

Implementing Samba 4

Exploit the real power of Samba 4 Server by leveraging
the benefits of an Active Directory Domain Controller

Marcelo Leal

BIRMINGHAM - MUMBAI

Implementing Samba 4

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1310314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-658-0

www.packtpub.com

Cover Image by Marcelo Leal (msl@eall.com.br)

Credits

Author
Marcelo Leal

Reviewers
Kai Blin

Henry Gultom

Iulian-Nicu Șerbănoiu

Manikandan Somasundaram

Acquisition Editors
Akram Hussain

Nikhil Karkal

Content Development Editor
Athira Laji

Technical Editors
Manan Badani

Shali Sasidharan

Copy Editors
Tanvi Gaitonde

Aditya Nair

Stuti Srivastava

Project Coordinator
Sanghamitra Deb

Proofreaders
Mario Cecere

Maria Gould

Clyde Jenkins

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Disha Haria

Yuvraj Mannari

Production Coordinator
Nilesh Bambardekar

Cover Work
Nilesh Bambardekar

Foreword

Shared, networked file and print services are the heart and blood of any office
environment. They allow users of a network to store their files reliably, share them
with each other, and bridge the gap between multiple places of work, multiple
devices and tools, and multiple operating systems.

The latter aspect is key to a modern work environment: integrating the worlds of
Unix/Linux and Mac OS X with the traditional Windows PC environment not only
allows users of a "foreign" OS to collaborate in a Windows-dominated world, it also
enables Windows environments to benefit from the power of Unix/Linux server
environments with advanced networking, high availability, backup/recovery, and
automation capabilities as well as integration with enterprise-class infrastructure
and tools.

When Andrew Tridgell implemented the first version of Samba in 1991, he probably
did not foresee the tremendous impact that his software would have on today's
office productivity environments and the role it would fill as the bridge between
two worlds that couldn't be more different from each other. Yet, this is exactly what
makes Samba so fascinating: the power to integrate the Windows world with the
Unix/Linux/Mac OS X world, the Rosetta Stone of filesystem protocols.

Wielding this power can be difficult and complicated. In today's hectic world of
IT system administration, the pressure to deliver a robust, stable, highly available,
and dependable infrastructure at a low cost has never been greater. Modern system
administrators frequently don't have the time or training to understand every
possible aspect of any given software, especially if it is a complex system that has
grown over several decades. They need simple, practical, relevant advice on how to
accomplish their day-to-day tasks, enabling them to get the basics of file and print
services up and running. They need to do so quickly and efficiently, so they can
concentrate on higher-level tasks, knowing that the key underlying infrastructure is
in place and running reliably.

I'm very happy to see that Marcelo has accepted the challenge of boiling down heaps
of documentation, white papers, and other collateral into a single, concise, practical
guide to implementing Samba 4. Marcelo draws from over a decade of experience in
running large-scale IT projects, from high-level planning to the nitty-gritty details of
command-line options and complex troubleshooting.

And the result is a clear, concise, extremely useful step-by-step guide on how to set
up your Samba 4 environment: from basic installation to AD Domain Controller
setup and management, migration from an existing Windows server environment,
upgrading from Samba 3, running file and print services, LDAP, clustering, and of
course scripting. This guide has got you covered.

Of course, no guide can replace the full documentation or address the intricacies
of every single corner case. But staying true to the Pareto principle, this is exactly
the 20 percent of documentation that you need to read to get 80 percent of your
Samba 4 work done. With Marcelo's expertise boiled down into a single book, you
can get up and running quickly, then concentrate your energy into those aspects
of your installation that are unique to your environment and that warrant your
special attention.

IT system administrators often have an aura of "IT wizards" around them, as if they
had the power to "heal" a broken computer with the touch of a hand. This "magic"
really stems from decades of experience; hard-learned intuition; and the tedious,
day-to-day work of getting IT stuff done. I hope that the "virtual Marcelo" distilled into
this book can help you become such a "Samba wizard", enabling you to ensure that
your organization's productivity is covered, at least from a file and print perspective.

Constantin Gonzalez
IT, Unix and file system survivor

About the Author

Marcelo Leal studied at Unisinos, where he undertook a Bachelor's degree in
Computing Science. Having worked in the IT industry for more than 15 years, he
has gained experience as a network/system administrator, support manager, Unix/
Linux specialist, storage architect, and most recently, as a solutions architect. He was
involved in open source projects since the beginning of his career and has developed
some open source tools and submitted patches to the GNU/Linux and FreeBSD
kernel. In 2005, he was honored for his participation in the Prêmio TI e Governo for
the project "Metrópole", Porto Alegre/RS. He was one of the founders of the Porto
Alegre OpenSolaris User Group (PoaOSUG) and was a contributor for the Open
High Availability Cluster Community (OHAC) within the OpenSolaris Project; he
was the first person outside Sun Microsystems to contribute code to the Open Cluster
software. He received three prizes at the OpenSolaris innovation awards program
(2007-2008), and presented a solution for Storage High Availability using nonshared
disks at the first OHAC Summit in San Francisco/California, USA (2009). In 2013,
he presented a highly available, scalable, and high performance three-layer storage
solution at SNIA SpeedConf, Santa Clara/California, USA, which, besides adding
a lot of value to the storage service, provided huge savings in capex and opex costs
(millions of dollars in three years). He has led the architecture and development of
a distributed Storage Appliance that, in three years, provided more than 1.5 million
operations per second (CIFS, NFS, and iSCSI) for almost 10PB in an area available
for a diverse range of products. In 2010, he wrote ZFS -Para usuários OpenSolaris,
Windows, Mac e Linux, Brasport, the first book about ZFS in Brazilian Portuguese and
actually one of the few books about ZFS available in a language other than English.
He tries to write regularly on his blog at http://www.eall.com.br/blog.

Acknowledgments

First, I would like to thank the open source community for all the hackers involved
in bringing lines and lines of code, documentation, and knowledge into the world.
I would like to specifically thank the Samba project team and community! The Samba
4 software is a huge accomplishment and deserves all our appreciation for the effort
taken in delivering such a great product. I would like to thank all the editors and
reviewers who worked with me during the journey of this book; I would not have
been able to do it without your help and invaluable inputs. I would like to thank my
family: Ana, Júnior, Pedro, and Leonardo. It's all for you! Last but not least, a big
thank you to my grandmother and my mother, Maria Leal. She is the reason I stand
here today.

About the Reviewers

Kai Blin is a computational biologist by trade and an open source developer by
passion. As he is more of a network and systems programmer in his spare time, the
Samba Team member feels lucky to also be able to work on open source software
in his day job. He holds a PhD in Microbiology from the University of Tübingen in
Germany and is currently working on his post-doc in Cologne.

Henry Gultom is a Linux consultant for an IT company that operates out
of Indonesia, Nigeria, and the Kingdom of Tonga. With more than 10 years'
experience in Linux administration, he has acquired a deep technical background
in the management, design, assessment, and systems integration of information
technologies. Since 2010, he has been helping many IT companies in Indonesia to
use Samba 4 and has been successful until now.

Iulian-Nicu Șerbănoiu is a graduate of Politehnica University of Bucharest.
He also holds a master's degree in Advanced Computer Architectures from the
same institution. He is a senior software engineer, with a specialization in imperative
programming languages, such as Java, C++, and Python. He has a passion for free/
libre software and always tries to be up to date with the latest technologies. He loves
scripting languages and uses them to automate tasks as much as possible.

I would like to thank my family for giving me the opportunity to
grow and become what I am today. Thank you very much for your
support; without you, I'm nothing.

Manikandan Somasundaram has over three years of experience in the field
of Linux administration. He is a BE Computer Science graduate. Being a Linux
enthusiast, he has his specialization in RHCE (Red Hat Certified Engineer) and
RHCSS (Red Hat Certified Security Specialist). He started his career as a Linux
system engineer in a small, Chennai-based start-up company, where he had the
freedom to explore/implement the world of open source, so he has migrated a
number of software from proprietary to open source, such as the openfire intranet
chat server. Then, he moved to SafeScrypt, a business unit part of Sify Technologies
Limited, which is the India's first CA (Certificate Authority). Here, he had an
opportunity to work with the PKI infrastructure and certification practices that
helped him relate his RHCSS studies to reality in a better way. Currently, he is
working for MindTree Ltd. as a Linux system administrator and pursuing an MS
Software Systems degree from BITS Pilani, India. His main hobby is to provide
freelance training on Linux administration, and his other hobbies are yoga, martial
arts, gymnastics, and playing the guitar.

I wish to personally thank the following people for their
contributions, and for inspiring me and providing me with
knowledge and help in reviewing this book:

Well wishers: Prof Vishvanathan, A.V.C. College Of Engineering,
Gerald Nathan, Principal Consultant, Corpus Software Pvt Ltd.

My family: Somasundaram (my father), Tamizarasi Somasundaram
(my mother), and Durgadevi (my sister).

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Installing the Samba 4 Server	 7

Installing Debian 7.0 (Wheezy)	 8
Installing and configuring Samba 4 Server's dependencies	 9
Installing Samba 4 Server step by step	 15
Basic validations of the Samba's installation	 16
Summary	 17

Chapter 2: Provisioning Samba 4 as an AD Domain Controller	 19
Highlighting the planning points for an AD service	 20
Acquiring information for deploying an AD service	 24

Availability, performance, and replication for the network service	 25
Setting up Samba 4 as an AD Domain Controller	 26

Validating the Samba 4 configuration	 31
Summary	 48

Chapter 3: Managing the Samba Active Directory Server	 49
Understanding the possible roles of the Samba 4 Server on
the network	 50
Implementing the AD authentication and authorization for
GNU/Linux systems	 51

Configuring the PAM and NSS libraries	 54
Joining the Debian 7 GNU/Linux into our Active Directory Domain	 59

Starting with the basic concepts for Group Policies on Samba 4	 66
Allowing a user to create Group Policies	 73
Allowing a user to link Group Policies to OUs	 76
Creating a Group Policy	 79

Trust relationships and replication with Samba 4	 81
Summary	 87

Table of Contents

[ii]

Chapter 4: Replacing a Microsoft Windows Active
Directory Server	 89

Key points to consider before replacing an AD DC	 90
Planning the replacement – tests and validations	 91

Exporting directory entries	 96
Comparing backup data against live data	 98
Replacing the Active Directory Domain Controller	 101

Replacement tests and validations	 121
Summary	 125

Chapter 5: Upgrading from Samba Server Version 3	 127
Distinguishing between Samba Versions 3 and 4	 128
Key points for consideration before the upgrade	 129

Establishing an upgrade plan	 130
Creating tests and validations before the upgrade	 133
Executing the Samba Server upgrade procedure	 142
Stopping and disabling Samba and winbind daemons	 144
Editing the Samba 4 configuration file	 146
Configuring the reverse zone	 148
Adding the profiles share to the configuration	 148

Deciding the upgrade approach for Member Servers	 149
Upgrading tests and validations for the PDC	 153
Upgrading tests and validations for Member Servers	 159

Summary	 161
Chapter 6: Printing and File Services	 163

Introducing SMB/CIFS protocol versions and Samba 4	 163
Introducing the Samba 4 file and print server daemons	 164
Introducing Microsoft Windows print driver Versions 3 and 4	 166
Configuring a printer on the Samba 4 Server host using CUPS	 166
Sharing the printer on a Microsoft AD network using Samba	 169
Introducing Microsoft Windows Point and Print Samba Server
configuration	 170
Sharing files using Samba 4	 176
Summary	 178

Chapter 7: Extending the Active Directory Schema
Using Samba 4	 181

Planning an Active Directory schema extension	 182
Exporting the current Active Directory schema configuration	 185

Extending the Active Directory schema in practice	 187
Extending the Active Directory schema	 188

Table of Contents

[iii]

Testing and validating the Samba 4 Active Directory schema extension	 200
Summary	 208

Chapter 8: Implementing a Highly Available Distributed
File Server	 209

Preparing the Debian GNU/Linux environment	 210
Configuring GlusterFS for high availability and scalability	 212
Integrating CTDB, GlusterFS, and the Samba 4 Server	 218
Executing tests and validations on the highly available file server	 226
Summary	 236

Chapter 9: The Samba 4 Python Scripting Interface	 237
Open source development and collaborative work	 238
Exploring and using the Python interface of the Samba 4 Server	 239
Introducing Samba 4 Python bindings	 241
Understanding the power of Python and the Samba 4 Server	 245
Summary	 256

Appendix: References	 257
Index	 261

Preface
After many years of hard work, coding, and testing, the open source community
was presented with the Samba software Version 4 at the end of 2012. Whoever was
involved in the Samba project or had participated in the community knows how
much this version was awaited. Besides all the new features that the Samba Server
Version 4 brings in this important release, the one that stands out unanimously is the
Active Directory capabilities. Microsoft Active Directory Services is a very popular
technology among different companies, from small or medium size organizations to
big enterprises.

With the new Samba 4 software version, users and system administrators will be able
to implement an Active Directory Server, file and print services, and deliver a broad
range of network services using open source technology. Samba 4 has main built-in
capabilities needed for the server side of the Active Directory services, such as the
LDAP server, the Kerberos Key Distribution Center, and a simple DNS server.

This book is a practical guide intended to provide easy-to-use, step-by-step
procedures to help users and system administrators implement Active Directory
services on their networks using the freedom of open source software. We will learn
how to use the Samba 4 Server as an Active Directory server, as well as understand
the other roles this software can play in the organization environment.

What this book covers
Chapter 1, Installing the Samba 4 Server, provides us with a quick overview of the
Debian GNU/Linux installation procedure, and we will learn how to install and
configure all the Samba 4 dependencies needed for our Samba 4 use cases. In this
chapter, the reader will learn how to validate the Samba 4 installation and how to
execute basic tests to make sure that the Samba 4 installation is ready.

Preface

[2]

Chapter 2, Provisioning Samba 4 as an AD Domain Controller, talks about the basic tasks
required to get a proper Samba 4 Active Directory as a Domain Controller configured
on the network. This chapter will focus on minimal planning, checklists, and the key
points to consider before starting the provisioning. We will learn how to provision
the Samba 4 as an Active Directory Server in detail.

Chapter 3, Managing the Samba Active Directory Server, describes the different roles
the Samba 4 Server can play on the network, and how to basically manage it using
Microsoft Windows machines (for example, Microsoft Windows Server 2008 R2).
The reader will learn how to integrate a Debian GNU/Linux client on the Samba 4
domain and to have the authentication and authorization working in this system.
Also covered in this chapter are the replication and trust relationship characteristics
of an Active Directory Domain Controller when running the Samba 4 Server at the
present time.

Chapter 4, Replacing a Microsoft Windows Active Directory Server, intends to show you
how to replace a Microsoft Windows Server Active Directory by a Samba 4 Server.
We will learn the key consideration points, our example configuration scenario,
some backup/recovery and rollback techniques, and in the end, the step-by-step
procedure to execute the replacement of our Microsoft Windows Server 2008 R2 with
the Samba 4 Server as the Active Directory Domain Controller. We will also learn
about some basic tests and validations to make sure that the process is successful
and the environment is fully functional.

Chapter 5, Upgrading from Samba Server Version 3, describes the main differences
between Samba software Version 3 and Version 4 and the considerations before
planning a successful upgrade. We will also learn about the plan, tests, validations,
as well as a step-by-step procedure to execute the upgrade and all the commands
and scripts that are needed to go from a Samba 3 Primary Domain Controller to a
Samba 4 fully functional Active Directory Domain Controller.

Chapter 6, Printing and File Services, covers the file and printing services for the
Samba 4 Server. We will learn about some differences between the file and printing
capabilities of Samba Server Version 3 and Version 4. We will learn about the SMB/
CIFS protocol versions of Samba 4, the Samba 4 file and print server daemons,
Microsoft Windows print driver Version 3 and Version 4. We will learn how to
configure a printer on the Samba 4 Server host using CUPS and how to share the
printer on a Microsoft Active Directory network using Samba. We have introduced
Microsoft Windows Point and Print Samba Server configuration and basic File
sharing with Samba 4.

Chapter 7, Extending the Active Directory Schema Using Samba 4, describes how to
extend the default Active Directory schema for some specific applications when
using a built-in Samba 4 as the Active Directory Domain Controller.

Preface

[3]

Chapter 8, Implementing a Highly Available Distributed File Server, focuses on how
to implement a highly available and distributed file server using Samba 4 Server,
GlusterFS, and CTDB.

Chapter 9, The Samba 4 Python Scripting Interface, describes some basics about the
Samba 4 internals, going through some code snippets and understanding the open
source development and collaborative work. This chapter also provides us with an
introduction to the Samba 4 Python bindings, teaches us how to explore and start
using the new Python interface of the Samba 4 Server, and describes a practical
example using the combined power of Python and Samba 4.

Appendix, References, provides the links for the references used in the book.

What you need for this book
This book is focused on the Samba 4 software and its installation on a Debian GNU/
Linux operating system. So, the reader will need an Internet connection to download
and install both the software and a CD/DVD with the respective software that is
available. The procedure to install the Debian GNU/Linux system is specific, but it
should be simple or adequate to other GNU/Linux distributions (the shell scripts are
written in bash, and should be similar in any GNU/Linux distribution).

All code and procedures presented through this book must not be used in
production; so, a test environment with the machines needed for each lab needs to
be created. It's highly important that the step-by-step procedures be executed in an
isolated environment where the reader can stress test all the code and configuration
examples provided. A good option is to use a virtualized environment, and if that
is the choice for the readers, any virtualized solution that supports the Microsoft
Windows Servers and GNU/Linux needed by the customer can be used.

Who this book is for
People who will benefit the most from this book should fit into one of these two
categories: they should have good knowledge of Microsoft Windows and basic
knowledge of GNU/Linux systems or they should have good experience with GNU/
Linux systems and basic knowledge of Microsoft Windows Operating System. Both
groups need to manage and integrate a heterogeneous environment, where GNU/
Linux and Microsoft Windows Servers and workstations need to have a centralized
authentication and authorization service, file and print sharing, configuration
management, and so on.

Preface

[4]

The expected audience will have specific needs and should seek pragmatic solutions
such as replacing a Microsoft Windows Active Directory Server with a Samba 4
Server when the administrator does not have much experience with GNU/Linux,
or implementing an Active Directory Server in an environment where the majority
of the systems are GNU/Linux operating systems, while still having to support and
integrate Microsoft Windows machines.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We just need to install the kerberos config
file in its right directory, and to do that, we just need to issue the following command:"

Any command-line input or output is written as follows:

leal@debian7:~$ sudo /usr/local/samba/sbin/samba -i -M single

Password:

A block of code is set as follows:

[DEVCODDS]
 comment = DEV COD DS
 path = /var/lib/samba/devcodds
 read only = No

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We can
connect to our snapshot directly by issuing the following command at the Start |
Run menu:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Installing the Samba 4 Server
In this chapter, we will begin with the GNU/Linux distribution, which we will
use as the base operating system (OS) to run the Samba 4 software. We will install
packages and execute some basic and fundamental configurations on the system.
We will cover the following subtopics:

•	 A quick overview of the installation process of the GNU/Linux distribution
Debian 7.0 (Wheezy). This OS installation procedure will not be covered in
much detail, because it should be really straightforward for the reader. Also,
there are many excellent resources available online for further reading in case
of any doubts regarding the installation process of GNU/Linux.

•	 How to install and configure all the dependencies needed for a proper Samba
4 installation.

•	 Step-by-step procedures and explicit command line examples to install the
Samba 4 software.

•	 How to use the Debian's official packages and repositories for all the
dependencies.

•	 How to install the Samba 4 Server using the source code (stable branch) from
the official GIT repository of the project.

•	 How to perform basic validations of the Samba 4 Server installation to be
sure that the environment is ready for configuration and to provide a full
range of the network services for which it's intended.

It's really important to have a sane environment on which the user can rely on and be
sure that any issues faced later at the production phase are not caused by an unmet
dependency, misconfiguration of one of the needed core parts of the OS, or even
caused upon an auxiliary service (for example, the dhcp server) that is not properly
configured or enabled.

Installing the Samba 4 Server

[8]

Installing Debian 7.0 (Wheezy)
To get started with our Samba environment, we need to install the OS, and for that,
the first task must be to choose of the right installation media. To install the Debian
7.0/Wheezy, released in May 04, 2013, we will use the network-installed ISO image.
The installation is a very simple and quick process where we will go through using
all the default configuration options. You can download the latest ISO (net install)
32-bit image file from the following link (for example, debian-7.0.0-i386-
netinst.iso at the time of this writing):

http://cdimage.debian.org/mirror/cdimage/release/current/i386/iso-cd/

Take a look at the proper hardware architecture for the system that you will install,
and then choose the right ISO image file accordingly for your system's hardware.
The Debian GNU/Linux distribution is available for many different platforms
(amd64, ia64, powerpc, and sparc, just to name a few). We did choose i386, because
our hardware is 32-bit.

We will run the dhcp, ntp, and Samba 4 Servers on the same system. Our Samba
4 Server will be the default gateway for our Microsoft Windows and GNU/Linux
systems that will rely on our AD services. Therefore, it will perform Network
Address Translation (NAT) for our clients, as in our example network our clients do
not have direct access to the Internet; they will have Internet access using our Samba
4 Server as an intermediate machine. For this configuration, our Samba 4 Server will
have two network cards—one in our private network (eth1) with IP 192.168.1.1 and
another with Internet access (eth0).

It's really important for any environment to have all systems with the time properly
synchronized. Because Samba 4 uses Kerberos as the authentication mechanism,
it's even more important to have the system time in sync, so we will configure the
ntp services on our server. The dhcp server provides us with a powerful solution
to manage the IPs on the network, integrate them with DNS services, and also
automatically register their hostnames (another essential feature for AD services).
If you already have a dhcp server on your network, you don't need to configure this
service again on the Samba 4 Server.

If you already have an installed OS where you intend to install the Samba 4 Server,
you can directly go to the installation and configuration phases of the dependencies
and auxiliary software sections in this chapter. In the book, we will assume
a configuration where dhcp and Samba 4 Servers will run on the same system and
will provide the basic configuration files for all these services. Another important
service that is crucial for the Samba 4 Server deployment is DNS. Samba 4 itself
provides a basic but sufficient DNS server for most installations, and that's why
we'll use it. As in the case of the dhcp service, if you already have DNS servers
on your network, you can continue using them instead.

Chapter 1

[9]

Just after you boot the system with your chosen installation CD, you will receive
a screenshot similar to the following (this one is from the netinst ISO image) one:

You just need to follow the screens as the default options should be sufficient for
most installations. When the installation is completed, don't forget to update and
upgrade the OS:

leal@debian7:~$ sudo apt-get update && sudo apt-get upgrade

This is an important point, and will guarantee that you will be working with all the
security patches that are available up to this point, and your running system will not
start production with any known security flaws.

Installing and configuring Samba 4
Server's dependencies
With our system up, running, and up to date, we can start installing and configuring
the Samba 4 Server's dependencies. Working with all the dependencies provided
directly by the GNU/Linux distribution gives us all the support from the Debian
community to maintain our system that is patched against security issues. It also
saves a large number of working hours as we can install ready binaries for our
system. All we need to do is issue the following command at the terminal:

Installing the Samba 4 Server

[10]

leal@debian7:~$ su – root

Password:

root@debian7:~# apt-get install build-essential python-dev pkg-config
libcups2-dev cups krb5-user docbook-xsl libldap2-dev libattr1-dev
libacl1-dev libgnutls-dev attr python-dnspython libreadline-dev
libbsd-dev libblkid-dev libpopt-dev cups git acl gdb xsltproc
libsasl2-dev libaio-dev libpam-dev valgrind resolvconf autoconf ldap
utils ntp isc-dhcp-server && echo OK

...

OK

root@debian7:~# exit

leal@debian7:~$

It's recommended and is a best practice to just use the root account as needed, and
to use su or sudo to execute the commands that need super user privileges (for
example, to install the software). So, if you want to follow the sudo approach, you
need to have it installed and configured, and in case of using su, don't forget to leave
the root shell after the needed administration task is performed. We will use both
approaches as examples throughout the book.

The previous command will install some auxiliary components, such as Kerberos,
dhcp server, cups (for printing services), and many libraries and other packages,
which are needed to compile the Samba 4 Server. We just listed the main packages that
we want to install on the command line as the GNU/Linux distribution will take care
of and install all the other dependencies that are needed by these packages, in order
to properly install them in the server. This is a powerful feature of the Debian package
management system and saves a lot of time, as you see that many other packages are
required to fulfill the installation command that we discussed previously.

While the installation of these packages is running, we only need to provide some
information for the Kerberos configuration. If you have provided your domain
information during the installation of the system, the Default Realm will already be
filled with the right information. If not, you can do it now and add the information
about the Realm and Administrative Server in the dialog box that apt-get install
will bring up while installing krb5-user:

Default Realm: EALL.COM.BR

Realm: 127.0.0.1

Administrative Server: 127.0.0.1

It's crucial to write the Kerberos Default Realm (FQDN) in uppercase.

Chapter 1

[11]

If you have installed Debian 7.0 with the default options, it has been configured with
the ext4 filesystem. So, let's just make sure that we have availability for all that we
need in terms of filesystem features for a proper Samba 4 installation. To do that, we
will inspect the kernel's config file placed in the /boot directory.

In a standard Debian installation, we can check the availability of the features of
filesystems we need just by issuing the following script on the command-line prompt:

leal@debian7:~$ grep CONFIG_EXT4_FS /boot/config-`uname -r`

If you have a custom kernel and have the config file in a different
location, change the file's path at the previous command to adjust it
to your settings.

The output for that command must be like the following:

CONFIG_EXT4_FS=m

CONFIG_EXT4_FS_XATTR=y

CONFIG_EXT4_FS_POSIX_ACL=y

CONFIG_EXT4_FS_SECURITY=y

What the previous output tells us is that the ext4 filesystem was configured as a
dynamically loadable module and the features of xattr (extended file attributes),
posix_acl (access control lists), and security have been built on it.

You can use a script such as grep CONFIG_EXT\[2-4\]_FS /boot/
config-`uname -r` to check ext2, ext3 and ext4 filesystems'
features on your kernel.

All these extensions are needed by the Samba 4 Server for its proper execution, as it's
needed by the Samba 4 AD/DC functions (for example, ACLs are required to handle
Microsoft Windows OS permissions properly). With all these features available, we
are in good shape and ready to proceed.

Now we will edit the fstab file of the OS to configure our system, thus enabling
that features on our ext4 filesystem and providing them to the Samba 4 Server later
on. Remember that any misconfiguration on your fstab file can make your system
unbootable. So, after any changes on it, take a closer look at the edited fstab file to
check if everything is as it should be.

Installing the Samba 4 Server

[12]

First, it's a good practice to create a backup of the fstab file before editing:

leal@debian7:~$ su – root

Password:

root@debian7:~# cp -pRf /etc/fstab /etc/fstab-bkp && echo "OK"

OK

root@debian7:~# exit

leal@debian7:~$

The output of the preceding command must be OK as it is a confirmation that our
original fstab file has a backup copy to restore the file in case of any issues. After
that, the following one-line script will handle the edition task of fstab for us:

leal@debian7:~$ su – root

Password:

root@debian7:~# FFILE=/etc/fstab; cp -pRf $FFILE $FFILE-`date
'+%m%d%Y'` && sed -e 's/^UUID.* \/ .*errors=remount-
ro/&,user_xattr,acl,barrier=1/' $FFILE > $FFILE-new && mv $FFILE-new
$FFILE && echo "$FFILE edited OK."

/etc/fstab edited OK.

root@debian7:~# exit

leal@debian7:~$

The output must be like the following code:

/etc/fstab edited OK.

If the result is not like the output, as mentioned in the preceding code, check the
special characters that we have on the script, because that can be a common source
of mistakes. Any errors found on the script execution must not change anything on
your original fstab file. Anyway, if the output suggests an error, take a look at the
original file and in case of doubt, restore it from the backup we did before the patch
(for example, /etc/fstab-bkp).

What the preceding one-liner script does is that it replaces any line in the fstab file
that starts with UUID and has the pattern errors=remount-ro (characteristic for
an ext3 or ext4 filesystems line) with a patched version that includes the needed
directives—xattr and acl. Even if you have any customized partition scheme (for
example, a separated /usr/ partition), it will work, and all the lines will be patched.
Take a closer look at it before you go to the next step.

Chapter 1

[13]

Another important OS configuration is the network interfaces' file (as they are
configured as dynamic by default), our domain, and DNS servers. We will configure
our Samba 4 Server for the 192.168.1.0/24 IP on the eth1 interface of our system.
So, this is the configuration that we need in our /etc/network/interfaces file for
our eth1 card:

iface eth1 inet static

address 192.168.1.1

netmask 255.255.255.0

dns-search eall.com.br

dns-domain eall.com.br

dns-nameservers 192.168.1.1

Don't forget to add the second interface (eth1) to the allow-hotplug
directive, and the right configuration for your eth0 interface (the one
with Internet access and a default gateway).

The configuration specified in the preceding code creates our interface eth1 static,
sets the IP and netmask addresses, and configures our domain. Remember to change
the domain in the previous example with your domain. We will work with the
examples in this book with the EALL.COM.BR domain.

Note that dns-nameservers is configured to be this server itself; this is because
we will soon configure the Samba 4 Server, and it has a built-in DNS server.
We can perform some final checks on the edited files, and if everything is good,
we will restart our server:

leal@debian7:~$ sudo shutdown -r now

After the restart, we can continue with our configuration, and the next step is the
configuration of two auxiliary packages that we mentioned earlier. We need this
for a proper Samba 4 Server execution of ntp and dhcp. We already have both of
them installed since our previous dependencies' installation phase; we just need to
configure and enable them.

Let's start with the Network Time Protocol (NTP) configuration (/etc/ntp.conf).
Just add the following lines to the standard Debian NTP configuration file:

#Implementing Samba 4

ntpsigndsocket /usr/local/samba/var/lib/ntp_signd/

restrict default mssntp

Installing the Samba 4 Server

[14]

The first line in the preceding code is a comment, and it's always a good idea to add
descriptive information about what and why something is being changed, added, or
removed in any configuration (for example, you should replace the comment in the
preceding example with something more descriptive). Another good practice is to
add your name and date close to the change that makes everything easier when we
need to understand what has been changed and why something is not working as it
should. The next two lines are for the configurations that are needed for signed ntp
and ms-sntp (authentication extensions).

The Dynamic Host Configuration Protocol (DHCP) configuration is not complex;
we just need to add a few more lines to it. In a terminal window, just edit the /etc/
dhcp/dhcpd.conf file, and replace all its content with the following lines:

Implementing Samba 4

ddns-updates on;

option domain-name "eall.com.br";

option domain-name-servers 192.168.1.1, 192.168.1.1;

option netbios-name-servers 192.168.1.1;

option ntp-servers 192.168.1.1;

default-lease-time 600;

max-lease-time 7200;

log-facility local7;

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.10 192.168.1.30;

option routers 192.168.1.1; }

If you use the vi editor, you can replace the whole content of the file
(just after the file is opened), issuing: dGi. After that, just add the lines
in the preceding command and close and save the file, issuing: Esc:x.

In some of the configuration lines in the preceding code, it is important to get
a detailed explanation as they are directly involved in Samba 4's server operations.
After the comment line (the first one, starting with the # character), we have
ddns-updates on. This is the directive that tells the dhcp server to update the DNS
server about the new IP releases and register the client's hostname. All the option
lines are information that the dhcp server will forward to its client's OSes when they
get a dhcp lease. So, they will have a proper domain name server, netbios name
server, ntp, and router information.

Chapter 1

[15]

Before starting the dhcp server, the last step is to edit the /etc/default/isc-dhcp-
server file and configure the interface on which the dhcp server will listen:

INTERFACES="eth1"

Now we are ready to start the dhcp server, as the installation process has already
added it to init.d runlevel in order to start it at the server's boot time. To start the
dhcp server now, just issue the following command:

leal@debian7:~$ su – root

Password:

root@debian7:~# /etc/init.d/isc-dhcp-server start

The output of this command must be like the following:

[ok] Starting ISC DHCP server: dhcpd.

Installing Samba 4 Server step by step
For the installation of the Samba 4 software, we will use GIT. So, we should start
creating a workspace (for example, directory) to download the sources of the Samba
4 Server stable branch into it. In a terminal window, just execute the following
command:

leal@debian7:~$ mkdir ~/workspace; cd ~/workspace && echo "OK"

We must receive an OK output in our terminal, and that is sufficient to be aware
that the workspace was created successfully and we are already inside it. Now, let's
download the Samba 4 source code and continue our installation process.

The previous command will create the workspace directly on our
home directory.

Now, we will clone the Samba 4 stable branch from the official project's repository,
configure it, and compile the software:

leal@debian7:~$ git clone -b v4-0-stable
git://git.samba.org/samba.git samba4

This command will take some time to complete as all the Samba 4 source code
will need to be downloaded (the total time will vary depending on your Internet
connection). Next, note the use of the --enable-self test option it the following
configure command, as we will need the features added by this option in a later phase:

Installing the Samba 4 Server

[16]

leal@debian7:~$ cd samba4

leal@debian7:~$./configure --enable-debug --enable-selftest

leal@debian7:~$ make && echo "OK"

This command will take some time to actually compile all the sources of the Samba 4
Server, and at the end, the output must be OK (the total time will vary depending on
your system's resources). Here, you can see the last lines of the compilation process that
I got on my system, along with the final successful result and the total elapsed time:

Waf: Leaving directory '/home/leal/workspace/samba4/bin'

'build' finished successfully (13m0.539s)

OK

leal@debian7:~/workspace/samba4$

We will not install it on its definitive place in our system just yet. First, we will execute
some validations to make sure that our resulted binaries are fully operational.

Basic validations of the Samba's
installation
We need to have automated deployments, and that includes automated tests. It's
really important to have proper tests for all of our deployments, because that is the
guarantee that everything is the way we are used to and the way we expect it to be.
I'm used to saying that in IT, everything needs to be an "Automated beast" and not
a "Masterpiece". With that in mind, we do not stand in front of the servers to draw
like Da Vinci (even if we could). However, we need to have everything automated
(scripted), so it can be easily reproduced, and we can create, destroy, and recreate the
whole environment without any effort.

The Samba 4 project helps us a lot with its built-in test suite, which is a great starting
point for our environment's validation. Just issue the following command:

leal@debian7:~$ sudo make quicktest

We will receive a verbose output that will report the execution of many invaluable
tests to verify whether our Samba 4 Server's installation is fully working. Pay close
attention to each line as you'll be able to follow the status of each test that is
being executed.

In case of any failure, we will need to review all of our installation and configuration
steps to see what point was not executed properly. We need to pass this step cleanly
to actually proceed to our Samba 4 Server configuration. The following is an excerpt
of an example execution of the test suite:

Chapter 1

[17]

[250/310 in 43m52s] samba4.raw.write(dc)

[251/310 in 43m53s] samba4.raw.rename(dc)

[252/310 in 43m55s] samba4.raw.qfsinfo(dc)

[253/310 in 43m55s] samba4.raw.qfileinfo(dc)

[254/310 in 43m56s] samba4.raw.close(dc)

[255/310 in 43m56s] samba4.raw.mkdir(dc)

[256/310 in 43m56s] samba4.raw.ioctl(dc)

[257/310 in 43m56s] samba4.raw.seek(dc)

[258/310 in 43m57s] samba4.raw.eas(dc)

[259/310 in 43m57s] samba4.raw.qfileinfo.ipc(dc)

[260/310 in 43m57s] samba4.ntvfs.cifs.krb5.base.delete(dc)

…

ALL OK (2061 tests in 310 testsuites)

A summary with detailed information can be found in:

./st/summary

'testonly' finished successfully (50m11.201s)

All tests must pass OK, as you can see in the preceding code so we can perform the
installation of the binaries into their final destination (/usr/local/).

You can do this by issuing the following command:

leal@debian7:~$ sudo make install

This command will copy all the required files to their final destination on our
filesystem. So, we will have the Samba 4 Server properly installed and ready to
be configured and provide our network services.

Summary
In this chapter, we were introduced to the GNU/Linux distribution that we will
work on as a base throughout the book. We got a quick overview of the Debian
installation process and some specific operating system configurations that are
needed to prepare it for the Samba 4 network services. In the next chapter, we will
learn how to provide the Samba 4 Server we just installed as Active Directory
Domain Controller for our network. So, we can start to use some of the many
features with which Samba 4 software provides us.

Provisioning Samba 4 as
an AD Domain Controller

In this chapter, the user will learn about the basic tasks that are required to get
a proper Samba 4 Active Directory configured as the Domain Controller for the
network. We will cover the following topics in this chapter:

•	 The minimal planning needed to deploy a Samba 4 Active Directory as the
Domain Controller (for example, domain, network topology/addresses,
and services required) as well as the basic concepts involved in the Domain
Controller service configuration.

•	 The network topology with which we will work through our example
configuration in the book, with basic planning techniques and checklists to
show the user how to prepare and have at hand all the information needed
for the provisioning setup of Samba 4 at hand.

•	 The deployment of the Samba 4 Server and the services needed for a proper
Samba 4 configuration through explicit command-line examples.

•	 Other important aspects of any Active Directory Domain Controller network
services such as the availability, performance, and replication considerations.
We will look at these characteristics in our specific example scenario, explain
what our assumptions were, and discuss some general ideas about how you
should approach a real-world situation.

•	 The provisioning of Samba 4 as an AD Domain Controller will be described
in detail, and at the end of the chapter, the reader will learn how to perform
basic validations of the Samba 4 configuration setup. This is a very important
task in order to have a sane environment that the administrators can rely on
to have a fully functioning Samba 4 Active Directory Domain Controller.

Provisioning Samba 4 as an AD Domain Controller

[20]

Highlighting the planning points for
an AD service
The most important task that we need to focus on before any other task, when
planning for Active Directory Domain Controller, is to our network services'
topology. For our Active Directory services to provide a resilient service, we need
to be effective in creating a simple (yet descriptive) and scalable architecture that
will fit our environment's needs and requirements.

Active Directory Domain Controller can provide us with a centralized management
point for our network devices and thus gives us full control over a large number
of objects (for example, users and machines). This is the key to achieving a lower
cost in administrative tasks, resource control, and security (authentication and
authorization) management in a specific network. To organize users and resources
in a way that is simple to manage and is scalable (for example, facilitates delegation)
is the key. On top of that, there is no reason to have a Domain Controller in our
network if the applications are not able to integrate themselves with it. Thus, we
cannot use all the features and facilities that an AD/DC can provide. Designing the
proper architecture for a specific site is a complex and extensive task and is outside
the scope of this book. However, we will discuss some general points and show you
an example configuration and topology, so that you can use it as a base for future
installations. As in any installation, the administrator needs to think about users,
machines, organizational units, domains, forests, and services.

We will present a simple but effective architecture to the user for the EALL.COM.BR
domain, with a structure that will help him/her understand important concepts and
serve as a starting point for the readers to work upon and evolve to more complex
environments. General advice is to focus on your specific topology and requirements,
extract the essential concepts, and work similar structures in your design that fit your
organization environment. Do not copy some Master Architectural Design from the
Internet thinking that it will fit your network out of the box just because it handles all
departments or definitions possible in the software. If you do not need that level of
complexity, do not use it. I could see many sites that were designed based on general
rules that were not intended to be used in that particular case but provide a simple
and scalable environment instead; they also create a network environment that is too
complex and really inefficient from the most basic administrative perspective. This is the
exact opposite of what a well-planned Active Directory Domain controller should be.

One analogy for such an inefficient architecture can be, for example, a file system
directory structure. Sometimes, we are compelled to create a really complex directory
hierarchy with many subdirectories and a nested, and deep tree that, in the end, just
keeps us away from the right file instead of helping us access it in a fast and simple way.

Chapter 2

[21]

Just because we can create a lot of directories inside one another, it does not mean
that we need to do it for every object or create a structure using hundreds of
subdirectories that will just add to the complexity. In such situations, we need to
think about the following points:

•	 How many files will we need to handle?
•	 What we want to achieve—fast placement of files, fast access to the files,

(or both)?
•	 Is it a directory structure that will be used directly by a person or an application?
•	 Do we have an intelligent name for the files that we will be storing?
•	 If not, do we have the control to change the name of the files in order for

them to have an intelligent name?
•	 Do we need to manage different/specific users and groups for each directory

or file?
•	 Will the structure help us delegate the administrative task to some directories

for specific users and/or departments?

You might think that creating a directory structure is supposed to be a simple
thing. However, as you start to think about it and look at the previously discussed
questions, you realize that it can be a tricky task and if the answers for the above
questions are not the right ones, the simple task can become a big problem in the
near future. In my experience, I have come across many solutions with performance
or scalability problems (and even security problems) just because the architect of that
solution did not think about these questions.

Similar design questions will come up when planning for Active Directory services
in your network. The questions about a simple task as a file system directory
structure can be eye opening to help us make the right architectural decisions in
different design problems. Systems that are well designed share the same principles
and are based on the same well-known characteristics of scalability, performance,
security, and simple administration.

Let's get back to the Active Directory services and their architecture. What we need
to have in mind at the highest level are these three basic concepts: forests, domains,
and organizational units. Forests are the top level of abstraction on the Active
Directory service. They provide us with security boundaries and contain one or
more domains inside it.

Domains are divisions (or partitions) inside a forest, and they have one or more
Organizational Units (OU) inside them. Organizational Units are entities that group
different objects (for example, users and/or machines) to help the administration of
these elements in a specific and scalable way (for example, making it easy to delegate
the administration).

Provisioning Samba 4 as an AD Domain Controller

[22]

So, following a general definition from Microsoft Active Directory Documentation,
forests are mainly there to implement a security control (boundary) on our Active
Directory environment. Domains provide us with an administrative point where
we can control the replication, thus establishing trust relationships. Organizational
Units are an administrative point to delegate administration, thereby providing
us with an invaluable resource to divide administrative responsibilities across the
entire organization (source: http://technet.microsoft.com/en-us/library/
cc756901(v=ws.10).aspx). This is an important aspect of scalability, as people (for
example, administrators) are an essential asset for any company and are the most
expensive resource to scale. The architecture needs to take this into consideration
from the very beginning.

