
› Hands-on preparation and practice
› Practical skills advancement for practitioners
› Prescriptive guidance from expert voices

LPIC-3 Virtualization
and Containerization
Study Guide

Certification Companion
for the LPIC-3 305 Exam
›
Antonio Vazquez

CERTIFICATION STUDY COMPANION SERIES

Certification Study Companion Series

The Apress Certification Study Companion Series offers guidance and

hands-on practice to support technical and business professionals

who are studying for an exam in the pursuit of an industry certification.

Professionals worldwide seek to achieve certifications in order to advance

in a career role, reinforce knowledge in a specific discipline, or to apply for

or change jobs. This series focuses on the most widely taken certification

exams in a given field. It is designed to be user friendly, tracking to topics

as they appear in a given exam and work alongside other certification

material as professionals prepare for their exam.

More information about this series at https://link.springer.com/

bookseries/17100.

https://link.springer.com/bookseries/17100
https://link.springer.com/bookseries/17100

LPIC-3 Virtualization
and Containerization

Study Guide
Certification Companion
for the LPIC-3 305 Exam

Antonio Vazquez

LPIC-3 Virtualization and Containerization Study Guide: Certification

Companion for the LPIC-3 305 Exam

ISBN-13 (pbk): 979-8-8688-1079-4		 ISBN-13 (electronic): 979-8-8688-1080-0
https://doi.org/10.1007/979-8-8688-1080-0

Copyright © 2024 by Antonio Vazquez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Antonio Vazquez
Madrid, Spain

https://doi.org/10.1007/979-8-8688-1080-0

This book is dedicated to my wonderful family.

vii

About the Author��xix

About the Technical Reviewer��xxi

Acknowledgments��xxiii

Introduction���xxv

Chapter 1: �Virtualization Concepts and Theory�������������������������������������1

Introduction��1

Emulation���2

Game Console Emulators���3

Terminal Emulators���4

Printer Emulators��5

Network Emulators���6

System Emulators��6

Simulation��7

Virtualization��7

Types of Virtualization��10

Pros and Cons of Virtualization��11

Migration of Physical to Virtual Machines��12

VMware Converter��12

virt-p2v���12

Table of Contents

viii

openQRM��13

Clonezilla��13

Migrating Virtual Machines Between Systems��14

Summary���14

Chapter 2: �QEMU��15

Introduction to QEMU���16

Installation on Ubuntu��16

Full System Emulation in QEMU���17

Emulating an x86 System���18

Emulating an ARM System���29

Emulating a SPARC System��34

User Mode Emulation in QEMU��41

QEMU with KVM���45

QEMU Networking��47

User Networking���48

Networking by Using TUN/TAP Devices��62

Creating a Bridge for External Access��68

QEMU Guest Agent���70

QEMU Monitor��76

Other Useful QEMU Options���88

Summary���91

Chapter 3: �Xen���93

Xen Architecture���93

Installation and Configuration of Xen���94

Installing Xen��95

Configuring Xen��97

Creating a Logical Volume to Store the Virtual Machines�������������������������������98

Table of Contents

ix

Creating Virtual Machines��100

Installing a Virtual Machine by Editing a Configuration File�������������������������100

XenStore��130

GRUB Start Options��132

Managing Xen with xl/xm/XAPI��135

Xen Troubleshooting���144

Summary���145

Chapter 4: �libvirt Virtual Machine Management��������������������������������147

Introduction to libvirt��148

Installing libvirt��148

virt-manager��149

Installing and Managing a Virtual Machine with virt-manager���������������������159

Accessing libvirt from Our Own Programs���177

Accessing libvirt from a C Program��177

Accessing libvirt from a Python Program���180

Migrating a Virtual Machine to Another Host��182

Managing Snapshots���193

Storage Pools and Volumes��197

Networking��201

Monitoring��212

virsh���214

libvirt Configuration Files���219

libvirt.conf��219

libvirtd.conf��220

qemu.conf��222

virtlogd.conf���223

virtlockd.conf��223

Table of Contents

x

dnsmasq��223

radvd��225

Summary���226

Chapter 5: �Virtual Machine Disk Image Management�����������������������227

Virtual Disk Image Formats��228

Raw Images��228

qcow and qcow2��229

VMDK��230

Managing Disk Images with qemu-img���230

Getting Information with qemu-img���230

Creating Disk Image Files with qemu-img���232

Creating Overlays with qemu-img��233

Converting Between Different Disk Formats��235

Basic Usage of VirtualBox to Check the Image Disk File������������������������������236

Mounting Partitions and Accessing Files Contained in Virtual Disks�����������������241

Troubleshooting libguestfs���244

guestmount/guestunmount��248

virt-cat��251

virt-copy-in���254

virt-copy-out���255

virt-diff��256

virt-inspector��257

virt-filesystems���258

virt-rescue��259

virt-df��262

virt-resize���263

virt-sparsify��267

Table of Contents

xi

virt-p2v���269

virt-v2v���277

virt-sysprep��282

Open Virtualization Format���285

Summary���290

Chapter 6: �Proxmox and Open vSwitch���291

Introduction to Proxmox���291

systemd-machined��309

Open vSwitch���313

Summary���318

Chapter 7: �Container Virtualization Concepts������������������������������������319

System Containers and Application Containers���320

Kernel Namespaces���320

Mount Namespaces��323

Process Namespaces���327

User Namespaces���328

Combining Several Namespaces to Craft Our First “Container”�������������������329

Network Namespaces��333

chroot���336

Control Groups���341

Linux Capabilities���345

Security and Containers���353

SELinux���353

AppArmor���359

seccomp���362

Summary���362

Table of Contents

xii

Chapter 8: �Linux Containers (LXC)���363

LXC���363

Installing LXC��364

Configuring LXC��365

LXC in RedHat/Rocky/CentOS���386

Security in LXC���399

Other LXC Commands���404

LXD���407

Creating Our First Container on LXD���412

Managing Server and Container Configuration��416

Networking in LXD��419

Storage in LXD��424

LXD Profiles��427

Limiting the Use of Resources on LXD��432

Summary���433

Chapter 9: �Docker��435

Introduction to Docker���435

Installing Docker��436

Docker Images���438

Docker Containers��440

Docker Architecture���445

Docker Volumes���450

Bind Mounts���453

Named Volumes��455

tmpfs Volumes��458

Sharing Volumes Between Containers���458

Using Remote Volumes���460

Deleting and Pruning Volumes��463

Table of Contents

xiii

Docker Networking��464

Creating a New Network��467

Mapping Ports��470

Customizing Our Own Containers��471

Exporting a Container to an Image���471

Using a Dockerfile to Create a Container��475

Logging in Docker��482

Saving and Restoring Containers���487

Creating a Local Registry���492

Customizing Security Options��496

Summary���498

Chapter 10: �Container Orchestration Platforms��������������������������������499

Container Orchestration���499

docker compose��500

Installing docker compose���500

Creating a Service with docker compose���502

Creating a Multi-container Service���506

docker swarm��510

docker swarm Architecture��510

Initializing a docker swarm Cluster��511

Adding Additional Nodes to the Swarm Cluster��513

Deploying Services in docker swarm���515

Overlay Networks���519

Constraints���520

Creating a Global Service���522

Docker Secrets���523

Stacks���524

Table of Contents

xiv

Kubernetes���527

Kubernetes Architecture���527

Installing minikube���529

Pods��531

First Steps with minikube���532

Deploying a Pod in Kubernetes��539

Replicasets���540

Deployments���542

Other Kubernetes-Related Items��546

Helm���546

OpenShift���553

Rancher��557

Summary���563

Chapter 11: �podman and Other Container-Related Tools�������������������565

Introduction��565

Open Container Initiative��566

podman��566

Installing podman���566

podman Images��567

podman Containers��569

buildah���571

skopeo���573

FreeBSD Jails���575

rkt���577

OpenVZ���583

Summary���588

Table of Contents

xv

Chapter 12: �Cloud Management Tools���589

Introduction to Cloud Computing���589

OpenStack��592

First Steps with OpenStack��593

Terraform���613

Installing Terraform��613

Terraform Providers��616

Deploying Our Docker Infrastructure with Terraform������������������������������������622

Public Clouds���635

Amazon Web Services��636

Microsoft Azure��637

Google Cloud��637

Summary���638

Chapter 13: �Packer��641

Introduction to Packer��641

Installing Packer��641

Packer Integrations (Plug-ins)��644

Installing a Packer Plug-In��645

Building an Image��646

Building a VirtualBox Image��646

Building an LXC Image���651

Automating the Installation of Ubuntu to Generate an
Image with Packer��659

Provisioning with Packer and Integration with vagrant�������������������������������������671

Summary���676

Table of Contents

xvi

Chapter 14: �cloud-init��677

Introduction to cloud-init���677

Configuring a Local QEMU Instance���678

Instance Metadata Services (IMDS)���686

Datasources���686

Config Drive��686

Configuring a LXD Container Instance���687

Managing Filesystems with cloud-init���689

Installing Software Packages���692

Summary���694

Chapter 15: �vagrant���695

vagrant Architecture��695

Installing vagrant���696

Deploying Our First Virtual Environment with vagrant���������������������������������������701

Initializing vagrant��702

vagrant Files���703

Running a Vagrantfile���704

Working with Different vagrant Environments���707

Installing Additional vagrant Boxes��709

Checking the Status of the vagrant Deployments��711

Searching for vagrant Boxes��712

Provisioning with vagrant���713

Port Redirection��717

Customizing Network Settings���721

Table of Contents

xvii

Shared Folders in vagrant��724

Managing the State of the VM from vagrant��726

Deploying Multiple Virtual Machines from a Single Vagrantfile�������������������������728

Summary���734

�Index��735

Table of Contents

xix

Antonio Vazquez is a Senior Linux System

Administrator with over 20 years of experience

in the IT field. As an avid champion of FOSS,

he has been using Linux for decades, holding

many professional certifications including the

LPIC-3 certification, RHCE, and many SUSE

certifications as well as non-Linux-related

topics including cloud and security. Currently,

he works for a leader in the aerospace sector,

managing the Linux/UNIX infrastructure. 

Antonio is also an LPI-approved trainer who teaches students to get

LPI certified and also writes books in his spare time.

About the Author

xxi

Raul Arias is a professional specialized in

systems administration, IT infrastructure,

and cloud solutions, with over 20 years

of experience in the technology sector.

Throughout his career, he has worked with

some of the most important companies in

the industry, serving in both technical and

consulting roles. With extensive training in

technologies such as VMware, Citrix, Nutanix,

and Microsoft, he has gained comprehensive

expertise in the implementation, management, and migration of complex

IT environments. 

Raul's career stands out for his deep technical knowledge, his ability

to manage complex IT environments, and his commitment to continuous

improvement through certification and education. He currently continues

to contribute his expertise in technological consulting, helping companies

implement efficient and secure solutions in the digital era.

About the Technical Reviewer

xxiii

Acknowledgments

I’d like to express my gratitude to the people at Apress/Springer Nature; it’s

always a pleasure working with you. I would also like to thank the Linux

Professional Institute for their great job, as well as those who are involved

in one way or another in the open source community.

xxv

Introduction

It’s been about five years since I wrote my book on LPIC-3 300. At that time,

I had the feeling that there were too few resources available to study for any

of the LPIC-3 certifications. Today, I think that the situation has improved

slightly, but I still feel the available resources are scarce. With this book, I

attempt to help those studying for the LPIC-3 305 to better understand and

develop the skills needed to pass the exam and, more importantly, to put

them at work in the real world.

LPI certifications are vendor neutral; however, for practical reasons,

I needed to use Ubuntu 22 as the main operating system throughout the

book. This choice is due to the fact that Ubuntu is one of the main players

in the Linux world, together with Red Hat, SUSE, and others. Despite

having used mainly Ubuntu, most of the content you see in this book can

be applied to the most popular Linux distributions as well.

The topics covered in the book are based on the official objectives

defined by LPI. Always trying to prioritize those topics with a higher weight

in the exam. The order of the book is also closely related to the official

objectives with small variations for didactic purposes.

If you have any suggestions, opinions, questions, or criticisms about

this book, you can contact me via LinkedIn at https://www.linkedin.com/

in/antoniojosevazquez/.

https://www.linkedin.com/in/antoniojosevazquez/
https://www.linkedin.com/in/antoniojosevazquez/

1© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_1

CHAPTER 1

Virtualization
Concepts and Theory
In this chapter, we’ll cover the following concepts:

•	 Virtualization terminology

•	 Pros and cons of virtualization

•	 Variations of hypervisors and virtual machine monitors

•	 Migration of physical to virtual machines

•	 Migration of virtual machines between host systems

We will also be introduced to the following terms and utilities:

hypervisor, Hardware Virtual Machine (HVM), paravirtualization (PV),

emulation and simulation, CPU flags, /proc/cpuinfo, and migration.

�Introduction
When thinking of virtualization, people usually refer to the process of

running a virtual (rather than actual) version of a machine. The concept

of virtualization, however, can be applied not only to machines but also

to storage devices, networks, etc. By using the term “virtualization” with

a broad and generic meaning, we can “virtualize” machines in many

https://doi.org/10.1007/979-8-8688-1080-0_1#DOI

2

different ways, by using software emulation, hardware virtualization,

containers, etc. During the course of the book, we’ll study the main

concepts and we’ll see practical examples.

�Emulation

Figure 1-1.  DOSBox

We can create a “virtual” machine by using software to emulate

another system. This has been done, for instance, to emulate classical

Z80-based personal computers like Spectrum, Amstrad, Commodore, etc.

A well-known emulator is MAME (Multiple Arcade Machine Emulator),

used to emulate classical arcade machines. DOSBox (Figure 1-1) is another

example of emulator, often used to play old DOS-based games and other

programs. Finally, we can mention QEMU (Quick Emulator), which we’ll

study in detail in Chapter 2.

Chapter 1 Virtualization Concepts and Theory

3

All these programs use software to emulate the behavior of every

hardware component in the original machine. Let’s see more in detail what

emulation is.

We can define an emulator as a piece of hardware or software that

enables a computer system to behave like another. Quite often emulators

just emulate a hardware architecture; if some particular firmware or

operating system is required, it needs to be provided or emulated as well.

Maybe you’re familiar with some computer emulator that requires the

user to provide some ROM file to work. There are several types of emulator

depending on what they’re used for. We’ll enumerate some of them.

�Game Console Emulators
This is the first type of emulator we talked about earlier. There are many

emulators for different platforms, for instance, Fuse for Spectrum,

Caprice for Amstrad, Retro Virtual Machine for Spectrum and Amstrad

(Figure 1-2), PPSSPP for PlayStation Portable, PCSXR for PlayStation 1,

and so on.

Chapter 1 Virtualization Concepts and Theory

4

Figure 1-2.  Retro Virtual Machine

�Terminal Emulators
In the old times, it was quite normal having one big mainframe computer

and several “dumb” terminals. These terminals consisted only of a

keyboard and monitor and connected to the mainframe, which was in

charge of performing the actual computing. Nowadays, modern-day

computers use terminal emulators to connect remotely to other systems.

You’re probably familiar with programs like PuTTY (Figure 1-3), a

multiplatform terminal emulator.

Chapter 1 Virtualization Concepts and Theory

5

Figure 1-3.  PuTTY

�Printer Emulators
When an application wants to print a document, the application will need

to send the proper information to the printer using a Page Description

Language (PDL). Two of the most used PDLs are Postscript and PCL. The

Printer Command Language (PCL) was developed by Hewlett Packard.

Many printers from different manufacturers use emulation to support PCL

language.

Chapter 1 Virtualization Concepts and Theory

6

�Network Emulators
Network emulators are designed to test the performance of applications

in a real network. They allow to test routers and switches’ configurations.

Some of the most well known are GNS3 (Figure 1-4) and Cisco

Packet Tracer.

Figure 1-4.  GNS3

�System Emulators
There are also programs that emulate full systems like QEMU, which

we’ll discuss in detail in the next chapter, and PearPC. PearPC emulates

PowerPC systems on x86 hosts.

Chapter 1 Virtualization Concepts and Theory

7

�Simulation
A concept very similar to emulation is simulation; although in some cases

these two terms are used interchangeably, there are some differences. In

a simulator, the main goal is to make the simulator behave as close to the

original as possible.

For instance, an emulator could mimic the way another system works

but at a higher level, not going into much detail on the low level. On the

other hand, a simulator should try to mimic the way the original system

works at all levels.

There is also another difference, an emulator is designed with the

main goal of providing the same functionality of the original system,

but not so on working in the same way as the original system. That is,

emulators usually can execute any program designed for the original

system. However, as we mentioned before, simulators are more interested

in mimicking the way the original system works and less interested in

providing the functionality. For that reason, quite often programs designed

for the original system perform worse in a simulator or even don’t

work at all.

�Virtualization
As we said before, initially “virtual” machines were implemented only by

the use of software, but soon Intel and AMD included in their processors

new extensions called Intel VT-x and AMD-V, respectively. This hardware-

assisted virtualization offers a better performance than a software-only

solution. In a Linux system, we can check the /proc/cpuinfo file to see

the characteristics of the processor: speed, model, CPU flags, etc. If the

processor supports hardware-assisted virtualization, the corresponding

flag will be present.

Chapter 1 Virtualization Concepts and Theory

8

If we have an Intel CPU, we’ll look for the vmx flag.

antonio@antonio-HP:~$ grep vmx /proc/cpuinfo

.

.

.

flags : vmx

And if we have an AMD CPU, it is the svm flag we should search for.

antonio@antonio-Aspire-A315-23:~$ grep svm /proc/cpuinfo

.

.

.

flags : svm

We could get more or less the same information with the lscpu

command.

antonio@antonio-HP:~$ lscpu

Architecture: x86_64

.

.

.

Virtualization: VT-x

.

.

.

Flags: vmx.......

antonio@antonio-HP:~$

antonio@antonio-Aspire-A315-23:~$ lscpu

Architecture: x86_64

Chapter 1 Virtualization Concepts and Theory

9

CPU op-mode(s): 32-bit, 64-bit

.

.

.

Virtualization: AMD-V

.

.

.

Flags: svm.......

antonio@antonio-Aspire-A315-23:~$

When a system has a CPU with these flags enabled, it can easily

execute virtual machines. The piece of software that hosts the virtual

machines is called the hypervisor. Sometimes, instead of the term

hypervisor, the term virtual machine monitor is used. In this case, we can

properly talk about “virtualization.”

The hypervisor manages the virtual machines, assigning the

resources they need to operate normally. There are two different types of

hypervisors:

•	 Type I hypervisor, also known as “bare-metal”

hypervisor: In this case, the hypervisor runs

directly on the system hardware. Examples of this

type of hypervisor are VMware ESXi, Microsoft

Hyper-V, or Xen.

•	 Type II hypervisor: These hypervisors run as an

application on the operating system. A few examples

are VMware Workstation, Oracle VirtualBox

(Figure 1-5), or Microsoft Virtual PC.	

Chapter 1 Virtualization Concepts and Theory

10

Figure 1-5.  Oracle VirtualBox

�Types of Virtualization
We have seen previously that we can talk about “virtualization” in a broad

sense, which includes software emulation and simulation. But we should

only talk properly about “virtualization” when hardware virtualization is

present.

From this starting point, we can differentiate many types of

virtualization depending on the criteria used. Initially we can enumerate

these two types of virtualization:

•	 Full virtualization: The hypervisor recreates almost

every component of the original system, making it

possible for the guest OS to run unmodified.

•	 Paravirtualization: Access to hardware resources

is offered through a special interface. This is more

efficient because the hypervisor doesn’t need to

perform many high-cost operations needed in full

Chapter 1 Virtualization Concepts and Theory

11

virtualization. However, the guest operating system

needs to be modified so that it can be executed in a

paravirtualized environment.

There are also other solutions that combine characteristics of full

virtualization and paravirtualization, like PVHVM or PVH. As this is an

introductory, we won’t go into much detail, but we’ll see these other

virtualization types in Chapter 3.

When using paravirtualization, we’ll talk about paravirtualized virtual

machines. And when using full virtualization, we’ll talk about Hardware

Virtual Machines, or HVM.

We should also mention here another concept, OS-level
virtualization. In this case, the kernel allows multiple user space instances

to exist completely isolated. These instances are usually named containers

in Linux environments, although different terms are also used for the

same concept in other operating systems, like jails in FreeBSD or zones in

Solaris.

�Pros and Cons of Virtualization
Using virtualization has many advantages. We can enumerate the

following:

•	 Cost efficiency: The hardware is much more efficiently

used; we no longer need a dedicated physical server for

every logical server.

•	 Easier administration: By using virtualization, we can

use snapshots to revert back changes when needed; we

can also automate many tasks by using orchestration.

•	 Efficient use of energy: By using less hardware, less

energy is needed, which in turn reduces costs.

Chapter 1 Virtualization Concepts and Theory

12

Unfortunately, there are also a few drawbacks that we need to know

about when considering virtualization:

•	 Not all software and/or hardware can be easily

virtualized.

•	 Hardware access is indirect and consequently less

efficient.

�Migration of Physical to Virtual Machines
Virtualizing an existing physical machine, we can benefit from the

advantages of virtualization. Simplifying back up and restore operations.

This procedure is often referred to as Physical to Virtual migration or P2V

for short. There are different tools we can use for P2V. We’ll enumerate just

a few of them.

�VMware Converter
One of the most used tools to perform P2V migrations nowadays is

VMware stand-alone converter. This is a commercial tool very easy to use.

�virt-p2v
virt-p2v converts a physical machine into a virtual machine managed by

KVM. Later in this book, we’ll study KVM and this tool with some more

detail and see an example.

Chapter 1 Virtualization Concepts and Theory

13

�openQRM
openQRM is a management platform for heterogeneous data center

infrastructures with many interesting capabilities, among them P2V and

V2V conversions.

�Clonezilla
Another possibility, although not as easy as those we’ve seen previously,

is to clone the disk of the server we plan to virtualize. A very good tool

that we can use for this purpose is Clonezilla (Figure 1-6). Later we should

convert the disk image file to a format recognized by the hypervisor we

use. We can see a complete example at their official website.

Figure 1-6.  Booting Clonezilla Live

Chapter 1 Virtualization Concepts and Theory

https://clonezilla.org/lecture-materials/016_Linux_Tag_2014_workshop/workshop/P2V-by-Clonezilla.pdf

14

�Migrating Virtual Machines
Between Systems
In addition to converting physical machines into virtual machines,

sometimes we might need to migrate virtual machines from a certain

hypervisor to another; this is called V2V for short. We’ll see in the

upcoming chapters several practical examples.

�Summary
In this brief chapter, we’ve studied some theoretical concepts that will help

us to better understand the upcoming sections of this book.

Chapter 1 Virtualization Concepts and Theory

15© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_2

CHAPTER 2

QEMU
In this chapter, we’ll see a brief introduction to some of the characteristics

of QEMU, a great emulation software that can also be used in addition to

a hypervisor to provide hardware virtualization. But QEMU has also much

more to offer.

In this chapter, we’ll cover the following concepts:

•	 Understand the architecture of QEMU, including KVM,

networking, and storage

•	 Start QEMU instances from the command line

•	 Manage snapshots using the QEMU monitor

•	 Install the QEMU Guest Agent and VirtIO device drivers

•	 Troubleshoot QEMU installations, including

networking and storage

•	 Awareness of important QEMU configuration

parameters

We will also be introduced to the following terms and utilities: kernel

modules (kvm, kvm-intel, and kvm-amd), /dev/kvm, QEMU monitor,

QEMU, qemu-system-x86, ip, brctl, and tunctl.

https://doi.org/10.1007/979-8-8688-1080-0_2#DOI

16

�Introduction to QEMU
QEMU (Quick Emulator) is an open source emulator and virtualizer. This

great tool can perform full system emulation and user mode emulation

and even run KVM or Xen virtual machines with near-native performance.

We’ll see these points in detail later.

�Installation on Ubuntu
The installation of QEMU is very easy. We can search for the QEMU

packages with apt.

antonio@antonio-Laptop:~$ apt search qemu

And we’ll see a lot of related packages. We just said before that QEMU

can work in two modes: full system emulation and user mode emulation.

In the listing of QEMU-related packages, we can see the following items:

qemu-system-x86/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64

[installed]

 QEMU full system emulation binaries (x86)

qemu-system-arm/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64

[installed,automatic]

 QEMU full system emulation binaries (arm)

As the name implies, these two packages will allow us to emulate

x86 and arm systems, respectively. In this same listing, we can also find

this line:

qemu-user/jammy-updates,now 1:6.2+dfsg-2ubuntu6.19 amd64

[installed]

 QEMU user mode emulation binaries

Chapter 2 QEMU

17

This is the package used for user mode emulation. In my case, the

packages appear as “installed” because I installed them previously. The

installation procedure is the usual in Ubuntu.

antonio@antonio-Laptop:~$ sudo apt install qemu-system-x86

.

.

.

antonio@antonio-Laptop:~$ sudo apt install qemu-user

�Full System Emulation in QEMU
As we mentioned before, QEMU can emulate a full system, including

a processor and various peripherals. QEMU can emulate not only the

x86 architecture but also many others such as arm, PowerPC, s390, or

SPARC. After installing the right software package for the architecture

we want to emulate, we can see there are a lot of qemu-system-xxx

commands:

antonio@antonio-Laptop:~$ qemu-system-[TAB][TAB]

qemu-system-aarch64 qemu-system-ppc64

qemu-system-alpha qemu-system-ppc64le

qemu-system-arm qemu-system-riscv32

qemu-system-avr qemu-system-riscv64

qemu-system-cris qemu-system-rx

qemu-system-hppa qemu-system-s390x

qemu-system-i386 qemu-system-sh4

qemu-system-m68k qemu-system-sh4eb

qemu-system-microblaze qemu-system-sparc

qemu-system-microblazeel qemu-system-sparc64

qemu-system-mips qemu-system-tricore

qemu-system-mips64 qemu-system-x86_64

Chapter 2 QEMU

18

qemu-system-mips64el qemu-system-x86_64-microvm

qemu-system-mipsel qemu-system-x86_64-spice

qemu-system-nios2 qemu-system-xtensa

qemu-system-or1k qemu-system-xtensaeb

qemu-system-ppc

We’ll see a couple of examples in which we will emulate an x86 and a

SPARC system.

�Emulating an x86 System
We’ll work in this case in an Ubuntu 22 workstation, but the procedure is

similar in other Linux distributions. We already installed the software so

we’re ready to start working with it.

The main command to launch the emulation is qemu-system-
(architecture-type), for example, qemu-system-x86_64. If we take a look

at the help (qemu-system-x86_64 help), we’ll see a brief description of all

the options available. This list can be overwhelmingly exhaustive at first, so

we’ll see step by step the most important ones. We start by launching the

command without any parameters, so that the default values are applied.

antonio@antonio-Laptop:~$ qemu-system-x86_64

We’ll see immediately a new window (Figure 2-1).

Chapter 2 QEMU

19

Figure 2-1.  QEMU VM with no BOOT device

We see a clear message that says that there is no boot device. In

this example, we’ll tell QEMU to boot from a Debian 10 ISO file that we

downloaded previously from the official Debian website. If we check the

command help, we’ll see these two relevant entries:

antonio@antonio-Laptop:~$ qemu-system-x86_64 --help

QEMU emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)

.

.

.

-boot [order=drives][,once=drives][,menu=on|off]
 �[,splash=sp_name][,splash-time=sp_time][,reboot-

timeout=rb_time][,strict=on|off]
 �'drives': floppy (a), hard disk (c), CD-ROM

(d), network (n)

 �'sp_name': the file's name that would be passed

to bios as logo picture, if menu=on

Chapter 2 QEMU

https://www.debian.org/

20

 �'sp_time': the period that splash picture last

if menu=on, unit is ms

 �'rb_timeout': the timeout before guest reboot

when boot failed, unit is ms

.

.

.

-cdrom file use 'file' as IDE cdrom image (cdrom is

ide1 master)

.

.

.

We see how easy it is to use an ISO file as a virtual CDROM. The -boot

parameter has many options to choose from, but for now, we only need to

specify the boot device, in our case the CDROM, that is, the “-d” option.

We launch the command again with the new options.

antonio@antonio-Laptop:~$ qemu-system-x86_64 -cdrom

antonio/isos/debian-12.5.0-amd64-DVD-1.iso -boot d

This time we’ll see the installation menu (Figure 2-2). However, if

we choose to perform a graphical installation, the program hangs with a

black window without showing any error message. To try and get more

information about what’s going on, we’ll close the window and relaunch

QEMU, but this time we’ll select the “Install” option to perform a text

install.

Chapter 2 QEMU

21

Figure 2-2.  Installation menu

This time we’ll see an error when creating the initramfs file

(Figure 2-3).

Chapter 2 QEMU

22

Figure 2-3.  Error when creating the initramfs file

The initramfs file is an in-memory filesystem used during the Linux

startup procedure. As it uses RAM memory, the first thing we need to do

is to check the amount of RAM available when we launch QEMU. We can

do it by using the QEMU monitor; this is something that we’ll see in more

detail later in this same chapter, but for now, we can access it by pressing

CTRL+ALT and then SHIFT and 2 (Figure 2-4).

Chapter 2 QEMU

23

Figure 2-4.  QEMU monitor

Later we’ll review some interesting features of the QEMU monitor; for

now, we’ll use it to check the amount of memory available for the virtual

machine with the info memory_size_summary command (Figure 2-5).

Chapter 2 QEMU

24

Figure 2-5.  RAM memory available with the QEMU monitor

The number we see on the screen is the amount of memory in bytes,

134217728 in this case, which is 134217728/(1024*1024)=128 MiB. In this

day and age, this value is extremely low, so we’re going to increase that

value when launching QEMU again.

We’ll take a new look at the contextual help, and we’ll see this option:

-m [size=]megs[,slots=n,maxmem=size]

 configure guest RAM

 size: initial amount of guest memory

 slots: number of hotplug slots (default: none)

 �maxmem: maximum amount of guest memory

(default: none)

Chapter 2 QEMU

25

So we’ll use the -m parameter to launch QEMU again, this time with 2

MiB RAM.

antonio@antonio-Laptop:~$ qemu-system-x86_64 -m 2048 -cdrom \

antonio/isos/debian-12.5.0-amd64-DVD-1.iso -boot d

In this occasion, after selecting “Graphical install”, we can see that the

installation program actually starts (Figure 2-6).

Figure 2-6.  Graphical install

We’ll choose our language and then click “Continue” to resume the

installation. We’ll select the appropriate settings, country, keyboard layout,

etc. We’re not going to describe here the full installation procedure as

you’ve probably already installed several Linux systems.

Chapter 2 QEMU

26

At some point, we’ll get to a new screen, in which we’re informed that

no disk drive was detected (Figure 2-7). This is perfectly normal, as we

haven’t specified any hard disk drive when launching QEMU. We’ll cancel

the installation at this point.

Figure 2-7.  No disk drive detected

We need to define the disk that will be used by the QEMU virtual

machine. If we check again the help of the qemu-system-x86_64

command, we’ll see this in the first lines:

antonio@antonio-Laptop:~$ qemu-system-x86_64 --help

QEMU emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)

Chapter 2 QEMU

27

Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project

developers

usage: qemu-system-x86_64 [options] [disk_image]

'disk_image' is a raw hard disk image for IDE hard disk 0

.

.

.

We need to pass the name of a disk image to the command, and this

disk image will be assigned to the IDE hard disk 0. Of course this can be

customized with advanced options, but for now, it fits our needs. Now we

just need to create the disk image.

Disk images in QEMU are created with the qemu-img command.

Again, if we check the command help, we’ll see a long list of options. This

command includes many subcommands. Later in this book, we’ll study

this tool in more detail. Right now we only need to create a new disk image,

so this is the subcommand that we need to look at:

antonio@antonio-Laptop:~$ qemu-img --help

qemu-img version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.19)

Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project

developers

usage: qemu-img [standard options] command [command options]

QEMU disk image utility

.

.

.

 �create [--object objectdef] [-q] [-f fmt] [-b backing_file]

[-F backing_fmt] [-u] [-o options] filename [size]

.

.

.

Chapter 2 QEMU

28

We’ll create a 10 GB image, and we’ll use the qcow2 format

(-f parameter), as recommended in the official documentation.

antonio@antonio-Laptop:~$ mkdir QEMU_VMs

antonio@antonio-Laptop:~$ cd QEMU_VMs/

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img create -f qcow2

debian.qcow2 10G

Formatting 'debian.qcow2', fmt=qcow2 cluster_size=65536

extended_l2=off compression_type=zlib size=10737418240

lazy_refcounts=off refcount_bits=16

antonio@antonio-Laptop:~/QEMU_VMs

We can finally relaunch QEMU with all the needed parameters to finish

the installation of the operating system.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64

\> -m 2048 \

> -cdrom ../antonio/isos/debian-12.5.0-amd64-DVD-1.iso

\> -boot d debian.qcow2

We’ll select “Graphical install” and complete the installation process

as we’d do on any physical system. The process can take some time as the

default emulation is significantly slower than native performance. When

the installation finishes, we can launch QEMU again and boot from the

disk this time:

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -m 2048

\> -boot c debian.qcow2

And we’ll see the login screen of our newly installed server (Figure 2-8).

Chapter 2 QEMU

29

Figure 2-8.  Debian 12 graphical login

�Emulating an ARM System
As we said before, QEMU can emulate different architectures. In this

example, we’ll emulate an ARM system. This architecture is used in several

light and portable devices like mobile phones and single board computers

such as the Raspberry Pi.

To emulate an ARM system, first of all, we’ll install the qemu-system-
arm package.

antonio@antonio-Laptop:~$ sudo apt install qemu-system-arm

Chapter 2 QEMU

30

ARM-based systems are usually quite different from each other, much

more than systems based on x86 architectures. So installing a complete

OS in a QEMU instance emulating an ARM system would be possible, but

complicated and slow. Fortunately QEMU offers the possibility of using

“direct kernel loading,” that is, launching the kernel directly from the

command line by using a kernel file previously downloaded instead of

having to emulate all the boot process from the virtual disk.

To do this, we need an appropriate kernel. Luckily somebody has

already done this, and we can simply download it from the Debian site.

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.

org/~aurel32/qemu/armel/vmlinuz-2.6.32-5-versatile

--2024-05-06 22:46:49-- https://people.debian.org/~aurel32/

qemu/armel/vmlinuz-2.6.32-5-versatile

Resolving people.debian.org (people.debian.org)...

209.87.16.67, 2607:f8f0:614:1::1274:67

Connecting to people.debian.org (people.debian.

org)|209.87.16.67|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 1248532 (1,2M)

Saving to: 'vmlinuz-2.6.32-5-versatile'

vmlinuz-2.6.32-5-versatile

100%[========>] 1,19M 438KB/s in 2,8s

2024-05-06 22:46:53 (438 KB/s) - 'vmlinuz-2.6.32-5-versatile'

saved [1248532/1248532]

We’ll also download the corresponding initrd file.

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.

org/~aurel32/qemu/armel/initrd.img-2.6.32-5-versatile

--2024-05-06 22:59:42-- https://people.debian.org/~aurel32/

qemu/armel/initrd.img-2.6.32-5-versatile

Chapter 2 QEMU

https://people.debian.org/~aurel32/qemu/armel

31

Resolving people.debian.org (people.debian.org)...

209.87.16.67, 2607:f8f0:614:1::1274:67

Connecting to people.debian.org (people.debian.org)

|209.87.16.67|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 2500152 (2,4M)

Saving to: 'initrd.img-2.6.32-5-versatile'

initrd.img-2.6.32-5-versatile

100%[===========>] 2,38M 605KB/s in 4,0s

2024-05-06 22:59:48 (605 KB/s) - 'initrd.img-2.6.32-5-

versatile' saved [2500152/2500152]

Finally, we download the disk image.

antonio@antonio-Laptop:~/QEMU_VMs$ wget https://people.debian.

org/~aurel32/qemu/armel/debian_squeeze_armel_standard.qcow2

--2024-05-07 05:50:30-- https://people.debian.org/~aurel32/

qemu/armel/debian_squeeze_armel_standard.qcow2

Resolving people.debian.org (people.debian.org)...

209.87.16.67, 2607:f8f0:614:1::1274:67

Connecting to people.debian.org (people.debian.org)

|209.87.16.67|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 236730880 (226M)

Saving to: 'debian_squeeze_armel_standard.qcow2'

debian_squeeze_armel_standard.qc

100%[========================>] 225,76M 17,0MB/s in 22s

2024-05-07 05:50:54 (10,4 MB/s) - 'debian_squeeze_armel_

standard.qcow2' saved [236730880/236730880]

Chapter 2 QEMU

32

We launch now our ARM-based Debian.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-arm -M

versatilepb -kernel vmlinuz-2.6.32-5-versatile -initrd initrd.

img-2.6.32-5-versatile debian_squeeze_armel_standard.qcow2

-append "root=/dev/sda1"

We’ll review briefly the parameters used. We specify the machine type

“-M versatilepb”. We can obtain a list of the emulated machines with the

qemu-system-arm -machine help command.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-arm

-machine help

Supported machines are:

akita Sharp SL-C1000 (Akita) PDA (PXA270)

.

.

.

raspi0 Raspberry Pi Zero (revision 1.2)

raspi1ap Raspberry Pi A+ (revision 1.1)

raspi2b Raspberry Pi 2B (revision 1.1)

.

.

.

versatileab ARM Versatile/AB (ARM926EJ-S)

versatilepb ARM Versatile/PB (ARM926EJ-S)

.

.

.

We also pass the location of the kernel file (-kernel option) and the

initrd file (-initrd option). Finally, we specify the name of the disk file and

the kernel command line used (-append option).

Chapter 2 QEMU

33

When the system boots, we’ll see the login screen (Figure 2-9). The

default credentials are “root/root”. We can interact with our system in the

same way as if we were working on an x86-based Debian (Figure 2-10).

Figure 2-9.  Emulating an ARM system (I)

Chapter 2 QEMU

34

Figure 2-10.  Emulating an ARM system (II)

�Emulating a SPARC System
SPARC (Scalable Processor ARChitecture) was developed by Sun

Microsystems. It is used mainly as the hardware platform for Solaris

servers, but it supports other operating systems as well, such as Linux and

FreeBSD.

Similarly to what we did before, we need to install the corresponding

package.

antonio@antonio-Laptop:~$ sudo apt install qemu-system-sparc

Chapter 2 QEMU

35

After installing the package, we have two commands available: qemu-
system-sparc and qemu-system-sparc64. As we did when we emulated

an ARM device, we can list the machines that can be emulated.

antonio@antonio-Laptop:~$ qemu-system-sparc -M help

Supported machines are:

LX Sun4m platform, SPARCstation LX

SPARCClassic Sun4m platform, SPARCClassic

SPARCbook Sun4m platform, SPARCbook

SS-10 Sun4m platform, SPARCstation 10

SS-20 Sun4m platform, SPARCstation 20

SS-4 Sun4m platform, SPARCstation 4

SS-5 Sun4m platform, SPARCstation 5 (default)

SS-600MP Sun4m platform, SPARCserver 600MP

Voyager Sun4m platform, SPARCstation Voyager

leon3_generic Leon-3 generic

none empty machine

antonio@antonio-Laptop:~$ qemu-system-sparc64 -M help

Supported machines are:

niagara Sun4v platform, Niagara

none empty machine

sun4u Sun4u platform (default)

sun4v Sun4v platform

We can get an overview of how to emulate a SPARC system on the wiki

page. In the first example, we see this:

qemu-system-sparc \

 -drive file=hd.qcow2,if=scsi,bus=0,unit=0,media=disk \

 �-drive file=cdrom.iso,format=raw,if=scsi,bus=0,unit=2,

media=cdrom,readonly=on \

 -boot d

Chapter 2 QEMU

https://wiki.qemu.org/Documentation/Platforms/SPARC
https://wiki.qemu.org/Documentation/Platforms/SPARC

36

We see some new options and others that we saw previously. We’re

launching QEMU specifying a CDROM and a hard disk. We did the same

thing when we emulated an x86_64 system, but this time the syntax is

different. The -device parameter is very versatile, and we can use it to

specify many more options, such as the file used, the interface, the bus, and

so on. In this example, we’re using it to define a hard disk and a CDROM

drive, but we can use this same parameter to define all sorts of devices like

network cards. Finally, we see the -boot option that we already know.

We’ll create a qcow2 file that will be the hard disk used by QEMU. As

we already know, we can use qemu-img to create this file.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img create \

> -f qcow2 sparchd.qcow2 10

Formatting 'sparchd.qcow2', fmt=qcow2 cluster_size=65536

extended_l2=off compression_type=zlib size=10 lazy_

refcounts=off refcount_bits=16

If we have an installation CD image, we can launch QEMU to emulate

a SPARC system like this:

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-sparc \

> -drive file=sparchd.qcow2,if=scsi,bus=0,unit=0,media=disk \

> -drive file=CD.iso,format=raw,if=scsi,bus=0,unit=2,media=cdro

m,readonly=on \

> -boot d

After a couple of minutes, we’ll see an installation screen (Figure 2-11).

Chapter 2 QEMU

37

Figure 2-11.  Installing a Solaris box

We won’t install the OS now because it’s not the purpose of this book,

but you can see a complete example of how to emulate an old SPARC

workstation here.

We can also emulate more advanced SPARC processors like

UltraSPARC T1 (codename niagara). If we remember, one of the machine

types that is supported by qemu-system-sparc64 is niagara. Let’s try to

launch a new QEMU instance with this machine type.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-sparc64 -M niagara

Could not open option rom 'nvram1': No such file or directory

qemu-system-sparc64: Unable to load a firmware for -M niagara

Chapter 2 QEMU

https://learn.adafruit.com/build-your-own-sparc-with-qemu-and-solaris/overview

38

As we can see, we get an error message because QEMU couldn’t load a

firmware for this machine. As you know, x86-based systems have a BIOS/

UEFI that takes care of one of the first stages of the system boot. SPARC-

based systems also use a similar firmware called OpenBOOT. Both BIOS/

UEFI and OpenBOOT perform hardware initialization.

QEMU uses free firmware implementations like SeaBIOS for x86

emulated systems (Figure 2-12) and OpenBIOS for SPARC emulated

systems (Figure 2-13). However, to emulate a niagara system, we’ll need

another specific firmware. This firmware was released by Sun under the

GNU General Public License in 2005 and can be downloaded from this

Oracle site.

Figure 2-12.  SeaBIOS

Chapter 2 QEMU

http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2
http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2

39

Figure 2-13.  OpenBIOS

After downloading OpenSPARC, we uncompress the package.

antonio@antonio-Laptop:~/QEMU_VMs$ bunzip2

OpenSPARCT1_Arch.1.5.tar.bz2

And we extract the tar archive.

antonio@antonio-Laptop:~/QEMU_VMs$ tar -xvf

OpenSPARCT1_Arch.1.5.tar

Chapter 2 QEMU

40

A new S10image folder will be created. Inside this folder we have the

files we need to emulate a niagara SPARC system; we’ll launch a new

QEMU instance like this:

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-sparc64 -M

niagara -L S10image/ -nographic -m 256 -drive if=pflash,readonl

y=on,file=S10image/disk.s10hw2

We pass the location of the firmware with the -L parameter. When

using the -nographic option, we completely disable any graphic output

so that QEMU behaves like a command-line application. We also use the

 -device option, which we already know, to define a flash device that hosts

a Solaris 10 image.

After executing, QEMU will show the “ok prompt,” something that most

Solaris admins are familiar with.

cpu Probing I/O buses

Sun Fire T2000, No Keyboard

Copyright 2005 Sun Microsystems, Inc. All rights reserved.

OpenBoot 4.20.0, 256 MB memory available, Serial #1122867.

[mo23723 obp4.20.0 #0]

Ethernet address 0:80:3:de:ad:3, Host ID: 80112233.

ok

This is not a Solaris book, so we won’t describe the characteristics of

the OpenBOOT environment and the commands associated. But we can,

for example, list the devices.

ok show-disks

a) /virtual-devices@100/disk@0

q) NO SELECTION

Enter Selection, q to quit: q

ok

Chapter 2 QEMU

41

We can also boot the OS.

ok boot

Boot device: vdisk File and args:

Loading ufs-file-system package 1.4 04 Aug 1995 13:02:54.

FCode UFS Reader 1.12 00/07/17 15:48:16.

Loading: /platform/SUNW,Sun-Fire-T2000/ufsboot

Loading: /platform/sun4v/ufsboot

SunOS Release 5.10 Version Generic_118822-23 64-bit

Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

Hostname: unknown

unknown console login: root

Last login: Wed Feb 8 09:01:28 on console

Sun Microsystems Inc. SunOS 5.10 Generic January 2005

#

When we’re done, we can exit QEMU with Ctrl+a x. There are many

other platforms that can be emulated with QEMU, PowerPC, alpha, etc.

But we won’t explain all of them. I think that what we’ve seen so far is

enough to see the potential of this tool as a full system emulator.

�User Mode Emulation in QEMU
We’ve already seen QEMU working as a full system emulator; let’s see now

user mode emulation.

QEMU can run single Linux programs that were compiled for a

different architecture. To use this mode, we need to install the qemu-user

package.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ sudo apt install

qemu-user

Chapter 2 QEMU

42

Now let’s suppose we have a Linux system in a different architecture,

for example, an ARM-based SBC such as the well-known Raspberry

Pi. We could easily compile a simple program and run it locally in the

Raspberry Pi.

This would be the source code file hello.c.

pi@raspberrypi:~$ cat hello.c

#include <stdio.h>

int main(int argc)

{

 printf("Hello World! I am a raspberry");

 return 0;

}

We compile the source code file to generate an executable

binary file

pi@raspberrypi:~$ gcc hello.c -o hello

And we execute it

pi@raspberrypi:~$./hello

Hello World! I am a raspberry

By using the file command, we see that the binary file is a 32-bit ELF

executable for ARM.

pi@raspberrypi:~$ file hello

hello: ELF 32-bit LSB executable, ARM, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.26,

BuildID[sha1]=0x2e095d28174261a8daf9aaf047c82cd24b847727, not

stripped

We can copy that file to an x86-based Linux machine. And we can also

execute it thanks to QEMU. According to the official documentation, the

way to execute a binary file of a different architecture is by launching the

appropriate QEMU command, qemu-arm in this case.

Chapter 2 QEMU

43

antonio@antonio-Laptop:~/QEMU_tests$ scp pi@192.168.1.250:/

home/pi/hello .

pi@192.168.1.250's password:

hello 100% 5462 855.8KB/s 00:00

antonio@antonio-Laptop:~/QEMU_tests$ file hello

hello: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),

dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for

GNU/Linux 2.6.26, BuildID[sha1]=285d092ea8614217f0aaf9dad22

cc8472777844b, not stripped

antonio@antonio-Laptop:~/QEMU_tests$ qemu-arm hello

qemu-arm: Could not open '/lib/ld-linux-armhf.so.3': No such

file or directory

We get an error message because the executable file was dynamically

linked and our x86 system doesn’t have the dynamic libraries for the ARM

architecture. We could download a copy of the needed libraries or we

could generate a static binary instead. As the second option is simpler, this

is what we’ll do.

pi@raspberrypi:~$ gcc hello.c -static -o hello2

And we copy the executable file to our x86 system.

antonio@antonio-Laptop:~/QEMU_tests$ scp pi@192.168.1.250:/

home/pi/hello2 .

pi@192.168.1.250's password:

hello2 100% 565KB 619.2KB/s 00:00

And now we can execute successfully our minimalistic program.

antonio@antonio-Laptop:~/QEMU_tests$ qemu-arm hello2

Hello World! I am a raspberry

Chapter 2 QEMU

44

In addition to using the qemu-arm command, we can also execute

it as we’d do with any other native binary. This is possible because,

by default, the binary format handlers for this qemu-user package are

registered with the kernel.

antonio@antonio-Laptop:~/QEMU_tests$./hello2

Hello World! I am a raspberry

Of course we can also invert the process and execute x86_64 binary

files in our ARM-based Raspberry Pi. We’ll begin by compiling a simple

program. We’ll generate a statically linked binary this time.

antonio@antonio-Laptop:~/QEMU_tests$ cat hello_x86_64.c

#include <stdio.h>

int main(int argc)

{

 printf("Hello World! I am a x86_64 PC");

 return 0;

}

antonio@antonio-Laptop:~/QEMU_tests$ gcc hello_x86_64.c \

> -static -o hello_x86_64_static

And we copy the binary file to our Raspberry Pi.

antonio@antonio-Laptop:~/QEMU_tests$ scp hello_x86_64_static

pi@192.168.1.53:/home/pi

pi@192.168.1.53's password:

hello_x86_64_static 100% 879KB 1.9MB/s 00:00

If we try to execute this binary file in the Raspberry Pi before installing

the QEMU user module, we’ll get this descriptive error:

pi@raspberrypi:~ $./hello_x86_64_static

-bash: ./hello_x86_64_static: cannot execute binary file: Exec

format error

Chapter 2 QEMU

45

So we’ll install the qemu-user package.

pi@raspberrypi:~ $ sudo apt install qemu-user

And from now on, we can execute the program, either by using the

qemu-x86_64 command:

pi@raspberrypi:~ $ qemu-x86_64 ./hello_x86_64_static

Hello World! I am a x86_64_PC

or by executing directly the binary:

pi@raspberrypi:~ $./hello_x86_64_static

Hello World! I am a x86_64_PC

�QEMU with KVM
QEMU can also work with a hypervisor like KVM and Xen. In this case,

QEMU is in charge of emulating hardware, but the execution of the guest is

performed by the hypervisor. In the rest of the chapter, we’ll see how KVM

and QEMU work together. And in the next chapter, we’ll study Xen.

Kernel-based virtual machine (KVM) is a Linux kernel module that

makes it possible for the Linux kernel to work as a hypervisor. Beginning

with kernel version 2.6.20 it is included in the official kernel mainline. It

relies on processors with hardware virtualization extensions, such as Intel

VT or AMD-V. In order to take advantage of it, we must check that our

CPU actually supports that feature. As we saw in Chapter 1, this is done by

searching for the corresponding CPU flag, vmx for Intel-based processors

and svm for AMD-based processors.

antonio@antonio-Laptop:~$ grep -E '(vmx|svm)' /proc/cpuinfo
flags : vmx

Chapter 2 QEMU

46

KVM complements perfectly QEMU, making it possible for QEMU to

take advantage of the processor virtualization extensions. KVM is included

in modern distributions so we don’t need to install the module itself, but

we’ll check that the module is actually loaded.

antonio@antonio-Laptop:~$ lsmod | grep kvm
kvm_intel 487424 0

kvm 1409024 1 kvm_intel

irqbypass 12288 1 kvm

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ lsmod | grep kvm
kvm_amd 98304 0

ccp 86016 1 kvm_amd

kvm 655360 1 kvm_amd

To enable KVM acceleration when launching QEMU, we just need to

specify either the –accel kvm parameter or the formerly used -enable-kvm

parameter.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -m 1024

-boot c --accel kvm debian.qcow2

We might get this error message:

Could not access KVM kernel module: Permission denied

qemu-system-x86_64: failed to initialize KVM: Permission denied

As normal users don’t have access to /dev/kvm, we either run QEMU

with root privileges or grant permissions on /dev/kvm to the current user.

After successfully launching QEMU with KVM, we’ll immediately

notice that the performance is much better.

Chapter 2 QEMU

47

�QEMU Networking
A server without networking would be pretty much useless these days,

so when working with QEMU virtual machines, we need to take this into

account as well. The QEMU wiki has a lot of useful information that we’ll

try to summarize here.

To have an operational network in the VM, we need a network

backend. This network backend defines how the emulated network

interface interacts with the host’s network. Currently there are four

different network backends that can be used with QEMU:

•	 User networking: This is the default backend; we’ll see

it in the upcoming section.

•	 TAP networking: This is probably the best option

when we need to further customize the network

configuration beyond the functionality provided by

user networking. We will also study this backend in

more detail later in this chapter.

•	 VDE: This backend uses the Virtual Distributed

Ethernet, which provides virtual software-defined

network interface cards (NIC). Although this backend

is a perfectly valid solution, it is usually not the

preferred option, as TAP networking provides the same

functionality and it is easier to set up.

•	 Socket networking: It’s used to create a network of

guests that can see each other. Due to its simplicity

and limited usefulness, it’s rarely used, being TAP

networking the preferred choice.

Chapter 2 QEMU

https://wiki.qemu.org/Documentation/Networking

48

�User Networking
By default, without specifying any networking-related option, QEMU will

use “user networking,” also called SLIRP. In this case, the guest system

will be assigned an IP address in the 10.0.2.0/24 network. The IP address

10.0.2.2 will be used as the default gateway, and 10.0.2.3 will serve as

a DNS server. Optionally we could also launch a Samba server. This is

represented in Figure 2-14, taken from the QEMU wiki.

Figure 2-14.  QEMU user networking (image under GNU Free Doc
License)

From the guest, we can check this from the command line

(Figures 2-15 and 2-16).

Chapter 2 QEMU

https://wiki.qemu.org/images/9/93/Slirp_concept.png
https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt
https://www.gnu.org/licenses/old-licenses/fdl-1.2.txt

49

Figure 2-15.  User networking default IP configuration

Chapter 2 QEMU

50

Figure 2-16.  QEMU user networking. DNS server and
default gateway

The default gateway will be located by default at the 10.0.2.2 IP address

(Figure 2-16). We can use this address to access services running in the

host. For instance, let’s assume we are running an http server on the host.

antonio@antonio-Laptop:~/QEMU_VMs$ python3 -m http.server 8888

Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) ...

In this case, we can access the http server from the QEMU VM by

launching a web browser and pointing it to the 10.0.2.2 IP address and the

8888 port (Figure 2-17).

Chapter 2 QEMU

51

Figure 2-17.  Accessing the host web server from the guest system

This automatic network configuration can be all we need in certain

situations, but sometimes we’ll need to customize the network settings.

We’ll see the parameters we need to define the network settings. To start

with, we’ll open the QEMU monitor, as we saw before in this chapter

(pressing CTRL+ALT and then SHIFT and “2”). And we’ll type “info

network” (Figure 2-18).

Chapter 2 QEMU

52

Figure 2-18.  Network configuration in the QEMU monitor

We can see clearly the IP address as well as many other settings that

will help us understand how to define the networking in QEMU.

If we list the options of the command qemu-system-x86_64, we’ll see

among many others this option:

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 –help

.

.

.

-nic none �use it alone to have zero network devices

(the default is to

 provided a 'user' network connection)

Chapter 2 QEMU

53

.

.

.

We can launch QEMU with the “-net none” option if we don’t want

to have any network device. The help text says clearly that by default

a ‘user’ network connection is provided. This type of connection used

to be specified with the “-net nic -net user” option, but this syntax is

deprecated. If we consult the QEMU wiki or the man pages, we’ll see that

now the preferred syntax is to use the “-netdev” option.

Let’s launch QEMU with the same default configuration. But this

time we’ll explicitly use the network-related parameters in the command

line. This will help us to better understand how to set up more advanced

network settings in QEMU. As we said, we need to use the “-netdev”

parameter.

If we check the man page of qemu-system-x86_64 and search for the

“-netdev” option, we’ll see this line:

-netdev user,id=id[,option][,option][,...]

Configure user mode host network backend which requires no

administrator privilege to run.

We use “user” to tell that we want to use a “user network,” and we must

assign an id. This id will be used to associate the backend we just defined

with a device, a network device to be exact.

If we look at the man page again and search for the “-nic” option,

which configures the network backend and the network device in one go,

we’ll see an example:

qemu-system-x86_64 -netdev user,id=n1,ipv6=off -device e1000,ne

tdev=n1,mac=52:54:98:76:54:32

qemu-system-x86_64 -nic user,ipv6=off,model=e1000,m

ac=52:54:98:76:54:32

Chapter 2 QEMU

54

We can list the different network device models with the “-device list”

option. We’ll see the different models for “USB devices,” “network devices,”

“storage devices,” and so on. These are some of the network device models

supported by QEMU.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64

 -device help

.

.

.

Network devices:

name "e1000", bus PCI, alias "e1000-82540em", desc "Intel

Gigabit Ethernet"

.

.

.

name "pcnet", bus PCI

.

.

name "rtl8139", bus PCI

.

.

name "vmxnet3", bus PCI, desc "VMWare Paravirtualized

Ethernet v3"

Depending on the device model, we can use a series of options; we

can list these options with the qemu-system-x86_64 -device model,help.

By comparing the e1000 and the rtl8139 devices, we’ll see some minor

differences.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -device

e1000,help

e1000 options:

Chapter 2 QEMU

55

 acpi-index=<uint32> - (default: 0)

 addr=<int32> - �Slot and optional function number,

example: 06.0 or 06 (default: -1)

 autonegotiation=<bool> - on/off (default: true)

 bootindex=<int32>

 extra_mac_registers=<bool> - on/off (default: true)

 failover_pair_id=<str>

 init-vet=<bool> - on/off (default: true)

 mac=<str> - �Ethernet 6-byte MAC Address,

example: 52:54:00:12:34:56

 migrate_tso_props=<bool> - on/off (default: true)

 mitigation=<bool> - on/off (default: true)

 multifunction=<bool> - on/off (default: false)

 netdev=<str> - ID of a netdev to use as a backend

 rombar=<uint32> - (default: 1)

 romfile=<str>

 romsize=<uint32> - (default: 4294967295)

 x-pcie-extcap-init=<bool> - on/off (default: true)

 x-pcie-lnksta-dllla=<bool> - on/off (default: true)

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -device

rtl8139,help

rtl8139 options:

 acpi-index=<uint32> - (default: 0)

 addr=<int32> - �Slot and optional function number,

example: 06.0 or 06 (default: -1)

 bootindex=<int32>

 failover_pair_id=<str>

 mac=<str> - �Ethernet 6-byte MAC Address,

example: 52:54:00:12:34:56

 multifunction=<bool> - on/off (default: false)

 netdev=<str> - ID of a netdev to use as a backend

Chapter 2 QEMU

56

 rombar=<uint32> - (default: 1)

 romfile=<str>

 romsize=<uint32> - (default: 4294967295)

 x-pcie-extcap-init=<bool> - on/off (default: true)

 x-pcie-lnksta-dllla=<bool> - on/off (default: true)

Now that we understand the parameters needed, let’s launch qemu-

system-x86_64 again.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ qemu-

system-x86_64 -m 2048 \

> -accel kvm -netdev user,id=my_network \

> -device e1000,netdev=my_network debian.qcow2

The system will boot up normally. If we open the QEMU monitor again

and type “info network”, we’ll see the information in Figure 2-19.

Chapter 2 QEMU

57

Figure 2-19.  QEMU monitor network settings

We’ll stop the VM and launch a new QEMU instance. But this time

we’ll customize some parameters.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -m

2048 -accel kvm -netdev user,id=my_network2,net=192.168.7

4.0/24,dhcpstart=192.168.74.17 -device rtl8139,netdev=my_

network2,mac=52:54:00:77:77:77 debian.qcow2

We have added a couple of options to the -netdev parameter: net, to

use a specific network address instead of the default, and dhcpstart, to use

the built-in DHCP server included in QEMU, specifying the first available

IP address too. We also used a different network device model (rtl8139),

and we added the mac option to define the MAC address to use.

Chapter 2 QEMU

58

After booting up the VM, we open the QEMU monitor again, and

we see the network settings with “info network”. As expected, we get the

information we provided on the command line (Figure 2-20).

Figure 2-20.  QEMU monitor customized network settings

And if we execute “ip a” in the console, we’ll see that the IP address is

the first available IP defined in the DHCP scope (Figure 2-21).

Chapter 2 QEMU

59

Figure 2-21.  IP address

�QEMU Port Forwarding

When using user networking, we can also forward ports from the host

to the virtual machine, so that every connection to a certain port in the

host will be forwarded to the VM. For example, we can forward every

connection to the host port 10022 to the VM port 22.

If we look again at the man page, in the options available in user

networking, we’ll see the following line:

hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

Chapter 2 QEMU

60

The syntax is very easy; we can specify the protocol used (tcp by

default), the host address and port, as well as the guest address and port.

As we said before, in our example, we’ll redirect all connections to TCP

port 10022 in any address of the host to TCP port 22 in the guest.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -m 2048

 -accel kvm -netdev user,id=my_network,hostfwd=tcp::10022-:22

 -device e1000,netdev=my_network debian.qcow2

If we check the listening port in the host, we’ll see that the QEMU

binary is the one that is actually listening.

antonio@antonio-Laptop:~/QEMU_VMs$ lsof -i :10022

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

qemu-syst 102743 antonio 16u IPv4 2215091 0t0 TCP

*:10022 (LISTEN)

Now we can easily connect with ssh to the virtual machine.

antonio@antonio-Laptop:~/QEMU_VMs$ ssh -p 10022 antonio@

localhost

The authenticity of host '[localhost]:10022

([127.0.0.1]:10022)' can't be established.

ED25519 key fingerprint is SHA256:jA05MUsqGOYePF3fs+ReUFOPYITJp

PW6FzEtkDQ3v0o.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/

[fingerprint])? yes

Warning: Permanently added '[localhost]:10022' (ED25519) to the

list of known hosts.

antonio@localhost's password:

Linux debian 6.1.0-18-amd64 #1 SMP PREEMPT_DYNAMIC Debian

6.1.76-1 (2024-02-01) x86_64

Chapter 2 QEMU

61

The programs included with the Debian GNU/Linux system are free

software;

the exact distribution terms for each program are

described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to

the extent

permitted by applicable law.

antonio@debian:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host noprefixroute

 valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_

codel state UP group default qlen 1000

 link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff

 altname enp0s3

 �inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic

noprefixroute ens3

 valid_lft 86213sec preferred_lft 86213sec

 �inet6 fec0::2555:6d54:86f7:8239/64 scope site

temporary dynamic

 valid_lft 86216sec preferred_lft 14216sec

 �inet6 fec0::5054:ff:fe12:3456/64 scope site dynamic

mngtmpaddr noprefixroute

 valid_lft 86216sec preferred_lft 14216sec

 inet6 fe80::5054:ff:fe12:3456/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

antonio@debian:~$

Chapter 2 QEMU

62

�Networking by Using TUN/TAP Devices
Using the default user networking mode can be enough for certain

purposes, but it has many limitations. To overcome those limitations, we

can use TUN/TAP devices. TUN/TAP devices are kernel-based virtual

network devices entirely supported in software. TUN devices work at the

network layer, whereas TAP devices work at the data link layer.

In order to create a TUN/TAP device, we’ll need the tunctl command,

which is included in the uml-utilities package.

antonio@antonio-Laptop:~$ apt search tunctl

Sorting... Done

Full Text Search... Done

uml-utilities/jammy 20070815.4-1 amd64

 User-mode Linux (utility programs)

antonio@antonio-Laptop:~$ sudo apt install uml-utilities

Once installedthe package, we can use the tunctl command. We can

use it to create a persistent TUN/TAP device owned by user antonio.

antonio@antonio-Laptop:~$ tunctl -u antonio

TUNSETIFF: Operation not permitted

antonio@antonio-Laptop:~$ sudo tunctl -u antonio

Set 'tap0' persistent and owned by uid 1000

antonio@antonio-Laptop:~/QEMU_VMs$ ip link show dev tap0

13: tap0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN

mode DEFAULT group default qlen 1000

 link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

We are now ready to use the tap device with QEMU; in order to do

that, we need to specify the netdev and dev parameters, as we saw before

when we talked about user networking. If we take a look again at the man

Chapter 2 QEMU

63

page of qemu-system-x86_64, we’ll see the following line regarding TAP

networking:

-netdev tap,id=id[,fd=h][,ifname=name][,script=file]

[,downscript=dfile][,br=bridge][,helper=helper]

Configure a host TAP network backend with ID id.

The syntax is very similar to what we have already seen when studying

user network. The main difference is that we must use “-netdev tap”

instead of “-netdev user”. Next we’ll see a practical example, but first we’ll

delete the tap0 interface we created manually because when using TAP

networking, QEMU itself takes care of creating the TAP interfaces.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo tunctl -d tap0

Set 'tap0' nonpersistent

We’ll clarify all these concepts with an example. We launch a QEMU

instance with the following options:

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -accel

kvm -m 2048 -netdev tap,id=tap_network -device virtio-

net,netdev=tap_network debian.qcow2

qemu-system-x86_64: -netdev tap,id=tap_network: could not

configure /dev/net/tun: Operation not permitted

We see QEMU tried to create the TUN/TAP device, but it couldn’t

because we need sudo permissions to achieve that. We’ll launch the

instance again with sudo.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ sudo qemu-

system-x86_64 -accel kvm -m 2048 -netdev tap,id=tap_network

 -device virtio-net,netdev=tap_network debian.qcow2

W: /etc/qemu-ifup: no bridge for guest interface found

Chapter 2 QEMU

64

This time the VM will boot. The options used are basically the same as

those we used with user network, but using TAP network instead. Besides

we use this time a different device, virtio-net, a paravirtualized (Chapter 1)

device. Right after launching the instance, we see a warning about a

missing bridge that we can ignore for now.

Once the system is booted, we’ll see a “Connection failed” message

(Figure 2-22).

Figure 2-22.  QEMU instance using TAP network

As we have done several times before, we can also use the QEMU

monitor to get more information about the network (Figure 2-23).

Chapter 2 QEMU

65

Figure 2-23.  QEMU monitor. Networking info

We can also check the network configuration from the console. We’ll

see that the ip interface exists in the guest (Figure 2-24).

Chapter 2 QEMU

66

Figure 2-24.  IP settings

In the host, we can see that QEMU has created successfully the tap

interface.

antonio@antonio-Laptop:~/QEMU_VMs$ ip address show dev tap0

14: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UNKNOWN group default qlen 1000

 link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::420:7aff:feac:2938/64 scope link

 valid_lft forever preferred_lft forever

antonio@antonio-Laptop:~/QEMU_VMs$ ip link show dev tap0

14: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UNKNOWN mode DEFAULT group default qlen 1000

 link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

Chapter 2 QEMU

67

The interfaces exist in both sides of the connection, but they don’t have

any IP address assigned. We’ll set an IP address for each interface. We’ll

begin in the host side.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip address add

10.7.7.1/24 dev tap0

antonio@antonio-Laptop:~/QEMU_VMs$ ip address show dev tap0

14: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UNKNOWN group default qlen 1000

 link/ether 06:20:7a:ac:29:38 brd ff:ff:ff:ff:ff:ff

 inet 10.7.7.1/24 scope global tap0

 valid_lft forever preferred_lft forever

 inet6 fe80::420:7aff:feac:2938/64 scope link

 valid_lft forever preferred_lft forever

And we do the same thing on the guest.

antonio@debian:~$ su - root

Password:

root@debian:~# ip address add 10.7.7.2/24 dev ens3

root@debian:~# ip address show dev ens3

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000

 link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff

 altname enp0s3

 inet 10.7.7.2/24 scope global ens3

 valid_lft forever preferred_lft forever

We must also make sure that the interfaces are active in both sides with

the “ip link show” command; if that’s not the case, we’ll activate them.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip link set tap0 up

root@debian:~# ip link set ens3 up

Chapter 2 QEMU

68

After that, we should be able to ping the interfaces.

root@debian:~# ping -c 1 10.7.7.1

PING 10.7.7.1 (10.7.7.1) 56(84) bytes of data.

64 bytes from 10.7.7.1: icmp_seq=1 ttl=64 time=0.147 ms

--- 10.7.7.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.147/0.147/0.147/0.000 ms

antonio@antonio-Laptop:~/QEMU_VMs$ ping -c 1 10.7.7.2

PING 10.7.7.2 (10.7.7.2) 56(84) bytes of data.

64 bytes from 10.7.7.2: icmp_seq=1 ttl=64 time=0.448 ms

--- 10.7.7.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.448/0.448/0.448/0.000 ms

If for any reason the ping command does not work, we must review the

procedure and check that both sides of the connection have the IP address

correctly assigned, that both interfaces are up, and that there are no typos

in the address.

The communication between the host and the guest is now analogous

to the communication between two devices in the same network; we can

ping each host, scan the ports, access any available service, etc.

�Creating a Bridge for External Access
We have seen in the previous section how to set up a TAP network. But in

this case, the communication is limited to the host. The guest VM won’t be

able to reach any network device external to the host in which it is running.

In order to be able to access the external network, we’ll create a bridge

in our host, connecting the tap interface previously created with a physical

interface in the host. To do it, we’ll use the brctl command, which is included

in the bridge-utils package. So, first of all, we need to install this package.

Chapter 2 QEMU

69

antonio@antonio-Laptop:~$ apt-file find brctl

bash-completion: /usr/share/bash-completion/completions/brctl

bridge-utils: /sbin/brctl

.

.

.

antonio@antonio-Laptop:~$ sudo apt install bridge-utils

Once brctl is installed, we create a bridge.

antonio@antonio-Laptop:~$ sudo brctl addbr my_bridge0

We add the tap interface to the bridge.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo brctl addif my_

bridge0 tap0

And we also add the host’s Ethernet interface to the other end of

the bridge.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo brctl addif my_bridge0

enx28ee520617e2

We make sure that the bridge interface is up; if that’s not the case, we’ll

activate it.

antonio@antonio-Laptop:~/QEMU_VMs$ ip link show my_bridge0

15: my_bridge0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state

DOWN mode DEFAULT group default qlen 1000

 link/ether 66:2d:06:dc:de:8e brd ff:ff:ff:ff:ff:ff

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ip link set

my_bridge0 up

Chapter 2 QEMU

70

antonio@antonio-Laptop:~/QEMU_VMs$ ip link show my_bridge0

15: my_bridge0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue state UP mode DEFAULT group default qlen 1000

 link/ether 66:2d:06:dc:de:8e brd ff:ff:ff:ff:ff:ff

Now we just need to set up an IP address on the guest system that is in

the same range used in our network.

antonio@debian:~$ su - root

Password:

root@debian:~# ip address add 192.168.1.3/24 dev ens3

From now on, we can access any device on the same network, and the

guest is also accessible from the network. If we set up the default gateway,

we can also access external networks.

�QEMU Guest Agent
In order to improve the overall performance of any QEMU-based virtual

machine, we can install the QEMU System Agent. It provides a service

(agent) that runs inside the guest and communicates with the host using

a virtio-serial channel org.qemu.guest_agent.0. This allows to perform a

series of functions in the guest from the host.

As we already have installed a Debian server with QEMU, we can

search for the QEMU system agent package on the guest system.

antonio@debian:~$ apt search qemu-guest-agent

Sorting... Done

Full Text Search... Done

qemu-guest-agent/unknown,now 1:7.2+dfsg-7+deb12u5 amd64

[installed]

 Guest-side qemu-system agent

Chapter 2 QEMU

71

This software will allow us to perform many operations like querying

and setting system time, initiating gust shutdown, performing guest

filesystem sync operations, and so on. We’ll install it the usual way.

antonio@debian:~$ su - root

Password:

root@debian:~# apt install qemu-guest-agent

After installing it, we check the status of the associated service.

root@debian:~# systemctl status qemu-guest-agent.service

○ qemu-guest-agent.service - QEMU Guest Agent

 �Loaded: loaded (/lib/systemd/system/qemu-guest-agent.

service; static)

 Active: inactive (dead)

 root@debian:~#

As the service is currently stopped, we’ll try to start it.

root@debian:~# systemctl start qemu-guest-agent.service

A dependency job for qemu-guest-agent.service failed. See

'journalctl -xe' for details.

The system tries to start the service, but it fails and returns an error

message. As suggested, we check the system journal.

root@debian:~# journalctl -xe

After browsing the journal, we’ll see a few lines similar to these:

 The unit run-credentials-systemd\x2dtmpfiles\x2dclean.service.

mount has successfully entered the 'dead' state.

May 18 15:51:07 debian systemd[1]: Expecting device dev-virtio\

x2dports-org.qemu.guest_agent.0.device - /dev/virtio-ports/

org.qemu.>

Chapter 2 QEMU

72

░░ Subject: A start job for unit dev-virtio\x2dports-org.

qemu.guest_agent.0.device has begun execution

░░ Defined-By: systemd

░░ Support: https://www.debian.org/support

░░
░░ A start job for unit dev-virtio\x2dports-org.qemu.guest_

agent.0.device has begun execution.

░░
░░ The job identifier is 1860.

May 18 15:52:37 debian systemd[1]: dev-virtio\x2dports-org.

qemu.guest_agent.0.device: Job dev-virtio\x2dports-org.qemu.

guest_agent.>

May 18 15:52:37 debian systemd[1]: Timed out waiting for device

dev-virtio\x2dports-org.qemu.guest_agent.0.device - /dev/

virtio-por>

░░ Subject: A start job for unit dev-virtio\x2dports-org.

qemu.guest_agent.0.device has failed

░░ Defined-By: systemd

░░ Support: https://www.debian.org/support

░░
░░ A start job for unit dev-virtio\x2dports-org.qemu.guest_

agent.0.device has finished with a failure.

░░
░░ The job identifier is 1860 and the job result is timeout.

May 18 15:52:37 debian systemd[1]: Dependency failed for qemu-

guest-agent.service - QEMU Guest Agent.

It’s not always easy finding the right information in the system journal;

in our case, the line we must pay special attention to is this one:

Timed out waiting for device dev-virtio\x2dports-org.qemu.

guest_agent.0.device - /dev/virtio-ports/org.qemu.guest_

agent.0.

Chapter 2 QEMU

73

As implied by the error message, this device doesn’t exist.

root@debian:~# ls /dev/virtio-ports/org.qemu.guest_agent.0

ls: cannot access '/dev/virtio-ports/org.qemu.guest_agent.0':

No such file or directory

We need to define the virtio-serial device when launching QEMU. We

can see the detailed information in the QEMU wiki. According to it, we

must include these options when launching QEMU:

-chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0

-device virtio-serial

-device virtserialport,chardev=qga0,name=org.qemu.guest_agent.0

As we said when defining the QEMU Guest Agent, it communicates

with the host using a virtio-serial channel org.qemu.guest_agent.0. In the

above lines, we see that we’re defining a virtio-serial device with that exact

name, which is backed by a character device. Let’s launch QEMU again

with all these options.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-

system-x86_64 -accel kvm -m 2048 -netdev user,id=my_

network,hostfwd=tcp::10022-:22 -device e1000,netdev=my_network

 -chardev socket,path=/tmp/qga.sock,server=on,wait=off,id=qga0

 -device virtio-serial -device virtserialport,chardev=qga0,name=

org.qemu.guest_agent.0 debian.qcow2

Now we’ll check again the status of the QEMU Guest Agent service.

● qemu-guest-agent.service - QEMU Guest Agent

 �Loaded: loaded (/lib/systemd/system/qemu-guest-agent.

service; static)

 �Active: active (running) since Sat 2024-05-18 16:58:46

CEST; 3min 19s ago

Chapter 2 QEMU

https://wiki.qemu.org/Features/GuestAgent

74

 Main PID: 415 (qemu-ga)

 Tasks: 2 (limit: 2291)

 Memory: 1.3M

 CPU: 232ms

 CGroup: /system.slice/qemu-guest-agent.service

 └─415 /usr/sbin/qemu-ga

As we can see, this time the service is up and running.

Before trying to perform a simple test on the QEMU Guest Agent, we’ll

learn a bit about how this agent works. The QEMU Guest Agent uses the

QEMU machine protocol (QMP) to communicate and interact. We can test

it by launching any QEMU instance with the following option:

-qmp tcp:localhost:4444,server,wait=off

This option redirects the monitor to the TCP port 4444, so that we can

interact with it using a tool like telnet. From the host, we can now telnet

local port 4444, and we’ll see this:

antonio@antonio-Laptop:~/QEMU_VMs$ telnet localhost 4444

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

{"QMP": {"version": {"qemu": {"micro": 0, "minor": 2,

"major": 6}, "package": "Debian 1:6.2+dfsg-2ubuntu6.19"},

"capabilities": ["oob"]}}

In the open telnet connection, we can type the following:

{ "execute": "qmp_capabilities" }

If all goes well we’ll see this line:

{"return": {}}

Chapter 2 QEMU

75

Now QMP is in command mode, and we can issue commands. We can

list the commands available with this instruction:

{ "execute": "query-commands" }

It will return a very long list, which we see abridged here.

{"return": [{"name": "device_add"}, {"name": "query-pci"},

{"name": "query-acpi-ospm-status"},…

Now that we understand a bit better how QMP works, we’ll test the

QEMU Guest Agent. To better interact with the agent, we’ll install socat.

Socat will make it easier to communicate with a byte stream.

antonio@antonio-Laptop:~$ apt search socat

Sorting... Done

Full Text Search... Done

socat/jammy 1.7.4.1-3ubuntu4 amd64

 multipurpose relay for bidirectional data transfer

antonio@antonio-Laptop:~$ sudo apt install socat

Next we use socat to connect the standard input/output to the socket

used by QEMU agent user.

antonio@antonio-Laptop:~$ sudo socat STDIO UNIX:/tmp/qga.sock

Now we’re ready to type the commands. First, we make sure that the

channel is synchronized.

{"execute":"guest-sync", "arguments":{"id":1234}}

If we receive this response, everything is fine.

{"return": 1234}

Chapter 2 QEMU

76

We can also ping the agent.

{"execute":"guest-ping"}

{"return": {}}

And we can get info about the supported commands.

{"execute": "guest-info"}

{"return": {"version": "7.2.9", "supported_commands": [{"enabled":

true, "name": "guest-get-cpustats", "success-response": true},

{"enabled": true, "name": "guest-get-diskstats", "success-

response": true}, {"enabled": true, "name": "guest-ssh-remove-

authorized-keys", "success-response": true

.

.

.

We can get statistics about the CPU usage, or get information about the

logged-in users in the guest system.

{"execute": "guest-get-cpustats"}

{"return": [{"cpu": 0, "guestnice": 0, "idle": 1845870, "steal":

130, "iowait": 560, "system": 8170, "guest": 0, "nice": 430,

"irq": 0, "type": "linux", "user": 7820, "softirq": 20}]}

{"execute": "guest-get-users"}

{"return": [{"login-time": 1716047181.1631711, "user":

"antonio"}]}

�QEMU Monitor
When working with QEMU, we have access to a special console that we can

use to monitor different aspects of the VM; this console is called QEMU

monitor. We can access it by keeping pressed down the “mouse grab” key

Chapter 2 QEMU

77

combination, which is by default CTRL+ALT, and then pressing the SHIFT

key and “2”. To switch back to the normal OS console, we repeat the same

process but pressing the SHIFT key and “1” instead of “2”. We have already

seen many examples when studying the networking options before in the

book. Now we’ll see many other useful tasks that we can perform on the

QEMU monitor.

From the QEMU monitor, we can perform many tasks; maybe the first

command that we type should be “info”, which provides a list of commands

that we can use (Figure 2-25).

Figure 2-25.  QEMU monitor. Getting info

Chapter 2 QEMU

78

We can get information about the disk devices with “info block”

(Figure 2-26).

Figure 2-26.  QEMU monitor. Getting disk devices information

Chapter 2 QEMU

79

In the output, we see that no CD/DVD is attached right now. We

can insert a CD/DVD using the command change ide1-cd0 path_to_iso

(Figure 2-27).

Figure 2-27.  QEMU monitor. Inserting a CD/DVD

Chapter 2 QEMU

80

If we switch from the QEMU monitor to the server console

(CTRL+ALT) and SHIFT+1, we’ll see that we have a CD/DVD inserted

(Figure 2-28).

Figure 2-28.  Accessing the CD/DVD from the File Manager

Chapter 2 QEMU

81

A command that can be useful sometimes is getting a screenshot of the

VM. We can do it with the screendump command (Figure 2-29).

Figure 2-29.  QEMU monitor. Getting a screenshot

Chapter 2 QEMU

82

We can access the newly created screenshot from the host by using

the File Manager and opening the path QEMU was launched from

(Figure 2-30).

Figure 2-30.  Screenshot generated from the QEMU monitor

Another very important feature is the ability to create snapshots. This is

very practical when we need to apply software updates, or perform major

changes in a system, and we want to make sure that we can roll back to a

known state if any problem arises.

To test snapshot creation and restoration, we’ll begin by creating a

simple text document in our guest.

antonio@debian:~$ mkdir documents

antonio@debian:~$ cd documents/

antonio@debian:~/documents$ echo "This is a very important

document" > important_doc.txt

antonio@debian:~/documents$ ls

important_doc.txt

Chapter 2 QEMU

83

And now we create a snapshot with the savevm command

(Figure 2-31).

Figure 2-31.  QEMU monitor. Creating a snapshot

We’ll delete now the document we just created.

antonio@debian:~/documents$ cat important_doc.txt

This is a very important document

antonio@debian:~/documents$ rm important_doc.txt

antonio@debian:~/documents$ cat important_doc.txt

cat: important_doc.txt: No such file or directory

Chapter 2 QEMU

84

If we want to revert our system to a previous state, we need to check

whether we have any snapshot available. In this case, we know we have

a snapshot available, but if we didn’t know, we’d need to use the info
snapshots command (Figure 2-32).

Figure 2-32.  QEMU monitor. Getting the list of snapshots

Chapter 2 QEMU

85

As we have a snapshot available, we can restore it with “loadvm”

(Figure 2-33).

Figure 2-33.  QEMU monitor. Restoring a snapshot

Chapter 2 QEMU

86

Finally, if we don’t need a snapshot anymore, we can delete it with

“delvm” (Figure 2-34).

Figure 2-34.  QEMU monitor. Deleting a snapshot

Chapter 2 QEMU

87

Besides getting information about the network, we can also obtain

information about the CPU, the memory installed, etc. We can also

obtain information about KVM acceleration or the network connections

(Figure 2-35).

Figure 2-35.  QEMU monitor. Getting information from the system

Chapter 2 QEMU

88

From the QEMU monitor, we can also shut down or reset the system

with system_powerdown or system_reset, respectively (Figure 2-36).

Figure 2-36.  QEMU monitor. Shutting down the system

�Other Useful QEMU Options
We have seen many options that we can use with QEMU; of course not

all of them as that would require a whole book (or several books). Here

we’ll see a few more options we haven’t seen so far which can be also

very useful.

Chapter 2 QEMU

89

When studying networking, we saw we could emulate different

devices: e1000, rtl8139, paravirtualized devices, etc. The same thing

applies to CPU; we can emulate many CPU models. We can obtain the full

list with qemu-system-x86_64 -cpu help.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -cpu help

Available CPUs:

x86 486 (alias configured by machine type)

x86 486-v1

x86 Broadwell (alias configured by machine type)

x86 Broadwell-IBRS (alias of Broadwell-v3)

.

.

.

In addition to the CPU model, we can also specify the number of CPUs

with the -smp option.

About the disk options, so far we have launched the QEMU instances

by passing the name of the file that contains the virtual disk image we

generated previously with qemu-img without any additional parameters.

If you remember, when we studied the QEMU monitor and checked the

information of the disk devices, we saw that the disk was an IDE device,

but we can specify an SCSI device, a flash disk, etc.

Finally, I would like to comment that when launching QEMU

instances, a new graphical window pops up. This is because the default

 -display option is sdl, and unless we explicitly say otherwise, this will

be the display used. Apart from sdl, we can use other options like vnc or

nographic. In fact, when we used QEMU to emulate a SPARC system, we

used this last option.

Chapter 2 QEMU

90

As a practical example, we’re going to launch a new QEMU instance

with some of these options.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-

system-x86_64 -accel kvm -m 2048 -netdev user,id=my_

network,hostfwd=tcp::10022-:22 -device e1000,netdev=my_network

 -cpu core2duo -smp cpus=2 -display vnc=0.0.0.0:0 -drive

file=debian.qcow2,if=virtio

Now we won’t see any graphical window popping up. But we can

connect with ssh and check some of the customized characteristics we just

defined when launching the QEMU instance.

antonio@debian:~$ lscpu

Architecture: x86_64

 CPU op-mode(s): 32-bit, 64-bit

 Address sizes: 40 bits physical, 48 bits virtual

 Byte Order: Little Endian

CPU(s): 2

 On-line CPU(s) list: 0,1

Vendor ID: GenuineIntel

 Model name: Intel(R) Core(TM)2 Duo

CPU T7700 @ 2.40GHz

We can clearly see same CPU model we specified, and we also realize

that we have two CPUs. If we check the disk, we’ll see that it is identified as

/dev/vda, because we explicitly said that we’d be using paravirtualization

(virtio option in -drive).

antonio@debian:~$ su - root

Password:

root@debian:~# fdisk -l

Chapter 2 QEMU

91

Disk /dev/vda: 10 GiB, 10737418240 bytes, 20971520 sectors

.

.

.

Finally, we can connect to the server console with any VNC client

(Figure 2-37).

Figure 2-37.  Accessing the server console with VNC

�Summary
In this chapter, we have become familiar with a fantastic open source tool,

QEMU. This program can not only perform full system emulation, either

hardware or software based, but can also perform user mode emulation.

In addition, it works perfectly well in association with KVM or Xen, which

makes it an amazing program for anybody interested in emulation and/or

virtualization.

Chapter 2 QEMU

92

In the chapter, we emulated different architectures like ARM and

SPARC. We executed binaries compiled for different processors and

experienced about the different options we have available to set up the

network. We also learned how useful the QEMU monitor can be and

experienced launching QEMU with different parameters.

Chapter 2 QEMU

93© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_3

CHAPTER 3

Xen
In this chapter, we’ll cover the following concepts:

•	 Xen architecture, networking, and storage

•	 Xen configuration

•	 Xen utilities

•	 Troubleshooting Xen installations

•	 Basic knowledge of XAPI

•	 Awareness of XenStore

•	 Awareness of Xen Boot Parameters

•	 Awareness of the xm/xl utility

�Xen Architecture
Xen is a type 1 hypervisor that allows to execute different operating

systems on the same machine. It was originally developed at the University

of Cambridge, and it is now maintained by the Linux Foundation. We can

take a look at its architecture in Figure 3-1.

https://doi.org/10.1007/979-8-8688-1080-0_3#DOI

94

Figure 3-1.  Xen architecture, from the Xen wiki page used under
Creative Commons License

The hypervisor executes directly on the host, and we have a Control

Domain (Domain 0) that has the ability to communicate with the

hypervisor and tell it to start and stop the unprivileged domains, called

domUx. In addition, the Control Domain also has the needed drivers to

access the hardware. In this chapter, we’ll use the terms “unprivileged

domain” and “virtual machine” interchangeably.

�Installation and Configuration of Xen
The installation of Xen is not very complicated, but it is not as

straightforward as the use of KVM either. We’ll need to install a customized

kernel to use Xen. We’ll see this procedure in detail in the following

sections.

