.7.7.1
PING 10.7.7.1 (10.7.7.1) 56(84) bytes of data.
64 bytes from 10.7.7.1: icmp_seq=1 ttl=64 time=0.147 ms

--- 10.7.7.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.147/0.147/0.147/0.000 ms

antonio@antonio-Laptop:~/QEMU_VMs$ ping -c 1 10.7.7.2
PING 10.7.7.2 (20.7.7.2) 56(84) bytes of data.
64 bytes from 10.7.7.2: icmp_seq=1 ttl=64 time=0.448 ms

--- 10.7.7.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.448/0.448/0.448/0.000 ms

If for any reason the ping command does not work, we must review the
procedure and check that both sides of the connection have the IP address
correctly assigned, that both interfaces are up, and that there are no typos
in the address.

The communication between the host and the guest is now analogous
to the communication between two devices in the same network; we can
ping each host, scan the ports, access any available service, etc.

Creating a Bridge for External Access

We have seen in the previous section how to set up a TAP network. But in

this case, the communication is limited to the host. The guest VM won’t be

able to reach any network device external to the host in which it is running.
In order to be able to access the external network, we’ll create a bridge

in our host, connecting the tap interface previously created with a physical

interface in the host. To do it, we'll use the bretl command, which is included

in the bridge-utils package. So, first of all, we need to install this package.

68

CHAPTER2 QEMU

antonio@antonio-Laptop:~$ apt-file find brctl
bash-completion: /usr/share/bash-completion/completions/brctl
bridge-utils: /sbin/brctl

antonio@antonio-Laptop:~$ sudo apt install bridge-utils
Once bretl is installed, we create a bridge.

antonio@antonio-Laptop:~$ sudo brctl addbr my bridgeo
We add the tap interface to the bridge.

antonio@antonio-Laptop:~/QEMU VMs$ sudo brctl addif my
bridge0 tapo

And we also add the host’s Ethernet interface to the other end of
the bridge.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo brctl addif my bridgeo
enx28ee520617e2

We make sure that the bridge interface is up; if that’s not the case, we’ll
activate it.

antonio@antonio-Laptop:~/QEMU _VMs$ ip link show my_ bridge0
15: my_bridge0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state
DOWN mode DEFAULT group default glen 1000

link/ether 66:2d:06:dc:de:8e brd ff:ff:ff:ff:ff:ff
antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip link set
my_bridge0 up

69

CHAPTER2 QEMU

antonio@antonio-Laptop:~/QEMU_VMs$ ip link show my_ bridge0

15: my_bridge0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500

gqdisc noqueue state UP mode DEFAULT group default gqlen 1000
link/ether 66:2d:06:dc:de:8e brd ff:ff:ff:ff:ff:ff

Now we just need to set up an IP address on the guest system that is in
the same range used in our network.

antonio@debian:~$ su - root
Password:
root@debian:~# ip address add 192.168.1.3/24 dev ens3

From now on, we can access any device on the same network, and the
guest is also accessible from the network. If we set up the default gateway,
we can also access external networks.

QEMU Guest Agent

In order to improve the overall performance of any QEMU-based virtual
machine, we can install the QEMU System Agent. It provides a service
(agent) that runs inside the guest and communicates with the host using
avirtio-serial channel org.gemu.guest_agent.0. This allows to perform a
series of functions in the guest from the host.

As we already have installed a Debian server with QEMU, we can
search for the QEMU system agent package on the guest system.

antonio@debian:~$ apt search gemu-guest-agent
Sorting... Done
Full Text Search... Done
gemu-guest-agent/unknown,now 1:7.2+dfsg-7+debi12u5 amd64
[installed]

Guest-side gemu-system agent

70

CHAPTER2 QEMU

This software will allow us to perform many operations like querying
and setting system time, initiating gust shutdown, performing guest
filesystem sync operations, and so on. We'll install it the usual way.

antonio@debian:~$ su - root
Password:
root@debian:~# apt install gemu-guest-agent

After installing it, we check the status of the associated service.

root@debian:~# systemctl status gemu-guest-agent.service
O gemu-guest-agent.service - QEMU Guest Agent
Loaded: loaded (/1ib/systemd/system/qemu-guest-agent.
service; static)
Active: inactive (dead)
root@debian:~#

As the service is currently stopped, we’ll try to start it.

root@debian:~# systemctl start gemu-guest-agent.service
A dependency job for gemu-guest-agent.service failed. See
'journalctl -xe' for details.

The system tries to start the service, but it fails and returns an error
message. As suggested, we check the system journal.

root@debian:~# journalctl -xe
After browsing the journal, we'll see a few lines similar to these:

The unit run-credentials-systemd\x2dtmpfiles\x2dclean.service.
mount has successfully entered the 'dead' state.

May 18 15:51:07 debian systemd[1]: Expecting device dev-virtio\
x2dports-org.qgemu.guest _agent.0.device - /dev/virtio-ports/
org.qemu.>

71

CHAPTER2 QEMU

Subject: A start job for unit dev-virtio\x2dports-org.
gemu.guest_agent.0.device has begun execution

Defined-By: systemd

Support: https://www.debian.org/support

_ A start job for unit dev-virtio\x2dports-org.qemu.guest_
agent 0.device has begun execution.

_ The job identifier is 1860.

May 18 15:52:37 debian systemd[1]: dev-virtio\x2dports-org.
gemu.guest _agent.0.device: Job dev-virtio\x2dports-org.qemu.
guest_agent.>

May 18 15:52:37 debian systemd[1]: Timed out waiting for device
dev-virtio\x2dports-org.qemu.guest agent.0.device - /dev/
virtio-por>

Subject: A start job for unit dev-virtio\x2dports-org.
gemu.guest agent.0.device has failed

Defined-By: systemd
Support: https://www.debian.org/support

A start job for unit dev-virtio\x2dports-org.qgemu.guest
agent.0.device has finished with a failure.

_ The job identifier is 1860 and the job result is timeout.
May 18 15:52:37 debian systemd[1]: Dependency failed for gemu-
guest-agent.service - QEMU Guest Agent.

It’s not always easy finding the right information in the system journal;
in our case, the line we must pay special attention to is this one:

Timed out waiting for device dev-virtio\x2dports-org.qgemu.
guest_agent.0.device - /dev/virtio-ports/org.qemu.guest_
agent.o.

72

CHAPTER2 QEMU
As implied by the error message, this device doesn't exist.

root@debian:~# 1ls /dev/virtio-ports/org.qemu.guest agent.o
1s: cannot access '/dev/virtio-ports/org.qemu.guest agent.o':
No such file or directory

We need to define the virtio-serial device when launching QEMU. We
can see the detailed information in the QEMU wiki. According to it, we
must include these options when launching QEMU:

-chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0
-device virtio-serial
-device virtserialport,chardev=qga0,name=org.qemu.guest _agent.o

As we said when defining the QEMU Guest Agent, it communicates
with the host using a virtio-serial channel org.gemu.guest_agent.0. In the
above lines, we see that we're defining a virtio-serial device with that exact
name, which is backed by a character device. Let’s launch QEMU again
with all these options.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-

system-x86_64 -accel kvm -m 2048 -netdev user,id=my_

network, hostfwd=tcp::10022-:22 -device e1000,netdev=my network
-chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0
-device virtio-serial -device virtserialport,chardev=qga0,name=
org.gemu.guest_agent.0 debian.qcow2

Now we’ll check again the status of the QEMU Guest Agent service.

@ gemu-guest-agent.service - QEMU Guest Agent
Loaded: loaded (/1ib/systemd/system/qemu-guest-agent.
service; static)
Active: active (running) since Sat 2024-05-18 16:58:46
CEST; 3min 19s ago

73

https://wiki.qemu.org/Features/GuestAgent

CHAPTER2 QEMU

Main PID: 415 (qemu-ga)
Tasks: 2 (limit: 2291)
Memory: 1.3M
CPU: 232ms
CGroup: /system.slice/gemu-guest-agent.service
L—415 /usr/sbin/qemu-ga

As we can see, this time the service is up and running.

Before trying to perform a simple test on the QEMU Guest Agent, we’ll
learn a bit about how this agent works. The QEMU Guest Agent uses the
QEMU machine protocol (QMP) to communicate and interact. We can test
it by launching any QEMU instance with the following option:

-gmp tcp:localhost:4444,server,wait=off

This option redirects the monitor to the TCP port 4444, so that we can
interact with it using a tool like telnet. From the host, we can now telnet
local port 4444, and we’ll see this:

antonio@antonio-Laptop:~/QEMU_VMs$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '"]'.
{"omp": {"version": {"gemu": {"micro": 0, "minor": 2,
"major": 6}, "package": "Debian 1:6.2+dfsg-2ubuntu6.19"},
"capabilities": ["oob"]}}

In the open telnet connection, we can type the following:
{ "execute": "qmp_capabilities" }

If all goes well we'll see this line:

{"return": {}}

74

CHAPTER2 QEMU

Now QMP is in command mode, and we can issue commands. We can

list the commands available with this instruction:
{ "execute": "query-commands" }
It will return a very long list, which we see abridged here.

{"return": [{"name": "device add"}, {"name": "query-pci"},
"name": "query-acpi-ospm-status"},..

Now that we understand a bit better how QMP works, we'll test the
QEMU Guest Agent. To better interact with the agent, we'll install socat.
Socat will make it easier to communicate with a byte stream.

antonio@antonio-Laptop:~$ apt search socat
Sorting... Done
Full Text Search... Done
socat/jammy 1.7.4.1-3ubuntu4 amd64
multipurpose relay for bidirectional data transfer

antonio@antonio-Laptop:~$ sudo apt install socat

Next we use socat to connect the standard input/output to the socket
used by QEMU agent user.

antonio@antonio-Laptop:~$ sudo socat STDIO UNIX:/tmp/qga.sock

Now we're ready to type the commands. First, we make sure that the
channel is synchronized.
{"execute":"guest-sync", "arguments":{"id":1234}}

If we receive this response, everything is fine.

{"return": 1234}

75

CHAPTER2 QEMU

We can also ping the agent.

{"execute":"guest-ping"}
{"return": {}}

And we can get info about the supported commands.

{"execute": "guest-info"}

{"return": {"version": "7.2.9", "supported commands": [{"enabled":
true, "name": "guest-get-cpustats”, "success-response": true},
{"enabled": true, "name": "guest-get-diskstats", "success-
response”: true}, {"enabled": true, "name": "guest-ssh-remove-
authorized-keys", "success-response": true

We can get statistics about the CPU usage, or get information about the
logged-in users in the guest system.

{"execute": "guest-get-cpustats"}

{"return": [{"cpu": 0, "guestnice": 0, "idle": 1845870, "steal":
130, "iowait": 560, "system": 8170, "guest": 0, "nice": 430,
"irq": 0, "type": "linux", "user": 7820, "softirq": 20}]}

{"execute": "guest-get-users"}
{"return": [{"login-time": 1716047181.1631711, "user":
"antonio"}]}

QEMU Monitor

When working with QEMU, we have access to a special console that we can
use to monitor different aspects of the VM; this console is called QEMU
monitor. We can access it by keeping pressed down the “mouse grab” key

76

CHAPTER2 QEMU

combination, which is by default CTRL+ALT, and then pressing the SHIFT
key and “2”. To switch back to the normal OS console, we repeat the same
process but pressing the SHIFT key and “1” instead of “2” We have already
seen many examples when studying the networking options before in the
book. Now we’ll see many other useful tasks that we can perform on the
QEMU monitor.

From the QEMU monitor, we can perform many tasks; maybe the first
command that we type should be “info’, which provides a list of commands
that we can use (Figure 2-25).

QEMU = O &

Machine View

r.all

(running|pa

hronizat profiling info, up to max
t by mean wait time; -n:
do not
info tlb
info tpm
info t e ! events & their state (name:
event r i

Figure 2-25. QEMU monitor. Getting info

77

CHAPTER2 QEMU

We can get information about the disk devices with “info block”
(Figure 2-26).

QEMU o
Machine View
show the current VM

up to max
(-m: sort b an wait time; -n:

nts & their s e (name:

< stack connection states
uuID
on of QEMU
w Virtual Machine Generation ID
rver status

)
d/device[23]

idel-cdo: [not inserte

Attach /unattached vice[24]
Remo\ e:n C i, tray cl

floppy®: [not inserte
Atta i

e/unattached

Figure 2-26. QEMU monitor. Getting disk devices information

78

CHAPTER2 QEMU

In the output, we see that no CD/DVD is attached right now. We
can insert a CD/DVD using the command change idel-cd0 path_to_iso

(Figure 2-27).

Machine View

chang
info

QEMU = O &

ian-12.5.0-amd64-DVD-1.
ian-live- -amd64-g
antonio/antonio/i /deb

amd64-DVD-1.iso (r

Figure 2-27. QEMU monitor. Insertinga CD/DVD

79

CHAPTER2 QEMU

If we switch from the QEMU monitor to the server console
(CTRL+ALT) and SHIFT+1, we'll see that we have a CD/DVD inserted
(Figure 2-28).

QEMU B 6 &

Machine View

Activities Files May 18 21:34

< © Debian 12.5.0 amd64 1

© Recent

- B

% Starred
@ Home

D Documents
4 Downloads ._
d3 Music

@ Pictures

firmware
Y0 Videos

& Trash [

© Debian12.5.0amd6... &

@) Floppy Disk install.amd isolinux mdSsum.txt

=+ Other Locations .

Figure 2-28. Accessing the CD/DVD from the File Manager

80

CHAPTER2 QEMU

A command that can be useful sometimes is getting a screenshot of the
VM. We can do it with the screendump command (Figure 2-29).

QEMU = O &

Machine View
floppy [not in
Attac
Remov

gnome.1iso
chang - 0 / bian-12.5.0-amd64-DVD-1.1iso
info

/unattached/device[23]
k

/home/antonio/antonio/isos/debian-12.5.0-amd64-DVD-1.is0 (raw

Figure 2-29. QEMU monitor. Getting a screenshot

81

CHAPTER2 QEMU

We can access the newly created screenshot from the host by using
the File Manager and opening the path QEMU was launched from
(Figure 2-30).

14 (3} Home / QEMU_VMs :lQ = v = B 6O &
o F P PEE
* Starred bin hypervisor legion obp rst
mE - -0
qemu
[Desktop S10image sam-t1 BINARY_ BSD+_ debian.
SLA.txt License.txt qcow2
[@ Documents r 5
¢ Downloads g
debian_ GPLv2_ initrd.img- OpenSPAR
1 Music squeeze_ License_ 2.6.32-5- CT1_Arch.
armel_st... OpenSPA... versatile 1.5.tar
& Pictures
& Videos
OpenSPAR README README. README. README.
® Trash CT1_SAM. hypervisor legion obp
cshrc
+ Other Locations A e
qgemu
README. sparchd. THIRDPART vmlinuz-
sam qcow2 YLICENSER 2.6.32-5-

EADMF o+ sanomniil
“my_screenshot_1" selected (2,4 MB)

Figure 2-30. Screenshot generated from the QEMU monitor

Another very important feature is the ability to create snapshots. This is
very practical when we need to apply software updates, or perform major
changes in a system, and we want to make sure that we can roll back to a
known state if any problem arises.

To test snapshot creation and restoration, we'll begin by creating a
simple text document in our guest.

antonio@debian:~$ mkdir documents

antonio@debian:~$ cd documents/
antonio@debian:~/documents$ echo "This is a very important
document” > important doc.txt

antonio@debian:~/documents$ 1s

important_doc.txt

82

CHAPTER2 QEMU

And now we create a snapshot with the savevim command
(Figure 2-31).

Machine View

writebac

ck344): /home/antoni

Figure 2-31. QEMU monitor. Creating a snapshot

We'll delete now the document we just created.

antonio@debian:~/documents$ cat important doc.txt
This is a very important document

antonio@debian:~/documents$ rm important_doc.txt
antonio@debian:~/documents$ cat important doc.txt
cat: important_doc.txt: No such file or directory

83

CHAPTER2 QEMU

If we want to revert our system to a previous state, we need to check
whether we have any snapshot available. In this case, we know we have
a snapshot available, but if we didn’t know, we’d need to use the info
snapshots command (Figure 2-32).

Machine View
Remo

change idel-cd@® /home/antoni
info block

-DVD-1.iso (raw

floppyo:
Attach

not locked, tray clo
screenshot 1
hot 1

VM CLOCK ICOUNT
=A41.527

Figure 2-32. QEMU monitor. Getting the list of snapshots

84

CHAPTER2 QEMU

As we have a snapshot available, we can restore it with “loadvm”
(Figure 2-33).

QEMU = O &

Machine View

ome/antonio/antonio/i de
i 5.0-amd64-DVD-1.iso
bian-live-12.5.0-amd6:
antonio N .5.0-amd64-DVD-1.1iso

Attact /machine/unattach
Cache n

floppyo:
Attact

VM SIZE DATE VM CLOCK ICOUNT
1.51 GiB 2024-6 8 22 2 01:05:41.527

Figure 2-33. QEMU monitor. Restoring a snapshot

85

CHAPTER2 QEMU

Finally, if we don’t need a snapshot anymore, we can delete it with

“delvm” (Figure 2-34).

QEMU

Machine View
ian-12.5.0-amd64-DVD-1.iso
ntonio/antonio

cha L nton . -amd64-DVD-1.1iso0

floppyo:
At d chi a d vice[1l7]

closed

closed

nt on a
VM SIZE DATE VM CLOCK
1.51 GiB -05-18 22:23:32 01:05:41.527

Figure 2-34. QEMU monitor. Deleting a snapshot

86

o (raw

ICOUNT

CHAPTER2 QEMU

Besides getting information about the network, we can also obtain
information about the CPU, the memory installed, etc. We can also
obtain information about KVM acceleration or the network connections
(Figure 2-35).

QEMU = O &

Machine View

2, function

c03f].
FEFFFFFFFFFFeree [

(gemu)
* CPU #0:

summary

(gemu) info kvm
kvm support: enabl
emu) info u
-1 (my network):
Protocol[State] FD Source Port Dest. Address Port RecvQ SendQ
TCP[ESTABLISHED] 17 27 21 18 10.0.2. 22
TCP[HOST FORWARD] 13 10022
(qemu)

Figure 2-35. QEMU monitor. Getting information from the system

87

CHAPTER2 QEMU

From the QEMU monitor, we can also shut down or reset the system
with system_powerdown or system_reset, respectively (Figure 2-36).

QEMU = O &

Machine View
VGA contr : PCI device 1234:1111

bit memory at oxfe 00 [oxfe
bit mem BXTFETTTFEFFETTTEr T

Bus 0, device 3, function @:
Ethernet controller: PCI device 8086:100e
PCI sub

00 [Oxfeb9ffff].
FEFFFFFFFFFFFe [0x0007fffe].

(gemu) info c
* CPU #0: thr
(gemu) info m
memory-devices summary

b -1 (my r -

Protocol[S Source s f est. 5 Q SendQ

TCP[ESTABLI 1 127 8 B 2.15 2 (] 0
[HOST FORWARD] * 10.8:2.15 22 ¢] [¢]

em reset

Figure 2-36. QEMU monitor. Shutting down the system

Other Useful QEMU Options

We have seen many options that we can use with QEMU; of course not
all of them as that would require a whole book (or several books). Here
we'll see a few more options we haven’t seen so far which can be also
very useful.

88

CHAPTER2 QEMU

When studying networking, we saw we could emulate different
devices: e1000, rtl8139, paravirtualized devices, etc. The same thing
applies to CPU; we can emulate many CPU models. We can obtain the full
list with gemu-system-x86_64 -cpu help.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -cpu help
Available CPUs:

x86 486 (alias configured by machine type)
x86 486-v1

x86 Broadwell (alias configured by machine type)
x86 Broadwell-IBRS (alias of Broadwell-v3)

In addition to the CPU model, we can also specify the number of CPUs
with the -smp option.

About the disk options, so far we have launched the QEMU instances
by passing the name of the file that contains the virtual disk image we
generated previously with gemu-img without any additional parameters.
If you remember, when we studied the QEMU monitor and checked the
information of the disk devices, we saw that the disk was an IDE device,
but we can specify an SCSI device, a flash disk, etc.

Finally, I would like to comment that when launching QEMU
instances, a new graphical window pops up. This is because the default
-display option is sdl, and unless we explicitly say otherwise, this will
be the display used. Apart from sdl, we can use other options like vnc or
nographic. In fact, when we used QEMU to emulate a SPARC system, we
used this last option.

89

CHAPTER2 QEMU

As a practical example, we're going to launch a new QEMU instance
with some of these options.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo gemu-

system-x86 64 -accel kvm -m 2048 -netdev user,id=my
network,hostfwd=tcp::10022-:22 -device e1000,netdev=my_network
-cpu core2duo -smp cpus=2 -display vnc=0.0.0.0:0 -drive
file=debian.qcow2,if=virtio

Now we won't see any graphical window popping up. But we can
connect with ssh and check some of the customized characteristics we just
defined when launching the QEMU instance.

antonio@debian:~$ lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 40 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM)2 Duo

Cpu T7700 @ 2.40GHz

We can clearly see same CPU model we specified, and we also realize
that we have two CPUs. If we check the disk, we'll see that it is identified as
/dev/vda, because we explicitly said that we'd be using paravirtualization

(virtio option in -drive).

antonio@debian:~$ su - root
Password:
root@debian:~# fdisk -1

90

CHAPTER2 QEMU

Disk /dev/vda: 10 GiB, 10737418240 bytes, 20971520 sectors

Finally, we can connect to the server console with any VNC client
(Figure 2-37).

127.0.0.1:5900 D & &

(@ 127.0.0.1:5900 @

May 18 23:37

Antonio Vazquez

Figure 2-37. Accessing the server console with VNC

Summary

In this chapter, we have become familiar with a fantastic open source tool,
QEMU. This program can not only perform full system emulation, either
hardware or software based, but can also perform user mode emulation.
In addition, it works perfectly well in association with KVM or Xen, which
makes it an amazing program for anybody interested in emulation and/or

virtualization.

91

CHAPTER2 QEMU

In the chapter, we emulated different architectures like ARM and
SPARC. We executed binaries compiled for different processors and
experienced about the different options we have available to set up the
network. We also learned how useful the QEMU monitor can be and
experienced launching QEMU with different parameters.

92

CHAPTER 3

Xen

In this chapter, we'll cover the following concepts:

Xen architecture, networking, and storage
Xen configuration

Xen utilities

Troubleshooting Xen installations

Basic knowledge of XAPI

Awareness of XenStore

Awareness of Xen Boot Parameters

Awareness of the xm/xl utility

Xen Architecture

Xen is a type 1 hypervisor that allows to execute different operating

systems on the same machine. It was originally developed at the University

of Cambridge, and it is now maintained by the Linux Foundation. We can

take a look at its architecture in Figure 3-1.

© Antonio Vazquez 2024 93
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_3

https://doi.org/10.1007/979-8-8688-1080-0_3#DOI

CHAPTER3 XEN

VM, (DomU,) VM, (DomU,) VM, (DomU,)

Applica_tions Applications Applrications

Guest OS Guest OS Guest OS

Dom0 Kernel

Native Driver

Figure 3-1. Xen architecture, from the Xen wiki page used under
Creative Commons License

The hypervisor executes directly on the host, and we have a Control
Domain (Domain 0) that has the ability to communicate with the
hypervisor and tell it to start and stop the unprivileged domains, called
domU,. In addition, the Control Domain also has the needed drivers to
access the hardware. In this chapter, we'll use the terms “unprivileged
domain” and “virtual machine” interchangeably.

Installation and Configuration of Xen

The installation of Xen is not very complicated, but it is not as
straightforward as the use of KVM either. We’ll need to install a customized
kernel to use Xen. We'll see this procedure in detail in the following
sections.

94

https://creativecommons.org/licenses/by-sa/3.0/

CHAPTER3 XEN

Installing Xen

Xen can be downloaded from the Xen project web page and manually
installed, but there are also precompiled versions available for the

main Linux distributions. We'll install Xen on an Ubuntu 20 server. We
should make sure that the future Xen server has enough resources to

host the virtual machines; otherwise, we might run into situations in
which the hypervisor seems to execute but when creating and managing
virtual machines, we might get strange errors that are not always easy to
troubleshoot. In our case, we’ll be using a 2 CPU server with 4 GB RAM and
about 20 GB of space disk available for the VMs.

Installing on Ubuntu 20

If we perform a search of Xen-related packages, we'll see a package similar
to this one:

antonio@ubuntu:~$ apt search xen-hypervisor-4.11-amd64
Sorting... Done
Full Text Search... Done
xen-hypervisor-4.11-amd64/focal-updates,focal-security
4.11.3+24-g14b62ab3e5-1ubuntu2.3 amd64

Xen Hypervisor on AMD64

To install Xen, we need to install this package.
antonio@ubuntu:~$ sudo apt install xen-hypervisor-4.11-amd64

After installing Xen, the Grub boot loader is modified accordingly to
load the kernel with Xen support.

It is also a good idea to install the Xen tools, which will be very helpful
to manage our Xen environment.

antonio@ubuntu:~$ sudo apt install xen-tools

95

https://xenproject.org/

CHAPTER3 XEN

If we now restart the Ubuntu server, the kernel with Xen will be loaded
automatically. However, if we want to make sure of it and have the option
to choose which kernel to boot from, we should make some changes to our
system. We can see grub default settings in the /etc/default/grub file. In the
first lines, we’ll see something like this:

antonio@ubuntu:~$ cat /etc/default/grub

If you change this file, run 'update-grub' afterwards
to update

/boot/grub/grub.cfg.

For full documentation of the options in this file, see:

info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0

GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=0

GRUB_DISTRIBUTOR="1lsb_release -i -s 2> /dev/null Il echo Debian'
GRUB_CMDLINE_ LINUX DEFAULT="quiet"
GRUB_CMDLINE_LINUX="find_preseed=/preseed.cfg auto noprompt
priority=critical locale=en US"

To see the grub menu when the system boots, we need to change the
value of the GRUB_TIMEOUT_STYLE parameter, and we also need to edit
the GRUB_TIMEOUT parameter to set the number of seconds that the
menu will be shown before booting the default kernel.

GRUB_TIMEOUT STYLE=menu
GRUB_TIMEOUT=5

After modifying the file, we'll execute the update-grub command to
apply the changes to the current configuration.

antonio@ubuntu:~$ sudo update-grub

96

CHAPTER3 XEN

From now on, every time we boot the system, we’ll see the grub menu
(Figure 3-2).

GHNU GRUE wversion 2.04

-line.
automatically in

Figure 3-2. Ubuntu grub menu

Configuring Xen

Once we boot the Xen host with the appropriate kernel, we can use many
tools to check that everything is working. For instance, we can use the xen
list command.

antonio@ubuntu:~% sudo xen list

[sudo] password for antonio:

Name ID Mem VCPUs State Time(s)
Domain-0 0 3916 2 r----- 98.7

97

CHAPTER3 XEN
Or we can get the same information with xI list.

antonio@ubuntu:~$ sudo x1 list
Name ID Mem VCPUs State Time(s)
Domain-0 0 3916 2 r----- 100.3

Another command we can use to list the VMs/domains currently

executing is xentop.

antonio@ubuntu:~$ sudo xentop
xentop - 11:19:47 Xen 4.11.4-pre
1 domains: 1 running, O blocked, 0 paused, 0 crashed, 0 dying,
0 shutdown
Mem: 4193720k total, 3134908k used, 1058812k free CPUs: 2
@ 2099MHz
NAME STATE CPU(sec) CPU(%) MEM(K) MEM(%)
MAXMEM(k) MAXMEM(%) VCPUS NETS NETTX(k) NETRX(k) VBDS
VBD 00 VBD RD VBD
_WR VBD RSECT VBD WSECT SSID

Domain-0 ----- r 13921 128.1 3083376 73.5
no limit n/a 2 0 0 0
0 0 0
0 0 0

In all the cases, we'll see that right now we only have the privileged
domain running. In the next sections, we’ll begin to create some additional
VMs/unprivileged domains.

Creating a Logical Volume to Store
the Virtual Machines

Even though it is not necessary, it is, however, a good idea to keep the VMs
and their related files in a dedicated storage location, such as a logical
volume. In our example, we'll create a new logical volume for this purpose.

98

CHAPTER3 XEN

Assuming we already have added a new disk with enough capacity, we’'ll
create the corresponding physical volume. The procedure is about the
same in any Linux server. We'll see how to do it in Ubuntu.

antonio@ubuntu:~$ sudo pvcreate /dev/sdb
Physical volume "/dev/sdb" successfully created.

And then we create the Volume Group.

antonio@ubuntu:~$ sudo vgcreate VM VG /dev/sdb
Volume group "VM VG" successfully created

Finally, we create the corresponding Logical Volume.

antonio@ubuntu:~$ sudo lvcreate -n VM_LV -1 100%free VM VG
Logical volume "VM_LV" created.

We format the Logical Volume we just created and we mount it.

antonio@ubuntu:~$ sudo mkfs.ext4 /dev/mapper/VM VG-VM_LV
[sudo] password for antonio:
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 5241856 4k blocks and 1310720 inodes
Filesystem UUID: 5e7fabb6-1362-4eb5-a645-487dd02ae7f4
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736,
1605632, 2654208, 4096000

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

antonio@ubuntu:~$ sudo mkdir /XEN_VMS
antonio@ubuntu:~$ sudo mount /dev/mapper/VM VG-VM LV /XEN_VMS/
antonio@ubuntu:~$ sudo chown antonio /XEN_VMS

99

CHAPTER3 XEN

In addition to having a dedicated Logical Volume for our virtual
machines, it would also be a good idea to have another LV to store the
installation ISO images.

Finally, we edit the /etc/fstab file, so that the filesystem is automatically
mounted when the system boots.

Creating Virtual Machines

We can create a new virtual machine using different tools. In the next
chapter, when we study libvirt, we’ll see many utilities like virsh or virt-
manager, which can be very convenient when creating virtual machines
in Xen (and also in other hypervisors). For now, we'll create the VMs
manually by creating the corresponding configuration file.

Installing a Virtual Machine by Editing
a Configuration File

In Xen, every virtual machine will need to have an associated text file. In
the /etc/xen/ folder, we can find different example files. The content of the
folder differs depending on the Linux distribution we are working with,
but the example files are similar. For instance, in Ubuntu, we have a couple
of example files about a paravirtualized Linux and a fully virtualized
(hvm) Linux.

Here we see some of the main lines of the paravirtualized Linux
configuration file.

antonio@ubuntu:~$ cat /etc/xen/xlexample.pvlinux

100

CHAPTER3 XEN

This is a fairly minimal example of what is required for a
Paravirtualised Linux guest. For a more complete guide see
x1.cfg(5)

Guest name
name = "example.pvlinux"

Kernel image to boot
kernel = "/boot/vmlinuz"

Ramdisk (optional)
#iramdisk = "/boot/initrd.gz"

Kernel command line options
extra = "root=/dev/xvda1"

Initial memory allocation (MB)
memory = 128

Number of VCPUS
vcpus = 2

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ["']

Disk Devices

A list of 'diskspec' entries as described in
docs/misc/x1-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw’]

101

CHAPTER3 XEN

As for the fully virtualized Linux, we can see pretty much the same
options with a few key differences.

antonio@ubuntu:~$ cat /etc/xen/xlexample.hvm

This is a fairly minimal example of what is required for an
HVM guest. For a more complete guide see x1.cfg(5)

This configures an HVM rather than PV guest
type = "hvm"

Guest name
name = "example.hvm"

Initial memory allocation (MB)
memory = 128

Number of VCPUS
vcpus = 2

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ["']

102

CHAPTER 3

Disk Devices

A list of 'diskspec' entries as described in
docs/misc/x1-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw’]

Guest VGA console configuration, either SDL or VNC

sdl =1
#vnc = 1

Let’s take a look at some of the main options.

Type: This parameter is used to specify whether

the domain created will be fully virtualized or
paravirtualized. Possible values are “pv” for
paravirtualized domains and “hvm” for fully virtualized
domains with emulated BIOS, disk, and network
peripherals. There is also an intermediate option,
“pvh’, a lightweight hvm without many of the emulated
devices we find on “normal” hvm guests. If we do not
specify the type parameter, it is assumed that we’re

defining a paravirtualized domain.

Name: This is the name of the domain; it must be
unique in a host.

Kernel: Specifies the path of the kernel image,
accessible to the host. This option is used when using
direct kernel boot.

Ramdisk: Specifies the path of the disk image,
accessible to the host. As the “kernel” option, this one
is also used in direct kernel boot.

XEN

103

CHAPTER3 XEN

o Extra: This is an extra parameter appended to the
kernel command line.

e Memory: Used to set the amount of memory in
megabytes.

e Vcpus: This parameter sets the number of virtual CPUs.
o Vif: Specifies the network interfaces.

o Disk: As the name implies, it specifies the disks that are
provided to the guest.

e SDL: When enabled, the display is presented via an X
window using Simple DirectMedia Layer.

e Vnc: This parameter allows to access the display
through the VNC protocol.

Now that we have some knowledge about the main options in a
configuration file, we’ll apply this knowledge to create our first Xen-
based VM.

Installing Alpine Linux As a Paravirtualized
Unprivileged Domain

We'll install our first VM on Xen. For that, we’ll choose a lightweight Linux
distribution named Alpine. We’'ll download the needed files from the
Alpine Linux website (Figure 3-3).

104

https://www.alpinelinux.org/

CHAPTER3 XEN

File Edit View History Bookmarks Tools Help o @ @

B || @ index| Alpine Linux x | + v

« (6] O B https//www.alpinelinux.org A L @ 8 =
git issues packages mirrors security

docs wiki

1
& alpine
=R About Downloads Releases Community Sponsors

i

git LATEST DEVELOPMENT

N ALPINE NEWS
2024-06-01 main/unbound: make it easier to extends

2024-05-22 Alnine 3.20.0 released

Figure 3-3. Alpine Linux

We'll go to “Downloads” and then to “Virtual” (Figure 3-4), and we’ll
download the ISO file for the x86_64 architecture.

105

CHAPTER3 XEN

VIRTUAL

Similar to standard. Slimmed down
kernel. Optimized for virtual
systems.

‘15 aarché4 sha256 GPG

sha256 GPG
sha256 GPG
sha256 GPG

Figure 3-4. Alpine ISO files optimized for virtualized environments

antonio@ubuntu:/XEN_VMS$ wget https://dl-cdn.alpinelinux.org/
alpine/v3.20/releases/x86_64/alpine-virt-3.20.0-x86_64.1iso

Initial Customization of the Example Configuration File

Now we’ll take one of the example files we mentioned previously, and we’ll
edit it accordingly to create our first VM. In this first example, we'll use a
paravirtualized VM/domain.

106

CHAPTER3 XEN

antonio@ubuntu:/XEN_VMS$ cp /etc/xen/xlexample.pvlinux
alpine.pvlinux

We'll edit a few lines of the configuration file we just copied. At the
beginning of the file, we'll see this line:

Guest name
name = "example.pvlinux"

We'll change it to add a more appropriate name.
name = "alpine.pvlinux"
Then we’ll see an entry for the kernel to load.

Kernel image to boot
kernel = "/boot/vmlinuz"

We'll use the kernel file inside the ISO file we just downloaded, so we’ll
need to mount it first.

antonio@ubuntu:/XEN_VMS$ sudo mount -o loop alpine-
virt-3.20.0-x86_64.iso /mnt/

mount: /mnt: WARNING: device write-protected, mounted
read-only.

Inside the /boot directory, we’ll find the kernel file.

antonio@ubuntu:/XEN_VMS$ 1s /mnt/boot/
System.map-6.6.31-0-virt config-6.6.31-0-virt dtbs-virt
grub initramfs-virt modloop-virt syslinux vmlinuz-virt

So we’ll edit the corresponding parameter in the alpine.pvlinux file.

Kernel image to boot
kernel = "/mnt/boot/vmlinuz-virt"

107

CHAPTER3 XEN

Right after the kernel option, we’ll see the ramdisk entry, which is
commented out by default.

Ramdisk (optional)
#iramdisk = "/boot/initrd.gz"

After mounting the ISO file, we could see the ramdisk file in the same
directory as the kernel file. We'll edit this entry in the file as well.

Ramdisk (optional)
ramdisk = "/mnt/boot/initramfs-virt"

The initial memory allocation is just 128 MB.

Initial memory allocation (MB)
memory = 128

Alpine Linux is very light, so this amount of memory is probably
enough, but we’ll increase it a little bit.

Initial memory allocation (MB)
memory = 512

By default, two virtual CPUs are created for the VM.

Number of VCPUS
vcpus = 2

We’ll change this value to 1.

Number of VCPUS
vcpus = 1

Finally, at the bottom of the file, we’ll see the definition of the disk or
disks associated with the VM.

108

CHAPTER3 XEN

Disk Devices

A list of “diskspec' entries as described in
docs/misc/x1-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw’]

In the default value, a logical volume is used as the disk for the VM, but
itis also possible to use a file, as we’ll see now. We'll use dd to create a 1
GiB disk file.

antonio@ubuntu:/XEN_VMS$ dd if=/dev/zero of=alpine.hd bs=1M
count=1024

1024+0 records in

102440 records out

1073741824 bytes (1.1 GB, 1.0 GiB) copied, 2.02189 s, 531 MB/s

And we'll edit the “disk” entry to use the newly created file as the disk
for the VM.

Disk Devices

A list of 'diskspec' entries as described in
docs/misc/x1-disk-configuration.txt

disk = ['alpine.hd,raw,xvda,rw’']

The final alpine.pvlinux file will look like this:

antonio@ubuntu:/XEN_VMS$ cat alpine.pvlinux

This is a fairly minimal example of what is required for a
Paravirtualised Linux guest. For a more complete guide see
x1.cfg(5)

109

CHAPTER3 XEN

Guest name
name = "alpine.pvlinux"

128-bit UUID for the domain as a hexadecimal number.

Use "uuidgen" to generate one if required.

The default behavior is to generate a new UUID each time the
guest is started.

#uuid = "XXXXXXXX-XXXX-XXXX-XXXX- XXXXXXXXXXXX"

Kernel image to boot
kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)
ramdisk = "/mnt/boot/initramfs-virt"

Kernel command line options
extra = "root=/dev/xvda1"

Initial memory allocation (MB)
memory = 512

Maximum memory (MB)

If this is greater than “memory' then the slack will start
ballooned

(this assumes guest kernel support for ballooning)

#maxmem = 512

Number of VCPUS
vcpus = 1

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ["']

110

CHAPTER3 XEN

Disk Devices

A list of “diskspec' entries as described in
docs/misc/x1-disk-configuration.txt

disk = ['alpine.hd,raw,xvda,rw’]

Now we are ready to create the VM.
antonio@ubuntu:/XEN_VMS$ sudo x1 create -f alpine.pvlinux
But we'll get this error:

Parsing config from alpine.pvlinux

libxl: error: libxl exec.c:117:1ibx1l report child exitstatus:
/etc/xen/scripts/vif-bridge online [6063] exited with error
status 1

libxl: error: libxl device.c:1286:device_hotplug child death_
cb: script: Could not find bridge device xenbrO

libxl: error: libxl create.c:1519:domcreate attach devices:
Domain 7:unable to add vif devices

libxl: error: libxl exec.c:117:1ibx1l report child exitstatus:
/etc/xen/scripts/vif-bridge offline [6094] exited with error
status 1

libxl: error: libxl device.c:1286:device_hotplug child death_
cb: script: Could not find bridge device xenbr0

libxl: error: libxl_domain.c:1034:1ibxl__destroy domid: Domain
7:Non-existant domain

libxl: error: libxl domain.c:993:domain_destroy callback:
Domain 7:Unable to destroy guest

libx1: error: libxl domain.c:920:domain_destroy cb: Domain
7:Destruction of domain failed

111

CHAPTER3 XEN

When creating a Xen VM, a series of scripts are executed. We see here
that the /etc/xen/scripts/vif-bridge script failed because it couldn’t find the
xenbr0 device. Even though we haven’t defined any network interface in
the configuration file, Xen by default searches for a bridge named xenbr0.

Creating a Bridge

We'll see more details later, but for now, we’'ll just create a bridge with that
same name and no interfaces attached, just to skip that error.

antonio@ubuntu:/XEN_VMS$ sudo brctl addbr xenbro
And we try to create the VM again.

antonio@ubuntu:/XEN_VMS$ sudo x1 create -f alpine.pvlinux
Parsing config from alpine.pvlinux

In this case, we don'’t see any errors, so we assume that Xen is creating
the VM. We can list the VMs with xI.

antonio@ubuntu:/XEN_VMS$ sudo x1 list

Name ID Mem VCPUs State Time(s)
Domain-0 0 3011 2 Yr----- 476.8
alpine.pvlinux 9 5121 -b---- 1.3

We see the virtual machine/domain alpine.pvlinux, but its state is
not “r” (running), but “b” (blocked). This could indicate a problem, or
maybe it’s just due to the fact that the system has gone to sleep because it
has nothing else to do. In any of these cases, it’s useful to connect to the

console of the virtual machine to see what is actually happening.

antonio@ubuntu:/XEN_VMS$ sudo x1 console alpine.pvlinux

112

CHAPTER3 XEN

We'll see something like this:

[0.711629] Loading boot drivers: ok.
ok.
[0.714930] Mounting root...
* Mounting root: [1.100682] block xvda: the capability
attribute has been deprecated.
mount: mounting /dev/xvdal on /sysroot failed: Invalid argument
[1.240716] Mounting root: failed.
failed.
initramfs emergency recovery shell launched. Type 'exit' to
continue boot
sh: can't access tty; job control turned off
~o#

We see that the system didn’t boot correctly; let’s detach the server
console by pressing CTRL+5 and recap what we have seen so far.

The virtual machine tried to mount /dev/xvdal, because this is
specified in this line of the alpine.pvlinux file:

Kernel command line options
extra = "root=/dev/xvda1"

Here we're telling that the root filesystem is in the first partition of the
disk /dev/xvda. And in the disk definition, we see this:

disk = ['alpine.hd,raw,xvda,rw’]

The disk is defined in the alpine.hd file we just created, but this file is
completely empty; it has no partitions and no filesystems. The fact that the
system can’t boot is normal behavior.

113

CHAPTER3 XEN

Defining a CDROM Drive

What we’ll do now is to install the OS from the ISO file we just downloaded.
To do it, we need to define a CDROM device and boot the VM from
the CDROM.

First of all, we’ll see in more detail how we defined the disk for our
VM. The first entry is the name of the file we created. The second entry,
raw in this case, is the format of the disk. We have already seen when
we spoke about QEMU that the disk files can have different formats like
gcow?2, raw, etc. In this case, we created a disk in raw format, that is,
without a format. The third entry is the name of the device, xvda in this
example as we're using paravirtualization. Finally, the fourth entry sets the
access mode of the device, read/write in this case.

To know how to define a CDROM device, we can see the man page
for xl.cfg.

antonio@ubuntu:/XEN_VMS$ man x1.cfg
In the page, we'll see this brief description:

disk=["DISK SPEC_STRING", "DISK SPEC STRING", ...]
Specifies the disks (both emulated disks and Xen
virtual block devices) which are to be provided
to the guest, and what objects on the host they
should map to. See x1-disk-configuration(5) for more
details.
To gather more information, we’ll open the man page for x1-disk-
configuration. In the first lines, we’ll see an example of how to define a
CDROM device using different formats.

antonio@ubuntu:/XEN_VMS$ man x1-disk-configuration

114

CHAPTER3 XEN

/root/image.1iso,,hdc,cdrom
/root/image.iso,,hdc,,cdrom
/root/image.iso,raw,hdc,devtype=cdrom
format=raw, vdev=hdc, access=ro, devtype=cdrom,
target=/root/image.iso
raw:/root/image.iso,hdc:cdrom,ro (deprecated,
see below)

We'll use the fourth format, as it is possibly the most intuitive, but
you're free to use any of them. We'll edit the disk entry in the alpine.
pvlinux file to add the information for the CDROM definition; we’ll also
adapt the disk definition so that both lines use the same format.

disk = [
'format=raw, vdev=xvda, access=rw, target=alpine.hd',
'format=raw, vdev=xvdc, access=r, devtype=cdrom,
target=alpine-virt-3.20.0-x86 64.iso’

And we’ll comment out the “extra” option.

Kernel command line options
#fextra = "root=/dev/xvda1"

We'll shutdown the VM we had created previously.
antonio@ubuntu:/XEN_VMS$ sudo x1 shutdown alpine.pvlinux

And we create the VM again with the new options. We’ll use the “-c”
option to connect automatically to the VM console.

antonio@ubuntu:/XEN_VMS$ sudo x1 create -c -f alpine.pvlinux
Parsing config from alpine.pvlinux

[0.000000] Linux version 6.6.31-0-virt (buildozer@
build-3-20-x86 64) (gcc (Alpine 13.2.1 git20240309) 13.2.1

115

CHAPTER3 XEN

20240309, GNU 1d (GNU Binutils) 2.42) #1-Alpine SMP PREEMPT
DYNAMIC Fri, 17 May 2024 11:04:37 +0000

[0.000000] Command line:

[0.000000] ACPI in unprivileged domain disabled

[0.000000] Released 0 page(s)

[0.000000] BIOS-provided physical RAM map:

* Starting busybox syslog ... [ok]
* Starting firstboot ... [ok]

Welcome to Alpine Linux 3.20
Kernel 6.6.31-0-virt on an x86 64 (/dev/hvco)

localhost login:

The system booted from CD, and we're faced with a login prompt. We
can log in as “root” without a password.

localhost login: root
Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and
general information about administrating Alpine systems.
See <https://wiki.alpinelinux.org/>.

You can setup the system with the command: setup-alpine
You may change this message by editing /etc/motd.

localhost:~#

116

CHAPTER3 XEN

We can start the installation procedure by executing the command
setup-alpine. The installation procedure is quite easy to follow, but when
trying to contact a mirror, it will fail, as currently our Xen VM doesn’t have

Internet connectivity.
localhost:~# setup-alpine

ALPINE LINUX INSTALL

Enter system hostname (fully qualified form, e.g. 'foo.example.
org') [localhost] my-alpine

wget: bad address 'mirrors.alpinelinux.org'

Configuring Networking

We had created a bridge named xenbr0, but we didn’t add any interfaces
to it, so the domain/virtual machine has no connectivity. We'll need to
configure the bridge properly.

First, we add a connected interface to our bridge.

antonio@ubuntu:~$ sudo ip brctl addif xenbr0 ens33
And then we make sure that the bridge is up.

antonio@ubuntu:~$ sudo ip link set xenbrO up

117

CHAPTER3 XEN

Now we get back to the alpine.pvlinux file. We'll see these lines
regarding the network interface:

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ["']

We can specify several options regarding the virtual network interface,
such as the MAC address, the IP address, the bridge used, etc. We can take
alook at the xl-network-configuration man page to see some examples. In
our case, we'll just specify the bridge name. We’ll configure the IP later.

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = [bridge=xenbr0o"']

And we'll start again the VM with the new settings.
antonio@ubuntu:~$ sudo x1 create -c -f alpine.pvlinux

In the VM/domain, we'll see that we already have an Ethernet
interface.

localhost:~# ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: etho: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
gqlen 1000
link/ether 00:16:3e:3c:d5:68 brd ff:ff:ff:ff:ff:ff

And in the host, we can see that a new virtual interface has been
created and added to the xenbr0 bridge, allowing the communication
between the host and the guest.

118

CHAPTER3 XEN

antonio@ubuntu:~$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default gqlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ens33: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
fq_codel master xenbrO state UP mode DEFAULT group default
qlen 1000
link/ether 00:0c:29:c4:d1:d0 brd ff:ff:ff:ff:ff:ff
altname enp2s1

3: xenbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qgdisc
noqueue state UP mode DEFAULT group default gqlen 1000
link/ether 00:0c:29:c4:d1:d0 brd ff:ff:ff:ff:ff:ff

4: vif3.0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq
master xenbr0 state DOWN mode DEFAULT group default glen 1000
link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff

antonio@ubuntu:~$ brctl show

bridge name bridge id STP enabled interfaces
xenbro 8000.000c29c4d1d0 no ens33
vif3.0

We only have to add an IP to the interface on the guest and activate the
interface.

localhost:~# ip address add 192.168.1.60/24 dev etho
Now we can ping the host from the guest and vice versa.

localhost:~# ip link set etho up

localhost:~# ping 192.168.1.51

PING 192.168.1.51 (192.168.1.51): 56 data bytes

64 bytes from 192.168.1.51: seq=0 ttl=64 time=1.236 ms

Now that we have connectivity, we could install the OS with
setup-alpine. But we’ll get to that in the next example.

119

CHAPTER3 XEN

Using a Logical Volume As the Disk of the VM

So far, we have used a file as a hard disk for our VM/domain, but we can
also use a LV for that. To do it, we'll create a LV on the host. We had already
created a LV as a good practice to store our virtual machines; we’ll follow
the same procedure to create a new LV in which to install a Xen domain/
virtual machine. We repeat the same steps, and this time we create a LV
named XENLYV, included in a VG named XENVG.

antonio@ubuntu:~$ sudo lvs XENVG

LV VG Attr LSize Pool Origin Data% Meta% Move
Log Cpy%Sync Convert
XENLV XENVG -wi-a----- 2,00g

To use a LV instead of a file as the disk of our virtual machine, we need
to open the alpine.pvlinux file and edit the “disk” entry. This is the current
value of this entry:

disk = [
'format=raw, vdev=xvda, access=rw, target=alpine.hd',
'format=raw, vdev=xvdc, access=r, devtype=cdrom,
target=alpine-virt-3.20.0-x86 _64.iso’

We need to edit the entry for the hard disk, changing the target. After
editing, it should look like this:

disk = [
'format=raw, vdev=xvda, access=rw, target=/dev/
XENVG/XENLV',
'format=raw, vdev=xvdc, access=r, devtype=cdrom,
target=alpine-virt-3.20.0-x86_64.iso’

120

CHAPTER3 XEN

We save the changes and recreate the VM again. We'll shutdown any
previously running instances if necessary.

antonio@ubuntu:/XEN_VMS$ sudo x1 create -c -f alpine.pvlinux

Welcome to Alpine Linux 3.17
Kernel 5.15.79-0-virt on an x86_64 (/dev/hvco)

localhost login: root
Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and
general information about administrating Alpine systems.
See <https://wiki.alpinelinux.org/>.

You can setup the system with the command: setup-alpine
You may change this message by editing /etc/motd.
localhost:~#

We launch setup-alpine to start the OS installation.

localhost:~# setup-alpine

Available interfaces are: etho.

Enter '?"' for help on bridges, bonding and vlans.

Which one do you want to initialize? (or '?' or 'done') [etho]
Ip address for etho? (or 'dhcp', 'none', '?') [dhcp]

Do you want to do any manual network configuration? (y/n) [n]
udhcpc: started, v1.35.0

udhcpc: broadcasting discover

121

CHAPTER3 XEN

udhcpc: broadcasting select for 10.0.3.16, server 10.0.3.2
udhcpc: lease of 10.0.3.16 obtained from 10.0.3.2, lease
time 86400

After setting up the network, we need to select the time zone; we select
a proxy if necessary and choose a mirror.

Enter mirror number (1-81) or URL to add (or r/f/e/done) [1]
Added mirror dl-cdn.alpinelinux.org
Updating repository indexes... done.

We now select the disk where we’ll install the OS.