Our example configuration will use a simple forest model, as it is the simplest model
with the lowest administrative overhead and will fit our requirement perfectly.
There are situations where you may need to have multiple forest models, so you
should plan to design such models instead. However, a single forest model is
preferred if your organization does not have complex requirements (for example,
totally autonomous divisions).

The forest root domain in our implementation will be MSDCBRZ.EALL.COM.BR, and
we will work with just one location (child domain) named POA.MSDCBRZ.EALL.
COM.BR. There are a lot of different approaches to organize the organizational units
within a site, and many administrators have a different view of the structure as each
organization has different needs.

We will start with 10 organizational units, following a model that basically separates
the workstations, services, and users. These are the three important objects that we
need to maintain on any directory services, and they will make the administration
and implementation of specific policies in the future easier.

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Chapter 2

[23]

The structure will have three top level OUs, which are workstations, services, and
users. The workstations' OU has the different type of devices that we plan to manage
for our users, such as laptops and desktops. This is a crucial separation as we need to
identify and handle the mobility of our users as they have specific security concerns.
This depends on whether the users are using our corporate network every time or
whether they are using laptops on the go. Our service's OU starts with three services
and can actually grow as we install others—terminal servers, print servers, and SQL
servers. Remember, if our network services are not integrated and cannot use the
directory features, there is no big advantage of having a directory service with
a centralized management.

Our last top level OU is for our users (People) and has two organizational units
inside it—standard users and power users. This is a simple division and is a good
base to leverage our user's administration.

In the following diagram, we can see our Active Directory's structure:

MSDCBRZ.EALL.COM.BR

WORKSTATIONS

SERVICES

PEOPLE

STANDARD USERS POWER USERSDESKTOPS LAPTOPS

TERMINAL
SERVICES PRINT SERVICES SQL SERVICES

POA.MSDCBRZ.EALL.COM.BR

Provisioning Samba 4 as an AD Domain Controller

[24]

Acquiring information for deploying
an AD service
To facilitate the understanding of this concept and help us have at hand all the
information that we need to deploy the Active Directory services on our network,
we will create a checklist with all the information that we need prior to the
deployment of an AD service. Based on our last topic, we know exactly what
we need, how we have defined the topology, and how our network will be
implemented. So, we are able to create a document with the information we need,
and this will help us identify any missing points about our design. In the following
table, we can see all the information we need prior to the implementation of Samba
4 Active Directory. This is organized in a table for ease of understanding and
referencing during the configuration phase. To have such information at hand, it
is vital that we have a clean and straightforward process; feel free to add as much
information as you have when planning for your AD services. The following is a
table that can be of help as a starting point to organize the data:

Samba 4 Active Directory configuration checklist
Question/Parameter Answer/Value

Role Domain Controller

DNS Infrastructure already in-place (x) Yes () No

Active Directory IP Address/interface 192.168.1.1 (eth1)

How many Organization Units 10

Locations/Physical Sites 1

How many Domain Controllers 1

Domain POA.MSDCBRZ.EALL.COM.BR

DNS Resolver Configuration Forwarding (IP: 8.8.8.8)

DHCP Server IP Address 192.168.1.1

Default Router IP Address 192.168.1.1

How many users 50

Chapter 2

[25]

As we saw in the first chapter, the Samba 4 Active Directory services rely on some
other essential services to be able to fully provide its services. It has already a vital
built-in service, DNS, which is well suited for many installations; we will use it as
our configuration's base. However, we also need Network Time Protocol (NTP),
as the time for all systems on the network needs to be in sync. This is even more
important for the authentication of Kerberos. DHCP is another service that is highly
necessary to provide the network administrators with a simple way to dynamically
set up a new machine on the network (for example, assign it a new IP address) as
well as register this new system on the DNS server (essential to the AD services). All
the services mentioned in the table are already configured in our Debian 7 server as
their configuration was part of our installation procedure for the Samba 4 services.

Availability, performance, and replication for
the network service
When planning for any network service, we need to think about its availability
and performance from the beginning as a service that does not have any of these
two characteristics is useless. This is no different for an Active Directory Domain
Controller, as it provides core services to the whole domain underneath it. If the
server is not available, the result will be that the users will not be able to connect
to the network, servers will not be able to resolve names, and so on. The checklist
that we built has high-level information that will help us in getting answers to some
important questions regarding availability and performance. This is why it is so
important to have a documented plan as it makes things much easier. The sizing
and architecture of the Active Directory services to a specific site is outside the
scope of this book, and there are many articles on the Internet that discuss different
aspects of a scalable, highly available, and high performance design. Some attention
points on our checklist that need to be taken into consideration when thinking about
performance and replication are as follows:

•	 The number of users
•	 The number of domains
•	 The location/physical sites

These points are just some examples of parameters that will have a huge impact
on the load of our Active Directory Server but there are others examples as well.
The more information you gather to add to your plan, the easier will it be to plan
for the resources that are needed to provide the right performance for your site.

Provisioning Samba 4 as an AD Domain Controller

[26]

A good example of another kind of information that we can have on our checklist
is provided by our Active Directory diagram. The services that we intend to have
in our domain and ones that will interact with our AD, will generate load (DNS
queries, authentication, and so on), so they too are performance factors that we need
to take into account. Our example scenario has a few users and a few services and
one server is sufficient to handle the load. We just have one site (location) and one
domain, so there are no concerns about the link's performance in order to replicate
the AD database. When we talk about availability, there is no small setup and we just
cannot afford to not have redundancy (high availability) in our services. In Chapter
4, Replacing a Microsoft Windows Active Directory Server, we will see how we can
add redundancy to our setup and how we can have high availability in the Active
Directory services.

Setting up Samba 4 as an AD Domain
Controller
One important configuration that will make our lives a lot easier is adding the Samba
4 installation path to our bash_profile file so that we have all the Samba tools in
our search path and we don't need to work with full (absolute) paths. To do this in a
sh or bash shell environment, just run the following command in your prompt:

leal@debian7:~$sudo echo 'export PATH=/usr/local/samba/bin:\

/usr/local/samba/sbin:$PATH' >> /root/.bash_profile && echo OK

The preceding command must give just the OK output. This is the signal that we
have configured our bash_profile file in the Samba 4 software's binary path (for
example, tools), so for future shell instances, we will have the search path ready.

After we have all the requisites for the Samba 4 environment fulfilled and our
software installation validated, setting up a Samba 4 Server as an Active Directory
Domain Controller is a simple task. We just need to execute the following command
in the command line prompt and we are ready to go:

leal@debian7:~$ sudo samba-tool domain provision --
realm=POA.MSDCBRZ.EALL.COM.BR --domain=POA --adminpass='w1ndow$$!' --
server-role='domain controller'

The previous samba-tool command can be executed interactively by just passing the
domain provision argument and answering the questions one by one (for example,
domain, adminpass, and so on). One of the objectives of this book is to provide the
readers with as many automated procedures and simple scripts as possible. We invoked
the samba-tool command with all the commands and arguments directly in one shot;
this will execute the whole Samba 4 Server provisioning without further interaction.

Chapter 2

[27]

If you want to re-execute the provisioning command, you will need to
remove the smb.conf file prior to the new execution or you will receive
an error and the execution will be aborted (for example, sudo rm /
usr/local/samba/etc/smb.conf).

So, let's take a look at the previous command line and explain each of the arguments
that were used; then, the reader can understand all the options and tweak them as
appropriate. The arguments are described as follows:

•	 samba-tool: This is the main Samba administrative tool.
•	 domain provision: This is the argument where the domain is the

subcommand on samba-tool that handles the domain's management tasks,
and provision is the subcommand that actually performs a provision of a
domain. This is the main part of our command as it provides us with the
provisioning of the domain.

•	 --realm: This is the realm's name.
•	 --domain: This is the argument where we set our domain name.
•	 --adminpass: This is the administrative password, (if we do not provide

one, Samba will create a random password), which is an important point in
the configuration of Samba 4 as there is a strict policy for passwords in the
Active Directory services (Microsoft Windows Password Policies). If we
provide a password that is not strong enough, we will receive an error and
will need to execute the command again. The password used in this book is
a simple password that respects that policy but is not intended to be used
in production.

The --server-role argument tells you that you must choose a secret and
strong password for your installation. We are provisioning an Active Directory
Domain Controller, so we will use domain controller as our server role.
However, there are other options such as dc, member server, member, and
standalone. The default server-role, if not provided by the user, is dc.

You can take a look at all available options which issue the samba-
tool command without any options, or access the main page (for
example, man samba-tool).

Provisioning Samba 4 as an AD Domain Controller

[28]

Just after we issue the preceding command to set up Samba 4 Server as an Active
Directory Domain Controller, we can follow the output to be sure that everything
was okay in the execution. We can take a look at an example output in the
following command:

Looking up IPv4 addresses

More than one IPv4 address found. Using 192.168.1.1

Looking up IPv6 addresses

No IPv6 address will be assigned

Setting up share.ldb

Setting up secrets.ldb

Setting up the registry

Setting up the privileges database

Setting up idmap db

Setting up SAM db

Setting up sam.ldb partitions and settings

Setting up sam.ldb rootDSE

Pre-loading the Samba 4 and AD schema

Adding DomainDN: DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

Adding configuration container

Setting up sam.ldb schema

Setting up sam.ldb configuration data

Setting up display specifiers

Modifying display specifiers

Adding users container

Modifying users container

Adding computers container

Modifying computers container

Setting up sam.ldb data

Setting up well known security principals

Setting up sam.ldb users and groups

Setting up self join

Adding DNS accounts

Creating CN=MicrosoftDNS,CN=System,DC=poa,DC=msdcbrz,DC=eall,\

C=com,DC=br

Creating DomainDnsZones and ForestDnsZones partitions

Populating DomainDnsZones and ForestDnsZones partitions

Chapter 2

[29]

Setting up sam.ldb rootDSE marking as synchronized

Fixing provision GUIDs

A Kerberos configuration suitable for Samba 4 has been generated
 at /usr/local/samba/private/krb5.conf

Once the above files are installed, your Samba 4 server will be
 ready to use

Server Role: active directory domain controller

Hostname: debian7

NetBIOS Domain: POA

DNS Domain: poa.msdcbrz.eall.com.br

DOMAIN SID: S-1-5-21-1069074877-2280341390-3609431641

The output in the preceding command has some information about each step of the
provisioning of the Samba 4 Server, so we can see messages about setting up some
resources, creating some default containers, users, groups, as well as some DNS setups.

The last lines have some useful information; they give us the Domain Name and SID;
they also give us an important hint about the Kerberos configuration file that was
automatically generated for us, and we need to use it to finish the Samba 4 Server
configuration. We just need to install the kerberos config file in its right directory,
and to do that, we just need to issue the following command:

leal@debian7:~$ su – root

Password:

root@debian7:~# cp -pRf /usr/local/samba/private/krb5.conf /etc/ && echo
OK

OK

root@debian7:~# exit

leal@debian7:~$

If the output for the previous command is OK, it means that our Kerberos configuration
file is installed in the right location and we are almost there. Now, we need to edit
the smb.conf file and configure our DNS server, which Samba will use to forward
any Domain Name resolution queries that are outside its authoritative zone. In this
example, we will use the Google DNS open servers, but you should use the addresses
for your DNS servers. Just take a look at the smb.conf file before editing it as the right
DNS forwarded IP address could be configured automatically by the samba-tool
script, so you don't need to change anything.

Provisioning Samba 4 as an AD Domain Controller

[30]

The following script should do that for us:

leal@debian7:~$ sudo cp -pRf /usr/local/samba/etc/smb.conf
/usr/local/samba/etc/smb.conf-bkp && sed -e 's/dns forwarder =.*$/dns
 forwarder = 8.8.8.8/g' /usr/local/samba/etc/smb.conf >
 /usr/local/samba/etc/smb.conf-new && mv
 /usr/local/samba/etc/smb.conf-new /usr/local/samba/etc/smb.conf &&
 echo OK

OK

leal@debian7:~$ sudo cp -pRf /usr/local/samba/etc/smb.conf \

 /usr/local/samba/etc/smb.conf-bkp && \

 sed -e 's/dns forwarder =.*$/dns forwarder = 8.8.8.8/g'

 /usr/local/samba/etc/smb.conf > /usr/local/samba/etc/smb.conf-new
 && \

 mv /usr/local/samba/etc/smb.conf-new
/usr/local/samba/etc/smb.conf && \

 echo OK

OK

leal@debian7:~$

If the output is OK, it means that our smb.conf file was edited fine and we are ready
to start the Samba 4 Server. In case we receive any error, we should not change
any line of our original Samba configuration file. If any change was made and we
received an error that means that the editing was not successful, we will get a backup
file that contains the original content of our smb.conf file, as the first command
issued in our script created a copy of the Samba configuration file. So, we have a
smb.conf-bkp file with our original configurations and we can just restore it.

Now, we will start our Samba 4 Server to have it running in the foreground. It
should be single-threaded to be able to identify any errors or warnings the software
can raise as in the next topic, we will execute a series of tests and validations to verify
that our configuration is ready to enter production. In a terminal window, issue the
following command:

leal@debian7:~$ sudo /usr/local/samba/sbin/samba -i -M single

Password:

If everything was fine with our installation and configuration process, we should
receive the following output:

samba version 4.0.5 started.

Copyright Andrew Tridgell and the Samba Team 1992-2012

samba: using 'single' process model

Chapter 2

[31]

Attempting to autogenerate TLS self-signed keys for https for
 hostname 'DEBIAN7.poa.msdcbrz.eall.com.br'

TLS self-signed keys generated OK

You will notice that the Samba process remains attached to your shell, as it has not
forked. The message indicates the 'single' option as our process model, as we
started the daemon with the -M single option. This is to make our life easier while
debugging and searching for any error messages, as we have just one process to
handle our Active Directory services; there's no risk of losing the message involved
as we are looking at the right process.

Validating the Samba 4 configuration
Now that we have our Samba 4 Server installed and configured, we execute some
basic validations to guarantee us that our environment is ready to go live. These tests
will cover DNS queries, Kerberos authentication, and some basic request/response
capabilities of our brand new server.

As we stated in the first chapter and will do in others throughout the book, it's
always important to have an automated test procedure to validate our environment.
So, it's highly recommended that you start creating scripts to test your Samba
4 configuration for future installations, upgrades, or maintaining the database.
Creating a battery of tests and validations is the key to help us with any changes in
the environment and can identify problems before you go live, providing you with
the option to rollback the modifications and go back to the planning board.

Let's start with the DNS tests as the Domain Name resolution is essential for
the proper working of Active Directory [13]. If we have any issues with our
configuration, we will face trouble ahead. The Active Directory uses the SRV record
to locate domain controllers, as this resource record is used to identify servers
that provide specific services. Two SRV records need to be created for any Active
Directory Domain Controller: _kerberos and _ldap. So, we need to validate that
our systems have these records, so clients will be able to communicate and find our
services on the network. Issue the following commands on a new shell:

 leal@debian7:~$ host -t SRV _kerberos._udp.poa.msdcbrz.eall\

.com.br

_kerberos._udp.poa.msdcbrz.eall.com.br has SRV record 0 100 88 debian7.
poa.msdcbrz.eall.com.br.

leal@debian7:~$ host -t SRV _ldap._tcp.poa.msdcbrz.eall.com.br

_ldap._tcp.poa.msdcbrz.eall.com.br has SRV record 0 100 389 debian7.poa.
msdcbrz.eall.com.br.

http://technet.microsoft.com/en-us/library/cc759550(v=ws.10).aspx

Provisioning Samba 4 as an AD Domain Controller

[32]

leal@debian7:~$ host -t A poa.msdcbrz.eall.com.br

poa.msdcbrz.eall.com.br has address 192.168.1.1

The output for the preceding commands should be similar in your environment.
In case you receive an error stating that the entries were not found, you need to
review the configuration process to make sure that every step was properly
executed. As we can see from the output for both the preceding commands,
our SRV records for _ldap and _kerberos are configured OK.

Another important point about our DNS setup is the forwarding configuration, so
the ability to resolve names that our Active Directory is not authoritative. We can test
this by trying to check some well-known sites. The steps to test the same are
as follows:

1.	 Execute the following command:
leal@debian7:~$ host www.amazon.com

The output should be something like the following command:

www.amazon.com hashas''''''' address 72.21.215.232

2.	 We can try to resolve the MX record for the amazon.com domain. For that,
just issue the following command at one terminal:
leal@debian7:~$ host -t mx amazon.com

The output for that command should be something similar to the following
command:
amazon.com mail is handled by 5 amazon-smtp.amazon.com.

amazon.com mail is handled by 10 smtp-fw-4101.amazon.com.

amazon.com mail is handled by 10 smtp-fw-9101.amazon.com.

amazon.com mail is handled by 10 smtp-fw-31001.amazon.com.

amazon.com mail is handled by 10 smtp-fw-33001.amazon.com.

amazon.com mail is handled by 15 smtp-fw-2101.amazon.com.

So, with these tests, we are sure that our Active Directory's built-in DNS
server is working just fine, resolving DNS names for our domain (poa.
msdcbrz.eall.com.br) and forwarding the requests for the other domains.
We also validated the _kerberos and _ldap SRV records and are able to
proceed to test the Kerberos authentication mechanism.

3.	 To test the kerberos authentication, we can use the kinit command. Kinit
is a utility to obtain and cache the Kerberos ticket-granting ticket (see
man kinit). The simplest form to invoke kinit and test our Samba 4
configuration is by executing the following command:
leal@debian7:~$ kinit administrator@POA.MSDCBRZ.EALL.COM.BR

Chapter 2

[33]

4.	 You should receive the following prompt:
Password for administrator@POA.MSDCBRZ.EALL.COM.BR:

5.	 So, you must enter the administrator password and press Enter. The output
should be a warning like the following command:
Warning: Your password will expire in 41 days on Sat Jul 13
19:22:46 2013

6.	 Now, we can use the klist command to verify that we have actually
received a ticket and Kerberos is working fine:
leal@debian7:~$ klist

7.	 The output for the klist command in the preceding command should be
something like the following command:

Ticket cache: FILE:/tmp/krb5cc_1000

Default principal: administrator@POA.MSDCBRZ.EALL.COM.BR

Valid starting Expires Service principal

06/02/13 02:09:59 06/02/13 12:09:59 krbtgt/POA.MSDCBRZ.EALL.\

COM.BR@POA.MSDCBRZ.EALL.COM.BR

renew until 06/03/13 02:09:54

If you receive an output similar to the klist command execution, it means
that the Kerberos authentication mechanism is working fine.

The next validation will be the ldap backend of our Samba 4 Active Directory Domain
Controller. We can use the ldapsearch utility to perform queries on our AD and
verify that it is working as it should. The first query can be the following command:

leal@debian7:~$ ldapsearch -x -h localhost -s base -D
 cn=administrator,cn=Users,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br -W

You will be prompted to provide the administrator password and after that, you should
receive a verbose output. For brevity, we will reproduce just the last few lines here:

namingContexts:
DC=DomainDnsZones,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

namingContexts:
DC=ForestDnsZones,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

supportedSASLMechanisms: GSS-SPNEGO

supportedSASLMechanisms: GSSAPI

supportedSASLMechanisms: NTLM

highestCommittedUSN: 3723

domainFunctionality: 2

Provisioning Samba 4 as an AD Domain Controller

[34]

forestFunctionality: 2

domainControllerFunctionality: 4

isGlobalCatalogReady: TRUE

search result

search: 2

result: 0 Success

numResponses: 2

numEntries: 1

If you have received a similar output in response to the previous ldap search
query, it means that our Active Directory ldap backend should be working fine.

The last test is the most important one as we will actually test Microsoft Windows
Machine and try to add it to our brand new domain. We will use a Windows Server
2008 R2 operating system, and after the machine has joined the domain, we will use
it to create the organizational units on our Active Directory Domain Controller.

Just after the installation of the Microsoft Windows 2008 Server, we can check if our
system could get an IP address from our DHCP server; do execute a quick reachability
test (for example, ping) just to make sure that everything is fine with our network's
setup. Using PowerShell, we can issue the following command to look at our network
configurations (IPv4 Address, DNS Servers, Default Gateway, and and so on):

Chapter 2

[35]

We can see from the preceding screenshot that the Windows 2008 Server could get an
IP address (192.168.1.11). We have DHCP Server, IPv4 Address, Primary WINS
Server, DNS Servers and Default Gateway—all pointing to our Active Directory
Domain Controller, 192.168.1.1.

To make sure that our system is able to reach our Active Directory (Samba 4 Server),
let's execute a quick Ping test:

As we can see in the preceding screenshot, no problems are pinging our Active
Directory Server (Debian 7), and this test performed an indirect test as it validated
our DNS configuration and also tested the ability of this Windows 2008 Server to
access our DNS Server (Debian 7) and resolve names.

Before we execute the procedure to actually join the POA.MSDCBRZ.EALL.COM.BR
domain, we can do a last check to make sure that the Windows Server clock is right.
We can check this by looking at the time shown at the desktop dock (bar at the
bottom of the screen) or issuing the date command in the PowerShell prompt. In
case we identify that our server's date or time is not right, we need to adjust it before
moving on to the next step. To adjust the hour, just double click on the clock at the
dock and click on Change date and time settings...:

Provisioning Samba 4 as an AD Domain Controller

[36]

Now that we have finished the preliminary checks to make sure that our Active
Directory and Microsoft Windows 2008 server are well configured and are ready to
communicate with each other, we can execute the procedure to join the Windows
2008 Server to the Active Directory Domain.

The procedure to join a machine to a domain can be executed in the Windows 2008
Server following a quick and simple procedure. First, we click on the Start button
and right-click on Computer. In the context menu, click on Properties.

The following screenshot shows us the procedure:

Chapter 2

[37]

In the next screenshot, we will navigate to Control panel | System and Security |
System and will be able to see information about our system. Next to the middle
of the screen, we will have information about the computer's name, domain, and
workgroup settings. In this section, we will see the Change Settings option, and that
is the option we need to click. Take a look at the following screenshot:

The screen that we will be presented with will have a button named Change next
to this text: To rename this computer or change its domain or workgroup, click
Change. We need to click on the button as shown in the following screenshot:

Provisioning Samba 4 as an AD Domain Controller

[38]

The next screenshot will provide us with a selection of an option to join a domain,
and we just need to fill it with our domain's name as POA. The following screenshot
shows us exactly how we did the configuration for our domain:

After filling the name for our domain, we just need to click on the OK button and fill
our administration credentials. Here is what the dialog screen looks like:

Chapter 2

[39]

If everything went just fine, after a couple of seconds, we should see the dialogue box
with the message Welcome to the POA domain, as shown in the following screenshot:

Just after we click on the OK button in the dialog box shown in the preceding
screenshot, we will see another dialog box with a message stating that we need to
restart the operating system so that the changes take effect. The following screenshot
shows the message stating that if you have any open files, make sure you close and
save them before restarting your system:

Now, we can safely click on OK, and Windows Server 2008 will restart after we click
on the button shown in the following screenshot:

It's important to take a closer look at the log in screen the next time the server starts.
If we do not pay attention to it, it may seem like we have the same options and
the default option is to log in as the last user we did last time (which is the local
Administrator). In contrast to other Microsoft Windows versions that offer an option
to choose a user-friendly domain to log into, we need to use the direct log-in method
using the DOMAIN\User option.

Provisioning Samba 4 as an AD Domain Controller

[40]

In the next screenshot, we see an example of how to log in to the POA domain that
we just joined (remember to use the password for the POA domain's administrator):

After we press Enter, we should log in to our new domain, and we will see that we
have the Microsoft Windows Server 2008 R2 totally configured in the Samba 4 Active
Directory POA domain. This is the final test and validation that our configuration is
fully functional and our domain controller is ready to go live!

As we have this test machine ready and integrated with our domain, we will use
it to create our organizational structure on our Active Directory. In our example,
we have 10 OUs to create our structure and have it ready for production. This is
an important procedure as we have some default configurations that we can use to
test this machine to prepare our environment. We will not discuss many changes
in detail, but I do recommend that you use this procedure of any Active Directory
configuration to make all the changes you need to set up your environment as closely
as possible to your needs.

To remotely manage our Samba 4 Active Directory Domain Controller using our
Microsoft Windows 2008 R2 Server, we don't need to install extra software or
download anything as in other Microsoft Windows versions, but we do need to
configure (that is, enable) some features in the Server Manager that are not enabled
by default.

Chapter 2

[41]

We can manage our Samba 4 Server using other versions of Microsoft
Windows, such as Microsoft Windows 2003, Microsoft Windows XP,
and Microsoft Windows 7.

For that, start the Server Manager tool. To do that, you just need to click on the Start
menu button, choose Run, type ServerManager.msc in the input field, and press
Enter. It's important to note that you actually need to write the extension (.msc).
If you do not, the file explorer (Windows | System32 | ServerManager) will be
opened instead. Alternatively, we can start the Server Manager by clicking on the
link in the Start menu button.

Now, on the Server Manager screen, we need to click on the Features option in the
left panel, and in the right panel, we need to click on the Add Features button. Look
at the following screenshot where we show the Features option in the left panel
highlighted, and the Add Features option on the right panel:

There are many Snap-Ins which we can enable in the Add Features menu, many
needing the installation of the Microsoft .NET Framework (for example, the Active
Directory Administrative Center), but for now, we will add just the following:

AD DS Snap-Ins and Command-Line Tools

AD LDS Snap-Ins and Command-Line Tools

Provisioning Samba 4 as an AD Domain Controller

[42]

Using both the preceding Snap-Ins should be sufficient to run the dsa.msc tool and
so, we can start creating our Domain's OUs. The following screenshot shows what
the Add Features Wizard screen looks like:

Just click on Next and perform a final check of the right panel to confirm that you
have selected the right options. If everything is as it should be, we can go ahead and
click on the Install button, as shown in the following screenshot:

Chapter 2

[43]

If you have not enabled the automatic update option on the Windows Server, you
will receive a warning informing you that you should turn on Windows Update. Just
check whether or not the installation process was completed without any error and
the AD, DS, and LDS tools were successfully installed, and we can go on to the next
step. Just click on the Close button on the Add Features installation screen, and we
can close the Server Manager tool.

Now we can click the Start menu button, choose Run, and execute dsa.msc. After this,
we should see a window on our screen like that shown in the following screenshot:

Provisioning Samba 4 as an AD Domain Controller

[44]

In the preceding screenshot, we have just selected our Active Directory domain
POA.MSDCBRZ.EALL.COM.BR in the left pane, and to the right, we can see the default
objects that are created when we perform the provisioning of a Samba 4 Domain
Controller.

With this tool, we can create our OUs and create our structure to accommodate our
objects the way we planned. In the following screenshot, we can see how to create
the first top-level OU—Workstations (In the following screenshot, behind the first
dialog box, we can see that our domain has been selected; this means that our new
OU has been created under the domain):

In the following screenshot, when we are asked to enter a name for the OU, we just
need to enter the name of the new OU, we want to create, in the text field, and click
on OK.

Chapter 2

[45]

Now, we can repeat the same procedure to create the remaining nine Organizational
Units we planned for our AD. The remaining nine OUs are as follows:

•	 Desktops
•	 Laptops
•	 Services
•	 Terminal Servers
•	 Print Servers
•	 SQL Servers
•	 People
•	 Standard Users
•	 Power Users

When every OU has been created, our Active Directory structure will look as shown
in the following screenshot:

Provisioning Samba 4 as an AD Domain Controller

[46]

Once we have our Active Directory structure finished, we can close the dsa.msc
tool and log out from our Windows 2008 R2 Server. Now, we go back to our Samba
4 Server where we will create our 50 users (47 Standard Users and 3 Power Users).
With the bundle of scripts from the book's repository, we have a tool to create all our
users in the appropriate OU and with all the relevant attributes. The initial password
will be the same for all users (Standard Users), and in the first log-in, the users will
need to register a personal password. For creating a user, just open a terminal shell
and execute the following command:

leal@debian7:~$ cd ~/workspace/implementing_samba4/ &&
./createusers.sh -h

The previous command's output should be something like the following:

 +---+

 | Simple script to create users on the AD/DC (Samba 4 Server) |

 | Implementing Samba 4 |

 | |

 | Copyright(c) 2013 Marcelo Leal |

 +---+

 Usage:

 "-h" for this help message

 "-c" creates users (silently).

 "-v" creates users (verbosely),

 showing the actual add user commands.

To create the users, the script uses a file named users.txt, which needs to be in the
current directory.

 Error Codes: (0)OK,

 (1)Wrong Options,

 (2)At least one user creation error,

 (3) Could not open users.txt file.

First, we will create the Standard Users using the names provided in the users.
txt file, and the script that we will use is intended to create users in the People/
Standard Users OU only.

Chapter 2

[47]

The file users.txt is very simple and is just a list of users with the name and
surname. All the other attributes are handled by the createusers.sh script (for
example, username and initials). The following is an excerpt of our users.txt file:

Vincent Vega

Jules Winnfield

Bruce Coolidge

Mia Wallace

Marsellus Wallace

Jimmie Dimmick

Phil Marvin

So next, we need to execute the following command in the Samba 4 Server prompt:

leal@debian7:~$ sudo ./createusers.sh -c

The output will show one line for each user created, indicating whether or not the
user was created successfully or we faced any error. The following lines show the
execution result for our file users.txt:

User: jajonnes created OK.

User: zojarratt created OK.

User: sahill created OK.

User: qumichael created OK.

User: rojohnson created OK.

User: jabrown created OK.

User: legecko created OK.

Total Users Created..: 47

Total Creation Errors: 0

Total Users Processed: 47

At the end of the preceding output, we can see that we have processed 47 users and
no errors were reported. All users were created without any issue, and we should
have them all in our Standard Users OU.

Provisioning Samba 4 as an AD Domain Controller

[48]

Now we can take a look at our Active Directory tree again and see in the graphical user
interface, all the users we have just created, as shown in the following screenshot:

Summary
In this chapter, we saw in detail how to perform the provisioning of the Samba 4
Server as an Active directory Domain Controller, went through the initial phases
of planning the network topology, structured the Active Directory, and created
a checklist to help us organize information.

At the end of the chapter, we executed a series of tests and validations of important
parts of the Active Directory server and thus, touched upon the subsystems that
provide the core functionality of the Samba 4 AD/DC services. The last test was
actually for joining a test server (Microsoft Windows 2008 R2 Server) to our POA
Domain. We learned how to manage the Samba 4 Server from the Windows 2008
server, using the features that needed to be enabled on this Windows server's version.

Using our test machine, we tested the creation of custom OUs in our Active
Directory, and so we could create our planned structure; and with the help of
prebuilt scripts, we populated the AD/DC with 47 (nonPower) users.

In the next chapter, we will learn about the tools we can use to manage the Samba 4
Server, the basics of Group Policies management, and we will also cover authentication
and authorization among other important GNU/Linux Systems features.

Managing the Samba Active
Directory Server

In this chapter, we will present the different possible roles for the Samba 4 Server in
the network, and learn how to manage it in the Active Directory Domain Controller
role using a Microsoft Windows Server 2008 machine. In this chapter, we will cover
the following points:

•	 The tools that are needed to manage the Samba 4 Server, the process to
install them, and some basics about how to implement centralized change
and configuration management for users and machines using Group Policy
Objects (GPO). We will also learn how to create a custom management
console to have every management tool quickly accessible and organized.

•	 Implementing authentication and authorization working on Samba 4 for
GNU/Linux Systems (for example, the Debian 7 client) using the Samba
software. We will also learn how to implement the standard subsystems
from the GNU/Linux operating system for the authentication and name
resolution, Pluggable Authentication Modules (PAM), and the Name
Service Switch (NSS).

•	 Automating the managing tasks on the Samba 4 Server as well as on the
GNU/Linux operating system.

•	 The replication and trust relationship characteristic of Active Directory
Domain Controller when running the Samba 4 Server.

At the end of the chapter, we should have a good knowledge of the Samba 4 Server
usecases and strengths, its roles, and how to obtain the best from the software. We
will have plenty of command-line examples and step-by-step procedures to help the
understanding of each configuration directive, so the reader will know exactly what
each setting does (or does not) for each specific case.

Managing the Samba Active Directory Server

[50]

Understanding the possible roles of the
Samba 4 Server on the network
When we are planning to implement a Samba 4 Server, one point to have in mind
is to determine the role that this new server will play on our network. Samba 4 has
many server roles, and these roles are tied to one of these two options:

•	 The NT4-like domain operation mode from Samba 3
•	 The Active Directory Services mode from new Samba 4

Looking at the documentation of the Samba 4 software, we can have a detailed
explanation of each role, and we will briefly describe it in the following list:

•	 Auto: This is the default, and if we use this option (server role = auto)
at the command-line tool (for example, samba-tool), we are actually telling
Samba to follow the configuration specified on the security setting of the
smb.conf file (for example, /usr/local/samba/etc/smb.conf).

•	 Standalone: This is an operation mode that can be selected in the following
two ways:

°° Explicitly using server role = standalone on the command line
°° Leaving server role (command line) and the security directive

(for example, /usr/local/samba/etc/smb.conf file) untouched

In this configuration, the Samba 4 Server will run as a simple (standalone)
file/printer server, and the clients will need to authenticate (encrypted
username/password by default) directly on it to gain access. So, the Samba 4
Server in this mode of operation will not be connected to a particular domain.

•	 Member Server: This is the server role configuration that will make Samba 4
operate as a server that is a member of one domain. Then, the authentication
(username/password) will be validated by a Domain Controller (DC) on the
network. The Samba 4 Server will forward the authentication/authorization
task to a DC so it expects the encrypted passwords option to be configured to
yes. We need to have in mind that this machine needs to be part of a Windows
Domain (for example, it should have joined a valid Windows Domain). Another
important point stated on the manual page is the fact that there is a need to still
have valid Unix accounts to map file access and not just the accounts on the DC
(Samba provides us with the Winbind service for this purpose).

Chapter 3

[51]

•	 Classic Primary Domain Controller: This is one mode of the NT4-like
domain operation, and in this mode, Samba 4 will provide logon services to
the clients who have successfully joined the domain (for example, a single
LAN/NetBIOS scope). We can have just one Primary Domain Controller
(PDC) for each NetBIOS scope that is different from the next server role.

•	 Netbios Backup Domain Controller: As a Netbios Backup Domain
Controller (NBDC), the Samba 4 Server will add redundancy and resiliency
to an NT4-like domain logon service, as adding servers in this role will add
a fault tolerance to our network service. As we can have just one server as
the Classic Primary Domain Controller for each NetBIOS scope, the ability
to have multiple NBDCs is vital for the availability of the NT4-like domain
logon services.

•	 Active Directory Domain Controller: This is brand new functionality and a
great feature of the Samba 4 Server. This server role gives us the ability to run
the Samba 4 Server as an Active Directory Domain Controller (AD DC) on
the network, providing us with a multitude of services (for example, logon,
configuration management, and so on) as well as great administrative power
for system administrators. In the previous chapter, we had gone through all
the steps required to successfully deploy a Samba 4 Server in this role, and
had a close look at the procedure required to set up a Samba 4 Server as
an AD DC.

Implementing the AD authentication and
authorization for GNU/Linux systems
When we start to talk about GNU/Linux operating systems' authentication and
authorization mechanisms, we need to understand more about two important
subsystems of this environment: PAM and NSS.

Pluggable Authentication Modules (PAM) is a modern system that relies on
specific libraries to provide us with authentication services. As a general Application
Programming Interface (API), all applications that are PAM-aware (for example,
builds supporting PAM) can be integrated by the system administrator and can be
authenticated using any authentication method that the PAM is configured to. This
gives a lot of flexibility to the system administrators and also provides a centralized
point to handle the users' authentication very effectively.

Managing the Samba Active Directory Server

[52]

In an example scenario where an application is built to use PAM for authentication
and the PAM subsystem is configured to authenticate users accessing local files (for
example, /etc/passwd), switch the authentication mechanism for that application
to authenticate in a LDAP server; for example, all we need to do is to reconfigure
PAM to authenticate it on the LDAP server instead of reconfiguring this specific
application. A more important point is that any other application that is configured
to use the same PAM configuration will automatically be able to authenticate itself
on the LDAP server too.

The Name Service Switch (NSS), on the other hand, is a scheme that will provide
the name resolution for different services for the operating system when looking
for specific database sources such as users, groups, hosts, networks, mail aliases,
and so on. The NSS works by implementing specific services to access the different
databases through separated modules. This is similar to the pluggable module
approach by PAM, but very different in its purposes and the kind of services
provided to the operating system.

As an example, in the case of users and groups, the operating system needs to map
UID/GID for authorization to grant or deny access. The same application that had
authenticated the user (for example, using PAM) will call functions from the NSS
subsystem to inquire about the operating system to get such credentials (for example,
getent(1)). GNU/Linux systems use both (PAM and NSS) facilities to provide us
with the authentication/authorization, and we will learn how to configure them both
to get our Debian GNU/Linux client fully integrated on our Active Directory network.

Now that we know about the subsystems that are involved in the authentication and
name resolution of the operating system, we need to take a look at the applications
that will integrate with these facilities, so we can have our GNU/Linux system work
seamlessly within our Active Directory environment.

The GNU/Linux world as an open source environment is full of flexibility. So, we
have many options to accomplish its integration with the AD DC, but we will focus
on the pure Samba 4 approach. Using the same method through which we were
able to integrate a Microsoft Windows machine with just a few configurations and
without the complexity of many pieces of different software, the Samba 4 Project
integrates all the features that are needed by the Samba software to facilitate the
adoption and operation of the system administrators.

So, the program that integrates Samba with the PAM and NSS subsystems is called
Winbind. The daemon (winbindd) is responsible for answering the inquiries from
PAM (for the authentication requests); it is also responsible for answering specific
requests from the operating system's NSS (for example, users and groups UID/GID).
Winbind is part of the Samba Project and is fully integrated with the underlying
protocols used by the Active Directory (for example, Kerberos).

Chapter 3

[53]

To start our configuration tasks on PAM, NSS, and Winbind, we need Samba 4
installed on our Debian 7 GNU/Linux client machine. To make things easier, we
can follow the instructions from Chapter 1, Installing the Samba 4 Server, to install the
dependencies and the Samba 4 software itself. The only difference is that we don't
need packages such as dhcp-server. With the help of the Samba 4 configuration
commands, the default for the ads security support is described as auto, and with
the LDAP libraries and all dependencies properly installed on the system, we will
have no issues and don't need to explicitly use the options --with-ads during the
Samba 4 installation.

ADS support is needed for our configuration, and if it's not available in
our Samba 4 build, we need to take a look at our Samba 4 installation
instructions before trying to explicitly enable it, in Chapter 1, Installing the
Samba 4 Server, and fixing the issues as it should be enabled automatically.

After the configure phase, make, and make install processes are done, we can
go ahead and integrate our system into our Active Directory environment. In this
procedure, we will also learn how to deploy a GNU/Linux system as a Domain
Member Server, as we will join it into the Active Directory Domain. Let's get started!

As we already know, Kerberos is a central point for the Active Directory services.
So, task number 1 is to make sure that the time and date are fine and our DNS
resolver is configured to be our Active Directory Domain Controller. In our example
system, the Debian GNU/Linux system is configured to get all the network
configurations through DHCP (for example, our AD DC).

In our network, just the Domain Controller has access to the Internet; because of that,
to install the dependencies and clone the Samba 4 software, we have our AD DC
providing Network Address Translation (NAT) for our LAN. This configuration can
be quite handy, so here is a simple command-line procedure example to accomplish
this (remember that it needs to be persisted if you want a permanent configuration):

leal@debian7:~$ sudo su

[sudo] password for leal:

root@debian7:~# sysctl -w net.ipv4.conf.all.forwarding=1

root@debian7:~# iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0
-j MASQUERADE

root@debian7:~# iptables -A FORWARD -s 192.168.1.0/24 -i eth1 -j ACCEPT

root@debian7:~# exit

leal@debian7:~$

Managing the Samba Active Directory Server

[54]

In the previous example, eth0 is the Internet interface.

When time, date, and DNS are checked, we can configure and test Kerberos. To do
that, we'll just copy our Kerberos configuration from our AD DC (/etc/krb5.conf):

[libdefaults]

default_realm = POA.MSDCBRZ.EALL.COM.BR

dns_lookup_realm = false

dns_lookup_kdc = true

Task done, we can test it:

leal@debianclt:~$ kinit administrator@POA.MSDCBRZ.EALL.COM.BR

Password for administrator@POA.MSDCBRZ.EALL.COM.BR:

Warning: Your password will expire in 22 days on Sun Jul 14 17:55:04 2013

leal@debianclt:~$ klist

Ticket cache: FILE:/tmp/krb5cc_1000

Default principal: administrator@POA.MSDCBRZ.EALL.COM.BR

Valid starting Expires Service principal

22/06/2013 12:53 22/06/2013 22:53 krbtgt/POA.MSDCBRZ.EALL.COM.BR@POA.
MSDCBRZ.EALL.COM.BR

renew until 23/06/2013 12:53

The result of the previous commands confirms that our Kerberos configuration is okay,
and we can move on to the next steps. As we will need to configure our PAM and NSS
system files to use specific modules, it's a good idea to have these libraries in place
before such configuration. This is crucial because if we do the configuration without
having the libraries configured, we can leave the system in an unresolved situation and
many parts of the operating system (login included) might stop working.

Configuring the PAM and NSS libraries
The Samba 4 software that we compiled and installed has the PAM and NSS libraries
that we need to use. The standard place for the PAM modules on Debian 7 (i386) is:
/lib/i386-linux-gnu/security/. If we list the content of that directory, we will
see many files following the same pattern such as pam_* (for example, pam_unix.
so). The PAM module provided by the Samba 4 software has the same pattern and is
located in /usr/local/samba/lib/security/ with the name: pam_winbind.so.

Chapter 3

[55]

We will not mix the Debian 7 distribution files and programs with the Samba 4
software we installed (not using the distribution official packages), so we will just
add a link on the standard location to reference our PAM Winbind module in our
Samba 4 installation directory.