Chapter 3 Xen

https://creativecommons.org/licenses/by-sa/3.0/

95

�Installing Xen
Xen can be downloaded from the Xen project web page and manually

installed, but there are also precompiled versions available for the

main Linux distributions. We’ll install Xen on an Ubuntu 20 server. We

should make sure that the future Xen server has enough resources to

host the virtual machines; otherwise, we might run into situations in

which the hypervisor seems to execute but when creating and managing

virtual machines, we might get strange errors that are not always easy to

troubleshoot. In our case, we’ll be using a 2 CPU server with 4 GB RAM and

about 20 GB of space disk available for the VMs.

�Installing on Ubuntu 20

If we perform a search of Xen-related packages, we’ll see a package similar

to this one:

antonio@ubuntu:~$ apt search xen-hypervisor-4.11-amd64

Sorting... Done

Full Text Search... Done

xen-hypervisor-4.11-amd64/focal-updates,focal-security

4.11.3+24-g14b62ab3e5-1ubuntu2.3 amd64

 Xen Hypervisor on AMD64

To install Xen, we need to install this package.

antonio@ubuntu:~$ sudo apt install xen-hypervisor-4.11-amd64

After installing Xen, the Grub boot loader is modified accordingly to

load the kernel with Xen support.

It is also a good idea to install the Xen tools, which will be very helpful

to manage our Xen environment.

antonio@ubuntu:~$ sudo apt install xen-tools

Chapter 3 Xen

https://xenproject.org/

96

If we now restart the Ubuntu server, the kernel with Xen will be loaded

automatically. However, if we want to make sure of it and have the option

to choose which kernel to boot from, we should make some changes to our

system. We can see grub default settings in the /etc/default/grub file. In the

first lines, we’ll see something like this:

antonio@ubuntu:~$ cat /etc/default/grub

�If you change this file, run 'update-grub' afterwards

to update

/boot/grub/grub.cfg.

For full documentation of the options in this file, see:

info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0

GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=0

GRUB_DISTRIBUTOR='lsb_release -i -s 2> /dev/null || echo Debian'
GRUB_CMDLINE_LINUX_DEFAULT="quiet"

GRUB_CMDLINE_LINUX="find_preseed=/preseed.cfg auto noprompt

priority=critical locale=en_US"

To see the grub menu when the system boots, we need to change the

value of the GRUB_TIMEOUT_STYLE parameter, and we also need to edit

the GRUB_TIMEOUT parameter to set the number of seconds that the

menu will be shown before booting the default kernel.

GRUB_TIMEOUT_STYLE=menu

GRUB_TIMEOUT=5

After modifying the file, we’ll execute the update-grub command to

apply the changes to the current configuration.

antonio@ubuntu:~$ sudo update-grub

Chapter 3 Xen

97

From now on, every time we boot the system, we’ll see the grub menu

(Figure 3-2).

Figure 3-2.  Ubuntu grub menu

�Configuring Xen
Once we boot the Xen host with the appropriate kernel, we can use many

tools to check that everything is working. For instance, we can use the xen
list command.

antonio@ubuntu:~$ sudo xen list

[sudo] password for antonio:

Name ID Mem VCPUs State Time(s)

Domain-0 0 3916 2 r----- 98.7

Chapter 3 Xen

98

Or we can get the same information with xl list.

antonio@ubuntu:~$ sudo xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 3916 2 r----- 100.3

Another command we can use to list the VMs/domains currently

executing is xentop.

antonio@ubuntu:~$ sudo xentop

xentop - 11:19:47 Xen 4.11.4-pre

1 domains: 1 running, 0 blocked, 0 paused, 0 crashed, 0 dying,

0 shutdown

Mem: 4193720k total, 3134908k used, 1058812k free CPUs: 2

@ 2099MHz

 NAME STATE CPU(sec) CPU(%) MEM(k) MEM(%)

MAXMEM(k) MAXMEM(%) VCPUS NETS NETTX(k) NETRX(k) VBDS

VBD_OO VBD_RD VBD

_WR VBD_RSECT VBD_WSECT SSID

 Domain-0 -----r 13921 128.1 3083376 73.5

no limit n/a 2 0 0 0

 0 0 0

 0 0 0 0

In all the cases, we’ll see that right now we only have the privileged

domain running. In the next sections, we’ll begin to create some additional

VMs/unprivileged domains.

�Creating a Logical Volume to Store
the Virtual Machines
Even though it is not necessary, it is, however, a good idea to keep the VMs

and their related files in a dedicated storage location, such as a logical

volume. In our example, we’ll create a new logical volume for this purpose.

Chapter 3 Xen

99

Assuming we already have added a new disk with enough capacity, we’ll

create the corresponding physical volume. The procedure is about the

same in any Linux server. We’ll see how to do it in Ubuntu.

antonio@ubuntu:~$ sudo pvcreate /dev/sdb

 Physical volume "/dev/sdb" successfully created.

And then we create the Volume Group.

antonio@ubuntu:~$ sudo vgcreate VM_VG /dev/sdb

 Volume group "VM_VG" successfully created

Finally, we create the corresponding Logical Volume.

antonio@ubuntu:~$ sudo lvcreate -n VM_LV -l 100%free VM_VG

 Logical volume "VM_LV" created.

We format the Logical Volume we just created and we mount it.

antonio@ubuntu:~$ sudo mkfs.ext4 /dev/mapper/VM_VG-VM_LV

[sudo] password for antonio:

mke2fs 1.44.1 (24-Mar-2018)

Creating filesystem with 5241856 4k blocks and 1310720 inodes

Filesystem UUID: 5e7fa6b6-1362-4eb5-a645-487dd02ae7f4

Superblock backups stored on blocks:

 �32768, 98304, 163840, 229376, 294912, 819200, 884736,

1605632, 2654208, 4096000

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

antonio@ubuntu:~$ sudo mkdir /XEN_VMS

antonio@ubuntu:~$ sudo mount /dev/mapper/VM_VG-VM_LV /XEN_VMS/

antonio@ubuntu:~$ sudo chown antonio /XEN_VMS

Chapter 3 Xen

100

In addition to having a dedicated Logical Volume for our virtual

machines, it would also be a good idea to have another LV to store the

installation ISO images.

Finally, we edit the /etc/fstab file, so that the filesystem is automatically

mounted when the system boots.

�Creating Virtual Machines
We can create a new virtual machine using different tools. In the next

chapter, when we study libvirt, we’ll see many utilities like virsh or virt-
manager, which can be very convenient when creating virtual machines

in Xen (and also in other hypervisors). For now, we’ll create the VMs

manually by creating the corresponding configuration file.

�Installing a Virtual Machine by Editing
a Configuration File
In Xen, every virtual machine will need to have an associated text file. In

the /etc/xen/ folder, we can find different example files. The content of the

folder differs depending on the Linux distribution we are working with,

but the example files are similar. For instance, in Ubuntu, we have a couple

of example files about a paravirtualized Linux and a fully virtualized

(hvm) Linux.

Here we see some of the main lines of the paravirtualized Linux

configuration file.

antonio@ubuntu:~$ cat /etc/xen/xlexample.pvlinux

#===

Example PV Linux guest configuration

#===

#

Chapter 3 Xen

101

This is a fairly minimal example of what is required for a

Paravirtualised Linux guest. For a more complete guide see

xl.cfg(5)

Guest name

name = "example.pvlinux"

.

.

.

Kernel image to boot

kernel = "/boot/vmlinuz"

Ramdisk (optional)

#ramdisk = "/boot/initrd.gz"

Kernel command line options

extra = "root=/dev/xvda1"

Initial memory allocation (MB)

memory = 128

.

.

.

Number of VCPUS

vcpus = 2

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = ['']

Disk Devices

A list of 'diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw']

Chapter 3 Xen

102

As for the fully virtualized Linux, we can see pretty much the same

options with a few key differences.

antonio@ubuntu:~$ cat /etc/xen/xlexample.hvm

#===

Example HVM guest configuration

#===

#

This is a fairly minimal example of what is required for an

HVM guest. For a more complete guide see xl.cfg(5)

This configures an HVM rather than PV guest

type = "hvm"

Guest name

name = "example.hvm"

.

.

.

Initial memory allocation (MB)

memory = 128

.

.

.

Number of VCPUS

vcpus = 2

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = ['']

Chapter 3 Xen

103

Disk Devices

A list of 'diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw']

Guest VGA console configuration, either SDL or VNC

sdl = 1

#vnc = 1

Let’s take a look at some of the main options.

•	 Type: This parameter is used to specify whether

the domain created will be fully virtualized or

paravirtualized. Possible values are “pv” for

paravirtualized domains and “hvm” for fully virtualized

domains with emulated BIOS, disk, and network

peripherals. There is also an intermediate option,

“pvh”, a lightweight hvm without many of the emulated

devices we find on “normal” hvm guests. If we do not

specify the type parameter, it is assumed that we’re

defining a paravirtualized domain.

•	 Name: This is the name of the domain; it must be

unique in a host.

•	 Kernel: Specifies the path of the kernel image,

accessible to the host. This option is used when using

direct kernel boot.

•	 Ramdisk: Specifies the path of the disk image,

accessible to the host. As the “kernel” option, this one

is also used in direct kernel boot.

Chapter 3 Xen

104

•	 Extra: This is an extra parameter appended to the

kernel command line.

•	 Memory: Used to set the amount of memory in

megabytes.

•	 Vcpus: This parameter sets the number of virtual CPUs.

•	 Vif: Specifies the network interfaces.

•	 Disk: As the name implies, it specifies the disks that are

provided to the guest.

•	 SDL: When enabled, the display is presented via an X

window using Simple DirectMedia Layer.

•	 Vnc: This parameter allows to access the display

through the VNC protocol.

Now that we have some knowledge about the main options in a

configuration file, we’ll apply this knowledge to create our first Xen-

based VM.

�Installing Alpine Linux As a Paravirtualized
Unprivileged Domain

We’ll install our first VM on Xen. For that, we’ll choose a lightweight Linux

distribution named Alpine. We’ll download the needed files from the

Alpine Linux website (Figure 3-3).

Chapter 3 Xen

https://www.alpinelinux.org/

105

Figure 3-3.  Alpine Linux

We’ll go to “Downloads” and then to “Virtual” (Figure 3-4), and we’ll

download the ISO file for the x86_64 architecture.

Chapter 3 Xen

106

Figure 3-4.  Alpine ISO files optimized for virtualized environments

antonio@ubuntu:/XEN_VMS$ wget https://dl-cdn.alpinelinux.org/

alpine/v3.20/releases/x86_64/alpine-virt-3.20.0-x86_64.iso

�Initial Customization of the Example Configuration File

Now we’ll take one of the example files we mentioned previously, and we’ll

edit it accordingly to create our first VM. In this first example, we’ll use a

paravirtualized VM/domain.

Chapter 3 Xen

107

antonio@ubuntu:/XEN_VMS$ cp /etc/xen/xlexample.pvlinux

alpine.pvlinux

We’ll edit a few lines of the configuration file we just copied. At the

beginning of the file, we’ll see this line:

Guest name

name = "example.pvlinux"

We’ll change it to add a more appropriate name.

name = "alpine.pvlinux"

Then we’ll see an entry for the kernel to load.

Kernel image to boot

kernel = "/boot/vmlinuz"

We’ll use the kernel file inside the ISO file we just downloaded, so we’ll

need to mount it first.

antonio@ubuntu:/XEN_VMS$ sudo mount -o loop alpine-

virt-3.20.0-x86_64.iso /mnt/

mount: /mnt: WARNING: device write-protected, mounted

read-only.

Inside the /boot directory, we’ll find the kernel file.

antonio@ubuntu:/XEN_VMS$ ls /mnt/boot/

System.map-6.6.31-0-virt config-6.6.31-0-virt dtbs-virt

grub initramfs-virt modloop-virt syslinux vmlinuz-virt

So we’ll edit the corresponding parameter in the alpine.pvlinux file.

Kernel image to boot

kernel = "/mnt/boot/vmlinuz-virt"

Chapter 3 Xen

108

Right after the kernel option, we’ll see the ramdisk entry, which is

commented out by default.

Ramdisk (optional)

#ramdisk = "/boot/initrd.gz"

After mounting the ISO file, we could see the ramdisk file in the same

directory as the kernel file. We’ll edit this entry in the file as well.

Ramdisk (optional)

ramdisk = "/mnt/boot/initramfs-virt"

The initial memory allocation is just 128 MB.

Initial memory allocation (MB)

memory = 128

Alpine Linux is very light, so this amount of memory is probably

enough, but we’ll increase it a little bit.

Initial memory allocation (MB)

memory = 512

By default, two virtual CPUs are created for the VM.

Number of VCPUS

vcpus = 2

We’ll change this value to 1.

Number of VCPUS

vcpus = 1

Finally, at the bottom of the file, we’ll see the definition of the disk or

disks associated with the VM.

Chapter 3 Xen

109

Disk Devices

A list of `diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['/dev/vg/guest-volume,raw,xvda,rw']

In the default value, a logical volume is used as the disk for the VM, but

it is also possible to use a file, as we’ll see now. We’ll use dd to create a 1

GiB disk file.

antonio@ubuntu:/XEN_VMS$ dd if=/dev/zero of=alpine.hd bs=1M

count=1024

1024+0 records in

1024+0 records out

1073741824 bytes (1.1 GB, 1.0 GiB) copied, 2.02189 s, 531 MB/s

And we’ll edit the “disk” entry to use the newly created file as the disk

for the VM.

Disk Devices

A list of 'diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['alpine.hd,raw,xvda,rw']

The final alpine.pvlinux file will look like this:

antonio@ubuntu:/XEN_VMS$ cat alpine.pvlinux

===

Example PV Linux guest configuration

===

#

This is a fairly minimal example of what is required for a

�Paravirtualised Linux guest. For a more complete guide see

xl.cfg(5)

Chapter 3 Xen

110

Guest name

name = "alpine.pvlinux"

128-bit UUID for the domain as a hexadecimal number.

Use "uuidgen" to generate one if required.

�The default behavior is to generate a new UUID each time the

guest is started.

#uuid = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

Kernel image to boot

kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)

ramdisk = "/mnt/boot/initramfs-virt"

Kernel command line options

extra = "root=/dev/xvda1"

Initial memory allocation (MB)

memory = 512

Maximum memory (MB)

�If this is greater than `memory' then the slack will start

ballooned

(this assumes guest kernel support for ballooning)

#maxmem = 512

Number of VCPUS

vcpus = 1

Network devices

A list of 'vifspec' entries as described in

�docs/misc/xl-network-configuration.markdown

vif = ['']

Chapter 3 Xen

111

Disk Devices

A list of `diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['alpine.hd,raw,xvda,rw']

Now we are ready to create the VM.

antonio@ubuntu:/XEN_VMS$ sudo xl create -f alpine.pvlinux

But we’ll get this error:

Parsing config from alpine.pvlinux

libxl: error: libxl_exec.c:117:libxl_report_child_exitstatus:

/etc/xen/scripts/vif-bridge online [6063] exited with error

status 1

libxl: error: libxl_device.c:1286:device_hotplug_child_death_

cb: script: Could not find bridge device xenbr0

libxl: error: libxl_create.c:1519:domcreate_attach_devices:

Domain 7:unable to add vif devices

libxl: error: libxl_exec.c:117:libxl_report_child_exitstatus:

/etc/xen/scripts/vif-bridge offline [6094] exited with error

status 1

libxl: error: libxl_device.c:1286:device_hotplug_child_death_

cb: script: Could not find bridge device xenbr0

libxl: error: libxl_domain.c:1034:libxl__destroy_domid: Domain

7:Non-existant domain

libxl: error: libxl_domain.c:993:domain_destroy_callback:

Domain 7:Unable to destroy guest

libxl: error: libxl_domain.c:920:domain_destroy_cb: Domain

7:Destruction of domain failed

Chapter 3 Xen

112

When creating a Xen VM, a series of scripts are executed. We see here

that the /etc/xen/scripts/vif-bridge script failed because it couldn’t find the

xenbr0 device. Even though we haven’t defined any network interface in

the configuration file, Xen by default searches for a bridge named xenbr0.

�Creating a Bridge

We’ll see more details later, but for now, we’ll just create a bridge with that

same name and no interfaces attached, just to skip that error.

antonio@ubuntu:/XEN_VMS$ sudo brctl addbr xenbr0

And we try to create the VM again.

antonio@ubuntu:/XEN_VMS$ sudo xl create -f alpine.pvlinux

Parsing config from alpine.pvlinux

In this case, we don’t see any errors, so we assume that Xen is creating

the VM. We can list the VMs with xl.

antonio@ubuntu:/XEN_VMS$ sudo xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 3011 2 r----- 476.8

alpine.pvlinux 9 512 1 -b---- 1.3

We see the virtual machine/domain alpine.pvlinux, but its state is

not “r” (running), but “b” (blocked). This could indicate a problem, or

maybe it’s just due to the fact that the system has gone to sleep because it

has nothing else to do. In any of these cases, it’s useful to connect to the

console of the virtual machine to see what is actually happening.

antonio@ubuntu:/XEN_VMS$ sudo xl console alpine.pvlinux

Chapter 3 Xen

113

We’ll see something like this:

.

.

.

[0.711629] Loading boot drivers: ok.

ok.

[0.714930] Mounting root...

 * �Mounting root: [1.100682] block xvda: the capability

attribute has been deprecated.

mount: mounting /dev/xvda1 on /sysroot failed: Invalid argument

[1.240716] Mounting root: failed.

failed.

initramfs emergency recovery shell launched. Type 'exit' to

continue boot

sh: can't access tty; job control turned off

~ #

We see that the system didn’t boot correctly; let’s detach the server

console by pressing CTRL+5 and recap what we have seen so far.

The virtual machine tried to mount /dev/xvda1, because this is

specified in this line of the alpine.pvlinux file:

Kernel command line options

extra = "root=/dev/xvda1"

Here we’re telling that the root filesystem is in the first partition of the

disk /dev/xvda. And in the disk definition, we see this:

disk = ['alpine.hd,raw,xvda,rw']

The disk is defined in the alpine.hd file we just created, but this file is

completely empty; it has no partitions and no filesystems. The fact that the

system can’t boot is normal behavior.

Chapter 3 Xen

114

�Defining a CDROM Drive

What we’ll do now is to install the OS from the ISO file we just downloaded.

To do it, we need to define a CDROM device and boot the VM from

the CDROM.

First of all, we’ll see in more detail how we defined the disk for our

VM. The first entry is the name of the file we created. The second entry,

raw in this case, is the format of the disk. We have already seen when

we spoke about QEMU that the disk files can have different formats like

qcow2, raw, etc. In this case, we created a disk in raw format, that is,

without a format. The third entry is the name of the device, xvda in this

example as we’re using paravirtualization. Finally, the fourth entry sets the

access mode of the device, read/write in this case.

To know how to define a CDROM device, we can see the man page

for xl.cfg.

antonio@ubuntu:/XEN_VMS$ man xl.cfg

In the page, we’ll see this brief description:

 disk=["DISK_SPEC_STRING", "DISK_SPEC_STRING", ...]

 �Specifies the disks (both emulated disks and Xen

virtual block devices) which are to be provided

to the guest, and what objects on the host they

should map to. See xl-disk-configuration(5) for more

details.

To gather more information, we’ll open the man page for xl-disk-

configuration. In the first lines, we’ll see an example of how to define a

CDROM device using different formats.

antonio@ubuntu:/XEN_VMS$ man xl-disk-configuration

.

.

.

Chapter 3 Xen

115

 /root/image.iso,,hdc,cdrom

 /root/image.iso,,hdc,,cdrom

 /root/image.iso,raw,hdc,devtype=cdrom

 �format=raw, vdev=hdc, access=ro, devtype=cdrom,

target=/root/image.iso

 �raw:/root/image.iso,hdc:cdrom,ro (deprecated,

see below)

We’ll use the fourth format, as it is possibly the most intuitive, but

you’re free to use any of them. We’ll edit the disk entry in the alpine.

pvlinux file to add the information for the CDROM definition; we’ll also

adapt the disk definition so that both lines use the same format.

disk = [

 'format=raw, vdev=xvda, access=rw, target=alpine.hd',

 �'format=raw, vdev=xvdc, access=r, devtype=cdrom,

target=alpine-virt-3.20.0-x86_64.iso'

]

And we’ll comment out the “extra” option.

Kernel command line options

#extra = "root=/dev/xvda1"

We’ll shutdown the VM we had created previously.

antonio@ubuntu:/XEN_VMS$ sudo xl shutdown alpine.pvlinux

And we create the VM again with the new options. We’ll use the “-c”

option to connect automatically to the VM console.

antonio@ubuntu:/XEN_VMS$ sudo xl create -c -f alpine.pvlinux

Parsing config from alpine.pvlinux

[0.000000] Linux version 6.6.31-0-virt (buildozer@

build-3-20-x86_64) (gcc (Alpine 13.2.1_git20240309) 13.2.1

Chapter 3 Xen

116

20240309, GNU ld (GNU Binutils) 2.42) #1-Alpine SMP PREEMPT_

DYNAMIC Fri, 17 May 2024 11:04:37 +0000

[0.000000] Command line:

[0.000000] ACPI in unprivileged domain disabled

[0.000000] Released 0 page(s)

[0.000000] BIOS-provided physical RAM map:

.

.

.

 * Starting busybox syslog ... [ok]

 * Starting firstboot ... [ok]

Welcome to Alpine Linux 3.20

Kernel 6.6.31-0-virt on an x86_64 (/dev/hvc0)

localhost login:

The system booted from CD, and we’re faced with a login prompt. We

can log in as “root” without a password.

localhost login: root

Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and

general information about administrating Alpine systems.

See <https://wiki.alpinelinux.org/>.

You can setup the system with the command: setup-alpine

You may change this message by editing /etc/motd.

localhost:~#

Chapter 3 Xen

117

We can start the installation procedure by executing the command

setup-alpine. The installation procedure is quite easy to follow, but when

trying to contact a mirror, it will fail, as currently our Xen VM doesn’t have

Internet connectivity.

localhost:~# setup-alpine

 ALPINE LINUX INSTALL

 Hostname

Enter system hostname (fully qualified form, e.g. 'foo.example.

org') [localhost] my-alpine

.

.

.

wget: bad address 'mirrors.alpinelinux.org'

�Configuring Networking

We had created a bridge named xenbr0, but we didn’t add any interfaces

to it, so the domain/virtual machine has no connectivity. We’ll need to

configure the bridge properly.

First, we add a connected interface to our bridge.

antonio@ubuntu:~$ sudo ip brctl addif xenbr0 ens33

And then we make sure that the bridge is up.

antonio@ubuntu:~$ sudo ip link set xenbr0 up

Chapter 3 Xen

118

Now we get back to the alpine.pvlinux file. We’ll see these lines

regarding the network interface:

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = ['']

We can specify several options regarding the virtual network interface,

such as the MAC address, the IP address, the bridge used, etc. We can take

a look at the xl-network-configuration man page to see some examples. In

our case, we’ll just specify the bridge name. We’ll configure the IP later.

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = [bridge=xenbr0']

And we’ll start again the VM with the new settings.

antonio@ubuntu:~$ sudo xl create -c -f alpine.pvlinux

In the VM/domain, we’ll see that we already have an Ethernet

interface.

localhost:~# ip a

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: �eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN

qlen 1000

 link/ether 00:16:3e:3c:d5:68 brd ff:ff:ff:ff:ff:ff

And in the host, we can see that a new virtual interface has been

created and added to the xenbr0 bridge, allowing the communication

between the host and the guest.

Chapter 3 Xen

119

antonio@ubuntu:~$ ip link

1: �lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: �ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel master xenbr0 state UP mode DEFAULT group default

qlen 1000

 link/ether 00:0c:29:c4:d1:d0 brd ff:ff:ff:ff:ff:ff

 altname enp2s1

3: �xenbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default qlen 1000

 link/ether 00:0c:29:c4:d1:d0 brd ff:ff:ff:ff:ff:ff

4: �vif3.0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq

master xenbr0 state DOWN mode DEFAULT group default qlen 1000

 link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff

antonio@ubuntu:~$ brctl show

bridge name bridge id STP enabled interfaces

xenbr0 8000.000c29c4d1d0 no ens33

 vif3.0

We only have to add an IP to the interface on the guest and activate the

interface.

localhost:~# ip address add 192.168.1.60/24 dev eth0

Now we can ping the host from the guest and vice versa.

localhost:~# ip link set eth0 up

localhost:~# ping 192.168.1.51

PING 192.168.1.51 (192.168.1.51): 56 data bytes

64 bytes from 192.168.1.51: seq=0 ttl=64 time=1.236 ms

Now that we have connectivity, we could install the OS with

setup-alpine. But we’ll get to that in the next example.

Chapter 3 Xen

120

�Using a Logical Volume As the Disk of the VM

So far, we have used a file as a hard disk for our VM/domain, but we can

also use a LV for that. To do it, we’ll create a LV on the host. We had already

created a LV as a good practice to store our virtual machines; we’ll follow

the same procedure to create a new LV in which to install a Xen domain/

virtual machine. We repeat the same steps, and this time we create a LV

named XENLV, included in a VG named XENVG.

antonio@ubuntu:~$ sudo lvs XENVG

 �LV VG Attr LSize Pool Origin Data% Meta% Move

Log Cpy%Sync Convert

 XENLV XENVG -wi-a----- 2,00g

To use a LV instead of a file as the disk of our virtual machine, we need

to open the alpine.pvlinux file and edit the “disk” entry. This is the current

value of this entry:

disk = [

 'format=raw, vdev=xvda, access=rw, target=alpine.hd',

 �'format=raw, vdev=xvdc, access=r, devtype=cdrom,

target=alpine-virt-3.20.0-x86_64.iso'

]

We need to edit the entry for the hard disk, changing the target. After

editing, it should look like this:

disk = [

 �'format=raw, vdev=xvda, access=rw, target=/dev/

XENVG/XENLV',

 �'format=raw, vdev=xvdc, access=r, devtype=cdrom,

target=alpine-virt-3.20.0-x86_64.iso'

]

Chapter 3 Xen

121

We save the changes and recreate the VM again. We’ll shutdown any

previously running instances if necessary.

antonio@ubuntu:/XEN_VMS$ sudo xl create -c -f alpine.pvlinux

.

.

.

Welcome to Alpine Linux 3.17

Kernel 5.15.79-0-virt on an x86_64 (/dev/hvc0)

localhost login: root

Welcome to Alpine!

The Alpine Wiki contains a large amount of how-to guides and

general information about administrating Alpine systems.

See <https://wiki.alpinelinux.org/>.

You can setup the system with the command: setup-alpine

You may change this message by editing /etc/motd.

localhost:~#

We launch setup-alpine to start the OS installation.

localhost:~# setup-alpine

.

.

.

Available interfaces are: eth0.

Enter '?' for help on bridges, bonding and vlans.

Which one do you want to initialize? (or '?' or 'done') [eth0]

Ip address for eth0? (or 'dhcp', 'none', '?') [dhcp]

Do you want to do any manual network configuration? (y/n) [n]

udhcpc: started, v1.35.0

udhcpc: broadcasting discover

Chapter 3 Xen

122

udhcpc: broadcasting select for 10.0.3.16, server 10.0.3.2

udhcpc: lease of 10.0.3.16 obtained from 10.0.3.2, lease

time 86400

.

.

.

After setting up the network, we need to select the time zone; we select

a proxy if necessary and choose a mirror.

.

Enter mirror number (1-81) or URL to add (or r/f/e/done) [1]

Added mirror dl-cdn.alpinelinux.org

Updating repository indexes... done.

.

We now select the disk where we’ll install the OS.

.

Available disks are:

 xvda (2.1 GB)

Which disk(s) would you like to use? (or '?' for help or

'none') [none] xvda

The following disk is selected:

 xvda (2.1 GB)

How would you like to use it? ('sys', 'data', 'crypt', 'lvm' or

'?' for help) [?] sys

WARNING: The following disk(s) will be erased:

 xvda (2.1 GB)

.

Creating file systems...

Installing system on /dev/xvda3:

Chapter 3 Xen

123

/mnt/boot is device /dev/xvda1

100% ██████████████████████████████████
██████████==> initramfs: creating /boot/initramfs-virt

/boot is device /dev/xvda1

Installation is complete. Please reboot.

alpine:~#

The installation is complete. Before rebooting, we need to change

some parameters in the alpine.pvlinux file, so we’ll shut down the VM.

antonio@ubuntu:/XEN_VMS$ sudo xl shutdown alpine.pvlinux

The first thing we’ll do is to suppress the disk entry for the CDROM,

leaving only the entry for the hard disk.

disk = [

 'format=raw, vdev=xvda, access=rw, target=/dev/XENVG/XENLV',

]

We also have to change the parameters for the kernel and the ramdisk

file. We used previously those of the ISO file; now we’ll use the files

installed in the VM disk.

We unmount the ISO file.

antonio@ubuntu:/XEN_VMS$ sudo umount /mnt

And we mount the LV in which we installed the system. We can’t

mount directly the system partition inside the LV, so we’ll need to associate

it with a loop device first.

antonio@ubuntu:/XEN_VMS$ sudo losetup -Pf /dev/XENVG/XENLV

antonio@ubuntu:/XEN_VMS$ sudo ls -ld /dev/XENVG/XENLV

Chapter 3 Xen

124

lrwxrwxrwx 1 root root 7 jun 9 14:23 /dev/XENVG/XENLV

 -> ../dm-0

antonio@ubuntu:/XEN_VMS$ sudo losetup -a | grep dm-0
/dev/loop0: [0006]:18381 (/dev/dm-0)

If we open the loop device, we’ll see the partitions.

antonio@ubuntu:/XEN_VMS$ sudo fdisk /dev/loop0

Welcome to fdisk (util-linux 2.36.2).

.

.

.

Device Boot Start End Sectors Size Id Type

/dev/loop0p1 * 2048 616447 614400 300M 83 Linux

/dev/loop0p2 616448 1550335 933888 �456M 82 �Linux swap

/ Solaris

/dev/loop0p3 1550336 4194303 2643968 1,3G 83 Linux

Command (m for help): q

And now we can mount the boot partition locally in the host.

antonio@ubuntu:/XEN_VMS$ sudo mount /dev/loop0p3 /mnt

antonio@ubuntu:/XEN_VMS$ sudo mount /dev/loop0p1 /mnt

antonio@ubuntu:/XEN_VMS$ sudo ls /mnt

boot extlinux.conf ldlinux.c32 libcom32.

c32 lost+found menu.c32 vesamenu.c32

config-virt initramfs-virt ldlinux.sys libutil.c32 mboot.

c32 System.map-virt vmlinuz-virt

We review the alpine.pvlinux file to make sure that we’re pointing to

the correct kernel and ramdisk files.

Chapter 3 Xen

125

Kernel image to boot

kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)

ramdisk = "/mnt/boot/initramfs-virt"

Finally, we also need to update the “extra” parameter to include the

kernel command-line options needed to properly boot the system.

extra = "root=/dev/xvda3 rootfstype=ext4"

The alpine.pvlinux file should look more or less like this right now:

Guest name

name = "alpine.pvlinux"

128-bit UUID for the domain as a hexadecimal number.

Use "uuidgen" to generate one if required.

�The default behavior is to generate a new UUID each time the

guest is started.

#uuid = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

Kernel image to boot

kernel = "/mnt/boot/vmlinuz-virt"

Ramdisk (optional)

ramdisk = "/mnt/boot/initramfs-virt"

Kernel command line options

extra = "root=/dev/xvda3 rootfstype=ext4"

Initial memory allocation (MB)

memory = 512

Maximum memory (MB)

�If this is greater than `memory' then the slack will start

ballooned

Chapter 3 Xen

126

(this assumes guest kernel support for ballooning)

#maxmem = 512

Number of VCPUS

vcpus = 1

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = ['bridge=xenbr0']

Disk Devices

A list of 'diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = [

 'format=raw, vdev=xvda, access=rw, target=/dev/XENVG/XENLV',

]

And we launch again the VM/domain.

antonio@ubuntu:/XEN_VMS$ sudo xl create -c -f alpine.pvlinux

Parsing config from alpine.pvlinux

.

.

.

[0.787245] Mounting root...

 * Mounting root: [1.558391] EXT4-fs (xvda3): mounted

filesystem with ordered data mode. Opts: (null). Quota

mode: none.

[1.558630] Mounting root: ok.

ok.

.

.

.

Chapter 3 Xen

127

Welcome to Alpine Linux 3.17

Kernel 5.15.160-0-virt on an x86_64 (/dev/hvc0)

alpine login:

We log in with the password set during the installation, and we’re

ready to start working with the new system.

alpine:~# df -h

Filesystem Size Used Available Use% Mounted on

devtmpfs 10.0M 0 10.0M 0% /dev

shm 113.0M 0 113.0M 0% /dev /shm

/dev/xvda3 1.2G 54.1M 1.1G 5% /

tmpfs 45.2M 64.0K 45.2M 0% /run

/dev/xvda1 271.1M 17.9M 234.2M 7% /boot

tmpfs 113.0M 0 113.0M 0% /tmp

�Working with a Hardware Virtualized Machine

We’ll see now an example of a fully virtualized machine, also referred in

Xen as a hardware virtualized machine (HVM). As many of the options

are the same for both paravirtualized and fully virtualized domains, we’ll

try to keep this example as simple as possible. We’ll use the following

configuration file:

#===

Example HVM guest configuration

#===

#

This is a fairly minimal example of what is required for an

HVM guest. For a more complete guide see xl.cfg(5)

This configures an HVM rather than PV guest

type = "hvm"

Chapter 3 Xen

128

Guest name

name = "alpine.hvm"

Initial memory allocation (MB)

memory = 256

Number of VCPUS

vcpus = 1

Network devices

A list of 'vifspec' entries as described in

docs/misc/xl-network-configuration.markdown

vif = ['bridge=xenbr0']

Disk Devices

A list of `diskspec' entries as described in

docs/misc/xl-disk-configuration.txt

disk = ['format=qcow2, vdev=xvda, access=rw, target=alpine_

disk.qcow']

Guest VGA console configuration, either SDL or VNC

#sdl = 1

vnc = 1

At the beginning, we tell Xen that we’ll use a fully virtualized machine.

We do that with the “type=hvm” parameter. When we worked with

paravirtualization, we didn’t need to add the “type=pv” because this is the

default value.

Another option we hadn’t seen so far is the VGA console configuration.

We can use this section to tell Xen to provide a graphical console as a

graphical window (option sdl) or as a VNC instance (option vnc). In our

case, we’ll use vnc to connect to the virtual machine.

Chapter 3 Xen

129

We create the virtual machine/domain in the same way we did with

the paravirtualized domain.

antonio@ubuntu:/XEN_VMS$ sudo xl create -f alpine.hvm

Parsing config from alpine.hvm

After a few seconds, we’ll see the VM already executing.

antonio@ubuntu:/XEN_VMS$ sudo xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1226 1 r----- 31.5

alpine.hvm 3 120 1 ------ 10.6

To access the console, we can use any vnc client, such as Tiger VNC

viewer (Figure 3-5).

Figure 3-5.  VNC viewer

And we’ll access the server console (Figure 3-6).

Chapter 3 Xen

130

Figure 3-6.  Server console accessed through VNC

�XenStore
XenStore is a database of configuration and status information shared

between domains. Depending on the Xen version used, it can be visible

using xl or not.

antonio@ubuntu:~$ sudo xl list

[sudo] password for antonio:

Name ID Mem VCPUs State Time(s)

Domain-0 0 3527 2 r----- 95.3

romulus:/home/antonio/XEN # xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1226 1 r----- 1027.7

Xenstore 1 31 1 -b---- 0.6

alpine.hvm 3 120 1 -b---- 1034.1

Chapter 3 Xen

131

XenStore is usually managed by Dom0, but we can also perform basic

operations on it. For instance, we can use xenstore-ls to dump all the

information contained in the XenStore database.

romulus:/home/antonio/XEN # xenstore-ls

tool = ""

 xenstored = ""

 domid = "1"

local = ""

 domain = ""

.

.

.

vm = ""

 1175b42d-a0c0-4bc4-915d-f62512d44284 = ""

 name = "alpine.hvm"

 uuid = "1175b42d-a0c0-4bc4-915d-f62512d44284"

.

.

.

We can also query the xenstore database to get information about a

given virtual machine; first, we list the identifiers of every running virtual

machine.

romulus:/home/antonio/XEN # xenstore list /vm

1175b42d-a0c0-4bc4-915d-f62512d44284

And then, we can obtain data such as the VM name or the start time.

romulus:/home/antonio/XEN # xenstore list /vm/1175b42d-

a0c0-4bc4-915d-f62512d44284

name

uuid

Chapter 3 Xen

132

rtc

image

start_time

romulus:/home/antonio/XEN # xenstore read /vm/1175b42d-

a0c0-4bc4-915d-f62512d44284/name

alpine.hvm

�GRUB Start Options
As we have seen at the beginning of this chapter, Xen is a Linux kernel

optimized to be used as a hypervisor. Many relevant options for the normal

functioning of the hypervisor can be customized in GRUB.

In Ubuntu, when installing Xen, a new file /etc/default/grub.d/xen.

cfg is created. In this file, we can see many variables that can be set to pass

options to the hypervisor. Let’s take a look at the first lines of this file:

antonio@ubuntu:/XEN_VMS$ cat /etc/default/grub.d/xen.cfg

�When running update-grub with the Xen hypervisor installed,

there are

�some additional variables that can be used to pass

options to the

hypervisor or the dom0 kernel.

#

�The configuration in here makes it possible to have different

options set

�for the linux kernel when booting with or without Xen.

echo "Including Xen overrides from /etc/default/grub.d/xen.cfg"

Chapter 3 Xen

133

###

Xen Hypervisor Command Line Options

#

�The first two options are used to generate arguments for the

hypervisor.

Commonly used options are:

#

dom0_mem=<size> (for arm)

dom0_mem=<size>,max:<size> (for x86)

�Sets the amount of memory dom0 uses to a fixed size. All

other memory

�will be usable for domUs. For x86, this prevents

ballooning actions

�from happening to take away memory from the dom0 or return

it back. For

�arm, setting this option is required. E.g. (for x86) dom0_

mem=4G,max:4G

#

dom0_max_vcpus=<min>-<max>

�Limits the amount of physical cpus that dom0 is using, so

it will not

.

.

.

We can see that the dom0_mem variable sets the amount of memory

used by Dom0. This value is usually dynamically assigned by the system,

but if we want to assign a fixed value, we can do that by editing the

corresponding GRUB entry (Figure 3-7).

Chapter 3 Xen

134

Figure 3-7.  Setting the amount of memory used by Dom0 on GRUB

In this example, the amount of memory set is too small and Dom0

cannot boot (Figure 3-8), but this is OK as we only wanted to show an

example on how to pass this parameter to the hypervisor.

Figure 3-8.  Dom0 memory allocation too small

Of course, there are many more parameters that can be passed to the

kernel adding the corresponding options in GRUB, like dom0_max_vcpus,

console, etc.

Chapter 3 Xen

135

�Managing Xen with xl/xm/XAPI
So far we have used xl to manage Xen, but this is not the only choice we

have. In the early days of Xen, xend was the toolstack used to manage the

Xen hypervisor. The client tool xm interacted with xend to perform the

needed operations.

Later, with Xen 4.1, a new toolstack, libxenlight, was developed. Its use

was preferred over that of xend/xm. The client tool used with libxenlight is

xl, of which we have already seen many examples in this chapter.

For some time, both toolstacks were available to manage Xen, although

the use of xend/xm was considered deprecated. But since Xen 4.5, it has

been completely removed. Its use was quite similar to that of xl. If we work

with a Xen version prior to 4.5, we might still use xm, as in this example:

SUSE:~ # xm

Usage: xm <subcommand> [args]

Control, list, and manipulate Xen guest instances.

Common 'xm' commands:

 console Attach to <Domain>'s console.

 vncviewer Attach to <Domain>'s VNC server.

 create Create a domain based on <ConfigFile>.

.

.

.

If we want to list the virtual machines, we can do it very similarly to

what we did before with xl.

SUSE:~ # xm list

Name ID Mem VCPUs State Time(s)

Domain-0 0 912 1 r----- 22.3

Chapter 3 Xen

136

As we said before, its use is completely deprecated and it has been

completely removed in newer versions, so we won’t get into much detail.

About xl, we have already seen several examples, but we’ll try to get

into a bit more of detail here. There is a configuration file at /etc/xen/

xl.conf, with some default values.

romulus:~ # cat /etc/xen/xl.conf

Global XL config file

�Set domain-id policy. "xen" means that the hypervisor will

choose the

�id of a new domain. "random" means that a random value will

be chosen.

#domid_policy="xen"

�Control whether dom0 is ballooned down when xen doesn't

have enough

�free memory to create a domain. "auto" means only

balloon if dom0

starts with all the host's memory.

autoballoon="off"

.

.

.

We have already seen many useful subcommands associated

with xl, such as create or shutdown. We can get a full list of supported

subcommands by typing xl without any arguments.

romulus:~ # xl

Usage xl [-vfN] <subcommand> [args]

xl full list of subcommands:

 create Create a domain from config file <filename>

Chapter 3 Xen

137

 config-update Update a running domain's saved

configuration, used when rebuilding the domain after reboot.

WARNING: xl now has better capability to manage domain

configuration, avoid using this command when possible

 list List information about all/some domains

.

.

.

It’s not possible to see an example of every subcommand, but we’ll see

an interesting option to save and restore virtual machines. To do that, we’ll

use the subcommand “save”.

romulus:/home/antonio/XEN # xl list

Name ID Mem VCPUs State Time(s)

Domain-0 0 1226 1 r----- 352.1

Xenstore 1 31 1 -b---- 0.3

alpine.pvlinux 4 256 1 -b---- 3.2

romulus:/home/antonio/XEN # xl save alpine.pvlinux alpine.BK

Saving to alpine.BK new xl format (info 0x3/0x0/1167)

xc: error: SUSEINFO: domid 4: 85bf7e31-ef42-4ed4-b519-

bc17f0bcc48c save start, 65536 pages allocated

xc: info: Saving domain 4, type x86 PV

xc: error: SUSEINFO: domid 4: 525824 bytes + 65536 pages in

0.477550453 sec, 536 MiB/sec

xc: Frames: 65536/65536 100%

xc: End of stream: 0/0 0%

xc: error: SUSEINFO: domid 4: save done

After creating the backup, we could copy it to an external storage

location so that it would be available for restoration if needed.

romulus:/home/antonio/XEN # scp alpine.BK

root@192.168.1.34:/XEN

Chapter 3 Xen

138

When we perform a backup using xl save, the virtual machine we’re

saving is automatically shut down. We’ll start it again to perform a simple

test before restoring it.

romulus:/home/antonio/XEN # xl create -f alpine.pvlinux

We’ll connect to the console and we’ll delete a file.

romulus:/home/antonio/XEN # xl console alpine.pvlinux

.

.

.

alpine:~# rm /etc/os-release

alpine:~# cat /etc/os-release

cat: can't open '/etc/os-release': No such file or directory

Now we’ll restore the virtual machine.

romulus:/home/antonio/XEN # xl restore alpine.BK

Loading new save file alpine.BK (new xl fmt info 0x3/0x0/1167)

 Savefile contains xl domain config in JSON format

Parsing config from <saved>

xc: info: Found x86 PV domain from Xen 4.14

xc: �error: SUSEINFO: domid 5: 85bf7e31-ef42-4ed4-b519-bc17f0

bcc48c restore start

xc: info: Restoring domain

xc: info: Restore successful

xc: error: SUSEINFO: domid 5: restore done

xc: info: XenStore: mfn 0x6e0a8, dom 1, evt 1

xc: info: Console: mfn 0x6e0a7, dom 0, evt 2

Chapter 3 Xen

139

And we’ll check that the file has been recovered.

romulus:/home/antonio/XEN # xl console alpine.pvlinux

.

.

.

alpine:~# cat /etc/os-release

NAME="Alpine Linux"

ID=alpine

VERSION_ID=3.17.7

PRETTY_NAME="Alpine Linux v3.17"

HOME_URL="https://alpinelinux.org/"

BUG_REPORT_URL="https://gitlab.alpinelinux.org/alpine/

aports/-/issues"

alpine:~#

Another useful subcommand is “xl migrate”, which we can use to

migrate Xen virtual machines between two hypervisors. Of course, we

need to make sure that both hypervisors are compatible.

Apart from xm and xl, it is also possible to use an API specifically

developed to manage Xen, the Xen API or XAPI. The truth is that XAPI is

very rarely used to manage the Xen servers running on Linux distributions

like Ubuntu or SUSE. In these cases, the use of libvirt is preferred. In

the next chapter, we’ll see in detail how the use of libvirt eases the

management of Xen and KVM. However, XAPI is the recommended way

to manage Xenserver. Xenserver is a commercial product based on Xen

(Figure 3-9).

Chapter 3 Xen

140

Figure 3-9.  Xenserver

In a similar way to what we have seen with xm and xl, we can also use

a command-line client to interact with XAPI, the xe command. With the

help option, we can see a full list of subcommands.

[root@xenserver ~]# xe help

Usage: xe <command> [-s server] [-pw passwd] [-p port] [-u

user] [-pwf password-file]

 [command specific arguments]

To get help on a specific command: xe help <command>

To get a full listing of commands: xe help --all

Chapter 3 Xen

141

Common command list

 cd-list, diagnostic-vm-status, network-list, snapshot-clone

 �snapshot-copy, snapshot-disk-list, snapshot-export-

to-template

 �snapshot-reset-powerstate, snapshot-revert, snapshot-

uninstall, sr-list

 template-export, template-uninstall, vm-cd-add, vm-cd-eject

 �vm-cd-insert, vm-cd-list, vm-cd-remove, vm-checkpoint,

vm-clone vm-compute-maximum-memory, vm-copy, vm-disk-add,

vm-disk-list vm-disk-remove, vm-export, vm-import,

vm-install, vm-list, vm-migrate vm-pause, vm-reboot,

vm-reset-powerstate, vm-resume, vm-shutdown vm-snapshot,

vm-snapshot-with-quiesce, vm-start, vm-suspend

 vm-uninstall, vm-unpause, vm-vif-list

[root@xenserver ~]#

We can list the virtual machines this way:

[root@xenserver ~]# xe vm-list

uuid (RO) : 7591587f-f715-48d3-aeaf-5ca9a19adad7

 �name-label (RW): Control domain on host: xenserver.

example.com

 power-state (RO): running

uuid (RO) : 3ebcca37-da7c-9d56-4dec-e40b1a268e0d

 name-label (RW): Windows 7 (32-bit) (1)

 power-state (RO): halted

Chapter 3 Xen

142

We can see that one virtual machine is halted. We can started with

“xe vm-start”. If we’re not sure about the syntax, we can check the

contextual help.

[root@xenserver ~]# xe help vm-start

command name : vm-start

 reqd params :

 optional params : force, on, paused, <vm-selectors>

 description : �Start the selected VM(s). Where

pooling is enabled, the host on

which to start can be specified

with the 'on' parameter that takes

a uuid. The optional parameter

'--force' will bypass any hardware-

compatibility warnings. The simplest

way to select the VM on which the

operation is to be performed is by

supplying the argument 'vm=<name or

uuid>'. VMs can also be specified

by filtering the full list of VMs on

the values of fields. For example,

specifying 'power-state=halted' will

select all VMs whose power-state

field is equal to 'halted'. Where

multiple VMs are matching, the option

'--multiple' must be specified to

perform the operation. The full list

of fields that can be matched can

be obtained by the command 'xe vm-

list params=all'. If no parameters to

select VMs are given, the operation

will be performed on all Vms.

Chapter 3 Xen

143

Finally, we can start the virtual machine and check its state again.

[root@xenserver ~]# xe vm-start vm=3ebcca37-da7c-9d56-4dec-

e40b1a268e0d

[root@xenserver ~]# xe vm-list

uuid (RO) : 7591587f-f715-48d3-aeaf-5ca9a19adad7

 name-label (RW): �Control domain on host: xenserver.

example.com

 power-state (RO): running

uuid (RO) : 3ebcca37-da7c-9d56-4dec-e40b1a268e0d

 name-label (RW): Windows 7 (32-bit) (1)

 power-state (RO): running

In addition to the use of xe, we can also develop our own programs in

C, Python, and other languages using XAPI to manage Xenserver. This is

exactly what the OpenXenManager program does (Figure 3-10).

Figure 3-10.  OpenXenManager

Chapter 3 Xen

144

�Xen Troubleshooting
One of the first commands we should execute when troubleshooting Xen is

xl dmesg.

antonio@ubuntu:/XEN_VMS$ sudo xl dmesg

(XEN) parameter "placeholder" unknown!

(XEN) Xen version 4.11.4-pre (Ubuntu 4.11.3+24-g14b62ab3e5-1ub

untu2.3) (ubuntu-devel-discuss@lists.ubuntu.com) (gcc (Ubuntu

9.4.0-1ubuntu1~20.04.1) 9.4.0) debug=n Tue Aug 23 12:11:30

UTC 2022

(XEN) Bootloader: GRUB 2.04-1ubuntu26.2

(XEN) Command line: placeholder

(XEN) Xen image load base address: 0xbf400000

(XEN) Video information:

(XEN) VGA is text mode 80x25, font 8x16

(XEN) Disc information:

(XEN) Found 1 MBR signatures

(XEN) Found 1 EDD information structures

(XEN) Xen-e820 RAM map:

With this command, we could see error messages like the following,

in which we tried to create a HVM guest not having the hardware

virtualization extensions active:

.

.

(XEN) hvm.c:543:d0 Attempt to create a HVM guest on a non-VT/

AMDV platform.

.

.

Chapter 3 Xen

145

It is also a good idea to check the log files located at /var/log/xen/.

antonio@ubuntu:/XEN_VMS$ ls -lrth /var/log/xen/

.

.

.

-rw-r--r-- 1 root root 5,2K jun 15 01:22 xen-boot.log

-rw-r--r-- 1 root root 194 jun 15 12:55 xl-alpine.

pvlinux.log.2

-rw-r--r-- 1 root root 281 jun 15 13:12 xl-alpine.

pvlinux.log.1

-rw-r--r-- 1 root root 62 jun 15 13:13 xl-alpine.pvlinux.log

�Summary
In this chapter, we have seen what is probably, together with KVM, the

most used hypervisor in Linux environments. We have seen its basic

architecture and how to create virtual machines from configuration files.

Now you’re probably familiar with the most common parameters used in

the cfg files associated to each virtual machine/unprivileged domain.

We performed basic administration tasks such as starting a domain

or shutting it down and defining disks and CD drives. We also made the

domain available in the network. We have seen examples of the two main

virtualization options we have available in Xen: paravirtualization and

hardware virtualized machines.

We also briefly reviewed the role of XenStore and how to edit the

boot loader to customize how Xen works. We also studied the use of xl/

xm and XAPI to manage Xen domains and how to perform some basic

troubleshooting.

Later, when we study libvirt, we’ll see that there are more friendly ways

to manage virtual machines.

Chapter 3 Xen

147© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_4

CHAPTER 4

libvirt Virtual Machine
Management
In this chapter, we’ll cover the following concepts:

•	 Understand the architecture of libvirt

•	 Manage libvirt connections and nodes

•	 Create and manage QEMU and Xen domains, including

snapshots

•	 Manage and analyze resource consumption of domains

•	 Create and manage storage pools and volumes

•	 Create and manage virtual networks

•	 Migrate domains between nodes

•	 Understand how libvirt interacts with Xen and QEMU

•	 Understand how libvirt interacts with network services

such as dnsmasq and radvd

•	 Understand libvirt XML configuration files

•	 Awareness of virtlogd and virtlockd

https://doi.org/10.1007/979-8-8688-1080-0_4#DOI

148

�Introduction to libvirt
libvirt is an API for the management of virtualization platforms. Currently

it supports Xen, KVM, QEMU, LXC, and many more. This API can be ac-

cessed from C, Python, Java, and more languages (Figure 4-1).

Figure 4-1.  libvirt API, image taken from Wikipedia under Creative
Commons License. Attribution: Shmuel Csaba Otto Traian

�Installing libvirt
To benefit from the ease of use of libvirt, the first thing we need to do is

installing it. We’ll search for a package named libvirt.

antonio@antonio-Laptop:~$ apt search libvirt

.

.

libvirt-daemon/jammy-updates,jammy-security,now

8.0.0-1ubuntu7.10 amd64 [installed,automatic]

 Virtualization daemon

.

.

Chapter 4 libvirt Virtual Machine Management

https://commons.wikimedia.org/wiki/File:Libvirt_support.svg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

149

We can see there are many packages related to libvirt. We’ll begin by

installing the libvirt-daemon package.

antonio@antonio-Laptop:~$ sudo apt install libvirt-daemon

Later we’ll use the command virsh, included in the libvirt-clients

package. We’ll install this package as well.

antonio@antonio-Laptop:~$ sudo apt install libvirt-clients

�virt-manager
Another interesting tool based in libvirt is virt-manager; this is a graphical

application that makes the creation and management of virtual machines

much more user friendly.

We install virt-manager if it is not already installed.

antonio@antonio-Laptop:~$ sudo apt install virt-manager

We launch virt-manager and a new window will open. By default, the

program will try to connect to the local Xen hypervisor (Figure 4-2). If there

is no local Xen hypervisor running, we could get the error message shown

in Figure 4-3.

Chapter 4 libvirt Virtual Machine Management

150

Figure 4-2.  virt-manager trying to connect to a local Xen server

Chapter 4 libvirt Virtual Machine Management

151

Figure 4-3.  Error connecting to a local Xen server

virt-manager can also be used to manage remote hypervisors. For

instance, we can connect to one of the remote Xen hypervisors we worked

with in the previous chapter. We need to click “File” ➤ “Add connection…”;

a new window will pop up (Figure 4-4).

Chapter 4 libvirt Virtual Machine Management

152

Figure 4-4.  Connecting to a remote Xen server

If we haven’t set up ssh key–based authentication and we don’t have

the ssh askpass installed, we’ll get an error message when virt-manager

tries to connect to the remote hypervisor (Figure 4-5).

Chapter 4 libvirt Virtual Machine Management

153

Figure 4-5.  Error trying to connect to the remote hypervisor

If we prefer to be asked for the password when connecting to the

remote Xen system, we need to install the ssh-askpass package.

antonio@antonio-Laptop:~$ apt search askpass

.

.

.

ssh-askpass/jammy,now 1:1.2.4.1-13 amd64

 under X, asks user for a passphrase for ssh-add

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ sudo apt install

ssh-askpass

Chapter 4 libvirt Virtual Machine Management

154

Now we’re ready to connect to the remote Xen server. But we must also

make sure that libvirt is also installed (and running) on the target server;

otherwise, we’ll get the error shown in Figure 4-6.

Figure 4-6.  libvirt not running on the remote server

Finally, we will be able to connect (Figure 4-7).

Chapter 4 libvirt Virtual Machine Management

155

Figure 4-7.  virt-manager connected to a remote Xen hypervisor

In addition to Xen, virt-manager can also be used to manage many

other hypervisors and also containers. For instance, we can use virt-

manager to connect to our local system, in which we installed QEMU

previously (Figure 4-8).

Chapter 4 libvirt Virtual Machine Management

156

Figure 4-8.  virt-manager connected to the local QEMU/KVM
hypervisor

We haven’t studied LXC so far, but we can also use virt-manager

to manage Linux containers. At this point, we’re not going to dive into

container creation; we’ll do that later in the book, but we’ll see how we

can set up virt-manager to manage containers as well as virtual machines.

Later, when we study LXC, we’ll see some examples of the use of virt-
manager and containers.

Chapter 4 libvirt Virtual Machine Management

157

First, we need to open virt-manager and click “File” ➤ “New

Connection”. Then, on the “Hypervisor” field, we select “Libvirt-LXC”

(Figure 4-9).

Figure 4-9.  Using virt-manager to manage LXC

For the connection to be successful, we need to install the

corresponding libvirt connection driver for LXC. Otherwise, we’ll get the

error message shown in Figure 4-10.

Chapter 4 libvirt Virtual Machine Management

158

Figure 4-10.  Error when trying to manage LXC from virt-manager

We’ll install the required driver in the host system.

antonio@antonio-Laptop:~$ sudo apt install libvirt-daemon-

driver-lxc

After that, we’ll restart the libvirtd service.

antonio@antonio-Laptop:~$ sudo systemctl restart libvirtd

And we’re ready to manage LXC as well as QEMU/KVM virtual

machines with virt-manager (Figure 4-11).

Chapter 4 libvirt Virtual Machine Management

159

Figure 4-11.  virt-manager connected to QEMU/KVM and LXC

�Installing and Managing a Virtual Machine
with virt-manager
In the previous chapters about QEMU and Xen, we have already created

virtual machines. Tools like virt-manager and virsh, which we’ll see later,

greatly simplify the creation and management of virtual machines.

Chapter 4 libvirt Virtual Machine Management

160

We’ll begin by connecting to our local QEMU/KVM hypervisor and

clicking on the first icon on the left, “Create a new Virtual Machine”. Then

we’ll see a new window with several options (Figure 4-12).

Figure 4-12.  Creating a new QEMU/KVM virtual machine

We can install a new server manually from an ISO file, using a network

installation server or importing a disk image. We can also select the

architecture of the VM; the default value is x86_64, but we can select any of

the architectures supported by QEMU.

Chapter 4 libvirt Virtual Machine Management

161

�Importing an Existing Virtual Machine into
virt-manager

As we already installed manually a virtual machine in QEMU, we’ll import

this disk image in virt-manager. We select the “Import existing disk image”

option and click the “Forward” button.

In the next screen, we need to specify the storage path (Figure 4-13).

Figure 4-13.  Providing the storage path

Chapter 4 libvirt Virtual Machine Management

162

When clicking the “Browse” button, we access the “storage volume”

windows (Figure 4-14). A storage volume in libvirt is an abstraction used to

define an available storage space. By default, a single storage volume of the

type dir exists in the path /var/lib/libvirt/images.

Figure 4-14.  Default storage volume

To import the QEMU virtual machine we created in Chapter 2, we

need to create a new storage volume from the folder in which the disk file

is located. We’ll click on the “+” sign to create a new storage volume of the

type dir, and we’ll point it to the folder in which the QEMU virtual machine

is located (Figure 4-15).

Chapter 4 libvirt Virtual Machine Management

163

Figure 4-15.  Adding a new storage volume

Once the new storage volume is created and activated, we can see all

the files present (Figure 4-16).

Chapter 4 libvirt Virtual Machine Management

164

Figure 4-16.  New storage volume created

Now we can finally select the disk file that we want to import, and we’ll

get back to the “New VM” window. We’ll choose the OS of the disk that

we’re importing too (Figure 4-17).

Chapter 4 libvirt Virtual Machine Management

165

Figure 4-17.  Importing a virtual machine into virt-manager. Step 2

Chapter 4 libvirt Virtual Machine Management

166

After clicking the “Forward” button, we’ll select the number of CPUs

and the amount of memory for the virtual machine (Figure 4-18).

Figure 4-18.  Importing a virtual machine into virt-manager. Step 3

In the last step, we assign a name to the virtual machine (Figure 4-19).

We can see a brief summary of the settings applied to the machine. We can

edit some of these settings, but for now, we’ll leave them unchanged. We

click the “Finish” button and we’ll see the machine booting (Figure 4-20).

Chapter 4 libvirt Virtual Machine Management

167

Figure 4-19.  Importing a virtual machine into virt-manager. Step 4

Chapter 4 libvirt Virtual Machine Management

168

Figure 4-20.  Booting up the virtual machine

From the virt-manager console, we can work on the virtual machine

as we’d do in any physical server. We can also click on the “show virtual

hardware details” (Figure 4-21) to get information about the virtual

machine, such as performance, CPUs, memory, networking, etc.

Chapter 4 libvirt Virtual Machine Management

169

Figure 4-21.  Virtual machine details

When we’re done, we can shut down the machine either from the

console itself or by using the power button in virt-manager. If we decide

to use the power button, we can shut down the virtual machine gracefully

or we can force it to shut down if the system is unresponsive.

�Creating a Fresh New Virtual Machine in virt-manager

In addition to importing already-existing virtual machines, we can also

install a new virtual machine. We won’t repeat the whole process because

it is quite similar to what we did previously in this same book, but we’ll see

the first steps.

Chapter 4 libvirt Virtual Machine Management

170

As we did before, when importing an existing VM, we connect to our

local QEMU/KVM hypervisor and click “Create a new Virtual Machine”,

and we select the option (Figure 4-22).

Figure 4-22.  Creating a new VM in virt-manager installing from
local media

Chapter 4 libvirt Virtual Machine Management

171

In the next screen, we need to specify the path to the install media

(Figure 4-23). We click the “Browse” button.

Figure 4-23.  Locating the install media

Chapter 4 libvirt Virtual Machine Management

172

We’ll search for the ISO installation file in the storage volumes already

defined (Figure 4-24). In our case, we assume that the ISO file is already

located in the /home/antonio/QEMU_VMs/ folder; if it’s not, we’ll copy it

to that location.

Figure 4-24.  Selecting the ISO file

Chapter 4 libvirt Virtual Machine Management

173

We click the ISO file and select the operating system, Debian 12 in this

example (Figure 4-25).

Figure 4-25.  Creating a new VM from the installation media

Chapter 4 libvirt Virtual Machine Management

174

We choose the number of CPUs and memory assigned, as well as the

disk storage (Figures 4-26 and 4-27).

Figure 4-26.  Choosing CPU and memory settings

Chapter 4 libvirt Virtual Machine Management

175

Figure 4-27.  Assigning the disk space to the new VM

After that, we get to the last window of the VM creation. We assign

a name to our new VM, and we can see a brief summary of the settings

(Figure 4-28). After clicking the “Finish” button, the virtual machine will

boot from the virtual CD and start the installation process (Figure 4-29). As

we said before, we won’t complete the installation as the purpose of this

Chapter 4 libvirt Virtual Machine Management

176

section is simply to show how easy it is to install a new virtual machine in

virt-manager, so we’ll stop here and delete the virtual machine we were

installing.

Figure 4-28.  VM settings summary

Chapter 4 libvirt Virtual Machine Management

177

Figure 4-29.  Beginning the installation

�Accessing libvirt from Our Own Programs
As we mentioned before, we can access this API from many languages.

We’ll see a few simple examples.

�Accessing libvirt from a C Program
In order to create a C program able to interact with libvirt, we need to in-

stall first the libvirt-dev package.

antonio@antonio-HP:~$ sudo apt install libvirt-dev

Chapter 4 libvirt Virtual Machine Management

178

After installing the package, we’ll get a bunch of header files.

antonio@antonio-HP:~$ ls /usr/include/libvirt/

libvirt-admin.h libvirt-host.h libvirt-qemu.h

libvirt-common.h libvirt-interface.h libvirt-secret.h

libvirt-domain.h libvirt-lxc.h libvirt-storage.h

libvirt-domain-snapshot.h libvirt-network.h libvirt-stream.h

libvirt-event.h libvirt-nodedev.h virterror.h

libvirt.h libvirt-nwfilter.h

This is not supposed to be a book about libvirt programming, so we

won’t get into much detail, but we’ll show an easy example to see how to

manage our virtual machines from our C programs using the libvirt API.

In the beginning of this chapter, we installed the libvirt-clients pack-

age, which includes the virsh command. We’re not going to study virsh

now; we’ll do that later. But we’ll execute it to obtain some information

about the virtual machines that libvirtd is currently aware of.

We’ll begin by listing all the domains/virtual machines.

antonio@antonio-Laptop:~$ virsh list --all

 Id Name State

- debian12 shut off

The VM we imported in virt-manager is currently shut down. We’ll

start it because we need to know the domain ID for our example.

antonio@antonio-Laptop:~$ virsh start debian12

Domain 'debian12' started

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ virsh list --all

 Id Name State

 2 debian12 running

Chapter 4 libvirt Virtual Machine Management

179

In my case, the domain ID is “2”, but in your case, you might get a

different value. Let’s proceed to code our little example in C. We’ll see the

source code and we’ll explain it later.

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$

cat uno.c

#include <stdio.h>

#include "libvirt/libvirt.h"

int main(int argc, char **argv) {

 virConnectPtr c;

 virDomainPtr d;

 char *name;

 c = virConnectOpen(NULL);

 d = virDomainLookupByID(c, 2);

 name = virDomainGetName(d);

 printf("name of domain %d is %s\n", 2, name);

 return 0;

 }

First, we include in our program the libvirt library, as well as the

stdio library. Then we declare a couple of variables c and d, which are

respectively pointers to a virConnect struct and a virDomain struct. We

open a connection to the hypervisor with the virConnectOpen function. As

we didn’t specify which hypervisor to connect to, but used the parameter

“NULL”, the function will try every hypervisor until one successfully opens.

Once we have a connection established, we search for the domain with

the ID 2, as we previously saw, by using the function virDomainLookup-

ByID, and we get its associated name with virDomainGetName. Finally, we

print the result on the screen.

Chapter 4 libvirt Virtual Machine Management

180

If we compile the program and execute it, we’ll see the name of the VM

with the ID 2.

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$ gcc

uno.c -lvirt -o uno

antonio@antonio-Laptop:~/antonio/programming/c/libvirt$./uno

name of domain 2 is debian12

�Accessing libvirt from a Python Program
We mentioned in the beginning of the chapter that the libvirt API can be

accessed by using many program languages. We already have seen how to

access it from a C program, and now we’ll do the same thing from a Python

program.

To use the API, we’ll have to install the python3-libvirt package in

Ubuntu Linux.

antonio@antonio-Laptop:~$ sudo apt install python3-libvirt

We can now create our own Python programs to interact with libvirt.

As an example, we’ll use the Python interpreter interactively to see how

easy it is to integrate libvirt in our Python programs. We’ll assume that

our virtual machine named “debian 12” is already running; if it’s not, we’ll

start it either with virt-manager or virsh. After that, we start the Python

interpreter.

antonio@antonio-Laptop:~$ python3

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]

on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>>

Chapter 4 libvirt Virtual Machine Management

181

We need to import the libvirt Python module we installed previously.

>>> import libvirt

We can now connect to libvirtd.

>>> conn = libvirt.open()

We didn’t use any parameter, so we’ll connect to the first available

hypervisor. We can see the hypervisor we’re connected to with this

command:

>>> conn.getURI()

'qemu:///system'

We’ll do something simple such as obtaining the domain IDs.

>>> conn.listDomainsID()

[5]

We see that currently we only have a domain ID, which is 5 in this

case. In your case, it could be any other value. We’ll search the domain

associated to this ID. And we’ll assign this pointer value to a variable

named domid.

>>> conn.lookupByID(5)

<libvirt.virDomain object at 0x7765cfe38670>

>>> domid = conn.lookupByID(5)

Now, we can perform several operations. We’ll see just a few examples,

such as getting the domain name, showing the VM configuration as an

XML file, or getting the type of virtual machine.

>>> libvirt.virDomain.name(domi)

'debian12'

>>> libvirt.virDomain.XMLDesc(domid)

Chapter 4 libvirt Virtual Machine Management

182

'<domain type=\'kvm\' id=\'5\'>\n <name>debian12</

name>\n <uuid>05959a22-b9e4-4d99-a3ae-16f946880ff1</

uuid>\n <metadata>\n <libosinfo:libosinfo

.

.

.

>>> libvirt.virDomain.OSType(domid)

'hvm'

To finish this brief demonstration on how to interact with libvirt from

Python, we see how to connect to a different hypervisor or container

runtime. Previously we opened a connection to LXC from virt-manager.

Now we’ll do the same thing from Python.

>>> conn2 = libvirt.open('lxc:///')

As we haven’t studied containers so far – we’ll do that later – we don’t

have any containers in our host. However, the example is perfectly valid to

show how libvirt can be accessed from Python.

>>> conn2.listDomainsID()

[]

�Migrating a Virtual Machine to Another Host
We have seen previously how to connect virt-manager to a remote host.

Thanks to this, we can migrate a virtual machine between different hosts.

We’ll create a new connection to a remote host the usual way by click-

ing “File” ➤ “Add connection” and we’ll fill in the needed parameters

(Figure 4-30).

Chapter 4 libvirt Virtual Machine Management

183

Figure 4-30.  Connecting to a remote QEMU/KVM host

Once the connection is successfully established, we’ll see the list of the

virtual machines in the remote hypervisor (Figure 4-31).

Chapter 4 libvirt Virtual Machine Management

184

Figure 4-31.  Virtual machines in the remote QEMU/KVM hypervisor

If we want to migrate the VM “debian12” currently running on our

local host, we’ll select it (Figure 4-32) and right-click the migrate option. In

the next window, we’ll see a summary of the operation (Figure 4-33), the

source and destination host, etc.

Chapter 4 libvirt Virtual Machine Management

185

Figure 4-32.  Migrating a VM from the local host to a remote host

Chapter 4 libvirt Virtual Machine Management

186

Figure 4-33.  VM migration summary

However, when we click the “Migrate” button, we’ll get the error shown

in Figure 4-34.

Chapter 4 libvirt Virtual Machine Management

187

Figure 4-34.  Migration error

We got an error because currently the storage pool in which the

disk file is located is a directory local to the QEMU/KVM host. That is

considered insecure and by default is not allowed. Later we’ll see briefly

that we can create many different storage pools, some of which are shared.

For now, we’ll see how to perform the migration modifying the default

Advanced options so that unsafe migration is allowed. We’ll repeat the

procedure, but this time we’ll migrate a VM from the remote host to the

local host. We’ll select the “lubuntu” VM (Figure 4-35) and right-click on

the “migrate” option. This time we’ll edit the Advanced options and

activate the “Allow unsafe” option (Figure 4-36).

Chapter 4 libvirt Virtual Machine Management

188

Figure 4-35.  Migrating a VM

Chapter 4 libvirt Virtual Machine Management

189

Figure 4-36.  Allowing unsafe migration

Chapter 4 libvirt Virtual Machine Management

190

However, after clicking the “Migrate” button, we’ll get the error shown

in Figure 4-37.

Figure 4-37.  Error migrating the VM. Unable to access the storage file

This error is completely normal; the disk file currently only exists on

the remote host, not on the local host. So when the migration process tries

to access the storage file in the destination host, it returns this error. To fix

this, we’ll copy the disk file from the remote host to the local host with scp

or any other tool.

antonio@antonio-Laptop:~$ sudo scp antonio@192.168.1.41:/var/

lib/libvirt/images/lubuntu.img /var/lib/libvirt/images/

Once the file has been copied, we’ll try to migrate again. This time the

procedure starts to execute (Figure 4-38).

Chapter 4 libvirt Virtual Machine Management

191

Figure 4-38.  Migrating a VM

The migration can take a while, but after it is complete, we can see

the VM running on the local QEMU/KVM host (Figure 4-39). And we can

access the server console and manage it (Figure 4-40).

Chapter 4 libvirt Virtual Machine Management

192

Figure 4-39.  Migration completed

Chapter 4 libvirt Virtual Machine Management

193

Figure 4-40.  Accessing the console of the migrated VM

�Managing Snapshots
We have already seen that we can create snapshots in QEMU by using

QEMU monitor; we can also create snapshots in Xen domains using the xl
command. But now we’ll see we can do this same thing in a much easier

way from virt-manager.

Chapter 4 libvirt Virtual Machine Management

194

To create a snapshot in virt-manager, we open the virtual machine and

click on the last icon, “Manage VM snapshots” (Figure 4-41).

Figure 4-41.  Managing VM snapshots

We’ll click on the “+” icon to create a new snapshot (Figure 4-42).

Chapter 4 libvirt Virtual Machine Management

195

Figure 4-42.  Creating a snapshot in virt-manager

Chapter 4 libvirt Virtual Machine Management

196

If we want to restore the snapshot, we select it (Figure 4-43) and click

the “play” button (run selected snapshot). We confirm that we want to

restore the snapshot discarding the current changes (Figure 4-44).

Figure 4-43.  Restoring a snapshot

Figure 4-44.  Confirming that we want to restore the snapshot

Finally, when we no longer need the snapshot, we can delete it by

clicking on the “delete snapshot” icon.

Chapter 4 libvirt Virtual Machine Management

197

�Storage Pools and Volumes
Every VM machine needs to store its data somewhere; this is where storage

pools and storage volumes come into play. The storage pool is a certain

amount of storage set aside by the administrator to be used by the virtual

machines. The storage pool is divided into storage volumes.

For example, when we used a local directory as the storage pool, every

file inside that local directory was a storage volume. These volumes are

assigned to the virtual machines as block devices.

In libvirt, we can create the following storage pools:

•	 dir: Filesystem Directory

•	 disk: Physical Disk Device

•	 fs: Preformatted Block Device

•	 gluster: Gluster Filesystem

•	 iscsi: iSCSI Target

•	 logical: LVM Volume Group

•	 mpath: Multipath Device Emulator

•	 netfs: Network Exported Directory

•	 rbd: RADOS Block Device/Ceph

•	 scsi: SCSI Host Adapter

•	 sheepdog: Sheepdog Filesystem

•	 zfs: ZFS Pool

As we can see, there are many different types of storage pools. We

won’t see each and every one of them, but we’ll see a couple of examples.

We have already seen the dir type so we’ll see two different types of

storage pool. We’ll begin by creating an NFS share in a server, and then

we’ll create a storage pool of the type netfs. We’ve seen already how to

Chapter 4 libvirt Virtual Machine Management

198

create a storage volume when we created our first virtual machine in virt-

manager. We’ll repeat the procedure, but this time we’ll select the type

netfs (Figure 4-45).

Figure 4-45.  Creating a storage pool of the type netfs

Chapter 4 libvirt Virtual Machine Management

199

Figure 4-46.  Network exported storage pool

Once created, we can access it in the same way as the dir type storage

volume previously created (Figure 4-46). The way to work is basically the

same for both types; each file in the NFS share will be a storage volume,

just like we have seen in the dir type.

If we want to create a storage pool of the type “logical”, the procedure

is quite similar. We create a new storage pool, and this time we choose the

type “logical” and select a volume group that needs to exist in our host

(Figure 4-47).

Chapter 4 libvirt Virtual Machine Management

200

Figure 4-47.  Creating a storage pool of the type “logical”

Similarly to what we’ve seen in the previous types of storage pools

created, the storage pool is divided into storage volumes. So if we install

a new virtual machine and decide to store that virtual machine in the

newly created logical storage pool, we’ll see later that a new file (a storage

volume) is created (Figure 4-48).

Chapter 4 libvirt Virtual Machine Management

201

Figure 4-48.  Storage pool with a newly created storage volume

�Networking
When installing libvirt, a new interface virbr0 is created. This is a bridge

used by default by libvirt to establish the communication between the vir-

tual machines and the host and, in some cases, the external network. We

can list this interface in the host.

antonio@antonio-Laptop:~$ ip link show virbr0

3: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN mode DEFAULT group default qlen 1000

 link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff

Chapter 4 libvirt Virtual Machine Management

202

In this case, the interface is down because the virtual machine we

created previously with virt-manager is currently down. If we start it, we’ll

see that the status of the interface changes to “up”.

antonio@antonio-Laptop:~$ ip link show virbr0

3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default qlen 1000

 link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff

We can see the network settings by opening the virtual machine from

virt-manager and selecting the “Show virtual hardware details” option

(Figure 4-49).

Figure 4-49.  Virtual machine network settings

Chapter 4 libvirt Virtual Machine Management

203

In this example, we can see that the NIC of the VM is connected

to the network “Virtual Network default”, and it is using NAT (Network

Address Translation). We can also see the IP address assigned to the VM

through DHCP.

If we take a look at the “Virtual Networks” section of the current hyper-

visor (Figure 4-50), we’ll see that currently we only have one virtual net-

work defined. We can see the range of addresses that are assigned to the

clients through DHCP, as well as the fact that the network is using NAT.

Figure 4-50.  Virtual networks

Now that we have an overall idea of networking in libvirt, let’s see a bit

more of detail about it.

Chapter 4 libvirt Virtual Machine Management

204

We’ve seen that right after installing libvirt, a new network interface

named virbr0 is created. By default, all virtual machines created using

libvirt will be connected to this interface. We have seen this in the case of

our “Debian 12” virtual machine. If we check the network settings from the

virtual machine itself, we’ll see this:

antonio@debian:~$ ip address show enp1s0

2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000

 link/ether 52:54:00:e4:c4:d9 brd ff:ff:ff:ff:ff:ff

 inet 192.168.122.124/24 brd 192.168.122.255 scope global

dynamic noprefixroute enp1s0

 valid_lft 2671sec preferred_lft 2671sec

 inet6 fe80::5054:ff:fee4:c4d9/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

antonio@debian:~$ ip route

default via 192.168.122.1 dev enp1s0 proto dhcp src

192.168.122.124 metric 100

192.168.122.0/24 dev enp1s0 proto kernel scope link src

192.168.122.124 metric 100

We can see that it got its IP address and gateway address through

DHCP. Of course the IP address of the gateway is that of the virbr0 network

interface.

antonio@antonio-Laptop:~$ ip address show virbr0

3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000

 link/ether 52:54:00:35:f1:14 brd ff:ff:ff:ff:ff:ff

 �inet 192.168.122.1/24 brd 192.168.122.255 scope

global virbr0

 valid_lft forever preferred_lft forever

Chapter 4 libvirt Virtual Machine Management

205

Both DHCP and DNS services are provided by libvirt using dnsmasq.

This is a light DNS/DHCP server. This software can work independently but

in libvirt is fully integrated and can be managed using the usual libvirt tools.

The default network uses NAT (Network Address Translation); that is,

when communicating with the outside world, the host IP is used instead of

the guest IP. We’ll see an example. Let’s suppose we want to access a web

server from our “Debian 12” virtual machine.

antonio@debian:~$ wget http://192.168.1.250

In the web server logs, we will find an entry similar to this one:

192.168.1.20 - - [06/Jul/2024:12:24:45 +0200] "GET / HTTP/1.1"

200 2562 "-" "Wget/1.21.3"

We can see that the IP registered is that of the host, not that of the

guest. This is accomplished by modifying the properties of the Linux

firewall. Describing exactly how NAT works is well beyond the scope of this

book, but we’ll see an example of the firewall configuration in the host.

antonio@antonio-Laptop:~$ sudo iptables -t nat -L

.

.

.

Chain LIBVIRT_PRT (1 references)

target prot opt source destination

RETURN all -- 192.168.122.0/24 base-address.

mcast.net/24

RETURN all -- 192.168.122.0/24 255.255.255.255

MASQUERADE tcp -- 192.168.122.0/24 !192.168.122.0/24

masq ports: 1024-65535

MASQUERADE udp -- 192.168.122.0/24 !192.168.122.0/24

masq ports: 1024-65535

MASQUERADE all -- 192.168.122.0/24 !192.168.122.0/24

Chapter 4 libvirt Virtual Machine Management

206

This default network configuration is most of the time everything

we need to work, but there are many other options available. We’ll see a

couple of them.

We’ll start by creating a routed network. We create a new virtual

network, but this time we choose the “Routed” mode. We can also edit

the DHCP settings if we want to, but the default values are OK for this

example. We also assign a descriptive name to this new virtual network

(Figure 4-51).

Chapter 4 libvirt Virtual Machine Management

207

Figure 4-51.  Creating a routed virtual network

Chapter 4 libvirt Virtual Machine Management

208

Next, we edit the virtual machine settings, and we connect the virtual

NIC to the new virtual network (Figure 4-52).

Figure 4-52.  Connecting the Debian 12 virtual machine to the new
virtual network

We might need to refresh the IP settings from the VM console, to make

sure that the new settings are active.

Right after creating the network, a new network interface appears in

the host.

antonio@antonio-Laptop:~$ ip address show virbr1

45: virbr1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000

 link/ether 52:54:00:9a:49:a6 brd ff:ff:ff:ff:ff:ff

Chapter 4 libvirt Virtual Machine Management

209

 �inet 192.168.100.1/24 brd 192.168.100.255 scope

global virbr1

 valid_lft forever preferred_lft forever

Now we can connect again from the host to the guest, but if we try to

access the same web server from the local network, we won’t be able.

antonio@debian:~$ wget http://192.168.1.250

--2024-07-06 12:47:50-- http://192.168.1.250/

Connecting to 192.168.1.250:80...

This behavior is perfectly normal. The default virtual network was

using NAT, so when the web server received an HTTP request, the source

address was that of the libvirt host, and the web server knows how to

handle that. However, now we’re using a routed network, so there is no

NAT and the real IP from the guest is used. When the web server from the

local network receives a request from 192.168.100.149, it doesn’t know how

to send the information back. It tries to use the default gateway, but the

default network doesn’t know that IP either and the TCP packet is finally

discarded.

To solve this situation, we need to edit the routing tables in our net-

work. The simplest way to do it in this example is by editing the routing

table in the web server computer so that every packet addressed to the

192.168.100.0/24 network is forwarded to the libvirt host computer.

root@raspberrypi:/var/log/apache2# ip route add

192.168.100.0/24 via 192.168.1.20 dev eth0

Now we can repeat the test; this time we’ll be able to access the web

server from the local network.

antonio@debian:~$ wget http://192.168.1.250

--2024-07-06 13:02:52-- http://192.168.1.250/

Connecting to 192.168.1.250:80... connected.

Chapter 4 libvirt Virtual Machine Management

210

And in the Apache logs, we’ll see that the recorded IP address is that of

the guest.

192.168.100.149 - - [06/Jul/2024:13:02:52 +0200] "GET /

HTTP/1.1" 200 2562 "-" "Wget/1.21.3"

Another interesting virtual network type is “Isolated”. In this case,

the libvirt guest can communicate with each other and with the host, but

not with the outside world. The way to create it is exactly similar to what

we saw before with the routed mode. In this case, however, we specify

the “Isolated” mode and assign a network that is currently not in use

(Figure 4-53).

Chapter 4 libvirt Virtual Machine Management

211

Figure 4-53.  Creating an isolated virtual networking

The way to work with this isolated virtual network is exactly the same

as what we have seen so far; we just need to edit the virtual machine

settings and connect the NIC to this new network. As we said before, with

this network, we can only communicate internally with the host and with

other guests, not with the outside world.

Chapter 4 libvirt Virtual Machine Management

212

There are also a couple of other modes that can be used for virtual net-

works. The “open” mode is very similar to the “routed” mode, and most of

the time they provide basically the same functionality. Finally, the “SR-IOV

pool” type is very specific and allows different virtual machines to share a

single hardware interface.

�Monitoring
When we first introduced virt-manager, we mentioned very briefly that it

can also be used to monitor the use of resources like CPU, memory, and so

on. However, by default, only the CPU is monitored (Figure 4-54).

Figure 4-54.  Monitoring the CPU

Chapter 4 libvirt Virtual Machine Management

213

To monitor memory, disk, and network usage, we need to edit the

preferences by clicking “Edit” ➤ “Preferences” on the main window of virt-

manager. In the new window, we click on the “Polling” tab and select all

the check boxes (Figure 4-55).

Figure 4-55.  Editing the polling preferences

After saving the changes, we can see performance data for memory,

disk, and network interfaces, not only for the CPU (Figure 4-56).

Chapter 4 libvirt Virtual Machine Management

214

Figure 4-56.  Guest performance

�virsh
We have already seen a few examples about how to use the libvirt API from

virt-manager and even a couple of simple examples in which we used our

own programs. Even though virt-manager is a very convenient tool, some-

times it is preferable to use a command-line tool like virsh, which can be

used in scripts more easily.

We can execute virsh with the proper parameters in the command line

or we can use it interactively through the virsh shell.

antonio@antonio-Laptop:~$ virsh

Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands

 'quit' to quit

virsh #

Chapter 4 libvirt Virtual Machine Management

215

Usually virsh will connect automatically to the local hypervisor, but we

can specify the URI to connect to explicitly.

antonio@antonio-Laptop:~$ virsh connect qemu:///system

If we type “help” either from the virsh shell or as a subcommand, we’ll

see a long list of parameters that can be used.

virsh # help

Grouped commands:

 Domain Management (help keyword 'domain'):

 attach-device attach device from an XML file

 attach-disk attach disk device

 attach-interface attach network interface

 autostart autostart a domain

.

.

.

We can list the virtual machines currently running with “virsh list”.

antonio@antonio-Laptop:~$ virsh list

 Id Name State

 4 debian12 running

If the virtual machine is not running, it won’t appear in the previous

listing, but we could see it with the “--all” parameter.

antonio@antonio-Laptop:~$ virsh list --all

 Id Name State

 4 debian12 running

Chapter 4 libvirt Virtual Machine Management

216

We can edit any virtual machine/domain .

antonio@antonio-Laptop:~$ virsh edit debian12

Now the XML file associated with the virtual machine will be opened

in the default editor.

 GNU nano 6.2 /tmp/virsh86SMQ2.xml

<domain type='kvm'>

 <name>debian12</name>

 <uuid>05959a22-b9e4-4d99-a3ae-16f946880ff1</uuid>

 <metadata>

 �<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/

xmlns/libvirt/domain/1.0">

 <libosinfo:os id="http://debian.org/debian/12"/>

 </libosinfo:libosinfo>

 </metadata>

 <memory unit='KiB'>2097152</memory>

.

.

.

Apart from editing the virtual machine/domain, we can obtain a

summary of the configuration.

antonio@antonio-Laptop:~$ virsh dominfo debian12

Id: 4

Name: debian12

UUID: 05959a22-b9e4-4d99-a3ae-16f946880ff1

OS Type: hvm

State: running

CPU(s): 2

CPU time: 231,2s

Max memory: 2097152 KiB

Chapter 4 libvirt Virtual Machine Management

217

Used memory: 2097152 KiB

Persistent: yes

Autostart: disable

Managed save: no

Security model: apparmor

Security DOI: 0

Security label: libvirt-05959a22-b9e4-4d99-a3ae-16f946880ff1

(enforcing)

It is also possible to manage the snapshots of a virtual machine/

domain using virsh.

antonio@antonio-Laptop:~$ virsh snapshot-list --domain debian12

 Name Creation Time State

We can also use virsh to list the defined networks, create, or

delete them.

antonio@antonio-Laptop:~$ virsh net-list

 Name State Autostart Persistent

 default active yes yes

 ISOLATED_network active yes yes

 ROUTED_network active yes yes

And we can see the details of a certain network.

antonio@antonio-Laptop:~$ virsh net-info default

Name: default

UUID: e4e9c8b1-7913-4744-b8b2-205ce8ce6068

Active: yes

Persistent: yes

Autostart: yes

Bridge: virbr0

Chapter 4 libvirt Virtual Machine Management

218

We can also list the storage pool and volumes and also create them or

destroy them.

antonio@antonio-Laptop:~$ virsh pool-list

 Name State Autostart

 default active yes

 QEMU_VMs active yes

antonio@antonio-Laptop:~$ virsh vol-list --pool QEMU_VMs

 Name Path

 alpine-virt-3.20.0-x86_64.iso �/home/antonio/

QEMU_VMs/alpine-

virt-3.20.0-x86_64.iso

 alpine_disk.qcow �/home/antonio/QEMU_VMs/

alpine_disk.qcow

 bin /home/antonio/QEMU_VMs/bin

 BINARY_SLA.txt �/home/antonio/QEMU_Vms/

BINARY_SLA.txt

.