Available disks are:
xvda (2.1 GB)
Which disk(s) would you like to use? (or '?" for help or
"none') [none] xvda
The following disk is selected:
xvda (2.1 GB)
How would you like to use it? ('sys', 'data', 'crypt', 'lvm' or
'?" for help) [?] sys
WARNING: The following disk(s) will be erased:
xvda (2.1 GB)

Creating file systems...
Installing system on /dev/xvda3:

122

CHAPTER3 XEN

/mnt/boot is device /dev/xvdal

100% HNEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEENE--> initramfs: creating /boot/initramfs-virt
/boot is device /dev/xvdal

Installation is complete. Please reboot.
alpine:~#

The installation is complete. Before rebooting, we need to change
some parameters in the alpine.pvlinux file, so we’ll shut down the VM.

antonio@ubuntu:/XEN_VMS$ sudo x1 shutdown alpine.pvlinux

The first thing we’ll do is to suppress the disk entry for the CDROM,
leaving only the entry for the hard disk.

disk = [
'format=raw, vdev=xvda, access=rw, target=/dev/XENVG/XENLV',

We also have to change the parameters for the kernel and the ramdisk
file. We used previously those of the ISO file; now we’ll use the files
installed in the VM disk.

We unmount the ISO file.

antonio@ubuntu:/XEN_VMS$ sudo umount /mnt

And we mount the LV in which we installed the system. We can’t
mount directly the system partition inside the LV, so we’ll need to associate
it with a loop device first.

antonio@ubuntu:/XEN_VMS$ sudo losetup -Pf /dev/XENVG/XENLV
antonio@ubuntu:/XEN_VMS$ sudo 1s -1d /dev/XENVG/XENLV

123

CHAPTER3 XEN

lrwxrwxrwx 1 root root 7 jun 9 14:23 /dev/XENVG/XENLV
-> ../dm-0

antonio@ubuntu:/XEN_VMS$ sudo losetup -a | grep dm-0
/dev/loop0: [0006]:18381 (/dev/dm-0)

If we open the loop device, we'll see the partitions.

antonio@ubuntu:/XEN_VMS$ sudo fdisk /dev/loopO

Welcome to fdisk (util-linux 2.36.2).

Device Boot Start End Sectors Size Id Type
/dev/loopOp1 * 2048 616447 614400 300M 83 Linux
/dev/1loopOp2 616448 1550335 933888 456M 82 Linux swap
/ Solaris
/dev/1loopOp3 1550336 4194303 2643968 1,3G 83 Linux

Command (m for help): g
And now we can mount the boot partition locally in the host.

antonio@ubuntu:/XEN_VMS$ sudo mount /dev/loopOp3 /mnt
antonio@ubuntu:/XEN_VMS$ sudo mount /dev/loopOp1l /mnt
antonio@ubuntu:/XEN_VMS$ sudo 1ls /mnt

boot extlinux.conf 1dlinux.c32 libcom32.

c32 lost+found menu.c32 vesamenu.c32

config-virt initramfs-virt 1ldlinux.sys 1libutil.c32 mboot.
c32 System.map-virt wvmlinuz-virt

We review the alpine.pvlinux file to make sure that we’re pointing to
the correct kernel and ramdisk files.

124

CHAPTER3 XEN

Kernel image to boot
kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)
ramdisk = "/mnt/boot/initramfs-virt"

Finally, we also need to update the “extra” parameter to include the
kernel command-line options needed to properly boot the system.

extra = "root=/dev/xvda3 rootfstype=ext4"
The alpine.pvlinux file should look more or less like this right now:

Guest name
name = "alpine.pvlinux"

128-bit UUID for the domain as a hexadecimal number.

Use "uuidgen" to generate one if required.

The default behavior is to generate a new UUID each time the
guest is started.

#uuid = "XXXXXXXX-XXXX-XXXX-XXXX- XXXXXXXXXXXX"

Kernel image to boot
kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)
ramdisk = "/mnt/boot/initramfs-virt"

Kernel command line options
extra = "root=/dev/xvda3 rootfstype=ext4"

Initial memory allocation (MB)
memory = 512

Maximum memory (MB)
If this is greater than “memory' then the slack will start
ballooned

125

CHAPTER3 XEN

(this assumes guest kernel support for ballooning)
#maxmem = 512

Number of VCPUS
vcpus = 1

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ['bridge=xenbr0"']

Disk Devices
A list of 'diskspec' entries as described in
docs/misc/x1-disk-configuration.txt
disk = [
'format=raw, vdev=xvda, access=rw, target=/dev/XENVG/XENLV',

And we launch again the VM/domain.

antonio@ubuntu:/XEN_VMS$ sudo x1 create -c -f alpine.pvlinux
Parsing config from alpine.pvlinux

[0.787245] Mounting root...
* Mounting root: [1.558391] EXT4-fs (xvda3): mounted
filesystem with ordered data mode. Opts: (null). Quota

mode: none.
[1.558630] Mounting root: ok.
ok.

126

CHAPTER3 XEN

Welcome to Alpine Linux 3.17
Kernel 5.15.160-0-virt on an x86 64 (/dev/hvco)

alpine login:

We log in with the password set during the installation, and we're
ready to start working with the new system.

alpine:~# df -h

Filesystem Size Used Available Use% Mounted on
devtmpfs 10.0M 0 10.0M 0% /dev

shm 113.0M 0 113.0M 0% /dev /shm
/dev/xvda3 1.2G 54.1M 1.1G 5% /

tmpfs 45.2M 64.0K 45.2M 0% /run
/dev/xvda1 271.1M 17.9M 234.2M 7% /boot
tmpfs 113.0M 0 113.0M 0% /tmp

Working with a Hardware Virtualized Machine

We'll see now an example of a fully virtualized machine, also referred in
Xen as a hardware virtualized machine (HVM). As many of the options
are the same for both paravirtualized and fully virtualized domains, we’ll
try to keep this example as simple as possible. We'll use the following
configuration file:

This is a fairly minimal example of what is required for an
HVM guest. For a more complete guide see x1l.cfg(5)

This configures an HVM rather than PV guest
type = "hvm"

127

CHAPTER3 XEN

Guest name
name = "alpine.hvm"

Initial memory allocation (MB)
memory = 256

Number of VCPUS
vcpus = 1

Network devices

A list of 'vifspec' entries as described in
docs/misc/x1l-network-configuration.markdown
vif = ['bridge=xenbr0o"']

Disk Devices

A list of “diskspec' entries as described in

docs/misc/x1-disk-configuration.txt

disk = ['format=qcow2, vdev=xvda, access=rw, target=alpine_
disk.qcow']

Guest VGA console configuration, either SDL or VNC
#sdl = 1
vnc = 1

At the beginning, we tell Xen that we’ll use a fully virtualized machine.
We do that with the “type=hvm” parameter. When we worked with
paravirtualization, we didn’t need to add the “type=pv” because this is the
default value.

Another option we hadn'’t seen so far is the VGA console configuration.
We can use this section to tell Xen to provide a graphical console as a
graphical window (option sdl) or as a VNC instance (option vnc). In our
case, we'll use vnc to connect to the virtual machine.

128

CHAPTER3 XEN

We create the virtual machine/domain in the same way we did with
the paravirtualized domain.

antonio@ubuntu:/XEN_VMS$ sudo x1 create -f alpine.hvm
Parsing config from alpine.hvm

After a few seconds, we'll see the VM already executing.

antonio@ubuntu:/XEN_VMS$ sudo x1 list

Name ID Mem VCPUs State Time(s)
Domain-0 0 1226 1 r----- 31.5
alpine.hvm 3 120 1 ------ 10.6

To access the console, we can use any vnc client, such as Tiger VNC
viewer (Figure 3-5).

VNC Viewer: Connection Details (on romulus) — X
NG sner |
| options.. | | Load... | I saveAs.. |
| Apout.. | | cancel || connect /|

Figure 3-5. VNC viewer

And we'll access the server console (Figure 3-6).

129

CHAPTER3 XEN

QEMU (alpine.hvm) - TigerVNC (on romulus) D O &

» Mounting /de
* Mounting s

Mounting per: age (pstore) filesysten
Starting busybox m
mning harduare
Loading h
L

und

d for next boot

21cone to Alpine L
2-0-virt

Figure 3-6. Server console accessed through VNC

XenStore

XenStore is a database of configuration and status information shared
between domains. Depending on the Xen version used, it can be visible
using xI or not.

antonio@ubuntu:~% sudo x1 list

[sudo] password for antonio:

Name ID Mem VCPUs State Time(s)
Domain-0 0 3527 2 r----- 95.3

romulus:/home/antonio/XEN # x1 list

Name ID Mem VCPUs State Time(s)
Domain-0 0 1226 1 r----- 1027.7
Xenstore 1 31 1 -b---- 0.6

alpine.hvm 3 120 1 -b---- 1034.1

130

CHAPTER3 XEN

XenStore is usually managed by Dom0, but we can also perform basic
operations on it. For instance, we can use xenstore-Is to dump all the
information contained in the XenStore database.

romulus:/home/antonio/XEN # xenstore-1s
tool = ""
xenstored =
domid = "1"
local = ""

domain =

vm =
1175b42d-a0c0-4bc4-915d-162512d44284 = ""
name = "alpine.hvm"
uuid = "1175b42d-a0c0-4bc4-915d-162512d44284"

We can also query the xenstore database to get information about a
given virtual machine; first, we list the identifiers of every running virtual
machine.

romulus:/home/antonio/XEN # xenstore list /vm
1175b42d-a0c0-4bc4-915d-162512d44284

And then, we can obtain data such as the VM name or the start time.

romulus:/home/antonio/XEN # xenstore list /vm/1175b42d-
a0c0-4bc4-915d-162512d44284

name

uuid

131

CHAPTER3 XEN

rtc

image

start_time

romulus:/home/antonio/XEN # xenstore read /vm/1175b42d-
a0c0-4bc4-915d-62512d44284/name

alpine.hvm

GRUB Start Options

As we have seen at the beginning of this chapter, Xen is a Linux kernel
optimized to be used as a hypervisor. Many relevant options for the normal
functioning of the hypervisor can be customized in GRUB.

In Ubuntu, when installing Xen, a new file /etc/default/grub.d/xen.
cfgis created. In this file, we can see many variables that can be set to pass
options to the hypervisor. Let’s take a look at the first lines of this file:

antonio@ubuntu:/XEN_VMS$ cat /etc/default/grub.d/xen.cfg

When running update-grub with the Xen hypervisor installed,
there are

some additional variables that can be used to pass
options to the

hypervisor or the dom0 kernel.

The configuration in here makes it possible to have different
options set
for the linux kernel when booting with or without Xen.

echo "Including Xen overrides from /etc/default/grub.d/xen.cfg"

132

CHAPTER3 XEN

HHHHH

Xen Hypervisor Command Line Options

#

The first two options are used to generate arguments for the

hypervisor.

Commonly used options are:

#

domo_mem=<size> (for arm)

domo_mem=<size>,max:<size> (for x86)

Sets the amount of memory domO uses to a fixed size. All
other memory

will be usable for domUs. For x86, this prevents
ballooning actions

from happening to take away memory from the dom0 or return
it back. For

arm, setting this option is required. E.g. (for x86) domO
mem=4G, max:4G

#

domO_max_vcpus=<min>-<max>

Limits the amount of physical cpus that dom0 is using, so
it will not

We can see that the dom0_mem variable sets the amount of memory
used by Dom0. This value is usually dynamically assigned by the system,
but if we want to assign a fixed value, we can do that by editing the
corresponding GRUB entry (Figure 3-7).

133

CHAPTER3 XEN

s=''no-real-mode edd=off"

Comp ' 3 i t 1-c or
Cof s (o ¢ anc turn to the G
mend.

Figure 3-7. Setting the amount of memory used by Dom0 on GRUB

In this example, the amount of memory set is too small and Dom0
cannot boot (Figure 3-8), but this is OK as we only wanted to show an
example on how to pass this parameter to the hypervisor.

[KEN1 Xen kernel: B4-bit, Isb, compat32
(XEM) Dom@ kernel: bd-bit, PAK, lsb, paddr 9x109UE09 —> Ux4UE0DUO

I:a'nlc Dﬁ l?Pﬂ f:

Domain € allocation ic too emall for kermel inage

3R K RO HOEIR H M XK RO ORI KR 3 RO XM K KM X

Eehnnt. in fluve serrmds. .

Figure 3-8. Dom0 memory allocation too small

Of course, there are many more parameters that can be passed to the
kernel adding the corresponding options in GRUB, like dom0_max_vcpus,
console, etc.

134

CHAPTER3 XEN

Managing Xen with xI/xm/XAPI

So far we have used x1 to manage Xen, but this is not the only choice we
have. In the early days of Xen, xend was the toolstack used to manage the
Xen hypervisor. The client tool xm interacted with xend to perform the
needed operations.

Later, with Xen 4.1, a new toolstack, libxenlight, was developed. Its use
was preferred over that of xend/xm. The client tool used with libxenlight is
xl, of which we have already seen many examples in this chapter.

For some time, both toolstacks were available to manage Xen, although
the use of xend/xm was considered deprecated. But since Xen 4.5, it has
been completely removed. Its use was quite similar to that of xI. If we work

with a Xen version prior to 4.5, we might still use xm, as in this example:

SUSE:~ # xm
Usage: xm <subcommand> [args]

Control, list, and manipulate Xen guest instances.

Common 'xm' commands:

console Attach to <Domain>'s console.
vncviewer Attach to <Domain>'s VNC server.
create Create a domain based on <ConfigFile>.

If we want to list the virtual machines, we can do it very similarly to
what we did before with x1.

SUSE:~ # xm list
Name ID Mem VCPUs State Time(s)
Domain-0 0 912 1 r----- 22.3

135

CHAPTER3 XEN

As we said before, its use is completely deprecated and it has been
completely removed in newer versions, so we won't get into much detail.

About x1, we have already seen several examples, but we'll try to get
into a bit more of detail here. There is a configuration file at /etc/xen/
xl.conf, with some default values.

romulus:~ # cat /etc/xen/x1l.conf
Global XL config file

Set domain-id policy. "xen" means that the hypervisor will
choose the

id of a new domain. "random" means that a random value will
be chosen.

#domid policy="xen"

Control whether dom0 is ballooned down when xen doesn't
have enough

free memory to create a domain. "auto" means only
balloon if domoO

starts with all the host's memory.

autoballoon="off"

We have already seen many useful subcommands associated
with x1, such as create or shutdown. We can get a full list of supported
subcommands by typing x1 without any arguments.

romulus:~ # x1
Usage x1 [-vfN] <subcommand> [args]

x1 full list of subcommands:

create Create a domain from config file <filename>

136

CHAPTER3 XEN

config-update Update a running domain's saved
configuration, used when rebuilding the domain after reboot.
WARNING: x1 now has better capability to manage domain
configuration, avoid using this command when possible

list List information about all/some domains

It’s not possible to see an example of every subcommand, but we'll see
an interesting option to save and restore virtual machines. To do that, we’'ll

use the subcommand “save”.

romulus:/home/antonio/XEN # x1 list

Name ID Mem VCPUs State Time(s)
Domain-0 0 1226 1 r----- 352.1
Xenstore 1 31 1 -b---- 0.3
alpine.pvlinux 4 256 1 -b---- 3.2

romulus:/home/antonio/XEN # x1 save alpine.pvlinux alpine.BK
Saving to alpine.BK new x1 format (info 0x3/0x0/1167)

xc: error: SUSEINFO: domid 4: 85bf7e31-ef42-4ed4-b519-
bc17fobcc48c save start, 65536 pages allocated

xc: info: Saving domain 4, type x86 PV

xc: error: SUSEINFO: domid 4: 525824 bytes + 65536 pages in
0.477550453 sec, 536 MiB/sec

xc: Frames: 65536/65536 100%

xc: End of stream: 0/0 0%

xc: error: SUSEINFO: domid 4: save done

After creating the backup, we could copy it to an external storage
location so that it would be available for restoration if needed.

romulus:/home/antonio/XEN # scp alpine.BK
100t@192.168.1.34:/XEN

137

CHAPTER3 XEN

When we perform a backup using xl save, the virtual machine we're
saving is automatically shut down. We'll start it again to perform a simple
test before restoring it.

romulus:/home/antonio/XEN # x1 create -f alpine.pvlinux
We’ll connect to the console and we’ll delete a file.

romulus:/home/antonio/XEN # x1 console alpine.pvlinux

alpine:~# rm /etc/os-release
alpine:~# cat /etc/os-release
cat: can't open '/etc/os-release': No such file or directory

Now we'll restore the virtual machine.

romulus:/home/antonio/XEN # x1 restore alpine.BK

Loading new save file alpine.BK (new x1 fmt info 0x3/0x0/1167)
Savefile contains x1 domain config in JSON format

Parsing config from <saved>

xc: info: Found x86 PV domain from Xen 4.14

xc: error: SUSEINFO: domid 5: 85bf7e31-ef42-4ed4-b519-bc17f0

bcc48c restore start

xc: info: Restoring domain

xc: info: Restore successful

xc: error: SUSEINFO: domid 5: restore done

xc: info: XenStore: mfn 0x6e0a8, dom 1, evt 1

xc: info: Console: mfn 0x6e0a7, dom 0, evt 2

138

CHAPTER 3
And we’ll check that the file has been recovered.

romulus:/home/antonio/XEN # x1 console alpine.pvlinux

alpine:~# cat /etc/os-release

NAME="Alpine Linux"

ID=alpine

VERSION_ID=3.17.7

PRETTY_NAME="Alpine Linux v3.17"
HOME_URL="https://alpinelinux.org/"
BUG_REPORT_URL="https://gitlab.alpinelinux.org/alpine/
aports/-/issues”

alpine:~#

Another useful subcommand is “xI migrate’, which we can use to

migrate Xen virtual machines between two hypervisors. Of course, we

need to make sure that both hypervisors are compatible.
Apart from xm and xl, it is also possible to use an API specifically

XEN

developed to manage Xen, the Xen API or XAPI. The truth is that XAPI is
very rarely used to manage the Xen servers running on Linux distributions

like Ubuntu or SUSE. In these cases, the use of libvirt is preferred. In
the next chapter, we'll see in detail how the use of libvirt eases the

management of Xen and KVM. However, XAPI is the recommended way

to manage Xenserver. Xenserver is a commercial product based on Xen

(Figure 3-9).

139

CHAPTER3 XEN

@ @ @ citrix_XenServer - VMware Workstation 15 Player (Non-commercial use only)

File Virtual Machine Help

Conf iguration
Customize System Network and Management Interface

Status Display Press <Enter> to configure the

management network comnection,

Authentication hostname, and network time (NTP)

Uirtual Machines settings.

Disks and Storage Repositories

Resource Pool Configuration Current Management Interface

Hardware and BIOS Information

Keyboard and Timezone Device ethd

Remote Service Configuration MAC Address A8:8c:29:f8:73:cl

Backup, Restore and Update DHCP/Static IP Static

Technical Support IP address 192.168.1.78

Reboot or Shutdown Netmask 255.255.255.8

Local Command Shell Gateway 192.168.1.1
Hostname Xenserver .example.co

m
NTP Enabled

<Enter> 0K <Up/Down> Select <F5> Refresh

To grab input, press Ctrl+G B0 =8Bl

Figure 3-9. Xenserver

In a similar way to what we have seen with xm and xl, we can also use
a command-line client to interact with XAPI, the xe command. With the
help option, we can see a full list of subcommands.

[root@xenserver ~]# xe help
Usage: xe <command> [-s server] [-pw passwd] [-p port] [-u
user] [-pwf password-file]

[command specific arguments]

To get help on a specific command: xe help <command>
To get a full listing of commands: xe help --all

140

CHAPTER3 XEN

Common command list
cd-list, diagnostic-vm-status, network-list, snapshot-clone
snapshot-copy, snapshot-disk-list, snapshot-export-
to-template
snapshot-reset-powerstate, snapshot-revert, snapshot-
uninstall, sr-list
template-export, template-uninstall, vm-cd-add, vm-cd-eject
vm-cd-insert, vm-cd-list, vm-cd-remove, vm-checkpoint,
vm-clone vm-compute-maximum-memory, vm-copy, vm-disk-add,
vm-disk-1ist vm-disk-remove, vm-export, vm-import,
vm-install, vm-list, vm-migrate vm-pause, vm-reboot,
vm-reset-powerstate, vm-resume, vm-shutdown vm-snapshot,
vm-snapshot-with-quiesce, vm-start, vm-suspend
vm-uninstall, vm-unpause, vm-vif-list

[root@xenserver ~]#

We can list the virtual machines this way:

[root@xenserver ~]# xe vm-list

uuid (RO) : 7591587f-f715-48d3-aeaf-5ca9a19adad7
name-label (RW): Control domain on host: xenserver.
example.com

power-state (RO): running

uuid (RO) : 3ebcca37-da7c-9d56-4dec-e40b1a268e0d
name-label (RW): Windows 7 (32-bit) (1)
power-state (RO): halted

141

CHAPTER3 XEN

We can see that one virtual machine is halted. We can started with

“xe vin-start”. If we're not sure about the syntax, we can check the

contextual help.

[root@xenserver ~]# xe help vm-start

command name
reqd params

optional params :
: Start the selected VM(s). Where

description

142

. vm-start

force, on, paused, <vm-selectors>

pooling is enabled, the host on
which to start can be specified

with the 'on' parameter that takes

a uuid. The optional parameter
'--force' will bypass any hardware-
compatibility warnings. The simplest
way to select the VM on which the
operation is to be performed is by
supplying the argument 'vm=<name or
uuid>'. VMs can also be specified

by filtering the full list of VMs on
the values of fields. For example,
specifying 'power-state=halted' will
select all VMs whose power-state
field is equal to 'halted'. Where
multiple VMs are matching, the option
'--multiple' must be specified to
perform the operation. The full list
of fields that can be matched can

be obtained by the command 'xe vm-
list params=all'. If no parameters to
select VMs are given, the operation
will be performed on all Vms.

CHAPTER 3
Finally, we can start the virtual machine and check its state again.

[root@xenserver ~]# xe vm-start vm=3ebcca37-da7c-9d56-4dec-
e40b1a268e0d
[root@xenserver ~]# xe vm-list
uuid (RO) : 7591587f-f715-48d3-aeaf-5ca9a19adad7
name-label (RW): Control domain on host: xenserver.
example.com
power-state (RO): running

uuid (RO) : 3ebcca37-da7c-9d56-4dec-e40b1a268e0d
name-label (RW): Windows 7 (32-bit) (1)
power-state (RO): running

XEN

In addition to the use of xe, we can also develop our own programs in

C, Python, and other languages using XAPI to manage Xenserver. This is

exactly what the OpenXenManager program does (Figure 3-10).

[OpenXenManager

W Add New Server «.¢ New Storage 5‘3 New VM (0) shutDown €3 Reboot v
=S xenserver.example.com
v & OpenxenManager Search | General | Storage | NICs | Network | Console | Performance | Users | Maps | Logs
B xenserver.example.com | | Overview
O windows 7 (32-bit) (1 Disks Hetwe
i () (1) Name CPU Usage Used memory (avg/ maxKBs) (avg/
W Local storage [BEBBLLLLLL

: b xenserver.example.com
& DVD drives Default install of XenServer

W) Removable storage

[=l xen API SDK

=] windows XxP SP3 (32-bit)

(=] windows Vista (32-bit)

=] windows Server 2012 (64-bit)

[=] windows Server 2008 R2 (64-bit)

[zl windows Server 2008 (64-bit)

[Z] windows Server 2008 (32-bit)

=] windows Server 2003 (64-bit)

[=] windows Server 2003 (32-bit)

=] windows 8 (64-bit)

[=] windows 8 (32-bit)

=] windows 7 (64-bit)

[l windows 7 (32-bit)

{2l ubuntu Precise Pangolin 12.04 (64-bit)
[£] ubuntu Precise Pangolin 12.04 (32-bit)
[=l] ubuntu Maverick Meerkat 10.10 (64-bit,

0% of 2 cpus 41% used of 2.00G

Figure 3-10. OpenXenManager

0/0]0;

143

CHAPTER3 XEN

Xen Troubleshooting

One of the first commands we should execute when troubleshooting Xen is
x| dmesg.

antonio@ubuntu:/XEN_VMS$ sudo x1 dmesg

(XEN) parameter "placeholder™ unknown!

(XEN) Xen version 4.11.4-pre (Ubuntu 4.11.3+24-gl14b62ab3e5-1ub
untu2.3) (ubuntu-devel-discuss@lists.ubuntu.com) (gcc (Ubuntu
9.4.0-1ubuntu1~20.04.1) 9.4.0) debug=n Tue Aug 23 12:11:30
UTC 2022

(XEN) Bootloader: GRUB 2.04-1ubuntu26.2

(XEN) Command line: placeholder

(XEN) Xen image load base address: 0xbf400000

(XEN) Video information:

(XEN) VGA is text mode 80x25, font 8x16

(XEN) Disc information:

(XEN) Found 1 MBR signatures

(XEN) Found 1 EDD information structures

(XEN) Xen-e820 RAM map:

With this command, we could see error messages like the following,
in which we tried to create a HVM guest not having the hardware
virtualization extensions active:

(XEN) hvm.c:543:d0 Attempt to create a HVM guest on a non-VT/
AMDV platform.

144

CHAPTER3 XEN

It is also a good idea to check the log files located at /var/log/xen/.

antonio@ubuntu:/XEN_VMS$ 1s -lrth /var/log/xen/

-Tw-r--1-- 1 root root 5,2K jun 15 01:22 xen-boot.log
-IW-1--r-- 1 root root 194 jun 15 12:55 xl-alpine.
pvlinux.log.2

-Tw-r--r-- 1 root root 281 jun 15 13:12 xl-alpine.
pvlinux.log.1

-IW-r--r-- 1 root root 62 jun 15 13:13 xl-alpine.pvlinux.log

Summary

In this chapter, we have seen what is probably, together with KVM, the
most used hypervisor in Linux environments. We have seen its basic
architecture and how to create virtual machines from configuration files.
Now you’re probably familiar with the most common parameters used in
the cfg files associated to each virtual machine/unprivileged domain.

We performed basic administration tasks such as starting a domain
or shutting it down and defining disks and CD drives. We also made the
domain available in the network. We have seen examples of the two main
virtualization options we have available in Xen: paravirtualization and
hardware virtualized machines.

We also briefly reviewed the role of XenStore and how to edit the
boot loader to customize how Xen works. We also studied the use of x1/
xm and XAPI to manage Xen domains and how to perform some basic
troubleshooting.

Later, when we study libvirt, we’ll see that there are more friendly ways
to manage virtual machines.

145

CHAPTER 4

libvirt Virtual Machine
Management

In this chapter, we’'ll cover the following concepts:

Understand the architecture of libvirt
Manage libvirt connections and nodes

Create and manage QEMU and Xen domains, including
snapshots

Manage and analyze resource consumption of domains
Create and manage storage pools and volumes

Create and manage virtual networks

Migrate domains between nodes

Understand how libvirt interacts with Xen and QEMU

Understand how libvirt interacts with network services
such as dnsmasq and radvd

Understand libvirt XML configuration files

Awareness of virtlogd and virtlockd

© Antonio Vazquez 2024
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_4

147

https://doi.org/10.1007/979-8-8688-1080-0_4#DOI

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Introduction to libvirt

libvirt is an API for the management of virtualization platforms. Currently
it supports Xen, KVM, QEMU, LXC, and many more. This API can be ac-
cessed from C, Python, Java, and more languages (Figure 4-1).

| Grtmansger Opensiack [ovre |

10K

N BT LATES AF |

; . i | | 3 v !
(v) o oo v)) e o)

Figure 4-1. libvirt API, image taken from Wikipedia under Creative
Commons License. Attribution: Shmuel Csaba Otto Traian

Installing libvirt

To benefit from the ease of use of libvirt, the first thing we need to do is
installing it. We'll search for a package named libvirt.

antonio@antonio-Laptop:~$ apt search libvirt

libvirt-daemon/jammy-updates, jammy-security,now
8.0.0-1ubuntu7.10 amd64 [installed,automatic]
Virtualization daemon

148

https://commons.wikimedia.org/wiki/File:Libvirt_support.svg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We can see there are many packages related to libvirt. We’ll begin by
installing the libvirt-daemon package.

antonio@antonio-Laptop:~$ sudo apt install libvirt-daemon

Later we'll use the command virsh, included in the libvirt-clients
package. We'll install this package as well.

antonio@antonio-Laptop:~$ sudo apt install libvirt-clients

virt-manager

Another interesting tool based in libvirt is virt-manager; this is a graphical
application that makes the creation and management of virtual machines
much more user friendly.

We install virt-manager if it is not already installed.

antonio@antonio-Laptop:~$ sudo apt install virt-manager

We launch virt-manager and a new window will open. By default, the
program will try to connect to the local Xen hypervisor (Figure 4-2). If there
is no local Xen hypervisor running, we could get the error message shown
in Figure 4-3.

149

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager (on antonio-menta) - O

File Edit View Help

L_[;,_‘ B Open > 1l @
Name - | CPU usage
¥en - Not Connected

x

Figure 4-2. virt-manager trying to connect to a local Xen server

150

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager Connection Failure

® Unable to connect to libvirt xen:///.
Failed to connect socket to 'fvar/run/libvirt/
libvirt-sock’: Permission denied

Verify that:
- A Xen host kernel was booted
- The Xen service has been started

» Details

Close

Figure 4-3. Error connecting to a local Xen server

virt-manager can also be used to manage remote hypervisors. For
instance, we can connect to one of the remote Xen hypervisors we worked
with in the previous chapter. We need to click “File” » “Add connection...”;
a new window will pop up (Figure 4-4).

151

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Add Connection (on antonio-menta) X v'

Hypervisor: Xen ~
Connect to remote host over SSH

Username: root
Hostname: 192.168.1.70

Autoconnect:
Generated URI: xen+ssh://root@192.16...

Cancel Conneckt

Figure 4-4. Connecting to a remote Xen server

If we haven’t set up ssh key-based authentication and we don’t have
the ssh askpass installed, we’ll get an error message when virt-manager
tries to connect to the remote hypervisor (Figure 4-5).

152

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager Connection Failure
Unable to connect to libvirt xen+ssh://
root@192.168.1.70/.

Configure SSH key access for the remote
host, or install an SSH askpass package

locally.

Would you still like to remember this
connection?

> Details

No Yes

Figure 4-5. Error trying to connect to the remote hypervisor

If we prefer to be asked for the password when connecting to the
remote Xen system, we need to install the ssh-askpass package.

antonio@antonio-Laptop:~$ apt search askpass

ssh-askpass/jammy,now 1:1.2.4.1-13 amd64
under X, asks user for a passphrase for ssh-add

antonio@antonio-HP-Laptop-15s-fqixxx:~$ sudo apt install
ssh-askpass

153

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Now we’re ready to connect to the remote Xen server. But we must also
make sure that libvirt is also installed (and running) on the target server;
otherwise, we'll get the error shown in Figure 4-6.

Virtual Machine Manager Connection Failure
Unable to connect to libvirt xen+ssh://
root@192.168.1.70/.

End of File while reading data: Warning:
Permanently added '192.168.1.70'

(ED25519) to the list of known hosts.
virt-ssh-helper: cannot connect to '/var/run/
libvirt/libvirt-sock": Failed to

connect socket to 'fvarfrun/libvirt/libvirt-

sock': No such File or directory:
Input/output error

Verify that the 'libvirtd' daemon is running
on the remote host.

> Details

Close

Figure 4-6. libvirt not running on the remote server

Finally, we will be able to connect (Figure 4-7).

154

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager (on antonio-menta) - O X :
File Edit View Help
B [open p W ©

Name ~ | CPU usage

¥en - Not Connected

Xen: 192.168.1.70

Figure 4-7. virt-manager connected to a remote Xen hypervisor

In addition to Xen, virt-manager can also be used to manage many
other hypervisors and also containers. For instance, we can use virt-
manager to connect to our local system, in which we installed QEMU
previously (Figure 4-8).

155

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager D O @
File Edit View Help
[W open Pp I @

Name ~ CPU usage

QEMU/KVM

Figure 4-8. virt-manager connected to the local QEMU/KVM
hypervisor

We haven'’t studied LXC so far, but we can also use virt-manager
to manage Linux containers. At this point, we're not going to dive into
container creation; we'll do that later in the book, but we’ll see how we
can set up virt-manager to manage containers as well as virtual machines.
Later, when we study LXC, we'll see some examples of the use of virt-
manager and containers.

156

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

First, we need to open virt-manager and click “File” » “New
Connection” Then, on the “Hypervisor” field, we select “Libvirt-LXC”
(Figure 4-9).

Add Connection X

Hypervisor: Libvirt-LXC ~
Connect to remote host over SSH

Username:
Hostname:

Autoconneck:
Generated URI: Ixc:///

Cancel Connect

Figure 4-9. Using virt-manager to manage LXC

For the connection to be successful, we need to install the
corresponding libvirt connection driver for LXC. Otherwise, we’ll get the
error message shown in Figure 4-10.

157

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager Connection Failure

® Unable to connect to libvirt lxc:///.
Failed to connect socket to 'fvar/run/libvirt/
virtlxcd-sock': No such file or
directory

Would you still like to remember this
connection?

> Details

Figure 4-10. Error when trying to manage LXC from virt-manager

We'll install the required driver in the host system.

antonio@antonio-Laptop:~$ sudo apt install libvirt-daemon-
driver-1xc

After that, we'll restart the libvirtd service.
antonio@antonio-Laptop:~$ sudo systemctl restart libvirtd

And we're ready to manage LXC as well as QEMU/KVM virtual
machines with virt-manager (Figure 4-11).

158

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager = (=) €x
File Edit View Help
@ B Open [il w@
Name CPU usage
LXC
QEMU/KVM

Figure 4-11. virt-manager connected to QEMU/KVM and LXC

Installing and Managing a Virtual Machine
with virt-manager

In the previous chapters about QEMU and Xen, we have already created
virtual machines. Tools like virt-manager and virsh, which we’ll see later,
greatly simplify the creation and management of virtual machines.

159

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We'll begin by connecting to our local QEMU/KVM hypervisor and
clicking on the first icon on the left, “Create a new Virtual Machine” Then
we'll see a new window with several options (Figure 4-12).

New VM X |

m Create a new virtual machine

Connection: | QEMU/KVM ~

Choose how you would like to install the operating system
Local install media (ISO image or CDROM)
Network Install (HTTP, HTTPS, or FTP)
© Import existing disk image
Manual install

> Architecture options

Cancel Back Forward

Figure 4-12. Creating a new QEMU/KVM virtual machine

We can install a new server manually from an ISO file, using a network
installation server or importing a disk image. We can also select the
architecture of the VM; the default value is x86_64, but we can select any of
the architectures supported by QEMU.

160

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Importing an Existing Virtual Machine into
virt-manager

As we already installed manually a virtual machine in QEMU, we’ll import
this disk image in virt-manager. We select the “Import existing disk image”

option and click the “Forward” button.
In the next screen, we need to specify the storage path (Figure 4-13).

New VM X |

m Create a new virtual machine

Provide the existing storage path:
Browse...
Choose the operating system you are installing:
Q Type to start searching...
Cancel Back Forward

Figure 4-13. Providing the storage path

161

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

When clicking the “Browse” button, we access the “storage volume”
windows (Figure 4-14). A storage volume in libvirt is an abstraction used to
define an available storage space. By default, a single storage volume of the
type dir exists in the path /var/lib/libvirt/images.

Locate or create storage volume X
default Details XML
E6% Filesystem Directory e -
Size: 102.85 GiB Free / 683.90 GiB In Use

Location: /var/lib/libvirt/images

Volumes @ C

Q| » Q| & Browse Local Cancel

Figure 4-14. Default storage volume

To import the QEMU virtual machine we created in Chapter 2, we
need to create a new storage volume from the folder in which the disk file
is located. We'll click on the “+” sign to create a new storage volume of the
type dir, and we’ll point it to the folder in which the QEMU virtual machine
is located (Figure 4-15).

162

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Add a New Storage Pool X |

e Create storage pool
+

Details XML
Name: QEMU_VMs
Type: | dir: Filesystem Directory v
Target Path: = /home/antonio/QEMU_VMs Browse
Cancel Finish

Figure 4-15. Adding a new storage volume

Once the new storage volume is created and activated, we can see all
the files present (Figure 4-16).

163

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Locate or create storage volume
g6z default Details XML
Filesystem Directory
869 QEMU_VM; Size: 102.84 GiB Free / 683.91 GiB In Use
Gillesyss mBiECEY Location: /home/antonio/QEMU_VMs
Volumes @ | C @
Volumes Size Format Used By
alpine_disk.qcow 512.00 MiB qcow2
bin 0.00MiB dir
BINARY_SLA.Ext 0.02 MiB raw
BKalpine.pvlinux 513.02 MiB raw
BSD+_License.txt 0.00MiB raw
debian2.qcow2 10.00GiB qcow2
debian.qcow2 10.00GiB qcow2
debian_squeeze_armel_standard.qcow2 25.00GiB qcow2
GPLv2_License_OpenSPARCT1.txt 0.02MiB raw
hypervisor 0.00MiB dir
initrd.img-2.6.32-5-versatile 2.38MiB raw
legion 0.00MiB dir
©(» | O ® Browse Local Cancel Choose Volume

Figure 4-16. New storage volume created

Now we can finally select the disk file that we want to import, and we’ll
get back to the “New VM” window. We'll choose the OS of the disk that
we're importing too (Figure 4-17).

164

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

New VM X |

m Create a new virtual machine

Provide the existing storage path:

/home/antonio/QEMU_VMs/debian.qcow2 Browse...

Choose the operating system you are installing:

Q) Debian12

Cancel Back Forward

Figure 4-17. Importing a virtual machine into virt-manager. Step 2

165

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

After clicking the “Forward” button, we’ll select the number of CPUs
and the amount of memory for the virtual machine (Figure 4-18).

New VM X |

m Create a new virtual machine

Choose Memory and CPU settings:

Memory: 2048 — | +
Up to 15674 MIB available on the host

CPUs: | 2 - +

Up to 8 available

Cancel Back Forward

Figure 4-18. Importing a virtual machine into virt-manager. Step 3

In the last step, we assign a name to the virtual machine (Figure 4-19).
We can see a brief summary of the settings applied to the machine. We can
edit some of these settings, but for now, we’ll leave them unchanged. We
click the “Finish” button and we’ll see the machine booting (Figure 4-20).

166

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

New VM X

m Create a new virtual machine

Ready to begin the installation

name: debian12
0OS: Debian 12
istall: Import existing OS image
Memory: 2048 MiB
CPUs: 2
Storage: ... [antonio/QEMU_VMs/debian.qgcow2
Customize configuration before install

> Network selection

Cancel Back Finish

Figure 4-19. Importing a virtual machine into virt-manager. Step 4

167

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

debian12 on QEMU/KVM = (3 &

File VirtualMachine View Send Key

=- @ ne - e

Booting ‘Debian J/Linux "

Loading Linux 6.1
Loading initial ramdisk

Figure 4-20. Booting up the virtual machine

From the virt-manager console, we can work on the virtual machine
as we'd do in any physical server. We can also click on the “show virtual
hardware details” (Figure 4-21) to get information about the virtual
machine, such as performance, CPUs, memory, networking, etc.

168

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

debian12 on QEMU/KVM 5 © €

File Virtual Machine View SendKey
L) ne - ©

@‘ Overview Details XML
El‘ OS information

CPU usage

{J cpus

Boot Options 1%
[virtiopisk 1
A Nic:eaicads
@ Tablet

Mouse

= | Keyboard Disabled
C] Display Spice Disk I/0

Sound ich9

G Serial1

Memory usage

G Channel gemu-ga
G Channelspice Disabled
[3 Video Virtio Network I/0

m Controller UsB 0

m Controller PCle 0

m Controller SATA 0

m Controller VirtlO Serial 0
j} USB Redirector 1

jﬁ USB Redirector 2

@?@ RNG /dev/urandom

Disabled

Add Hardware

Figure 4-21. Virtual machine details

When we're done, we can shut down the machine either from the
console itself or by using the power button in virt-manager. If we decide
to use the power button, we can shut down the virtual machine gracefully
or we can force it to shut down if the system is unresponsive.

Creating a Fresh New Virtual Machine in virt-manager

In addition to importing already-existing virtual machines, we can also
install a new virtual machine. We won’t repeat the whole process because
it is quite similar to what we did previously in this same book, but we’ll see
the first steps.

169

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

As we did before, when importing an existing VM, we connect to our
local QEMU/KVM hypervisor and click “Create a new Virtual Machine’,
and we select the option (Figure 4-22).

New VM X |

m Create a new virtual machine

Connection: | QEMU/KVM ~

Choose how you would like to install the operating system
© Local install media (I1SO image or CDROM)
Network Install (HTTP, HTTPS, or FTP)
Import existing disk image
Manual install

~ Architecture options
Architecture: | x86 64 ~

Cancel Back Forward

Figure 4-22. Creating a new VM in virt-manager installing from
local media

170

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

In the next screen, we need to specify the path to the install media
(Figure 4-23). We click the “Browse” button.

New VM X |

m Create a new virtual machine

Choose I1SO or CDROM install media:

No media selected ~ Browse...

Choose the operating system you are installing:
Q Type to starkt searching...

Automatically detect from the installation media / source

Cancel Back ‘ Forward

Figure 4-23. Locating the install media

171

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We'll search for the ISO installation file in the storage volumes already
defined (Figure 4-24). In our case, we assume that the ISO file is already
located in the /home/antonio/QEMU_VMs/ folder; if it’s not, we'll copy it
to that location.

Locate ISO media volume
e gileeggtletm Directory Details XML
Size: 100.81GiB Free / 685.94 GiB In Use
Gillesyss mBiECEY Location: /home/antonio/QEMU_VMs
Volumes @ | C @
Volumes Size Format Used By
alpine_disk.qcow 512.00 MiB qcow2
bin 0.00MiB dir
BINARY_SLA.Ext 0.02 MiB raw
BKalpine.pvlinux 513.02 MiB raw
BSD+_License.txt 0.00MiB raw
debian-12.5.0-amd64-DVD-1.iso 3.72GiB
debian2.qcow2 10.00GiB qcow2
debian.qcow2 10.00GiB qcow2 debian12
debian_squeeze_armel_standard.qcow2 25.00GiB qcow2
GPLv2_License_OpenSPARCT1.txt 0.02MiB raw
hypervisor 0.00MiB dir
initrd.img-2.6.32-5-versatile 2.38MiB raw
©(» | O ® Browse Local Cancel Choose Volume

Figure 4-24. Selecting the ISO file

172

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We click the ISO file and select the operating system, Debian 12 in this
example (Figure 4-25).

New VM X |

m Create a new virtual machine

Choose I1SO or CDROM install media:

nio/QEMU_VMs/debian-12.5.0-amd64-DVD-1.iso = ~ Browse...

Choose the operating system you are installing:
1 Debian12

Automatically detect from the installation media / source

Cancel Back Forward

Figure 4-25. Creating a new VM from the installation media

173

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We choose the number of CPUs and memory assigned, as well as the
disk storage (Figures 4-26 and 4-27).

New VM X |

m Create a new virtual machine

Choose Memory and CPU settings:

Memory: 2048 — | +
Up to 15674 MIB available on the host
CPUs: | 2 - +

Up to 8 available

Cancel Back Forward

Figure 4-26. Choosing CPU and memory settings

174

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

New VM

m Create a new virtual machine

Enable storage For this virtual machine

© Create a disk image for the virtual machine
20,0 — + | GiB
5 GiB available in the default location

Select or create custom storage

Cancel Back

Forward

Figure 4-27. Assigning the disk space to the new VM

After that, we get to the last window of the VM creation. We assign
a name to our new VM, and we can see a brief summary of the settings
(Figure 4-28). After clicking the “Finish” button, the virtual machine will
boot from the virtual CD and start the installation process (Figure 4-29). As
we said before, we won’t complete the installation as the purpose of this

175

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

section is simply to show how easy it is to install a new virtual machine in

virt-manager, so we'll stop here and delete the virtual machine we were

installing.

New VM

m Create a new virtual machine

Ready to begin the installation

rame: debian12-2

0S: Debian 12
nstall: Local COROM/ISO

Memory: 2048 MiB

CPUs: 2

Storage: 20.0 GiB ... lib/libvirt/images/debian12-2.qcow2

Customize configuration before install

> Network selection

Cancel Back

Finish

Figure 4-28. VM settings summary

176

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

debian12-2 on QEMU/KVM = 8 €

File VirtualMachine View Send Key

- @ neo - @ e’

© debian 12

Debian GNU/Linux installer menu (BIOS mode)

Ad options >
Accessible dark contrast installer menu >

Help
Install with speech synthesis

Press a key, otherwise speech synthesis will be started in 27 seconds...

Figure 4-29. Beginning the installation

Accessing libvirt from Our Own Programs

As we mentioned before, we can access this API from many languages.
We'll see a few simple examples.

Accessing libvirt from a C Program

In order to create a C program able to interact with libvirt, we need to in-
stall first the libvirt-dev package.

antonio@antonio-HP:~$ sudo apt install libvirt-dev

177

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT
After installing the package, we’ll get a bunch of header files.

antonio@antonio-HP:~$ 1s /usr/include/libvirt/

libvirt-admin.h libvirt-host.h libvirt-qemu.h
libvirt-common.h libvirt-interface.h libvirt-secret.h
libvirt-domain.h libvirt-Ixc.h libvirt-storage.h
libvirt-domain-snapshot.h libvirt-network.h libvirt-stream.h
libvirt-event.h libvirt-nodedev.h virterror.h
libvirt.h libvirt-nwfilter.h

This is not supposed to be a book about libvirt programming, so we
won't get into much detail, but we'll show an easy example to see how to
manage our virtual machines from our C programs using the libvirt API.

In the beginning of this chapter, we installed the libvirt-clients pack-
age, which includes the virsh command. We’re not going to study virsh
now; we'll do that later. But we'll execute it to obtain some information
about the virtual machines that libvirtd is currently aware of.

We'll begin by listing all the domains/virtual machines.

antonio@antonio-Laptop:~$ virsh list --all
Id Name State

- debian12 shut off

The VM we imported in virt-manager is currently shut down. We’ll
start it because we need to know the domain ID for our example.

antonio@antonio-Laptop:~$ virsh start debiani2
Domain 'debiani2' started

antonio@antonio-HP-Laptop-15s-fqixxx:~$ virsh list --all
Id Name State

2 debian12 running

178

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

In my case, the domain ID is “2’, but in your case, you might get a
different value. Let’s proceed to code our little example in C. We'll see the
source code and we'll explain it later.

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$
cat uno.c

#include <stdio.h>

#include "libvirt/libvirt.h"

int main(int argc, char **argv) {
virConnectPtr c;
virDomainPtr d;
char *name;

¢ = virConnectOpen(NULL);
d = virDomainLookupByID(c, 2);
name = virDomainGetName(d);

printf("name of domain %d is %s\n", 2, name);
return 0;

First, we include in our program the libvirt library, as well as the
stdio library. Then we declare a couple of variables c and d, which are
respectively pointers to a virConnect struct and a virDomain struct. We
open a connection to the hypervisor with the virConnectOpen function. As
we didn’t specify which hypervisor to connect to, but used the parameter
“NULL; the function will try every hypervisor until one successfully opens.

Once we have a connection established, we search for the domain with
the ID 2, as we previously saw, by using the function virDomainLookup-
ByID, and we get its associated name with virDomainGetName. Finally, we
print the result on the screen.

179

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

If we compile the program and execute it, we'll see the name of the VM
with the ID 2.

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$ gcc
uno.c -lvirt -o uno

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$./uno
name of domain 2 is debiani2

Accessing libvirt from a Python Program

We mentioned in the beginning of the chapter that the libvirt API can be
accessed by using many program languages. We already have seen how to
access it from a C program, and now we’ll do the same thing from a Python
program.

To use the API, we'll have to install the python3-libvirt package in
Ubuntu Linux.

antonio@antonio-Laptop:~$ sudo apt install python3-libvirt

We can now create our own Python programs to interact with libvirt.
As an example, we'll use the Python interpreter interactively to see how
easy it is to integrate libvirt in our Python programs. We’ll assume that
our virtual machine named “debian 12” is already running; if it’s not, we’ll
start it either with virt-manager or virsh. After that, we start the Python
interpreter.

antonio@antonio-Laptop:~$ python3

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
on linux

Type "help", "copyright", "credits" or "license" for more
information.

>>>

180

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT
We need to import the libvirt Python module we installed previously.
>>> import libvirt
We can now connect to libvirtd.
>>> conn = libvirt.open()

We didn’t use any parameter, so we’ll connect to the first available
hypervisor. We can see the hypervisor we're connected to with this
command:

>>> conn.getURI()
‘gemu:///system’

We'll do something simple such as obtaining the domain IDs.

>>> conn.listDomainsID()

[5]

We see that currently we only have a domain ID, which is 5 in this
case. In your case, it could be any other value. We’ll search the domain
associated to this ID. And we'll assign this pointer value to a variable

named domid.

>>> conn.lookupByID(5)
<libvirt.virDomain object at 0x7765cfe38670>
>>> domid = conn.lookupByID(5)

Now, we can perform several operations. We'll see just a few examples,
such as getting the domain name, showing the VM configuration as an
XML file, or getting the type of virtual machine.

>>> libvirt.virDomain.name(domi)
"debiani12’
>>> libvirt.virDomain.XMLDesc(domid)

181

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

"‘<domain type=\"kvm\"' id=\"'5\"'>\n <name>debiani2</
name>\n <uuid>05959a22-b9e4-4d99-a3ae-161946880ff1</
uuid>\n <metadata>\n <libosinfo:1libosinfo

>>> libvirt.virDomain.0SType(domid)
"hvm'

To finish this brief demonstration on how to interact with libvirt from
Python, we see how to connect to a different hypervisor or container
runtime. Previously we opened a connection to LXC from virt-manager.

Now we’ll do the same thing from Python.
>>> conn2 = libvirt.open('lxc:///")

As we haven't studied containers so far - we'll do that later - we don’t
have any containers in our host. However, the example is perfectly valid to
show how libvirt can be accessed from Python.

>>> conn2.listDomainsID()

[]

Migrating a Virtual Machine to Another Host

We have seen previously how to connect virt-manager to a remote host.
Thanks to this, we can migrate a virtual machine between different hosts.
We'll create a new connection to a remote host the usual way by click-
ing “File” » “Add connection” and we’ll fill in the needed parameters
(Figure 4-30).

182

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Add Connection X

Hypervisor: QEMU/KVM ~
Connect to remote host over SSH

Username: | antonio]
Hostname: | 192.168.1.41

Autoconnect:
Generated URI: gemu+ssh://antonio@1...

Cancel Connect

Figure 4-30. Connecting to a remote QEMU/KVM host

Once the connection is successfully established, we’ll see the list of the
virtual machines in the remote hypervisor (Figure 4-31).

183

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager D 6 6

File Edit View Help

[W open Pp I @

Name ~ CPU usage
LXC

> QEMU/KVM

~ QEMU/KVM: 192.168.1.41

ann-cruea.example.com
' Shutoff

CentO58-KVM
Shutoff

|

lubuntu
Shutoff

|

piloto2-231006.example.com
Shutoff

|
\

Remus
Shutoff

Romulus
== Shutoff

Super
— Shutoff

|
|

Figure 4-31. Virtual machines in the remote QEMU/KVM hypervisor

If we want to migrate the VM “debian12” currently running on our
local host, we'll select it (Figure 4-32) and right-click the migrate option. In
the next window, we’ll see a summary of the operation (Figure 4-33), the
source and destination host, etc.