Let's just execute the following command at the Debian GNU/Linux client:

leal@debianclt:~$ ls /usr/local/samba/lib/security/pam_winbind.so
/usr/local/samba/lib/security/pam_winbind.so
leal@debianclt:~$

If the output of the previous command is the pam_winbind.so PAM module, we
are good to go. If the result is No such file or directory or any other error,
we need to review our Samba installation procedure from Chapter 1, Installing the
Samba 4 Server, and check if all the dependencies described in that chapter were
properly installed prior to our Samba 4 installation. Just go ahead to continue the
configuration after the PAM module is ready and available on the system.

With the PAM module ready, we can inform the system of its presence. Just execute
the following commands at one terminal at the Debian GNU/Linux client machine
(in this example, we are listing the 32 bit library version):

leal@debianclt:~$ cd /lib/i386-linux-gnu/security/

leal@debianclt:~$ sudo ln -s /usr/local/samba/lib/security/\

pam_winbind.so

[sudo] password for leal:

leal@debianclt:~$ ls -l pam_winbind.so

lrwxrwxrwx 1 root root 44 Jun 21 08:33 pam_winbind.so -> /usr/local/
samba/lib/security/pam_winbind.so

leal@debianclt:~$

Double-check the output of the preceding code to make sure that the link is pointing
to the right location. If you have changed the default Samba 4 installation directory
(for example, using a specific location with the -- prefix), you will need to change
the previous command to reflect your setup.

After the PAM module link is created, we can create the link for the NSS. The
standard location for the NSS libraries on the Debian 7 GNU/Linux is /lib (for
example, /lib/x86_64-linux-gnu for 64 bit systems), and the name pattern
is libnss_*. We should have the libnss_winbind.so library in the Samba 4
installation directory, /usr/local/samba/lib/, so we will do a similar procedure
to validate our Samba 4 installation before creating the link.

Managing the Samba Active Directory Server

[56]

In one terminal window, just issue the following command:

leal@debianclt:~$ ls -l /usr/local/samba/lib/libnss_winbind*

lrwxrwxrwx 1 root staff 19 Jun 22 02:03 /usr/local/samba/lib/libnss_
winbind.so -> libnss_winbind.so.2

-rwxr-xr-x 1 root staff 34223 Jun 22 00:04 /usr/local/samba/lib/libnss_
winbind.so.2

leal@debianclt:~$

Notice the two lines that we have in the preceding output. One is for the libnss_
winbind.so.2 file (the library itself), and the other is for compatibility/noversion
purposes (libnss_winbind.so). Again, it is important to make sure that these two
lines are present in the output of the previous command before moving on to the
next steps. If we see any errors or the absence of any of the lines of the preceding
code, we need to review our Samba 4 installation based on the procedure of Chapter
1, Installing the Samba 4 Server, and make sure that all the dependencies are properly
installed on the system.

If everything is just fine, we can create the links for the NSS libraries—a procedure
that is similar to the one we did for the PAM modules. We can do this by issuing the
following commands:

leal@debianclt:~$ cd /lib/

leal@debianclt:~$ sudo ln –s /usr/local/samba/lib/\

libnss_winbind.so* /lib/

[sudo] password for leal:

leal@debianclt:~$ ls -l libnss_winbind.so*

lrwxrwxrwx 1 root root 38 Jun 21 08:33 libnss_winbind.so -> /usr/local/
samba/lib/libnss_winbind.so

lrwxrwxrwx 1 root root 40 Jun 21 08:33 libnss_winbind.so.2 -> /usr/local/
samba/lib/libnss_winbind.so.2

leal@debianclt:~$

Once again, it is important to double-check whether the links are right in place before
going to the next phase of the OS configuration. As we confirm that the libraries for
PAM and NSS are available on the system, we can configure the files to make use of
them. Before that, we will create a minimal smb.conf file to configure our Samba 4
software and join Debian 7 GNU/Linux into our Active Directory Domain.

Here, we have a simple and fully functional smb.conf file to work with:

[global]

workgroup = POA

Chapter 3

[57]

security = ADS

realm = POA.MSDCBRZ.EALL.COM.BR

encrypt passwords = yes

template shell = /bin/bash

idmap config *:backend = rid

idmap config *:range = 100000-200000

winbind use default domain = yes

winbind enum users = yes

winbind enum groups = yes

The workgroup and realm are the same as our AD DC. Note that the encrypt
passwords option is configured to yes as we mentioned it as a requirement when
configuring a Samba 4 Server as a Domain Member Server. We have a general
template configuration for the login shell configured to /bin/bash. Without this
configuration, our users will not be able to log in, as the login shell attribute will
be translated by the Samba 4 Server to the default value /bin/false.

In our configuration, we have a Samba 4 Server in the AD role, but
we can join Samba 4 as a member server of Microsoft Windows AD
Domain Controller too.

Next, we have two lines starting with the directive idmap. As we mentioned at the
beginning of this topic, there are many ways to integrate GNU/Linux into an Active
Directory Domain, and one of the options is related to the approach of handling the
users and groups IDs. Samba controls these options through the directive idmap
config backend, and in this example, we are using rid. The reasons for this choice
are basically related to the following three rid backend characteristics that we want
for our environment:

•	 Simple: With this backend, Winbind doesn't need to maintain a local
database to persist the users' and group's ID translations. This is a great
feature as we want to add more GNU/Linux systems to our Active Directory
Domain, but to maintain all the systems with the DBs in sync is not a task we
want. This is why we have an AD DC in the first place.

•	 Deterministic: The translation of the users' and groups' IDs is deterministic;
by these means, it follows a formula to actually have the translation
consistent between different GNU/Linux Domain Member Servers. The
translation is made on the fly and cached locally, not needing a local idmap
database as a point of failure and an administration headache.

Managing the Samba Active Directory Server

[58]

•	 No need to manage UID/GID on the AD DC: Another great advantage of
this backend is that we don't need to populate the UID and GID numbers in
our Active Directory Schema. As the translation is made following a formula
on the fly, we don't have to worry about creating UID or GID during the
creation of the user and group, and we don't need to handle complexities
such as collision.

Every solution is based on trade-offs and features that system administrators may or
may not want (or need) for their environments. This is why Samba provides us with
many options, and flexibility is the mother of all good software. The second idmap
config line is the range that the rid backend will utilize in its formula to generate
the user and group IDs. From the Samba Project Documentation [1], this is the
formula for the rid backend UID/GID translation:

UNIX ID for a RID:

ID = RID - BASE_RID + LOW_RANGE_ID

RID from a UNIX ID:

RID = ID + BASE_RID – LOW_RANGE_ID

We gave a 100,000 ID range for the rid backend utilization of
the translations.

The last three lines are Winbind directives and the first one (use default
domain = yes) is a configuration option that lets the users be referenced using
just the username (for example. striping the domain part). As our environment
is one domain only, we can use it without any problem. If we were deploying a
multidomain solution, we probably would not be able to use this feature as we
could potentially have username collisions.

The enum users and enum groups options are needed, so Winbind is able to
enumerate domain users and/or groups. This is an important feature and is crucial
for the operating system to work properly (for example, Name Service Switch), to
obtain detailed information about users and/or groups.

http://www.samba.org/samba/docs/man/manpages/idmap_rid.8.html

Chapter 3

[59]

As we can see, our configuration file is very practical and simple; we have used the
excellent Samba project's documentation to understand the features that we need
and use them. However, there are many other options that we can use in the future,
but that is a case-by-case analysis and the important point is to use what is needed
and keep the configuration simple, just adding features or restrictions that are really
needed for the environment. Many installations (for example, sites) have options and
configurations in many systems that nobody knows why. This can be a security risk
and a useless complexity for sure. Keep in mind that we need to know and understand
every option we have in any configuration file, for any system under our management.

Joining the Debian 7 GNU/Linux into our
Active Directory Domain
Now we can join our Debian 7 GNU/Linux system into our Active Directory
Domain with the following command:

leal@debianclt:~$ sudo net ads join -U administrator

Enter administrator's password:

We need to remember to add the /usr/local/samba/sbin and /usr/
local/samba/bin directories to our PATH variable, or we will need to
use the absolute pathnames for commands such as the preceding one.

After providing our Domain administrator's password at the prompt, we would
receive the following output after a few moments:

Using short domain name -- POA

Joined 'DEBIANCLT' to dns domain 'poa.msdcbrz.eall.com.br'

After this, our system becomes part of the Active Directory Domain as a Member
Server, and we can start the winbindd daemon and perform some tests before
going further and configuring the system files for the PAM and NSS. As soon as we
validate that the Winbind is fully working, we will move on to the final tasks.

Just issue the following commands at the Debian 7 GNU/Linux client machine:

leal@debianclt:~$ sudo winbindd

[sudo] password for leal:

leal@debianclt:~$ wbinfo -u | head -9

mawallace

brshaft

Managing the Samba Active Directory Server

[60]

chkoons

mawhitaker

juwinnfield

qumichael

spbennett

brcoolidge

cafreeman

The first of the preceding commands starts the Samba 4 Winbind daemon (winbindd),
and if you are following our procedure in a lab and using our same users, you should
see a similar output that shows you the first 10 users of our domain after the second
command. In case you are implementing in a test environment (for example, a clone
subset of your production), you should see the first nine users of your domain.

Let's try to enumerate our domain groups now:

leal@debianclt:~$ /usr/local/samba/bin/wbinfo -g | head

allowed rodc password replication group

enterprise read-only domain controllers

denied rodc password replication group

read-only domain controllers

group policy creator owners

ras and ias servers

domain controllers

enterprise admins

domain computers

cert publishers

With the output of the preceding commands, we confirm that our environment is in
good shape and we can go ahead and configure the operating system to be aware
of the AD DC users and groups, so as to be able to authenticate and authorize them
onto our system.

Before starting the configuration of the PAM and NSS subsystems, it is a
good idea to have more than one root shell on the machine (for example,
the Debian 7 GNU/Linux client). So, in the case of any mistakes, we can
use the other root shells to fix it or rollback the configuration.

Chapter 3

[61]

To configure NSS, we need to edit the /etc/nsswitch.conf file. For that, we just
need to add the winbind keyword after the compat directive in three lines, just like
the following example:

/etc/nsswitch.conf

#

Example configuration of GNU Name Service Switch functionality.

If you have the `glibc-doc-reference' and `info' packages installed,
try:

`info libc "Name Service Switch"' for information about this file.

passwd: compat winbind

group: compat winbind

shadow: compat winbind

The PAM architecture was created to provide us with a pluggable model for the
authentication and for other tasks such as setting the password, managing the
account and session; it also has some control flags (for example, required, optional,
sufficient [2]). So, the different GNU/Linux distributions organize the files and
configurations in a very specific way. For our Debian 7 system, we have four
common files used by the majority of applications (for example, Secure Shell/SSH):
common-auth, common-account, common-password, and common-session. All files
are located in the directory: /etc/pam.d/.

Starting with the common-auth file, we need to add the following line before the
standard authentication line that uses the pam_unix.so module:

auth sufficient pam_winbind.so

auth [success=1 default=ignore] pam_unix.so\

nullok_secure use_first_pass

Notice that we added an option to the auth line for pam_unix.so (use_first_pass)
in the preceding commands. This is an option to actually use the same password that
the user provided in the first interaction; in the others, authentication options are
configured. Another important point is the flag sufficient we have used on our
pam_winbind.so line from the PAM RFC.

With this flag, if the module succeeds, the PAM framework immediately returns
success to the application without trying any other modules.

This is the behavior we need as we are saying, "If the user has the right credentials
on our AD Domain Controller (for example, username/password), let him/her pass
to the next PAM's validation on the stack."

http://www.opengroup.org/rfc/mirror-rfc/rfc86.0.txt

Managing the Samba Active Directory Server

[62]

For the common-password file, we add the following command (again, just before the
pam_unix.so line):

password sufficient pam_winbind.so

password [success=1 default=ignore] pam_unix.so obscure sha512

This time, we don't add any options to the pam_unix.so line, and we are using the
same sufficient flag. We do the same for the common-account file:

account sufficient pam_winbind.so

account [success=1 new_authtok_reqd=done default=ignore] pam_unix.so

The only file we will need to add to the two lines is in the common-session file. As
we are not creating the users on our GNU/Linux systems, we do not have the home
directories created beforehand. So, for our users to be able to log in, we need to
make sure that he/she will have a home directory before allowing them to access the
system. Notice that we use the following required flag for the pam_mkhomedir.so
PAM module:

session required pam_mkhomedir.so skel=/etc/skel/ umask=0022

session required pam_winbind.so

session required pam_unix.so

If we have a problem creating the user home directory, then that module will return
an error code. As the flag is required, PAM will understand that one step of the
authorization process was broken (one that is required), and will deny the access.

Here is an excerpt about PAM RFC [2]: With this flag, the module failure results in
the PAM framework that returns the error to the caller _after_ executing all other
modules on the stack.

PAM is a powerful authentication framework and to cover it all is outside the scope
of this book. However, there are many great sources of real good content on the
Internet, apart from entire books about the subject. You can take a look at the manual
page of your GNU/Linux distribution (for example, man PAM), as it's a very good
starting point.

We have just edited important system files, and if anything is wrong, we can get
stuck without being able to authenticate in our machine. So, it's important to validate
and check that everything is right before leaving our root shell. It's a good advice
to actually use a root shell and not sudo vi to do these tasks because if we did
something wrong, maybe we will not be able to authenticate it again to fix it.

So, let's see if we are still able to log in to the system using our local user account
(for example, leal), and become root:

http://www.opengroup.org/rfc/mirror-rfc/rfc86.0.txt

Chapter 3

[63]

leal@debianclt:~$ ssh localhost

leal@localhost's password:

Linux debianclt 3.2.0-4-686-pae #1 SMP Debian 3.2.46-1 i686

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

You have new mail.

Last login: Sat Jun 22 02:10:05 2013 from debian7.local

leal@debianclt:~$ sudo su

[sudo] password for leal:

root@debianclt:/home/leal#

Excellent! Now, we can perform some tests to validate whether our system can
recognize our Domain users and groups, and after that, try to log in to the system
using one of our Domain users. In a terminal in the Debian 7 GNU/Linux client
machine, issue the following command:

 leal@debianclt:~$ for x in `wbinfo -u`; do echo -n "User: $x `id
 $x`"; echo ""; done

We should see a long list with all our 50 users and some standard AD users (for
example, guest). But we are actually listing the Unix information for them, and so
let's see an excerpt of that output:

User: mawallace uid=101191(mawallace) gid=100513(domain users)
 groups=100513(domain users)

User: brshaft uid=101220(brshaft) gid=100513(domain users)
 groups=100513(domain users)

User: chkoons uid=101196(chkoons) gid=100513(domain users)
 groups=100513(domain users)

User: mawhitaker uid=101199(mawhitaker) gid=100513(domain users)
 groups=100513(domain users)

User: juwinnfield uid=101188(juwinnfield) gid=100513(domain users)
 groups=100513(domain users)

Managing the Samba Active Directory Server

[64]

We can see the first five users, with their respective UIDs and GIDs, in the output
of the preceding commands. As we know the formula that the idmap uses to do the
translation of the IDs, let's take a look at the first one and see if it makes sense. Just
type the following command in a terminal window:

leal@debianclt:~$ wbinfo -n mawallace

leal@debianclt:~$ S-1-5-21-721742975-1223580478-3920759553-1191\
SID_USER (1)

The idmap formulae is:

•	 ID = RID - BASE_RID + LOW_RANGE_ID
•	 ID = 1191 – 0 + 100000
•	 ID = 101191

BASE_RID is 0 by default and deprecated [1].

So far so good; now, let's look at a proper passwd entry (for example, getent), and
see the NSS in action. Just type the following command at the terminal to see how
Marsellus Wallace looks like:

leal@debianclt:~$ getent passwd mawallace

mawallace:*:101191:100513:Marsellus MW. Wallace:/home/POA/mawallace:\

/bin/bash

leal@debianclt:~$

This is exactly how a passwd structure should be, and Marsellus Wallace could now
try to access the Debian 7 GNU/Linux client system, but before that, let's just take
a look at the end of the passwd line of the preceding code. Notice that the home
directory is defined as /home/POA at a high level, and we do not have the top-
level directory for our Domain users just yet. So, before the user is actually able to
access the system, we need to create the /home/POA top directory. We can issue the
following command:

leal@debianclt:~$ sudo su –

Password:

root@debianclt:~# mkdir /home/POA && echo OK

OK

root@debianclt:~# exit

leal@debianclt:~$

http://www.samba.org/samba/docs/man/manpages/idmap_rid.8.html

Chapter 3

[65]

Remember that we don't need to create the user's home directory (for example,
mawallace) because our PAM stack at the session phase will use the pam_
mkhomedir.so module to do that for us, if needed. So, Marsellus Wallace can now
try to access the system using SSH:

leal@debianclt:~$ ssh localhost -l mawallace

mawallace@localhost's password:

You need to change your password now

Creating directory '/home/POA/mawallace'.

Linux debianclt 3.2.0-4-686-pae #1 SMP Debian 3.2.46-1 i686

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

WARNING: Your password has expired.

You must change your password now and login again!

Changing password for mawallace

(current) NT password:

Enter new NT password:

Retype new NT password:

passwd: password updated successfully

Connection to localhost closed.

leal@debianclt:~$

Perfect! Now we can see that the user was forced to change his/her password as it
was the first login and we created all our users with the password expiration flag
enabled. After the user was logged out automatically, let's see if the home directory
was created with the right credentials:

leal@debianclt:~$ ls -ld /home/POA/mawallace

drwxr-xr-x 2 mawallace domain users 4096 Jun 22 17:35
 /home/POA/mawallace

leal@debianclt:~$

Managing the Samba Active Directory Server

[66]

Take a look at the UMASK for the home directory creation in the
common-session PAM configuration file, and you can configure it
according to your domain's security standards/policies.

Let's see what happens if the user tries to log in again:

leal@debianclt:~$ ssh localhost -l mawallace

mawallace@localhost's password:

Linux debianclt 3.2.0-4-686-pae #1 SMP Debian 3.2.46-1 i686

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Sat Jun 22 17:35:14 2013 from localhost

mawallace@debianclt:~$ pwd

/home/POA/mawallace

mawallace@debianclt:~$

As we can see, with this procedure, it is really simple to quickly integrate a GNU/
Linux system into an Active Directory Domain, as in a few minutes we had a
Member Server ready to be authenticated without any hurdle. In the rest of the
chapters, we will learn how to create a highly available file server in more detail so
that we can host our home directories in a central server and provide mobility and
consistency to our users, when accessing different GNU/Linux machines.

Starting with the basic concepts for
Group Policies on Samba 4
System administrators are always looking for ways to do more for their IT
environment while spending as few of the organization's resources (for example,
money and time) as possible. The main concern when we need to do any work
is about the time we will spend on it, so we need to be efficient and effective in
our actions to accomplish the right task at the right and minimum time. So, in the
systems administration task, this challenge is more real than ever as there is a need
to be efficient while managing dozens or thousands of users and at the same time
controlling one or thousands of servers with the same level of availability and service
features that our customers expect.

Chapter 3

[67]

Any company's environment is a moving and evolving live organism where
computers, services, and people have relationships that can quickly become highly
complex. At the same time, the management of these assets needs to be scalable
enough to provide and sustain these relationships, as they are a vital part of any
organization. Samba 4 with its compliant Active Directory Domain Controller
implementation, provides a central tool for configuration and change management
for system administrators and managers to cope with demanding characteristics like
the ones we just presented in the Group Policies.

Group Policies Objects (GPO) are settings or a set of rules that are applied for a
group of users and computers, from logon/logoff scripts to shutdown/start up
routines. The objective of this book is not to be an exhaustive guide about all the
GPO features or the Active Directory functionalities, as there are whole other books
for these specific subjects. However, it must provide you with a good starting point
to understand its general characteristics while also trying to help you understand
how the powerful Samba 4 Server becomes integrated with these features.

The implementation of Group Policies is very site dependent with regards to all the
security rules and policies for each organization, the structure of the Active Directory
implemented, and the experience of the system administrators. This is because
GPOs are applied to users and/or computers and linked to the OUs, affecting all
users and/or computers within one or more specific OUs. We will use some general
examples and our Microsoft Windows 2008 machine to execute the administration
tasks and create the GPOs at our Samba 4 Active Directory Domain Controller.

In the last chapter, we showed how to install the tool to manage the Active Directory
users and computers, and here, we have used it to create the organizational units that
we planned for our environment. Now we will add another important feature to our
Active Directory management kit in the previously configured Microsoft Windows
Server, which will give us the ability to perform the Group Policy management:

Managing the Samba Active Directory Server

[68]

1.	 Log in to our Microsoft Windows 2008 machine, open the Server Manager,
and choose the to add features option. Then, we check the Group Policy
Management box as shown in the following screenshot:

2.	 As we can see from the description displayed on the left side of the preceding
screenshot, this is the standard tool to manage the Group Policy Framework.
Just click on the Next button and then click on Install (note that the machine
will need to be restarted to finish the installation).

3.	 After the restart, we can navigate to Start | Administrative Tools | Group
Policy Management to open the tool. Take a look at the following screenshot:

Chapter 3

[69]

4.	 To facilitate our management work, to have all the tools we need in one
place, and to have quick access to them, we will execute another procedure
before we start working on the GPO. We will create a console with the two
snap-ins that we have installed: Active Directory Users and Computers and
Group Policy Management. Just press the Start button, click on Run, and
execute the mmc console:

Managing the Samba Active Directory Server

[70]

5.	 The console root will show up, and we can navigate to File | Add/Remove
Snap-in… (or the shortcut Ctrl + M) to start creating our customized
administration console. In the following screenshot, we can see these steps:

6.	 In the following screenshot, we will have the available features installed on
our machine to add to our custom console. Let's first add the Users and
Computers snap-in:

Chapter 3

[71]

7.	 After this, we add the Group Policy Management snap-in:

8.	 Now all we need to do is navigate to File | Save as and choose the destination
of our custom console for quick access. In our example, we saved the custom
console to the desktop, as shown in the following screenshot:

With this procedure, we have just created a custom console with our two main
administrative tools that we need for now. Hold this process to use it later and save
time switching applications, with all the management tools organized and quickly
accessible. We can create as many customized consoles as we want, and as we add
more snap-ins or features to our system, we can change our settings and save a
newer version.

If we want, we can access all the different administrative tools
separately through the Administrative Tools menu.

Managing the Samba Active Directory Server

[72]

Let's launch our customized console and start the Group Policy management tool, so
just double-click on the MMC-UCG icon from where you have saved it:

In the previous example, we have just expanded Active Directory Users and
Computers and Group Policy Management as well as the Forest and Domain trees
to show you the structure that we will work on. Notice that we have expanded our
People OU and we are able to see these OUs: Power Users and Standard Users. Our
objective is to separate one system administrator from the Standard Users OU
(Django Fox), and move him to Power Users. So, we can give him administrative
powers (for example, delegate him the Group Policies management on the Standard
Users OU).

Chapter 3

[73]

Allowing a user to create Group Policies
This task is divided into two procedures; first, we will add the permission for the
user to create GPOs and after that, we will allow him to link them to the Standard
Users OU. The user Django Fox (username: djfox) can open the Group Policy
Management Console, but as we can see in the following screenshot, he is not able to
create Group Policies:

Use the following steps to gain permissions to create Group Policies:

1.	 In the preceding screenshot, we can see that the New option that would
be used to create a new GPO is disabled for this user. So, what we need to
do is log in as the Domain Administrator and give Django Fox the right
permissions. Just open the MMC-UCG customized console and click on Group
Policy Objects as shown in the following screenshot:

Managing the Samba Active Directory Server

[74]

2.	 After it is selected, look at the right pane and click on the Delegation tab. We
should see a screen like the one shown in the following screenshot:

As we can see from the preceding screenshot, we have two groups that can
create the GPOs in our Domain. We could do the same and create a group to
manage our specific users that we plan to delegate a GPO creation to, but in
this example, we will follow a different path as a learning opportunity.

3.	 To add our user djfox to that list, we just click on the Add... button at the
bottom of the previous screen, and before we fill the username, let's click on
the Object Types option. Take a look at the following screenshot:

Chapter 3

[75]

4.	 In the previous example, we checked just the Users box. In the following
dialog box, we will write the username of our user and click on the Check
Names button. We can see the result in the following screenshot:

5.	 Automatically, the system will fill the full name and the location (for
example, the domain) of our user. Just click on OK and the delegation screen
for the GPO will be shown, now with the user Django Fox listed together
with the prior two groups:

6.	 Now, the djfox user has the permission to create Group Policies in our
domain. If the user djfox logs in and tries to create a GPO, the New option
will now be enabled:

Managing the Samba Active Directory Server

[76]

However, this permission is not sufficient, as shown in the following screenshot. To
be effective, the user needs the ability to link the GPOs to one or more OUs. In our
use case, we want him to be able to manage the GPOs for the Standard Users OU.

Notice what happens when the user djfox tries to right-click on the Standard Users
OU to see what administrative options are available to him:

In the preceding screenshot, we can see that the Link an Existing GPO... option is
disabled (the first option is disabled too because the first option is to create and link
to this OU).

Allowing a user to link Group Policies to OUs
Back in our Domain Administrator's session, we can select the Standard Users OU.
Take a look at the right pane (Delegation tab) of the following screenshot for the link
GPOs permission:

Chapter 3

[77]

So, we need to add our user to the Delegation list, and we do so by clicking on
the bottom of the screen in the Add... button. Fill the username djfox and click on
Check Names. After our user's full name appears, we can click on OK, select This
container and all child containers, and click on OK again:

After this, we will be able to see our user in the listing of the Standard Users
delegation, for linking the GPOs to this OU:

Managing the Samba Active Directory Server

[78]

Let's see this time what happens when the user, Django Fox, logs in and tries to
check his administrative options at the OU of Standard Users again. We can check
this in the following screenshot:

As we can see in the previous screenshot, the task is done. We can also see that now
the user, Django Fox, can link GPOs to the Standard Users OU. Before we actually
click on the first option and start to create a GPO, let's take a look at the Start menu
for the user, Hattori Hanzo, (username: hahanzo) to see how it looks:

Chapter 3

[79]

As we can see, the Administrative tools menu option is available, so all the tools are
listed for the one user who is not an administrator and is on the Standard Users OU.

Creating a Group Policy
So, back in the Django Fox session, let's click on the first option, Create a GPO in
this domain, and then click on Link it here... and create a Group Policy for the
Standard Users OU. The GPO that the djfox user will create will be called Block
Administrative Menu, so all users on the Standard Users OU will have the
Administrative Tools menu hidden. Take a look at the following screenshot:

After we click on OK, we select the Linked Group Policy Objects tab on the right pane
of the following screenshot and see that our brand new GPO is listed and enabled:

Managing the Samba Active Directory Server

[80]

Right-click on it and click on Edit. The Group Policy Management Editor will open,
and on the right pane, we navigate to User Configuration | Preferences | Control
Panel. Right-click on the last item, Start Menu, and navigate to New | Start Menu.
The following screenshot shows you these selections:

The following screenshot will be a dialog box that displays the properties of the
Start Menu menu under the New tab. At the end of the list of Start menu items, we
will see one item named System administrative tools. We need to check the Don't
display this item option if it is not checked already. Take a look at the following
screenshot to see how it must be configured:

Just click on OK and we should have a new Start Menu menu in our GPO. Now
we can close the editor and test our user again from the Standard Users OU (for
example, hahanzo) to see if the administrative tools are still present or not. The
following screenshot shows you a screenshot of the hahanzo user's desktop, where
we can see that the Administration Tools menu option is absent:

Chapter 3

[81]

Remember that Group Policies are complex subjects, and to actually prevent
unauthorized users to have access to the administrative tools, we need to make more
adjustments for the system and enhance our GPOs to make sure that we cover all the
possibilities (for example, the customization of our user's menu) to actually have our
policy fully applied.

Trust relationships and replication with
Samba 4
Samba 4 is a brand new software that was released in 2013 and is already pretty
stable and as we are learning, full of features. However, as this is a new release,
there are many challenges and some of its components need to evolve. At the time
of writing this book, the SysVol share has no replication currently implemented [3],
and a workaround needs to be used to replicate the changes [4]. Trust relationships
are not fully implemented, and as a result, Samba 4 can be trusted but it cannot trust
[4].

http://wiki.samba.org/index.php/Samba4/FAQ
http://technet.microsoft.com/en-us/library/cc773062(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc773062(WS.10).aspx

Managing the Samba Active Directory Server

[82]

All the directory replications are already implemented and fully functional. We will
add another Domain Controller to our Debian 7 GNU/Linux Samba 4 Server AD
DC, and verify if the replication of users, groups, and our GPO is properly synced.

The Samba 4 status for many different parts of the code can be checked
at the following site:

https://wiki.samba.org/index.php/Samba4/Status

To add our Microsoft Windows Server 2008 as an additional Domain Controller,
we just need to log in as a Domain Administrator and execute the dcpromo utility;
just navigate to Start | Run and execute dcpromo. If the Active Directory Service
binaries are not already installed in the system, we should be presented with a screen
similar to the one shown in the following screenshot:

The preceding screenshot shows you that the operating system automatically installs
the needed components and after that, it will start the AD DC installation wizard.
When that process is finished, we will actually be presented with the wizard and the
following message will be displayed: This wizard helps you install Active Directory
Domain Services (AD DS) on this server, making the server an Active Directory
domain controller. To continue, click Next. So we just need to click on Next twice,
and we will be able to see the following screenshot:

Chapter 3

[83]

As we will add this new Domain Controller in an existing forest and to an existing
domain, we choose the first option and click on Next. The following screen will ask for
the credentials and confirm the domain that we want to join, so we just click on Next:

Managing the Samba Active Directory Server

[84]

In the following two screenshots, we will just need to confirm our domain and site
(we can click on Next twice without changing any option). Following this screen,
we will be presented with the Additional Domain Controller Options screen:

We will examine some of our DNS configuration, and in the following screenshot,
we can change the path for the SysVol and log files, if we want. As we will use the
default values, we just click on Next, and then we are presented with a screen to set
the recovery mode administrator's account password:

Chapter 3

[85]

We need to choose a strong password as advertized and click on Next, review all
our answers, and then click on Next for the last time. We will see the progress screen
that shows us the process to be added to our new server as an additional Domain
Controller to our Active Directory Domain:

Just click on Finish in the last screen, and we'll need to restart the computer,
as shown in the following screenshot:

After the restart, open the Active Directory Users and Computers (dsa.msc)
snap-in, and click on Domain Controllers. We should see both servers listed,
as shown in the following screenshot:

Managing the Samba Active Directory Server

[86]

Now let's open our Server Manager and navigate to our DNS Services and check
whether our DNS configuration was replicated and whether everything is fine, as DNS is
very important to our Active Directory Services. Take a look at the following screenshot:

As we can see in the preceding screenshot, our Forward Lookup Zones and Reverse
Lookup Zones folders are present, and if we right-click on our domain—which
is poa.msdcbrz.eall.com.br—and click on Properties, we can check the Name
Servers tab and check whether we have our two DNS Servers registered (PDC and
WINDOWS2008CLT):

Chapter 3

[87]

In the preceding screenshot, we can see that our new Active Directory Server was
added perfectly to our domain, so we can use the repadmin command to verify that
everything is up to date and the synchronization process between the two Domain
Controllers is fine as shown in the following screenshot:

So, with this procedure, we can be sure that everything is updated and our Domain
Controllers are in sync.

In a GNU/Linux system, we can use the dig utility to test our brand
new DNS server and confirm that it is answering the DNS queries,
issuing the following command:

dig poa.msdcbrz.eall.com.br mx @windows2008clt

Summary
In this chapter, we learned about the different roles that the Samba 4 Server can
play on the network. We also learned how to basically manage the server using a
Microsoft Windows Server 2008. We have installed the tools needed to manage it,
and all the installation process was explained. The reader was introduced to the
Group Policy feature and also learned how to implement the centralized change
and configuration management for users and machines using this powerful
administrative functionality. The reader also learned how to create a custom
management console to have all the management tools that we have used until this
point in one place.

Managing the Samba Active Directory Server

[88]

We have learned how to get the authentication and authorization working on Samba
4 for GNU/Linux Systems using the Debian distribution as an example. We have
seen how to configure two important subsystems from the GNU/Linux systems
authentication and name resolution: Pluggable Authentication Modules (PAM) and
the Name Service Switch (NSS). Also covered in this chapter were the status and
current limitations of some replication code and the trust-relationship characteristics
of the Samba 4 Server as an Active Directory Domain Controller. We also explained
how to add a Microsoft Windows Server 2008 as an additional Domain Controller
that shows you the directory/DNS replication feature.

In the next chapter, we will learn how to replace a Microsoft Windows Active
Directory Server with a Samba 4 Server as well as the key points of consideration
to have in mind before performing such a task.

Replacing a Microsoft
Windows Active Directory

Server
This chapter is intended to show how to replace a Microsoft Windows Server AD
(such as Microsoft Windows Server 2008 R2 or Windows Server 2012) with a Samba
4 Active Directory Server, and thus, we will cover the following points:

•	 The key consideration points we need to keep in mind when planning such
a task, and the common concerns one may have before replacing an Active
Directory Domain Controller (AD DC).

•	 Our example environment will comprise a standalone AD DC, but if you
apply the techniques shown in this chapter in an environment with more
than one AD DC, you should be able to adapt the procedure with just
a few changes.

•	 After we have covered all the key points, and some backup/recovery and
rollback techniques have been considered, we will go to the planning phase
with examples and tests to actually validate our final replacement procedure.
We need to have all these validations beforehand, as it is crucial to be able to
guarantee that after the replacement operation, our final environment will be
sane and provide all the resources to our clients as our prior server setup did.

•	 Then, we will show the step-by-step procedure to execute the replacement
of our Microsoft Windows Server 2008 R2 with a Samba 4 Server as the
AD DC in our example network. Based on our consideration points and
test procedures, we will show you where to look and apply the validations
to make sure that the process was successful and the environment is fully
available from the clients' perspective.

Replacing a Microsoft Windows Active Directory Server

[90]

Key points to consider before replacing
an AD DC
Backup, as simple as that. When planning a replacement for a production server or
changing the configuration on a system that provides essential services for many users,
the first line in our procedure plan needs to guarantee up-to-date backup. This is not
a rollback procedure because a rollback may have a restore procedure as a step, but
normally we are referring to two different tasks. We have many scenarios where we
can execute a rollback procedure that does not restore data from the backup.

Do not delete any data; the ability to quickly and consistently recover the system
to the last operational state, where users are not prevented from using the services
they need, is an established best practice that we need to pursue while planning and
implementing the replacement of the AD DC or any other critical network service.

When we have a clear, up-to-date, and reliable backup of our AD DC, we need to think
about the Mean Time to Recover/Repair (MTTR) that our business or organization
will accept in case anything goes wrong. Normally, the restore procedure during
backup is the task that will take longer; but, in the case of complex issues arising
during a maintenance execution, it is the bullet-proof fallback. The rollback can
incorporate a last-resort operation that contemplates the complete restoration of the
state of data and services from the backup operation; but, it is advised that you work
on a rollback procedure in which small issues can be fixed without the (normally)
time-consuming restore procedures. This is because small fixes are faster most times.

For the following procedures, it's assumed that the reader has a working backup
system [6], and in our specific case, we expect that this procedure/software is
aware of the Active Directory and provides restore capabilities or the direct rollback
features of the AD DS content. It's assumed that the tasks presented in this chapter
will be executed in a lab environment where there is the option to simulate the "real"
environment and any issues faced can be identified and fixed in a later execution
on the production network. It's invaluable to test big changes in a controlled and
simulated lab environment as it provides the possibility to validate the final result
(for example, the state of the services after the change), and in the case of blocking
issues, it verifies whether or not the rollback is effective and as quick as predicted.

So, we will go through a quick overview of some tools and techniques available
for us to identify possible issues, how to save the Active Directory state, and then
implement tests and validations to confirm whether or not the replacement was
successful. If the replacement was not successful, we will learn how to fix some
specific issues.

http://technet.microsoft.com/en-us/library/cc771290(WS.10).aspx

Chapter 4

[91]

Don't execute this procedure when it is in production as we will
delete and recreate some objects as part of the learning exercise!

Planning the replacement – tests and
validations
One important feature that is present on Microsoft Windows Server 2008 R2 is the
Active Directory snapshot capability. For our task, this is a powerful feature as it
gives us the option to capture the state present in our AD DC at a specific point in
time. So, we can view or utilize that information in the future to fix or replace specific
objects in case we face any issues; thus, we will utilize it for our replacement plan.
The Active Directory snapshot uses the Volume Shadow Copy Service (VSS), a
rich interface that permits coordination between applications and backup software,
which allows you to have live, consistent backups [7].

Let's see how that works and how we can make use of this feature in our replacement
plan. The following is a screenshot of our standalone Microsoft Windows Server 2008
R2 Active Directory DC, showing some standard users and organizational units:

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384649(v=vs.85).aspx

Replacing a Microsoft Windows Active Directory Server

[92]

Now, we will go through the procedure to create an Active Directory snapshot [5] and
use it to recover some objects. The utilities we will use are ntdsutil [8], dsamain, fc,
sort, and csvde. The ntdsutil utility is a very powerful tool that needs to be used
with caution as it has the ability to perform advanced database changes of the Active
Directory Domain Service (AD DS). In our example, we have Microsoft Windows
Server 2008 R2, which has this tool built in as we have the server acting as the AD DC
for our network. If you do not have it installed, it is included in the Remote Server
Administration Tools (RSAT) bundle.

Basically, the steps we need to perform in order to use the snapshot feature are:
create, mount, connect (do some work on the snapshot), disconnect, and if we
do not intend to maintain the snapshot, destroy it. For our use case, we will not
preserve the snapshot as it exists just for support in our replacement procedure.
So, after executing, validating, and using it, we will delete the snapshot. In a real-
world scenario, it is very common to maintain the snapshot for a while until the
administrators are convinced that the new environment is sane.

It's important to remember that in case we want to preserve the snapshot,
further security measures are needed as it contains sensitive information.

The ntdsutil utility is an interactive tool, but can be invoked with all the necessary
arguments in one line. We will execute it by passing all the arguments in the same
line as that can help us learn how to create automated routines and embed these
commands later in administration scripts. The dsamain [9] tool will be used to access
the AD snapshot's data, and all the steps of the procedure will be executed using
the domain administrator's account. At the command prompt (navigate to Start |
Command Prompt), execute the following commands:

C:\Users\Administrator>ntdsutil "activate instance ntds" snapshot
 create "list all" q q

ntdsutil: activate instance ntds

Active instance set to "ntds".

ntdsutil: snapshot

snapshot: create

Creating snapshot...

Snapshot set {32934713-4bc1-440f-90ff-9ceb0c683452} generated
successfully.

http://technet.microsoft.com/en-us/library/cc731620(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc753343(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc772168(v=ws.10).aspx

Chapter 4

[93]

snapshot: list all

 1: 2013/07/03:23:49 {32934713-4\bc1-440f-90ff-9ceb0c683452}

 2: C: {35fa1577-e1e1-4a50-b748-28c51fd0ce63}

snapshot: q

ntdsutil: q

C:\Users\Administrator>

In the preceding command execution, we can see all the outputs received from
ntdsutil. We have created the snapshot and listed it (using the list all
command) in the same command line. We have two lines numbered in the snapshots
list, but in fact, ntdsutil shows two lines for each snapshot created (the first one
has the date of creation and the second contains the snapshot's index and GUID).
To mount the snapshot, we can use either the index or the GUID; as we have just
one snapshot and it's much easier than referencing the whole GUID, we'll mount
it using the index, as follows:

C:\Users\Administrator>ntdsutil "activate instance ntds" snapshot
 "list all" "mount 2" q q

ntdsutil: activate instance ntds

Active instance set to "ntds".

ntdsutil: snapshot

snapshot: list all

 1: 2013/07/03:23:49 {32934713-4bc1-440f-90ff-9ceb0c683452}

 2: C: {35fa1577-e1e1-4a50-b748-28c51fd0ce63}

snapshot: mount 2

Snapshot {35fa1577-e1e1-4a50-b748-28c51fd0ce63} mounted as
C:\$SNAP_201307032349_VOLUMEC$\

snapshot: q

ntdsutil: q

C:\Users\Administrator>

As we can see in the preceding output, the snapshot was mounted and the volume
path was defined. So, we can go directly to that volume in Explorer by entering the
path (C:\$SNAP_201307032349_VOLUMEC$) at the Start | Search program and files
box. After the Explorer window shows the snapshot volume content, navigate to the
Windows | NTDS folder.

Replacing a Microsoft Windows Active Directory Server

[94]

We will need the full path for the ntds.dit file to pass it as an argument for the
dsamain utility. So, we need to right-click on it while holding down the Shift key
and choose Copy as path. After that, in a command prompt window, execute the
following commands (paste the ntds.dit path that we just saved in the clipboard
after the -dbpath option):

C:\Users\Administrator>dsamain -dbpath \

"C:\$SNAP_201307032349_VOLUMEC$\Windows\NTDS\ntds.dit" \

-ldapport 20389

EVENTLOG (Informational): NTDS General / Service Control : 1000

Microsoft Active Directory Domain Services startup complete, version
 6.1.7600.16385

Notice that we have used an alternative port (20389) to start the
dsamain utility as the standard port (389) is already used by the
standard AD DS service.

Observe that the preceding command is just one line, and the character \ after the
-dbpath option and the ntds.dit file is just stating that the line continues. After a
few seconds, we should see that the next line starts with the word EVENTLOG, which
will inform us that the services have started. We need to leave that command shell
open while we work on the snapshot, so we can minimize it to save some space in
our desktop. Now, let's open the Active Directory Users and Computers MMC
and change the Domain Controller to which we are connected. To do so, just right-
click on the Active Directory Users and Computers option and choose the Change
Domain Controller... option as shown in the following screenshot:

The next step is to add the hostname of our AD DS with the custom port we used
in the dsamain invocation (for example, 20389) as we intend to access our
snapshot's database:

Chapter 4

[95]

We just need to click on the <Type a Directory Server name[:port] here> field as
shown in the preceding screenshot, and enter our information (in our example, we
will enter: WINDOWS2008SRV:20389 and click on OK).