.

.

Of course we can start, pause, and stop the virtual machines with virsh

as well.

antonio@antonio-Laptop:~$ virsh shutdown debian12

Domain 'debian12' is being shutdown

antonio@antonio-Laptop:~$ virsh list --all

 Id Name State

 - debian12 shut off

Chapter 4 libvirt Virtual Machine Management

219

�libvirt Configuration Files
We can see many configuration files in the /etc/libvirt folder. These files

modified the behavior of both the libvirt clients as well as the libvirtd ser-

vice itself.

�libvirt.conf
One of these files is libvirt.conf. This file is very concise as we can see here.

antonio@antonio-Laptop:~$ cat /etc/libvirt/libvirt.conf

#

This can be used to setup URI aliases for frequently

used connection URIs. Aliases may contain only the

characters a-Z, 0-9, _, -.

#

Following the '=' may be any valid libvirt connection

URI, including arbitrary parameters

#uri_aliases = [

"hail=qemu+ssh://root@hail.cloud.example.com/system",

"sleet=qemu+ssh://root@sleet.cloud.example.com/system",

#]

#

�These can be used in cases when no URI is supplied by the

application

(@uri_default also prevents probing of the hypervisor driver).

#

#uri_default = "qemu:///system"

Chapter 4 libvirt Virtual Machine Management

220

We can see a couple of variables that can be defined here. One of them

is uri_aliases, an array of aliases to connect to different systems. The full

URI to connect to a system can be a bit complicated to remember, for

instance, when we used virt-manager to connect to a remote Xen host,

the URI was something like this: xen+ssh://root@192.168.1.70/. We could

define an easier-to-remember alias so that every time we need to connect

to it, we just type the alias instead of the full URI.

The other variable defined in this file is uri_default. When we con-

nected to libvirt from Python, we didn’t specify any URI, so we connected

to the default one. If this var is not manually set in the libvirt.conf file, the

default value will be the local QEMU/KVM hypervisor.

�libvirtd.conf
Contrary to what we saw on the libvirt.conf file, the libvirtd.conf file is very

long and has many options that can be customized to alter how the lib-
virtd service works.

Due to its size, we want to show it here, but we can mention a few

parameters that can be edited to better suit our needs. We can, for

instance, issue certificates and define the location of these certificates

in the libvirtd.conf file. This way we can also configure the use of TLS in

libvirtd.

The relevant section of the file to configure the certificates is this one:

TLS x509 certificate configuration

#

�Use of TLS requires that x509 certificates be issued.

The default locations

for the certificate files is as follows:

#

Chapter 4 libvirt Virtual Machine Management

221

/etc/pki/CA/cacert.pem - The CA master certificate

�/etc/pki/libvirt/servercert.pem - The server certificate

signed by cacert.pem

�/etc/pki/libvirt/private/serverkey.pem - The server

private key

#

�It is possible to override the default locations by altering

the 'key_file',

�'cert_file', and 'ca_file' values and uncommenting

them below.

#

�NB, overriding the default of one location requires

uncommenting and

possibly additionally overriding the other settings.

#

Override the default server key file path

#

#key_file = "/etc/pki/libvirt/private/serverkey.pem"

Override the default server certificate file path

#

#cert_file = "/etc/pki/libvirt/servercert.pem"

Override the default CA certificate path

#

#ca_file = "/etc/pki/CA/cacert.pem"

Specify a certificate revocation list.

#

Defaults to not using a CRL, uncomment to enable it

#crl_file = "/etc/pki/CA/crl.pem"

Chapter 4 libvirt Virtual Machine Management

222

We can also configure auditing in the following section.

###

#

Auditing

#

�This setting allows usage of the auditing subsystem to be

altered:

#

audit_level == 0 -> disable all auditing

�audit_level == 1 -> enable auditing, only if enabled on

host (default)

�audit_level == 2 -> enable auditing, and exit if

disabled on host

#

#audit_level = 2

#

If set to 1, then audit messages will also be sent

via libvirt logging infrastructure. Defaults to 0

#

#audit_logging = 1

There are many more options that can be edited, but we won’t cover

them here. The file is well documented so you can have a look at it if you’re

particularly interested in customizing a certain feature.

�qemu.conf
Another interesting file is qemu.conf. We have seen that libvirt can connect

to different systems, QEMU/KVM hypervisors, Xen hypervisors, etc. To do

it, it needs the corresponding driver. In the particular case of QEMU/KVM,

Chapter 4 libvirt Virtual Machine Management

223

this driver can be customized by editing this file. We’re not going to de-

scribe this file, but we can customize things such as the use of vnc or SPICE

to connect to the server.

We also have other similar files to customize the use of the different

drivers used by libvirt to connect to the different systems.

�virtlogd.conf
The virtlogd service manages the logs of the virtual machine consoles. The

/etc/libvirt/virtlogd.conf file is used to customize logging-related param-

eters such as the log level, log output, and so on. Usually we won’t need to

edit it.

�virtlockd.conf
Another libvirt service is virtlockd. This service manages locks when

virtual machines need to access their resources, such as their disks. The

configuration file for this service is /etc/libvirt/virtlockd.conf and is very

similar to the previous file we’ve seen. The file is used mainly to customize

the logging for this service. Most of the time we don’t need to edit it.

�dnsmasq
libvirt integrates the use of other network services like dnsmasq. We

already saw it briefly when describing how networking works in libvirtd.

dnsmasq is a software that works as a DNS and DHCP server. It is very light

and very easy to configure.

Chapter 4 libvirt Virtual Machine Management

224

If we list the processes in a computer running libvirt, we’ll see

something similar to this:

antonio@antonio-Laptop:~$ ps -ef | grep dnsmasq
libvirt+ 1878 1 0 jul01 ? 00:00:00 /usr/

sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.

conf --leasefile-ro --dhcp-script=/usr/lib/libvirt/libvirt_

leaseshelper

root 1879 1878 0 jul01 ? 00:00:00 /usr/

sbin/dnsmasq --conf-file=/var/lib/libvirt/dnsmasq/default.

conf --leasefile-ro –dhcp-script=/usr/lib/libvirt/libvirt_

leaseshelper

And if we open the configuration file /var/lib/libvirt/dnsmasq/default.

conf, we’ll see how easy it is to configure this server.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ sudo cat /var/lib/

libvirt/dnsmasq/default.conf

##�WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE

LIKELY TO BE

##�OVERWRITTEN AND LOST. Changes to this configuration should

be made using:

virsh net-edit default

or other application using the libvirt API.

##

dnsmasq conf file created by libvirt

strict-order

user=libvirt-dnsmasq

pid-file=/run/libvirt/network/default.pid

except-interface=lo

bind-dynamic

Chapter 4 libvirt Virtual Machine Management

225

interface=virbr0

dhcp-range=192.168.122.2,192.168.122.254,255.255.255.0

dhcp-no-override

dhcp-authoritative

dhcp-lease-max=253

dhcp-hostsfile=/var/lib/libvirt/dnsmasq/default.hostsfile

addn-hosts=/var/lib/libvirt/dnsmasq/default.addnhosts

As the file itself implies, we should not edit this file directly, but using

virsh or virt-manager instead. But it can give us a good idea of how this

service works.

�radvd
In all the examples so far, we have used IPv4. These IPv4 settings were pro-

vided by dnsmasq. We could use IPv6 settings for the virtual machines as

well. IPv6 has more autoconfiguration features than IPv4 because the IPv6

clients can obtain their IPv6 address automatically from an IPv6-capable

router. This router should be able to manage ICMP Router solicitation

messages and answer with ICMP Router advertisement messages. In Linux

systems, the software needed to do that is the radvd package.

This radvd service is not very often used, as sometimes we don’t need

IPv6. Besides, dnsmasq can also serve IPv6 addresses through DHCP

instead of relying on the autoconfiguration features of the protocol. In

any case, we must be aware that it is also possible to see it in use in the

network.

Chapter 4 libvirt Virtual Machine Management

226

�Summary
In this chapter, we have seen a much more friendly way to manage our

virtual machines. We studied libvirt architecture and how it provides a

common API to manage different hypervisors. This API can be directly

accessed with our own programs, but it is definitely more convenient using

tools like virt-manager or virsh.

We’ve used it to interact with QEMU/KVM as well as Xen hypervisors.

We’ve created and manage snapshots. And we’ve seen the performance

information that libvirt provides.

We’ve seen that we have many choices when deciding what type of

storage to use, from local folders to network file systems. We’ve also cre-

ated and used different virtual networks, and we’ve seen how external

services like dnsmasq and radvd interact with libvirt.

We could also easily migrate a virtual machine from one hypervisor to

another using virt-manager, though we could have used virsh as well.

Chapter 4 libvirt Virtual Machine Management

227© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_5

CHAPTER 5

Virtual Machine Disk
Image Management
In this chapter, we’ll cover the following concepts:

•	 Understand features of various virtual disk image

formats, such as raw images, qcow2, and VMDK

•	 Manage virtual machine disk images using qemu-img

•	 Mount partitions and access files contained in virtual

machine disk images using libguestfish

•	 Copy physical disk content to a virtual machine

disk image

•	 Migrate disk content between various virtual machine

disk image formats

•	 Awareness of Open Virtualization Format (OVF)

•	 Awareness of VirtualBox

We will also be introduced to the following terms and utilities:

qemu-img, guestfish, guestmount, guestunmount, virt-cat, virt-copy-in,

virt-copy-out, virt-diff, virt-inspector, virt-filesystems, virt-rescue,

virt-df, virt-resize, virt-sparsify, virt-p2v, virt-p2v-make-disk, virt-v2v,

and virt-sysprep.

https://doi.org/10.1007/979-8-8688-1080-0_5#DOI

228

�Virtual Disk Image Formats
A disk image file is a file that contains the structure as well as the content

of a storage device: a hard disk, a DVD drive, floppy disk, etc. We’re talking

about a single disk image, but to be more precise, we should note that a

disk image can be stored in one or more physical files.

There are several disk image formats, of which we’ll enumerate here

briefly a few:

•	 Raw disk images: These are complete dumps bit to

bit of the original disk/device. They don’t hold any

additional data beyond the disk content.

•	 qcow images: It is a format used by QEMU. It uses “copy

on write” to optimize storage.

•	 VMDK: Format developed originally by VMware and

released as an open format later.

�Raw Images
Raw images are those that keep an exact copy bit by bit of a device. These

images include not only the actual data but also any control field that

might be present in the original device.

Raw images are used for instance in computer forensics to get an

exact copy of the original device. Many computer forensic tools can create

raw disk images from a physical device. We can use the well-known dd

command included in almost all Linux distributions to obtain a raw disk

image. It lacks some of the most advanced features we can find in some

computer forensic tools, but I will fit perfectly our needs for didactic

purposes.

Chapter 5 Virtual Machine Disk Image Management

229

As an example, we’ll create a raw disk image of a partition from a

USB disk.

antonio@antonio-Laptop:~/VMDISKS$ sudo dd if=/dev/sda1

of=USBpart.img

3926495+0 records in

3926495+0 records out

2010365440 bytes (2,0 GB, 1,9 GiB) copied, 32,8104 s, 61,3 MB/s

Now we can use the qemu-img command, which we saw briefly when

we studied QEMU, to get some information about the disk file we just

created.

antonio@antonio-Laptop:~/VMDISKS$ qemu-img info USBpart.img

image: USBpart.img

file format: raw

virtual size: 1.87 GiB (2010365440 bytes)

disk size: 1.87 GiB

As we can see, qemu-img clearly identifies the disk file format as raw.

�qcow and qcow2
QEMU copy on write (qcow) is a disk image format used by QEMU, which

we already studied in Chapter 2. It uses a “copy on write” approach, which

means that data is only copied in the disk when it is actually needed. This

is a much more efficient approach than that of raw images, and thus, the

files are much smaller in size.

There are currently several versions of this format available: 1, 2, and 3.

Obviously the first version is qcow1, but it is rarely used today. The newer

qcow2 format was almost completely different from the first version, and it

is widely used today. The newest version, qcow3, is basically an extension

of qcow2.

Chapter 5 Virtual Machine Disk Image Management

230

�VMDK
Virtual Machine Disk (VMDK) is a disk image format initially developed

by VMware but released later as an open format. Nowadays it is supported

not only by VMware products but also by third-party products like QEMU

or VirtualBox. It can use advanced features like copy on write, thin or thick

provisioning, and so on.

�Managing Disk Images with qemu-img
One particularly useful utility to work with disk images is qemu-img. We

already used it in Chapter 2, when creating a QEMU virtual machine. But

this tool offers many more possibilities. We already have this tool installed

in our system, but if we need to install it in a different system, we’ll have to

install the qemu-utils package.

antonio@antonio-Laptop:~/VMDISKS$ sudo apt install qemu-utils

�Getting Information with qemu-img
We have seen already some examples of use. We can use qemu-img to

get some basic information about the disk image file we created when we

studied QEMU.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img info debian.qcow2

image: debian.qcow2

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)

disk size: 7.98 GiB

cluster_size: 65536

Format specific information:

 compat: 1.1

Chapter 5 Virtual Machine Disk Image Management

231

 compression type: zlib

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

 extended l2: false

We can see a lot of interesting information, about virtual and real size,

compression type, and so on. In this case, we didn’t have any snapshots,

but if we have snapshots associated with the disk, we’ll see them as well, as

in the following example:

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ qemu-img info

debian.qcow2

image: debian.qcow2

file format: qcow2

virtual size: 10G (10737418240 bytes)

disk size: 5.4G

cluster_size: 65536

Snapshot list:

ID TAG VM SIZE DATE VM CLOCK

1 210115debian 912M 2021-01-15 23:29:32 00:13:25.513

Format specific information:

 compat: 1.1

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

We can use qemu-img to check other file disk formats than qcow2, as

we can see in the next example:

antonio@antonio-Laptop:~$ qemu-img info VirtualBox\ VMs/Rocky/

Rocky.vdi

image: VirtualBox VMs/Rocky/Rocky.vdi

Chapter 5 Virtual Machine Disk Image Management

232

file format: vdi

virtual size: 40 GiB (42949672960 bytes)

disk size: 14.6 GiB

cluster_size: 1048576

�Creating Disk Image Files with qemu-img
We can also use img-create to create disk images as we saw in Chapter 2.

Let’s create three different disk images: a raw disk image, a qcow2 image,

and a VMDK disk image.

antonio@antonio-Laptop:~/VMDISKS$ qemu-img create -f raw

rawdisk.img 1G

Formatting 'rawdisk.img', fmt=raw size=1073741824

antonio@antonio-Laptop:~/VMDISKS$ qemu-img create -f qcow2

qcow2disk.qcow2 1G

Formatting 'qcow2disk.qcow2', fmt=qcow2 cluster_size=65536

extended_l2=off compression_type=zlib size=1073741824 lazy_

refcounts=off refcount_bits=16

antonio@antonio-Laptop:~/VMDISKS$ qemu-img create -f vmdk

vmdkdisk.vmdk 1G

Formatting 'vmdkdisk.vmdk', fmt=vmdk size=1073741824

compat6=off hwversion=undefined

If we list these files, we’ll see the first differences.

antonio@antonio-Laptop:~/VMDISKS$ ls -lh

total 212K

-rw-r--r-- 1 antonio antonio 193K jul 8 15:05 qcow2disk.qcow2

-rw-r--r-- 1 antonio antonio 1,0G jul 8 15:03 rawdisk.img

-rw-r--r-- 1 antonio antonio 192K jul 8 15:05 vmdkdisk.vmdk

Chapter 5 Virtual Machine Disk Image Management

233

As expected, the raw disk is taking up all the 1 GB space, but the qcow2

and the VMDK disks use a much more efficient approach and their real

size is much smaller than the logical size. We can also get some more

information with the file command.

antonio@antonio-Laptop:~/VMDISKS$ file *

qcow2disk.qcow2: QEMU QCOW2 Image (v3), 1073741824 bytes

rawdisk.img: data

vmdkdisk.vmdk: VMware4 disk image

�Creating Overlays with qemu-img
Overlay images are backed by another image.

To see it more clearly, we’re going to create an overlay using the

original disk of the Debian 12 virtual machine we created previously.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img create -f qcow2 -b

debian.qcow2 -F qcow2 debianoverlay

Formatting 'debianoverlay', fmt=qcow2 cluster_size=65536

extended_l2=off compression_type=zlib size=10737418240

backing_file=debian.qcow2 backing_fmt=qcow2 lazy_refcounts=off

refcount_bits=16

If we use qemu-img to get information about the disk file we just

created, we can clearly see its backing file.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ qemu-img info

debianoverlay

image: debianoverlay

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)

disk size: 196 KiB

cluster_size: 65536

backing file: debian.qcow2

Chapter 5 Virtual Machine Disk Image Management

234

backing file format: qcow2

Format specific information:

 compat: 1.1

 compression type: zlib

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

 extended l2: false

We can have different overlays backed by the same image file: one with

all the updates, another one without updates, etc. One with development

tools, another with production tools.

If we check the size of the overlay image previously created, we’ll see it

is very small in size.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh debianoverlay

-rw-r--r-- 1 antonio antonio 193K jul 9 11:41 debianoverlay

As long as we keep working with the virtual machine associated to

the overlay image, the file size will increase. Let’s start a QEMU virtual

machine backed by that overlay image.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-system-x86_64 -m 2048

 -accel kvm debianoverlay

Once the VM is up and running, we can perform some basic

operations like downloading files. In this case, we’ll download the Linux

kernel source code, located at https://kernel.org (Figure 5-1).

Chapter 5 Virtual Machine Disk Image Management

https://kernel.org

235

Figure 5-1.  Downloading some files

When we’re done working with the virtual machine, we can check the

size of the overlay image again. As we can see, it is significantly bigger.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh debianoverlay

-rw-r--r-- 1 antonio antonio 268M jul 9 19:48 debianoverlay

�Converting Between Different Disk Formats
Another very interesting feature of qemu-img is the ability to convert a

disk file to a different format.

Chapter 5 Virtual Machine Disk Image Management

236

As an example, we’ll convert our qcow2 image file already created to a

VMDK format disk file.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img convert -f qcow2

debian.qcow2 -O vmdk debian.vmdk

The procedure is really fast. We can use qemu-img again to check the

new disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img info debian.vmdk

image: debian.vmdk

file format: vmdk

virtual size: 10 GiB (10737418240 bytes)

disk size: 6.12 GiB

cluster_size: 65536

Format specific information:

 cid: 268441838

 parent cid: 4294967295

 create type: monolithicSparse

 extents:

 [0]:

 virtual size: 10737418240

 filename: debian.vmdk

 cluster size: 65536

 format:

�Basic Usage of VirtualBox to Check the Image
Disk File
The file seems to be OK. To actually test it, we can use VirtualBox. We

haven’t studied VirtualBox yet. As it is included in the official exam

objectives, we’ll see it very briefly here.

Chapter 5 Virtual Machine Disk Image Management

237

VirtualBox is a type II hypervisor; that is, it is an application that runs

on the computer, such as any other application like LibreOffice Writer,

Firefox, etc. It is very easy to install; we won’t see how to install because

it is not required for the exam, but it is very easy and you won’t have any

trouble.

Once it is installed, we can launch it and we’ll see something similar to

Figure 5-2, with the only difference that right after a fresh install, there will

be no virtual machines created on VirtualBox.

Figure 5-2.  VirtualBox

We’ll use the VMDK disk file previously converted from the debian.

qcow2 file to create our new virtual machine in VirtualBox. We click on the

“New” icon to create a new virtual machine (Figure 5-3).

Chapter 5 Virtual Machine Disk Image Management

238

Figure 5-3.  Creating a new virtual machine in VirtualBox

We’ll assign a name to the VM. We can leave the default value for the

folder where the VM files will be stored. We can choose an ISO file to install

the VM, but we’ll use the VMDK file with the OS already installed so we’ll

leave it blank. We can also select “Linux” and “Debian 64 bit” in the type

and version, respectively. These are just labels, but they will help us to

keep all the virtual machines properly arranged. We click “Next”.

In the next screen (Figure 5-4), we can edit the hardware specifications.

One CPU and 2 GB of RAM should be more than enough for our testing

purposes. We click “Next” again.

Chapter 5 Virtual Machine Disk Image Management

239

Figure 5-4.  Hardware specifications

In the next screen, we could create a new disk, but we’ll choose to use

an existing disk instead (Figure 5-5). And we click “Next”.

Figure 5-5.  Using an existing virtual disk

Chapter 5 Virtual Machine Disk Image Management

240

In the last screen, we can see a summary with the VM settings

previously assigned (Figure 5-6). If we need to edit something, we’ll click

“Back” to change it; otherwise, we click “Finish”.

Figure 5-6.  Virtual machine settings summary

The virtual machine is now ready. We just need to select it and click the

“Start” button. In a few seconds, we’ll be able to access the server console

(Figure 5-7).

Chapter 5 Virtual Machine Disk Image Management

241

Figure 5-7.  Virtual machine console

�Mounting Partitions and Accessing Files
Contained in Virtual Disks
There is a C library named libguestfs, which can be used to access and

modify files in virtual disk images. The needed packages to install this

library and its utilities are usually included in the repositories of the main

Linux distributions. In our case, we’ll install these tools in Ubuntu.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo apt install

libguestfs-tools

Chapter 5 Virtual Machine Disk Image Management

242

Once the installation is complete, we can use the tools included. One

of these tools is guestfish. It can be executed in an interactive way.

antonio@antonio-Laptop:~/QEMU_VMs$ guestfish

Welcome to guestfish, the guest filesystem shell for

editing virtual machine filesystems and disk images.

Type: 'help' for help on commands

 'man' to read the manual

 'quit' to quit the shell

><fs>

By typing “help” on the command line, we get a brief description of the

main commands.

><fs> help

Add disk images to examine using the '-a' or '-d' options, or

the 'add'

command.

Or create a new disk image using '-N', or the 'alloc' or

'sparse' commands.

Once you have done this, use the 'run' command.

For more information about a command, use 'help cmd'.

To read the manual, type 'man'.

><fs>

As we can see, we need to add a disk image with the “add”

subcommand and execute “run”.

><fs> add debian.qcow2

><fs> run

Chapter 5 Virtual Machine Disk Image Management

243

libguestfs: warning: current user is not a member of the KVM

group (group ID 129). This user cannot access /dev/kvm, so

libguestfs may run very slowly. It is recommended that you

'chmod 0666 /dev/kvm' or add the current user to the KVM group

(you might need to log out and log in again).

libguestfs: error: /usr/bin/supermin exited with error

status 1.

To see full error messages you may need to enable debugging.

Do:

 export LIBGUESTFS_DEBUG=1 LIBGUESTFS_TRACE=1

and run the command again. For further information, read:

 http://libguestfs.org/guestfs-faq.1.html#debugging-libguestfs

You can also run 'libguestfs-test-tool' and post the

complete output

into a bug report or message to the libguestfs mailing list.

><fs>

><fs> exit

In this case, we get an error because we are executing guestfish as a

standard user and this user does not have permissions to access /dev/

kvm. To circumvent this, we can add our current user to the kvm group or

execute guestfish as root.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestfish

[sudo] password for antonio:

Welcome to guestfish, the guest filesystem shell for

editing virtual machine filesystems and disk images.

Type: 'help' for help on commands

 'man' to read the manual

 'quit' to quit the shell

Chapter 5 Virtual Machine Disk Image Management

244

><fs>

><fs> add debian.qcow2

><fs> run

 100%

⟦▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒⟧ 00:00
><fs>

�Troubleshooting libguestfs
In this case, we could execute “run” without any issue, but it is possible

that we get an error; let’s see an easy example.

><fs> add debian.qcow2

><fs> run

libguestfs: error: appliance closed the connection

unexpectedly.

This usually means the libguestfs appliance crashed.

Do:

 export LIBGUESTFS_DEBUG=1 LIBGUESTFS_TRACE=1

and run the command again. For further information, read:

 http://libguestfs.org/guestfs-faq.1.html#debugging-libguestfs

.

.

.

In this example, we get a new error. Luckily, the tool itself provides

us with some valuable information to troubleshoot this incident. So

we’ll enable debugging by exporting the two environment variables

mentioned before.

Chapter 5 Virtual Machine Disk Image Management

245

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ sudo su root

root@antonio-Aspire-A315-23:/home/antonio/QEMU_VMs# export

LIBGUESTFS_DEBUG=1 LIBGUESTFS_TRACE=1

root@antonio-Aspire-A315-23:/home/antonio/QEMU_VMs# guestfish

libguestfs: trace: set_verbose true

libguestfs: trace: set_verbose = 0

.

.

.

Welcome to guestfish, the guest filesystem shell for

editing virtual machine filesystems and disk images.

Type: 'help' for help on commands

 'man' to read the manual

 'quit' to quit the shell

><fs> add debian.qcow2

libguestfs: trace: add_drive "debian.qcow2"

libguestfs: trace: add_drive = 0

><fs> run

libguestfs: trace: launch

libguestfs: trace: get_tmpdir

libguestfs: trace: get_tmpdir = "/tmp"

.

.

.

ioctl(KVM_CREATE_VM) failed: 16 Device or resource busy

qemu-system-x86_64: failed to initialize KVM: Device or

resource busy

qemu-system-x86_64: Back to tcg accelerator

qemu-system-x86_64: CPU model 'host' requires KVM

libguestfs: error: appliance closed the connection

Chapter 5 Virtual Machine Disk Image Management

246

unexpectedly, see earlier error messages

.

.

.

As expected, we get a lot of information, and at one point, we can see

the message “failed to initialize KVM: Device or resource busy”. The reason

we were getting this message is because we were executing an instance

of VirtualBox, which was using KVM. After shutting down this VirtualBox

instance, we can execute guestfish again.

antonio@antonio-Aspire-A315-23:~/QEMU_VMs$ sudo guestfish

[sudo] password for antonio:

Welcome to guestfish, the guest filesystem shell for

editing virtual machine filesystems and disk images.

Type: 'help' for help on commands

 'man' to read the manual

 'quit' to quit the shell

><fs> add debian.qcow2

><fs> run

 100% ⟦▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒⟧ 00:00
><fs>

After successfully executing “run”, we can work on the disk image,

mounting it and accessing the contents of the files. If at any point we’re not

sure about what command to use, we can type “help”.

><fs> help

Find out what filesystems are available using 'list-

filesystems' and then

Chapter 5 Virtual Machine Disk Image Management

247

mount them to examine or modify the contents using

'mount-ro' or

'mount'.

For more information about a command, use 'help cmd'.

To read the manual, type 'man'.

><fs>

As suggested, we’ll list the filesystems in the disk file.

><fs> list-filesystems

/dev/sda1: ext2

/dev/debian-vg/root: ext4

/dev/debian-vg/swap_1: swap

><fs>

We successfully managed to get a list of the filesystems contained in

the virtual disk file. With this information, we can mount one of these

filesystems in guestfish and see its contents.

><fs> mount-ro /dev/debian-vg/root /

><fs> ls /

.cache

bin

boot

dev

etc

home

initrd.img

initrd.img.old

lib

lib64

lost+found

Chapter 5 Virtual Machine Disk Image Management

248

media

mnt

opt

proc

root

run

sbin

srv

sys

tmp

usr

var

vmlinuz

vmlinuz.old

><fs>

We can also read (and modify) any file. When we finish our work, we

type “exit”.

><fs> cat /etc/hostname

debian

><fs> exit

�guestmount/guestunmount
Apart from accessing files from inside the guestfish shell, we can also

mount the filesystems contained in the virtual disk file directly in the host.

To do it, we can use the guestmount command. We can use list the main

options with the --help option.

antonio@antonio-Laptop:~$ guestmount --help

guestmount: FUSE module for libguestfs

Chapter 5 Virtual Machine Disk Image Management

249

guestmount lets you mount a virtual machine filesystem

Copyright (C) 2009-2020 Red Hat Inc.

Usage:

 guestmount [--options] mountpoint

Options:

 -a|--add image Add image
 --blocksize[=512|4096]
 �Set sector size of the disk for

 -a option

 -c|--connect uri Specify libvirt URI for -d option
 --dir-cache-timeout �Set readdir cache timeout

(default 5 sec)

 -d|--domain guest Add disks from libvirt guest
.

.

.

Most of the tools included in the libguestfs suite have similar options,

so we’ll describe briefly the main ones.

We can use “-a” to add a disk image and work with that file, or we

can use “-d” to work with the disk associated to a libvirt domain. We can

also use “-v” (verbose) to get more information about what the tool is

actually doing.

In our example, we’ll add (-a) the disk image debian.qcow2 and

mount (-i) its filesystem(s) automatically. To make sure we don’t make

any undesired modifications, we’ll mount it in read-only mode (--ro). We

could specify the file system to mount, but in this example, we’ll let the tool

itself to try and guess it.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestmount -a debian.

qcow2 -i --ro /mnt/mydata

Chapter 5 Virtual Machine Disk Image Management

250

If we list the /mnt/mydata folder, we’ll see that the filesystem was

mounted correctly.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo ls /mnt/mydata

bin dev home initrd.img.

old lib64 media opt root sbin sys usr vmlinuz

boot etc initrd.img lib lost+found mnt proc run

srv tmp var vmlinuz.old

We can also see the contents of any file.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ sudo cat /mnt/

mydata/etc/hosts

127.0.0.1 localhost

127.0.1.1 debian.mydomain debian

The following lines are desirable for IPv6 capable hosts

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Once we’re done, we can unmount the filesystem with guestunmount.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo guestunmount /

mnt/mydata

We’ve used a disk image file in our example, but as we said before, we

can also use the same tool by connecting to a libvirt domain. We’ll begin by

listing the currently defined domains. For that, we can use virsh.

antonio@antonio-Laptop:~/QEMU_VMs$ virsh list --all

 Id Name State

 - debian12 shut off

Chapter 5 Virtual Machine Disk Image Management

251

We have a shutdown domain; we’ll start it.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ virsh start

debian12

Domain 'debian12' started

We check that the domain is up and running.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ virsh list

 Id Name State

 1 debian12 running

Now we connect to the domain and mount the filesystem locally.

As it is a running domain, we’ll use the “read only” option to avoid data

corruption.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ sudo

guestmount -d debian12 -i --ro /mnt/mydata/

We can easily copy data from the live domain to the local host.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ sudo cp /mnt/

mydata/home/antonio/documents/important_doc.txt .

antonio@antonio-HP-Laptop-15s-fq1xxx:~/QEMU_VMs$ ls

important_doc.txt

important_doc.txt

�virt-cat
Another tool included in the libguestfs-tools suite is virt-cat. We can use it

to show the content of a file, as the name implies.

Chapter 5 Virtual Machine Disk Image Management

252

The available options are very similar to those of the guestmount tool.

We’ll see a couple of examples using a disk image and a libvirt domain.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -a debian.

qcow2 /home/antonio/documents/important_doc.txt

This is a very important document

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -d debian12 /

home/antonio/documents/important_doc.txt

This is a very important document

An interesting option that we haven’t seen so far is “-x”. This parameter

traces the libguestfs API calls, which can be useful when troubleshooting.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -d debian12 -x

/home/antonio/documents/important_doc.txt

libguestfs: trace: add_domain "debian12" "readonly:true"

"allowuuid:true" "readonlydisk:read"

libguestfs: trace: add_libvirt_dom (virDomainPtr)0x63d4aafc5100

"readonly:true" "readonlydisk:read"

libguestfs: trace: clear_backend_setting "internal_libvirt_

norelabel_disks"

libguestfs: trace: clear_backend_setting = 0

libguestfs: trace: add_drive "/home/antonio/QEMU_VMs/debian.

qcow2" "readonly:true" "format:qcow2"

libguestfs: trace: get_tmpdir

libguestfs: trace: get_tmpdir = "/tmp"

libguestfs: trace: disk_create "/tmp/libguestfs4X1c3w/overlay1.

qcow2" "qcow2" -1 "backingfile:/home/antonio/QEMU_VMs/debian.

qcow2" "backingformat:qcow2"

libguestfs: trace: disk_create = 0

libguestfs: trace: add_drive = 0

libguestfs: trace: add_libvirt_dom = 1

Chapter 5 Virtual Machine Disk Image Management

253

libguestfs: trace: add_domain = 1

libguestfs: trace: launch

libguestfs: trace: max_disks

libguestfs: trace: max_disks = 255

libguestfs: trace: get_cachedir

libguestfs: trace: get_cachedir = "/var/tmp"

libguestfs: trace: get_cachedir

libguestfs: trace: get_cachedir = "/var/tmp"

libguestfs: trace: get_backend_setting "force_tcg"

libguestfs: trace: get_backend_setting = NULL (error)

libguestfs: trace: get_backend_setting "force_kvm"

libguestfs: trace: get_backend_setting = NULL (error)

libguestfs: trace: get_sockdir

libguestfs: trace: get_sockdir = "/tmp"

libguestfs: trace: get_backend_setting "gdb"

libguestfs: trace: get_backend_setting = NULL (error)

libguestfs: trace: launch = 0

libguestfs: trace: list_partitions

libguestfs: trace: list_partitions = ["/dev/sda1", "/dev/sda2",

"/dev/sda5"]

libguestfs: trace: vfs_type "/dev/sda1"

libguestfs: trace: vfs_type = "ext2"

libguestfs: trace: vfs_type "/dev/sda2"

libguestfs: trace: vfs_type = ""

libguestfs: trace: vfs_type "/dev/sda5"

libguestfs: trace: vfs_type = "LVM2_member"

libguestfs: trace: inspect_os

libguestfs: trace: inspect_os = ["/dev/debian-vg/root"]

libguestfs: trace: inspect_get_mountpoints "/dev/

debian-vg/root"

Chapter 5 Virtual Machine Disk Image Management

254

libguestfs: trace: inspect_get_mountpoints = ["/boot", "/dev/

sda1", "/", "/dev/debian-vg/root"]

libguestfs: trace: mount_ro "/dev/debian-vg/root" "/"

libguestfs: trace: mount_ro = 0

libguestfs: trace: mount_ro "/dev/sda1" "/boot"

libguestfs: trace: mount_ro = 0

libguestfs: trace: inspect_get_roots

libguestfs: trace: inspect_get_roots = ["/dev/debian-vg/root"]

libguestfs: trace: inspect_get_type "/dev/debian-vg/root"

libguestfs: trace: inspect_get_type = "linux"

libguestfs: trace: download "/home/antonio/documents/important_

doc.txt" "/dev/stdout"

This is a very important document

libguestfs: trace: download = 0

libguestfs: trace: close

libguestfs: trace: internal_autosync

libguestfs: trace: internal_autosync = 0

�virt-copy-in
We can use virt-copy-in to copy files from the host to the disk image/lib-

virt domain.

We’ll begin by creating a simple text file.

antonio@antonio-Laptop:~/QEMU_VMs$ echo "This is a very

simplistic text file" > newtextfile.txt

And we copy it to the disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-in -a debian.

qcow2 ./newtextfile.txt /home/antonio/documents/

Chapter 5 Virtual Machine Disk Image Management

255

We can check that the file was copied by using the virt-cat command

that we studied previously.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-cat -d debian12 /

home/antonio/documents/newtextfile.txt

This is a very simplistic text file

�virt-copy-out
This tool complements virt-copy-in. While virt-copy-in allows to copy

files from the host to the disk image/domain, virt-copy-out allows to copy

files from the disk image/domain to the host.

We’ll test this tool by copying any file from the disk image.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-out -a

debian.qcow2 /etc/fstab .

After copying the file, we can see its contents as with any other

local file.

antonio@antonio-Laptop:~/QEMU_VMs$ cat fstab

/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

�device; this may be used with UUID= as a more robust way to

name devices

that works even if disks are added and removed. See fstab(5).

#

�systemd generates mount units based on this file, see

systemd.mount(5).

�Please run 'systemctl daemon-reload' after making

changes here.

#

Chapter 5 Virtual Machine Disk Image Management

256

<file system> <mount point> <type> <options>

<dump> <pass>

/dev/mapper/debian--vg-root

/ ext4 errors=remount-ro 0 1

/boot was on /dev/sda1 during installation

UUID=e5a28faa-6b7b-453e-95cc-e87cd9a13693 /

boot ext2 defaults 0 2

/dev/mapper/debian--vg-swap_1 none swap sw

0 0

/dev/sr0 /media/cdrom0 udf,iso9660 user,noauto

0 0

�virt-diff
Sometimes it might be useful to see the differences between two running

instances, two image disk files, etc. For example, if we want to know what

files have been created since we performed a snapshot. We can do this

with virt-diff.

We’ll begin by comparing the disk image file debian.qcow2 and the

libvirt domain “debian12”.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-diff -a debian.

qcow2 -D debian12

antonio@antonio-Laptop:~/QEMU_VMs$

As there are no differences, we don’t see any output. Now we’ll

perform a simple test. We’ll make a copy of the disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ cp debian.qcow2 debian_

copy.qcow2

Chapter 5 Virtual Machine Disk Image Management

257

And we’ll use virt-copy-in to copy any file to the new disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-copy-in -a debian_

copy.qcow2 test /home/antonio

If we compare now both disk images with virt-diff, we’ll see this

difference.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-diff -a debian.

qcow2 -A debian_copy.qcow2

+ - 0664 5 /home/antonio/test

�virt-inspector
If we want to get information about the OS in a certain disk image file

or libvirt domain, we can get it with virt-inspector. Let’s see a simple

example.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-inspector -a

debian.qcow2

<?xml version="1.0"?>

<operatingsystems>

 <operatingsystem>

 <root>/dev/debian-vg/root</root>

 <name>linux</name>

 <arch>x86_64</arch>

 <distro>debian</distro>

 <product_name>12.5</product_name>

 <major_version>12</major_version>

 <minor_version>5</minor_version>

 <package_format>deb</package_format>

 <package_management>apt</package_management>

 <hostname>debian</hostname>

Chapter 5 Virtual Machine Disk Image Management

258

 <osinfo>debian12</osinfo>

 <mountpoints>

 <mountpoint dev="/dev/debian-vg/root">/</mountpoint>

 <mountpoint dev="/dev/sda1">/boot</mountpoint>

 </mountpoints>

 <filesystems>

 <filesystem dev="/dev/debian-vg/root">

 <type>ext4</type>

 <uuid>c5eac4a7-3638-4207-bae3-23f02aaa4666</uuid>

 </filesystem>

 <filesystem dev="/dev/debian-vg/swap_1">

 <type>swap</type>

 <uuid>ba9163b0-13c8-4a4e-b640-ac059211c82c</uuid>

 </filesystem>

 <filesystem dev="/dev/sda1">

 <type>ext2</type>

 <uuid>e5a28faa-6b7b-453e-95cc-e87cd9a13693</uuid>

 </filesystem>

 </filesystems>

.

.

.

As the output is very lengthy, it is probably better to redirect it to a file.

In the output, we can get a lot of information, like the root filesystem, the

architecture, operating system version, software installed, and so on.

�virt-filesystems
A disk image file or domain can contain many filesystems. When we stud-

ied the libguestfs interactive shell, we saw how to list the filesystems. We

can do the same thing with the virt-filesystems command.

Chapter 5 Virtual Machine Disk Image Management

259

To test the tool, we’ll list the filesystems of a couple of disk image files.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a

debian.qcow2

/dev/sda1

/dev/debian-vg/root

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a

alpine_disk.qcow

/dev/sda1

/dev/sda3

If we want to get more details, like the type of filesystem or the size, we

can use the “-l” option.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems -a

debian.qcow2 -l

Name Type VFS Label Size Parent

/dev/sda1 filesystem ext2 - 476286976 -

/dev/debian-vg/root filesystem ext4 - 8923836416 -

�virt-rescue
There could be certain circumstances that render a disk image unbootable.

If that’s the case, we can try to rescue the system with virt-rescue.

To start, we can use the “--suggest” option. As the name implies, this

command suggests the commands that we must use once inside the res-

cue shell.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-rescue --suggest

 -a debian.qcow2

Inspecting the virtual machine or disk image ...

This disk contains one or more operating systems. You can use

these mount

Chapter 5 Virtual Machine Disk Image Management

260

commands in virt-rescue (at the ><rescue> prompt) to mount the

filesystems.

/dev/debian-vg/root is the root of a linux operating system

type: linux, distro: debian, version: 12.5

12.5

mount /dev/debian-vg/root /sysroot/

mount /dev/sda1 /sysroot/boot

mount --rbind /dev /sysroot/dev

mount --rbind /proc /sysroot/proc

mount --rbind /sys /sysroot/sys

cd /sysroot

chroot /sysroot

The tool successfully recognized the filesystems contained in the disk

image file, as well as the root filesystem and the boot partition. We’re sug-

gested to mount the root filesystem and the boot partition, as well as the

special filesystems /dev, /proc, and /sys.

We’ll execute virt-rescue again and perform the suggested actions.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-rescue -a

debian.qcow2

supermin: mounting /proc

supermin: ext2 mini initrd starting up: 5.2.1

Starting /init script …

.

.

.

The virt-rescue escape key is '^]'. Type '^] h' for help.

--

Welcome to virt-rescue, the libguestfs rescue shell.

Chapter 5 Virtual Machine Disk Image Management

261

Note: The contents of / (root) are the rescue appliance.

You have to mount the guest's partitions under /sysroot

before you can examine them.

groups: cannot find name for group ID 0

><rescue>

><rescue> mount /dev/debian-vg/root /sysroot/

><rescue> mount /dev/sda1 /sysroot/boot

><rescue> mount --rbind /dev /sysroot/dev

><rescue> mount --rbind /proc /sysroot/proc

><rescue> mount --rbind /sys /sysroot/sys

><rescue>

Finally, we change to the /sysroot folder and execute chroot to change

the active root filesystem.

><rescue> cd /sysroot

><rescue> chroot /sysroot

Now we can perform the needed actions to repair the system. For

instance, we can check the mount points, repair the filesystems, etc. For

instance, let’s suppose that we need to check the contents of the /etc/fstab

file. We can use cat from inside virt-rescue to do that.

><rescue> cat /etc/fstab

/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

�device; this may be used with UUID= as a more robust way to

name devices

that works even if disks are added and removed. See fstab(5).

#

Chapter 5 Virtual Machine Disk Image Management

262

�systemd generates mount units based on this file, see

systemd.mount(5).

�Please run 'systemctl daemon-reload' after making

changes here.

#

<file system> <mount point> <type> <options>

<dump> <pass>

/dev/mapper/debian--vg-root

/ ext4 errors=remount-ro 0 1

/boot was on /dev/sda1 during installation

UUID=e5a28faa-6b7b-453e-95cc-e87cd9a13693 /

boot ext2 defaults 0 2

/dev/mapper/debian--vg-swap_1 none swap sw

0 0

/dev/sr0 /media/cdrom0 udf,iso9660 user,noauto

0 0

><rescue>

If we need to edit the file, we can use vi. When we have performed

the needed actions to repair the system, we can exit virt-rescue by

pressing Ctrl+D.

�virt-df
Linux administrators are familiar with the df command. There is also an

equivalent command that performs the same operation on image disk file

and/or libvirt domains.

Chapter 5 Virtual Machine Disk Image Management

263

The use of the virt-df command is very easy.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-df -a debian.qcow2 -h

Filesystem Size Used Available Use%

debian.qcow2:/dev/sda1 454M 69M 361M 16%

debian.qcow2:/dev/debian-vg/root 8,3G 4,5G 3,4G 54%

�virt-resize
All the libguestfs tools that we have seen so far are quite easy to use. That’s

not the case with virt-resize. Of course you don’t need to learn rocket

science to use it, but it is significantly more complicated to use than the

other tools.

We’ll begin by describing what the tool does. As the name implies, it

resizes virtual machine disks; it can resize a single or multiple partitions.

It is very advisable to check the man page of the tool. In that page, we can

see many examples that will help us better understand how to use the tool.

To avoid disk corruption, it is advisable to use it with powered-off virtual

machines.

We’ll resize one of the disk image files we worked with previously.

We can get some basic information with ls and qemu-img info as we

saw before.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh debian.qcow2

-rw-r--r-- 1 antonio antonio 8,1G jul 10 22:21 debian.qcow2

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img info debian.qcow2

image: debian.qcow2

file format: qcow2

virtual size: 10 GiB (10737418240 bytes)

disk size: 7.98 GiB

cluster_size: 65536

Chapter 5 Virtual Machine Disk Image Management

264

Format specific information:

 compat: 1.1

 compression type: zlib

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

 extended l2: false

In this example, we’ll extend one of the partitions of the disk image file,

so we’ll need to list them with the virt-filesystems tool, which we already

studied.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems --all

 -h --long -a debian.qcow2

Name Type VFS Label MBR Size Parent

/dev/sda1 filesystem ext2 - - 454M -

/dev/debian-vg/root filesystem ext4 - - 8,3G -

/dev/debian-vg/swap_1 filesystem swap - - 976M -

/dev/debian-vg/root lv - - - 8,5G �/dev/

debian-vg

/dev/debian-vg/swap_1 lv - - - 976M �/dev/

debian-vg

/dev/debian-vg vg - - - 9,5G /dev/sda5

/dev/sda5 pv - - - 9,5G -

/dev/sda1 partition - - 83 487M /dev/sda

/dev/sda2 partition - - 05 1,0K /dev/sda

/dev/sda5 partition - - 8e 9,5G /dev/sda

/dev/sda device - - - 10G -

Next, we need to create a new image disk file bigger in size. In this case,

we create a 12 GB image disk file.

Chapter 5 Virtual Machine Disk Image Management

265

antonio@antonio-Laptop:~/QEMU_VMs$ qemu-img create -f qcow2 -o

preallocation=metadata NEW_debian.qcow2 12G

Formatting 'NEW_debian.qcow2', fmt=qcow2 cluster_size=65536

extended_l2=off preallocation=metadata compression_type=zlib

size=128846

We check that the new file was correctly created.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh NEW_debian.qcow2

-rw-r--r-- 1 antonio antonio 13G jul 11 07:11 NEW_debian.qcow2

antonio@antonioLaptop:~/QEMU_VMs$ qemu-img info NEW_

debian.qcow2

image: NEW_debian.qcow2

file format: qcow2

virtual size: 12 GiB (12884901888 bytes)

disk size: 2.07 MiB

cluster_size: 65536

Format specific information:

 compat: 1.1

 compression type: zlib

 lazy refcounts: false

 refcount bits: 16

 corrupt: false

 extended l2: false

Now we can expand the disk by using the “old” file as the origin and

the “new” file as the destination. As we can only resize partitions, we’ll

resize the /boot partition as an example. We had identified this partition

previously with virt-filesystems.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-resize --expand /

dev/sda1 debian.qcow2 NEW_debian.qcow2

[0.0] Examining debian.qcow2

Chapter 5 Virtual Machine Disk Image Management

266

Summary of changes:

/dev/sda1: This partition will be resized from 487.0M to

2.5G. The

filesystem ext2 on /dev/sda1 will be expanded using the

'resize2fs'

method.

/dev/sda2: This partition will be left alone.

[3.0] Setting up initial partition table on NEW_debian.qcow2

[4.4] Copying /dev/sda1

[5.7] Copying /dev/sda2

 100%

⟦▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒⟧ 00:00
[55.4] Expanding /dev/sda1 using the 'resize2fs' method

Resize operation completed with no errors. Before deleting the

old disk, carefully check that the resized disk boots and works

correctly.

As suggested by the command itself, we should check that the

expanded disk actually works as expected. We can do that with QEMU for

instance. We can also use virt-filesystems to see the size of the expanded

partition.

Chapter 5 Virtual Machine Disk Image Management

267

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-filesystems --all

 -h --long -a NEW_debian.qcow2

Name Type VFS Label MBR Size Parent

/dev/sda1 filesystem ext2 - - 2,3G -

/dev/debian-vg/root filesystem ext4 - - 8,3G -

/dev/debian-vg/swap_1 filesystem swap - - 976M -

/dev/debian-vg/root lv - - - 8,5G �/dev/

debian-vg

/dev/debian-vg/swap_1 lv - - - 976M �/dev/

debian-vg

/dev/debian-vg vg - - - 9,5G /dev/sda5

/dev/sda5 pv - - - 9,5G -

/dev/sda1 partition - - 83 2,5G /dev/sda

/dev/sda2 partition - - 05 1,0K /dev/sda

/dev/sda5 partition - - 8e 9,5G /dev/sda

/dev/sda device - - - 12G -

We see that the size has increased from 487M to 2.5G. Now we launch

QEMU to check that the new disk image file actually works as expected.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-system-x86_64 -m

512 -accel kvm NEW_debian.qcow2

�virt-sparsify
A tool that complements virt-resizefs is virt-sparsify; this latter tool

reclaims unused disk space. Due to the risk of corrupting data, it is man-

datory to use it when the associated virtual machine is powered off, thus

minimizing the risk.

Chapter 5 Virtual Machine Disk Image Management

268

As an example, we’ll reclaim the unused space in the disk we expanded

previously. We’ll begin by checking its size.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh NEW_debian.qcow2

-rw-r--r-- 1 antonio antonio 13G jul 11 07:16 NEW_debian.qcow2

We now execute virt-sparsify; the syntax is very easy; we just need to

specify the name of the disk we want to sparsify and the new disk. The

new disk will be created by the tool (or overwritten if it already exists); as

opposed to what we saw with virt-resizefs, we don’t need to create the

new image disk file explicitly.

antonio@antonio-Laptop~/QEMU_VMs$ sudo virt-sparsify NEW_

debian.qcow2 SPARSIFIEDdebian.qcow2

[sudo] password for antonio:

[0.0] Create overlay file in /tmp to protect source disk

[0.0] Examine source disk

[2.5] Fill free space in /dev/debian-vg/root with zero

 100%

⟦▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒⟧ 00:00
[10.3] Clearing Linux swap on /dev/debian-vg/swap_1

[12.0] Fill free space in /dev/sda1 with zero

 100%

⟦▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒⟧ 00:00
[42.8] Fill free space in volgroup debian-vg with zero

[43.2] Copy to destination and make sparse

[111.2] Sparsify operation completed with no errors.

virt-sparsify: Before deleting the old disk, carefully check

that the target disk boots and works correctly.

Chapter 5 Virtual Machine Disk Image Management

269

If we check the size of the new file, we’ll see that it is significantly

smaller than the original file.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh

SPARSIFIEDdebian.qcow2

-rw-r--r-- 1 root root 5,0G jul 11 20:19 SPARSIFIEDdebian.qcow2

Finally, we launch QEMU with the new image disk file to make sure

that it is working.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-system-x86_64 -m

512 -accel kvm SPARSIFIEDdebian.qcow2

�virt-p2v
This tool converts a physical machine to a QEMU/KVM virtual machine

managed by libvirt, OpenStack, RHV, or oVirt. We don’t execute virt-p2v

directly; instead, we must create a bootable image with virt-p2v-make-
disk. Then we’ll boot the physical machine we want to virtualize using that

image, which will run automatically virt-p2v.

After that, we’ll need to provide the IP address and the credentials

needed to connect with SSH with the “conversion server.” This “conversion

server” is the QEMU/KVM hypervisor in which the converted virtual

machine will run. This server also needs to have virt-v2v installed.

Depending on the Linux distribution, virt-v2v can be included in the

libguestfs suite or be independent. In Ubuntu 22, for instance, it is

included in its own independent package.

antonio@antonio-Laptop:~/QEMU_VMs$ apt search virt-v2v

Sorting... Done

Full Text Search... Done

virt-v2v/jammy 1.44.2-1 amd64

 virtual-to-virtual machine converter

Chapter 5 Virtual Machine Disk Image Management

270

So we’ll need to install it.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo apt install virt-v2v

Next we need to create the bootable media. If we use the “--help”

option, we can see the syntax of the virt-p2v-make-disk command.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk --help

Usage:

 virt-p2v-make-disk [--options] -o /dev/sdX [os-version]

Read virt-p2v-make-disk(1) man page for more information.

We only need to specify the path of the device that we want to prepare

to boot the target system. The OS version is usually not necessary as the

tool will try to locate a suitable OS version for us. This OS version is related

to the host in which we’re creating the bootable image; it has no relation

at all with the OS version of the target physical system that we want to

virtualize.

So if we want to prepare a USB disk to boot a system and launch virt-
p2v, we can do that easily with this command, assuming the USB disk in

our system is at /dev/sda.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk -o

/dev/sda

virt-builder: error: cannot find os-version 'ubuntu-22.04' with

architecture 'x86_64'.

Use --list to list available guest types.

If reporting bugs, run virt-builder with debugging enabled and

include the

complete output:

 virt-builder -v -x [...]

Chapter 5 Virtual Machine Disk Image Management

271

Unfortunately in this occasion, the tool couldn’t find a proper OS to

build the image. As suggested, we’ll list the available versions.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-builder --list

opensuse-tumbleweed x86_64 openSUSE Tumbleweed

alma-8.5 x86_64 AlmaLinux 8.5

centos-6 x86_64 CentOS 6.6

centos-7.0 x86_64 CentOS 7.0

centos-7.1 x86_64 CentOS 7.1

centos-7.2 aarch64 CentOS 7.2 (aarch64)

.

.

.

ubuntu-20.04 x86_64 Ubuntu 20.04 (focal)

.

.

.

As I’m working on an Ubuntu 22 system, I’ll choose the ubuntu-20.04

OS version.

antonio@antonio-Laptop:~/QEMU_VMs$ virt-p2v-make-disk -o /dev/

sda ubuntu-20.04

[6.4] Downloading: http://builder.libguestfs.org/

ubuntu-20.04.xz

100,0%

[32.6] Planning how to build this image

[32.6] Uncompressing

[40.3] Opening the new disk

[43.1] Setting a random seed

virt-builder: warning: random seed could not be set for this

type of guest

Chapter 5 Virtual Machine Disk Image Management

272

[43.1] Uploading: /tmp/tmp.I0qrkWErp8/policy-rc.d to /usr/

sbin/policy-rc.d

[43.2] Setting the hostname: p2v.local

[44.1] Running: hostname p2v.local

[44.2] Updating packages

[182.1] Installing packages: libpcre3 libxml2 libgtk-3-0

libdbus-1-3 openssh-client qemu-utils debianutils vim-tiny

open-iscsi xorg xserves

[289.8] Uploading: /usr/share/virt-p2v/issue to /etc/issue

[289.9] Uploading: /usr/share/virt-p2v/issue to /etc/issue.net

[289.9] Making directory: /usr/bin

[289.9] Uploading: /tmp/tmp.I0qrkWErp8/virt-p2v to /usr/bin/

virt-p2v

[290.0] Changing permissions of /usr/bin/virt-p2v to 0755

[290.0] Uploading: /usr/share/virt-p2v/launch-virt-p2v to /

usr/bin/

[290.0] Changing permissions of /usr/bin/launch-virt-

p2v to 0755

[290.0] Uploading: /usr/share/virt-p2v/p2v.service to /etc/

systemd/system/

[290.1] Making directory: /etc/systemd/system/multi-user.

target.wants

[290.1] Linking: /etc/systemd/system/multi-user.target.wants/

p2v.service -> /etc/systemd/system/p2v.service

[290.1] Editing: /lib/systemd/system/getty@.service

[290.2] Editing: /etc/systemd/logind.conf

[290.3] Deleting: /usr/sbin/policy-rc.d

[290.3] Setting passwords

[291.3] Finishing off

 Output file: image.iso

 Output size: 6.0G

Chapter 5 Virtual Machine Disk Image Management

273

 Output format: raw

 Total usable space: 5.8G

 Free space: 2.4G (41%)

antonio@antonio-Laptop:~/QEMU_VMs$

In addition to the procedure of creating a bootable image to execute

virt-p2v that we have just seen, some commercial distributions like Red

Hat allow to download an already-created bootable image. This could be a

better option if it is available, as the manual creation of the bootable image

not always works as expected. In this case, we should write the ISO file to

the USB device. This can be easily done; if we’re working with Ubuntu 22,

we can open the ISO file with the “Disk Image Writer” (Figure 5-8) and

select the USB device in which we want to write the ISO file (Figure 5-9).

Chapter 5 Virtual Machine Disk Image Management

274

Figure 5-8.  Opening the ISO file with the Disk Image Writer

Chapter 5 Virtual Machine Disk Image Management

275

Figure 5-9.  Writing the ISO file to the USB device

Whatever method we choose to create the USB bootable device, now

we can take our USB disk and boot the target system. In a few seconds, the

physical system will show us a screen similar to that of Figure 5-10.

Figure 5-10.  virt-p2v connecting to the conversion server

Chapter 5 Virtual Machine Disk Image Management

276

We need to fulfill the fields with the IP address of the QEMU/KVM

hypervisor in which the converted virtual machine will run. If we’re not

using DHCP in our network, we’ll need to edit the IP settings to assign

a free IP in the same network. We also need a user with permissions to

connect to the conversion server with SSH. We click “Next”.

In the new screen (Figure 5-11), we can specify the properties of the

converted virtual machine, such as the name, number of virtual CPUs,

memory, etc. We can also choose the physical disks and network interfaces

to be converted, the output format, and so on. In this example, we decided

to use the default “local” output format; this means that when the conver-

sion is finished, an XML file will be created on the /var/tmp folder. We can

later use it to import the virtual machine in libvirt with virsh define.

Figure 5-11.  Conversion settings

Chapter 5 Virtual Machine Disk Image Management

277

We can now click “Start conversion”. A new window will appear in

which we can see the progress. When the procedure is finished, we’ll see

the corresponding message (Figure 5-12).

Figure 5-12.  The conversion was successful

As we said, we can now import the newly created virtual machine in

libvirt from the XML file created on /var/tmp.

�virt-v2v
We have seen already that we need virt-v2v installed when using virt-p2v.

Besides using it to convert physical to virtual, it can also be used to convert

between different virtual systems.

Chapter 5 Virtual Machine Disk Image Management

278

This is a very versatile and interesting tool, though it has some

limitations. If we look at the man page of the tool, we can see that

depending on the source guest and the destination format, there are

specific versions supported; in some cases, we need to perform some

additional actions.

It would take too long to describe each and every case so we’ll just

see a simple example. We’ll convert a VMDK file, for example, the one we

created previously from the original debian.qcow2 file. We’ll use the local

output (-o local); that is, an xml file will be created in the temp folder (-os

temp). The destination format will be qcow2 (-of qcow2).

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-v2v -i disk

debian.vmdk -o local -of qcow2 -os temp

[0.0] Opening the source -i disk debian.vmdk

[0.0] Creating an overlay to protect the source from being

modified

[0.1] Opening the overlay

[13.5] Inspecting the overlay

[15.8] Checking for sufficient free disk space in the guest

[15.8] Estimating space required on target for each disk

[15.8] Converting 12.5 to run on KVM

virt-v2v: warning: could not determine a way to update the

configuration of

Grub2

virt-v2v: This guest has virtio drivers installed.

[52.6] Mapping filesystem data to avoid copying unused and

blank areas

[69.8] Closing the overlay

[70.1] Assigning disks to buses

[70.1] Checking if the guest needs BIOS or UEFI to boot

[70.1] Initializing the target -o local -os temp

Chapter 5 Virtual Machine Disk Image Management

279

[70.1] Copying disk 1/1 to temp/debian-sda (qcow2)

 (100.00/100%)

[107.2] Creating output metadata

[107.2] Finishing off

If we list the contents of the temp folder, we’ll see the debian.xml file.

antonio@antonio-Laptop:~/QEMU_VMs$ ls -lh temp

total 5,5G

-rw-r--r-- 1 root root 5,5G jul 11 22:13 debian-sda

-rw-r--r-- 1 root root 1,5K jul 11 22:13 debian.xml

Now we can import the file into libvirt with virsh.

antonio@antonio-Laptop:~/QEMU_VMs$ virsh define temp/debian.xml

Domain 'debian' defined from temp/debian.xml

antonio@antonio-Laptop:~/QEMU_VMs$ virsh list --all

 Id Name State

 - debian shut off

 - debian12 shut off

However, if we try to start the newly defined libvirt domain, we might

get this error.

antonio@antonio-Laptop:~/QEMU_VMs$ virsh start debian

error: Failed to start domain 'debian'

error: internal error: qemu unexpectedly closed the monitor:

2024-07-14T12:54:18.899496Z qemu-system-x86_64: warning:

host doesn't support requested feature: CPUID.80000001H:ECX.

svm [bit 2]

Could not initialize SDL(x11 not available) - exiting

Chapter 5 Virtual Machine Disk Image Management

280

We can easily circumvent this error by editing the domain definition.

We could use virsh edit debian to edit the xml file directly, but it is more

friendly to use virt-manager instead. We’ll open the virtual machine

hardware settings; in the “CPUs” section, we’ll check the “copy host CPU

configuration” box (Figure 5-13).

Figure 5-13.  Editing the CPU settings

Chapter 5 Virtual Machine Disk Image Management

281

Next, we’ll get to the “Display SDL” section, and we’ll change the

settings to use VNC server instead (Figure 5-14).

Figure 5-14.  Editing the display settings

Now, we should be able to boot the debian domain (Figure 5-15).

Chapter 5 Virtual Machine Disk Image Management

282

Figure 5-15.  Debian domain running

�virt-sysprep
We’re almost finishing this review of the main libguestfs tools. This time

we’ll see virt-sysprep. This tool can be used to customize a virtual ma-

chine so that clones can be made. For instance, we can use it to remove ssh

keys or network MAC persistent configuration. If we make a copy of a disk

image file, the copy will have the same local user accounts, IP settings, and

so on, so if we use it unmodified in the same network, it will get network-

ing errors for having two identical IP addresses in the network. We could

easily avoid this by using virt-sysprep.

The use of virt-sysprep is very easy. We’ll see an easy example right

now. First, we’ll make a copy of a disk image file.

antonio@antonio-Laptop:~/QEMU_VMs$ cp alpine_disk.qcow COPY_

alpine_disk.qcow

Chapter 5 Virtual Machine Disk Image Management

283

Now we’ll use virt-sysprep to delete the file with the command history

(.ash_history in this Alpine Linux system) and to create a new /test folder.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo virt-sysprep --mkdir /

test --delete /root/.ash_history -a COPY_alpine_disk.qcow

[0.0] Examining the guest ...

[2.8] Performing "abrt-data" ...

[2.8] Performing "backup-files" ...

[2.9] Performing "bash-history" ...

[2.9] Performing "blkid-tab" ...

[3.0] Performing "crash-data" ...

[3.0] Performing "cron-spool" ...

[3.0] Performing "dhcp-client-state" ...

[3.0] Performing "dhcp-server-state" ...

[3.0] Performing "dovecot-data" ...

[3.0] Performing "ipa-client" ...

[3.0] Performing "kerberos-hostkeytab" ...

[3.1] Performing "logfiles" ...

[3.1] Performing "machine-id" ...

[3.1] Performing "mail-spool" ...

[3.1] Performing "net-hostname" ...

[3.2] Performing "net-hwaddr" ...

[3.2] Performing "pacct-log" ...

[3.3] Performing "package-manager-cache" ...

[3.3] Performing "pam-data" ...

[3.3] Performing "passwd-backups" ...

[3.3] Performing "puppet-data-log" ...

[3.3] Performing "rh-subscription-manager" ...

[3.4] Performing "rhn-systemid" ...

[3.4] Performing "rpm-db" ...

[3.4] Performing "samba-db-log" ...

[3.5] Performing "script" ...

Chapter 5 Virtual Machine Disk Image Management

284

[3.5] Performing "smolt-uuid" ...

[3.5] Performing "ssh-hostkeys" ...

[3.5] Performing "ssh-userdir" ...

[3.5] Performing "sssd-db-log" ...

[3.6] Performing "tmp-files" ...

[3.6] Performing "udev-persistent-net" ...

[3.6] Performing "utmp" ...

[3.6] Performing "yum-uuid" ...

[3.7] Performing "customize" ...

[3.7] Setting a random seed

virt-sysprep: warning: random seed could not be set for this

type of guest

[3.7] Making directory: /test

[3.7] Deleting: /root/.ash_history

[3.8] Performing "lvm-uuids" …

We’ll launch now a QEMU instance to check the customized disk

image file.

antonio@antonio-Laptop:~/QEMU_VMs$ sudo qemu-system-x86_64 -m

512 -accel kvm COPY_alpine_disk.qcow

If we log in the the system, we’ll see that the history command has

been reset.

alpine2:~# ls -a

. .. .ash_history

alpine2:~# history

 0 ls -a

 1 history

Chapter 5 Virtual Machine Disk Image Management

285

And we can also see that the new /test folder was created.

alpine2:~# ls /

bin home mnt run sys var

boot lib opt sbin test

dev lost+found proc srv tmp

etc media root swap usr

alpine2:~#

�Open Virtualization Format
Open Virtualization Format (OVF) is an open standard to distribute appli-

ances (pre-configured virtual machines).

Nowadays most of the virtualization solutions provide a way to export

virtual machines into OVF. For instance, if we’re working with VirtualBox,

which we already studied briefly in this chapter, we can click File ➤ Export

Appliance and we’ll see the window shown in Figure 5-16.

Figure 5-16.  Export Appliance

Chapter 5 Virtual Machine Disk Image Management

286

We select the virtual machine we want to export, and we click “Next”.

In the next screen (Figure 5-17), we specify a few settings such as the OVF

format or the location of the exported files. After clicking “Next”, we can

edit some descriptive information as well (Figure 5-18).

Figure 5-17.  Appliance settings 1 of 2

Chapter 5 Virtual Machine Disk Image Management

287

Figure 5-18.  Appliance settings 2 of 2

Now that everything is ready, we click “Export”, and the creation of the

OVF begins (Figure 5-19).

Figure 5-19.  Exporting an OVF

Chapter 5 Virtual Machine Disk Image Management

288

When the process finishes, we’ll have a series of files in the destination

folder (Figure 5-20).

Figure 5-20.  OVF files

In the mf file, we’ll see the checksums of the other files.

antonio@antonio-Aspire-A315-23:~/antonio/ovas$ cat juliette.mf

SHA1 (juliette-disk001.vmdk) =

2463045ec06fc3f3b3d2c6346d14b40170f99078

SHA1 (juliette-disk002.vmdk) =

1c92249f1d0daf720b92e5e397ab841205c79313

SHA1 (juliette.ovf) = 57e497c886b17b28bd91243990bbf8cbbc5818cb

The VMDK files are the virtual disk files used by the virtual machine,

and the ovf file is an xml file in which the hardware configuration of that

same virtual machine is described.

Chapter 5 Virtual Machine Disk Image Management

289

antonio@antonio-Aspire-A315-23:~/antonio/ovas$ cat juliette.ovf

<?xml version="1.0"?>

<Envelope ovf:version="1.0" xml:lang="en-US" xmlns="http://

schemas.dmtf.org/ovf/envelope/1" xmlns:ovf="http://schemas.

dmtf.org/ovf/envelope/1" xmlns:rasd="http://schemas.dmtf.org/

wbem/wscim/1/cim-schema/2/CIM_ResourceAllocationSettingData"

xmlns:vssd="http://schemas.dmtf.org/wbem/wscim/1/cim-

schema/2/CIM_VirtualSystemSettingData" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance" xmlns:vbox="http://www.

virtualbox.org/ovf/machine">

 <References>

 <File ovf:id="file1" ovf:href="juliette-disk001.vmdk"/>

 <File ovf:id="file2" ovf:href="juliette-disk002.vmdk"/>

 </References>

 <DiskSection>

 <Info>List of the virtual disks used in the package</Info>

 <Disk ovf:capacity="8589934592" ovf:diskId="vmdisk1"

ovf:fileRef="file1" ovf:format="http://www.vmware.com/

interfaces/specifications/vmdk.html#streamOptimized" vbox:uuid=

"dc47f76e-8461-4a65-88ad-f950b6e421e2"/>

 <Disk ovf:capacity="10737418240" ovf:diskId="vmdisk2"

ovf:fileRef="file2" ovf:format="http://www.vmware.com/

interfaces/specifications/vmdk.html#streamOptimized"

vbox:uuid="ffc82270-e015-43e1-870f-6b37129a0b58"/>

.

.

.

Chapter 5 Virtual Machine Disk Image Management

290

�Summary
In this chapter, we have learned a bit more about the different disk file

formats. We’ve seen how to create disk files in different formats, getting

information and converting between different formats.

We have also studied how we can mount filesystems contained inside

disk files and how to copy files between the host and the disk file. We’ve

also seen how we can expand or reduce the size of a virtual disk file and

customize its content, adding or deleting settings as needed.

We also saw an example of converting a physical machine to a virtual

one. And we used the OVF format to export a virtual machine.

Chapter 5 Virtual Machine Disk Image Management

291© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_6

CHAPTER 6

Proxmox and
Open vSwitch
In this chapter, we'll cover the following concepts:

•	 Awareness of oVirt, Proxmox, and systemd-machined

•	 Awareness of Open vSwitch

�Introduction to Proxmox
Proxmox is a virtualization platform, designed to easily manage virtual

machines (and also containers).

When we studied QEMU/KVM and at the beginning of the book, we

created the virtual machines launching the QEMU binary with the right

parameters to set memory, network, storage, and so on. Later we learned

about libvirt, and we saw how easier it was to manage virtual machines

with tools like virt-manager. However, for big enterprise environments,

even tools like virt-manager are not ideal. We need to go one step forward,

and that’s where Proxmox fits in.

We’ll start by installing Proxmox. We can download the ISO installation

file from the manufacturer web page: https://proxmox.com/en/

(Figure 6-1). Then we select “Downloads” and “Proxmox VE”. And click the

download button next to the ISO file.

https://doi.org/10.1007/979-8-8688-1080-0_6#DOI
https://proxmox.com/en/

292

We have to say that Proxmox offers several products, not only the

Proxmox Virtual Environment or Proxmox VE for short that we’re speaking

about in this book. They also offer backup and mail-related software.

When we speak about Proxmox in this book, we’ll be speaking about

Proxmox VE.

Figure 6-1.  Downloading Proxmox

Chapter 6 Proxmox and Open vSwitch

293

The way to install it is very easy. We just need to boot the server with

the ISO file (Figure 6-2).

Figure 6-2.  Booting from the Proxmox installer

Chapter 6 Proxmox and Open vSwitch

294

We’ll select the first option “Install Proxmox VE (Graphical)”, as it is

easier than the text installation. Then we select the disk device in which to

install it (Figure 6-3).

Figure 6-3.  Installing Proxmox. Selecting the hard disk

Chapter 6 Proxmox and Open vSwitch

295

We also select the country, time zone, and keyboard layout

(Figure 6-4).

Figure 6-4.  Installing Proxmox. Setting the time zone and the
keyboard layout

Chapter 6 Proxmox and Open vSwitch

296

We also need to set the root password (Figure 6-5).

Figure 6-5.  Installing Proxmox. Setting the root password

In the next screen, we specify the network settings (Figure 6-6).

Figure 6-6.  Installing Proxmox. IP settings

Chapter 6 Proxmox and Open vSwitch

297

Finally, we can see a brief summary of the settings that will be used

during the installation (Figure 6-7).

Figure 6-7.  Installing Proxmox. Summary

The installation will take a few minutes to complete. After that, we can

log in to the console (Figure 6-8).

Chapter 6 Proxmox and Open vSwitch

298

Figure 6-8.  Proxmox server console

From the server console, we can perform some basic actions like

getting the Proxmox version or listing the Proxmox nodes. Currently we

only have one Proxmox node, but Proxmox can be installed in cluster.

root@pve:~# pveversion

pve-manager/8.2.2/9355359cd7afbae4 (running kernel: 6.8.4-2-pve)

root@pve:~# pvesh get nodes

──│ �node │ status │ cpu │ level │ maxcpu │ maxmem │ mem │
ssl_fingerprint

──
──│ �pve │ online │ 0.89% │ │ 2 │ 3.83 GiB │ 1.12 GiB │

F9:15:38:0F:74:1D:F6:01:ED:4C:1B:94:A4:95:AD:69:B4:AF:69:39:6B:03:1
──
root@pve:~#

Chapter 6 Proxmox and Open vSwitch

299

However, the preferred way to administer Proxmox is through the web

console. We can see the exact URL on the server console banner. In our

example, it is located at http://192.168.1.85:8006. We’ll access using the

credentials specified during the installation (Figure 6-9).

Figure 6-9.  Accessing Proxmox web interface

Once authenticated, we can see the main page (Figure 6-10).

Chapter 6 Proxmox and Open vSwitch

http://192.168.1.85:8006/

300

Figure 6-10.  Proxmox web interface

A deep knowledge of Proxmox is not required for the LPIC-3 305 exam,

so we’ll just see a very simple example of how to create a virtual machine.

We’ll use the Alpine ISO file we downloaded when we studied Xen. We

need to upload the ISO file to the local storage of Proxmox. We’ll click on

the Proxmox node, pve in our case, and then select “storage local (pve)”

(Figure 6-11).

Chapter 6 Proxmox and Open vSwitch

301

Figure 6-11.  Proxmox storage

In the new window (Figure 6-12), we’ll click “ISO Images” and then the

“Upload” button.

Figure 6-12.  Storing an ISO file

Chapter 6 Proxmox and Open vSwitch

302

We select the location of the ISO file (Figure 6-13). And click the

“Upload” button.

Figure 6-13.  Uploading an ISO file

Once the ISO file is uploaded, we click the “Create VM” button, on the

top of the window. Then we need to specify the needed parameters for the

new VM. In the “General” tab (Figure 6-14), we select the node – in our

case, we only have one node – and the VM ID; in this case, we accept the

default values and click “Next”.

Chapter 6 Proxmox and Open vSwitch

303

Figure 6-14.  Creating a VM. General tab

In the “OS” tab (Figure 6-15), we’ll select the ISO file we uploaded

previously and click “Next”.

Figure 6-15.  Creating a VM. OS tab

Chapter 6 Proxmox and Open vSwitch

304

In the “System” tab (Figure 6-16), we can select different options for the

Graphic card, SCSI Controller, etc.

Figure 6-16.  Creating a VM. System tab

In the “Disks” tab (Figure 6-17), we can select the disk size and other

disk-related parameters.

Chapter 6 Proxmox and Open vSwitch

305

Figure 6-17.  Creating a VM. Disks tab

In the “CPU” tab (Figure 6-18), we select the number of CPUs.

Figure 6-18.  Creating a VM. CPU tab

Chapter 6 Proxmox and Open vSwitch

306

In the “Memory” tab (Figure 6-19), we assign the desired amount

of memory.

Figure 6-19.  Creating a VM. Memory tab

Finally, in the “Network” tab (Figure 6-20), we can set some network-

related settings, and in the “Confirm” tab (Figure 6-21), we can see a

summary. We click “Finish”.

Chapter 6 Proxmox and Open vSwitch

307

Figure 6-20.  Creating a VM. Network tab

Figure 6-21.  Creating a VM. Confirm tab

Chapter 6 Proxmox and Open vSwitch

308

Now the VM is created (Figure 6-22). We can now click the “Start”

button. We can access the server console by clicking “Console”

(Figure 6-23).

Figure 6-22.  Virtual machine created

Figure 6-23.  Accessing the VM console

Chapter 6 Proxmox and Open vSwitch

309

�systemd-machined
According to the man page, “systemd-machined is a system service that

keeps track of locally running virtual machines and containers.” That is, it

is a lightweight VM and container manager.

systemd-machined is actually a systemd service. We can check its

status as we’d do with any other service.

antonio@antonio-Laptop:~$ systemctl status systemd-machined

• systemd-machined.service - Virtual Machine and Container
Registration Service

 �Loaded: loaded (/lib/systemd/system/systemd-machined.

service; static)

 �Active: active (running) since Mon 2024-07-15 16:41:04

CEST; 1h 37min ago

 Docs: man:systemd-machined.service(8)

 man:org.freedesktop.machine1(5)

 Main PID: 855 (systemd-machine)

 Status: "Processing requests..."

 Tasks: 1 (limit: 18712)

 Memory: 1.3M

 CPU: 278ms

 CGroup: /system.slice/systemd-machined.service

 └─855 /lib/systemd/systemd-machined

We can manage VMs and containers registered in systemd-machined

using the machinectl command. Of course, right now we don’t have any

registered VM or container.

antonio@antonio-Laptop:~$ machinectl list

No machines.

Chapter 6 Proxmox and Open vSwitch

310

We need to create some machines. Similarly to what happened with

Proxmox, we’re only expected to have some basic knowledge of systemd-
machined, so we won’t get into much detail. We’ll just see an easy

example present in the man page of machinectl.
In this example, we’ll download an Ubuntu image specifically crafted

for being used in cloud environments. Then we’ll use systemd-nspawn to

open a shell in the image we just downloaded.

antonio@antonio-Laptop:~/VMs$ sudo machinectl pull-tar https://

cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-

amd64-root.tar.gz

Enqueued transfer job 1. Press C-c to continue download in

background.

Pulling 'https://cloud-images.ubuntu.com/trusty/current/trusty-

server-

cloudimg-amd64-root.tar.gz', saving as 'trusty-server-

cloudimg-amd64-root'.

Downloading 186.4M for https://cloud-images.ubuntu.com/trusty/

current/trusty-server-cloudimg-amd64-root.tar.gz.

.

.

.

Created new local image 'trusty-server-cloudimg-amd64-root'.

Operation completed successfully.

Exiting.

Now we can launch a shell with systemd-nspawn.

antonio@antonio-Laptop:~/VMs$ sudo systemd-nspawn -M trusty-

server-cloudimg-amd64-root

[sudo] password for antonio:

Spawning container trusty-server-cloudimg-amd64-root on /var/

lib/machines/trusty-server-cloudimg-amd64-root.

Chapter 6 Proxmox and Open vSwitch

311

Press ^] three times within 1s to kill container.

root@trusty-server-cloudimg-amd64-root:~#

In the host system, we can use machinectl again to list the machines;

now we’ll see one entry.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/VMs$ machinectl list

MACHINE CLASS SERVICE OS

VERSION ADDRESSES

trusty-server-cloudimg-amd64-root container systemd-nspawn

ubuntu 14.04 -

1 machines listed.

As usual we can execute commands in the guest in the same way as if

we were working in a physical machine.

root@trusty-server-cloudimg-amd64-root:~# hostname

trusty-server-cloudimg-amd64-root

We mentioned in the beginning of this section that systemd-machined

can manage virtual machines as well as containers. The system we’re

working with now is not a full virtual machine, but a container.

We’ll begin to study containers in the next chapter, but for now, we’ll

make a few remarks.

As opposed to a virtual machine, a container doesn’t need to emulate

hardware, as it relies on the characteristics of the kernel to provide

isolation to the container. In fact, if we list the disks in our guest system,

we’ll see nothing.

root@trusty-server-cloudimg-amd64-root:~# fdisk -l

root@trusty-server-cloudimg-amd64-root:~#

Chapter 6 Proxmox and Open vSwitch

312

All containers execute the same kernel as the host; we can check it by

comparing the output of the uname command in guest and host.

root@trusty-server-cloudimg-amd64-root:~# uname -a

Linux trusty-server-cloudimg-amd64-root 6.5.0-44-generic

#44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16

UTC 2 x86_64 x86_64 x86_64 GNU/Linux

antonio@antonio-Laptop:~/VMs$ uname -a

Linux antonio-HP-Laptop-15s-fq1xxx 6.5.0-44-generic

#44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16

UTC 2 x86_64 x86_64 x86_64 GNU/Linux

The kernel feature used to isolate containers is the namespaces;

we’ll see this in detail in the upcoming chapter. We can use namespaces

to isolate process IDs, mount points, networks, etc. We can use all these

namespaces or just some of them. For instance, our current guest is not

using an isolated network namespace; if we list the network interfaces

from the guest, we’ll see all the network interfaces defined in the host.

root@trusty-server-cloudimg-amd64-root:~# ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: wlo1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DORMANT group default qlen 1000

 link/ether b0:68:e6:14:aa:b3 brd ff:ff:ff:ff:ff:ff

.

.

.

Chapter 6 Proxmox and Open vSwitch

313

After working with the guest, we can exit the command shell.

root@trusty-server-cloudimg-amd64-root:~# exit

logout

Container trusty-server-cloudimg-amd64-root exited

successfully.

�Open vSwitch
Open vSwitch is an open source implementation of a distributed

multilayer virtual switch. That means that it can work at different layers of

the OSI model and supports distribution across several hosts.

Open vSwitch is an advanced tool that offers many possibilities. This

advanced knowledge is well beyond the scope of this book and the LPIC-3

305 exam, which only requires a basic knowledge of the tool.

We’ll begin by installing the software.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ sudo apt install

openvswitch-switch

After the installation is complete, we’ll have two new related services

installed.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ systemctl status ovs-

vswitchd.service

• ovs-vswitchd.service - Open vSwitch Forwarding Unit
 �Loaded: loaded (/lib/systemd/system/ovs-vswitchd.

service; static)

 �Active: active (running) since Mon 2024-07-15 21:43:47

CEST; 59min ago

 Main PID: 28313 (ovs-vswitchd)

 Tasks: 1 (limit: 18712)

Chapter 6 Proxmox and Open vSwitch

314

 Memory: 3.1M

 CPU: 77ms

 CGroup: /system.slice/ovs-vswitchd.service

 └─28313 ovs-vswitchd unix:/var/run/openvswitch/
db.sock -vconsole:emer -vsyslog:err -vfile:info --mlockall

 --no-chdir ->

jul 15 21:43:47 antonio-HP-Laptop-15s-fq1xxx systemd[1]:

Starting Open vSwitch Forwarding Unit...

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ systemctl status ovsdb-

server.service

• ovsdb-server.service - Open vSwitch Database Unit
 �Loaded: loaded (/lib/systemd/system/ovsdb-server.

service; static)

 �Active: active (running) since Mon 2024-07-15 21:43:47

CEST; 59min ago

 Main PID: 28249 (ovsdb-server)

 Tasks: 1 (limit: 18712)

 Memory: 2.2M

 CPU: 294ms

 CGroup: /system.slice/ovsdb-server.service

 �└─28249 ovsdb-server /etc/openvswitch/
conf.db -vconsole:emer -vsyslog:err

 -vfile:info --remote=punix:/var/run/openvswi>

jul 15 21:43:47 antonio-HP-Laptop-15s-fq1xxx systemd[1]:

Starting Open vSwitch Database Unit...

The first one, ovs-vswitchd, implements the switch itself, while

the second one, ovsdb-server, is a lightweight database that stores

Open vSwitch configuration data.

Chapter 6 Proxmox and Open vSwitch

315

Let’s begin to interact with the switch. We can show some basic

information with ovs-vsctl show.

antonio@antonio-Laptop:~$ sudo ovs-vsctl show

b060c9ea-8061-430c-82aa-b22968c68e95

 ovs_version: "2.17.9"

To start working, we need to define a new bridge inside Open vSwitch.

antonio@antonio-Laptop:~$ sudo ovs-vsctl add-br osbr0

If we execute ovs-vsctl show again, we’ll see the newly created bridge.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ sudo ovs-vsctl show

b060c9ea-8061-430c-82aa-b22968c68e95

 Bridge osbr0

 Port osbr0

 Interface osbr0

 type: internal

 ovs_version: "2.17.9"

Now we’ll associate a couple of local network interfaces to that bridge.

For this, we can use TUN/TAP interfaces, which we already studied in

Chapter 2.

antonio@antonio-Laptop:~$ sudo tunctl

Set 'tap0' persistent and owned by uid 0

antonio@antonio-Laptop:~$ sudo tunctl

Set 'tap1' persistent and owned by uid 0

antonio@antonio-Laptop:~$

And we add these two interfaces to the bridge.

antonio@antonio-Laptop:~$ sudo ovs-vsctl add-port osbr0 tap0

antonio@antonio-Laptop:~$ sudo ovs-vsctl add-port osbr0 tap1

Chapter 6 Proxmox and Open vSwitch

316

We check that our switch now lists these two interfaces.

antonio@antonio-Laptop:~$ sudo ovs-vsctl show

b060c9ea-8061-430c-82aa-b22968c68e95

 Bridge osbr0

 Port tap0

 Interface tap0

 Port tap1

 Interface tap1

 Port osbr0

 Interface osbr0

 type: internal

 ovs_version: "2.17.9"

Another useful command is ovs-appctl fdb/show, which lists the

devices connected to our switch.

antonio@antonio-Laptop:~$ sudo ovs-appctl fdb/show osbr0

 port VLAN MAC Age

Of course, in this present moment, we don’t have any device attached.

To do a simple test, we’ll connect a couple of virtual machines. For

convenience, we’ll use two VirtualBox VMs. We’ll edit the network settings

of these two machines to use the interfaces tap0 and tap1 that we created

previously (Figures 6-24 and 6-25).

Chapter 6 Proxmox and Open vSwitch

317

Figure 6-24.  Connecting VM1 to Open vSwitch

Figure 6-25.  Connecting VM2 to Open vSwitch

Chapter 6 Proxmox and Open vSwitch

318

Before starting both machines, we must be sure that the network

interfaces tap0 and tap1 are up.

antonio@antonio-Laptop:~$ sudo ip link set tap0 up

antonio@antonio-Laptop:~$ sudo ip link set tap1 up

After starting the two machines, we’ll see their MAC addresses

connected to our switch.

antonio@antonio-Laptop:~$ sudo ovs-appctl fdb/show osbr0

 port VLAN MAC Age

 1 0 08:00:27:ca:75:59 5

 2 0 08:00:27:bb:da:83 1

From this moment on, we can use Open vSwitch as any other normal

switch. We can assign different VLANs, control flows, and so on. But all that

is beyond the scope of this book.

�Summary
In this brief chapter, we saw interesting tools that we hadn’t seen so far.

These tools are not the main focus of the 305 exam, but they can become

very handy in many circumstances and it is good to know them.

The first tool we studied is Proxmox, which provides an enterprise-

ready virtualization solution. The second one, systemd-machined, is quite

the opposite as it is a lightweight virtual machine and container manager.

This can be useful when we need to deploy VMs/containers locally.

Finally, we touched briefly Open vSwitch; this virtual switch provides far

better capabilities than the locally created bridges.

Chapter 6 Proxmox and Open vSwitch

319© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_7

CHAPTER 7

Container
Virtualization
Concepts

In this chapter, we'll cover the following concepts:

•	 Understand the concepts of system and application

container

•	 Understand and analyze kernel namespaces

•	 Understand and analyze control groups

•	 Understand and analyze capabilities

•	 Understand the role of seccomp, SELinux, and

AppArmor for container virtualization

We will also be introduced to the following terms and utilities:

nsenter, unshare, ip, capsh, /sys/fs/cgroups, /proc/[0-9]+/ns, and /proc/

[0-9]+/status.

https://doi.org/10.1007/979-8-8688-1080-0_7#DOI

320

�System Containers
and Application Containers
A container is basically a series of system processes isolated. It relies

on a series of characteristics of the host operating system to provide

this isolation, mainly namespaces and cgroups. In some documents,

containerization is also known as OS-level virtualization.