184

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager D 6 @

File Edit View Help

L Eon PN O -

Name ~ CPU usage
LXC

~ QEMU/KVM

debian12
== Running f

~ QEMU/KVM: 192.168.1.41

ann-cruea.exXxam ple.com
\5‘ Shutoff

CentOS8-KVM
‘!‘ Shutoff

lubuntu
L]

Shutoff

piloto2-231006.example.com
_E_J Shutoff

Remus
l! |

Shutoff

Romulus
l! |

Shutoff

Super
\!J i

Shutoff

Figure 4-32. Migrating a VM from the local host to a remote host

185

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Migrate the virtual machine X

E Migrate 'debian12'

Details XML

New host: | QEMU/KVM: 192.168.1.41 v

Connectivity
Mode: Direct ~

Address: @ antonio-i7
Port: 49152 — +
> Advanced options

Cancel Migrate

Figure 4-33. VM migration summary

However, when we click the “Migrate” button, we’ll get the error shown

in Figure 4-34.

186

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Unable to migrate guest: Unsafe migration:
Migration without shared storage is

unsafe

~ Details

Unable to migrate guest: Unsafe migration: Migration without shared
storage is unsafe

Traceback (most recent call last):
File "/usr/share/virmanager/virtManager/asyncjob.py", line 72, in
cb_wrapper
callback(asyncjob, *args, **kwargs)
File "fusr/share/vir-manager/virtManager/migrate.py", line 429, in
_async_migrate
vm.migrate(dstconn, migrate_uri, tunnel, unsafe, temporary, xml,
File "fusr/share/virmanager/virtManager/object/domain.py", line
1499, in migrate

Close

Figure 4-34. Migration error

We got an error because currently the storage pool in which the
disk file is located is a directory local to the QEMU/KVM host. That is
considered insecure and by default is not allowed. Later we’ll see briefly
that we can create many different storage pools, some of which are shared.

For now, we’ll see how to perform the migration modifying the default
Advanced options so that unsafe migration is allowed. We'll repeat the
procedure, but this time we’ll migrate a VM from the remote host to the
local host. We'll select the “lubuntu” VM (Figure 4-35) and right-click on
the “migrate” option. This time we’ll edit the Advanced options and
activate the “Allow unsafe” option (Figure 4-36).

187

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager = & =

File Edit View Help

L oo P NO -

Name ~ CPU usage
LXC
~ QEMU/KVM

debian12
Running

~ QEMU/KVM: 192.168.1.41

ann-cruea.exam ple.com
\-J Shutoff

CentOS8-KVM
‘-‘ Shutoff L e
lubuntu
== Running

piloto2-231006.example.com
\-J Shutoff

Remus
L]

Shutoff

- Romulus

~— Shutoff

- Super

~—— Shutoff

Figure 4-35. Migratinga VM

188

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Migrate the virtual machine X

E Migrate 'lubuntu’

Details XML

VM: lubuntu
Original host: antonio-i7 (QEMU/KVM: 192.168.1.41)

New host: | QEMU/KVM v

Connectivity
Mode: | Direct ~

Address: antonio-HP-Laptop-15:
Port: 49152 — +

~ Advanced options
Allow unsafe:
Temporary move:

Cancel Migrate

Figure 4-36. Allowing unsafe migration

189

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

However, after clicking the “Migrate” button, we'll get the error shown
in Figure 4-37.

Unable to migrate guest: Cannot access
storage File

'fvar/lib/libvirt/images/lubuntu.img": No
such file or directory

» Details

Close

Figure 4-37. Error migrating the VM. Unable to access the storage file

This error is completely normal; the disk file currently only exists on
the remote host, not on the local host. So when the migration process tries
to access the storage file in the destination host, it returns this error. To fix
this, we’ll copy the disk file from the remote host to the local host with scp
or any other tool.

antonio@antonio-Laptop:~$ sudo scp antonio@192.168.1.41:/var/
lib/libvirt/images/lubuntu.img /var/lib/libvirt/images/

Once the file has been copied, we’'ll try to migrate again. This time the
procedure starts to execute (Figure 4-38).

190

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Migrating VM 'lubuntu’

Migrating VM 'lubuntu’ to QEMU/KVM tcp:antonio-HP-
o Laptop-15s-fq1xxx:49152. This may take a while.

Migrating domain

Cancel

Figure 4-38. Migratinga VM

The migration can take a while, but after it is complete, we can see
the VM running on the local QEMU/KVM host (Figure 4-39). And we can
access the server console and manage it (Figure 4-40).

191

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Virtual Machine Manager

File Edit View Help

e [oOpen

Name

> n o

~

LXC
~ QEMU/KVM

debian12
Lot Running

) | lubuntu

Running
~ QEMU/KVM: 192.168.1.41

ann-cruea.example.com
-‘ Shutoff

CentOS8-KVM
~_ Shutoff

CPU usage

—— — -

lubuntu
== Paused

piloto2-231006.example.com
Shutoff

Ll
L
L

Remus
— Shutoff

Romulus
~— Shutoff

Super
Shutoff

Figure 4-39. Migration completed

192

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

lubuntu on QEMU/KVM -

File VirtualMachine View Send Key

E@ "@ i ¢

Figure 4-40. Accessing the console of the migrated VM

Managing Snapshots

We have already seen that we can create snapshots in QEMU by using
QEMU monitor; we can also create snapshots in Xen domains using the x1
command. But now we’ll see we can do this same thing in a much easier

way from virt-manager.

193

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

To create a snapshot in virt-manager, we open the virtual machine and

click on the last icon, “Manage VM snapshots” (Figure 4-41).

deblan12 on QEMU/KVM 5O &

File VirtualMachine View Send Key

= @ ne - - @

No snapshot selected.

Figure 4-41. Managing VM snapshots

We'll click on the “+” icon to create a new snapshot (Figure 4-42).

194

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Create snapshot

’ Create snapshot
+

Name:

Status: Running

Description: Before deleting a file

Screenshot:

astonio@deblan: -

Cancel

Finish

Figure 4-42. Creating a snapshot in virt-manager

195

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

If we want to restore the snapshot, we select it (Figure 4-43) and click
the “play” button (run selected snapshot). We confirm that we want to
restore the snapshot discarding the current changes (Figure 4-44).

deblan12 on QEMU/KVM
File VirtualMachine View Send Key

=0 »

[snepshott = Snapshot 'snapshot1':
VM State: Shutoff

B

@ 7his was the most recently applied snapshot.
Timestamp: 2024-07-02 20:17:24
VMsState: B Shutoff

Description: Before deletinga file

Screenshot: No screenshot available

©/» C @

Figure 4-43. Restoring a snapshot

Are you sure you want to run the snapshot 'snapshot1'? All the
disk changes

since the last snapshot was created will be discarded.

Figure 4-44. Confirming that we want to restore the snapshot

Finally, when we no longer need the snapshot, we can delete it by
clicking on the “delete snapshot” icon.

196

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Storage Pools and Volumes

Every VM machine needs to store its data somewhere; this is where storage
pools and storage volumes come into play. The storage pool is a certain
amount of storage set aside by the administrator to be used by the virtual
machines. The storage pool is divided into storage volumes.

For example, when we used a local directory as the storage pool, every
file inside that local directory was a storage volume. These volumes are
assigned to the virtual machines as block devices.

In libvirt, we can create the following storage pools:

o dir: Filesystem Directory

o disk: Physical Disk Device

o fs: Preformatted Block Device

o gluster: Gluster Filesystem

o iscsi:iSCSI Target

e logical: LVM Volume Group

o mpath: Multipath Device Emulator
o netfs: Network Exported Directory
e rbd: RADOS Block Device/Ceph

e scsi: SCSI Host Adapter

o sheepdog: Sheepdog Filesystem

o zfs: ZFS Pool

As we can see, there are many different types of storage pools. We
won'’t see each and every one of them, but we’'ll see a couple of examples.

We have already seen the dir type so we'll see two different types of
storage pool. We'll begin by creating an NFS share in a server, and then
we'll create a storage pool of the type netfs. We've seen already how to

197

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

create a storage volume when we created our first virtual machine in virt-
manager. We'll repeat the procedure, but this time we’ll select the type
netfs (Figure 4-45).

Add a New Storage Pool D

a Create storage pool
+

Details XML

Name: NFS_storage

Type: | netfs: Network Exported Directory -~

Target Path: | /var/lib/libvirt/images/NFS_storage Browse
Format: auto N
Host Name: | 192.168.1.70

Source Path: | /[STORAGE

o]
o

Cancel Finish

Figure 4-45. Creating a storage pool of the type netfs

198

Filesystem Directory

NFS_storage 5
R Network Exported Directory Name:

% QEMU_VMs Size:
Filesystem Directory \oetion:

State:

Volumes

o[>0

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

QEMU/KVM - Connection Details

File
Overview Virtual Networks Storage
862 default Details XML

NFS_storage
1.62 GiB Free / 6.37 GiB In Use
/var/lib/libvirt/images/NFS_storage
| Active

Autostart: On Boot

©|C

Figure 4-46. Network exported storage pool

Once created, we can access it in the same way as the dir type storage

volume previously created (Figure 4-46). The way to work is basically the

same for both types; each file in the NFS share will be a storage volume,

just like we have seen in the dir type.

If we want to create a storage pool of the type “logical’, the procedure

is quite similar. We create a new storage pool, and this time we choose the

type “logical” and select a volume group that needs to exist in our host

(Figure 4-47).

199

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Add a New Storage Pool

e Create storage pool
+

Details XML
Name: | VG_storage]
Type: logical: LM Volume Group ~
Volgroup Name: | VG_VM ~
Cancel

Finish

Figure 4-47. Creating a storage pool of the type “logical”

Similarly to what we've seen in the previous types of storage pools

created, the storage pool is divided into storage volumes. So if we install

a new virtual machine and decide to store that virtual machine in the

newly created logical storage pool, we'll see later that a new file (a storage

volume) is created (Figure 4-48).

200

File
Qverview
7% default

Filesystem Directory

o QEMU_VMs
e Filesystem Directory

VG_storage
e LVM Volume Group

o

Virtual Networks

Details

Name:

Size:
Location:
State:

Autostart: On Boot

Volumes

alpinelinux3.18

Storage

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

QEMU/KVM - Connection Details

XML

VG_storage

2.00 GiB Free / 2.00 GiB In Use
/dev/VG_VM
| Active

© C

2.00 GiB alpinelinux3.18

Figure 4-48. Storage pool with a newly created storage volume

Networking

When installing libvirt, a new interface virbr0 is created. This is a bridge

used by default by libvirt to establish the communication between the vir-

tual machines and the host and, in some cases, the external network. We

can list this interface in the host.

antonio@antonio-Laptop:~$ ip link show virbr0

3: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN mode DEFAULT group default glen 1000
link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff

201

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

In this case, the interface is down because the virtual machine we
created previously with virt-manager is currently down. If we start it, we’ll
see that the status of the interface changes to “up”.

antonio@antonio-Laptop:~$ ip link show virbr0

3: virbr0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qgdisc

noqueue state UP mode DEFAULT group default gqlen 1000
link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff

We can see the network settings by opening the virtual machine from
virt-manager and selecting the “Show virtual hardware details” option
(Figure 4-49).

debian12 on QEMU/KVM - X
File Virtual Machine View Send Key
=@ » nod - B
=5 Memory Details XML
@é Boot Options Virtual Network Interface

[virtio Disk 1

' NIC:ed:ca:ds

Network source: | victyal network 'default’ : NAT v

@ Tablet Device model: = virtio ~
P Mouse MAC address: 52:54:00:e4:c4:d9
=] Keyboard
4 IP address: 192.168.122.124 | C
C] Display Spice
Sound ichg Link state: [active
G Serial 1

& Channel gemu-ga

¢ Channel spice

[;] Video Virtio

m} Controller USB 0

m Controller PCle 0

m Controller SATA 0

m Controller VirtlO Serial 0
3’2 USB Redirector 1

3’2 USB Redirector 2

RNG /dev/urandom

Add Hardware Remove

Figure 4-49. Virtual machine network settings

202

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

In this example, we can see that the NIC of the VM is connected
to the network “Virtual Network default’; and it is using NAT (Network
Address Translation). We can also see the IP address assigned to the VM
through DHCP.

If we take a look at the “Virtual Networks” section of the current hyper-
visor (Figure 4-50), we’ll see that currently we only have one virtual net-
work defined. We can see the range of addresses that are assigned to the
clients through DHCP, as well as the fact that the network is using NAT.

QEMU/KVM - Connection Details = (=) ¢
Eile

Overview Virtual Networks Storage

t default Details XML

Name: default

Device: virbro
State: (K= Active

Autostart: On Boot

v IPv4 configuration
Network: 192.168.122.0/24

DHCP range: 192.168.122.2-192.168.122.254
Forwarding: NAT

©)

Figure 4-50. Virtual networks

Now that we have an overall idea of networking in libvirt, let’s see a bit

more of detail about it.

203

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We've seen that right after installing libvirt, a new network interface
named virbro is created. By default, all virtual machines created using
libvirt will be connected to this interface. We have seen this in the case of
our “Debian 12” virtual machine. If we check the network settings from the
virtual machine itself, we’ll see this:

antonio@debian:~$ ip address show enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc
fq_codel state UP group default glen 1000
link/ether 52:54:00:e4:c4:d9 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.124/24 brd 192.168.122.255 scope global
dynamic noprefixroute enp1so
valid 1ft 2671sec preferred 1ft 2671sec
inet6 fe80::5054:ff:fee4:c4d9/64 scope link noprefixroute
valid 1ft forever preferred 1ft forever
antonio@debian:~$ ip route
default via 192.168.122.1 dev enp1s0 proto dhcp src
192.168.122.124 metric 100
192.168.122.0/24 dev enp1sO proto kernel scope link src
192.168.122.124 metric 100

We can see that it got its IP address and gateway address through
DHCP. Of course the IP address of the gateway is that of the virbr0 network

interface.

antonio@antonio-Laptop:~$ ip address show virbro
3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc
noqueue state UP group default qlen 1000
link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.1/24 brd 192.168.122.255 scope
global virbro
valid 1ft forever preferred 1ft forever

204

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Both DHCP and DNS services are provided by libvirt using dnsmasq.
This is a light DNS/DHCP server. This software can work independently but
in libvirt is fully integrated and can be managed using the usual libvirt tools.

The default network uses NAT (Network Address Translation); that is,
when communicating with the outside world, the host IP is used instead of
the guest IP. We'll see an example. Let’s suppose we want to access a web
server from our “Debian 12” virtual machine.

antonio@debian:~$ wget http://192.168.1.250
In the web server logs, we will find an entry similar to this one:

192.168.1.20 - - [06/Jul/2024:12:24:45 +0200] "GET / HTTP/1.1"
200 2562 "-" "Wget/1.21.3"

We can see that the IP registered is that of the host, not that of the
guest. This is accomplished by modifying the properties of the Linux
firewall. Describing exactly how NAT works is well beyond the scope of this
book, but we’ll see an example of the firewall configuration in the host.

antonio@antonio-Laptop:~$ sudo iptables -t nat -L

Chain LIBVIRT PRT (1 references)

target prot opt source destination
RETURN all -- 192.168.122.0/24 base-address.
mcast.net/24

RETURN all -- 192.168.122.0/24 255.255.255.255
MASQUERADE tcp -- 192.168.122.0/24 1192.168.122.0/24
masq ports: 1024-65535

MASQUERADE udp -- 192.168.122.0/24 1192.168.122.0/24
masq ports: 1024-65535

MASQUERADE all -- 192.168.122.0/24 1192.168.122.0/24

205

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

This default network configuration is most of the time everything
we need to work, but there are many other options available. We'll see a
couple of them.

We'll start by creating a routed network. We create a new virtual
network, but this time we choose the “Routed” mode. We can also edit
the DHCP settings if we want to, but the default values are OK for this
example. We also assign a descriptive name to this new virtual network
(Figure 4-51).

206

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Create a new virtual network X |

Create virtual network

Details XML
Name: | ROUTED_network
Mode: Routed v

Forward to:‘ Any physical device v

~ IPv4 configuration
Enable IPv4

Network: | 192.168.100.0/24

Enable DHCPv4

Start: | 192.168.100.128
End: 192.168.100.254

> IPv6 configuration

> DNS domain name

Cancel Finish

Figure 4-51. Creating a routed virtual network

207

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Next, we edit the virtual machine settings, and we connect the virtual

NIC to the new virtual network (Figure 4-52).

QEMU/KVM - Connection Details
File
Overview Virtual Networks Storage
(y
" default Details XML
' ROUTED_network
Name: ROUTED_network
Device: virbr1
State: (K= Active
Autostart: OnBoot
Domain: ROUTED_network
~ IPv4 configuration
Network: 192.168.100.0/24
DHCP range: 192.168.100.128 - 192.168.100.254
Forwarding: Routed network
o(» | ©

Figure 4-52. Connecting the Debian 12 virtual machine to the new

virtual network

We might need to refresh the IP settings from the VM console, to make

sure that the new settings are active.

Right after creating the network, a new network interface appears in

the host.

antonio@antonio-Laptop:~$ ip address show virbri
45: virbrl: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000

link/ether 52:54:00:9a:49:a6 bxrd ff:ff:ff:ff:ff:ff

208

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

inet 192.168.100.1/24 brd 192.168.100.255 scope
global virbri
valid 1ft forever preferred 1ft forever

Now we can connect again from the host to the guest, but if we try to
access the same web server from the local network, we won’t be able.

antonio@debian:~$ wget http://192.168.1.250
--2024-07-06 12:47:50-- http://192.168.1.250/
Connecting to 192.168.1.250:80...

This behavior is perfectly normal. The default virtual network was
using NAT, so when the web server received an HTTP request, the source
address was that of the libvirt host, and the web server knows how to
handle that. However, now we’re using a routed network, so there is no
NAT and the real IP from the guest is used. When the web server from the
local network receives a request from 192.168.100.149, it doesn’t know how
to send the information back. It tries to use the default gateway, but the
default network doesn’t know that IP either and the TCP packet is finally
discarded.

To solve this situation, we need to edit the routing tables in our net-
work. The simplest way to do it in this example is by editing the routing
table in the web server computer so that every packet addressed to the
192.168.100.0/24 network is forwarded to the libvirt host computer.

root@raspberrypi:/var/log/apache2# ip route add
192.168.100.0/24 via 192.168.1.20 dev etho

Now we can repeat the test; this time we’ll be able to access the web
server from the local network.

antonio@debian:~$ wget http://192.168.1.250
--2024-07-06 13:02:52-- http://192.168.1.250/
Connecting to 192.168.1.250:80... connected.

209

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

And in the Apache logs, we'll see that the recorded IP address is that of
the guest.

192.168.100.149 - - [06/Jul/2024:13:02:52 +0200] "GET /
HTTP/1.1" 200 2562 "-" "Wget/1.21.3"

Another interesting virtual network type is “Isolated” In this case,
the libvirt guest can communicate with each other and with the host, but
not with the outside world. The way to create it is exactly similar to what
we saw before with the routed mode. In this case, however, we specify
the “Isolated” mode and assign a network that is currently not in use
(Figure 4-53).

210

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Create a new virtual network X |

Create virtual network

Details XML

Name: ISOLATED network
Mode: | Isolated ~

~ IPv4 configuration
4 Enable IPv4

Network: | 192.168.101,0/24

Enable DHCPv4

Start: | 192.168.101.128
End: 192.168.101.254

> IPv6 configuration

> DNS domain name

Cancel Finish

Figure 4-53. Creating an isolated virtual networking

The way to work with this isolated virtual network is exactly the same
as what we have seen so far; we just need to edit the virtual machine
settings and connect the NIC to this new network. As we said before, with
this network, we can only communicate internally with the host and with
other guests, not with the outside world.

211

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

There are also a couple of other modes that can be used for virtual net-
works. The “open” mode is very similar to the “routed” mode, and most of
the time they provide basically the same functionality. Finally, the “SR-IOV
pool” type is very specific and allows different virtual machines to share a
single hardware interface.

Monitoring

When we first introduced virt-manager, we mentioned very briefly that it
can also be used to monitor the use of resources like CPU, memory, and so
on. However, by default, only the CPU is monitored (Figure 4-54).

debian12 on QEMU/KVM D &

File VirtualMachine View Send Key
=0 ne - =

L_-J Overview Details XML
[} osinformation

{J cpus

&5 Memory ‘

Boot Options 50%

|&)] virtio Disk 1

§t Nic:eaicads

@ Tablet
Mouse
Keyboard Disabled

() pisplayspice Disk I/0

Sound ich9

@ serial1

CPU usage

Memory usage

@ Channelgemu-ga
g Channelspice sisabled
(] video virtio Network I/0

B controller usso
[controller pcie0

[controller saTa0

Disabled

Add Hardware

Figure 4-54. Monitoring the CPU

212

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

To monitor memory, disk, and network usage, we need to edit the
preferences by clicking “Edit” » “Preferences” on the main window of virt-
manager. In the new window, we click on the “Polling” tab and select all
the check boxes (Figure 4-55).

Preferences X
General Polling New VM Console Feedback

Stats Options

Update status every | 3 — + |seconds

Poll CPU usage

Poll Disk 1/O

Poll Network I/O

Poll Memory stats

Close

Figure 4-55. Editing the polling preferences

After saving the changes, we can see performance data for memory,
disk, and network interfaces, not only for the CPU (Figure 4-56).

213

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

debian12 on QEMU/KVM D &

File VirtualMachine View Send Key
=0 ne - @

D Overview Details XML
(], osinformation

- CPU usage

{J cpus

= i A

Boot Options 0%

|&] virtio pisk 1

b NiC:eaicad9

@8 Tablet
Mouse A
Keyboard 1537 MiB of 2048 MiB

() pisplay spice Disk I/0

sound ich9 ’ﬂ

I

@ serial1

Memory usage

—

|
|

E

G Channel gemu-ga

OKiB/s read 0 KiB/s write

2

g Channelspice

(] video virtio Network I/0
B controller usso
[controller pcie0
m Controller SATA 0

j——

2

OKiB/s in 0 KiB/s out

Add Hardware

Figure 4-56. Guest performance

virsh

We have already seen a few examples about how to use the libvirt API from
virt-manager and even a couple of simple examples in which we used our
own programs. Even though virt-manager is a very convenient tool, some-
times it is preferable to use a command-line tool like virsh, which can be
used in scripts more easily.

We can execute virsh with the proper parameters in the command line
or we can use it interactively through the virsh shell.

antonio@antonio-Laptop:~$ virsh
Welcome to virsh, the virtualization interactive terminal.

Type: ‘'help' for help with commands
"quit' to quit

virsh #

214

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Usually virsh will connect automatically to the local hypervisor, but we
can specify the URI to connect to explicitly.

antonio@antonio-Laptop:~$ virsh connect qemu:///system

If we type “help” either from the virsh shell or as a subcommand, we’ll
see a long list of parameters that can be used.

virsh # help
Grouped commands:

Domain Management (help keyword 'domain'):

attach-device attach device from an XML file
attach-disk attach disk device
attach-interface attach network interface
autostart autostart a domain

We can list the virtual machines currently running with “virsh list”

antonio@antonio-Laptop:~$ virsh list
Id Name State

4 debiani2 running

If the virtual machine is not running, it won’t appear in the previous

listing, but we could see it with the “--all” parameter.

antonio@antonio-Laptop:~$ virsh list --all
Id Name State

4 debiani2 running

215

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT
We can edit any virtual machine/domain .
antonio@antonio-Laptop:~$ virsh edit debiani2

Now the XML file associated with the virtual machine will be opened
in the default editor.

GNU nano 6.2 /tmp/virsh86SMQ2.xml
<domain type='kvm'>
<name>debian12</name>
<uuid>05959a22-b9e4-4d99-a3ae-161946880ff1</uuid>
<metadata>
<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/
xmlns/libvirt/domain/1.0">
<libosinfo:os id="http://debian.org/debian/12"/>
</libosinfo:libosinfo>
</metadata>
<memory unit='KiB'>2097152</memory>

Apart from editing the virtual machine/domain, we can obtain a
summary of the configuration.

antonio@antonio-Laptop:~$ virsh dominfo debiani2
Id: 4

Name: debian12

UUID: 05959a22-b9e4-4d99-a3ae-1619468801F1
0S Type: hvm

State: running

CPU(s): 2

CPU time: 231,2s

Max memory: 2097152 KiB

216

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Used memory: 2097152 KiB
Persistent: yes
Autostart: disable

Managed save: no

Security model: apparmor

Security DOI: O

Security label: libvirt-05959a22-b9e4-4d99-a3ae-161946880ff1
(enforcing)

It is also possible to manage the snapshots of a virtual machine/
domain using virsh.

antonio@antonio-Laptop:~$ virsh snapshot-list --domain debiani2
Name Creation Time State

We can also use virsh to list the defined networks, create, or
delete them.

antonio@antonio-Laptop:~$ virsh net-list

Name State Autostart Persistent
default active yes yes
ISOLATED network active yes yes
ROUTED_network active yes yes

And we can see the details of a certain network.

antonio@antonio-Laptop:~$ virsh net-info default
Name: default

UUID: e4e9c8b1-7913-4744-b8b2-205ce8ce6068
Active: yes

Persistent: yes

Autostart: yes

Bridge: virbro

217

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We can also list the storage pool and volumes and also create them or
destroy them.

antonio@antonio-Laptop:~$ virsh pool-list
Name State Autostart

default active yes

QEMU VMs active yes

antonio@antonio-Laptop:~$ virsh vol-list --pool QEMU VMs
Name Path
alpine-virt-3.20.0-x86_64.iso /home/antonio/
QEMU_VMs/alpine-
virt-3.20.0-x86_64.iso

alpine_disk.qcow /home/antonio/QEMU_VMs/
alpine disk.qcow

bin /home/antonio/QEMU_VMs/bin

BINARY_SLA.txt /home/antonio/QEMU_Vms/

BINARY SLA.txt

Of course we can start, pause, and stop the virtual machines with virsh
as well.

antonio@antonio-Laptop:~$ virsh shutdown debian12
Domain 'debian12' is being shutdown
antonio@antonio-Laptop:~$ virsh list --all

Id Name State

- debian12 shut off

218

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

libvirt Configuration Files

We can see many configuration files in the /etc/libvirt folder. These files
modified the behavior of both the libvirt clients as well as the libvirtd ser-
vice itself.

libvirt.conf

One of these files is libvirt.conf. This file is very concise as we can see here.

antonio@antonio-Laptop:~$ cat /etc/libvirt/libvirt.conf
#

This can be used to setup URI aliases for frequently
used connection URIs. Aliases may contain only the

characters a-Z, 0-9, , -.

#

Following the '=' may be any valid libvirt connection
URI, including arbitrary parameters

#uri_aliases = [

"hail=gemu+ssh://root@hail.cloud.example.com/system",

"sleet=gemu+ssh://root@sleet.cloud.example.com/system",
#]

#

These can be used in cases when no URI is supplied by the
application

(@uri_default also prevents probing of the hypervisor driver).

#

#uri_default = "gemu:///system"

219

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

We can see a couple of variables that can be defined here. One of them
is uri_aliases, an array of aliases to connect to different systems. The full
URI to connect to a system can be a bit complicated to remember, for
instance, when we used virt-manager to connect to a remote Xen host,
the URI was something like this: xen+ssh://root@192.168.1.70/. We could
define an easier-to-remember alias so that every time we need to connect
to it, we just type the alias instead of the full URI.

The other variable defined in this file is uri_default. When we con-
nected to libvirt from Python, we didn’t specify any URI, so we connected
to the default one. If this var is not manually set in the libvirt.conffile, the
default value will be the local QEMU/KVM hypervisor.

libvirtd.conf

Contrary to what we saw on the libvirt.conffile, the libvirtd.conffile is very
long and has many options that can be customized to alter how the lib-
virtd service works.

Due to its size, we want to show it here, but we can mention a few
parameters that can be edited to better suit our needs. We can, for
instance, issue certificates and define the location of these certificates
in the libvirtd.conffile. This way we can also configure the use of TLS in
libvirtd.

The relevant section of the file to configure the certificates is this one:

TLS x509 certificate configuration
#

Use of TLS requires that x509 certificates be issued.
The default locations

for the certificate files is as follows:

#

220

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

/etc/pki/CA/cacert.pem - The CA master certificate

/etc/pki/libvirt/servercert.pem - The server certificate
signed by cacert.pem

/etc/pki/libvirt/private/serverkey.pem - The server
private key

It is possible to override the default locations by altering
the 'key file',

'cert file', and 'ca_file' values and uncommenting
them below.

NB, overriding the default of one location requires
uncommenting and
possibly additionally overriding the other settings.

Override the default server key file path
#
#tkey file = "/etc/pki/libvirt/private/serverkey.pem"

Override the default server certificate file path
#
#icert_file = "/etc/pki/libvirt/servercert.pem”

Override the default CA certificate path
#
f#fica_file = "/etc/pki/CA/cacert.pem”

Specify a certificate revocation list.

#

Defaults to not using a CRL, uncomment to enable it
#icrl file = "/etc/pki/CA/crl.pem”

221

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT
We can also configure auditing in the following section.

HHHHH

#

Auditing

#

This setting allows usage of the auditing subsystem to be
altered:

#

audit_level == -> disable all auditing

audit_level == -> enable auditing, only if enabled on
host (default)

audit_level == -> enable auditing, and exit if
disabled on host

#

#audit _level = 2

#

If set to 1, then audit messages will also be sent
via libvirt logging infrastructure. Defaults to 0
#

#audit_logging = 1

There are many more options that can be edited, but we won’t cover
them here. The file is well documented so you can have a look at it if you're
particularly interested in customizing a certain feature.

qemu.conf

Another interesting file is gemu.conf. We have seen that libvirt can connect
to different systems, QEMU/KVM hypervisors, Xen hypervisors, etc. To do
it, it needs the corresponding driver. In the particular case of QEMU/KVM,

222

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

this driver can be customized by editing this file. We're not going to de-
scribe this file, but we can customize things such as the use of vic or SPICE
to connect to the server.

We also have other similar files to customize the use of the different
drivers used by libvirt to connect to the different systems.

virtlogd.conf

The virtlogd service manages the logs of the virtual machine consoles. The
/etc/libvirt/virtlogd.conffile is used to customize logging-related param-
eters such as the log level, log output, and so on. Usually we won't need to
edit it.

virtlockd.conf

Another libvirt service is virtlockd. This service manages locks when
virtual machines need to access their resources, such as their disks. The
configuration file for this service is /etc/libvirt/virtlockd.confand is very
similar to the previous file we've seen. The file is used mainly to customize
the logging for this service. Most of the time we don’t need to edit it.

dnsmasq

libvirt integrates the use of other network services like dnsmasq. We
already saw it briefly when describing how networking works in libvirtd.
dnsmasq is a software that works as a DNS and DHCP server. It is very light
and very easy to configure.

223

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

If we list the processes in a computer running libvirt, we’ll see

something similar to this:

antonio@antonio-Laptop:~$ ps -ef | grep dnsmasq

libvirt+ 1878 1 0 julo1 ? 00:00:00 /usr/
sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.
conf --leasefile-ro --dhcp-script=/usr/lib/libvirt/libvirt_
leaseshelper

root 1879 1878 0 julo1 ? 00:00:00 /usr/
sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.
conf --leasefile-ro -dhcp-script=/usr/lib/libvirt/libvirt_
leaseshelper

And if we open the configuration file /var/lib/libvirt/dnsmasq/default.
conf, we'll see how easy it is to configure this server.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ sudo cat /var/lib/

libvirt/dnsmasq/default.conf

##WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE
LIKELY TO BE

##OVERWRITTEN AND LOST. Changes to this configuration should
be made using:

virsh net-edit default

or other application using the libvirt API.

#it

dnsmasq conf file created by libvirt

strict-order

user=libvirt-dnsmasq

pid-file=/run/libvirt/network/default.pid

except-interface=lo

bind-dynamic

224

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

interface=virbro
dhcp-range=192.168.122.2,192.168.122.254,255.255.255.0
dhcp-no-override

dhcp-authoritative

dhcp-lease-max=253
dhcp-hostsfile=/var/lib/libvirt/dnsmasq/default.hostsfile
addn-hosts=/var/lib/libvirt/dnsmasq/default.addnhosts

As the file itself implies, we should not edit this file directly, but using
virsh or virt-manager instead. But it can give us a good idea of how this
service works.

radvd

In all the examples so far, we have used IPv4. These IPv4 settings were pro-
vided by dnsmasq. We could use IPv6 settings for the virtual machines as
well. IPv6 has more autoconfiguration features than IPv4 because the IPv6
clients can obtain their IPv6 address automatically from an IPv6-capable
router. This router should be able to manage ICMP Router solicitation
messages and answer with ICMP Router advertisement messages. In Linux
systems, the software needed to do that is the radvd package.

This radvd service is not very often used, as sometimes we don’t need
IPv6. Besides, dnsmasq can also serve IPv6 addresses through DHCP
instead of relying on the autoconfiguration features of the protocol. In
any case, we must be aware that it is also possible to see it in use in the
network.

225

CHAPTER 4 LIBVIRT VIRTUAL MACHINE MANAGEMENT

Summary

In this chapter, we have seen a much more friendly way to manage our
virtual machines. We studied libvirt architecture and how it provides a
common API to manage different hypervisors. This API can be directly
accessed with our own programs, but it is definitely more convenient using
tools like virt-manager or virsh.

We've used it to interact with QEMU/KVM as well as Xen hypervisors.
We've created and manage snapshots. And we’ve seen the performance
information that libvirt provides.

We've seen that we have many choices when deciding what type of
storage to use, from local folders to network file systems. We've also cre-
ated and used different virtual networks, and we’'ve seen how external
services like dnsmasq and radvd interact with libvirt.

We could also easily migrate a virtual machine from one hypervisor to
another using virt-manager, though we could have used virsh as well.

226

CHAPTER 5

Virtual Machine Disk
Image Management

In this chapter, we’'ll cover the following concepts:

e Understand features of various virtual disk image
formats, such as raw images, qcow2, and VMDK

e Manage virtual machine disk images using gemu-img

e Mount partitions and access files contained in virtual
machine disk images using libguestfish

e Copy physical disk content to a virtual machine
disk image

o Migrate disk content between various virtual machine
disk image formats

e Awareness of Open Virtualization Format (OVF)
¢ Awareness of VirtualBox

We will also be introduced to the following terms and utilities:
gemu-img, guestfish, guestmount, guestunmount, virt-cat, virt-copy-in,
virt-copy-out, virt-diff, virt-inspector, virt-filesystems, virt-rescue,
virt-df, virt-resize, virt-sparsify, virt-p2v, virt-p2v-make-disk, virt-v2v,
and virt-sysprep.

© Antonio Vazquez 2024 227
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_5

https://doi.org/10.1007/979-8-8688-1080-0_5#DOI

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Virtual Disk Image Formats

A disk image file is a file that contains the structure as well as the content
of a storage device: a hard disk, a DVD drive, floppy disk, etc. We're talking
about a single disk image, but to be more precise, we should note that a
disk image can be stored in one or more physical files.

There are several disk image formats, of which we’ll enumerate here
briefly a few:

o Raw disk images: These are complete dumps bit to
bit of the original disk/device. They don’t hold any
additional data beyond the disk content.

e gcow images: It is a format used by QEMU. It uses “copy

on write” to optimize storage.

e VMDK: Format developed originally by VMware and
released as an open format later.

Raw Images

Raw images are those that keep an exact copy bit by bit of a device. These
images include not only the actual data but also any control field that
might be present in the original device.

Raw images are used for instance in computer forensics to get an
exact copy of the original device. Many computer forensic tools can create
raw disk images from a physical device. We can use the well-known dd
command included in almost all Linux distributions to obtain a raw disk
image. It lacks some of the most advanced features we can find in some
computer forensic tools, but I will fit perfectly our needs for didactic

purposes.

228

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

As an example, we'll create a raw disk image of a partition from a
USB disk.

antonio@antonio-Laptop:~/VMDISKS$ sudo dd if=/dev/sda1
of=USBpart.img

3926495+0 records in

3926495+0 records out

2010365440 bytes (2,0 GB, 1,9 GiB) copied, 32,8104 s, 61,3 MB/s

Now we can use the gemu-img command, which we saw briefly when
we studied QEMU, to get some information about the disk file we just
created.

antonio@antonio-Laptop:~/VMDISKS$ gemu-img info USBpart.img
image: USBpart.img

file format: raw

virtual size: 1.87 GiB (2010365440 bytes)

disk size: 1.87 GiB

As we can see, qemu-img clearly identifies the disk file format as raw.

qcow and gcow?2

QEMU copy on write (qcow) is a disk image format used by QEMU, which
we already studied in Chapter 2. It uses a “copy on write” approach, which
means that data is only copied in the disk when it is actually needed. This
is a much more efficient approach than that of raw images, and thus, the
files are much smaller in size.

There are currently several versions of this format available: 1, 2, and 3.
Obviously the first version is qcowl, but it is rarely used today. The newer
gcow?2 format was almost completely different from the first version, and it
is widely used today. The newest version, gcows3, is basically an extension
of qcow?2.

229

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

VMDK

Virtual Machine Disk (VMDK) is a disk image format initially developed
by VMware but released later as an open format. Nowadays it is supported
not only by VMware products but also by third-party products like QEMU
or VirtualBox. It can use advanced features like copy on write, thin or thick

provisioning, and so on.

Managing Disk Images with gemu-img

One particularly useful utility to work with disk images is qemu-img. We
already used it in Chapter 2, when creating a QEMU virtual machine. But
this tool offers many more possibilities. We already have this tool installed
in our system, but if we need to install it in a different system, we’ll have to
install the gemu-utils package.

antonio@antonio-Laptop:~/VMDISKS$ sudo apt install gemu-utils

Getting Information with gemu-img

We have seen already some examples of use. We can use gemu-img to
get some basic information about the disk image file we created when we
studied QEMU.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img info debian.qcow2
image: debian.qcow2
file format: qcow2
virtual size: 10 GiB (10737418240 bytes)
disk size: 7.98 GiB
cluster size: 65536
Format specific information:
compat: 1.1

230

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

compression type: zlib
lazy refcounts: false
refcount bits: 16
corrupt: false
extended 12: false

We can see a lot of interesting information, about virtual and real size,
compression type, and so on. In this case, we didn’t have any snapshots,
but if we have snapshots associated with the disk, we’'ll see them as well, as
in the following example:

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ gemu-img info
debian.qcow2

image: debian.qcow2

file format: qcow2

virtual size: 10G (10737418240 bytes)

disk size: 5.4G

cluster size: 65536

Snapshot list:

ID TAG VM SIZE DATE VM CLOCK
1 210115debian 912M 2021-01-15 23:29:32 00:13:25.513
Format specific information:

compat: 1.1

lazy refcounts: false
refcount bits: 16
corrupt: false

We can use gemu-img to check other file disk formats than qcow?, as

we can see in the next example:

antonio@antonio-Laptop:~$ gemu-img info VirtualBox\ VMs/Rocky/
Rocky.vdi
image: VirtualBox VMs/Rocky/Rocky.vdi

231

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

file format: vdi

virtual size: 40 GiB (42949672960 bytes)
disk size: 14.6 GiB

cluster size: 1048576

Creating Disk Image Files with gemu-img

We can also use img-create to create disk images as we saw in Chapter 2.
Let’s create three different disk images: a raw disk image, a qcow2 image,
and a VMDK disk image.

antonio@antonio-Laptop:~/VMDISKS$ gemu-img create -f raw
rawdisk.img 1G
Formatting 'rawdisk.img', fmt=raw size=1073741824

antonio@antonio-Laptop:~/VMDISKS$ gemu-img create -f qcow2
qcow2disk.qcow2 1G

Formatting 'qcow2disk.qcow2', fmt=qcow2 cluster size=65536
extended 12=off compression type=zlib size=1073741824 lazy
refcounts=off refcount bits=16

antonio@antonio-Laptop:~/VMDISKS$ gemu-img create -f vmdk
vmdkdisk.vmdk 1G

Formatting 'vmdkdisk.vmdk', fmt=vmdk size=1073741824
compat6=off hwversion=undefined

If we list these files, we'll see the first differences.

antonio@antonio-Laptop:~/VMDISKS$ 1ls -lh

total 212K

-Tw-1--r-- 1 antonio antonio 193K jul 8 15:05 gcow2disk.qcow2
-Iw-r--r-- 1 antonio antonio 1,0G jul 8 15:03 rawdisk.img
-Tw-r--r-- 1 antonio antonio 192K jul 8 15:05 vmdkdisk.vmdk

232

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

As expected, the raw disk is taking up all the 1 GB space, but the gcow2
and the VMDK disks use a much more efficient approach and their real
size is much smaller than the logical size. We can also get some more

information with the file command.

antonio@antonio-Laptop:~/VMDISKS$ file *
qcow2disk.qcow2: QEMU QCOW2 Image (v3), 1073741824 bytes
rawdisk.img: data

vmdkdisk.vmdk: VMware4 disk image

Creating Overlays with gemu-img

Overlay images are backed by another image.
To see it more clearly, we're going to create an overlay using the
original disk of the Debian 12 virtual machine we created previously.

antonio@antonio-Laptop:~/QEMU VMs$ gemu-img create -f qcow2 -b
debian.qcow2 -F qcow2 debianoverlay

Formatting 'debianoverlay', fmt=qcow2 cluster size=65536
extended 12=off compression type=zlib size=10737418240

backing file=debian.qcow2 backing fmt=qcow2 lazy refcounts=off
refcount bits=16

If we use gqemu-img to get information about the disk file we just
created, we can clearly see its backing file.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ gemu-img info
debianoverlay

image: debianoverlay

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)

disk size: 196 KiB

cluster size: 65536

backing file: debian.qcow2

233

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

backing file format: qcow2
Format specific information:
compat: 1.1
compression type: zlib
lazy refcounts: false
refcount bits: 16
corrupt: false
extended 12: false

We can have different overlays backed by the same image file: one with
all the updates, another one without updates, etc. One with development
tools, another with production tools.

If we check the size of the overlay image previously created, we’ll see it
is very small in size.

antonio@antonio-Laptop:~/QEMU_VMs$ 1s -lh debianoverlay
-Tw-r--r-- 1 antonio antonio 193K jul 9 11:41 debianoverlay

As long as we keep working with the virtual machine associated to
the overlay image, the file size will increase. Let’s start a QEMU virtual
machine backed by that overlay image.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-system-x86_64 -m 2048
-accel kvm debianoverlay

Once the VM is up and running, we can perform some basic
operations like downloading files. In this case, we’ll download the Linux
kernel source code, located at https://kernel.org (Figure 5-1).

234

https://kernel.org

Machine View

Activities ® Firefox ESR

"y A The Linux Kernel Archives X

&

Protocol

mainline:

08

The Linux Kernel Archives

Location
1" g

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

QEMU

Jul9 19:44

kernel.org

vw.kerne

rsync://rsync.kernel.org/pub/

6.10-rc7
698

erm: 6.6.38

longterm:
longterm:
longterm:
longterm:
longterm:
Unux-next:

Figure 5-1. Downloading some files

6.1.97

5.15.162
5.10.221
5.4.279
4.19.317

2024-07-07 [tarbal
2024-07-05 [tarbal
2024-07-09 [
2024-07-05 [t
2024-07-05 [t
2024-07-05 [t
2024-07-05 [tart
2024-07-05 [tarbal

next-20240709 2024-07-09

6.9.8®

When we’re done working with the virtual machine, we can check the

size of the overlay image again. As we can see, it is significantly bigger.

antonio@antonio-Laptop:~/QEMU_VMs$ 1s -lh debianoverlay

-IW-r--r-- 1 antonio antonio 268M jul 9 19:48 debianoverlay

Converting Between Different Disk Formats

Another very interesting feature of gemu-img is the ability to convert a

disk file to a different format.

235

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

As an example, we'll convert our gcow?2 image file already created to a
VMDK format disk file.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img convert -f gcow2
debian.qcow2 -0 vmdk debian.vmdk

The procedure is really fast. We can use gemu-img again to check the
new disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img info debian.vmdk
image: debian.vmdk
file format: vmdk
virtual size: 10 GiB (10737418240 bytes)
disk size: 6.12 GiB
cluster size: 65536
Format specific information:
cid: 268441838
parent cid: 4294967295
create type: monolithicSparse
extents:
[0]:
virtual size: 10737418240
filename: debian.vmdk
cluster size: 65536
format:

Basic Usage of VirtualBox to Check the Image
Disk File

The file seems to be OK. To actually test it, we can use VirtualBox. We
haven’t studied VirtualBox yet. As it is included in the official exam
objectives, we'll see it very briefly here.

236

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

VirtualBox is a type II hypervisor; that s, it is an application that runs

on the computer, such as any other application like LibreOffice Writer,

Firefox, etc. It is very easy to install; we won't see how to install because

itis not required for the exam, but it is very easy and you won’t have any

trouble.

Once it is installed, we can launch it and we’ll see something similar to

Figure 5-2, with the only difference that right after a fresh install, there will

be no virtual machines created on VirtualBox.

File Machine Help
A

&Hﬂ Tools

> labs

=g
iy

EMg RHS
b (& saved

P sol-11_4-vbox
,' (& saved

[P sol-11_4-vbox 1
© Powered OFff
[l SUSE11

g (& saved

SUSE11_NIS_client
Saved

Figure 5-2. VirtualBox

_Controller: SATA

Oracle VM VirtualBox Manager S @ &

Qi @ & D

New Add Settings Discard Start
=] General

Name: LPIC-1-1
Operating System: Red Hat (64-bit)

[®] system

Base Memory: 2048 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: Nested Paging, PAE/NX, KVM
Paravirtualization

=] preview

™ pisplay

Video Memory: 16 MB
Graphics Controller: VMSVGA
Remote Desktop Server: Disabled
Recording: Disabled
Storage

Controller: IDE
IDE Secondary Device 0: [Optical Drive] Empty

We'll use the VMDK disk file previously converted from the debian.

gcow?2 file to create our new virtual machine in VirtualBox. We click on the

“New” icon to create a new virtual machine (Figure 5-3).

237

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Create Virtual Machine X

Virtual machine Name and Operating System

Please choose a descriptive name and destination folder for the new virtual machine. The name you
choose will be used throughout VirtualBox to identify this machine. Additionally, you can select an ISO
image which may be used to install the guest operating system.

Name: [imported_debianl | @

Folder: @ /home/antonio/VirtualBox VMs

1SO Image: |<not selected>

Type: | Linux =

Version: | Debian (64-bit)

(@ No ISO image is selected, the guest OS will need to be installed manually.

Help

Expert Mode | | Next cancel

Figure 5-3. Creating a new virtual machine in VirtualBox

We'll assign a name to the VM. We can leave the default value for the
folder where the VM files will be stored. We can choose an ISO file to install
the VM, but we’ll use the VMDK file with the OS already installed so we’'ll
leave it blank. We can also select “Linux” and “Debian 64 bit” in the type
and version, respectively. These are just labels, but they will help us to
keep all the virtual machines properly arranged. We click “Next”.

In the next screen (Figure 5-4), we can edit the hardware specifications.
One CPU and 2 GB of RAM should be more than enough for our testing
purposes. We click “Next” again.

238

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Create Virtual Machine

X
Hardware
You can modify virtual machine's hardware by changing amount of RAM and virtual CPU
count. Enabling EFl is also possible.
BASE MEMOTY: 1srm v it b i e 2048 MB |2
4MB 16384 MB
Processors: - il 1 15
1CPU 8 CPUs

Enable EFI (special OSes only)

| Help

| Back | Next Cancel

Figure 5-4. Hardware specifications

In the next screen, we could create a new disk, but we’ll choose to use
an existing disk instead (Figure 5-5). And we click “Next”.

Create Virtual Machine

X
Virtual Hard disk
IF you wish you can add a virtual hard disk to the new machine. You can either create a new
hard disk file or select an existing one. Alternatively you can create a virtual machine
without a virtual hard disk.
! Create a Virtual Hard Disk Now
® Use an Existing Virtual Hard Disk File
debian.vmdk (Normal, 10,00 GB) vl @a
Do Not Add a Virtual Hard Disk
| Help | Back || Next cancel |

Figure 5-5. Using an existing virtual disk

239

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

In the last screen, we can see a summary with the VM settings

previously assigned (Figure 5-6). If we need to edit something, we’ll click
“Back” to change it; otherwise, we click “Finish”.

Create Virtual Machine X

Summary

The following table summarizes the configuration you have chosen for the new virtual
machine. When you are happy with the configuration press Finish to create the virtual
machine. Alternatively you can go back and modify the configuration.

%2 Machine Name and OS Type

Machine Name imported_debian
Machine Folder /home/antonio/VirtualBox VMs/imported_debian
ISO Image
Guest OS Type Debian (64-bit)

{J Hardware
Base Memory 2048
Processor(s) 1
EFI Enable false

Disk
Attached Disk /home/antonio/QEMU_VMs/debian.vmdk

Help Back Finish Cancel

Figure 5-6. Virtual machine settings summary
The virtual machine is now ready. We just need to select it and click the

“Start” button. In a few seconds, we’ll be able to access the server console
(Figure 5-7).

240

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Jul9 20:22

& Antonio Vazquez

Not listed?

© debian 12

Figure 5-7. Virtual machine console

Mounting Partitions and Accessing Files
Contained in Virtual Disks

There is a C library named libguestfs, which can be used to access and
modify files in virtual disk images. The needed packages to install this
library and its utilities are usually included in the repositories of the main
Linux distributions. In our case, we’ll install these tools in Ubuntu.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo apt install
libguestfs-tools

241

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Once the installation is complete, we can use the tools included. One
of these tools is guestfish. It can be executed in an interactive way.

antonio@antonio-Laptop:~/QEMU_VMs$ guestfish
Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
'man' to read the manual
'quit’ to quit the shell

><fs>

By typing “help” on the command line, we get a brief description of the
main commands.

><fs> help

Add disk images to examine using the '-a' or '-d' options, or
the 'add’

command.

Or create a new disk image using '-N', or the 'alloc' or
'sparse’ commands.

Once you have done this, use the 'run' command.

For more information about a command, use 'help cmd'.
To read the manual, type 'man'.
><fs>

As we can see, we need to add a disk image with the “add”
subcommand and execute “run’.

><fs> add debian.qcow2
><fs> run

242

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

libguestfs: warning: current user is not a member of the KVM
group (group ID 129). This user cannot access /dev/kvm, so
libguestfs may run very slowly. It is recommended that you
‘chmod 0666 /dev/kvm' or add the current user to the KVM group
(you might need to log out and log in again).
libguestfs: error: /usr/bin/supermin exited with error
status 1.
To see full error messages you may need to enable debugging.
Do:
export LIBGUESTFS DEBUG=1 LIBGUESTFS_ TRACE=1
and run the command again. For further information, read:
http://1libguestfs.org/guestfs-faq.1.html#debugging-libguestfs
You can also run 'libguestfs-test-tool' and post the
complete output
into a bug report or message to the libguestfs mailing list.
><fs>
><fs> exit

In this case, we get an error because we are executing guestfish as a
standard user and this user does not have permissions to access /dev/
kvm. To circumvent this, we can add our current user to the kvm group or
execute guestfish as root.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestfish
[sudo] password for antonio:

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
'man' to read the manual
'quit' to quit the shell

243

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

><fs>

><fs> add debian.qcow2
><fs> run

100%

B 00:00
><fs>

Troubleshooting libguestfs

In this case, we could execute “run” without any issue, but it is possible
that we get an error; let’s see an easy example.