We can connect to our snapshot directly by issuing the following
command at the Start | Run menu:

dsa.msc /server=windows2008srv:20389

Now, we should have two Active Directory Users and Computers windows opened:
one connected to our live Active Directory Services and the other connected to our
snapshot's database (for example, ntds.dit). To verify which one we are working
with, just hover the mouse over Active Directory Users and Computers (top level),
and we'll see a pop-up showing the server we are connected to (for example, the
snapshot connection has the port 20389 at the end). After we navigate through our
Organizational Units (OU) and have verified that we have a consistent and up-to-
date snapshot, we can close this window.

In the remaining window that is connected to the live AD DS, navigate to the People
| Standard Users OU, choose one user object (for example, hahanzo), and delete it:
just right-click on the user and choose Delete; we will be prompted to confirm the
deletion and if we agree, we can just choose Yes. The deletion of a user is similar to
that shown in the following screenshot:

So, from 50 users in our example environment, we have a missing object on the AD
(in this case, a user object) at the Standard Users OU. Now, we will show you how to
recover from such a situation if this happens in our replacement procedure.

Replacing a Microsoft Windows Active Directory Server

[96]

Remember that this is a general planning example procedure that
can be used to fix many sorts of problems we may face in our AD DS
environment, even on occasions where we are not specifically replacing
a Domain Controller.

Exporting directory entries
Let's open another command-prompt window (do not use the same window in
which the dsamain utility is running) and execute the following commands:

C:\Users\Administrator>csvde -s windows2008srv -T 20389 -d\

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 -r "(objectClass=user)" -c \

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 "" -l sAMAccountName -f standardusers-snap.csv

Connecting to "windows2008srv"

Logging in as current user using SSPI

Exporting directory to file standardusers-snap.csv

Searching for entries...

Writing out entries

...

Export Completed. Post-processing in progress...

49 entries exported

The command has completed successfully

C:\Users\Administrator>

Cool! It seems like we have 49 entries exported (that is, 49 users) on the snapshot (the
fiftieth user is djfox on the Power Users OU). The -c option that we have used is to
replace the full DN with another (in our case, an empty string: ""), just to make the
resulting .csv file easier to read.

We are just listing objects from the user class (the -r option/filter),
and we just want the usernames (for example, the sAMAccountName
attribute).

Chapter 4

[97]

If we look at the content of the standardusers.csv file, we will see that it is
a standard comma-separated value file as follows:

DN,sAMAccountName

"CN=Chris Cabot,",chcabot

"CN=Joe Cabot,",jocabot

"CN=Freddy Orange,",frorange

"CN=Marvin Nash,",manash

"CN=Beatrix Kiddo,",bekiddo

…

In the preceding excerpt, we can see the first line (header) and some standard users
of the OU. Now we need to execute a similar command on our live AD to compare
the contents. We can use the same command-prompt window in which we generated
the first .csv file to execute the second export command. The following command is
very similar to the first one; here, we will just remove the option -T, the port 20389,
and change the name of the .csv file:

C:\Users\Administrator>csvde -s windows2008srv -d\

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 -r "(objectClass=user)" -c \

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 "" -l sAMAccountName -f standardusers.csv

Connecting to "windows2008srv"

Logging in as current user using SSPI

Exporting directory to file standardusers.csv

Searching for entries...

Writing out entries

...

Export Completed. Post-processing in progress...

48 entries exported

The command has completed successfully

C:\Users\Administrator>

Replacing a Microsoft Windows Active Directory Server

[98]

With the preceding output, we can quickly identify that we have one less entry on
the live AD (the one we deleted) as we had 49 entries exported from the snapshot
database and here we have just 48! Let's sort the files and compare them using the
following commands:

C:\Users\Administrator> sort standardusers.csv /o standardusers-sorted.
csv

C:\Users\Administrator> sort standardusers-snap.csv /o standardusers-
snap-sorted.csv

In the preceding procedure, we are using just one specific
Organizational Unit as our validation example, and in our specific case,
we have more objects (that is, users). But in a real-world scenario, it
is advised that you actually list and compare all the Active Directory
objects and validate all the content of our Directory Services. We can
compare all the structures and content of the Directory Services in one
file or use a script to create specific files from portions of our AD tree to
facilitate the debugging. What is important is that you save the resultant
file(s) in a safe place where we can use them after the replacement to
perform the comparison and find any inconsistencies.

Comparing backup data against live data
So, now that we have both files generated and sorted, we can compare them with the
following commands (just pass the two filenames as arguments for the fc utility):

C:\Users\Administrator>fc standardusers-sorted.csv standardusers-snap-
sorted.csv

Comparing files standardusers-sorted.csv and STANDARDUSERS-SNAP-SORTED.
CSV

***** standardusers-sorted.csv

"CN=Freddy Orange,",frorange

"CN=Jack Brown,",jabrown

***** STANDARDUSERS-SNAP-SORTED.CSV

"CN=Freddy Orange,",frorange

"CN=Hattori Hanzo,",hahanzo

"CN=Jack Brown,",jabrown

C:\Users\Administrator>

Chapter 4

[99]

We can see that we have a context in the fc utility's output, as the text portions
around the differences between the files are shown. So, we can easily identify that
the missing user is Hattori Hanzo (hahanzo) as it is the user in the standardusers-
snap-sorted.csv file between Freddy Orange (frorange) and Jack Brown
(jabrown). But, there is no line for hahanzo in the standardusers-sorted.csv
file in that context.

In a case like this, we have a lot of options to choose from to fix the issue, and this
is an excellent example where a full restore from the backup is not needed. Our
company policies will, for sure, dictate our choice; but in the example case, we have
a very satisfactory way to restore this object using just the dsadd utility and fill it
with up-to-date information that we can get from a newly exported .csv file in the
snapshot. This can be done using the following command:

C:\Users\Administrator>csvde -s windows2008srv -T 20389 -d\ "cn=Hattori
Hanzo,ou=Standard Users,ou=People,dc=poa,\

dc=msdcbrz,dc=eall,dc=com,dc=br" -f hattorihanzo.csv

Connecting to "windows2008srv"

Logging in as current user using SSPI

Exporting directory to file hattorihanzo.csv

Searching for entries...

Writing out entries

...

Export Completed. Post-processing in progress...

48 entries exported

The command has completed successfully

C:\Users\Administrator>

If we look at the header of the resulting .csv file, we will see that the attributes
we have on it are for the user Hattori Hanzo. We can take a look at the attribute
headers in the following example:

DN,objectClass,cn,sn,description,givenName,distinguishedName,instanceType
,whenCreated,whenChanged,uSNCreated,uSNChanged,company,name,objectGUID,us
erAccountControl,badPwdCount,codePage,countryCode,badPasswordTime,lastLog
off,lastLogon,pwdLastSet,primaryGroupID,objectSid,accountExpires,logonCou
nt,sAMAccountName,sAMAccountType,objectCategory,dSCorePropagationData,las
tLogonTimestamp,mail

Replacing a Microsoft Windows Active Directory Server

[100]

We just pick the attributes we need, and it is simple to create the new object, as follows:

C:\Users\Administrator>

dsadd succeeded:CN=Hattori Hanzo,OU=Standard Users,OU=People,DC=POA,\

DC=MSDCBRZ,DC=EALL,DC=COM,DC=BR

C:\Users\Administrator>

After the preceding command, we can check in the Active Directory Users and
Computers tool and verify whether or not the user Hattori Hanzo (username:
hahanzo) will be present in the Standard Users OU again. We will just need to
inform the user to change the password at their first login, because we had recreated
the object with a standard password.

Again, this is satisfactory in our example environment; but if we want to preserve
some operating system attributes and not break any application that can identify
the user as a new user, we can import the hahanzo user object to the live AD using
the .csv exported file directly from the snapshot. The only point you need to pay
attention to is in the export procedure using the csvde utility, as in order for the
import to be successful, there are lists of attributes that are prohibited by the AD
from being imported using a connection that is not encrypted (such as csvde).

We can use the -r option, as we did previously, for the csvde utility (to create
a filter) and export just the attributes that are allowed; or, we could export all
attributes, edit the .csv file, and exclude the attributes that are prohibited, such
as [10]: badPasswordTime, adPwdCount, lastLogoff, lastLogon, logonCount,
memberOf, objectGUID, objectSid, primaryGroupID, pwdLastSet, and
sAMAccountType.

A third alternative would be to use the ldifde [11] tool, but it has
the same drawback (that is, the password import limitation) as the
csvde tool.

As a general rule, in cases where we have a problem executing the maintenance
operation in the Active Directory, the important points to be noted are as follows:

•	 Identify the issue
•	 Execute the rollback
•	 Fix the procedure for later execution

http://support.microsoft.com/kb/276382/en-us?fr=1
http://support.microsoft.com/kb/555636/en-us?fr=1

Chapter 4

[101]

The most important part is understanding the many points discussed here and
making a decision based on the technical aspects as well as company rules and
policies (for example, security policies). However, for the majority of object types,
either csvde or ldifde utilities can be used to export the data from the snapshot and
import it seamlessly in the affected AD, and thus can be used as powerful support
tools to create rollback procedure and quickly fix procedures to any general Active
Directory maintenance. Save them in your virtual utility belt!

We can find some commercial and free tools on the Internet that provide frontends
for these procedures/tools, and the export and import procedures from the snapshots
to the live AD are made very simple. A very popular example of a free option is the
Directory Service Comparison Tool [12] by Fredrik Lindstrom. The author of this
book does not take any responsibility for the reliability of third-party tools, though.

Replacing the Active Directory Domain
Controller
With the backup and rollback plan in place, we can proceed to the replacement
procedure, but first, a word about DNS services. We know that Active Directory
Services are a collection of services integrated for administrators to use and manage
essential network services. But, it's important to handle the replacement procedure
by focusing on the DNS part of those services that are separate from the whole AD
DC. That's because we have covered the objects recovering with the snapshot feature,
but if our DNS records are not consistent and our DNS is not working properly,
Active Directory will not work.

Microsoft Windows Server 2008 R2 has a handy configuration file with all the
records needed for the proper operation of the AD DS, which is located in C:\
Windows\System32\config\netlogon.dns and is compatible with Microsoft
Windows operating systems prior to Server 2008 or for DNS servers that are not
from Microsoft. The latter is just our case, so we will save its content in a TXT file in
our Debian 7 brand's new Samba 4 Server. We will use it later on in our procedure.

After the proper installation of the Samba 4 Server and all the dependencies on the
machine, we will use it as our new AD DC; we need to be sure that our Kerberos
system is working OK. For that, we just need the following configuration in /etc/
krb5.conf:

[libdefaults]

 default_realm = POA.MSDCBRZ.EALL.COM.BR

 dns_lookup_realm = false

 dns_lookup_kdc = true

http://blog.frli.se/p/dsct.html

Replacing a Microsoft Windows Active Directory Server

[102]

With the preceding configuration in place, we are able to test our Kerberos setup;
now just type the following commands (as root):

root@debian7:/home/leal# kinit administrator

Password for administrator@POA.MSDCBRZ.EALL.COM.BR:

root@debian7:/home/leal# klist

Ticket cache: FILE:/tmp/krb5cc_0

Default principal: administrator@POA.MSDCBRZ.EALL.COM.BR

Valid starting Expires Service principal

08/07/2013 14:10 09/07/2013 00:10 krbtgt/POA.MSDCBRZ\

.EALL.COM.BR@POA.MSDCBRZ.EALL.COM.BR

 renew until 09/07/2013 14:10

As is confirmed in the preceding output, we know that we are able to get a valid
token, and we can go ahead and start the game by adding our Samba 4 Server as
an additional AD DC for our network [15]:

root@debian7:/home/leal# /usr/local/samba/bin/samba-tool domain join poa.
msdcbrz.eall.com.br DC -Uadministrator

Finding a writeable DC for domain 'poa.msdcbrz.eall.com.br'

Found DC WINDOWS2008SRV.poa.msdcbrz.eall.com.br

Password for [POA\administrator]:

If your Samba 4 Server has more than one network interface, you may
prefer to execute the preceding command with just the main interface
enabled. After that, a smb.conf file will be created, and you'll be able
to add an interface line by specifying the network and binding interface
you want.

After this command, we should be prompted for the administrator's password and
after providing that, we will see messages in the console about the process of joining
the Active Directory Services as a Domain Controller. The following are the last lines
of the output:

…

Sending DsReplicateUpdateRefs for all the replicated partitions

Setting isSynchronized and dsServiceName

Setting up secrets database

Joined domain POA (SID S-1-5-21-3395795540-2439876420-4291680193) as
 a DC

http://wiki.samba.org/index.php/Samba

Chapter 4

[103]

If we do not get a message like the preceding one at the end of the last procedure,
we need to check our Samba 4 installation and make sure that all the steps described
in Chapter 1, Installing the Samba 4 Server, have been followed and executed correctly.
We should have many other informational messages too, and if any ERROR message
is presented, we should return and check our installation and network connectivity.

Now, the first part of our replacement procedure will focus on DNS and make
sure that everything is configured properly, and that we have the needed records
synchronized and transferred for our new Samba 4 AD DS. We will demote
Microsoft Windows Server 2008 R2 just after we complete all the DNS configurations.

Let's execute the following command to update/create necessary DNS entries:

root@debian7:~# /usr/local/samba/sbin/samba_dnsupdate --all-names –
 verbose

The preceding command should produce a lot of debug messages, and many
important DNS entries should be created automatically. Among these messages,
we should see the following entries:

…

poa.msdcbrz.eall.com.br. 900 IN A 192.168.1.1

debian7.poa.msdcbrz.eall.com.br. 900 IN A 192.168.1.1

gc._msdcs.poa.msdcbrz.eall.com.br. 900 IN A 192.168.1.1

dd1fb0a6-056f-4a5c-a718-2bca393f88a1._msdcs.poa.msdcbrz.eall.com.br. 900
IN CNAME debian7.poa.msdcbrz.eall.com.br.

…

Now, we can start querying our DNS server (our Windows Server 2008 R2 AD) to
verify whether or not the samba_dnsupdate command worked as expected. From
our Samba 4 Server, we will execute the following commands:

host -t srv _ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.POA.\

MSDCBRZ.EALL.COM.BR windows2008srv

Using domain server:

Name: windows2008srv

Address: 192.168.1.2#53

Aliases:

_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.POA.MSDCBRZ.\

EALL.COM.BR has SRV record 0 100 389 debian7.poa.msdcbrz.eall.com.br.

_ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.POA.MSDCBRZ.\

EALL.COM.BR has SRV record 0 100 389 windows2008srv.POA.MSDCBRZ.\

eall.com.br.

Replacing a Microsoft Windows Active Directory Server

[104]

We can query for the specific CNAME value for the new DC object GUID using the
following commands:

root@debian7:/home/leal# host -t CNAME dd1fb0a6-056f-4a5c-a718-2bca3\

93f88a1._msdcs.poa.msdcbrz.eall.com.br.

dd1fb0a6-056f-4a5c-a718-2bca393f88a1._msdcs.poa.msdcbrz.eall.com.br \

 is an alias for debian7.poa.msdcbrz.eall.com.br.

We can find out the new DC GUID by issuing the following
command [16]:

ldbsearch -H /usr/local/samba/private/sam.ldb
 '(invocationid=*)' --cross-ncs objectguid

We can ask for the A record for the debian7 new Domain Controller using the
following command:

root@debian7:/home/leal# host -t A debian7.poa.msdcbrz.eall.com.br

debian7.poa.msdcbrz.eall.com.br has address 192.168.1.1

DNS reverse resolution is very important, and Microsoft AD seems not to create a
reverse zone for the AD Domain by default. Let's test it using the following commands:

leal@debian7:~$ host 192.168.1.2

;; connection timed out; no servers could be reached

leal@debian7:~$

Our Microsoft Server does not have a reverse resolution configured, and therefore,
let's take a look at our new server:

leal@debian7:~$ host 192.168.1.1

;; connection timed out; no servers could be reached

leal@debian7:~$

So, the best option is to configure reverse resolution to have fully working DNS.
We can open the DNS administration pane by navigating to Start | Administrative
Tools | DNS. On the main screen, just expand the main server (for example,
WINDOWS2008SRV) and choose Reverse Lookup Zones, as shown in the
following screenshot:

http://www.samba.org/samba/history/samba-4.0.0.html

Chapter 4

[105]

To add a new zone, just click on the Action menu and choose New Zone as shown in
the following screenshot:

The next step is a straightforward process as we just need to follow New Zone
Wizard. After the initial Welcome screen, we see a screen on which we are able to
choose Store the zone in Active Directory..., and we should leave that box checked
together with the Primary zone option. On the third screen, we will choose the
replication to all DNS servers running on domain controllers in this domain....
We'll create an IPv4 reverse lookup zone, and the following screenshot shows the
configuration for the Network ID value:

Replacing a Microsoft Windows Active Directory Server

[106]

For the DNS updates, we will choose the option to just allow secure dynamic
updates, and we can finish the wizard. Now that our 1.168.192-in-addr.arpa zone is
created and up and running, let's create some records and test the resolution again.
To do so, we will need to select our brand new reverse DNS zone: right-click on it
and choose New Pointer (PTR)..., as shown in the following screenshot:

The New Resource Record screen will show the Host IP Address field almost
completely filled; we just need to add the host details. There is a checkbox on this
screen about the update for the records, and we need to choose in accordance with
your company's policies. The New Resource Record screen looks as shown in the
following screenshot:

After we have created the entries that we need for our network, we can test our
reverse resolution right away using the following commands:

leal@debian7:~$ host 192.168.1.2

2.1.168.192.in-addr.arpa domain name pointerwindows2008srv.poa.msdcb\

rz.eall.com.br.

leal@debian7:~$

Chapter 4

[107]

Now, we can run the samba_dnsupdate command once more and start Samba using
the following commands:

root@debian7:/home/leal#/usr/local/samba/sbin/samba_dnsupdate --all-names
--verbose

…

root@debian7:/home/leal# /usr/local/samba/sbin/samba

root@debian7:/home/leal#

Now, before moving on to the operations on the AD itself, we will change all the
main DNS records of our network to point to our new Samba 4 AD Server. It's
important to execute this procedure while the current Microsoft Windows Server
2008 R2 is still online as some records can be very difficult to reconfigure if we do
not do this at the right time. Take a look at the following command execution on the
Samba 4 Server:

leal@debian7:~$ dig -t any poa.msdcbrz.eall.com.br

; <<>> DiG 9.8.4-rpz2+rl005.12-P1 <<>> -t any poa.msdcbrz.eall.com.br

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31663

;;flags: qr aa rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0,ADDITIONAL: 1

;; QUESTION SECTION:

;poa.msdcbrz.eall.com.br. IN ANY

;; ANSWER SECTION:

poa.msdcbrz.eall.com.br. 900 IN A 192.168.1.1

poa.msdcbrz.eall.com.br. 600 IN A 192.168.1.2

poa.msdcbrz.eall.com.br. 3600 IN
 NSwindows2008srv.poa.msdcbrz.eall.com.br.

poa.msdcbrz.eall.com.br. 3600 IN SOA
 windows2008srv.poa.msdcbrz.eall.com.br. hostmaster.poa.msdcbrz.eall.
com.br. 32 900 600 86400 3600

;; ADDITIONAL SECTION:

windows2008srv.poa.msdcbrz.eall.com.br. 3600 IN A 192.168.1.2

;; Query time: 5 msec

;; SERVER: 192.168.1.2#53(192.168.1.2)

;; WHEN: Wed Jul 10 00:01:33 2013

;; MSG SIZE rcvd: 165

Replacing a Microsoft Windows Active Directory Server

[108]

The preceding information is very important as we need these records (for example,
NS records) to point to our new AD Server. A better way to look at the different
entries we have in our DNS configuration is by executing the following commands:

root@debian7:~# /usr/local/samba/bin/samba-tool dns query localhost
 poa.msdcbrz.eall.com.br @ ALL

Password for [administrator@POA.MSDCBRZ.EALL.COM.BR]:

 Name=, Records=4, Children=0

 A: 192.168.1.2 (flags=600000f0, serial=22, ttl=600)

 A: 192.168.1.1 (flags=600000f0, serial=22, ttl=900)

 NS: windows2008srv.poa.msdcbrz.eall.com.br. (flags=600000f0,
 serial=22, ttl=3600)

 SOA: serial=21, refresh=900, retry=600, expire=86400,
 ns=windows2008srv.poa.msdcbrz.eall.com.br.,
 email=hostmaster.poa.msdcbrz.eall.com.br. (flags=600000f0,
 serial=22, ttl=3600)

 Name=_msdcs, Records=0, Children=0

 Name=_sites, Records=0, Children=1

 Name=_tcp, Records=0, Children=4

 Name=_udp, Records=0, Children=2

 Name=debian7, Records=1, Children=0

 A: 192.168.1.1 (flags=f0, serial=23, ttl=900)

 Name=DomainDnsZones, Records=0, Children=2

 Name=ForestDnsZones, Records=0, Children=2

…

At this time, samba-tool is not able to update the SOA records, so we will update
the records directly on the Microsoft Windows Server's administrative tool.
We open the DNS tool, select our domain, and right-click on our domain to choose
the properties:

Chapter 4

[109]

In the Properties window, we need to click on the Start of the Authority (SOA) tab
and change the Primary server value from windows2008srv.poa.msdcbrz.eall.com.
br to debian7.poa.msdcbrz.eall.com.br (don't forget to increase the serial number in
that window), as shown in the following screenshot:

Replacing a Microsoft Windows Active Directory Server

[110]

However, before we apply the changes to the SOA record, which is still in the
properties of our Domain, we will select the Name servers tab and click on Add..., as
we will add our debian7 Samba 4 Active Directory Server to the Name Servers list.
After adding the name of our server, we can click on the Resolve button next to the
input box, and the IP address for our server will be filled correctly as shown in the
following screenshot:

Now we can click on OK, and when we get back to the Name Servers tab on the
Properties window, we can click on Apply and OK again. Let's go back to our
Debian 7 Samba 4 server and test and see what our SOA and NS records look like.
We will use the following commands to test our SOA and NS records:

root@debian7:~# /usr/local/samba/bin/samba-tool dns query localhost poa.
msdcbrz.eall.com.br @ ALL –-password 'w1ndow$$'

 Name=, Records=5, Children=0

 A: 192.168.1.2 (flags=600000f0, serial=35, ttl=600)

 A: 192.168.1.1 (flags=600000f0, serial=35, ttl=900)

 NS: windows2008srv.poa.msdcbrz.eall.com.br. (flags=600000f0,
 serial=35, ttl=3600)

 NS: debian7.poa.msdcbrz.eall.com.br. (flags=600000f0, serial=35,\

 ttl=3600)

 SOA: serial=33, refresh=900, retry=600, expire=86400,
 ns=debian7.poa.msdcbrz.eall.com.br.,
 email=hostmaster.poa.msdcbrz.\

eall.com.br. (flags=600000f0, serial=35, ttl=3600)

 Name=_msdcs, Records=0, Children=0

 Name=_sites, Records=0, Children=1

 Name=_tcp, Records=0, Children=4

 Name=_udp, Records=0, Children=2

 Name=debian7, Records=1, Children=0

 A: 192.168.1.1 (flags=f0, serial=36, ttl=900)

Chapter 4

[111]

 Name=DomainDnsZones, Records=0, Children=2

 Name=ForestDnsZones, Records=0, Children=2

 Name=WINDOWS2003CLT, Records=1, Children=0

 A: 192.168.1.10 (flags=f0, serial=20, ttl=1200)

 Name=WINDOWS2008CLT, Records=1, Children=0

 A: 192.168.1.11 (flags=f0, serial=21, ttl=1200)

 Name=windows2008srv, Records=1, Children=0

 A: 192.168.1.2 (flags=f0, serial=3, ttl=3600)

We can see the serial number that we have increased when we updated the SOA
record in the preceding output, and we can also see that our debian7 server is
configured as the primary server (notice that now we have both servers as name
servers of our domain). So, now we can remove windows2008srv; going back to
our Microsoft Windows Server 2008 R2 DNS administration tool, we go back to the
Properties | Name Servers tab and remove windows2008srv.poa.msdcbrz.eall.
com.br from the Name Servers list. Our zone will look similar to that shown in the
following screenshot:

Now, we need to right-click on the _msdcs folder (which is inside poa.msdcbrz.
eall.com.br), as shown in the preceding screenshot, and select Properties. So, we
can add the debian7 Samba Server to the list of name servers too, as shown in the
following screenshot:

Replacing a Microsoft Windows Active Directory Server

[112]

We need to execute the same procedure for _msdcs.poa.msdcbrz.eall.com.br as we
did for poa.msdcbrz.eall.com.br. Right-click on it, choose Properties, and in the Start
of Authority (SOA) tab, change the preferred server name and add debian7 as the
server name in the Name Servers tab.

Before going to our Microsoft Windows Server 2008 R2, we need to make sure we
run the knowledge Consistency Checker [14] using the following commands:

root@debian7:/home/leal# /usr/local/samba/bin/samba-tool drs kcc -
 Uadministrator windows2008srv.poa.msdcbrz.eall.com.br

Password for [POA\administrator]:

Consistency check on windows2008srv.poa.msdcbrz.eall.com.br
 successful.

root@debian7:/home/leal#

With the preceding message indicating that the consistency check on our Microsoft
Windows 2008 Server R2 was successful, we can go ahead and test the replication
between the two Domain Controllers. We can go to our Windows Server to look at
how the interaction/replication between the two Domain Controllers is occurring.
So, we just need to open a command prompt (by navigating to Start | Command
Prompt), and execute the following commands:

C:\Users\Administrator>repadmin /replsummary

Replication Summary Start Time: 2013-07-08 16:46:54

Beginning data collection for replication summary, this may take awhile:

Source DSA largest delta fails/total %% error

 DEBIAN7 19m:47s 0 / 3 0

 WINDOWS2008SRV :23s 0 / 5 0

Destination DSA largest delta fails/total %% error

 DEBIAN7 :24s 0 / 5 0

 WINDOWS2008SRV 19m:48s 0 / 3 0

C:\Users\Administrator>

Now, let's execute the following commands for a full synchronization from
windows2008srv to debian7 to ensure that every naming context (NC) is up to date:

C:\Users\Administrator>repadmin /syncall /A debian7

Syncing all NC's held on debian7.

Syncing partition: DC=POA,DC=MSDCBRZ,DC=EALL,DC=COM,DC=BR

http://wiki.samba.org/index.php/Samba4/HOWTO/Join_a_domain_as_a_DC

Chapter 4

[113]

…

CALLBACK MESSAGE: SyncAll Finished.

SyncAll terminated with no errors.

…

Syncing partition: CN=Schema,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,D
C=COM,DC=BR

…

Syncing partition: CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,DC=COM,DC=
BR

…

Syncing partition: DC=DomainDnsZones,DC=POA,DC=MSDCBRZ,DC=EALL,DC=COM,DC
=BR

CALLBACK MESSAGE: The following replication is in progress:

…

Syncing partition: DC=ForestDnsZones,DC=POA,DC=MSDCBRZ,DC=EALL,DC=COM,DC
=BR

CALLBACK MESSAGE: SyncAll Finished.

SyncAll terminated with no errors.

C:\Users\Administrator>

What we can see is that all the known partitions were replicated without errors.
We need to look carefully at the replication of these partitions as this is a crucial
process for the Active Directory Services. So, now we can work on the Flexible
Single Master Operation (FSMO) roles: Schema Master, Infrastructure Master,
Naming Master, RID Master, and PDC.

As we have just one AD DC on our network, all the roles are on the Microsoft
Windows Server 2008 R2, and because we are replacing this server, we need to
transfer all of them to our brand new AD DC. To do that, we will use the ntdsutil
utility. For each of the roles mentioned earlier, we need to execute the following
command (for example, just changing the role):

C:\Users\Administrator>ntdsutil roles connections "connect to server
 debian7" q "transfer schema master" q q

ntdsutil: roles

fsmo maintenance: connections

server connections: connect to server debian7

Binding to debian7 ...

Connected to debian7 using credentials of locally logged on user.

server connections: q

Replacing a Microsoft Windows Active Directory Server

[114]

fsmo maintenance: transfer schema master

Server "debian7" knows about 5 roles

Schema - CN=NTDS Settings,CN=DEBIAN7,CN=Servers,CN=Default-First-\

Site-Name,CN=Sites,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,DC=COM\

,DC=BR

Naming Master – CN=NTDS Settings,CN=WINDOWS2008SRV,CN=Servers,CN=Def\

ault-First-Site-Name,CN=Sites,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=\

EALL,DC=COM,DC=BR

PDC -CN=NTDS Settings,CN=WINDOWS2008SRV,CN=Servers,CN=Default-First-\

Site-N\ame,CN=Sites,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,DC=CO\

M,DC=BR

RID - CN=NTDS Settings,CN=WINDOWS2008SRV,CN=Servers,CN=Default-First\

-Site-Name,CN=Sites,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,DC=CO\

M,DC=BR

Infrastructure - CN=NTDS Settings,CN=DEBIAN7,CN=Servers,CN=Default-F\

irst-Site-Name,CN=Sites,CN=Configuration,DC=POA,DC=MSDCBRZ,DC=EALL,D\

C=COM,DC=BR

fsmo maintenance: q

ntdsutil: q

Observe that the schema role was transferred to the new debian7 AD DC, and after
to repeat the preceding commands for the remaining four roles, we can remove the
global catalog from Microsoft Windows Server 2008 R2. Navigate to Start | Run...
and execute the command as exemplified in the following screenshot:

Chapter 4

[115]

Now, we will expand our domain (for example, POA.MSDCBRZ.EALL.COM.BR),
click on Domain Controllers, and right-click on the server we are replacing (for
example, windows2008srv), select properties, and click on NTDS Settings...
as shown in the following screenshot:

In the following window, we will remove windows2008srv server as the global
catalog for our domain. For that, we just need to uncheck the Global Catalog box
(shown in the following screenshot), click on Apply, and then click on OK:

Replacing a Microsoft Windows Active Directory Server

[116]

Before demoting our Microsoft Windows Server 2008 R2, let's configure our DHCP
server on the new debian7 Active Directory. We have some configurations pointing
to the IP 192.168.1.2, which is the IP for windows2008srv, as we can see in the
following lines of our DHCP's configuration file:

…

 option domain-name-servers 192.168.1.2;

 option netbios-name-servers 192.168.1.2;

 option ntp-servers 192.168.1.2;

…

We need to change those configurations to make them the IP of our new AD
(for example, debian7): 192.168.1.1. Just issue the following script at a root shell
on the debian7 server:

root@debian7:/home/leal# cp -pRf /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.
conf-bkp && sed -e 's/192.168.1.2/192.168.1.1/g' /etc/dhcp/dhcpd.conf >
/etc/dhcp/dhcpd.conf-dnspatch && mv /etc/dhcp/dhcpd.conf-dnspatch /etc/
dhcp/dhcpd.conf && echo OK

OK

root@debian7:/home/leal#

Now we can start the DHCP server using the following command:

root@debian7:/home/leal# /etc/init.d/isc-dhcp-server start

[ok] Starting ISC DHCP server: dhcpd.

root@debian7:~#

The last step is to demote Microsoft Windows Server 2008 R2. The utility to execute
this procedure is dcpromo, and we can execute it by navigating to Start | Run...,
as shown in the following screenshot:

Chapter 4

[117]

Now, we just follow Active Directory Domain Services Installation Wizard to
uninstall the Active Directory from the windows2008srv server. One important point
to keep in mind is to leave the checkbox unchecked when we are asked to delete the
domain. If we are presented with a screen informing us that this is the only DNS
server on the network, just click on OK as shown in the following screenshot:

After we get a message informing us that this server, by the end of the process, will
be a member server, we'll have a progress indication window like that shown in the
following screenshot:

Replacing a Microsoft Windows Active Directory Server

[118]

Sometimes, we get some errors when demoting a Microsoft Windows Server from
the Active Directory role, but we can continue with the process as we will fix any
error and clean up the metadata and old DNS entries in the following steps. When
the process has ended, we just restart the Microsoft Windows Server 2008 R2
machine as shown in the following screenshot:

When Microsoft Windows Server 2008 R2 restarts, we will execute a metadata
cleanup to guarantee that no deprecated data from the replaced Active Directory
Server remains in our environment. Execute the command shown in the following
screenshot as an administrator:

Expand the domain (for example, POA.MSDCBRZ.EALL.COM.BR) and select Domain
Controllers, right-click on Microsoft Windows Server 2008 R2 (for example,
WINDOWS2008SRV), and select Delete as shown in the following screenshot.
If we agree with the message in the confirmation screen that appears next (for
example, is it the right server we want to delete?), we choose Yes.

Chapter 4

[119]

We will receive another screen in which we need to check the This Domain
Controller is permanently offline and can no longer be demoted using the Active
Directory Domain Services Installation Wizard (DCPROMO) box as shown in the
following screenshot:

After a few seconds, we should have just one server (for example, debian7) in the
Domain Controllers container, and we can shut down our Microsoft Windows
Server 2008 R2.

Now, we will clean up any DNS entries that were left behind during the dcpromo
demotion. We will use the netlogon.dns file on the new GNU/Linux Samba 4
Server AD DC (named dns.txt) and have one more handy automation script from
the Implementing Samba 4 book.

First, execute the following command on the Debian 7 Samba 4 Server:

root@debian7:~# /usr/local/samba/bin/samba-tool dns delete 192.168.1\

.1 poa.msdcbrz.eall.com.br @ NS windows2008srv.poa.msdcbrz.eall.com.\

br --password 'w1ndow$$'

Replacing a Microsoft Windows Active Directory Server

[120]

Record deleted successfully

root@debian7:~#

Now execute the _msdcs command:

root@debian7:~# /usr/local/samba/bin/samba-tool dns delete 192.168.1\

.1 _msdcs.poa.msdcbrz.eall.com.br @ NS windows2008srv.poa.msdcbrz.ea\

ll.com.br --password 'w1ndow$$'

Record deleted successfully

root@debian7:~#

Let's exclude CNAME from the GUID of windows2008srv using the following
command:

root@debian7:~#`grep -i cname dns.txt | awk -F. '{print "/usr/local/\
samba/bin/samba-tool dns delete 192.168.1.1 _msdcs.POA.MSDCBRZ.EALL.\
COM.BR", $1, "CNAME WINDOWS2008SRV.POA.MSDCBRZ.EALL.COM.BR"}'`

Password for [administrator@POA.MSDCBRZ.EALL.COM.BR]:

Record deleted successfully

root@debian7:~#

Now we use the fixdns.sh script to perform all the remaining cleanups for us.
Execute the following command (the dns.txt file must be in the current directory):

root@debian7:/home/leal# ./fixdns.sh -f 192.168.1.1

We can use the option -h to get help from the script or just execute a
consistency check (using the -c option), without changing anything in
our Active Directory Server. It's advised that you first execute the script
with the option -c and after reviewing the changes, execute the script
using the –f option.

The preceding script will read all the entries from the dns.txt file (that has all the
default/standard AD DNS entries) and fix any inconsistencies that the demotion
could have in our AD database (such as by removing the entries for that demoted
AD Server). The output should be something like the following commands:

Record Type [A]: POA.MSDCBRZ.EALL.COM.BR. Number of entries: 1
[OK], registered: [OK].

Record Type [A]: gc._msdcs.POA.MSDCBRZ.EALL.COM.BR. Number of
entries: 1 [OK], registered: [OK].

Record Type [A]: DomainDnsZones.POA.MSDCBRZ.EALL.COM.BR. Number of
entries: 1 [OK], registered: [OK].

Chapter 4

[121]

Record Type [A]: ForestDnsZones.POA.MSDCBRZ.EALL.COM.BR. Number of
entries: 1 [OK], registered: [OK].

Record Type [SRV]: _ldap._tcp.POA.MSDCBRZ.EALL.COM.BR. Number of
entries: 1 [OK], registered: [OK].

Record Type [SRV]: _ldap._tcp.Default-First-Site-Name._sites.\

POA.MSDCBRZ.EALL.COM.BR. Number of entries: 1 [OK], registered: [OK].

…

At this point, the Debian 7 Samba 4 Server is our only AD DC, and we can go to the
last and very important step of our procedure.

Replacement tests and validations
Let's start with the DNS validations; first, we'll validate the SOA and NS records for
our poa.msdcbrz.eall.com.br domain as follows:

leal@debian7:~$ dig -t any poa.msdcbrz.eall.com.br

…

;; ANSWER SECTION:

poa.msdcbrz.eall.com.br. 900 IN A 192.168.1.1

poa.msdcbrz.eall.com.br. 3600 IN NS
 debian7.poa.msdcbrz.eall.com.br.

poa.msdcbrz.eall.com.br. 3600 IN SOA
 debian7.poa.msdcbrz.eall.com.br. hostmaster.poa.msdcbrz.eall.com.br. 52
900 600 86400 3600

…

Now let's see how the entries are for _msdcs.poa.msdcbrz.eall.com.br:

…

dig -t any _msdcs.poa.msdcbrz.eall.com.br

;; ANSWER SECTION:

_msdcs.poa.msdcbrz.eall.com.br. 3600 IN NS
 debian7.poa.msdcbrz.eall.com.br.

_msdcs.poa.msdcbrz.eall.com.br. 3600 IN SOA
 debian7.poa.msdcbrz.eall.com.br. hostmaster.poa.msdcbrz.eall.com.br. 30
900 600 86400 3600

…

Replacing a Microsoft Windows Active Directory Server

[122]

When executing commands that need a password, it is a good practice not
to provide the password at the command line as it is saved in the history
of the server. We are presenting different ways to call the system's utilities
to make sure that the reader knows about the many options available.

We can use the following samba-tool utility to query all our DNS records as we did
earlier in the chapter:

root@debian7:~# /usr/local/samba/bin/samba-tool dns query localhost poa.
msdcbrz.eall.com.br @ ALL --password 'w1ndow$$'

 Name=, Records=3, Children=0

 A: 192.168.1.1 (flags=600000f0, serial=43, ttl=900)

 NS: debian7.poa.msdcbrz.eall.com.br. (flags=600000f0, serial=43,
ttl=3600)

 SOA: serial=52, refresh=900, retry=600, expire=86400, ns=debian7.
poa.msdcbrz.eall.com.br., email=hostmaster.poa.msdcbrz.eall.com.br.
(flags=600000f0, serial=52, ttl=3600)

 Name=_msdcs, Records=0, Children=0

 Name=_sites, Records=0, Children=1

 Name=_tcp, Records=0, Children=4

 Name=_udp, Records=0, Children=2

 Name=debian7, Records=1, Children=0

 A: 192.168.1.1 (flags=f0, serial=48, ttl=900)

 Name=DomainDnsZones, Records=0, Children=2

 Name=ForestDnsZones, Records=0, Children=2

 Name=WINDOWS2003CLT, Records=1, Children=0

 A: 192.168.1.10 (flags=f0, serial=20, ttl=1200)

 Name=WINDOWS2008CLT, Records=1, Children=0

…

A good method to test our DNS and its interaction with our AD DS is by adding
another machine to the domain. We have a Microsoft Windows 2012 Server that we
will use to test our new AD DC. In the following screenshot, we can see the dialog
box asking for the administrator's credentials to add the server to the domain:

Chapter 4

[123]

The following screenshot shows the traditional Welcome message after a successful
domain join:

From our Debian 7 Samba 4 shell, we can observe whether or not the DNS entries
were created properly for our new server using the following command:

root@debian7:~# host -t A windows2012srv

windows2012srv.poa.msdcbrz.eall.com.br has address 192.168.1.13

root@debian7:~#

We can verify the registry in the output of the samba-tool utility as follows:

root@debian7:~# /usr/local/samba/bin/samba-tool dns query localhost
 poa.msdcbrz.eall.com.br windows2012srv A --password 'w1ndow$$'

 Name=, Records=1, Children=0

 A: 192.168.1.13 (flags=f0, serial=110, ttl=1200)

root@debian7:~#

Replacing a Microsoft Windows Active Directory Server

[124]

Now, we can start to look at our directory: we can test the login of a user to our
brand new Microsoft Windows 2012 Server and test the login in some machines that
were part of the domain before we performed our replacement procedure. Using one
of the Member Servers, we can look at our Active Directory structure and start to
look at our OUs, users, and computers. However, as we have our csv file saved with
the information acquired from our last snapshot, we will extract the list of users from
our live AD and compare it with our snapshot's list.

We have our snapshot-snap-sorted.csv file saved in our home directory on the
Debian 7 Samba Server (for example, /home/leal), and now we'll extract a live
list. Just execute the following command in the command prompt in a member
server with RSAT installed (right-click on Command Prompt and select Run as
Administrator):

C:\Users\Administrator> csvde -s debian7 -d\

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 -r "(objectClass=user)" -c \

"ou=Standard Users,ou=People,dc=poa,dc=msdcbrz,dc=eall,dc=com,dc=br"\

 "" -l sAMAccountName -f standardusers.csv

Connecting to "debian7"

Logging in as current user using SSPI

Exporting directory to file standardusers.csv

Searching for entries...

Writing out entries

...

Export Completed. Post-processing in progress...

49 entries exported

The command has completed successfully

C:\Users\Administrator>

We can see that we have 49 entries exported, but let's execute the following
command to compare between the files to make sure that we don't have any
inconsistencies in our Directory database:

C:\Users\Administrator> sort standardusers.csv /o standardusers-
 sorted.csv

Now, we can use the Notepad to edit the file and copy the whole content to a file in
the Debian 7 Samba 4 Server. Just choose the best option to place the files side-by-
side and let's compare their contents as follows:

Chapter 4

[125]

leal@debian7:~$ diff standardusers-snap-sorted.csv standardusers-
 sorted.csv

leal@debian7:~$

The files are exactly the same, which means we have all the users present in our new
Active Directory Server. I would like, once more, to encourage the creation of many
files and the exposure of many attributes for all the crucial objects from the Active
Directory prior to performing the replacement procedure. The only point to pay
attention to is that some attributes are highly volatile and can make the comparison
of the files difficult as they tend to produce "garbage" in the comparisons (such
as date, time, and so on). However, the quality of the tests and the validation we
perform after our maintenance operations are the ultimate measure of the success
or failure of any task in IT.