A container that runs a full OS is a system container.

An application container, on the other hand, is a minimalistic stand-

alone package that contains everything that is needed to run a certain

application, and nothing more.

�Kernel Namespaces
Linux namespaces are a feature of the Linux kernel that partitions

kernel resources. That way a process or a group of processes sees a set of

resources, while another process or group of processes sees a different

set of resources. There are many kinds of namespaces, depending on the

kind of resource isolated. And more are eventually added. Some of them

are these:

•	 Mount

•	 Process ID (pid)

•	 Network (net)

•	 Inter-process communication (ipc)

•	 UTS (Unix time sharing)

•	 User ID (user)

•	 cgroup namespace

•	 Time space

Chapter 7 Container Virtualization Concepts

321

In order to list the namespaces currently in use in our system, we can

use the lsns command.

antonio@antonio-Laptop:~$ sudo lsns

NS TYPE NPROCS PID USER COMMAND

4026531834 time 303 1 root /sbin/init splash

4026531835 cgroup 303 1 root /sbin/init splash

4026531836 pid 304 1 root /sbin/init splash

4026531837 user 274 1 root /sbin/init splash

4026531838 uts 299 1 root /sbin/init splash

4026531839 ipc 275 1 root /sbin/init splash

4026531840 net 273 1 root /sbin/init splash

4026531841 mnt 250 1 root /sbin/init splash

4026531862 mnt 1 62 root kdevtmpfs

4026532322 mnt 1 290 root /lib/systemd/systemd-udevd

4026532323 uts 1 290 root /lib/systemd/systemd-udevd

.

.

.

We can see a long listing with different types of namespaces: time,

cgroup, pid, etc. If we want to be more specific, we can list the namespaces

associated to a certain pid.

For instance, we can obtain the PID of the current shell session.

antonio@antonio-Laptop:~$ echo $$

33824

Chapter 7 Container Virtualization Concepts

322

After that, we can list the namespaces associated with this process.

antonio@antonio-Laptop:~$ lsns -p $$

NS TYPE NPROCS PID USER COMMAND

4026531834 time 129 3201 antonio /lib/systemd/systemd --user

4026531835 cgroup 129 3201 antonio /lib/systemd/systemd --user

4026531836 pid 130 3201 antonio /lib/systemd/systemd --user

4026531837 user 101 3201 antonio /lib/systemd/systemd --user

4026531838 uts 129 3201 antonio /lib/systemd/systemd --user

4026531839 ipc 101 3201 antonio /lib/systemd/systemd --user

4026531840 net 101 3201 antonio /lib/systemd/systemd --user

4026531841 mnt 92 3201 antonio /lib/systemd/systemd --user

We can also obtain the same information by listing the contents of the

ns subfolder in the corresponding /proc subtree.

antonio@antonio-Laptop:~$ ls -l /proc/$$/ns

total 0

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 cgroup ->

'cgroup:[4026531835]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 ipc ->

'ipc:[4026531839]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 mnt ->

'mnt:[4026531841]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 net ->

'net:[4026531840]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 pid ->

'pid:[4026531836]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:44 pid_for_children ->

'pid:[4026531836]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 time ->

'time:[4026531834]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:44 time_for_children

 -> 'time:[4026531834]'

Chapter 7 Container Virtualization Concepts

323

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 user ->

'user:[4026531837]'

lrwxrwxrwx 1 antonio antonio 0 sep 22 21:27 uts ->

'uts:[4026531838]'

�Mount Namespaces
Let’s see now an example of mount namespaces. To work with

namespaces, we’ll use the unshare command. This command runs a

program with some namespaces unshared from the parent. If we look

at the contextual help, we’ll see there are different options to work with

different namespaces.

antonio@antonio-Laptop:~$ unshare --help

Usage:

 unshare [options] [<program> [<argument>...]]

Run a program with some namespaces unshared from the parent.

Options:

 -m, --mount[=<file>] unshare mounts namespace

 -u, --uts[=<file>] unshare UTS namespace (hostname etc)

 -i, --ipc[=<file>] unshare System V IPC namespace

 -n, --net[=<file>] unshare network namespace

 -p, --pid[=<file>] unshare pid namespace

 -U, --user[=<file>] unshare user namespace

 -C, --cgroup[=<file>] unshare cgroup namespace

 -T, --time[=<file>] unshare time namespace

.

.

.

Chapter 7 Container Virtualization Concepts

324

In this example, we will execute a bash shell with the mount

namespace unshared from the parent.

antonio@antonio-Laptop:~$ sudo unshare -m bash

root@antonio-Laptop:/home/antonio#

We can then list the namespaces associated to the newly created

bash shell.

root@antonio-Laptop:/home/antonio# echo $$

57447

root@antonio-HP-Laptop-15s-fq1xxx:/home/antonio# lsns -p $$

NS TYPE NPROCS PID USER COMMAND

4026531834 time 313 1 root /sbin/init splash

4026531835 cgroup 313 1 root /sbin/init splash

4026531836 pid 314 1 root /sbin/init splash

4026531837 user 282 1 root /sbin/init splash

4026531838 uts 309 1 root /sbin/init splash

4026531839 ipc 283 1 root /sbin/init splash

4026531840 net 281 1 root /sbin/init splash

4026533562 mnt 2 57447 root bash

root@antonio-HP-Laptop-15s-fq1xxx:/home/antonio#

As we can see, the mount namespace is associated to the bash shell

itself, and it is not shared with the parent. We can see the difference by

opening a new shell and executing lsns again.

antonio@antonio-Laptop:~$ lsns -p $$

NS TYPE NPROCS PID USER COMMAND

4026531834 time 135 3201 antonio /lib/systemd/systemd --user

4026531835 cgroup 135 3201 antonio /lib/systemd/systemd --user

4026531836 pid 136 3201 antonio /lib/systemd/systemd --user

4026531837 user 105 3201 antonio /lib/systemd/systemd --user

4026531838 uts 135 3201 antonio /lib/systemd/systemd --user

Chapter 7 Container Virtualization Concepts

325

4026531839 ipc 105 3201 antonio /lib/systemd/systemd --user

4026531840 net 105 3201 antonio /lib/systemd/systemd --user

4026531841 mnt 96 3201 antonio /lib/systemd/systemd –user

If we execute df -h in our shell with unshared mount namespace, we

see that we can see the information about the mounted filesystems in the

host. This is because this information is propagated by default from the

parent mount namespace.

root@antonio-Laptop:/home/antonio# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/nvme0n1p5 787G 407G 341G 55% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 1,6G 2,2M 1,6G 1% /run

tmpfs 5,0M 4,0K 5,0M 1% /run/lock

tmpfs 7,7G 0 7,7G 0% /run/qemu

tmpfs 1,6G 1,7M 1,6G 1% /run/user/1000

/dev/nvme0n1p1 256M 84M 173M 33% /boot/efi

However, if we create a new mount point in the shell with the isolated

mount namespace, the result will be different. In this case, we can see the

new mount point from the shell in which it was created.

root@antonio-Laptop:/home/antonio# mount -t tmpfs tmpfs /mnt/

root@antonio-Laptop:/home/antonio# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/nvme0n1p5 787G 407G 340G 55% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 1,6G 2,2M 1,6G 1% /run

tmpfs 5,0M 4,0K 5,0M 1% /run/lock

tmpfs 7,7G 0 7,7G 0% /run/qemu

tmpfs 1,6G 1,7M 1,6G 1% /run/user/1000

Chapter 7 Container Virtualization Concepts

326

/dev/nvme0n1p1 256M 84M 173M 33% /boot/efi

tmpfs 7,7G 0 7,7G 0% /mnt

root@antonio-Laptop:/home/antonio#

However, if we execute df from a different shell, we won’t see the

mount point we just created.

antonio@antonio-Laptop:~$ df -h

Filesystem Size Used Avail Use% Mounted on

tmpfs 1,6G 2,2M 1,6G 1% /run

/dev/nvme0n1p5 787G 407G 340G 55% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 5,0M 4,0K 5,0M 1% /run/lock

tmpfs 7,7G 0 7,7G 0% /run/qemu

/dev/nvme0n1p1 256M 84M 173M 33% /boot/efi

tmpfs 1,6G 1,7M 1,6G 1% /run/user/1000

We can work normally with the new mount point in the shell in which

it was created.

root@antonio-Laptop:/home/antonio# echo hello > /mnt/my_

file.txt

root@antonio-Laptop:/home/antonio# cat /mnt/my_file.txt

hello

root@antonio-Laptop:/home/antonio#

But this mount point is completely isolated from other shells.

antonio@antonio-Laptop:~$ cat /mnt/my_file.txt

cat: /mnt/my_file.txt: No such file or directory

When we’re done, we can just unmount the mount point and exit

the shell.

Chapter 7 Container Virtualization Concepts

327

�Process Namespaces
Now we’re going to see an example of process namespaces. We’ll use the

unshare command again.

This time we must use the “-p” parameter and also the “-f” to

perform a fork.

antonio@antonio-Laptop:~$ sudo unshare -p -f bash

root@antonio-Laptop:/home/antonio#

If we list the processes with ps, we’ll see all the processes in the system

and not only those of its own process namespace. This is because it can

access the /proc tree.

root@antonio-Laptop:/home/antonio# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 jul18 ? 00:00:06 �/sbin/

init splash

root 2 0 0 jul18 ? 00:00:00 [kthreadd]

root 3 2 0 jul18 ? 00:00:00 [rcu_gp]

root 4 2 0 jul18 ? 00:00:00 �[rcu_par_gp]

root 5 2 0 jul18 ? 00:00:00 �[slub_

flushwq]

root 6 2 0 jul18 ? 00:00:00 [netns]

root 8 2 0 jul18 ? 00:00:00 �[kworker/

0:0H-events_

highpri]

.

.

.

To avoid this, we can mount the /proc filesystem in the new shell.

root@antonio-Laptop:/home/antonio# mount -t proc proc /proc

Chapter 7 Container Virtualization Concepts

328

If we execute ps again, we’ll only see the processes inside the

isolated shell.

root@antonio-Laptop:/home/antonio# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 14:38 pts/5 00:00:00 bash

root 10 1 0 14:39 pts/5 00:00:00 ps -ef

Of course, this additional step could be performed automatically when

launching the shell. To see it, we’ll exit the shell.

root@antonio-Laptop:/home/antonio# exit

Then we’ll execute unshare again, but adding the –mount-proc option

this time.

antonio@antonio-Laptop:~$ sudo unshare --mount-proc -p -f bash

Now, if we execute ps -ef, we’ll only see the processes from the

current shell.

root@antonio-Laptop:/home/antonio# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 14:47 pts/5 00:00:00 bash

root 8 1 0 14:47 pts/5 00:00:00 ps -ef

�User Namespaces
User namespaces isolate security-related identifiers, like UIDs and GIDs.

If we look at the help of the unshare command, we’ll see that we must use

the -u option to unshare the user namespace.

There is also an interesting option (-r). This option unshares the user

namespace and maps the root user to the current user. We’ll see an easy

example. In this case, we don’t need root permissions.

Chapter 7 Container Virtualization Concepts

329

antonio@antonio-Laptop:~$ unshare -r bash

root@antonio-Laptop:~#

We check that in the new bash shell, we are actually identified as the

root user, and we’ll launch a process; in this example, we executed sleep.

root@antonio-Laptop:~# whoami

root

root@antonio-Laptop:~# sleep 60

If we search for the executing sleep process from another shell in the

host, we’ll see that the “real” user that it is executing is “antonio”, a normal

user instead of root.

antonio@antonio-Laptop:~$ ps -ef | grep sleep
antonio 14091 14055 0 15:54 pts/0 00:00:00 sleep 60

�Combining Several Namespaces to Craft Our
First “Container”
We have seen already some examples on how to use unshare to launch a

shell with some isolated namespace(s). Now we’ll see an example that is

little more complicated.

We’ll unshare the mount, user, and pid namespaces. We’ll also mount

the proc filesystem and map the root user to the current user and perform

a fork of the bash shell we’re invoking.

antonio@antonio-Laptop:~$ unshare -m -u -p -f -r --mount-

proc bash

root@antonio-Laptop:~#

Chapter 7 Container Virtualization Concepts

330

We can see that we have a separated pid tree.

root@antonio-Laptop:~# echo $$

1

root@antonio-Laptop:~# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 20:30 pts/1 00:00:00 bash

root 7 1 0 21:44 pts/1 00:00:00 ps -ef

We also have isolated UIDs.

root@antonio-Laptop:~# id

uid=0(root) gid=0(root) groups=0(root),65534(nogroup)

We are using an isolated mount namespace too. As we did before, we

can create a mount point that will be only accessible from the current shell.

root@antonio-Laptop:~# mount -t tmpfs tmpfs /mnt/mydata/

root@antonio-Laptop:~# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/nvme0n1p5 787G 717G 31G 96% /

tmpfs 7,7G 0 7,7G 0% /dev/shm

tmpfs 1,6G 2,5M 1,6G 1% /run

tmpfs 5,0M 4,0K 5,0M 1% /run/lock

tmpfs 7,7G 0 7,7G 0% /run/qemu

tmpfs 1,6G 124K 1,6G 1% /run/user/1000

efivarfs 192K 77K 111K 41% /sys/firmware/efi/efivars

/dev/nvme0n1p1 256M 84M 173M 33% /boot/efi

tmpfs 7,7G 0 7,7G 0% /mnt/mydata

As we did in a previous example, we can create a simple file in the

mount point we just created.

root@antonio-Laptop:~# echo test > /mnt/mydata/file.txt

Chapter 7 Container Virtualization Concepts

331

We can also change locally the hostname of our isolated container.

root@antonio-Laptop:~# hostname mercury

root@antonio-Laptop:~# hostname

mercury

This shell is already similar in many ways to a standard container, as

we’ll see when we begin to study LXC and Docker. We have isolated UIDs,

PIDs, and mount points. Though it is true that we’re still sharing other

namespaces with the host.

�Executing Commands in Different Namespaces

As we have already built a rudimentary container, we’re going to introduce

a new tool, nsenter. This command is used to execute programs in

different namespaces.

If we look at the help, we’ll see it is very easy to use this tool.

antonio@antonio-Laptop:~$ nsenter --help

Usage:

 nsenter [options] [<program> [<argument>...]]

Run a program with namespaces of other processes.

Options:

 -a, --all enter all namespaces

 -t, --target <pid> target process to get namespaces from

 -m, --mount[=<file>] enter mount namespace

 -u, --uts[=<file>] enter UTS namespace (hostname etc)

.

.

.

Chapter 7 Container Virtualization Concepts

332

To see an example, we need to locate the PID of the “isolated” bash

shell we have created previously.

antonio@antonio-Laptop:~$ ps -ef | grep bash
antonio 6350 6327 0 14:56 pts/0 00:00:00 bash

antonio 14055 6350 0 15:53 pts/0 00:00:00 bash

antonio 14092 6327 0 15:54 pts/1 00:00:00 bash

antonio 24549 14092 0 20:30 pts/1 00:00:00 �unshare

 -m -u -p -f

 -r --mount-

proc bash

antonio 24550 24549 0 20:30 pts/1 00:00:00 bash

antonio 29602 6327 0 22:08 pts/2 00:00:00 bash

In this case, that PID is 24549; we’ll use nsenter to enter all namespaces

associated with the process with PID 24549.

antonio@antonio-Laptop:~$ sudo nsenter -a -t 24549

-bash: /root/.bash_profile: Permission denied

root@mercury:/#

We have now access to the isolated shell. From now on, we can get

the hostname of the container, which we previously changed. We can also

retrieve the contents of the file we created in /mnt/mydata and so on.

root@mercury:/# hostname

mercury

root@mercury:/# cat /mnt/mydata/file.txt

test

When we’re done, we can exit the shell.

root@mercury:/# exit

logout

 -bash: /root/.bash_logout: Permission denied

Chapter 7 Container Virtualization Concepts

333

�Network Namespaces
Namespaces can also isolate networks. As we did previously with the other

namespaces, we’ll see an easy example.

First of all, we need to list the network namespaces. We can do it with

ip netns.

antonio@antonio-Laptop:~$ sudo ip netns ls

Currently we don’t have any additional network namespaces. We’ll

create one.

antonio@antonio-Laptop:~$ sudo ip netns add isolated_network

antonio@antonio-Laptop:~$ sudo ip netns ls

isolated_network

To establish communication between different network namespaces,

we need virtual Ethernet devices (veth). These virtual Ethernet devices are

always created in pairs to create a bridge.

antonio@antonio-Laptop:~$ sudo ip link add dev veth0 type veth

peer name veth1

We check that both interfaces have been created.

antonio@antonio-Laptop:~$ ip link show veth0

16: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc

noop state DOWN mode DEFAULT group default qlen 1000

 link/ether ae:00:1a:3e:6a:0d brd ff:ff:ff:ff:ff:ff

antonio@antonio-Laptop:~$ ip link show veth1

15: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc

noop state DOWN mode DEFAULT group default qlen 1000

 link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff

Chapter 7 Container Virtualization Concepts

334

One of the virtual Ethernet devices must be assigned to the isolated_

network namespace so that we can establish the communication between

both network namespaces.

antonio@antonio-Laptop:~$ sudo ip link set veth1 netns

isolated_network

To check that the interface is now assigned to the new network

namespaces, we try to list it in the default namespace.

antonio@antonio-Laptop:~$ ip link show veth1

Device "veth1" does not exist.

As expected, we don’t see it. Now let’s list it on the new network

namespace. The way to execute network-related commands in a different

network namespace is by using “ip netns exec” + network namespace +

“the network command,” like this:

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip link show veth1

15: veth1@if16: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state

DOWN mode DEFAULT group default qlen 1000

 �link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

Now that we have each veth interface placed in a different network

namespace, we must assign the corresponding IPs.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip address add dev veth1 10.7.7.1/24

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip address show veth1

Chapter 7 Container Virtualization Concepts

335

15: veth1@if16: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state

DOWN group default qlen 1000

 �link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

 inet 10.7.7.1/24 scope global veth1

 valid_lft forever preferred_lft forever

The IP has been set, but the interface is down; we must set it up.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip link set veth1 up

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip link show veth1

15: veth1@if16: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500

qdisc noqueue state LOWERLAYERDOWN mode DEFAULT group default

qlen 1000

 �link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

The state of the veth is now LOWERLAYERDOWN, but this is normal

because its peer is not ready yet. We’ll set it up now.

antonio@antonio-Laptop:~$ sudo ip address add dev veth0

10.7.7.2/24

antonio@antonio-Laptop:~$ sudo ip link set veth0 up

antonio@antonio-Laptop:~$ sudo ip link show veth0

16: veth0@if15: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue state UP mode DEFAULT group default qlen 1000

 �link/ether ae:00:1a:3e:6a:0d brd ff:ff:ff:ff:ff:ff link-

netns isolated_network

Chapter 7 Container Virtualization Concepts

336

Now the link is finally up.

antonio@antonio-Laptop:~$ sudo ip netns exec isolated_network

ip link show veth1

15: veth1@if16: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue state UP mode DEFAULT group default qlen 1000

 �link/ether 5e:d3:e6:0f:77:64 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

And we can ping each veth.

antonio@antonio-Laptop:~$ ping 10.7.7.1

PING 10.7.7.1 (10.7.7.1) 56(84) bytes of data.

64 bytes from 10.7.7.1: icmp_seq=1 ttl=64 time=0.105 ms

64 bytes from 10.7.7.1: icmp_seq=2 ttl=64 time=0.057 ms

64 bytes from 10.7.7.1: icmp_seq=3 ttl=64 time=0.055 ms

^C

--- 10.7.7.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2039ms

rtt min/avg/max/mdev = 0.055/0.072/0.105/0.023 ms

�chroot
Before studying cgroups, I wanted to mention chroot. This is a system call

that changes the apparent root directory for the running process and its

children so that this process can’t access files that reside below its working

directory. This provides an isolation that is similar in some ways with the

isolation provided by namespaces, but the approach is different. chroot is

a system call and does not need namespaces to work. This is not part of the

official curriculum for LPIC-3 305, but I think it might be useful to mention

it briefly and see an example.

Chapter 7 Container Virtualization Concepts

337

We begin by creating the folder we’ll use as the root for our chroot

environment.

antonio@antonio-Laptop:~$ sudo mkdir /chrootenv

We could try to execute chroot right away, but we’ll get this error:

antonio@antonio-Laptop:~$ sudo chroot /chrootenv

chroot: failed to run command '/bin/bash': No such file or

directory

We need to have a /bin/bash command interpreter inside of the chroot

environment, so we’ll copy it.

antonio@antonio-Laptop:~$ sudo mkdir /chrootenv/bin

antonio@antonio-Laptop:~$ sudo cp /bin/bash /chrootenv/bin

antonio@antonio-Laptop:~$

However, we’re not done yet. If we try to run chroot again, we get the

same error:

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/

chroot: failed to run command '/bin/bash': No such file or

directory

This is due to the fact that the bash executable file is dynamically

linked and has to access a series of libraries. We can find out what libraries

it needs by using the ldd command. Note: Libraries will vary, depending

on the exact version of the operating system.

antonio@antonio-Laptop:~$ ldd /bin/bash

 linux-vdso.so.1 (0x00007ffccaff3000)

 �libtinfo.so.6 => /lib/x86_64-linux-gnu/libtinfo.so.6

(0x00007f5cb75f3000)

 �libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6

(0x00007f5cb7200000)

Chapter 7 Container Virtualization Concepts

338

 /lib64/ld-linux-x86-64.so.2 (0x00007f5cb779e000)

So we create a new subfolder and copy the required files.

antonio@antonio-Laptop:~$ sudo mkdir -p /chrootenv/lib/x86_64-

linux-gnu

antonio@antonio-Laptop:~$ sudo cp /lib/x86_64-linux-gnu/

libtinfo.so.6 /chrootenv/lib/x86_64-linux-gnu/

antonio@antonio-Laptop:~$ sudo cp /lib/x86_64-linux-gnu/libc.

so.6 /chrootenv/lib/x86_64-linux-gnu/

antonio@antonio-Laptop:~$ sudo mkdir -p /chrootenv/lib64

antonio@antonio-Laptop:~$ sudo cp /lib64/ld-linux-x86-64.so.2 /

chrootenv/lib64

Now we can execute chroot successfully.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/

bash-5.1#

This chroot environment is still very limited and lacks many common

Linux programs that we should copy manually as we did before with the

command interpreter.

bash-5.1# pwd

/

bash-5.1# ls

bash: ls: command not found

bash-5.1#

An easier approach could be the use of a Linux minimal distribution to

create our chroot environment. One Linux distribution that suits perfectly

this description and is used commonly in containers is Alpine. We begin

by downloading the corresponding tar file for our architecture.

Chapter 7 Container Virtualization Concepts

339

bash-5.1# exit

exit

antonio@antonio-Laptop:~$ wget http://dl-cdn.alpinelinux.org/

alpine/v3.18/releases/x86_64/alpine-

minirootfs-3.18.3-x86_64.tar.gz

.

.

.

And we uncompress it in the folder we used for our chroot

environment. Previously we’d delete the files we had copied.

antonio@antonio-Laptop:~$ sudo rm -rf /chrootenv/*

antonio@antonio-Laptop:~$ sudo tar -xzvf alpine-

minirootfs-3.18.3-x86_64.tar.gz -C /chrootenv/

We end up with the following structure:

antonio@antonio-Laptop:~$ ls /chrootenv/

bin etc lib mnt proc run srv tmp var

dev home media opt root sbin sys usr

We can now execute chroot again.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/

chroot: failed to run command '/bin/bash': No such file or

directory

We get an error because chroot can’t locate /bin/bash. When

executing chroot, we must provide the command that will be executed in

the chrooted environment. This command is usually a shell. If we don’t

specify a command, the default value is that of the shell used in the current

session, which is /bin/bash in our case.

antonio@antonio-Laptop:~$ echo $SHELL

/bin/bash

Chapter 7 Container Virtualization Concepts

340

And /bin/bash doesn’t exist in the minimalistic Alpine Linux

distribution we just downloaded.

antonio@antonio-Laptop:~$ ls /chrootenv/bin/bash

ls: cannot access '/chrootenv/bin/bash': No such file or

directory

We can easily fix this by specifying a different shell as the command for

chroot. We check that /bin/sh actually exists.

antonio@antonio-Laptop:~$ ls /chrootenv/bin/sh

/chrootenv/bin/sh

And we launch chroot again.

antonio@antonio-Laptop:~$ sudo chroot /chrootenv/ /bin/sh

/ #

We are working now in an isolated environment, where we’re using the

same kernel as the host, but we have an isolated root tree.

/ # uname -a

Linux antonio-Laptop 6.2.0-33-generic #33~22.04.1-Ubuntu SMP

PREEMPT_DYNAMIC Thu Sep 7 10:33:52 UTC 2 x86_64 Linux

/ # cat /etc/issue

Welcome to Alpine Linux 3.18

Kernel \r on an \m (\l)

/ # pwd

/

/ #

Chapter 7 Container Virtualization Concepts

341

�Control Groups
Control groups or cgroups for short are a Linux feature that limits,

accounts, and isolates the resource usage of a process or a group of

processes.

It was initially developed by Google around 2006. The version currently

in use, version 2, was completely rewritten and is included in the kernel

Linux. We can see cgroups as a subfolder inside of the /sys/fs filesystem.

antonio@antonio-Laptop:~$ ls /sys/fs/cgroup/

cgroup.controllers cgroup.threads init.

scope memory.numa_stat sys-fs-fuse-

connections.mount

cgroup.max.depth cpu.pressure io.cost.

model memory.pressure sys-kernel-config.mount

cgroup.max.descendants cpuset.cpus.effective io.cost.

qos memory.reclaim sys-kernel-debug.mount

cgroup.pressure cpuset.mems.effective io.

pressure memory.stat sys-kernel-

tracing.mount

cgroup.procs cpu.stat io.prio.

class misc.capacity system.slice

cgroup.stat dev-hugepages.mount io.

stat misc.current user.slice

cgroup.subtree_control dev-mqueue.mount machine.

slice proc-sys-fs-binfmt_misc.mount

In order to limit the resources a process can use, we need to create a

new control group. We can do that by creating a subfolder inside of /sys/

fs/cgroup.

antonio@antonio-Laptop:~$ sudo mkdir /sys/fs/cgroup/example

Chapter 7 Container Virtualization Concepts

342

Right after creating the new cgroup, we’ll see it has inherited several

parameters. We can see them by listing the cgroup.

antonio@antonio-Laptop:~$ ls /sys/fs/cgroup/example/

cgroup.controllers cpu.max hugetlb.1GB.

current hugetlb.2MB.rsvd.max memory.numa_

stat misc.current

cgroup.events cpu.max.burst hugetlb.1GB.

events io.max memory.oom.

group misc.events

cgroup.freeze cpu.pressure hugetlb.1GB.

events.local io.pressure memory.

peak misc.max

cgroup.kill cpuset.cpus hugetlb.1GB.

max io.prio.class memory.

pressure pids.current

cgroup.max.depth cpuset.cpus.effective hugetlb.1GB.

numa_stat io.stat memory.

reclaim pids.events

cgroup.max.descendants cpuset.cpus.partition hugetlb.1GB.

rsvd.current io.weight memory.stat

pids.max

cgroup.pressure cpuset.mems hugetlb.1GB.

rsvd.max memory.current memory.swap.

current pids.peak

cgroup.procs cpuset.mems.effective hugetlb.2MB.

current memory.events memory.swap.

events rdma.current

cgroup.stat cpu.stat hugetlb.2MB.

events memory.events.local memory.swap.

high rdma.max

Chapter 7 Container Virtualization Concepts

343

cgroup.subtree_control cpu.uclamp.max hugetlb.2MB.

events.local memory.high memory.swap.max

cgroup.threads cpu.uclamp.min hugetlb.2MB.max

memory.low memory.swap.peak

cgroup.type cpu.weight hugetlb.2MB.

numa_stat memory.max memory.zswap.current

cpu.idle cpu.weight.nice hugetlb.2MB.

rsvd.current memory.min memory.zswap.max

We’re going to test this cgroup by establishing a limit on the max

amount of memory. For that, we must edit the /sys/fs/cgroup/example/

memory.max file.

antonio@antonio-Laptop:~$ sudo vi /sys/fs/cgroup/example/

memory.max

antonio@antonio-Laptop:~$ sudo cat /sys/fs/cgroup/example/

memory.max

8192

Now, we’ll create a simple script and execute in the background.

antonio@antonio-Laptop:~$ cat takemem.sh

#!/bin/bash

sleep 100

mount -t tmpfs tmpfs /mnt/mydata

sleep 100

antonio@antonio-Laptop:~$ chmod a+x takemem.sh

antonio@antonio-Laptop:~$./takemem.sh &

[1] 53075

To put this process under the control of the cgroup “example”, we need

to edit the /sys/fs/cgroup/example/cgroup.procs file to include the PID of

the script in execution.

Chapter 7 Container Virtualization Concepts

344

antonio@antonio-Laptop:~$ sudo vi /sys/fs/cgroup/example/

cgroup.procs

antonio@antonio-Laptop:~$ cat /sys/fs/cgroup/example/

cgroup.procs

53075

If we review the cgroup assigned to the process, we’ll see this:

antonio@antonio-Laptop:~$ ps -o cgroup 53362

CGROUP

0::/example

We just confirmed that the cgroup assigned is actually “example”,

the one we created and customized. If we check the cgroup assigned to

another process like the current shell, we’ll see that the cgroup assigned is

completely different.

antonio@antonio-Laptop:~$ ps -o cgroup $$

CGROUP

0::/user.slice/user-1000.slice/user@1000.service/app.slice/

app-org.gnome.Terminal.slice/vte-spawn-36c24765-2726-4ef0-

a6b2-60c4c32150

Now we’ll wait a few seconds. We’ll see the script has been killed due

to the memory restriction we set. In the journalctl, we’ll see a message

similar to this one:

jul 21 17:12:22 antonio-Laptop kernel: oom-

kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=example

,mems_allowed=0,oom_memcg=/example,task_memcg=/example,task=sud

o,pid=53841,uid=1000

jul 21 17:12:22 antonio-Laptop kernel: Memory cgroup out

of memory: Killed process 53841 (sudo) total-vm:17064kB,

anon-rss:896kB, file-rss:5376kB, shmem-rss:0kB, UID:1000

pgtables:76kB oom_score_adj:0

Chapter 7 Container Virtualization Concepts

345

�Linux Capabilities
Traditionally we have two sorts of processes in Linux/UNIX: those whose

effective UID is 0, also called privileged, and those whose effective UID

is nonzero, also called unprivileged. Privileged processes can bypass

permissions checks, while unprivileged cannot. Since kernel version 2.2,

the privileges usually associated with processes whose effective UID is 0

are divided into distinct units called capabilities.

There are three “categories” of capabilities: inherited(i), permitted(p),

and effective(e).

The full list of capabilities can be obtained by executing "man

capabilities" in any Linux terminal; as an example, we can mention just a

few of them:

•	 CAP_AUDIT. Enable and disable kernel auditing.

•	 CAP_CHOWN. Make arbitrary changes to file UIDs

and GIDs.

•	 CAP_KILL. Bypass permissions checks to send signals.

•	 CAP_MKNOD. Create special files using mknod.

•	 CAP_NET_BIND_SERVICE. Bind a socket to Internet

domain privileged ports.

To better understand capabilities, we can use the capsh command.

If we execute it in a command shell with the --print option, we’ll see the

capabilities that we have currently associated.

antonio@antonio-Laptop:~$ capsh --print

Current: =

Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,

cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,

cap_setpcap,cap_linux_immutable,cap_net_bind_service,

cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,

Chapter 7 Container Virtualization Concepts

346

cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,

cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,

cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,

cap_mknod,cap_lease,cap_audit_write,cap_audit_control,

cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_

alarm,cap_block_suspend,cap_audit_read,cap_perfmon,cap_bpf,cap_

checkpoint_restore

Ambient set =

Current IAB:

Securebits: 00/0x0/1'b0

 secure-noroot: no (unlocked)

 secure-no-suid-fixup: no (unlocked)

 secure-keep-caps: no (unlocked)

 secure-no-ambient-raise: no (unlocked)

uid=1000(antonio) euid=1000(antonio)

gid=1000(antonio)

groups=4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),122(lpadmi

n),135(lxd),136(sambashare),140(libvirt),1000(antonio)

Guessed mode: UNCERTAIN (0)

As we can see, the current capabilities field appears empty. This is

normal, as we’re logged in as a regular user and regular users by default

have no privileges. Let’s execute the command again as the root user to see

the differences.

antonio@antonio-Laptop:~$ sudo su - root

root@antonio-Laptop:~# capsh --print

Current: =ep

Bounding set =cap_chown,cap_dac_override,cap_dac_read_

search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_

setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_

service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_

Chapter 7 Container Virtualization Concepts

347

ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_

sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_

sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_

tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_

control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_

syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read,cap_

perfmon,cap_bpf,cap_checkpoint_restore

Ambient set =

Current IAB:

Securebits: 00/0x0/1'b0

 secure-noroot: no (unlocked)

 secure-no-suid-fixup: no (unlocked)

 secure-keep-caps: no (unlocked)

 secure-no-ambient-raise: no (unlocked)

uid=0(root) euid=0(root)

gid=0(root)

groups=0(root)

Guessed mode: UNCERTAIN (0)

We see now the following line:

Current: =ep

This means that the root user has all capabilities effective and

permitted assigned. Again, this is normal as the root user has all privileges.

We can also obtain the same information about capabilities by

checking the /proc filesystem. We need to get the PID of the process, in this

case the current shell.

antonio@antonio-Laptop:~$ echo $$

25112

Chapter 7 Container Virtualization Concepts

348

And then we read the status file.

antonio@antonio-Laptop:~$ cat /proc/25112/status

Name: bash

Umask: 0002

State: S (sleeping)

Tgid: 25112

Ngid: 0

Pid: 25112

PPid: 4669

TracerPid: 0

Uid: 1000 1000 1000 1000

Gid: 1000 1000 1000 1000

FDSize: 256

Groups: 4 24 27 30 46 122 135 136 140 1000

.

.

.

CapInh: 0000000000000000

CapPrm: 0000000000000000

CapEff: 0000000000000000

CapBnd: 000001ffffffffff

CapAmb: 0000000000000000

.

.

.

We can see that the shell currently has no inherited, permitted, or

effective capabilities assigned. The entry CapBnd shows the capabilities

that the system recognizes and can be assigned. The value appears in

hexadecimal format, but we can easily decode it with capsh.

Chapter 7 Container Virtualization Concepts

349

antonio@antonio-Laptop:~$ capsh --decode=000001ffffffffff

0x000001ffffffffff=cap_chown,cap_dac_override,cap_dac_

read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_

setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_

service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_

ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_

chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_

boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_

tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_

control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_

syslog,cap_wake_alarm,cap_block_suspend,cap_audit_read,cap_

perfmon,cap_bpf,cap_checkpoint_restore

We can repeat this test with a root shell, and we’ll see that it has all the

capabilities assigned.

antonio@antonio-Laptop:~$ sudo su - root

root@antonio-Laptop:~# cat /proc/$$/status

.

.

.

CapInh: 0000000000000000

CapPrm: 000001ffffffffff

CapEff: 000001ffffffffff

CapBnd: 000001ffffffffff

.

.

.

root@antonio-Laptop:~# capsh --decode=000001ffffffffff

0x000001ffffffffff=cap_chown,cap_dac_override,cap_dac_

read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_

setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,

Chapter 7 Container Virtualization Concepts

350

cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_

ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_

sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_

nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_

mknod,cap_lease,cap_audit_write,cap_audit_control,cap_

setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_

alarm,cap_block_suspend,cap_audit_read,cap_perfmon,cap_bpf,cap_

checkpoint_restore

Let’s see now a practical example about how to use capabilities to grant

a specific privilege to a process.

We’re going to use Python to create a basic web server. If we

execute Python as a regular user, we can get the server to listen on any

nonprivileged port, such as port 8888.

antonio@antonio-Laptop:~$ python3 -m http.server 8888

Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) …

However, if we try the server to listen on any of the privileged ports,

such as 80, we get an error.

antonio@antonio-Laptop:~$ python3 -m http.server 80

Traceback (most recent call last):

 File "/usr/lib/python3.10/runpy.py", line 196, in _run_

module_as_main

.

.

.

 self.socket.bind(self.server_address)

PermissionError: [Errno 13] Permission denied

Chapter 7 Container Virtualization Concepts

351

To remediate this, we’ll use the capabilities. First of all, we identify the

path of the Python executable file. We’ll need it later to add the desired

capabilities.

antonio@antonio-Laptop:~$ which python3

/usr/bin/python3

antonio@antonio-Laptop:~$ file /usr/bin/python3

/usr/bin/python3: symbolic link to python3.10

antonio@antonio-Laptop:~$ ls -l /usr/bin/python3

lrwxrwxrwx 1 root root 10 ago 4 2023 /usr/bin/python3 ->

python3.10

We’ll take a look at the man page of the capabilities to identify the

capability that we need to use.

antonio@antonio-Laptop:~$ man capabilities

In the page, we’ll see this entry:

 CAP_NET_BIND_SERVICE

 �Bind a socket to Internet domain privileged ports

(port numbers less than 1024).

We’re ready now to add the capability to the Python executable.

antonio@antonio-Laptop:~$ sudo setcap CAP_NET_BIND_SERVICE+ep /

usr/bin/python3.10

We confirm that the assignment was made.

antonio@antonio-Laptop:~$ getcap /usr/bin/python3.10

/usr/bin/python3.10 cap_net_bind_service=ep

 �Now our Python based web server can listen on a

privileged port.

antonio@antonio-Laptop:~$ python3 -m http.server 80

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...

Chapter 7 Container Virtualization Concepts

352

Another way to check that the process has the CAP_NET_BIND_

SERVICE capability assigned is by consulting the /proc filesystem, as we

saw earlier.

antonio@antonio-Laptop:~$ ps -ef | grep python | grep http
antonio 35151 25112 0 13:02 pts/1 00:00:00 python3 -m

http.server 80

antonio@antonio-Laptop:~$ cat /proc/35151/status

Name: python3

Umask: 0002

State: S (sleeping)

Tgid: 35151

Ngid: 0

.

.

.

CapInh: 0000000000000000

CapPrm: 0000000000000400

CapEff: 0000000000000400

.

.

.

antonio@antonio-Laptop:~$ capsh --decode=0000000000000400

0x0000000000000400=cap_net_bind_service

After this easy test, we can remove the capability from the Python

executable again.

antonio@antonio-Laptop:~$ sudo setcap CAP_NET_BIND_SERVICE-ep /

usr/bin/python3.10

antonio@antonio-Laptop:~$ python3 -m http.server 80

Chapter 7 Container Virtualization Concepts

353

.

.

.

PermissionError: [Errno 13] Permission denied

�Security and Containers
We have seen so far how important it is to properly secure and isolate

containers. We have already seen how Linux namespaces help us to isolate

processes running in the same host. Now we'll see how a series of security

facilities are also used by Linux containers to secure the system.

�SELinux
SELinux (Security-Enhanced Linux) is a set of kernel modifications and

user space tools that provide mandatory access control (MAC). It was

initially developed by the NSA, and it is now included in many of the main

Linux distributions. Mandatory access controls are established by the

system administrator and can’t be edited by regular users.

As SELinux is mainly a subject from LPIC-3 303 Security, we’ll just

highlight its main points here.

SELinux uses a set of security policies; these are rules that tell what

can and can’t be accessed. The security policies apply to applications,

processes, and files. For example, when a process or application tries to

access a file, SELinux checks if that access is allowed. Each application,

process, and file have an SELinux context associated.

As SELinux is applied to all applications, processes, and files in the

host system, that also applies to container-related processes and files. This

is something that must be taken into account.

Chapter 7 Container Virtualization Concepts

354

We’ll see a short demonstration. By default, Ubuntu 22 does not use

SELinux, so we’ll use a Red Hat 8 system for this. First, we check the status

of SELinux.

[root@RH8 ~]# sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 33

In this case, SELinux is enabled, and it is in “enforcing” mode. SELinux

can be in permissive mode or in enforcing mode. When in enforcing mode,

it will block those actions that are not allowed by the SELinux policies.

On the other hand, permissive mode will not block any action that is not

allowed, but it will log them. We can change between these two modes

with the setenforce command.

We can check the SELinux context of any given file or folder with the -Z

option of the ls command.

[root@RH8 ~]# ls -lZd /var/lib/containers/

drwxr-xr-x. 5 root root system_u:object_r:container_var_

lib_t:s0 4096 sep 23 2023 /var/lib/containers/

[root@RH8 ~]# ls -lZd /tmp/

drwxrwxrwt. 6 root root system_u:object_r:tmp_t:s0 4096 may 25

04:38 /tmp/

Chapter 7 Container Virtualization Concepts

355

There are many SELinux file context available in a system; we can list

them with semanage.

[root@RH8 ~]# semanage fcontext -l

SELinux fcontext type

Context

/ directory

system_u:object_r:root_t:s0

/.* all files

system_u:object_r:default_t:s0

/[^/]+ regular file

system_u:object_r:etc_runtime_t:s0

/\.autofsck regular file

system_u:object_r:etc_runtime_t:s0

/\.autorelabel regular file

system_u:object_r:etc_runtime_t:s0

/\.ismount-test-file regular file

system_u:object_r:sosreport_tmp_t:s0

.

.

.

As we said before, processes also have SELinux context associated; we

can see them with the -Z option of the ps command.

[root@RH8 ~]# ps -efZ | grep podman
unconfined_u:unconfined_r:container_runtime_t:s0-s0:c0.c1023

root 190890 190570 0 04:36 pts/0 00:00:00 podman run -it ubi8

unconfined_u:unconfined_r:container_runtime_t:s0 root 190942

1 0 04:36 ? 00:00:00 /usr/bin/conmon --api-version 1 -c

9ddbab3dc608d913346e55fd44fa45a87b51e9f1d11ee64fcdeb0fe422b-

ba178 -u 9ddbab3dc608d913346e55fd44fa45a87b51e9f1d11ee64

fcdeb0fe422bba178 -r /usr/bin/runc -b /var/lib/containers/stor-

age/overlay-containers/9ddbab3dc608d913346e55fd44fa45a87b51e9f1

Chapter 7 Container Virtualization Concepts

356

d11ee64fcdeb0fe422bba178/userdata -p /run/containers/storage/

overlay-containers/9ddbab3dc608d913346e55fd44fa45a87b51e9f1

 d11ee64fcdeb0fe422bba178/userdata/pidfile -n suspicious_mayer

 --exit-dir /run/libpod/exits --full-attach -s -l k8s-file:/

 var/lib/containers/storage/overlay-containers/9ddbab3dc608d9

 13346e55fd44fa45a87b51e9f1d11ee64fcdeb0fe422bba178/userdata/

 ctr.log --log-level warning --syslog --runtime-arg --log-

 format=json --runtime-arg --log --runtime-arg=/run/containers/

 storage/overlay-containers/9ddbab3dc608d913346e55fd44fa45a87

 b51e9f1d11ee64fcdeb0fe422bba178/userdata/oci-log -t --conmon-

 pidfile /run/containers/storage/overlay-containers/9ddbab3dc60

8d913346e55fd44fa45a87b51e9f1d11ee64fcdeb0fe422bba178/userdata/

conmon.pid --exit-command /usr/bin/podman --exit-command-arg

 --root --exit-command-arg /var/lib/containers/storage --exit-

command-arg --runroot --exit-command-arg /run/containers/stor-

age --exit-command-arg --log-level --exit-command-arg warn-

ing --exit-command-arg --cgroup-manager --exit-command-arg

systemd --exit-command-arg --tmpdir --exit-command-arg /run/

libpod --exit-command-arg --network-config-dir --exit-command-

arg --exit-command-arg --network-backend --exit-command-arg

cni --exit-command-arg --volumepath --exit-command-arg /var/

lib/containers/storage/volumes --exit-command-arg --db-backend

 --exit-command-arg boltdb --exit-command-arg --transient-

store=false --exit-command-arg --runtime --exit-command-arg

runc --exit-command-arg --storage-driver --exit-command-arg

overlay --exit-command-arg --storage-opt --exit-command-arg

overlay.mountopt=nodev,metacopy=on --exit-command-arg --events-

 backend --exit-command-arg file --exit-command-arg container

 --exit-command-arg cleanup --exit-command-arg 9ddbab3dc608d91

3346e55fd44fa45a87b51e9f1d11ee64fcdeb0fe422bba178

Chapter 7 Container Virtualization Concepts

357

[root@RH8 ~]# ps -efZ | grep bash
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 root

75460 672 0 may22 tty1 00:00:00 -bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 root

190570 190569 0 04:30 pts/0 00:00:00 -bash

system_u:system_r:container_t:s0:c917,c999 root 190950

190942 0 04:36 pts/0 00:00:00 /bin/bash

SELinux also can control the network ports a given program can use.

We can list these ports with semanage.

[root@RH8 ~]# semanage port -l

SELinux Port Type Proto Port Number

afs3_callback_port_t tcp 7001

afs3_callback_port_t udp 7001

afs_bos_port_t udp 7007

afs_fs_port_t tcp 2040

.

.

.

Let’s see now a simple example about SELinux. We’ll assume we have a

web server running locally on port 80. We check that the server is working.

[root@RH8 ~]# curl http://localhost

Hello

We’ll edit the properties so that the web server listens on port 85 in-

stead of port 80.

[root@RH8 ~]# vi /etc/httpd/conf/httpd.conf

We’ll replace this line

Listen 80

Chapter 7 Container Virtualization Concepts

358

with this one

Listen 85

If we restart now the httpd service, we’ll get an error.

[root@RH8 ~]# systemctl restart httpd

Job for httpd.service failed because the control process exited

with error code.

See "systemctl status httpd.service" and "journalctl -xe" for

details.

And looking at the journal, we’ll see a line similar to the following:

jul 21 14:00:07 RH8.example.com setroubleshoot[192565]: SELinux

is preventing /usr/sbin/httpd from name_bind access on the tcp_

socket port 85. For complete SELinux messages run: sealert -l

fbf5bdc4-3747-47de-88a8-099872380ea5

As we can see, the log says clearly that SELinux is preventing httpd to

use TCP port 85. And it suggests to execute a sealert command.

[root@RH8 ~]# sealert -l fbf5bdc4-3747-47de-88a8-099872380ea5

SELinux is preventing /usr/sbin/httpd from name_bind access on

the tcp_socket port 85.

******* Plugin bind_ports (99.5 confidence) suggests *******

If you want to allow /usr/sbin/httpd to bind to network port 85

Then you need to modify the port type.

Do

semanage port -a -t PORT_TYPE -p tcp 85

 �where PORT_TYPE is one of the following: http_cache_port_t,

http_port_t, jboss_management_port_t, jboss_messaging_

port_t, ntop_port_t, puppet_port_t.

Chapter 7 Container Virtualization Concepts

359

.

.

.

The output of the command tells us what the problem is and also how

to fix it. To do it, we just need to add TCP port 85 as one of the ports that

httpd can use. We’ll use semanage to add the port.

[root@RH8 ~]# semanage port --add -t http_port_t -p tcp 85

Now, we restart the service again and check that the web server now

works perfectly on port 85.

[root@RH8 ~]# systemctl restart httpd

[root@RH8 ~]# curl http://localhost:85

Hello

�AppArmor
AppArmor is a Linux kernel security module that also provides mandatory

access control (MAC). It works by using profiles associated with the

programs.

As we did before with SELinux, we’ll see a simple example of the use

of AppArmor. Again, I must insist this is only a very brief description of

AppArmor, as it is a subject for LPIC-3 303 instead.

In this example, we’re going to use an AppArmor profile to control

what a certain program can and can’t do. We’ll use for the test the text-

based web browser w3m. We’ll begin by installing it.

antonio@antonio-Laptop:~$ sudo apt install w3m

Now we need to create a profile for that program. To generate the

profile, we need to install the AppArmor utils as well.

antonio@antonio-Laptop:~$ sudo apt install apparmor-utils

Chapter 7 Container Virtualization Concepts

360

We need the full path of the w3m program to generate the profile.

antonio@antonio-Laptop:~$ which w3m

/usr/bin/w3m

We can now proceed to create the profile with aa-genprof.

antonio@antonio-Laptop:~$ sudo aa-genprof /usr/bin/w3m

It is possible that we get this error, or one similar:

ERROR: Include file /etc/apparmor.d/libvirt/

libvirt-84e6987c-5f67-443d-ad67-ff6c29a428c4.files not found

This seems to be a bug regarding AppArmor and libvirt; to remediate

it, we can just create an empty file with the same name.

antonio@antonio-Laptop:~$ touch /etc/apparmor.d/libvirt/

libvirt-84e6987c-5f67-443d-ad67-ff6c29a428c4.files

After that, we can generate the profile; we’ll see this information:

antonio@antonio-Laptop:~$ sudo aa-genprof /usr/bin/w3m

Updating AppArmor profiles in /etc/apparmor.d.

Writing updated profile for /usr/bin/w3m.

Setting /usr/bin/w3m to complain mode.

Before you begin, you may wish to check if a

profile already exists for the application you

wish to confine. See the following wiki page for

more information:

https://gitlab.com/apparmor/apparmor/wikis/Profiles

Profiling: /usr/bin/w3m

Please start the application to be profiled in

another window and exercise its functionality now.

Chapter 7 Container Virtualization Concepts

361

Once completed, select the "Scan" option below in

order to scan the system logs for AppArmor events.

For each AppArmor event, you will be given the

opportunity to choose whether the access should be

allowed or denied.

[(S)can system log for AppArmor events] / (F)inish

We must open another shell and launch w3m on it to perform the

normal actions that the program does.

antonio@antonio-Laptop:~$ w3m http://www.apress.com

In the first shell, we’ll press “S” to scan for the AppArmor events.

[(S)can system log for AppArmor events] / (F)inish

Reading log entries from /var/log/audit/audit.log.

Profile: /usr/bin/w3m

Execute: /usr/bin/dash

Severity: unknown

(I)nherit / (C)hild / (N)amed / (U)nconfined / (X) ix On / (D)

eny / Abo(r)t / (F)inish

We’ll have to repeat this procedure for some time. Using the

application in a terminal shell and scanning the AppArmor events on the

other terminal shell. In the end, we’ll save the profile.

This profile will be located on /etc/apparmor.d/usr.bin.w3m.

antonio@antonio-Laptop:~$ ls /etc/apparmor.d/usr.bin.w3m

/etc/apparmor.d/usr.bin.w3m

antonio@antonio-Laptop:~$ sudo cat /etc/apparmor.d/usr.bin.w3m

Last Modified: Sun Jul 21 14:39:52 2024

abi <abi/3.0>,

Chapter 7 Container Virtualization Concepts

362

include <tunables/global>

/usr/bin/w3m {

 include <abstractions/base>

 include <abstractions/bash>

 /usr/bin/dash mrix,

 /usr/bin/gunzip mrix,

 /usr/bin/w3m mr,

}

�seccomp
seccomp (security component) allows a Linux process to enter into a

state in which it can only work with a small subset of system calls: exit(),

sigreturn(), read(), and write() to already open file descriptors.

We’ll see this in an example when we study how it can be implemented

in LXC and Docker.

�Summary
In this introductory chapter to containers, we have seen what a container

is and also the kernel features needed to provide containers with their

functionality.

Hopefully, after reading this chapter, you’ll have a better

understanding about what namespaces and control groups are and how

they work. Apart from these two kernel features, we’ve also seen other

technologies that can influence how containers work, such as capabilities,

SELinux, and AppArmor. And we also crafted a small container by using

the aforementioned kernel features.

Chapter 7 Container Virtualization Concepts

363© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_8

CHAPTER 8

Linux
Containers (LXC)
In this chapter, we’ll cover the following concepts:

•	 Understand the architecture of LXC and LXD

•	 Manage LXC containers based on existing images using

LXD, including networking and storage

•	 Configure LXC container properties

•	 Limit LXC container resource usage

•	 Use LXD profiles

•	 Understand LXC images

•	 Awareness of traditional LXC tools

•	 Understand how LXC leverages namespaces, cgroups,

capabilities, seccomp, and MAC

�LXC
LXC (Linux containers) is a virtualization method for running several

Linux systems, called containers, in a single host. Instead of creating

a virtual machine, LXC relies on the technologies we’ve studied in the

https://doi.org/10.1007/979-8-8688-1080-0_8#DOI

364

previous chapter, mainly cgroups and kernel namespaces. This way they

limit and isolate the resource usage (CPU, memory, etc.) of a series of

processes.

�Installing LXC
The official repositories of the main Linux distributions already include

the package needed to manage and run LXC in the computer. So the

installation is very simple.

antonio@antonio-Laptop:~$ sudo apt install lxc

Actually if we review the information about the lxc package, we’ll see

that this is a transitional package. And when we install it, we’re installing

the lxc-utils package.

antonio@antonio-Laptop:~$ apt show lxc

Package: lxc

Version: 1:5.0.0~git2209-g5a7b9ce67-0ubuntu1

.

.

.

Description: Transitional package - lxc -> lxc-utils

 �This is a transitional dummy package. It can safely be

removed.

 .

 lxc is now replaced by lxc-utils.

If we take a look now at the description of the lxc-utils package, we’ll

see the following paragraph, which should be already familiar as it is a

summary of the theorical concepts we’ve seen in the previous chapter.

Chapter 8 Linux Containers (LXC)

365

antonio@antonio-Laptop:~$ apt show lxc-utils

Package: lxc-utils

.

.

.

Description: Linux Containers userspace tools

 �Containers are insulated areas inside a system, which have

their own namespace for filesystem, network, PID, IPC, CPU and

memory allocation and which can be created using the Control

Group and Namespace features included in the Linux kernel.

 .

 �This package provides the lxc-* tools, which can be used

to start a single daemon in a container, or to boot an

entire "containerized" system, and to manage and debug your

containers.

�Configuring LXC
Now that we’ve installed the needed utils, we can start creating our

containers. To check whether everything is ready before using LXC, we can

execute the lxc-checkconfig command.

antonio@antonio-Laptop:~$ lxc-checkconfig

LXC version 5.0.0~git2209-g5a7b9ce67

Kernel configuration not found at /proc/config.gz; searching...

Kernel configuration found at /boot/config-6.2.0-36-generic

--- Namespaces ---

Namespaces: enabled

Utsname namespace: enabled

Ipc namespace: enabled

Pid namespace: enabled

User namespace: enabled

Network namespace: enabled

Chapter 8 Linux Containers (LXC)

366

--- Control groups ---

Cgroups: enabled

Cgroup namespace: enabled

Cgroup v1 mount points:

Cgroup v2 mount points:

/sys/fs/cgroup

Cgroup v1 systemd controller: missing

Cgroup v1 freezer controller: missing

Cgroup ns_cgroup: required

Cgroup device: enabled

Cgroup sched: enabled

Cgroup cpu account: enabled

Cgroup memory controller: enabled

Cgroup cpuset: enabled

--- Misc ---

Veth pair device: enabled, not loaded

Macvlan: enabled, not loaded

Vlan: enabled, not loaded

Bridges: enabled, loaded

Advanced netfilter: enabled, loaded

CONFIG_IP_NF_TARGET_MASQUERADE: enabled, not loaded

CONFIG_IP6_NF_TARGET_MASQUERADE: enabled, not loaded

CONFIG_NETFILTER_XT_TARGET_CHECKSUM: enabled, loaded

CONFIG_NETFILTER_XT_MATCH_COMMENT: enabled, not loaded

FUSE (for use with lxcfs): enabled, not loaded

--- Checkpoint/Restore ---

checkpoint restore: enabled

CONFIG_FHANDLE: enabled

CONFIG_EVENTFD: enabled

Chapter 8 Linux Containers (LXC)

367

CONFIG_EPOLL: enabled

CONFIG_UNIX_DIAG: enabled

CONFIG_INET_DIAG: enabled

CONFIG_PACKET_DIAG: enabled

CONFIG_NETLINK_DIAG: enabled

File capabilities:

Note : �Before booting a new kernel, you can check its

configuration

usage : CONFIG=/path/to/config /usr/bin/lxc-checkconfig

In the output, we can see clearly these two lines:

Namespaces: enabled

Cgroups: enabled

As we studied in the previous chapter, these two technologies provide

the isolation and resource limitation needed to create containers.

In order to create a new container, we use the lxc-create command.

We assign a name for the new container with the “-n” parameter, and we

execute the command as root.

antonio@antonio-Laptop:~$ sudo lxc-create -n my_container

lxc-create: my_container: tools/lxc_create.c: main: 214 A

template must be specified

lxc-create: my_container: tools/lxc_create.c: main: 215 Use

"none" if you really want a container without a rootfs

As we see, we need to specify a template. We should install the

lxc-templates package in order to obtain a series of predefined templates.

antonio@antonio-Laptop:~$ sudo apt install lxc-templates

Chapter 8 Linux Containers (LXC)

368

We can see that there is a list of predefined templates in the /usr/share/

lxc/templates/ folder.

antonio@antonio-Laptop:~/antonio/LXC$ ls /usr/share/lxc/

templates/

lxc-alpine lxc-download lxc-opensuse lxc-sshd

lxc-altlinux lxc-fedora lxc-oracle lxc-ubuntu

lxc-archlinux lxc-fedora-legacy lxc-plamo �lxc-ubuntu-

cloud

lxc-busybox lxc-gentoo lxc-pld lxc-voidlinux

lxc-centos lxc-local lxc-sabayon

lxc-cirros lxc-oci lxc-slackware

lxc-debian lxc-openmandriva lxc-sparclinux

In our example, we’ll use the ubuntu template.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-create -t ubuntu

 -n my_container

Checking cache download in /var/cache/lxc/jammy/rootfs-

amd64 ...

Installing packages in template: apt-transport-

https,ssh,vim,language-pack-en

Downloading ubuntu jammy minimal ...

I: Target architecture can be executed

I: Retrieving InRelease

I: Checking Release signature

I: �Valid Release signature (key id

F6ECB3762474EDA9D21B7022871920D1991BC93C)

I: Retrieving Packages

I: Validating Packages

I: Retrieving Packages

I: Validating Packages

I: Resolving dependencies of required packages...

Chapter 8 Linux Containers (LXC)

369

I: Resolving dependencies of base packages...

I: �Checking component main on http://archive.ubuntu.com/

ubuntu...

I: �Checking component universe on http://archive.ubuntu.com/

ubuntu...

I: Retrieving adduser 3.118ubuntu5

I: Validating adduser 3.118ubuntu5

I: Retrieving apt 2.4.5

I: Validating apt 2.4.5

.

.

.

Installing updates

Get:1 �http://security.ubuntu.com/ubuntu jammy-security

InRelease [110 kB]

Hit:2 http://archive.ubuntu.com/ubuntu jammy InRelease

Get:3 �http://archive.ubuntu.com/ubuntu jammy-updates InRelease

[119 kB]

Get:4 �http://security.ubuntu.com/ubuntu jammy-security/main

amd64 Packages [953 kB]

.

.

.

Copy /var/cache/lxc/jammy/rootfs-amd64 to /var/lib/lxc/my_

container/rootfs ...

Copying rootfs to /var/lib/lxc/my_container/rootfs ...

Generating locales (this might take a while)...

 en_US.UTF-8... done

Generation complete.

Chapter 8 Linux Containers (LXC)

370

.

.

.

##

The default user is 'ubuntu' with password 'ubuntu'!

Use the 'sudo' command to run tasks as root in the container.

##

The container has been successfully created. We can list it with lxc-ls.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-ls

my_container

We can get a bit more information with the --fancy option.

antonio@antonio-Laptop:~$ sudo lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_container STOPPED 0 - - - false

When creating a new container with the default options, a new folder

will appear in the /var/lib/lxc folder.

antonio@antonio-Laptop:~/antonio/LXC$ ls /var/lib/lxc

ls: cannot open directory '/var/lib/lxc': Permission denied

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc

my_container

Inside the my_container folder, we see a config file and a rootfs

subfolder.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls -l /var/lib/lxc/

my_container

total 8

-rw-r----- 1 root root 687 nov 18 13:10 config

drwxr-xr-x 17 root root 4096 nov 18 13:09 rootfs

Chapter 8 Linux Containers (LXC)

371

In the config file, we can see parameters regarding the network settings

and the root filesystem used. We can also see that the settings included in

the /usr/share/lxc/config/ubuntu.common.conf file are included.

antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/lxc/

my_container/config

Template used to create this container: /usr/share/lxc/

templates/lxc-ubuntu

Parameters passed to the template:

For additional config options, please look at lxc.

container.conf(5)

Uncomment the following line to support nesting containers:

#lxc.include = /usr/share/lxc/config/nesting.conf

(Be aware this has security implications)

Common configuration

lxc.include = /usr/share/lxc/config/ubuntu.common.conf

Container specific configuration

lxc.rootfs.path = dir:/var/lib/lxc/my_container/rootfs

lxc.uts.name = my_container

lxc.arch = amd64

Network configuration

lxc.net.0.type = veth

lxc.net.0.link = lxcbr0

lxc.net.0.flags = up

lxc.net.0.hwaddr = 00:16:3e:fb:1d:36

Chapter 8 Linux Containers (LXC)

372

The root filesystem used is precisely the /var/lib/lxc/my_container/

rootfs folder we talked about earlier. If we list its contents, we’ll see that it

contains the usual directories that can be found in a Linux computer.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc/

my_container/rootfs

bin dev home lib32 libx32 mnt proc run srv tmp var

boot etc lib lib64 media opt root sbin sys usr

The template named ubuntu usually includes a user named “ubuntu”

with a password “ubuntu”. However, we’ll see how to customize it, resetting

the root password and creating a new user.

To do this, we’ll change the root path to that of the container.

antonio@antonio-Laptop:~/antonio/LXC$ sudo chroot /var/lib/lxc/

my_container/rootfs

root@antonio-Laptop:/#

We proceed now to change the root password and create a new user.

root@antonio-Laptop:/# passwd root

New password:

Retype new password:

passwd: password updated successfully

root@antonio-Laptop:/# useradd -m lxc-user

root@antonio-Laptop:/# passwd lxc-user

New password:

Retype new password:

passwd: password updated successfully

root@antonio-Laptop:/#

Finally, we leave the chroot environment.

root@antonio-Laptop:/# exit

exit

Chapter 8 Linux Containers (LXC)

373

We are ready to start the container with the lxc-start command.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-start -n my_

container

And we check that the container is actually running.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_container RUNNING 0 - 10.0.3.48 - false

In the output, we can see the IP of the container. Of course we can ping

this IP address.

antonio@antonio-Laptop:~/antonio/LXC$ ping -c 3 10.0.3.48

PING 10.0.3.48 (10.0.3.48) 56(84) bytes of data.

64 bytes from 10.0.3.48: icmp_seq=1 ttl=64 time=0.070 ms

64 bytes from 10.0.3.48: icmp_seq=2 ttl=64 time=0.067 ms

64 bytes from 10.0.3.48: icmp_seq=3 ttl=64 time=0.067 ms

--- 10.0.3.48 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2047ms

rtt min/avg/max/mdev = 0.067/0.068/0.070/0.001 ms

Once the container is started, we can connect to it with linux-console.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-console -n my_

container

Connected to tty 1

Type <Ctrl+a q> to exit the console, <Ctrl+a Ctrl+a> to enter

Ctrl+a itself

Ubuntu 22.04.3 LTS mycontainer pts/1

mycontainer login:

Chapter 8 Linux Containers (LXC)

374

We log in as the user we created before.

mycontainer login: lxc-user

Password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 6.5.0-44-generic x86_64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described

in the individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

$

And we can execute any command as we’d do in any other Ubuntu

computer.

$ su - root

Password:

root@mycontainer:~# ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000

Chapter 8 Linux Containers (LXC)

375

 �link/ether 00:16:3e:fb:1d:36 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

 �inet 10.0.3.48/24 metric 100 brd 10.0.3.255 scope global

dynamic eth0

 valid_lft 3097sec preferred_lft 3097sec

 inet6 fe80::216:3eff:fefb:1d36/64 scope link

 �valid_lft forever preferred_lft forever

root@mycontainer:~# ip route

default via 10.0.3.1 dev eth0 proto dhcp src 10.0.3.48

metric 100

10.0.3.0/24 dev eth0 proto kernel scope link src 10.0.3.48

metric 100

10.0.3.1 dev eth0 proto dhcp scope link src 10.0.3.48

metric 100

root@mycontainer:~#

When we’re done, we exit the container console by pressing Ctrl+a and q;

this way, the container we’ll remain executing, and we can reconnect again at

any moment. We can connect to the console as we just did or we can connect

with ssh. By default, the ssh port is open and accessible.

antonio@antonio-Laptop:~/antonio/LXC$ nmap 10.0.3.48

Starting Nmap 7.80 (https://nmap.org) at 2024-07-22

21:37 CEST

Nmap scan report for 10.0.3.48

Host is up (0.00012s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

22/tcp open ssh

Chapter 8 Linux Containers (LXC)

376

Nmap done: 1 IP address (1 host up) scanned in 0.06 seconds

antonio@antonio-Laptop:~/antonio/LXC$ ssh ubuntu@10.0.3.48

ubuntu@10.0.3.48's password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux

6.5.0-44-generic x86_64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

Last login: Mon Jul 22 19:56:12 2024 from 10.0.3.1

You probably remember that when we introduced the concept of

container, we said there were two types of containers: system containers

and application containers. This Ubuntu container we just created is a

system container as it includes most (if not all) of the tools we expect to see

in a real Ubuntu server.

When we decide that we don’t need the container to be executed

anymore, we can stop the container with the lxc-stop command.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-stop -n my_

container

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_container STOPPED 0 - - - false

After installing LXC, we can see that a new bridge interface has been

created on the host.

antonio@antonio-Laptop:~/antonio/LXC$ ip address show

.

.

.

Chapter 8 Linux Containers (LXC)

377

8: lxcbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default qlen 1000

 link/ether 00:16:3e:00:00:00 brd ff:ff:ff:ff:ff:ff

 inet 10.0.3.1/24 brd 10.0.3.255 scope global lxcbr0

 valid_lft forever preferred_lft forever

 inet6 fe80::216:3eff:fe00:0/64 scope link

 valid_lft forever preferred_lft forever

.

.

.

If we remember, we already mentioned the /var/lib/lxc/my_container/

config file, where the container configuration is stored. At the bottom of the

file, we have the network configuration.

Network configuration

lxc.net.0.type = veth

lxc.net.0.link = lxcbr0

lxc.net.0.flags = up

lxc.net.0.hwaddr = 00:16:3e:fb:1d:36

This configuration is generated using the /etc/lxc/default.conf file as a

template.

antonio@antonio-Laptop:~/antonio/LXC$ cat /etc/lxc/default.conf

lxc.net.0.type = veth

lxc.net.0.link = lxcbr0

lxc.net.0.flags = up

lxc.net.0.hwaddr = 00:16:3e:xx:xx:xx

When we studied network namespaces in the previous chapter, we

could establish a connection between two network namespaces using

a pair of virtual Ethernet devices. This is exactly how Linux containers

(LXC) communicate with the host. The only difference is that LXC does

Chapter 8 Linux Containers (LXC)

378

it automatically. When a container is running, we can see that the bridge

interface lxcbr0 is assigned to a veth interface.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container

antonio@antonio-Laptop:~/antonio/LXC$ brctl show

bridge name bridge id STP enabled interfaces

br-4d7a80d63283 8000.02422b187d46 no

docker0 8000.0242ecdd0b5f no

lxcbr0 8000.00163e000000 no vethnXYPDf

virbr0 8000.52540035f114 yes

virbr1 8000.5254009a49a6 yes

virbr2 8000.52540052acbc yes

And we’ll see the corresponding veth interface in the host.

antonio@antonio-Laptop:~/antonio/LXC$ ip link

.

.

.

12: vethnXYPDf@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue master lxcbr0 state UP mode DEFAULT group default

qlen 1000

 link/ether fe:7a:2b:b3:a0:34 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

Of course in the container, we can see the other veth interface, as

they’re always created in pairs.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-attach -n my_

container -- ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Chapter 8 Linux Containers (LXC)

379

2: eth0@if12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP mode DEFAULT group default qlen 1000

 link/ether 00:16:3e:fb:1d:36 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

The interface lxcbr0 is created automatically in Ubuntu when installing

LXC. However, this is not always the case with other Linux distributions.

If the interface is not created, we should create and configure a bridge

interface for the container to be accessible through the network.

�LXC Storage

When we created our first container, we used the default storage option,

which is local storage. The local storage is a local folder in the host, /var/

lib/lxc to be exact. However, we can choose different storage options. If we

look at the help of the lxc-create command, we’ll see these options:

antonio@antonio-Laptop:~$ lxc-create –help

.

.

.

 -B, --bdev=BDEV Backing store type to use

.

.

.

 BDEV options for LVM (with -B/--bdev lvm):

 --lvname=LVNAME Use LVM lv name LVNAME

 (Default: container name)

 --vgname=VG Use LVM vg called VG

 (Default: lxc)

 --thinpool=TP Use LVM thin pool called TP

 (Default: lxc)

Chapter 8 Linux Containers (LXC)

380

 BDEV options for Ceph RBD (with -B/--bdev rbd) :

 --rbdname=RBDNAME Use Ceph RBD name RBDNAME

 (Default: container name)

 --rbdpool=POOL Use Ceph RBD pool name POOL

 (Default: lxc)

 BDEV option for ZFS (with -B/--bdev zfs) :

 --zfsroot=PATH Create zfs under given zfsroot

 (Default: tank/lxc)

.

.

.

As we can see, we can store the container in a logical volume,

Ceph, or ZFS.

You’re probably familiar with logical volumes, as they have been

widely used for many years and are studied in the LPIC-2 certification.

Ceph is a distributed data storage solution that provides object, block,

and file storage. It’s fault tolerant and very scalable, making it a great

platform to work with big data.

Finally, ZFS is a filesystem originally used in Sun Solaris systems that

has been ported to other operating systems like Linux. Usually, in storage

systems, we have two different parts: the volume management and the

management of the data. For example, we can use LVM as the volume

manager, and then we can format the volumes with different filesystems

like xfs, btrfs, ext4, etc. Or maybe we could use RAID as the volume

manager. ZFS is an all-in-one storage system, as it unifies both parts: the

volume management and the filesystem. Due to this characteristic, ZFS

has complete knowledge of the storage system and provides a very good

protection against data corruption. Besides that, it also provides other

interesting features like snapshots, compression, and quotas.

Chapter 8 Linux Containers (LXC)

381

We’re going to see an example in which we’ll store a container in a

logical volume. For that, we’ll create a volume group, and then lxc-create

will create the corresponding logical volume. To create a volume group, we

need to have a disk or partition available to create the physical volume that

will be used by the volume group. In my case, I don’t have any physical

volume available, but we can use a loop device to emulate a disk. We’ll

begin by creating a file that will be used as a virtual disk.

antonio@antonio-Laptop:~/antonio/LXC$ dd if=/dev/zero of=disk.

dsk bs=1M count=2048

2048+0 records in

2048+0 records out

2147483648 bytes (2,1 GB, 2,0 GiB) copied, 0,938241 s, 2,3 GB/s

Then, we associate the disk to a loop device.

antonio@antonio-Laptop:~/antonio/LXC$ sudo losetup -fP disk.dsk

And we identify the exact loop device.

antonio@antonio-Laptop:~/antonio/LXC$ losetup -a | grep disk.dsk
/dev/loop45: []: (/home/antonio/antonio/LXC/disk.dsk)

From now on, we can use /dev/loop45 as if it were a “normal” disk.

We’ll use fdisk to create an LVM-type partition that we’ll use later to create

a physical volume.

antonio@antonio-Laptop:~/antonio/LXC$ sudo fdisk /dev/loop45

Welcome to fdisk (util-linux 2.37.2).

Changes will remain in memory only, until you decide to

write them.

Be careful before using the write command.

Device does not contain a recognized partition table.

Created a new DOS disklabel with disk identifier 0xd9bcd143.

Chapter 8 Linux Containers (LXC)

382

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p):

Using default response p.

Partition number (1-4, default 1):

First sector (2048-4194303, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-4194303,

default 4194303):

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): t

Selected partition 1

Hex code or alias (type L to list all): 8e

Changed type of partition 'Linux' to 'Linux LVM'.

Command (m for help): p

Disk /dev/loop45: 2 GiB, 2147483648 bytes, 4194304 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xd9bcd143

Device Boot Start End Sectors Size Id Type

/dev/loop45p1 2048 4194303 4192256 2G 8e Linux LVM

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Chapter 8 Linux Containers (LXC)

383

Now we’ll create a physical volume (PV) from the partition just created

in the loopback device.

antonio@antonio-Laptop:~/antonio/LXC$ sudo pvcreate /dev/

loop45p1

 Physical volume "/dev/loop45p1" successfully created.

antonio@antonio-Laptop:~/antonio/LXC$ sudo pvs

 PV VG Fmt Attr PSize PFree

 /dev/loop45p1 lvm2 --- <2,00g <2,00g

And finally, we’ll create a new VG using that PV.

antonio@antonio-Laptop:~/antonio/LXC$ sudo vgcreate VG_LXC /

dev/loop45p1

 Volume group "VG_LXC" successfully created

We’re now ready to create a new container that will be stored inside the

volume group.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-create -n my_

containerLV -t ubuntu -B lvm --vgname=VG_LXC

Checking cache download in /var/cache/lxc/jammy/rootfs-

amd64 ...

Copy /var/cache/lxc/jammy/rootfs-amd64 to /usr/lib/x86_64-

linux-gnu/lxc ...

Copying rootfs to /usr/lib/x86_64-linux-gnu/lxc ...

Generating locales (this might take a while)...

 en_US.UTF-8... done

Generation complete.

Current default time zone: 'Etc/UTC'

Local time is now: Wed Jul 24 16:45:13 UTC 2024.

Universal Time is now: Wed Jul 24 16:45:13 UTC 2024.

Chapter 8 Linux Containers (LXC)

384

##

The default user is 'ubuntu' with password 'ubuntu'!

Use the 'sudo' command to run tasks as root in the container.

##

We have created our new container. We can start it the usual way.

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-start my_containerLV

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_container STOPPED 0 - - - false

my_containerLV RUNNING 0 - 10.0.3.172 - false

We can connect with ssh just to prove that the container is working as

expected.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/antonio/LXC$ ssh

ubuntu@10.0.3.172

ubuntu@10.0.3.172's password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux

6.5.0-44-generic x86_64)

.

.

.

Now we’ll take a look at the /var/lib/lxc folder.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc

my_container my_containerLV

Chapter 8 Linux Containers (LXC)

385

We see that there is a my_containerLV folder; let’s look into it.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc/

my_containerLV

config rootfs

There is a rootfs folder and a config file. However, the rootfs folder

is empty, and in the config file, we can see that the location of the root

filesystem is the logical volume we had created.

antonio@antonio-Laptop:~/antonio/LXC$ sudo ls /var/lib/lxc/

my_containerLV/rootfs

antonio@antonio-Laptop:~/antonio/LXC$

antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/lxc/

my_containerLV/config

.

.

.

Container specific configuration

lxc.rootfs.path = lvm:/dev/VG_LXC/my_containerLV

.

.

.

If we want to, we can mount the logical volume in a local path to access

its content.

antonio@antonio-Laptop:~/antonio/LXC$ sudo mount /dev/VG_LXC/

my_containerLV /mnt/mydata/

antonio@antonio-Laptop:~/antonio/LXC$ ls /mnt/mydata/

bin boot dev etc home lib lib32 lib64 libx32

lost+found media mnt opt proc root run sbin srv sys

tmp usr var

Chapter 8 Linux Containers (LXC)

386

When we’re done, we can delete the container with lxc-destroy.

antonio@antonio-Laptop:~/antonio/LXC$ sudo umount /mnt/mydata

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-stop -n

my_containerLV

antonio@antonio-Laptop:~/antonio/LXC$ sudo lxc-destroy -n

my_containerLV

We will also remove the volume group, the loopback device, and so on.

antonio@antonio-Laptop:~/antonio/LXC$ sudo vgremove VG_LXC

 Volume group "VG_LXC" successfully removed

antonio@antonio-Laptop:~/antonio/LXC$ sudo vgremove VG_LXC

 Volume group "VG_LXC" successfully removed

antonio@antonio-Laptop:~/antonio/LXC$ sudo pvremove

/dev/loop45p1

 Labels on physical volume "/dev/loop45p1" successfully wiped.

antonio@antonio-Laptop:~/antonio/LXC$ sudo losetup -d /

dev/loop45

antonio@antonio-Laptop:~/antonio/LXC$ rm disk.dsk

�LXC in RedHat/Rocky/CentOS
We’ve already seen how to install and configure LXC on Ubuntu. Now

we’re gonna do the same in Rocky Linux. We’re not going to describe in

detail every step because I don’t want to repeat the same information

once and again. We’ll just see the commands used, and we’ll focus on the

differences.

We’ll install the needed packages.

[root@pc-1196 ~]# dnf install -y lxc

[root@pc-1196 ~]# dnf install -y lxc-templates

Chapter 8 Linux Containers (LXC)

387

When we check the templates available, we’ll see the first differences.

[root@pc-1196 ~]# ls /usr/share/lxc/templates/

lxc-busybox lxc-download lxc-local lxc-oci

If we try to create a busybox container, we’ll get an error because we

need to have the busybox binary.

[root@pc-1196 ~]# lxc-create -n my_rockycont -t busybox

/usr/bin/which: no busybox in (/usr/local/sbin:/usr/local/bin:/

usr/sbin:/usr/bin:/opt/puppetlabs/bin:/root/bin)

ERROR: Please pass a pathname for busybox binary

lxc-create: my_rockycont: lxccontainer.c: create_run_template:

1625 Failed to create container from template

lxc-create: my_rockycont: tools/lxc_create.c: main: 331 Failed

to create container my_rockycont

We’ll try to use the “download” template.

[root@pc-1196 ~]# lxc-create -n my_rockycont -t download

Setting up the GPG keyring

ERROR: Unable to fetch GPG key from keyserver

lxc-create: my_rockycont: lxccontainer.c: create_run_template:

1625 Failed to create container from template

lxc-create: my_rockycont: tools/lxc_create.c: main: 331 Failed

to create container my_rockycont

We get an error because the system tries to fetch a GPG key from the

key server and fails. If we execute the template with the “--help” parameter,

we’ll see this at the bottom of the page:

[root@pc-1196 ~]# /usr/share/lxc/templates/lxc-download --help

LXC container image downloader

Chapter 8 Linux Containers (LXC)

388

Special arguments:

[-h | --help]: Print this help message and exit
[-l | --list]: List all available images and exit

Required arguments:

[-d | --dist <distribution>]: The name of the distribution
[-r | --release <release>]: Release name/version
[-a | --arch <architecture>]: Architecture of the container
.

.

.

Environment Variables:

DOWNLOAD_KEYSERVER : The URL of the key server to use, instead

of the default.

 �Can be further overridden by using

optional argument --keyserver

As the default key server doesn’t seem to work, we’ll use the ubuntu

key server instead. We can also see another interesting option, -l, which

shows a list of the available images.

[root@pc-1196 ~]# DOWNLOAD_KEYSERVER="hkp://keyserver.ubuntu.

com" /usr/share/lxc/templates/lxc-download --list

Setting up the GPG keyring

Downloading the image index

DIST RELEASE ARCH VARIANT BUILD

almalinux 8 amd64 default 20240723_23:08

almalinux 8 arm64 default 20240723_23:08

almalinux 9 amd64 default 20240723_23:08

almalinux 9 arm64 default 20240723_23:08

Chapter 8 Linux Containers (LXC)

389

.

.

.

Now we’ll try to create a new container based on the Ubuntu image.

We have seen the options we need for the “download” template, and we’ll

take a look at the options needed for lxc-create in this distribution.

[root@pc-1196 ~]# lxc-create --help

Usage: lxc-create --name=NAME --template=TEMPLATE [OPTION...]

[-- template-options]

We launch the creation of the container.

[root@pc-1196 ~]# DOWNLOAD_KEYSERVER="hkp://keyserver.ubuntu.

com" lxc-create -t download -n my_rockycont -- -d ubuntu -a

amd64 -r bionic

Setting up the GPG keyring

Downloading the image index

Downloading the rootfs

Downloading the metadata

The image cache is now ready

Unpacking the rootfs

You just created an Ubuntu bionic amd64 (20240724_07:42) container.

To enable SSH, run: apt install openssh-server

No default root or user password are set by LXC.

In this case, we have no default user and password. We can reset the

root password executing chroot on the container root filesystem. We

did this in a previous example. Another possibility is to use lxc-attach

to execute commands in the container. We also saw an example of this

command previously.

Chapter 8 Linux Containers (LXC)

390

If we try to start the container, we’ll get this error:

[root@pc-1196 ~]# lxc-start -n my_rockycont

lxc-start: my_rockycont: lxccontainer.c: wait_on_daemonized_

start: 851 Received container state "ABORTING" instead of

"RUNNING"

lxc-start: my_rockycont: tools/lxc_start.c: main: 329 The

container failed to start

lxc-start: my_rockycont: tools/lxc_start.c: main: 332 To get

more details, run the container in foreground mode

lxc-start: my_rockycont: tools/lxc_start.c: main: 335

Additional information can be obtained by setting the --logfile

and --logpriority options

As suggested by the output text, we’ll try to start the container on the

foreground to get some more information.

[root@pc-1196 ~]# lxc-start -F -n my_rockycont

lxc-start: my_rockycont: network.c: lxc_ovs_attach_bridge: 2008

Failed to attach "lxcbr0" to openvswitch bridge "veth6MMLUB":

lxc-start: my_rockycont: utils.c: run_command_internal: 1648

Failed to exec command

lxc-start: my_rockycont: network.c: instantiate_veth: 173

Operation not permitted - Failed to attach "veth6MMLUB" to

bridge "lxcbr0"

lxc-start: my_rockycont: network.c: lxc_create_network_priv:

2577 Failed to create network device

lxc-start: my_rockycont: start.c: lxc_spawn: 1682 Failed to

create the network

lxc-start: my_rockycont: start.c: __lxc_start: 2019 Failed to

spawn container "my_rockycont"

lxc-start: my_rockycont: tools/lxc_start.c: main: 329 The

container failed to start

Chapter 8 Linux Containers (LXC)

391

lxc-start: my_rockycont: tools/lxc_start.c: main: 335

Additional information can be obtained by setting the --logfile

and --logpriority options

We can see that when starting the containers, it tries to use the lxcbr0

interface, which currently doesn’t exist. We’ll install the bridge-utils

package to create it.

[root@pc-1196 ~]# dnf install bridge-utils

[root@pc-1196 ~]# brctl addbr lxcbr0

[root@pc-1196 ~]# brctl show lxcbr0

bridge name bridge id STP enabled interfaces

lxcbr0 8000.000000000000 no

Now that we have created the bridge interface, we can start the container.

[root@pc-1196 ~]# lxc-start -n my_rockycont

[root@pc-1196 ~]# brctl show lxcbr0

bridge name bridge id STP enabled interfaces

lxcbr0 8000.febb5e5f4ad2 no vethLCTPSW

[root@pc-1196 ~]# lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_rockycont RUNNING 0 - - - false

We can see that the container was started, but obviously it has no IP

address because we didn’t configure any IP settings; we just created the

lxcbr0 interface.

Now we can do a couple of things; we can manually configure the

IP settings in both the host and the container and edit the firewall rules

accordingly to be able to connect or we can use the lxc-net service instead.

If we choose the second, and easier, option, we need to start the service.

[root@pc-1196 ~]# systemctl start lxc-net

Chapter 8 Linux Containers (LXC)

392

However, if we restart the container right now, we’ll see that it still has

no IP address assigned. To find out more, we’ll take a look at the definition

of the service.

[root@pc-1196 ~]# systemctl cat lxc-net.service

/usr/lib/systemd/system/lxc-net.service

[Unit]

Description=LXC network bridge setup

After=network-online.target

Wants=network-online.target

Before=lxc.service

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/libexec/lxc/lxc-net start

ExecStop=/usr/libexec/lxc/lxc-net stop

[Install]

WantedBy=multi-user.target

We see that the service executes the /usr/libexec/lxc/lxc-net script

when it starts; we’ll execute manually with the “-x” option to see more

details of the execution.

[root@pc-1196 ~]# sh -x /usr/libexec/lxc/lxc-net start

+ distrosysconfdir=/etc/sysconfig

+ varrun=/run/lxc

+ varlib=/var/lib

+ USE_LXC_BRIDGE=true

+ LXC_BRIDGE=lxcbr0

+ LXC_BRIDGE_MAC=00:16:3e:00:00:00

+ LXC_ADDR=10.0.3.1

+ LXC_NETMASK=255.255.255.0

Chapter 8 Linux Containers (LXC)

393

+ LXC_NETWORK=10.0.3.0/24

+ LXC_DHCP_RANGE=10.0.3.2,10.0.3.254

+ LXC_DHCP_MAX=253

+ LXC_DHCP_CONFILE=

+ LXC_DHCP_PING=true

+ LXC_DOMAIN=

+ LXC_IPV6_ADDR=

+ LXC_IPV6_MASK=

+ LXC_IPV6_NETWORK=

+ LXC_IPV6_NAT=false

+ '[' '!' -f /etc/sysconfig/lxc ']'

+ . /etc/sysconfig/lxc

++ LXC_AUTO=true

++ BOOTGROUPS=onboot,

++ SHUTDOWNDELAY=5

++ OPTIONS=

++ STOPOPTS='-a -A -s'

++ USE_LXC_BRIDGE=false

++ '[' '!' -f /etc/sysconfig/lxc-net ']'

+ use_iptables_lock=-w

+ iptables -w -L -n

+ case "$1" in

+ start

+ '[' xfalse = xtrue ']'

+ exit 0

In the first lines of execution, we see this line:

+ USE_LXC_BRIDGE=true

But later we see this other line:

++ USE_LXC_BRIDGE=false

Chapter 8 Linux Containers (LXC)

394

This last value seems to be taken from the /etc/sysconfig/lxc file. In fact,

that’s the case. In the file, we can see the following line:

USE_LXC_BRIDGE="false" # overridden in lxc-net

And we change the value from “false” to “true”.

USE_LXC_BRIDGE="true" # overridden in lxc-net

If we run the script again, we’ll see that now it seems to execute

successfully.