><fs> add debian.qcow2

><fs> run

libguestfs: error: appliance closed the connection

unexpectedly.

This usually means the libguestfs appliance crashed.

Do:
export LIBGUESTFS DEBUG=1 LIBGUESTFS TRACE=1

and run the command again. For further information, read:
http://1libguestfs.org/guestfs-faq.1.html#debugging-libguestfs

In this example, we get a new error. Luckily, the tool itself provides
us with some valuable information to troubleshoot this incident. So
we'll enable debugging by exporting the two environment variables
mentioned before.

244

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ sudo su root
root@antonio-Aspire-A315-23:/home/antonio/QEMU_VMs# export
LIBGUESTFS_DEBUG=1 LIBGUESTFS_TRACE=1
root@antonio-Aspire-A315-23:/home/antonio/QEMU_VMs# guestfish
libguestfs: trace: set_verbose true

libguestfs: trace: set verbose = 0

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
'man' to read the manual
'quit' to quit the shell

><fs> add debian.qcow2

libguestfs: trace: add _drive "debian.qcow2"
libguestfs: trace: add drive = 0

><fs> run

libguestfs: trace: launch

libguestfs: trace: get tmpdir

libguestfs: trace: get tmpdir = "/tmp"

ioct1(KVM_CREATE_VM) failed: 16 Device or resource busy
gemu-system-x86_64: failed to initialize KVM: Device or
resource busy

gemu-system-x86_64: Back to tcg accelerator
gemu-system-x86_64: CPU model 'host' requires KVM
libguestfs: error: appliance closed the connection

245

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

unexpectedly, see earlier error messages

As expected, we get a lot of information, and at one point, we can see
the message “failed to initialize KVM: Device or resource busy” The reason
we were getting this message is because we were executing an instance
of VirtualBox, which was using KVM. After shutting down this VirtualBox
instance, we can execute guestfish again.

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ sudo guestfish
[sudo] password for antonio:

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: ‘help' for help on commands

man' to read the manual
'quit’ to quit the shell

><fs> add debian.qcow2
><fs> run

100%
><fs>

After successfully executing “run’, we can work on the disk image,
mounting it and accessing the contents of the files. If at any point we’re not
sure about what command to use, we can type “help’”.

><fs> help
Find out what filesystems are available using 'list-
filesystems' and then

246

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

mount them to examine or modify the contents using
‘mount-ro' or
‘mount’.

For more information about a command, use 'help cmd'.
To read the manual, type 'man’.
><fs>

As suggested, we'll list the filesystems in the disk file.

><fs> list-filesystems
/dev/sdal: ext2
/dev/debian-vg/root: ext4
/dev/debian-vg/swap_1: swap
><fs>

We successfully managed to get a list of the filesystems contained in
the virtual disk file. With this information, we can mount one of these
filesystems in guestfish and see its contents.

><fs> mount-ro /dev/debian-vg/root /
><fs> 1s /
.cache

bin

boot

dev

etc

home
initrd.img
initrd.img.old
lib

1ib64
lost+found

247

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

media
mnt

opt
proc
root
run
sbin
STV

Sys

tmp

usr

var
vmlinuz
vmlinuz.old
><fs>

We can also read (and modify) any file. When we finish our work, we
type “exit”.

><fs> cat /etc/hostname
debian

><fsy> exit

guestmount/guestunmount

Apart from accessing files from inside the guestfish shell, we can also
mount the filesystems contained in the virtual disk file directly in the host.
To do it, we can use the guestmount command. We can use list the main
options with the --help option.

antonio@antonio-Laptop:~$ guestmount --help
guestmount: FUSE module for libguestfs

248

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

guestmount lets you mount a virtual machine filesystem
Copyright (C) 2009-2020 Red Hat Inc.
Usage:
guestmount [--options] mountpoint
Options:
-al--add image Add image
--blocksize[=51214096]
Set sector size of the disk for
-a option
-cl--connect uri Specify libvirt URI for -d option
--dir-cache-timeout Set readdir cache timeout
(default 5 sec)
-dl--domain guest Add disks from libvirt guest

Most of the tools included in the libguestfs suite have similar options,
so we'll describe briefly the main ones.

We can use “-a” to add a disk image and work with that file, or we
can use “-d” to work with the disk associated to a libvirt domain. We can
also use “-v” (verbose) to get more information about what the tool is
actually doing.

In our example, we'll add (-a) the disk image debian.qcow2 and
mount (-i) its filesystem(s) automatically. To make sure we don’t make
any undesired modifications, we’'ll mount it in read-only mode (--ro). We
could specify the file system to mount, but in this example, we’ll let the tool
itself to try and guess it.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestmount -a debian.
qcow2 -i --ro /mnt/mydata

249

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

If we list the /mnt/mydata folder, we'll see that the filesystem was
mounted correctly.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo 1s /mnt/mydata

bin dev home initrd.img.

old 1ib64 media opt root sbin sys wusr vmlinuz

boot etc initrd.img 1lib lost+found mnt proc run
stv. tmp var vmlinuz.old

We can also see the contents of any file.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ sudo cat /mnt/
mydata/etc/hosts

127.0.0.1 localhost

127.0.1.1 debian.mydomain debian

The following lines are desirable for IPv6 capable hosts
11 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Once we're done, we can unmount the filesystem with guestunmount.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestunmount /
mnt/mydata

We've used a disk image file in our example, but as we said before, we
can also use the same tool by connecting to a libvirt domain. We’ll begin by
listing the currently defined domains. For that, we can use virsh.

antonio@antonio-Laptop:~/QEMU_VMs$ virsh list --all
Id Name State

- debian12 shut off

250

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT
We have a shutdown domain; we'll start it.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ virsh start
debian12
Domain 'debian12' started

We check that the domain is up and running.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ virsh list
Id Name State

1 debian12 running

Now we connect to the domain and mount the filesystem locally.
As it is a running domain, we’ll use the “read only” option to avoid data
corruption.

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ sudo
guestmount -d debiani2 -i --ro /mnt/mydata/

We can easily copy data from the live domain to the local host.
antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ sudo cp /mnt/

mydata/home/antonio/documents/important_doc.txt .

antonio@antonio-HP-Laptop-15s-fqixxx:~/QEMU_VMs$ 1s
important_doc.txt
important_doc.txt

virt-cat

Another tool included in the libguestfs-tools suite is virt-cat. We can use it
to show the content of a file, as the name implies.

251

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

The available options are very similar to those of the guestmount tool.
We'll see a couple of examples using a disk image and a libvirt domain.

antonio@antonio-Laptop:~/QEMU VMs$ sudo virt-cat -a debian.
qcow2 /home/antonio/documents/important_doc.txt
This is a very important document

antonio@antonio-Laptop:~/QEMU VMs$ sudo virt-cat -d debiani2 /
home/antonio/documents/important_doc.txt
This is a very important document

An interesting option that we haven’t seen so far is “-x” This parameter
traces the libguestfs API calls, which can be useful when troubleshooting.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -d debiani2 -x
/home/antonio/documents/important_doc.txt
libguestfs: trace: add_domain "debiani2" "
"allowuuid:true" "readonlydisk:read"

libguestfs: trace: add_libvirt dom (virDomainPtr)ox63d4aafc5100
"readonly:true" "

readonly:true"

readonlydisk:read"

libguestfs: trace: clear backend setting "internal libvirt
norelabel disks"

libguestfs: trace: clear_backend setting = 0

libguestfs: trace: add_drive "/home/antonio/QEMU_VMs/debian.

qcow2" "readonly:true" "format:qcow2"

libguestfs: trace: get tmpdir

libguestfs: trace: get tmpdir = "/tmp"

libguestfs: trace: disk create "/tmp/libguestfs4Xic3w/overlayi.
qcow2" "qcow2" -1 "backingfile:/home/antonio/QEMU_VMs/debian.
qcow2" "backingformat:qcow2"
libguestfs: trace: disk create
libguestfs: trace: add_drive = 0

libguestfs: trace: add_libvirt dom = 1

L}
o

252

libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:

"/dev/sda5"]

libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:
libguestfs: trace:

debian-vg/root"

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

add _domain = 1
launch
max_disks
max_disks = 255
get cachedir

get_cachedir = "/var/tmp"
get cachedir
get cachedir = "/var/tmp"

get backend setting "force tcg"
get backend setting = NULL (error)
get backend setting "force_kvm"
get backend setting = NULL (error)
get sockdir

get sockdir = "/tmp"

get backend setting "gdb"

get backend setting = NULL (error)
launch = 0

list partitions

list_partitions = ["/dev/sda1", "/dev/sda2",

vfs_type "/dev/sda1"
vfs type = "ext2"
vfs_type "/dev/sda2"
vfs type = ""

vfs_type "/dev/sda5"

vfs_type = "LVM2_member"

inspect_os

inspect_os = ["/dev/debian-vg/root"]
inspect _get mountpoints "/dev/

253

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

libguestfs: trace: inspect get mountpoints = ["/boot", "/dev/
sda1", "/", "/dev/debian-vg/root"]

libguestfs: trace: mount_ro "/dev/debian-vg/root" "/"
libguestfs: trace: mount_ro = 0

libguestfs: trace: mount_ro "/dev/sda1" "/boot"

libguestfs: trace: mount ro = 0

libguestfs: trace: inspect get roots

libguestfs: trace: inspect_get roots = ["/dev/debian-vg/root"]
libguestfs: trace: inspect get type "/dev/debian-vg/root"
libguestfs: trace: inspect get type = "linux"

libguestfs: trace: download "/home/antonio/documents/important_
doc.txt" "/dev/stdout”

This is a very important document

libguestfs: trace: download = 0

libguestfs: trace: close

libguestfs: trace: internal autosync

libguestfs: trace: internal autosync = 0

virt-copy-in

We can use virt-copy-in to copy files from the host to the disk image/lib-
virt domain.
We’ll begin by creating a simple text file.

antonio@antonio-Laptop:~/QEMU_VMs$ echo "This is a very
simplistic text file" > newtextfile.txt

And we copy it to the disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-in -a debian.
qcow2 ./newtextfile.txt /home/antonio/documents/

254

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

We can check that the file was copied by using the virt-cat command
that we studied previously.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -d debiani2 /
home/antonio/documents/newtextfile.txt
This is a very simplistic text file

virt-copy-out

This tool complements virt-copy-in. While virt-copy-in allows to copy
files from the host to the disk image/domain, virt-copy-out allows to copy
files from the disk image/domain to the host.

We'll test this tool by copying any file from the disk image.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-out -a
debian.qcow2 /etc/fstab .

After copying the file, we can see its contents as with any other
local file.

antonio@antonio-Laptop:~/QEMU VMs$ cat fstab
/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to
name devices

that works even if disks are added and removed. See fstab(5).

systemd generates mount units based on this file, see
systemd.mount(5).

Please run 'systemctl daemon-reload' after making
changes here.

255

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

<file system> <mount point> <type> <options>
<dump> <pass>

/dev/mapper/debian--vg-root

/ ext4 errors=remount-ro 0 1
/boot was on /dev/sdal during installation
UUID=e5a28faa-6b7b-453e-95cc-e87cd9a13693 /

boot ext2 defaults 0 2
/dev/mapper/debian--vg-swap_1 none swap sw
0 0

/dev/sr0 /media/cdrom0 udf,is09660 user,noauto
0 0

virt-diff

Sometimes it might be useful to see the differences between two running
instances, two image disk files, etc. For example, if we want to know what
files have been created since we performed a snapshot. We can do this
with virt-diff.

We'll begin by comparing the disk image file debian.qcow?2 and the
libvirt domain “debian12”.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-diff -a debian.
qcow2 -D debiani2
antonio@antonio-Laptop:~/QEMU_VMs$

As there are no differences, we don’t see any output. Now we’ll
perform a simple test. We’ll make a copy of the disk image file.

antonio@antonio-Laptop:~/QEMU VMs$ cp debian.qcow2 debian_
copy .qcow2

256

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT
And we'll use virt-copy-in to copy any file to the new disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-in -a debian_
copy.qcow2 test /home/antonio

If we compare now both disk images with virt-diff, we’ll see this
difference.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-diff -a debian.
qcow2 -A debian_copy.qcow2
+ - 0664 5 /home/antonio/test

virt-inspector

If we want to get information about the OS in a certain disk image file
or libvirt domain, we can get it with virt-inspector. Let’s see a simple

example.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-inspector -a

debian.qcow2

<?xml version="1.0"?>

<operatingsystems>

<operatingsystem>

<root>/dev/debian-vg/root</root>
<name>1linux</name>
<arch>x86_64</arch>
<distro>debian</distro>
<product_name>12.5</product_name>
<major_version>12</major_version>
<minor_version>5</minor_version>
<package_format>deb</package_format>
<package_management>apt</package_management>
<hostname>debian</hostname>

257

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

<osinfo>debian12</osinfo>

<mountpoints>
<mountpoint dev="/dev/debian-vg/root">/</mountpoint>
<mountpoint dev="/dev/sda1">/boot</mountpoint>

</mountpoints>
<filesystems>
<filesystem dev="/dev/debian-vg/root">
<type>ext4</type>
<uuid>c5eac4a7-3638-4207-bae3-23f02aaa4666</uuid>
</filesystem>
<filesystem dev="/dev/debian-vg/swap_1">
<type>swap</type>
<uuid>ba9163b0-13c8-4a4e-b640-ac059211c82c</uuid>
</filesystem>
<filesystem dev="/dev/sda1">
<type>ext2</type>
<uuid>e5a28faa-6b7b-453e-95cc-e87cd9a13693</uuid>
</filesystem>
</filesystems>

As the output is very lengthy, it is probably better to redirect it to a file.
In the output, we can get a lot of information, like the root filesystem, the
architecture, operating system version, software installed, and so on.

virt-filesystems

A disk image file or domain can contain many filesystems. When we stud-
ied the libguestfs interactive shell, we saw how to list the filesystems. We
can do the same thing with the virt-filesystems command.

258

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT
To test the tool, we’ll list the filesystems of a couple of disk image files.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a
debian.qcow2

/dev/sda1

/dev/debian-vg/root

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a
alpine disk.qcow

/dev/sda1

/dev/sda3

If we want to get more details, like the type of filesystem or the size, we
can use the “-1” option.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a
debian.qcow2 -1

Name Type VFS Label Size Parent
/dev/sda1 filesystem ext2 - 476286976 -
/dev/debian-vg/root filesystem ext4 - 8923836416 -
virt-rescue

There could be certain circumstances that render a disk image unbootable.
If that’s the case, we can try to rescue the system with virt-rescue.

To start, we can use the “--suggest” option. As the name implies, this
command suggests the commands that we must use once inside the res-
cue shell.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-rescue --suggest
-a debian.qcow2
Inspecting the virtual machine or disk image ...

This disk contains one or more operating systems. You can use
these mount

259

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

commands in virt-rescue (at the ><rescue> prompt) to mount the
filesystems.

/dev/debian-vg/root is the root of a linux operating system
type: linux, distro: debian, version: 12.5
12.5

mount /dev/debian-vg/root /sysroot/
mount /dev/sdal /sysroot/boot

mount --rbind /dev /sysroot/dev
mount --rbind /proc /sysroot/proc
mount --rbind /sys /sysroot/sys

cd /sysroot
chroot /sysroot

The tool successfully recognized the filesystems contained in the disk
image file, as well as the root filesystem and the boot partition. We're sug-
gested to mount the root filesystem and the boot partition, as well as the
special filesystems /dev, /proc, and /sys.

We'll execute virt-rescue again and perform the suggested actions.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-rescue -a
debian.qcow2

supermin: mounting /proc

supermin: ext2 mini initrd starting up: 5.2.1

Starting /init script ..

Welcome to virt-rescue, the libguestfs rescue shell.

260

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Note: The contents of / (root) are the rescue appliance.
You have to mount the guest's partitions under /sysroot
before you can examine them.

groups: cannot find name for group ID O
><rescue>

><rescue> mount /dev/debian-vg/root /sysroot/
><rescue> mount /dev/sdal /sysroot/boot
><rescue> mount --rbind /dev /sysroot/dev
><rescue> mount --rbind /proc /sysroot/proc
><rescue> mount --rbind /sys /sysroot/sys
><rescue>

Finally, we change to the /sysroot folder and execute chroot to change
the active root filesystem.

><rescue> cd /sysroot
><rescue> chroot /sysroot

Now we can perform the needed actions to repair the system. For
instance, we can check the mount points, repair the filesystems, etc. For
instance, let’s suppose that we need to check the contents of the /etc/fstab
file. We can use cat from inside virt-rescue to do that.

><rescue> cat /etc/fstab

/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to
name devices

that works even if disks are added and removed. See fstab(5).

#

261

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

systemd generates mount units based on this file, see
systemd.mount(5).

Please run 'systemctl daemon-reload' after making
changes here.

#

<file system> <mount point> <type> <options>

<dump> <pass>

/dev/mapper/debian--vg-root

/ ext4 errors=remount-ro 0 1

/boot was on /dev/sdal during installation

UUID=e5a28faa-6b7b-453e-95cc-e87cd9a13693 /

boot ext2 defaults 0 2
/dev/mapper/debian--vg-swap_1 none swap Sw
0 0]

/dev/sr0 /media/cdrom0 udf,is09660 user,noauto
0 0

><rescue>

If we need to edit the file, we can use vi. When we have performed
the needed actions to repair the system, we can exit virt-rescue by
pressing Ctrl+D.

virt-df

Linux administrators are familiar with the df command. There is also an
equivalent command that performs the same operation on image disk file
and/or libvirt domains.

262

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT
The use of the virt-df command is very easy.

antonio@antonio-Laptop:~/QEMU VMs$ sudo virt-df -a debian.qcow2 -h

Filesystem Size Used Available Use%
debian.qcow2:/dev/sdal 454M 69M 36IM 16%
debian.qcow2:/dev/debian-vg/root 8,3G 4,5G 3,4G 54%
virt-resize

All the libguestfs tools that we have seen so far are quite easy to use. That’s
not the case with virt-resize. Of course you don’t need to learn rocket
science to use it, but it is significantly more complicated to use than the
other tools.

We'll begin by describing what the tool does. As the name implies, it
resizes virtual machine disks; it can resize a single or multiple partitions.
It is very advisable to check the man page of the tool. In that page, we can
see many examples that will help us better understand how to use the tool.
To avoid disk corruption, it is advisable to use it with powered-off virtual
machines.

We'll resize one of the disk image files we worked with previously.

We can get some basic information with Is and gemu-img info as we
saw before.

antonio@antonio-Laptop:~/QEMU_VMs$ 1s -lh debian.qcow2
-IW-r--r-- 1 antonio antonio 8,1G jul 10 22:21 debian.qcow2

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img info debian.qcow2
image: debian.qcow2

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)

disk size: 7.98 GiB

cluster size: 65536

263

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Format specific information:
compat: 1.1
compression type: zlib
lazy refcounts: false
refcount bits: 16
corrupt: false
extended 12: false

In this example, we’ll extend one of the partitions of the disk image file,
so we'll need to list them with the virt-filesystems tool, which we already
studied.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems --all
-h --long -a debian.qcow2

Name Type VFS Label MBR Size Parent
/dev/sda1 filesystem ext2 - - 454M -
/dev/debian-vg/root filesystem ext4 - - 8,3G -
/dev/debian-vg/swap_1 filesystem swap - - 976M -
/dev/debian-vg/root 1lv - - - 8,5G /dev/
debian-vg
/dev/debian-vg/swap_1 1lv - - - 976M /dev/
debian-vg
/dev/debian-vg vg - - - 9,5G /dev/sda5
/dev/sda5 pv - - - 9,5G -
/dev/sda1 partition - - 83 487M /dev/sda
/dev/sda2 partition - - 05 1,0K /dev/sda
/dev/sda5 partition - - 8e 9,5G /dev/sda
/dev/sda device - - - 110G -

Next, we need to create a new image disk file bigger in size. In this case,

we create a 12 GB image disk file.

264

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

antonio@antonio-Laptop:~/QEMU_VMs$ gemu-img create -f qcow2 -o
preallocation=metadata NEW _debian.qcow2 12G

Formatting 'NEW_debian.qcow2', fmt=qcow2 cluster size=65536
extended 12=off preallocation=metadata compression_type=z1lib
size=128846

We check that the new file was correctly created.

antonio@antonio-Laptop:~/QEMU_VMs$ 1ls -1h NEW_debian.qcow2
-Tw-r--r-- 1 antonio antonio 13G jul 11 07:11 NEW_debian.qcow2
antonio@antoniolaptop:~/QEMU_VMs$ gemu-img info NEW_
debian.qcow2
image: NEW_debian.qgcow2
file format: qcow2
virtual size: 12 GiB (12884901888 bytes)
disk size: 2.07 MiB
cluster size: 65536
Format specific information:
compat: 1.1
compression type: zlib
lazy refcounts: false
refcount bits: 16
corrupt: false
extended 12: false

Now we can expand the disk by using the “old” file as the origin and
the “new” file as the destination. As we can only resize partitions, we’ll
resize the /boot partition as an example. We had identified this partition
previously with virt-filesystems.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-resize --expand /
dev/sdal debian.qcow2 NEW_debian.qcow2
[0.0] Examining debian.qcow2

265

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

kokokokok ok k k> k

Summary of changes:

/dev/sdal: This partition will be resized from 487.0M to
2.5G. The

filesystem ext2 on /dev/sdal will be expanded using the
'resize2fs'

method.

/dev/sda2: This partition will be left alone.

kokkokok ok k >k k k

[3.0] Setting up initial partition table on NEW_debian.qcow2
[4.4] Copying /dev/sda1

[5.7] Copying /dev/sda2

100%

t 55.4] Expanding /dev/sdal using the 'resize2fs' method

Resize operation completed with no errors. Before deleting the
old disk, carefully check that the resized disk boots and works
correctly.

As suggested by the command itself, we should check that the
expanded disk actually works as expected. We can do that with QEMU for
instance. We can also use virt-filesystems to see the size of the expanded
partition.

266

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems --all
-h --long -a NEW_debian.qcow2

Name Type VFS Label MBR Size Parent
/dev/sda1 filesystem ext2 - - 2,3 -
/dev/debian-vg/root filesystem ext4 - - 8,3G -
/dev/debian-vg/swap_1 filesystem swap - - 976M -
/dev/debian-vg/root 1lv - - - 8,5G /dev/
debian-vg
/dev/debian-vg/swap_1 1lv - - - 976M /dev/
debian-vg
/dev/debian-vg vg - - - 9,5G /dev/sda5
/dev/sda5 pv - - - 9,5G -
/dev/sda1 partition - - 83 2,5G /dev/sda
/dev/sda2 partition - - 05 1,0K /dev/sda
/dev/sda5 partition - - 8e 9,5G /dev/sda
/dev/sda device - - - 126 -

We see that the size has increased from 487M to 2.5G. Now we launch
QEMU to check that the new disk image file actually works as expected.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo gemu-system-x86 64 -m
512 -accel kvm NEW debian.qcow2

virt-sparsify

A tool that complements virt-resizefs is virt-sparsify; this latter tool
reclaims unused disk space. Due to the risk of corrupting data, it is man-
datory to use it when the associated virtual machine is powered off, thus
minimizing the risk.

267

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

As an example, we'll reclaim the unused space in the disk we expanded
previously. We'll begin by checking its size.

antonio@antonio-Laptop:~/QEMU VMs$ 1ls -1h NEW_debian.qcow2
-Tw-1--r-- 1 antonio antonio 13G jul 11 07:16 NEW_debian.qcow2

We now execute virt-sparsify; the syntax is very easy; we just need to
specify the name of the disk we want to sparsify and the new disk. The
new disk will be created by the tool (or overwritten if it already exists); as
opposed to what we saw with virt-resizefs, we don’t need to create the
new image disk file explicitly.

antonio@antonio-Laptop~/QEMU_VMs$ sudo virt-sparsify NEW_
debian.qcow2 SPARSIFIEDdebian.qcow2

[sudo] password for antonio:

[0.0] Create overlay file in /tmp to protect source disk
[0.0] Examine source disk
[

2.5] Fill free space in /dev/debian-vg/root with zero
100%

[10.3] Clearing Linux swap on /dev/debian-vg/swap_ 1
[12.0] Fill free space in /dev/sdal with zero
100%

[42.8] Fill free space in volgroup debian-vg with zero

[43.2] Copy to destination and make sparse

[111.2] Sparsify operation completed with no errors.
virt-sparsify: Before deleting the old disk, carefully check
that the target disk boots and works correctly.

268

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

If we check the size of the new file, we'll see that it is significantly
smaller than the original file.

antonio@antonio-Laptop:~/QEMU_VMs$ 1s -1h
SPARSIFIEDdebian.qcow2
-TwW-r--r-- 1 root root 5,0G jul 11 20:19 SPARSIFIEDdebian.qcow2

Finally, we launch QEMU with the new image disk file to make sure
that it is working.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo gemu-system-x86 64 -m
512 -accel kvm SPARSIFIEDdebian.qcow2

virt-p2v

This tool converts a physical machine to a QEMU/KVM virtual machine
managed by libvirt, OpenStack, RHV, or oVirt. We don’t execute virt-p2v
directly; instead, we must create a bootable image with virt-p2v-make-
disk. Then we’ll boot the physical machine we want to virtualize using that
image, which will run automatically virt-p2v.

After that, we'll need to provide the IP address and the credentials
needed to connect with SSH with the “conversion server” This “conversion
server” is the QEMU/KVM hypervisor in which the converted virtual
machine will run. This server also needs to have virt-v2v installed.
Depending on the Linux distribution, virt-v2v can be included in the
libguestfs suite or be independent. In Ubuntu 22, for instance, it is
included in its own independent package.

antonio@antonio-Laptop:~/QEMU_VMs$ apt search virt-vav
Sorting... Done
Full Text Search... Done
virt-v2v/jammy 1.44.2-1 amd64
virtual-to-virtual machine converter

269

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT
So we'll need to install it.
antonio@antonio-Laptop:~/QEMU_VMs$ sudo apt install virt-v2v

Next we need to create the bootable media. If we use the “--help”
option, we can see the syntax of the virt-p2v-make-disk command.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk --help
Usage:
virt-p2v-make-disk [--options] -o /dev/sdX [os-version]

Read virt-p2v-make-disk(1) man page for more information.

We only need to specify the path of the device that we want to prepare
to boot the target system. The OS version is usually not necessary as the
tool will try to locate a suitable OS version for us. This OS version is related
to the host in which we’re creating the bootable image; it has no relation
at all with the OS version of the target physical system that we want to
virtualize.

So if we want to prepare a USB disk to boot a system and launch virt-
p2v, we can do that easily with this command, assuming the USB disk in
our system is at /dev/sda.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk -o
/dev/sda

virt-builder: error: cannot find os-version 'ubuntu-22.04" with
architecture 'x86_64'.

Use --list to list available guest types.

If reporting bugs, run virt-builder with debugging enabled and
include the
complete output:

virt-builder -v -x [...]

270

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Unfortunately in this occasion, the tool couldn’t find a proper OS to
build the image. As suggested, we’ll list the available versions.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-builder --list

opensuse-tumbleweed x86 64 openSUSE Tumbleweed
alma-8.5 x86_64 Almalinux 8.5
centos-6 x86_64 Cent0S 6.6
centos-7.0 x86_64 Cent0S 7.0
centos-7.1 x86_64 Cent0S 7.1
centos-7.2 aarch64 Cent0S 7.2 (aarché64)
ubuntu-20.04 x86_64 Ubuntu 20.04 (focal)

As I'm working on an Ubuntu 22 system, I'll choose the ubuntu-20.04
OS version.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk -o /dev/
sda ubuntu-20.04

[6.4] Downloading: http://builder.libguestfs.org/
ubuntu-20.04.xz

HHHHEE AR 100, 0%
[32.6] Planning how to build this image

[32.6] Uncompressing

[40.3] Opening the new disk

[43.1] Setting a random seed

virt-builder: warning: random seed could not be set for this
type of guest

271

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

[43.1] Uploading: /tmp/tmp.I0qrkWErp8/policy-rc.d to /usr/
sbin/policy-rc.d

[43.2] Setting the hostname: p2v.local

[44.1] Running: hostname p2v.local

[44.2] Updating packages

[182.1] Installing packages: libpcre3 libxml2 libgtk-3-0
libdbus-1-3 openssh-client gemu-utils debianutils vim-tiny
open-iscsi xorg xserves

[289.8] Uploading: /usr/share/virt-p2v/issue to /etc/issue

[289.9] Uploading: /usr/share/virt-p2v/issue to /etc/issue.net
[289.9] Making directory: /usr/bin

[289.9] Uploading: /tmp/tmp.I0qrkWErp8/virt-p2v to /usr/bin/
virt-p2v

[290.0] Changing permissions of /usr/bin/virt-p2v to 0755

[290.0] Uploading: /usr/share/virt-p2v/launch-virt-p2v to /
usr/bin/

[290.0] Changing permissions of /usr/bin/launch-virt-

p2v to 0755

[290.0] Uploading: /usr/share/virt-p2v/p2v.service to /etc/
systemd/system/

[290.1] Making directory: /etc/systemd/system/multi-user.
target.wants

[290.1] Linking: /etc/systemd/system/multi-user.target.wants/
p2v.service -> /etc/systemd/system/p2v.service

[290.1] Editing: /1lib/systemd/system/getty@.service

290.2] Editing: /etc/systemd/logind.conf

290.3] Deleting: /usr/sbin/policy-rc.d

290.3] Setting passwords

291.3] Finishing off

— /oo

Output file: image.iso
Output size: 6.0G

272

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Output format: raw
Total usable space: 5.8G
Free space: 2.4G (41%)
antonio@antonio-Laptop:~/QEMU_VMs$

In addition to the procedure of creating a bootable image to execute
virt-p2v that we have just seen, some commercial distributions like Red
Hat allow to download an already-created bootable image. This could be a
better option if it is available, as the manual creation of the bootable image
not always works as expected. In this case, we should write the ISO file to
the USB device. This can be easily done; if we're working with Ubuntu 22,
we can open the ISO file with the “Disk Image Writer” (Figure 5-8) and
select the USB device in which we want to write the ISO file (Figure 5-9).

273

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Select Application |
Cancel Opening “raw CD image” files. Q Select

Recommended Applications

Disk Image Mounter

L Disk Image Writer
Archive Manager

Boxes

a
A VLC media player

View All Applications

Figure 5-8. Opening the ISO file with the Disk Image Writer

274

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Disks = = o x

1,0 TB Disk
(=55 INTEL SSDPEKNWO010T8H

2,0 GB Thumb Drive
_*] SanDisk Cruzer Pattern
(72 €D Drive
___/ SanDisk Cruzer Pattern

Restore Disk Image x |

© The disk image is 1,6 GB smaller than the target device

e ~/Downloads/virt-p2v-1.40.2-1.el7.iso

1age Size 372 MB (372.244.480 bytes)

stination | [#2,0 GB Thumb Drive — SanDisk Cruzer Pattern (/dev/sda) v

Cancel Start Restoring...

T Selectadevicetomanage.

~

Figure 5-9. Writing the ISO file to the USB device

Whatever method we choose to create the USB bootable device, now
we can take our USB disk and boot the target system. In a few seconds, the
physical system will show us a screen similar to that of Figure 5-10.

virt-p2v

Connect to a virt-v2v conversion server over SSH:

| Conversion server: |

User name:]root

password: |

SSH Identity URL: |
[/

Configure network ... l

Figure 5-10. virt-p2v connecting to the conversion server

Test connection
About virt-p2vi1.36.13 ... ’

275

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

We need to fulfill the fields with the IP address of the QEMU/KVM
hypervisor in which the converted virtual machine will run. If we're not
using DHCP in our network, we’ll need to edit the IP settings to assign
a free IP in the same network. We also need a user with permissions to
connect to the conversion server with SSH. We click “Next”.

In the new screen (Figure 5-11), we can specify the properties of the
converted virtual machine, such as the name, number of virtual CPUs,
memory, etc. We can also choose the physical disks and network interfaces
to be converted, the output format, and so on. In this example, we decided
to use the default “local” output format; this means that when the conver-
sion is finished, an XML file will be created on the /var/tmp folder. We can
later use it to import the virtual machine in libvirt with virsh define.

virt-p2v

-~ [Fixed hard disks——————

| Convert |Dwics

| o :‘2 sda
emory | 149G Hitachi HTS54501
H (e 1024 s/n 100318PBPBOIECGELARL

Removable media

Virt-v2v output options
output to (-0): local -
Qutput conn. (~oc)tr/
Output storage ('D$)ZW{J’"‘
- s (‘Of):r’_’—_—’ Network interfaces
output allocation {-0a): sparse v

information

enp9s0

00 2454 8547 58
Marvell Technology Greup Lid

wirt-p2v (client):

3613 N
;n-\&v (corversion serva

13613

)

Figure 5-11. Conversion settings

276

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

We can now click “Start conversion”. A new window will appear in
which we can see the progress. When the procedure is finished, we’ll see
the corresponding message (Figure 5-12).

Figure 5-12. The conversion was successful

As we said, we can now import the newly created virtual machine in
libvirt from the XML file created on /var/tmp.

virt-v2v

We have seen already that we need virt-v2v installed when using virt-p2v.
Besides using it to convert physical to virtual, it can also be used to convert
between different virtual systems.

277

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

This is a very versatile and interesting tool, though it has some
limitations. If we look at the man page of the tool, we can see that
depending on the source guest and the destination format, there are
specific versions supported; in some cases, we need to perform some
additional actions.

It would take too long to describe each and every case so we'll just
see a simple example. We'll convert a VMDK file, for example, the one we
created previously from the original debian.qcow? file. We’ll use the local
output (-o local); that is, an xml file will be created in the temp folder (-os
temp). The destination format will be qcow2 (-of gcow2).

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-v2v -i disk
debian.vmdk -o local -of qcow2 -os temp

[0.0] Opening the source -i disk debian.vmdk

[0.0] Creating an overlay to protect the source from being
modified

[0.1] Opening the overlay

[13.5] Inspecting the overlay

[15.8] Checking for sufficient free disk space in the guest
[15.8] Estimating space required on target for each disk

[15.8] Converting 12.5 to run on KVM

virt-v2v: warning: could not determine a way to update the
configuration of

Grub2

virt-v2v: This guest has virtio drivers installed.

[52.6] Mapping filesystem data to avoid copying unused and
blank areas

[69.8] Closing the overlay

[70.1] Assigning disks to buses

[70.1] Checking if the guest needs BIOS or UEFI to boot

[70.1] Initializing the target -o local -os temp

278

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

[70.1] Copying disk 1/1 to temp/debian-sda (qcow2)
(100.00/100%)

[107.2] Creating output metadata

[107.2] Finishing off

If we list the contents of the temp folder, we'll see the debian.xml file.

antonio@antonio-Laptop:~/QEMU_VMs$ 1s -1lh temp
total 5,5G

-Iw-r--r-- 1 root root 5,5G jul 11 22:13 debian-sda
-TwW-r--r-- 1 root root 1,5K jul 11 22:13 debian.xml

Now we can import the file into libvirt with virsh.

antonio@antonio-Laptop:~/QEMU VMs$ virsh define temp/debian.xml
Domain 'debian' defined from temp/debian.xml

antonio@antonio-Laptop:~/QEMU_VMs$ virsh list --all
Id Name State
- debian shut off
- debian12 shut off

However, if we try to start the newly defined libvirt domain, we might
get this error.

antonio@antonio-Laptop:~/QEMU_VMs$ virsh start debian

error: Failed to start domain 'debian’

error: internal error: gemu unexpectedly closed the monitor:
2024-07-14T12:54:18.899496Z gemu-system-x86_64: warning:
host doesn't support requested feature: CPUID.80000001H:ECX.
svm [bit 2]

Could not initialize SDL(x11 not available) - exiting

279

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

We can easily circumvent this error by editing the domain definition.
We could use virsh edit debian to edit the xml file directly, but it is more
friendly to use virt-manager instead. We'll open the virtual machine
hardware settings; in the “CPUs” section, we’ll check the “copy host CPU
configuration” box (Figure 5-13).

debian on QEMU/KVM = 8 €

File Virtual Machine View Send Key

=@ » n =}

@‘ Overview Details XML
El‘ OS information
I8 performance
&5 Memory
Boot Options Configuration
@1 VirtlO Disk 1 4 Copy host CPU configuration
@ NIC:50:56:23 > Topology
@ Tablet

Mouse

CPUs
Logical host CPUs: 8

VCPU allocation: 1 +

7\ Keyboard
(] pisplaysoL
G Serial1
(] video xu
m Controller USB 0
B controllersaTA O
m Controller PCle 0
RNG /dev/urandom
Panic Notifier

Add Hardware Cancel Apply

Figure 5-13. Editing the CPU settings

280

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Next, we'll get to the “Display SDL” section, and we’ll change the
settings to use VNC server instead (Figure 5-14).

debian on QEMU/KVM - X

File VirtualMachine View Send Key
=0 » no - %

IE‘ Overview Details XML
g‘ OS information

Performance
Type: VNCserver v
{} cpus =L

VNC Server

&5 Memory Listentype: Address -
Boot Options
[virtio pisk 1
4t NIc:s0:56:23 port: (% Auto (Port 5900)
@8 Tablet Password:
) Mouse

Address: Localhost only v

Show password
Keyboard

G Serial1

() video Qx

m Controller USB 0
B8 controller saTa0
m Controller PCle 0
RNG /dev/urandom
Panic Notifier

Figure 5-14. Editing the display settings

Now, we should be able to boot the debian domain (Figure 5-15).

281

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

debian on QEMU/KVM D0 &
File VirtualMachine View Send Key

= @ 1] @ S B zz

Jul14 14:57

Antonio Vazquez

Figure 5-15. Debian domain running

virt-sysprep

We're almost finishing this review of the main libguestfs tools. This time
we'll see virt-sysprep. This tool can be used to customize a virtual ma-
chine so that clones can be made. For instance, we can use it to remove ssh
keys or network MAC persistent configuration. If we make a copy of a disk
image file, the copy will have the same local user accounts, IP settings, and
so on, so if we use it unmodified in the same network, it will get network-
ing errors for having two identical IP addresses in the network. We could
easily avoid this by using virt-sysprep.

The use of virt-sysprep is very easy. We'll see an easy example right
now. First, we’ll make a copy of a disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ cp alpine_disk.qcow COPY_
alpine_disk.qcow

282

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Now we’ll use virt-sysprep to delete the file with the command history

(.ash_history in this Alpine Linux system) and to create a new /fest folder.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-sysprep --mkdir /
test --delete /root/.ash_history -a COPY alpine_disk.qcow
Examining the guest ...

.0]

P O O O O O O O VW W o

L T e T e T e T e T e T e T e T s T s O s T e, T ey T s T s T s T s T e T e, T e T e T e I e T e T e B e T e |
w W W w w w w w w w w w w w w w w w w w w w N N N NN O
. .

A DA b W W W W W NN R R
— e e e e e e e e e)) e) e e et e e e e et e] e

v

Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing
Performing

"abrt-data" ...
"backup-files" ...
"bash-history" ...
"blkid-tab" ...
"crash-data" ...
"cron-spool” ...

"dhcp-client-state" ...
"dhcp-server-state” ...
"dovecot-data” ...
"ipa-client" ...
"kerberos-hostkeytab" ...
"logfiles" ...
"machine-id" ...
"mail-spool” ...

"net-hostname" ...
"net-hwaddr" ...
"pacct-log" ...
"package-manager-cache" ...
"pam-data" ...
"passwd-backups"” ...
"puppet-data-log" ...

"rh-subscription-manager" ...
"rhn-systemid" ...

"rpm-db" ...

"samba-db-log" ...

"script" ...

283

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

(9]

Performing "smolt-uuid" ...

v

Performing "ssh-hostkeys" ...

v

Performing "ssh-userdir" ...
Performing "sssd-db-log" ...
Performing "tmp-files" ...

(9]

(o))

Performing "udev-persistent-net" ...

(o))

Performing "utmp" ...

(o))

Performing "yum-uuid" ...

w W w w w w w w w

.
(o)}

— e e] e d] e

~

Performing "customize" ...

3.7] Setting a random seed

virt-sysprep: warning: random seed could not be set for this
type of guest

[3.7] Making directory: /test

[3.7] Deleting: /root/.ash_history

[3.8] Performing "lvm-uuids" ..

Lo T s T s T s T s TR e T s T s T s B e |

We'll launch now a QEMU instance to check the customized disk
image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo gemu-system-x86_64 -m
512 -accel kvm COPY alpine disk.qcow

If we log in the the system, we’ll see that the history command has
been reset.

alpine2:~# 1ls -a
. . .ash_history
alpine2:~# history
01ls -a
1 history

284

And we

alpine2:~#
bin

boot

dev

etc
alpine2:~#

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

can also see that the new /fest folder was created.
1s /
home mnt run sys var
lib opt sbin test
lost+found proc STV tmp
media root swap usr

Open Virtualization Format

Open Virtualization Format (OVF) is an open standard to distribute appli-

ances (pre-configured virtual machines).
Nowadays most of the virtualization solutions provide a way to export

virtual machines into OVE. For instance, if we’re working with VirtualBox,

which we already studied briefly in this chapter, we can click File » Export

Appliance and we’ll see the window shown in Figure 5-16.

™

Export Virtual Appliance
Virtual machines to export

Please select the virtual machines that should be added to the appliance. You can select more than one. Please note that these machines have to
be turned off before they can be exported.

[3] aldebaran
i3] altair
antares

) E CentOs-Kaltura

Figure 5-1

<]

B dartagnan
FreeBSD1
E juliette Clone
£ kali

| Neteso1
OpenBsD1
E Porthos

E rigel

SUSE 15 XEN

(5] suse ENGINEER

tails

& wr

Expert Mode | Next> cancel

6. Export Appliance

285

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

We select the virtual machine we want to export, and we click “Next”.
In the next screen (Figure 5-17), we specify a few settings such as the OVF
format or the location of the exported files. After clicking “Next’, we can

edit some descriptive information as well (Figure 5-18).

0

Export Virtual Appliance
Appliance settings

Please choose a format to export the virtual appliance to.

The Open Virtualization Format supports only ovf or ova extensions. If you use the ovf extension, several files will be written separately. If you
use the ova extension, all the files will be combined into one Open Virtualization Format archive.

The Oracle Cloud Infrastructure format supports exporting to remote cloud servers only. Main virtual disk of each selected machine will be
uploaded to remote server.

Format: | Open Virtualization Format 1.0 -

Please choose a filename to export the virtual appliance to. Besides that you can specify a certain amount of options which affects the size and
content of resulting archive.

File: /h i i fjuliette.ovF =]

MAC Address Policy: | Include only NAT network adapter MAC addresses -
Additionally: v Write Manifest file

Include 1SO image files

<Back Next > Cancel

Figure 5-17. Appliance settings 1 of 2

286

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Export Virtual Appliance
Virtual system settings

This is the descriptive information which will be added to the virtual appliance. You can change it by double clicking on individual lines.

Virtual System 1
€2 Name juliette
@ Product
® Product-URL
® vendor
@& Vendor-URL
® version
@ Description
® License

Restore Defaults| | < Back Export Cancel

Figure 5-18. Appliance settings 2 of 2

Now that everything is ready, we click “Export’, and the creation of the
OVF begins (Figure 5-19).

Exporting Appliance ...: Export appliance '/home/antoniofanto... &

Exporting to disk image 'juliette-disk001.vmdk’ ... (2/4)

e 15% %

18 seconds remaining

Figure 5-19. Exporting an OVF

287

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

When the process finishes, we’ll have a series of files in the destination
folder (Figure 5-20).

A

4 Home antonio ovas Q

v v v

Home o o L o
juliette.mf juliette.ovf juliette- juliette-

Desktop disko01. disk002.

vmdk vmdk

Documents

Downloads

Music

Pictures

Videos

Bl @ B & ¢« O B O

Trash

+

Other Locations

Figure 5-20. OVF files

In the mf file, we'll see the checksums of the other files.

antonio@antonio-Aspire-A315-23:~/antonio/ovas$ cat juliette.mf
SHA1 (juliette-diskoo1.vmdk) =
2463045ec06fc3f3b3d2c6346d14b40170199078

SHA1 (juliette-diskoo2.vmdk) =
1c92249f1dodat720b92e5e397ab841205c79313

SHA1 (juliette.ovf) = 57e497c886b17b28bd91243990bbf8cbbc5818ch

The VMDK files are the virtual disk files used by the virtual machine,
and the ovf file is an xml file in which the hardware configuration of that
same virtual machine is described.

288

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

antonio@antonio-Aspire-A315-23:~/antonio/ovas$ cat juliette.ovf
<?xml version="1.0"?>
<Envelope ovf:version="1.0" xml:lang="en-US" xmlns="http://
schemas.dmtf.org/ovf/envelope/1" xmlns:ovf="http://schemas.
dmtf.org/ovf/envelope/1" xmlns:rasd="http://schemas.dmtf.org/
wbem/wscim/1/cim-schema/2/CIM_ResourceAllocationSettingData”
xmlns:vssd="http://schemas.dmtf.org/wbem/wscim/1/cim-
schema/2/CIM_VirtualSystemSettingData" xmlns:xsi="http://
WWW.w3.01g/2001/XMLSchema-instance” xmlns:vbox="http://www.
virtualbox.org/ovf/machine">
<References>
<File ovf:id="file1" ovf:href="juliette-diskoo1.vmdk"/>
<File ovf:id="file2" ovf:href="juliette-diskoo2.vmdk"/>
</References>
<DiskSection>
<Info>List of the virtual disks used in the package</Info>
<Disk ovf:capacity="8589934592" ovf:diskId="vmdisk1"
ovf:fileRef="file1" ovf:format="http://www.vmware.com/
interfaces/specifications/vmdk.html#streamOptimized" vbox:uuid=
"dc47f76e-8461-4a65-88ad-f950bbeq21e2" />
<Disk ovf:capacity="10737418240" ovf:diskId="vmdisk2"
ovf:fileRef="file2" ovf:format="http://www.vmware.com/
interfaces/specifications/vmdk.html#streamOptimized"
vbox:uuid="ffc82270-e015-43e1-870f-6b37129a0b58" />

289

CHAPTER 5 VIRTUAL MACHINE DISK IMAGE MANAGEMENT

Summary

In this chapter, we have learned a bit more about the different disk file
formats. We've seen how to create disk files in different formats, getting
information and converting between different formats.

We have also studied how we can mount filesystems contained inside
disk files and how to copy files between the host and the disk file. We've
also seen how we can expand or reduce the size of a virtual disk file and
customize its content, adding or deleting settings as needed.

We also saw an example of converting a physical machine to a virtual
one. And we used the OVF format to export a virtual machine.

290

CHAPTER 6

Proxmox and
Open vSwitch

In this chapter, we'll cover the following concepts:
e Awareness of oVirt, Proxmox, and systemd-machined

e Awareness of Open vSwitch

Introduction to Proxmox

Proxmox is a virtualization platform, designed to easily manage virtual
machines (and also containers).

When we studied QEMU/KVM and at the beginning of the book, we
created the virtual machines launching the QEMU binary with the right
parameters to set memory, network, storage, and so on. Later we learned
about libvirt, and we saw how easier it was to manage virtual machines
with tools like virt-manager. However, for big enterprise environments,
even tools like virt-manager are not ideal. We need to go one step forward,
and that’s where Proxmox fits in.

We'll start by installing Proxmox. We can download the ISO installation
file from the manufacturer web page: https://proxmox.com/en/

(Figure 6-1). Then we select “Downloads” and “Proxmox VE” And click the
download button next to the ISO file.

© Antonio Vazquez 2024 291
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_6

https://doi.org/10.1007/979-8-8688-1080-0_6#DOI
https://proxmox.com/en/

CHAPTER6 PROXMOX AND OPEN VSWITCH

We have to say that Proxmox offers several products, not only the
Proxmox Virtual Environment or Proxmox VE for short that we're speaking
about in this book. They also offer backup and mail-related software.
When we speak about Proxmox in this book, we’ll be speaking about
Proxmox VE.

& | % Download Proxmox soft X | + v - x
< [¢] (O:] proxmox.com, w ©@ & @ 8 =
X PROXMOX cares = rron (@19
Home Virtualization Backup Email Security ~ Download Services Partners About
Proxmox Virtual Environment Proxmox Backup Server Proxmox Mail Gateway

Proxmox Virtual Environment Proxmox Backup Server Proxmox Mail Gateway

Latest Releases

Proxmox VE 8.2 1SO Installer

“n Version File Size Last Updated

Figure 6-1. Downloading Proxmox

292

CHAPTER6 PROXMOX AND OPEN VSWITCH

The way to install it is very easy. We just need to boot the server with
the ISO file (Figure 6-2).

Proxmox VE 8.2 (iso release 1) - https://www.proxmox.com/

X PROXMOX

Welcome to Proxmox Virtual Environment

Install Proxmox VE (Terminal UI)
Advanced Options

enter: select, arrow keys: navigate, e: edit entry, esc: back

Figure 6-2. Booting from the Proxmox installer

293

CHAPTER6 PROXMOX AND OPEN VSWITCH

We'll select the first option “Install Proxmox VE (Graphical)’, as it is
easier than the text installation. Then we select the disk device in which to
install it (Figure 6-3).

X PRO>XMO Proxmox VE Installer

Proxmox Virtual Environment (PVE)

The Proxmox Installer automatically * Please verify the installation target
partitions your hard disk. It installs all required The displayed hard disk will be used for the
packages and makes the system bootable from installation.

the hard disk. All existing partitions and data Warning: All existing partitions and data will
will be lost. be lost.

Press the Next button to continue the
installation.

.

Automatic hardware detection
The installer automatically configures your
hardware.

Graphical user interface
Final configuration will be done on the
graphical user interface, via a web browser.

Target Harddisk | /dev/sda (16.00GiB, VBOX HARDDISK) v Options.

Abort Previous Next

Figure 6-3. Installing Proxmox. Selecting the hard disk

294

CHAPTER6 PROXMOX AND OPEN VSWITCH

We also select the country, time zone, and keyboard layout
(Figure 6-4).

X PROXMO Proxmox VE Installer

Location and Time Zone selection

The Proxmox Installer automatically makes ¢ Country: The selected country is used to
location-based optimizations, like choosing the choose nearby mirror servers. This will
nearest mirror to download files from. Also speed up downloads and make updates
make sure to select the correct time zone and more reliable.

keyboard layout.

* Time Zone: Automatically adjust daylight
Press the Next button to continue the saving time.
installation.

* Keyboard Layout: Choose your keyboard
layout.

Country | Spain
Time zone Europe/Madrid -

Keyboard Layout | Spanish -

Abort Previous Next

Figure 6-4. Installing Proxmox. Setting the time zone and the
keyboard layout

295

CHAPTER6 PROXMOX AND OPEN VSWITCH

We also need to set the root password (Figure 6-5).

X PROXMO Proxmox VE Installer

Administration Password and Email Address

Proxmox Virtual Environment is a full * Password: Please use a strong password.

featured, highly secure GNU/Linux system, It should be at least 8 characters long, and

based on Debian. contain a combination of letters, numbers,
and symbols.

In this step, please provide the root password.
* Email: Enter a valid email address. Your
Proxmox VE server will send important alert
notifications to this email account (such as
backup failures, high availability events,
etc.).

Press the Next button to continue the
installation.

Password 00000000

Confirm @0 000000

Email | mail@example.com

Abort Previous Next

Figure 6-5. Installing Proxmox. Setting the root password

In the next screen, we specify the network settings (Figure 6-6).