Summary
In this chapter, we went through the whole process of understanding the key points to
be taken into consideration while planning for an Active Directory Domain Controller
replacement, learned the different aspects of backup and rollback procedures that we
need to have in place beforehand as well as how to create and execute a plan for the
replacement of a Microsoft Windows Server 2008 R2 AD DC with a Samba 4 Server.

Also, we learned about many applications and utilities already available on the
Microsoft Windows Server 2008 R2 that can be used together to create powerful tests
and validations for the replacement procedure as well as how to use some of them to
apply effective and quick fixes for some issues that we may encounter during general
maintenance procedures on the directory.

We have pointed to external resources and utilities to help readers elaborate even
more and execute the procedures as simply and efficiently as possible using examples
of scripts and command lines to automate many complex tasks, making the whole
replacement process a lot easier to understand. In the next chapter, we will learn about
some of the biggest differences between the Samba software Versions 3 and 4, the key
points of consideration before planning an upgrade, and how to effectively upgrade
from Samba Server Version 3 to the new Version 4.

Upgrading from Samba
Server Version 3

In this chapter, the reader will learn some of the biggest differences between the
Samba software Versions 3 and 4, and based on that, will understand the impact and
the relevant considerations before planning a successful upgrade. The main aspects
of such differences will be focused on the different working models and the new
features and benefits that the upgrade can leverage. We will go over the plan, tests,
and validations that the reader needs to pay attention in order to be able to execute
and help evaluate the success of such an upgrade procedure.

Scripts and command-line examples will be used to help the readers identify where
to look, what information might be important to gather, and how to compare the
final result to the prior environment from a functional standpoint.

We will learn about a step-by-step procedure to execute the upgrade and all the
commands and scripts needed to go from Samba 3 to Samba 4's fully functional
Domain Controller network services.

We will describe a guideline that can be well suited and requires just a few changes for
small and medium installations, but bigger and more complex environments will need
adjustments and customizations. The variety of configurations in production of the
Samba Server Version 3 use cases are huge, and we will not be able to handle all the
variations that our readers have implemented in their respective environments, but all
the procedures and use case examples presented here should work as a rich base.

Upgrading from Samba Server Version 3

[128]

Distinguishing between Samba Versions
3 and 4
From the Samba Version 4 release notes made by the Samba project [16], we got
information on the addition of the DNS server and NTP protocols that are integrated
in the new Samba 4 code, LDAP server and Kerberos Key Distribution Center
(KDC)—both accounted within the Active Directory Services, support for SMB
Version 2.1 with preliminary support for Version 3.0, and the Python scripting
interface—all of which we will highlight as great and bold, new capabilities.

These new features can make the Samba Server Version 4 look appealing from an
upgrade perspective for the Samba Server Version 3 users. It can also stimulate new
installations, as it can be a strong choice to provide full network services as open
source and as a free alternative in comparison to Microsoft Windows Servers.

The classic model (NT4 Domains) is still supported and present in the Samba Server
Version 4, but the new version's real gain for users and system administrators is the
ability to use all the new features introduced by Microsoft with the development of
the Active Directory Domain Controller services. All these are associated with the
concepts of delegations, group policies, new security model, and so on.

The fact is that the Samba Server Version 3 is a rock-solid software. The file and
print's server code is very stable and has been working for many, many years.
Besides this, the Samba Server Version 4 has implemented a new approach and
daemons for these services; the new project's software version still has support for
the old and bulletproof file/print server daemons and those are the ones that are
recommended for production purposes at the time of this writing.

Many users are really happy with the file and print services from Samba Server
Version 3. As a great portion of the use cases and base installations of the Samba
Server is for the purpose of these services, many users remain with the Version 3
in production, where the scary problem is to support the new Microsoft Windows
Operating System versions.

So, for the users who are looking at and exploring the upgrade process, the real
difference and the main feature that encourages them to take the upgrade path most
of the time, which are the Active Directory services present on Samba 4. The new
code has integrated the DNS and LDAP server and KDC. So, many users from the
previous versions that could be intimidated by the need to deal with external and
complex software combinations (for example, DNS/Bind or OpenLDAP) for small
and medium installations can now have a really robust and complete solution for the
Samba project's new release.

http://www.samba.org/samba/history/samba-4.0.0.html

Chapter 5

[129]

Key points for consideration before the
upgrade
It's never too much to remember that the only guarantee we can have when dealing
with technology services and maintenance procedures on production systems is the
backup—straight and simple.

The upgrade process from the Samba Server Version 3 to Version 4 will have a phase
where the software's rollback can be a very difficult task or maybe not even possible.
So, a backup not just of the Samba Servers involved, but of the domain's other
important machines is really crucial too. This is to make sure that the environment
can be brought back online to a consistent and operational state at any time.

Another important point in the planning phase is to take into consideration the size
and complexity of the network services' environment. We need to consider how
many clients, servers (directly or indirectly involved), and how much time is needed
(and available) for the upgrade procedure. Different environments may require
different approaches, and a big network and/or a short maintenance windows may
require a staged upgrade.

We will focus, as is the sole objective of this book, on the Samba 4 Server as a
complete system to provide all services for which it is intended. In a real scenario,
we need take a look at the auxiliary services that we use, instead of Samba or other
services that are not involved in the upgrade process directly but can or might
get impacted. This is a case-by-case analysis, and the reader needs to pay serious
attention to these services, and having a checklist and enumeration of all these
services and applications is a mandatory step.

Prepare the upgrade procedure taking into account the time that will be available to
execute the whole upgrade process, and remember that the time to validate and test
it is a part of the process. Take notes on the number of users, groups, machines, and
all configured resources that are relevant for the upgrade process. This information
is the key for the validation of the whole procedure. Create a checklist of service
names (for example, endpoints) and applications that can be impacted, and schedule
the upgrade accordingly. We will use some scripts and command-line examples to
extract the information from the system, but it is a good idea to have some kind of
checklist with quick access to the global aspects of the environment to facilitate and
help spot on any issues.

Upgrading from Samba Server Version 3

[130]

As the Samba Server Version 3 has no built-in DNS server, we'll cover a Bind9
implementation in the upgrade procedure as an example of the DNS side of the
upgrade process and its integration with the ISC-DHCP server it's a very common
implementation among users of Samba 3. The reader has a choice to maintain Bind
as the DNS server after the upgrade or move the resolution services for the Samba
Server Version 4 (in this book, we will implement the latter option). Last but not
least, the Samba Server Version 4 software needs to be installed and tested prior to
the upgrade process with all needed dependencies in all Samba 3 systems that we
will upgrade.

Establishing an upgrade plan
The upgrade plan needs to be created focusing on the environment that it will
be applied, but we will have some general rules that can be a base for many
environments, a generic procedure for the gathering of information, tests, validations,
and a practical upgrade example that can be used as a base for a final plan.

In our example case, we will deal with a Microsoft Windows NT4-like domain for one
of the EALL Company sites, based in Porto Alegre/RS – Brazil. This site is controlled
by one Samba Server Version 3 as the Primary Domain Controller (PDC) for that
region (for example, POA), and two Samba Servers Version 3 acting as Domain
Member Servers for each Division/Department of the EALL site in Porto Alegre.

The company is very inclined towards Microsoft products, and the three GNU/
Linux systems were installed for the POA's network services as a global decision to
lower the IT costs. EALL is successful with Samba's adoption, and as the company
has other offices in many places around the world, it has resulted in big savings year
over year, as dozens of Debian GNU/Linux PDCs and print/file servers do not need
license fees.

Another big advantage the company has while implementing Samba 3 to provide
the network services is that it has more flexibility to scale as the file servers present
performance problems from time to time, so other filers can be easily deployed without
incurring additional license costs. This provided us with a big gain in the quality
of the services for the users, better architecture (services are decoupled), reducing
complexity, and lowering overall downtime in hardware and software maintenance.

Now, the company sees a huge opportunity to evolve its Microsoft Network with
the new Samba 4 release and use it as a free and open source pilot for the Active
Directory Services (ADS). At some of its other sites, the company is already using
ADS on newer versions of the Microsoft Windows operating system.

Chapter 5

[131]

Our Samba 3 upgrade will be focused on three basic sets of services:

•	 Authentication services: These include machines, users, and groups
(Samba3)

•	 File/print services: These include files and printer shares (Samba3)
•	 DNS services: These include the name resolution (Bind9)

Every Samba 3 installation needs to have a combination of the core services listed
earlier: at least one name resolution system and one (usually both) set of Samba 3
services (in one or more servers).

The Samba services can be provided completely in just one server or distributed in
different servers for performance, architecture decision, company policies, and so on.
As we go through this procedure, we will see that it is much easier to manage and
deal with a medium to big network complexity, with the services that are decoupled.
Also, we can handle the whole upgrade procedure in small and separate steps.

In any case, if your specific environment has just one server providing all the
services we have mentioned here, there is no problem, as in the end, the process
that will be executed will be focused on the services, and thus will be executed on
the server where that service resides. Therefore, if we have a site where we have
decentralization of services in different servers or in just one server, then all the
services are provided by a standalone server. We should notice that the downtime
needed to execute all the upgrade procedures in one server alone, which provides all
services, can be bigger and much more complex, though. This is why this upgrade
can be a very good opportunity to review the architecture of the Samba services and
adjust it as needed.

Another important aspect of handling the process at these three different sets of
services is that we have specific procedures for each step. So, the upgrade step for
the file and print servers, for example, can be replicated as we have more than two
Domain Member Servers that are the exact same way. Then, we can establish priorities,
and for bigger and more complex environments, we can execute a staged upgrade.

In our example case, we have the file and print services in specific Domain Member
Servers that are dedicated to the departments of our company. So, we can handle them
with the different priorities and department's maintenance windows, accordingly.

Upgrading from Samba Server Version 3

[132]

Here is some general information we need at hand for our network, and soon, we
will see how to gather them all:

General system and environment information
Server #1
The Samba Server version 3.6.6
Role Primary Domain Controller (Network Logon Services and

User's profiles)
Hostname PDC
IPs 192.168.1.1 (eth1), 10.10.10.1 (eth0)
Other services DHCP Server (ISC), DNS Server (Bind9), NTP, and CUPS
Shares Profiles (/home/POA/)
Backend Tdbsam
Server #2
The Samba Server version: 3.6.6
Role Domain Member Server (file and print services)
Hostname ACCSRV01

IPs 192.168.1.5 (eth0)
Other services CUPS
Shares ACC Division (/shares/*)
Server #3
The Samba Server version 3.6.6
Role Domain Member Server (file and print services)
Hostname DEVSRV01

IPs 192.168.1.6 (eth0)
Other Services CUPS
Shares Devel department (/shares/*)
General Samba network information
Domain POA.MSDCBRZ.EALL.COM.BR
Network 192.168.1.0
Netmask 255.255.255.0
Default router 192.168.1.1
DHCP Server 192.168.1.1
DNS zone files /var/lib/bind/db.poa.msdcbrz.eall.com.

br{rev}

Number of users 51
Number of groups 9

Chapter 5

[133]

General Samba network information
Workstations/desktops Microsoft Windows 2003 and XP
Application servers Microsoft Windows Server 2003
Maintenance time 2 hours

The preceding information is presented here as a basic example, and we will
look at how we actually gathered it in the next section. We will save much of the
information in the text files to facilitate the validations after we have concluded
the upgrade, but this information is very important to provide quick access to very
crucial information; it also works as a formal document that can be attached to the
maintenance plan.

After all tests and validations, our upgrade procedure will be executed in a single
place for all the Samba Servers. Feel free to add any other information that you think
is necessary to the preceding document or attention points to check before and/or
after the upgrade. One good example is some consideration about external storage
devices, if any (for example, volumes/luns), backing shares. In our example, the
EALL Company uses local disks (for example, Direct Attached) to all Samba shares,
so there was no need to mention it in the preceding document.

If you followed our Samba 4 installation instruction, the binaries should
be compiled with all features needed for the upgrade as we have
installed the main dependencies, and the Samba's configuration script
should automatically detect and enable them. Don't proceed to the
upgrade phase without making sure that all the features that are needed
are present on the Samba 4 installation (for example, CUPS and ADS).

Creating tests and validations before the
upgrade
Our tests' and environment's validations will start on a clone of the currently
installed software—a subset that is representative of our production environment.
So, the first task is to establish a small group of machines to clone in a virtual or
physical environment to be used to create our tests and validations, and also to
exercise our upgrade procedure. After the upgrade, we will execute the same tests
described here, and we will know exactly what the expected results are.

Upgrading from Samba Server Version 3

[134]

The best way to do this is to create a lab in a virtual environment, we will not test
any hardware upgrade, and all the device drivers and components needed for the
proper execution of the production software are assumed to be in place and in a
working condition. So a virtual environment is a perfect fit, and we will execute
some checks on it to guarantee that the environment is working as expected and no
misconfigurations exist.

In case you use a virtual environment for your tests, create snapshots
of all machines in this environment after you have it all set up to
be able to go back and forth on the procedure and restart the whole
process when necessary.

In software upgrade procedures, it's very common to face problems after the
upgrade that actually were present before the upgrade process. This can mislead the
result or unhide a latent issue at the wrong time. Thus, we will use this phase and
test environment to validate the current system configuration, and if any issues are
discovered, they can be fixed prior to the maintenance. On top of that, we can use
this procedure until we have a bulletproof process.

So, we will present some commands and scripts that can be used to make sure that
Samba 3 is working as expected this is very important for the upgrade process
to work.

Do not execute any script directly in the production stage; or, make
sure you know what you are doing, because we are not responsible for
any disruption or data loss that you may incur while executing scripts
and commands in a production network without prior testing.

Let's start with the PDC Server and basic tests, such as listing users and groups. Using a
command prompt at the Primary Domain Controller, execute the following command:

root@pdc:/root# wbinfo -u

…

miwallace

bekiddo

jocabot

jabrown

…

root@pdc:/root#

Chapter 5

[135]

The preceding command is wbinfo, a tool to query information from the winbind
daemon, and we used the -u option to list all the users in the domain. Now, let's see
how many users we have:

root@pdc:/root# wbinfo -u | wc -l

51

root@pdc:/root#

As we can see in our plan, we have 51 users in the domain, which is exactly what
we've got as an output from the preceding script (one user is the root account, which
is mapped to the administrator on the EALL Samba 3 installation). It's important to
note that Debian GNU/Linux has some other personal administrative accounts that
are not included on that list as the domain users are totally separated from the host
operating system's accounts. EALL's architecture choice is not to authenticate the
Debian GNU/Linux host on the Samba 3 PDC itself. Still using the wbinfo utility,
execute the following command:

root@pdc:/root# wbinfo -g

eall group

eall domain users

eall domain admins

…

root@pdc:/root# wbinfo -g | wc -l

9

root@pdc:/root#

In the preceding output, we have two other important points of information about
the system that we will upgrade: the list of groups and the total number of groups in
the domain. As we did in the users listing, we have omitted the whole list of names
in each group for brevity. However, it's a good idea to save both the full listings for
future validation:

root@pdc:/root# wbinfo -u | sort > samba3users.txt && echo OK

OK

root@pdc:/root# wbinfo -g | sort > samba3groups.txt && echo OK

OK

root@pdc:/root#

The preceding two commands have been created in the /root directory, two text
files (sorted) with the lists of users, and groups in the domain. Feel free to organize
it in a specific directory or send the files to an external server (this is recommended
because it's good to have this listing but not on the server on which we will actually
execute the upgrade procedure).

Upgrading from Samba Server Version 3

[136]

Another command that will provide some of the preceding information
is net rpc info.

Another good test is to use the smbclient utility, and authenticate it against our
Samba 3 Server (PDC) and get a good view of the network resources and other
important insights about our main Samba 3 Server. Using a test account for the
domain (or any other specific account that you know the password), execute the
following command:

root@pdc:/root# smbclient -L pdc -U 'frorange%w1ndow$$'

Enter frorange's password:

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Sharename Type Comment

 --------- ---- -------

 Profiles Disk EALL Roaming Profiles Share

 IPC$ IPC IPC Service (EALL Network Services)

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Server Comment

 --------- -------

 ACCSRV01 ACCDivision Office Server

 DEVSRV01 DEV Office Server

 PDC EALL Network Services

 Workgroup Master

 --------- -------

 POA PDC

root@pdc:/root#

This is one of the most important commands because it gives us a good view of how
our services are decoupled. The preceding output tells us some of the following
interesting things:

•	 We have the main IPC Service for our Samba 3 Server PDC
•	 One share (Profiles) for the roaming profiles of our domain
•	 Our workgroup name, POA, and the Samba Server Version 3.6.6

Chapter 5

[137]

•	 The PDC server is the master of our domain (Primary Domain Controller)
•	 We have two other servers: ACCSRV01 and DEVSRV01

You can use the following syntax to execute the smbclient command
that provides the password directly on the command line:

user%password.

See the following example:

smbclient -L pdc -U ' 'kischultz%w1ndow$$'

So, this server has two important roles on the EALL network: it is the PDC (controls
authentication and authorization) and the Profiles' share. To enhance the decoupling
of services on this network, a good option would be to create a specific file server
to hold the users' profiles (for example, an HA Filer) and to leave the PDC with
just one role in this network. This would facilitate the backup and recovery of this
server as it is the only PDC, and if we have the backup of the DB and smb.conf
files, we can quickly recover from a failure on the main PDC (our most important
network service). On top of that, we could focus on an HA solution for the filer that
is responsible for the users' Profiles to have a better resilience (for example, a Storage
backed Profile share).

The preceding test helped us indirectly validate another important function of our
Samba 3 Server—authentication. However, we can use the ntlm_auth command to
specifically test it, as exemplified in the following command execution:

root@pdc:~# ntlm_auth --username=jobrittle --domain=POA

password:

NT_STATUS_LOGON_FAILURE: Logon failure (0xc000006d)

root@pdc:~# ntlm_auth --username=jobrittle --domain=POA

password:

NT_STATUS_OK: Success (0x0)

Remember that it is important to test with the wrong password (as we did earlier).
Sometimes, we fail to identify problems in our environment because we just test
using the same pattern. It's important to test with wrong pathnames, wrong passwords,
usernames that in fact do not exist, and so on. Many misconfigurations have been a
result of a configuration that permits access for any user or any password. Now
that's a really bad misconfiguration!

Upgrading from Samba Server Version 3

[138]

It's recommended that you have your infrastructure automated with recipes and
tests. A long time ago, I implemented a system to programmatically provision, test,
and validate the infrastructure resources, Battery of Tests and Validations (BTVA)
of the environment, and it was a really powerful tool to identify and even fix issues
on the operating system configuration. Since then, I have used that model when
managing any kind of system.

The system was based on Makefiles and many scripts to test and validate every corner
of the environment that was needed to run a specific application. The essential point
about this approach is that you just add tests, and over time, the whole environment
just gets better coverage. After a test is written, the same error does not happen twice,
and after some time, we have a really strong system to validate our environment.

Now, with devOps [17] and new approaches to handle and implement these kind
of automations, it is highly recommended that you have the tests described here
incorporated in your tools and provisioning systems.

Here is an example of how we can quickly create a script to execute a good
validation of our user's database (we can save the listing for future reference):

root@pdc:~# for x in `wbinfo -u`; do wbinfo --name-to-sid $x; done

…

S-1-5-21-1214754503-652539266-1573105461-1023 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1028 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1044 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1008 SID_USER (1)

…

root@pdc:~#

If we have any user who is not properly mapped in the Samba database, or if we fail
to actually translate a SID to a user/group, we'll have problems ahead. So, I just want
to make sure that the reader understands that the more tests and automations we
do, the better it will be to validate our upgrade. The examples that have been shown
here can be enhanced, and if one test is made for one user as an example, it can be
simply modified to make the same test for all users as we just did on the example
script earlier.

Now it's time to test our two file/print servers: ACCSRV01 and DEVSRV01. We will use
the smbclient utility to execute the same test that we performed for PDC as it will
show us very detailed information about our two Domain Member Servers. From the
command prompt on our PDC Server, execute the following command:

http://en.wikipedia.org/wiki/DevOps

Chapter 5

[139]

root@pdc:~# smbclient -L accsrv01 -U 'legecko'

Enter legecko's password:

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Sharename Type Comment

 --------- ---- -------

 --------- ---- -------

IPC$ IPC IPC Service (ACCDivision Office Server)

 ACCPRTMM01 Printer 1F Printer MM

 ACCPRTLS01 Printer 2F Printer

 PRINT$ Disk Drivers for Dep. Printers

 ACCPUBLIC Disk Public Share

 ACCDIVDOCS Disk Accdivision Prospects

 ACCDIVRPTS Disk Accdivision Reports

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Server Comment

 --------- -------

 --------- -------

ACCSRV01 ACCDivision Office Server

 PDC EALL Network Services

 Workgroup Master

 --------- -------

 --------- -------

POA PDC

root@pdc:~#

Again, we could test name resolution and authentication, but on one of our Domain
Member Servers this time as this is really important, or users will not be able to
access the services from that server. Here is the information we that we got from the
preceding test:

•	 We have the main IPC Service for our Samba 3 Domain Member Server
•	 We have four file shares: ACCDIVRPTS, ACCDIVDOCS, PRINT$, and ACCPUBLIC
•	 We have two printers: ACCPRTMM01 and ACCPRTLS01
•	 Our workgroup name, POA and Samba Server Version 3.6.6
•	 The Primary Domain Controller Server for our Domain: PDC

Upgrading from Samba Server Version 3

[140]

So, let's take a look at the execution output of this same command, but this time, for
our second Domain Member Server:

root@pdc:~# smbclient -L devsrv01 -U ' 'zojarratt'

Enter zojarratt's password:

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Sharename Type Comment

 --------- ---- -------

 --------- ---- -------

 DEVPRT01 Printer General DEV Printer

 DEVCODDS Disk DEV COD CODDS

 DEVSRCAP Disk DEV SRC AP

 IPC$ IPC IPC Service (DEV Office Server)

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Server Comment

 --------- -------

 --------- -------

DEVSRV01 DEV Office Server

 PDC EALL Network Services

 Workgroup Master

 --------- -------

 --------- -------

POA PDC

root@pdc:~#

Here is the interpretation of the preceding output:

•	 We have the main IPC Service for our Samba 3 Domain Member Server
•	 We have two shares: DEVCODDS and DEVSRCAP
•	 We have one printer: DEVPRT01
•	 Our workgroup name is POA and Samba Server Version 3.6.6
•	 The Primary Domain Controller Server for our Domain PDC

In Samba, we need to have the domain groups mapped to our Unix groups on the
PDC to provide the same authorization to each share that our Domain Member Server
provides to our network. So, based on that mapping, it's a good idea to test some of
our users and groups to validate that our associations are working as expected.

Chapter 5

[141]

For an example, take a look at the Unix group, accdivision, and its members as this
group is mapped to the domain group, accdivision:

root@pdc:~# grep accdivision /etc/group

accdivision:x:1002:zafalca,cafreeman,qumichael,zisala

root@pdc:~#

Executing the following command, we can validate the mapping and save the
results:

root@pdc:~# net rpc group members "accdivision group" "| tee
>accdivisiongroupmembers.txt

Enter root's password:

POA\zafalca

POA\cafreeman

POA\qumichael

POA\zisala

root@pdc:~#

In all the Member Servers, we need to validate the users/group resolutions. So, let's
take a look at the NSS configuration for the DEVSRV01 server as an example:

root@devsrv01:~# id djfox

uid=2031(djfox) gid=1513(domain users) grupos=1513(domain
users),2051(eall domain users),2053(devel group)

root@devsrv01:~# getent passwd djfox

djfox:*:2031:1513:djfox:/home/POA/djfox:/bin/false

root@devsrv01:~#

Another test that we need to make is to have a Microsoft Windows system test a
join into the domain and do some normal activities, such as logon and roaming
profiles. We can create one test user and add it to some groups to test the access to
the different shares/printers, and after that, we can remove the user. This will test
our DHCP Server and its integration with DNS too, helping us guarantee a proper
configuration of the whole system. Let's execute some commands to actually test the
machine's name resolution on the EALL network:

root@pdc:~# host -t A pdc

pdc.poa.msdcbrz.eall.com.br has address 192.168.1.1

root@pdc:~# host 192.168.1.1

1.1.168.192.in-addr.arpa domain name pointer pdc.poa.msdcbrz.eall.com.br.

root@pdc:~# host -t A windowsxp

Upgrading from Samba Server Version 3

[142]

windowsxp.poa.msdcbrz.eall.com.br has address 192.168.1.11

root@pdc:~# host -t MX poa.msdcbrz.eall.com.br

poa.msdcbrz.eall.com.br mail is handled by 10 mail.poa.msdcbrz.eall.com.
br.

root@pdc:~# host -t SOA poa.msdcbrz.eall.com.br

poa.msdcbrz.eall.com.br has SOA record pdc.poa.msdcbrz.eall.com.br. root.
poa.msdcbrz.eall.com.br. 2007010408 3600 600 86400 600

root@pdc:~#

Tests and validations are executed, and no misconfigurations were found, and that's
good. We have saved files with the user and group listings, and we have a plan with
all the information about our upgrade maintenance. Now, we are ready to proceed to
the upgrade process in our lab environment so that we can validate each step of the
upgrade and have an opportunity to fix the process inconsistencies, if any.

Executing the Samba Server upgrade procedure
We will execute our plan following the three service approaches that we mentioned
earlier, and we need to start with the PDC Server that provides the Authentication/
Authorization Service. The other two will be executed in a sequence, starting with
the DNS Services, and the last one will be the file/print services provided by the
ACCSRV01 and DEVSRV01 servers. The file/print servers can be executed in any order,
so we have the flexibility to prioritize one over the other based on factors such as the
business impact. In this specific example case, there is no priority or preference,
so we have chosen to start with the ACCSRV01.

When executing the procedure in the production, remember that we
need to have a backup for our PDC and Domain Member Servers, and
for any other servers or clients that we know have crucial data and can't
be recreated or easily rebuilt. This is because it can be really difficult to
fix/remove a Microsoft Windows Machine after it finds the new Active
Directory Server in case we need to rollback our upgrade. So, it's advised
that you block the network access for the PDC while you think that it is
still not ready to provide the full services.

So, let's turn our attention for the procedure on the main element of our Samba 3
implementation, the Primary Domain Controller (PDC). The PDC server is the one
with this role at the EALL Network, and it has important auxiliary services, such as
NTP, DNS, and DHCP servers too. We will work on this server for the two initial
phases, and when we have that done, we should have the main functionality of our
POA Domain fully working (for example, users, groups, machines, and
name resolution).

Chapter 5

[143]

First, we need to make sure that we don't have groups with the same name as
usernames in our Samba 3 Domain, as in the Active Directory, we cannot have
usernames and groups sharing the same name, and in case we have, we will need to
rename them. If we make use of these groups in the Samba 3 Domain (for example,
for file/print services), then we need to replace any references to them on the smb.
conf files of our file/print servers to reflect the new naming.

So, it's important to take note of all groups that we have renamed, and when we start
to work on the file/print servers, we can execute the same change as they reference
the groups by names. Here are examples of how we have renamed the two groups:

root@pdc:~# export PATH=/usr/local/samba/sbin:\

/usr/local/samba/bin:$PATH

root@pdc:~# net rpc group rename "Domain Users" "EALL Domain Users"

Enter root's password:

root@pdc:~# net rpc group rename "Domain Admins" "EALL Domain Admins"

Enter root's password:

root@pdc:~#

The preceding export command is very important as it prefixes the
newly installed Samba 4 binaries on our PATH, and we will execute all
the upgrade procedure commands in this shell. It's a good idea to add
this command to our shell startup files (for example, .bashrc and/
or .bash_profile), so we'll always have the new Samba 4 utilities in
precedence in our PATH. Before we are able to actually remove the old
Samba 3 installation, it is very important to reference the right tools.

As we can see in the preceding command execution, we just needed to provide the
administrator's password (for example, root) and the group's name gets changed.
Another recommendation is to change the name for other standard groups that come
with Samba Server 4 if they are present in our Samba 3 installation for any reason;
for example, Domain Guests, Domain Computers, and Domain Controllers. All the
mapping between the Unix and Domain groups that we may have should still work
without issues after the renaming, as the mapping is made by the GID to SID.

Upgrading from Samba Server Version 3

[144]

To create default group names with the same name as the newly created user is the
default behavior of many GNU/Linux distributions, and I have personally never
used this group that is created exclusively for a user to implement anything. I prefer
actually to get rid of this on the systems I manage. Thus, every new user is created
with the default group assigned to the users, and this group is mapped to the EALL
Domain Users group. For example, if you want to do the same, but you don't have
more than 1000 users, and your GNU/Linux distribution starts to assign users and
groups IDs from 1000 onwards (for example, Debian GNU/Linux), the following
script will create a new file with the existing users reassigned the primary group of
users (GID 100):

root@pdc:~#sed 's/[0-9]\{4\}::/100::/g' /etc/passwd > >/etc/passwd-`date
+%Y%m%d-%T` `&& cd && echo OK

OK

root@pdc:~#

If the preceding command returned OK, a new file will be created with a name like
this: passwd-20130619-13:16:14 (with your execution date and time). Take a closer
look at this file and if it is right, you can replace the original /etc/passwd with it.
Pay attention to the system users to make sure that they were not impacted, but
as the system users have very low UIDs and GIDs, they should not be affected by
this script. If everything is good, you can edit the /etc/group file and delete all the
groups that have the same names as the users.

Normally, default UMASK for users is to permit them to read/execute for
the primary group (usually, the group specifically created for that same
user, as it does not have any other members). If you choose to follow
this path, make sure that any security policy or applications will not
present any issues. After this change, you will need to fix the directories
and files that are pointing to GIDs that actually do not exist anymore.
Remember that this is not a necessary configuration for the Samba 3 to 4
upgrade, as the only requisite is to not have groups and users with the
same name as the ones in the Samba 3 database.

Stopping and disabling Samba and winbind
daemons
Now, we will stop the Samba and winbind daemons, and remove the execution bit
for the initialization scripts to guarantee that they will not start inadvertently (for
example, after a reboot). So, let's execute the following commands at the PDC server:

root@pdc:~# /etc/init.d/samba stop && &&/etc/init.d/winbind stop && chmod
-x /etc/init.d/{samba,winbind} }&& echo OK

Chapter 5

[145]

[ok] Stopping Samba daemons: nmbd smbd.

[ok] Stopping the Winbind daemon: winbind.

OK

root@pdc:~#

After the execution of the preceding script, if the results are OK, we must stop the
smbd/nmbd and winbind daemons, and have both the startup scripts disabled.
As our PDC server is the default gateway for our private LAN, we have a public
interface configured on this server. The Samba script will use and try to configure
all the interfaces configured on the server; thus, we will disable the public interface
and enable just the interface that has the connection with the Microsoft Windows
network that we are interested:

root@pdc:~# ifdown eth0 && echo OK

OK

root@pdc:~#

As the preceding command returned OK, the interface eth0 (public) is disabled
properly, and we can go to the next step. In this stage, we have the environment
ready to execute the classicupgrade function of the Samba 4 tool. Just issue the
following command as root at a terminal window on the PDC server:

root@pdc:~# samba-tool domain classicupgrade --dbdir=/var/lib/samba/
/--use-xattrs=yes --realm=poa.msdcbrz.eall.com.br /etc/samba/smb.conf &&
echo "---===--- Upgrade from Samba 3 to Samba 4 OK 4OK---===---"

…

Fixing provision GUIDs

A Kerberos configuration suitable for Samba 4 has been generated at /usr/
local/samba/private/krb5.conf

---===--- Upgrade from Samba 3 to Samba 4 OK ---===---

root@pdc:~# cp -pf /usr/local/samba/private/krb5.conf /etc && echo OK

OK

root@pdc:~#

The preceding command should produce a very verbose output with important
information about the upgrade process. This information includes the import of
users, groups, machines, the creation of new standard groups, and so on. One
such information was highlighted earlier, where the script tells us that a Kerberos
configuration file was automatically generated and is ready for the utilization of our
domain. We received this message: Upgrade from Samba 3 to Samba 4 OK. So, we
have copied the Kerberos file to its definitive location.

Upgrading from Samba Server Version 3

[146]

Editing the Samba 4 configuration file
Now we need to edit the Samba 4 configuration file that was automatically created
for us by the samba-tool utility, and add the following lines to the global section:

(/usr/local/samba/etc/smb.conf):

 interfaces = lo,eth1

 bind interfaces only = Yes

 dns forwarder = 8.8.8.8

The first two lines of the previous command specify the interfaces in which we
want the Samba 4 Server to listen (in our case, the loopback and eth1 interfaces;
adapt it accordingly to your needs), and in the last line, we added a DNS forwarder
configuration to be used for our internal network (Microsoft Windows clients and
servers) to resolve names that are not the responsibility of our local DNS Server (for
example, not in poa.msdcbrz.eall.com.br zone). In a real world, you will need to
replace the preceding example's IP address (for example, 8.8.8.8) with the right IP
address of the DNS resolver of your network.

We need to make sure that the NTP Server is configured to signed updates, so
basically, we need to have the following lines at the end of our /etc/ntp.conf file:

ntpsigndsocket /usr/local/samba/var/lib/ntp_signd/

restrict default mssntp

Let's restart our NTP Server:

root@pdc:~# /etc/init.d/ntp restart

[ok] Stopping NTP server: ntpd.

[ok] Starting NTP server: ntpd.

root@pdc:~#

We need to copy the scripts that we have on the netlogon standard share to their
new location in our Samba 4 installation:

root@pdc:~# cp -pRf /var/lib/samba/netlogon/scripts/* /usr/local/samba/
var/locks/sysvol/poa.msdcbrz.eall.com.br/scripts/ /&& echo OK

OK

root@pdc:~#

Chapter 5

[147]

The preceding result OK is the signal that we have finished upgrading Samba 3 from
the Primary Domain Controller's perspective, but we have not finished our work on
the PDC server just yet as we still have to migrate the DNS Services to the Samba 4
Server. The samba-tool utility should have already created all the needed SRV and
other DNS basic records for a proper Active Directory installation, but it does not
know about some static contents that we may have on our DNS Services for servers
and services such as e-mail, pop, and www. So, we can now stop the Bind9, start
the Samba 4 services, and execute the following script just by passing the database
file for our DNS Server, and it should populate our Samba 4 internal DNS with the
missing entries:

root@pdc:~# /etc/init.d/bind9 stop

[....] Stopping domain name service...: bind9

waiting for pid 2220 to die

. ok

root@pdc:~# chmod -x /etc/init.d/bind9 && echo OK

OK

root@pdc:~# /usr/local/samba/sbin/samba && echo "Samba 4 Started OK"

Samba 4 Started OK

root@pdc:~# kinit && echo OK

Password for root@POA.MSDCBRZ.EALL.COM.BR:

OK

root@pdc:~# grep -w 'A\|CNAME' /var/lib/bind/db.poa | |\

awk '{print "samba-tool dns add pdc poa.msdcbrz.eall.com.br", \

$1, $2, $NF}' | /bin/sh

Record added successfully

…

root@pdc:~#

After the confirmation of the initialization of the Samba 4 Server and each successful
entry creation on our Samba 4 DNS Server's database, we should have our static
CNAME and the records from our BIND9 configuration added to the Samba 4 built-in
DNS Server. If some record already exists in the Samba 4 database, it is not an issue
as the command will indicate that and will not duplicate it. One last record that
needs to be created by hand, if needed, is the MX:

root@pdc:~# samba-tool dns add 192.168.1.1 poa.msdcbrz.eall.com.br @ mx
"mail.poa.msdcbrz.eall.com.br 10"

Password for [root@POA.MSDCBRZ.EALL.COM.BR]:

Record added successfully

root@pdc:~#

Upgrading from Samba Server Version 3

[148]

Configuring the reverse zone
With our DNS main zone configured and populated with the static records, we just
need to create and add the records for the reverse zone. For that, we just need to
execute the following commands at the pdc server:

root@pdc:~# samba-tool dns zonecreate 192.168.1.1 \

1.168.192.in-addr.arpa -U Administrator%'w1ndow$$!'

Zone 1.168.192.in-addr.arpa created successfully

root@pdc:~#

The reverse zone is created, but remember that you will need to replace the
network (for example, 1.168.192.in-addr.arpa) with the real network in your
environment. Just as an example, if your network is 10.10.2.0/24, you would use
2.10.10.in-addr.arpa instead. Now, to create the PTR records for our hosts, we
can use the next script to do the dirty work for us. We are providing the password in
the script, so all the records are created without an interaction:

root@pdc:~# grep -w 'A' /var/lib/bind/db.poa | |\

awk '{split($3,IP,/\./); print "samba-tool dns add pdc \

1.168.192.in-addr.arpa",IP[4],],"PTR",$1".poa.msdcbrz.eall.com.br \

-U \x27Administrator%w1ndow$$!\x27"}' | /bin/sh

Record added successfully

Record added successfully

…

root@pdc:~#

Remember the security policies, and as a general rule, it is not a good
idea to have passwords in scripts or commands that will be saved on
the history file.

Adding the profiles share to the configuration
Now, we can add the Profiles share to our Active Directory Domain Controller,
which is the only share our PDC is providing to the network. For this, we only need
to edit our /usr/local/samba/etc/smb.conf file and add the following lines
(copied from the Samba 3's smb.conf file):

[Profiles]

comment = EALL Roaming Profiles Share

path = /home/POA

Chapter 5

[149]

read only = No

As we have edited our main configuration file, we need to reload it, and
so we can bring back online our eth0 interface:

root@pdc:~# smbcontrol all reload-config && echo OK

OK

root@pdc:~# ifup eth0 && echo OK

OK

root@pdc:~#

Welcome to our brand new Samba 4 Active Directory Domain Controller!

Deciding the upgrade approach for
Member Servers
At this time, we can go to the next topic's upgrade tests and validations for the PDC
and execute all the checks that have been described until this phase of the procedure.
The main services for our Active Directory Network must be fully functional (for
example, users, groups, and machines). In case we found any issues that we can fix,
rollback before going to the other servers (for example, file/print servers).

After we have confirmed that the right services are working up to this point and
as our services are decoupled sufficiently, we have two options for each Domain
Member Server at this point:

•	 Move forward and upgrade them both as and when our maintenance
window permits

•	 Perform just a quick reconfiguration on the Samba 3 Servers (for example,
join it to the Active Directory Domain), and continue their upgrade at
another opportunity

For the Domain Member Servers, we should not have any problems
if we leave the smbd/nmbd daemons running as our PDC should
be unconnected from our network. However, it is a good practice to
have the Samba 3 services (for example, smbd/nmbd and winbindd)
stopped, and after we finish the upgrade or reconfiguration, we start
the services again. However, remember that the Microsoft Windows
machines must not contact the new AD before we have everything
tested and are sure that a successful upgrade is confirmed.

Upgrading from Samba Server Version 3

[150]

In both options, all the services will still be working as usual. However, as the
reconfiguration of the Samba 3 is quicker than Samba 4, it can be one good option
for network environments where many servers need to be upgraded and do not fit
in just one maintenance window (the staged upgrade that we mentioned earlier).

Let's use our two Domain Member Servers and exemplify an upgrade to Samba 4 in
one and the integration of the Samba 3 to our new Active Directory on the other.
We will show you the second option first, and we will use the ACCSRV01 server for
that. Let's edit the Samba 3 Server's configuration file, change the security option,
and add the realm for our Domain:

[global]

…

Security = ads

realm = POA.MSDCBRZ.EALL.COM.BR

Notice that the security option was already present on our smb.conf file for our
Samba 3 installation, so we just needed to change it to ads (earlier, it was domain)
and add the realm directive to it. Now let's use the same Kerberos file that the Samba
tool has created for us in the PDC upgrade process (/etc/krb5.conf):

[libdefaults]

 default_realm = POA.MSDCBRZ.EALL.COM.BR

 dns_lookup_realm = false

 dns_lookup_kdc = true

Now, on a shell at the ACCSRV01 server, execute the following command:

root@accsrv01:~# net ads join -U administrator -S pdc

Using short domain name -- POA

Joined 'ACCSRV01' to realm 'poa.msdcbrz.eall.com.br'

DNS Update for accsrv01.poa.msdcbrz.eall.com.br failed: ERROR_DNS_UPDATE_
FAILED

DNS update failed!

root@accsrv01:~# /etc/init.d/winbind start

[ok] Starting the Winbind daemon: winbind.

root@accsrv01:~# /etc/init.d/samba start

[ok] Starting Samba daemons: nmbd smbd.

From now on, our old friend, Samba 3, is up and running and ready to continue to
provide the file/print services for our Active Directory network, as always. The error
about the DNS update is because the ACCSRV01 server is already registered on our
Active Directory Domain Controller's DNS. So, our users can now log in to the Domain
(PDC) and access the shares and use the print services from this server, as usual.

Chapter 5

[151]

At this point, we can go to the next topic, which is Upgrade tests and validations for
Member Servers, and execute the tests for this phase—listing and using the shares/
printers, using some desktop to browse the ACCSRV01 server, and so on. As we finish
the validations (and if everything is fine), we can go back to this topic and continue to
the next and final step of upgrading the DEVSRV01 Domain Member Server to Samba 4.

In Chapter 3, Managing the Samba Active Directory Server, we have an example of
the configuration of a Domain Member Server where the Debian GNU/Linux are
authenticated and integrated on our Active Directory Domain. We can refer to this
chapter if we need a similar solution, but here, we will show you a quick configuration
to have our DEVSRV01 file/print server up and running in the same scenario as before,
taking into account that in the EALL network, the GNU/Linux host is administrated
with the users who are not getting authenticated on the Samba's Domain.