[root@pc-1196 ~]# sh -x /usr/libexec/lxc/lxc-net start

+ distrosysconfdir=/etc/sysconfig

+ varrun=/run/lxc

+ varlib=/var/lib

+ USE_LXC_BRIDGE=true

+ LXC_BRIDGE=lxcbr0

+ LXC_BRIDGE_MAC=00:16:3e:00:00:00

+ LXC_ADDR=10.0.3.1

+ LXC_NETMASK=255.255.255.0

+ LXC_NETWORK=10.0.3.0/24

+ LXC_DHCP_RANGE=10.0.3.2,10.0.3.254

+ LXC_DHCP_MAX=253

+ LXC_DHCP_CONFILE=

+ LXC_DHCP_PING=true

+ LXC_DOMAIN=

+ LXC_IPV6_ADDR=

+ LXC_IPV6_MASK=

+ LXC_IPV6_NETWORK=

+ LXC_IPV6_NAT=false

+ '[' '!' -f /etc/sysconfig/lxc ']'

+ . /etc/sysconfig/lxc

++ LXC_AUTO=true

Chapter 8 Linux Containers (LXC)

395

++ BOOTGROUPS=onboot,

++ SHUTDOWNDELAY=5

++ OPTIONS=

++ STOPOPTS='-a -A -s'

++ USE_LXC_BRIDGE=true

++ '[' '!' -f /etc/sysconfig/lxc-net ']'

+ use_iptables_lock=-w

+ iptables -w -L -n

+ case "$1" in

+ start

+ '[' xtrue = xtrue ']'

+ '[' '!' -f /run/lxc/network_up ']'

+ echo 'lxc-net is already running'

lxc-net is already running

+ exit 1

[root@pc-1196 ~]#

In fact, if we restart the service and the container, we will see now an

associated IP address.

[root@pc-1196 ~]# systemctl restart lxc-net.service

[root@pc-1196 ~]# lxc-stop -n my_rockycont

[root@pc-1196 ~]# lxc-start -n my_rockycont

[root@pc-1196 ~]# lxc-ls --fancy

NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED

my_rockycont RUNNING 0 - 10.0.3.96 - false

And of course we can ping the container from the host and vice versa.

[root@pc-1196 ~]# ping -c 3 10.0.3.96

PING 10.0.3.96 (10.0.3.96) 56(84) bytes of data.

64 bytes from 10.0.3.96: icmp_seq=1 ttl=64 time=0.037 ms

64 bytes from 10.0.3.96: icmp_seq=2 ttl=64 time=0.086 ms

64 bytes from 10.0.3.96: icmp_seq=3 ttl=64 time=0.072 ms

Chapter 8 Linux Containers (LXC)

396

--- 10.0.3.96 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2053ms

rtt min/avg/max/mdev = 0.037/0.065/0.086/0.020 ms

As part of the setup, the lxc-net service has modified the

iptables chains.

[root@pc-1196 ~]# iptables -L -t nat

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

MASQUERADE all -- 10.0.3.0/24 !10.0.3.0/24

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The service lxc-net has its parameters (IP addresses, DHCP ranges,

etc.) hard-coded in the /usr/libexec/lxc/lxc-net file. These are some of the

relevant lines:

.

.

.

USE_LXC_BRIDGE="true"

LXC_BRIDGE="lxcbr0"

LXC_BRIDGE_MAC="00:16:3e:00:00:00"

LXC_ADDR="10.0.3.1"

LXC_NETMASK="255.255.255.0"

LXC_NETWORK="10.0.3.0/24"

LXC_DHCP_RANGE="10.0.3.2,10.0.3.254"

Chapter 8 Linux Containers (LXC)

397

LXC_DHCP_MAX="253"

.

.

.

DHCP services are provided by dnsmasq, which we already saw briefly

when we studied QEMU.

.

.

.

 �dnsmasq $LXC_DHCP_CONFILE_ARG $LXC_DOMAIN_ARG $LXC_DHCP_

PING_ARG -u ${DNSMASQ_USER} \

 --�strict-order --bind-interfaces --pid-

file="${varrun}"/dnsmasq.pid \

 --�listen-address ${LXC_ADDR} --dhcp-range ${LXC_

DHCP_RANGE} \

 --�dhcp-lease-max=${LXC_DHCP_MAX} --dhcp-no-

override \

 --except-interface=lo --interface=${LXC_BRIDGE} \

 --�dhcp-leasefile="${varlib}"/misc/dnsmasq.${LXC_

BRIDGE}.leases \

 --dhcp-authoritative $LXC_IPV6_ARG || cleanup
.

.

.

We can see the dnsmasq program in execution in the host.

[root@pc-1196 ~]# ps -ef | grep dnsmasq
dnsmasq 161019 1 0 23:20 ? 00:00:00 dnsmasq

 -u dnsmasq --strict-order --bind-interfaces --pid-file=/

run/lxc/dnsmasq.pid --listen-address 10.0.3.1 --dhcp-range

Chapter 8 Linux Containers (LXC)

398

10.0.3.2,10.0.3.254 --dhcp-lease-max=253 --dhcp-no-override

 --except-interface=lo --interface=lxcbr0 --dhcp-leasefile=/var/

lib/misc/dnsmasq.lxcbr0.leases –dhcp-authoritative

This is also true if we work in Ubuntu. But in that case, it was all

transparent for us because we didn’t need to create the bridge interface

and the lxc-net service was automatically started before lxc. But it is

present.

antonio@antonio-Laptop:~$ systemctl status lxc-net

• lxc-net.service - LXC network bridge setup
 �Loaded: loaded (/lib/systemd/system/lxc-net.service;

enabled; vendor preset: enabled)

 �Active: active (exited) since Tue 2024-07-23 19:15:11

CEST; 2 days ago

.

.

.

And the dnsmasq is running too.

antonio@antonio-Laptop:~$ ps -ef | grep dnsmasq
lxc-dns+ 3080 1 0 jul23 ? 00:00:00 dnsmasq

 --conf-file=/dev/null -u lxc-dnsmasq --strict-order --bind-

interfaces --pid-file=/run/lxc/dnsmasq.pid --listen-address

10.0.3.1 --dhcp-range 10.0.3.2,10.0.3.254 --dhcp-lease-max=253

 --dhcp-no-override --except-interface=lo --interface=lxcbr0

 --dhcp-leasefile=/var/lib/misc/dnsmasq.lxcbr0.leases --dhcp-

authoritative

antonio 159839 41440 0 19:19 pts/1 00:00:00 grep

 --color=auto dnsmasq

Chapter 8 Linux Containers (LXC)

399

�Security in LXC
We have seen a few commands and characteristics related to LXC, though

there are many more available and it is not possible to cover all of them

in this book. And it is also outside the scope of the 305 exam. But we’ll see

some additional options we have available.

Let’s get back to our Ubuntu system and look again at the config file.

antonio@antonio-Laptop:~/antonio/LXC$ sudo cat /var/lib/lxc/

my_container/config

Template used to create this container: /usr/share/lxc/

templates/lxc-ubuntu

Parameters passed to the template:

For additional config options, please look at lxc.

container.conf(5)

.

.

.

In the file, we have a few options set, and we’re told that we can check

the man page of lxc.container.conf for a full list. We’ll open this man page,

and we’ll see a lot of different config options.

We’ll focus this time in the security-related options. We’ll see a wide

section about cgroups.

 CONTROL GROUPS ("CGROUPS")

 �The control group section contains the configuration

for the different subsystem.

.

.

.

Chapter 8 Linux Containers (LXC)

400

 lxc.cgroup.dir

 �specify a directory or path in which the

container's cgroup will be created.

.

.

.

We also have a capabilities section. As you probably remember,

because we studied them in the previous chapter, these capabilities are

subsets of privileges usually associated to the root user. We can grant (or

deny) a container any of these capabilities.

.

.

 CAPABILITIES

 �The capabilities can be dropped in the container if this

one is run as root.

 lxc.cap.drop

 �Specify the capability to be dropped in the

container.

.

.

 lxc.cap.keep

 �Specify the capability to be kept in the

container.

.

.

We also have a section for namespaces:

.

.

 NAMESPACES

Chapter 8 Linux Containers (LXC)

401

 �A namespace can be cloned (lxc.namespace.clone),

kept (lxc.namespace.keep) or shared (lxc.namespace.

share.[namespace

 identifier]).

.

.

Another section for AppArmor:

.

.

 APPARMOR PROFILE

 � If lxc was compiled and installed with apparmor support,

and the host system has apparmor enabled, then the

apparmor pro- file under which the container should be

run can be specified in the container configuration.

.

.

...and for SELinux...

.

.

 SELINUX CONTEXT

 If lxc was compiled and installed with SELinux support

.

.

 lxc.selinux.context

 �Specify the SELinux context under which the

container should be run or unconfined_t.

For example

Chapter 8 Linux Containers (LXC)

402

 �lxc.selinux.context = system_u:system_r:lxc_t:s0:c22

.

.

.

And finally, seccomp:

.

.

 SECCOMP CONFIGURATION

 �A container can be started with a reduced set of

available system calls by loading a seccomp profile at

startup.

.

.

We’re gonna see a small example changing the AppArmor profile. The

first thing we need to do is to list the profiles with aa-status.

antonio@antonio-Laptop:~/antonio/LXC$ sudo aa-status

apparmor module is loaded.

99 profiles are loaded.

97 profiles are in enforce mode.

.

.

.

 lxc-container-default

 lxc-container-default-cgns

 lxc-container-default-with-mounting

 lxc-container-default-with-nesting

.

.

.

Chapter 8 Linux Containers (LXC)

403

We can see there are four different AppArmor profiles for LXC. If the

host kernel is cgroup namespace aware – most of the kernels in use today

are – then the default AppArmor profile will be lxc-container-default.

We’re going to change this default profile. To make a very simplistic

test, we edit the config file of the container and add this line to select an

unexisting profile:

lxc.apparmor.profile = lxc-container-default-blablabla

If we start the container, we get an error.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container

lxc-start: my_container: lxccontainer.c: wait_on_daemonized_

start: 877 Received container state "ABORTING" instead of

"RUNNING"

lxc-start: my_container: tools/lxc_start.c: main: 306 The

container failed to start

lxc-start: my_container: tools/lxc_start.c: main: 309 To get

more details, run the container in foreground mode

lxc-start: my_container: tools/lxc_start.c: main: 311

Additional information can be obtained by setting the --logfile

and --logpriority options

We’ll use the --logfile option to obtain more information.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container

 --logfile /tmp/lxclog.txt

We’ll open the log file, and we’ll see clearly that AppArmor couldn’t

locate the AppArmor profile.

antonio@antonio-Laptop:~$ sudo cat /tmp/lxclog.txt

lxc-start my_container 20240725194051.671 ERROR apparmor -

lsm/apparmor.c:apparmor_process_label_set_at:1183 - No such

Chapter 8 Linux Containers (LXC)

404

file or directory - Failed to write AppArmor profile "lxc-

container-default-blablabla" to 13

.

.

.

The AppArmor profiles for LXC are located in /etc/apparmor.d/lxc.

antonio@antonio-Laptop:~$ ls /etc/apparmor.d/lxc

lxc-default lxc-default-cgns lxc-default-with-mounting lxc-

default-with-nesting

We can simply copy the default profile and rename it.

antonio@antonio-Laptop:~$ sudo cp /etc/apparmor.d/lxc/lxc-

default /etc/apparmor.d/lxc/lxc-default-blablabla

We also need to edit the copied file to change the name of the profile.

profile lxc-container-default-blablabla

And we restart the AppArmor service.

antonio@antonio-Laptop:~$ sudo systemctl restart

apparmor.service

Now we can start the container.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container

�Other LXC Commands
There are many more LXC-related commands. We’ll see a couple of them

here that might be interesting.

Chapter 8 Linux Containers (LXC)

405

�lxc-monitor

This tool monitors the state of the container(s). To see an example, we’ll

launch it in a terminal shell.

antonio@antonio-Laptop:~$ sudo lxc-monitor

In another shell, we’ll perform several operations in a container. We’ll

start it.

antonio@antonio-Laptop:~$ sudo lxc-start -n my_container

Then we’ll freeze it.

antonio@antonio-Laptop:~$ sudo lxc-freeze -n my_container

After a while, we’ll unfreeze it again.

antonio@antonio-Laptop:~$ sudo lxc-unfreeze -n my_container

And finally we’ll stop the container.

antonio@antonio-Laptop:~$ sudo lxc-stop -n my_container

In the first terminal shell (the one in which we executed lxc-monitor),

we’ll see this:

antonio@antonio-Laptop:~$ sudo lxc-monitor

'my_container' changed state to [STARTING]

'my_container' changed state to [RUNNING]

'my_container' changed state to [FREEZING]

'my_container' changed state to [FROZEN]

'my_container' changed state to [THAWED]

'my_container' changed state to [RUNNING]

'my_container' exited with status [0]

'my_container' changed state to [STOPPING]

'my_container' changed state to [STOPPED]

Chapter 8 Linux Containers (LXC)

406

�lxc-cgroups

We have studied in the previous chapter how control groups, cgroups for

short, can limit the use of resources by certain processes. This is one of

the core technologies used by containers because it allows to account and

limit the resources used by each container.

We already saw how to use cgroup to limit the use of resources by

manually editing files in the /sys/fs/cgroup tree. We can do the same thing

for a certain container with the lxc-cgroup command.

The way to use it is very simple; we pass the name of the container and

the cgroup object to get the actual value of that cgroup.

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container

memory.max

max

If we want to set a new value, we repeat the command adding the

desired value at the end.

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container

memory.max 10240000

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container

memory.max

10240000

Of course, at any point, we can restore it to its default value.

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container

memory.max max

antonio@antonio-Laptop:~$ sudo lxc-cgroup -n my_container

memory.max

max

Chapter 8 Linux Containers (LXC)

407

�LXD
LXD is a container management tool developed by Canonical. It is built

on top of LXC, and it offers several advantages, like a REST API to remotely

manage containers over the network. It also supports live migration. As it

was developed by the creators of Ubuntu, it is available for installation in

the official Ubuntu repositories.

In older versions of Ubuntu, it can be installed as any other application

from the official repositories. In newer versions, it is installed as a snap.

antonio@antonio-Laptop:~$ lxd

Command 'lxd' not found, but can be installed with:

sudo snap install lxd # version 6.1-c14927a, or

sudo apt install lxd-installer # version 1

See 'snap info lxd' for additional versions.

antonio@antonio-Laptop:~$ sudo snap install lxd

[sudo] password for antonio:

lxd (5.21/stable) 5.21.2-34459c8 from Canonical✓ installed

When we install LXD, we’re basically installing a server (lxd) and

a client (lxc). We’ll perform most of the work on the client, using the

many subcommands available. For instance, if we want to list the remote

repositories currently available, we’d do it like this:

antonio@antonio-Laptop:~$ lxc remote list

If this is your first time running LXD on this machine, you

should also run: lxd init

To start your first container, try: lxc launch ubuntu:24.04

Or for a virtual machine: lxc launch ubuntu:24.04 --vm

Chapter 8 Linux Containers (LXC)

408

+---------------------+--------------------------------

------------------+--------------+-------------+-------+

-------+-------+

| NAME | URL
 | PROTOCOL | AUTH TYPE | PUBLIC |
STATIC | GLOBAL |
+---------------------+--------------------------------

------------------+--------------+-------------+--------+

-------+-------+

| images | https://images.lxd.canonical.com
 | simplestreams | none | YES |
NO | NO |
+---------------------+--------------------------------

------------------+--------------+-------------+--------+

-------+-------+

| local (current) | unix://
 | lxd | file access | NO |
YES | NO |
+---------------------+--------------------------------

------------------+--------------+-------------+--------+

-------+-------+

| ubuntu | https://cloud-images.ubuntu.com/
releases | simplestreams | none | YES |
YES | NO |
+---------------------+--------------------------------

------------------+--------------+-------------+--------+

-------+-------+

| ubuntu-daily | https://cloud-images.ubuntu.com/
daily | simplestreams | none | YES |
YES | NO |
+---------------------+--------------------------------

-----------------+---------------+------------+--------+

-------+-------+

Chapter 8 Linux Containers (LXC)

409

| ubuntu-minimal | https://cloud-images.ubuntu.com/
minimal/releases/ | simplestreams | none | YES |
YES | NO |
+---------------------+--------------------------------

------------------+--------------+-------------+-------+

-------+-------+

| ubuntu-minimal-daily | https://cloud-images.ubuntu.com/
minimal/daily/ | simplestreams | none | YES |
YES | NO |
+---------------------+-------------------------------

-------------------+-------------+-------------+-------+

-------+-------+

We won’t interact very often with lxd, but there are some cases in

which we need to. When we listed the remote repositories, the output

suggested to run “lxd init”. This is usually the first command to execute to

set up LXD. We’ll execute it in a moment, but for now, let’s take a look at

the different options available for the lxd command.

antonio@antonio-Laptop:~$ lxd --help

Description:

 The LXD container manager (daemon)

.

.

.

Available Commands:

 activateifneeded Check if LXD should be started

 cluster Low-level cluster administration commands

 help Help about any command

 import �Command has been replaced with "lxd

recover"

Chapter 8 Linux Containers (LXC)

410

 init Configure the LXD daemon

 recover �Recover missing instances and volumes from

existing and unknown storage pools

 shutdown �Tell LXD to shutdown all containers

and exit

 version Show the server version

 waitready �Wait for LXD to be ready to process

requests

We see there are various options available; we can use “init” to

configure it properly, “version” to get the version, “shutdown” to gracefully

shut down all the containers and exit, etc. We’re gonna check our LXD

version and use “init” to configure our LXD server. We’ll review the

configuration step by step.

antonio@antonio-Laptop:~$ lxd --version

5.21.2 LTS

antonio@antonio-Laptop:~$ sudo lxd init

Would you like to use LXD clustering? (yes/no) [default=no]:

LXD can be installed in cluster. For our purpose, this is not necessary.

Do you want to configure a new storage pool? (yes/no)

[default=yes]:

Name of the new storage pool [default=default]:

Name of the storage backend to use (powerflex, zfs, btrfs,

ceph, dir, lvm) [default=zfs]: dir

In LXD, we can use different types of storage pools: simple directories

and logical volumes. You can also choose Ceph or ZFS, which we already

mentioned in the “LXC” section. It is also possible to use PowerFlex, a

software-based SAN. In our case, we chose to use a simple directory.

Would you like to connect to a MAAS server? (yes/no)

[default=no]:

Chapter 8 Linux Containers (LXC)

411

We don’t want to connect to a MAAS server. MAAS (Metal as a Service)

is a new service developed by Canonical, the creator of Ubuntu, that allows

the provisioning of bare-metal servers.

Would you like to create a new local network bridge? (yes/no)

[default=yes]:

We could use an existing bridge, but we prefer to create a new bridge

interface for its use on LXD.

What should the new bridge be called? [default=lxdbr0]:

What IPv4 address should be used? (CIDR subnet notation, "auto"

or "none") [default=auto]:

What IPv6 address should be used? (CIDR subnet notation, "auto"

or "none") [default=auto]:

We use the default values for the new bridge.

Would you like the LXD server to be available over the network?

(yes/no) [default=no]:

We don’t need the LXD server to be available over the network, as we’ll

only use it locally.

Would you like stale cached images to be updated automatically?

(yes/no) [default=yes]:

Would you like a YAML "lxd init" preseed to be printed? (yes/

no) [default=no]:

When we download images to create a container, these images are

cached. We can choose whether to update these images or not. It’s not

really important for our purposes, so we choose the default value. We

could also see all the parameters selected during the setup in YAML, but

we declined this possibility.

Chapter 8 Linux Containers (LXC)

412

�Creating Our First Container on LXD
To create our first container on LXD, we need to select an image first.

We can search for the images available for a certain Linux distribution,

like Ubuntu.

antonio@antonio-Laptop:~$ lxc image list ubuntu:

.

.

.

---------+--+

| | ffae848ee5a0 | yes | ubuntu 20.04 LTS
amd64 (release) (20200529.1) | x86_64 | CONTAINER |
303.76MiB | May 29, 2020 at 12:00am (UTC) |
+-------------------+--------------+-------+-------------------

------------------------------+--------------+----------------+

-----------+------------------------------+

| | ffb876ca48fb | yes | ubuntu 18.04 LTS
i386 (release) (20200107) | i686 | VIRTUAL-MACHINE |
318.13MiB | Jan 7, 2020 at 12:00am (UTC) |
+-------------------+--------------+-------+-------------------

------------------------------+--------------+----------------+

-----------+------------------------------+

We can see that the list is really long. We’ll launch an Ubuntu 24

container.

antonio@antonio-Laptop:~$ lxc launch ubuntu:24.04

Creating the instance

Instance name is: harmless-monarch

Starting harmless-monarch

Chapter 8 Linux Containers (LXC)

413

After a few seconds, we can list this new instance:

antonio@antonio-Laptop:~$ lxc list

+-----------------+---------+-----------------------+-----------------

--+----------+----------+

| NAME | STATE | IPV4 |
IPV6 | TYPE | SNAPSHOTS |
+-----------------+---------+-----------------------+-----------------

--+----------+----------+

| harmless-monarch | RUNNING | 10.216.182.156 (eth0) |
fd42:45f7:c283:6d95:216:3eff:fe35:96d9 (eth0) | CONTAINER | 0 |
+-----------------+---------+-----------------------+-----------------

--+----------+----------+

We can connect to the container console in a similar way to what we

have seen with the classical LXC-related tools.

antonio@antonio-Laptop:~$ lxc console harmless-monarch

To detach from the console, press: <ctrl>+a q

harmless-monarch login: ubuntu

Password:

Login incorrect

harmless-monarch login:

However, in this container, we don’t have a default user and password

that we can use to log in. So we’ll use lxc exec to execute commands. For

instance, we can list the IP addresses in the container.

antonio@antonio-Laptop:~$ lxc exec harmless-monarch -- ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Chapter 8 Linux Containers (LXC)

414

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

23: eth0@if24: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000

 �link/ether 00:16:3e:35:96:d9 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

 �inet 10.216.182.156/24 metric 100 brd 10.216.182.255 scope

global dynamic eth0

 valid_lft 3047sec preferred_lft 3047sec

 �inet6 fd42:45f7:c283:6d95:216:3eff:fe35:96d9/64 scope

global mngtmpaddr noprefixroute

 valid_lft forever preferred_lft forever

 inet6 fe80::216:3eff:fe35:96d9/64 scope link

 valid_lft forever preferred_lft forever

We’ll use this option to create a new user.

antonio@antonio-Laptop:~$ lxc exec harmless-monarch -- useradd

 -m antonio

And now we’ll open a shell to change the password for the user we just

created.

antonio@antonio-Laptop:~$ lxc exec harmless-monarch -- /

bin/bash

root@harmless-monarch:~# passwd antonio

New password:

Retype new password:

passwd: password updated successfully

root@harmless-monarch:~# exit

exit

Chapter 8 Linux Containers (LXC)

415

Now that we have a valid username and a valid password, we can

connect to the console.

antonio@antonio-Laptop:~$ lxc console harmless-monarch

To detach from the console, press: <ctrl>+a q

harmless-monarch login: antonio

Password:

run-parts: /etc/update-motd.d/98-fsck-at-reboot exited with

return code 2

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are

described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by

applicable law.

$

Unfortunately, we didn’t include our user in the sudoers file.

$ sudo su - root

[sudo] password for antonio:

antonio is not in the sudoers file.

To execute commands as root, we could do several things; we could

reset the root password as we did with the password of this user. We could

also include the user “antonio” in the sudoers file or we could try to log in

as the “ubuntu” user, which is usually included in the Ubuntu containers

and can execute sudo commands. We check if this user exists.

$ id ubuntu

uid=1000(ubuntu) gid=1000(ubuntu) groups=1000(ubuntu),4(adm),24

(cdrom),27(sudo),30(dip),105(lxd)$ exit

Chapter 8 Linux Containers (LXC)

416

As the user “ubuntu” exists, we’ll execute a shell to reset the password.

antonio@antonio-Laptop:~$ lxc exec harmless-monarch -- /

bin/bash

root@harmless-monarch:~# passwd ubuntu

New password:

Retype new password:

passwd: password updated successfully

root@harmless-monarch:~# exit

exit

Now we can connect to the console with the ubuntu user.

antonio@antonio-Laptop:~$ lxc console harmless-monarch

To detach from the console, press: <ctrl>+a q

.

.

.

To run a command as administrator (user "root"), use "sudo

<command>".

See "man sudo_root" for details.

ubuntu@harmless-monarch:~$

From now on, we can fully manage our container with the “ubuntu”

user. Apart from that, we can stop the container with “lxc stop” or start it

again with “lxc start”.

�Managing Server and Container Configuration
We can show and manage server and container configuration options with

“lxc config”. For instance, we can check the configuration options of our

container.

Chapter 8 Linux Containers (LXC)

417

antonio@antonio-Laptop:~$ lxc config show harmless-monarch

architecture: x86_64

config:

 image.architecture: amd64

 image.description: ubuntu 24.04 LTS amd64 (release)

(20240725)

 image.label: release

 image.os: ubuntu

 image.release: noble

 image.serial: "20240725"

.

.

.

We can also get some information about the LXD server with lxc info.

antonio@antonio-Laptop:~$ lxc info

config: {}

api_extensions:

- storage_zfs_remove_snapshots

- container_host_shutdown_timeout

- container_stop_priority

- container_syscall_filtering

- auth_pki

- container_last_used_at

- etag

- patch

- usb_devices

.

.

.

Chapter 8 Linux Containers (LXC)

418

 storage: dir

 storage_version: "1"

 storage_supported_drivers:

 - name: cephobject

 version: 17.2.7

 remote: true

 - name: dir

 version: "1"

 remote: false

 - name: lvm

 �version: 2.03.11(2) (2021-01-08) / 1.02.175 (2021-01-08)

/ 4.48.0

 remote: false

 - name: powerflex

 version: 1.16 (nvme-cli)

 remote: true

 - name: zfs

 version: 2.2.0-0ubuntu1~23.10.3

 remote: false

 - name: btrfs

 version: 5.16.2

 remote: false

 - name: ceph

 version: 17.2.7

 remote: true

 - name: cephfs

 version: 17.2.7

 remote: true

Chapter 8 Linux Containers (LXC)

419

We can also use lxc info to get information about a container by

appending the name of the container to the command.

antonio@antonio-Laptop:~$ lxc info harmless-monarch

Name: harmless-monarch

Status: RUNNING

Type: container

Architecture: x86_64

PID: 39785

Created: 2024/07/27 03:01 CEST

Last Used: 2024/07/27 03:01 CEST

Resources:

 Processes: 27

 CPU usage:

 CPU usage (in seconds): 11

 Memory usage:

 Memory (current): 59.41MiB

 Swap (current): 4.00KiB

 Network usage:

 eth0:

 Type: broadcast

 State: UP

.

.

.

�Networking in LXD
When we executed lxd init, we chose to create a new bridge interface to

use with LXD with the default configuration.

Chapter 8 Linux Containers (LXC)

420

At any moment, we can list the networks available to LXD, which are

all the networks the host is connected to.

antonio@antonio-Laptop:~$ lxc network list

+----------------+----------+--------+-----------------+

---------------------------+-------------+---------+---------+

| NAME | TYPE | MANAGED | IPV4 |
 IPV6 | DESCRIPTION | USED BY | STATE |
+----------------+----------+--------+-----------------+

---------------------------+-------------+---------+-------+

| br-4d7a80d63283 | bridge | NO | |
 | | 0 | |
+----------------+----------+--------+-----------------+

---------------------------+-------------+---------+-------+

| docker0 | bridge | NO | |
 | | 0 | |
+----------------+----------+--------+-----------------+

---------------------------+-------------+---------+-------+

| lxcbr0 | bridge | NO | |
 | | 0 | |
+----------------+----------+--------+---------+--------+

---------------------------+----------------------+--------+

| lxdbr0 | bridge | YES | 10.216.182.1/24 |
fd42:45f7:c283:6d95::1/64 | | 2 | CREATED |
+----------------+----------+--------+---------+-------+

--------------------------+-------------+--------+--------+

.

.

.

Chapter 8 Linux Containers (LXC)

421

We can get more information about a certain network with lxc
network show.

antonio@antonio-Laptop:~$ lxc network show lxdbr0

name: lxdbr0

description: ""

type: bridge

managed: true

status: Created

config:

 ipv4.address: 10.216.182.1/24

 ipv4.nat: "true"

 ipv6.address: fd42:45f7:c283:6d95::1/64

 ipv6.nat: "true"

used_by:

- /1.0/instances/harmless-monarch

- /1.0/profiles/default

locations:

- none

We can see here that the container “harmless-monarch” is attached

to the lxdbr0 network. And we can also see the network settings. We can

obtain similar information with lxc network info, but with the latter

command, we can also get information about the VLAN and the statistics

of usage.

antonio@antonio-Laptop:~$ lxc network info lxdbr0

Name: lxdbr0

MAC address: 00:16:3e:55:1d:e3

MTU: 1500

State: up

Chapter 8 Linux Containers (LXC)

422

Type: broadcast

IP addresses:

 inet 10.216.182.1/24 (global)

 inet6 fd42:45f7:c283:6d95::1/64 (global)

 inet6 fe80::216:3eff:fe55:1de3/64 (link)

Network usage:

 Bytes received: 414.76kB

 Bytes sent: 30.66MB

 Packets received: 5196

 Packets sent: 7179

Bridge:

 ID: 8000.00163e551de3

 STP: false

 Forward delay: 1500

 Default VLAN ID: 1

 VLAN filtering: true

 Upper devices: veth4e29f2a6

It is also possible to list the DHCP leases.

antonio@antonio-Laptop:~$ lxc network list-leases lxdbr0

+-----------------+-------------------+--+---------+

| HOSTNAME | MAC ADDRESS | IP ADDRESS | TYPE |

+-----------------+-------------------+--+---------+

| harmless-monarch | 00:16:3e:35:96:d9 | 10.216.182.156 | DYNAMIC |

+-----------------+-------------------+--+---------+

| harmless-monarch | 00:16:3e:35:96:d9 | fd42:45f7:c283:6d95:216:3eff:fe35:96d9 | DYNAMIC |

+-----------------+-------------------+--+---------+

| lxdbr0.gw | | 10.216.182.1 | GATEWAY |

+-----------------+-------------------+--+---------+

| lxdbr0.gw | | fd42:45f7:c283:6d95::1 | GATEWAY |

+-----------------+-------------------+--+---------+

Chapter 8 Linux Containers (LXC)

423

If we want to or we need to, it is very easy to create a new network.

antonio@antonio-Laptop:~$ lxc network create new_lxd_net

Network new_lxd_net created

We can see immediately the new network listed.

antonio@antonio-Laptop:~$ lxc network list | grep new_lxd_net
| new_lxd_net | bridge | YES | 10.181.16.1/24 |
fd42:6c3f:1f2f:fd9d::1/64 | | 0 | CREATED |

And we can see the default configuration of the newly created network.

antonio@antonio-Laptop:~$ lxc network show new_lxd_net

name: new_lxd_net

description: ""

type: bridge

managed: true

status: Created

config:

 ipv4.address: 10.181.16.1/24

 ipv4.nat: "true"

 ipv6.address: fd42:6c3f:1f2f:fd9d::1/64

 ipv6.nat: "true"

used_by: []

locations:

- none

If we want to edit the network settings, we can use lxc network edit.

An editor will appear with the default configuration, and we can edit this

configuration according to our needs.

antonio@antonio-Laptop:~$ lxc network edit new_lxd_net

Chapter 8 Linux Containers (LXC)

424

�Storage in LXD
When we initialized LXD, we saw briefly the options when choosing what

storage to use in LXD. Similarly to what we did with the networks, we can

list the storage currently in use.

antonio@antonio-Laptop:~$ lxc storage list

+--------+--------+---+-------------+---------+-------+

| NAME | DRIVER | SOURCE | DESCRIPTION | USED BY | STATE |

+--------+--------+---+-------------+---------+-------+

| default | dir | /var/snap/lxd/common/lxd/storage-pools/default | | 2 | CREATED |

+---------+--------+--+-------------+---------+-------+

Remember that we created a storage of the type “dir”, a simple

directory in the host. Let’s review its configuration.

antonio@antonio-Laptop:~$ lxc storage info default

info:

 description: ""

 driver: dir

 name: default

 space used: 719.75GiB

 total space: 786.75GiB

used by:

 instances:

 - harmless-monarch

 profiles:

 - default

Now, we’ll create a new storage. This time we’ll choose btrfs.

antonio@antonio-Laptop:~$ lxc storage create mynewstorage btrfs

Storage pool mynewstorage created

When we list the available storage pools, we’ll see the default and the

new one.

Chapter 8 Linux Containers (LXC)

425

antonio@antonio-Laptop:~$ lxc storage list

+--------------+--------+--------------------------------------

-----------+-------------+---------+---------+

| NAME | DRIVER |
SOURCE | DESCRIPTION | USED BY | STATE |
+--------------+--------+--------------------------------------

-----------+-------------+---------+---------+

| default | dir | /var/snap/lxd/common/lxd/storage-pools/
default | | 2 | CREATED |
+--------------+--------+--------------------------------------

-----------+-------------+---------+---------+

| mynewstorage | btrfs | /var/snap/lxd/common/lxd/disks/
mynewstorage.img | | 0 | CREATED |
+--------------+--------+--------------------------------------

-----------+-------------+---------+---------+

And this new storage pool is an image file formatted with the btrfs

filesystem.

antonio@antonio-Laptop:~$ sudo file /var/snap/lxd/common/lxd/

disks/mynewstorage.img

/var/snap/lxd/common/lxd/disks/mynewstorage.img: BTRFS

Filesystem label "mynewstorage", sectorsize 4096,

nodesize 16384, leafsize 16384, UUID=911f4a1f-1f5b-4042-

a8b1-778c3eda580f, 147456/5368709120 bytes used, 1 devices

In fact, we can mount this disk image file, and we’ll see all the folders

included.

antonio@antonio-Laptop:~$ ls /mnt/mydata/

buckets containers containers-snapshots custom custom-

snapshots images virtual-machines virtual-machines-snapshots

Chapter 8 Linux Containers (LXC)

426

antonio@antonio-Laptop:~$ sudo mount | grep -i btrfs
/var/snap/lxd/common/lxd/disks/mynewstorage.img on /mnt/mydata

type btrfs (rw,relatime,ssd,discard=async,space_cache=v2,user_

subvol_rm_allowed,subvolid=5,subvol=/)

As we don’t need to mount the disk file, we’ll unmount it.

antonio@antonio-Laptop:~$ sudo umount /mnt/mydata

At any moment, we can obtain information about this storage pool

with the commands lxc storage show and lxc storage info.

antonio@antonio-Laptop:~$ lxc storage show mynewstorage

name: mynewstorage

description: ""

driver: btrfs

status: Created

config:

 size: 4GiB

 source: /var/snap/lxd/common/lxd/disks/mynewstorage.img

used_by: []

locations:

- none

antonio@antonio-Laptop:~$ lxc storage info mynewstorage

info:

 description: ""

 driver: btrfs

 name: mynewstorage

 space used: 5.78MiB

 total space: 4.00GiB

used by: {}

Chapter 8 Linux Containers (LXC)

427

�LXD Profiles
Profiles are sets of configuration options that can be applied to a container

instance. Initially, we only have one profile defined.

antonio@antonio-Laptop:~$ lxc profile list

+--------+---------------------+---------+

| NAME | DESCRIPTION | USED BY |
+--------+---------------------+--------+

| default | Default LXD profile | 1 |
+--------+---------------------+---------+

If we check the characteristics of this default profile, we’ll see that it

uses the lxdbr0 network, the default storage pool, etc. We’ll also see that

the only container instance we have right now is associated to this profile.

antonio@antonio-Laptop:~$ lxc profile show default

name: default

description: Default LXD profile

config: {}

devices:

 eth0:

 name: eth0

 network: lxdbr0

 type: nic

 root:

 path: /

 pool: default

 type: disk

used_by:

- /1.0/instances/harmless-monarch

Chapter 8 Linux Containers (LXC)

428

To see an easy example, we’re going to create a new profile.

antonio@antonio-Laptop:~$ lxc profile create my_new_profile

Profile my_new_profile created

This new profile will appear now in the profile listing.

antonio@antonio-HP-Laptop-15s-fq1xxx:~$ lxc profile list

+----------------+---------------------+---------+

| NAME | DESCRIPTION | USED BY |
+----------------+---------------------+---------+

| default | Default LXD profile | 1 |
+----------------+---------------------+---------+

| my_new_profile | | 0 |
+----------------+---------------------+---------+

We’ll edit the new profile to add a description and associate it with the

network we created previously.

antonio@antonio-Laptop:~$ lxc profile edit my_new_profile

.

.

.

name: my_new_profile

description: A new profile

config: {}

devices:

 eth0:

 name: eth0

 network: new_lxd_net

 type: nic

 root:

 path: /

 pool: default

Chapter 8 Linux Containers (LXC)

429

 type: disk

used_by: []

And we’ll launch a new instance using the new profile (-p) and the new

storage (-s).

antonio@antonio-Laptop:~$ lxc launch ubuntu:24.04 -p my_new_

profile -s mynewstorage

Creating the instance

Instance name is: shining-flounder

Starting shining-flounder

If we list the instances now, we’ll see two running instances: the old

one and the new one.

antonio@antonio-Laptop:~$ lxc list

+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| NAME | STATE | IPV4
| IPV6 | TYPE |
SNAPSHOTS |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| harmless-monarch | RUNNING | 10.216.182.156 (eth0) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (eth0) | CONTAINER | 0 |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| shining-flounder | RUNNING | 10.136.213.51 (eth0) | fd42:76c
3:13a4:c5a:216:3eff:fee5:6630 (eth0) | CONTAINER | 0 |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

Chapter 8 Linux Containers (LXC)

430

And if we check the new_lxd_net network and the mynewstorage

storage pool, we’ll see that this new instance is associated with them.

antonio@antonio-Laptop:~$ lxc network show new_lxd_net

name: new_lxd_net

description: ""

type: bridge

managed: true

status: Created

config:

 ipv4.address: 10.136.213.1/24

 ipv4.nat: "true"

 ipv6.address: fd42:76c3:13a4:c5a::1/64

 ipv6.nat: "true"

used_by:

- /1.0/instances/shining-flounder

- /1.0/profiles/my_new_profile

locations:

- none

antonio@antonio-Laptop:~$ lxc storage info mynewstorage

info:

 description: ""

 driver: btrfs

 name: mynewstorage

 space used: 950.24MiB

 total space: 4.00GiB

used by:

 images:

 - 258c6e58b22623f0af151315541452ddd74ee120e1ade4a6

1e546f9f3b63e911

 instances:

 - shining-flounder

Chapter 8 Linux Containers (LXC)

431

Now that we’ve seen this example, we can stop and delete the new

instance.

antonio@antonio-Laptop:~$ lxc stop shining-flounder

antonio@antonio-Laptop:~$ lxc list

+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| NAME | STATE | IPV4
| IPV6 | TYPE |
SNAPSHOTS |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| harmless-monarch | RUNNING | 10.216.182.156 (eth0) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (eth0) | CONTAINER | 0 |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| shining-flounder | STOPPED | |
| CONTAINER | 0 |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

antonio@antonio-Laptop:~$ lxc delete shining-flounder

antonio@antonio-Laptop:~$ lxc list

+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| NAME | STATE | IPV4
| IPV6 | TYPE |
SNAPSHOTS |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

| harmless-monarch | RUNNING | 10.216.182.156 (eth0) | fd42:45f7
:c283:6d95:216:3eff:fe35:96d9 (eth0) | CONTAINER | 0 |
+------------------+---------+-----------------------+---------

--------------------------------------+-----------+-----------+

Chapter 8 Linux Containers (LXC)

432

We’ll delete the network and the storage pool we had created as well.

antonio@antonio-Laptop:~$ lxc storage delete mynewstorage

Storage pool mynewstorage deleted

antonio@antonio-Laptop:~$ lxc network delete new_lxd_net

Error: The network is currently in use

When we try to delete the network, we get an error because the

customized profile we created is using it. We need to delete the profile first.

antonio@antonio-Laptop:~$ lxc profile delete my_new_profile

Profile my_new_profile deleted

antonio@antonio-Laptop:~$ lxc network delete new_lxd_net

Network new_lxd_net deleted

�Limiting the Use of Resources on LXD
When we studied in the previous chapter how containers work, we could

see that control groups could be used to limit resource usage for a certain

process. And we even saw some practical examples.

In this same chapter we’ve studied LXC, we saw how to use lxc-
cgroups to limit resource utilization, without needing to edit manually the

files from the /sys/fs/cgroups tree. Now we’ll do the same thing but using

the specific tools provided by LXD.

We’ll begin by connecting to the console of our running instance and

checking the memory in use.

antonio@antonio-Laptop:~$ lxc console harmless-monarch

To detach from the console, press: <ctrl>+a q

harmless-monarch login: ubuntu

Password:

.

.

.

Chapter 8 Linux Containers (LXC)

433

ubuntu@harmless-monarch:~$ free -m

 total used free shared buff/cache available

Mem: 15674 49 15524 0 101 15625

Swap: 0 0 0

ubuntu@harmless-monarch:~$

We can see we’re using about 16 GB of memory. Now let’s open a new

shell and use lxc config to limit the amount of memory used.

antonio@antonio-Laptop:~/QEMU_VMs$ lxc config set harmless-

monarch limits.memory 100MB

If we return to the container console and execute free again, we’ll see

the amount of memory has been limited to a maximum below 100 MB.

ubuntu@harmless-monarch:~$ free -m

 total used free shared buff/cache available

Mem: 95 46 4 0 44 48

Swap: 0 0 0

�Summary
In this chapter, we have seen an example of a container technology widely

used in Linux servers, the Linux containers or LXC for short. LXC uses the

technologies we studied in the previous chapter to create the containers,

but in a more friendly way that makes creating and managing containers

much easier.

We’ve also seen LXD, which can be considered an add-on to

the classical LXC implementation that makes working with remote

repositories much easier.

Chapter 8 Linux Containers (LXC)

435© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_9

CHAPTER 9

Docker
In this chapter, we'll cover the following concepts:

•	 Understand the architecture and components of Docker

•	 Manage Docker containers by using images from a

Docker registry

•	 Understand and manage images and volumes for

Docker containers

•	 Understand and manage logging for Docker containers

•	 Understand and manage networking for Docker

•	 Use Dockerfiles to create container images

•	 Run a Docker registry using the registry Docker image

•	 Understand the principle of runc

•	 Understand the principle of containerd

�Introduction to Docker
Docker uses a client-server architecture. The docker command used to

download images, start containers, etc., is the client, which, in turn, connects

to the dockerd service. And it is the dockerd service that’s responsible for

executing the needed tasks to complete the requested actions.

https://doi.org/10.1007/979-8-8688-1080-0_9#DOI

436

The client (docker) and the server (dockerd) can reside in the same or

in different machines.

�Installing Docker
The binaries for Docker are usually included in the repositories of the

main Linux distributions. For instance, in Ubuntu 22, we can install it by

selecting the docker.io package.

antonio@antonio-Laptop:~$ apt search docker.io

Sorting... Done

Full Text Search... Done

docker.io/jammy-updates,now 24.0.7-0ubuntu2~22.04.1 amd64

[installed]

 Linux container runtime

antonio@antonio-Laptop:~$ sudo apt install docker.io

It is also possible to install Docker from the official site. In this case,

we can install it as part of the Docker desktop product, or install only the

Docker Engine by adding the official repositories to our host machine

(Figure 9-1).

Chapter 9 Docker

https://www.docker.com/

437

Figure 9-1.  Installing from the official repositories

Once the binaries have been installed, we can check that the

installation was successful by executing the docker info command.

antonio@antonio-Laptop:~$ sudo docker info

Client:

 Version: 24.0.7

 Context: default

 Debug Mode: false

Server:

.

.

.

Storage Driver: overlay2

.

.

 Default Runtime: runc

 Init Binary: docker-init

Chapter 9 Docker

438

 containerd version:

 runc version:

 init version:

 Security Options:

 apparmor

 seccomp

 Profile: builtin

 cgroupns

.

.

We need to ensure that the Docker service starts automatically when

the system boots.

antonio@antonio-Laptop:~$ sudo systemctl enable docker

�Docker Images
To create a Docker container, we first need a Docker image. There are

many ways to get an image; the easiest one is probably to download it from

Docker's official registry. We can search for the available debian Docker

images with the docker search command.

antonio@antonio-Laptop:~$ sudo docker search debian

NAME DESCRIPTION STARS

 OFFICIAL AUTOMATED

debian Debian is a Linux distribution that's compos… 5046

 [OK]

ubuntu Ubuntu is a Debian-based Linux operating sys… 17178

 [OK]

.

.

.

Chapter 9 Docker

439

In addition, we could use a web browser and navigate to the docker

hub to search for debian Docker images (Figures 9-2 and 9-3).

Figure 9-2.  Docker hub

Figure 9-3.  Debian official Docker image

Chapter 9 Docker

http://hub.docker.com/
http://hub.docker.com/

440

From the command line, we can download images with docker pull.

antonio@antonio-Laptop:~$ sudo docker pull debian

Using default tag: latest

latest: Pulling from library/debian

ca4e5d672725: Pull complete

Digest: sha256:45f2e735295654f13e3be10da2a6892c708f71a71be84581

8f6058982761a6d3

Status: Downloaded newer image for debian:latest

docker.io/library/debian:latest

Once the image has been downloaded, it can be listed with Docker
image list.

antonio@antonio-Laptop:~$ sudo docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

debian latest 2e5b8d3ef33e 9 days ago 117MB

�Docker Containers
Previously we downloaded a Docker image; now we can use that image

to create a container. To create a container, we use the docker create

command. The only mandatory parameter is the name of the image used

by the container.

If we take a look at the contextual help, we’ll see that we can use a lot

of options. We can add or drop capabilities, choose the cgroup namespace

to use, connect an interactive pseudo-terminal, or attach a volume, to

mention just a few.

antonio@antonio-Laptop:~$ sudo docker create --help

Usage: docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

Create a new container

Chapter 9 Docker

441

Aliases:

 docker container create, docker create

Options:

.

.

.

 --cap-add list Add Linux capabilities

 --cap-drop list Drop Linux capabilities

.

.

 --cgroupns string Cgroup namespace to use (host|private)
.

.

 -i, --interactive Keep STDIN open even if not attached

.

.

 -t, --tty Allocate a pseudo-TTY

.

.

 -v, --volume list Bind mount a volume

We’ll begin with something simple, and we’ll use the default values to

create a container based on the debian image we just downloaded.

antonio@antonio-Laptop:~$ sudo docker create debian

5c29acf554a283d16b1125bd378d49f4acd5851b219618d62b1b4ed317

023562

This command creates a container, but it doesn't start it. If we check

the status of the running containers in the host, we'll see just an empty list.

Chapter 9 Docker

442

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

antonio@antonio-Laptop:~$

To check the stopped containers as well as the running containers,

we'll use the docker container ls -a command. Or we could also get the

same result by typing docker ps -a.

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES

antonio@antonio-Laptop:~$ sudo docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

5c29acf554a2 debian "bash" 3 minutes ago

Created heuristic_turing

In the list of containers, we can see the ID of the container we just created;

this is the value returned by the docker create command. We also see the

base image of the container, debian in this case. We can also see when the

container was created and its status. When creating a container, we can

specify a name; if we don’t do it, the system will assign a name automatically.

Later in this book we’ll speak about the “command” and the “ports” columns.

To start the container, we use the start subcommand.

antonio@antonio-Laptop:~$ sudo docker container start

heuristic_turing

heuristic_turing

However, if we list the running containers, we won’t see anything.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS ORTS NAMES

antonio@antonio-Laptop:~$

Chapter 9 Docker

443

And if we list all the containers, we’ll see that this container exited

almost immediately after it was launched.

antonio@antonio-Laptop:~$ sudo docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

5c29acf554a2 debian "bash" 43 minutes ago

Exited (0) 15 seconds ago heuristic_turing

Let’s see why this happened. When the container runs, it executes

an associated command; in the case of the default debian container

we created, this command is bash, so the container runs bash and

immediately exits. To avoid this behavior and interact with the container,

we’ll see a few options we can choose.

In this first example, we created the container and then we started it.

It is also possible to create and start a container in a single step by using

docker container run. We can use many options with this command; for

instance, we can use (-i) so that the container is interactive, and we can

specify the command that the container will run; by default, this image will

execute /bin/bash, so we don’t really need to specify the same value, but

we’ll do it anyway as an example.

antonio@antonio-Laptop:~$ sudo docker container run -i debian /

bin/bash

pwd

/

cat /etc/issue

Debian GNU/Linux 12 \n \l

exit

As we can see, we can type shell commands as if we were working in a

physical Ubuntu Linux console. After exiting the container, the container

will be stopped because the execution of bash will be over.

Chapter 9 Docker

444

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

antonio@antonio-Laptop:~$

In this second example, we could type commands to interact to the

container, but the experience was not very friendly as we didn’t get a

prompt. We can improve this experience by allocating a pseudo-terminal

with the -t parameter.

antonio@antonio-Laptop:~$ sudo docker container run -it debian

/bin/bash

root@143ae578eb3a:/# pwd

/

root@143ae578eb3a:/# cat /etc/debian_version

12.6

root@143ae578eb3a:/# exit

exit

This is definitely better! Another possibility is to run the container in

the background with “-d”.

antonio@antonio-Laptop:~$ sudo docker container run -d -it

debian /bin/bash

e051edecf7206a46ad931f2bff8b9cee606af1760936df32826cb501b

765bdeb

After entering the docker command, we’ll be given the ID of the

container and get the prompt back.

If we list the running containers, however, we’ll see a new container

is running. It will remain in this state until we connect to it, and thus, the

bash shell completes its execution.

Chapter 9 Docker

445

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e051edecf720 debian "/bin/bash" About a minute ago

Up About a minute sleepy_hodgkin

And we can connect to it with docker container attach.

antonio@antonio-Laptop:~$ sudo docker container attach

sleepy_hodgkin

root@e051edecf720:/# ls

bin boot dev etc home lib lib64 media mnt opt

proc root run sbin srv sys tmp usr var

root@e051edecf720:/# exit

exit

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

antonio@antonio-Laptop:~$

�Docker Architecture
After seeing a couple of simple examples, let’s study a bit about Docker

architecture. We already saw a very brief description in the introduction,

and now we’re going to study it more in depth.

We have worked with the docker command. This command is used to

manage images, containers, and other container-related objects. It works

by interacting with the dockerd service.

The dockerd service is the program that really manages containers

and the related objects. The docker command is just a frontend used to

interact with dockerd.

Chapter 9 Docker

446

The containerd service is the container runtime used by dockerd. If we

list the dockerd process running, we’ll see this:

antonio@antonio-Laptop:~$ ps -ef | grep dockerd
root 2968 1 0 jul26 ? 00:01:31 /usr/bin/

dockerd -H fd:// --containerd=/run/containerd/containerd.sock

dockerd communicates with the containerd service, which must be

also running on the host.

antonio@antonio-Laptop:~$ ps -ef | grep containerd
root 1107 1 0 jul26 ? 00:43:34 /usr/bin/

containerd

Finally, runc is the lower-level container runtime. Let’s see it in an

example. First, we’ll launch a container.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

antonio@antonio-Laptop:~$ sudo docker container ls -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e051edecf720 debian "/bin/bash" 22 hours

ago Exited (137) 36 minutes ago sleepy_hodgkin

antonio@antonio-Laptop:~$ sudo docker container start

sleepy_hodgkin

sleepy_hodgkin

If we check the processes again, we’ll see a new runc process that is

executing the container with the ID e051edecf720….

antonio@antonio-Laptop:~$ ps -ef | grep containerd
root 1107 1 0 jul26 ? 00:43:35 /usr/bin/

containerd

Chapter 9 Docker

447

root 2968 1 0 jul26 ? 00:01:32 /usr/bin/

dockerd -H fd:// --containerd=/run/containerd/containerd.sock

root 750120 1 0 22:28 ? 00:00:00 /usr/bin/

containerd-shim-runc-v2 -namespace moby -id e051edecf7206a46a

d931f2bff8b9cee606af1760936df32826cb501b765bdeb -address /run/

containerd/containerd.sock

It’s important to remember that the architecture of Docker is very

modular and some components can be replaced for others with a similar

functionality.

We can customize the dockerd service by using a /etc/docker/daemon.

json file. After installing Docker, the dockerd service will be created and

enabled with the default settings. However, it is also possible to execute

it manually with a different set of parameters. If we type dockerd --help,

we’ll see the different options available.

antonio@antonio-Laptop:~$ dockerd --help

Usage: dockerd [OPTIONS]

A self-sufficient runtime for containers.

Options:

 --add-runtime runtime

Register an additional OCI compatible runtime (default [])

 --allow-nondistributable-artifacts list

Allow push of nondistributable artifacts to registry

 --api-cors-header string

Set CORS headers in the Engine API

.

.

.

Chapter 9 Docker

448

If we want to use any of these options, we can specify them in the

command line when executing dockerd. But it is also possible to specify

them in a json file, the /etc/docker/daemon.json file we talked about a bit

earlier.

To see this with an example we’ll focus on this dockerd option:

 -D, --debug Enable debug mode

This option enables/disables debug mode. Let’s see the default value

of this option by using the docker info command.

antonio@antonio-Laptop:~$ sudo docker info

.

.

Server:

.

.

 Debug Mode: false

.

.

Now, we’ll create a /etc/docker/daemon.json file with this content.

{

"debug": true

}

We stop the Docker service currently running in the host.

antonio@antonio-Laptop:~$ sudo systemctl stop docker

Warning: Stopping docker.service, but it can still be

activated by:

 docker.socket

antonio@antonio-Laptop:~$ sudo systemctl stop docker.socket

Chapter 9 Docker

449

And we execute manually dockerd without parameters so that it takes

those specified in the json file.

antonio@antonio-Laptop:~$ sudo dockerd

INFO[2024-08-05T00:49:56.410689420+02:00] Starting up

DEBU[2024-08-05T00:49:56.411227288+02:00] Listener created for

HTTP on unix (/var/run/docker.sock)

INFO[2024-08-05T00:49:56.411355931+02:00] detected 127.0.0.53

nameserver, assuming systemd-resolved, so using resolv.conf:

/run/systemd/resolve/resolv.conf

DEBU[2024-08-05T00:49:56.411578101+02:00] Golang's threads

limit set to 112230

.

.

.

When dockerd has initialized completely, we’ll run docker info again

to check the active settings.

antonio@antonio-Laptop:~$ sudo docker info

.

.

Server:

.

.

 Debug Mode: true

.

.

We can see that the debug mode is enabled. In fact, when we launched

manually dockerd, we could see many debug messages.

Chapter 9 Docker

450

After this simple test, we can stop the dockerd instance we launched

manually and delete the json file. Then we restart the Docker service to

restore the default settings.

antonio@antonio-Laptop:~$ sudo rm /etc/docker/daemon.json

antonio@antonio-Laptop:~$ sudo systemctl start docker

�Docker Volumes
Docker containers are based on images, as we’ve already seen. And they

add a writable layer over that image layer. The truth is that this is a bit more

complicated, and we’ll see it later in more detail. But for now, you can get

that idea. Let’s try to explain this with an example.

We need a running Docker container.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

e051edecf720 debian "/bin/bash" 39 hours ago

Up 16 hours sleepy_hodgkin

We’ll connect to the running container with docker container attach,

as we saw previously.

antonio@antonio-Laptop:~$ sudo docker container attach

sleepy_hodgkin

root@e051edecf720:/#

And we’ll create a new file.

root@e051edecf720:/# touch test_file_1.txt

root@e051edecf720:/# exit

exit

Chapter 9 Docker

451

Now we’ll search for the file in the host. By default, Docker containers

store information in folders inside the /var/lib/docker directory. So we’ll

search for the file in this path.

antonio@antonio-Laptop:~$ sudo find /var/lib/docker/ -iname

test_file_1.txt

/var/lib/docker/overlay2/cdd6342b6f3d55239cbc30edd414c3e9e47c

27e841feb0620ec5505a0bfe4c12/diff/test_file_1.txt

We can see the location of the file in the host. We’ll get back to it in a

moment. But now, we’re going to see another useful command, docker
container inspect, which provides useful information about a container.

We’ll use it to inspect the container in which we created the test file.

antonio@antonio-Laptop:~$ sudo docker container inspect

sleepy_hodgkin

.

.

.

 "GraphDriver": {

 "Data": {

 �"LowerDir": "/var/lib/docker/overlay2/cdd6342b

6f3d55239cbc30edd414c3e9e47c27e841feb0620ec

5505a0bfe4c12-init/diff:/var/lib/docker/

overlay2/f2e4afe19fc3c1f3d65f0030705e4881f

9577e2a95d4f120f62d7e99b12ccd59/diff",

 �"MergedDir": "/var/lib/docker/overlay2/cdd6342

b6f3d55239cbc30edd414c3e9e47c27e841feb062

0ec5505a0bfe4c12/merged",

 �"UpperDir": "/var/lib/docker/overlay2/cdd6342b6

f3d55239cbc30edd414c3e9e47c27e841feb0620

ec5505a0bfe4c12/diff",

Chapter 9 Docker

452

 �"WorkDir": "/var/lib/docker/overlay2/cdd6342b

6f3d55239cbc30edd414c3e9e47c27e841feb0

620ec5505a0bfe4c12/work"

 },

 "Name": "overlay2"

 },

.

.

.

Let’s review what we have seen so far. Docker containers need a

writable layer to store the modified information. For that, a storage

driver is needed. The storage driver controls how information is stored

and how to properly manage the read-only image layer and the writable

container layer.

There are several storage drivers available for Docker. According to the

official documentation, these are

•	 overlay2

•	 fuse-overlayfs

•	 btrfs and zfs

•	 vfs

The preferred one is “overlay2”. If we execute docker info on the host,

we’ll see the following line. The backing filesystem can be other than extfs,

for example, xfs. That depends on the filesystem we’re using in our system.

 Storage Driver: overlay2

 Backing Filesystem: extfs

And if we remember, when we located the test file in the host and

reviewed the container with docker inspect, the word “overlay” appeared

Chapter 9 Docker

453

very often. The file test_file_1.txt was located on /var/lib/docker/overlay2/

cdd6342b6f3d55239cbc30edd414c3e9e47c27e841feb0620ec5505a0bfe4c12/

diff/test_file_1.txt. According to what we saw on the output of the docker

inspect command, that path is named “UpperDir”.

In the Docker version we’re using right now, the one installed from

Ubuntu repositories, the overlay storage driver uses a plug-in named

graphdriver. This plug-in uses a “LowerDir”, which is the base image

read-only layer; an “UpperDir”, which is the writable container layer;

and a “MergeDir” and a “WorkDir” needed internally to work properly.

As expected, the file we created was located in the writable layer, the

UpperDir.

�Bind Mounts
We just saw that we can access a file either from the container itself or

from the host. Because the storage driver stores the information in the

filesystem, and of course that filesystem is accessible to the host.

Nevertheless, this is probably not a very friendly way to share files

because the paths are very long and have hash-like names. It would be

better to use an easier-to-remember path to share information between

the host and the container.

To do this, we must use the -v or --mount parameter and specify the

location of the path in the host and the container. This is known as a bind

mount. We’ll start by creating a local folder in the host computer.

antonio@antonio-Laptop:~$ mkdir VOLUMES

Next, we launch a container in the background (-d) and in interactive

(-i) mode. We’ll also connect a pseudo-terminal (-t) to it and will assign it

explicitly a name instead of letting the system to assign one. This container

will use the path /home/antonio/VOLUMES/ in the host computer as a

volume mapped as /VOLUMES/.

Chapter 9 Docker

454

antonio@antonio-Laptop:~$ sudo docker run -v /home/antonio/

VOLUMES/:/VOLUMES/ --name another_container -itd debian /

bin/bash

fe0a743619448be099821fde7b0995d596795b73a934fdb658cf474

09682e920

If we list the containers currently running, we’ll see this new container

named “another_container”.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

fe0a74361944 debian "/bin/bash" About a minute ago Up

About a minute another_container

If we inspect the container, we’ll see clearly the bind mount we just

created.

antonio@antonio-Laptop:~$ sudo docker inspect another_container

.

.

.

 "Mounts": [

 {

 "Type": "bind",

 "Source": "/home/antonio/VOLUMES",

 "Destination": "/VOLUMES",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 }

],

.

Chapter 9 Docker

455

.

.

Now, we connect to the container we just launched, and we create a

text file inside the volume.

antonio@antonio-Laptop:~$ sudo docker container attach another_

container

root@fe0a74361944:/# echo Hello > /VOLUMES/hello.txt

root@fe0a74361944:/# exit

exit

This time it is much easier to access the file from the host.

antonio@antonio-Laptop:~$ cat /home/antonio/VOLUMES/hello.txt

Hello

Instead of the (-v) parameter, we could also use the (--mount)

parameter, which is indeed the recommended way to work with

containers. It supports more options. Let’s see an example.

antonio@antonio-Laptop:~$ sudo docker run --mount type=bind,

source=/home/antonio/VOLUMES/,target=/VOLUMES/ --name

yet_another_container -itd debian /bin/bash

c6e04e97accc7b3f14a49291120ea4b3850adcce77ccaa48651c57f523

9113f1

�Named Volumes
Using bind mounts has some advantages over using the default storage.

However, the preferred way to store data is to use docker volumes. Docker

volumes allow to share data between containers, and the data contained in

those volumes is persistent.

Chapter 9 Docker

456

We’ll start by creating a volume.

antonio@antonio-Laptop:~$ sudo docker volume create volume_one

volume_one

We can list the volumes in the host, similarly as we did with the

containers.

antonio@antonio-Laptop:~$ sudo docker volume ls

DRIVER VOLUME NAME

.

.

.

local volume_one

And we can inspect the volume as well.

antonio@antonio-Laptop:~$ sudo docker volume inspect volume_one

[

 {

 "CreatedAt": "2024-08-04T21:48:25+02:00",

 "Driver": "local",

 "Labels": null,

 �"Mountpoint": "/var/lib/docker/volumes/volume_

one/_data",

 "Name": "volume_one",

 "Options": null,

 "Scope": "local"

 }

]

The way to work with volumes in containers is very easy; the syntax is

very similar to what we did when working with bind mounts. Let’s see an

example.

Chapter 9 Docker

457

antonio@antonio-Laptop:~$ sudo docker run -d -it --name

container_vol --mount source=volume_one,target=/vol_1 ubuntu

bedb5e6a87ebd08a3716a61e78313e5b96a76322beb831491dda94

b260afb77c

By inspecting the container, we’ll see that the volume was mounted.

antonio@antonio-Laptop:~$ sudo docker container inspect

container_vol

.

.

.

 "Mounts": [

 {

 "Type": "volume",

 "Name": "volume_one",

 �"Source": "/var/lib/docker/volumes/volume_

one/_data",

 "Destination": "/vol_1",

 "Driver": "local",

 "Mode": "z",

 "RW": true,

 "Propagation": ""

 }

],

.

.

.

Chapter 9 Docker

458

�tmpfs Volumes
There is another type of volumes, the tmpfs volumes. These volumes

are temporary, and the volume and its content are removed when the

container stops.

antonio@antonio-Laptop:~/docker$ sudo docker container run

-it --tmpfs /temp_dir debian

root@618d6312f4cf:/# touch /temp_dir/file1.txt

root@618d6312f4cf:/# ls /temp_dir/

file1.txt

root@618d6312f4cf:/#

�Sharing Volumes Between Containers
It is very easy to share volumes between containers; we can do it with

the --volumes-from option.

First, we launch the first container that will use the volume. We can

reuse the container_vol container that we used previously in this book, or

we can use a new one.

antonio@antonio-Laptop:~/docker$ sudo docker container start

container_vol

container_vol

This container used a volume named volume_one that was mounted

on /vol_1. If we don’t remember these details, we can check them with

docker container inspect.

antonio@antonio-Laptop:~$ sudo docker container inspect

container_vol

.

.

Chapter 9 Docker

459

 "Mounts": [

 {

 "Type": "volume",

 "Name": "volume_one",

 �"Source": "/var/lib/docker/volumes/volume_

one/_data",

 "Destination": "/vol_1",

.

.

.

We’ll connect to the container and add some content to the folder.

antonio@antonio-Laptop:~$ sudo docker container attach

container_vol

root@bedb5e6a87eb:/# ls /vol_1/

root@bedb5e6a87eb:/# echo hello > /vol_1/aa

Then, we’ll launch a second container with the --from-volumes option.

This way we’re instructing the container to mount the same volumes that

the container_vol container.

antonio@antonio-Laptop:~/docker$ sudo docker container run

--rm -it --volumes-from=container_vol debian /bin/bash

root@e070dbac48a3:/#

We’ll be able to access the volume and see its content.

root@e070dbac48a3:/# ls /vol_1/

aa

root@e070dbac48a3:/# cat /vol_1/aa

hello

Chapter 9 Docker

460

�Using Remote Volumes
When creating a volume, we can specify which driver to use. If we don’t

specify any driver, the “local” driver is used. This is what we did previously.

But there are some drivers that let us store volume on remote hosts.

Let’s see an example using a volume accessed through ssh. For that, we

need to install a plug-in. Docker plug-ins add extra functionality to Docker.

We can list the plug-ins currently installed with docker plugin list.

antonio@antonio-Laptop:~$ sudo docker plugin list

ID NAME DESCRIPTION ENABLED

Currently, we don’t have any plug-in installed. We need to install a

plug-in named vieux/sshfs.

antonio@antonio-Laptop:~$ sudo docker plugin install

vieux/sshfs

Plugin "vieux/sshfs" is requesting the following privileges:

 - network: [host]

 - mount: [/var/lib/docker/plugins/]

 - mount: []

 - device: [/dev/fuse]

 - capabilities: [CAP_SYS_ADMIN]

Do you grant the above permissions? [y/N] y

latest: Pulling from vieux/sshfs

Digest: sha256:1d3c3e42c12138da5ef7873b97f7f32cf99fb6edde75fa4f

0bcf9ed277855811

52d435ada6a4: Complete

Installed plugin vieux/sshfs

The plug-in requests a series of permissions. After granting those

permissions, the plug-in is installed and we can list it.

Chapter 9 Docker

461

antonio@antonio-Laptop:~$ sudo docker plugin list

ID NAME DESCRIPTION ENABLED

822e70f45289 vieux/sshfs:latest sshFS plugin for

Docker true

We can also use the subcommand inspect to obtain more information

about the plug-in.

antonio@antonio-Laptop:~$ sudo docker plugin inspect

vieux/sshfs

.

.

 "Description": "sshFS plugin for Docker",

 "DockerVersion": "18.05.0-ce-rc1",

 �"Documentation": "https://docs.docker.com/engine/

extend/plugins/",

.

.

When using this plug-in, we’re going to use as a volume a folder inside

a remote host. And we’re connected to the remote host through ssh. Now

we’re going to create a folder and some files on the remote server.

[root@rocky ~]# mkdir /EXT_VOLUME

[root@rocky ~]# touch /EXT_VOLUME/one /EXT_VOLUME/two /EXT_

VOLUME/three

We’re ready to create the volume now. We need to pass the driver

type and the needed options, the path to the folder that will be used as a

volume, and the password.

antonio@antonio-Laptop:~$ sudo docker volume create --driver

vieux/sshfs -o sshcmd=root@192.168.56.104:/EXT_VOLUME -o

password=root SSH_volume

SSH_volume

Chapter 9 Docker

462

The volume has been created and can be listed.

antonio@antonio-Laptop:~$ sudo docker volume ls

DRIVER VOLUME NAME

.

.

vieux/sshfs:latest SSH_volume

local volume_one

We can inspect this new volume to see its characteristics.

antonio@antonio-Laptop:~$ sudo docker volume inspect SSH_volume

[

 {

 "CreatedAt": "0001-01-01T00:00:00Z",

 "Driver": "vieux/sshfs:latest",

 "Labels": null,

 �"Mountpoint": "/mnt/volumes/2fc3798a413c12383d36829f

ac8bef49",

 "Name": "SSH_volume",

 "Options": {

 "password": "root",

 "sshcmd": "root@192.168.56.104:/EXT_VOLUME"

 },

 "Scope": "local"

 }

]

And we start a container using this volume; the syntax is similar to the

one we saw before.

antonio@antonio-Laptop:~$ sudo docker container run --rm

 -it --name cont_ssh --mount source=SSH_volume,target=/vol_

ssh busybox

Chapter 9 Docker

463

/ # ls /

bin dev etc home lib lib64 proc

root sys tmp usr var vol_ssh

/ # ls /vol_ssh/

one three two

/ #

�Deleting and Pruning Volumes
Volumes have a life cycle independent of that of the container they belong

to. We could easily end up with many volumes that are no longer needed.

If that’s the case, we can use docker volume prune to remove those unused

volumes.

antonio@antonio-Laptop:~$ sudo docker volume prune

WARNING! This will remove anonymous local volumes not used by

at least one container.

Are you sure you want to continue? [y/N] y

Deleted Volumes:

0b537d7a4b3ad06bf0d9290b2be285e8ff1e45d0917f2258139ef3cd9ca8c57a

2bb41e2aef80faedff990b6aaccea47436e9896923a216dac32bfcb5c92e1b92

046cac64459c7b52346ca61d721b0c42671a457d48ed4ed704cf841f81b53941

5490aa3aa0a7adef26c348de022824cfba026b257a36de643e78042e14c4e1fd

8d262581063febe45348d0f960af666994dc503b4f131ac41d4b4c9556343498

Total reclaimed space: 5B

If we want to remove a single volume, we can do it with docker

volume rm.

antonio@antonio-Laptop:~$ sudo docker volume create

other_volume

other_volume

antonio@antonio-Laptop:~$ sudo docker volume rm other_volume

Chapter 9 Docker

464

�Docker Networking
After installing Docker in our host computer, we’ll see that a new network

interface is created.

antonio@antonio-Laptop:~$ ip address show docker0

10: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default

 link/ether 02:42:da:bf:35:7c brd ff:ff:ff:ff:ff:ff

 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0

 valid_lft forever preferred_lft forever

 inet6 fe80::42:daff:febf:357c/64 scope link

 valid_lft forever preferred_lft forever

If we still have a docker container running, we can inspect the

container to see the network settings. We will see that the defined gateway

is precisely the IP address of this docker0 interface.

antonio@antonio-Laptop:~$ sudo docker container inspect

container_vol

.

.

.

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.3",

.

.

.

Of course, we can ping the container from the host. It should be also

possible to ping the host from the container, but given the compact nature

of containers, sometimes commands like “ping” are not even installed.

Chapter 9 Docker

465

antonio@antonio-Laptop:~$ ping -c 1 172.17.0.3

PING 172.17.0.3 (172.17.0.3) 56(84) bytes of data.

64 bytes from 172.17.0.3: icmp_seq=1 ttl=64 time=0.114 ms

--- 172.17.0.3 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.114/0.114/0.114/0.000 ms

Communication between the host and the container is possible

because docker automatically creates a network object that associates the

docker0 interface with the containers.

We can list the existing networks in docker with docker network ls.

antonio@antonio-Laptop:~$ sudo docker network ls

NETWORK ID NAME DRIVER SCOPE

23024a0a6b04 bridge bridge local

12d6ec81db06 host host local

d2a2d2adacba none null local

By default, we see three different networks. The default bridge network

is the one used by default by the containers if we don’t explicitly set a

different one. A bridge network allows for communication between the

container and the host, as well as with the external network. The host

network driver allows the container to see all the network interfaces in

the host. Finally, the none network driver isolates the container. This last

driver can be useful if, for example, we need our containers to perform

some computing operations but prefer not to be accessible in the network.

There are also other network drivers like the MacVLAN driver. This

assigns a virtual MAC address to the container interface.

In the next chapter, when we study orchestration and docker swarm,

we’ll see new network driver types like overlay.

Chapter 9 Docker

466

For now, let’s inspect the default network.

antonio@antonio-Laptop:~$ sudo docker network inspect bridge

[

 {

 "Name": "bridge",

 �"Id": "23024a0a6b041d792365e54046e410dd9

4161cad50b7e9391468d856f0d0e5cd",

 "Created": "2024-08-06T11:32:22.354338844+02:00",

 "Scope": "local",

 "Driver": "bridge",

.

.

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

.

.

 "com.docker.network.bridge.name": "docker0",

.

.

We see clearly the network driver (bridge), the network settings, and

the host network interface used. We can also see that the scope is “local”.

This means that the network is local to the host. When we study docker

swarm in the next chapter, we’ll create docker networks that span across all

the nodes in the docker swarm cluster.

Now, we’ll see an example of the host network. We’ll create a container

connected to the host network.

antonio@antonio-Laptop:~$ sudo docker container run --rm -it

 --network=host busybox sh

/ #

Chapter 9 Docker

467

If we list the network interfaces, we’ll see all those interfaces existing in

the host.

/ # ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: �wlo1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue qlen 1000

 link/ether b0:68:e6:14:aa:b3 brd ff:ff:ff:ff:ff:ff

3: �ovs-system: <BROADCAST,MULTICAST> mtu 1500 qdisc noop

qlen 1000

 link/ether ce:f7:54:0a:c9:92 brd ff:ff:ff:ff:ff:ff

.

.

.

And if we use the “none” network, which uses the null driver, we’ll only

see the loopback network interface in the container.

antonio@antonio-Laptop:~$ sudo docker container run --rm -it

 --network=none busybox sh

/ # ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

/ #

�Creating a New Network
We’re going to create a new docker network and connect some

containers to it.

antonio@antonio-Laptop:~$ sudo docker network create --driver

bridge new_docker_nw

9374a4b6163f93a3cd85d37a456b7ee901e1c59142e1feba3cea67de55887e22

Chapter 9 Docker

468

If we inspect the new network, we’ll see the new IP settings that were

automatically assigned.

antonio@antonio-Laptop:~$ sudo docker network inspect new_

docker_nw

[

 {

 "Name": "new_docker_nw",

 �"Id": "9374a4b6163f93a3cd85d37a456b7ee901e1c59142e1f

eba3cea67de55887e22",

.

.

 "Subnet": "172.18.0.0/16",

 "Gateway": "172.18.0.1"

Now we’ll create two new containers that will be connected to this

new network. To be able to use tools like ping and ip, we’ll use the

busybox image.

antonio@antonio-Laptop:~$ sudo docker container run -it

 --network=new_docker_nw --name=cont1 busybox sh

antonio@antonio-Laptop:~$ sudo docker container run -it

 --network=new_docker_nw --name=cont2 busybox sh

We’ll check the IP address assigned to each container.

/ # ip a

.

.

23: eth0@if24: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu

1500 qdisc noqueue

Chapter 9 Docker

469

 link/ether 02:42:ac:12:00:03 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.3/16 brd 172.18.255.255 scope global eth0

 valid_lft forever preferred_lft forever

/ #

And we can ping one container from the other one.

/ # ping -c 2 172.18.0.2

PING 172.18.0.2 (172.18.0.2): 56 data bytes

64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.162 ms

64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.119 ms

--- 172.18.0.2 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.119/0.140/0.162 ms

/ #

We can inspect the new network, and we’ll see the two containers

attached to it.

antonio@antonio-Laptop:~$ sudo docker network inspect new_

docker_nw

.

.

 "Containers": {

 �"15f393f52e6643db50e9afd1799c3516fef839fa500d77b

5dbec87114e34a7fc": {

 "Name": "cont1",

 �"EndpointID": "764bb5463cb6c2efd8d917f0d236b38

0019b0b89262f0c025853f13e9c32dee8",

 "MacAddress": "02:42:ac:12:00:02",

 "IPv4Address": "172.18.0.2/16",

 "IPv6Address": ""

 },

Chapter 9 Docker

470

 �"53edeaa4bfd855cd04cf183b48529e9b9c04249504baed71

81a24cd84634ac20": {

 "Name": "cont2",

 �"EndpointID": "ce384eab30d999d4e750a22f9b80da

b94a58fcae44f236a3ba2e84e4e2870042",

 "MacAddress": "02:42:ac:12:00:03",

 "IPv4Address": "172.18.0.3/16",

 "IPv6Address": ""

 }

�Mapping Ports
We can map a certain port in the host to a certain port in the container so

that every request addressed to that specific port on the host computer

is handled by the container. For instance, we can execute a container

based on an nginx image and map port 8000 in the host to port 80 in the

container. We do that using the -p option.

antonio@antonio-Laptop:~$ sudo docker container run -d -p

8000:80 nginx

f47b70f1930208742952ab9f562a6d33e9b927aadc0c246b

1b483b5da4e26a39

We can check on the host that a docker process is listening on

port 8000.

antonio@antonio-Laptop:~$ sudo lsof -i :8000

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

docker-pr 20985 root 4u IPv4 438978 0t0 TCP *:8000

(LISTEN)

docker-pr 20991 root 4u IPv6 441411 0t0 TCP *:8000

(LISTEN)

Chapter 9 Docker

471

And if we open a web browser and point to TCP port 8000 on the

localhost, we’ll see the nginx welcome page (Figure 9-4).

Figure 9-4.  Redirecting ports from the host to the container

�Customizing Our Own Containers
When working with containers, we can install additional software as if we

were working with a standard machine; we can edit configuration files and

customize in many ways our containers.

After the customization is complete, we might want to save this

container.

�Exporting a Container to an Image
One way to save the changes made to a container is to create an image

from the customized container.

Chapter 9 Docker

472

We’ll launch a new container based on the Ubuntu image, and we’ll

connect to it.

antonio@antonio-Laptop:~$ sudo docker run -d -it --name

container_v1 ubuntu /bin/bash

348e78cb098f5607966e9840d495b97fb7dc1486500f13713d998db8b

15870c5

antonio@antonio-Laptop:~$ sudo docker attach container_v1

root@348e78cb098f:/#

Once connected, we can install software or perform other operations.

In our case, we’ll perform an update.

root@348e78cb098f:/# apt update

When the update is complete, we’ll execute docker container commit

to generate a new image from the container. This new image will be named

image_container_v2.

antonio@antonio-Laptop:~$ sudo docker container commit

container_v1 image_container_v2

sha256:83dcb9837c499649c13d4b54a11faeba3f684219b48c26780bb6341

a146e2cdc

We can list now the new image.

antonio@antonio-Laptop:~$ sudo docker image ls

REPOSITORY TAG IMAGE

ID CREATED SIZE

image_container_v2 latest 83dcb9837c49 28 seconds

ago 117MB

And we can use this new image as a base image to create a container,

exactly in the same way as we did with the official debian and ubuntu

images. We’ll create a temporary container using the --rm option. This

option automatically deletes the container after its execution.

Chapter 9 Docker

473

antonio@antonio-Laptop:~$ sudo docker container run --rm -it

image_container_v2 /bin/bash

root@dea4de3536b0:/#

The container will have all the changes performed previously. In our

example, it will be updated. While the container is executing, we can see

it listed.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

dea4de3536b0 image_container_v2 "/bin/bash"

29 seconds ago Up 28 seconds relaxed_jepsen

When we exit the container, it will be automatically deleted.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

antonio@antonio-Laptop:~$

Let’s get back to the concept of layers we mentioned briefly before.

When we create a container, we use a base image. That image will be a

read-only layer, and over this layer a new writable layer will be created to

store the changes.

We’ll inspect the ubuntu base image and pay attention to a few

parameters.

antonio@antonio-Laptop:~$ sudo docker image inspect ubuntu

[

 {

 �"Id": "sha256:35a88802559dd2077e584394471ddaa1a2c5bfd1

6893b829ea57619301eb3908",

.

.

Chapter 9 Docker

474

 "Parent": "",

.

.

 "RootFS": {

 "Type": "layers",

 "Layers": [

 �"sha256:a30a5965a4f7d9d5ff76a46eb8939f58e95be

844de1ac4a4b452d5d31158fdea"

]

 },

This image is given an ID, it has no parent, and it only contains

one layer.

Let’s compare it to our newly created image_container_v2 image.

antonio@antonio-Laptop:~$ sudo docker image inspect image_

container_v2

[

 {

 �"Id": "sha256:83dcb9837c499649c13d4b54a11faeba3f684219

b48c26780bb6341a146e2cdc",

.

.

 �"Parent": "sha256:35a88802559dd2077e584394471ddaa1a2c5b

fd16893b829ea57619301eb3908",

.

.

 "RootFS": {

 "Type": "layers",

 "Layers": [

 �"sha256:a30a5965a4f7d9d5ff76a46eb8939f58e95b

e844de1ac4a4b452d5d31158fdea",

Chapter 9 Docker

475

 �"sha256:ac4beaab0ee851efd70299f648f9db72984c6d6

e42d27df80a48c3826a60a677"

]

 },

.

.

If you remember, we created this image from a container based on the

Ubuntu image. And we performed a series of changes in the container,

an update to be exact. So in this case, the image has a parent, the Ubuntu

image. Besides, the changes were stored in the writable layer of the

container, which was later exported to a new image. For that reason, this

image has two layers.

�Using a Dockerfile to Create a Container
Another way to customize a container is by using a Dockerfile to explicitly

define a new image. Then we can use this image to create new containers.

We’ll begin with a very easy example. In this example, we’re repeating

basically what we had done in the previous section, but using a Dockerfile

this time and Debian as the parent image. A Dockerfile is simply a text file

with a series of instructions that Docker will interpret to create the image.

This is the first version of our Dockerfile:

antonio@antonio-Laptop:~/docker$ cat Dockerfile

FROM debian:latest

RUN apt update

antonio@antonio-Laptop:~/docker$

We can create an image with Docker image build. This way docker

will create an image according to the instructions from the file specified in

the (-f) option. If no file name is specified, docker will search a file named

Dockerfile.

Chapter 9 Docker

476

antonio@antonio-Laptop:~/docker$ sudo docker image build -f

Dockerfile .

DEPRECATED: �The legacy builder is deprecated and will be

removed in a future release.

 �Install the buildx component to build images with

BuildKit:

 https://docs.docker.com/go/buildx/

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM debian:latest

 ---> 2e5b8d3ef33e

Step 2/2 : RUN apt update

 ---> Running in aa560ff2c33d

WARNING: apt does not have a stable CLI interface. Use with

caution in scripts.

Get:1 http://deb.debian.org/debian bookworm InRelease [151 kB]

Get:2 http://deb.debian.org/debian bookworm-updates InRelease

[55.4 kB]

Get:3 http://deb.debian.org/debian-security bookworm-security

InRelease [48.0 kB]

Get:4 http://deb.debian.org/debian bookworm/main amd64 Packages

[8788 kB]

Get:5 http://deb.debian.org/debian bookworm-updates/main amd64

Packages [13.8 kB]

Get:6 http://deb.debian.org/debian-security bookworm-security/

main amd64 Packages [169 kB]

Fetched 9225 kB in 2min 35s (59.4 kB/s)

Reading package lists...

Building dependency tree...

Reading state information...

All packages are up to date.

Chapter 9 Docker

477

Removing intermediate container aa560ff2c33d

 ---> 1284259d5ade

Successfully built 1284259d5ade

We have our new image created. We can list it as usual.

antonio@antonio-Laptop:~/docker$ sudo docker image list

REPOSITORY TAG IMAGE

ID CREATED SIZE

<none> <none> 1284259d5ade About a minute

ago 136MB

image_container_v2 latest 83dcb9837c49 3 hours

ago 117MB

And we can use it to create containers.

antonio@antonio-Laptop:~$ sudo docker run --rm -it 1284259d5ade

/bin/bash

root@8fec261cb909:/#

Now we’ll review the two Dockerfile instructions we used in our

Dockerfile:

•	 FROM: It’s used to set the base image (ubuntu, debian,

etc.). We could also use the special name “scratch” to

create a new image from zero.

•	 RUN: It executes the command specified and commits

the result to a new layer. That is, every RUN sentence

will create a new layer.

The image we created had one RUN sentence and used ubuntu as

the base image. So the resulting image has two layers. We can check with

Docker image inspect that this is actually the case.

Chapter 9 Docker

478

antonio@antonio-Laptop:~$ sudo docker image inspect

1284259d5ade

.

.

 "RootFS": {

 "Type": "layers",

 "Layers": [

 �"sha256:f6faf32734e0870d82ea890737958fe33ce9ddf

ed27b3b157576d2aadbab3322",

 �"sha256:a5060b2c6a69409f084db46dff247c998854fb

d5f07342d443651207cbe6c888"

]

 },

.

.

Besides the FROM and RUN instructions, there are many more than we

can use in our Dockerfile. We’ll enumerate some of the most used here:

•	 WORKDIR: Sets the working directory for the next

sentences.

•	 LABEL: It is used to add metadata to an image, like

version, maintainer, and so on.

•	 ARG: It defines a variable that can be used later in the

Dockerfile.

•	 COPY: Copies new files and directories from the host to

the container.

•	 ADD: Similar to COPY, but it also can copy content

directly from URLs and tar files.

•	 VOLUME: It defines a volume.

Chapter 9 Docker

479

•	 EXPOSE: Informs docker on what ports the container is

listening on.

•	 CMD: It sets the command to be executed when

running a container from an image. It includes all the

default arguments for the command. Sometimes it

omits the command itself; in these cases, the command

must be specified in the ENTRYPOINT instruction.

•	 ENTRYPOINT: As explained before, it sets the

command the container will run as an executable.

Let’s see these additional instructions with another Dockerfile example

file. We’ll list here the file and explain later each sentence.

antonio@antonio-Laptop:~/docker$ cat Dockerfile2

FROM busybox

WORKDIR /etc

COPY test_file.txt .

ENTRYPOINT ["/bin/sleep", "60"]

We set the working directory to the /etc directory. We copy the test_file.

txt file, and we’ll execute the sleep command for 60 seconds when the

container is launched. We’ll create the test_file.txt and build the image.

antonio@antonio-Laptop:~/docker$ echo test > test_file.txt

antonio@antonio-Laptop:~/docker$ sudo docker image build -f

Dockerfile2 .

DEPRECATED: The legacy builder is deprecated and will be

removed in a future release.

 Install the buildx component to build images with

BuildKit:

 https://docs.docker.com/go/buildx/

Sending build context to Docker daemon 4.096kB

Chapter 9 Docker

480

Step 1/4 : FROM busybox

 ---> 65ad0d468eb1

Step 2/4 : WORKDIR /etc

 ---> Running in 6d8afc97005d

Removing intermediate container 6d8afc97005d

 ---> 25fc806ab094

Step 3/4 : COPY test_file.txt .