X PROXMO Proxmox VE Installer

Management Network Configuration

Please verify the displayed network * IP address (CIDR): Set the main IP address
configuration. You will need a valid network and netmask for your server in CIDR
configuration to access the management notation.

interface after installing.
o @atawaw- ID addrace nf vour gateway or

After you have fini:

You will be shown &

chose during the p f your DNS server.

Management Interface | @ enp0s3 - 08:00:27:8c:5e:43 (€1000) v

Hostname (FQDN) [pve.example.com|

1P Address (CIDR) | 192.168.1.85 k)
Gateway = 192.168.1.1

DNS Server 127.0.0.1

Abort Previous Next

Figure 6-6. Installing Proxmox. IP settings

296

CHAPTER6 PROXMOX AND OPEN VSWITCH

Finally, we can see a brief summary of the settings that will be used
during the installation (Figure 6-7).

X PRO>XMO Proxmox VE Installer

Summary

Please confirm the displayed information. Once you press the Install button, the installer will
begin to partition your drive(s) and extract the required files.

Filesystem: extd

Disk(s): /dev/sda
Country: Spain
Timezone: Europe/Madrid
Keymap: es

Email: mail@example.com
Management Interface: enp0s3
Hostname: pve

IP CIDR: 192.168.1.85/24
Gateway: 192.168.1.1
DNS: 127.0.0.1

Automatically reboot after successful installation

Abort Previous Install

Figure 6-7. Installing Proxmox. Summary

The installation will take a few minutes to complete. After that, we can
log in to the console (Figure 6-8).

297

CHAPTER6 PROXMOX AND OPEN VSWITCH

Figure 6-8. Proxmox server console

From the server console, we can perform some basic actions like
getting the Proxmox version or listing the Proxmox nodes. Currently we

only have one Proxmox node, but Proxmox can be installed in cluster.

root@pve:~# pveversion

pve-manager/8.2.2/9355359cd7afbae4 (running kernel: 6.8.4-2-pve)

root@pve:~# pvesh get nodes

| node | status | cpu | level | maxcpu | maxmem | mem |
ssl _fingerprint

[pve | online | 0.89% | | 2 [3.83 GiB [1.12 GiB |
F9:15:38:0F:74:1D:F6:01:ED:4C:1B:94:A4:95:AD:69:B4:AF:69:39:6B:03:1

root@pve:~#

298

CHAPTER6 PROXMOX AND OPEN VSWITCH

However, the preferred way to administer Proxmox is through the web
console. We can see the exact URL on the server console banner. In our
example, it is located at http://192.168.1.85:8006. We'll access using the
credentials specified during the installation (Figure 6-9).

B | X pve-Proxmox Virtual En X = + v o & &

€« (&} O & o 192.168.1.85 w 9 & @ O =

Linux PAM standard authentication

Language: English - English

Figure 6-9. Accessing Proxmox web interface

Once authenticated, we can see the main page (Figure 6-10).

299

http://192.168.1.85:8006/

CHAPTER6 PROXMOX AND OPEN VSWITCH

B | X pve-Proxmox Virtual En X | + v 5 & &®
« c [O-N 192.168.1.85 Ad & ®©@ 9 =
X PROXMO X Virtual Environment 8.2.2. 5= & Documentation
Server View @} Datacenter © Help

| £ Datacenter -
earc
B pe Q Search
& s Type Description Disk usage Memory us. CPU usage Uptime
ummary
o BB node pve 356% 279% 08%o0f2.. 00:17:39
otes
s 35 sdn localnetwork (pve)
= = local (pve) 356 %
@ Coph £ storage local (pve) .6 %
o £ storage local-vm (pve) 0.0%
& Options
£ Storage
Backup

3 Replication

-0 Parmiscinne

S Clusterlog

Start Time End Time Node User name Description Status
Jul 14 22:10:52 Jul 14 22:10:52 pve root@pam Bulk start VMs and Containers oK

Figure 6-10. Proxmox web interface

A deep knowledge of Proxmox is not required for the LPIC-3 305 exam,
so we'll just see a very simple example of how to create a virtual machine.
We'll use the Alpine ISO file we downloaded when we studied Xen. We
need to upload the ISO file to the local storage of Proxmox. We'll click on
the Proxmox node, pve in our case, and then select “storage local (pve)”
(Figure 6-11).

300

CHAPTER6 PROXMOX AND OPEN VSWITCH

B | X pve-Proxmox Virtual En X | + v a & &
<« C O & O https://192.168.1.85:8006/#v1:C de%2Fpve:4::=contentiso: 4 ® A =
X PROXMOX Vitual Environment 8.2.2 search & Documenaion [ERa CE
Server View % Node pre’ © Reboot () Shutdown >_ Shell : Buk Actions © Help
&8 Datacenter s -
earc
Q Search
Type Description Diskusage... = Memoryus.. | CPUusage | Uptime Hos
& Summary
localnetwork (pve)
O Notes Lo i
local (pve) 35.6%
> Shell torge)
£ sorage localvm (pve) 00%
o System
= Network
Cerificates
@ DNs
@ Hosts
A Ontions
0 Clusterlog
Start Time End Time Node User name Description Status
Jul 1422:10:52 Jul 14 22:10:52 pve root@pam Bulk start VMs and Containers oK

Figure 6-11. Proxmox storage

In the new window (Figure 6-12), we'll click “ISO Images” and then the
“Upload” button.

B | X pve-Proxmox Virtual En X | + v a & &
<« C O & O https://192.168.1.85:8006/#v1:0:=storage%2Fpve%2Flocal:4:=contentlso: w ® A =
X PROXMOX Vitual Environment 8.2.2 search PESTN S < Create Vi | © Create CT
Server View % Storage ‘local’ on node ‘pve’ @ Help
£ Datacenter
& Summary Upload Download from URL. Remove Search: Name, Format
B pe
553 localnetwork (pve) Backups Name Date Format Size
£ [Jlocal (pve) © SO Images
= -
E(]locakvm (pve) [CT Templates
& Permissions
) Clusteriog
Start Time End Time Node User name Description Status
Jul 14 22:10:52 Jul 14 22:10:52 pve root@pam Bulk start VMs and Containers oK

Figure 6-12. Storing an ISO file

301

CHAPTER6 PROXMOX AND OPEN VSWITCH

We select the location of the ISO file (Figure 6-13). And click the
“Upload” button.

& | X pve-Proxmox Virtual En X | + o

<« @ O & o 192.168.1.85 w ® &8 =

Upload

alpine-standard-3.19.1-x86.iso

Figure 6-13. Uploading an ISO file

Once the ISO file is uploaded, we click the “Create VM” button, on the
top of the window. Then we need to specify the needed parameters for the
new VM. In the “General” tab (Figure 6-14), we select the node - in our
case, we only have one node - and the VM ID; in this case, we accept the
default values and click “Next”.

302

CHAPTER6 PROXMOX AND OPEN VSWITCH

@ | X pve-Proxmox Virtual En X | + <

<« C QO & o ht 192.168.1.85: 3 2 4::=C tisc 4 ® A =

Create: Virtual Machine

3 o

Node: pve Resource Pool
VM ID: 100
Name

@ Help Advanced m

Figure 6-14. Creating a VM. General tab

In the “OS” tab (Figure 6-15), we'll select the ISO file we uploaded
previously and click “Next”.

@ | X pve-Proxmox Virtual En X = + <

<« @ O & o ht 192.168.1.85 2 . 4:=c tisc A ® &8 =

Create: Virtual Machine

General E System

Guest OS:

Linux

6.x - 2.6 Kernel

advanced] 1NN HEEHD

Figure 6-15. Creating a VM. OS tab

303

CHAPTER6 PROXMOX AND OPEN VSWITCH

In the “System” tab (Figure 6-16), we can select different options for the
Graphic card, SCSI Controller, etc.

B | 3X pve-Proxmox Virtual En X | + v 5 & &®

<« @ O & o 192.168.1.85 w ® &8 =

Create: Virtual Machine
General 0s [[EEEM Disks

Graphic card Default SCS| Controller: | VirtlO SCSI single

Default (i440fx)

Firmware

BIOS Default (SeaBIOS) Add TPM:

@ Help Advanced [Next |

Figure 6-16. Creating a VM. System tab

In the “Disks” tab (Figure 6-17), we can select the disk size and other
disk-related parameters.

304

CHAPTER 6

& | X pve-Proxmox Virtual En X | +

O & o- http:

< (¢] 192.168.1.85:8006/#v1:0:=stora

Create: Virtual Machine

General OS System cPU
scsi0 8 XY sandwidh

Bus/Device: scsli 0 Cache:
SCSI Controller: VirtlO SCS! single Discard:
10 thread:

Storage: local-vm

Disk size (GiB) 32

@ Help

Advanced

Figure 6-17. Creating a VM. Disks tab

PROXMOX AND OPEN VSWITCH

In the “CPU” tab (Figure 6-18), we select the number of CPUs.

& | X pve-Proxmox Virtual En X | +

O & o- http:

< [¢] 192.168.1.85:8006/#v1:0:=stora

Create: Virtual Machine

General OS System Disks SR Memory

Sockets: 1 Type:

Cores 1 Total cores 1
@ Help

Figure 6-18. Creating a VM. CPU tab

v 88 &
hd ® &a =
Defautt (No cache)
v X
hd @ a

x86-64-v2-AES X

Advanced

CHAPTER6 PROXMOX AND OPEN VSWITCH
In the “Memory” tab (Figure 6-19), we assign the desired amount

of memory.
® a8 =

& | X pve-Proxmox Virtual En X | +

0 & o

Create: Virtual Machine
cru IR Network

General OS System Disks

192.168.1.85

<« C

E=EED

@ Help

Figure 6-19. Creating a VM. Memory tab

Finally, in the “Network” tab (Figure 6-20), we can set some network-
related settings, and in the “Confirm” tab (Figure 6-21), we can see a

summary. We click “Finish”.

306

& | X pve-Proxmox Virtual En X | +

« (¢] O & o http:

Create: Virtual Machine
General OS System

No network device

Bridge vmbr0
VLAN Tag no VLAN
Firewall

@ Help

Figure 6-20. Creating a

& | X pve-Proxmox Virtual En X | +

« (¢] O & o http:

192.168.1.]

Create: Virtual Machine

General OS

memory
neto
nodename
numa
ostype
scsi0
scsihw
sockets
vmid

Start after created

Figure 6-21. Creating a

192.168.1.85:8006/#v1

System Disks CPU

CHAPTER6 PROXMOX AND OPEN VSWITCH

4::=contentlso:

Disks CPU

Memory @/ Confirm

Model VirtlO (paravirtualized)

MAC address: auto

Advanced

VM. Network tab

4::=contentlso:

85:8006/#V1

Network

Memory

Value
1
x86-64-v2-AES

tandard-3.19.1-x86.iso,
512

virtio bridge=vmbr0 firewall=1

e

0

126

local-vm:32 jothread=on
virtio-scsi-single

1

100

Advanced

VM. Confirm tab

C=1ED

307

CHAPTER6 PROXMOX AND OPEN VSWITCH

Now the VM is created (Figure 6-22). We can now click the “Start”
button. We can access the server console by clicking “Console”
(Figure 6-23).

B | X pve-Proxmox Virtual En X | + v 5 & &
c O & o 192.168.1.85 =
PRO MO X Virtual Environment 8.2.2 8 Documentation
Server View % Virtual Machine 100 (VM 100) on node pve’ N ’ » Start _ Console More @ Help
£ Datacenter
Hour (average)
B pre & Summary
100 (VM 100)
ccalretwork {ove) >_ Console 1 Notes
local (pve) 2 Hardware
£ (] local-vm (pve) & Cloud-Init i Status stopped
o @ HA State none
t
N B Node pve
£ Task History
% Pl
= Vonier {#} CPU usage 0.00% of 1 GPU(s)
=3 Memory usage 0.00% (0 B of 512.00 MiB)
Backup
& Bootdisk size 3200GiB
3 Replication
o Snanchat =1Ps No Guest Agent configured
Cluster log
Jul 14 23:42:22 Jul 14 23:42:22 pve root@pam VM 100 - Create OK
Jul 14 23:40:46 Jul 14 23:40:46 pve root@pam Copy data oK
Jul 14 22:10:52 Jul 14 22:10:52 pve foot@pam Bulk start VMs and Containers oK

Figure 6-22. Virtual machine created

QEMU (vm100) - noVNC — Mozilla Firefox - @ x

O a = 192.168.1.85 w =
[Booting fron DUD.

ISOLINUX 6.64 6.04-prel ETCD Copyright (C) 1994-2015 H. Peter Anvin et al
oot :

OpenRC 0.52.1 is starting up

sproc is already mounted
Mounting /run
creating directo
ing directory
correcting ouner

Mounting /dev/nqueue
Hounting modloop
ifying modloop
Mounting security fil
Mounting debug f stem
Mounting persistent storage (pstore) filesysten
Starting busybox ndev .
mning hardware for nd
Loading hardware driver
Loading modules

Mounting lo
Configuring kernel parameters
Higrating svar,

Creating user login re

leaning /tnp directory .
t

Figure 6-23. Accessing the VM console

308

CHAPTER6 PROXMOX AND OPEN VSWITCH

systemd-machined

According to the man page, “systemd-machined is a system service that
keeps track of locally running virtual machines and containers.” That is, it
is a lightweight VM and container manager.

systemd-machined is actually a systemd service. We can check its
status as we’'d do with any other service.

antonio@antonio-Laptop:~$ systemctl status systemd-machined
e systemd-machined.service - Virtual Machine and Container
Registration Service
Loaded: loaded (/1ib/systemd/system/systemd-machined.
service; static)
Active: active (running) since Mon 2024-07-15 16:41:04
CEST; 1h 37min ago
Docs: man:systemd-machined.service(8)
man:org.freedesktop.machine1(5)
Main PID: 855 (systemd-machine)
Status: "Processing requests..."
Tasks: 1 (limit: 18712)
Memory: 1.3M
CPU: 278ms
CGroup: /system.slice/systemd-machined.service
L—855 /1ib/systemd/systemd-machined

We can manage VMs and containers registered in systemd-machined
using the machinectl command. Of course, right now we don’t have any
registered VM or container.

antonio@antonio-Laptop:~$ machinectl list
No machines.

309

CHAPTER6 PROXMOX AND OPEN VSWITCH

We need to create some machines. Similarly to what happened with
Proxmox, we're only expected to have some basic knowledge of systemd-
machined, so we won’t get into much detail. We'll just see an easy
example present in the man page of machinectl.

In this example, we’ll download an Ubuntu image specifically crafted
for being used in cloud environments. Then we’ll use systemd-nspawn to
open a shell in the image we just downloaded.

antonio@antonio-Laptop:~/VMs$ sudo machinectl pull-tar https://
cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-
amd64-root.tar.gz

Enqueued transfer job 1. Press C-c to continue download in
background.

Pulling 'https://cloud-images.ubuntu.com/trusty/current/trusty-
server-

cloudimg-amd64-root.tar.gz', saving as 'trusty-server-
cloudimg-amd64-root’.

Downloading 186.4M for https://cloud-images.ubuntu.com/trusty/
current/trusty-server-cloudimg-amd64-root.tar.gz.

Created new local image 'trusty-server-cloudimg-amd64-root'.
Operation completed successfully.
Exiting.

Now we can launch a shell with systemd-nspawn.

antonio@antonio-Laptop:~/VMs$ sudo systemd-nspawn -M trusty-
server-cloudimg-amd64-root

[sudo] password for antonio:

Spawning container trusty-server-cloudimg-amd64-root on /var/
lib/machines/trusty-server-cloudimg-amd64-root.

310

CHAPTER6 PROXMOX AND OPEN VSWITCH

Press ~] three times within 1s to kill container.
root@trusty-server-cloudimg-amd64-root:~#

In the host system, we can use machinectl again to list the machines;
now we'll see one entry.

antonio@antonio-HP-Laptop-15s-fqixxx:~/VMs$ machinectl list
MACHINE CLASS SERVICE)
VERSION ADDRESSES

trusty-server-cloudimg-amd64-root container systemd-nspawn
ubuntu 14.04 -

1 machines listed.

As usual we can execute commands in the guest in the same way as if
we were working in a physical machine.

root@trusty-server-cloudimg-amd64-root:~# hostname
trusty-server-cloudimg-amd64-root

We mentioned in the beginning of this section that systemd-machined
can manage virtual machines as well as containers. The system we're
working with now is not a full virtual machine, but a container.

We'll begin to study containers in the next chapter, but for now, we'll
make a few remarks.

As opposed to a virtual machine, a container doesn’t need to emulate
hardware, as it relies on the characteristics of the kernel to provide
isolation to the container. In fact, if we list the disks in our guest system,
we'll see nothing.

root@trusty-server-cloudimg-amd64-root:~# fdisk -1
root@trusty-server-cloudimg-amd64-root:~#

311

CHAPTER6 PROXMOX AND OPEN VSWITCH

All containers execute the same kernel as the host; we can check it by
comparing the output of the uname command in guest and host.

root@trusty-server-cloudimg-amd64-root:~# uname -a

Linux trusty-server-cloudimg-amd64-root 6.5.0-44-generic
#44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16
UTC 2 x86_64 x86_64 x86_64 GNU/Linux

antonio@antonio-Laptop:~/VMs$ uname -a

Linux antonio-HP-Laptop-15s-fqixxx 6.5.0-44-generic
#44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16
UTC 2 x86_64 x86_64 x86_64 GNU/Linux

The kernel feature used to isolate containers is the namespaces;
we'll see this in detail in the upcoming chapter. We can use namespaces
to isolate process IDs, mount points, networks, etc. We can use all these
namespaces or just some of them. For instance, our current guest is not
using an isolated network namespace; if we list the network interfaces
from the guest, we'll see all the network interfaces defined in the host.

root@trusty-server-cloudimg-amd64-root:~# ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: wlol: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP mode DORMANT group default gqlen 1000
link/ether b0:68:e6:14:aa:b3 brd ff:ff:ff:ff:ff:ff

312

CHAPTER6 PROXMOX AND OPEN VSWITCH
After working with the guest, we can exit the command shell.

root@trusty-server-cloudimg-amd64-root:~# exit
logout

Container trusty-server-cloudimg-amd64-root exited
successfully.

Open vSwitch

Open vSwitch is an open source implementation of a distributed
multilayer virtual switch. That means that it can work at different layers of
the OSI model and supports distribution across several hosts.

Open vSwitch is an advanced tool that offers many possibilities. This
advanced knowledge is well beyond the scope of this book and the LPIC-3
305 exam, which only requires a basic knowledge of the tool.

We'll begin by installing the software.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ sudo apt install
openvswitch-switch

After the installation is complete, we’ll have two new related services
installed.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ systemctl status ovs-
vswitchd.service
e ovs-vswitchd.service - Open vSwitch Forwarding Unit

Loaded: loaded (/1ib/systemd/system/ovs-vswitchd.

service; static)

Active: active (running) since Mon 2024-07-15 21:43:47

CEST; 59min ago

Main PID: 28313 (ovs-vswitchd)
Tasks: 1 (limit: 18712)

313

CHAPTER6 PROXMOX AND OPEN VSWITCH

Memory: 3.1M
CPU: 77ms
CGroup: /system.slice/ovs-vswitchd.service
L 28313 ovs-vswitchd unix:/var/run/openvswitch/
db.sock -vconsole:emer -vsyslog:err -vfile:info --mlockall
--no-chdir ->

jul 15 21:43:47 antonio-HP-Laptop-15s-fqixxx systemd[1]:
Starting Open vSwitch Forwarding Unit...

antonio@antonio-HP-Laptop-15s-fqixxx:~$ systemctl status ovsdb-
server.service
e ovsdb-server.service - Open vSwitch Database Unit
Loaded: loaded (/1ib/systemd/system/ovsdb-server.
service; static)
Active: active (running) since Mon 2024-07-15 21:43:47
CEST; 59min ago
Main PID: 28249 (ovsdb-server)
Tasks: 1 (limit: 18712)
Memory: 2.2M
CPU: 294ms
CGroup: /system.slice/ovsdb-server.service
L—28249 ovsdb-server /etc/openvswitch/
conf.db -vconsole:emer -vsyslog:err
-vfile:info --remote=punix:/var/run/openvswi>

jul 15 21:43:47 antonio-HP-Laptop-15s-fqixxx systemd[1]:
Starting Open vSwitch Database Unit...

The first one, ovs-vswitchd, implements the switch itself, while
the second one, ovsdb-server, is a lightweight database that stores
Open vSwitch configuration data.

314

CHAPTER6 PROXMOX AND OPEN VSWITCH

Let’s begin to interact with the switch. We can show some basic
information with ovs-vsctl show.

antonio@antonio-Laptop:~$ sudo ovs-vsctl show
b060c9ea-8061-430c-82aa-b22968c68e95
ovs_version: "2.17.9"

To start working, we need to define a new bridge inside Open vSwitch.
antonio@antonio-Laptop:~$ sudo ovs-vsctl add-br osbro
If we execute ovs-vsctl show again, we’ll see the newly created bridge.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ sudo ovs-vsctl show
b060c9ea-8061-430c-82aa-b22968c68e95
Bridge osbro
Port osbro
Interface osbro
type: internal
ovs_version: "2.17.9"

Now we’ll associate a couple of local network interfaces to that bridge.
For this, we can use TUN/TAP interfaces, which we already studied in
Chapter 2.

antonio@antonio-Laptop:~$ sudo tunctl
Set 'tap0' persistent and owned by uid 0
antonio@antonio-Laptop:~$ sudo tunctl
Set 'tapl' persistent and owned by uid 0
antonio@antonio-Laptop:~$

And we add these two interfaces to the bridge.

antonio@antonio-Laptop:~$ sudo ovs-vsctl add-port osbr0 tapo
antonio@antonio-Laptop:~$ sudo ovs-vsctl add-port osbr0 tapi

315

CHAPTER 6 PROXMOX AND OPEN VSWITCH
We check that our switch now lists these two interfaces.

antonio@antonio-Laptop:~$ sudo ovs-vsctl show
b060c9ea-8061-430c-82aa-b22968c68e95
Bridge osbro
Port tapo
Interface tapo
Port tap1
Interface tap1
Port osbro
Interface osbro
type: internal
ovs_version: "2.17.9"

Another useful command is ovs-appctl fdb/show, which lists the
devices connected to our switch.

antonio@antonio-Laptop:~$ sudo ovs-appctl fdb/show osbr0
port VLAN MAC Age

Of course, in this present moment, we don’t have any device attached.
To do a simple test, we'll connect a couple of virtual machines. For
convenience, we'll use two VirtualBox VMs. We'll edit the network settings
of these two machines to use the interfaces tap0 and tap1 that we created
previously (Figures 6-24 and 6-25).

316

CHAPTER 6

PROXMOX AND OPEN VSWITCH

E General
System
E] Display
Storage
(DJ Audio

@ Serial Ports

£ uss

D Shared Folders
E‘ User Interface

@telp |

LPIC-1-1 - Settings

Network

Adapter 1 | Adapter 2 ‘ Adapter 3

v

Attached to: \ Bridged Adapter

Name: | tap0
> Advanced

| @ cancel

Figure 6-24. Connecting VM1 to Open vSwitch

E General
System
E] Display
Storage
(D3 Audio

@ Serial Ports

£ uss

D Shared Folders
|f| User Interface

@Help |

romulus - Settings

Network

Adapter 1

v

Attached to: \ Bridged Adapter

Name: | tap1

> Advanced

| @ cancel

Figure 6-25. Connecting VM2 to Open vSwitch

317

CHAPTER6 PROXMOX AND OPEN VSWITCH

Before starting both machines, we must be sure that the network
interfaces tap0 and tap1 are up.

antonio@antonio-Laptop:~$ sudo ip link set tapO up
antonio@antonio-Laptop:~$ sudo ip link set tapl up

After starting the two machines, we’ll see their MAC addresses
connected to our switch.

antonio@antonio-Laptop:~$ sudo ovs-appctl fdb/show osbr0
port VLAN MAC Age
1 0 08:00:27:ca:75:59 5
2 0 08:00:27:bb:da:83 1

From this moment on, we can use Open vSwitch as any other normal
switch. We can assign different VLANS, control flows, and so on. But all that
is beyond the scope of this book.

Summary

In this brief chapter, we saw interesting tools that we hadn’t seen so far.
These tools are not the main focus of the 305 exam, but they can become
very handy in many circumstances and it is good to know them.

The first tool we studied is Proxmox, which provides an enterprise-
ready virtualization solution. The second one, systemd-machined, is quite
the opposite as it is a lightweight virtual machine and container manager.
This can be useful when we need to deploy VMs/containers locally.
Finally, we touched briefly Open vSwitch; this virtual switch provides far
better capabilities than the locally created bridges.

318

CHAPTER 7

Container
Virtualization
Concepts

In this chapter, we'll cover the following concepts:

e Understand the concepts of system and application

container
e Understand and analyze kernel namespaces
e Understand and analyze control groups
e Understand and analyze capabilities

e Understand the role of seccomp, SELinux, and

AppArmor for container virtualization

We will also be introduced to the following terms and utilities:
nsenter, unshare, ip, capsh, /sys/fs/cgroups, /proc/[0-9]+/ns, and /proc/
[0-9]+/status.

© Antonio Vazquez 2024 319
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_7

https://doi.org/10.1007/979-8-8688-1080-0_7#DOI

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

System Containers
and Application Containers

A container is basically a series of system processes isolated. It relies
on a series of characteristics of the host operating system to provide
this isolation, mainly namespaces and cgroups. In some documents,
containerization is also known as OS-level virtualization.

A container that runs a full OS is a system container.

An application container, on the other hand, is a minimalistic stand-
alone package that contains everything that is needed to run a certain
application, and nothing more.

Kernel Namespaces

Linux namespaces are a feature of the Linux kernel that partitions
kernel resources. That way a process or a group of processes sees a set of
resources, while another process or group of processes sees a different
set of resources. There are many kinds of namespaces, depending on the
kind of resource isolated. And more are eventually added. Some of them
are these:

¢ Mount

e Process ID (pid)

e Network (net)

o Inter-process communication (ipc)
e UTS (Unix time sharing)

e UserID (user)

e cgroup namespace

o Time space

320

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

In order to list the namespaces currently in use in our system, we can

use the Isns command.

antonio@antonio-Laptop:~$ sudo 1lsns
NS TYPE NPROCS PID USER COMMAND
4026531834 time 303 1 root /sbin/init splash

4026531835 cgroup 303 1 root /sbin/init splash
4026531836 pid 304 1 root /sbin/init splash
4026531837 user 274 1 root /sbin/init splash
4026531838 uts 299 1 root /sbin/init splash
4026531839 ipc 275 1 root /sbin/init splash
4026531840 net 273 1 root /sbin/init splash
4026531841 mnt 250 1 root /sbin/init splash
4026531862 mnt 1 62 root kdevtmpfs

4026532322 mnt 1 290 root /lib/systemd/systemd-udevd
4026532323 uts 1 290 root /lib/systemd/systemd-udevd

We can see a long listing with different types of namespaces: time,
cgroup, pid, etc. If we want to be more specific, we can list the namespaces
associated to a certain pid.

For instance, we can obtain the PID of the current shell session.

antonio@antonio-Laptop:~$ echo $$
33824

321

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

After that, we can list the namespaces associated with this process.

antonio@antonio-Laptop:~$ lsns -p $$

NS TYPE NPROCS PID USER COMMAND

4026531834 time 129 3201 antonio /lib/systemd/systemd --user
4026531835 cgroup 129 3201 antonio /lib/systemd/systemd --user
4026531836 pid 130 3201 antonio /lib/systemd/systemd --user
4026531837 user 101 3201 antonio /lib/systemd/systemd --user
4026531838 uts 129 3201 antonio /lib/systemd/systemd --user
4026531839 ipc 101 3201 antonio /1ib/systemd/systemd --user
4026531840 net 101 3201 antonio /lib/systemd/systemd --user
4026531841 mnt 92 3201 antonio /lib/systemd/systemd --user

We can also obtain the same information by listing the contents of the

ns subfolder in the corresponding /proc subtree.

antonio@antonio-Laptop:~$ 1s

total 0

lrwxrwxrwx 1 antonio
'cgroup: [4026531835]"
lrwxrwxrwx 1 antonio
'ipc:[4026531839]"
lrwxrwxrwx 1 antonio
'mnt:[4026531841]"
lrwxrwxrwx 1 antonio
"net:[4026531840]"
lrwxrwxrwx 1 antonio
'pid:[4026531836]"
lrwxrwxrwx 1 antonio
'pid:[4026531836]"
lrwxrwxrwx 1 antonio
"time:[4026531834]"
lrwxrwxrwx 1 antonio

antonio

antonio

antonio

antonio

antonio

antonio

antonio

antonio

-> "time:[4026531834]"

322

-1 /proc/$%$/ns

0 sep 22 21:27

0 sep

0 sep

0 sep

0 sep

0 sep

0 sep

0 sep

22

22

22

22

22

22

22

21:

21:

21:

21:

21:

21:

21:

27

27

27

27

44

27

44

cgroup ->

ipc ->

mnt ->

net ->

pid ->
pid_for_children ->
time ->

time for children

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

lrwxrwxrwx 1 antonio antonio O sep 22 21:27 user ->
'user:[4026531837]"
lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 uts ->
"uts:[4026531838]"

Mount Namespaces

Let’s see now an example of mount namespaces. To work with
namespaces, we'll use the unshare command. This command runs a
program with some namespaces unshared from the parent. If we look
at the contextual help, we’ll see there are different options to work with
different namespaces.

antonio@antonio-Laptop:~$ unshare --help

Usage:
unshare [options] [<program> [<argument>...]]

Run a program with some namespaces unshared from the parent.

Options:
-m, --mount[=<file>] unshare mounts namespace
-u, --uts[=<file>] unshare UTS namespace (hostname etc)
-i, --ipc[=<file>] unshare System V IPC namespace
-n, --net[=<file>] unshare network namespace
-p, --pid[=<file>] unshare pid namespace
-U, --user[=<file>] unshare user namespace
-C, --cgroup[=<file>] unshare cgroup namespace
-T, --time[=<file>] unshare time namespace

323

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

In this example, we will execute a bash shell with the mount

namespace unshared from the parent.

antonio@antonio-Laptop:~$ sudo unshare -m bash
root@antonio-Laptop:/home/antonio#

We can then list the namespaces associated to the newly created

bash shell.

root@antonio-Laptop:/home/antonio#f echo $$%

57447

root@antonio-HP-Laptop-15s-fqixxx:/home/antonio# lsns -p $$%

NS TYPE NPROCS
4026531834 time 313
4026531835 cgroup 313

4026531836 pid 314
4026531837 user 282
4026531838 uts 309
4026531839 ipc 283
4026531840 net 281
4026533562 mnt 2

PID USER COMMAND

root /sbin/init splash
root /sbin/init splash
root /sbin/init splash
root /sbin/init splash
root /sbin/init splash
root /sbin/init splash
root /sbin/init splash
57447 root bash

L = O = =

root@antonio-HP-Laptop-15s-fqixxx:/home/antonio#

As we can see, the mount namespace is associated to the bash shell

itself, and it is not shared with the parent. We can see the difference by

opening a new shell and executing Isns again.

antonio@antonio-Laptop:~$ lsns -p $$

NS TYPE NPROCS
4026531834 time 135
4026531835 cgroup 135

4026531836 pid 136
4026531837 user 105
4026531838 uts 135

324

PID USER COMMAND

3201 antonio /lib/systemd/systemd --user
3201 antonio /lib/systemd/systemd --user
3201 antonio /lib/systemd/systemd --user
3201 antonio /lib/systemd/systemd --user
3201 antonio /lib/systemd/systemd --user

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

4026531839 ipc 105 3201 antonio /lib/systemd/systemd --user
4026531840 net 105 3201 antonio /lib/systemd/systemd --user
4026531841 mnt 96 3201 antonio /lib/systemd/systemd -user

If we execute df -h in our shell with unshared mount namespace, we
see that we can see the information about the mounted filesystems in the
host. This is because this information is propagated by default from the
parent mount namespace.

root@antonio-Laptop:/home/antonio# df -h

Filesystem Size Used Avail Use% Mounted on
/dev/nvmeon1p5 787G 407G 341G 55% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 1,6G 2,2M 1,6G 1% /run

tmpfs 5,0M 4,0k 5,0M 1% /run/lock
tmpfs 7,7G 0 7,7G 0% /run/qgemu
tmpfs 1,6G 1,7M 1,6G 1% /run/user/1000

/dev/nvmeOnipl 256M 84M 173M 33% /boot/efi

However, if we create a new mount point in the shell with the isolated
mount namespace, the result will be different. In this case, we can see the
new mount point from the shell in which it was created.

root@antonio-Laptop:/home/antonio# mount -t tmpfs tmpfs /mnt/
root@antonio-Laptop:/home/antonio# df -h

Filesystem Size Used Avail Use% Mounted on
/dev/nvmeonip5 787G 407G 340G 55% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 1,66 2,2M 1,6G 1% /run

tmpfs 5,0M 4,0k 5,0M 1% /run/lock
tmpfs 7,7G 0 7,7G 0% /run/gemu
tmpfs 1,6G 1,7M 1,6G 1% /run/user/1000

325

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

/dev/nvmeOnipl 256M 84M 173M 33% /boot/efi
tmpfs 7,76 0 7,7G 0% /mnt
root@antonio-Laptop:/home/antonio#

However, if we execute df from a different shell, we won’t see the
mount point we just created.

antonio@antonio-Laptop:~$ df -h

Filesystem Size Used Avail Use% Mounted on
tmpfs 1,6G 2,2M 1,6G 1% /run
/dev/nvmeOn1p5 787G 407G 340G 55% /

tmpfs 7,76 0 7,7G 0% /dev/shm

tmpfs 5,0M 4,0k 5,0M 1% /run/lock
tmpfs 7,7G 0 7,7G 0% /run/qemu
/dev/nvmeOnipl 256M 84M 173M 33% /boot/efi
tmpfs 1,66 1,7M 1,6G 1% /run/user/1000

We can work normally with the new mount point in the shell in which
it was created.

root@antonio-Laptop:/home/antonio# echo hello > /mnt/my_
file.txt

root@antonio-Laptop:/home/antonio# cat /mnt/my_file.txt
hello

root@antonio-Laptop:/home/antonio#

But this mount point is completely isolated from other shells.

antonio@antonio-Laptop:~$ cat /mnt/my file.txt
cat: /mnt/my_file.txt: No such file or directory

When we're done, we can just unmount the mount point and exit
the shell.

326

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Process Namespaces

Now we're going to see an example of process namespaces. We'll use the

unshare command again.

This time we must use the “-p” parameter and also the “-f” to

perform a fork.

antonio@antonio-Laptop:~$ sudo unshare -p -f bash
root@antonio-Laptop:/home/antonio#

If we list the processes with ps, we'll see all the processes in the system

and not only those of its own process namespace. This is because it can

access the /proc tree.

root@antonio-Laptop:/home/antonio# ps -ef
PPID

UID
root

root
root
root
root

root
root

PID

1

Ui B~ W N

(o))

0

N NN N O

NN

C STIME
0 juli8

0 juli8
0 juli8
0 jula8
0 juli8

0 jul18
0 juli8

TTY

?

NV YV

00:

00

00

00:

00

TIME CMD
00:06 /sbin/
init splash

:00:00 [kthreadd]
00:
00:
:00:00 [slub_

00:00 [rcu_gp]
00:00 [rcu_par gp]

flushwq]
00:00 [netns]

:00:00 [kworker/

0:0H-events_
highpri]

To avoid this, we can mount the /proc filesystem in the new shell.

root@antonio-Laptop:/home/antonio# mount -t proc proc /proc

327

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

If we execute ps again, we'll only see the processes inside the
isolated shell.

root@antonio-Laptop:/home/antonio# ps -ef

UuID PID PPID C STIME TTY TIME CMD
root 1 0 0 14:38 pts/5 00:00:00 bash
root 10 1 0 14:39 pts/5 00:00:00 ps -ef

Of course, this additional step could be performed automatically when
launching the shell. To see it, we’ll exit the shell.

root@antonio-Laptop:/home/antonio# exit

Then we’ll execute unshare again, but adding the -mount-proc option
this time.

antonio@antonio-Laptop:~$ sudo unshare --mount-proc -p -f bash

Now, if we execute ps -ef, we'll only see the processes from the
current shell.

root@antonio-Laptop:/home/antonio# ps -ef

uID PID PPID C STIME TTY TIME CMD
root 1 0 0 14:47 pts/5 00:00:00 bash
root 8 1 0 14:47 pts/5 00:00:00 ps -ef

User Namespaces

User namespaces isolate security-related identifiers, like UIDs and GIDs.
If we look at the help of the unshare command, we’ll see that we must use
the -u option to unshare the user namespace.

There is also an interesting option (-r). This option unshares the user
namespace and maps the root user to the current user. We'll see an easy
example. In this case, we don’t need root permissions.

328

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

antonio@antonio-Laptop:~$ unshare -r bash
root@antonio-Laptop:~#

We check that in the new bash shell, we are actually identified as the
root user, and we’ll launch a process; in this example, we executed sleep.

root@antonio-Laptop:~# whoami
root
root@antonio-Laptop:~# sleep 60

If we search for the executing sleep process from another shell in the
host, we'll see that the “real” user that it is executing is “antonio’, a normal
user instead of root.

antonio@antonio-Laptop:~$ ps -ef | grep sleep
antonio 14091 14055 O 15:54 pts/0 00:00:00 sleep 60

Combining Several Namespaces to Craft Our
First “Container”

We have seen already some examples on how to use unshare to launch a
shell with some isolated namespace(s). Now we'll see an example that is
little more complicated.

We'll unshare the mount, user, and pid namespaces. We'll also mount
the proc filesystem and map the root user to the current user and perform
a fork of the bash shell we're invoking.

antonio@antonio-Laptop:~$ unshare -m -u -p -f -r --mount-
proc bash
root@antonio-Laptop:~#

329

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
We can see that we have a separated pid tree.

root@antonio-Laptop:~# echo $$%

1

root@antonio-Laptop:~# ps -ef

uID PID PPID C STIME TTY TIME CMD

root 1 0 0 20:30 pts/1 00:00:00 bash
root 7 1 0 21:44 pts/1 00:00:00 ps -ef

We also have isolated UIDs.

root@antonio-Laptop:~# id
uid=0(root) gid=0(root) groups=0(root),65534(nogroup)

We are using an isolated mount namespace too. As we did before, we
can create a mount point that will be only accessible from the current shell.

root@antonio-Laptop:~# mount -t tmpfs tmpfs /mnt/mydata/
root@antonio-Laptop:~# df -h

Filesystem Size Used Avail Use’% Mounted on

/dev/nvmeOn1p5 787G 717G 31G 96% /

tmpfs 7,76 0 7,7G 0% /dev/shm

tmpfs 1,6G 2,5M 1,6G 1% /run

tmpfs 5,0M 4,0K 5,0M 1% /run/lock

tmpfs 7,7G 0 7,7G 0% /run/qgemu

tmpfs 1,6G 124K 1,6G 1% /run/user/1000

efivarfs 192K 77K 111K 41% /sys/firmware/efi/efivars
/dev/nvmeOnipl 256M 84M 173M 33% /boot/efi

tmpfs 7,7G 0 7,7G 0% /mnt/mydata

As we did in a previous example, we can create a simple file in the
mount point we just created.

root@antonio-Laptop:~# echo test > /mnt/mydata/file.txt

330

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
We can also change locally the hostname of our isolated container.

root@antonio-Laptop:~# hostname mercury
root@antonio-Laptop:~# hostname
mercury

This shell is already similar in many ways to a standard container, as
we'll see when we begin to study LXC and Docker. We have isolated UIDs,
PIDs, and mount points. Though it is true that we're still sharing other
namespaces with the host.

Executing Commands in Different Namespaces

As we have already built a rudimentary container, we're going to introduce
a new tool, nsenter. This command is used to execute programs in
different namespaces.

If we look at the help, we’ll see it is very easy to use this tool.

antonio@antonio-Laptop:~$ nsenter --help

Usage:
nsenter [options] [<program> [<argument>...]]

Run a program with namespaces of other processes.

Options:
-a, --all enter all namespaces
-t, --target <pid> target process to get namespaces from

-m, --mount[=<file>] enter mount namespace
-u, --uts[=<file>] enter UTS namespace (hostname etc)

331

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

To see an example, we need to locate the PID of the “isolated” bash
shell we have created previously.

antonio@antonio-Laptop:~$ ps -ef | grep bash

antonio 6350 6327 0 14:56 pts/0 00:00:00 bash
antonio 14055 6350 0 15:53 pts/0 00:00:00 bash
antonio 14092 6327 0 15:54 pts/1 00:00:00 bash
antonio 24549 14092 0 20:30 pts/1 00:00:00 unshare

-m -u -p -f
-r --mount-
proc bash

antonio 24550 24549 0 20:30 pts/1 00:00:00 bash
antonio 29602 6327 0 22:08 pts/2 00:00:00 bash

In this case, that PID is 24549; we'll use nsenter to enter all namespaces
associated with the process with PID 24549.

antonio@antonio-Laptop:~$ sudo nsenter -a -t 24549
-bash: /root/.bash profile: Permission denied
root@mercury:/#

We have now access to the isolated shell. From now on, we can get
the hostname of the container, which we previously changed. We can also
retrieve the contents of the file we created in /mnt/mydata and so on.

root@mercury:/# hostname

mercury

root@mercury:/# cat /mnt/mydata/file.txt
test

When we're done, we can exit the shell.

root@mercury:/# exit
logout
-bash: /root/.bash logout: Permission denied

332

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Network Namespaces

Namespaces can also isolate networks. As we did previously with the other
namespaces, we'll see an easy example.

First of all, we need to list the network namespaces. We can do it with
ip netns.

antonio@antonio-Laptop:~$ sudo ip netns 1s

Currently we don’t have any additional network namespaces. We'll

create one.

antonio@antonio-Laptop:~$ sudo ip netns add isolated network
antonio@antonio-Laptop:~$ sudo ip netns 1s
isolated network

To establish communication between different network namespaces,
we need virtual Ethernet devices (veth). These virtual Ethernet devices are
always created in pairs to create a bridge.

antonio@antonio-Laptop:~$ sudo ip link add dev vetho type veth
peer name vethi

We check that both interfaces have been created.

antonio@antonio-Laptop:~$ ip link show vetho

16: vetho@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc

noop state DOWN mode DEFAULT group default gqlen 1000
link/ether ae:00:1a:3e:6a:0d brd ff:ff:ff:ff:ff:ff

antonio@antonio-Laptop:~$ ip link show veth1

15: vethi@vetho: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc

noop state DOWN mode DEFAULT group default gqlen 1000
link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff

333

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

One of the virtual Ethernet devices must be assigned to the isolated_
network namespace so that we can establish the communication between
both network namespaces.

antonio@antonio-Laptop:~$ sudo ip link set vethl netns
isolated network

To check that the interface is now assigned to the new network
namespaces, we try to list it in the default namespace.

antonio@antonio-Laptop:~$ ip link show veth1
Device "veth1" does not exist.

As expected, we don’t see it. Now let’s list it on the new network
namespace. The way to execute network-related commands in a different
network namespace is by using “ip netns exec” + network namespace +
“the network command,” like this:

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network
ip link show veth1
15: veth1@if16: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state
DOWN mode DEFAULT group default gqlen 1000
link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-
netnsid 0

Now that we have each veth interface placed in a different network
namespace, we must assign the corresponding IPs.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network
ip address add dev veth1l 10.7.7.1/24

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network
ip address show veth1

334

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

15: veth1@if16: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state
DOWN group default gqlen 1000
link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-
netnsid 0
inet 10.7.7.1/24 scope global vethi
valid 1ft forever preferred 1ft forever

The IP has been set, but the interface is down; we must set it up.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network
ip link set veth1 up

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network
ip link show veth1
15: veth1@if16: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500
gqdisc noqueue state LOWERLAYERDOWN mode DEFAULT group default
qlen 1000
link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-
netnsid 0

The state of the veth is now LOWERLAYERDOWN, but this is normal
because its peer is not ready yet. We'll set it up now.

antonio@antonio-Laptop:~$ sudo ip address add dev vetho

10.7.7.2/24

antonio@antonio-Laptop:~$ sudo ip link set vetho up

antonio@antonio-Laptop:~$ sudo ip link show vetho

16: vetho@if15: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500

qdisc noqueue state UP mode DEFAULT group default qlen 1000
link/ether ae:00:1a:3e:6a:0d brd ff:ff:ff:ff:ff:ff link-
netns isolated network

335

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
Now the link is finally up.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated network

ip link show veth1

15: veth1@if16: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500

gqdisc noqueue state UP mode DEFAULT group default gqlen 1000
link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-
netnsid 0

And we can ping each veth.

antonio@antonio-Laptop:~$ ping 10.7.7.1

PING 10.7.7.1 (10.7.7.1) 56(84) bytes of data.

64 bytes from 10.7.7.1: icmp_seq=1 ttl=64 time=0.105 ms

64 bytes from 10.7.7.1: icmp_seq=2 ttl=64 time=0.057 ms

64 bytes from 10.7.7.1: icmp_seq=3 ttl=64 time=0.055 ms

~C

--- 10.7.7.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2039ms
rtt min/avg/max/mdev = 0.055/0.072/0.105/0.023 ms

chroot

Before studying cgroups, I wanted to mention chroot. This is a system call
that changes the apparent root directory for the running process and its
children so that this process can’t access files that reside below its working
directory. This provides an isolation that is similar in some ways with the
isolation provided by namespaces, but the approach is different. chroot is
a system call and does not need namespaces to work. This is not part of the
official curriculum for LPIC-3 305, but I think it might be useful to mention
it briefly and see an example.

336

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

We begin by creating the folder we’ll use as the root for our chroot
environment.

antonio@antonio-Laptop:~$ sudo mkdir /chrootenv
We could try to execute chroot right away, but we’ll get this error:

antonio@antonio-Laptop:~$ sudo chroot /chrootenv
chroot: failed to run command '/bin/bash': No such file or
directory

We need to have a /bin/bash command interpreter inside of the chroot
environment, so we'll copy it.

antonio@antonio-Laptop:~$ sudo mkdir /chrootenv/bin
antonio@antonio-Laptop:~$ sudo cp /bin/bash /chrootenv/bin
antonio@antonio-Laptop:~$

However, we're not done yet. If we try to run chroot again, we get the

same error:

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/
chroot: failed to run command '/bin/bash': No such file or
directory

This is due to the fact that the bash executable file is dynamically
linked and has to access a series of libraries. We can find out what libraries
it needs by using the ldd command. Note: Libraries will vary, depending
on the exact version of the operating system.

antonio@antonio-Laptop:~$ 1ldd /bin/bash
linux-vdso.so.1 (0x00007ffccaff3000)
libtinfo.so.6 => /1ib/x86_64-1inux-gnu/libtinfo.so.6
(0x00007f5cb75f3000)
libc.so0.6 => /1ib/x86_64-1linux-gnu/libc.so0.6
(0x000075cb7200000)

337

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
/1ib64/1d-1inux-x86-64.50.2 (0x000075cb779e000)
So we create a new subfolder and copy the required files.

antonio@antonio-Laptop:~$ sudo mkdir -p /chrootenv/1ib/x86 64-
linux-gnu

antonio@antonio-Laptop:~$ sudo cp /1ib/x86 64-linux-gnu/
libtinfo.so.6 /chrootenv/1ib/x86 64-1inux-gnu/
antonio@antonio-Laptop:~$ sudo cp /1ib/x86 64-1linux-gnu/libc.
s0.6 /chrootenv/1ib/x86 64-linux-gnu/

antonio@antonio-Laptop:~$ sudo mkdir -p /chrootenv/1ib64
antonio@antonio-Laptop:~$ sudo cp /1ib64/1d-1linux-x86-64.50.2 /
chrootenv/1ib64

Now we can execute chroot successfully.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/
bash-5.1#

This chroot environment is still very limited and lacks many common
Linux programs that we should copy manually as we did before with the
command interpreter.

bash-5.1# pwd

/

bash-5.1# 1s

bash: 1s: command not found
bash-5.1#

An easier approach could be the use of a Linux minimal distribution to
create our chroot environment. One Linux distribution that suits perfectly
this description and is used commonly in containers is Alpine. We begin
by downloading the corresponding tar file for our architecture.

338

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

bash-5.1# exit

exit

antonio@antonio-Laptop:~$ wget http://dl-cdn.alpinelinux.org/
alpine/v3.18/releases/x86_64/alpine-
minirootfs-3.18.3-x86_64.tar.gz

And we uncompress it in the folder we used for our chroot
environment. Previously we’d delete the files we had copied.

antonio@antonio-Laptop:~$ sudo rm -rf /chrootenv/*
antonio@antonio-Laptop:~$ sudo tar -xzvf alpine-
minirootfs-3.18.3-x86_64.tar.gz -C /chrootenv/

We end up with the following structure:

antonio@antonio-Laptop:~$ 1ls /chrootenv/
bin etc 1lib mnt proc run srv tmp var
dev home media opt root sbin sys usr

We can now execute chroot again.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/
chroot: failed to run command '/bin/bash': No such file or
directory

We get an error because chroot can’t locate /bin/bash. When
executing chroot, we must provide the command that will be executed in
the chrooted environment. This command is usually a shell. If we don’t
specify a command, the default value is that of the shell used in the current
session, which is /bin/bash in our case.

antonio@antonio-Laptop:~$ echo $SHELL
/bin/bash

339

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

And /bin/bash doesn’t exist in the minimalistic Alpine Linux
distribution we just downloaded.

antonio@antonio-Laptop:~$ 1ls /chrootenv/bin/bash
1s: cannot access '/chrootenv/bin/bash': No such file or
directory

We can easily fix this by specifying a different shell as the command for
chroot. We check that /bin/sh actually exists.

antonio@antonio-Laptop:~$ 1s /chrootenv/bin/sh
/chrootenv/bin/sh

And we launch chroot again.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/ /bin/sh
/ #

We are working now in an isolated environment, where we're using the
same kernel as the host, but we have an isolated root tree.

/ # uname -a

Linux antonio-Laptop 6.2.0-33-generic #33~22.04.1-Ubuntu SMP
PREEMPT _DYNAMIC Thu Sep 7 10:33:52 UTC 2 x86 64 Linux

/ # cat /etc/issue

Welcome to Alpine Linux 3.18

Kernel \r on an \m (\1)

/ # pwd

/

/ #

340

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Control Groups

Control groups or cgroups for short are a Linux feature that limits,
accounts, and isolates the resource usage of a process or a group of
processes.