First, we need to create a minimal Samba 4 configuration file for the Domain Member
Server function (/usr/local/samba/etc/smb.conf):

[global]

workgroup = POA

netbios name = DEVSRV01

server string = DEV Office Server

security = ads

realm = POA.MSDCBRZ.EALL.COM.BR

encrypt passwords = true

winbind use default domain = Yes

winbind enum users = yes

winbind enum groups = yes

Remember to match the idmap configuration that comes in ranges for
your Samba 3 installation. We can add other environments' specific
global configuration from Samba 3 that we want to maintain on our
Samba 4 installation (for example, log file, bind interfaces, and so on).

We want to add our idmap configuration and shares from Samba 3 too:

idmap config *:backend = rid

idmap config *:range = 1000-20000

[DEVCODDS]

comment = DEV COD DS

path = /var/lib/samba/devcodds

read only = No

Upgrading from Samba Server Version 3

[152]

valid users = @"POA\Domain Admins"

browseable = Yes

[DEVSRCAP]

comment = DEV SRC AP

path = /var/lib/samba/devsrcap

read only = No

valid users = @"POA\Devel Group"

browseable = Yes

[PRINTERS]

Comment = DEV Dep. Printers

path = /var/spool/samba

Printable = yes

Printing = CUPS

[DEVPRT01]

comment = General DEV Printer

Printer Name = devprt01

path = /var/spool/samba/

printable = yes

browseable = yes

Let's copy our Kerberos configuration file to /etc/krb5.conf:

 [libdefaults]

 default_realm = POA.MSDCBRZ.EALL.COM.BR

 dns_lookup_realm = false

 dns_lookup_kdc = true

As we have our new Samba 4 and Kerberos configuration files in place, we just need
to issue the following commands at the DEVSRV01 server:

root@devsrv01:~# export PATH=/usr/local/samba/sbin:\

/usr/local/samba/bin:$PATH

root@devsrv01:~# net ads join -U administrator

Enter administrator's password:

Using short domain name -- POA

Joined 'DEVSRV01' to dns domain 'poa.msdcbrz.eall.com.br'

Chapter 5

[153]

DNS Update for devsrv01.poa.msdcbrz.eall.com.br failed: ERROR_DNS_UPDATE_
FAILED

DNS update failed: NT_STATUS_UNSUCCESSFUL

Now, we have our second Domain Member Server upgraded to the Samba 4
software release! The error about the DNS update is the same as our previous one
when configuring the ACCSRV01 server (the DNS entry already exists).As we are
working with a 64-bit system, we should use the following commands to configure
the Debian NSS libraries to our system:

root@devsrv01:~# cd /lib/x86_64-linux-gnu && &&\

mv libnss_winbind.so.2{,-old} && }&&\

ln -s /usr/local/samba/lib/libnss_winbind.so.2 && &&\

ln -s slibnss_winbind.so.2 2libnss_winbind.so && cd && echo OK

OK

root@devsrv01:~#

The last step is to start the winbind and Samba daemons (notice that for a Samba 4
member server, we do not start the Samba Server, but we have the specific daemons
instead):

root@devsrv01:~# winbindd && echo "Winbind Started OK"

Winbind Started OK

root@devsrv01:~# smbd && nmbd && echo "Samba Daemons Started OK"

Samba Daemons Started OK

root@devsrv01:~#

The next step is to execute all the tests and validations for the file/print servers in the
same way as we did for the ACCSRV01 server, and if we do not have any failures, our
upgrade procedure plan and execution is validated. It's important to keep in mind
that the quality of our upgrade process is highly dependent on the quality of our
tests and validations, so every test and check that we can add to our validation's kit
is welcome!

Upgrading tests and validations for the PDC
As our upgrade procedure started with the PDC (now the Active Directory Domain
Controller for our Domain), we need to test and validate it after we have upgraded
the PDC server as follows:

root@pdc:~# wbinfo -u | wc -l

54

root@pdc:~#

Upgrading from Samba Server Version 3

[154]

From the preceding output, we can see, based on our upgrade plan, that the number
of users are diverging (51 before the upgrade and 54 now). So, let's save the user list
in one file and use the diff command to see what these differences really are:

root@pdc:~# wbinfo -u | sort > samba4users.txt && echo OK

OK

root@pdc:~# diff samba3users.txt samba4users.txt

0a1

> Administrator

12a14

> Guest

23a26

> krbtgt

No problem at all. The three users are the default users from the new Samba 4
installation: Administrator, Guest, and krbtgt. Let's take a look at our groups:

root@pdc:~# wbinfo -g | wc -l

16

root@pdc:~#

Again, we have a different number of objects in comparison to the environment
before the upgrade, so let's identify what exactly these differences are:

root@pdc:~# wbinfo -g | sort > samba4groups.txt && echo OK

OK

root@pdc:~# diff –Naur samba3groups.txt samba4groups.txt

--- samba3groups.txt 2013-08-31 19:52:21.917725440 -0300

+++ samba4groups.txt 2013-08-31 20:15:30.262715229 -0300

@@ -1,5 +1,16 @@

-accdivision group

-devel group

-domain admins

-domain users

-eall group

+Accdivision Group

+Devel Group

+DnsUpdateProxy

+Domain Admins

+Domain Computers

Chapter 5

[155]

+Domain Controllers

+Domain Guests

+Domain Users

+EALL Domain Admins

+EALL Domain Users

+EALL Group

+Enterprise Admins

+Enterprise Read-Only Domain Controllers

+Group Policy Creator Owners

+Read-Only Domain Controllers

+Schema Admins

We can use the comm utility to perform a comparison between files.
Take a look at man comm for the options and to learn how to interpret
the output.

Again, the only groups that are different on both the files are the new ones created
by the new Samba 4 software version. Looking closely, we can see that the two
groups that we renamed are present in the list because we have saved the file before
we renamed them. Other minor differences are there because of the capital letters
changed on Samba 4 (for example, Domain Admins). We can now use the smbclient
utility to execute a bunch of minor validations on our new Active Directory Domain
Controller server:

root@pdc:/root# smbclient -L pdc -U 'frorange%w1ndow$$'

Domain=[POA] OS=[Unix] Server=[Samba 4.0.9]

 Sharename Type Comment

 --------- ---- -------

 netlogon Disk

 sysvol Disk

 Profiles Disk EALL Roaming Profiles Share

 IPC$ IPC IPC Service (Samba 4.0.9)

Domain=[POA] OS=[Unix] Server=[Samba 4.0.9]

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

Upgrading from Samba Server Version 3

[156]

Based on the preceding output, we can see that our server was upgraded from
Samba 3.6.6 to Samba 4.0.9, the authentication is working for our test user, and we
have the Profiles share available. With a simple script, we can validate our user's
database:

root@pdc:~# for x in `wbinfo -u`; do wbinfo --name-to-sid $x; done

…

S-1-5-21-1214754503-652539266-1573105461-1047 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1048 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1049 SID_USER (1)

S-1-5-21-1214754503-652539266-1573105461-1055 SID_USER (1)

root@pdc:~#

Before we proceed to the final tests of our Active Directory Domain Controller (for
example, add a machine to the domain, log in, create users, and so on), let's see if
the DNS services are working as they should, and all the records that we need are
configured properly:

root@pdc:~# host -t SRV _ldap._tcp.poa.msdcbrz.eall.com.br.

_ldap._tcp.poa.msdcbrz.eall.com.br has SRV record 0 100 389 pdc.poa.
msdcbrz.eall.com.br.

root@pdc:~# host -t SRV _kerberos._tcp.poa.msdcbrz.eall.com.br.

_kerberos._tcp.poa.msdcbrz.eall.com.br has SRV record 0 100 88 pdc.poa.
msdcbrz.eall.com.br.

root@pdc:~# host -t CNAME `ldbsearch -H \

/usr/local/samba/private/sam.ldb '(invocationid=*)' \

--cross-ncs objectguid | grep objectGUID | \

 awk '{print $2}'`._msdcs.poa.msdcbrz.eall.com.br.

2319316b-e10b-4568-b3e8-13735c9d6bd9._msdcs.poa.msdcbrz.eall.com.br is an
alias for pdc.poa.msdcbrz.eall.com.br.

root@pdc:~#

Now, we can take a look at the specific commands for the samba-tool utility to query
and verify our Samba's internal DNS server. First, execute the following command:

root@pdc:~# samba-tool dns serverinfo pdc \

-U 'Administrator-U'Administrator%w1ndow$$!' | grep psz

pszServerName : PDC.poa.msdcbrz.eall.com.br

pszDsContainer : CN=MicrosoftDNS,DC=DomainDnsZones,\

DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

pszDomainName : poa.msdcbrz.eall.com.br

Chapter 5

[157]

pszForestName : poa.msdcbrz.eall.com.br

pszDomainDirectoryPartition : DC=DomainDnsZones,DC=poa,DC=msdcbrz,\

DC=eall,DC=com,DC=br

pszForestDirectoryPartition : DC=ForestDnsZones,DC=poa,DC=msdcbrz,\

DC=eall,DC=com,DC=br

root@pdc:~#

The preceding output is very important and gives us a good overview of the DNS
configuration. Using the samba-tool utility, we can get another good insight into
our Samba DNS configuration and the records that are registered, so we can list the
entries for our zone as follows:

root@pdc:~# samba-tool dns query pdc pdcpoa.msdcbrz.eall.com.br @ ALL -U
'Administrator%w1ndow$$!'

 Name=, Records=5, Children=0

 SOA: serial=9, refresh=900, retry=600, expire=86400, ns=pdc.	 		
 poa.msdcbrz.eall.com.br., email=hostmaster.poa.msdcbrz.eall.com.br. 	 	
 (flags=600000f0, serial=9, ttl=3600)

 NS: pdc.poa.msdcbrz.eall.com.br. (flags=600000f0, serial=1, ttl=900)

 A: 192.168.1.1 (flags=600000f0, serial=1, ttl=900)

 AAAA: 0000:0000:0000:0000:0000:0000:0000:0001 (flags=600000f0, 	 	
 serial=110, ttl=900)

 MX: mail.poa.msdcbrz.eall.com.br. (10) (flags=600000f0, serial=9, 		
 ttl=900)

 Name=_msdcs, Records=0, Children=0

 Name=_sites, Records=0, Children=1…

root@pdc:~#

The preceding output can be very long, as it will depend on how many entries we
had on our DNS server (hosts, aliases, and so on). We can use the samba-tool utility
to show general information and list our entries for the DNS reverse zone too:

root@pdc:~# samba-tool dns zonelist pdc --reverse \

-U 'Administrator-U'Administrator%w1ndow$$!'

 1 zone(s) found

pszZoneName: 1.168.192.in-addr.arpa

Flags : DNS_RPC_ZONE_DSINTEGRATED DNS_RPC_ZONE_UPDATE_SECURE

ZoneType : DNS_ZONE_TYPE_PRIMARY

Version : 50

dwDpFlags : DNS_DP_AUTOCREATED DNS_DP_DOMAIN_DEFAULT DNS_DP_ENLISTED

pszDpFqdn : DomainDnsZones.poa.msdcbrz.eall.com.br

root@pdc:~#

Upgrading from Samba Server Version 3

[158]

Here is how we can use samba-tool to list our reverse zone entries:

root@pdc:~# samba-tool dns query pdc 1.168.192.in-addr.arpa \

@ ALL -U 'Administrator%w1ndow$$!'

Name=, Records=2, Children=0

 SOA: serial=6, refresh=900, retry=600, expire=86400, ns=pdc.poa. 	 	
 msdcbrz.eall.com.br., email=hostmaster.poa.msdcbrz.eall.com.br. 		 	
 (flags=600000f0, serial=6, ttl=3600)

 NS: pdc.poa.msdcbrz.eall.com.br. (flags=600000f0, serial=1, ttl=0)

Name=1, Records=1, Children=0

 PTR: pdc.poa.msdcbrz.eall.com.br (flags=f0, serial=4, ttl=0)

Name=10, Records=1, Children=0

 PTR: WINDOWS2K3.poa.msdcbrz.eall.com.br (flags=f0, serial=5, ttl=0)

Name=11, Records=1, Children=0

 PTR: windowsxp.poa.msdcbrz.eall.com.br (flags=f0, serial=6, ttl=0)

Name=5, Records=1, Children=0

…

root@pdc:~#

We can use the net command to give us other important information about our
Active Directory Services:

root@pdc:~# net ads info

LDAP server: 192.168.1.1

LDAP server name: pdc.poa.msdcbrz.eall.com.br

Realm: POA.MSDCBRZ.EALL.COM.BR

Bind Path: dc=POA,dc=MSDCBRZ,dc=EALL,dc=COM,dc=BR

LDAP port: 389

Server time: Qui, 29 Ago 2013 16:30:50 BRT

KDC server: 192.168.1.1

Server time offset: 0

root@pdc:~#

With all the preceding tests passed, we can pick a Microsoft Windows machine (for
example, 2003 or XP) and try to add it to the Active Directory Domain, and as we
already have tested the authentication for test users, we can validate the login from
the new joined machine. It's important to test a Microsoft Windows machine that
was already in the domain too, and see if the machine will work as usual. Everything
must work as if we had not executed any upgrade. After this point, we can go back
to the upgrade procedure (the previous topic) to continue upgrading the Domain
Member Servers.

Chapter 5

[159]

Upgrading tests and validations for Member
Servers
To validate the upgrade process for our Domain Member Servers, we need to test the
file/print shares. The same tests that we will execute here for one file/print server
must be executed for all the file/print servers that we have in our environment. So,
in our example scenario, we have two Domain Member servers on the EALL POA
network, so we need to execute the following tests twice.

First, we need to make sure that we are able to list the users:

root@pdc:~# wbinfo -u

…

wiwolf

zisala

joliu

…

root@pdc:~#

And groups:

root@pdc:~# wbinfo -g

allowed rodc password replication group

enterprise read-only domain controllers

denied rodc password replication group

read-only domain controllers

…

root@pdc:~#

The preceding output is something that is pretty familiar to us, as we already know that
Samba 4 has some default Active Directory groups and users, and we have performed
the tests and validations of the users and groups when we were validating the upgrade
at the PDC phase. So, we just need to make sure that the Domain Members could list the
Domain users and groups. We need to confirm that the users' issues are being resolved
and the name service switch is working as it should. Take a look at the following
command execution:

root@devsrv01:~# id djfox

uid=2031(djfox) gid=1513(domain users) grupos=1513(domain users),\

2051(eall domain users),2053(devel group)

root@devsrv01:~# getent passwd djfox

Upgrading from Samba Server Version 3

[160]

djfox:*:2031:1513:djfox:/home/POA/djfox:/bin/false

root@devsrv01:~#

Using smbclient, we can get all sort of information that we are used to, and we
will be able to see the new Samba version and test the authentication when directly
accessing the file/print servers:

root@accsrv01:~# smbclient -L accsrv01 -U 'cafreeman%w1ndow$$'

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Sharename Type Comment

 --------- ---- -------

 --------- ---- -------

ACCPRTMM01 Printer 1F Printer MM

 ACCPRTLS01 Printer 2F Printer

 PRINT$ Disk Drivers for Dep. Printers

 ACCPUBLIC Disk Public Share

 ACCDIVDOCS Disk Accdivision Prospects

 ACCDIVRPTS Disk Accdivision Reports

 IPC$ IPC IPC Service (ACCDivision Office Server)

Domain=[POA] OS=[Unix] Server=[Samba 3.6.6]

 Server Comment

 --------- -------

 --------- -------

ACCSRV01 ACCDivision Office Server

 Workgroup Master

 --------- -------

 --------- -------

POA ACCSRV01

root@accsrv01:~

Notice that the Samba version will still be 3.6.6 for our upgrade procedure of the
ACCSRV01 output that we got previously as we had not upgraded this server.
When testing the DEVSRV01 server, we should see a different Samba version
(for example, 4.0.9).

Chapter 5

[161]

Using one of the Microsoft Windows machines that are already in the domain, let's
perform some print and file share tests, creating two files—one in the ACCSRV01 server
and the other on the DEVSRV01 server. We will use a test user that has access to the
shares on both the servers; use one file to print in at least one printer in each server.
After we have logged in to our Microsoft Windows 2003 test machine, we navigate to
the network's share and see something similar to the following screenshot:

So, we just need to create a file on one folder of each file/print server and send it to
at least one printer in each server (for example, ACCSRV01 and DEVSRV01). After this,
we can change our desktop background, for example, and log in to another machine
to validate that our roaming profiles are working fine, so we can finish our upgrade
and welcome our users to the brand new EALL's Active Directory Domain.

After everything is checked, we can remove the old Samba 3 Server
installation: apt-get removes Samba winbind.

Summary
In this chapter, we learned about the main difference between the Samba Server
Version 3 and 4, how to plan and execute an upgrade procedure of the Samba
Server, and a step-by-step process to test and validate the upgrade as well. Using
the command-line examples and scripts, we showed you how to gather important
information from the Samba 3 environment and how to use that information to
compare it with the upgraded system and be sure that the transition from Samba 3
to 4 was successful.

Upgrading from Samba Server Version 3

[162]

A very detailed Samba 3 example scenario was presented with three Samba 3 Servers
playing different roles on the network. So, we showed you how to execute a staged
upgrade, discussing the benefits of having different servers for different sets of
services and providing flexibility to manage the maintenance window, which is very
useful for real use cases.

In the next chapter, we will learn about the file and print service capabilities of the
Samba 4 Server, and we will discuss some differences between file and print services
from Versions 3 and 4 as well as Microsoft Point and Print feature, print drivers
versions, and so on.

Printing and File Services
This chapter will cover the file and printing services for the Samba 4 Server; we will
discuss some differences between the file and printing capabilities of Samba Server
Versions 3 and 4.

In this chapter, we will cover the following topics:

•	 SMB/CIFS (Common Internet File System) protocol versions and Samba 4
•	 Samba 4 file and print server daemons
•	 Microsoft Windows print driver Versions 3 and 4
•	 Configuring a printer on the Samba 4 Server host using CUPS
•	 Sharing the printer on a Microsoft AD network using Samba
•	 Microsoft Windows Point and Print Samba Server configuration
•	 File sharing with Samba 4

Introducing SMB/CIFS protocol versions
and Samba 4
Starting from the first release of the Samba Server Version 4 (4.0.0), the software
now supports the SMB file that serves the protocol Version 2.1 of Microsoft; it also
provides preliminary support for the SMB protocol Version 3.0 [18]. The SMBv2.1
has been a great achievement for the Samba project since the introduction of the
SMBv2.0 on Samba Version 3.6. Major improvements that Version 2.1 brings,
as compared to Version 2.0 (from the Microsoft announcement), are mainly
performance enhancements [19], listed as follows:

•	 Client oplock leasing model
•	 Large MTU support

https://www.samba.org/samba/news/releases/4.0.0.html
http://technet.microsoft.com/en-us/library/ff625695%28v=ws.10%29.aspx

Printing and File Services

[164]

•	 Improved energy efficiency for client computers
•	 Support for previous versions of SMB

You can read more about the changes between the protocol Versions
2.0 and 2.1 and more about each individual feature at the official
Microsoft reference [19]: http://technet.microsoft.com/en-us/
library/ff625695%28v=ws.10%29.aspx

The official Samba 4 release announcement has some important information about
the continuous development towards the protocol SMB Version 3.0, which is a major
version improvement with many new features. From the Microsoft support site, we
can get a glimpse of the following features [20]:

•	 SMB Transparent Failover
•	 SMB Scale Out
•	 SMB Multichannel
•	 SMB Direct
•	 SMB Encryption
•	 VSS for SMB file shares
•	 SMB Directory Leasing
•	 SMB PowerShell

The reference [20] has great information about each of the preceding features, and
the reader will understand why we really need to keep an eye on the development
of the Samba 4 software and future 4.x releases.

Introducing the Samba 4 file and print
server daemons
Prior to the beta2 release version of the Samba 4 software, the project was mainly
investing the new NTVFS file server daemon [16]. However, the first stable release of
Samba 4 used the old and very stable smbd daemon to act as the default file server for
the brand new version of Samba 4.0.0.

The release notes, dated December 11, 2012, state that the project will still support
and provide continued development on the new NTVFS file server to guarantee
support to the users who are exploring this new daemon already (for example, the
early adopters of the Samba 4 alpha releases).

http://technet.microsoft.com/en-us/library/ff625695%28v=ws.10%29.aspx
http://support.microsoft.com/kb/2709568
http://support.microsoft.com/kb/2709568
http://www.samba.org/samba/history/samba-4.0.0.html

Chapter 6

[165]

The new NT-FSA architecture is planned to be the default architecture in the future
as it is architected to match the requirements of the new Active Directory Domain
Controller model. So, the smbd daemon should be replaced as the default Samba's file
server in the long term [16] (presently, smbd is still the recommended file server).

Here is a very good thread about NTVFS vs S3 file server from
December 8, 2011. The following link is a response from Stefan
Metzmacher (from http://www.samba.org/), which provides us
with a great overview about the development process and also tells us
how these file servers and daemons were being architected:

https://lists.samba.org/archive/samba-technical/2011-
December/080784.html

To follow the development process and to keep up to date with the features that are
being integrated and tested on the Samba project, it is highly recommended that
the reader participate in the mailing lists of the project. These are the best places to
discuss the features, get help, learn about different configuration scenarios, and get
in touch with the actual developers of the project as they are always present and
willing to help.

Some of the mailing lists I would recommend for the reader to participate are as
follows (https://lists.samba.org):

List Description
samba General questions regarding Samba
samba-announce Low volume list for Samba announcements
cifs-protocol Discussions on the CIFS and related protocol
samba-technical Discussions on Samba internals

Just remember to take a look at the archives of the list before posting new threads
that might have been answered already, and also remember to post them on the
"right" list (for example, basic and general Samba questions should not be directed
to the samba-technical mailing list).

http://www.samba.org/samba/history/samba-4.0.0.html

Printing and File Services

[166]

Introducing Microsoft Windows print
driver Versions 3 and 4
Basically, there are two types of print drivers: kernel mode and user mode [23].
To understand the different Microsoft Windows print drivers and how these two
types of drivers impact the end user, we need to go back to the Microsoft Operating
System (OS) history and talk a bit about the Microsoft Windows NT 4.0. People who
had used the Microsoft OS might remember that printing was a task that could really
bring the whole OS down just because of a printer driver failure. That's because NT
4.0 supported just the kernel-mode printer drivers [23], which ran on a privileged
operating mode, so due to the failure, these drivers could hang the whole OS (these
kinds of drivers are the ones that are there in Version 2).

Starting with Microsoft Windows 2000, a new Version 3 printer driver was introduced,
and that printer driver ran on the user mode. The difference is that when running the
printer driver on the user mode the error or bug on these drivers will not impact the OS
itself, but will be like an ordinary application with very limited impact. Before Vista,
this OS version from Microsoft and some others provided support for both types of
printer drivers in the compatibility mode [23].

From Microsoft Windows Server 2012 and Microsoft Windows 8 OS onwards, a new
printer driver model was designed—Version 4. This new model was architected to
improve and fix the known issues with the previous Version 3 driver model [21].

The new Version 4 driver motivations were around a new design consideration for
applications present on the Windows store were easier for printer sharing and driver
development [21]. Samba 4 does not have support for this new printer driver model
yet, but it supports Version 3 as all the other Microsoft Windows OS versions prior to
the ones cited earlier, and the ones that are higher than Microsoft Windows 2000, also
support this printer driver model.

Configuring a printer on the Samba 4
Server host using CUPS
The first important point to consider here is the fact that we will be configuring Samba
to act as a print server for our Active Directory Network. So, we will configure Samba as
a print server for the network, but at the backend, we have the Common UNIX Printing
System (CUPS) software that uses the Internet Printing Protocol (IPP) to support
printing to local and network printers [22]. Thus, we can look at this as Samba acting as
a print server that uses CUPS as the backend spooling and printer management system.
Or, we can look at this as a print server that provides CUPS print services to a Microsoft
Network through Samba. Either way, this is a rock solid combination!

http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
http://msdn.microsoft.com/en-us/library/windows/hardware/hh706306%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh706306%28v=vs.85%29.aspx
http://www.cups.org

Chapter 6

[167]

Another important fact to understand is that there are other printer management
software (for example, LPD or LPRng), and Samba can be configured with those
systems. As this is a practical book and CUPS is the standard and most prevalent
software in many GNU/Linux and in many other OS distributions, we choose to
work and show you example configurations with this printing system. We will not
cover all the procedures to install and configure a CUPS server as this is out of the
scope of this book; but, we will show you how to perform some tasks and, more
importantly, how to integrate the CUPS system and configure it with Samba as a
print server.

The official CUPS site has a lot of documents and examples, which can
be found at http://www.cups.org

The final advice, before we start, is that the compilation of Samba 4 needs to have the
CUPS libraries enabled. If you have followed our instructions on the installation of
the dependencies and the Samba 4 compilation in this book, Samba should identify
the presence of the required header and libraries for the CUPS printing system, and
everything should be in place and ready to go.

Our procedure will show you how to make the printer drivers available for our
Microsoft Windows network, and thus, each Windows machine that needs to print,
will have the option to install the right driver (for the right OS architecture), do all
the rendering, and control the format of the print job. When adding a printer to
CUPS (actually a "queue"), we need to choose between a raw queue and a filtered
one. We can have several queues for the same printer. So, if we need a filtered queue,
we can have it. However, we need a raw queue for our Microsoft Windows machines
for which we will provide the print services. As we said earlier, the Windows clients
will use the specific printer driver and send a rendered job.

There are two options to add a printer queue to a CUPS system using the command
line or the Web interface. In the case of a network printer, based on the protocol
supported by the printer (for example, AppSocket, IPP, or LPD), we could add a
printer queue by issuing the following command on our Samba 4 Server (from CUPS
1.7 documentation):

root@debian7:~# lpadmin -p devprt01 -v ipp://10.11.11.1 -L "Devel 001
 PS/Gen 2nd Floor" -E && echo OK

OK

root@debian7:~#

Printing and File Services

[168]

To do the same configuration using the Web interface, we will use the
following URL: http://debian7:631/admin

The preceding command has used the following four options (lpadmin):

•	 -p: This option defines the destination, named printer, or class
•	 -E: This option will enable the printer (queue) to accept jobs
•	 -v: This option sets the device URI for the new printer queue
•	 -L: This option defines the location (note that it is not a description, but it's

intended to provide information about the physical location of the printer)

It is very important to note that the -E option, when used before the options -d, -p,
or -x, forces encryption while connecting to the print/server. So, we need to pay
attention to the position of this lpadmin option, it is a good practice to use it at the
end to enable the queue at the time of the creation.

Now, we can use the following lpstat command to list our printers and see if our
new printer is listed and our CUPS is aware of it:

root@debian7:~# lpstat -p devprt01

printer devprt01 is idle. enabled since Dom 26 May 2013 16:06:01 BRT

root@debian7:~#

Just before starting the configuration of Samba and actually making this new printer
available on the network, it is a good idea to test it and see if everything is working,
from our CUPS backend to the printer. As we will not test any filter- or driver-related
features at this time, we just want to test the connectivity and check that our CUPS
server and printer are working fine, and we can use a PS or text file to send to the
devprt01 printer. From a shell on our server, we can use the System V command lp
or the Berkeley lpr utility to send a test page to our printer [25], shown as follows:

root@debian7:~# lpr –P devprt01 simpletestpage.txt && echo OK

OK

root@debian7:~#

The preceding command has used the lpr utility to send the simpletestpage.txt
file to the devprt01 printer, so we can be sure that the printer is configured and is
working fine with our CUPS server. If the file is printed OK, we can go to the next
step and work on the configuration of the Samba 4 Server, but in case of any issues,
we need to check our CUPS configuration and the network connectivity before
proceeding further.

http://www.cups.org/documentation.php/options.html

Chapter 6

[169]

The simpletestpage.txt file is just a very simple text file and can
be created as follows:

echo test > simpletestpage.txt

Sharing the printer on a Microsoft AD
network using Samba
The main directive that we need to have in our Samba 4 configuration file to start
configuring it as a print server is the printers share. Thus, we need to add a section to
our smb.conf (for example, /usr/local/samba/etc/smb.conf) file as shown in the
following code:

…
[PRINTERS]
 Comment = DEV Dep. Printers
 path = /var/spool/samba
 Printable = yes
 Printing = CUPS

The /var/spool/samba directory should already be created, but if
it is not created, we just need to create it and set the right permissions.
Remember that you are required to set the sticky bit on the printing
spool directory: chmod 1777 /var/spool/samba.

The preceding configuration is all we need for the Samba 4 Server to have access to
our CUPS server's backend. The comment line is optional, but it is a good source of
information for the clients and even system administrators. After adding the general
[PRINTERS] share, we can add as many printers to our Active Directory network as
we plan to share, and we can add them one by one in our smb.conf file.

Now, let's add the printer that we have previously configured in our CUPS server
to our smb.conf file. For this, we just need to create a share with the Printer Name
value that has the same name as our CUPS queue that we created and indicate the
path for our Samba's spool:

[DEVPRT01]
 comment = General DEV Printer
 Printer Name = devprt01
 path = /var/spool/samba/
 printable = yes
 browseable = yes

Printing and File Services

[170]

After this, we can reload our Samba configuration and make our brand new printer
configuration live and available on our network. As a root user, type the following
command in a shell on the debian7 Samba 4 Server:

root@debian7:/home/leal# smbcontrol all reload-config && echo OK

OK

root@debian7:/home/leal#

From now on, we will have a printer named devprt01 available on our network, and
we can proceed to the configuration of our Point and Print feature, so the clients can
automatically download and install the right driver and start using the print services.

Introducing Microsoft Windows Point and
Print Samba Server configuration
Microsoft has a Point and Print feature [23] in the print subsystem of Microsoft
Windows 2000 onwards. This technology enables the users on Microsoft client
machines to actually send print jobs to remote printers without the need to manually
install each printer driver to every new printer that is available on the network for
him or her to use. This itself is a great functionality, but another important feature of
the Point and Print technology is that it handles the installation of different drivers
for different operating systems and architectures (for example, 32 bits or 64 bits).
With the right user credentials, configuration can be made on these without explicit
administrator intervention.

To start using this technology and provide this functionality to our Active Directory
Domain, we first need to have a specific share on our Samba configuration to hold
these drivers. The share name is fixed as the client machines will search for it, and for
that reason, we need to configure it with this exact name [24]: print$.

To be able to use the Point and Print feature with different processor
architectures, the appropriate driver needs to be installed on the print
server [23].

So, to create the print$ share and be able to start to upload the drivers to the Samba
4 share, we just need to add the following lines of code to our smb.conf file:

[PRINT$]
 path = /var/lib/samba/pointandprint
 comment = Drivers for Dep. Printers
 writeable = yes

http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
https://wiki.samba.org/index.php/Samba_as_a_print_server
http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc

Chapter 6

[171]

The /var/lib/samba/pointandprint directory should be created,
which can be accomplished with the following command:

mkdir –p /var/lib/samba/pointandprint

After we have this share configured on our Samba 4 installation, we can start the
process of uploading the needed drivers to our print$ share. For the configuration
of initial print network services, we may need to create a plan to enumerate the
printers and the different architectures that we need to access the printer resource.
One option is to pick a 64 bit OS version, and install all printer drivers for that
Microsoft Windows version using the same machine. This way, both architectures
(that is, 32 bit and 64 bit) will be available for installation from one single place.

Now, we will upload the driver (32 bit or 64 bit) for the printer that we have shared
on our Samba 4 Server. Based on this example, we should be able to install any other
driver that we need to make available to our client machines as we announce more
printers on the AD network.

Depending on the Microsoft Windows OS, we have different ways to open the
printer driver installation wizard. Have a look at the following procedures:

1.	 For Microsoft Windows 2003, for example, we can open a connection for our
Samba 4 print server as shown in the following screenshot:

Printing and File Services

[172]

2.	 After clicking on OK, as shown in the preceding screenshot, we should be
presented with a file explorer window as follows:

3.	 Now, we can double-click on Printers and Faxes and right-click on the
following screen to be able to select the Server Properties option:

4.	 From the Server Properties window, we need to select the Drivers tab as
shown in the following screenshot:

5.	 The next screen will show us an option where we can choose Add... to add
new drivers, so we can follow the printer driver installation wizard. In the
following screenshot, we can see a welcome screen for Add Printer Driver
Wizard in a Microsoft Windows Server 2008 R2:

Chapter 6

[173]

The preceding screenshot is important as it informs us that we can actually
install printer drivers for various platforms on a print server. So, we can
repeat this procedure to every printer on which we want to install the
drivers, we just need to choose the operating system.

6.	 After we click on Next, we have the following screen that will provide us
with information on the printer driver type that we will be able to install
(Type 3 - User Mode). It will also provide us with information on the
architecture—x64 and/or x86 (64 bits and 32 bits respectively):

Printing and File Services

[174]

7.	 We chose both the architectures as we have 32 bit versions of this OS running
on our network. After choosing the platform, the next step is to choose the
printer driver—the manufacturer and printer models—as shown in the
following screenshot:

8.	 In the preceding screenshot, we selected a printer driver, and in the following
screenshot, we will get a message about the drivers (and architectures) that
will be installed:

So, we should receive a status window that shows us the progress of the installation
(for example, information on the files that are being copied). After this, the Drivers
tab, which was empty at the beginning of this process, will now have two drivers
listed (one printer driver for two platforms).

Chapter 6

[175]

Another piece of important information in the preceding screenshot is the printer
driver's name (hp officejet 7100 series); soon, we will use it to associate it with our
printer, devprt01. So, we can take note of this name now, but we will show you how
to list the drivers that we have registered and how to pick their names directly from
our Samba 4 Server.

Looking at our Samba 4 Server, we can check our filesystem and list the files that
were installed for the x64 version of the driver, as follows:

root@debian7:~# ls -1 /var/lib/samba/pointandprint/x64/3/

HPBMIAPI.DLL

HPBMINI.DLL

HPBOID.DLL

HPBOIDPS.DLL

HPBPRO.DLL

HPBPROPS.DLL

HPEACLHN.HPI

HPFIME50.DLL

HPFRES50.DLL

HPO5H83L.GPD

…

That's it! Remember that you can be required to provide the Microsoft Windows CD
to install the 32 bit version of the printer driver. So, if we select both versions of the
printer driver, the installation wizard might require the location to pick the x86 version
(for example, when installing from a x64 Microsoft Windows version). It's a good idea
to have a copy of the CD or the ISO in a folder or a file server.

The last step is the registration of the printer driver, associating it with our printer.
As we said earlier, we have a way to list the drivers of the platforms that we have
installed on the server, and for that, we just need to issue the following command:

root@debian7:~# rpcclient debian7 -U 'administrator%w1ndow$$!' -c
 'enumdrivers'

…

[Windows x64]

 Printer Driver Info 1:

 Driver Name: [hp officejet 7100 series]

…

root@debian7:~#

Printing and File Services

[176]

The preceding command will list all the drivers that we have installed on our Samba
4 Server (for example, debian7) for all different platforms. In this example, we have
highlighted just the one that we are interested in, and we can see that the name is the
same as the one we have in our previous screenshot of the printer driver installation
wizard. To associate this driver to our HP printer, we can use the following
command [24]:

root@debian7:~# rpcclient debian7 -U 'administrator%window$$!' -c
 'setdriver "devprt01" "hp officejet 7100 series"'

Successfully set devprt01 to driver hp officejet 7100 series.

root@debian7:~#

In the reference [24], there is an example that shows you how to associate the driver
with the printer from a Microsoft Windows machine, but the drawback is that the
procedure in Windows changes the printer's name. As described in the link, the
administrator can rename it to the old name (but even so, we do not recommend
this) after the procedure. In this same link on the Samba wiki, there is a section that
describes how to preconfigure the printer and publish it on the Active Directory
so that the users can easily find the printer. So, if you want to proceed with these
configurations, we highly recommend that you take a look at the reference at the
end of this book and actually explore the Samba wiki pages as it has a lot of useful
information and how-tos.

Sharing files using Samba 4
One of the most powerful features of the Samba software is its share capabilities for
the server-side and the client-side code. We will focus on the server-side features
here, and we will also focus on how to make the shares available to our Active
Directory environment, but we cannot forget that being able to access these shares
from other operating systems (for example, GNU/Linux) is a very important feature
too. Samba provides all this as an open source solution since Version 3 is in a very
mature state.

Users and system administrators who used Version 3 and earlier versions of the
Samba software will see that with the new Version 4, the file share capabilities are
much easier to implement and manage. In the earlier versions, we had to basically
perform all the configurations on the smb.conf file and control what was possible on
the filesystem and/or the configuration file (for example, smb.conf).

https://wiki.samba.org/index.php/Samba_as_a_print_server
https://wiki.samba.org/index.php/Samba_as_a_print_server

Chapter 6

[177]

File sharing with Samba 4 is a simple task. Basically, we just need to have a folder
where a set of data will reside, and all the configuration around the users and groups
who have access to this primary folder and subsequent subdirectories should be
managed from a Microsoft Windows machine. The installation procedure used in
this book covers the installation of all the features needed for the Samba 4 software
to handle Access Control Lists (ACLs) and Extended Attributes (XATTR); so, for
the next procedures, we will assume that our Samba 4 installation has all the features
that are needed. In case you have any issues or lack of capabilities on the Samba
binaries installed on your system, please review the Samba 4 installation procedure
in the previous chapters.

We've already seen some examples of shares on Samba 4 in our previous topics,
such as PRINTERS, PRINT$, and HOME directives, which are basically shares. Standard
and special ones, in the end, are the shares configured on the smb.conf file and are
available to our Microsoft Windows clients on the network. To create a regular share
in order to provide cooperative work around files to users and groups in Samba 4 is
as simple as performing the following tasks:

•	 Create the directory to be shared
•	 Add it to the smb.conf file

To create the directory, we can use a command prompt in our Samba 4 Server and
execute the following command (assuming that the root of the directory tree exists):

root@debian7:~# mkdir /var/lib/samba/devcodds && echo OK

OK

root@debian7:~#

Add the directory to the smb.conf file:

[DEVCODDS]
 comment = DEV COD DS
 path = /var/lib/samba/devcodds
 read only = No

We do not need to actually restart the whole server to reload the smb.conf file to
apply the changes that we have made; we can use the smbcontrol command with
the reload option as exemplified in the following code:

root@debian7:~# smbcontrol all reload-config && echo OK

OK

root@debian7:~#

Printing and File Services

[178]

At this time, we already have a new share available on our network, and we can
access it using a Microsoft Windows machine in our domain (for example, as an
administrator) and configure all the permissions we want, and users and groups
can directly access the share from there. As Samba 4 is fully compatible with the
Active Directory, we don't need to use any old model to restrict the user's access
on the smb.conf file; we just edit the share permissions from a Microsoft Windows
machine and manage its properties.

The following screenshot is an example of the POA's administrator that is editing
the share permissions of DEVCODDS (Run \\debian7\devcodds, right-click on
Properties, click on the Security tab, and click on Edit):

All standard permissions and management controls are available in Samba, and the
system administrator can use the granularity he or she requires to control access to the
share and subdirectories. This is a huge enhancement for the file shares' administration
in Samba and is a feature that will really make the users more comfortable. Many
system administrators are used to the integrations and easiness that the Microsoft
operating system provides, and Samba being able to accommodate some is a big
step forward.

Summary
In this chapter, we looked at the different SMB versions that Samba 4 supports, an
overview of the main features of each one, and what to expect from the next Samba
4 releases. We have discussed the file and print daemons, what has changed from
the alpha release to the final Samba 4 stable announcement, and learned about the
different types of printer drivers in the Microsoft Windows operating systems.

Chapter 6

[179]

This chapter also covered the installation of a printer/queue on the Samba host using
CUPS, how to share that printer using Samba, and the configuration of the Point and
Print feature for the Microsoft Windows machines. We explained how to perform
the association of the printer driver to the shared printer, and pointed some reference
links for further and specific configurations. Also, in this chapter, we explained how
to create a file share and configure the permissions in an easy way using the graphical
interface of a Microsoft Windows machine, making use of the fully compatible Active
Directory capabilities of Samba 4.

In the next chapter, we will learn how to extend the Active Directory schema using
Samba 4. We will use scripts and examples to understand the procedures based on a
specific example application that makes use of some custom object class and attributes.

Extending the Active
Directory Schema Using

Samba 4
This chapter explains how to extend the default Active Directory schema for
some specific applications when using Samba 4 built in as the Active Directory
Domain Controller. This chapter covers more advanced topics for which some prior
knowledge of LDAP / Active Directory protocol specification and general system
administration is preferred.

The process will be explained using examples and scripts to extend the Samba 4 /
Active Directory schema, and will use a simple application that uses a specific object
class and attribute. This is so you understand how to extend the Samba 4 LDAP
schema and accommodate the attribute and class for this application.

The following is the list of topics that will be covered in this chapter:

•	 Key consideration points when planning an Active Directory
schema extension

•	 Exporting the current Active Directory schema configuration
•	 A practical example for extending the Active Directory schema
•	 Applying the Active Directory schema extension
•	 Tests and validations of the Samba 4 Active Directory schema extension

Extending the Active Directory Schema Using Samba 4

[182]

Planning an Active Directory schema
extension
The point we need to have foremost in mind when planning an Active Directory
schema extension is the word "schema". As in a Relational Database Management
System (RDBMS) schema [27], just in case the reader is familiar with database
systems, every change we make to the predefined data types or the relationships
between tables can lead to unwanted results. So, before going forward, it's important
to understand what the changes are and whether or not we really need to make them;
as in the case of the Active Directory schema extensions, once created they are not
reversible [28].

In the Active Directory world, maybe the schema does not have much of the
complexity of an RDBMS schema, but it is a crucial, very important definition all the
same, as any error can lead to the unavailability of the service. The Active Directory
schema maintains definitions for all objects in the directory; thus, the creation of
any new object is validated using the object's definition in the schema before it can
be actually written in the directory [29]. Yet, from the Active Directory schema
documentation, the object classes and attributes in the default schema configuration
are wide and rich, and so intended to meet the needs of most organizations [29].