 ---> bb415647959c

Step 4/4 : ENTRYPOINT ["/bin/sleep", "60"]

 ---> Running in c0cb7d19f91f

Removing intermediate container c0cb7d19f91f

 ---> b9cbf2b918b4

Successfully built b9cbf2b918b4

The image was successfully created and now we can create a container

based on this image.

antonio@antonio-Laptop:~/docker$ sudo docker container run --rm

 -d b9cbf2b918b4

2acc023edbe8e95364ea9ec02c4a395e062cffd989bde5a404d5aedc3

5976de8

We can check that the container is executing.

antonio@antonio-Laptop:~/docker$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

2acc023edbe8 b9cbf2b918b4 "/bin/sleep 60" 4 seconds

ago Up 4 seconds serene_bartik

In the listing, we see the command executing, which is “sleep 60”. So far

we have used docker container attach to connect to the standard input

and the standard output of the container when the executing command

Chapter 9 Docker

481

is a shell. But if we do that with this container, we’ll connect to the sleep

process and won’t be able to execute commands.

To execute commands in a Docker container, we can use docker
container exec. We’ll use this option to see the content of the test_file.txt

file we copied during the building process.

antonio@antonio-Laptop:~/docker$ sudo docker container exec

serene_bartik cat /etc/test_file.txt

test

Another image-related option that can be useful to know is Docker

image history, which will show the steps to create the image.

antonio@antonio-Laptop:~/docker$ sudo docker image history

b9cbf2b918b4

IMAGE CREATED CREATED BY

 SIZE COMMENT

b9cbf2b918b4 23 minutes ago /bin/sh -c

#(nop) ENTRYPOINT ["/bin/sleep" … 0B

bb415647959c 23 minutes ago /bin/sh -c

#(nop) COPY file:2539c4b17295c856… 5B

25fc806ab094 23 minutes ago /bin/sh -c

#(nop) WORKDIR /etc 0B

65ad0d468eb1 14 months ago BusyBox

1.36.1 (glibc), Debian 12 4.26MB

We can compare this output to that of the Ubuntu image.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/docker$ sudo docker

image history ubuntu

IMAGE CREATED CREATED BY

 SIZE COMMENT

35a88802559d 2 months ago /bin/sh -c

#(nop) CMD ["/bin/bash"] 0B

Chapter 9 Docker

482

<missing> 2 months ago /bin/sh -c

#(nop) ADD file:5601f441718b0d192… 78.1MB

<missing> 2 months ago /bin/sh -c

#(nop) LABEL org.opencontainers.… 0B

<missing> 2 months ago /bin/sh -c

#(nop) LABEL org.opencontainers.… 0B

<missing> 2 months ago /bin/sh -c

#(nop) ARG LAUNCHPAD_BUILD_ARCH 0B

<missing> 2 months ago /bin/sh -c

#(nop) ARG RELEASE 0B

�Logging in Docker
We can obtain the logs of a certain container with docker container logs.

Let’s see an example.

We start any given container, and then we check the logs. We’ll execute

a temporary container based on the nginx image. We’ll use port mapping

to make the nginx application accessible.

antonio@antonio-Laptop:~$ sudo docker container run --rm -d -it

 -p 8000:80 nginx

3426d53c3082decda7e88e9cfc8108b9a24d316b53bab267d75650b26

1b23db4

We check that the container is actually running.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE

COMMAND CREATED STATUS POR

TS NAMES

3426d53c3082 nginx "/docker-entrypoint...." 5 seconds

ago Up 5 seconds 0.0.0.0:8000->80/tcp, :::8000->80/

tcp friendly_mahavira

Chapter 9 Docker

483

And we review the logs.

antonio@antonio-Laptop:~$ sudo docker logs friendly_mahavira

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will

attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts in /docker-

entrypoint.d/

/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-

listen-on-ipv6-by-default.sh

10-listen-on-ipv6-by-default.sh: info: Getting the checksum of

/etc/nginx/conf.d/default.conf

10-listen-on-ipv6-by-default.sh: info: Enabled listen on

IPv6 in /etc/nginx/conf.d/default.conf

/docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-

resolvers.envsh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-

envsubst-on-templates.sh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-

worker-processes.sh

/docker-entrypoint.sh: Configuration complete; ready for

start up

2024/08/07 12:16:25 [notice] 1#1: using the "epoll"

event method

2024/08/07 12:16:25 [notice] 1#1: nginx/1.27.0

2024/08/07 12:16:25 [notice] 1#1: built by gcc 12.2.0 (Debian

12.2.0-14)

2024/08/07 12:16:25 [notice] 1#1: OS: Linux 6.5.0-45-generic

2024/08/07 12:16:25 [notice] 1#1: getrlimit(RLIMIT_NOFILE):

1048576:1048576

2024/08/07 12:16:25 [notice] 1#1: start worker processes

2024/08/07 12:16:25 [notice] 1#1: start worker process 29

2024/08/07 12:16:25 [notice] 1#1: start worker process 30

Chapter 9 Docker

484

2024/08/07 12:16:25 [notice] 1#1: start worker process 31

2024/08/07 12:16:25 [notice] 1#1: start worker process 32

2024/08/07 12:16:25 [notice] 1#1: start worker process 33

2024/08/07 12:16:25 [notice] 1#1: start worker process 34

2024/08/07 12:16:25 [notice] 1#1: start worker process 35

2024/08/07 12:16:25 [notice] 1#1: start worker process 36

We can access the nginx welcome page using any web browser. In this

example, we’ll use curl.

antonio@antonio-Laptop:~$ curl -i http://localhost:8000

HTTP/1.1 200 OK

Server: nginx/1.27.0

.

.

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and

working. Further configuration is required.</p>

.

.

.

In the container logs, we can see immediately this access.

antonio@antonio-Laptop:~$ sudo docker logs friendly_mahavira

.

.

172.17.0.1 - - [07/Aug/2024:12:19:12 +0000] "GET / HTTP/1.1"

200 615 "-" "curl/7.81.0" "-"

Chapter 9 Docker

485

To log information, Docker used a logging driver, which is json-file by

default. We can get this information with docker info.

antonio@antonio-Laptop:~$ sudo docker info | grep Logging
 Logging Driver: json-file

If we want to change the driver, we can pass the --log-driver option to

dockerd or use a /etc/docker/daemon.json file with this option set. These

are the options we have available from the man page of dockerd.

 �--log-driver="json-file|syslog|journald|gelf|fluentd|awslog
s|splunk|etwlogs|gcplogs|none"

 �Default driver for container logs. Default is

json-file.

 �Warning: docker logs command works only for json-file

logging driver.

We’ll see this in an example. First, we stop any running containers.

antonio@antonio-Laptop:~$ sudo docker stop friendly_mahavira

friendly_mahavira

Then we’ll create a /etc/docker/daemon.json file.

antonio@antonio-Laptop:~$ cat /etc/docker/daemon.json

{

"log-driver": "journald"

}

To apply the change, we need to stop and start the dockerd service.

antonio@antonio-Laptop:~$ sudo systemctl stop docker

Warning: Stopping docker.service, but it can still be

activated by:

 docker.socket

antonio@antonio-Laptop:~$ sudo systemctl stop docker.socket

antonio@antonio-Laptop:~$ sudo systemctl start docker

Chapter 9 Docker

486

We can execute docker info again to see that the logging driver

actually changed.

antonio@antonio-Laptop:~$ sudo docker info | grep Logging
 Logging Driver: journald

We’ll start another nginx container and access it with curl or other web

browser.

antonio@antonio-Laptop:~$ sudo docker container run --rm -d -it

 -p 8000:80 nginx

0eed0a0c6f260684e27985780692fe9cfbec05644541d7ed32db4bec65494

ada

After accessing the container with curl, we’ll see this entry on the

journal file.

antonio@antonio-Laptop:~$ journalctl -f

.

.

ago 07 15:29:58 antonio-Laptop 0eed0a0c6f26[20989]:

172.17.0.1 - - [07/Aug/2024:13:29:58 +0000] "GET / HTTP/1.1"

200 615 "-" "curl/7.81.0" "-"

This is how we changed the default logging driver, but we can also run

a container and tell it to use a logging driver different from the default.

We’ll stop the running container, remove the /etc/docker/daemon.json file,

and restart docker again.

antonio@antonio-Laptop:~$ sudo docker container stop

0eed0a0c6f26

antonio@antonio-Laptop:~$ sudo rm /etc/docker/daemon.json

antonio@antonio-Laptop:~$ sudo systemctl restart docker

Chapter 9 Docker

487

We confirm with docker info the default logging driver.

antonio@antonio-Laptop:~$ sudo docker info | grep Logging
 Logging Driver: json-file

And we launch a new container with a different logging driver, “none”

in this case.

antonio@antonio-Laptop:~$ sudo docker run --rm -d -it --log-

driver=none -p 8000:80 nginx

6ef76fcf302f6cda4eea4604fa6a147ffadf4e9448244f3be3996b70a

80354f2

We list the running containers and try to see the container logs.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

6ef76fcf302f nginx "/docker-entrypoint.…" 30 seconds

ago Up 29 seconds 0.0.0.0:8000->80/tcp, :::8000->80/

tcp sleepy_cray

antonio@antonio-Laptop:~$ sudo docker container logs

sleepy_cray

Error response from daemon: configured logging driver does not

support reading

As expected, we can’t see any logs because we explicitly used the

“none” logging driver option.

�Saving and Restoring Containers
Containers have the advantage of being very light and easy to create, start,

stop, etc. We can easily save containers and restore them, either in the

same node or a different one.

Chapter 9 Docker

488

In the “Customizing Our Own Containers” section, we already saw

how to make changes to a running container and commit that container

to a new image. But we didn’t export that image to import it later in a

different node.

We’re going to repeat the procedure, very quickly because we’re

already familiar with it. But this time, we’ll export the image.

We’ll begin by launching a new container based on nginx.

antonio@antonio-Laptop:~$ sudo docker container run -d -p

8000:80 nginx

d559e553ab24af71ec35690e9d05ff5527355ba53a155270243e51e7e33

aa638

We get the container name.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d559e553ab24 nginx "/docker-entrypoint...." 44 seconds

ago Up 43 seconds 0.0.0.0:8000->80/tcp, :::8000->80/

tcp vigilant_hoover

We’re going to customize the container by substituting the default web

page, which is currently located at /usr/share/nginx/html/index.html.

We’ll change it for this html file.

antonio@antonio-Laptop:~$ cat index.html

<html>

<head>

<title>My Web Page</title>

</head>

<body>

<h1>Welcome to my Page</h1>

</body>

</html>

Chapter 9 Docker

489

To copy files between the host and the container, or vice versa, we can

use the docker container cp command.

antonio@antonio-Laptop:~$ sudo docker container cp index.html

vigilant_hoover:/usr/share/nginx/html/index.html

Successfully copied 2.05kB to vigilant_hoover:/usr/share/nginx/

html/index.html

We can check with a browser that the new default web page has been

changed (Figure 9-5).

Figure 9-5.  Customized default web page

We stop the container and commit it to a new image; this is something

we already know how to do.

antonio@antonio-Laptop:~$ sudo docker container stop

vigilant_hoover

vigilant_hoover

Chapter 9 Docker

490

antonio@antonio-Laptop:~$ sudo docker container commit

vigilant_hoover customized_nginx

sha256:4317003e3c61e9512d50b4a95ee7c90522aac50cb27e3352cd6c979

bab0efed2

And we save the image to a tar file (-o option) with the Docker image
save command.

antonio@antonio-Laptop:~$ sudo docker image save customized_

nginx -o customized_nginx.tar

antonio@antonio-Laptop:~$ ls -lh customized_nginx.tar

-rw------- 1 root root 183M ago 8 01:51 customized_nginx.tar

This tar file can already be copied to a different host with tools like scp.

Once they’re copied, they can be imported with Docker image load. As

currently I don’t have another host with docker installed, I’ll simulate this

procedure in the same node.

First, we delete the image customized_nginx.

antonio@antonio-Laptop:~$ sudo docker image rm customized_nginx

Untagged: customized_nginx:latest

Deleted: sha256:4317003e3c61e9512d50b4a95ee7c90522aac50cb27e335

2cd6c979bab0efed2

Deleted: sha256:194a1d8d46bbca24736e8e4740a2ea5a7ce30b54ce9950

5b0b769894bbafc162

And we load the image again from the tar file.

antonio@antonio-Laptop:~$ sudo docker image load -i customized_

nginx.tar

d3e15dbef7c9: Loading layer

[==>]

12.29kB/12.29kB

Loaded image: customized_nginx:latest

Chapter 9 Docker

491

We list the images to check that they were successfully imported.

antonio@antonio-Laptop:~$ sudo docker image list

REPOSITORY TAG IMAGE

ID CREATED SIZE

customized_nginx latest 4317003e3c61 12 hours

ago 188MB

We’ll create a new container. This time we’ll use another option

that can be useful sometimes, the --label option. As the name implies,

this assigns a label to the container, and later we can use this label to

better identify each container. For example, we can assign the label

“development” to this new container.

antonio@antonio-Laptop:~$ sudo docker container run -d -it -p

8000:80 --label=development customized_nginx:latest

11e1bf5c80d745ec4ff8bf498adcfe417756f0baa25f2e4659764f01b0

a2daf6

From now on, it is possible to list the containers that have the label

“development”. This can be very interesting to identify the containers that

belong to different life cycles.

antonio@antonio-Laptop:~$ sudo docker container ls -a --filter

label=development

CONTAINER

ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

11e1bf5c80d7 customized_nginx:latest "/

docker-entrypoint.…" About a minute ago Up 59

seconds 0.0.0.0:8000->80/tcp, :::8000->80/tcp unruffled_

chandrasekhar

Chapter 9 Docker

492

�Creating a Local Registry
In this chapter, we have used the docker search command to search for

images. When doing this, we were contacting a remote registry, the default

Docker hub registry.

It is also possible to use a different registry and even use our own

local registry. To use a local registry, we need to execute locally a specific

container that can be downloaded from the Docker hub registry.

antonio@antonio-Laptop:~$ sudo docker search registry

NAME DESCRIPTION

 STARS OFFICIAL AUTOMATED

registry Distribution implementation for storing and

... 4027 [OK]

docker/dtr-registry 0

We just need to download this registry image to our host to start

working with it.

antonio@antonio-Laptop:~$ sudo docker image pull

registry:latest

latest: Pulling from library/registry

930bdd4d222e: Pull complete

a15309931e05: Pull complete

6263fb9c821f: Pull complete

86c1d3af3872: Pull complete

a37b1bf6a96f: Pull complete

Digest: sha256:12120425f07de11a1b899e418d4b0ea174c8d4d572d45

bdb640f93bc7ca06a3d

Status: Downloaded newer image for registry:latest

docker.io/library/registry:latest

Chapter 9 Docker

493

This registry listens for connections on port 5000/tcp. We can see this

information with the “inspect” subcommand.

antonio@antonio-Laptop:~$ sudo docker image inspect registry

.

.

 "ExposedPorts": {

 "5000/tcp": {}

 },

.

.

So we’ll run a container mapping port 5000 in the host to port 5000 in

the container. We’ll also use an option that we hadn’t seen so far, the

restart option, to tell the container to restart every time the Docker service

restarts.

antonio@antonio-Laptop:~$ sudo docker container run -d -p

5000:5000 --restart=always --name=local_registry registry

c262e80b9b70659b753819b3081d1987adc9cb70c3c7d1a2209c02cb

6a64d1de

If we list the running containers, we’ll see our local registry.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND CREATED

STATUS POR

TS NAMES

c262e80b9b70 registry "/entrypoint.sh /etc..." 37 seconds

ago Up 37 seconds 0.0.0.0:5000->5000/tcp, :::5000->5000/

tcp local_registry

Chapter 9 Docker

494

Now, let’s see how to upload and download images to and from our

local registry. For that purpose, we could use any of the images that we

have downloaded previously, but for convenience, we’ll download an

alpine image, which is very light. We start by downloading this image the

usual way.

antonio@antonio-Laptop:~$ sudo docker pull alpine

Using default tag: latest

latest: Pulling from library/alpine

c6a83fedfae6: Pull complete

Digest: sha256:0a4eaa0eecf5f8c050e5bba433f58c052be7587ee8af3e

8b3910ef9ab5fbe9f5

Status: Downloaded newer image for alpine:latest

docker.io/library/alpine:latest

To upload an image to our local registry, the first thing we need to do is

tag the image.

antonio@antonio-Laptop:~$ sudo docker tag alpine:latest

localhost:5000/alpine_local

Then, if we list the images, we’ll see two tags associated to the same

alpine image: the original “alpine” tag and the new “localhost:5000/

alpine_local” tag.

antonio@antonio-Laptop:~$ sudo docker image ls

REPOSITORY TAG IMAGE

ID CREATED SIZE

customized_nginx latest 4317003e3c61 15 hours

ago 188MB

.

.

Chapter 9 Docker

495

localhost:5000/alpine_local latest 324bc02ae123 2 weeks

ago 7.8MB

alpine latest 324bc02ae123 2 weeks

ago 7.8MB

To upload the image to our local registry, we’ll use the “push”

subcommand.

antonio@antonio-Laptop:~$ sudo docker image push

localhost:5000/alpine_local

Using default tag: latest

The push refers to repository [localhost:5000/alpine_local]

78561cef0761: Pushed

latest: digest: sha256:eddacbc7e24bf8799a4ed3cdcfa50d4b88a32369

5ad80f317b6629883b2c2a78 size: 528

We already have our first image uploaded to our local registry. Now

we’ll see how to use this image to create new containers. For that, we’ll

start by deleting the local alpine image. As we have two different tags

associated to the same image, we’ll need to remove both tags.

antonio@antonio-Laptop:~$ sudo docker image rm alpine

Untagged: alpine:latest

Untagged: alpine@sha256:0a4eaa0eecf5f8c050e5bba433f58c052be7587

ee8af3e8b3910ef9ab5fbe9f5

antonio@antonio-Laptop:~$ sudo docker image rm localhost:5000/

alpine_local

Untagged: localhost:5000/alpine_local:latest

Untagged: localhost:5000/alpine_local@sha256:eddacbc7e24bf8799a

4ed3cdcfa50d4b88a323695ad80f317b6629883b2c2a78

Deleted: sha256:324bc02ae1231fd9255658c128086395d3fa0aedd5a41ab

6b034fd649d1a9260

Deleted: sha256:78561cef0761903dd2f7d09856150a6d4fb48967a8f113f

3e33d79effbf59a07

Chapter 9 Docker

496

Finally, we create a container using explicitly the alpine image located

in our local registry.

antonio@antonio-Laptop:~$ sudo docker container run -it

localhost:5000/alpine_local

Unable to find image 'localhost:5000/alpine_

local:latest' locally

latest: Pulling from alpine_local

c6a83fedfae6: Pull complete

Digest: sha256:eddacbc7e24bf8799a4ed3cdcfa50d4b88a323695ad80f31

7b6629883b2c2a78

Status: Downloaded newer image for localhost:5000/alpine_

local:latest

/ #

�Customizing Security Options
In Chapter 7, we studied the technologies used when working with

containers, such as namespaces, cgroups, seccomp, capabilities, etc.

Then we studied Linux containers (LXC) and Docker containers, and

we saw that these solutions automatically make use of these technologies

to isolate the containers and limit the amount of resources they can use.

This way working with containers becomes much more convenient.

Usually, we don’t need to customize the way a certain Docker

container uses cgroups, capabilities, and so on. But in some specific cases

that might be necessary. We’ll see an easy example about capabilities.

We’ll begin by executing a temporary container, without any particular

customization.

antonio@antonio-Laptop:~$ sudo docker container run --rm

 -it busybox

[sudo] password for antonio:

/ #

Chapter 9 Docker

497

We’ll change the owner of the /home folder.

/ # ls -ld /home

drwxr-xr-x 2 nobody nobody 4096 May 18 2023 /home

/ # chown root /home

/ # ls -ld /home

drwxr-xr-x 1 root nobody 4096 May 18 2023 /home

/ # exit

As expected, the owner of the folder was successfully changed. Let’s

repeat this test with a new container, but this time we’ll drop all the

capabilities from the container.

antonio@antonio-Laptop:~$ sudo docker container run --rm --cap-

drop=ALL -it busybox

/ # ls -ld /home

drwxr-xr-x 2 nobody nobody 4096 May 18 2023 /home

/ # chown root /home

chown: /home: Operation not permitted

/ # exit

This time, when we try to change the owner, we get an error because

the operation is not permitted.

Finally, we’re going to repeat the test by adding the needed capability

to change the owner of a file/folder. If we look at the man page for

capabilities, we’ll see this line:

 CAP_CHOWN

 �Make arbitrary changes to file UIDs and GIDs (see

chown(2)).

Chapter 9 Docker

498

So the capability we need to add is CAP_CHOWN. We’ll launch a new

temporary container.

antonio@antonio-Laptop:~$ sudo docker container run --rm --cap-

drop=ALL --cap-add=CAP_CHOWN -it busybox

/ # ls -ld /home

drwxr-xr-x 2 nobody nobody 4096 May 18 2023 /home

/ # chown root /home

/ # exit

As expected, we could change the owner successfully again.

�Summary
We’ve reached the end of this chapter, which has a heavy weight in the

LPIC-3 305 exam. We began by getting a glimpse of the Docker architecture

and installing it. Then we started searching for images and running our

first Docker containers.

After that, we saw a bit more of detail about the Docker architecture,

and we learned how to work with docker volumes and docker networks.

We created our own images either from a customized container or from a

Dockerfile.

We also studied how logging in dockerd works and how to save and

restore images. Finally, we created our own local Docker registry and

reviewed how to use some advanced features like capabilities.

Chapter 9 Docker

499© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_10

CHAPTER 10

Container
Orchestration
Platforms
In this chapter, we'll cover the following concepts:

•	 Understand the relevance of container orchestration

•	 Understand the key concepts of docker compose and

docker swarm

•	 Understand the key concepts of Kubernetes and Helm

•	 Awareness of OpenShift and Rancher

�Container Orchestration
In previous chapters, we studied containers individually. A container

can be useful by itself, but when having several containers working in a

coordinated manner, we can achieve things that wouldn't be possible

with containers completely independent from each other. We can easily

make an analogy with an orchestra in which a conductor directs the

performance of all the musicians.

https://doi.org/10.1007/979-8-8688-1080-0_10#DOI

500

When executing applications in containers, we can have several

scenarios:

•	 The application is executed in a single container and

therefore in a single host.

•	 The application, or parts of the application, is executed

in several containers, but always in the same host. To

define these multi-container applications, we can use

docker compose, as we’ll see in a while.

•	 The application is executed in many containers

distributed across several hosts. In this case, we need

to coordinate all the hosts and containers so that the

application works as expected. This is accomplished

thanks to the orchestration platforms.

�docker compose
This is a tool for defining and running multi-container applications; these

applications that work on containers are usually called microservices. It

uses a YAML configuration file to define the needed containers, networks,

volumes, etc.

�Installing docker compose
We have different options to install docker compose. We can install it from

the Ubuntu repositories.

antonio@antonio-Laptop:~$ sudo apt install docker-compose

This tool is very easy to use, as we’ll see later. We can take a look at the

contextual help to get a hint about the way to work with it.

Chapter 10 Container Orchestration Platforms

501

antonio@antonio-Laptop:~$ docker-compose --help

Define and run multi-container applications with Docker.

Usage:

 docker-compose [-f <arg>...] [--profile <name>...] [options]

[--] [COMMAND] [ARGS...]

 docker-compose -h|--help
.

.

.

When installing docker compose in this way, we’re installing a stand-

alone executable file. And the version will be older than the current version

available from the Docker repositories.

antonio@antonio-Laptop:~$ docker-compose --version

docker-compose version 1.29.2, build unknown

If we compare this with the version of a CentOS server using the

Docker repositories, we’ll see that the versions are significantly different.

Besides, in the case of the CentOS server, docker compose is no longer a

stand-alone executable file, but a Docker plug-in.

[root@rocky ~]# docker compose version

Docker Compose version v2.17.3

To install docker compose from the Docker repositories, we need to

add the official Docker repository to our CentOS server.

[root@rocky ~]# yum-config-manager --add-repo

https://download.docker.com/linux/centos/docker-ce.repo

For the purposes of the LPIC-3 305 exam, we can use any of the two

versions: the older from the Ubuntu repositories or the newer from the

CentOS server. During the course of the book, we’ll favor the use of the

newer version.

Chapter 10 Container Orchestration Platforms

502

�Creating a Service with docker compose
Let’s see an easy example of how to use docker compose to deploy

an application. To keep things as simple as possible, we’ll use a single

container. Obviously, it doesn’t make much sense to use docker compose

to deploy a single container, as it would be easier to deploy it directly from

the command line. But it will make us understand better how docker

compose works when we use it for more advanced deployments.

This is the first YAML file that we’ll use for the first deployment.

[root@rocky docker-compose]# cat docker-compose.yml

version: "3"

services:

 web:

 image: httpd

 ports:

 - 8080:80

First, we specify the version; the current version is “3”. Then we

enumerate the services that we’re deploying. For naming convention, when

we use docker compose to deploy applications, we are deploying “services”.

In this case, we’re deploying a single service named “web”. The “web”

service uses the image “httpd”(Apache Web Server) and will map port

8000 in the host to port 80 in the container.

To create the service, we need to execute “docker compose up”. This

command will create and start the needed containers.

[root@rocky docker-compose]# docker compose up

[+] Running 2/1

 ✔ Network docker-compose_default Created 0.3s

 ✔ Container docker-compose-web-1 Created 0.1s

Attaching to docker-compose-web-1

docker-compose-web-1 | AH00558: httpd: Could not reliably

Chapter 10 Container Orchestration Platforms

503

determine the server's fully qualified domain name, using

172.19.0.2. Set the 'ServerName' directive globally to suppress

this message

docker-compose-web-1 | AH00558: httpd: Could not reliably
determine the server's fully qualified domain name, using

172.19.0.2. Set the 'ServerName' directive globally to suppress

this message

docker-compose-web-1 | [Fri Jul 05 22:21:30.385934 2024]
[mpm_event:notice] [pid 1:tid 139697548614976] AH00489:

Apache/2.4.56 (Unix) configured -- resuming normal operations

docker-compose-web-1 | [Fri Jul 05 22:21:30.386123 2024]
[core:notice] [pid 1:tid 139697548614976] AH00094: Command

line: 'httpd -D FOREGROUND'

After a few seconds, the service will be ready to listen for connections.

So we can connect to port 8080 in the host.

antonio@antonio-Laptop:~$ curl http://192.168.1.51:8080

<html><body><h1>It works!</h1></body></html>

In the shell window where we launched docker compose, we can see

this successful connection attempt.

docker-compose-web-1 | 192.168.1.20 - - [05/Jul/2024:22:22:48
+0000] "GET / HTTP/1.1" 200 45

In addition to deploying the services, there are many more

subcommands available. As the command shell we used to build and start

the containers ran in the foreground, we can’t use that same command

shell, and we’ll need to open a new one. Later, we’ll see how to build and

start the containers and detach automatically.

We can list the containers with docker compose ps.

Chapter 10 Container Orchestration Platforms

504

[root@rocky docker-compose]# docker compose ps

NAME IMAGE COMMAND

SERVICE CREATED STATUS

PORTS

docker-compose-web-1 httpd "httpd-foreground"

web 4 minutes ago Up 4 minutes

0.0.0.0:8080->80/tcp, :::8080->80/tcp

As this first deployment uses a single container, we only see a container

in the listing. We can also list the services with docker compose ls.

[root@rocky docker-compose]# docker compose ls

NAME STATUS CONFIG FILES

docker-compose running(1) �/root/docker-compose/

docker-compose.yml

It is also possible to see the logs of the containers in the service with

the “logs” subcommand.

[root@rocky docker-compose]# docker compose logs

docker-compose-web-1 | AH00558: httpd: Could not reliably
determine the server's fully qualified domain name, using

172.19.0.2. Set the 'ServerName' directive globally to suppress

this message

docker-compose-web-1 | AH00558: httpd: Could not reliably
determine the server's fully qualified domain name, using

172.19.0.2. Set the 'ServerName' directive globally to suppress

this message

docker-compose-web-1 | [Fri Jul 05 22:21:30.385934 2024]
[mpm_event:notice] [pid 1:tid 139697548614976] AH00489:

Apache/2.4.56 (Unix) configured -- resuming normal operations

docker-compose-web-1 | [Fri Jul 05 22:21:30.386123 2024]
[core:notice] [pid 1:tid 139697548614976] AH00094: Command

line: 'httpd -D FOREGROUND'

Chapter 10 Container Orchestration Platforms

505

docker-compose-web-1 | 192.168.1.20 - - [05/Jul/2024:22:22:48
+0000] "GET / HTTP/1.1" 200 45

docker-compose-web-1 | 192.168.1.20 - - [05/Jul/2024:22:23:29
+0000] "GET / HTTP/1.1" 200 45

docker-compose-web-1 | 192.168.1.20 - - [05/Jul/2024:22:23:56
+0000] "GET / HTTP/1.1" 200 45

Another useful command is docker compose top, which lists the

processes currently running in the containers.

[root@rocky docker-compose]# docker compose top

docker-compose-web-1

UID PID PPID C STIME TTY TIME CMD

root 47251 47229 0 00:21 ? 00:00:00 httpd

 -DFOREGROUND

33 47282 47251 0 00:21 ? 00:00:00 httpd

 -DFOREGROUND

33 47283 47251 0 00:21 ? 00:00:00 httpd

 -DFOREGROUND

33 47284 47251 0 00:21 ? 00:00:00 httpd

 -DFOREGROUND

When we create a service, if we don’t specify otherwise, a new network

will be created to be used by docker compose. We can list this network,

and the rest, with docker network ls.

[root@rocky docker-compose]# docker network ls

NETWORK ID NAME DRIVER SCOPE

46947c7695b7 bridge bridge local

9f1b3a9a759f docker-compose_default bridge local

219b2e97e8e8 docker_gwbridge bridge local

900f9f3284e0 host host local

1111c925d0de none null local

07f217159cd4 root_default bridge local

Chapter 10 Container Orchestration Platforms

506

We can see clearly a network named docker-compose_default, which is

the network that was automatically created for the service deployed.

Now that we checked our service, we can shut it down, stopping and

removing the containers.

[root@rocky docker-compose]# docker compose down

[+] Running 2/2

 ✔ Container docker-compose-web-1 Removed 1.3s

 ✔ Network docker-compose_default Removed

�Creating a Multi-container Service
Now that we’re a bit more familiar with docker compose, let’s see a second

example.

This time we’ll use several containers so the YAML file will be a bit

more complicated. This is the file that we’ll use.

[root@rocky docker-compose]# cat docker-compose-example2.yaml

version: "3"

services:

 postgresql:

 image: postgres

 restart: always

 environment:

 - POSTGRES_PASSWORD="password"

 volumes:

 - pgdata:/var/lib/postgresql/data

 adminer:

 image: adminer

 restart: always

Chapter 10 Container Orchestration Platforms

507

 ports:

 - 8080:8080

volumes:

 pgdata:

We keep using version 3. We define two services. For the postgresql

service, we use the postgres image; we include the restart option to

make sure that the service restarts automatically every time the Docker

service restarts. For a postgres container to work, we need to define an

environment variable with the name POSTGRES_PASSWORD and the

password for the Postgres database. We also specify that we’ll use a volume

named pgdata mounted at /var/lib/postgresql/data.

For the adminer service, we use the adminer image. If you’re not

familiar with it, adminer is a PHP application used to manage databases.

We also tell Docker to restart this container automatically, and we map

port 8080 in the host to port 8080 in the container.

Finally, we define the local volume pgdata.

We’re ready to deploy these services; this time we’ll use the --detach

option so that the services keep running in the background after the

execution. We also need to use -f to specify the name of the file because in

this occasion, we’re not using the default docker-compose.yml name.

[root@rocky docker-compose]# docker compose -f docker-compose-

ejemplo.yaml up --detach

[+] Running 3/3

 ✔ Network docker-compose_default Created 0.4s

 ✔ Container docker-compose-adminer-1 Started 0.7s

 ✔ Container docker-compose-postgresql-1 Started 0.7s

Chapter 10 Container Orchestration Platforms

508

When we list the containers, we’ll see now two different containers.

[root@rocky docker-compose]# docker compose ps

NAME IMAGE

 COMMAND SERVICE CREATED

STATUS PORTS

docker-compose-adminer-1 adminer

 "entrypoint.sh php -…" adminer 2 minutes ago

Up 2 minutes 0.0.0.0:8080->8080/tcp, :::8080->8080/tcp

docker-compose-postgresql-1 postgres

 "docker-entrypoint.s…" postgresql 2 minutes ago

Up 2 minutes 5432/tcp

The services are up and running, so we can use a browser and point it

to port 8080 in the host (Figure 10-1).

Figure 10-1.  Accessing adminer

Chapter 10 Container Orchestration Platforms

509

To connect to the PostgreSQL instance running in the second

container, we need to know the IP address of the second container. We can

obtain this information with docker container inspect, as we saw in the

previous chapter.

[root@rocky docker-compose]# docker container inspect docker-

compose-postgresql-1

 "IPAddress": "172.22.0.3",

With this information and using the default user and database

(postgres in both cases) and the password specified in the file, we can

establish the connection with the PostgreSQL instance (Figure 10-2).

Figure 10-2.  Connection to the PostgreSQL instance established

When we finish this second test, we can shut the services down as well.

[root@rocky docker-compose]# docker compose -f docker-compose-

ejemplo.yaml down

[+] Running 3/3

Chapter 10 Container Orchestration Platforms

510

 ✔ Container docker-compose-postgresql-1 Removed

 0.4s

 ✔ Container docker-compose-adminer-1 Removed

 0.4s

 ✔ Network docker-compose_default Removed

In both of our examples, we used images from the Docker hub registry

to deploy our services, but it is possible to use the option “build” in our

docker-compose file. In that case, we need to type the path of a Dockerfile

with the instructions to build a container.

We also said before that docker compose will create automatically a

network to be used by the services we are deploying. But if we want to, we

can use the “network” option and set the network that will be used.

�docker swarm
The original orchestration solution developed by Docker is still included

with the Docker engine packages, so we don't need to install any

additional software.

�docker swarm Architecture
In docker swarm, we have two types of nodes:

•	 Managers: These nodes manage where applications

are deployed. Besides that, they can also execute

workloads like the worker nodes.

•	 Workers: These nodes execute workloads.

Chapter 10 Container Orchestration Platforms

511

�Initializing a docker swarm Cluster
To start working with docker swarm, we don’t need to install any

additional software. We just need to use the docker swarm commands. To

create a docker swarm cluster, we’ll execute docker swarm init.

[root@rocky ~]# docker swarm init

Swarm initialized: current node (llg3pu6qhi0btehudzt0ut9sz) is

now a manager.

To add a worker to this swarm, run the following command:

 �docker swarm join --token SWMTKN-1-137120iv6byj47mtmfwoz

1h5p54gog8eb2vjjpx40l84bsbiyr-7hi1bbdgw6bvgayzz6e0oghyu

192.168.1.51:2377

To add a manager to this swarm, run 'docker swarm join-token

manager' and follow the instructions.

The command exited successfully, and it shows the command we need

to use to add worker nodes to the docker swarm cluster. As the cluster is

already initialized, we can list its nodes.

[root@rocky ~]# docker node ls

ID HOSTNAME STATUS

AVAILABILITY MANAGER STATUS ENGINE VERSION

llg3pu6qhi0btehudzt0ut9sz * rocky.example.com Ready

Active Leader 26.1.3

Obviously, right now we only have one node. This node is a manager; it is

ready and it is the leader. Being the leader means that when there is an even

number of manager nodes, the leader has the last word about any decision.

Another interesting command is docker node inspect, which shows

data like the status of the node.

[root@rocky ~]# docker node inspect llg3pu6qhi0btehudzt0ut9sz

Chapter 10 Container Orchestration Platforms

512

We’re already familiar with the docker info command. When having

a docker swarm cluster, this command will also show some information

about that cluster.

[root@rocky ~]# docker info

.

.

.

 Swarm: active

 NodeID: llg3pu6qhi0btehudzt0ut9sz

 Is Manager: true

 ClusterID: w3kqss3zllzjefuw5bkwz4109

 Managers: 1

 Nodes: 1

 Default Address Pool: 10.0.0.0/8

 SubnetSize: 24

 Data Path Port: 4789

 Orchestration:

 Task History Retention Limit: 5

 Raft:

 Snapshot Interval: 10000

 Number of Old Snapshots to Retain: 0

 Heartbeat Tick: 1

 Election Tick: 10

 Dispatcher:

 Heartbeat Period: 5 seconds

 CA Configuration:

.

.

.

Chapter 10 Container Orchestration Platforms

513

�Adding Additional Nodes to the Swarm Cluster
When working with a docker swarm cluster, the nodes need to

communicate between them. We can check the ports dockerd is listening

on by identifying the PID and using lsof to see the open ports. Usually

this should be done automatically when installing the cluster, but we’ll

check it manually to be sure and to better understand how the swarm

cluster works.

[root@rocky ~]# ps -ef | grep dockerd
root 40274 1 0 jul05 ? 00:00:04 /usr/bin/

dockerd -H fd:// --containerd=/run/containerd/containerd.sock

root 63943 50107 0 03:31 pts/0 00:00:00 grep

 --color=auto dockerd

[root@rocky ~]# lsof -p 40274 | grep -i ipv
dockerd 40274 root 41u IPv6 200460

 0t0 TCP *:swarm (LISTEN)

dockerd 40274 root 52u IPv6 200488

 0t0 TCP *:7946 (LISTEN)

dockerd 40274 root 54u IPv6 200489

 0t0 UDP *:7946

We can see that our only manager node is listening on port 7946/tcp

and on swarm port (2377/tcp).

[root@rocky ~]# grep swarm /etc/services

swarm 2377/tcp �# RPC interface for

Docker Swarm

We need to make sure that the local firewall allows for traffic in

these ports.

Chapter 10 Container Orchestration Platforms

514

[root@rocky ~]# firewall-cmd --add-port=2377/tcp

success

[root@rocky ~]# firewall-cmd --add-port=2377/tcp --permanent

success

[root@rocky ~]# firewall-cmd --add-port=7946/tcp --permanent

success

[root@rocky ~]# firewall-cmd --add-port=7946/tcp

success

[root@rocky ~]# firewall-cmd --add-port=7946/udp

success

[root@rocky ~]# firewall-cmd --add-port=7946/udp --permanent

success

Now we’re ready to add a second node to the cluster. The token

needed to join a new worker node was displayed when we executed

docker swarm init, but we can check it at any time with docker swarm
join-token worker.

[root@rocky ~]# docker swarm join-token worker

To add a worker to this swarm, run the following command:

 �docker swarm join --token SWMTKN-1-137120iv6byj47mtmfwoz

1h5p54gog8eb2vjjpx40l84bsbiyr-7hi1bbdgw6bvgayzz6e0oghyu

192.168.1.51:2377

We get to the second node and type the command.

[root@apollo ~]# docker swarm join --token SWMTKN-

1-137120iv6byj47mtmfwoz1h5p54gog8eb2vjjpx40l84bsbi

yr-7hi1bbdgw6bvgayzz6e0oghyu 192.168.1.51:2377

This node joined a swarm as a worker.

The output of the command shows that the node joined the swarm. We

can now list both nodes of the cluster.

Chapter 10 Container Orchestration Platforms

515

[root@rocky ~]# docker node ls

ID HOSTNAME STATUS

 AVAILABILITY MANAGER STATUS ENGINE VERSION

so8rbhx9dav9k7j8ezgopine5 apollo.example.com Ready

 Active 20.10.17

llg3pu6qhi0btehudzt0ut9sz * rocky.example.com Ready

 Active Leader 26.1.3

It is important to note that management commands like docker node

can only be executed on manager nodes. We have many subcommands

available when working with nodes; we can see them in the contextual

help. For instance, if we wanted to promote a worker node (apollo) to a

manager node, we’d execute the following command (from a manager):

[root@rocky ~]# docker node promote so8rbhx9dav9k7j8ezgopine5

If later we want to demote the node back to worker, we can use docker
node demote. For now, we’ll keep working with a single manager and a

single worker.

�Deploying Services in docker swarm
Similarly to what we have seen with docker compose, in docker swarm, we

also deploy services. If we list the current services, we’ll see there is none.

[root@rocky ~]# docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

We’re going to deploy our first service. We’ll deploy a service based on

the httpd image(Apache Web Server).

[root@rocky ~]# docker service create

--name my_web_service httpd

j6e1857uaqatxrcr5i8rdu6wd

Chapter 10 Container Orchestration Platforms

516

overall progress: 1 out of 1 tasks

1/1: running [==>]

verify: Service converged

The service converged successfully. This means that it was deployed

in all the nodes in which it should be deployed. When deploying a service,

we can explicitly set in which nodes it will be deployed. In this example,

we didn’t so the service was deployed in the only worker node currently

running.

We can now list the service we just deployed.

[root@rocky ~]# docker service ls

ID NAME MODE REPLICAS

IMAGE PORTS

j6e1857uaqat my_web_service replicated 1/1

httpd:latest

We can see the ID and the name of the service, the image it is based on,

and the number of replicas. In this case, we have one running replica of a

maximum of one.

When deploying the service, we can choose between two modes:

•	 Global: When in this mode, a service will execute in all

nodes of the cluster.

•	 Replicated: In this case, the service will run in one or

more nodes of the cluster, depending on the number of

replicas set and the possible constraints.

We have just mentioned constraints. We can set constraints to better

control on which nodes a service will run on.

At any point, we can get information from the service with docker
service inspect.

[root@rocky ~]# docker service inspect my_web_service

Chapter 10 Container Orchestration Platforms

517

We can also list the processes in a service with docker service ps.

[root@rocky ~]# docker service ps my_web_service

ID NAME IMAGE

NODE DESIRED STATE CURRENT STATE

ERROR PORTS

ttrt7az26dyb my_web_service.1 httpd:latest

rocky.example.com Running Running 3 minutes ago

We can change some settings on the service while it is running. We can

do that with docker service update. For instance, if we want to update the

number of replicas to 2, we’ll execute this command:

[root@rocky ~]# docker service update --replicas 2 my_

web_service

my_web_service

overall progress: 2 out of 2 tasks

1/2: running [==>]

2/2: running [==>]

verify: Service converged

Let’s list the processes in the service again. This time we see there are

two processes running, one on each node.

[root@rocky ~]# docker service ps my_web_service

ID NAME IMAGE

NODE DESIRED STATE CURRENT STATE

ERROR PORTS

ttrt7az26dyb my_web_service.1 httpd:latest

rocky.example.com Running Running 5 minutes ago

ki7hv1zbd8f2 my_web_service.2 httpd:latest apollo.

example.com Running Running about a minute ago

Chapter 10 Container Orchestration Platforms

518

The service we have deployed is an Apache Web Server. However,

we don’t see any published port in the output of the docker service ps

command. We could also check this with docker service ls. The container

is listening internally on port 80. But we can’t access it from outside the

host because the port is not published.

To publish the port, we’ll use the docker service update command again.

[root@rocky ~]# docker service update --publish-add 80 my_

web_service

my_web_service

overall progress: 2 out of 2 tasks

1/2: running [==>]

2/2: running [==>]

verify: Service converged

This time, when listing the service, we can clearly see the port

mapping.

[root@rocky ~]# docker service ls

ID NAME MODE REPLICAS

IMAGE PORTS

j6e1857uaqat my_web_service replicated 2/2

httpd:latest *:30000→80/tcp

When we published the port, we didn’t say which port to map on

the host, so the system chose port 30000/tcp. We’ll open this port on

the nodes.

[root@rocky ~]# firewall-cmd --add-port=30000/tcp

success

[root@apollo ~]# firewall-cmd --add-port=30000/tcp

success

If we launch a web browser now and point it to any of the nodes, we’ll

see the Apache default web page (Figure 10-3).

Chapter 10 Container Orchestration Platforms

519

Figure 10-3.  Accessing our httpd docker swarm service

If for any reason any of the replicas fails, the node shuts down, etc. A

new replica will be immediately launched.

�Overlay Networks
In the previous chapter, we studied Docker and the different types of

network that we could use. We already mentioned that there was a network

type, named overlay, that appeared when working with a docker swarm.

[root@rocky ~]# docker network ls

NETWORK ID NAME DRIVER SCOPE

46947c7695b7 bridge bridge local

1ab169c903b8 docker-compose_default bridge local

219b2e97e8e8 docker_gwbridge bridge local

900f9f3284e0 host host local

jtbsiwshur7g ingress overlay swarm

1111c925d0de none null local

07f217159cd4 root_default bridge local

Chapter 10 Container Orchestration Platforms

520

An overlay network spans across all the nodes in the docker

swarm cluster. It sits on top of the host network to allow containers to

communicate securely independently of the node they’re running on.

�Constraints
Let’s take a look again at our service.

[root@rocky ~]# docker service ls

ID NAME MODE REPLICAS

IMAGE PORTS

j6e1857uaqat my_web_service replicated 2/2

httpd:latest *:30000→80/tcp

Remember that we have a replicated service, running currently two

replicas. Let’s see the location of those replicas with docker service ps.

[root@rocky ~]# docker service ps my_web_service

ID NAME IMAGE

NODE DESIRED STATE CURRENT STATE

ERROR PORTS

g68hokno0u5e my_web_service.1 httpd:latest

rocky.example.com Running Running 10 minutes ago

ttrt7az26dyb _ my_web_service.1 httpd:latest

rocky.example.com Shutdown Shutdown 10 minutes ago

inbm1zk8rfwz my_web_service.2 httpd:latest

apollo.example.com Running Running 12 minutes ago

ki7hv1zbd8f2 _ my_web_service.2 httpd:latest

apollo.example.com Shutdown Shutdown 12 minutes ago

We see that one replica is running on rocky and the other one is

running on apollo. We can also see that a couple of instances were

previously running and were shut down.

Chapter 10 Container Orchestration Platforms

521

We’re going to use a constraint. A constraint makes sure that a service

runs only on the nodes that comply with the constraint. As an example,

we’ll use a constraint that forces the execution of the service only on nodes

with the role worker.

[root@rocky ~]# docker service update --constraint-add node.

role==worker my_web_service

my_web_service

overall progress: 2 out of 2 tasks

1/2: running [==>]

2/2: running [==>]

verify: Service converged

Once the service has converged, we can execute again docker
service ps.

[root@rocky ~]# docker service ps my_web_service

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

r547bz1r6xeb my_web_service.1 httpd:latest apollo.

example.com Running Running 3 minutes ago

g68hokno0u5e _ my_web_service.1 httpd:latest rocky.

example.com Shutdown Shutdown 49 seconds ago

ttrt7az26dyb _ my_web_service.1 httpd:latest rocky.

example.com Shutdown Shutdown 13 minutes ago

inbm1zk8rfwz my_web_service.2 httpd:latest apollo.

example.com Running Running 14 minutes ago

ki7hv1zbd8f2 _ my_web_service.2 httpd:latest apollo.

example.com Shutdown Shutdown 14 minutes ago

We can see that we still have two running instances, but this time both

instances are running on apollo, the worker node.

Chapter 10 Container Orchestration Platforms

522

�Creating a Global Service
We already said that a global service is a service that runs on every node in

the cluster, unless any constraint prevents its execution in certain nodes.

The way to create a global service is basically the same as the one we

saw when we created a replicated service. The only difference is that we

need to specify the --global option. Otherwise, we’ll create a replicated

service, because that’s the default value.

[root@rocky ~]# docker service create --mode global --publish

8000:80 nginx:latest

w0fdqm3u7mib7u6maw4bra6rn

overall progress: 2 out of 2 tasks

llg3pu6qhi0b: running [====================================>]

so8rbhx9dav9: running [=====================================>]

verify: Service converged

After the service converged, we can list the services and see a

replicated service and a new global service.

[root@rocky ~]# docker service ls

ID NAME MODE

REPLICAS IMAGE PORTS

j6e1857uaqat my_web_service replicated

2/2 httpd:latest *:30000->80/tcp

w0fdqm3u7mib trusting_bouman global

2/2 nginx:latest *:8000→80/tcp

If we check on which nodes the service is running, we’ll see that it is

running on the two nodes of our docker swarm cluster.

Chapter 10 Container Orchestration Platforms

523

[root@rocky ~]# docker service ps trusting_bouman

ID NAME

IMAGE NODE DESIRED STATE CURRENT

STATE ERROR PORTS

7mzlpbxf8dlf trusting_bouman.

llg3pu6qhi0btehudzt0ut9sz nginx:latest rocky.example.com

Running Running 46 seconds ago

pi3g75s9pkym trusting_bouman.

so8rbhx9dav9k7j8ezgopine5 nginx:latest apollo.example.

com Running Running 3 minutes ago

�Docker Secrets
This is a very useful object. Previously, when we studied docker compose,

we deployed a service with a PostgreSQL container. For the container to

work properly, we had to create an environmental variable to store the

PostgreSQL password in plain text.

Storing a password in plain text can be OK for a test, but it’s definitely

unacceptable in a production environment. To avoid that, we use Docker

secrets.

We’re going to use a secret to store the password of the PostgreSQL

database.

[root@rocky ~]# echo password | docker secret create postgres_
password -

1zfr9pou9u7f5geaevg1j3ds9

Once the secret is created, we can list it. And we can also inspect it, but

we’ll see that the value we assigned to it, “password” in this example, does

not appear anywhere in plain text.

Chapter 10 Container Orchestration Platforms

524

[root@rocky ~]# docker secret ls

ID NAME DRIVER

 CREATED UPDATED

1zfr9pou9u7f5geaevg1j3ds9 postgres_password

 40 seconds ago 40 seconds ago

[root@rocky ~]# docker secret inspect postgres_password

[

 {

 "ID": "1zfr9pou9u7f5geaevg1j3ds9",

 "Version": {

 "Index": 194

 },

 "CreatedAt": "2024-07-06T02:15:42.86045616Z",

 "UpdatedAt": "2024-07-06T02:15:42.86045616Z",

 "Spec": {

 "Name": "postgres_password",

 "Labels": {}

 }

 }

]

We’ll see how to use Docker secrets in a moment.

�Stacks
So far, we’ve been defining the services in a very simple way, directly

from the command line. This is OK for simple services, but when the

service becomes more complicated and we need to specify many different

options, it is much more convenient to use a file.

We’ll see an example of one of these files here, and later we’ll review

the options used.

Chapter 10 Container Orchestration Platforms

525

[root@rocky ~]# cat stackPG.yml

version: "3.5"

services:

 postgresql:

 image: postgres:latest

 deploy:

 placement:

 constraints:

 - node.role == worker

 environment:

 - POSTGRES_PASSWORD_FILE=/run/secrets/postgres_password

 secrets:

 - source: postgres_password

 target: "/run/secrets/postgres_password"

 volumes:

 - type: volume

 source: POSTGREDATA

 target: /var/lib/postgresql/data

 ports:

 - target: 5432

 published: 5432

 protocol: tcp

secrets:

 postgres_password:

 external: true

volumes:

 POSTGREDATA:

The syntax is pretty much the same as the one we used in docker

compose files. We begin by telling the version used. Then we begin

defining the services to deploy. In this example, we’re deploying a single

service.

Chapter 10 Container Orchestration Platforms

526

In our only service, we’ll use a postgres image, and we’ll apply a

constraint so that the service only runs on worker nodes. We know that

for the postgres container to work, we need to pass it somehow the

PostgreSQL password. We’ll do it by defining an environment variable

named POSTGRES_PASSWORD_FILE, but this variable will point to a

location generated by the Docker secret we had created before.

In the service definition, we need to specify that we’ll be using a

volume and mapping port 5432/TCP, and of course the Docker secret we

just talked about.

After the service definition, we have additional sections to define the

secret and the volume that will be used by the postgres service.

This file, in which we defined a service and also a secret and a volume

that the service uses, is called a stack.

We’ll deploy this stack with docker stack deploy and assign it the name

stackPG.

[root@rocky ~]# docker stack deploy -c stackPG.yml stackPG

Creating network stackPG_default

Creating service stackPG_postgresql

After the deployment is complete, we can list the stacks. And we’ll see

the stackPG stack.

[root@rocky ~]# docker stack ls

NAME SERVICES

stackPG 1

We can list the running tasks in the stack with docker stack ps.

Chapter 10 Container Orchestration Platforms

527

[root@rocky ~]# docker stack ps stackPG

ID NAME

IMAGE NODE DESIRED STATE CURRENT

STATE ERROR PORTS

1fcmcbrjhqar stackPG_postgresql.1

postgres:latest apollo.example.com Ready Ready 3

minutes ago

We see that the stack has been deployed in the only worker node that

we have available right now. To check the port mapping, we can execute

docker stack services.

[root@rocky ~]# docker stack services stackPG

ID NAME MODE REPLICAS

 IMAGE PORTS

oe9ljx145lsq stackPG_postgresql replicated 0/1

 postgres:latest *:5432->5432/tcp

�Kubernetes
Kubernetes is probably the most used container orchestration platform.

We’ll begin by looking at Kubernetes architecture and then install it and

work with it.

�Kubernetes Architecture
The architecture of Kubernetes is a bit more complicated than that of

docker swarm. We’ll begin by taking a look at Figure 10-4.

Chapter 10 Container Orchestration Platforms

528

Figure 10-4.  Kubernetes architecture. Image taken from Wikipedia
used under Creative Commons License

In a Kubernetes cluster, we have two different parts:

•	 The Kubernetes Control Plane or the

Kubernetes Master

•	 The worker nodes

The Control Plane manages the whole cluster, deciding how

to distribute the workload. Inside the Control Plane we have these

components:

•	 The etcd database: The database that stores the cluster

configuration.

•	 The API server: It offers the API that can be queried to

manage Kubernetes.

Chapter 10 Container Orchestration Platforms

https://creativecommons.org/licenses/by-sa/3.0/

529

•	 The scheduler: This component is in charge of deciding

on which node a pod must run. We’ll see what a pod is

very soon.

•	 The control manager: It is in charge of replicating

components, handling failures of nodes, checking the

health of the nodes, etc.

On the other hand, the worker node runs the needed container. It has

these components:

•	 Kubelet: This agent is the component that makes sure

that the pods that should run in this node actually run.

To do it, it is continually communicating with the API

server to know which pods are scheduled to run in

the node.

•	 Kube-proxy: It performs load-balancing operations.

•	 Container runtime: This is the component that actually

runs the containers inside the pods. It can be Docker,

rkt, or others.

�Installing minikube
To study Kubernetes, we'll install minikube; this is an all-in-one solution

intended to provide everything that is needed to better understand

Kubernetes, installing all the components in a single desktop/laptop

computer. Of course this is not the optimal way to deploy Kubernetes

in a production environment, in which case you should install different

components in different nodes, but for didactical purposes, it is fine.

Chapter 10 Container Orchestration Platforms

530

According to the minikube official web page (Figure 10-5), all we need

to install Kubernetes is a computer with the following requirements:

•	 Two CPUs

•	 2 GB of free RAM

•	 20 GB of free disk space

•	 An Internet connection

•	 A container or virtual machine manager, such as

Docker, Hyper-V, and VirtualBox

Figure 10-5.  minikube web page

Depending on our OS, we have many options available for installing

Kubernetes; in our case, we'll install it in an Ubuntu 22 computer, and we'll

use the binary installation, though we could have decided to install the deb

package as well.

We begin by downloading the binary file.

antonio@antonio-Laptop:~$ curl -LO https://storage.googleapis.

com/minikube/releases/latest/minikube-linux-amd64

Chapter 10 Container Orchestration Platforms

https://minikube.sigs.k8s.io/docs/start/

531

And then we install it.

antonio@antonio-Laptop:~$ sudo install minikube-linux-amd64 /

usr/local/bin/minikube

We also need the kubectl command to manage our Kubernetes

environment. According to the Kubernetes official page, we can install it

with these two commands:

antonio@antonio-Laptop:~$ curl -LO "https://dl.k8s.io/

release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/

linux/amd64/kubectl"

antonio@antonio-Laptop:~$ sudo install -o root -g root -m 0755

kubectl /usr/local/bin/kubectl

After the installation, we can check the version to make sure that it is

running properly.

antonio@antonio-Laptop:~$ kubectl version --client

Client Version: version.Info{Major:"1", Minor:"20",

GitVersion:"v1.20.4", GitCommit:"e87da0bd6e03ec3f

ea7933c4b5263d151aafd07c", GitTreeState:"clean",

BuildDate:"2021-02-18T16:12:00Z", GoVersion:"go1.15.8",

Compiler:"gc", Platform:"linux/amd64"}

�Pods
Before we start working with Kubernetes, we must define the

concept of pod.

A pod is the smallest management unit in Kubernetes. It can contain

one or more containers. If there are more than one container in the pod,

they’ll share the same IP address.

Chapter 10 Container Orchestration Platforms

532

�First Steps with minikube
We can check the status of our minikube installation at any point in time

with the minikube status command.

antonio@antonio-Laptop:~$ minikube status

minikube

minikube

type: Control Plane

host: Stopped

kubelet: Stopped

apiserver: Stopped

kubeconfig: Stopped

Obviously, the first thing to do to work with minikube is to start it.

antonio@antonio-Laptop:~$ minikube start

 minikube v1.32.0 on Ubuntu 22.04

 Using the virtualbox driver based on existing profile

 Starting control plane node minikube in cluster minikube

 Restarting existing virtualbox VM for "minikube" ...

 Preparing Kubernetes v1.28.3 on Docker 24.0.7 ...

 Configuring bridge CNI (Container Networking Interface) ...

 ▪ Using image docker.io/kubernetesui/dashboard:v2.7.0
 ▪ Using image docker.io/kubernetesui/metrics-scraper:v1.0.8
 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
──
│ │
│ �You have selected "virtualbox" driver, but there │
│ �are better options ! │
│ �For better performance and support consider │
│ �using a different driver: │
│ - qemu2 │

Chapter 10 Container Orchestration Platforms

533

│ │
│ To turn off this warning run: │
│ │
│ �$ minikube config set WantVirtual │
│ BoxDriverWarning false │
│ │
│ │
│ �To learn more about on minikube drivers │
│ �checkout https://minikube.sigs.k8s.io/docs/drivers/ │
│ �To see benchmarks checkout │
│ https://minikube.sigs.k8s.io/docs/benchmarks/cpuusage/ │
│ │
──
 Verifying Kubernetes components...

 Some dashboard features require the metrics-server addon. To

enable all features please run:

 minikube addons enable metrics-server

 Enabled addons: storage-provisioner, default-storageclass,

dashboard

 Done! kubectl is now configured to use "minikube" cluster

and "default" namespace by default

As we can see in one of the last messages, kubectl is configured to use

minikube cluster. We can use it to list the existing pods in all namespaces

(option -A).

antonio@antonio-Laptop:~$ kubectl get pods -A

NAMESPACE NAME

 READY STATUS RESTARTS AGE

kube-system coredns-5dd5756b68-whfzc

Chapter 10 Container Orchestration Platforms

534

 1/1 Running 5 (14m ago) 6d1h

kube-system etcd-minikube

 1/1 Running 5 (14m ago) 6d1h

kube-system kube-apiserver-minikube

 1/1 Running 5 (13m ago) 6d1h

kube-system kube-controller-manager-minikube

 1/1 Running 5 (14m ago) 6d1h

kube-system kube-proxy-ktzh4

 1/1 Running 5 (14m ago) 6d1h

kube-system kube-scheduler-minikube

 1/1 Running 5 (14m ago) 6d1h

kube-system storage-provisioner

 1/1 Running 10 (12m ago) 6d1h

kubernetes-dashboard dashboard-metrics-scraper-7fd5cb4ddc-nbs2v

 1/1 Running 2 (14m ago) 6d1h

kubernetes-dashboard kubernetes-dashboard-8694d4445c-klkd9

 1/1 Running 3 (14m ago) 6d1h

We can also start the dashboard to manage our Kubernetes

environment from a web browser.

antonio@antonio-Laptop:~$ minikube dashboard

 Verifying dashboard health ...

 Launching proxy ...

 Verifying proxy health ...

 Opening http://127.0.0.1:46379/api/v1/namespaces/

kubernetes-dashboard/services/http:kubernetes-dashboard:/proxy/

in your default browser...

The system will automatically launch our default web browser

(Figure 10-6).

Chapter 10 Container Orchestration Platforms

535

Figure 10-6.  Kubernetes dashboard

In the dashboard, we can see that the default namespace appears

empty. When we deploy new apps, we’ll see them here. We can start by

deploying the sample hello-minikube application.

antonio@antonio-Laptop:~$ kubectl create deployment hi-minikube

 --image=k8s.gcr.io/echoserver:1.4

deployment.apps/hi-minikube created

Besides deploying the application, we’ll expose it to the outer world.

antonio@antonio-Laptop:~$ kubectl expose deployment hi-minikube

 --type=NodePort --port=8080

service/hi-minikube exposed

Once exposed, we can list the associated service(s) to the

corresponding application.

antonio@antonio-Laptop:~$ kubectl get services hi-minikube

NAME TYPE CLUSTER-IP EXTERNAL-IP

Chapter 10 Container Orchestration Platforms

536

 PORT(S) AGE

hi-minikube NodePort 10.104.42.3 <none>

 8080:31557/TCP 2m

We can access the service with a web browser. minikube will

automatically launch it for us after invoking the minikube service

command (Figure 10-7).

antonio@antonio-Laptop:~$ minikube service hi-minikube

|-----------|-------------|-------------|------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	hi-minikube	8080	http://192.168.59.101:31557
-----------	-------------	-------------	------------------------
 Opening service default/hi-minikube in default browser...

Figure 10-7.  hi-minikube service

Chapter 10 Container Orchestration Platforms

537

In the dashboard, we can now see the deployment in the default

namespace (Figure 10-8).

Figure 10-8.  Dashboard with one deployment in the default
namespace

We can get the list of the add-ons in our cluster. For the purposes of the

exam, we don’t need to understand each and every item from the list. We’ll

see the helm add-on listed. In the next section, we’ll see how to use Helm.

antonio@antonio-Laptop:~$ minikube addons list

|-----------------------------|----------|--------------|--------------------------------|
ADDON NAME	PROFILE	STATUS	MAINTAINER
ambassador	minikube	disabled	3rd party (Ambassador)
auto-pause	minikube	disabled	minikube
cloud-spanner	minikube	disabled	Google
csi-hostpath-driver	minikube	disabled	Kubernetes
dashboard	minikube	enabled ✅	Kubernetes
default-storageclass	minikube	enabled ✅	Kubernetes
efk	minikube	disabled	3rd party (Elastic)
freshpod	minikube	disabled	Google

Chapter 10 Container Orchestration Platforms

538

gcp-auth	minikube	disabled	Google
gvisor	minikube	disabled	minikube
headlamp	minikube	disabled	3rd party (kinvolk.io)
helm-tiller	minikube	disabled	3rd party (Helm)
inaccel	minikube	disabled	3rd party (InAccel
			[info@inaccel.com])
ingress	minikube	disabled	Kubernetes
ingress-dns	minikube	disabled	minikube
inspektor-gadget	minikube	disabled	3rd party
			(inspektor-gadget.io)
istio	minikube	disabled	3rd party (Istio)
istio-provisioner	minikube	disabled	3rd party (Istio)
kong	minikube	disabled	3rd party (Kong HQ)
kubeflow	minikube	disabled	3rd party
kubevirt	minikube	disabled	3rd party (KubeVirt)
logviewer	minikube	disabled	3rd party (unknown)
metallb	minikube	disabled	3rd party (MetalLB)
metrics-server	minikube	disabled	Kubernetes
nvidia-device-plugin	minikube	disabled	3rd party (NVIDIA)
nvidia-driver-installer	minikube	disabled	3rd party (Nvidia)
nvidia-gpu-device-plugin	minikube	disabled	3rd party (Nvidia)
olm	minikube	disabled	3rd party (Operator Framework)
pod-security-policy	minikube	disabled	3rd party (unknown)
portainer	minikube	disabled	3rd party (Portainer.io)
registry	minikube	disabled	minikube
registry-aliases	minikube	disabled	3rd party (unknown)
registry-creds	minikube	disabled	3rd party (UPMC Enterprises)
storage-provisioner	minikube	enabled ✅	minikube
storage-provisioner-gluster	minikube	disabled	3rd party (Gluster)
storage-provisioner-rancher	minikube	disabled	3rd party (Rancher)
volumesnapshots	minikube	disabled	Kubernetes

|-----------------------------|----------|--------------|--------------------------------|

Chapter 10 Container Orchestration Platforms

539

�Deploying a Pod in Kubernetes
Let’s see a more practical example and create a pod. As we said, a pod is

the smallest management unit in Kubernetes and can contain one or more

containers. We’ll create the following file in YAML format:

antonio@antonio-Laptop:~/kubernetes$ cat firstpod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: firstpod

 labels:

 example: firstpod

spec:

 containers:

 - name: containerfirstpod

 image: nginx

The syntax is quite simple. First, we specify the version (v1 in this

case). Then, we enumerate the metadata; here we set the name of the pod,

and we can also add labels. Finally, in “specs”, we define the container or

containers in the pod. In this example, we use an nginx container.

We deploy the pod with kubectl apply.

antonio@antonio-Laptop:~/kubernetes$ kubectl apply -f

firstpod.yaml

pod/firstpod created

We can list the pod and see the new pod.

antonio@antonio-Laptop:~/kubernetes$ kubectl get pods

NAME READY STATUS RESTARTS AGE

firstpod 1/1 Running 0 11s

hi-minikube-7fdf9777bc-x75zn 1/1 Running 0 7h34m

Chapter 10 Container Orchestration Platforms

540

Another interesting command is kubectl logs, which allows us to see

the logs of the pod.

antonio@antonio-Laptop:~/kubernetes$ kubectl logs firstpod

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will

attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts in /docker-

entrypoint.d/

.

.

.

2024/08/18 15:02:48 [notice] 1#1: OS: Linux 5.10.57

2024/08/18 15:02:48 [notice] 1#1: getrlimit(RLIMIT_NOFILE):

1048576:1048576

2024/08/18 15:02:48 [notice] 1#1: start worker processes

2024/08/18 15:02:48 [notice] 1#1: start worker process 29

2024/08/18 15:02:48 [notice] 1#1: start worker process 30

When we finish working with the pod, we can safely delete it.

antonio@antonio-Laptop:~/kubernetes$ kubectl delete pod firstpod

pod "firstpod" deleted

�Replicasets
When we deploy a single pod in Kubernetes, we can’t scale the number of

pods if the demand increases, which defeats the very purpose of container

orchestration. To be able to scale the number of pods depending on the

increase or decrease of the demand, we can deploy a replicaset.

We’ll create a new YAML file with this content. The syntax is similar to

what we saw in the previous example of the pod. Now we use version apps/

v1 and use the kind Replicaset instead of Pod; we also specify the base

image for the container and the selector that will be used to identify the

members of the replicaset, the label example: firstreplica in this case.

Chapter 10 Container Orchestration Platforms

541

antonio@antonio-Laptop:~/kubernetes$ cat firstreplicaset.yaml

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: firstreplica

 labels:

 example: firstreplica

spec:

 replicas: 3

 selector:

 matchLabels:

 example: firstreplica

 template:

 metadata:

 name: containerfirstreplica

 labels:

 example: firstreplica

 spec:

 containers:

 - name: containerfirstreplica

 image: nginx

Again, we use kubectl apply to deploy the replicaset.

antonio@antonio-Laptop:~/kubernetes$ kubectl apply -f

firstreplicaset.yaml

replicaset.apps/firstreplica created

We can list the replicas and check if it was correctly deployed.

antonio@antonio-Laptop:~/kubernetes$ kubectl get replicaset

NAME DESIRED CURRENT READY AGE

firstreplica 3 3 3 53s

hi-minikube-7fdf9777bc 1 1 1 34h

Chapter 10 Container Orchestration Platforms

542

From the output, we know that three pods were deployed. We can list

those pods as well.

antonio@antonio-Laptop:~$ kubectl get pods

NAME READY STATUS RESTARTS AGE

firstreplica-4649k 1/1 Running 0 144m

firstreplica-8pn8d 1/1 Running 0 144m

firstreplica-dps8z 1/1 Running 0 144m

hi-minikube-7fdf9777bc-x75zn 1/1 Running 1 (28h ago) 36h

When we’re done, we can delete our replicaset.

antonio@antonio-Laptop:~$ kubectl delete replicaset

firstreplica

replicaset.apps "firstreplica" deleted

�Deployments
Deployments are similar to replicasets, but they have some advantages.

For instance, when using deployments instead of replicasets, we can

update the base image in use, keeping the service available. This is

possible because the image is updated in the containers sequentially

instead of all at the same time. In fact, deployments are the preferred way

to deploy applications.

Let’s see an example by creating this new YAML file. The only new

parameter we specify here is containerPort so that we can later access this

application.

antonio@antonio-Laptop:~$ cat firstdeployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

Chapter 10 Container Orchestration Platforms

543

 name: firstdeployment

 labels:

 example: firstdeployment

spec:

 replicas: 4

 selector:

 matchLabels:

 example: firstdeployment

 template:

 metadata:

 name: firstdeployment

 labels:

 example: firstdeployment

 spec:

 containers:

 - name: containerfirstdeployment

 image: nginx

 ports:

 - containerPort: 80

And we deploy it in our Kubernetes cluster.

antonio@antonio-Laptop:~$ kubectl apply -f firstdeployment.yaml

deployment.apps/firstdeployment created

We can check the status of the deployment.

antonio@antonio-Laptop:~$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

firstdeployment 4/4 4 4 5m50s

hi-minikube 1/1 1 1 37h

Chapter 10 Container Orchestration Platforms

544

We should notice that the deployment automatically creates a

replicaset that we can also list with kubectl.

antonio@antonio-Laptop:~$ kubectl get replicaset

NAME DESIRED CURRENT READY AGE

firstdeployment-5fb89d6857 4 4 4 21h

hi-minikube-7fdf9777bc 1 1 1 2d10h

When creating the deployment, we declared a port to access nginx;

however, we’re not done yet to make the application available from the

outside. We have created the deployment, but we need to create a service.

A service in Kubernetes defines how to access the pods included in a

deployment. Let’s see an example.

antonio@antonio-Laptop:~$ kubectl expose deployment

firstdeployment --type=NodePort --port=80

service/firstdeployment exposed

We declare that we want to access the pods from the deployment

named “firstdeployment” using port 80. The “Nodeport” option sets

that we can access the application externally pointing to any node of the

Kubernetes cluster.

If we list the services now, we’ll see the new service.

antonio@antonio-Laptop:~$ kubectl get services

NAME TYPE CLUSTER-IP

 EXTERNAL-IP PORT(S) AGE

firstdeployment NodePort 10.102.167.50

 <none> 80:32614/TCP 15s

hi-minikube NodePort 10.104.42.3

 <none> 8080:31557/TCP 37h

kubernetes ClusterIP 10.96.0.1

 <none> 443/TCP 7d22h

Chapter 10 Container Orchestration Platforms

545

We’ll use kubectl port-forward to forward a local port to the port used

by the pods in the deployment.

antonio@antonio-Laptop:~$ kubectl port-forward service/

firstdeployment 9999:80

Forwarding from 127.0.0.1:9999 -> 80

Forwarding from [::1]:9999 -> 80

In a different shell, we can check that kubectl is listening locally on

port 9999.

antonio@antonio-Laptop:~$ lsof -i :9999

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

kubectl 142339 antonio 8u IPv4 2710146 0t0 TCP

localhost:9999 (LISTEN)

kubectl 142339 antonio 9u IPv6 2710147 0t0 TCP ip6-

localhost:9999 (LISTEN)

And we can open a web browser and point it to port 9999 on the

localhost (Figure 10-9).

Figure 10-9.  Accessing our nginx application on Kubernetes

Chapter 10 Container Orchestration Platforms

546

We’ll delete now the deployment so that it doesn’t affect the next

operations.

antonio@antonio-Laptop:~$ kubectl delete service firstdeployment

service "firstdeployment" deleted

antonio@antonio-Laptop:~$ kubectl delete deployment

firstdeployment

deployment.apps "firstdeployment" deleted

�Other Kubernetes-Related Items
In this brief introduction to Kubernetes, we have worked with pods,

replicasets, deployments, and services. There are, however, many more

items that we’ll define briefly here.

A configmap is an object used to store data unencrypted. They are

similar to the Docker secrets we saw when we studied docker swarm.

A secret is like a configmap, but it stores the information encrypted.

It is the equivalent on Kubernetes to the docker swarm secrets we

studied before.

A volume is something we already studied in Chapter 9. The concept is

the same, but in this case, the volume is defined in the Kubernetes cluster.

�Helm
Helm is a tool designed to help you to manage Kubernetes applications.

We could define Helm as some sort of a package manager for Kubernetes.

To understand Helm's architecture, we must introduce the concept

of "chart." A chart is a group of files that represent a set of Kubernetes

resources.

Installing Helm is very easy; we just need to go to the official page

(Figure 10-10), search for the right binary for our OS and architecture

(Figure 10-11), and download it.

Chapter 10 Container Orchestration Platforms

https://helm.sh/

547

Figure 10-10.  Helm official web page

Figure 10-11.  Downloading Helm binary

Chapter 10 Container Orchestration Platforms

548

antonio@antonio-Laptop:~/Downloads$ ls -lrth helm-v3.15.3-linux-

amd64.tar.gz

-rw-rw-r-- 1 antonio antonio 16M ago 13 00:10 helm-v3.15.3-

linux-amd64.tar.gz

We uncompress the file.

antonio@antonio-Laptop:~/Downloads$ tar -xzvf helm-v3.15.3-

linux-amd64.tar.gz

linux-amd64/

linux-amd64/helm

linux-amd64/README.md

linux-amd64/LICENSE

And we copy the binary file to a location included in our PATH.

antonio@antonio-Laptop:~/Downloads$ cd linux-amd64/

antonio@antonio-Laptop:~/Downloads/linux-amd64$ ls

helm LICENSE README.md

antonio@antonio-Laptop:~/Downloads/linux-amd64$ sudo cp helm

/usr/local/bin/

If we execute helm without any arguments, we’ll see the main options.

antonio@antonio-Laptop:~$ helm

The Kubernetes package manager

Common actions for Helm:

- helm search: search for charts

- helm pull: �download a chart to your local

directory to view

Chapter 10 Container Orchestration Platforms

549

- helm install: upload the chart to Kubernetes

- helm list: list releases of charts

.

.

.

We said before that Helm works with charts. These charts can

be downloaded from Helm repositories. Initially, we won’t have any

configured repository.

antonio@antonio-Laptop:~$ helm repo list

Error: no repositories to show

We can add, for example, the bitnami repository. Bitnami is a library of

software applications ready to be deployed.

antonio@antonio-Laptop:~$ helm repo add bitnami https://charts.

bitnami.com/bitnami

"bitnami" has been added to your repositories

The new repository was added, and we can list it.

antonio@antonio-Laptop:~$ helm repo list

NAME URL

bitnami https://charts.bitnami.com/bitnami

It is advised to update the repositories periodically.

antonio@antonio-Laptop:~$ helm repo update

Hang tight while we grab the latest from your chart

repositories...

...Successfully got an update from the "bitnami" chart

repository

Update Complete. ⎈Happy Helming!⎈

Chapter 10 Container Orchestration Platforms

550

The use of Helm is very easy; we can start by searching the available

charts in the bitnami repo.

antonio@antonio-Laptop:~$ helm search repo bitnami

NAME CHART VERSION

 APP VERSION DESCRIPTION

bitnami/airflow 19.0.1

 2.10.0 Apache Airflow is a tool to express and

execute...

bitnami/apache 11.2.14

 2.4.62 Apache HTTP Server is an open-source HTTP

serve...

bitnami/apisix 3.3.10

 3.10.0 Apache APISIX is high-performance, real-

time AP...

bitnami/appsmith 4.0.1

 1.36.0 Appsmith is an open source platform for

buildin...

bitnami/argo-cd

 7.0.3 2.12.1 Argo CD is a continuous

delivery tool for Kuber…

.

.

.

When we have located the chart that we want, we can easily install it.

antonio@antonio-Laptop:~$ helm install bitnami/apache

 --generate-name

NAME: apache-1724188480

LAST DEPLOYED: Tue Aug 20 22:56:16 2024

NAMESPACE: default

STATUS: deployed

Chapter 10 Container Orchestration Platforms

551

REVISION: 1

TEST SUITE: None

NOTES:

CHART NAME: apache

CHART VERSION: 11.2.14

APP VERSION: 2.4.62

** Please be patient while the chart is being deployed **

1. Get the Apache URL by running:

** Please ensure an external IP is associated to the

apache-1724188480 service before proceeding **

** Watch the status using: kubectl get svc --namespace default

 -w apache-1724188480 **

.

.

.

And that’s all. Apache has been deployed. We can check its status using

the command suggested by the output of Helm.

antonio@antonio-Laptop:~$ kubectl get svc --namespace default

 -w apache-1724188480

NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

apache-1724188480 LoadBalancer 10.96.19.8 <pending>

80:32176/TCP,443:31831/TCP 56s

We can access the Apache web page using kubectl to forward a local

port, similarly to what we did when we created our first deployment

(Figure 10-12).

Chapter 10 Container Orchestration Platforms

552

antonio@antonio-Laptop:~$ kubectl port-forward service/

apache-1724188480 9999:80

Figure 10-12.  Apache installed with Helm

And there is also another possibility to access Apache using the

minikube service command.

antonio@antonio-Laptop:~$ minikube service apache-1724188480

|-----------|-------------------|-------------|-----------------|
NAMESPACE	NAME	TARGET PORT	URL
default	apache-1724188480	http/80	
http://192.168.59.101:32176			
		https/443	
http://192.168.59.101:31831			
-----------	-------------------	-------------	------------------
[default apache-1724188480 http/80

https/443 http://192.168.59.101:32176

http://192.168.59.101:31831]

Chapter 10 Container Orchestration Platforms

553

Here we can see two different URLs to access Apache using http or

https (Figure 10-13).

Figure 10-13.  Accessing Apache from minikube

Finally, we can uninstall the service using helm as well.

antonio@antonio-Laptop:~helm uninstall apache-1724188480

release "apache-1724188480" uninstalled

�OpenShift
OpenShift is another container orchestration platform. Developed by

Red Hat, it includes components of Kubernetes, but it also adds new

productivity and security features.

Installing an OpenShift cluster is not a trivial task. There is an

interesting project named minishift that allows to run an OpenShift cluster

locally. Unfortunately, this project is currently inactive and hasn’t been

updated in years.

Chapter 10 Container Orchestration Platforms

https://github.com/minishift/minishift

554

At the time of writing this book, probably the easiest option to get a

grasp of OpenShift is to use the free developer sandbox offered by Red Hat

(Figure 10-14). This is free to use, though we need to register in the Red Hat

developer site.

Figure 10-14.  Red Hat developer sandbox

After launching the sandbox, we can open the OpenShift console.

To manage an OpenShift cluster, we use the oc command, though we

could also use kubectl. Many commands are identical to those that we’ve

seen when we studied Kubernetes. Of course there are also advanced

commands exclusively used on OpenShift, but we won’t see them here, as

it is outside the scope of the LPIC-3 305 exam.

We can list all the items in the OpenShift cluster with “oc get all”

(Figure 10-15).

Chapter 10 Container Orchestration Platforms

https://developers.redhat.com/developer-sandbox?source=sso

555

Figure 10-15.  Getting all objects in an OpenShift cluster

We can use the same commands we learned in Kubernetes to create

deployments (Figure 10-16).

Figure 10-16.  Creating a deployment in OpenShift

If we prefer to work visually instead of using the command line, we can

browse the sample applications available (Figure 10-17).

Chapter 10 Container Orchestration Platforms

556

Figure 10-17.  OpenShift samples

To install any of these sample applications, we just need to select it and

click “Create” (Figure 10-18).

Figure 10-18.  Installing PHP on OpenShift

Chapter 10 Container Orchestration Platforms

557

�Rancher
Another popular enterprise-level orchestration platform is Rancher,

developed by the enterprise with the same name, which was later acquired

by SUSE.

To install it, we need to go to the official web page (Figure 10-19) and

then click the “Get started” button.

Figure 10-19.  Rancher web page

In the new page, we scroll down a bit and see the instructions to deploy

Rancher (Figure 10-20). It is a containerized application, and we only

need a host with Docker installed. As we’re already familiar with Docker,

the command should be familiar to us, but we’ll summarize it here. We’ll

run a container based on the Rancher image; the container will run in the

background and in privileged mode; if the container accidentally stops,

it will restart automatically, and we’ll be able to access it through a port

redirection of ports 80/tcp and 443/tcp.

Chapter 10 Container Orchestration Platforms

558

Figure 10-20.  Installing Rancher

We execute the command:

antonio@antonio-Laptop:~$ sudo docker run --privileged

 -d --restart=unless-stopped -p 80:80 -p 443:443 rancher/

rancher[sudo] password for antonio:

Unable to find image 'rancher/rancher:latest' locally

latest: Pulling from rancher/rancher

2e9baa440d53: Pull complete

359c3a62b959: Pull complete

.

.

.

Digest: sha256:e57b0720fdfc6051c6d811b2f62e7a403eb09fcace142f89

1bb9cc0d59ed53f9

Status: Downloaded newer image for rancher/rancher:latest

3ba0ede6224d757d135baa006207936f3ee521fa65fcb9d0ad4ccd36191f6ec1

Chapter 10 Container Orchestration Platforms

559

We can check that the container is actually running.

antonio@antonio-Laptop:~$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

 CREATED STATUS

 �PORTS

 NAMES

3ba0ede6224d rancher/rancher "entrypoint.sh"

 About a minute ago Up About a minute

 �0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp,

:::443->443/tcp suspicious_snyder

We can access Rancher by opening a web browser and pointing it to

the localhost (Figure 10-21).

Figure 10-21.  Rancher welcome page

Chapter 10 Container Orchestration Platforms

560

To access, we need a password that was randomly generated during

the installation. In the welcome page, we can see the docker command we

need to run to obtain it.

antonio@antonio-Laptop:~$ sudo docker logs 3ba0ede6224d 2>&1 |
grep "Bootstrap Password:"

2024/08/21 20:52:18 [INFO] Bootstrap Password:

5zxgwvhx77rpz9nrmsn4jzjhgx2smzx8t9blf9ttvl49gn7xkx2hzp

We enter the password, and immediately Rancher requests us to create

a new password (Figure 10-22). We set the new password and can start to

manage Rancher (Figure 10-23).

Figure 10-22.  Setting a new password for Rancher

Chapter 10 Container Orchestration Platforms

561

Figure 10-23.  Welcome to Rancher

Rancher works on top of a Kubernetes cluster, but it makes much

easier working with Kubernetes. If we go to clusters, we’ll see the local

Kubernetes cluster created (Figure 10-24).

Figure 10-24.  Kubernetes cluster in Rancher

Chapter 10 Container Orchestration Platforms

562

From there, we can go to Apps ➤ Charts (Figure 10-25) and install any

of the listed charts (Figure 10-26).

Figure 10-25.  Available charts in Rancher

Figure 10-26.  Installing a chart in Rancher

Chapter 10 Container Orchestration Platforms

563

�Summary
In this chapter, we studied container orchestration. This subject is a

subject with a lot of relevance in today’s world so it is important to know it.

We began by defining orchestration to better understand the

underlying concepts. Then we studied docker compose, which is not

technically an orchestration platform but a tool that deploys multi-

container apps. And then we started to see the main orchestration

solutions available: docker swarm and, of course, Kubernetes.

Chapter 10 Container Orchestration Platforms

565© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_11

CHAPTER 11

podman and Other
Container-Related
Tools
In this chapter, we'll cover the following concepts:

•	 Awareness of podman, buildah, and skopeo

•	 Awareness of OCI runtime and image specifications

•	 Awareness of OpenVZ, rkt, and BSD jails

�Introduction
In this last chapter about containers, we’ll see a series of concepts and

tools that are included in the LPIC-3 305 exam but hadn’t been covered yet

in the previous chapters.

As the exam only requires a very basic knowledge about these tools,

we’ll see a very brief explanation of how they work. Of course you’re more

than welcome to further investigate them, as they can be very useful

depending on your needs.

https://doi.org/10.1007/979-8-8688-1080-0_11#DOI

566

�Open Container Initiative
We have seen in previous chapters what is a container and how it is created

using several features of the Linux kernel (mainly kernel namespaces and

control groups). We have seen two different implementations of these

technologies: Linux containers (LXC) and Docker.

To try and establish a series of standards about the creation and

management of containers, in 2015, the Open Container Initiative (OCI)

was created.

Currently, there are three OCI specifications:

•	 Runtime-spec

•	 Image-spec

•	 Distribution-spec

As the names imply, these specifications set the standards about

container runtimes, container images, and container distribution.

�podman
podman is a container runtime that complies with OCI specifications.

As opposed to Docker, it doesn’t require a running service like dockerd

to work.

�Installing podman
podman was developed by Red Hat, and it is the recommended container

runtime in Red Hat servers from version 8 onward. In this case, we’re going

to use a Red Hat clone, Rocky Linux, to install podman.

Chapter 11 podman and Other Container-Related Tools

567

[root@rocky ~]# cat /etc/rocky-release

Rocky Linux release 8.9 (Green Obsidian)

[root@rocky ~]# dnf search podman

Last metadata expiration check: -77 days, 15:45:18 ago on lun

22 jul 2024 07:54:51 CEST.

============== Name Exactly Matched: podman ==================

podman.x86_64 : Manage Pods, Containers and Container Images

[root@rocky ~]# dnf install -y podman

Note I n case we installed Docker previously, we’ll have to uninstall
it. Some packages installed with podman conflict with those installed
with Docker.

The way to work with podman is basically similar to what we observed

when we studied Docker. We can download images, create containers from

those images, mount volumes, etc.

�podman Images
As we’ve seen when we studied Docker, to work with podman, we also

need images. The images used by podman are the same we used for

Docker. In fact, we can use the same registry we used with Docker, the

Docker hub, or those registries freely provided by Red Hat for podman.

The use of podman is almost identical to the use of Docker as we’ll see.

We can, for example, search for an nginx image:

[root@rocky ~]# podman image search nginx

NAME DESCRIPTION

registry.access.redhat.com/ubi8/nginx-120 Platform for

running nginx 1.20 or building...

Chapter 11 podman and Other Container-Related Tools

568

registry.access.redhat.com/rhel9/nginx-124 rhcc_registry.

access.redhat.com_rhel9/nginx-...

.

.

docker.io/library/nginx Official build of Nginx.

.

.

.

and download that image:

[root@rocky ~]# podman image pull docker.io/library/nginx

Trying to pull docker.io/library/nginx:latest...

Getting image source signatures

Copying blob 14b7e5e8f394 done

.

.

.

Writing manifest to image destination

5ef79149e0ec84a7a9f9284c3f91aa3c20608f8391f5445eabe92ef07d

bda03c

We can repeat the procedure and download as many images as we

want. In this example, we have an nginx image and a busybox image.