It was initially developed by Google around 2006. The version currently
in use, version 2, was completely rewritten and is included in the kernel

Linux. We can see cgroups as a subfolder inside of the /sys/fs filesystem.

antonio@antonio-Laptop:~$ 1s /sys/fs/cgroup/

cgroup.controllers cgroup.threads init.

scope memory.numa_stat sys-fs-fuse-
connections.mount

cgroup.max.depth cpu.pressure io.cost.
model memory.pressure sys-kernel-config.mount
cgroup.max.descendants cpuset.cpus.effective io.cost.

qos memory.reclaim sys-kernel-debug.mount
cgroup.pressure cpuset.mems.effective 1io.

pressure memory.stat sys-kernel-
tracing.mount

cgroup.procs cpu.stat io.prio.
class misc.capacity system.slice
cgroup.stat dev-hugepages.mount io.

stat misc.current user.slice
cgroup.subtree control dev-mqueue.mount machine.

slice proc-sys-fs-binfmt misc.mount

In order to limit the resources a process can use, we need to create a
new control group. We can do that by creating a subfolder inside of /sys/
Jfs/cgroup.

antonio@antonio-Laptop:~$ sudo mkdir /sys/fs/cgroup/example

341

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Right after creating the new cgroup, we'll see it has inherited several
parameters. We can see them by listing the cgroup.

antonio@antonio-Laptop:~$ 1s /sys/fs/cgroup/example/

cgroup.controllers cpu.max hugetlb.1GB.
current hugetlb.2MB.rsvd.max memory.numa_

stat misc.current

cgroup.events cpu.max.burst hugetlb.1GB.
events io.max memory .oom.

group misc.events

cgroup.freeze cpu.pressure hugetlb.1GB.
events.local io.pressure memory.

peak misc.max

cgroup.kill cpuset.cpus hugetlb.1GB.
max io.prio.class memory.

pressure pids.current

cgroup.max.depth cpuset.cpus.effective hugetlb.1GB.
numa_stat io.stat memory.

reclaim pids.events

cgroup.max.descendants cpuset.cpus.partition hugetlb.1GB.
rsvd.current io.weight memory.stat

pids.max

cgroup.pressure cpuset.mems hugetlb.1GB.
rsvd.max memory.current memory.swap.

current pids.peak

cgroup.procs cpuset.mems.effective hugetlb.2MB.
current memory.events memory.swap.

events rdma.current

cgroup.stat cpu.stat hugetlb.2MB.
events memory.events.local memory.swap.

high rdma.max

342

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

cgroup.subtree control cpu.uclamp.max hugetlb.2MB.
events.local memory.high memory.Sswap .max
cgroup.threads cpu.uclamp.min hugetlb.2MB.max
memory . low memory.swap.peak

cgroup.type cpu.weight hugetlb.2MB.
numa_stat memory .max memory.zswap.current
cpu.idle cpu.weight.nice hugetlb.2MB.
rsvd.current memory.min memory .zswap .max

We're going to test this cgroup by establishing a limit on the max
amount of memory. For that, we must edit the /sys/fs/cgroup/example/
memory.max file.

antonio@antonio-Laptop:~$ sudo vi /sys/fs/cgroup/example/
memoxry . max

antonio@antonio-Laptop:~$ sudo cat /sys/fs/cgroup/example/
memory .max

8192

Now, we’ll create a simple script and execute in the background.

antonio@antonio-Laptop:~$ cat takemem.sh
#!/bin/bash

sleep 100

mount -t tmpfs tmpfs /mnt/mydata

sleep 100

antonio@antonio-Laptop:~$ chmod a+x takemem.sh
antonio@antonio-Laptop:~$./takemem.sh &

[1] 53075

To put this process under the control of the cgroup “example’, we need
to edit the /sys/fs/cgroup/example/cgroup.procs file to include the PID of
the script in execution.

343

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

antonio@antonio-Laptop:~$ sudo vi /sys/fs/cgroup/example/
cgroup.procs

antonio@antonio-Laptop:~$ cat /sys/fs/cgroup/example/
cgroup.procs

53075

If we review the cgroup assigned to the process, we’ll see this:

antonio@antonio-Laptop:~$ ps -o cgroup 53362
CGROUP
0::/example

We just confirmed that the cgroup assigned is actually “example’,
the one we created and customized. If we check the cgroup assigned to
another process like the current shell, we'll see that the cgroup assigned is
completely different.

antonio@antonio-Laptop:~$ ps -o cgroup $$%

CGROUP
0::/user.slice/user-1000.slice/user@1000.service/app.slice/
app-org.gnome.Terminal.slice/vte-spawn-36c24765-2726-4ef0-
abb2-60c4c32150

Now we’ll wait a few seconds. We'll see the script has been killed due
to the memory restriction we set. In the journalctl, we’ll see a message
similar to this one:

jul 21 17:12:22 antonio-Laptop kernel: oom-
kill:constraint=CONSTRAINT MEMCG,nodemask=(null),cpuset=example
;mems_allowed=0,00m_memcg=/example,task memcg=/example,task=sud
0,pid=53841,uid=1000

jul 21 17:12:22 antonio-Laptop kernel: Memory cgroup out

of memory: Killed process 53841 (sudo) total-vm:17064kB,
anon-rss:896kB, file-rss:5376kB, shmem-rss:0kB, UID:1000
pgtables:76kB oom score adj:0

344

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Linux Capabilities

Traditionally we have two sorts of processes in Linux/UNIX: those whose
effective UID is 0, also called privileged, and those whose effective UID
is nonzero, also called unprivileged. Privileged processes can bypass
permissions checks, while unprivileged cannot. Since kernel version 2.2,
the privileges usually associated with processes whose effective UID is 0
are divided into distinct units called capabilities.

There are three “categories” of capabilities: inherited(i), permitted(p),
and effective(e).

The full list of capabilities can be obtained by executing "man
capabilities” in any Linux terminal; as an example, we can mention just a
few of them:

o CAP_AUDIT. Enable and disable kernel auditing.

e« CAP_CHOWN. Make arbitrary changes to file UIDs
and GIDs.

e CAP_KILL. Bypass permissions checks to send signals.
o CAP_MKNOD. Create special files using mknod.

¢ CAP_NET BIND_SERVICE. Bind a socket to Internet
domain privileged ports.

To better understand capabilities, we can use the capsh command.
If we execute it in a command shell with the --print option, we'll see the
capabilities that we have currently associated.

antonio@antonio-Laptop:~$ capsh --print

Current: =

Bounding set =cap chown,cap dac_override,cap _dac_read search,
cap_fowner,cap fsetid,cap kill,cap setgid,cap setuid,
cap_setpcap,cap_linux_immutable,cap net bind service,
cap_net_broadcast,cap _net _admin,cap net raw,cap_ipc_lock,

345

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

cap_ipc_owner,cap_sys module,cap sys rawio,cap_sys_chroot,
cap_sys_ptrace,cap _sys pacct,cap _sys admin,cap_sys boot,
cap_sys_nice,cap_sys resource,cap sys time,cap_sys tty config,
cap_mknod,cap_lease,cap _audit write,cap audit control,
cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_
alarm,cap_block suspend,cap audit read,cap perfmon,cap bpf,cap_
checkpoint_restore
Ambient set =

Current IAB:

Securebits: 00/0x0/1'bo

secure-noroot: no (unlocked)

secure-no-suid-fixup: no (unlocked)

secure-keep-caps: no (unlocked)

secure-no-ambient-raise: no (unlocked)

uid=1000(antonio) euid=1000(antonio)
gid=1000(antonio)
groups=4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),122(1padmi
n),135(1xd),136(sambashare),140(1libvirt),1000(antonio)
Guessed mode: UNCERTAIN (0)

As we can see, the current capabilities field appears empty. This is
normal, as we're logged in as a regular user and regular users by default
have no privileges. Let’s execute the command again as the root user to see
the differences.

antonio@antonio-Laptop:~$ sudo su - root
root@antonio-Laptop:~# capsh --print

Current: =ep

Bounding set =cap chown,cap dac_override,cap dac_read
search,cap_fowner,cap_fsetid,cap kill,cap_setgid,cap_
setuid,cap_setpcap,cap linux_immutable,cap net bind
service,cap net broadcast,cap net admin,cap net raw,cap_

346

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

ipc_lock,cap_ipc_owner,cap_sys _module,cap_sys rawio,cap_
sys_chroot,cap_sys ptrace,cap sys pacct,cap sys admin,cap_
sys_boot,cap sys nice,cap_sys _resource,cap_sys_time,cap sys
tty config,cap_mknod,cap_lease,cap_audit write,cap audit_
control,cap setfcap,cap mac_override,cap mac_admin,cap
syslog,cap _wake alarm,cap block suspend,cap audit read,cap_
perfmon,cap_bpf,cap_checkpoint_restore
Ambient set =
Current IAB:

Securebits: 00/0x0/1'bo

secure-noroot: no (unlocked)

secure-no-suid-fixup: no (unlocked)

secure-keep-caps: no (unlocked)

secure-no-ambient-raise: no (unlocked)

uid=0(root) euid=0(root)
gid=0(root)
groups=0(root)
Guessed mode: UNCERTAIN (0)

We see now the following line:
Current: =ep

This means that the root user has all capabilities effective and
permitted assigned. Again, this is normal as the root user has all privileges.

We can also obtain the same information about capabilities by
checking the /proc filesystem. We need to get the PID of the process, in this
case the current shell.

antonio@antonio-Laptop:~$ echo $$
25112

347

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
And then we read the status file.

antonio@antonio-Laptop:~$ cat /proc/25112/status
Name: bash

Umask: 0002

State: S (sleeping)

Tgid: 25112

Ngid: 0

Pid: 25112

PPid: 4669

TracerPid: 0

Uid: 1000 1000 1000 1000
Gid: 1000 1000 1000 1000
FDSize: 256

Groups: 4 24 27 30 46 122 135 136 140 1000
CapInh: 0000000000000000

CapPrm: 0000000000000000

CapEfef: 0000000000000000

CapBnd: 000001 ffffffffff

CapAmb: 0000000000000000

We can see that the shell currently has no inherited, permitted, or
effective capabilities assigned. The entry CapBnd shows the capabilities
that the system recognizes and can be assigned. The value appears in
hexadecimal format, but we can easily decode it with capsh.

348

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

antonio@antonio-Laptop:~$ capsh --decode=000001ffffffffff
0x000001ffffffffff=cap chown,cap dac_override,cap dac_

read search,cap fowner,cap fsetid,cap kill,cap setgid,cap_
setuid,cap_setpcap,cap_linux_immutable,cap_net bind_
service,cap net broadcast,cap net admin,cap net raw,cap_
ipc_lock,cap_ipc_owner,cap_sys module,cap sys rawio,cap sys
chroot,cap_sys_ptrace,cap_sys pacct,cap_sys admin,cap_sys_
boot,cap_sys nice,cap_sys resource,cap_sys time,cap_sys
tty config,cap mknod,cap lease,cap audit write,cap_audit_
control,cap_setfcap,cap _mac_override,cap_mac_admin,cap_
syslog,cap_wake_alarm,cap_block_suspend,cap audit_read,cap_
perfmon,cap bpf,cap checkpoint restore

We can repeat this test with a root shell, and we’ll see that it has all the
capabilities assigned.

antonio@antonio-Laptop:~$ sudo su - root
root@antonio-Laptop:~# cat /proc/$$/status

CapInh: 0000000000000000
CapPrm: 000001 fFFFFFFff
CapEff: 000001 FFFFFFFFF
CapBnd: 000001 FFF{FFFFf

root@antonio-Laptop:~# capsh --decode=000001ffffffffff
0x000001ffffffffff=cap_chown,cap dac_override,cap _dac_
read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_
setuid,cap_setpcap,cap linux_immutable,cap net bind service,

349

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_
ipc_owner,cap sys module,cap sys rawio,cap sys chroot,cap_
sys_ptrace,cap_sys_pacct,cap _sys admin,cap_sys boot,cap sys
nice,cap_sys resource,cap_sys_time,cap_sys tty config,cap_
mknod,cap lease,cap audit write,cap audit control,cap
setfcap,cap _mac_override,cap mac_admin,cap_syslog,cap wake
alarm,cap_block suspend,cap_audit_read,cap perfmon,cap bpf,cap_
checkpoint_restore

Let’s see now a practical example about how to use capabilities to grant
a specific privilege to a process.

We're going to use Python to create a basic web server. If we
execute Python as a regular user, we can get the server to listen on any
nonprivileged port, such as port 8888.

antonio@antonio-Laptop:~$ python3 -m http.server 8888
Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) ..

However, if we try the server to listen on any of the privileged ports,
such as 80, we get an error.

antonio@antonio-Laptop:~$ python3 -m http.server 80
Traceback (most recent call last):

File "/usr/lib/python3.10/runpy.py", line 196, in _run_
module_as_main

self.socket.bind(self.server address)
PermissionError: [Errno 13] Permission denied

350

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

To remediate this, we’ll use the capabilities. First of all, we identify the
path of the Python executable file. We'll need it later to add the desired
capabilities.

antonio@antonio-Laptop:~$ which python3

/usr/bin/python3

antonio@antonio-Laptop:~$ file /usr/bin/python3
/usr/bin/python3: symbolic link to python3.10
antonio@antonio-Laptop:~$ 1s -1 /usr/bin/python3
lrwxrwxrwx 1 root root 10 ago 4 2023 /usr/bin/python3 ->
python3.10

We'll take a look at the man page of the capabilities to identify the
capability that we need to use.

antonio@antonio-Laptop:~% man capabilities
In the page, we'll see this entry:

CAP_NET_BIND SERVICE
Bind a socket to Internet domain privileged ports
(port numbers less than 1024).

We're ready now to add the capability to the Python executable.

antonio@antonio-Laptop:~$ sudo setcap CAP_NET BIND SERVICE+ep /
usr/bin/python3.10

We confirm that the assignment was made.

antonio@antonio-Laptop:~$ getcap /usr/bin/python3.10
/usr/bin/python3.10 cap _net_bind service=ep
Now our Python based web server can listen on a
privileged port.
antonio@antonio-Laptop:~$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...

351

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Another way to check that the process has the CAP_NET_BIND_
SERVICE capability assigned is by consulting the /proc filesystem, as we

saw earlier.

antonio@antonio-Laptop:~$ ps -ef | grep python | grep http
antonio 35151 25112 0 13:02 pts/1 00:00:00 python3 -m
http.server 80

antonio@antonio-Laptop:~$ cat /proc/35151/status

Name: python3

Umask: 0002

State: S (sleeping)
Tgid: 35151

Ngid: 0

CapInh: 0000000000000000
CapPrm: 0000000000000400
CapEff: 0000000000000400

antonio@antonio-Laptop:~$ capsh --decode=0000000000000400
0x0000000000000400=cap_net_bind service

After this easy test, we can remove the capability from the Python
executable again.

antonio@antonio-Laptop:~$ sudo setcap CAP_NET BIND SERVICE-ep /
usr/bin/python3. 10
antonio@antonio-Laptop:~$ python3 -m http.server 80

352

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

PermissionError: [Errno 13] Permission denied

Security and Containers

We have seen so far how important it is to properly secure and isolate
containers. We have already seen how Linux namespaces help us to isolate
processes running in the same host. Now we'll see how a series of security
facilities are also used by Linux containers to secure the system.

SELinux

SELinux (Security-Enhanced Linux) is a set of kernel modifications and
user space tools that provide mandatory access control (MAC). It was
initially developed by the NSA, and it is now included in many of the main
Linux distributions. Mandatory access controls are established by the
system administrator and can’t be edited by regular users.

As SELinux is mainly a subject from LPIC-3 303 Security, we'll just
highlight its main points here.

SELinux uses a set of security policies; these are rules that tell what
can and can’t be accessed. The security policies apply to applications,
processes, and files. For example, when a process or application tries to
access a file, SELinux checks if that access is allowed. Each application,
process, and file have an SELinux context associated.

As SELinux is applied to all applications, processes, and files in the
host system, that also applies to container-related processes and files. This
is something that must be taken into account.

353

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

We'll see a short demonstration. By default, Ubuntu 22 does not use
SELinux, so we'll use a Red Hat 8 system for this. First, we check the status
of SELinux.

[Toot@RH8 ~]# sestatus

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing

Mode from config file: enforcing
Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)
Max kernel policy version: 33

In this case, SELinux is enabled, and it is in “enforcing” mode. SELinux
can be in permissive mode or in enforcing mode. When in enforcing mode,
it will block those actions that are not allowed by the SELinux policies.

On the other hand, permissive mode will not block any action that is not
allowed, but it will log them. We can change between these two modes
with the setenforce command.

We can check the SELinux context of any given file or folder with the -Z
option of the Is command.

[Toot@RH8 ~]# 1s -1Zd /var/lib/containers/
drwxr-xr-x. 5 root root system u:object r:container var_
lib t:s0 4096 sep 23 2023 /var/lib/containers/

[root@RH8 ~]# 1s -1zZd /tmp/
drwxrwxrwt. 6 root root system u:object r:tmp t:s0 4096 may 25
04:38 /tmp/

354

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

There are many SELinux file context available in a system; we can list
them with semanage.

[Toot@RH8 ~]# semanage fcontext -1

SELinux fcontext type

Context

/ directory
system u:object r:root t:so

/¥ all files
system u:object r:default t:so

/[]+ regular file
system u:object r:etc_runtime t:so
/\.autofsck regular file

system u:object_r:etc_runtime_t:so
/\.autorelabel regular file
system _u:object r:etc_runtime t:so
/\.ismount-test-file regular file
system u:object r:sosreport tmp t:so

As we said before, processes also have SELinux context associated; we
can see them with the -Z option of the ps command.

[root@RH8 ~]# ps -efZ | grep podman

unconfined u:unconfined r:container runtime t:s0-s0:c0.c1023
root 190890 190570 0 04:36 pts/0 00:00:00 podman run -it ubi8
unconfined u:unconfined r:container runtime_t:so root 190942

1 0 04:36 ? 00:00:00 /usr/bin/conmon --api-version 1 -c
9ddbab3dc608d913346e55fd44fas5a87b51e9f1d11ee64fcdebofeq22b-
ba178 -u 9ddbab3dc608d913346e55fd44fa45a87b51e9f1d11ee64
fcdebofe422bba178 -r /usr/bin/runc -b /var/lib/containers/stor-
age/overlay-containers/9ddbab3dc608d913346e55fd44fa45a87b51e9f1

355

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

dllee64fcdebofe422bba178/userdata -p /run/containers/storage/
overlay-containers/9ddbab3dc608d913346e55fd44fa45a87b51e9f1
dilee64fcdebofe422bba178/userdata/pidfile -n suspicious_mayer
--exit-dir /run/libpod/exits --full-attach -s -1 k8s-file:/
var/lib/containers/storage/overlay-containers/9ddbab3dc608d9
13346e55fd44fa45a87b51e9f1d11eeb64fcdebofe422bba178/userdata/
ctr.log --log-level warning --syslog --runtime-arg --log-
format=json --runtime-arg --log --runtime-arg=/run/containers/
storage/overlay-containers/9ddbab3dc608d913346e55fd44fa45a87
b51e9f1d11leeb4fcdebofe422bba178/userdata/oci-log -t --conmon-
pidfile /run/containers/storage/overlay-containers/9ddbab3dc60
8d913346e55fd44fa45a87b51e9f1d11eeb64fcdebofe422bba178/userdata/
conmon.pid --exit-command /usr/bin/podman --exit-command-arg
--root --exit-command-arg /var/lib/containers/storage --exit-
command-arg --runroot --exit-command-arg /run/containers/stor-
age --exit-command-arg --log-level --exit-command-arg warn-
ing --exit-command-arg --cgroup-manager --exit-command-arg
systemd --exit-command-arg --tmpdir --exit-command-arg /run/
libpod --exit-command-arg --network-config-dir --exit-command-
arg --exit-command-arg --network-backend --exit-command-arg
cni --exit-command-arg --volumepath --exit-command-arg /var/
lib/containers/storage/volumes --exit-command-arg --db-backend
--exit-command-arg boltdb --exit-command-arg --transient-
store=false --exit-command-arg --runtime --exit-command-arg
runc --exit-command-arg --storage-driver --exit-command-arg
overlay --exit-command-arg --storage-opt --exit-command-arg
overlay.mountopt=nodev,metacopy=on --exit-command-arg --events-
backend --exit-command-arg file --exit-command-arg container
--exit-command-arg cleanup --exit-command-arg 9ddbab3dc608d91
3346e55fd44fa45a87b51e9f1d11eeb64fcdebofe422bba178

356

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

[root@RH8 ~]# ps -efZ | grep bash

unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 root
75460 672 0 may22 ttyl 00:00:00 -bash

unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 root
190570 190569 0 04:30 pts/0 00:00:00 -bash

system u:system r:container t:s0:¢917,c999 root 190950
190942 0 04:36 pts/0 00:00:00 /bin/bash

SELinux also can control the network ports a given program can use.
We can list these ports with semanage.

[Toot@RH8 ~]# semanage port -1

SELinux Port Type Proto Port Number
afs3_callback port t tcp 7001
afs3_callback port t udp 7001
afs_bos port t udp 7007
afs _fs port t tcp 2040

Let’s see now a simple example about SELinux. We'll assume we have a
web server running locally on port 80. We check that the server is working.

[root@RH8 ~]# curl http://localhost
Hello

We'll edit the properties so that the web server listens on port 85 in-
stead of port 80.

[Toot@RH8 ~]# vi /etc/httpd/conf/httpd.conf
We'll replace this line

Listen 80

357

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
with this one
Listen 85
If we restart now the httpd service, we’ll get an error.

[root@RH8 ~]# systemctl restart httpd

Job for httpd.service failed because the control process exited
with error code.

See "systemctl status httpd.service" and "journalctl -xe" for
details.

And looking at the journal, we’ll see a line similar to the following:

jul 21 14:00:07 RH8.example.com setroubleshoot[192565]: SELinux
is preventing /usr/sbin/httpd from name_bind access on the tcp_
socket port 85. For complete SELinux messages run: sealert -1
fbf5bdc4-3747-47de-88a8-099872380ea5

As we can see, the log says clearly that SELinux is preventing httpd to
use TCP port 85. And it suggests to execute a sealert command.

[To0t@RH8 ~]# sealert -1 fbfsbdc4-3747-47de-88a8-099872380ea5
SELinux is preventing /usr/sbin/httpd from name_bind access on
the tcp_socket port 85.

Rk Plugin bind ports (99.5 confidence) suggests — dokokkokx

If you want to allow /usr/sbin/httpd to bind to network port 85

Then you need to modify the port type.

Do

semanage port -a -t PORT_TYPE -p tcp 85
where PORT_TYPE is one of the following: http_cache port t,
http_port_t, jboss_management port t, jboss messaging
port t, ntop port t, puppet port t.

358

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

The output of the command tells us what the problem is and also how
to fix it. To do it, we just need to add TCP port 85 as one of the ports that
httpd can use. We'll use semanage to add the port.

[Toot@RH8 ~]# semanage port --add -t http port t -p tcp 85

Now, we restart the service again and check that the web server now
works perfectly on port 85.

[root@RH8 ~]# systemctl restart httpd
[root@RH8 ~]# curl http://localhost:85
Hello

AppArmor

AppArmor is a Linux kernel security module that also provides mandatory
access control (MAC). It works by using profiles associated with the
programs.

As we did before with SELinux, we’ll see a simple example of the use
of AppArmor. Again, I must insist this is only a very brief description of
AppArmor, as it is a subject for LPIC-3 303 instead.

In this example, we're going to use an AppArmor profile to control
what a certain program can and can’t do. We'll use for the test the text-
based web browser w3m. We'll begin by installing it.

antonio@antonio-Laptop:~$ sudo apt install w3m

Now we need to create a profile for that program. To generate the
profile, we need to install the AppArmor utils as well.

antonio@antonio-Laptop:~$ sudo apt install apparmor-utils

359

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
We need the full path of the w3m program to generate the profile.

antonio@antonio-Laptop:~$ which w3m
/usr/bin/w3m

We can now proceed to create the profile with aa-genprof.
antonio@antonio-Laptop:~$ sudo aa-genprof /usr/bin/w3m
It is possible that we get this error, or one similar:

ERROR: Include file /etc/apparmor.d/libvirt/
libvirt-84e6987c-5f67-443d-ad67-ff6c29a428c4.files not found

This seems to be a bug regarding AppArmor and libvirt; to remediate
it, we can just create an empty file with the same name.

antonio@antonio-Laptop:~$ touch /etc/apparmor.d/libvirt/
libvirt-84e6987c-5f67-443d-ad67-ff6c29a428c4.files

After that, we can generate the profile; we’ll see this information:

antonio@antonio-Laptop:~$ sudo aa-genprof /usr/bin/w3m
Updating AppArmor profiles in /etc/apparmor.d.

Writing updated profile for /usr/bin/w3m.

Setting /usr/bin/w3m to complain mode.

Before you begin, you may wish to check if a
profile already exists for the application you

wish to confine. See the following wiki page for
more information:
https://gitlab.com/apparmor/apparmor/wikis/Profiles

Profiling: /usr/bin/w3m

Please start the application to be profiled in
another window and exercise its functionality now.

360

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS

Once completed, select the "Scan" option below in
order to scan the system logs for AppArmor events.

For each AppArmor event, you will be given the
opportunity to choose whether the access should be
allowed or denied.

[(S)can system log for AppArmor events] / (F)inish

We must open another shell and launch w3m on it to perform the
normal actions that the program does.

antonio@antonio-Laptop:~$ w3m http://www.apress.com
In the first shell, we'll press “S” to scan for the AppArmor events.

[(S)can system log for AppArmor events] / (F)inish
Reading log entries from /var/log/audit/audit.log.

Profile: /usxr/bin/w3m
Execute: /usr/bin/dash
Severity: unknown

(I)nherit / (C)hild / (N)amed / (U)nconfined / (X) ix On / (D)
eny / Abo(r)t / (F)inish

We'll have to repeat this procedure for some time. Using the
application in a terminal shell and scanning the AppArmor events on the
other terminal shell. In the end, we’ll save the profile.

This profile will be located on /etc/apparmor.d/usr.bin.w3m.

antonio@antonio-Laptop:~$ 1s /etc/apparmor.d/usr.bin.w3m
/etc/apparmor.d/usr.bin.w3m

antonio@antonio-Laptop:~$ sudo cat /etc/apparmor.d/usr.bin.w3m
Last Modified: Sun Jul 21 14:39:52 2024
abi <abi/3.0>,

361

CHAPTER 7 CONTAINER VIRTUALIZATION CONCEPTS
include <tunables/global>

/usr/bin/w3m {
include <abstractions/base>
include <abstractions/bash>

/usr/bin/dash mrix,
/usr/bin/gunzip mrix,
/usr/bin/w3m mr,

seccomp

seccomp (security component) allows a Linux process to enter into a
state in which it can only work with a small subset of system calls: exit(),
sigreturn(), read(), and write() to already open file descriptors.

We'll see this in an example when we study how it can be implemented
in LXC and Docker.

Summary

In this introductory chapter to containers, we have seen what a container
is and also the kernel features needed to provide containers with their
functionality.

Hopefully, after reading this chapter, you'll have a better
understanding about what namespaces and control groups are and how
they work. Apart from these two kernel features, we've also seen other
technologies that can influence how containers work, such as capabilities,
SELinux, and AppArmor. And we also crafted a small container by using
the aforementioned kernel features.

362

CHAPTER 8

Linux
Containers (LXC)

In this chapter, we’'ll cover the following concepts:

LXC

LXC (Linux containers) is a virtualization method for running several
Linux systems, called containers, in a single host. Instead of creating
avirtual machine, LXC relies on the technologies we've studied in the

Understand the architecture of LXC and LXD

Manage LXC containers based on existing images using
LXD, including networking and storage

Configure LXC container properties
Limit LXC container resource usage
Use LXD profiles

Understand LXC images

Awareness of traditional LXC tools

Understand how LXC leverages namespaces, cgroups,
capabilities, seccomp, and MAC

© Antonio Vazquez 2024
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_8

363

https://doi.org/10.1007/979-8-8688-1080-0_8#DOI

CHAPTER 8 LINUX CONTAINERS (LXC)

previous chapter, mainly cgroups and kernel namespaces. This way they
limit and isolate the resource usage (CPU, memory, etc.) of a series of
processes.

Installing LXC

The official repositories of the main Linux distributions already include
the package needed to manage and run LXC in the computer. So the
installation is very simple.

antonio@antonio-Laptop:~$ sudo apt install lxc

Actually if we review the information about the Ixc package, we’ll see
that this is a transitional package. And when we install it, we're installing
the Ixc-utils package.

antonio@antonio-Laptop:~$ apt show 1lxc
Package: 1xc
Version: 1:5.0.0~git2209-g5a7b9ce67-0ubuntul

Description: Transitional package - lxc -> lxc-utils
This is a transitional dummy package. It can safely be
removed.

Ixc is now replaced by lxc-utils.

If we take a look now at the description of the Ixc-utils package, we’'ll
see the following paragraph, which should be already familiar as it is a
summary of the theorical concepts we’ve seen in the previous chapter.

364

CHAPTER 8 LINUX CONTAINERS (LXC)

antonio@antonio-Laptop:~$ apt show lxc-utils
Package: lxc-utils

Description: Linux Containers userspace tools

Containers are insulated areas inside a system, which have
their own namespace for filesystem, network, PID, IPC, CPU and
memory allocation and which can be created using the Control
Group and Namespace features included in the Linux kernel.

This package provides the lxc-* tools, which can be used

to start a single daemon in a container, or to boot an
entire "containerized" system, and to manage and debug your
containers.

Configuring LXC

Now that we've installed the needed utils, we can start creating our
containers. To check whether everything is ready before using LXC, we can
execute the Ixc-checkconfig command.

antonio@antonio-Laptop:~$ 1lxc-checkconfig

LXC version 5.0.0~git2209-g5a7b9ce67

Kernel configuration not found at /proc/config.gz; searching...
Kernel configuration found at /boot/config-6.2.0-36-generic
--- Namespaces ---

Namespaces: enabled

Utsname namespace: enabled

Ipc namespace: enabled

Pid namespace: enabled

User namespace: enabled

Network namespace: enabled

365

CHAPTER 8 LINUX CONTAINERS (LXC)

--- Control groups ---
Cgroups: enabled
Cgroup namespace: enabled

Cgroup vi mount points:

Cgroup v2 mount points:
/sys/fs/cgroup

Cgroup v1 systemd controller: missing
Cgroup v1 freezer controller: missing
Cgroup ns_cgroup: required

Cgroup device: enabled

Cgroup sched: enabled

Cgroup cpu account: enabled

Cgroup memory controller: enabled
Cgroup cpuset: enabled

--- Misc ---

Veth pair device: enabled, not loaded

Macvlan: enabled, not loaded

Vlan: enabled, not loaded

Bridges: enabled, loaded

Advanced netfilter: enabled, loaded
CONFIG_IP_NF_TARGET_MASQUERADE: enabled, not loaded
CONFIG IP6 NF _TARGET MASQUERADE: enabled, not loaded
CONFIG NETFILTER XT_TARGET CHECKSUM: enabled, loaded
CONFIG NETFILTER _XT_MATCH_COMMENT: enabled, not loaded
FUSE (for use with lxcfs): enabled, not loaded

--- Checkpoint/Restore ---
checkpoint restore: enabled
CONFIG_FHANDLE: enabled
CONFIG EVENTFD: enabled

366

CHAPTER 8 LINUX CONTAINERS (LXC)

CONFIG EPOLL: enabled
CONFIG UNIX DIAG: enabled
CONFIG_INET DIAG: enabled
CONFIG_PACKET DIAG: enabled
CONFIG NETLINK DIAG: enabled
File capabilities:

Note : Before booting a new kernel, you can check its
configuration
usage : CONFIG=/path/to/config /usr/bin/lxc-checkconfig

In the output, we can see clearly these two lines:

Namespaces: enabled
Cgroups: enabled

As we studied in the previous chapter, these two technologies provide
the isolation and resource limitation needed to create containers.

In order to create a new container, we use the Ixc-create command.
We assign a name for the new container with the “-n” parameter, and we

execute the command as root.

antonio@antonio-Laptop:~$ sudo lxc-create -n my_container
Ixc-create: my_container: tools/lxc_create.c: main: 214 A
template must be specified

Ixc-create: my container: tools/lxc create.c: main: 215 Use
"none" if you really want a container without a rootfs

As we see, we need to specify a template. We should install the
Ixc-templates package in order to obtain a series of predefined templates.

antonio@antonio-Laptop:~$ sudo apt install lxc-templates

367

CHAPTER 8 LINUX CONTAINERS (LXC)

We can see that there is a list of predefined templates in the /usr/share/
Ixc/templates/ folder.

antonio@antonio-Laptop:~/antonio/LXC$ 1ls /usr/share/lxc/

templates/

1xc-alpine 1xc-download 1xc-opensuse 1xc-sshd

Ixc-altlinux 1lxc-fedora Ixc-oracle Ixc-ubuntu

Ixc-archlinux 1xc-fedora-legacy 1lxc-plamo 1xc-ubuntu-
cloud

Ixc-busybox Ixc-gentoo Ixc-pld Ixc-voidlinux

1xc-centos 1xc-local 1xc-sabayon

Ixc-cirros Ixc-oci Ixc-slackware

1xc-debian 1xc-openmandriva 1xc-sparclinux

In our example, we’ll use the ubuntu template.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-create -t ubuntu

-n my_container

Checking cache download in /var/cache/lxc/jammy/rootfs-

amdé4 ...

Installing packages in template: apt-transport-

https,ssh,vim,language-pack-en

Downloading ubuntu jammy minimal ...

I: Target architecture can be executed

I: Retrieving InRelease

I: Checking Release signature

I: Valid Release signature (key id
F6ECB3762474EDA9D21B7022871920D1991BC93C)

: Retrieving Packages

: Validating Packages

: Retrieving Packages

: Validating Packages

—oH - H

: Resolving dependencies of required packages...

368

CHAPTER 8 LINUX CONTAINERS (LXC)

I: Resolving dependencies of base packages...
I: Checking component main on http://archive.ubuntu.com/
ubuntu...

I: Checking component universe on http://archive.ubuntu.com/
ubuntu...

: Retrieving adduser 3.118ubuntu5

: Validating adduser 3.118ubuntus

: Retrieving apt 2.4.5

: Validating apt 2.4.5

o -

Installing updates

Get:1 http://security.ubuntu.com/ubuntu jammy-security
InRelease [110 kB]

Hit:2 http://archive.ubuntu.com/ubuntu jammy InRelease

Get:3 http://archive.ubuntu.com/ubuntu jammy-updates InRelease
[119 kB]

Get:4 http://security.ubuntu.com/ubuntu jammy-security/main
amd64 Packages [953 kB]

Copy /var/cache/lxc/jammy/rootfs-amd64 to /var/lib/lxc/my _
container/rootfs ...
Copying rootfs to /var/lib/lxc/my_container/rootfs ...
Generating locales (this might take a while)...

en _US.UTF-8... done
Generation complete.

369

CHAPTER 8 LINUX CONTAINERS (LXC)

#H

The default user is 'ubuntu' with password 'ubuntu'!

Use the 'sudo' command to run tasks as root in the container.
##

The container has been successfully created. We can list it with Ixc-Is.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1lxc-1s
my container

We can get a bit more information with the --fancy option.

antonio@antonio-Laptop:~$ sudo 1xc-1s --fancy
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_container STOPPED 0 - - - false

When creating a new container with the default options, a new folder
will appear in the /var/lib/Ixc folder.

antonio@antonio-Laptop:~/antonio/LXC$ 1s /var/lib/Ixc

1s: cannot open directory '/var/lib/lxc': Permission denied
antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc
my_container

Inside the my_container folder, we see a config file and a rootfs
subfolder.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1s -1 /var/lib/lxc/
my_container

total 8

-IW-T----- 1 root root 687 nov 18 13:10 config

drwxr-xr-x 17 root root 4096 nov 18 13:09 rootfs

370

CHAPTER 8 LINUX CONTAINERS (LXC)

In the config file, we can see parameters regarding the network settings
and the root filesystem used. We can also see that the settings included in
the /usr/share/lxc/config/ubuntu.common.conffile are included.

antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/lxc/
my_container/config

Template used to create this container: /usr/share/lxc/
templates/1xc-ubuntu

Parameters passed to the template:

For additional config options, please look at 1xc.
container.conf(5)

Uncomment the following line to support nesting containers:
#lxc.include = /usr/share/lxc/config/nesting.conf
(Be aware this has security implications)

Common configuration
Ixc.include = /usr/share/lxc/config/ubuntu.common.conf

Container specific configuration

Ixc.rootfs.path = dir:/var/lib/1xc/my_container/rootfs
Ixc.uts.name = my_container

Ixc.arch = amd64

Network configuration
Ixc.net.0.type = veth

Ixc.net.0.1link = 1xcbro
Ixc.net.0.flags = up
Ixc.net.0.hwaddr = 00:16:3e:fb:1d:36

371

CHAPTER 8 LINUX CONTAINERS (LXC)

The root filesystem used is precisely the /var/lib/lxc/my_container/
rootfs folder we talked about earlier. If we list its contents, we'll see that it
contains the usual directories that can be found in a Linux computer.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1ls /var/lib/lxc/
my_container/rootfs

bin dev home 1ib32 1ibx32 mnt proc run srv tmp var
boot etc 1lib 1ib64 media opt root sbin sys usr

The template named ubuntu usually includes a user named “ubuntu”
with a password “ubuntu”. However, we’'ll see how to customize it, resetting
the root password and creating a new user.

To do this, we’ll change the root path to that of the container.

antonio@antonio-Laptop:~/antonio/LXC$ sudo chroot /var/lib/lxc/
my_container/rootfs
root@antonio-Laptop:/#

We proceed now to change the root password and create a new user.

root@antonio-Laptop:/# passwd root

New password:

Retype new password:

passwd: password updated successfully
root@antonio-Laptop:/# useradd -m lxc-user
root@antonio-Laptop:/# passwd 1lxc-user

New password:

Retype new password:

passwd: password updated successfully
root@antonio-Laptop:/#

Finally, we leave the chroot environment.

root@antonio-Laptop:/# exit
exit

372

CHAPTER 8 LINUX CONTAINERS (LXC)
We are ready to start the container with the Ixc-start command.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-start -n my_
container

And we check that the container is actually running.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1xc-1s --fancy
NAME STATE ~ AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_container RUNNING O - 10.0.3.48 - false

In the output, we can see the IP of the container. Of course we can ping
this IP address.

antonio@antonio-Laptop:~/antonio/LXC$ ping -c 3 10.0.3.48
PING 10.0.3.48 (10.0.3.48) 56(84) bytes of data.

64 bytes from 10.0.3.48: icmp_seq=1 ttl=64 time=0.070 ms
64 bytes from 10.0.3.48: icmp_seq=2 ttl=64 time=0.067 ms
64 bytes from 10.0.3.48: icmp seq=3 ttl=64 time=0.067 ms

--- 10.0.3.48 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2047ms
rtt min/avg/max/mdev = 0.067/0.068/0.070/0.001 ms

Once the container is started, we can connect to it with linux-console.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-console -n my_
container

Connected to tty 1
Type <Ctrl+a gq> to exit the console, <Ctrl+a Ctrl+a> to enter
Ctrl+a itself

Ubuntu 22.04.3 LTS mycontainer pts/1

mycontainer login:

373

CHAPTER 8 LINUX CONTAINERS (LXC)
We log in as the user we created before.

mycontainer login: lxc-user
Password:
Welcome to Ubuntu 22.04.3 LTS (CGNU/Linux 6.5.0-44-generic x86 64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described
in the individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

$

And we can execute any command as we’d do in any other Ubuntu
computer.

$ su - root
Password:
root@mycontainer:~# ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: etho@if11: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP group default gqlen 1000

374

CHAPTER 8 LINUX CONTAINERS (LXC)

link/ether 00:16:3e:fb:1d:36 brd ff:ff:ff:ff:ff:ff link-
netnsid 0
inet 10.0.3.48/24 metric 100 brd 10.0.3.255 scope global
dynamic etho
valid 1ft 3097sec preferred 1ft 3097sec
inet6 fe80::216:3eff:fefb:1d36/64 scope link
valid 1ft forever preferred 1ft forever
root@mycontainer:~# ip route
default via 10.0.3.1 dev etho proto dhcp src 10.0.3.48
metric 100
10.0.3.0/24 dev etho proto kernel scope link src 10.0.3.48
metric 100
10.0.3.1 dev etho proto dhcp scope link src 10.0.3.48
metric 100
root@mycontainer:~#

When we're done, we exit the container console by pressing Ctrl+a and g;
this way, the container we’ll remain executing, and we can reconnect again at
any moment. We can connect to the console as we just did or we can connect
with ssh. By default, the ssh port is open and accessible.

antonio@antonio-Laptop:~/antonio/LXC$ nmap 10.0.3.48
Starting Nmap 7.80 (https://nmap.org) at 2024-07-22
21:37 CEST

Nmap scan report for 10.0.3.48

Host is up (0.00012s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

22/tcp open ssh

375

CHAPTER 8 LINUX CONTAINERS (LXC)
Nmap done: 1 IP address (1 host up) scanned in 0.06 seconds

antonio@antonio-Laptop:~/antonio/LXC$ ssh ubuntu@®10.0.3.48
ubuntu@10.0.3.48"'s password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux

6.5.0-44-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
Last login: Mon Jul 22 19:56:12 2024 from 10.0.3.1

You probably remember that when we introduced the concept of
container, we said there were two types of containers: system containers
and application containers. This Ubuntu container we just created is a
system container as it includes most (if not all) of the tools we expect to see
in areal Ubuntu server.

When we decide that we don’t need the container to be executed
anymore, we can stop the container with the Ixc-stop command.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-stop -n my_

container

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1lxc-1ls --fancy
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_container STOPPED 0 - - - false

After installing LXC, we can see that a new bridge interface has been
created on the host.

antonio@antonio-Laptop:~/antonio/LXC$ ip address show

376

CHAPTER 8 LINUX CONTAINERS (LXC)

8: 1xcbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue state DOWN group default qlen 1000
link/ether 00:16:3€:00:00:00 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.1/24 brd 10.0.3.255 scope global lxcbro
valid 1ft forever preferred 1ft forever
inet6 fe80::216:3eff:fe00:0/64 scope link
valid 1ft forever preferred 1ft forever

If we remember, we already mentioned the /var/lib/Ixc/my_container/
config file, where the container configuration is stored. At the bottom of the
file, we have the network configuration.

Network configuration
Ixc.net.0.type = veth

Ixc.net.0.link = 1xcbro
Ixc.net.0.flags = up
Ixc.net.0.hwaddr = 00:16:3e:fb:1d:36

This configuration is generated using the /etc/Ixc/default.conffile as a
template.

antonio@antonio-Laptop:~/antonio/LXC$ cat /etc/lxc/default.conf
Ixc.net.0.type = veth

Ixc.net.0.1link = lxcbro

1xc.net.0.flags = up

Ixc.net.0.hwaddr = 00:16:3e:xx:XX:XX

When we studied network namespaces in the previous chapter, we
could establish a connection between two network namespaces using
a pair of virtual Ethernet devices. This is exactly how Linux containers
(LXC) communicate with the host. The only difference is that LXC does

377

CHAPTER 8 LINUX CONTAINERS (LXC)

it automatically. When a container is running, we can see that the bridge
interface Ixcbr0 is assigned to a veth interface.

antonio@antonio-Laptop:~$ sudo lxc-start -n my container
antonio@antonio-Laptop:~/antonio/LXC$ brctl show

bridge name bridge id STP enabled interfaces
br-4d7a80d63283 8000.02422b187d46 no
docker0 8000.0242ecddob5f no
Ixcbro 8000.00163e000000 no vethnXYPDf
virbro 8000.52540035f114 yes
virbri 8000.5254009a49a6 yes
virbr2 8000.52540052acbc yes

And we'll see the corresponding veth interface in the host.

antonio@antonio-Laptop:~/antonio/LXC$ ip link

12: vethnXYPDf@if2: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500
qdisc noqueue master lxcbr0 state UP mode DEFAULT group default
qlen 1000

link/ether fe:7a:2b:b3:a0:34 brd ff:ff:ff:ff:ff:ff link-
netnsid 0

Of course in the container, we can see the other veth interface, as
they're always created in pairs.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-attach -n my_
container -- ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default glen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

378

CHAPTER 8 LINUX CONTAINERS (LXC)

2: etho@if12: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP mode DEFAULT group default gqlen 1000

link/ether 00:16:3e:fb:1d:36 brd ff:ff:ff:ff:ff:ff link-
netnsid 0

The interface Ixcbr0 is created automatically in Ubuntu when installing
LXC. However, this is not always the case with other Linux distributions.
If the interface is not created, we should create and configure a bridge
interface for the container to be accessible through the network.

LXC Storage

When we created our first container, we used the default storage option,
which is local storage. The local storage is a local folder in the host, /var/
lib/Ixc to be exact. However, we can choose different storage options. If we
look at the help of the Ixc-create command, we'll see these options:

antonio@antonio-Laptop:~$ 1lxc-create -help

-B, --bdev=BDEV Backing store type to use

BDEV options for LVM (with -B/--bdev lvm):

--lvname=LVNAME Use LVM 1lv name LVNAME
(Default: container name)

--vgname=VG Use LVM vg called VG
(Default: 1xc)

--thinpool=TP Use LVM thin pool called TP

(Default: 1xc)

379

CHAPTER 8 LINUX CONTAINERS (LXC)

BDEV options for Ceph RBD (with -B/--bdev rbd) :

- -rbdname=RBDNAME Use Ceph RBD name RBDNAME
(Default: container name)
--rbdpool=POOL Use Ceph RBD pool name POOL

(Default: 1xc)

BDEV option for ZFS (with -B/--bdev zfs) :
--zfsroot=PATH Create zfs under given zfsroot
(Default: tank/1lxc)

As we can see, we can store the container in a logical volume,
Ceph, or ZFS.

You're probably familiar with logical volumes, as they have been
widely used for many years and are studied in the LPIC-2 certification.

Ceph is a distributed data storage solution that provides object, block,
and file storage. It’s fault tolerant and very scalable, making it a great
platform to work with big data.

Finally, ZFS is a filesystem originally used in Sun Solaris systems that
has been ported to other operating systems like Linux. Usually, in storage
systems, we have two different parts: the volume management and the
management of the data. For example, we can use LVM as the volume
manager, and then we can format the volumes with different filesystems
like xfs, btrfs, ext4, etc. Or maybe we could use RAID as the volume
manager. ZFS is an all-in-one storage system, as it unifies both parts: the
volume management and the filesystem. Due to this characteristic, ZFS
has complete knowledge of the storage system and provides a very good
protection against data corruption. Besides that, it also provides other
interesting features like snapshots, compression, and quotas.

380

CHAPTER 8 LINUX CONTAINERS (LXC)

We're going to see an example in which we’ll store a container in a
logical volume. For that, we’ll create a volume group, and then Ixc-create
will create the corresponding logical volume. To create a volume group, we
need to have a disk or partition available to create the physical volume that
will be used by the volume group. In my case, I don’t have any physical
volume available, but we can use a loop device to emulate a disk. We'll
begin by creating a file that will be used as a virtual disk.

antonio@antonio-Laptop:~/antonio/LXC$ dd if=/dev/zero of=disk.
dsk bs=1M count=2048

2048+0 records in

2048+0 records out

2147483648 bytes (2,1 GB, 2,0 GiB) copied, 0,938241 s, 2,3 GB/s

Then, we associate the disk to a loop device.
antonio@antonio-Laptop:~/antonio/LXC$ sudo losetup -fP disk.dsk
And we identify the exact loop device.

antonio@antonio-Laptop:~/antonio/LXC$ losetup -a | grep disk.dsk
/dev/loop45: []: (/home/antonio/antonio/LXC/disk.dsk)

From now on, we can use /dev/loop45 as if it were a “normal” disk.
We'll use fdisk to create an LVM-type partition that we’ll use later to create
a physical volume.

antonio@antonio-Laptop:~/antonio/LXC$ sudo fdisk /dev/loop45s

Welcome to fdisk (util-linux 2.37.2).

Changes will remain in memory only, until you decide to
write them.

Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier Oxd9bcd143.

381

CHAPTER 8 LINUX CONTAINERS (LXC)

Command (m for help): n
Partition type

p primary (0 primary, 0 extended, 4 free)

e extended (container for logical partitions)
Select (default p):

Using default response p.

Partition number (1-4, default 1):

First sector (2048-4194303, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-4194303,
default 4194303):

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): t

Selected partition 1

Hex code or alias (type L to list all): 8e
Changed type of partition 'Linux' to 'Linux LVM'.

Command (m for help): p

Disk /dev/loop45: 2 GiB, 2147483648 bytes, 4194304 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

1/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos

Disk identifier: 0Oxd9bcd143

Device Boot Start End Sectors Size Id Type
/dev/loop45p1 2048 4194303 4192256 2G 8e Linux LVM

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

382

CHAPTER 8 LINUX CONTAINERS (LXC)

Now we’ll create a physical volume (PV) from the partition just created
in the loopback device.

antonio@antonio-Laptop:~/antonio/LXC$ sudo pvcreate /dev/
loop4sp1

Physical volume "/dev/loop45p1" successfully created.
antonio@antonio-Laptop:~/antonio/LXC$ sudo pvs

PV VG Fmt Attr PSize PFree

/dev/loop45p1 lvm2 --- <2,00g <2,00g

And finally, we’ll create a new VG using that PV.

antonio@antonio-Laptop:~/antonio/LXC$ sudo vgcreate VG_LXC /
dev/loop45p1
Volume group "VG_LXC" successfully created

We’'re now ready to create a new container that will be stored inside the
volume group.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-create -n my_
containerLV -t ubuntu -B lvm --vgname=VG_LXC
Checking cache download in /var/cache/lxc/jammy/rootfs-
amdé64 ...
Copy /var/cache/lxc/jammy/rootfs-amd64 to /usr/lib/x86_64-
linux-gnu/lxc ...
Copying rootfs to /usr/lib/x86_64-linux-gnu/lxc ...
Generating locales (this might take a while)...

en US.UTF-8... done
Generation complete.

Current default time zone: 'Etc/UTC'
Local time is now: Wed Jul 24 16:45:13 UTC 2024.
Universal Time is now: Wed Jul 24 16:45:13 UTC 2024.

383

CHAPTER 8 LINUX CONTAINERS (LXC)

##

The default user is 'ubuntu' with password 'ubuntu'!

Use the 'sudo' command to run tasks as root in the container.
#H

We have created our new container. We can start it the usual way.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-start my containerLV

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-1ls --fancy

NAME STATE ~ AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_container STOPPED 0 - - - false
my_containerLV RUNNING o - 10.0.3.172 - false

We can connect with ssh just to prove that the container is working as
expected.

antonio@antonio-HP-Laptop-15s-fqixxx:~/antonio/LXC$ ssh
ubuntu@10.0.3.172

ubuntu@10.0.3.172"'s password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux
6.5.0-44-generic x86_64)

Now we'll take a look at the /var/lib/Ixc folder.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc
my_container my_containerlLV

384

CHAPTER 8 LINUX CONTAINERS (LXC)
We see that there is a my_containerLV folder; let’s look into it.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1ls /var/lib/lxc/
my_containerLV
config rootfs

There is a rootfs folder and a config file. However, the rootfs folder
is empty, and in the config file, we can see that the location of the root
filesystem is the logical volume we had created.

antonio@antonio-Laptop:~/antonio/LXC$ sudo 1s /var/lib/lxc/
my_containerlLV/rootfs

antonio@antonio-Laptop:~/antonio/LXC$
antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/lxc/
my_containerLV/config

Container specific configuration
Ixc.rootfs.path = lvm:/dev/VG_LXC/my containerLV

If we want to, we can mount the logical volume in a local path to access
its content.

antonio@antonio-Laptop:~/antonio/LXC$ sudo mount /dev/VG_LXC/
my_containerLV /mnt/mydata/
antonio@antonio-Laptop:~/antonio/LXC$ 1s /mnt/mydata/

bin boot dev etc home 1lib 1ib32 1ib64 1ibx32
lost+found media mnt opt proc root run sbin srv sys
tmp usr var

385

CHAPTER 8 LINUX CONTAINERS (LXC)
When we're done, we can delete the container with Ixc-destroy.

antonio@antonio-Laptop:~/antonio/LXC$ sudo umount /mnt/mydata
antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-stop -n
my_containerLV

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-destroy -n
my_containerLV

We will also remove the volume group, the loopback device, and so on.

antonio@antonio-Laptop:~/antonio/LXC$ sudo vgremove VG_LXC
Volume group "VG_LXC" successfully removed
antonio@antonio-Laptop:~/antonio/LXC$ sudo vgremove VG_LXC
Volume group "VG_LXC" successfully removed
antonio@antonio-Laptop:~/antonio/LXC$ sudo pvremove
/dev/loop45p1
Labels on physical volume "/dev/loop45p1" successfully wiped.
antonio@antonio-Laptop:~/antonio/LXC$ sudo losetup -d /
dev/loop45
antonio@antonio-Laptop:~/antonio/LXC$ rm disk.dsk

LXC in RedHat/Rocky/Cent0S

We've already seen how to install and configure LXC on Ubuntu. Now
we're gonna do the same in Rocky Linux. We're not going to describe in
detail every step because I don’t want to repeat the same information
once and again. We'll just see the commands used, and we’ll focus on the
differences.