Another important characteristic of how the Active Directory schema is organized is the
fact that the attributes are defined in the schema separated from the classes [30]. This is
really important as an attribute, for example, description, does not need to be tied to
just one object class, as we can have descriptions for jobs, roles, and machines; thus, we
do not need to have one specific description attribute for each of those objects.

Obviously, the possibility of extending the Active Directory schema is a real and
powerful option. Its purpose is legitimate as the default schema does not suit specific
use cases; this is because users and companies have different requirements and it's very
difficult to have all specifications implemented in a standard configuration (such as, a
schema). However, the point is that many use cases can be fulfilled with the standard
options, and the general advice is to make sure that the requirements are specific
enough where a schema extension is really needed. The Microsoft documentation
website has great articles about Active Directory, and is an excellent resource for Active
Directory terminology, syntaxes, classes, attributes, and so on [30]. So, the user can look
at all the classes and attributes to get familiarized with the structure and data types.

http://en.wikipedia.org/wiki/Database_schema
http://technet.microsoft.com/en-us/library/cc759633%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://msdn.microsoft.com/en-US/library/ms675087.aspx
http://msdn.microsoft.com/en-US/library/ms675087.aspx

Chapter 7

[183]

The second point to keep in mind is that after we have realized that a schema extension
is really needed by our new application / use case, we need to understand how the
directory is organized and how to accommodate our changes in a way that it can coexist
with other information we have and will have in the directory. A well-defined procedure
is to execute the operation to extend the schema itself, and a proper procedure is to test it
and make sure everything is still working and will continue to work as usual.

Some users do utilize some reserved namespaces from the X.500 standard or other
options for private use. Here, we will show you how to do it properly, as the next
step necessary to extend the Active Directory schema is to register with the Internet
Assigned Numbers Authority (IANA) and asking for a Private Enterprise Number
(PEN) [26]. IANA is the entity responsible for the global coordination of many
Internet protocol resources (there are no costs; obtaining a PEN assignment is free
of charge).

An Active Directory forest has just one schema and it is replicated to all
the domain controllers on that forest, but only the schema master has
control over its structure and content [29].

The Private Enterprise Number is needed as the classes and attributes (classSchema
and attributeSchema) use an object identifier (OID) that is derived from the
uniqueness of the PEN we received from IANA. Let's look at the EALL example
OID 1.3.6.1.4.1.42768.2.1, so we can understand the whole tree as these objects
are referenced in the following figure [37]:

1.3.6.1.4.1.42768.2.1

EALL Internal OID’s
EALL OID
Enterprise
Private
Internet
USA Department of Defense
ISO Identi?ed Organization
ISO assigned OID’s

| | | | | | | \ /

http://pen.iana.org/pen/PenApplication.page
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://www.oid-info.com/cgi-bin/display?nb=42768&father_oid=1.3.6.1.4.1&action=display

Extending the Active Directory Schema Using Samba 4

[184]

As you can see in the preceding figure, we have a hierarchy that starts with the
top authority (which is the root; in this case, ISO), until we get to the EALL (for
example, Marcelo Leal) that owns the OID 42768, and where a more specific and
fully controlled division can be executed in the EALL site. In the next steps, we
will see how to create a division in our PEN and start to organize our new classes
and attributes to include them in our Active Directory services. Now, let's look at
the OIDs from the output of the following command executed on a Samba 4 Active
Directory Domain Controller:

root@addc:~# ldapsearch -x -h localhost -s base | grep supportedCap

supportedCapabilities: 1.2.840.113556.1.4.800

supportedCapabilities: 1.2.840.113556.1.4.1670

supportedCapabilities: 1.2.840.113556.1.4.1791

supportedCapabilities: 1.2.840.113556.1.4.1935

supportedCapabilities: 1.2.840.113556.1.4.2080

root@addc:~#

Based on the Microsoft documentation [32], we can get great insights about the
capabilities of this Samba 4 AD DS, as we've shown in the following table:

1.2.840.113556.1.4.800
(LDAP_CAP_ACTIVE_
DIRECTORY_OID)

The LDAP server is running Active Directory and as
Active Directory Domain Services (AD DS).

1.2.840.113556.1.4.1670
(LDAP_CAP_ACTIVE_
DIRECTORY_V51_OID)

If the server is running as an AD DS, the presence
of this capability means that the LDAP server is
running at least the Microsoft Windows Server 2003
version of Active Directory. If the server is running
as AD LDS, it means that the LDAP server is
running at least the Windows Server 2008 version of
AD.

1.2.840.113556.1.4.1791
(LDAP_CAP_ACTIVE_
DIRECTORY_LDAP_INTEG_OID)

The LDAP server on the domain controller is
capable of signing and sealing on an NTLM
authenticated connection.

1.2.840.113556.1.4.1935
(LDAP_CAP_ACTIVE_
DIRECTORY_V60_OID)

This OID means the server is running at least the
Windows Server 2008 version of AD.

http://msdn.microsoft.com/en-us/library/cc223360.aspx

Chapter 7

[185]

So, based on the preceding table, we can correlate the capabilities present on the
Samba 4 version we are using as the Active Directory Domain Controller, and the
correspondent Microsoft Windows Server 2008 R2 operating system Active Directory
Domain Services [32]. From the capabilities described on the referenced website,
we can see that the only feature not present in our Samba 4 Server AD DS for our
matching to be 100 percent is LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_
OID. However, as you can see in the notes of the web page, that capability is only
exposed by the respective server in specific conditions (for example, RODC, which is
an additional DC in a domain that hosts read-only partitions of the AD database).

Exporting the current Active Directory
schema configuration
As usual, for us, for all procedures that will change the state and configuration of our
Active Directory services, we will base our AD DS schema extension with a prior plan
in place to test and validate our results. Thus, we can make sure that the environment
is functional after the schema extension and everything is stable as before.

Microsoft Windows servers have a great tool that we can use to generate a file (the
LDIF file) with all our schema configurations: ldifde. To use this tool, we just need
to be logged into a Microsoft Windows server (for example, 2008 R2) and execute the
following script in a command-line prompt window:

C:\Users\Administrator.POA> cd Desktop

C:\Users\Administrator.POA\Desktop>ldifde –f old-adds-schema.ldif \

-d CN=Schema,CN=configuration,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

Connecting to "adds.poa.msdcbrz.eall.com.br"

Logging in as current user using SSPI

Exporting directory to file old-adds-schema.ldif

Searching for entries…

Writing out entries ...

...

.........................

1550 entries exported

The command has completed successfully

C:\Users\Administrator.POA\Desktop>

http://msdn.microsoft.com/en-us/library/cc223360.aspx

Extending the Active Directory Schema Using Samba 4

[186]

If the preceding command is executed successfully, we should have a file named
old-adds-schema.ldif in our current directory; its content should be like that
shown in the following excerpt:

dn: CN=LDAP-Display-Name,CN=Schema,CN=Configuration,DC=poa,DC=msdcbrz,\

DC=eall,DC=com,DC=br

changetype: add

objectClass: top

objectClass: attributeSchema

cn: LDAP-Display-Name

instanceType: 4

whenCreated: 20121113212243.OZ

It seems that there is an option to use custom OIDs inside Microsoft's
private number, but we will not cover that in this book and prefer to
point out the procedure so users and companies can have their own
address space.

We need to save the old-adds-schema.ldif file in a well-known place on our
server, as we will use it after executing our AD DS schema extension to conduct
an assessment of the changes we have made. Another important tool to be used in
conjunction with this file after executing the schema extension is the AD DS / LDS
Schema Analyzer. This tool should be installed on Microsoft Windows Server 2008
R2 if this server has Active Directory Lightweight Directory Services installed as we
do on the server exemplified in the following screenshot:

In case if it has not been installed yet, we could install it using the Add Roles
Wizard, shown in the preceding screenshot, in a quick and simple process.

Chapter 7

[187]

Extending the Active Directory schema in
practice
Here, we will take a look at the requirements of our example application and the
attribute it needs in Active Directory in order to work properly. It's important to
keep in mind that the attribute presented here is not the most relevant part, except
the procedure we will present and the points related to naming convention. Very
often, I use an existing attribute to accomplish what this example application
requires, but again, the procedure is the most important part here.

In a real-life scenario, you should not extend the Active Directory
schema if you can use an existing attribute.

For security, a system administrator implements an authentication module (for
example, the PAM module) to add another layer on the authentication process and
enhance access control on the GNU/Linux servers in the environment they manage.
As the schema they were using earlier was a custom version on OpenLDAP, which
utilizes this module on an Active Directory environment, they need to extend
its schema.

The module is named pam_hostscheck, and it needs an attribute named
allowedhost containing the hostname of the host on which some user is trying
to authenticate: permit (for example, allowedhost=myservername) or decline the
authentication process. Note that we can have many allowedhost instances for each
user object (for example, it's a multivalue attribute), as a user may be allowed to access
many machines. The attribute can contain some wildcards that the application knows
(for example, netgroups) and other tricky options, but that is application-specific, and
the content of the attribute is not very important for our AD DS schema extension.

With this task at hand, the first concern we need to address should be that related
to the attribute's name. We need to think about the present and the future and
choose a name that will not conflict with other applications we may need to use.
The system administrator has created this module with a cool feature to help in
this matter: we can specify the name of the attribute that the module will use in a
configuration file. So, for the EALL company, if the system administrator decides to
use eALLallowedHost as the attribute's name, there's a very low probability that it
will clash with other attribute names we may use in the future.

Extending the Active Directory Schema Using Samba 4

[188]

Extending the Active Directory schema
Before we are able to extend the Active Directory schema in Samba 4, we need to
enable the schema extension feature as it is disabled by default [33]. According to the
referenced Samba documentation, you can enable this feature by adding a specific
option in the Samba configuration file (/usr/local/samba/etc/smb.conf), or
directly on the command line [33]. We have opted for the latter.

As we need to execute three modifications on the directory for our example case,
we will do it in three distinct steps to make it clearer, as I believe this way is better
to understand the whole process. So, we will start adding the eALLallowedHost
attribute to the AD DS, and to do that, we need to create an LDAP Data Interchange
Format (LDIF) file with all the information about this new attribute to extend our AD
schema. The following is the LDIF file for this (/root/eALLallowedHost.ldif):

Samba 4 Active Directory Schema Extension for PAM_HOSTSCHECK

byLeal

Attribute: eALLallowedHost

dn: CN=eALLallowedHost,CN=Schema,CN=Configuration,DC=poa,DC=msdcbrz,DC=ea
ll,DC=com,DC=br

objectClass: top

objectClass: attributeSchema

attributeID: 1.3.6.1.4.1.42768.2.1

cn: eALLallowedHost

name: eALLallowedHost

attributeSyntax: 2.5.5.12

lDAPDisplayName: eALLallowedHost

Description: Hostname the user is allowed to authenticate

oMSyntax: 64

-

In the LDIF file, the first three lines are just comments (for example, about what the
file is, who created it, and the attribute name to be created). We can have as many
comment lines as we think are needed to organize and provide information for the
people that will handle this piece of configuration.

In an LDIF file, we always have a Distinguished Name (DN) that is composed of a
common name for the object itself (for example, eALLallowedHost), and the Relative
Distinguished Names (RDN), which in this case, is cn=schema,cn=configuration,
plus a constant string for the Domain Component (DC): DC=poa,DC=msdcbrz,DC=ea
ll,DC=com,DC=br.

http://wiki.samba.org/index.php/Samba4/Schema_extenstions
http://wiki.samba.org/index.php/Samba4/Schema_extenstions

Chapter 7

[189]

The directive objectClass will define some characteristics (for example, type) of
this object (for example, top, attributeSchema). We have a display name, a name,
and a description; additionally, we have attributeSyntax (Unicode String) and
oMSyntax as they are mandatory for all new attributes we create (the first is an OID
and the latter is an integer) [34]. The attributeID is based on our registered OID
(for example, EALL's registered OID) and the specific number assigned within the
company for that new attribute.

To organize the new classes and attributes, the EALL company has
chosen to reserve the number 1 for classes and 2 for attributes. So, 1.1 is
the first new class created and 2.1 is the new first attribute.

Now we have the first LDIF file ready, and we can actually execute the first Active
Directory schema extension. Remember to never (and I will say it again: never)
execute an AD DS schema extension in production directly. All the procedures here
need to be executed and tested in a lab environment, and just after you are satisfied
that the procedure has proven consistent and without negative impact on your
simulated environment, you can plan for an implementation in production. That
being said, let's look at the following command to extend the AD DS schema:

root@addc:~# ldbmodify -H /usr/local/samba/private/sam.ldb \

/root/eALLallowedHost.ldif --option="dsdb:schema update allowed"=true

Modified 1 records successfully

root@addc:~#

Remember to have the $PATH bash variable configured with the correct
location of the Samba 4 installation before all other paths in your shell,
for example, export PATH="/usr/local/samba/sbin:/usr/
local/samba/bin:$PATH".

As you can see in the preceding output, the command was executed and one record
was modified successfully. This is good news! The next step is to add to the schema
a new custom user class (for example, eALLUser), so we can associate this class with
the standard user class and make our schema extension less intrusive. The following
is the eALLUser.ldif file:

Samba 4 Active Directory Schema Extension for PAM_HOSTSCHECK

byLeal

Class: eALLUser

http://technet.microsoft.com/en-us/library/cc961740.aspx

Extending the Active Directory Schema Using Samba 4

[190]

dn: CN=eALLUser,CN=Schema,CN=Configuration,DC=poa,DC=msdcbrz,DC=eall,DC=c
om,DC=br

objectClass: top

objectClass: classSchema

cn: eALLUser

name: eALLUser

governsID: 1.3.6.1.4.1.42768.1.1

mayContain: eALLallowedHost

rDNAttID: cn

lDAPDisplayName: eALLUser

Description: EALL Custom User Class

objectClassCategory: 3

-

I don't remember talking about backup in this chapter. So, here we
go… Before changing, maintaining, or even looking at a production
server, perform a backup. Then, do it again. That's cool; I just said it
and I already feel better!

The most important differences between the LDIF file we just saw and the first one
are the objectClass type and the mayContain clause. Observe that in this specific
case, we are creating a class (for example, classSchema) and not an attribute as we
did earlier in the chapter. The procedure to add a class to our AD DS schema, shown
as follows, is pretty much the same as described earlier:

root@addc:~# ldbmodify -H /usr/local/samba/private/sam.ldb \

/root/eALLUser.ldif --option="dsdb:schema update allowed"=true

Modified 1 records successfully

root@addc:~#

So far, so good! We are almost done; the last step we need to perform is to add our
auxiliaryClass class to the user class, and for that, we can use our third and last
LDIF file (User.ldif), as follows:

dn: CN=User,CN=Schema,CN=Configuration,DC=poa,DC=msdcbrz,DC=eall,DC=com,D
C=br

changetype: modify

add: auxiliaryClass

auxiliaryClass: eALLUser

-

Chapter 7

[191]

Now we can execute the last command to finish our AD DS schema extension,
as follows:

root@addc:~# ldbmodify -H /usr/local/samba/private/sam.ldb \

/root/User.ldif --option="dsdb:schema update allowed"=true

Modified 1 records successfully

root@addc:~#

All executions went well and by now, we should have the new eALLUser class
available on our AD DS; as you may remember, this new class may contain our new
attribute eALLallowedHost. So, now we will use a Microsoft Windows 2008 Server
machine that is a member of our domain in order to configure this attribute to two
EALL users to make sure that the new attribute is available and really ready to be
used. Follow the ensuing steps:

1.	 After we have logged onto the Microsoft Windows machine, we will execute
the Active Directory Services Interfaces Editor tool (adsiedit.msc) to
manage the new attribute for our users, as shown in the following screenshot,
as the standard Active Directory Users and Computers (ADUC) Microsoft
Windows tool to manage users does not work with custom attributes by
default (for example, in standard mode):

2.	 There is a PowerShell script in the references [40] to perform a schema
conflict analysis on LDIF files against the production schema. After some
executions, it seems to be another good resource publicly available at the
Technet Microsoft website. Looking at the source code, the drawback seems
to be that the OID for Microsoft is hardcoded, and using any other OID will
result in errors. The following is an excerpt of the code:
$OIDCheck = $values[1].StartsWith("1.2.840.113556.1").

Besides, insights provided by the script on the LDIF file can be valuable.

http://technet.microsoft.com/en-us/library/testing-for-active-directory-schema-extension-conflicts%28v=ws.10%29.aspx

Extending the Active Directory Schema Using Samba 4

[192]

3.	 After we have been presented the default window for the ADSI Edit tool,
we need to click on the top-most menu in the Action | Connect to… option,
which will give us a Connection Settings window, as shown in the
following screenshot:

4.	 Just click on OK, as the default naming context should point accurately to
our domain. Just double-click on the tree structure and expand the domain
component to select CN=Users, as shown in the following screenshot:

Chapter 7

[193]

5.	 We will use two users for our configuration test: djfox and joliu; so, the
procedure we will show for the first user will be the same as that for the second
one, and that's why the second execution will be omitted. Just right-click on the
djfox user and choose Properties, as shown in the following screenshot:

6.	 An Attribute Editor window (CN=djfox Properties) will appear, listing
all the attributes for that user. If we select the first one and start to edit
eALLallowedHost, we should be routed directly to this attribute, as shown
in the following screenshot:

Extending the Active Directory Schema Using Samba 4

[194]

7.	 Now, we double-click on the eALLallowedHost attribute, as shown in the
following screenshot, and fill the value-entry field with the name of the
GNU/Linux machine's host to which we want this user to be able to log in,
and click on OK.

8.	 So, after we execute the same procedure for our second user (for example,
joliu), we can close the ADSI Edit tool and go back to our Samba 4 Active
Directory command-line prompt. Now, we will execute a simple search on
the Active Directory to look for our brand new attribute and confirm that
the changes and configurations we made on the schema are all working as
expected, as shown in the following commands:

root@addc:~# ldbsearch -H /usr/local/samba/private/sam.ldb \

'(eALLallowedHost=*)' username eALLallowedHost

record 1

dn: CN=djfox,CN=Users,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

eALLallowedHost: lnx341srv

eALLallowedHost: lnx511srv

record 2

dn: CN=joliu,CN=Users,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

eALLallowedHost: lnx341srv

eALLallowedHost: lnx511srv

…

root@addc:~#

Chapter 7

[195]

So, we ran a quick search using the ldbsearch utility from the Samba project,
and basically searched for any object on the directory that had the attribute
eALLallowedHost configured on it; for those objects, we asked to be shown the
username and eALLallowedHost attributes. As expected, the two users that
configured the eALLallowedhost attribute were returned in the preceding query,
and now the system administrator can configure the users with the hostname of the
hosts or groups of hosts to which the users need access. Thus, the pam_hostscheck
module can be configured to use the eALLallowedHost attribute to execute a
similar search in Active Directory Domain Services, and allow or deny the user
authentication process. Using pam_hostscheck as a requisite module can be a
powerful security barrier, as users that do not have access to that machine will not
even be provided a username/password challenge.

I had written the pam_hostscheck module many years ago, and today,
we have other new and more efficient means to accomplish what I had
implemented in that module. However, it was a very effective tool and
a good opportunity to learn about PAM, LDAP, and schema extensions.

As the ADSI Edit tool is powerful and not intended for use in day-to-day procedures
to manage users, and as we can have operators or even people who are not from the
IT staff managing EALL's company users, we need to have this attribute handled
in an easier manner. One option is to enable the advanced features in the Active
Directory Users and Computers snap-in (ADUC).

Just take a look at the default properties window from an ADUC snap-in without the
advanced features enabled, as shown in the following screenshot:

Extending the Active Directory Schema Using Samba 4

[196]

Now, let's go back to the main window of the ADUC snap-in. Just click on the item
View on the top menu and check Advanced Features, as shown in the following
screenshot:

After this procedure, we can just double-click on one of our users and see that the
Properties screen has changed a bit, as shown in the following screenshot:

Now if we look closely, we will not only see that we have many more tabs, but also
that we have one named Attribute Editor. If we select that tab and the first attribute,
and start to type the name of our brand new attribute eALLallowedHost, we'll find
it and be able to edit it in the same way we did using the ADSI Edit tool, as shown in
the following screenshot:

Chapter 7

[197]

But, wait! We can use the ADSI Edit tool just one more time to add the column Host
Access is Allowed for our new attribute in the ADUC snap-in! Just execute the
adsiedit.msc command, but this time, we will connect in a different way.

Because we used ADSI Edit the last time, it will be already connected in the same
context as we need it to be in the next execution. So, we need to choose the Action
item in the top menu and select Remove (you can click on Yes as it will not remove
anything from your AD DS; it will just remove the currently active connection).

Now with a cleaner screen, we can select the Action | Connect to menu option, but
this time, we will choose Configuration in the Select a well known Naming Context
combobox, as shown in the following screenshot:

Extending the Active Directory Schema Using Samba 4

[198]

Active Directory has some extension attributes for use by companies to
create custom applications, without them needing to extend the AD DS
schema; these are available at http://msdn.microsoft.com/en-
us/library/ms873846%28v=exchg.65%29.aspx.

The attributes in the specific Exchange Active Directory documentation
seem to be for general utilization and are worth looking at before
extending the schema if your application can be configured to use
generic attribute names.

After the connection is established, expand the CN=Configuration and the
CN=DisplaySpecifiers folders, as shown in the following screenshot:

According to the Microsoft documentation [35], the displaySpecifier objects are
localized user-interface data, and so we should configure them in a locale-specific base.
In our case, we will just show an example for the US-English (409) locale container.

Selecting the CN=409 folder, we can find CN=default-display in the right-hand panel
(we can click on the Name column to order the entries, and so it should be the fourth
line). Just double-click on it and select the first attribute in the following window, and
then start typing extraColumns. You should then see the following screen:

http://msdn.microsoft.com/en-us/library/windows/desktop/ms676902%28v=vs.85%29.aspx

Chapter 7

[199]

Just double-click on the extraColumns attribute, and in the Value to add: field,
we need to enter the information for our new attribute in the <ldapdisplayname>,
<column header>,<default visibility>,<width>,<unused> format [36].

The first value ldapdisplayname we have specified on our LDIF file as the name of
our attribute is eALLallowedHost; the column header is the name that will appear
in the header of the column and so can be more descriptive; the default visibility
is a Boolean value that specifies whether the attribute is by default hidden (0) or
visible (1); the width is the column's width in pixels and can be a positive integer or
-1, which, in turn, sets the column to the same size as the header; and the last one is
unused [36], as shown in the following screenshot:

For the default visibility, we have entered 1, so we will not need to add it later
(as the column default will be visible). When you click on Add, the string you have
entered should be listed with the other values, as shown in the following screenshot:

Now, we can click on OK twice and close the ADSI Edit tool (we can remove this
connection before we close the tool in case we want a clean start the next time).
The next step is to open the ADUC snap-in, right-click on Saved Queries, and
choose New | Query. The screen shown in the following screenshot will be
presented where we'll name the query Host Access is Allowed:

http://msdn.microsoft.com/en-us/library/windows/desktop/ms677291%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms677291%28v=vs.85%29.aspx

Extending the Active Directory Schema Using Samba 4

[200]

Once you have written the name of the new query, click on the button Define
Query…, and in the Find Common Queries window, select the Custom Search
option, as shown in the following screenshot:

Now, we need to select the Advanced tab and run the following simple search
to filter all objects (for example, users) that have the eALLallowedHost attribute
configured, as shown in the following screenshot:

Just click on OK twice, and we should see the result of our search on the main screen
along with our Host Access is Allowed column, as shown in the following screenshot:

Very handy!

Testing and validating the Samba 4 Active
Directory schema extension
When we execute an Active Directory schema extension procedure, my experience in
different environments (for example, lab setups for testing) is very similar for Samba
4 and Microsoft Windows servers running Active Directory. In case of failures, they
can have different impacts on the services, as follows:

•	 AD DS doesn't even start
•	 Some misbehavior while running normal operations (for example, searching

or replicating)

Chapter 7

[201]

For the first case, some start/stop command executions after the AD DS schema
extension, followed by server restarts is a good starting point to validate our system
and make sure we do not have very bad issues with our Active Directory schema.

For the issues in the second category, we will see some commands that can be used
to try to find any inconsistencies as soon as possible, so that they can be fixed and
the schema extension can be rolled out onto production. Speaking specifically about
the Samba 4 Active Directory implementation, the official page of the project at the
time of this writing informed that it sometimes does not generate essential attributes,
leading to problems in Samba 4 provisions [33]. There are some issues that can
arise after some time when the new schema is running, and that is why extensions
need to be extensively tested before being applied in production. All the procedures
presented here are intended to be validated in a lab and test environment before the
reader analyzes its suitability for production.

We will use the dcdiag utility [38] to execute specific tests one-by-one to look
at some specific points of the Active Directory services and try to make a good
assessment of the environment. We will focus on some specific tests, but feel free to
validate as much as you feel is needed for your actual Active Directory deployment.
The only attention point I would recommend is to make sure you understand that
some limitations do exist when using this tool in a Samba 4 installation (for example,
FRS or DFSR), and they are not implemented on this software at the time of this
writing [39], so if not supported tests are performed, the results will be misleading.

Using one of the Member Servers of the domain (for example, Microsoft Windows
Server 2008 R2), log on as the domain admin and execute the following command
and press Enter:

C:\Users\Administrator.POA> dcdiag /s:addc /test:advertising /v

Now we should get a response like the following:

<OUTPUT SKIPPED some errors about FRS and DFSR <OUTPUT SKIPPED>

Doing initial required tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Connectivity

................... ADDC passed test Connectivity

Doing primary tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Advertising

 The DC ADDC is advertising itself as a DC and having a DS.

 The DC ADDC is advertising as an LDAP server

 The DC ADDC is advertising as having a writeable directory

http://wiki.samba.org/index.php/Samba4/Schema_extenstions
http://technet.microsoft.com/en-us/library/cc731968%28v=ws.10%29.aspx
https://bugzilla.samba.org/show_bug.cgi?id=6714

Extending the Active Directory Schema Using Samba 4

[202]

 The DC ADDC is advertising as a Key Distribution Center

 The DC ADDC is advertising as a time server

 The DC ADDC is advertising as a GC.

................... ADDC passed test Advertising

<OUTPUT SKIPPED tests omitted by user request OUTPUT SKIPPED>

C:\Users\Administrator.POA> dcdiag

We use the /v option in our command to see all the tests that have performed.
We have used this option so that we know how to look more deeply into each test
and find specific issues on the global test commands. For now, we will omit this
option and just look at the global test result. The following is the replication test code:

C:\Users\Administrator.POA> dcdiag /s:addc /test:replications

<OUTPUT SKIPPED some errors about FRS and DFSR <OUTPUT SKIPPED>

Doing initial required tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Connectivity

................... ADDC passed test Connectivity

Doing primary tests

 Testing server: Default-First-Site-Name\ADDC

Starting test: Replications

................... ADDC passed test Replications

…

C:\Users\Administrator.POA>

It's important to remember to create a lab environment based on a sane
and fully working environment to make sure that every point of our
configuration was working just fine before starting our procedure.
So, when we perform the tests, we can be sure that if any error occurs
after our tests, we can fix or roll back the changes. One tip is to execute
all the tests described in this section before and after the AD DS schema
extension to have a baseline.

As we discussed earlier, replication can be a problem, but we have seen that we did
not have any. But replication can be a broader issue, and even if the result of this
command is not OK, we need to look to see if it is a transient failure or actually a
problem root on our Active Directory schema extension procedure. Another quick
but valuable test is to check if the required logon privileges exist to permit proper
replication, as shown in the following commands:

Chapter 7

[203]

C:\Users\Administrator.POA> dcdiag /s:addc /test:netlogons

<OUTPUT SKIPPED some errors about FRS and DFSR <OUTPUT SKIPPED>

Doing initial required tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Connectivity

................... ADDC passed test Connectivity

Doing primary tests

 Testing server: Default-First-Site-Name\ADDC

Starting test: NetLogons

................... ADDC passed test NetLogons

…

C:\Users\Administrator.POA>

The test of KnowsOfRoleHolders is an essential one; sometimes we have a
misbehaving AD DS and the problem is as basic as the lack of consistency on the
Flexible Single Master Operations (FSMO) roles:

C:\Users\Administrator.POA> dcdiag /s:addc /test:knowsofroleholders

<OUTPUT SKIPPED some errors about FRS and DFSR <OUTPUT SKIPPED>

Doing initial required tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Connectivity

................... ADDC passed test Connectivity

Doing primary tests

 Testing server: Default-First-Site-Name\ADDC

Starting test: KnowsOfRoleHolders

................... ADDC passed test KnowsOfRoleHolders

C:\Users\Administrator.POA>

We can issue many tests at once, and the following is an example of how to do it:

C:\Users\Administrator.POA> dcdiag /s:addc /test:fsmocheck /
test:ridmanager /test:machineaccount /test:kccevent /test:systemlog /
test:topology /test:ncsecdesc

<OUTPUT SKIPPED some errors about FRS and DFSR <OUTPUT SKIPPED>

Doing initial required tests

 Testing server: Default-First-Site-Name\ADDC

 Starting test: Connectivity

Extending the Active Directory Schema Using Samba 4

[204]

................... ADDC passed test Connectivity

Doing primary tests

 Testing server: Default-First-Site-Name\ADDC

Starting test: KccEvent

................... ADDC passed test KccEvent

Starting test: MachineAccount

................... ADDC passed test MachineAccount

Starting test: NCSecDesc

................... ADDC passed test NCSecDesc

Starting test: RidManager

................... ADDC passed test RidManager

Starting test: SystemLog

................... ADDC passed test SystemLog

Starting test: Topology

................... ADDC passed test Topology

Running enterprise tests on : poa.msdcbrz.eall.com.br

 Starting test: FsmoCheck

 poa.msdcbrz.eall.com.br passed test
FsmoCheck

C:\Users\Administrator.POA>

The tests we executed until now are important general validation routines we need
to have in the bag to evaluate the health of any Active Directory deployment. Any
errors on these tests are the first indication that something went wrong, and we then
need to review our configuration and evaluate our AD DS schema extension.

Before we started our AD DS schema extension, we have created a LDIF file with the
content of our current schema configuration, and we have installed the components
to use the AD DS/LDS Schema Analyzer tool. Now, we need a new LDIF file
with the state of the AD DS with our changes already in place. Let's open a new
command-line prompt window and execute the following script inside the directory
where we have the other LDIF file:

C:\Users\Administrator.POA> cd Desktop

C:\Users\Administrator.POA\Desktop>ldifde –f new-adds-schema.ldif \

–d CN=Schema,CN=Configuration,DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br

Connecting to "adds.poa.msdcbrz.eall.com.br"

Logging in as current user using SSPI

Chapter 7

[205]

Exporting directory to file new-adds-schema.ldif

Searching for entries…

Writing out entries ...

...

.........................

1552 entries exported

The command has completed successfully

C:\Users\Administrator.POA\Desktop>

If we look closely at the preceding output, we can already see that we have a good
starting point for our comparison. If we recall our first execution before the AD DS
schema extension, we had 1550 entries, and now we have 1552 (we have added one
class and one attribute to the schema).

That seems like a good sign, but as we will see next, it does not actually relate to
attributes and classes, as we thought at first. In any case, let's not take anything for
granted and not jump to any conclusions yet, as we have a proper tool to help us
analyze and give us a better and proper view of the AD DS state.

Now we can execute the following by navigating to Start | Run:

We should get the default AD DS/LDS Schema Analyzer tool screen, with three
top menu options. Just go to File | Load target schema… as shown in the
following screenshot:

Extending the Active Directory Schema Using Samba 4

[206]

In the screen that will now appear (as shown in the following screenshot), we can
click on the Load LDIF… button to load the LDIF file from before the AD DS
schema extension:

Select the old-adds-schema.ldif file and press Enter. At the bottom of the AD
DS/LDS Schema Analyzer tool, we will see some progress as the tool loads the
entries, and at the end we will see a summary of the loaded schema as shown in the
following screenshot:

Ok, now we need to load the base schema so we can use the tool for the comparison.
We can do this in the following two ways:

•	 Connecting directly to the live AD DS
•	 Using the LDIF file we generated based on the AD DS schema after

the extension

We will use the latter. Thus, we just need to click on the top menu and go to File |
Load base schema…, and in the next screen click on the button Load LDIF… as we
did for the target schema in the previous step.

Again, a summary of the new loaded schema will appear at the bottom of the tool.
Now we can actually see that we have one more class and one more attribute on our
Active Directory. After the load, the tool will automatically execute a comparison
between the schemas, as we can see in the following screenshot:

Chapter 7

[207]

Now, to be absolutely certain that all attributes and classes are present on the
actual schema, we go to Schema | Hide present elements, as shown in the
following screenshot:

After that, we will see that all the items in the upper panel on the AD DS/LDS
Schema Analyzer tool are empty. This means that every element is present,
as shown in the following screenshot:

This is one way we can use this handy tool to perform comparisons when we change
the AD DS default schema. Now, if we exit the tool and start it again, we can actually
perform a similar comparison, but this time loading the target schema as our
new-adds-schema.ldif file and the base schema as the old-adds-schema.ldif file.
So, if we click on the top menu and go to Schema | Hide present elements, we will
see that our items will not be empty anymore, as shown in the following screenshot:

Extending the Active Directory Schema Using Samba 4

[208]

So we know that we have new elements on our new AD DS schema. Expanding
all the items in that upper panel, we will have a hierarchy similar to the
following screenshot:

Excellent! We can see exactly which new classes and attributes we have and the
relationships between them. This is a very useful tool to analyze changes on the
Active Directory schema, and it is a must-have application for system administrators
who plan to execute an AD DS schema extension.

Summary
In this chapter, we learned the key consideration points when planning an Active
Directory schema extension, how to prepare the tests and validations for the AD DS
schema extension procedure, and learned how to export the current AD DS schema
configuration.

We could also execute a practical AD DS schema extension procedure using a
proper registered OID on top of a real application use case based on a PAM module
implemented to solve a real use-case scenario.

At the end of the chapter, we learned how to execute general tests and validations
of the health of Active Directory and learned a step-by-step procedure to perform
a full comparison between the old AD DS schema and the new extended schema
configuration to fully validate the whole process.

In the next chapter, we will learn how to implement a highly available distributed
file server using the Samba 4 Server and some auxiliary software such as the
GlusterFS distributed filesystem and the Cluster Trivial Database (CTDB).

Implementing a Highly
Available Distributed File

Server
This chapter, with a more advanced focus, deals with high availability for the file
server role in Samba 4 deployments. The objective of this chapter is to show how
to implement a highly available file server using Samba 4 and software such as
Clustered Trivial Database (CTDB) and the GlusterFS distributed filesystem.

The user will be instructed to implement this solution through step-by-step
command-line examples, touching some of the many concepts involved and
covering the following topics:

•	 Preparing the Debian GNU/Linux environment
•	 Configuring GlusterFS
•	 Integrating CTDB [43], GlusterFS, and the Samba 4 Server
•	 Executing some tests and validations on the highly available distributed

filesystem server

The chapter will follow the objectives of the book in being practical, hence it should
not be an exhaustive source for the technologies referenced here (for example,
GlusterFS), and will not cover all the options and possible scenarios. That said,
it will provide a great foundation and a solid work example to implement
a complete solution to provide highly available file services.

http://ctdb.samba.org/

Implementing a Highly Available Distributed File Server

[210]

Preparing the Debian GNU/Linux
environment
Before we start the configuration of the software involved in the solution, we need
to have the proper operating system environment so we can install the software
required for our highly available file server. If you have installed the Debian GNU/
Distribution 7.2 (Wheezy) or above, the CTDB version that is available to be installed
on that environment is ready to use for our requirement. In this case, just make sure
to execute the following commands before you proceed to the software installation:

root@gluster1:~# apt-get update

Hit http://ftp.br.debian.org wheezy Release.gpg

Hit http://ftp.br.debian.org wheezy-updates Release.gpg

Hit http://ftp.br.debian.org wheezy Release

Hit http://ftp.br.debian.org wheezy-updates Release

Hit http://ftp.br.debian.org wheezy/main Sources

Hit http://ftp.br.debian.org wheezy/main amd64 Packages

…

… SKIPPED FOR BREVITY …

…

Reading package lists... Done

root@gluster1:~# apt-get upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

root@gluster1:~#

The two preceding commands will update the package list for our distribution and
apply any upgrades needed to bring our Debian GNU/Linux installation to the
most up-to-date version. For older versions of the Debian GNU/Linux distribution
(for example, 6.x Squeeze), the user will need to upgrade the whole distribution
with the preceding commands, followed by the apt-get dist-upgrade command.
The references have a link for the official Debian documentation explaining the
distribution upgrade process in detail [50].

After the operating system environment is configured and ready (for example, Debian
Wheezy 7.2+), we can proceed with the installation of the CTDB software. We will need
two packages for our configuration: ctdb and libctdb-dev. Just issue the following
command in a terminal window, for example, as a root user or using sudo[73]:

http://www.debian.org/releases/stable/i386/release-notes/ch-upgrading.html
https://wiki.debian.org/sudo

Chapter 8

[211]

root@gluster1:~# apt-get install ctdb libctdb-dev

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 ctdb libctdb-dev

…

… SKIPPED FOR BREVITY …

…

root@gluster1:~#

With the operating system environment configured and ready, we can proceed to the
installation of the GlusterFS and XFS filesystem tools. Just log in and use the su or
sudo commands to install the packages as follows:

root@gluster1:~# apt-get install glusterfs-server xfsprogs

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 fuse fuse-utils glusterfs-client glusterfs-common libibverbs1
libreadline5

Suggested packages:

 glusterfs-examples xfsdump quota

The following NEW packages will be installed:

 fuse fuse-utils glusterfs-client glusterfs-common glusterfs-server

 libibverbs1 libreadline5 xfsprogs

0 upgraded, 8 newly installed, 0 to remove and 0 not upgraded.

Need to get 13.6 MB of archives.

…

… SKIPPED FOR BREVITY …

…

Setting up xfsprogs (3.1.7+b1) ...

Processing triggers for initramfs-tools ...

update-initramfs: Generating /boot/initrd.img-3.2.0-4-amd64

Setting up fuse-utils (2.9.0-2+deb7u1) ...

Setting up glusterfs-client (3.2.7-3+deb7u1) ...

Setting up glusterfs-server (3.2.7-3+deb7u1) ...

[ok] Starting glusterd service: glusterd.

root@gluster1:~#

Implementing a Highly Available Distributed File Server

[212]

In the preceding procedure, we can see the command needed to install the GlusterFS
server package, XFS tools, and all their dependencies on the Debian GNU/Linux
distribution. Just remember that we need the preceding software on all nodes, and in
our specific cluster, we will have two servers (for example, gluster1 and gluster2),
so we need to execute the previous procedures on both nodes.

The last step in our preparation phase is to install the Samba 4 software. The reader
can refer to the previous chapters, where we executed the Samba 4 installation
instructions step-by-step. The only attention point is to add the essential option,
–with-cluster-support, to the configure command so that Samba 4 will be
compiled with the needed cluster features.

Configuring GlusterFS for high
availability and scalability
In this topic, our first goal is to explain an important distinction when we discuss
cluster filesystems. In IT, we have many words that are used out of context many
times and start to mean many different things. Here, we will not try to create any
definition or concept though, but just explain why we have decided to use the
GlusterFS filesystem for our highly available file server and the important difference
between GlusterFS and other cluster filesystems, approaches (for example, Oracle
Cluster File System (OCFS) [41]).

If there is a word in IT that has the most different meanings for different people, it is
the word "cluster". We have many filesystems that are called cluster filesystems, and
if we go to the homepage of the GlusterFS project (http://www.gluster.org/), we
will see that the word cluster is used many times. But the most important word for
our use case, and the reason we have selected the GlusterFS project for our solution, is
"distributed". The majority of the cluster filesystems and many users that think about it
may imagine solutions to be more in accordance with the OCFS [41] approach.

OCFS is a type of filesystem where different machines share access to the same
storage device (for example, disks). OCFS has a mechanism to control simultaneous
access to the underlying storage between the different servers, but it still provides
a consistent filesystem view for the clients, independent of which server a client is
connected to. This is a legitimate solution, and OCFS is a very robust production
filesystem. The issue in this design for the purposes of our use case is the fact
that to use it we need to have access to a shared-disk infrastructure [for example,
Storage Area Network (SAN)] and rely on the high availability of the disk arrays
underneath. Beside this, the scalability of our solution will be dependent on the
scalability of the backend disks for performance and space requirements.

https://oss.oracle.com/projects/ocfs/
https://oss.oracle.com/projects/ocfs/

Chapter 8

[213]

Now enters the distributed filesystem approach (where we have GlusterFS [42] as an
example), which does not rely on a shared-disk infrastructure but combines storage
from different machines/servers together as building blocks to present to the clients
a single global namespace. This model is much better in our experience for scalable,
highly available, high-performance file server solutions, as there isn't a single point
of failure and performance and space requirements scale horizontally as well.

It's important to note that the OCFS used here as an example of a shared-disk cluster
filesystem has its requirements and use cases very well defined on the Oracle OCFS
page [41]. OCFS has great features and a specific use case for Oracle Real Application
Clusters [41]. It is used in many other solutions as it can be used as the base for a
Samba 4 highly available file server too. We have just explained the reasons behind
choosing to use a distributed filesystem (GlusterFS), so feel free to utilize whatever
is more adequate for your environment or you feel more comfortable with (the
procedure presented here should help you in a big way even if you decide to use
a different filesytem).

Our file server is for a small/medium network with moderate
performance requirements. The scale-out nature of GlusterFS provides
us the ability to add more nodes and enhance performance as we need,
but every filesystem and solution has its own trade-offs, and you need to
evaluate what better fits your use case (for example, small files, big files,
random access, and so on).

One last but important point to note is that GlusterFS is not a "full" filesystem per
se, but it concatenates filesystems into one big single namespace, so data on those
filesystems get distributed, replicated, or both on the GlusterFS nodes [44]. We will
use the XFS as the underlying filesystem for the GlusterFS filesystem as it is a very
robust filesystem and offers a good general performance (for different use cases).