[root@rocky ~]# podman image ls

REPOSITORY TAG IMAGE ID

CREATED SIZE

docker.io/library/nginx latest 5ef79149e0ec

7 days ago 192 MB

docker.io/library/busybox latest ba5dc23f65d4

11 months ago 4.5 MB

Chapter 11 podman and Other Container-Related Tools

569

Now that we have some images available, it is time to create a

container using any of those images.

�podman Containers
Similarly to what happened when we worked with images, we can

work with containers in pretty much the same way as we did when we

studied Docker.

We can list the containers currently running at any point. Of course

right now we don’t have any.

[root@rocky ~]# podman container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Let’s run a container from the nginx image we downloaded previously.

[root@rocky ~]# podman container run -d -p 8080:80 docker.io/

library/nginx

3d5176718cae3b220b60a0a92007e939c59ba7c1bfc9e96dc221caf4ee

0f6d54

The syntax is very easy, and you’re already familiar with it. We execute

a container based on the nginx image in the background (-d), and we

redirect port 8080 in the host to port 80 in the container.

[root@rocky ~]# podman container run -d nginx

4e602e82464a945052c59f7844a54d981ee33e8bba9a53e7602cdce864ae

adc3

Now we can list this new container.

[root@rocky ~]# podman container ls

CONTAINER ID IMAGE

COMMAND CREATED STATUS

PORTS NAMES

Chapter 11 podman and Other Container-Related Tools

570

3d5176718cae docker.io/library/nginx:latest

nginx -g daemon o... 3 minutes ago Up 3 minutes

0.0.0.0:8080->80/tcp busy_grothendieck

We can access the nginx welcome page with a web browser pointed at

port 8080 in the host (Figure 11-1).

Figure 11-1.  nginx running on a podman container

Of course, we can inspect the container to see its characteristics.

[root@rocky ~]# podman container inspect busy_grothendieck

.

.

.

[

 {

 �"Id": "3d5176718cae3b220b60a0a92007e939c59ba7c1bf

c9e96dc221caf4ee0f6d54",

 "Created": "2024-08-22T21:23:07.268497515+02:00",

 "Path": "/docker-entrypoint.sh",

Chapter 11 podman and Other Container-Related Tools

571

 "Args": [

 "nginx",

.

.

 "NetworkSettings": {

 "EndpointID": "",

 "Gateway": "10.88.0.1",

 "IPAddress": "10.88.0.10",

.

.

When we’re done, we can stop the container.

[root@rocky ~]# podman container stop busy_grothendieck

busy_grothendieck

There are many more options available, but this is enough for a quick

introduction to podman containers. You’re more than welcome to repeat

what we saw about Docker containers using podman instead.

�buildah
buildah is a tool to create OCI images; it works like the Docker image
build command.

It is an independent tool, so we need to install it.

[root@rocky ~]# dnf search buildah

Last metadata expiration check: -77 days, 21:07:52 ago on lun

22 jul 2024 07:54:51 CEST.

================== Name Exactly Matched: buildah ==============

buildah.x86_64 : A command line tool used for creating

OCI Images

[root@rocky ~]# dnf -y install buildah

Chapter 11 podman and Other Container-Related Tools

572

To create an image, we need to define a Containerfile file. As a simple

example, we’ll use this one:

[root@rocky ~]# cat Containerfile

FROM docker.io/library/nginx

COPY hello.txt /usr/share/nginx/html

In this simple example, we just create a new image using the nginx

image as the base. Then, we copy a text file to the default website directory.

In the text file, we’ll type any short text.

[root@rocky ~]# cat hello.txt

Hello

We launch buildah and assign the tag (-t) customized_image to the

new image. We can specify the location of the Containerfile with -f. By

default, buildah will search for a file named Containerfile in the current

directory, so in this case, we could omit this parameter; we included it for

clarity.

[root@rocky ~]# buildah build -t customized_image -f

Containerfile

STEP 1/2: FROM docker.io/library/nginx

STEP 2/2: COPY hello.txt /usr/share/nginx/html

COMMIT customized_image

Getting image source signatures

Copying blob 9853575bc4f9 skipped: already exists

.

.

Writing manifest to image destination

--> a67bd3c10231

Successfully tagged localhost/customized_image:latest

a67bd3c102310ef1bfbce8e683e03d86091ed8fbc34a1552cd40af504453e3f7

Chapter 11 podman and Other Container-Related Tools

573

Now it is possible to list the image:

[root@rocky ~]# podman image ls

REPOSITORY TAG IMAGE ID

CREATED SIZE

localhost/customized_image latest a67bd3c10231

38 seconds ago 192 MB

docker.io/library/nginx latest 5ef79149e0ec

8 days ago 192 MB

docker.io/library/busybox latest ba5dc23f65d4

15 months ago 4.5 MB

and create a new container from that image:

[root@rocky ~]# podman container run --rm -d -p 8000:80

localhost/customized_image

1d1230ef8589daf9e32b76134db2911900534fa06c7c97f2006070e9dea7f102

We can use any web browser, curl in this case, to access the text file we

copied when creating the customized image.

[root@rocky ~]# curl http://localhost:8000/hello.txt

Hello

�skopeo
skopeo is a tool used to manage and analyze images in a registry without

having to download them.

As we did before with podman and buildah, we need to install it first.

[root@rocky ~]# dnf search skopeo

Last metadata expiration check: 0:28:41 ago on vie 23 ago 2024

00:32:55 CEST.

Chapter 11 podman and Other Container-Related Tools

574

================ Name Exactly Matched: skopeo =================

skopeo.x86_64 : Inspect container images and repositories on

registries

[root@rocky ~]# dnf install -y skopeo

Let’s see skopeo in action. First, we’ll search for any image, for

example, Fedora.

[root@rocky ~]# podman search fedora

NAME DESCRIPTION

docker.io/library/fedora Official Docker builds of Fedora

docker.io/ustclug/fedora �Official Fedora Image with

USTC Mirror

docker.io/srcml/fedora �Build, package, and test srcml

on Fedora

.

.

.

With skopeo, it is possible to inspect the image before downloading it.

[root@rocky ~]# skopeo inspect docker://docker.io/

library/fedora

{

 "Name": "docker.io/library/fedora",

 �"Digest": "sha256:5ce8497aeea599bf6b54ab3979133923d82aaa4f6

ca5ced1812611b197c79eb0",

 "RepoTags": [

.

.

.

 "Created": "2024-04-22T18:26:21.555217891Z",

 "DockerVersion": "20.10.23",

Chapter 11 podman and Other Container-Related Tools

575

 "Labels": {

 �"maintainer": "Clement Verna \u003ccverna@

fedoraproject.org\u003e"

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Layers": [

 �"sha256:d4df0db66c89d7e6225ce9d3597a045fb95c020f3174a

f1830df88a37a871db8"

],

.

.

.

�FreeBSD Jails
This is an OS-level virtualization solution provided on FreeBSD systems.

When we studied “container virtualization concepts” in Chapter 7, we saw

how to use the system call “chroot” to get an isolated system. FreeBSD jails

work in a similar way, but this is a more powerful solution.

Like chroot, jail works by using a system call also named “jail”. And it

has a userland command, which also has the name “jail”.

Let’s suppose we already have a running FreeBSD system, and we want

to install another jailed instance of the OS. To do it, we use the bsdinstall
jail command and pass the path where we’ll install the new jailed instance.

root@freebsd1:~ # bsdinstall jail /alcatraz

Then we’ll select the close mirror to install the new instance

(Figure 11-2).

Chapter 11 podman and Other Container-Related Tools

576

Figure 11-2.  Installing a jailed instance of FreeBSD (1)

After selecting the mirror, choosing the components to install, and so

on, the installation will begin (Figure 11-3).

Figure 11-3.  Installing a jailed instance of FreeBSD (2)

Chapter 11 podman and Other Container-Related Tools

577

After setting the root password, adding new users if needed, etc., the

installation will be complete. We can list the path where we installed

the jailed instance, and we’ll see the typical folder tree present in a

FreeBSD system.

root@freebsd1:~ # ls /alcatraz/

.cshrc bin entropy lib mnt rescue sys var

.profile boot etc libexec net root tmp

COPYRIGHT dev home media proc sbin usr

Now it’s time to launch the jail. We do it by executing the jail

command; we specify the path and we set the hostname; we tell it to

mount the device pseudo filesystem and finally the name of the command

that will be jailed, a shell in this case.

root@freebsd1:~ # jail -c path=/alcatraz/ mount.devfs host.

hostname=testjail command=/bin/sh

As expected, we get a shell that will be isolated from the main system.

root@testjail:/ #

In the main system, we can list the running jails with jls.

root@freebsd1:~ # jls

 JID IP Address Hostname Path

 1 testjail /alcatraz

�rkt
rkt, also known as “Rocket,” is a container runtime engine designed to run

application containers in Linux. Unfortunately, the project seems to have

been discontinued, as we can see on its GitHub page (Figure 11-4), but we

can still download it and try to see it in action.

Chapter 11 podman and Other Container-Related Tools

https://github.com/rkt/rkt

578

Figure 11-4.  rkt GitHub page

If we scroll down a bit, we’ll see the last release (v.1.30.0). By clicking

there and scrolling down in the new page, we’ll see the links to download it

in different formats: tar, rpm, deb, etc. (Figure 11-5).

Figure 11-5.  Downloading the last release of rkt

Chapter 11 podman and Other Container-Related Tools

579

We’ll download the tar compressed file in a new folder.

[root@rocky ~]# mkdir rocket

[root@rocky ~]# cd rocket/

[root@rocky rocket]# wget https://github.com/rkt/rkt/releases/

download/v1.30.0/rkt-v1.30.0.tar.gz

--2024-08-24 01:44:50-- https://github.com/rkt/rkt/releases/

download/v1.30.0/rkt-v1.30.0.tar.gz

Resolving github.com (github.com)... 140.82.121.3

Connecting to github.com (github.com)|140.82.121.3|:443...
connected.

.

.

.

2024-08-24 01:44:55 (24,7 MB/s) - ‘rkt-v1.30.0.tar.gz’ saved

[106761266/106761266]

And we extract it.

[root@rocky rocket]# tar -xzvf rkt-v1.30.0.tar.gz

If we list the folder now, we’ll see the rkt binary, as well as other files

like man pages.

[root@rocky rkt-v1.30.0]# ls

bash_completion init manpages rkt scripts stage1-coreos.

aci stage1-fly.aci stage1-kvm.aci

The syntax is quite easy; it’s not the same syntax that we saw on Docker

or podman, but it doesn’t differ that much. To run a container, we need the

option run and the image.

[root@rocky rkt-v1.30.0]# ./rkt run docker://nginx

run: signature verification for docker images is not supported

(try –insecure-options=image)

Chapter 11 podman and Other Container-Related Tools

580

After this first execution, we get an error about the signature, but we

also get a suggestion about how to circumvent this error using an option.

We repeat the command adding that option.

[root@rocky rkt-v1.30.0]# ./rkt run --insecure-options=image

docker://nginx

run: name doesn't match what was requested, expected: library/

nginx, downloaded:

Now we get a more cryptic error message; well use the “debug” option

to try to obtain more information.

[root@rocky rkt-v1.30.0]# ./rkt run --insecure-options=image

 --debug docker://nginx

.

.

.

image: remote fetching from URL "docker://nginx"

image: fetching image from docker://nginx

run:

 └─error converting docker image to ACI
 └─name doesn't match what was requested, expected:
library/nginx, downloaded:

There seems to be a problem with the conversion of the image. rkt

uses its own image format named ACI, and it seems to have difficulty

converting the image from the Docker registry (with another format) into

ACI. Unfortunately, as we said before, rkt is no longer an active project.

The error we see here is quite likely to be due to small changes in the

Docker image format specifications that this old version of rkt can no

longer process.

In case you’re curious, I have an older system in which I installed rkt

and could download the nginx image some time ago. The nginx image in

that system is already locally installed and can be listed.

Chapter 11 podman and Other Container-Related Tools

581

[root@rocky rkt-v1.29.0]# ./rkt image list

ID NAME

 SIZE IMPORT TIME LAST USED

sha512-e50b77423452 coreos.com/rkt/stage1-coreos:1.29.0

 211MiB 1 year ago 1 year ago

sha512-e30149195c55 registry-1.docker.io/library/nginx:latest

 272MiB 1 year ago 1 year ago

So when we execute run, rkt will use the locally installed image without

downloading it again from the Docker registry.

[root@rocky rkt-v1.29.0]# ./rkt run --insecure-options=image

docker://nginx

/usr/lib/systemd/systemd: error while loading shared libraries:

/lib64/libc.so.6: cannot apply additional memory protection

after relocation: Permission denied

The system we’re working in right now is a Rocky Linux with SELinux.

By default, SELinux might interfere with the execution of rkt. We should

modify the SELinux policies to allow the execution of rkt, but for a quick

test, we’ll just set SELinux to the permissive mode.

[root@rocky rkt-v1.29.0]# sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 33

[root@rocky rkt-v1.29.0]# setenforce permissive

Chapter 11 podman and Other Container-Related Tools

582

Now, at last, we can execute the container successfully.

[root@rocky rkt-v1.29.0]# ./rkt run --insecure-options=image

docker://nginx

[27232.520014] nginx[6]: /docker-entrypoint.sh: /docker-

entrypoint.d/ is not empty, will attempt to perform

configuration

.

.

.

2024/07/06 03:08:25 [notice] 6#6: start worker processes

2024/07/06 03:08:25 [notice] 6#6: start worker process 34

The container executes in the foreground. If we open a new command

shell, we can list the containers.

[root@rocky rkt-v1.29.0]# ./rkt list

UUID APP IMAGE NAME

STATE CREATED STARTED NETWORKS

c7104ffc nginx registry-1.docker.io/library/

nginx:latest running 1 minute ago 1 minute

ago default:ip4=172.16.28.3

And if we try to access port 80/tcp on the container IP, we’ll see nginx

welcome page.

[root@rocky rkt-v1.29.0]# curl http://172.16.28.3

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

Chapter 11 podman and Other Container-Related Tools

583

In the command shell in which the container is running in the

foreground, we’ll see the HTTP request.

172.16.28.1 - - [06/Jul/2024:03:11:11 +0000] "GET / HTTP/1.1"

200 615 "-" "curl/7.61.1" "-"

Finally, we can stop the container.

[root@rocky rkt-v1.29.0]# ./rkt stop c7104ffc

"c7104ffc-48a2-452e-904c-02ffbcfc8b03"

[root@rocky rkt-v1.29.0]#

�OpenVZ
OpenVZ is another container-based virtualization solution for Linux. It’s

been developed by Virtuozzo and released as open source. We can install it

from its official web page (Figure 11-6).

Figure 11-6.  OpenVZ official web page

Chapter 11 podman and Other Container-Related Tools

584

OpenVZ is a customized Red Hat family server that includes the

software developed by Virtuozzo to create and manage the OpenVZ

containers. The main client tool to manage these containers is prlctl. We

can use it, for instance, to list the existing containers. Obviously we don’t

have any running container right now.

[root@pc-3625 ~]# prlctl list

UUID STATUS IP_ADDR T NAME

Let’s create our new container (vmtype ct).

[root@pc-3625 ~]# prlctl create myopenvzcont --vmtype ct

WARNING: You are using a deprecated CLI component that won't

be installed by default in the next major release. Please use

virsh instead

Creating the Container...

Creating cache

Processing metadata for almalinux-8-x86_64

Creating temporary Container

Creating virtual disk

Running the script pre-cache

Package manager: installing

Running the script post-cache

Running the script post-install

Resizing virtual disk

Packing cache

The Container has been successfully created.

If we list the containers again, we’ll see the new container listed.

Currently it is stopped.

Chapter 11 podman and Other Container-Related Tools

585

[root@pc-3625 ~]# prlctl list --all

UUID STATUS

IP_ADDR T NAME

{2232099e-5ade-41ab-83cc-1eb713d75238} stopped

- CT myopenvzcont

We start the container.

[root@pc-3625 ~]# prlctl start myopenvzcont

WARNING: You are using a deprecated CLI component that won't

be installed by default in the next major release. Please use

virsh instead

Starting the CT...

The CT has been successfully started.

If we list it again, we’ll see the container running.

[root@pc-3625 ~]# prlctl list

UUID STATUS

IP_ADDR T NAME

{2232099e-5ade-41ab-83cc-1eb713d75238} running

- CT myopenvzcont

When we first executed prlctl, we saw that prlctl is deprecated,

and we were advised to use virsh instead. We already studied virsh in

Chapter 4. So you’re probably familiar with it. We’ll see briefly how we

should proceed to use virsh. The first thing we need to do is connect to the

OpenVZ system.

[root@pc-3625 ~]# virsh connect vz:///system

error: failed to connect to the hypervisor

error: no connection driver available for vz:///system

Chapter 11 podman and Other Container-Related Tools

586

Initially, we get an error because we don’t have the needed driver

to integrate OpenVZ with libvirt. We’ll search for the driver, and we’ll

install it.

[root@pc-3625 ~]# yum search libvirt

.

.

.

libvirt-daemon-driver-vz.x86_64 : Virtuozzo driver plugin for

the libvirtd daemon

libvirt-daemon-driver-vzct.x86_64 : Virtuozzo Containers driver

plugin for the libvirtd daemon

[root@pc-3625 ~]# yum install -y libvirt-daemon-driver-vz

libvirt-daemon-driver-vzct

Now we can use virsh to connect to the OpenVZ system.

[root@pc-3625 ~]# virsh connect vz:///system

[root@pc-3625 ~]#

Of course we can’t list here the container we installed previously

because libvirt is not aware of it, but if we use virsh to install a new

container, we’ll be able to manage it with virsh or any other libvirt-

based tool.

[root@pc-3625 ~]# virsh list

 Id Name State

Another interesting option that we can use is prlctl list -i to get more

information about the running containers.

root@pc-3625 ~]# prlctl list -i

INFO

ID: {2232099e-5ade-41ab-83cc-1eb713d75238}

Chapter 11 podman and Other Container-Related Tools

587

EnvID: 2232099e-5ade-41ab-83cc-1eb713d75238

Name: myopenvzcont

Description:

Type: CT

State: running

OS: linux

Template: no

Uptime: 00:00:00 (since 2024-08-18 23:52:20)

Home: /vz/private/2232099e-5ade-41ab-83cc-1eb713d75238

Backup path:

Owner: root

GuestTools: state=possibly_installed

GuestTools autoupdate: on

Autostart: on

Autostop: suspend

Autocompact: on

Boot order:

EFI boot: off

Allow select boot device: off

External boot device:

Remote display: mode=off address=0.0.0.0

Remote display state: stopped

Hardware:

 �cpu sockets=1 cpus=unlimited cores=unlimited VT-x hotplug

accl=high mode=64 cpuunits=1000 ioprio=4

 memory 512Mb hotplug

 video 0Mb 3d acceleration=off vertical sync=yes

 memory_guarantee auto

 �hdd0 (+) scsi:0 image='/vz/private/2232099e-5ade-41ab-83

cc-1eb713d75238/root.hdd' type='expanded' 10240Mb mnt=/

state=connected subtype=virtio-scsi

 venet0 (+) type='routed'

Chapter 11 podman and Other Container-Related Tools

588

Features:

Disabled Windows logo: on

Nested virtualization: off

Offline management: (-)

�Summary
In this brief chapter, we studied a series of concepts and tools that are

included in the LPIC-3 305 exam. Although they’re not given a lot of weight

in the official curriculum, I think it is interesting to know them.

Tools like podman, buildah, and skopeo are heavily backed by Red Hat,

which makes these tools very relevant nowadays. Other tools may not be

as widely used as the former ones, but they all have something interesting

to offer.

Chapter 11 podman and Other Container-Related Tools

589© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_12

CHAPTER 12

Cloud Management
Tools
In this chapter, we'll cover the following concepts:

•	 Understand common offerings in public clouds

•	 Basic feature knowledge of OpenStack

•	 Basic feature knowledge of Terraform

•	 Awareness of CloudStack, Eucalyptus, and OpenNebula

We will also be introduced to the following terms and utilities: IaaS,

PaaS, SaaS, OpenStack, and Terraform.

�Introduction to Cloud Computing
We could define briefly cloud computing as a model that provides

on-demand access to computer system resources. A more detailed

description, which we summarize below, was provided by the US National

Institute of Standards and Technology. This later definition stated that a

cloud computing model should have five essential characteristics:

•	 On-demand self-service: A consumer can provision

computer resources automatically, without human

intervention.

https://doi.org/10.1007/979-8-8688-1080-0_12#DOI
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

590

•	 Broad network access: Capabilities are available over

the network and accessed through standard protocols.

•	 Resource pooling: The provider’s computing resources

are pooled to serve multiple consumers using a multi-

tenant model.

•	 Rapid elasticity: Capabilities can be elastically

provisioned and released.

•	 Measured service: Cloud systems control, monitor, and

report resource use.

Besides, a cloud computing model can provide different service

models. The three main models are

•	 Infrastructure as a Service (IaaS): The consumer is

given control to deploy new computing instances,

manage storage, etc. We could think of it similarly

to what we did when we created virtual machines in

QEMU/KVM and Xen, we decided the amount of RAM,

number of CPUs, storage, IP settings, etc.

•	 Platform as a Service (PaaS): The consumer can

create and deploy applications onto the cloud using

programming languages and libraries provided by the

Cloud Services provider. The consumer has no control

over the underlying server infrastructure.

•	 Software as a Service (SaaS): The consumer can use

the software applications running on the cloud. The

control of the application, regarding updates, adding

of new features, etc., belongs to the Cloud Services

provider.

Chapter 12 Cloud Management Tools

591

We can see a clearer distinction between the different service models

in Figure 12-1.

Figure 12-1.  Comparison of on-premises, IaaS, PaaS, and
SaaS. Credits to Rosati, Pierangelo; Lynn, Theo

Before finishing this brief introduction to cloud computing, we

must also mention the deployment model of the cloud infrastructure.

Depending on whether the cloud infrastructure resides entirely in an

external cloud provider, in our own organization, and so on, we can

differentiate many types of cloud:

•	 Private cloud: The infrastructure is operated exclusively

by a single organization.

•	 Community cloud: The infrastructure is shared by

different organizations that share common concerns.

•	 Public cloud: The infrastructure is made publicly

available by the Cloud Services provider to anybody.

•	 Hybrid cloud: In this case, we have a mixture of some of

the previous deployment models.

Chapter 12 Cloud Management Tools

https://link.springer.com/book/10.1007/978-3-030-43198-3

592

�OpenStack
OpenStack is an open source cloud computing platform. It is used mainly

as an IaaS service model. It was created in 2010 in a project developed by

Rackspace Hosting and NASA.

OpenStack is composed of many modules; each one of these modules

provides different functionality, like computing, storage, networking, etc.

We’ll see some of the main components, also called services, here:

•	 Compute (Nova): It provides computing; that is, it is

used to provision virtual machines. This component

supports the use of many different hypervisors.

•	 Block storage (Cinder): It provides persistent storage in

the form of block devices, like the disks we expect to see

in any server. The data in this case is stored as blocks

within sectors and tracks.

•	 Object storage (Swift): In addition to storing data in

a block device like a hard disk, OpenStack can store

data as a big amount of unstructured data associated

to some metadata. This is called object storage or blob

storage.

•	 Image (Glance): It deals with discovery, registering, and

retrieval of images to be used by other services.

•	 Dashboard (Horizon): It provides the user web

interface to manage OpenStack.

•	 Identity (Keystone): This is the API that provides client

authentication.

•	 Networking (Neutron): It provides network

connectivity.

Chapter 12 Cloud Management Tools

593

•	 Orchestration (Heat): It does precisely what the name

suggests.

•	 Telemetry (Ceilometer): It measures the use of

resources for billing purposes.

�First Steps with OpenStack
As you have noticed, along the book, when we study a new tool, we begin

by installing it. I would like to do the same in the case of OpenStack,

but due to the fast evolution of OpenStack, it is quite difficult to provide

an easy installation method that is fully operational for more than a

short time.

There used to be a project named openstack training-labs at opendev.

org. This was perfect to know and practice the basics of OpenStack that

we need for the LPIC-3 305 exam. Unfortunately, this project is no longer

maintained (Figure 12-2).

Figure 12-2.  OpenStack training-labs (retired)

Chapter 12 Cloud Management Tools

https://opendev.org/openstack/training-labs

594

Some vendors provide their own installers to get a running OpenStack

environment. For example, we can install the OpenStack customized by

Canonical, the creator of Ubuntu, by visiting this link (Figure 12-3). To

meet the hardware requirements, you’ll need a computer with a good

performance.

Figure 12-3.  Canonical OpenStack

�Using the OpenStack Dashboard (Horizon)

Once we have OpenStack installed, we’ll access our Dashboard (Horizon)

(Figure 12-4).

Chapter 12 Cloud Management Tools

https://ubuntu.com/openstack/install

595

Figure 12-4.  OpenStack Dashboard (Horizon)

We enter our admin credentials, and we’ll see a summary of the status

of OpenStack (Figure 12-5).

Figure 12-5.  OpenStack summary

Chapter 12 Cloud Management Tools

596

Figure 12-6.  OpenStack images

Right now we haven’t defined any VM in OpenStack, so the summary

doesn’t show much information. We’ll make a quick demo of OpenStack

by creating a new VM. To do it, the first thing we need to do is to create an

image. On the menu on the left, we select “Project” ➤ “Images”. In the new

window (Figure 2-6), we click the “Create Image” button.

In the new window, we can use the “Browse” button to select an

image file. That file should have been downloaded previously. In cloud

environment, it is very common to use cirros images. Cirros is a light Linux

distribution optimized for being used in the cloud. We can download it

from their website.

antonio@antonio-Laptop:~/openstack$ wget https://download.

cirros-cloud.net/0.6.2/cirros-0.6.2-x86_64-disk.img

.

.

.

Chapter 12 Cloud Management Tools

https://download.cirros-cloud.net/

597

cirros-0.6.2-x86_64-disk.img

100%[=========================>] 20,44M 12,0MB/s in 1,7s

2024-08-27 20:22:36 (12,0 MB/s) - ‘cirros-0.6.2-x86_64-disk.

img’ saved [21430272/21430272]

Now we can select the downloaded image (Figure 12-7). We assign a

name and select the format, qcow in this case. If we’re not sure about the

format, we can use the “file” command to check it.

antonio@antonio-Laptop:~/openstack$ file cirros-0.6.2-

x86_64-disk.img

cirros-0.6.2-x86_64-disk.img: QEMU QCOW2 Image (v3),

117440512 bytes

Figure 12-7.  Creating an image

We scroll down the window and click the “Create Image” button

(Figure 12-8).

Chapter 12 Cloud Management Tools

598

Figure 12-8.  Creating an OpenStack image

We return then to the “Images” section, where we can see the new

image listed (Figure 12-9).

Figure 12-9.  OpenStack images

Chapter 12 Cloud Management Tools

599

To launch a new instance based on the new image, we click the

“Launch” button on the right. A new window appears (Figure 12-10).

Figure 12-10.  Naming an OpenStack instance

We assign a name to our instance and click “Next”. In the next

screen (Figure 12-11), we see the image source of the instance; we click

“Next” again.

Chapter 12 Cloud Management Tools

600

Figure 12-11.  Source image

In the next screen (Figure 12-12), we must select a “flavor” for the

VM. A “flavor” is basically a template in which we set the computing

resources (CPU, RAM) used by the instance. Currently we don’t have any

“flavor” defined. We’ll cancel the wizard and create a flavor.

Chapter 12 Cloud Management Tools

601

Figure 12-12.  Selecting a flavor

To create a “flavor,” we’ll use the left menu and select “Admin” ➤

“Compute” ➤ “Flavors” (Figure 12-13).

Figure 12-13.  OpenStack Flavors

Chapter 12 Cloud Management Tools

602

To create a new flavor, we click “Create Flavor”. In the new screen

(Figure 12-14), we assign a name and set the amount of CPU and

RAM. Then, we click “Create Flavor”.

Figure 12-14.  Creating a new OpenStack flavor

Now we can see the new flavor listed (Figure 12-15).

Figure 12-15.  OpenStack Flavors

Chapter 12 Cloud Management Tools

603

With the flavor created, we can resume the creation of an instance. We

pass through the initial steps from Figures 12-10 and 12-11; in the “Flavor”

window, we select the flavor we just created (Figure 12-16) and click “Next”.

Figure 12-16.  Choosing a flavor for the instances

In the next screen, we’ll leave the default network selected

(Figure 12-17).

Chapter 12 Cloud Management Tools

604

Figure 12-17.  OpenStack networks

The rest of the options can be left unchanged; then we click

“Launch Instance”, and we go to “Project” ➤ “Compute” ➤ “Instances”

(Figure 12-18).

Figure 12-18.  OpenStack instances

Chapter 12 Cloud Management Tools

605

We’ll wait for a few seconds till the instance finishes the build process

(Figure 12-19).

Figure 12-19.  OpenStack instance running

By clicking on the instance name, we can see an overview of its

characteristics (Figure 12-20), its interfaces (Figure 12-21), the console log

(Figure 12-22), and finally the server console (Figure 12-23).

Chapter 12 Cloud Management Tools

606

Figure 12-20.  OpenStack instance overview

Figure 12-21.  OpenStack instance interfaces

Chapter 12 Cloud Management Tools

607

Figure 12-22.  OpenStack instance console log

Figure 12-23.  OpenStack server console

Chapter 12 Cloud Management Tools

608

Of course, from the console, we can execute any command; we can see

the credentials in the login page.

�OpenStack Concepts

We have seen how to manage OpenStack from the dashboard. Before we

move to the CLI, I’d like to introduce you to some important concepts used

in OpenStack as well as in public cloud environments.

These concepts are

•	 Service: These are the components of OpenStack that

we saw in the introduction, Nova, Glance, Neutron, etc.

•	 Endpoint: This is the URL to access any service. The

easiest example is the URL we used to access Horizon,

the dashboard.

•	 Project: We haven’t used it, but we could create a

project and include on it VMs, users, roles, networks,

etc. It’s useful to organize resources.

•	 Domain: They can be used to group projects, users, and

roles that are under the same administrative control.

•	 Region: In certain deployments, it can be useful

to have endpoints and other resources in a certain

geographical area.

•	 User: This is self-explanatory.

•	 Role: This is a set of permissions associated with a user.

�Using the CLI

So far, we have launched an OpenStack instance using the dashboard. But

it is also possible to manage OpenStack using the command-line interface.

We’ll see some easy examples.

Chapter 12 Cloud Management Tools

609

We already studied that OpenStack is composed of many components

that provide different resources to end users. These components are called

services, and we can get a list of them with openstack service list. This

command must be executed as an OpenStack administrator. Usually, we

log in the compute node as a normal user and then execute a bash file

that contains the environmental variables needed to run commands in

OpenStack as an administrator.

osbash@compute1:~$ ls -a

. .cache .ssh

config log

.. .gnupg .sudo_as_admin_successful

demo-openrc.sh scripts

.bash_logout .novaclient .wget-hsts img

.bashrc .profile admin-openrc.sh lib

osbash@compute1:~$ cat admin-openrc.sh

export OS_USERNAME=admin

export OS_PASSWORD=admin_user_secret

export OS_PROJECT_NAME=admin

export OS_USER_DOMAIN_NAME=Default

export OS_PROJECT_DOMAIN_NAME=Default

export OS_AUTH_URL=http://10.0.0.11:5000/v3

export OS_IDENTITY_API_VERSION=3

export OS_IMAGE_API_VERSION=2

osbash@compute1:~$

After loading this bash file in the current terminal session, we can

execute the openstack service list command.

Chapter 12 Cloud Management Tools

610

osbash@compute1:~$ source admin-openrc.sh

osbash@compute1:~$ openstack service list

+----------------------------------+-----------+-------------+

| ID | Name | Type |
+----------------------------------+-----------+-------------+

126bbd85513c492b91b49f4d35623ce5	keystone	identity
23f28d225f5c457c8257cf78ae20cad1	glance	image
278e59c0595e4fdda8e43b6fdfd0c126	heat	orchestration
3032588ab8b1443f99e1ea90635a0ad7	cinderv2	volumev2
60a222d4fbff41ebaf9307ffcfbc1e94	cinderv3	volumev3
9041b237ff0a4245a5b6ab8d101b3dd7	nova	compute
ed74e8d789004f098bcb7ae4621021d7	placement	placement
eda42ba1a7984357af9b3b50795a2c0f	neutron	network
+----------------------------------+-----------+-------------+

We can also list the endpoints.

osbash@compute1:~$ openstack endpoint list

+---------------------------------+-----------+-------------

+---------------+---------+----------+----------------------------+

| ID | Region | Service Name
| Service Type | Enabled | Interface | URL |
+---------------------------------+-----------+-------------

+---------------+---------+----------+----------------------------+

| 10e12d4122db45c184974c13d370595d | RegionOne | glance
| image | True | internal | http://controller:9292 |
| 247845229bc64bf8abdeff043229c965 | RegionOne | placement
| placement | True | internal | http://controller:8778 |
| 2c49b2118b96403db98f29abb6ebecd8 | RegionOne | neutron
| network | True | internal | http://controller:9696 |
| 2d128542789247999a16af7266e1bceb | RegionOne | keystone
| identity | True | public | http://controller:5000/v3/ |

Chapter 12 Cloud Management Tools

611

| 37de1cc8ab6b4288813b781da36a47e9 | RegionOne | nova
| compute | True | public | http://controller:8774/v2.1 |
| 391fdce9c7c74066a8e0816a6d1d1bf2 | RegionOne | heat
| orchestration | True | admin |
.

.

.

It is also possible to list the users and the roles.

osbash@compute1:~$ openstack user list

+---------------------------------+-------------------+

| ID | Name |
+---------------------------------+-------------------+

| 2d609f62ce35430cba06c1cf7ba5b494 | admin |
.

.

.

osbash@compute1:~$ openstack role list

+---------------------------------+------------------+

| ID | Name |
+---------------------------------+------------------+

32d7a172d30d45a1b74ac1d934c338ba	reader
621734c9633e40389b1a36971b8d0957	heat_stack_user
c92d768fba804fbcb1f810713af703a4	member
.

.

.

Chapter 12 Cloud Management Tools

612

We can list networks and images too.

osbash@compute1:~$ openstack network list

+-------------------------------------+-------------

+-------------------------------------+

| ID | Name
| Subnets |
+-------------------------------------+-------------

+-------------------------------------+

| c1c3b68c-e173-4b22-94b0-c1d2abe76910 | provider
| 57d8116a-840e-49b6-92ec-96012153b2c3 |
| cfa15ed1-7316-4ae4-a281-f5a152bebf48 | selfservice
| f3b9f7de-1486-4459-8c6f-2897765c61e1 |
+-------------------------------------+-------------

+-------------------------------------+

osbash@compute1:~$ openstack image list

+-------------------------------------+--------------+-------+

| ID | Name | Status |
+-------------------------------------+--------------+-------+

| 066418a5-c297-46f4-a9f8-cfbd7db23434 | Cirros_0.6.2 | active |
| eb95752a-7cd9-45a3-8bfc-b20129e4028e | cirros | active |
+-------------------------------------+--------------+-------+

It is also possible to list the instances on OpenStack:

osbash@compute1:~$ openstack server list

+-------------------------------------+-------------------

+-------+----------------------+-------+---------+

| ID | Name
| Status | Networks | Image | Flavor |
+-------------------------------------+-------------------

+-------+-----------------------+-------+--------+

Chapter 12 Cloud Management Tools

613

| 92144388-e662-46f7-a7ed-c209447c9b33 | My_first_instance
| ACTIVE | provider=203.0.113.109 | | Flavor1 |
+-------------------------------------+-------------------

+-------+-----------------------+-------+--------+

and show the characteristics of the instance:

osbash@compute1:~$ openstack server show My_first_instance

+-------------------------------------+---------------------+

| Field | Value |
+-------------------------------------+---------------------+

OS-DCF:diskConfig	AUTO
OS-EXT-AZ:availability_zone	nova
OS-EXT-SRV-ATTR:host	compute1
OS-EXT-SRV-ATTR:hypervisor_hostname	compute1
OS-EXT-SRV-ATTR:instance_name	instance-00000001
OS-EXT-STS:power_state	Running
.

.

.

�Terraform
Terraform is an Infrastructure as Code (IaC) software developed by the

company HashiCorp. But what’s exactly IaC? According to many, IaC

consists of managing and provisioning computer data centers through

definition files. These definition files are easily readable by both humans

and machines alike.

�Installing Terraform
We can download Terraform from its official website (Figure 12-24).

Chapter 12 Cloud Management Tools

https://www.terraform.io/

614

Figure 12-24.  Terraform website

We click “Download Terraform” and select our OS (Figure 12-25).

Figure 12-25.  Downloading Terraform for Linux

Chapter 12 Cloud Management Tools

615

We’ll see that we have many options to install Terraform in our

computer. At the time of writing this book, there are available versions

for Windows, macOS, Linux, Solaris, FreeBSD, and OpenBSD. The

instructions for installing it are very clear, so we won’t go into much

detail here.

If we’re installing it in a Linux machine, we can define a new software

repository from which to install Terraform. This is usually the preferred

approach, as the binary and all of its associated libraries will be updated.

We can also install a stand-alone binary downloaded directly from the

Terraform website. In that case, we’ll need to unzip the package file and

copy the binary extracted to a folder included in our PATH.

antonio@antonio-Laptop:~/terraform$ unzip terraform_1.9.5_

linux_amd64.zip

Archive: terraform_1.9.5_linux_amd64.zip

 inflating: LICENSE.txt

 inflating: terraform

antonio@antonio-Laptop:~/terraform$ cp terraform /usr/

local/bin/

cp: cannot create regular file '/usr/local/bin/terraform':

Permission denied

antonio@antonio-Laptop:~/terraform$ sudo cp terraform /usr/

local/bin/

antonio@antonio-Laptop:~/terraform$

Whatever method we choose to install Terraform, we can easily check

whether it is correctly installed by executing the following command:

antonio@antonio-Laptop:~/terraform$ terraform -version

Terraform v1.9.5

on linux_amd64

Chapter 12 Cloud Management Tools

616

�Terraform Providers
Terraform is a tool that can help us to automate the deployment of new

infrastructures; with Terraform, we can deploy new infrastructures in AWS,

Azure, and many other different providers.

We can see the providers supported by Terraform on the Terraform

registry (Figure 12-26). We can access this page by clicking “Registry” in

the upper menu of the window from which we downloaded the Terraform

software.

Figure 12-26.  Terraform registry

By clicking “Browse Providers”, we can search for the provider that

we’re interested in (Figure 12-27).

Chapter 12 Cloud Management Tools

617

Figure 12-27.  Terraform providers

In our example, we’ll search for a Docker provider (Figure 12-28).

Figure 12-28.  Docker provider for Terraform

Chapter 12 Cloud Management Tools

618

By clicking the “Use provider” button, we’ll see the instructions to use

the provider. We’ll copy the code in the instructions, and we’ll paste it in a

new Terraform file with tf extension named “docker_example.tf”.

antonio@antonio-Laptop:~/terraform$ cat docker_example.tf

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

provider "docker" {

 # Configuration options

}

After that, we can initialize Terraform. This can be done with the

terraform init command.

antonio@antonio-Laptop:~/terraform$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding kreuzwerker/docker versions matching "3.0.2"...

- Installing kreuzwerker/docker v3.0.2...

- Installed kreuzwerker/docker v3.0.2 (self-signed, key ID

BD080C4571C6104C)

.

.

.

Chapter 12 Cloud Management Tools

619

Terraform has been successfully initialized!

.

.

.

We are informed that Terraform initialized successfully. In the same

page in which we saw the instructions to use the provider, we can click the

“Documentation” link, and we’ll see an example of how to use it (Figure 12-29).

Figure 12-29.  Docker provider example usage

First, we must specify the provider to use.

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

Chapter 12 Cloud Management Tools

620

Second, we set the method we’ll use to connect to docker, a unix socket

in this case.

provider "docker" {

 host = "unix:///var/run/docker.sock"

}

Then we include the Docker resources we’ll use in our deployment, for

example, a Docker image that will be used to create a Docker container. In

the following example, we’ll use an Ubuntu image and a container based

on that Ubuntu image.

Pulls the image

resource "docker_image" "ubuntu" {

 name = "ubuntu:latest"

}

Create a container

resource "docker_container" "foo" {

 image = docker_image.ubuntu.image_id

 name = "foo"

}

If we need additional information about the parameters that we

can use in Terraform with this provider, we can check for additional

information in the left menu (Figure 12-30).

Chapter 12 Cloud Management Tools

621

Figure 12-30.  Docker Terraform provider help

Chapter 12 Cloud Management Tools

622

�Deploying Our Docker Infrastructure
with Terraform
We are ready now to deploy Docker resources using Terraform; we’ll see a

few simple examples to better understand how Terraform works.

�Deploying a Simple Ubuntu Docker Container

Let’s get back to our docker_example.tf file and add the sections we just

saw to have a complete example. This will be the full content of the file.

antonio@antonio-Laptop:~/terraform$ cat docker_example.tf

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

provider "docker" {

 host = "unix:///var/run/docker.sock"

}

Pulls the image

resource "docker_image" "ubuntu" {

 name = "ubuntu:latest"

}

Create a container

resource "docker_container" "foo" {

 image = docker_image.ubuntu.image_id

 name = "foo"

}

Chapter 12 Cloud Management Tools

623

We’ll initialize Terraform.

antonio@antonio-Laptop:~/terraform$ terraform init

Initializing the backend...

Initializing provider plugins...

- Reusing previous version of kreuzwerker/docker from the

dependency lock file

- Using previously-installed kreuzwerker/docker v3.0.2

Terraform has been successfully initialized!

.

.

Then we can validate the Terraform file. Validating a file checks

whether the file is a valid Terraform file.

antonio@antonio-Laptop:~/terraform$ terraform validate

Success! The configuration is valid.

The next step will be to generate a plan; this way we enumerate all the

actions that Terraform will perform while executing the file, but without

actually performing them.

antonio@antonio-Laptop:~/terraform$ terraform plan

Planning failed. Terraform encountered an error while

generating this plan.

Error: Error pinging Docker server: Got permission denied

while trying to connect to the Docker daemon socket at

unix:///var/run/docker.sock: Get "http://%2Fvar%2Frun

.

.

.

Chapter 12 Cloud Management Tools

624

We get an error because we need sudo permissions to connect to

docker. We’ll execute the command again using sudo.

antonio@antonio-Laptop:~/terraform$ sudo terraform plan

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the

following symbols:

 + create

Terraform will perform the following actions:

 # docker_container.foo will be created

 + resource "docker_container" "foo" {

 + attach = false

 + bridge = (known after apply)

 + command = (known after apply)

.

.

.

 # docker_image.ubuntu will be created

 + resource "docker_image" "ubuntu" {

 + id = (known after apply)

 + image_id = (known after apply)

 + name = "ubuntu:latest"

 + repo_digest = (known after apply)

 }

.

.

Chapter 12 Cloud Management Tools

625

Finally, we use terraform apply to actually execute all the actions.

antonio@antonio-Laptop:~/terraform$ sudo terraform apply

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the

following symbols:

 + create

Terraform will perform the following actions:

 # docker_container.foo will be created

 + resource "docker_container" "foo" {

 + attach = false

 + bridge = (known after apply)

 + command = (known after apply)

 + container_logs = (known after apply)

.

.

.

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value: yes

docker_image.ubuntu: Creating...

docker_image.ubuntu: Creation complete after 0s [id=sha256:35

a88802559dd2077e584394471ddaa1a2c5bfd16893b829ea57619301eb3908u

buntu:latest]

docker_container.foo: Creating...

Chapter 12 Cloud Management Tools

626

Error: container exited immediately

 with docker_container.foo,

 �on docker_example.tf line 20, in resource "docker_

container" "foo":

 20: resource "docker_container" "foo" {

We can see that the container was created, but then we immediately

get an error. We can clearly see the message “container exited

immediately”. This is normal behavior; if we remember, when we studied

containers, we saw that containers have a main process associated that

they’re supposed to execute. When the execution is completed, the

container exits. A system container, like the Ubuntu container we used in

our first deployment with Terraform, usually executes a shell as the main

process. So the shell executes and, as there is no interaction with that shell,

immediately exits.

We also saw that we could execute application containers, like Apache

or nginx containers. In these cases, the main process is a server process,

httpd or nginx, respectively. These processes keep running until they’re

explicitly shut down or an error arises.

When we use Terraform to deploy Docker containers, we’re just

automating what we’d do by hand. So as we said before, the behavior with

the deployed Ubuntu container is normal.

�Deploying an Apache httpd Docker Container

To better understand this, let’s create another Terraform file. This time

we’ll use an Apache web container.

antonio@antonio-Laptop:~/terraform$ cat docker_example2.tf

terraform {

 required_providers {

Chapter 12 Cloud Management Tools

627

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

provider "docker" {

 host = "unix:///var/run/docker.sock"

}

Pulls the image

resource "docker_image" "httpd" {

 name = "httpd:latest"

}

Create a container

resource "docker_container" "apache" {

 image = docker_image.httpd.image_id

 name = "apache"

}

This file is very similar to the first example; in this case, we replaced

the Ubuntu image with an Apache httpd image, and we create a container

based on that Apache httpd container.

We should keep every Terraform example in its own folder, so we’ll

create a new folder and copy our new docker_example2.tf file to that folder.

antonio@antonio-Laptop:~/terraform$ mkdir ../terraform2

antonio@antonio-Laptop:~/terraform$ mv docker_example2.tf ../

terraform2/

antonio@antonio-Laptop:~/terraform$ cd ../terraform2/

Chapter 12 Cloud Management Tools

628

We initialize Terraform as we did in the first example.

antonio@antonio-Laptop:~/terraform2$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding kreuzwerker/docker versions matching "3.0.2"...

- Installing kreuzwerker/docker v3.0.2...

- Installed kreuzwerker/docker v3.0.2 (self-signed, key ID

BD080C4571C6104C)

.

.

.

Terraform has been successfully initialized!

We can also validate the file to make sure it is valid.

antonio@antonio-Laptop:~/terraform2$ terraform validate

Success! The configuration is valid.

Finally, we apply the configuration.

antonio@antonio-Laptop:~/terraform2$ sudo terraform apply

.

.

.

Terraform will perform the following actions:

 # docker_container.apache will be created

 + resource "docker_container" "apache" {

 + attach = false

 + bridge = (known after apply)

 + command = (known after apply)

.

.

Chapter 12 Cloud Management Tools

629

Plan: 2 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

.

.

 Enter a value: yes

.

.

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

This time we didn’t get any error, and we can check with docker ps

that a new container has been created.

antonio@antonio-Laptop:~/terraform2$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

13b34fc50ea9 a49fd2c04c02 "httpd-foreground" 33 seconds ago

 Up 33 seconds 80/tcp apache

We can work normally with our deployed infrastructure; when we no

longer need it, we delete it with terraform destroy.

antonio@antonio-Laptop:~/terraform2$ sudo terraform destroy

.

.

.

Terraform will perform the following actions:

 # docker_container.apache will be destroyed

 - resource "docker_container" "apache" {

 - attach = false -> null

.

.

.

Chapter 12 Cloud Management Tools

630

Do you really want to destroy all resources?

.

.

Destroy complete! Resources: 2 destroyed.

�Deploying a Customized Ubuntu Docker Container

Now that we could successfully deploy a Docker Apache container, we’ll

see how to customize the deployment from the first example.

We already saw on the Docker Terraform provider page that we could

get help about the different parameters we can use in our Terraform file

(Figure 12-30).

We are interested in changing the command used to start the container

so that the container doesn’t exit immediately. If we review again the help,

we’ll see this option (Figure 12-31).

Figure 12-31.  The command option

We’ll edit our docker_example.tf file to include this new parameter.

We’ll define as the new command a tail -f of the /dev/null special device.

This command doesn’t do anything; it’s just a way to keep the command

executing so that the container doesn’t exit immediately.

Chapter 12 Cloud Management Tools

631

antonio@antonio-Laptop:~/terraform$ cat docker_example.tf

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

provider "docker" {

 host = "unix:///var/run/docker.sock"

}

Pulls the image

resource "docker_image" "ubuntu" {

 name = "ubuntu:latest"

}

Create a container

resource "docker_container" "foo" {

 image = docker_image.ubuntu.image_id

 name = "foo"

 command = ["tail", "-f", "/dev/null"]

}

And we’ll repeat the procedure to deploy it.

antonio@antonio-Laptop:~/terraform$ terraform init

.

.

antonio@antonio-Laptop:~/terraform$ terraform validate

Success! The configuration is valid.

Chapter 12 Cloud Management Tools

632

antonio@antonio-HP-Laptop-15s-fq1xxx:~/terraform$ sudo

terraform apply

docker_image.ubuntu: Refreshing state...

.

.

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

This time we don’t get any error. And if we list the containers with

docker ps, we’ll see a new Ubuntu container.

antonio@antonio-Laptop:~/terraform$ sudo docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

8f12ab780ff8 35a88802559d "tail -f /dev/null"

10 seconds ago Up 9 seconds foo

When we finish, we can destroy our Terraform infrastructure.

antonio@antonio-Laptop:~/terraform$ sudo terraform destroy

�Deploying a Customized Apache httpd
Docker Container

Now we’ll make a small customization to our Apache container to map a

port. We’ll look at the help in the Docker provider web page, and we’ll see

the ports option (Figure 12-32).

Figure 12-32.  The ports option

Chapter 12 Cloud Management Tools

633

So we’ll edit the docker_example2.tf file to map port 8080 in the host to

port 80 in the container. Now it should look more or less like this:

antonio@antonio-Laptop:~/terraform2$ cat docker_example2.tf

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "3.0.2"

 }

 }

}

provider "docker" {

 host = "unix:///var/run/docker.sock"

}

Pulls the image

resource "docker_image" "httpd" {

 name = "httpd:latest"

}

Create a container

resource "docker_container" "apache" {

 image = docker_image.httpd.image_id

 name = "apache"

 ports {

 internal = 80

 external = 8080

 }

}

Chapter 12 Cloud Management Tools

634

We’ll repeat the usual procedure to apply the Terraform configuration.

antonio@antonio-Laptop:~/terraform2$ terraform init

antonio@antonio-Laptop:~/terraform2$ terraform validate

antonio@antonio-Laptop:~/terraform2$ sudo terraform apply

.

.

 + ports {

 + external = 8080

 + internal = 80

 + ip = "0.0.0.0"

 + protocol = "tcp"

 }

.

.

If we list the containers, we’ll see the port redirection.

antonio@antonio-Laptop:~/terraform2$ sudo docker container ls

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

1e76ffd7cc74 a49fd2c04c02 "httpd-foreground"

 About a minute ago Up About a minute 0.0.0.0:8080->80/tcp apache

Of course, if we open a web browser and point it to port 8080 on the

localhost in which we applied the Terraform file, we’ll see the Apache

welcome page (Figure 12-33).

Chapter 12 Cloud Management Tools

635

Figure 12-33.  Apache welcome page

�Public Clouds
We’ve already studied the main characteristics of cloud computing. We

saw that we can have different types of clouds, such as public clouds,

private clouds, or hybrid clouds. When the cloud services are made

available to the general public, either freely or by a paid subscription, we

consider the cloud to be public.

Some of the best-known public cloud offerings are

•	 Amazon Web Services

•	 Microsoft Azure

•	 Google Cloud

But there are also many more.

Chapter 12 Cloud Management Tools

636

�Amazon Web Services
Amazon Web Services, AWS for short, is the on-demand cloud computing

platform offered by Amazon to individuals and companies. From

the main page (Figure 12-34), we can access the different offerings,

documentation, etc.

Figure 12-34.  Amazon Web Services main page

The public cloud offering changes very often, and it is quite likely

that when you read this book, the services offered by AWS, and the other

providers, will have changed. For that reason, we won’t go into detail about

the services provided. However, we can always assume that we’ll be given

several solutions of the type IaaS, PaaS, and SaaS. To better understand

which one is the right one for us, we’ll need to review the official

documentation or talk to a sales representative. If we browse through the

site, we’ll see that currently a lot of products are available on the cloud

either for free or for a fee.

Chapter 12 Cloud Management Tools

637

�Microsoft Azure
Microsoft also has its own public cloud computing offering, which is called

Microsoft Azure. From the main page (Figure 12-35), we can access the

Azure-related products and resources.

Figure 12-35.  Azure main page

What we explained for AWS is also valid for Azure. The offering is so

large, and it changes so fast that it is not very useful to memorize it. It is

definitely more important to understand the concepts of IaaS, PaaS, and

SaaS that we studied before. This way, we’ll be capable to determine which

solution provided by Azure, or other provider, suits better to our needs.

�Google Cloud
Another major player in the public cloud field is, of course, Google

(Figure 12-36).

Chapter 12 Cloud Management Tools

638

Figure 12-36.  Google Cloud main page

What we said for AWS and Azure is also valid here. There are a lot of

products available, but if we understand the cloud computing concepts

that we studied, we’ll know which one fits our needs.

�Summary
In this brief chapter, we studied cloud computing, understanding its

main concepts. We learned the basics of managing a private cloud using

OpenStack. We also introduced Terraform, a very powerful for automating

provisioning. We saw a couple of examples in which we used Terraform

to provision Docker containers, but Terraform can be used with a lot of

different providers and supports deployments much more complex than

the ones we’ve seen in our examples.

Chapter 12 Cloud Management Tools

639

We also took a look at some of the most important public cloud

providers. Though we didn’t go in depth investigating their offerings

because they change frequently, the most important thing is to understand

the key concepts.

In addition to OpenStack, there are also other similar cloud computing

platforms like Apache CloudStack, Eucalyptus, and OpenNebula. We

haven’t studied these platforms here, but it is important that you’re aware

of their existence. They’re great tools that, in certain cases, could be more

appropriate than OpenStack itself.

Chapter 12 Cloud Management Tools

641© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_13

CHAPTER 13

Packer
In this chapter, we'll cover the following concepts:

•	 Understand the functionality and features of Packer

•	 Create and maintain template files

•	 Build images from template files using different

builders

�Introduction to Packer
Packer is an open source tool to create golden images for different

platforms from a single source file. It standardizes and automates the

process of building system and container images. It can generate images

for VirtualBox, AWS, VMware, and many others.

�Installing Packer
Packer can be installed from the official website (Figure 13-1), but it can

also be installed from the official repositories of the main distributions.

The preferred way to install it is by adding the official repositories so that

the software is always up to date. But we could also install a stand-alone

binary or use the repositories of our favorite Linux distribution.

https://doi.org/10.1007/979-8-8688-1080-0_13#DOI
https://www.packer.io/

642

Figure 13-1.  Packer website

Even though it is not the preferred way to install it, for the purposes of

this book, we’ll install it by downloading the binary version (Figure 13-2).

Figure 13-2.  Downloading the Packer binary

Chapter 13 Packer

643

After downloading the zip package with the binary file, we

uncompress it.

antonio@antonio-Laptop:~/packer$ wget https://releases.

hashicorp.com/packer/1.11.0/packer_1.11.0_linux_amd64.zip

antonio@antonio-Laptop:~/packer$ unzip packer_1.11.0_linux_

amd64.zip

Archive: packer_1.11.0_linux_amd64.zip

 inflating: LICENSE.txt

 inflating: packer

We can now start to work with packer, for our convenience, we can

copy the binary file to a destination included in our path so that it can be

launched from anywhere.

antonio@antonio-Laptop:~/packer$ cp packer /usr/local/bin/

antonio@antonio-Laptop:~/packer$ packer

Usage: packer [--version] [--help] <command> [<args>]

Available commands are:

 build build image(s) from template

 console �creates a console for testing variable

interpolation

 fix fixes templates from old versions of packer

 fmt �Rewrites HCL2 config files to

canonical format

 hcl2_upgrade �transform a JSON template into an HCL2

configuration

 init Install missing plugins or upgrade plugins

 inspect see components of a template

 plugins Interact with Packer plugins and catalog

 validate check that a template is valid

 version Prints the Packer version

Chapter 13 Packer

644

�Packer Integrations (Plug-ins)
Packer uses plug-ins to create the images. We can have an overview of

the Packer Integrations available by selecting “Integrations” in the upper

menu (Figure 13-3).

Figure 13-3.  Packer Integrations

There are many plug-ins available; we can select the VirtualBox, for

example (Figure 13-4).

Chapter 13 Packer

645

Figure 13-4.  VirtualBox Packer Integration

We can see the instructions to install this plug-in. This plug-in comes

with three different builders that we can use to build the image. Depending

on the builder we use, we can start from an ISO file, an ova/ovf file, or a

running virtual machine.

�Installing a Packer Plug-In
To work with the plug-in, we need to install it. As we can see in the

documentation, there are two ways to do it. We can create a file with the

following content:

antonio@antonio-Laptop:~/packer$ cat vboxplugin.pkr.hcl

packer {

 required_plugins {

 virtualbox = {

 version = "~> 1"

Chapter 13 Packer

646

 source = "github.com/hashicorp/virtualbox"

 }

 }

}

And then we execute packer init.

antonio@antonio-Laptop:~/packer$ packer init vboxplugin.pkr.hcl

Installed plugin github.com/hashicorp/virtualbox v1.1.1 in "/

home/antonio/.config/packer/plugins/github.com/hashicorp/

virtualbox/packer-plugin-virtualbox_v1.1.1_x5.0_linux_amd64"

Or we can execute packer plugins install.

antonio@antonio-Laptop:~/packer$ packer plugins install github.

com/hashicorp/virtualbox

Whatever method we choose, the plug-in will be installed.

antonio@antonio-Laptop:~/packer$ packer plugins installed

/home/antonio/.config/packer/plugins/github.com/hashicorp/

virtualbox/packer-plugin-virtualbox_v1.1.1_x5.0_linux_amd64

�Building an Image
Once we have the needed plug-in installed, we can create the

corresponding image. We can use different plug-ins to create different

images. We’ll see a couple of examples.

�Building a VirtualBox Image
We’ll use an ISO file to generate an image; to do it, we can follow the

instructions in the page from HashiCorp (Figure 13-5).

Chapter 13 Packer

647

Figure 13-5.  VirtualBox Packer builder

In the same page, we can see a code sample to generate the image. We

just need to create a new file and paste that code into it. The code is written

in HashiCorp Configuration Language (HCL); sometimes we can find code

in JSON, but the HCL format is preferred. This file will be our source file.

antonio@antonio-Laptop:~/packer$ cat virtualboxiso.pkr.hcl

source "virtualbox-iso" "basic-example" {

 guest_os_type = "Ubuntu_64"

 �iso_url = "http://releases.ubuntu.com/12.04/ubuntu-12.04.5-

server-amd64.iso"

 iso_checksum = "md5:769474248a3897f4865817446f9a4a53"

 ssh_username = "packer"

 ssh_password = "packer"

 shutdown_command = "echo 'packer' | sudo -S shutdown -P now"
}

Chapter 13 Packer

648

build {

 sources = ["sources.virtualbox-iso.basic-example"]

}

To generate the image, we use packer build.

antonio@antonio-Laptop:~/packer$ packer build

virtualboxiso.pkr.hcl

virtualbox-iso.basic-example: output will be in this color.

==> virtualbox-iso.basic-example: Retrieving Guest additions

==> virtualbox-iso.basic-example: Trying /usr/share/virtualbox/

VBoxGuestAdditions.iso

==> virtualbox-iso.basic-example: Trying /usr/share/virtualbox/

VBoxGuestAdditions.iso

==> virtualbox-iso.basic-example: /usr/share/virtualbox/

VBoxGuestAdditions.iso => /usr/share/virtualbox/

VBoxGuestAdditions.iso

==> virtualbox-iso.basic-example: Retrieving ISO

==> virtualbox-iso.basic-example: Trying http://releases.

ubuntu.com/12.04/ubuntu-12.04.5-server-amd64.iso

==> virtualbox-iso.basic-example: Trying http://releases.

ubuntu.com/12.04/ubuntu-12.04.5-server-amd64.iso?checksum=md5%

3A769474248a3897f4865817446f9a4a53

.

.

.

In a few seconds, we’ll see a VirtualBox console popping up

(Figure 13-6).

Chapter 13 Packer

649

Figure 13-6.  Ubuntu server installation

As the documentation said, this example is not completely functional

because we haven’t provided a way to automate the installation of the

server. We can either cancel the build of the server or wait for the standard

timeout to trigger; in any case, the VM created to generate the final image

will be deleted.

==> virtualbox-iso.basic-example: Waiting for SSH to become

available...

==> virtualbox-iso.basic-example: Timeout waiting for SSH.

==> virtualbox-iso.basic-example: Cleaning up floppy disk...

==> virtualbox-iso.basic-example: Deregistering and

deleting VM...

==> virtualbox-iso.basic-example: Deleting output directory...

Chapter 13 Packer

650

Build 'virtualbox-iso.basic-example' errored after 12 minutes

49 seconds: Timeout waiting for SSH.

==> Wait completed after 12 minutes 49 seconds

==> Some builds didn't complete successfully and had errors:

--> virtualbox-iso.basic-example: Timeout waiting for SSH.

==> Builds finished but no artifacts were created.

Let’s review some of the parameters we have seen so far in the

source file:

•	 guest_os_type: This is the type of OS; it must be one OS

type defined in VirtualBox.

•	 iso_url: We set here the URL from which to access the

ISO file to install the OS.

•	 iso_checksum: This is the checksum of the ISO file.

•	 ssh_username and ssh_password: These are the

credentials used to access the VM through ssh.

•	 shutdown_command: This is the command that will be

used to gracefully shut down the VM. Otherwise, some

changes might not be saved to the image.

The file has two main sections: a source section and a build section

that references precisely the source section.

We can get a list of the OS types defined in VirtualBox with

VboxManage.

antonio@antonio-Laptop:~/packer$ VBoxManage list ostypes

.

.

ID: Ubuntu_64

Description: Ubuntu (64-bit)

Chapter 13 Packer

651

Family ID: Linux

Family Desc: Linux

64 bit: true

.

.

ID: Ubuntu21_64

Description: Ubuntu 21.04 (Hirsute Hippo) / 21.10 (Impish

Indri) (64-bit)

Family ID: Linux

Family Desc: Linux

64 bit: true

ID: Ubuntu22_LTS_64

Description: Ubuntu 22.04 LTS (Jammy Jellyfish) (64-bit)

Family ID: Linux

Family Desc: Linux

64 bit: true

.

.

�Building an LXC Image
Now, we’re going to create an LXC image. In the Packer web page, we can

also find an LXC plug-in (Figure 13-7).

Chapter 13 Packer

652

Figure 13-7.  LXC Packer Integration

We follow the instructions to install the plug-in, as we did before.

antonio@antonio-Laptop:~/packer$ packer plugins install github.

com/hashicorp/lxc

Installed plugin github.com/hashicorp/lxc v1.0.2 in "/home/

antonio/.config/packer/plugins/github.com/hashicorp/lxc/packer-

plugin-lxc_v1.0.2_x5.0_linux_amd64"

If we list the installed plug-ins again, we’ll see that we have both: the

VirtualBox plug-in and the LXC plug-in.

antonio@antonio-Laptop:~/packer$ packer plugins installed

/home/antonio/.config/packer/plugins/github.com/hashicorp/lxc/

packer-plugin-lxc_v1.0.2_x5.0_linux_amd64

/home/antonio/.config/packer/plugins/github.com/hashicorp/

virtualbox/packer-plugin-virtualbox_v1.1.1_x5.0_linux_amd64

Chapter 13 Packer

653

The VirtualBox Packer Integration/plug-in had three different builders.

This plug-in instead has only one, and in the documentation, we can see

a sample file that we can use as a basic example with some modifications.

Below we can see the sample file.

antonio@antonio-Laptop:~/packer/lxc$ cat lxc.json

{

 "builders": [

 {

 "type": "lxc",

 "name": "lxc-trusty",

 "config_file": "/tmp/lxc/config",

 "template_name": "ubuntu",

 "template_environment_vars": ["SUITE=trusty"]

 },

 {

 "type": "lxc",

 "name": "lxc-xenial",

 "config_file": "/tmp/lxc/config",

 "template_name": "ubuntu",

 "template_environment_vars": ["SUITE=xenial"]

 },

 {

 "type": "lxc",

 "name": "lxc-jessie",

 "config_file": "/tmp/lxc/config",

 "template_name": "debian",

 "template_environment_vars": ["SUITE=jessie"]

 },

Chapter 13 Packer

654

 {

 "type": "lxc",

 "name": "lxc-centos-7-x64",

 "config_file": "/tmp/lxc/config",

 "template_name": "centos",

 "template_parameters": ["-R", "7", "-a", "x86_64"]

 }

]

}

This file is in JSON format, and the preferred format is the HCL format,

so the first thing we need to do is to convert it to hcl.

antonio@antonio-Laptop:~/packer/lxc$ packer hcl2_upgrade

lxc.json

Ignoring following sources.Parse error: unknown builder

type(s): [lxc lxc lxc lxc]

Successfully created lxc.json.pkr.hcl. Exit 1

We get an error message; we’ll get back to it later, but the conversion

seems to have created a new file in HCL format.

antonio@antonio-Laptop:~/packer/lxc$ cat lxc.json.pkr.hcl

source "lxc" "lxc-centos-7-x64" {

 config_file = "/tmp/lxc/config"

 template_name = "centos"

 template_parameters = ["-R", "7", "-a", "x86_64"]

}

source "lxc" "lxc-jessie" {

 config_file = "/tmp/lxc/config"

 template_environment_vars = ["SUITE=jessie"]

 template_name = "debian"

}

Chapter 13 Packer

655

source "lxc" "lxc-trusty" {

 config_file = "/tmp/lxc/config"

 template_environment_vars = ["SUITE=trusty"]

 template_name = "ubuntu"

}

source "lxc" "lxc-xenial" {

 config_file = "/tmp/lxc/config"

 template_environment_vars = ["SUITE=xenial"]

 template_name = "ubuntu"

}

build {

 sources = ["source.lxc.lxc-centos-7-x64", "source.lxc.lxc-

jessie", "source.lxc.lxc-trusty", "source.lxc.lxc-xenial"]

}

Now we’ll edit this file; we just need a single LXC container, so we’ll

remove the rest and edit the build section accordingly. The final file will

look like this:

antonio@antonio-Laptop:~/packer/lxc$ cat lxc.json.pkr.hcl

source "lxc" "lxc-trusty" {

 config_file = "/tmp/lxc/config"

 template_environment_vars = ["SUITE=trusty"]

 template_name = "ubuntu"

}

build {

 sources = ["source.lxc.lxc-trusty"]

}

Chapter 13 Packer

656

We still need to make some more modifications; in the parameter

config file, we need to specify the path of the configuration file for LXC. As

we know from Chapter 8, this file is /etc/lxc/default.conf, so we’ll use

this value.

antonio@antonio-Laptop:~/packer/lxc$ ls /etc/lxc/

default.conf lxc-usernet

The modified line will look like this:

 config_file = "/etc/lxc/default.conf"

We also need to check if we have an LXC template named ubuntu.

antonio@antonio-Laptop:~/packer/lxc$ ls /usr/share/lxc/templates/

lxc-alpine lxc-centos lxc-fedora lxc-oci

lxc-plamo lxc-sparclinux lxc-voidlinux

lxc-altlinux lxc-cirros lxc-fedora-legacy lxc-openmandriva

lxc-pld lxc-sshd

lxc-archlinux lxc-debian lxc-gentoo lxc-opensuse

lxc-sabayon lxc-ubuntu

lxc-busybox lxc-download lxc-local lxc-oracle

lxc-slackware lxc-ubuntu-cloud

Finally, the modified file will be something like this:

antonio@antonio-Laptop:~/packer/lxc$ cat lxc.json.pkr.hcl

source "lxc" "lxc-trusty" {

 config_file = "/etc/lxc/default.conf"

 template_environment_vars = ["SUITE=trusty"]

 template_name = "ubuntu"

}

build {

 sources = ["source.lxc.lxc-trusty"]

}

Chapter 13 Packer

657

We try now to build the image with packer build.

antonio@antonio-Laptop:~/packer/lxc$ packer build lxc.json.pkr.hcl

lxc.lxc-trusty: output will be in this color.

==> lxc.lxc-trusty: Creating container...

==> lxc.lxc-trusty: Error creating container: Command error:

lxc-create: packer-lxc-trusty: parse.c: lxc_file_for_each_line_

mmap: 78 No such file or directory - Failed to open file "/

home/antonio/.config/lxc/default.conf"

==> lxc.lxc-trusty: lxc-create: packer-lxc-trusty: conf.c:

userns_exec_mapped_root: 5409 No uid mapping for container root

.

.

.

==> Builds finished but no artifacts were created.

We get an error. As some operations performed with Linux containers

need to be executed with root permissions by default, we repeat the

command using sudo.

antonio@antonio-Laptop:~/packer/lxc$ sudo packer build lxc.

json.pkr.hcl

Error: Unknown source type lxc

 on lxc.json.pkr.hcl line 7:

 (source code not available)

The source lxc is unknown by Packer, and is likely part of a

plugin that is not

installed.

You may find the needed plugin along with installation

instructions documented

on the Packer integrations page.

https://developer.hashicorp.com/packer/integrations?filter=lxc

Chapter 13 Packer

658

We get a different error this time. A message that says that we

might need a plug-in installed. This is the same error we got during the

conversion from JSON format to HCL format. If we validate the file, we see

that the file is valid.

antonio@antonio-Laptop:~/packer/lxc$ packer validate lxc.

json.pkr.hcl

The configuration is valid.

This seems to be a bug, because the plug-in is installed and the

name of the builder according to the documentation is lxc as well. I also

found out that using an older Packer version, it was possible to generate

the image.

Currently we’re using Packer v1.11.

antonio@antonio-Laptop:~/packer/lxc$ packer --version

Packer v1.11.0

Manually I downloaded Packer v1.8.6.

antonio@antonio-Laptop:~/packer/lxc$../Downloads/packer

 --version 1.8.6

Using the older version, I could generate the image.

antonio@antonio-Laptop:~/packer/lxc$ sudo ../../Downloads/

packer build lxc.json.pkr.hcl

lxc.lxc-trusty: output will be in this color.

==> lxc.lxc-trusty: Creating container...

==> lxc.lxc-trusty: Waiting for container to finish init...

==> lxc.lxc-trusty: Container finished init!

==> lxc.lxc-trusty: Exporting container...

==> lxc.lxc-trusty: Unregistering and deleting virtual

machine...

Chapter 13 Packer

659

Build 'lxc.lxc-trusty' finished after 25 seconds 758

milliseconds.

==> Wait completed after 25 seconds 758 milliseconds

==> Builds finished. The artifacts of successful builds are:

--> lxc.lxc-trusty: VM files in directory: output-lxc-trusty

antonio@antonio-Laptop:~/packer/lxc$

We can check that the image was actually created.

antonio@antonio-Laptop:~/packer/lxc$ ls output-lxc-trusty/

lxc-config rootfs.tar.gz

�Automating the Installation of Ubuntu
to Generate an Image with Packer
In the first example, we tried to create a VirtualBox image; we couldn’t

complete the creation of the image because we hadn’t provided a method

to autoinstall the VM used to generate the image.

We can check the Ubuntu installation documentation (Figure 13-8) to

better understand how to automate the installation of the Ubuntu system.

Chapter 13 Packer

https://canonical-subiquity.readthedocs-hosted.com/en/latest/intro-to-autoinstall.html

660

Figure 13-8.  Ubuntu autoinstall documentation

In newer Ubuntu systems, from Ubuntu Server 20.04 onward and

Ubuntu Desktop 23.04 onward, autoinstall is installed. Older versions still

used the debian-installer. Autoinstall configuration can be provided by

cloud-init or directly on the installation media. Let’s see a simple example

based on the official documentation.

We need to download a supported Ubuntu server ISO file. We’ll use in

this example Ubuntu Server 20.04.

antonio@antonio-Laptop:~/packer$ ls iso/ubuntu-20.04.6-live-

server-amd64.iso

iso/ubuntu-20.04.6-live-server-amd64.iso

We’ll use the file from our first example, which we need to modify

accordingly.

antonio@antonio-Laptop:~/packer$ cat virtualboxiso.pkr.hcl

source "virtualbox-iso" "basic-example" {

 guest_os_type = "Ubuntu_64"

Chapter 13 Packer

661

 �iso_url = "http://releases.ubuntu.com/12.04/ubuntu-12.04.5-

server-amd64.iso"

 iso_checksum = "md5:769474248a3897f4865817446f9a4a53"

 ssh_username = "packer"

 ssh_password = "packer"

 shutdown_command = "echo 'packer' | sudo -S shutdown -P now"
}

build {

 sources = ["sources.virtualbox-iso.basic-example"]

}

We need to make a few changes. First, we edit the parameter iso_url

and use the location of the new downloaded ISO.

 iso_url = "./iso/ubuntu-20.04.6-live-server-amd64.iso"

Then we calculate the md5 sum.

antonio@antonio-Laptop:~/packer$ md5sum iso/ubuntu-20.04.6-

live-server-amd64.iso

5a4fcbde8b0585d78b3de3cb33bcd874 iso/ubuntu-20.04.6-live-

server-amd64.iso

And we edit the iso_checksum parameter.

 iso_checksum = "md5:5a4fcbde8b0585d78b3de3cb33bcd874"

We also need to add a few parameters.

 boot_wait = "5s"

 �boot_command = ["<enter><enter><f6><esc><wait>", "autoinstall

ds=nocloud-net;s=http://{{ .HTTPIP }}:{{ .HTTPPort }}/",

"<enter>"]

Chapter 13 Packer

662

The “boot_wait” parameter sets a delay, giving the virtual machine

some time to load. The “boot_command” is very important; it provides an

array of strings that are typed in sequence; in this example, we press enter

twice, then “f6” and then “esc”.

Then we specify that we’re using autoinstall; the autoinstall

configuration will be provided by cloud-init. We’ll study cloud-init in

the next chapter; for now, it is enough to know that we’ll use a special

datasource named nocloud-net. This datasource allows to provide the

configuration locally using an http server.

If we check the documentation of the VirtualBox ISO Packer builder,

we can read the following:

“Packer will create an http server serving http_directory when
it is set, a random free port will be selected and the architecture
of the directory referenced will be available in your builder.”

We can use this http server created by Packer to provide the cloud-init

configuration. We can access this http server internally from Packer using

the special variables {{ .HTTPIP }} and {{ .HTTPPORT }}. This is what we

did in the boot_command parameter.

Besides, we need to add the http_directory parameter. This specifies

the location of a folder whose content will be served by the http server

created by Packer. We’ll create a subfolder named http, and we’ll create the

needed files.

antonio@antonio-Laptop:~/packer$ mkdir http

antonio@antonio-Laptop:~/packer$ cd http

antonio@antonio-Laptop:~/packer/http$

cloud-init needs a couple of files at least to work properly. The first one

is meta-data. For our purposes, we don’t need to include any information

in it, but we need it to exist. We create an empty file with that name.

antonio@antonio-Laptop:~/packer/http$ touch meta-data

Chapter 13 Packer

663

Next we create the second file, user-data. Contrary to the first one, we

need to include some information in it.

antonio@antonio-Laptop:~/packer/http$ cat user-data

#cloud-config

autoinstall:

 version: 1

 early-commands:

 - systemctl stop ssh

 locale: en_US

 keyboard:

 layout: en

 identity:

 hostname: vagrant

 �password: 6UFt2frQzGcqUEN47$zqBeWAgkrfV4QmLg9CjAhvcppC6

Kf3BZTlsXWQK4JGj4xVotyCv6y0YPzE3TScGP.QhBmTDT2o0QlYk1AiOf41

 username: vagrant

 ssh:

 install-server: yes

 allow-pw: yes

We’ll summarize the content of the file here. At the beginning, we

specify that we’re providing information to autoinstall. Then we stop the

ssh service and set the locale and keyboard layout. And we add a user

named “vagrant” with the password “vagrant”. The password is encrypted;

we obtain the encrypted value using the mkpasswd command.

antonio@antonio-Laptop:~/packer/http$ mkpasswd -m sha-512

Password:

6UFt2frQzGcqUEN47$zqBeWAgkrfV4QmLg9CjAhvcppC6Kf3BZTlsXWQK4J

Gj4xVotyCv6y0YPzE3TScGP.QhBmTDT2o0QlYk1AiOf41

Chapter 13 Packer

664

I know all this can be confusing at first, and it is probably a good idea

to review the documentation about VirtualBox ISO Packer and Autoinstall,

which were already mentioned earlier in this chapter. It would be also

good to review the cloud-init documentation, even though we’ll study a bit

more about this tool in the next chapter.

Another change we need to do is replacing in the packer hcl file the ssh

credentials for the packer user, and we’ll use the vagrant user instead.

 ssh_username = "vagrant"

 ssh_password = "vagrant"

And we’ll also need to edit the shutdown_command entry.

 shutdown_command = "echo 'vagrant' | sudo -S shutdown -P now"

We’re almost there; we just need to add three more options.

 format = "ova"

 ssh_timeout = "10000s"

 vm_name = "Ubuntu_packer"

 �vboxmanage = [["modifyvm", "{{ .Name }}", "--memory", "1024"],

["modifyvm", "{{ .Name }}", "--vram", "36"], ["modifyvm",

"{{ .Name }}", "--cpus", "2"]]

With the format option, we tell Packer that we want the image to be

created in ova format, which is a single file; the default output format is

ovf (several files). We also add a timeout big enough to give time to the VM

creation to complete. We assign a customized name to the virtual machine,

and we also specify some options to pass to VboxManage to customize the

virtual machine; this last parameter is needed because the default settings

for the Ubuntu_64 OS type are too low for a modern Ubuntu distribution.

Chapter 13 Packer

https://cloudinit.readthedocs.io/en/latest/index.html

665

This is the final content of the file:

antonio@antonio-Laptop:~/packer$ cat virtualboxiso.pkr.hcl

source "virtualbox-iso" "basic-example" {

 boot_wait = "5s"

 �boot_command = ["<enter><enter><f6><esc><wait>", "autoinstall

ds=nocloud-net;s=http://{{ .HTTPIP }}:{{ .HTTPPort }}/",

"<enter>"]

 http_directory = "http"

 guest_os_type = "Ubuntu_64"

 iso_url = "./iso/ubuntu-20.04.6-live-server-amd64.iso"

 iso_checksum = "md5:5a4fcbde8b0585d78b3de3cb33bcd874"

 ssh_username = "vagrant"

 ssh_password = "vagrant"

 shutdown_command = "echo 'vagrant' | sudo -S shutdown -P now"
 format = "ova"

 ssh_timeout = "10000s"

 vm_name = "Ubuntu_packer"

 �vboxmanage = [["modifyvm", "{{ .Name }}", "--memory",

"1024"], ["modifyvm", "{{ .Name }}", "--vram", "36"],

["modifyvm", "{{ .Name }}", "--cpus", "2"]]

}

build {

 sources = ["sources.virtualbox-iso.basic-example"]

}

Finally, we’re ready to build the image.

antonio@antonio-HP-Laptop-15s-fq1xxx:~/packer$ packer build

virtualboxiso.pkr.hcl

virtualbox-iso.basic-example: output will be in this color.

Chapter 13 Packer

666

==> virtualbox-iso.basic-example: Retrieving Guest additions

.

.

.

Packer accesses the ISO file.

.

==> virtualbox-iso.basic-example: Trying ./iso/ubuntu-20.04.6-

live-server-amd64.iso?checksum=md5%3A5a4fcbde8b0585d78b3de3

cb33bcd874

And Packer starts the http server that will be used later to provide the

autoinstall configuration using cloud-init.

.

==> virtualbox-iso.basic-example: Starting HTTP server on

port 8391

.

And then it waits for the virtual machine to boot.

.

.

==> virtualbox-iso.basic-example: Waiting 5s for boot...

.

At the same time, a VirtualBox console will pop up; as instructed in

the boot_command parameter, the virtual machine is instructed to get the

autoinstall configuration using cloud-init (Figure 13-9).

Chapter 13 Packer

667

Figure 13-9.  Launching the automated installation

And after a few seconds, we’ll see how cloud-init is used to configure

the virtual machine (Figure 13-10).

Chapter 13 Packer

668

Figure 13-10.  Using cloud-init during the virtual machine
installation

In the command shell in which we launched packer install, we’ll see a

few more lines.

==> virtualbox-iso.basic-example: Typing the boot command...

==> virtualbox-iso.basic-example: Using SSH communicator to

connect: 127.0.0.1

==> virtualbox-iso.basic-example: Waiting for SSH to become

available...

At some point, the installation will be finished, and we can log in

normally to it if we want to with the user “vagrant” and the password

“vagrant” (Figure 13-11).

Chapter 13 Packer

669

Figure 13-11.  Logged in as the vagrant user

After a while, the automated process will connect to the VM as the

vagrant user as well; it will perform the last actions and shut down and

delete the VM.

==> virtualbox-iso.basic-example: Waiting for SSH to become

available...

==> virtualbox-iso.basic-example: Connected to SSH!

==> virtualbox-iso.basic-example: Uploading VirtualBox version

info (7.0.20)

==> virtualbox-iso.basic-example: Uploading VirtualBox guest

additions ISO...

==> virtualbox-iso.basic-example: Gracefully halting virtual

machine...

Chapter 13 Packer

670

==> virtualbox-iso.basic-example: [sudo] password for vagrant:

==> virtualbox-iso.basic-example: Preparing to export

machine...

 virtualbox-iso.basic-example: Deleting forwarded port

mapping for the communicator (SSH, WinRM, etc) (host port 3603)

==> virtualbox-iso.basic-example: Exporting virtual machine...

 virtualbox-iso.basic-example: Executing: export Ubuntu_

packer --output output-basic-example/Ubuntu_packer.ova

==> virtualbox-iso.basic-example: Cleaning up floppy disk...

==> virtualbox-iso.basic-example: Deregistering and

deleting VM...

Build 'virtualbox-iso.basic-example' finished after 5 minutes

19 seconds.

==> Wait completed after 5 minutes 19 seconds

==> Builds finished. The artifacts of successful builds are:

--> virtualbox-iso.basic-example: VM files in directory:

output-basic-example

The image file has been successfully created inside the output-basic-

example folder.

antonio@antonio-Laptop:~/packer$ ls output-basic-example

Ubuntu_packer.ova

Of course this could be done with more recent distributions like

Ubuntu 23.10 Mantic Minotaur. But this last version has different menus,

and we’ll need to use different sequences of keys to access the boot options

and specify the location of the autoinstall configuration.

Chapter 13 Packer

671

�Provisioning with Packer and Integration
with vagrant
We have successfully built a Packer image, but we can also use Packer

to provision a virtual machine. Provisioning a virtual machine consists

in making the needed changes for the virtual machine to be in the

desired state. These changes can be installing additional software, server

hardening, etc.

To provision virtual machines, Packer uses different provisioners like

PowerShell, shell, file, etc. You can see the full list in the documentation.

In this example, we’ll use the shell provider, which consists in using shell

scripts to perform the required actions. This is the code we’ll need to add:

 provisioner "shell" {

 environment_vars = ["HOME_DIR=/home/vagrant"]

 �execute_command = "echo 'vagrant' | {{ .Vars }} sudo -S -E
sh -eux '{{ .Path }}'"

 expect_disconnect = true

 scripts = ["scripts/update.sh"]

 }

The code is basically self-explanatory. We execute the script as the

vagrant user, with sudo permissions, and we define the HOME_DIR

environment variable. The script will be located in the scripts folder and

will have this content:

antonio@antonio-Laptop:~/packer$ cat scripts/update.sh

#!/bin/bash -eux

sudo apt-get update -y

sudo apt-get upgrade -y

Chapter 13 Packer

https://developer.hashicorp.com/packer/docs/provisioners

672

As a proof of concept, this simple provisioning example just updates

and upgrades the system. Of course we could also perform additional

actions like assigning sudo permissions, installing specific software,

and so on.

In addition to provisioners, in Packer, we can also use post-processors

. These post-processors are run after provisioners, and they can be used to

perform actions like repackaging files. As an example, we’ll use the vagrant

post-processor to generate a vagrant box from the provisioned image. This

way, we can later execute it in vagrant. Both packer and vagrant have been

developed by the same company, HashiCorp, so they integrate easily.

This is the additional code that we need.

 post-processor "vagrant" {

 compression_level = "8"

 output = "output/ubuntu-20.04-{{ .Provider }}.box"

 }

To clarify, we’ll see the full content of the file here.

antonio@antonio-Laptop:~/packer$ cat virtualboxiso.pkr.hcl

source "virtualbox-iso" "basic-example" {

 boot_wait = "5s"

 �boot_command = ["<enter><enter><f6><esc><wait>", "autoinstall

ds=nocloud-net;s=http://{{ .HTTPIP }}:{{ .HTTPPort }}/",

"<enter>"]

 http_directory = "http"

 guest_os_type = "Ubuntu_64"

 iso_url = "./iso/ubuntu-20.04.6-live-server-amd64.iso"

 iso_checksum = "md5:5a4fcbde8b0585d78b3de3cb33bcd874"

 ssh_username = "vagrant"

 ssh_password = "vagrant"

 shutdown_command = "echo 'vagrant' | sudo -S shutdown -P now"
 format = "ova"

Chapter 13 Packer

https://developer.hashicorp.com/packer/docs/post-processors

673

 ssh_timeout = "10000s"

 vm_name = "Ubuntu_packer"

 �vboxmanage = [["modifyvm", "{{ .Name }}", "--memory",

"1024"], ["modifyvm", "{{ .Name }}", "--vram", "36"],

["modifyvm", "{{ .Name }}", "--cpus", "2"]]

}

build {

 sources = ["sources.virtualbox-iso.basic-example"]

 provisioner "shell" {

 environment_vars = ["HOME_DIR=/home/vagrant"]

 �execute_command = "echo 'vagrant' | {{ .Vars }} sudo -S -E
sh -eux '{{ .Path }}'"

 expect_disconnect = true

 scripts = �["scripts/update.sh", "scripts/

sudoers.sh"]

 }

 post-processor "vagrant" {

 compression_level = "8"

 output = "output/ubuntu-20.04-{{ .Provider }}.box"

 }

}

We execute packer build again.

antonio@antonio-Laptop:~/packer$ packer build

virtualboxiso.pkr.hcl

Error: Unknown post-processor type "vagrant"

 on virtualboxiso.pkr.hcl line 27:

 (source code not available)

Chapter 13 Packer

674

The post-processor vagrant is unknown by Packer, and is likely

part of a plugin

that is not installed.