We'll install the needed packages.

[root@pc-1196 ~]# dnf install -y 1xc
[root@pc-1196 ~]# dnf install -y lxc-templates

386

CHAPTER 8 LINUX CONTAINERS (LXC)
When we check the templates available, we’ll see the first differences.

[root@pc-1196 ~]# 1s /usr/share/lxc/templates/
Ixc-busybox 1xc-download 1xc-local 1xc-oci

If we try to create a busybox container, we’ll get an error because we
need to have the busybox binary.

[root@pc-1196 ~]# lxc-create -n my rockycont -t busybox
/usr/bin/which: no busybox in (/usr/local/sbin:/usr/local/bin:/
usr/sbin:/usr/bin:/opt/puppetlabs/bin:/root/bin)

ERROR: Please pass a pathname for busybox binary

Ixc-create: my rockycont: lxccontainer.c: create run template:
1625 Failed to create container from template

Ixc-create: my rockycont: tools/lxc_create.c: main: 331 Failed
to create container my rockycont

We'll try to use the “download” template.

[root@pc-1196 ~]# lxc-create -n my rockycont -t download
Setting up the GPG keyring

ERROR: Unable to fetch GPG key from keyserver

Ixc-create: my rockycont: lxccontainer.c: create run template:
1625 Failed to create container from template

Ixc-create: my_rockycont: tools/lxc_create.c: main: 331 Failed
to create container my rockycont

We get an error because the system tries to fetch a GPG key from the
key server and fails. If we execute the template with the “--help” parameter,
we'll see this at the bottom of the page:

[root@pc-1196 ~]# /usr/share/lxc/templates/lxc-download --help
LXC container image downloader

387

CHAPTER 8 LINUX CONTAINERS (LXC)

Special arguments:
[-h | --help]: Print this help message and exit
[-11 --1list]: List all available images and exit

Required arguments:

[-d | --dist <distribution>]: The name of the distribution
[-1 | --release <release>]: Release name/version
[-a | --arch <architecture>]: Architecture of the container

Environment Variables:
DOWNLOAD KEYSERVER : The URL of the key server to use, instead
of the default.
Can be further overridden by using
optional argument --keyserver

As the default key server doesn’t seem to work, we’ll use the ubuntu
key server instead. We can also see another interesting option, -1, which
shows a list of the available images.

[root@pc-1196 ~]# DOWNLOAD KEYSERVER="hkp://keyserver.ubuntu.
com" /usr/share/lxc/templates/lxc-download --list

Setting up the GPG keyring

Downloading the image index

DIST RELEASE ARCH VARIANT BUILD

almalinux 8 amd64 default 20240723 _23:08
almalinux 8 arme4 default 20240723_23:08
almalinux 9 amd64 default 20240723_23:08
almalinux 9 arm64 default 20240723 23:08

388

CHAPTER 8 LINUX CONTAINERS (LXC)

Now we'll try to create a new container based on the Ubuntu image.
We have seen the options we need for the “download” template, and we’ll
take a look at the options needed for Ixc-create in this distribution.

[root@pc-1196 ~]# lxc-create --help
Usage: lxc-create --name=NAME --template=TEMPLATE [OPTION...]
[-- template-options]

We launch the creation of the container.

[root@pc-1196 ~]# DOWNLOAD_KEYSERVER="hkp://keyserver.ubuntu.
com" 1lxc-create -t download -n my rockycont -- -d ubuntu -a
amd64 -1 bionic

Setting up the GPG keyring

Downloading the image index

Downloading the rootfs

Downloading the metadata

The image cache is now ready

Unpacking the rootfs

You just created an Ubuntu bionic amd64 (20240724 07:42) container.

To enable SSH, run: apt install openssh-server
No default root or user password are set by LXC.

In this case, we have no default user and password. We can reset the
root password executing chroot on the container root filesystem. We
did this in a previous example. Another possibility is to use Ixc-attach
to execute commands in the container. We also saw an example of this
command previously.

389

CHAPTER 8 LINUX CONTAINERS (LXC)
If we try to start the container, we'll get this error:

[root@pc-1196 ~]# 1lxc-start -n my rockycont

Ixc-start: my rockycont: lxccontainer.c: wait_on_daemonized
start: 851 Received container state "ABORTING" instead of
"RUNNING"

Ixc-start: my _rockycont: tools/lxc_start.c: main: 329 The
container failed to start

Ixc-start: my rockycont: tools/lxc_start.c: main: 332 To get
more details, run the container in foreground mode
Ixc-start: my _rockycont: tools/lxc_start.c: main: 335
Additional information can be obtained by setting the --logfile
and --logpriority options

As suggested by the output text, we'll try to start the container on the
foreground to get some more information.

[root@pc-1196 ~]# 1lxc-start -F -n my rockycont

Ixc-start: my rockycont: network.c: 1xc_ovs attach bridge: 2008
Failed to attach "lxcbr0" to openvswitch bridge "veth6MMLUB":
Ixc-start: my rockycont: utils.c: run_command internal: 1648
Failed to exec command

Ixc-start: my rockycont: network.c: instantiate veth: 173
Operation not permitted - Failed to attach "veth6MMLUB" to
bridge "lxcbro"

Ixc-start: my rockycont: network.c: 1xc_create network priv:
2577 Failed to create network device

Ixc-start: my rockycont: start.c: lxc_spawn: 1682 Failed to
create the network

Ixc-start: my _rockycont: start.c: _ 1lxc_start: 2019 Failed to
spawn container "my rockycont"

Ixc-start: my rockycont: tools/lxc_start.c: main: 329 The
container failed to start

390

CHAPTER 8 LINUX CONTAINERS (LXC)

Ixc-start: my rockycont: tools/lxc_start.c: main: 335
Additional information can be obtained by setting the --logfile
and --logpriority options

We can see that when starting the containers, it tries to use the Ixcbr0
interface, which currently doesn’t exist. We'll install the bridge-utils
package to create it.

[root@pc-1196 ~]# dnf install bridge-utils

[root@pc-1196 ~]# brctl addbr 1lxcbro

[root@pc-1196 ~]# brctl show 1lxcbro

bridge name bridge id STP enabled interfaces
Ixcbro 8000.000000000000 no

Now that we have created the bridge interface, we can start the container.

[root@pc-1196 ~]# 1xc-start -n my rockycont

[root@pc-1196 ~]# brctl show 1lxcbro

bridge name bridge id STP enabled interfaces
Ixcbro 8000.febb5e5f4ad2 no vethLCTPSW

[root@pc-1196 ~]# 1lxc-1ls --fancy
NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_rockycont RUNNING 0 - - - false

We can see that the container was started, but obviously it has no IP
address because we didn’t configure any IP settings; we just created the
Ixcbr0 interface.

Now we can do a couple of things; we can manually configure the
IP settings in both the host and the container and edit the firewall rules
accordingly to be able to connect or we can use the Ixc-net service instead.
If we choose the second, and easier, option, we need to start the service.

[root@pc-1196 ~]# systemctl start lxc-net

391

CHAPTER 8 LINUX CONTAINERS (LXC)

However, if we restart the container right now, we'll see that it still has
no IP address assigned. To find out more, we’ll take a look at the definition
of the service.

[root@pc-1196 ~]# systemctl cat lxc-net.service
/usr/lib/systemd/system/1xc-net.service
[Unit]

Description=LXC network bridge setup
After=network-online.target
Wants=network-online.target

Before=1xc.service

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=/usr/libexec/1xc/1xc-net start
ExecStop=/usr/libexec/1xc/1xc-net stop

[Install]
WantedBy=multi-user.target

We see that the service executes the /usr/libexec/Ixc/Ixc-net script
when it starts; we’ll execute manually with the “-x” option to see more
details of the execution.

[root@pc-1196 ~]# sh -x /usr/libexec/lxc/lxc-net start
+ distrosysconfdir=/etc/sysconfig

+ varrun=/run/lxc

+ varlib=/var/lib

+ USE_LXC_BRIDGE=true

+ LXC_BRIDGE=1xcbro

+ LXC_BRIDGE MAC=00:16:3e:00:00:00

+ LXC_ADDR=10.0.3.1

+ LXC_NETMASK=255.255.255.0

392

++

CHAPTER 8

LXC_NETWORK=10.0.3.0/24
LXC_DHCP_RANGE=10.0.3.2,10.0.3.254
LXC_DHCP_MAX=253
LXC_DHCP_CONFILE=
LXC_DHCP_PING=true
LXC_DOMAIN=
LXC_IPV6_ADDR=
LXC_IPV6 MASK=
LXC_IPV6 NETWORK=
LXC_IPV6_NAT=false
‘[* 1" -f /etc/sysconfig/lxc ']’
. /etc/sysconfig/lxc
LXC_AUTO=true
BOOTGROUPS=onboot,
SHUTDOWNDELAY=5
OPTIONS=
STOPOPTS="-a -A -s'
USE_LXC_BRIDGE=false
"[* 1" -f /etc/sysconfig/Ixc-net ']’
use_iptables lock=-w
iptables -w -L -n
case "$1" in
start
"[' xfalse = xtrue ']’
exit 0

In the first lines of execution, we see this line:
USE_LXC BRIDGE=true
But later we see this other line:

USE_LXC BRIDGE=false

LINUX CONTAINERS (LXC)

393

CHAPTER 8 LINUX CONTAINERS (LXC)

This last value seems to be taken from the /etc/sysconfig/Ixc file. In fact,
that’s the case. In the file, we can see the following line:

USE_LXC_BRIDGE="false" # overridden in lxc-net
And we change the value from “false” to “true”.
USE_LXC_BRIDGE="true" # overridden in lxc-net

If we run the script again, we’ll see that now it seems to execute
successfully.

[root@pc-1196 ~]# sh -x /usr/libexec/lxc/lxc-net start
+ distrosysconfdir=/etc/sysconfig

+ varrun=/run/lxc

+ varlib=/var/lib

+ USE_LXC BRIDGE=true

+ LXC_BRIDGE=1xcbro

+ LXC _BRIDGE MAC=00:16:3e:00:00:00

+ LXC_ADDR=10.0.3.1

+ LXC_NETMASK=255.255.255.0

+ LXC_NETWORK=10.0.3.0/24

+ LXC_DHCP_RANGE=10.0.3.2,10.0.3.254
+ LXC_DHCP_MAX=253

+ LXC_DHCP_CONFILE=

+ LXC_DHCP_PING=true

+ LXC_DOMAIN=

+ LXC_IPV6_ADDR=

+ LXC_IPV6 MASK=

+ LXC_IPV6 NETWORK=

+ LXC_IPV6 NAT=false

+ '[" "I" -f /etc/sysconfig/lxc ']’
+ . /etc/sysconfig/1xc

++ LXC_AUTO=true

394

CHAPTER 8 LINUX CONTAINERS (LXC)

++ BOOTGROUPS=onboot,

++ SHUTDOWNDELAY=5

++ OPTIONS=

++ STOPOPTS='-a -A -s'

++ USE_LXC BRIDGE=true

++ '[" "I -f /etc/sysconfig/lxc-net ']’
+ use_iptables lock=-w

+ iptables -w -L -n

+ case "$1" in

+ start

+ '[" xtrue = xtrue ']’

+ '[" "I" -f /run/1xc/network up ']'
+ echo 'lxc-net is already running'
Ixc-net is already running

+ exit 1

[root@pc-1196 ~]#

In fact, if we restart the service and the container, we will see now an
associated IP address.

root@pc-1196 ~]# systemctl restart 1lxc-net.service

root@pc-1196 ~]# lxc-stop -n my rockycont

root@pc-1196 ~]# lxc-start -n my rockycont

root@pc-1196 ~]# 1lxc-1ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
my_rockycont RUNNING O - 10.0.3.96 - false

[
[
[
[

And of course we can ping the container from the host and vice versa.

[root@pc-1196 ~]# ping -c 3 10.0.3.96

PING 10.0.3.96 (10.0.3.96) 56(84) bytes of data.

64 bytes from 10.0.3.96: icmp seq=1 ttl=64 time=0.037 ms
64 bytes from 10.0.3.96: icmp_seq=2 ttl=64 time=0.086 ms
64 bytes from 10.0.3.96: icmp_seq=3 ttl=64 time=0.072 ms

395

CHAPTER 8 LINUX CONTAINERS (LXC)

--- 10.0.3.96 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2053ms
rtt min/avg/max/mdev = 0.037/0.065/0.086/0.020 ms

As part of the setup, the Ixc-net service has modified the
iptables chains.

[root@pc-1196 ~]# iptables -L -t nat
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 10.0.3.0/24 110.0.3.0/24

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

The service Ixc-net has its parameters (IP addresses, DHCP ranges,
etc.) hard-coded in the /usr/libexec/lxc/Ixc-net file. These are some of the
relevant lines:

USE_LXC_BRIDGE="true"
LXC_BRIDGE="1xcbr0"
LXC_BRIDGE_MAC="00:16:3€:00:00:00"
LXC_ADDR="10.0.3.1"
LXC_NETMASK="255.255.255.0"
LXC_NETWORK="10.0.3.0/24"
LXC_DHCP_RANGE="10.0.3.2,10.0.3.254"

396

CHAPTER 8 LINUX CONTAINERS (LXC)

LXC_DHCP_MAX="253"

DHCP services are provided by dnsmasq, which we already saw briefly
when we studied QEMU.

dnsmasq $LXC_DHCP_CONFILE_ARG $LXC_DOMAIN ARG $LXC_DHCP_
PING ARG -u ${DNSMASQ USER} \
--strict-order --bind-interfaces --pid-
file="${varrun}"/dnsmasq.pid \
--listen-address ${LXC_ADDR} --dhcp-range ${LXC_
DHCP_RANGE} \
--dhcp-lease-max=${LXC_DHCP_MAX} --dhcp-no-
override \
--except-interface=1lo --interface=${LXC_BRIDGE} \
--dhcp-leasefile="${varlib}"/misc/dnsmasq.${LXC
BRIDGE}.leases \
--dhcp-authoritative $LXC IPV6 ARG Il cleanup

We can see the dnsmasq program in execution in the host.

[root@pc-1196 ~]# ps -ef | grep dnsmasq

dnsmasq 161019 1 0 23:207? 00:00:00 dnsmasq
-u dnsmasq --strict-order --bind-interfaces --pid-file=/
run/lxc/dnsmasq.pid --listen-address 10.0.3.1 --dhcp-range

397

CHAPTER 8 LINUX CONTAINERS (LXC)

10.0.3.2,10.0.3.254 --dhcp-lease-max=253 --dhcp-no-override
--except-interface=lo --interface=1xcbr0 --dhcp-leasefile=/var/
lib/misc/dnsmasq.1lxcbro.leases -dhcp-authoritative

This is also true if we work in Ubuntu. But in that case, it was all
transparent for us because we didn’t need to create the bridge interface
and the Ixc-net service was automatically started before Ixc. But it is
present.

antonio@antonio-Laptop:~$ systemctl status lxc-net

e Ixc-net.service - LXC network bridge setup
Loaded: loaded (/1ib/systemd/system/lxc-net.service;
enabled; vendor preset: enabled)
Active: active (exited) since Tue 2024-07-23 19:15:11
CEST; 2 days ago

And the dnsmasq is running too.

antonio@antonio-Laptop:~$ ps -ef | grep dnsmasq

Ixc-dns+ 3080 1 0 jul23? 00:00:00 dnsmasq
--conf-file=/dev/null -u lxc-dnsmasq --strict-order --bind-
interfaces --pid-file=/run/lxc/dnsmasq.pid --listen-address
10.0.3.1 --dhcp-range 10.0.3.2,10.0.3.254 --dhcp-lease-max=253
--dhcp-no-override --except-interface=lo --interface=1xcbro
--dhcp-leasefile=/var/lib/misc/dnsmasq.1lxcbr0.leases --dhcp-
authoritative

antonio 159839 41440 0 19:19 pts/1 00:00:00 grep
--color=auto dnsmasq

398

CHAPTER 8 LINUX CONTAINERS (LXC)

Security in LXC

We have seen a few commands and characteristics related to LXC, though
there are many more available and it is not possible to cover all of them
in this book. And it is also outside the scope of the 305 exam. But we'll see
some additional options we have available.

Let’s get back to our Ubuntu system and look again at the config file.

antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/Ixc/
my_container/config

Template used to create this container: /usr/share/lxc/
templates/1xc-ubuntu

Parameters passed to the template:

For additional config options, please look at 1xc.
container.conf(5)

In the file, we have a few options set, and we’re told that we can check
the man page of Ixc.container.conf for a full list. We’ll open this man page,
and we'll see a lot of different config options.

WEe'll focus this time in the security-related options. We'll see a wide
section about cgroups.

CONTROL GROUPS ("CGROUPS")
The control group section contains the configuration
for the different subsystem.

399

CHAPTER 8 LINUX CONTAINERS (LXC)

Ixc.cgroup.dir
specify a directory or path in which the
container's cgroup will be created.

We also have a capabilities section. As you probably remember,
because we studied them in the previous chapter, these capabilities are
subsets of privileges usually associated to the root user. We can grant (or
deny) a container any of these capabilities.

CAPABILITIES
The capabilities can be dropped in the container if this
one is run as root.

Ixc.cap.drop
Specify the capability to be dropped in the
container.

1xc.cap.keep
Specify the capability to be kept in the
container.

We also have a section for namespaces:

NAMESPACES

400

CHAPTER 8 LINUX CONTAINERS (LXC)

A namespace can be cloned (lxc.namespace.clone),

kept (1xc.namespace.keep) or shared (lxc.namespace.
share.[namespace
identifier]).

Another section for AppArmor:

APPARMOR PROFILE

If 1xc was compiled and installed with apparmor support,
and the host system has apparmor enabled, then the
apparmor pro- file under which the container should be
run can be specified in the container configuration.

...and for SELinux...

SELINUX CONTEXT

If 1xc was compiled and installed with SELinux support

Ixc.selinux.context

Specify the SELinux context under which the
container should be run or unconfined t.
For example

401

CHAPTER 8 LINUX CONTAINERS (LXC)

Ixc.selinux.context = system u:system r:1xc_t:s0:c22

And finally, seccomp:

SECCOMP CONFIGURATION
A container can be started with a reduced set of
available system calls by loading a seccomp profile at
startup.

We're gonna see a small example changing the AppArmor profile. The
first thing we need to do is to list the profiles with aa-status.

antonio@antonio-Laptop:~/antonio/LXC$ sudo aa-status
apparmor module is loaded.

99 profiles are loaded.

97 profiles are in enforce mode.

1xc-container-default
1xc-container-default-cgns
1xc-container-default-with-mounting
1xc-container-default-with-nesting

402

CHAPTER 8 LINUX CONTAINERS (LXC)

We can see there are four different AppArmor profiles for LXC. If the
host kernel is cgroup namespace aware - most of the kernels in use today
are - then the default AppArmor profile will be Ixc-container-default.

We're going to change this default profile. To make a very simplistic
test, we edit the config file of the container and add this line to select an
unexisting profile:

Ixc.apparmor.profile = lxc-container-default-blablabla
If we start the container, we get an error.

antonio@antonio-Laptop:~$ sudo lxc-start -n my container
Ixc-start: my container: lxccontainer.c: wait _on_daemonized
start: 877 Received container state "ABORTING" instead of
"RUNNING"

Ixc-start: my container: tools/lxc_start.c: main: 306 The
container failed to start

Ixc-start: my container: tools/Ixc_start.c: main: 309 To get
more details, run the container in foreground mode
Ixc-start: my container: tools/lxc_start.c: main: 311
Additional information can be obtained by setting the --logfile
and --logpriority options

We'll use the --logfile option to obtain more information.

antonio@antonio-Laptop:~$ sudo lxc-start -n my container
--logfile /tmp/lxclog.txt

We'll open the log file, and we’ll see clearly that AppArmor couldn’t
locate the AppArmor profile.

antonio@antonio-Laptop:~$ sudo cat /tmp/lxclog.txt
Ixc-start my container 20240725194051.671 ERROR apparmor -
lsm/apparmor.c:apparmor process label set at:1183 - No such

403

CHAPTER 8 LINUX CONTAINERS (LXC)

file or directory - Failed to write AppArmor profile "lxc-
container-default-blablabla" to 13

The AppArmor profiles for LXC are located in /etc/apparmor.d/lxc.

antonio@antonio-Laptop:~$ 1ls /etc/apparmor.d/1lxc
Ixc-default 1xc-default-cgns 1xc-default-with-mounting 1xc-
default-with-nesting

We can simply copy the default profile and rename it.

antonio@antonio-Laptop:~$ sudo cp /etc/apparmor.d/1lxc/lxc-
default /etc/apparmor.d/lxc/lxc-default-blablabla

We also need to edit the copied file to change the name of the profile.
profile lxc-container-default-blablabla
And we restart the AppArmor service.

antonio@antonio-Laptop:~$ sudo systemctl restart
apparmor.service

Now we can start the container.

antonio@antonio-Laptop:~$ sudo 1lxc-start -n my container

Other LXC Commands

There are many more LXC-related commands. We'll see a couple of them
here that might be interesting.

404

CHAPTER 8 LINUX CONTAINERS (LXC)

Ixc-monitor

This tool monitors the state of the container(s). To see an example, we'll
launch it in a terminal shell.

antonio@antonio-Laptop:~$ sudo lxc-monitor

In another shell, we'll perform several operations in a container. We’ll
start it.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container
Then we'll freeze it.

antonio@antonio-Laptop:~$ sudo lxc-freeze -n my container
After a while, we’ll unfreeze it again.

antonio@antonio-Laptop:~$ sudo lxc-unfreeze -n my_ container
And finally we'll stop the container.

antonio@antonio-Laptop:~$ sudo 1lxc-stop -n my container

In the first terminal shell (the one in which we executed Ixc-monitor),
we'll see this:

antonio@antonio-Laptop:~$ sudo lxc-monitor
'my_container' changed state to [STARTING]
‘my_container' changed state to [RUNNING]
‘my_container' changed state to [FREEZING]
‘my_container' changed state to [FROZEN]
‘my_container' changed state to [THAWED]
‘my_container' changed state to [RUNNING]
'my_container' exited with status [0]
‘my_container' changed state to [STOPPING]
‘my_container' changed state to [STOPPED]

405

CHAPTER 8 LINUX CONTAINERS (LXC)

Ixc-cgroups

We have studied in the previous chapter how control groups, cgroups for
short, can limit the use of resources by certain processes. This is one of
the core technologies used by containers because it allows to account and
limit the resources used by each container.

We already saw how to use cgroup to limit the use of resources by
manually editing files in the /sys/fs/cgroup tree. We can do the same thing
for a certain container with the Ixc-cgroup command.

The way to use it is very simple; we pass the name of the container and
the cgroup object to get the actual value of that cgroup.

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my container
memory . max
max

If we want to set a new value, we repeat the command adding the
desired value at the end.

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my container
memory.max 10240000

antonio@antonio-Laptop:~$ sudo 1lxc-cgroup -n my container
memory .max

10240000

Of course, at any point, we can restore it to its default value.

antonio@antonio-Laptop:~$ sudo 1lxc-cgroup -n my container
memory.max max

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container
memoxy . max

max

406

CHAPTER 8 LINUX CONTAINERS (LXC)

LXD

LXD is a container management tool developed by Canonical. It is built
on top of LXC, and it offers several advantages, like a REST API to remotely
manage containers over the network. It also supports live migration. As it
was developed by the creators of Ubuntuy, it is available for installation in
the official Ubuntu repositories.

In older versions of Ubuntuy, it can be installed as any other application
from the official repositories. In newer versions, it is installed as a snap.

antonio@antonio-Laptop:~$ 1xd

Command 'lxd' not found, but can be installed with:

sudo snap install 1xd # version 6.1-c14927a, or
sudo apt install 1xd-installer # version 1

See 'snap info 1lxd' for additional versions.

antonio@antonio-Laptop:~$ sudo snap install 1xd
[sudo] password for antonio:
1xd (5.21/stable) 5.21.2-34459c8 from Canonicaly installed

When we install LXD, we’re basically installing a server (Ixd) and
a client (Ixc). We'll perform most of the work on the client, using the
many subcommands available. For instance, if we want to list the remote
repositories currently available, we’d do it like this:

antonio@antonio-Laptop:~$ 1xc remote list

If this is your first time running LXD on this machine, you
should also run: 1lxd init

To start your first container, try: 1xc launch ubuntu:24.04
Or for a virtual machine: 1xc launch ubuntu:24.04 --vm

407

CHAPTER 8 LINUX CONTAINERS (LXC)

e e R
------------------ R R R T e
------- Ho-----ot
NAME | URL

| PROTOCOL | AUTH TYPE | PUBLIC |
STATIC | GLOBAL
R e T R e L PP P ey
------------------ e e R
------- et 3
| images | https://images.1xd.canonical.com

| simplestreams | none | YES I
NO | NO I
R e R E L L PP PPy
------------------ e nn R
------- et 3
| local (current) | unix://

| 1xd | file access | NO
YES | NO I
R e T
------------------ e R bt
------- et &
| ubuntu | https://cloud-images.ubuntu.com/
releases | simplestreams | none | YES I
YES | NO I
EGEEEEEE T R LT T E T
—————————————————— e e R
------- it &
| ubuntu-daily | https://cloud-images.ubuntu.com/
daily | simplestreams | none | YES I
YES [NO I
Hmmm o e
----------------- s ST
------- s s

CHAPTER 8 LINUX CONTAINERS (LXC)

| ubuntu-minimal | https://cloud-images.ubuntu.com/
minimal/releases/ | simplestreams | none | YES I
YES | NO I

R T e e R P P

------------------ e e et LT T
------- +-------4

| ubuntu-minimal-daily | https://cloud-images.ubuntu.com/

minimal/daily/ | simplestreams | none | YES I
YES | NO I

e et e T L R PP PP PR
------------------- R EERh SRR P SR
------- +o------t

We won'’t interact very often with Ixd, but there are some cases in
which we need to. When we listed the remote repositories, the output
suggested to run “Ixd init”. This is usually the first command to execute to
set up LXD. We'll execute it in a moment, but for now, let’s take a look at
the different options available for the Ixd command.

antonio@antonio-Laptop:~$ 1Ixd --help
Description:
The LXD container manager (daemon)

Available Commands:
activateifneeded Check if LXD should be started

cluster Low-level cluster administration commands

help Help about any command

import Command has been replaced with "1xd
recover"

409

CHAPTER 8 LINUX CONTAINERS (LXC)

init Configure the LXD daemon

recover Recover missing instances and volumes from
existing and unknown storage pools

shutdown Tell LXD to shutdown all containers
and exit

version Show the server version

waitready Wait for LXD to be ready to process
requests

We see there are various options available; we can use “init” to
configure it properly, “version” to get the version, “shutdown” to gracefully
shut down all the containers and exit, etc. We’re gonna check our LXD
version and use “init” to configure our LXD server. We'll review the
configuration step by step.

antonio@antonio-Laptop:~$ 1xd --version

5.21.2 LTS

antonio@antonio-Laptop:~$ sudo 1xd init

Would you like to use LXD clustering? (yes/no) [default=no]:

LXD can be installed in cluster. For our purpose, this is not necessary.

Do you want to configure a new storage pool? (yes/no)
[default=yes]:

Name of the new storage pool [default=default]:

Name of the storage backend to use (powerflex, zfs, btrfs,
ceph, dir, lvm) [default=zfs]: dir

In LXD, we can use different types of storage pools: simple directories
and logical volumes. You can also choose Ceph or ZFS, which we already
mentioned in the “LXC” section. It is also possible to use PowerFlex, a
software-based SAN. In our case, we chose to use a simple directory.

Would you like to connect to a MAAS server? (yes/no)
[default=no]:

410

CHAPTER 8 LINUX CONTAINERS (LXC)

We don’t want to connect to a MAAS server. MAAS (Metal as a Service)
is a new service developed by Canonical, the creator of Ubuntu, that allows
the provisioning of bare-metal servers.

Would you like to create a new local network bridge? (yes/no)
[default=yes]:

We could use an existing bridge, but we prefer to create a new bridge
interface for its use on LXD.

What should the new bridge be called? [default=1xdbr0]:

What IPv4 address should be used? (CIDR subnet notation, "auto"
or "none") [default=auto]:

What IPv6 address should be used? (CIDR subnet notation, "auto"
or "none") [default=auto]:

We use the default values for the new bridge.

Would you like the LXD server to be available over the network?
(yes/no) [default=no]:

We don’t need the LXD server to be available over the network, as we’ll
only use it locally.

Would you like stale cached images to be updated automatically?
(yes/no) [default=yes]:

Would you like a YAML "1lxd init" preseed to be printed? (yes/
no) [default=no]:

When we download images to create a container, these images are
cached. We can choose whether to update these images or not. It’s not
really important for our purposes, so we choose the default value. We
could also see all the parameters selected during the setup in YAML, but
we declined this possibility.

411

CHAPTER 8 LINUX CONTAINERS (LXC)

Creating Our First Container on LXD

To create our first container on LXD, we need to select an image first.
We can search for the images available for a certain Linux distribution,
like Ubuntu.

antonio@antonio-Laptop:~$ 1xc image list ubuntu:

--------- e L e L PP PP PP
I | ffae848ee5a0 | yes | ubuntu 20.04 LTS
amd64 (release) (20200529.1) | x86 64 | CONTAINER
303.76MiB | May 29, 2020 at 12:00am (UTC) |
LT EE T R EEE T tommmm-- LT EE TR
—————————————————————————————— e R ittt
----------- e L e T

I | ffb876ca48fb | yes | ubuntu 18.04 LTS
1386 (release) (20200107) | 1686 | VIRTUAL-MACHINE |
318.13MiB | Jan 7, 2020 at 12:00am (UTC) |
e e E e s e et
—————————————————————————————— L L L e
----------- e L PR

We can see that the list is really long. We’ll launch an Ubuntu 24
container.

antonio@antonio-Laptop:~$ 1xc launch ubuntu:24.04
Creating the instance

Instance name is: harmless-monarch

Starting harmless-monarch

412

CHAPTER 8 LINUX CONTAINERS (LXC)
After a few seconds, we can list this new instance:

antonio@antonio-Laptop:~$ 1xc list

ommmm e oo e ommmm e
-- R R EEE SRR
I NAME | STATE | IPV4 I

IPV6 | TYPE | SNAPSHOTS
ommmm e EREEEEE ommm e R E LR
—— Hommm oot

| harmless-monarch | RUNNING | 10.216.182.156 (etho) |
fd42:45f7:c283:6d95:216:3eff:fe35:96d9 (etho) | CONTAINER | O

We can connect to the container console in a similar way to what we
have seen with the classical LXC-related tools.

antonio@antonio-Laptop:~$ 1lxc console harmless-monarch
To detach from the console, press: <ctrl>+a q

harmless-monarch login: ubuntu
Password:

Login incorrect
harmless-monarch login:

However, in this container, we don’t have a default user and password
that we can use to log in. So we’ll use Ixc exec to execute commands. For
instance, we can list the IP addresses in the container.

antonio@antonio-Laptop:~$ 1xc exec harmless-monarch -- ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN group default glen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

413

CHAPTER 8 LINUX CONTAINERS (LXC)

inet 127.0.0.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferred 1lft forever
23: etho@if24: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP group default gqlen 1000
link/ether 00:16:3e:35:96:d9 brd ff:ff:ff:ff:ff:ff link-
netnsid 0
inet 10.216.182.156/24 metric 100 brd 10.216.182.255 scope
global dynamic etho
valid 1ft 3047sec preferred 1ft 3047sec
inet6 fd42:45f7:c283:6d95:216:3eff:fe35:96d9/64 scope
global mngtmpaddr noprefixroute
valid 1ft forever preferred 1ft forever
inet6 fe80::216:3eff:fe35:96d9/64 scope link
valid_1ft forever preferred 1ft forever

We'll use this option to create a new user.

antonio@antonio-Laptop:~$ Ixc exec harmless-monarch -- useradd
-m antonio

And now we'll open a shell to change the password for the user we just

created.

antonio@antonio-Laptop:~$ 1xc exec harmless-monarch -- /
bin/bash

root@harmless-monarch:~# passwd antonio

New password:

Retype new password:

passwd: password updated successfully
root@harmless-monarch:~# exit

exit

414

CHAPTER 8 LINUX CONTAINERS (LXC)

Now that we have a valid username and a valid password, we can
connect to the console.

antonio@antonio-Laptop:~$ 1xc console harmless-monarch
To detach from the console, press: <ctrl>+a q

harmless-monarch login: antonio

Password:

run-parts: /etc/update-motd.d/98-fsck-at-reboot exited with
return code 2

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are

described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by
applicable law.

$

Unfortunately, we didn’t include our user in the sudoers file.

$ sudo su - root
[sudo] password for antonio:
antonio is not in the sudoers file.

To execute commands as root, we could do several things; we could
reset the root password as we did with the password of this user. We could
also include the user “antonio” in the sudoers file or we could try to log in
as the “ubuntu” user, which is usually included in the Ubuntu containers
and can execute sudo commands. We check if this user exists.

$ id ubuntu
uid=1000(ubuntu) gid=1000(ubuntu) groups=1000(ubuntu),4(adm),24
(cdrom),27(sudo),30(dip),105(1xd)$ exit

415

CHAPTER 8 LINUX CONTAINERS (LXC)
As the user “ubuntu” exists, we'll execute a shell to reset the password.

antonio@antonio-Laptop:~$ Ixc exec harmless-monarch -- /
bin/bash

root@harmless-monarch:~# passwd ubuntu

New password:

Retype new password:

passwd: password updated successfully
root@harmless-monarch:~# exit

exit

Now we can connect to the console with the ubuntu user.

antonio@antonio-Laptop:~$ 1xc console harmless-monarch
To detach from the console, press: <ctrl>+a q

To run a command as administrator (user "root"), use "sudo
<command>".
See "man sudo_root" for details.

ubuntu@harmless-monarch:~$

From now on, we can fully manage our container with the “ubuntu”
user. Apart from that, we can stop the container with “Ixc stop” or start it
again with “Ixc start”.

Managing Server and Container Configuration

We can show and manage server and container configuration options with
“Ixc config” For instance, we can check the configuration options of our
container.

416

CHAPTER 8 LINUX CONTAINERS (LXC)

antonio@antonio-Laptop:~$ 1xc config show harmless-monarch
architecture: x86 64
config:

image.architecture: amd64

image.description: ubuntu 24.04 LTS amd64 (release)
(20240725)

image.label: release

image.os: ubuntu

image.release: noble

image.serial: "20240725"

We can also get some information about the LXD server with Ixc info.

antonio@antonio-Laptop:~$ 1lxc info
config: {}

api_extensions:

- storage zfs remove snapshots

- container host shutdown timeout
- container stop priority

- container_syscall filtering

- auth_pki

- container last used at

- etag

- patch

- usb devices

417

CHAPTER 8 LINUX CONTAINERS (LXC)

storage: dir
storage version: "1"
storage supported drivers:
- name: cephobject
version: 17.2.7
remote: true
- name: dir
version: "1"
remote: false
- name: lvm
version: 2.03.11(2) (2021-01-08) / 1.02.175 (2021-01-08)
/ 4.48.0
remote: false
- name: powerflex
version: 1.16 (nvme-cli)
remote: true
- name: zfs
version: 2.2.0-Oubuntu1~23.10.3
remote: false
- name: btrfs
version: 5.16.2
remote: false
- name: ceph
version: 17.2.7
remote: true
- name: cephfs
version: 17.2.7
remote: true

418

CHAPTER 8 LINUX CONTAINERS (LXC)

We can also use Ixc info to get information about a container by
appending the name of the container to the command.

antonio@antonio-Laptop:~$ 1xc info harmless-monarch
Name: harmless-monarch

Status: RUNNING

Type: container

Architecture: x86 64

PID: 39785

Created: 2024/07/27 03:01 CEST

Last Used: 2024/07/27 03:01 CEST

Resources:
Processes: 27
CPU usage:
CPU usage (in seconds): 11
Memory usage:
Memory (current): 59.41MiB
Swap (current): 4.00KiB
Network usage:

etho:
Type: broadcast
State: UP

Networking in LXD

When we executed Ixd init, we chose to create a new bridge interface to
use with LXD with the default configuration.

419

CHAPTER 8 LINUX CONTAINERS (LXC)

At any moment, we can list the networks available to LXD, which are
all the networks the host is connected to.

antonio@antonio-Laptop:~$ 1xc network list

Hommmmmm e Hommm e R EEEEEEE e +
--------------------------- e et SEEEEEEEES
NAME | TYPE | MANAGED | IPV4 I

IPV6 | DESCRIPTION | USED BY | STATE
Hommmm e e Rt ELEEEEE Hmmmmmmmm e +
——————————————————————————— e it L e e Y

I 0] I
e LT e Hommmom - LT LT +
--------------------------- L E EEE R P r PP
| dockero | bridge | NO I I

I 0 I
LT TP EEE e Hmmmmmme- R LR +
--------------------------- T EEE R P r PP
| 1xcbro | bridge | NO I I

I (0] I I
e ERGEEEEEEEEEE e e Hommmmm - Hmmmmmmm - T TR +
--------------------------- L L P P e
| 1xdbro | bridge | YES | 10.216.182.1/24
fd42:457:c283:6d95::1/64 | | 2 | CREATED |
T TP et Hmmmmmm - Hmmmmmmme- S REEEEE +
—————————————————————————— e e

420

CHAPTER 8 LINUX CONTAINERS (LXC)

We can get more information about a certain network with Ixc
network show.

antonio@antonio-Laptop:~$ 1xc network show 1lxdbr0
name: lxdbro
description: ""
type: bridge
managed: true
status: Created
config:
ipv4.address: 10.216.182.1/24
ipv4.nat: "true"
ipv6.address: fd42:45f7:c283:6d95::1/64
ipv6.nat: "true"
used by:
- /1.0/instances/harmless-monarch
- /1.0/profiles/default
locations:
- none

We can see here that the container “harmless-monarch” is attached
to the Ixdbr0 network. And we can also see the network settings. We can
obtain similar information with Ixc network info, but with the latter
command, we can also get information about the VLAN and the statistics
of usage.

antonio@antonio-Laptop:~$ 1xc network info 1lxdbr0
Name: 1lxdbrO

MAC address: 00:16:3e:55:1d:e3

MTU: 1500

State: up

421

CHAPTER 8 LINUX CONTAINERS (LXC)
Type: broadcast

IP addresses:
inet 10.216.182.1/24 (global)

inet6 fd42:4517:c283:6d95::1/64 (global)
inet6 fe80::216:3eff:fe55:1de3/64 (link)

Network usage:
Bytes received: 414.76kB
Bytes sent: 30.66MB
Packets received: 5196
Packets sent: 7179

Bridge:
ID: 8000.00163e551de3
STP: false
Forward delay: 1500
Default VLAN ID: 1
VLAN filtering: true
Upper devices: veth4e29f2a6

It is also possible to list the DHCP leases.

antonio@antonio-Laptop:~$ lxc network list-leases 1xdbro

B G EEEEEEEEEEE B LR LR e s

| HOSTNAME | MAC ADDRESS | IP ADDRESS

B L R oo R e

| harmless-monarch | 00:16:3e:35:96:d9 | 10.216.182.156

ommmm oo oo R ELEEEEE TP EEEEPEEE

| harmless-monarch | 00:16:3e:35:96:d9 | fd42:45f7:c283:6d95:216:3eff:fe35:96d9

Hrmmmm oo L EE PR R GhCEE L e L PP PP PR R
| 1xdbro.gw | | 10.216.182.1

L L LT LR L L PR T R EE P EE e L PR R
| I1xdbro.gw I | fd42:45f7:c283:6d95::1
B e T REEE T TR R R EE TP LR R L PR R

422

+ -+ — + =+ — o+ — 4+

DYNAMIC
--------- +
DYNAMIC
————————— +
GATEWAY
————————— +
GATEWAY

--------- +

CHAPTER 8 LINUX CONTAINERS (LXC)
If we want to or we need to, it is very easy to create a new network.

antonio@antonio-Laptop:~$ Ixc network create new_Ilxd net
Network new_lxd net created

We can see immediately the new network listed.

antonio@antonio-Laptop:~$ 1xc network list | grep new 1lxd net
| new_1xd net | bridge | YES | 10.181.16.1/24
fd42:6c3f:1f2f:fd9d::1/64 | |0 | CREATED

And we can see the default configuration of the newly created network.

antonio@antonio-Laptop:~$ 1xc network show new 1lxd net
name: new_lxd net
description: ""
type: bridge
managed: true
status: Created
config:
ipv4.address: 10.181.16.1/24
ipv4.nat: "true"
ipv6.address: fd42:6c3f:1f2f:fd9d::1/64
ipv6.nat: "true"
used by: []
locations:
- none

If we want to edit the network settings, we can use Ixc network edit.
An editor will appear with the default configuration, and we can edit this
configuration according to our needs.

antonio@antonio-Laptop:~$ 1xc network edit new 1xd net

423

CHAPTER 8 LINUX CONTAINERS (LXC)

Storage in LXD

When we initialized LXD, we saw briefly the options when choosing what
storage to use in LXD. Similarly to what we did with the networks, we can
list the storage currently in use.

antonio@antonio-Laptop:~$ lxc storage list

Hommmoe- R e e EREEEEEEL oo +
| NAME | DRIVER | SOURCE | DESCRIPTION | USED BY | STATE |
Hommmoe- R e e EREEEEEEL oo +
| default | dir | /var/snap/1xd/common/1xd/storage-pools/default | 2 | CREATED |
Hmmmmmmma ERREEEEES e e e Hmmmmmmmoe mmmmme +

Remember that we created a storage of the type “dir’, a simple
directory in the host. Let’s review its configuration.

antonio@antonio-Laptop:~$ 1lxc storage info default
info:
description: ""
driver: dir
name: default
space used: 719.75GiB
total space: 786.75GiB
used by:
instances:
- harmless-monarch
profiles:
- default

Now, we’ll create a new storage. This time we’ll choose btrfs.

antonio@antonio-Laptop:~$ 1xc storage create mynewstorage btrfs
Storage pool mynewstorage created

When we list the available storage pools, we'll see the default and the

new one.

424

CHAPTER 8 LINUX CONTAINERS (LXC)

antonio@antonio-Laptop:~$ 1xc storage list

s Hmmmmm o L L L PP PP
----------- R R SRR PR

I NAME | DRIVER |

SOURCE | DESCRIPTION | USED BY | STATE |
Hmmmm oo Hommmm o L L PP PP R
——————————— e e s

| default | dir | /var/snap/1xd/common/1xd/storage-pools/
default | [2 | CREATED |

Hmmmm oo Hommm oo L L L PP PP PP
----------- R TR TR PP R

| mynewstorage | btrfs | /var/snap/1xd/common/1xd/disks/
mynewstorage.img | 0 | CREATED

And this new storage pool is an image file formatted with the btrfs
filesystem.

antonio@antonio-Laptop:~$ sudo file /var/snap/lxd/common/1lxd/
disks/mynewstorage.img
/var/snap/1xd/common/1xd/disks/mynewstorage.img: BTRFS
Filesystem label "mynewstorage", sectorsize 4096,

nodesize 16384, leafsize 16384, UUID=911f4a1f-1f5b-4042-
a8b1-778c3eda580f, 147456/5368709120 bytes used, 1 devices

In fact, we can mount this disk image file, and we’ll see all the folders
included.

antonio@antonio-Laptop:~$ 1ls /mnt/mydata/
buckets containers containers-snapshots custom custom-
snapshots images virtual-machines virtual-machines-snapshots

425

CHAPTER 8 LINUX CONTAINERS (LXC)

antonio@antonio-Laptop:~$ sudo mount | grep -i btrfs
/var/snap/1xd/common/1xd/disks/mynewstorage.img on /mnt/mydata
type btrfs (rw,relatime,ssd,discard=async,space cache=v2,user_
subvol rm allowed, subvolid=5,subvol=/)

As we don’t need to mount the disk file, we’ll unmount it.
antonio@antonio-Laptop:~$ sudo umount /mnt/mydata

At any moment, we can obtain information about this storage pool
with the commands Ixc storage show and Ixc storage info.

antonio@antonio-Laptop:~$ lxc storage show mynewstorage
name: mynewstorage

description: ""

driver: btrfs

status: Created

config:
size: 4GiB
source: /var/snap/lxd/common/lxd/disks/mynewstorage.img
used by: []
locations:
- none

antonio@antonio-Laptop:~$ 1xc storage info mynewstorage

info:
description: ""

driver: btrfs

name: mynewstorage

space used: 5.78MiB

total space: 4.00GiB

used by: {}

426

CHAPTER 8 LINUX CONTAINERS (LXC)

LXD Profiles

Profiles are sets of configuration options that can be applied to a container
instance. Initially, we only have one profile defined.

antonio@antonio-Laptop:~$ 1lxc profile list

Hommmmm - L L EE PR Hmmmmmmm o +
| NAME | DESCRIPTION | USED BY |
Hmmmmm o o mm Hommm - +
| default | Default LXD profile | 1 |
Hmmmmmm - R EEEE TR Hmmmmmmmom +

If we check the characteristics of this default profile, we'll see that it
uses the Ixdbr0 network, the default storage pool, etc. We'll also see that
the only container instance we have right now is associated to this profile.

antonio@antonio-Laptop:~$ 1xc profile show default
name: default
description: Default LXD profile

config: {}
devices:
etho:
name: etho
network: Ixdbr0
type: nic
root:
path: /
pool: default
type: disk
used_by:

- /1.0/instances/harmless-monarch

427

CHAPTER 8 LINUX CONTAINERS (LXC)
To see an easy example, we're going to create a new profile.

antonio@antonio-Laptop:~$ 1lxc profile create my new profile
Profile my new profile created

This new profile will appear now in the profile listing.

antonio@antonio-HP-Laptop-15s-fqixxx:~$ 1xc profile list

Hommm o L LR s +
I NAME I DESCRIPTION | USED BY |
Hmmmm Hmmmmmmm o it +
| default | Default LXD profile | 1 I
Hmmmm e e L LR e +
| my new_profile | (0] I
Hmmmm e Homm oo it +

We'll edit the new profile to add a description and associate it with the

network we created previously.

antonio@antonio-Laptop:~$ 1xc profile edit my new profile

name: my_new_profile
description: A new profile
config: {}
devices:
etho:
name: etho
network: new_1lxd net

type: nic
root:
path: /

pool: default

428

CHAPTER 8 LINUX CONTAINERS (LXC)

type: disk
used by: []

And we'll launch a new instance using the new profile (-p) and the new
storage (-s).

antonio@antonio-Laptop:~$ 1xc launch ubuntu:24.04 -p my new_
profile -s mynewstorage

Creating the instance

Instance name is: shining-flounder

Starting shining-flounder

If we list the instances now, we’ll see two running instances: the old
one and the new one.

antonio@antonio-Laptop:~$ 1lxc list

 EERGEEEE LR TR LR LEEEE R e ommmmm oo
—————————————————————————————————————— ECEEEEEE PR SRR
I NAME | STATE | IPV4

I IPV6 | TYPE
SNAPSHOTS

Fommmmm e ommmm-m-- e tommmmm -
-------------------------------------- LR LR P SRR

| harmless-monarch | RUNNING | 10.216.182.156 (etho) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (etho) | CONTAINER | O |

| shining-flounder | RUNNING | 10.136.213.51 (etho) | fd42:76¢
3:13a4:c5a:216:3eff:fee5:6630 (etho) | CONTAINER | 0

429

CHAPTER 8 LINUX CONTAINERS (LXC)

And if we check the new_Ixd_net network and the mynewstorage
storage pool, we'll see that this new instance is associated with them.

antonio@antonio-Laptop:~$ 1xc network show new_lxd net

name: new_lxd net

description: ""

type: bridge

managed: true

status: Created

config:
ipv4.address: 10.136.213.1/24
ipv4.nat: "true"
ipv6.address: fd42:76c3:13a4:c5a::1/64
ipv6.nat: "true"

used by:

- /1.0/instances/shining-flounder

- /1.0/profiles/my new_profile

locations:

- none

antonio@antonio-Laptop:~$ 1xc storage info mynewstorage
info:

description: ""

driver: btrfs

name: mynewstorage

space used: 950.24MiB

total space: 4.00GiB
used by:

images:

- 258c6e58b22623f0af151315541452ddd74ee120e1ade4ab
1e54619f3b63e911

instances:

- shining-flounder

430

CHAPTER 8 LINUX CONTAINERS (LXC)

Now that we’ve seen this example, we can stop and delete the new
instance.

antonio@antonio-Laptop:~$ 1xc stop shining-flounder
antonio@antonio-Laptop:~$ 1lxc list

Fommmmm e ommmm-m-- e tommmmm -
-------------------------------------- EERLEEEE TP PR
I NAME | STATE | IPV4

I IPV6 | TYPE
SNAPSHOTS

 EEhGEEEE LR Hommmmmm o LR LEEEE R e ommmmm -
—————————————————————————————————————— Rt

| harmless-monarch | RUNNING | 10.216.182.156 (etho) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (etho) | CONTAINER | 0 |

antonio@antonio-Laptop:~$ 1xc delete shining-flounder
antonio@antonio-Laptop:~$ 1xc list

ommmmm e Ho-mmmmm - Hommmm e Hommmmm oo
-------------------------------------- D s
I NAME | STATE | IPV4

I IPV6 | TYPE
SNAPSHOTS

R TP PR Hommmmmmm R ECEEEEEPEEPEEEPEEPEE Hommmmmme -
-------------------------------------- R s

| harmless-monarch | RUNNING | 10.216.182.156 (etho) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (etho) | CONTAINER | 0 I

CHAPTER 8 LINUX CONTAINERS (LXC)
We'll delete the network and the storage pool we had created as well.

antonio@antonio-Laptop:~$ 1xc storage delete mynewstorage
Storage pool mynewstorage deleted
antonio@antonio-Laptop:~$ 1lxc network delete new lxd net
Error: The network is currently in use

When we try to delete the network, we get an error because the
customized profile we created is using it. We need to delete the profile first.

antonio@antonio-Laptop:~$ 1xc profile delete my new profile
Profile my new profile deleted

antonio@antonio-Laptop:~$ 1xc network delete new 1xd net
Network new_lxd net deleted

Limiting the Use of Resources on LXD

When we studied in the previous chapter how containers work, we could
see that control groups could be used to limit resource usage for a certain
process. And we even saw some practical examples.