You may find the needed plugin along with installation

instructions documented

on the Packer integrations page.

https://developer.hashicorp.com/packer/

integrations?filter=vagrant

We get an error because we need to install a new plug-in to use the

vagrant post-processor. We install it.

antonio@antonio-Laptop:~/packer$ packer plugins install github.

com/hashicorp/vagrant

Installed plugin github.com/hashicorp/vagrant v1.1.4 in "/home/

antonio/.config/packer/plugins/github.com/hashicorp/vagrant/

packer-plugin-vagrant_v1.1.4_x5.0_linux_amd64"

antonio@antonio-HP-Laptop-15s-fq1xxx:~/packer$ packer build

virtualboxiso.pkr.hcl

We try to execute packer build once more.

antonio@antonio-Laptop:~/packer$ packer build

virtualboxiso.pkr.hcl

.

.

This time, it will execute successfully. In the command shell, we’ll see

the same lines of information that we saw when we created the VirtualBox

ova. However, in this occasion, we’ll also see many lines like these below

because the virtual machine is updating its software.

Chapter 13 Packer

675

.

.

 �virtualbox-iso.basic-example: Unpacking libldap-common

(2.4.49+dfsg-2ubuntu1.10) over (2.4.49+dfsg-2ubuntu1.9) ...

 �virtualbox-iso.basic-example: Preparing to unpack .../38-li

bldap-2.4-2_2.4.49+dfsg-2ubuntu1.10_amd64.deb ...

 �virtualbox-iso.basic-example: Unpacking libldap-2.4-2:amd64

(2.4.49+dfsg-2ubuntu1.10) over (2.4.49+dfsg-2ubuntu1.9) ...

 �virtualbox-iso.basic-example: Preparing to unpack .../39-li

bssh-4_0.9.3-2ubuntu2.5_amd64.deb ...

 �virtualbox-iso.basic-example: Unpacking libssh-4:amd64

(0.9.3-2ubuntu2.5) over (0.9.3-2ubuntu2.2) ...

 virtualbox-iso.basic-example: Preparing to unpack

.../40-libcurl3-gnutls_7.68.0-1ubuntu2.23_amd64.deb ...

 .

.

.

In the end, we get this message:

.

Build 'virtualbox-iso.basic-example' finished after 10 minutes

3 seconds.

==> Wait completed after 10 minutes 3 seconds

==> Builds finished. The artifacts of successful builds are:

--> virtualbox-iso.basic-example: 'virtualbox' provider box:

output/ubuntu-20.04-virtualbox.box

We see clearly that a vagrant box has been created. We’ll study vagrant

in the last chapter of the book so if you don’t fully understand the next

commands, don’t worry we’ll study them later.

Chapter 13 Packer

676

We can add the new vagrant box with vagrant box add.

antonio@antonio-Laptop:~/packer$ vagrant box add output/

ubuntu-20.04-virtualbox.box --name packer_made_ubuntu20server

==> box: Box file was not detected as metadata. Adding it

directly...

==> box: Adding box 'packer_made_ubuntu20server' (v0) for

provider:

 box: Unpacking necessary files from: file:///home/antonio/

packer/output/ubuntu-20.04-virtualbox.box

==> box: Successfully added box 'packer_made_ubuntu20server'

(v0) for 'virtualbox'!

And now we can list it in vagrant with vagrant box list.

antonio@antonio-Laptop:~/packer$ vagrant box list

packer_made_ubuntu20server (virtualbox, 0)

�Summary
In this chapter, we studied Packer, a tool that we can use to automate the

creation of images from many different providers like AWS, Azure, LXC,

VirtualBox, QEMU, etc.

Reviewing each and every Packer Integration would be completely

impossible, but after the examples that we have seen in the chapter, you

should have a good grasp of how Packer works and the different options we

can use to generate the images.

Finally, we saw an easy example of provisioning a virtual machine and

exporting it as a vagrant box to use it later in vagrant.

Chapter 13 Packer

677© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_14

CHAPTER 14

cloud-init
In this chapter, we'll cover the following concepts:

•	 Understand the features and concepts of cloud-init,

including user-data, initializing and configuring

cloud-init

•	 Use cloud-init to create and mount file systems,

configure user accounts, including login credentials,

and install software packages from the distribution’s

repository

•	 Integrate cloud-init into system images

•	 Use config drive datasource for testing

�Introduction to cloud-init
cloud-init is the standard for customizing cloud instances. It was

developed initially by Canonical for the ubuntu images used in AWS. In the

official web page (Figure 14-1), we can see some basic information about

cloud-init.

https://doi.org/10.1007/979-8-8688-1080-0_14#DOI
https://cloud-init.io/

678

Figure 14-1.  cloud-init website

It is used to configure instances, mainly cloud instances, install

software, customize permissions, etc. In the official website, we can see a

lot of documentation as well as practical examples.

�Configuring a Local QEMU Instance
Let’s begin with a very easy example. We’ll begin by creating a

temporary folder.

antonio@antonio-Laptop:~/cloud-init$ mkdir temp

antonio@antonio-Laptop:~/cloud-init$ cd temp/

antonio@antonio-Laptop:~/cloud-init/temp$

Then, we’ll download a very light Ubuntu image specially crafted for

cloud environments.

Chapter 14 cloud-init

https://cloudinit.readthedocs.io/en/latest/tutorial/qemu.html

679

antonio@antonio-Laptop:~/cloud-init/temp$ wget https://cloud-

images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

.

.

.

2024-09-03 15:06:48 (21,9 MB/s) - ‘jammy-server-cloudimg-amd64.

img’ saved [652869632/652869632]

If we inspect the file, we’ll see it is a qcow2 file.

antonio@antonio-Laptop:~/cloud-init/temp$ file jammy-server-

cloudimg-amd64.img

jammy-server-cloudimg-amd64.img: QEMU QCOW2 Image (v2),

2361393152 bytes

If you remember, in Chapter 13, we used cloud-init to provide the

autoinstall configuration to the VirtualBox virtual machine that we used to

generate the final image.

In that example, we used a user-data file and an empty meta-data file.

In this new example, we’ll do something similar. We begin by creating the

following user-data file:

antonio@antonio-Laptop:~$ cat user-data

#cloud-config

password: password

chpasswd:

 expire: false

The header “#cloud-config” tells cloud-init that this file will be used to

configure the virtual machine instance. With the option password, we set

the password of the default user. With the options “chpasswd” and “expire”,

we tell that the user password won’t expire.

Chapter 14 cloud-init

680

Next, we’ll create a meta-data file. This time, we’ll use this file to

specify the instance id and customize the hostname of the instance.

antonio@antonio-Laptop:~/cloud-init/temp$ cat meta-data

instance-id: 001/cloudqemu

local-hostname: charlie

Finally, we create an empty vendor-data file. This file usually contains

specifications about the cloud provider, AWS, Azure, Google Cloud, etc. In

our example, it is not necessary to include any information on it.

antonio@antonio-Laptop:~/cloud-init/temp$ touch vendor-data

When the instance to be configured boots, the client component of

cloud-init executes and needs to access the files we’ve just created. In

cloud environments, the instance contacts the instance metadata service

through http. We’ll see more about the instance metadata service later;

meanwhile, we can provide the same functionality by using any web server

to serve the needed files. If you remember from the last chapter, when we

used Packer to create an image and used cloud-init to configure the virtual

machine, we used the internal web server created by Packer. In this case,

however, we need to use our own web server,

An easy approach would be to use Python to create a temporary web

server using the http.server module like this:

antonio@antonio-Laptop:~/cloud-init/temp$ python3 -m http.

server 8888

Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) ...

We’re now ready to launch a QEMU instance that will be configured

with cloud-init. We already studied QEMU, so you’re probably familiar

with the syntax. Anyway, we’ll review very briefly the options used here.

We launch an instance with 1024 MB of RAM (option -m), using

hardware virtualization (option --accel kvm), with user mode networking

(options -netdev and -device). The instance will use the same CPU

Chapter 14 cloud-init

681

specifications as the host’s CPU; we won’t open a new graphical console

but use the command shell window as the server console. The disk will

be the file we downloaded previously, the one with the ubuntu cloud

image. We also use a new option, smbios; this option defines some specific

settings for the system we’re emulating. In the example below, we use it to

get the cloud-init data through http.

antonio@antonio-Laptop:~/cloud-init/temp$ qemu-system-x86_64

 -m 1024 --accel kvm -netdev user,id=myusernet -device

e1000,netdev=myusernet -cpu host -nographic -hda jammy-

server-cloudimg-amd64.img -smbios type=1,serial=ds='nocloud-

net;s=http://10.0.2.2:8888/'

We’ll see the system booting.

SeaBIOS (version 1.15.0-1)

iPXE (https://ipxe.org) 00:03.0 CA00 PCI2.10 PnP

PMM+3FF8B3A0+3FECB3A0 CA00

.

.

After a few seconds, we’ll see the cloud-init-related lines.

.

.

.

[�9.175354] cloud-init[543]: Cloud-init v.

24.1.3-0ubuntu1~22.04.5 running 'init' at Wed, 04 Sep 2024

15:31:07 +0000. Up 9.15 se.

Chapter 14 cloud-init

682

[9.184233] cloud-init[543]: ci-info: +++++++++++++++++++++++

++++++Net device info+++++++++++++++++++++++++++

[9.185717] cloud-init[543]: ci-info:

[9.190214] cloud-init[543]: ci-info:

| Device | Up | Address | Mask | Scope | Hw-Address |
[9.191676] cloud-init[543]: ci-info:

[9.194366] cloud-init[543]: ci-info: | ens3 | True
| 10.0.2.15 | 255.255.255.0 | global | 52:54:00:12:34:56 |
.

.

[OK] Finished Initial cloud-ini…ob (metadata service

crawler).

.

.

And we’ll get to the login screen. We can see that the hostname has

been changed to charlie, as we had specified in the meta-data file.

Ubuntu 22.04.4 LTS charlie ttyS0

charlie login:

In the command shell window in which we launched the Python web

server, we’ll see that the three files were accessed through HTTP requests.

antonio@antonio-Laptop:~/cloud-init/temp$ python3 -m http.

server 8888

Serving HTTP on 0.0.0.0 port 8888 (http://0.0.0.0:8888/) ...

127.0.0.1 - - [04/Sep/2024 17:31:07] "GET /meta-data

HTTP/1.1" 200 -

127.0.0.1 - - [04/Sep/2024 17:31:07] "GET /user-data

HTTP/1.1" 200 -

Chapter 14 cloud-init

683

127.0.0.1 - - [04/Sep/2024 17:31:07] "GET /vendor-data

HTTP/1.1" 200 -

In the server console, we can log in with the user ubuntu and the

password set by cloud-init. Once logged in, we can see the status of the

cloud-init configuration with the cloud-init status command.

ubuntu@charlie:~$ cloud-init status

status: done

If we want to get more detailed information, we can use the

--long option.

ubuntu@charlie:~$ cloud-init status --long

status: done

extended_status: degraded done

boot_status_code: enabled-by-generator

last_update: Wed, 04 Sep 2024 15:31:09 +0000

detail: DataSourceNoCloudNet [seed=dmi,http://10.0.2.2:8888/]

[dsmode=net]

errors: []

recoverable_errors:

DEPRECATED:

 - �The 'nocloud-net' datasource name is deprecated in 24.1

and scheduled to be removed in 29.1. Use 'nocloud'

instead, which.

ubuntu@charlie:~$ cloud-init status --wait

status: done

Chapter 14 cloud-init

684

We can see that the cloud-init configuration was applied, but we see a

warning because the datasource name “nocloud-net” is deprecated and it

will be removed in a future version. For that reason, we’re advised to use

the datasource name no-cloud instead.

It is also possible to check cloud-init log files if we suspect that

something went wrong.

ubuntu@charlie:~$ tail /var/log/cloud-init.log

2024-09-04 15:31:09,811 - util.py[DEBUG]: Writing to /var/lib/

cloud/instance/boot-finished - wb: [644] 69 bytes

2024-09-04 15:31:09,812 - handlers.py[DEBUG]: finish: modules-

final/config-final_message: SUCCESS: config-final_message ran

successy

2024-09-04 15:31:09,812 - main.py[DEBUG]: Ran 10 modules with 0

failures

.

.

.

ubuntu@charlie:~$ tail /var/log/cloud-init-output.log

ci-info: | Route | Destination | Gateway | Interface | Flags |
ci-info: +------+-------------+--------+----------+-------+

ci-info: | 1 | fe80::/64 | :: | ens3 | U |
ci-info: | 3 | local | :: | ens3 | U |
ci-info: | 4 | multicast | :: | ens3 | U |
ci-info: +------+------------+---------+----------+-------+

2024-09-04 15:31:07,274 - util.py[DEPRECATED]: The 'nocloud-

net' datasource name is deprecated in 24.1 and scheduled to be

removed .

.

.

.

ubuntu@charlie:~$

Chapter 14 cloud-init

685

When an instance is using cloud-init, we can see that a /var/lib/cloud/

folder exists.

ubuntu@charlie:~$ ls -l /var/lib/cloud/

total 24

drwxr-xr-x 2 root root 4096 Sep 5 20:56 data

drwxr-xr-x 2 root root 4096 Sep 3 20:58 handlers

lrwxrwxrwx 1 root root 38 Sep 5 20:56 instance -> /var/lib/

cloud/instances/001_cloudqemu

drwxr-xr-x 4 root root 4096 Sep 3 21:16 instances

drwxr-xr-x 6 root root 4096 Sep 3 20:58 scripts

drwxr-xr-x 2 root root 4096 Sep 3 20:58 seed

drwxr-xr-x 2 root root 4096 Sep 3 21:12 sem

ubuntu@charlie:~$

Inside this folder, we can get some information. For instance, we can

access the content of the user-data file that was provided to cloud-init.

ubuntu@charlie:~$ sudo cat /var/lib/cloud/instances/001_

cloudqemu/user-data.txt

#cloud-config

password: password

chpasswd:

 expire: false

package_reboot_if_required: true

package_update: true

packages:

 - gcc

ubuntu@charlie:~$

Chapter 14 cloud-init

686

Or we can obtain information about the datasource used by cloud-init.

ubuntu@charlie:~$ sudo cat /var/lib/cloud/instances/001_

cloudqemu/datasource

DataSourceNoCloudNet: DataSourceNoCloudNet

[seed=dmi,http://10.0.2.2:8888/][dsmode=net]

�Instance Metadata Services (IMDS)
We already mentioned that cloud environments usually have instance

metadata services to configure and manage virtual machines. The actual

implementation of the service differs a bit between the different providers,

but they usually support REST APIs and can be accessed and managed

using simple HTTP requests. For more details, you should check the

specifications related to a particular vendor.

�Datasources
Datasources are sources of configuration data for cloud-init. In the

documentation page, we can see many supported datasources: AWS,

Azure, no-cloud, etc.

If we check the documentation about the no-cloud datasource, the

one we used before, we see we have different options to provide the

configuration. In our case, we used a custom web server and the smbios

option passed to the QEMU instance. But we could also have used a local

filesystem and a kernel command line for instance.

�Config Drive
A special type of datasource is an OpenStack configuration drive. This

drive attaches to the OpenStack instance when it boots, and it is used to

store metadata.

Chapter 14 cloud-init

https://cloudinit.readthedocs.io/en/latest/reference/datasources.html

687

�Configuring a LXD Container Instance
Let’s see another example now about configuring a LXD container. We’ll

begin by creating a user-data file.

antonio@antonio-Laptop:~/cloud-init$ cat /tmp/user-data

#cloud-config

runcmd:

 - echo "Hi" > /var/tmp/hi.txt

In the user-data file, we just tell cloud-init to run an echo command

and redirect the output to a file.

Now we’ll create and run a new LXD container named mytest and use

the config option to pass the location of the user-data file.

antonio@antonio-Laptop:~/cloud-init$ lxc launch ubuntu:24.04

mytest --config=user.user-data="$(cat /tmp/user-data)"

Creating mytest

Starting mytest

After a few seconds, the new instance will be running.

antonio@antonio-Laptop:~/cloud-init$ lxc list

+-----------------+---------+----------------------+

---+-----------+

----------+

| NAME | STATE | IPV4 |
 IPV6 | TYPE |
 SNAPSHOTS |
+-----------------+---------+----------------------+

---+-----------+

----------+

| harmless-monarch | STOPPED | |
 | CONTAINER |
 0 |

Chapter 14 cloud-init

688

+-----------------+---------+----------------------+

---+-----------+

----------+

| mytest | RUNNING | 10.216.182.123 (eth0) |
 fd42:45f7:c283:6d95:216:3eff:fe68:ae4 (eth0) | CONTAINER |
 0 |
+-----------------+---------+----------------------+

---+-----------+

----------+

We’ll connect to it.

antonio@antonio-Laptop:~/cloud-init$ lxc shell mytest

root@mytest:~#

And we’ll check the status of cloud-init.

root@mytest:~# cloud-init status --wait

status: done

root@mytest:~#

We’ll see now some useful commands to check and troubleshoot

cloud-init. We can query cloud-init about the user-data settings that were

provided.

root@mytest:~# cloud-init query userdata

#cloud-config

runcmd:

 - echo "Hi" > /var/tmp/hi.txt

As expected, we get the exact same content that was included in the

user-data file. We can also check that the syntax is correct according to

the schema.

Chapter 14 cloud-init

689

root@mytest:~# cloud-init schema --system --annotate

Found cloud-config data types: user-data, network-config

1. user-data at /var/lib/cloud/instances/56167d1f-

a6f1-45ff-813e-1d5590de43a9/cloud-config.txt:

 Valid schema user-data

2. network-config at /var/lib/cloud/instances/56167d1f-

a6f1-45ff-813e-1d5590de43a9/network-config.json:

 Valid schema network-config

In this case, the data is valid. We can also check if the file that was

supposed to be created with the runcmd option actually exists.

root@mytest:~# cat /var/tmp/hi.txt

Hi

We see that the file was actually created. We can log out now:

root@mytest:~# logout

and stop and remove the container.

antonio@antonio-Laptop:~/cloud-init$ lxc stop mytest

antonio@antonio-Laptop:~/cloud-init$ lxc rm mytest

�Managing Filesystems with cloud-init
cloud-init can also be used to create, resize, and mount filesystems. We’re

going to see an example in which we’ll mount a new filesystem with cloud-

init. We’ll begin by creating a new 1 GB disk image file.

Chapter 14 cloud-init

690

antonio@antonio-Laptop:~/cloud-init/temp$ qemu-img create -f

qcow2 NEWDISK.qcow 1G

Formatting 'NEWDISK.qcow', fmt=qcow2 cluster_size=65536

extended_l2=off compression_type=zlib size=1073741824 lazy_

refcounts=off refcount_bits=16

We’ll launch a new QEMU instance. We’ll use the same command

line that was used in our first example, but this time we’ll add this new

second disk.

antonio@antonio-Laptop:~/cloud-init/temp$ qemu-system-x86_64

 -m 1024 --accel kvm -netdev user,id=myusernet -device

e1000,netdev=myusernet -cpu host -nographic -hda jammy-

server-cloudimg-amd64.img -hdb NEWDISK.qcow -smbios

type=1,serial=ds='nocloud-net;s=http://10.0.2.2:8888/'

We could use cloud-init to create the new filesystem, but to simplify

things, we’ll do it from the instance itself.

ubuntu@charlie:~$ sudo fdisk -l

.

.

Disk /dev/sdb: 1 GiB, 1073741824 bytes, 2097152 sectors

Disk model: QEMU HARDDISK

.

.

ubuntu@charlie:~$ sudo fdisk /dev/sdb

.

.

Command (m for help): n

.

.

Chapter 14 cloud-init

691

Select (default p):

.

.

Created a new partition 1 of type 'Linux' and of size 1023 MiB.

Now we’ll edit our user-data file that we used in the first example to

format and mount the newly created partition. cloud-init has specific

modules to do that, like fs_setup and mounts to create a filesystem and

mount a partition, respectively. In fact, theoretically we could even use

the disk_setup module to partition a disk instead of doing it manually.

Unfortunately, these modules can be tricky, and they do not always work

as expected depending on the provider we use. For that reason, we’ll use a

different approach.

We’ll use the bootcmd module to execute commands early in the boot

process. We’ll format the partition we created before and mount it on the /

mnt folder.

This is the new modified user-data file.

antonio@antonio-Laptop:~/cloud-init/temp$ cat user-data

#cloud-config

bootcmd:

 - mkfs -t ext4 /dev/sdb1

 - mount /dev/sdb1 /mnt

password: password

chpasswd:

 expire: false

Next, we launch the QEMU instance again.

antonio@antonio-Laptop:~/cloud-init/temp$ qemu-system-x86_64

-m 1024 --accel kvm -netdev user,id=myusernet -device

e1000,netdev=myusernet -cpu host -nographic -hda jammy-

server-cloudimg-amd64.img -hdb NEWDISK.qcow -smbios

type=1,serial=ds='nocloud-net;s=http://10.0.2.2:8888/'

Chapter 14 cloud-init

692

After a moment, we log in and we check that the new filesystem was

mounted.

ubuntu@charlie:~$ df -h

Filesystem Size Used Avail Use% Mounted on

tmpfs 96M 956K 95M 1% /run

/dev/sda1 2.0G 1.5G 456M 78% /

tmpfs 479M 0 479M 0% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

/dev/sda15 105M 6.1M 99M 6% /boot/efi

/dev/sdb1 989M 24K 922M 1% /mnt

tmpfs 96M 4.0K 96M 1% /run/user/1000

We saw that the result was exactly what we expected.

�Installing Software Packages
As part of the provisioning process, we might need to install or update

software packages. This can be easily done with cloud-init. Again, we

edit our user-data file to tell cloud-init to update the software packages,

rebooting the machine if necessary, and install an additional software

package.

antonio@antonio-Laptop:~/cloud-init/temp$ cat user-data

#cloud-config

password: password

chpasswd:

 expire: false

package_reboot_if_required: true

package_update: true

packages:

 - gcc

Chapter 14 cloud-init

693

Once we have modified the file, we make sure that our Python web

server is still running, and we launch the QEMU instance again.

antonio@antonio-Laptop:~/cloud-init/temp$ qemu-system-x86_64

 -m 1024 --accel kvm -netdev user,id=myusernet -device

e1000,netdev=myusernet -cpu host -nographic -hda jammy-

server-cloudimg-amd64.img -hdb NEWDISK.qcow -smbios

type=1,serial=ds='nocloud-net;s=http://10.0.2.2:8888/'

When the system boots up and we log in, we’ll see information

messages about the installation of software. So we can assume that the

software upgrade is working as expected.

.

.

[24.551432] cloud-init[766]: Reading package lists...

[24.897866] cloud-init[766]: Reading package lists...

[25.067252] cloud-init[766]: Building dependency tree...

[25.068557] cloud-init[766]: Reading state information...

[�25.251023] cloud-init[766]: The following additional

packages will be installed:

[�25.252360] cloud-init[766]: cpp cpp-11 fontconfig-config

fonts-dejavu-core gcc-11 gcc-11-base libasan6

[�25.253526] cloud-init[766]: libatomic1 libc-dev-bin libc-

devtools libc6-dev libcc1-0 libcrypt-dev

[�25.256233] cloud-init[766]: libdeflate0 libfontconfig1

libgcc-11-dev libgd3 libgomp1 libisl23 libitm1

.

.

Chapter 14 cloud-init

694

When the software installation finishes, we can try to execute gcc to

see if it was properly installed.

ubuntu@charlie:~$ gcc

gcc: fatal error: no input files

compilation terminated.

ubuntu@charlie:~$

As we can see, gcc was correctly installed.

�Summary
In this chapter, we studied more in depth a tool that we saw briefly in the

previous chapter, cloud-init.
We saw several examples in which we applied different configurations

to the instances using cloud-init. We also saw some useful commands that

can be of great help when troubleshooting.

We’ve seen that we can manage disks and filesystems from cloud-init.

It is possible to use specific modules to partition disk, managing, resizing,

and mounting filesystems. Besides using these specific modules, we can

also take different approaches like using bootcmd to execute the needed

commands.

Of course, cloud-init can also be helpful when managing users; we

used it to explicitly set a password for the default user, but we could also

have done many more things, like creating additional users. We saw

an example about this when we used Packer and cloud-init to create a

system image.

Finally, we also updated the software in our instance and installed

additional packages on it.

I hope that after reading this chapter and Chapter 13, you have a

good grasp of what cloud-init is and how it can be used to simplify the

provisioning of new instances.

Chapter 14 cloud-init

695© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0_15

CHAPTER 15

vagrant
In this chapter, we'll cover the following concepts:

•	 Understand vagrant architecture and concepts,

including storage and networking

•	 Retrieve and use boxes from Atlas

•	 Create and run Vagrantfiles

•	 Access vagrant virtual machines

•	 Share and synchronize a folder between a vagrant

virtual machine and the host system

•	 Understand vagrant provisioning

•	 Understand multi-machine setup

�vagrant Architecture
vagrant is a software solution developed by HashiCorp. It is used to create

portable development environments. When created, it used VirtualBox

as the only provider, but now it supports many other options like KVM,

VMware, and many others.

It is a solution that makes it possible to define an Infrastructure as

Code (IaC) so that it is very easy to share that infrastructure with other

computers.

https://doi.org/10.1007/979-8-8688-1080-0_15#DOI

696

�Installing vagrant
Installing vagrant is very easy. We just need to access the official web page

(Figure 15-1).

Figure 15-1.  vagrant official page

We click the “Download” button and get to the page “Install vagrant”

(Figure 15-2).

Chapter 15 vagrant

https://www.vagrantup.com/

697

Figure 15-2.  Install vagrant

As we can see, vagrant can be installed on Windows, macOS, and

Linux. We select our OS, Linux in this example. Once we select Linux

(Figure 15-3), we can either configure a new repository to install vagrant

or download a precompiled binary version. In this case, we’ll choose to

download the precompiled binary for AMD64.

Chapter 15 vagrant

698

Figure 15-3.  Choosing the appropiate version for our OS

We copy the downloaded file to a folder named “vagrant” and unzip it.

antonio@antonio-Laptop:~/vagrant$ ls

vagrant_2.3.7_linux_amd64.zip

antonio@antonio-Laptop:~/vagrant$ unzip vagrant_2.3.7_linux_

amd64.zip

Archive: vagrant_2.3.7_linux_amd64.zip

 inflating: vagrant

After that, we have a new binary called “vagrant” in our folder. We’ll

copy that file to a folder included in the $PATH variable, for instance, to /

usr/local/bin/.

antonio@antonio-Laptop:~/vagrant$ sudo cp vagrant /usr/

local/bin/

Chapter 15 vagrant

699

Now we can execute vagrant from any location. However, we might get

this error:

antonio@antonio-Laptop:~/vagrant$ vagrant

dlopen(): error loading libfuse.so.2

AppImages require FUSE to run.

You might still be able to extract the contents of this

AppImage

if you run it with the --appimage-extract option.

See https://github.com/AppImage/AppImageKit/wiki/FUSE

for more information

We need to install the libfuse package; we search for it in the local

repositories.

antonio@antonio-Laptop:~/vagrant$ apt search libfuse

Sorting... Done

Full Text Search... Done

.

.

.

libfuse2/jammy 2.9.9-5ubuntu3 amd64

 Filesystem in Userspace (library)

.

.

.

And we install the package.

antonio@antonio-Laptop:~/vagrant$ sudo apt install libfuse2

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

Chapter 15 vagrant

700

.

.

.

The following NEW packages will be installed:

 libfuse2

0 upgraded, 1 newly installed, 0 to remove and 22 not upgraded.

Need to get 90,3 kB of archives.

After this operation, 330 kB of additional disk space will

be used.

Get:1 http://es.archive.ubuntu.com/ubuntu jammy/universe amd64

libfuse2 amd64 2.9.9-5ubuntu3 [90,3 kB]

Fetched 90,3 kB in 0s (379 kB/s)

Selecting previously unselected package libfuse2:amd64.

(Reading database ... 249805 files and directories currently

installed.)

Preparing to unpack .../libfuse2_2.9.9-5ubuntu3_amd64.deb ...

Unpacking libfuse2:amd64 (2.9.9-5ubuntu3) ...

Setting up libfuse2:amd64 (2.9.9-5ubuntu3) ...

Processing triggers for libc-bin (2.35-0ubuntu3.1) ...

From now on, we can execute vagrant successfully. If we launch it

without parameters, we’ll get this help:

antonio@antonio-Laptop:~/vagrant$ vagrant

Usage: vagrant [options] <command> [<args>]

 -h, --help Print this help.

Common commands:

 autocomplete manages autocomplete installation on host

 box manages boxes: installation, removal, etc.

.

.

.

Chapter 15 vagrant

701

�Deploying Our First Virtual Environment
with vagrant
Now that we have installed vagrant, we’ll see how easy it is to provision

a test environment. We’ll begin with a very simple example. There are

many vagrant boxes that we can download directly from vagrant. We

point our favorite web browser to vagrant cloud, formerly known as Atlas

(Figure 15-4).

Figure 15-4.  Publicly available vagrant boxes

We can use the search field to search for certain images, such as

AlmaLinux (Figure 15-5).

Chapter 15 vagrant

https://app.vagrantup.com/boxes/search

702

Figure 15-5.  AlmaLinux vagrant boxes

�Initializing vagrant
Once we have located the box that fits our needs, the first step is to

initialize vagrant with the vagrant init command. If we want to use the

almalinux/8 vagrant box that we spoke about, we need to specify the name

of that box.

antonio@antonio-Laptop:~/vagrant$ vagrant init almalinux/8

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment!

Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

After executing vagrant init, a file named Vagrantfile will be created;

we’ll see more details of this file in the next section.

Chapter 15 vagrant

703

�vagrant Files
The Vagrantfile we just created will contain several lines, most of which are

commented. We’ll take a look at the first lines.

antonio@antonio-Laptop:~/vagrant$ cat Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

All Vagrant configuration is done below. The "2" in Vagrant.

configure

configures the configuration version (we support older

styles for

backwards compatibility). Please don't change it unless you

know what

you're doing.

Vagrant.configure("2") do |config|
 �# The most common configuration options are documented and

commented below.

 �# For a complete reference, please see the online

documentation at

 # https://docs.vagrantup.com.

 �# Every Vagrant development environment requires a box. You

can search for

 # boxes at https://vagrantcloud.com/search.

 config.vm.box = "almalinux/8"

.

.

.

The configuration begins with the following line:

Vagrant.configure("2") do |config|

Chapter 15 vagrant

704

In this line, we specify the version we are using, 2 in this case. In the

next lines, we set the different options. In this simple example, there is only

this line:

config.vm.box = "almalinux/8"

We tell vagrant that we want to use the box named almalinux/8, which

will be downloaded from the URL we mentioned in the previous section.

�Running a Vagrantfile
To launch this simple environment, we just need to execute vagrant up.

antonio@antonio-Laptop:~/vagrant$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider…

As the almalinux/8 box is not locally installed, vagrant will try to find it

and download it from vagrant cloud.

.

.

==> default: Box 'almalinux/8' could not be found. Attempting

to find and install...

 default: Box Provider: virtualbox

 default: Box Version: >= 0

==> default: Loading metadata for box 'almalinux/8'

 default: URL: https://vagrantcloud.com/almalinux/8

==> default: �Adding box 'almalinux/8' (v8.8.20230606) for

provider: virtualbox

 default: �Downloading: https://vagrantcloud.com/almalinux/

boxes/8/versions/8.8.20230606/providers/

virtualbox.box

.

.

Chapter 15 vagrant

705

vagrant will assign a name to the virtual machine. As we’re using the

default provider, this VM will be created in VirtualBox.

.

.

==> default: Setting the name of the VM: vagrant_

default_1725636733750_50290

.

.

One of the last steps is setting the network and creating the port

redirection to access the box.

.

.

==> default: Clearing any previously set network interfaces...

==> default: �Preparing network interfaces based on

configuration...

 default: Adapter 1: nat

==> default: Forwarding ports...

 default: 22 (guest) => 2222 (host) (adapter 1)

==> default: Booting VM...

==> default: �Waiting for machine to boot. This may take a few

minutes...

 default: SSH address: 127.0.0.1:2222

 default: SSH username: vagrant

 default: SSH auth method: private key

 default:

.

.

==> default: Machine booted and ready!

==> default: Checking for guest additions in VM...

==> default: Mounting shared folders...

 default: /vagrant => /home/antonio/vagrant

Chapter 15 vagrant

706

Finally, the box is ready. We can see it directly in VirtualBox itself

(Figure 15-6).

Figure 15-6.  The VirtualBox instance launched by vagrant

We can access the VM through ssh. When starting the vagrant

environment, we could see these two lines:

 default: SSH address: 127.0.0.1:2222

 default: SSH username: vagrant

So we just need to execute this command (the default password is also

“vagrant”):

antonio@antonio-Laptop:~/vagrant$ ssh -p 2222 vagrant@127.0.0.1

The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)'

can't be established.

ED25519 key fingerprint is SHA256:DKiGWJAH9+17SA5urR5PE5g0vDYlD

MM7128+ZnIH43k.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/

[fingerprint])? yes

Chapter 15 vagrant

707

Warning: Permanently added '[127.0.0.1]:2222' (ED25519) to the

list of known hosts.

vagrant@127.0.0.1's password:

[vagrant@localhost ~]$

However, it is also possible to connect to the VM by typing only

vagrant ssh.

[vagrant@localhost ~]$ exit

logout

Connection to 127.0.0.1 closed.

antonio@antonio-Laptop:~/vagrant$ vagrant ssh

Last login: Sat Sep 16 07:38:55 2023 from 10.0.2.2

[vagrant@localhost ~]$

[vagrant@localhost ~]$ cat /etc/redhat-release

AlmaLinux release 8.8 (Sapphire Caracal)

When we’re done working with the virtual environment, we can

execute vagrant destroy to release all the resources used by the

environment and delete the VM associated.

antonio@antonio-Laptop:~/vagrant$ vagrant destroy

 default: �Are you sure you want to destroy the 'default'

VM? [y/N] y

==> default: Forcing shutdown of VM...

==> default: Destroying VM and associated drives…

�Working with Different
vagrant Environments
After creating our first deployment, let’s see a few more advanced

examples. When working with different vagrant environments in the same

host, it is a good practice to have every environment in its own folder.

Chapter 15 vagrant

708

antonio@antonio-Laptop:~/vagrant$ mkdir project1

antonio@antonio-Laptop:~$ cd project1/

antonio@antonio-Laptop:~/project1$

We know that the first step to deploy a vagrant environment is to create

a Vagrantfile with vagrant init. In the first example, we pass the name of

the box we wanted for the environment. This time we’ll execute it without

specifying any box name.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant init

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment!

Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

If we look at the Vagrantfile, we’ll see it is basically similar to what was

created in the first example, with a single difference. This line:

 config.vm.box = "base"

This time, we ran vagrant init without arguments; for that reason,

vagrant uses the generic name “base” for this parameter. If we try to create

a vagrant environment with this configuration, we’ll see this:

antonio@antonio-Laptop:~/vagrant/project1$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

.

.

.

==> default: Adding box 'base' (v0) for provider: virtualbox

 default: Downloading: base

Chapter 15 vagrant

709

An error occurred while downloading the remote file. The error

message, if any, is reproduced below. Please fix this error and

try again.

Couldn't open file /home/antonio/vagrant/project1/base

We get an error because “base” is not the name of any valid vagrant

box. When creating a virtual environment, vagrant searches for the used

box locally, and if it can’t find it, it tries to download and install that box

from vagrant cloud.

�Installing Additional vagrant Boxes
It is also possible to install additional boxes using the vagrant box

command. For instance, we can install the ubuntu/xenial64 box with this

command:

antonio@antonio-Laptop:~/vagrant/project1$ vagrant box add

ubuntu/xenial64

==> box: Loading metadata for box 'ubuntu/xenial64'

 box: URL: https://vagrantcloud.com/ubuntu/xenial64

==> box: �Adding box 'ubuntu/xenial64' (v20211001.0.1) for

provider: virtualbox

 box: �Downloading: https://vagrantcloud.com/ubuntu/boxes/

xenial64/versions/20211001.0.1/providers/virtualbox/

unknown/vagrant.box

Download redirected to host: cloud-images.ubuntu.com

==> box: �Successfully added box 'ubuntu/xenial64'

(v20211001.0.1) for 'virtualbox'!

Now we’re going to edit the Vagrantfile previously created with vagrant

init, and we’ll replace “base” with “ubuntu/xenial64” in the config.

vm.box option.

Chapter 15 vagrant

710

antonio@antonio-Laptop:~/vagrant/project1$ cat Vagrantfile

.

.

 config.vm.box = "ubuntu/xenial64"

.

.

After editing the file, we execute vagrant up again to create the

environment.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'ubuntu/xenial64'...

==> default: Matching MAC address for NAT networking...

==> default: �Checking if box 'ubuntu/xenial64' version

'20211001.0.1' is up to date...

==> default: �Setting the name of the VM: project1_

default_1724504690080_79454

.

.

.

==> default: Machine booted and ready!

.

.

.

==> default: Mounting shared folders...

 default: �/vagrant => /home/antonio/vagrant/project1

antonio@antonio-Laptop:~/vagrant/project1$

The environment is now up and running.

Chapter 15 vagrant

711

�Checking the Status of the vagrant Deployments
We can check the status of our deployments with the vagrant status

command.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant status

Current machine states:

default running (virtualbox)

.

.

.

antonio@antonio-Laptop:~/vagrant/project1$

We can also use the vagrant global status command, which returns

some additional information.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant

global-status

id name provider state directory

--

17e8b29 default virtualbox running /home/antonio/vagrant/

project1

.

.

.

antonio@antonio-Laptop:~/vagrant/project1$

In the output of the command, we can see that we have a running

VirtualBox VM, and this environment is defined inside the /home/antonio/

vagrant/project1 folder.

Chapter 15 vagrant

712

We can also list the locally installed boxes with vagrant box list.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant box list

almalinux/8 (virtualbox, 8.8.20230606)

ubuntu/xenial64 (virtualbox, 20211001.0.0)

ubuntu/xenial64 (virtualbox, 20211001.0.1)

packer_made_ubuntu20server (virtualbox, 0)

�Searching for vagrant Boxes
In our first example, we used the web interface to search for vagrant boxes.

This method is very friendly and easy, but it is also possible to search for

available boxes from the command line.

Let’s suppose we want to search for available ubuntu boxes. We’d need

to execute this command:

antonio@antonio-Laptop:~/vagrant/project1$ vagrant cloud

search ubuntu

| NAME | VERSION | DOWNLOADS |
 PROVIDERS |
+-----------------------+--------------+-----------+

---+

| ubuntu/trusty64 | 20191107.0.0 | 30,789,336 |
 virtualbox |
| hashicorp/precise64 | 1.1.0 | 6,815,055 |
 virtualbox, vmware_fusion, hyperv |
| ubuntu/xenial64 | 20211001.0.1 | 3,627,771 |
 virtualbox |
| puphpet/ubuntu1404-x64 | 20161102 | 2,522,864 |
 vmware_desktop, virtualbox, parallels |
| hashicorp/precise32 | 1.0.0 | 2,301,428 |
 virtualbox |

Chapter 15 vagrant

713

| bento/ubuntu-16.04 | 202212.11.0 | 1,886,760 |
 virtualbox |
| ubuntu/trusty32 | 20191107.0.0 | 1,854,678 |
 virtualbox |
| bento/ubuntu-14.04 | 201808.24.0 | 989,815 |
 hyperv, parallels, vmware_desktop, virtualbox |
| generic/ubuntu1804 | 4.3.12 | 981,839 |
 qemu, parallels, libvirt, vmware_desktop, hyperv, virtualbox |
| generic/ubuntu1604 | 4.3.12 | 968,883 |
 qemu, libvirt, vmware_desktop, parallels, hyperv, virtualbox |
+-----------------------+--------------+-----------+

---+

.

.

.

�Provisioning with vagrant
So far, we have created “default” vagrant environments. That is, we created

virtual machines based on AlmaLinux, Ubuntu, etc., but without any

additional configuration.

However, we might be interested in provisioning these environments,

installing additional software, creating additional users, etc. This can also

be done with vagrant.

In the Vagrantfile previously created, we can see the following section:

.

.

.

 # �Enable provisioning with a shell script. Additional

provisioners such as

Chapter 15 vagrant

714

 # �Ansible, Chef, Docker, Puppet and Salt are also available.

Please see the

 # �documentation for more information about their specific

syntax and use.

 # config.vm.provision "shell", inline: <<-SHELL

 # apt-get update

 # apt-get install -y apache2

 # SHELL

.

.

.

As we can read in the file itself, it is possible to configure provisioning

using shell scripts, ansible, puppet, salt, etc. In our case, we’ll use the

shell option.

As a proof of concept, we only need to uncomment the entries we

mentioned above. The section should look more or less like this:

.

.

 config.vm.provision "shell", inline: <<-SHELL

 apt-get update

 apt-get install -y apache2

 SHELL

.

.

To apply the changes, we need to reload vagrant.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant reload

Chapter 15 vagrant

715

vagrant will try to gracefully shut down the virtual machine.

.

==> default: Attempting graceful shutdown of VM...

.

.

After a few seconds, the machine will be back and ready.

.

==> default: Machine booted and ready!

.

.

We get a final message saying that the machine is provisioned.

.

.

==> default: Machine already provisioned. Run `vagrant

provision` or use the `--provision`

==> default: flag to force provisioning. Provisioners marked to

run always will still run.

antonio@antonio-Laptop:~/vagrant/project1$

Anyway, if we want to, we can force the provisioning.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant provision

==> default: Running provisioner: shell...

 default: Running: inline script

.

.

Chapter 15 vagrant

716

After a few seconds, we’ll see that the VM is contacting the repositories

to perform the update if needed.

.

.

 �default: Get:1 http://security.ubuntu.com/ubuntu xenial-

security InRelease [106 kB]

 �default: Hit:2 http://archive.ubuntu.com/ubuntu xenial

InRelease

 �default: Get:3 http://archive.ubuntu.com/ubuntu xenial-

updates InRelease [106 kB]

.

.

 default: Fetched 18.7 MB in 5s (3,294 kB/s)

 default: Reading package lists...

 default: Reading package lists...

 default: Building dependency tree...

 default: Reading state information…

.

.

And Apache will be installed.

.

.

 �default: The following additional packages will be

installed:

 �default: apache2-bin apache2-data apache2-utils libapr1

libaprutil1

.

.

antonio@antonio-Laptop:~/vagrant/project1$

Chapter 15 vagrant

717

To check that everything is OK, we’ll connect to the virtual machine.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant ssh

And we’ll check if the Apache web server was installed.

vagrant@ubuntu-xenial:~$ systemctl status apache2

• apache2.service - LSB: Apache2 web server
 �Loaded: loaded (/etc/init.d/apache2; bad; vendor preset:

enabled)

 Drop-In: /lib/systemd/system/apache2.service.d

 └─apache2-systemd.conf

 �Active: active (running) since Sat 2024-08-24 13:13:51 UTC;

1min 44s ago

 Docs: man:systemd-sysv-generator(8)

 CGroup: /system.slice/apache2.service

 ├─2766 /usr/sbin/apache2 -k start

 ├─2769 /usr/sbin/apache2 -k start

 └─2770 /usr/sbin/apache2 -k start

We just confirmed that it was actually installed, and everything seems

to be working fine. We can also use a web browser to check that we can

access the welcome page.

vagrant@ubuntu-xenial:~$ curl http://localhost

After performing all the tests, we log out.

vagrant@ubuntu-xenial:~$ logout

�Port Redirection
As we already have a vagrant environment with a web server, we’re gonna

review how to edit the network setting to access the web server externally.

Chapter 15 vagrant

718

By checking the Vagrantfile again, we’ll see the following lines:

.

.

 �# Create a forwarded port mapping which allows access to a

specific port

 �# within the machine from a port on the host machine. In the

example below,

 �# accessing "localhost:8080" will access port 80 on the guest

machine.

 # NOTE: This will enable public access to the opened port

 # config.vm.network "forwarded_port", guest: 80, host: 8080

.

.

The comments in the file are quite clear, so I don’t think any further

explanation is needed. In fact, the example provided is just what we need.

We only need to uncomment the config.vm.network.

.

.

config.vm.network "forwarded_port", guest: 80, host: 8080

.

.

To apply the new configuration, we need to reload vagrant. But before

doing it, we’ll examine the port redirections known to vagrant with

vagrant port.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant port

The forwarded ports for the machine are listed below. Please

note that

Chapter 15 vagrant

719

these values may differ from values configured in the

Vagrantfile if the

provider supports automatic port collision detection and

resolution.

 22 (guest) => 2222 (host)

When creating a vagrant environment, vagrant automatically creates

a port redirection to port 22 (ssh) in the guest virtual machine. To be

more precise, we should say that vagrant tells VirtualBox to create this

redirection. This is the only active port redirection right now.

If we check port 2222 in the host, we’ll see that the process currently

listening on it is VirtualBox.

antonio@antonio-Laptop:~/vagrant/project1$ sudo lsof -i :2222

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

VBoxHeadl 16312 antonio 21u IPv4 152711 0t0 TCP

localhost:2222 (LISTEN)

After this small pause, we reload vagrant.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant reload

==> default: Attempting graceful shutdown of VM...

.

.

We can see now that two ports are being redirected.

.

.

==> default: Forwarding ports...

 default: 80 (guest) => 8080 (host) (adapter 1)

 default: 22 (guest) => 2222 (host) (adapter 1)

.

.

Chapter 15 vagrant

720

We’ll wait for the reload to finish.

.

.

==> default: Machine booted and ready!

.

.

.

We’ll use vagrant port again to list the new port redirection.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant port

The forwarded ports for the machine are listed below. Please

note that

these values may differ from values configured in the

Vagrantfile if the

provider supports automatic port collision detection and

resolution.

 22 (guest) => 2222 (host)

 80 (guest) => 8080 (host)

From now on, we can use a web browser to open the host address and

port 8080, and we’ll see the Apache web page (Figure 15-7).

Chapter 15 vagrant

721

Figure 15-7.  Apache welcome page

�Customizing Network Settings
In all the vagrant environments created so far, we used the default network

configuration. This default configuration uses NAT, which is the default

network configuration in VirtualBox.

We’ll connect to our current vagrant instance to check the IP settings.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant ssh

.

.

vagrant@ubuntu-xenial:~$ ip address show

.

.

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 02:be:82:6b:cc:1d brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3

 valid_lft forever preferred_lft forever

Chapter 15 vagrant

722

 inet6 fe80::be:82ff:fe6b:cc1d/64 scope link

 valid_lft forever preferred_lft forever

vagrant@ubuntu-xenial:~$ logout

Connection to 127.0.0.1 closed.

We see that the VM is using a private IP address, 10.0.2.15 in our

example. If we want the VM to access the local network of our host,

we need to edit again the Vagrantfile and uncomment the config.

vm.network option.

.

.

 config.vm.network "public_network"

.

.

Again, we reload vagrant.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant reload

==> default: Attempting graceful shutdown of VM…

.

.

vagrant will detect the network interfaces present in the host and

request which one we want to use as a network bridge.

==> default: Clearing any previously set network interfaces...

==> default: Available bridged network interfaces:

1) wlp2s0

2) veth0a8a00c

3) enp3s0

4) docker0

5) br-5d100a76afaf

6) br-58df75541e61

Chapter 15 vagrant

723

7) vmnet1

8) vmnet8

9) virbr0

10) lxcbr0

11) virbr1

==> default: �When choosing an interface, it is usually the

one that is

==> default: being used to connect to the internet.

==> default:

 default: Which interface should the network bridge to?

We’ll select the main network interface in the host, that is, the one used

to access the Internet.

.

.

==> default:

 default: Which interface should the network bridge to? 1

==> default: �Preparing network interfaces based on

configuration...

 default: Adapter 1: nat

 default: Adapter 2: bridged

.

.

antonio@antonio-Laptop:~/vagrant/project1$

After the environment is reloaded, we connect to the instance again.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant ssh

.

.

Chapter 15 vagrant

724

And we check the IP settings again.

vagrant@ubuntu-xenial:~$ ip address show

.

.

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 02:be:82:6b:cc:1d brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3

 valid_lft forever preferred_lft forever

 inet6 fe80::be:82ff:fe6b:cc1d/64 scope link

 valid_lft forever preferred_lft forever

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 08:00:27:d9:f0:8e brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.73/24 brd 192.168.1.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::a00:27ff:fed9:f08e/64 scope link

 valid_lft forever preferred_lft forever

vagrant@ubuntu-xenial:~$

We can see that a new network interface was created, and it was

assigned an IP in the host network address space. That’s exactly what we

expected. Now any computer device can communicate with this VM and

vice versa.

�Shared Folders in vagrant
We might need to share files between our host and our vagrant VM. We can

do this in different ways, but probably the most convenient way is to use a

shared folder.

Chapter 15 vagrant

725

By default, vagrant shares the folder in which the Vagrantfile is located.

For instance, we can list the content of the project1 folder.

antonio@antonio-Laptop:~/vagrant/project1$ ls -lrth

total 48K

-rw-rw-r-- 1 antonio antonio 3,0K ago 24 15:31 Vagrantfile

-rw------- 1 antonio antonio 42K ago 24 15:33 ubuntu-

xenial-16.04-cloudimg-console.log

antonio@antonio-Laptop:~/vagrant/project1$

Next, we connect to our running instance. If we list the contents of the

root folder, we’ll see a vagrant subfolder.

vagrant@ubuntu-xenial:~$ ls /

bin boot dev etc home initrd.img initrd.img.old lib

lib64 lost+found media mnt opt proc root run sbin

snap srv sys tmp usr vagrant var vmlinuz vmlinuz.old

And inside this folder, we can list the exact same content that we listed

previously from the host.

vagrant@ubuntu-xenial:~$ ls /vagrant/

Vagrantfile ubuntu-xenial-16.04-cloudimg-console.log

vagrant@ubuntu-xenial:~$

If we want to share a different folder, we can easily do it by editing the

Vagrantfile again. This time, we need to modify the config.vm.synced_

folder parameter. As an example, we’ll share the /home/antonio/QEMU

folder in the host as the /qemu folder in the guest. The line should look

like this:

.

.

 config.vm.synced_folder "/home/antonio/QEMU", "/qemu"

.

.

Chapter 15 vagrant

726

We’ll reload vagrant to apply these changes.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant reload

==> default: Attempting graceful shutdown of VM...

.

.

.

.

.

.

==> default: Mounting shared folders...

 default: /qemu => /home/antonio/QEMU

 default: /vagrant => /home/antonio/vagrant/project1

.

.

We can clearly see in the output that the new shared folder was

created. To check it, we’ll access the instance and list the contents of the

/qemu folder.

vagrant@ubuntu-xenial:~$ ls /qemu/

README.txt alpine-virt-3.17.0-x86_64.iso

ch2-p2v1.jpg .

.

.

�Managing the State of the VM from vagrant
By now, we are already familiar with some vagrant commands related to

the management of the underlying virtual machine(s).

We have used vagrant up to create a new vagrant environment, which

includes creating a new virtual machine and starting it.

Chapter 15 vagrant

727

We have also used vagrant destroy to delete the associated virtual

machine and release its resources.

And we have checked the status of the virtual machines with vagrant
status too.

In addition to these commands, we have many other available to

manage virtual machines. We can use vagrant suspend, which suspends

the VM instead of shutting it down or destroying it.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant suspend

==> default: Saving VM state and suspending execution…

After that, we can check the new status of the VM.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant status

Current machine states:

default saved (virtualbox)

To return the VM to the running state, we can use vagrant up.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider…

.

.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant status

Current machine states:

default running (virtualbox)

If we prefer to shut down the VM, we’ll use vagrant halt.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant halt

==> default: Attempting graceful shutdown of VM...

Chapter 15 vagrant

728

Again, we can check the new status with vagrant status.

antonio@antonio-Laptop:~/vagrant/project1$ vagrant status

Current machine states:

default poweroff (virtualbox)

�Deploying Multiple Virtual Machines
from a Single Vagrantfile
In all the previous examples, we edited many options in the Vagrantfile.

However, we always have deployed a single VM in every vagrant

deployment. This is not something mandatory, and we can actually deploy

several VMs using a single Vagrantfile.

To see a simple example of this kind of deployment, we’ll create a new

folder for this new project and execute vagrant init to generate a default

Vagrantfile.

antonio@antonio-Laptop:~/vagrant/multi$ vagrant init

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment! Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

We need to edit the default Vagrantfile to declare as many virtual

machines as we want. We’ll use two in this example.

This time, the changes we need to do in the file are a bit more

complicated, so we need to pay close attention. Near the top of the file

we’ll see this line:

Vagrant.configure("2") do |config|

Chapter 15 vagrant

729

Just below it, we’ll create two new blocks of code, one for each

VM. We’ll name the two virtual machines server1 and server2.

 config.vm.define :server1 do |server1|

 end

 config.vm.define :server2 do |server2|

 end

In the previous examples, we have seen the option config.vm.box,

which was used to specify the name of the box to use in the single machine

deployment. For our multiple machine deployment, we need to use a

similar parameter in the form name_of_the_vm.vm.box. We’ll add this

information inside the two new blocks we created previously. We’ll use

an ubuntu box. The modified part of the Vagrantfile should be something

like this:

Vagrant.configure("2") do |config|
 config.vm.define :server1 do |server1|
 server1.vm.box="ubuntu/xenial64"

 end

 config.vm.define :server2 do |server2|
 server2.vm.box="ubuntu/xenial64"

 end

And we’ll also comment out the default config.vm.box option in

the file.

config.vm.box = "base"

We’re ready to create this new environment with vagrant up.

antonio@antonio-Aspire-A315-23:~/vagrant/multi$ vagrant up

Chapter 15 vagrant

730

Right after executing the command, we see that vagrant realizes it

needs to start two virtual machines.

.

Bringing machine 'server1' up with 'virtualbox' provider...

Bringing machine 'server2' up with 'virtualbox' provider…

.

.

And it will create two different port redirections.

.

.

==> server1: Preparing network interfaces based on

configuration...

 server1: Adapter 1: nat

==> server1: Forwarding ports...

 server1: 22 (guest) => 2222 (host) (adapter 1)

.

.

 server2: Adapter 1: nat

==> server2: Forwarding ports...

 server2: 22 (guest) => 2200 (host) (adapter 1)

After the deployment is complete, we can use vagrant status to check

that there are actually two virtual machines deployed.

antonio@antonio-Laptop:~/vagrant/multi$ vagrant status

Current machine states:

server1 running (virtualbox)

server2 running (virtualbox)

Chapter 15 vagrant

731

We can connect perfectly to any of the two instances.

antonio@antonio-Laptop:~/vagrant/multi$ vagrant ssh server1

.

.

vagrant@ubuntu-xenial:~$

antonio@antonio-Laptop:~/vagrant/multi$ vagrant ssh server2

.

.

vagrant@ubuntu-xenial:~$

We already have two virtual machines deployed, but if we check the

IP settings in any of these two machines, we’ll see we’re using the same IP

address and both are using NAT.

vagrant@ubuntu-xenial:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

.

.

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 02:be:82:6b:cc:1d brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3

 valid_lft forever preferred_lft forever

 inet6 fe80::be:82ff:fe6b:cc1d/64 scope link

 valid_lft forever preferred_lft forever

vagrant@ubuntu-xenial:~$

This can be confusing, so we’re going to use a bridged network for both

instances and we’ll make sure they receive different IP addresses and can

communicate with each other.

Chapter 15 vagrant

732

We need to edit again the Vagrantfile. We’ll include a new vm.network

parameter to set a new network for each one of the virtual machines. We’ll

use the 192.168.56.0/24 network address as this is one of the default private

addresses used on VirtualBox. The relevant part of the Vagrantfile is this:

Vagrant.configure("2") do |config|
 config.vm.define :server1 do |server1|
 server1.vm.box="ubuntu/xenial64"

 server1.vm.network "private_network", ip: "192.168.56.1"

 end

 config.vm.define :server2 do |server2|
 server2.vm.box="ubuntu/xenial64"

 server2.vm.network "private_network", ip: "192.168.56.2"

 end

And we execute vagrant reload.

antonio@antonio-Laptop:~/vagrant/multi$ vagrant reload

.

.

After the deployment is complete, we can connect to both instances

and check that we have the same IP that was assigned in the Vagrantfile.

antonio@antonio-Laptop:~/vagrant/multi$ vagrant ssh server1

.

.

vagrant@ubuntu-xenial:~$ ip address show

.

.

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 08:00:27:1c:85:ed brd ff:ff:ff:ff:ff:ff

Chapter 15 vagrant

733

 inet 192.168.56.1/24 brd 192.168.56.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::a00:27ff:fe1c:85ed/64 scope link

 valid_lft forever preferred_lft forever

antonio@antonio-Laptop:~/vagrant/multi$ vagrant ssh server2

.

.

vagrant@ubuntu-xenial:~$ ip address show

.

.

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000

 link/ether 08:00:27:1c:85:ed brd ff:ff:ff:ff:ff:ff

 inet 192.168.56.2/24 brd 192.168.56.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::a00:27ff:fe1c:85ed/64 scope link

 valid_lft forever preferred_lft forever

Of course we can ping server2 from server1 and vice versa.

vagrant@ubuntu-xenial:~$ ping 192.168.56.2

PING 192.168.56.2 (192.168.56.2) 56(84) bytes of data.

64 bytes from 192.168.56.2: icmp_seq=1 ttl=64 time=0.755 ms

64 bytes from 192.168.56.2: icmp_seq=2 ttl=64 time=0.566 ms

64 bytes from 192.168.56.2: icmp_seq=3 ttl=64 time=0.683 ms

^C

Chapter 15 vagrant

734

�Summary
In this final chapter of the book, we studied vagrant. We began by

installing vagrant and creating a simple environment. We saw that we

can download many preinstalled vagrant boxes from vagrant cloud. It is

also possible to create our own vagrant box by using Packer, as we did in

Chapter 13.

By now, we have become familiar with the Vagrantfile and how easy it

is to edit it to customize options like the IP settings or the provisioning.

We used vagrant to manage the status of the associated virtual

machine and created our own customized shared folders.

Finally, we saw an example about how to deploy several virtual

machines using a single Vagrantfile.

Chapter 15 vagrant

735© Antonio Vazquez 2024
A. Vazquez, LPIC-3 Virtualization and Containerization Study Guide,
Certification Study Companion Series, https://doi.org/10.1007/979-8-8688-1080-0

Index

A
Alpine Linux

alpine.pvlinux file, 109
bridge creation, 112, 113
CDROM drive, 114–117
configuration file, 107–113
Ethernet interface, 118
installation procedure, 117
interfaces, 117
ISO files, 105, 106
kernel/ramdisk files, 124
logical volume/hard disk, 120–127
network configuration, 118–120
paravirtualization, 114
setup-alpine installation, 121
website, 104

Amazon Web Services (AWS), 616,
635–638, 641, 680

AppArmor, 359–362, 402–404
API, see Application programming

interface (API)
Application container, 320, 376,

577, 626
Application programming

interface (API)
libvirt, 148

AWS, see Amazon Web
Services (AWS)

B
buildah, 571–573, 588

C
CLI, see Command-line

interface (CLI)
Cloud computing model

AWS, 636
characteristics, 589
comparison, 591
concepts, 589
deployment model, 591
Google cloud, 637, 638
Microsoft Azure, 637
OpenStack, 592–613
public cloud offerings, 635
service models, 590
terms/utilities, 589
Terraform, 613–635
types, 591

cloud-init
concepts, 677
datasources, 686
filesystems, 689–692
instance metadata

services, 686
LXD container, 687–689

https://doi.org/10.1007/979-8-8688-1080-0#DOI

736

OpenStack configuration
drive, 686

QEMU instance
datasource, 686
hardware virtualization, 680
HTTP requests, 682
http.server module, 680
information, 683
log files, 684
meta-data file, 680, 682
qcow2 file, 679
status command, 683
system booting, 681
temporary folder, 678
user-data file, 679, 685
vendor-data file, 680

software package, 692–694
web page, 677
website, 678

Command-line interface (CLI)
characteristics, 613
components, 608
endpoints, 610
networks/images, 612
openstack service list

command, 609, 612
run commands, 609
services, 609
users/roles, 611

Container orchestration, see
Orchestration solution

Container virtualization
AppArmor, 359–362

concepts, 319
control groups, 341–344
Linux/UNIX, 345–353
LXC (Linux containers), 363
namespaces (see Namespaces)
seccomp, 362
security, 353
SELinux, 353–359
system processes/

application, 320
unprivileged processes, 345

Control groups (cgroups), 341–344

D
Disk image management

access/modify files
command line, 242
conversion server, 275, 277
CPU configuration, 280
Debian domain, 282
debian.xml file, 279
destination format, 278
df command, 262
disk image writer, 274
filesystems, 258, 264, 265
guestfish, 242, 243
guestmount/

guestunmount, 248–251
inspector, 257
p2v, 269–277
rescue, 262–265
resizes, 263–267
sparsify, 267–269

cloud-init (cont.)

INDEX

737

sysprep, 282–285
troubleshooting

libguestfs, 244–248
USB device, 275
versatile/interesting

tool, 278
virt-cat, 251–254
virt-copy-in, 254
virt-copy-out, 255
virt-diff, 256
VirtualBox instance, 246
virtual disks, 241
v2v, 277–282

computer forensic tools, 228
concepts, 227
formats, 228
qcow/qcow2, 229
qemu-img

creation, 232, 233
disk file conversion, 235, 236
hardware specifications, 239
information, 230–232
overlay images, 233–235
qemu-utils package, 230
snapshots, 231
VirtualBox, 236–241
VMDK disk file, 237

raw images, 228, 229
terms/utilities, 227
virtualization solutions, 285–289
VMDK disk image, 230

Docker
architecture, 445–450
client-server architecture, 435

concepts, 435
containers, 440–445

customization, 471
Dockerfile, 475–482
export images, 475–479
FROM/RUN

instructions, 478
security options, 496–498
test_file.txt file, 479

containers mapping port, 493
dockerd service, 445
docker info command, 437
docker.io package, 436
images, 438–440
installation, 436–438
local/hub registry, 492–496
logging map, 482–487
networking

communication, 465
creation, 467–470
interfaces, 464, 467
IP address, 464
loopback interface, 467
mapping ports, 470, 471
orchestration, 465
ping, 464

official repositories, 436
save/restore

containers, 487–491
search command, 438
security options, 496–498
swarm cluster, 510–527
volumes

attach file, 450

INDEX

738

bind mounts, 453–455
container, 450
delete/prune volumes, 463
named volumes, 455–457
overlay, 452, 453
plug-ins, 460
remote, 460–463
shares, 458, 459
storage drivers, 452
test file, 451
tmpfs, 458

web page, 489

E
Emulation

definition, 2, 3
DOSBox, 2
game console, 3, 4
network (GNS3), 6
printer, 5
PuTTY, 4, 5
QEMU (see Quick

Emulator (QEMU))
retro VM, 4
systems, 6
terminals, 4, 5

F
FreeBSD systems, 575–577
Full system emulation

ARM system

architecture, 29
disk image, 31
initrd file, 30, 32–34
kernel loading option, 30
parameters, 32

qemu-system-xxx
commands, 17, 18

SPARC system, 34–41
x86 system

BOOT device, 19
command prompts, 19, 20
contextual option, 24
distributions, 18
graphical installation, 25, 28
initramfs file, 22
installation menu, 20, 21
installation program, 25
login screen, 28
no disk drive, 26
official documentation, 28
operating system, 28
QEMU monitor, 22, 23
qemu-system

command, 26, 27
RAM memory, 24

G
Google Cloud, 635, 637, 638, 680

H
Hardware virtualized machine

(HVM), 127–130, 145

Docker (cont.)

INDEX

739

Helm
Apache installation, 552
architecture, 546
arguments, 548
binary file, 547
bitnami repository, 549, 550
chart information, 550
kubectl command, 551
minikube service command,

552, 553
official web page, 547
repositories, 549

HVM, see Hardware virtualized
machine (HVM)

I, J
IaaS, see Infrastructure as a

Service (IaaS)
IaC, see Infrastructure as

Code (IaC)
IMDS, see Instance metadata

services (IMDS)
Infrastructure as a Service (IaaS),

590–592, 636, 637
Infrastructure as Code (IaC),

613–635, 695
Instance metadata services

(IMDS), 680, 686

K
Kernel-based virtual machine

(KVM), 12, 45, 46, 87, 94,
139, 246

Kubernetes, 527–546
architecture, 527–529
components, 529
configmap, 546
control plane, 528
deployments, 542–546
items, 546
minikube

binary file, 530
dashboard, 535
deployment, 537
helm, 537, 538
hi-minikube service, 536
installation, 529–531
kubectl, 531, 533
requirements, 530
service command, 536
status command, 532
web browser, 534, 535
web page, 530
working process, 532, 533

nginx application, 545
pod deployment, 539, 540
pods, 531
replicasets, 540–542

KVM, see Kernel-based virtual
machine (KVM)

L
Libvirt virtual machine

management
concepts, 147
C program, 177–180
dnsmasq, 223, 225

INDEX

740

installation, 148
libvirt.conf, 219, 220
libvirtd.conf file, 220–222
migration

add connection, 182
error message, 186, 187, 190
execution process, 191
remote hypervisor, 183
server console, 191–193
source/destination host, 184
storage file, 190
storage pool, 187
summary, 186
unsafe migration, 187–189

monitoring process, 212–214
networking

communication, 201
connection settings, 208
dnsmasq, 205
firewall configuration, 205
hardware details option, 202
installation, 204
interfaces, 202, 204, 208
isolated mode, 210, 211
NAT details, 203
network settings, 204
open/routed modes, 212
routed mode, 206, 207
web server, 209
web server logs, 205

Python program, 180–182
qemu.conf, 222

radvd service, 225
snapshots, 193–196
storage pools/volumes

creation, 197
local directory, 197
logical type, 199, 200
netfs, 198
network exports, 199
storage volume, 200, 201

virsh
code configuration, 216, 217
command line, 214
listing process, 215
network details, 217
parameters, 215
snapshots, 217
storage pool/volumes, 218
XML file, 216

virtlockd, 223
virtlogd.conf, 223
virt-manager

add connection, 151, 152
browse button, 171
CPU/memory settings, 174
disk space, 175
error message, 151–154, 158
graphical application, 149
import existing disk

image, 161–169
installation/management,

159, 160
installation process, 175–177
ISO file, 172
Libvirt-LXC, 157

Libvirt virtual machine
management (cont.)

INDEX

741

LXC, 158, 159
media installation, 171, 173
network installation, 160
operating system, 173
QEMU/KVM hypervisor,

155, 156
several options, 160
ssh-askpass package, 153
storage path, 161–164
VM creation, 170
Xen hypervisor, 149, 150, 155

Linux
configuration file, 100–104

Linux Containers (LXC)
bare-metal servers, 411
commands, 404

cgroups, 406
monitors, 405

concepts, 363
configuration

bridge interfaces, 376
chroot environment, 372
IP address, 373
linux-console, 373
logical volume, 385
lxc-checkconfig

command, 365–379
lxc-create command, 367
lxc-templates packages, 367
network configuration, 377
network namespaces, 377
network settings, 371
root filesystem, 372
root password, 372

storage option, 379–386
system/application

containers, 376
Ubuntu computer, 374
ubuntu template, 368
veth interfaces, 378
volume group, 383

containers, 363
Docker security options, 496
installation, 364, 365
LXD (see Linux Containers

Daemon (LXD))
OCI technologies, 566
Packer system

configuration file, 655
documentation, 653, 658
error message, 654
integration, 652
JSON format, 654
modification, 656
operations, 657
template, 656
VirtualBox/LXC plug-in, 652
web page, 651

RedHat/Rocky/
CentOS, 386–398

bridge-utils package, 391
busybox binary, 387
creation, 389
DHCP services, 397
dnsmasq program, 397
download template, 387
error message, 387, 390
IP settings, 391

INDEX

742

lxc-net service, 396, 397
packages, 386
restart option, 395
root password, 389
script running, 394
service execution, 392, 393
Ubuntu image, 389

security, 399–404
aa-status, 402
AppArmor, 401, 403, 404
capabilities, 400
cgroups, 399
commands/

characteristics, 399
logfile option, 403
seccomp, 402
unexisting profile, 403

Linux Containers Daemon (LXD)
advantages, 407
cloud-init

configuration, 687–689
configuration, 410
container, 412–416
installation, 407
networking process, 420–424
profiles, 427–432
resource utilization, 432, 433
server/container

configuration, 416–419
server (lxd)/client (lxc), 407, 409
storage, 424–426
storage pools, 410

Linux system, 7

Alpine website, 104–127
capabilities, 345–353
chroot, 338
emulation, 42
LXC (see Linux

Containers (LXC))
OpenVZ, 583–588
Packer, 641
SELinux, 353–359
Terraform, 614–636
virt-df, 262
x86 system, 18

LXC, see Linux Containers (LXC)
LXD, see Linux Containers

Daemon (LXD)

M
MAC, see Mandatory access

control (MAC)
MAME, see Multiple Arcade

Machine Emulator (MAME)
Mandatory access control (MAC)

AppArmor, 359–362
SELinux, 353–359

Microsoft Azure, 635, 637
Multiple Arcade Machine

Emulator (MAME), 2

N
Namespaces

chroot
error message, 337, 339

Linux Containers (LXC) (cont.)

INDEX

743

libraries, 337
Linux distribution, 338
root directory, 336–340
structure, 339
subfolder, 338

execute programs, 331
interfaces, 333
isolated namespace, 329–332
kernel resources, 320–323
mount, 323–326
network, 333–336
process namespace, 327, 328
user identifiers (UIDs/

GIDs), 328
virtual Ethernet devices

(veth), 333
NAT, see Network Address

Translation (NAT)
Network Address Translation

(NAT), 203, 205, 209,
721, 731

Networking process
bridge-utils package, 68
external access, 68–70
libvirt virtual machine

management, 201–212
operational network, 47
TUN/TAP devices, 62

communication, 68
connection failed

message, 64
information, 64
interfaces, 67, 68
IP settings, 66

netdev/dev parameters, 62
tap interfaces, 63, 66
tunctl command, 62

user networking, 48–52

O
OCI, see Open Container

Initiative (OCI)
Open Container Initiative (OCI),

566, 571
OpenShift cluster

deployments, 555
objects, 555
PHP installation, 556
productivity/security

features, 553
Red Hat sandbox, 554
sample applications,

555, 556
OpenStack

configuration drive, 686
OpenStack system

Canonical, 594
command-line

interface, 608–613
components, 592
concepts, 608
console log, 607
dashboard, 595, 596
flavor selection, 600–602
image creation, 596–598
installation method, 593
instances, 604, 605

INDEX

744

interfaces, 606
modules, 592
naming instance, 599
networks, 604
overview, 606
server console, 605, 607
services, 592
source image, 599, 600
summary, 595
training-labs, 593
website, 596

Open Virtualization Format (OVF),
227, 285–289

appliance settings, 286, 287
destination folder, 288
export appliance, 285
files, 288
VMDK files, 288

Open vSwitch, 313–318
OpenVZ system

containers, 584
error message, 586
libvirt-based tool, 586
prlctl, 585, 586, 588
virtualization solution, 583
Virtuozzo, 584
vmtype ct, 584
web page, 583

Orchestration solution
concepts, 499
docker compose

accessing adminer, 508
installation, 500–506

microservices, 500
multi-container

service, 506–510
PostgreSQL instance, 509
repositories, 501
service creation, 502–506

Helm, 546–553
Kubernetes, 527–546
OpenShift cluster, 553–556
Rancher, 557–562
scenarios, 500
swarm cluster

accessing services, 519
architecture, 510
constraints, 520, 521
global service, 522, 523
initialization, 511, 512
modes, 516
nodes, 510, 513–515
overlay network, 520, 521
replicated service, 522
secrets, 523, 524
services

deployment, 515–519
stacks, 524–527

OVF, see Open Virtualization
Format (OVF)

P
PaaS, see Platform as a

Service (PaaS)
Packer

building images, 646

OpenStack system (cont.)

INDEX

745

HashiCorp code language
(HCL), 647

LXC image, 651–659
source file, 650
Ubuntu server

installation, 649
VboxManage, 650
VirtualBox builder, 647–652

building system/container
images, 641

concepts, 641
installation

binary file, 642, 643
website, 641, 642
zip package, 643

integration, 671–676
integrations (plug-ins)

installation, 645
upper menu, 644
VirtualBox, 644

provision virtual machines
documentation, 671
message, 675
packer/vagrant, 672
post-processors, 672
scripts folder, 671
source file, 672, 673
vagrant, 675
vagrant post-processor, 674

Ubuntu system
access file, 666
autoinstall documentation,

660, 666
automated installation, 667

automated process, 669
cloud-init, 662
content file, 665
documentation, 662
format option, 664
http server, 662
image file, 670
installation

documentation, 659
parameters, 661
server ISO file, 660
shutdown_command, 664
vagrant, 663, 664, 668
VM installation, 668

Page Description Language
(PDL), 5

Paravirtualization, 10, 11, 90,
114, 128

PCL, see Printer Command
Language (PCL)

PDL, see Page Description
Language (PDL)

Platform as a Service (PaaS), 590,
591, 636, 637

podman
bsdinstall jail command, 575
buildah, 571–573
characteristics, 570
concepts/tools, 565
containers, 569–571
FreeBSD systems, 575–577
installation, 566, 567
nginx image, 567–569
OCI technologies, 566

INDEX

746

OpenVZ, 583–588
rkt, 577–583
skopeo, 573–575

Printer Command
Language (PCL), 5

Proxmox, 291
confirm tab, 307
console option, 308
CPU tab, 305
disks tab, 304, 305
downloading app, 292
general tab, 302, 303
hard disk selection, 294
installation, 291, 293
IP settings, 296
ISO images, 301
memory tab, 306
network settings, 296
network tab, 306, 307
OS tab, 303
root password, 296
server console, 297–299
storage, 300, 301
summarisation, 297
systemd-machined (see

Systemd-machined)
system tab, 304
time zone/keyboard

layout, 295
upload button, 302
virtualization platform, 291
web interface, 299, 300

Q
QEMP, see Quick Emulator (QEMU)
QEMU machine

protocol (QMP), 74, 75
QMP, see QEMU machine

protocol (QMP)
Quick Emulator (QEMU), 16

cloud-init configuration,
678–686

concepts, 15
device information, 89
full system (see Full system

emulation)
graphical window, 89, 90
guest agent package, 70–76
Kernel-based virtual

machine (KVM), 45, 46
monitor

aspects, 76
CD/DVD insertion, 79
disk devices information, 78
file manager, 80
info commands, 77
screendump command, 81
screenshots, 81, 82
shutting down, 88
snapshot, 82–86
system information, 87

networking (see Networking
process)

paravirtualization, 90
server console, 91

podman (cont.)

INDEX

747

Ubuntu installation, 16, 17
user mode emulation, 41–45

R
Rancher

charts, 562
command execution, 558, 559
installation, 558, 562
instructions, 557
Kubernetes cluster, 561
password setting, 560
web page, 557
welcome page, 559–561

Rocket (rkt)
containers, 582
cryptic error message, 580
Docker registry, 581
download process, 578
execution, 580
formats, 578
GitHub page, 577
HTTP request, 583
installation, 580
nginx welcome page, 582
SELinux, 581
tar file, 579

S
Scalable Processor

ARChitecture (SPARC)
-boot option, 36
commands, 35

error message, 38
firmware implementations, 38
nographic/device option, 40
OpenBIOS, 38, 39
package installation, 34
SeaBIOS, 38
Solaris box, 36, 37
source code, 40, 41
tar archive, 39
UltraSPARC, 37
wiki page, 35

Security component
(seccomp), 362

Security-Enhanced Linux
(SELinux), 353–359, 581

skopeo, 573–575
Socket networking, 47
Software as a Service (SaaS), 590,

591, 636, 637
SPARC, see Scalable Processor

ARChitecture (SPARC)
System container, 320, 376
Systemd-machined

containers, 309, 311
kernel feature, 312
machinectl command, 309
nspawn, 310

T
Terraform

binary installation, 615
command, 615
definition, 613

INDEX

748

Docker resources, 622
Apache container, 632–635
Apache web

container, 626–630
application containers, 626
command option, 630
configuration, 634
deployment, 622–626
destroy, 629
error message, 624
httpd container, 627
port redirection, 634
ports option, 632
Ubuntu container, 632–634

download process, 614, 615
official website, 613
providers

additional information, 620
browse mode, 616
docker_example.tf, 618
Docker provider, 617
documentation link, 619
help menu, 620, 621
registry, 616
terraform init command, 618
Ubuntu image, 620

U
Ubuntu 20, 95–97
User networking

automatic configuration, 51, 52
customized settings, 57, 58

device models, 54
DNS server/default gateway, 50
gateway, 50
info network, 56
IP address, 58, 59
IP configuration, 49
monitor settings, 57
netdev option, 53
netdev parameters, 57
port forwarding, 59–61
qemu-system-x86, 54–56
representation, 48
SLIRP, 48
web server, 51

V, W
vagrant system

architecture, 695
concepts, 695
environments

Apache welcome page, 721
deployment, 707–709
installation, 709, 710
network

configuration, 721–724
port redirection, 717–721
provisioning

process, 713–717
search option, 712, 713
status command, 711, 712

installation
appropiate version, 697, 698
binary file, 698

Terraform (cont.)

INDEX

749

download button, 696, 697
downloaded file, 698
error message, 699
execution, 700
libfuse package, 699
web page, 696

shared folder, 725–727
state management, 726–728
virtual environment

AlmaLinux, 701, 702
execution, 704
initialization, 702
network interfaces, 705
public boxes, 701
resources, 707
Vagrantfile, 703
VirtualBox instance, 706
web browser, 701

VMs
blocks, 729
config.vm.box option, 729
init format, 728
instances, 731
IP settings, 731
machine deployment, 729
network address, 732
port redirections, 730
server code, 733
Vagrantfile, 728–730

Virtual Distributed
Ethernet (VDE), 47

Virtualization
advantages, 11
characteristics, 7

concepts, 1
containers, 11
disadvantages, 12
emulation, 2–6
hypervisors, 9
Intel VT-x/AMD-V, 7–10
Oracle VirtualBox, 10
OS-level virtualization, 11
paravirtualization, 10
physical machine

Clonezilla, 13
migration, 12
openQRM, 13
virt-p2v converts, 12
VMware converter, 12
V2V, 14

pros/cons, 11
simulation, 7
terms/utilities, 1
types of, 10, 11

Virtual Machine Disk (VMDK), 228,
230, 232

Virtual machines (VMs)
configuration file, 100
disk image (see Disk image

management)
libvirt (see Libvirt virtual

machine management)
Linux

Alpine Linux
website, 104–127

configuration file, 100–104
HVM configuration

file, 127–130

INDEX

750

server console, 129, 130
VNC viewer, 129

paravirtualization, 128
VMDK, see Virtual Machine

Disk (VMDK)

X, Y, Z
Xen

architecture, 93, 94
concepts, 93
configuration, 97, 98
GRUB start options, 132–134
installation, 94

grub menu, 97

project web page, 95
Ubuntu 20, 95–97

logical volume, 98–100
troubleshooting, 144, 145
VMs (see Virtual machines)
XenStore, 130–132
xl/xm/XAPI, 135

default values, 136
hypervisors, 139
OpenXenManager, 143
restoration, 137
subcommands,

136, 137, 140
toolstacks, 135
VMs, 141, 143
Xenserver, 139, 140

Virtual machines (VMs) (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Virtualization Concepts and Theory
	Introduction
	Emulation
	Game Console Emulators
	Terminal Emulators
	Printer Emulators
	Network Emulators
	System Emulators

	Simulation
	Virtualization
	Types of Virtualization
	Pros and Cons of Virtualization
	Migration of Physical to Virtual Machines
	VMware Converter
	virt-p2v
	openQRM
	Clonezilla

	Migrating Virtual Machines Between Systems
	Summary

	Chapter 2: QEMU
	Introduction to QEMU
	Installation on Ubuntu

	Full System Emulation in QEMU
	Emulating an x86 System
	Emulating an ARM System
	Emulating a SPARC System

	User Mode Emulation in QEMU
	QEMU with KVM
	QEMU Networking
	User Networking
	QEMU Port Forwarding

	Networking by Using TUN/TAP Devices
	Creating a Bridge for External Access

	QEMU Guest Agent
	QEMU Monitor
	Other Useful QEMU Options
	Summary

	Chapter 3: Xen
	Xen Architecture
	Installation and Configuration of Xen
	Installing Xen
	Installing on Ubuntu 20

	Configuring Xen
	Creating a Logical Volume to Store the Virtual Machines

	Creating Virtual Machines
	Installing a Virtual Machine by Editing a Configuration File
	Installing Alpine Linux As a Paravirtualized Unprivileged Domain
	Initial Customization of the Example Configuration File
	Creating a Bridge
	Defining a CDROM Drive
	Configuring Networking
	Using a Logical Volume As the Disk of the VM

	Working with a Hardware Virtualized Machine

	XenStore
	GRUB Start Options
	Managing Xen with xl/xm/XAPI
	Xen Troubleshooting
	Summary

	Chapter 4: libvirt Virtual Machine Management
	Introduction to libvirt
	Installing libvirt
	virt-manager
	Installing and Managing a Virtual Machine with virt-manager
	Importing an Existing Virtual Machine into virt-manager
	Creating a Fresh New Virtual Machine in virt-manager

	Accessing libvirt from Our Own Programs
	Accessing libvirt from a C Program
	Accessing libvirt from a Python Program
	Migrating a Virtual Machine to Another Host

	Managing Snapshots
	Storage Pools and Volumes
	Networking
	Monitoring
	virsh
	libvirt Configuration Files
	libvirt.conf
	libvirtd.conf
	qemu.conf
	virtlogd.conf
	virtlockd.conf

	dnsmasq
	radvd
	Summary

	Chapter 5: Virtual Machine Disk Image Management
	Virtual Disk Image Formats
	Raw Images
	qcow and qcow2
	VMDK

	Managing Disk Images with qemu-img
	Getting Information with qemu-img
	Creating Disk Image Files with qemu-img
	Creating Overlays with qemu-img
	Converting Between Different Disk Formats
	Basic Usage of VirtualBox to Check the Image Disk File

	Mounting Partitions and Accessing Files Contained in Virtual Disks
	Troubleshooting libguestfs
	guestmount/guestunmount
	virt-cat
	virt-copy-in
	virt-copy-out
	virt-diff
	virt-inspector
	virt-filesystems
	virt-rescue
	virt-df
	virt-resize
	virt-sparsify
	virt-p2v
	virt-v2v
	virt-sysprep

	Open Virtualization Format
	Summary

	Chapter 6: Proxmox and Open vSwitch
	Introduction to Proxmox
	systemd-machined
	Open vSwitch
	Summary

	Chapter 7: Container Virtualization Concepts
	System Containers and Application Containers
	Kernel Namespaces
	Mount Namespaces
	Process Namespaces
	User Namespaces
	Combining Several Namespaces to Craft Our First “Container”
	Executing Commands in Different Namespaces

	Network Namespaces
	chroot

	Control Groups
	Linux Capabilities
	Security and Containers
	SELinux
	AppArmor
	seccomp

	Summary

	Chapter 8: Linux Containers (LXC)
	LXC
	Installing LXC
	Configuring LXC
	LXC Storage

	LXC in RedHat/Rocky/CentOS
	Security in LXC
	Other LXC Commands
	lxc-monitor
	lxc-cgroups

	LXD
	Creating Our First Container on LXD
	Managing Server and Container Configuration
	Networking in LXD
	Storage in LXD
	LXD Profiles
	Limiting the Use of Resources on LXD

	Summary

	Chapter 9: Docker
	Introduction to Docker
	Installing Docker
	Docker Images
	Docker Containers
	Docker Architecture
	Docker Volumes
	Bind Mounts
	Named Volumes
	tmpfs Volumes
	Sharing Volumes Between Containers
	Using Remote Volumes
	Deleting and Pruning Volumes

	Docker Networking
	Creating a New Network
	Mapping Ports

	Customizing Our Own Containers
	Exporting a Container to an Image
	Using a Dockerfile to Create a Container

	Logging in Docker
	Saving and Restoring Containers
	Creating a Local Registry
	Customizing Security Options
	Summary

	Chapter 10: Container Orchestration Platforms
	Container Orchestration
	docker compose
	Installing docker compose
	Creating a Service with docker compose
	Creating a Multi-container Service

	docker swarm
	docker swarm Architecture
	Initializing a docker swarm Cluster
	Adding Additional Nodes to the Swarm Cluster
	Deploying Services in docker swarm
	Overlay Networks
	Constraints
	Creating a Global Service
	Docker Secrets
	Stacks

	Kubernetes
	Kubernetes Architecture
	Installing minikube
	Pods
	First Steps with minikube
	Deploying a Pod in Kubernetes
	Replicasets
	Deployments
	Other Kubernetes-Related Items

	Helm
	OpenShift
	Rancher
	Summary

	Chapter 11: podman and Other Container-Related Tools
	Introduction
	Open Container Initiative
	podman
	Installing podman
	podman Images
	podman Containers

	buildah
	skopeo
	FreeBSD Jails
	rkt
	OpenVZ
	Summary

	Chapter 12: Cloud Management Tools
	Introduction to Cloud Computing
	OpenStack
	First Steps with OpenStack
	Using the OpenStack Dashboard (Horizon)
	OpenStack Concepts
	Using the CLI

	Terraform
	Installing Terraform
	Terraform Providers
	Deploying Our Docker Infrastructure with Terraform
	Deploying a Simple Ubuntu Docker Container
	Deploying an Apache httpd Docker Container
	Deploying a Customized Ubuntu Docker Container
	Deploying a Customized Apache httpd Docker Container

	Public Clouds
	Amazon Web Services
	Microsoft Azure
	Google Cloud

	Summary

	Chapter 13: Packer
	Introduction to Packer
	Installing Packer
	Packer Integrations (Plug-ins)
	Installing a Packer Plug-In

	Building an Image
	Building a VirtualBox Image
	Building an LXC Image
	Automating the Installation of Ubuntu to Generate an Image with Packer

	Provisioning with Packer and Integration with vagrant
	Summary

	Chapter 14: cloud-init
	Introduction to cloud-init
	Configuring a Local QEMU Instance
	Instance Metadata Services (IMDS)
	Datasources
	Config Drive

	Configuring a LXD Container Instance
	Managing Filesystems with cloud-init
	Installing Software Packages
	Summary

	Chapter 15: vagrant
	vagrant Architecture
	Installing vagrant
	Deploying Our First Virtual Environment with vagrant
	Initializing vagrant
	vagrant Files
	Running a Vagrantfile

	Working with Different vagrant Environments
	Installing Additional vagrant Boxes
	Checking the Status of the vagrant Deployments
	Searching for vagrant Boxes
	Provisioning with vagrant
	Port Redirection
	Customizing Network Settings

	Shared Folders in vagrant
	Managing the State of the VM from vagrant
	Deploying Multiple Virtual Machines from a Single Vagrantfile
	Summary

	Index