In this same chapter we've studied LXC, we saw how to use Ixc-
cgroups to limit resource utilization, without needing to edit manually the
files from the /sys/fs/cgroups tree. Now we’ll do the same thing but using
the specific tools provided by LXD.

We'll begin by connecting to the console of our running instance and
checking the memory in use.

antonio@antonio-Laptop:~$ 1xc console harmless-monarch
To detach from the console, press: <ctrl>+a q

harmless-monarch login: ubuntu
Password:

432

CHAPTER 8 LINUX CONTAINERS (LXC)

ubuntu@harmless-monarch:~$ free -m

total used free shared buff/cache available
Mem: 15674 49 15524 0 101 15625
Swap: O 0 0

ubuntu@harmless-monarch:~$

We can see we're using about 16 GB of memory. Now let’s open a new
shell and use Ixc config to limit the amount of memory used.

antonio@antonio-Laptop:~/QEMU_VMs$ lxc config set harmless-
monarch limits.memory 100MB

If we return to the container console and execute free again, we'll see

the amount of memory has been limited to a maximum below 100 MB.

ubuntu@harmless-monarch:~$ free -m
total used free shared buff/cache available

Mem: 95 46 4 0 44 48
Swap: 0 0 0
Summary

In this chapter, we have seen an example of a container technology widely
used in Linux servers, the Linux containers or LXC for short. LXC uses the
technologies we studied in the previous chapter to create the containers,
but in a more friendly way that makes creating and managing containers
much easier.

We've also seen LXD, which can be considered an add-on to
the classical LXC implementation that makes working with remote
repositories much easier.

433

CHAPTER 9

Docker

In this chapter, we'll cover the following concepts:
e Understand the architecture and components of Docker

e Manage Docker containers by using images from a
Docker registry

e Understand and manage images and volumes for
Docker containers

e Understand and manage logging for Docker containers
e Understand and manage networking for Docker

o Use Dockerfiles to create container images

e Run a Docker registry using the registry Docker image
e Understand the principle of runc

e Understand the principle of containerd

Introduction to Docker

Docker uses a client-server architecture. The docker command used to
download images, start containers, etc., is the client, which, in turn, connects
to the dockerd service. And it is the dockerd service that’s responsible for
executing the needed tasks to complete the requested actions.

© Antonio Vazquez 2024 435
A.Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_9

https://doi.org/10.1007/979-8-8688-1080-0_9#DOI

CHAPTER9 DOCKER

The client (docker) and the server (dockerd) can reside in the same or
in different machines.

Installing Docker

The binaries for Docker are usually included in the repositories of the
main Linux distributions. For instance, in Ubuntu 22, we can install it by
selecting the docker.io package.

antonio@antonio-Laptop:~$ apt search docker.io
Sorting... Done
Full Text Search... Done
docker.io/jammy-updates,now 24.0.7-Oubuntu2~22.04.1 amd64
[installed]
Linux container runtime
antonio@antonio-Laptop:~$ sudo apt install docker.io

It is also possible to install Docker from the official site. In this case,
we can install it as part of the Docker desktop product, or install only the
Docker Engine by adding the official repositories to our host machine
(Figure 9-1).

436

https://www.docker.com/

B | @ install Docker Engineon X | +

(¢] O B htt

Wdockerdocs Guides Manuals Reference

‘docs.docker.com/engine/install/ubunt

CHAPTER9 DOCKER

Overview Manuals / DockerEngine / Install /

Get Docker

« Install Docker Engine on Ubuntu

Docker Extensions v

To get started with Docker Engine on Ubuntu, make sure you meet the
prerequisites, and then follow the installation steps.

Docker Scout v

Docker Engine ~

Overview Prerequisites

Install ~

Firewall limitations

Overview
centos © Warning

Debian

Before you install Docker, make sure you consider the following security
Fedora implications and firewall i

RHEL

.Es » Ifyou use ufw or firewalld to manage firewall settings, be aware that when
Gourtu you expose container ports using Docker, these ports bypass your firewall

Figure 9-1. Installing from the official repositories

/ Editthis page?

/' Request changes(2

Table of contents
| prerequisites
Firewall limitations
0S requirements

Uninstall old versions

Give feedback

Installation methods
Install using the apt repository
Install from a package
Uninstall Docker Engine

Next steps

Ask Al

Once the binaries have been installed, we can check that the
installation was successful by executing the docker info command.

antonio@antonio-Laptop:~$ sudo docker info

Client:

Version: 24.0.7
Context: default
Debug Mode: false

Server:

Storage Driver: overlay2

Default Runtime: runc
Init Binary: docker-init

437

CHAPTER9 DOCKER

containerd version:
runc version:
init version:
Security Options:
apparmor

seccomp

Profile: builtin
cgroupns

We need to ensure that the Docker service starts automatically when
the system boots.

antonio@antonio-Laptop:~$ sudo systemctl enable docker

Docker Images

To create a Docker container, we first need a Docker image. There are
many ways to get an image; the easiest one is probably to download it from
Docker's official registry. We can search for the available debian Docker
images with the docker search command.

antonio@antonio-Laptop:~$ sudo docker search debian
NAME DESCRIPTION STARS
OFFICIAL AUTOMATED
debian Debian is a Linux distribution that's compos.. 5046
[OK]
ubuntu Ubuntu is a Debian-based Linux operating sys.. 17178
[OK]

438

CHAPTER9 DOCKER

In addition, we could use a web browser and navigate to the docker
hub to search for debian Docker images (Figures 9-2 and 9-3).

B | @ Explore Docker's Contair X | + v - X
« [¢] O B https;//hub.docker.com/search?q=debian g O & ® 8 =
Q debian

Filters 1-25 of 10,000 results for debian. Best Match N

Products

(3 Images (a debian L1B+ - 50K Pulls: 1355220

(] Extensions debi Updated 9 days ago S

_ BN Debian is Linux distribution thats composed entirely of free-and open-
[Plugins source software.
'OPERATING SYSTEMS Learn more (2

Trusted Content
(O R Docker Official Image
ubuntu L 1B+ + 10K+ Pulls: 6,796,040

Last week

() €@ Verified Publisher

Updated a month ago

D ® Sponsored 05 Ubuntu is a Debian-based Linux operating system based on free software. i

OPERATING SYSTEMS

Categories g
(C) APIManagement
() Content Management System
neurodebian L5M+ - @111 Pulls: 1,766
. o #
o
Figure 9-2. Docker hub
B | @ debian-Official Image | | X | + v o & &
< > C O B8 httpsy//hub.docker.com/_/debian w 9 & ©@ 8 =

Q debian Sign In

Explore / Official Images / debian

debian Q Docker Official Image - L 1B+ - ¢¥5.0

Debian is a Linux distribution that's composed entirely of free and open-source software. docker pull debian
debian T
Overview Tags
Quick reference Recent Tags

unstable-slim unstable-20240722-slim
« Maintained by:

Debian Developers tianon (7 and paultag (7 unstable-20240722 unstable sid-slim

5id-20240722-slim sid-20240722 sid
« Where to get help:

the Docker Community Slack (7, Server Fault (7, Unix & Linux (2, or Stack Overflow (2 fe-buggy-20240722 re-buggy

Figure 9-3. Debian official Docker image

439

http://hub.docker.com/
http://hub.docker.com/

CHAPTER9 DOCKER
From the command line, we can download images with docker pull.

antonio@antonio-Laptop:~$ sudo docker pull debian

Using default tag: latest

latest: Pulling from library/debian

ca4e5d672725: Pull complete

Digest: sha256:45f2e735295654f13e3be10da2a6892c708f71a71be84581
8f6058982761a6d3

Status: Downloaded newer image for debian:latest
docker.io/library/debian:latest

Once the image has been downloaded, it can be listed with Docker
image list.

antonio@antonio-Laptop:~$ sudo docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE
debian latest 2e5b8d3ef33e 9 days ago 117MB
Docker Containers

Previously we downloaded a Docker image; now we can use that image
to create a container. To create a container, we use the docker create
command. The only mandatory parameter is the name of the image used
by the container.

If we take a look at the contextual help, we’ll see that we can use a lot
of options. We can add or drop capabilities, choose the cgroup namespace
to use, connect an interactive pseudo-terminal, or attach a volume, to
mention just a few.

antonio@antonio-Laptop:~$ sudo docker create --help
Usage: docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

Create a new container

440

CHAPTER9 DOCKER

Aliases:
docker container create, docker create

Options:
--cap-add list Add Linux capabilities
--cap-drop list Drop Linux capabilities
--cgroupns string Cgroup namespace to use (hostlprivate)
-i, --interactive Keep STDIN open even if not attached
. -t, --tty Allocate a pseudo-TTY
-v, --volume list Bind mount a volume

We'll begin with something simple, and we’ll use the default values to
create a container based on the debian image we just downloaded.

antonio@antonio-Laptop:~$ sudo docker create debian
5c29acf554a283d16b1125bd378d49f4acd5851b219618d62b1bsed317
023562

This command creates a container, but it doesn't start it. If we check
the status of the running containers in the host, we'll see just an empty list.

441

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

antonio@antonio-Laptop:~$%

To check the stopped containers as well as the running containers,
we'll use the docker container Is -a command. Or we could also get the
same result by typing docker ps -a.

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
antonio@antonio-Laptop:~$ sudo docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

5c29acf554a2 debian "bash" 3 minutes ago
Created heuristic turing

In the list of containers, we can see the ID of the container we just created;
this is the value returned by the docker create command. We also see the
base image of the container, debian in this case. We can also see when the
container was created and its status. When creating a container, we can
specify a name; if we don’t do it, the system will assign a name automatically.
Later in this book we'll speak about the “command” and the “ports” columns.

To start the container, we use the start subcommand.

antonio@antonio-Laptop:~$ sudo docker container start
heuristic_turing
heuristic_turing

However, if we list the running containers, we won’t see anything.

antonio@antonio-Laptop:~$ sudo docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS ORTS NAMES
antonio@antonio-Laptop:~$

442

CHAPTER9 DOCKER

And if we list all the containers, we’ll see that this container exited
almost immediately after it was launched.

antonio@antonio-Laptop:~$ sudo docker container 1ls -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

5c29acf554a2 debian "bash" 43 minutes ago
Exited (0) 15 seconds ago heuristic_turing

Let’s see why this happened. When the container runs, it executes
an associated command; in the case of the default debian container
we created, this command is bash, so the container runs bash and
immediately exits. To avoid this behavior and interact with the container,
we'll see a few options we can choose.

In this first example, we created the container and then we started it.
Itis also possible to create and start a container in a single step by using
docker container run. We can use many options with this command; for
instance, we can use (-i) so that the container is interactive, and we can
specify the command that the container will run; by default, this image will
execute /bin/bash, so we don’t really need to specify the same value, but
we'll do it anyway as an example.

antonio@antonio-Laptop:~$ sudo docker container run -i debian /
bin/bash

pwd

/

cat /etc/issue

Debian GNU/Linux 12 \n \1

exit

As we can see, we can type shell commands as if we were working in a
physical Ubuntu Linux console. After exiting the container, the container
will be stopped because the execution of bash will be over.

443

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
antonio@antonio-Laptop:~$

In this second example, we could type commands to interact to the
container, but the experience was not very friendly as we didn’t get a
prompt. We can improve this experience by allocating a pseudo-terminal
with the -t parameter.

antonio@antonio-Laptop:~$ sudo docker container run -it debian
/bin/bash

root@143ae578eb3a: /# pwd

/

root@143ae578eb3a:/# cat /etc/debian_version

12.6

root@143ae578eb3a: /# exit

exit

This is definitely better! Another possibility is to run the container in
the background with “-d”

antonio@antonio-Laptop:~$ sudo docker container run -d -it
debian /bin/bash
e051edect7206a46ad931f2bff8b9cee606at1760936df32826cb501b
765bdeb

After entering the docker command, we’ll be given the ID of the
container and get the prompt back.

If we list the running containers, however, we’ll see a new container
is running. It will remain in this state until we connect to it, and thus, the
bash shell completes its execution.

444

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker container 1s

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e05ledecf720 debian "/bin/bash"™ About a minute ago
Up About a minute sleepy hodgkin

And we can connect to it with docker container attach.

antonio@antonio-Laptop:~$ sudo docker container attach

sleepy hodgkin

root@e051edect720:/# 1s

bin boot dev etc home 1lib 1ib64 media mnt opt

proc root zrun sbin srv sys tmp usr var
root@e051edecf720:/# exit

exit

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
antonio@antonio-Laptop:~$

Docker Architecture

After seeing a couple of simple examples, let’s study a bit about Docker
architecture. We already saw a very brief description in the introduction,
and now we're going to study it more in depth.

We have worked with the docker command. This command is used to
manage images, containers, and other container-related objects. It works
by interacting with the dockerd service.

The dockerd service is the program that really manages containers
and the related objects. The docker command is just a frontend used to
interact with dockerd.

445

CHAPTER9 DOCKER

The containerd service is the container runtime used by dockerd. If we
list the dockerd process running, we'll see this:

antonio@antonio-Laptop:~$ ps -ef | grep dockerd
root 2968 1 0 jul26 ? 00:01:31 /usr/bin/
dockerd -H fd:// --containerd=/run/containerd/containerd.sock

dockerd communicates with the containerd service, which must be
also running on the host.

antonio@antonio-Laptop:~$ ps -ef | grep containerd
root 1107 1 0 jul26 ? 00:43:34 /usr/bin/
containerd

Finally, runc is the lower-level container runtime. Let’s see it in an
example. First, we'll launch a container.

antonio@antonio-Laptop:~$ sudo docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

antonio@antonio-Laptop:~$ sudo docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e051edecf720 debian "/bin/bash" 22 hours

ago Exited (137) 36 minutes ago sleepy hodgkin

antonio@antonio-Laptop:~$ sudo docker container start
sleepy hodgkin
sleepy hodgkin

If we check the processes again, we’ll see a new runc process that is
executing the container with the ID e051edecf720....

antonio@antonio-Laptop:~$ ps -ef | grep containerd
root 1107 1 0 jul26 ? 00:43:35 /usr/bin/
containerd

446

CHAPTER9 DOCKER

root 2968 1 0 jul26 ? 00:01:32 /usr/bin/
dockerd -H fd:// --containerd=/run/containerd/containerd.sock
root 750120 1 0 22:28? 00:00:00 /usxr/bin/

containerd-shim-runc-v2 -namespace moby -id e05ledecf7206a46a
d931f2bff8b9cee606af1760936df32826cb501b765bdeb -address /run/
containerd/containerd.sock

It's important to remember that the architecture of Docker is very
modular and some components can be replaced for others with a similar
functionality.

We can customize the dockerd service by using a /etc/docker/daemon.
json file. After installing Docker, the dockerd service will be created and
enabled with the default settings. However, it is also possible to execute
it manually with a different set of parameters. If we type dockerd --help,
we'll see the different options available.

antonio@antonio-Laptop:~$ dockerd --help
Usage: dockerd [OPTIONS]
A self-sufficient runtime for containers.

Options:
--add-runtime runtime

Register an additional OCI compatible runtime (default [])
--allow-nondistributable-artifacts list

Allow push of nondistributable artifacts to registry
--api-cors-header string

Set CORS headers in the Engine API

447

CHAPTER9 DOCKER

If we want to use any of these options, we can specify them in the
command line when executing dockerd. But it is also possible to specify
them in a json file, the /etc/docker/daemon.json file we talked about a bit
earlier.

To see this with an example we’ll focus on this dockerd option:

-D, --debug Enable debug mode

This option enables/disables debug mode. Let’s see the default value
of this option by using the docker info command.

antonio@antonio-Laptop:~$ sudo docker info
Server:

Debug Mode: false

Now, we'll create a /etc/docker/daemon.json file with this content.

{
"debug": true

}

We stop the Docker service currently running in the host.

antonio@antonio-Laptop:~$ sudo systemctl stop docker
Warning: Stopping docker.service, but it can still be
activated by:

docker.socket
antonio@antonio-Laptop:~$ sudo systemctl stop docker.socket

448

CHAPTER9 DOCKER

And we execute manually dockerd without parameters so that it takes
those specified in the json file.

antonio@antonio-Laptop:~$ sudo dockerd
INFO[2024-08-05T00:49:56.410689420+02:00] Starting up
DEBU[2024-08-05T00:49:56.411227288+02:00] Listener created for
HTTP on unix (/var/run/docker.sock)
INFO[2024-08-05T00:49:56.411355931+02:00] detected 127.0.0.53
nameserver, assuming systemd-resolved, so using resolv.conf:
/run/systemd/resolve/resolv.conf
DEBU[2024-08-05T00:49:56.411578101+02:00] Golang's threads
limit set to 112230

When dockerd has initialized completely, we’ll run docker info again
to check the active settings.

antonio@antonio-Laptop:~$ sudo docker info
Server:

Debug Mode: true

We can see that the debug mode is enabled. In fact, when we launched
manually dockerd, we could see many debug messages.

449

CHAPTER9 DOCKER

After this simple test, we can stop the dockerd instance we launched
manually and delete the json file. Then we restart the Docker service to
restore the default settings.

antonio@antonio-Laptop:~$ sudo rm /etc/docker/daemon.json
antonio@antonio-Laptop:~$ sudo systemctl start docker

Docker Volumes

Docker containers are based on images, as we've already seen. And they
add a writable layer over that image layer. The truth is that this is a bit more
complicated, and we'll see it later in more detail. But for now, you can get
that idea. Let’s try to explain this with an example.

We need a running Docker container.

antonio@antonio-Laptop:~$ sudo docker container 1s

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

e05ledecf720 debian "/bin/bash" 39 hours ago
Up 16 hours sleepy hodgkin

We’ll connect to the running container with docker container attach,
as we saw previously.

antonio@antonio-Laptop:~$ sudo docker container attach
sleepy hodgkin
root@e051edecf720:/#

And we'll create a new file.

root@e051edect720:/# touch test file 1.txt
root@e051edecf720:/# exit
exit

450

CHAPTER9 DOCKER

Now we'll search for the file in the host. By default, Docker containers
store information in folders inside the /var/lib/docker directory. So we'll
search for the file in this path.

antonio@antonio-Laptop:~$ sudo find /var/lib/docker/ -iname
test file 1.txt
/var/lib/docker/overlay2/cdd6342b6f3d55239cbc30edd414c3e9e47c
27e841feb0620ec5505a0bfe4c12/diff/test file 1.txt

We can see the location of the file in the host. We'll get back to it in a
moment. But now, we're going to see another useful command, docker
container inspect, which provides useful information about a container.
We'll use it to inspect the container in which we created the test file.

antonio@antonio-Laptop:~$ sudo docker container inspect
sleepy hodgkin

"GraphDriver": {
"Data": {

"LowerDir": "/var/lib/docker/overlay2/cdd6342b
613d55239cbc30edd414c3e9e47c27e841feb0620ec
5505a0bfe4c12-init/diff:/var/lib/docker/
overlay2/f2e4afe19fc3c1f3d65f0030705e4881f
9577e2a95d4f120f62d7e99b12ccd59/diff",
"MergedDir": "/var/lib/docker/overlay2/cdd6342
b6f3d55239cbc30edd414c3e9e47c27e841feb062
Oec5505a0bfe4c12/merged”,
"UpperDir": "/var/lib/docker/overlay2/cdd6342b6
t3d55239cbc30edd414c3e9e47c27e841feb0620
ec5505a0bfe4c12/diff",

451

CHAPTER9 DOCKER

"WorkDir": "/var/lib/docker/overlay2/cdd6342b
6f3d55239cbc30edd414c3e9e47c27e841febo
620ec5505a0bfe4c12/work"

}s

"Name": "overlay2"

b

Let’s review what we have seen so far. Docker containers need a
writable layer to store the modified information. For that, a storage
driver is needed. The storage driver controls how information is stored
and how to properly manage the read-only image layer and the writable
container layer.

There are several storage drivers available for Docker. According to the
official documentation, these are

o overlay2

o fuse-overlayfs
o Dbtrfs and zfs

e vfs

The preferred one is “overlay?2”. If we execute docker info on the host,
we'll see the following line. The backing filesystem can be other than extfs,
for example, xfs. That depends on the filesystem we’re using in our system.

Storage Driver: overlay2
Backing Filesystem: extfs

And if we remember, when we located the test file in the host and
reviewed the container with docker inspect, the word “overlay” appeared

452

CHAPTER9 DOCKER

very often. The file fest_file_1.txt was located on /var/lib/docker/overlay2/
cdd6342b6f3d55239cbc30edd414c3e9e47c27e841feb0620ec5505a0bfedcl2/
diff/test_file_1.txt. According to what we saw on the output of the docker
inspect command, that path is named “UpperDir”.

In the Docker version we're using right now, the one installed from
Ubuntu repositories, the overlay storage driver uses a plug-in named
graphdriver. This plug-in uses a “LowerDir’, which is the base image
read-only layer; an “UpperDir’, which is the writable container layer;
and a “MergeDir” and a “WorkDir” needed internally to work properly.
As expected, the file we created was located in the writable layer, the
UpperDir.

Bind Mounts

We just saw that we can access a file either from the container itself or
from the host. Because the storage driver stores the information in the
filesystem, and of course that filesystem is accessible to the host.

Nevertheless, this is probably not a very friendly way to share files
because the paths are very long and have hash-like names. It would be
better to use an easier-to-remember path to share information between
the host and the container.

To do this, we must use the -v or --mount parameter and specify the
location of the path in the host and the container. This is known as a bind
mount. We'll start by creating a local folder in the host computer.

antonio@antonio-Laptop:~$ mkdir VOLUMES

Next, we launch a container in the background (-d) and in interactive
(-i) mode. We'll also connect a pseudo-terminal (-t) to it and will assign it
explicitly a name instead of letting the system to assign one. This container
will use the path /home/antonio/VOLUMES/ in the host computer as a
volume mapped as /VOLUMES/.

453

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker run -v /home/antonio/
VOLUMES/: /VOLUMES/ --name another container -itd debian /
bin/bash
te0a743619448be099821fde7b0995d596795b73a934fdb658cf474
09682e920

If we list the containers currently running, we’ll see this new container
named “another_container”.

antonio@antonio-Laptop:~$ sudo docker container 1ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

fe0a74361944 debian "/bin/bash” About a minute ago Up
About a minute another_container

If we inspect the container, we'll see clearly the bind mount we just
created.

antonio@antonio-Laptop:~$ sudo docker inspect another container

"Mounts": [
{

"Type": "bind",
"Source": "/home/antonio/VOLUMES",
"Destination": "/VOLUMES",
"Mode": "",
"RW": true,
"Propagation”: "rprivate"

454

CHAPTER9 DOCKER

Now, we connect to the container we just launched, and we create a
text file inside the volume.

antonio@antonio-Laptop:~$ sudo docker container attach another
container

root@fe0a74361944:/# echo Hello > /VOLUMES/hello.txt
root@fe0a74361944:/# exit

exit

This time it is much easier to access the file from the host.

antonio@antonio-Laptop:~$ cat /home/antonio/VOLUMES/hello.txt
Hello

Instead of the (-v) parameter, we could also use the (--mount)
parameter, which is indeed the recommended way to work with
containers. It supports more options. Let’s see an example.

antonio@antonio-Laptop:~$ sudo docker run --mount type=bind,
source=/home/antonio/VOLUMES/,target=/VOLUMES/ --name
yet_another container -itd debian /bin/bash
cbe04e97accc7b3f14a49291120ea4b3850adcce77ccaasd8651c571523
9113f1

Named Volumes

Using bind mounts has some advantages over using the default storage.
However, the preferred way to store data is to use docker volumes. Docker
volumes allow to share data between containers, and the data contained in
those volumes is persistent.

455

CHAPTER9 DOCKER
We'll start by creating a volume.

antonio@antonio-Laptop:~$ sudo docker volume create volume one
volume one

We can list the volumes in the host, similarly as we did with the
containers.

antonio@antonio-Laptop:~$ sudo docker volume 1s
DRIVER VOLUME NAME

local volume_one
And we can inspect the volume as well.

antonio@antonio-Laptop:~$ sudo docker volume inspect volume one

[

{
"CreatedAt": "2024-08-04T21:48:25+02:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/volume_
one/_data",
"Name": "volume one",
"Options": null,
"Scope": "local"
}

The way to work with volumes in containers is very easy; the syntax is
very similar to what we did when working with bind mounts. Let’s see an
example.

456

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker run -d -it --name
container_vol --mount source=volume one,target=/vol 1 ubuntu
bedb5e6a87ebd08a3716a61e78313e5b96a76322beb831491dda94
b260aftb77c

By inspecting the container, we'll see that the volume was mounted.

antonio@antonio-Laptop:~$ sudo docker container inspect
container vol

"Mounts": [
{

"Type": "volume",
"Name": "volume one",
"Source": "/var/lib/docker/volumes/volume
one/_data",
"Destination": "/vol 1",
"Driver": "local",
"Mode": "z",
"RW": true,
"Propagation”:

457

CHAPTER9 DOCKER

tmpfs Volumes

There is another type of volumes, the tmpfs volumes. These volumes
are temporary, and the volume and its content are removed when the
container stops.

antonio@antonio-Laptop:~/docker$ sudo docker container run
-it --tmpfs /temp_dir debian

root@618d6312f4cf:/# touch /temp dir/filel.txt
root@618d6312f4cf:/# 1s /temp dir/

file1.txt

root@618d6312f4ct: /#

Sharing Volumes Between Containers

It is very easy to share volumes between containers; we can do it with
the --volumes-from option.

First, we launch the first container that will use the volume. We can
reuse the container_vol container that we used previously in this book, or

We can use a new one.

antonio@antonio-Laptop:~/docker$ sudo docker container start
container_vol
container_vol

This container used a volume named volume_one that was mounted
on /vol_I.If we don’t remember these details, we can check them with
docker container inspect.

antonio@antonio-Laptop:~$ sudo docker container inspect
container_vol

458

CHAPTER9 DOCKER

"Mounts": [
{
"Type": "volume",
"Name": "volume_one",
"Source": "/var/lib/docker/volumes/volume_
one/_data",
"Destination": "/vol 1",

We'll connect to the container and add some content to the folder.

antonio@antonio-Laptop:~$ sudo docker container attach
container vol

root@bedb5e6a87eb:/# 1s /vol 1/

root@bedb5e6a87eb:/# echo hello > /vol 1/aa

Then, we’ll launch a second container with the --from-volumes option.
This way we're instructing the container to mount the same volumes that
the container_vol container.

antonio@antonio-Laptop:~/docker$ sudo docker container run
--rm -it --volumes-from=container vol debian /bin/bash
root@e070dbac48a3: /#

We'll be able to access the volume and see its content.

root@e070dbac48a3:/# 1s /vol_1/

aa

root@e070dbac48a3:/# cat /vol_1/aa
hello

459

CHAPTER9 DOCKER

Using Remote Volumes

When creating a volume, we can specify which driver to use. If we don’t
specify any driver, the “local” driver is used. This is what we did previously.
But there are some drivers that let us store volume on remote hosts.

Let’s see an example using a volume accessed through ssh. For that, we
need to install a plug-in. Docker plug-ins add extra functionality to Docker.
We can list the plug-ins currently installed with docker plugin list.

antonio@antonio-Laptop:~$ sudo docker plugin list
ID NAME DESCRIPTION ENABLED

Currently, we don’t have any plug-in installed. We need to install a
plug-in named vieux/sshfs.

antonio@antonio-Laptop:~$ sudo docker plugin install
vieux/sshfs
Plugin "vieux/sshfs" is requesting the following privileges:
- network: [host]
- mount: [/var/lib/docker/plugins/]
- mount: []
- device: [/dev/fuse]
- capabilities: [CAP_SYS ADMIN]
Do you grant the above permissions? [y/N] y
latest: Pulling from vieux/sshfs
Digest: sha256:1d3c3e42c12138da5ef7873b97f7f32cf99fbbedde75fasf
Obcf9ed277855811
52d435adaba4: Complete
Installed plugin vieux/sshfs

The plug-in requests a series of permissions. After granting those
permissions, the plug-in is installed and we can list it.

460

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker plugin list

1D NAME DESCRIPTION ENABLED
822e7045289 vieux/sshfs:latest sshFS plugin for

Docker true

We can also use the subcommand inspect to obtain more information
about the plug-in.

antonio@antonio-Laptop:~$ sudo docker plugin inspect
vieux/sshfs

"Description”: "sshFS plugin for Docker",
"DockerVersion": "18.05.0-ce-rc1",
"Documentation”: "https://docs.docker.com/engine/
extend/plugins/",

When using this plug-in, we’re going to use as a volume a folder inside
aremote host. And we're connected to the remote host through ssh. Now

we're going to create a folder and some files on the remote server.

[root@rocky ~]# mkdir /EXT_VOLUME
[root@rocky ~]# touch /EXT_VOLUME/one /EXT_VOLUME/two /EXT_
VOLUME/three

We're ready to create the volume now. We need to pass the driver
type and the needed options, the path to the folder that will be used as a
volume, and the password.

antonio@antonio-Laptop:~$ sudo docker volume create --driver
vieux/sshfs -o sshcmd=root@192.168.56.104:/EXT VOLUME -o
password=root SSH volume

SSH_volume

461

CHAPTER9 DOCKER
The volume has been created and can be listed.

antonio@antonio-Laptop:~$ sudo docker volume 1s
DRIVER VOLUME NAME

vieux/sshfs:latest SSH volume
local volume one

We can inspect this new volume to see its characteristics.

antonio@antonio-Laptop:~$ sudo docker volume inspect SSH volume

[

{
"CreatedAt": "0001-01-01T00:00:00Z",
"Driver": "vieux/sshfs:latest",
"Labels": null,
"Mountpoint": "/mnt/volumes/2fc3798a413c12383d36829f
ac8bef49",
"Name": "SSH volume",
"Options": {
"password": "root",
"sshemd": "root®192.168.56.104:/EXT_VOLUME"
}J
"Scope": "local"
}

And we start a container using this volume; the syntax is similar to the
one we saw before.

antonio@antonio-Laptop:~$ sudo docker container run --rm
-it --name cont_ssh --mount source=SSH volume,target=/vol
ssh busybox

462

CHAPTER9 DOCKER

/ #1s /
bin dev etc home lib 1ib64 proc
root Ssys tmp usr var vol ssh

/ # 1s /vol_ssh/
one three two
/ #

Deleting and Pruning Volumes

Volumes have a life cycle independent of that of the container they belong
to. We could easily end up with many volumes that are no longer needed.
If that’s the case, we can use docker volume prune to remove those unused
volumes.

antonio@antonio-Laptop:~$ sudo docker volume prune

WARNING! This will remove anonymous local volumes not used by
at least one container.

Are you sure you want to continue? [y/N] y

Deleted Volumes:
0b537d7a4b3ado6bf0d9290b2be285e8ff1e45d0917f2258139ef3cd9ca8c57a
2bb41e2aef80faedff990bbaacceasd7436e9896923a216dac32bfcb5c92e1b92
046cac64459c7b52346ca61d721b0c42671a457d48ed4ed704cf841181b53941
5490aa3aa0a7adef26c348de022824ctba026b257a36de643e78042e14c4e1fd
8d262581063febe45348d01960at666994dc503baf131ac41d4bac9556343498

Total reclaimed space: 5B

If we want to remove a single volume, we can do it with docker

volume rm.

antonio@antonio-Laptop:~$ sudo docker volume create

other volume

other _volume

antonio@antonio-Laptop:~$ sudo docker volume rm other volume

463

CHAPTER9 DOCKER

Docker Networking

After installing Docker in our host computer, we’ll see that a new network
interface is created.

antonio@antonio-Laptop:~$ ip address show docker0
10: docker0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc
noqueue state UP group default
link/ether 02:42:da:bf:35:7c brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global dockero
valid 1ft forever preferred 1ft forever
inet6 fe80::42:daff:febf:357c/64 scope link
valid _1ft forever preferred 1ft forever

If we still have a docker container running, we can inspect the
container to see the network settings. We will see that the defined gateway
is precisely the IP address of this docker0 interface.

antonio@antonio-Laptop:~$ sudo docker container inspect
container_vol

"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.3",

Of course, we can ping the container from the host. It should be also
possible to ping the host from the container, but given the compact nature
of containers, sometimes commands like “ping” are not even installed.

464

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ ping -c 1 172.17.0.3
PING 172.17.0.3 (172.17.0.3) 56(84) bytes of data.
64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.114 ms

--- 172.17.0.3 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.114/0.114/0.114/0.000 ms

Communication between the host and the container is possible
because docker automatically creates a network object that associates the
docker0 interface with the containers.

We can list the existing networks in docker with docker network Is.

antonio@antonio-Laptop:~$ sudo docker network 1s

NETWORK ID NAME DRIVER SCOPE
23024a0a6b04 bridge bridge local
12d6ec81db06 host host local
d2a2d2adacba none null local

By default, we see three different networks. The default bridge network
is the one used by default by the containers if we don’t explicitly set a
different one. A bridge network allows for communication between the
container and the host, as well as with the external network. The host
network driver allows the container to see all the network interfaces in
the host. Finally, the none network driver isolates the container. This last
driver can be useful if, for example, we need our containers to perform
some computing operations but prefer not to be accessible in the network.

There are also other network drivers like the MacVLAN driver. This
assigns a virtual MAC address to the container interface.

In the next chapter, when we study orchestration and docker swarm,
we'll see new network driver types like overlay.

465

CHAPTER9 DOCKER
For now, let’s inspect the default network.

antonio@antonio-Laptop:~$ sudo docker network inspect bridge

[

"Name": "bridge",

"Id": "2302420a6b041d792365e54046e410dd9
4161cad50b7€9391468d856f0doe5cd”,

"Created": "2024-08-06T11:32:22.354338844+02:00",
"Scope": "local",

"Driver": "bridge",

"Subnet": "172.17.0.0/16",
"Gateway" : "172.17.0.1"

"com.docker.network.bridge.name": "dockero",

We see clearly the network driver (bridge), the network settings, and
the host network interface used. We can also see that the scope is “local”
This means that the network is local to the host. When we study docker
swarm in the next chapter, we'll create docker networks that span across all
the nodes in the docker swarm cluster.

Now, we'll see an example of the host network. We'll create a container
connected to the host network.

antonio@antonio-Laptop:~$ sudo docker container run --rm -it
--network=host busybox sh
/ #

466

CHAPTER9 DOCKER

If we list the network interfaces, we’ll see all those interfaces existing in
the host.

~

ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue gqlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: wlo1l: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue qlen 1000
link/ether b0:68:e6:14:aa:b3 brd ff:ff:ff:ff:ff:ff

3: ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop

qlen 1000

link/ether ce:f7:54:0a:¢9:92 brd ff:ff:ff:ff:ff:ff

And if we use the “none” network, which uses the null driver, we’ll only
see the loopback network interface in the container.

antonio@antonio-Laptop:~$ sudo docker container run --rm -it

--network=none busybox sh

/ # ip link

1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue gqlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

/ #

Creating a New Network

We're going to create a new docker network and connect some
containers to it.

antonio@antonio-Laptop:~$ sudo docker network create --driver
bridge new_docker_nw
9374a4b6163f93a3cd85d37a456b7ee901e1c59142e1feba3ceab7de55887e22

467

CHAPTER9 DOCKER

If we inspect the new network, we’ll see the new IP settings that were
automatically assigned.

antonio@antonio-Laptop:~$ sudo docker network inspect new_
docker nw

[

"Name": "new_docker nw",
"Id": "9374a4b6163f93a3cd85d37a456b7ee901e1c59142e1f
eba3cea67de55887e22",

"Subnet": "172.18.0.0/16",
"Gateway": "172.18.0.1"

Now we'll create two new containers that will be connected to this
new network. To be able to use tools like ping and ip, we’ll use the
busybox image.

antonio@antonio-Laptop:~$ sudo docker container run -it
--network=new_docker nw --name=contl busybox sh
antonio@antonio-Laptop:~$ sudo docker container run -it
--network=new_docker nw --name=cont2 busybox sh

We'll check the IP address assigned to each container.

/ # 1ip a

23: etho@if24: <BROADCAST,MULTICAST,UP,LOWER UP,M-DOWN> mtu
1500 qdisc noqueue

468

CHAPTER9 DOCKER

link/ether 02:42:ac:12:00:03 brd ff:ff:ff:ff:ff:ff
inet 172.18.0.3/16 brd 172.18.255.255 scope global etho
valid 1ft forever preferred 1ft forever
/#

And we can ping one container from the other one.

/ # ping -c 2 172.18.0.2

PING 172.18.0.2 (172.18.0.2): 56 data bytes

64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.162 ms
64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.119 ms

--- 172.18.0.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.119/0.140/0.162 ms

/#

We can inspect the new network, and we’ll see the two containers
attached to it.

antonio@antonio-Laptop:~$ sudo docker network inspect new_
docker nw

"Containers": {
"15¥393f52e6643db50e9afd1799c3516fef839fa500d77b
5dbec87114e34a7fc": {

"Name": "cont1",

"EndpointID": "764bb5463cb6c2efd8d917f0d236b38
0019b0b89262f0c025853f13e9c32dee8"”,
"MacAddress": "02:42:ac:12:00:02",
"IPv4Address": "172.18.0.2/16",

"IPv6Address": ""

}s

469

CHAPTER9 DOCKER

"53edeaa4bfd855cd04cf183b48529e9b9c04249504baed71
81a24cd84634ac20": {
"Name": "cont2",
"EndpointID": "ce384eab30d999d4e750a22f9b80da
b94a58fcae44f236a3ba2e84e4e2870042",
"MacAddress": "02:42:ac:12:00:03",
"IPv4Address": "172.18.0.3/16",
"IPv6Address": ""

Mapping Ports

We can map a certain port in the host to a certain port in the container so
that every request addressed to that specific port on the host computer

is handled by the container. For instance, we can execute a container
based on an nginx image and map port 8000 in the host to port 80 in the
container. We do that using the -p option.

antonio@antonio-Laptop:~$ sudo docker container run -d -p
8000:80 nginx
f47b7011930208742952ab9f562a6d33e9b927aadc0c246b
1b483b5da4e26a39

We can check on the host that a docker process is listening on
port 8000.

antonio@antonio-Laptop:~$ sudo lsof -i :8000
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

docker-pr 20985 root 4u IPv4 438978 0oto TCP *:8000
(LISTEN)
docker-pr 20991 root 4u IPv6 441411 oto TCP *:8000
(LISTEN)

470

CHAPTER9 DOCKER

And if we open a web browser and point to TCP port 8000 on the
localhost, we'll see the nginx welcome page (Figure 9-4).

B || welcome to nginx! x|+ v 5 e &

« @ O D 127.0.01 xd ® & =

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 9-4. Redirecting ports from the host to the container

Customizing Our Own Containers

When working with containers, we can install additional software as if we
were working with a standard machine; we can edit configuration files and
customize in many ways our containers.

After the customization is complete, we might want to save this
container.

Exporting a Container to an Image

One way to save the changes made to a container is to create an image
from the customized container.

471

CHAPTER9 DOCKER

We’ll launch a new container based on the Ubuntu image, and we'll
connect to it.

antonio@antonio-Laptop:~$ sudo docker run -d -it --name
container_vi1 ubuntu /bin/bash
348e78cb0985607966€9840d495b97fb7dc1486500f13713d998db8b
15870c5

antonio@antonio-Laptop:~$ sudo docker attach container vi
root@348e78cb098f: /#

Once connected, we can install software or perform other operations.
In our case, we'll perform an update.

root@348e78cb098f:/# apt update

When the update is complete, we’ll execute docker container commit
to generate a new image from the container. This new image will be named
image_container_v2.

antonio@antonio-Laptop:~$ sudo docker container commit
container_v1 image_container_v2
sha256:83dcb9837c499649c13d4b54a11faeba3f684219b48c26780bb6341
al46e2cdc

We can list now the new image.

antonio@antonio-Laptop:~$ sudo docker image ls
REPOSITORY TAG IMAGE

ID CREATED SIZE

image container v2 latest 83dcb9837c49 28 seconds
ago 117MB

And we can use this new image as a base image to create a container,
exactly in the same way as we did with the official debian and ubuntu
images. We'll create a temporary container using the --rm option. This
option automatically deletes the container after its execution.

472

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker container run --rm -it
image container_v2 /bin/bash
root@dea4de3536b0: /#

The container will have all the changes performed previously. In our
example, it will be updated. While the container is executing, we can see
it listed.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES
dea4de3536b0 image container v2 "/bin/bash”

29 seconds ago Up 28 seconds relaxed jepsen

When we exit the container, it will be automatically deleted.

antonio@antonio-Laptop:~$ sudo docker container 1ls
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
antonio@antonio-Laptop:~$

Let’s get back to the concept of layers we mentioned briefly before.
When we create a container, we use a base image. That image will be a
read-only layer, and over this layer a new writable layer will be created to
store the changes.

We'll inspect the ubuntu base image and pay attention to a few
parameters.

antonio@antonio-Laptop:~$ sudo docker image inspect ubuntu

[

"Id": "sha256:35a88802559dd2077e584394471ddaala2c5bfd1
6893b829ea57619301eb3908",

473

CHAPTER9 DOCKER

llPaIentll : n Il’
"RootFS": {
"Type": "layers",
"Layers": [

"sha256:a30a5965a4f7d9d5ff76a46eb8939f58e95be
844delac4adb452d5d31158fdea”

b

This image is given an ID, it has no parent, and it only contains
one layer.
Let’s compare it to our newly created image_container_v2 image.

antonio@antonio-Laptop:~$ sudo docker image inspect image
container_v2

[

"Id": "sha256:83dcb9837c499649c13d4b54a11faeba3f684219
b48c26780bb6341a146e2cdc”,

"Parent": "sha256:35a88802559dd2077e584394471ddaala2c5b
£d16893b829ea57619301eb3908",

"RootFS": {
"Type": "layers",
"Layers": [

"sha256:a30a5965a417d9d5ff76a46eb8939f58e95b
e844delac4aqbqs52ds5d31158fdea”,

474

CHAPTER9 DOCKER

"sha256:ac4beaab0ee851efd70299f6481f9db72984c6d6
e42d27df80a48c3826a60a677"

b

If you remember, we created this image from a container based on the
Ubuntu image. And we performed a series of changes in the container,
an update to be exact. So in this case, the image has a parent, the Ubuntu
image. Besides, the changes were stored in the writable layer of the
container, which was later exported to a new image. For that reason, this
image has two layers.

Using a Dockerfile to Create a Container

Another way to customize a container is by using a Dockerfile to explicitly

define a new image. Then we can use this image to create new containers.
We'll begin with a very easy example. In this example, we're repeating

basically what we had done in the previous section, but using a Dockerfile

this time and Debian as the parent image. A Dockerfile is simply a text file

with a series of instructions that Docker will interpret to create the image.
This is the first version of our Dockerfile:

antonio@antonio-Laptop:~/docker$ cat Dockerfile
FROM debian:latest

RUN apt update
antonio@antonio-Laptop:~/docker$

We can create an image with Docker image build. This way docker
will create an image according to the instructions from the file specified in
the (-f) option. If no file name is specified, docker will search a file named
Dockerfile.

475

CHAPTER9 DOCKER

antonio@antonio-Laptop:~/docker$ sudo docker image build -f
Dockerfile .
DEPRECATED: The legacy builder is deprecated and will be
removed in a future release.
Install the buildx component to build images with
BuildKit:
https://docs.docker.com/go/buildx/

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM debian:latest

---> 2e5b8d3ef33e
Step 2/2 : RUN apt update

---> Running in aa560ff2c33d

WARNING: apt does not have a stable CLI interface. Use with
caution in scripts.

Get:1 http://deb.debian.org/debian bookworm InRelease [151 kB]
Get:2 http://deb.debian.org/debian bookworm-updates InRelease
[55.4 kB]

Get:3 http://deb.debian.org/debian-security bookworm-security
InRelease [48.0 kB]

Get:4 http://deb.debian.org/debian bookworm/main amd64 Packages
[8788 kB]

Get:5 http://deb.debian.org/debian bookworm-updates/main amd64
Packages [13.8 kB]

Get:6 http://deb.debian.org/debian-security bookworm-security/
main amd64 Packages [169 kB]

Fetched 9225 kB in 2min 35s (59.4 kB/s)

Reading package lists...

Building dependency tree...

Reading state information...

All packages are up to date.

476

CHAPTER9 DOCKER
Removing intermediate container aa560ff2c33d
---> 1284259d5ade
Successfully built 1284259d5ade
We have our new image created. We can list it as usual.
antonio@antonio-Laptop:~/docker$ sudo docker image list
REPOSITORY TAG IMAGE
ID CREATED SIZE
<none> <none> 1284259d5ade About a minute
ago 136MB

image container v2 latest 83dcb9837c49 3 hours
ago 117MB

And we can use it to create containers.

antonio@antonio-Laptop:~$ sudo docker run --rm -it 1284259d5ade

/bin/bash
root@8fec261ch909: /#

Now we'll review the two Dockerfile instructions we used in our

Dockerfile:

e FROM: It’s used to set the base image (ubuntu, debian,
etc.). We could also use the special name “scratch” to
create a new image from zero.

e RUN: It executes the command specified and commits
the result to a new layer. That is, every RUN sentence
will create a new layer.

The image we created had one RUN sentence and used ubuntu as

the base image. So the resulting image has two layers. We can check with

Docker image inspect that this is actually the case.

477

CHAPTER9 DOCKER

antonio@antonio-Laptop:~$ sudo docker image inspect
1284259d5ade

"RootFS": {
"Type": "layers",
"Layers": [

"sha256:f6faf32734e0870d82ea890737958fe33ce9ddf
ed27b3b157576d2aadbab3322",
"sha256:a5060b2c6a694091084db46dff247c998854fb
d5f07342d443651207cbe6c888"

b

Besides the FROM and RUN instructions, there are many more than we
can use in our Dockerfile. We'll enumerate some of the most used here:

e« WORKDIR: Sets the working directory for the next

sentences.

e LABEL: Itis used to add metadata to an image, like
version, maintainer, and so on.

¢ ARG: It defines a variable that can be used later in the
Dockerfile.

e COPY: Copies new files and directories from the host to
the container.

e ADD: Similar to COPY, but it also can copy content
directly from URLs and tar files.

e VOLUME: It defines a volume.

478

CHAPTER9 DOCKER

e EXPOSE: Informs docker on what ports the container is
listening on.

e CMD: It sets the command to be executed when
running a container from an image. It includes all the
default arguments for the command. Sometimes it
omits the command itself; in these cases, the command
must be specified in the ENTRYPOINT instruction.

o« ENTRYPOINT: As explained before, it sets the
command the container will run as an executable.

Let’s see these additional instructions with another Dockerfile example
file. We'll list here the file and explain later each sentence.

antonio@antonio-Laptop:~/docker$ cat Dockerfile2
FROM busybox

WORKDIR /etc
COPY test file.txt .
ENTRYPOINT ["/bin/sleep", "60"]

We set the working directory to the /etc directory. We copy the test_file.
txt file, and we’ll execute the sleep command for 60 seconds when the
container is launched. We'll create the test_file.txt and build the image.

antonio@antonio-Laptop:~/docker$ echo test > test file.txt
antonio@antonio-Laptop:~/docker$ sudo docker image build -f
Dockerfile2 .
DEPRECATED: The legacy builder is deprecated and will be
removed in a future release.

Install the buildx component to build images with
BuildKit:

https://docs.docker.com/go/buildx/

Sending build context to Docker daemon 4.096kB

479

CHAPTER9 DOCKER

Step 1/4 : FROM busybox
---> 65ad0d468eb1

Step 2/4 : WORKDIR /etc
---> Running in 6d8afc97005d

Removing intermediate container 6d8afc97005d
---> 25fc806ab094

Step 3/4 : COPY test file.txt .
---> bb415647959c

Step 4/4 : ENTRYPOINT ["/bin/sleep”, "60"]
---> Running in cOcb7d19f91f

Removing intermediate container cOcb7d19f91f
---> b9cbf2b918b4

Successfully built b9cbf2b918b4

The image was successfully created and now we can create a container

based on this image.

antonio@antonio-Laptop:~/docker$ sudo docker container run --rm
-d bocbf2b918b4
2acc023edbe8e95364ea9ec02c4a395e062cffd989bdesaq04dsaedc3
5976de8

We can check that the container is executing.

antonio@antonio-Laptop:~/docker$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES
2acc023edbe8 b9cbf2b918b4 "/bin/sleep 60" 4 seconds
ago Up 4 seconds serene_bartik

In the listing, we see the command executing, which is “sleep 60" So far
we have used docker container attach to connect to the standard input
and the standard output of the container when the executing command

480

CHAPTER9 DOCKER

is a shell. But if we do that with this container, we’ll connect to the sleep
process and won't be able to execute commands.

To execute commands in a Docker container, we can use docker
container exec. We'll use this option to see the content of the test_file.txt
file we copied during the building process.

antonio@antonio-Laptop:~/docker$ sudo docker container exec
serene_bartik cat /etc/test file.txt
test

Another image-related option that can be useful to know is Docker
image history, which will show the steps to create the image.

antonio@antonio-Laptop:~/docker$ sudo docker image history
b9cbf2b918b4

IMAGE CREATED CREATED BY

SIZE COMMENT
b9cbf2b918b4 23 minutes ago /bin/sh -c
#(nop) ENTRYPOINT ["/bin/sleep" .. 0B

bb415647959c 23 minutes ago /bin/sh -c
#(nop) COPY file:2539c4b17295c856.. 5B
25fc806ab094 23 minutes ago /bin/sh -c

#(nop) WORKDIR /etc 0B
65ad0d468eb1 14 months ago BusyBox
1.36.1 (glibc), Debian 12 4.26MB

We can compare this output to that of the Ubuntu image.

antonio@antonio-HP-Laptop-15s-fqixxx:~/docker$ sudo docker
image history ubuntu

IMAGE CREATED CREATED BY

SIZE COMMENT
35a88802559d 2 months ago /bin/sh -c
#(nop) CMD ["/bin/bash"] 0B

481

CHAPTER9 DOCKER

<missing> 2 months ago /bin/sh -c
#(nop) ADD file:5601f441718b0d192.. 78.1MB
<missing> 2 months ago /bin/sh -c
#(nop) LABEL org.opencontainers... OB
<missing> 2 months ago /bin/sh -c
#(nop) LABEL org.opencontainers... 0B
<missing> 2 months ago /bin/sh -c
#(nop) ARG LAUNCHPAD BUILD ARCH 0B
<missing> 2 months ago /bin/sh -c
#(nop) ARG RELEASE 0B

Logging in Docker

We can obtain the logs of a certain container with docker container logs.
Let’s see an example.

We start any given container, and then we check the logs. We’ll execute
a temporary container based on the nginx image. We'll use port mapping
to make the nginx application accessible.

antonio@antonio-Laptop:~$ sudo docker container run --rm -d -it
-p 8000:80 nginx
3426d53c3082decda7e88e9cfc8108b9a24d316b53bab267d75650b26
1b23db4

We check that the container is actually running.

antonio@antonio-Laptop:~$ sudo docker container 1ls
CONTAINER ID IMAGE

COMMAND CREATED STATUS POR
TS NAMES
3426d53c3082 nginx "/docker-entrypoint...." 5 seconds

ago Up 5 seconds 0.0.0.0:8000->80/tcp, :::8000->80/
tcp friendly mahavira

482

CHAPTER9 DOCKER
And we review the logs.

antonio@antonio-Laptop:~$ sudo docker logs friendly mahavira
/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will
attempt to perform configuration

/docker-entry