Now let's begin the real work and start the configuration of the GlusterFS part of our
solution. Our highly available distributed file server will be composed of two file
servers, three distinct network interfaces, and two Virtual IPs (VIPs).

One network will be used for our CIFS/SMB clients (192.168.1.0), and the VIPs
will be on this network too, as follows:

•	 Node 0 (gluster1/eth0) = 192.168.1.1
•	 Node 1 (gluster2/eth0) = 192.168.1.2
•	 VIPs: 192.168.1.20 and 192.168.1.30

http://www.gluster.org/about
https://oss.oracle.com/projects/ocfs/
https://oss.oracle.com/projects/ocfs/
http://www.gluster.org/community/documentation/index.php/Getting_started_common_criteria

Implementing a Highly Available Distributed File Server

[214]

The second network will be used for the GlusterFS heartbeat (10.10.10.0/24)
as follows:

•	 Node 0 (gluster1/eth1) = 10.10.10.21
•	 Node 1 (gluster2/eth1) = 10.10.10.22

The third one will be used for the CTDB heartbeat (10.11.11.0/24) as follows:

•	 Node 0 (gluster1/eth1) = 10.11.11.21
•	 Node 1 (gluster1/eth1) = 10.11.11.22

Every cluster solution that I have worked with needed specific interconnection
interfaces for exclusive communication between the machines integrating the cluster.
Some clusters needed as much as three different exclusive interfaces for this role (for
redundancy) or required the use of a quorum network component (for example, a
server), a quorum device (for example, a shared disk), or even both. This is because
clusters need to handle different failure scenarios, and specifically two-node clusters
have even more specific issues (for example, a communication failure between nodes
is a total partition/split-brain).

So, we will use one dedicated interface for each heartbeat communication instance
[46] (GlusterFS and CTDB) and the data network (for example, client-facing
interface). Setting the latter to be a dedicated interface is important for performance
and isolation/troubleshooting purposes (for example, NAS Network). Besides that,
each server (for example, a cluster node) will have one dedicated disk to be used in
the GlusterFS configuration as a data disk (for example, "brick" in GlusterFS terms).

It's very important to have a dedicated network for the client's data.

The first thing we need to make sure is configured and working properly are our
network connections, so that we can start configuring all the interfaces on both nodes.
The following commands are an example of the three interfaces for the first node:

root@gluster1:~# ifconfig -a | grep -A2 "eth0\|eth1\|eth2"

eth0 Link encap:Ethernet HWaddr fa:ce:27:ed:bf:39

 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:feed:bf39/64 Scope:Link

--

eth1 Link encap:Ethernet HWaddr fa:ca:27:f9:cc:a4

 inet addr:10.10.10.21 Bcast:10.10.10.255 Mask:255.255.255.0

http://en.wikipedia.org/wiki/Heartbeat_network

Chapter 8

[215]

 inet6 addr: fe80::a00:27ff:fef9:cca4/64 Scope:Link

--

eth2 Link encap:Ethernet HWaddr ce:fa:27:3e:72:d4

 inet addr:10.11.11.21 Bcast:10.11.11.255 Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:fe3e:72d4/64 Scope:Link

root@gluster1:~#

Now let's take a look at the disks that we have available on our nodes (for example,
node 1) as follows:

root@gluster2:~# fdisk -l | grep sd

Disk /dev/sdb doesn't contain a valid partition table

Disk /dev/sda: 8589 MB, 8589934592 bytes

/dev/sda1 * 2048 16254975 8126464 83 Linux

/dev/sda2 16257022 16775167 259073 5 Estendida

/dev/sda5 16257024 16775167 259072 82 Linux swap /
Solaris

Disk /dev/sdb: 5368 MB, 5368709120 bytes

root@gluster2:~#

As we start working on disks, it's very important that we make sure
on which disks we are working and validate all procedures in a test
environment before moving to production. Be aware that some of the
commands we will cover hereafter, when executed on improper devices
(for example, disks), may lead to data loss.

The script above shows us that we have a disk (/dev/sda) that contains the partitions
for our OS installation and another (/dev/sdb) available and without a partition table
(first line in the output above). That is our brand new disk, where our Samba 4 client's
data will reside, and thus we can create an XFS filesystem on it (make sure all nodes
you are preparing for the cluster have a disk available for our XFS filesystem).

Now we can execute the following script on both servers (for example, gluster1 and
gluster2) to create one partition on the /dev/sdb disk and list it afterwards to make
sure it was created properly:

root@gluster1:~# echo -e "n\np\n1\n\n\nw" | fdisk /dev/sdb > /dev/null
2>&1 && fdisk -l /dev/sdb

Disk /dev/sdb: 5368 MB, 5368709120 bytes

181 heads, 40 sectors/track, 1448 cylinders, total 10485760 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

Implementing a Highly Available Distributed File Server

[216]

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0xad90d89b

 Device Boot Start End Blocks Id System

/dev/sdb1 2048 10485759 5241856 83 Linux

root@gluster1:~#

So far so good, let's create the XFS filesystem (execute on both nodes):

root@gluster1:~# mkfs.xfs /dev/sdb1 && echo OK

meta-data=/dev/sdb1 isize=256 agcount=4, agsize=327616 blks

 = sectsz=512 attr=2, projid32bit=0

data = bsize=4096 blocks=1310464, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =internal log bsize=4096 blocks=2560, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

OK

root@gluster1:~#

The next step is to create the mount point for our brand new XFS filesystem, persist it
on our operating system configuration (for example, /etc/fstab), and mount it (the
procedure to be executed on all cluster nodes) as follows:

root@gluster1:~# mkdir -p /var/storage/disk1

root@gluster1:~# cp -pRf /etc/fstab /etc/fstab-`date '+%s%m%d%Y'` &&

echo "/dev/sdb1 /var/storage/disk1 xfs defaults 0 0" >> /etc/fstab &&
echo OK

OK

root@gluster1:~# mount -a && df -h | grep sdb1

/dev/sdb1 5.0G 33M 5.0G 1% /var/storage/disk1

The preceding scripts should create a backup of our /etc/fstab file before editing
it. The last script does mount the XFS filesystem on the mount point we have created
(reading it from the /etc/fstab directory) and uses the df utility to show us the
mounted partition information. For the bootstrap of our configuration, let's add the
hostname/IP pair of each server on the /etc/hosts file for simplicity (execute the
same procedure on both nodes) as follows:

root@gluster1:~# cp -pRf /etc/hosts /etc/hosts-`date '+%s%m%d%Y'` &&

echo "10.10.10.21 gluster1-gc" >> /etc/hosts && \

Chapter 8

[217]

echo "10.10.10.22 gluster2-gc" >> /etc/hosts && \

echo "10.11.11.21 gluster1-cc" >> /etc/hosts && \

echo "10.11.11.22 gluster2-cc" >> /etc/hosts && echo OK

OK

root@gluster1:~#

After we have executed these basic procedures successfully (for example, received
OK, as in the preceding output), we can start the configuration of the GlusterFS
distributed filesystem. Make sure you have executed all the previous procedures
on both nodes until this point before moving on to the next steps.

Again, we need to execute the following command on both nodes, but just slightly
differently. Here, we have one example of running it on the node 2 (gluster2)
as follows:

root@gluster2:~# gluster peer probe gluster1-gc

Probe successful

root@gluster2:~#

The systems should not have previous Samba software versions
(for example, Version 3) or old configurations and binaries that can
conflict with Samba 4. Remember to remove all configurations and
software previously installed (for example, the apt-get purge). Test
everything in a lab environment and create backups of everything you
remove or reconfigure.

The important point in the previous commands is that we need to probe node 0
(gluster1) from node 1 (gluster2) and vice versa. Note that we are using the
Gluster interconnect interface (gluster1-gc) because that is the heartbeat interface
we have created for the GlusterFS inter-node communication.

Before we do create our volume, let's just clarify two important and distinct
configuration options for Gluster: replicate and distribute. We will use the first option,
as it replicates data between the nodes of the cluster that gives us redundancy and
availability at the Gluster filesystem level (very important as we are using just one disk
at each server without RAID [47]). The second mode (distribute) will place the files
across the nodes (for example, volumes) of the gluster [45], which is a good thing for
performance and space, but we would need to add a layer of redundancy on our disks
or any node failures would result in unavailability for our clients. We can even combine
the two modes, but that is out of the scope of this book.

http://en.wikipedia.org/wiki/RAID
http://www.gluster.org/community/documentation/index.php/GlusterFS_Concepts

Implementing a Highly Available Distributed File Server

[218]

Execute the following commands on just one node. The following is an example of
the execution on the gluster2 node:

root@gluster2:~# gluster volume create smb01 replica 2 \

gluster1-gc:/var/storage/disk1 gluster2-gc:/var/storage/disk1

Creation of volume smb01 has been successful. Please start the volume to
access data.

root@gluster2:~# gluster volume start smb01

Starting volume smb01 has been successful

root@gluster2:~#

If the two preceding commands were executed successfully, we should have our
brand new volume ready to go! As we need to see it to believe it, the following
command will show the state of the glusterfs volume (executed from any node):

root@gluster2:~# gluster volume info

Volume Name: smb01

Type: Replicate

Status: Started

Number of Bricks: 2

Transport-type: tcp

Bricks:

Brick1: gluster1-gc:/var/storage/disk1

Brick2: gluster2-gc:/var/storage/disk1

root@gluster2:~#

The preceding command is very informative, as we can see the volume name, the
volume type (in our case, replicate), the number and nodes/path of the individual
bricks, and most importantly, the status (in our execution example, Started).

Integrating CTDB, GlusterFS, and the
Samba 4 Server
CTDB is the software that implements the clusterization of the Trivial Database
(TDB) [49] used by Samba [43]. As CTDB provides functionalities that are similar
to those provided by TDB (for example, the same type of functions), Samba or any
other project/software that already uses the Trivial Database can migrate to
a clustered version (CTDB) with minimal effort.

http://tdb.samba.org
http://ctdb.samba.org/

Chapter 8

[219]

CTDB needs a special lock file that is accessible from any node, so we will create it
on our glusterfs volume (for example, smb01) in a specific directory called ctdb.
The following procedure needs to be run in just one node:

root@gluster1:~# mkdir –p /var/lib/samba/glusterfs && echo OK

OK

root@gluster1:~# cp -pRf /etc/fstab /etc/fstab-`date '+%s%m%d%Y'` &&

echo "localhost:/smb01 /var/lib/samba/glusterfs/ glusterfs defaults,_
netdev 0 0" >> /etc/fstab && mount -a && echo OK

OK

root@gluster1:~# mkdir /var/lib/samba/glusterfs/ctdb && echo OK

OK

root@gluster1:~#

Now we need to create some files inside that directory, and the first one is the ctdb
file. Let's copy the default ctdb file from the Debian GNU/Linux distribution to use
it as a template. For that, just issue the following command in one node (the node
you have executed the previous procedure in, as it has the glusterfs filesystem
already mounted):

root@gluster1:~# cp -pRf /etc/default/ctdb /etc/default/ctdb-`date
'+%s%m%d%Y'` && echo OK

OK

root@gluster1:~# rm /etc/default/ctdb && echo OK

OK

root@gluster1:~#

In the other nodes of the cluster, just execute the following command:

root@gluster2~# rm /etc/default/ctdb && echo OK

OK

root@gluster2:~#

The /var/lib/samba/glusterfs/ctdb/ctdb file is the main configuration file
for the CTDB software (for example, on the Debian GNU/Linux distribution), and
we will edit this file in just one node (the one we have the glusterfs filesystem
mounted in, that is, gluster1) and leave it with the following content:

root@gluster1:~# cat /etc/default/ctdb

CTDB_RECOVERY_LOCK="/var/lib/samba/glusterfs/ctdb/lock"

CTDB_PUBLIC_INTERFACE=eth0

CTDB_PUBLIC_ADDRESSES="/var/lib/samba/glusterfs/ctdb/public_addresses"

Implementing a Highly Available Distributed File Server

[220]

CTDB_NODES="/var/lib/samba/glusterfs/ctdb/nodes"

CTDB_MANAGES_SAMBA=yes

CTDB_INIT_STYLE=debian

CTDB_SERVICE_SMB=smb4

CTDB_DBDIR=/var/lib/ctdb

CTDB_DBDIR_PERSISTENT=/var/lib/ctdb/persistent

The first configuration is for the CTDB lock file, and the second line is the
configuration for the file containing the public IP addresses (VIPs). The content
for the file pointed in the configuration of CTDB_NODES should be the list of the
nodes' IP addresses (for example, the nodes' interconnect interfaces). The last lines
are configurations for CTDB to be able to manage the initialization of the Samba 4
daemon and CTDB databases' locations.

The following is the content of the nodes file; execute the following script on just one
node to create the file (in the same node we have executed the previous procedures,
as we have the glusterfs filesystem already mounted on it):

root@gluster1:~# echo -e "10.11.11.21\n10.11.11.22" >

/var/lib/samba/glusterfs/ctdb/nodes

root@gluster1:~# cat !$

cat /var/lib/samba/glusterfs/ctdb/nodes

10.11.11.21

10.11.11.22

root@gluster1:~#

In the official CTDB documentation at samba.org, you will find the
description of each tunable option [52].

We need virtual IPs (VIPs) for the cluster to use in case of node failures to be able to
transfer the services (for example, VIPs) to other nodes. These VIPs need to be on the
public interface because they are the point of connection for the Samba 4 client.

Here is the script to be executed just on one node (the same as we executed in the
previous steps) to add the content of the public_addresses file and show it:

root@gluster1:~# echo -e "192.168.1.20/24\n192.168.1.30/24" > /var/lib/
samba/glusterfs/ctdb/public_addresses

root@gluster1:~# cat !$

cat /var/lib/samba/glusterfs/ctdb/public_addresses

192.168.1.20/24

http://ctdb.samba.org/manpages/ctdb-tunables.7.html

Chapter 8

[221]

192.168.1.30/24

root@gluster1:~#

The last configuration step is to edit our smb.conf file and add the clustering
directive and specify our share volume, as highlighted in the following excerpt:

root@gluster1:~# cat /usr/local/samba/etc/smb.conf

[global]

 clustering = yes

 workgroup = POA

 netbios name = hafs

 security = ads

 …

…

[share]

 path = /var/lib/samba/glusterfs/data

 comment = Highly Available Share

 read only = No

 valid users = @"POA\Domain Admins"

 browseable = Yes

After that, we move the smb.conf configuration file for our highly available share
(you just need to do the editing in one node—the same way we have executed the
previous editing) as shown in the following commands:

root@gluster1:~# mkdir /var/lib/samba/glusterfs/data

root@gluster1:~# mv /usr/local/samba/etc/smb.conf \

/var/lib/samba/glusterfs/ctdb/ && echo OK

OK

root@gluster1:~#

You may consider adding the reset on zero vc = yes option to
your smb.conf file. You may have a look into more details about this
and other file locking options and considerations [55]. Locking is an
important issue in file servers, and so the reader needs to understand
all the implications of the different options.

http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/locking.html

Implementing a Highly Available Distributed File Server

[222]

Now we need to create symbolic links for the ctdb and smb.conf files in every node
of the cluster (for example, the gluster1 and gluster2 nodes). So, execute the
following procedure on all nodes (inclusive of gluster1):

root@gluster1:~# ln -s /var/lib/samba/glusterfs/ctdb/ctdb /etc/default/
ctdb && echo OK

OK

root@gluster1:~# ln -s /var/lib/samba/glusterfs/ctdb/smb.conf /usr/local/
samba/etc/smb.conf && echo OK

OK

root@gluster1:~#

Some utilities will search for files in the default location using default names (for
example, /etc/ctdb/nodes), so let's create these links as well (on both nodes) as
shown in the following commands:

root@gluster1:~# ln -s /var/lib/samba/glusterfs/ctdb/nodes /etc/ctdb/
nodes && echo OK

OK

root@gluster1:~# ln -s /var/lib/samba/glusterfs/ctdb/public_addresses /
etc/ctdb/public_addresses && echo OK

OK

root@gluster1:~#

Now we are going to start the services, so let's do it! As we executed the majority
of the configuration procedure on the gluster1 node, we should already have the
glusterfs volume mounted on that node. Now, we just need to mount it on the
second node as shown in the following commands:

root@gluster2:~# mkdir –p /var/lib/samba/glusterfs && echo OK

OK

root@gluster2:~# cp -pRf /etc/fstab /etc/fstab-`date '+%s%m%d%Y'` &&

echo "localhost:/smb01 /var/lib/samba/glusterfs/ glusterfs defaults,_
netdev 0 0" >> /etc/fstab && mount -a && echo OK

OK

root@gluster2:~#

Chapter 8

[223]

As we have installed the Samba 4 software by compiling it from the source code
directly, we are not using a binary package from the distribution and so we do not
have a Samba 4 initialization script. We have made some minor adjustments on a
publicly available Samba 4 initialization script referenced here [48] that was based
on the script from the Debian GNU distribution for the Samba 3 package, and it is
provided as an example initialization script available in the book's repository. So we
just need to download it and put it in the /etc/init.d/ directory and name it smb4
(on both nodes), as follows:

root@gluster1:~# cd /etc/init.d/ && echo OK

OK

root@gluster1:~# wget --quiet https://raw.github.com/packt/bookrepository/
master/smb4-fs && mv smb4-fs smb4 && echo OK

OK

root@gluster1:~# chmod 755 smb4 && cd && echo OK

OK

root@gluster1:~#

Execute the following commands to adjust the CTDB script path and create a link for
the default Samba configuration file (in all nodes):

root@gluster1:~# cp -pRf /etc/ctdb/functions /etc/ctdb/functions-

`date '+%s%m%d%Y'` && sed -e 's/PATH=\/bin:.*$/PATH=\/usr\/local\/
samba\/bin:\/usr\/local\/samba\/sbin:\/bin:\/usr\/bin:\/usr\/sbin:\/
sbin:\$PATH/g'

/etc/ctdb/functions > /etc/ctdb/functions-new && mv

/etc/ctdb/functions-new /etc/ctdb/functions && echo OK

OK

root@gluster1:~# mkdir /etc/samba && ln -s /var/lib/samba/glusterfs/ctdb/
smb.conf /etc/samba/ && echo OK

OK

root@gluster1:~#

http://anonscm.debian.org/gitweb/?p=pkg-samba/samba.git;a=blob_plain;f=debian/samba.samba-ad-dc.init;h=3132d2e367675f822342a5b7bc2e50c046aa3b8f;hb=HEAD

Implementing a Highly Available Distributed File Server

[224]

Ready to start the CTDB software and bring our Samba 4 highly available distributed
file server online? Good! Just execute the following commands on both nodes:

root@gluster1:~# service ctdb start

[ok]

root@gluster1:~#

The CTDB cluster will not be up and running (healthy) right away, as we still need to
add our HA file servers into the domain. The winbindd daemon will not start unless
we do that, and CTDB will identify that error and prevent the system from being
fully functional. We can take a look at the ctdb logs, as follows, to see the typical
error at this configuration stage:

root@gluster1:~# tail /var/log/ctdb/log.ctdb

2013/12/12 18:35:35.732508 [18195]: Release freeze handler for prio 3

2013/12/12 18:35:36.031226 [recoverd:18454]: Resetting ban count to 0 for
all nodes

2013/12/12 18:35:49.465193 [18195]: 50.samba: ERROR: winbind - wbinfo -p
returned error

2013/12/12 18:35:52.046421 [recoverd:18454]: Trigger takeoverrun

2013/12/12 18:35:54.644519 [18195]: 50.samba: ERROR: winbind - wbinfo -p
returned error

2013/12/12 18:35:59.863546 [18195]: 50.samba: ERROR: winbind - wbinfo -p
returned error

...

root@gluster1:~#

In order to fix this error, we need to join the nodes into our domain, but for that we
need to execute the join procedure in just one node. The CTDB cluster will handle
the sync of the secrets.tdb file to have consistent credentials between our nodes
(a join is made for our netbios cluster name, and the same is done for all clusters'
members). For our AD DS server, no matter how many gluster, CTDB, and Samba
file servers we have in the cluster, they will be like one of these:

root@gluster1:~# export PATH=/usr/local/samba/sbin:\

/usr/local/samba/bin:$PATH

root@gluster1:~# net ads join -U administrator

Enter administrator's password:

Using short domain name -- POA

Joined 'HAFS' to dns domain 'poa.msdcbrz.eall.com.br'

Not doing automatic DNS update in a clustered setup.

root@gluster1:~#

Chapter 8

[225]

Now we restart the CTDB services (on both nodes) as follows:

root@gluster1:~# service ctdb stop && service ctdb start

[....] Stopping Clustered TDB: ctdb

[ok] Starting Clustered TDB : ctdb.

root@gluster1:~#

And after a few minutes, we should be able to confirm that the status of the services
will be OK, as follows:

root@gluster1:~# ctdb status

Number of nodes:2

pnn:0 10.11.11.21 OK (THIS NODE)

pnn:1 10.11.11.22 OK

Generation:225613703

Size:2

hash:0 lmaster:0

hash:1 lmaster:1

Recovery mode:NORMAL (0)

Recovery master:0

root@gluster1:~#

The systems need some time to start and verify the services until we get to the OK
statuses, so just wait a few minutes (for example, watch ctdb status). If you face
any problems or the system does not come online, the logfile /var/log/ctdb/
log.ctdb has information about what the problem could be. When debugging the
problems with CTDB, we can change the default debug level from ERR in the file /
etc/default/ctdb to a number such as 3 or 5; for example, I have tested with 5 and
it is really verbose, instead of CTDB_DEBUGLEVEL=5.

The last point to confirm before going on to more specific tests is to check if the VIPs
are online on our nodes, as follows:

root@gluster1:~# ctdb ip -v

Public IPs on node 0

192.168.1.20 node[0] active[eth0] available[eth0] configured[eth0]

192.168.1.30 node[1] active[] available[eth0] configured[eth0] root@
gluster1:~#

root@gluster2:~# ctdb ip -v

Public IPs on node 0

192.168.1.20 node[0] active[] available[eth0] configured[eth0]

192.168.1.30 node[1] active[eth0] available[eth0] configured[eth0] root@
gluster2:~#

Implementing a Highly Available Distributed File Server

[226]

The preceding command is very handy, as we can see information about the IP
allocation on the cluster; another important piece of data is the active column.
From the preceding output, we can see that we have each of our servers with one
IP active, so the cluster automatically balances the distribution of IPs evenly on our
cluster, which is good for performance and availability. Let's just show the network
configuration of each server, so we can see that each node has the IP, as shown in the
preceding output:

root@gluster1:~# ip add show eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000

 link/ether fa:ce:27:ed:bf:39 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.2/24 brd 192.168.1.255 scope global eth0

 inet 192.168.1.20/24 brd 192.168.1.255 scope global secondary eth0

 inet6 fe80::a00:27ff:feac:f0c9/64 scope link

 valid_lft forever preferred_lft forever

root@gluster1:~#

Now let's look at the same command execution on node 1, as follows:

root@gluster2:~# ip addr show eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000

 link/ether fa:ce:27:f3:8d:50 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.3/24 brd 192.168.1.255 scope global eth0

 inet 192.168.1.30/24 brd 192.168.1.255 scope global secondary eth0

 inet6 fe80::a00:27ff:fef3:8d50/64 scope link

 valid_lft forever preferred_lft forever

root@gluster2:~#

Everything is up and running and we can go ahead and start our tests on the file
server and validate our configuration!

Executing tests and validations on the
highly available file server
The first test we need to execute on our highly available file server is to try to access
the share directly on the server localhost interface. We can perform this test using
the smbclient tool as follows:

Chapter 8

[227]

root@gluster1:~# smbclient -L localhost -U 'zisala%w1ndow$$'

Domain=[POA] OS=[Unix] Server=[Samba 4.0.9]

 Sharename Type Comment

 --------- ---- -------

 share Disk Highly Available Share

…

root@gluster1:~#

It's assumed that even if you have specified the interfaces to bind the
Samba 4 services, the loopback interface hangs your tests if you have
removed this interface from your configuration.

Second, let's try to access using the VIPs as follows:

root@gluster1:~# smbclient -L 192.168.1.20 -U 'zisala%w1ndow$$'

Domain=[POA] OS=[Unix] Server=[Samba 4.0.9]

 Sharename Type Comment

 --------- ---- -------

 share Disk Highly Available Share

…

root@gluster1:~#

 And…

root@gluster1:~# smbclient -L 192.168.1.30 -U 'zisala%w1ndow$$'

Domain=[POA] OS=[Unix] Server=[Samba 4.0.9]

 Sharename Type Comment

 --------- ---- -------

 share Disk Highly Available Share

…

root@gluster1:~#

Implementing a Highly Available Distributed File Server

[228]

Perfect! It's time to test the access and the high availability of our file server directly
from a Microsoft Windows client machine. Let's first create a DNS entry for our VIPs
so we can use it instead of the IP addresses to let our cluster handle any failures for
us, as it fails over the VIPs transparently between the nodes. Follow these steps:

1.	 Navigate to Administrative Tools | DNS, connect to the addc AD DS,
and expand the DNS server to select our domain as shown in the following
screenshot:

2.	 In the top menu, select View and check the option Advanced as shown in the
following screenshot:

3.	 The preceding selection is needed to be able to edit the TTL value for our
glusterfs records [51]. We need to edit the TTL to provide a faster recovery
time for our file server cluster and some kind of load balancing. Just for our
test, we will create AA records and set the TTL to 1. Just right-click on the
poa.msdcbrz.eall.com.br zone and select New Host (A or AAAA)... as
shown in the following screenshot:

http://support.microsoft.com/kb/297510

Chapter 8

[229]

4.	 In the New Host screen next, fill the first box with the name glusterfs, fill
the IP address box with 192.168.1.20, and at the bottom of the screen set
the TTL to 1. The following screenshot has an example for this procedure:

5.	 After we have clicked on the Add Host button in the previous screen,
we repeat the process, just changing the IP from 192.168.1.20 to
192.168.1.30, as shown in the following screenshot. So, at the end,
we should have two new glusterfs records, each pointing to different
IPs and both with TTL 1. Just click on Done.

Implementing a Highly Available Distributed File Server

[230]

6.	 As stated in [51], we need to configure the Microsoft Windows client cache
time to actually have a consistent configuration and our short TTL effective
on our test environment. So, let's open the registry and find the key HKEY_
LOCAL_MACHINE\System\CurrentControlSet\Services\Dnscache\
Parameters, as shown in the following screenshot:

7.	 We need to add the entry DWORD (32-bit) Value with value name
MaxCacheEntryTtlLimit [51] as shown in the following screenshot:

8.	 The value is in seconds, so let's double-click on it and set it to 1 as shown in
the following screenshot:

9.	 In the end, our DNS cache parameters should read like those in the
following screenshot:

http://support.microsoft.com/kb/297510
http://support.microsoft.com/kb/297510

Chapter 8

[231]

10.	 Log in to a Microsoft Windows Server 2008 R2 as a user that has permission
to access the share we have created (for example, in Domain Admin group),
click on Start, enter \\glusterfs on the Search programs and files input
box, as shown in the following screenshot, and press Enter:

11.	 We should be presented with an explorer window showing our share.
On double-clicking on it, we should see that our share is empty, as shown
in the following screenshot:

12.	 Now we can copy some data to our share, and while the copying process
is running, we will stop the file server services on our node where we have
the preceding Microsoft Windows connection. To identify our connection,
let's execute the ipconfig command in a command prompt in the Microsoft
Windows Server 2008 R2 prompt, as shown in the following screenshot:

Implementing a Highly Available Distributed File Server

[232]

13.	 From the preceding output, we can see that our client has the IP
192.168.1.12. Now we can execute the following command in all nodes
of our GlusterFS cluster and identify the node that the client is connected
to. We can do this using more generic tools from the GNU/Linux world
(for example, netstat and grep) together with the onnode utility as a first
approach, as follows:
root@gluster1:~# onnode all "netstat -anl | grep -w 192.168.1.12"

>> NODE: 10.11.11.21 <<

tcp 0 0 192.168.1.20:445 192.168.1.12:57694 ESTABLISHED

>> NODE: 10.11.11.22 <<

root@gluster1:~#

The preceding utility (onnode) receives as arguments the nodes where we
want to execute commands (for example, all) and the script we want to
execute (for example, in the preceding example, list the host connections and
search for one specific IP).

14.	 An easier option is to use the smbstatus tool to present us with the answer
in a well formatted and very clean manner (we will use the –p option to
show us the processes and –n for the numeric data, as seen in the netstat
command earlier):

root@gluster1:~# smbstatus -np

Samba version 4.0.13

PID Username Group Machine

--

0:12624 1500 1513 192.168.1.12 (ipv4:192.168.1.12:57694)

root@gluster1:~#

We were lucky because the Microsoft client is connected on the same host where SSH
is connected (node 0 = gluster1), so we can just stop the services on this node and
CTDB will migrate the IP to another node, and that should be transparent for clients.

Let's copy something to our share. We have the matrix's logs on our desktop, so
we can copy it to the glusterfs share and so other architects can inspect it and
look for failures in the system. It's important in tests such as these to have the MD5
of the file so that we are able, at the end of the test, to make sure the file was not
corrupt and the cluster really did a consistent job on the IP transfer. So, glusterfs
and everything else worked as expected for the stability of our file server (we
will use xcopy [53] to copy the file; this utility has a /v option for verification of
the file after the copy, and you may use it if you need to). The MD5 for our file is
eeaa7d4c17d5c6c86aa7aac57c3594db. Follow these steps:

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/xcopy.mspx?mfr=true

Chapter 8

[233]

1.	 First let's see the status of the CTDB services as follows:
root@gluster1:~# ctdb status

Number of nodes:2

pnn:0 10.11.11.21 OK (THIS NODE)

pnn:1 10.11.11.22 OK

Generation:985025383

Size:2

hash:0 lmaster:0

hash:1 lmaster:1

Recovery mode:NORMAL (0)

Recovery master:0

root@gluster1:~#

For the services startup (for example, operating system boot), one
important step is to make sure the mount of the system partitions/disks
(for example, the glusterfs volumes) will happen after a gluster is
online. Another point to note is to organize the dependencies of each
service accordingly with the GNU/distribution initialization framework
(for example, ctdb needs to be the last service to come online, as it will
start Samba and all the underlying infrastructure needs to be up and
running before that).

2.	 Just open a command prompt window and issue the command demonstrated
in the following screenshot:

3.	 While our copying process is running, we will use the smbstatus command
one more time to make sure we will disable only the node where our
Microsoft Windows client is connected, as shown in the following command:
root@gluster1:~# smbstatus -np

Samba version 4.0.13

PID Username Group Machine

--

Implementing a Highly Available Distributed File Server

[234]

0:12624 1500 1513 192.168.1.12
(ipv4:192.168.1.12:57694)

root@gluster1:~#

4.	 The Microsoft Windows client is connected on the gluster1 host (node 0),
so we will disable this node, which will make the CTDB software migrate the
VIP to gluster2 (node 1), as follows:
root@gluster1:~# ctdb disable -n 0 && echo OK

OK

root@gluster1:~#

5.	 For this example, we have mapped the \\glusterfs\share share to Z: on our
Microsoft Windows client just to facilitate the tests. Z is the first letter offered.

6.	 Now, we can look at the CTDB's status to confirm that the node 0 is disabled,
as follows:
root@gluster2:~# ctdb status

Number of nodes:2

pnn:0 10.11.11.21 DISABLED

pnn:1 10.11.11.22 OK (THIS NODE)

Generation:2123322465

Size:2

hash:0 lmaster:0

hash:1 lmaster:1

Recovery mode:NORMAL (0)

Recovery master:1

root@gluster2:~#

7.	 The preceding output is exactly what we were expecting, as it shows the
node 0 (pnn: 0) disabled, and so we can assume that both the VIPs are on
node 1 (gluster2). Let's take a look at the following commands:
root@gluster2:~# ip addr show eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_
fast state UP qlen 1000

 link/ether fa:ce:27:f3:8d:50 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.3/24 brd 192.168.1.255 scope global eth0

 inet 192.168.1.30/24 brd 192.168.1.255 scope global secondary
eth0

 inet 192.168.1.20/24 brd 192.168.1.255 scope global secondary
eth0

Chapter 8

[235]

 inet6 fe80::a00:27ff:fef3:8d50/64 scope link

 valid_lft forever preferred_lft forever

root@gluster2:~#

8.	 Now, looking at smbstatus one more time, we should see our Microsoft
Windows client connected to gluster2 (node 1) as follows:
root@gluster2:~# smbstatus -np

Samba version 4.0.13

PID Username Group Machine

--

1:26044 1500 1513 192.168.1.12 (ipv4:192.168.1.12:50116)

root@gluster2:~#

9.	 We need to wait until the copying process finishes; the following screenshot
shows the end of our example copy:

10.	 Based on our previously calculated MD5 hash, we can validate if our failover
routine had some impact on the consistency of our file/copy. So, we can
execute the md5sum utility directly on one of our nodes to validate it,
as follows:
root@gluster2:~# md5sum /var/lib/samba/glusterfs/data/matrix.log

eeaa7d4c17d5c6c86aa7aac57c3594db /var/lib/samba/glusterfs/data/
matrix.log

root@gluster2:~#

Browse to samba.org to watch some cool screencasts. There's even one
on a procedure similar to the one presented here. There are some on
CTDB and failover scenarios too [54].

http://www.samba.org/~tridge/ctdb_movies/

Implementing a Highly Available Distributed File Server

[236]

11.	 Exactly the same! We have a robust solution, which can scale as well, based
on the distributed nature of glusterfs. This kind of solution leverages
administration flexibility and control much better, as well as availability and
resilience for the services and all that leads to happier customers. To bring
our cluster to the normal operation with all nodes in a healthy state, let's
reenable our node 0 (the gluster1 host) as follows:

root@gluster2:~# ctdb enable -n 0 && echo OK

OK

root@gluster2:~# ctdb status

Number of nodes:2

pnn:0 10.11.11.21 OK

pnn:1 10.11.11.22 OK (THIS NODE)

Generation:2123322465

Size:2

hash:0 lmaster:0

hash:1 lmaster:1

Recovery mode:NORMAL (0)

Recovery master:1

root@gluster2:~#

Summary
In this chapter, we learned how to create a highly available distributed file server
using the Debian GNU/Linux distribution, Samba 4, and other very important
components, such as CTDB, XFS, and GlusterFS. We have learned step-by-step
procedures from the preparation of the operating system environment, installation
of the needed software and dependencies (for example, libraries), to a custom
compilation of the Samba 4 application itself.

We have presented the relationship between the different components and how
to integrate and implement a proper solution that is robust, highly available,
and scalable—all very important characteristics for the highly demanding IT
environment. Finally, we executed tests and validations on the high availability
and distributed nature of our file server. We even simulated an issue on a node
to actually see the behavior of our environment and testify to the resilience of our
network file services.

In the next chapter, we will take a look at the Samba's Python binding scripting
interface and how we can become familiar with the language and internals of the
Samba 4 code. We will also take our first steps into the journey of participation and
collaboration in the Samba community.

The Samba 4 Python
Scripting Interface

This chapter deals with new features of the Samba 4 Server and is focused on the
coding of the Samba 4 software. This chapter is the most challenging one in the book
as it involves programming and some explorative work as part of our quest and we
learn about the Samba 4 code and some existing Python bindings. We will show and
explain some excerpts of code as well as a full example of how to use this powerful
API on a practical, day-to-day administration script. The following is a list of the
topics we will cover in this chapter:

•	 Open source development and collaborative work
•	 Exploring and using the Python interface of the Samba 4 Server
•	 Introducing Samba 4 Python bindings
•	 Understanding the power of Python and the Samba 4 Server

The Samba 4 Python Scripting Interface

[238]

Open source development and
collaborative work
The Samba software and the newest and much-awaited, fully featured Version
4 is the result of a huge project that hides an effortless community and the hard
work of hackers from all around the world [71]. No matter how many years I've
been involved in open source software initiatives and all the collaborative work
and amazing solutions resulting from many different open source projects, I'm
still amazed at the dedication and passion these communities employ in building
their code and support. Since the beginning of my career [70], I have always been
involved in open source projects such as GNU/Linux, FreeBSD, and OpenSolaris.
With respect to the last one, I could actually become a contributor for Open Highly
Availability Clusters, with my code actually accepted in the mainstream and a book
[57] about ZFS [58] published in Brazilian Portuguese. However, I have sent some
patches/requests for other open source application software, and even for operating
system features (such as the one for FreeBSD [56]).

Open source projects need the collaboration and participation of users, system
administrators, developers, and many other individuals who want to be part of it
and help with different projects—only that will ensure continuity. It will also help in
delivering quality and essential software that today we have running and supporting
countless solutions all around the world in different businesses and industries. The
Samba project is no exception, and with its scripting interface binding (for example,
Python), is a very productive and intelligent move on the part of the project's leaders
as the ease-of-use and thus, short learning curve for using a scripting interface such
as Python will surely help the project attract more developers quickly.

No software is created by itself; thus, there is a need for collaboration and to have
a pulsing community surrounding it that is passionate, always growing, and
interacting with users and other developers. The Samba project's leaders know this,
and Python bindings as well as some components of the project that are actually
written in Python is a clear move towards that objective. I hope this chapter helps
the reader embrace this goal and open source ideal, facilitating the adoption,
understanding, and participation of new contributors in this amazing project! If we
can get at least one new Samba developer or an individual interested in participating
in the development of a new feature or helping fix a bug that was incentivized and
stimulated, then this book was worth writing!

http://www.samba.org/samba/team/
http://www.eall.com.br/
http://www.brasport.com.br/informatica-e-tecnologia/banco-de-dados-br-2/zfs-para-usuarios-opensolaris-windows-mac-e-linux-br.html
http://en.wikipedia.org/wiki/ZFS
http://www.freebsd.org/cgi/query-pr.cgi?pr=54383

Chapter 9

[239]

Exploring and using the Python interface
of the Samba 4 Server
Python [59] is a programming language that runs on various platforms and
operating systems (for example, Microsoft Windows, GNU/Linux, Illumos [60],
FreeBSD [69], Mac OS, and others). Python has some similarities with other
interpreted programming languages such as Tcl, Perl, and Ruby, but includes some
distinguishing features, such as [61] strong introspection capabilities, intuitive object
orientation, full modularity (supporting hierarchical packages), and so on. Based on
Wheezy 7.2, a Debian GNU/Linux distribution, we can start playing with Python
and the bindings from Samba 4 very quickly. Let's just start looking at the package
that already has the python modules ready for installation on Debian Wheezy:

root@addc:~# apt-cache show python-samba

Description-en: Python bindings for Samba

 Samba is an implementation of the SMB/CIFS protocol for Unix systems,

 providing support for cross-platform file sharing with Microsoft
Windows, OS X,

 and other Unix systems. Samba can also function as a domain
controller

 or member server in both NT4-style and Active Directory domains.

 .

 These packages contain snapshot versions of Samba 4, the next-
generation

 version of Samba.

 .

 This package contains Python bindings for most Samba 4 libraries.

...

root@addc:~#

To search for packages on Debian GNU/Linux environments, we can use the apt-
cache search command (for example, apt-cache search python-samba). In
the command's output in the preceding code, we can see that the apt-cache show
command is used to describe the python-samba package as this is the package that
contains the Python bindings for most Samba 4 libraries. The Python programming
language should already be installed in our operating system as many parts of the
Debian GNU/Linux distribution depend on it (and actually, Samba too). We just
need to install the Samba Python bindings package; but, before that, let's take a look
at the Python interpreter without installing this extra package. We just need to issue
the following command:

http://www.python.org
http://wiki.illumos.org/display/illumos/illumos+Home
http://www.freebsd.org
http://www.python.org/about/

The Samba 4 Python Scripting Interface

[240]

leal@addc:~$ python

Python 2.7.3 (default, Jan 2 2013, 13:56:14)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

The last line in the preceding code is the Python interpreter prompt, which tells us
that the programming tool is ready. Now let's do some exploration and understand
some important commands that will help us with Python programming in a more
general sense. By issuing the following dir() function, we can find out the modules
available on the system:

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

>>>

This is an important command to know when working with Python. As you can see
in the preceding output, when we have just the built-in and default modules loaded,
the output for the dir() command should be similar to the previous output. As we
have not installed the python-samba package, we do not have any samba package
available to load in the Python interpreter. So, let's quit the Python interpreter and
install the python-samba package as follows:

>>> quit()

leal@addc:~$ sudo apt-get install python-samba

[sudo] password for leal:

...

Setting up python-samba (4.0.0~beta2+dfsg1-3.2) ...

leal@addc:~$

Modules in Python implement the different functions that are available.
For example, the __builtin__ module implements the dir() function
that we are using.

Now we can start the interpreter again and look at the modules available one
more time:

leal@addc:~$ python

Python 2.7.3 (default, Jan 2 2013, 13:56:14)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

>>>

Chapter 9

[241]

Not exactly what we were expecting, as we still do not have anything about Samba
on the modules listing. However, that is another important nugget of knowledge
about how Python works; as we have just now installed the python-samba module,
we have only made it available in our operating system environment, but have not
loaded it yet. In order to use it, we need to load it on Python and for that, we use the
import function:

 >>> import samba

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__', 'samba']

We can see that we have used the import command to load the samba package; after
this, we can execute the dir() function and finally see our samba module listed at
the end just after the default loaded modules. We have the module installed and
loaded in Python, but now what? How do I know what functions are available?
How will I use them? We will answer these questions in the following sections.

Introducing Samba 4 Python bindings
Another use of the dir()command is to list the functions and variables available on
each module we have loaded on Python. We will issue this command in the Python
interpreter as follows:

>>> dir(samba)

['Ldb', 'MAX_NETBIOS_NAME_LEN', '_Ldb', '__builtins__', '__doc__', '__
docformat__', '__file__', '__name__', '__package__', '__path__', '_glue',
'_ldb', 'check_all_substituted', 'dn_from_dns_name', 'ensure_external_
module', 'generate_random_password', 'get_debug_level', 'import_bundled_
package', 'in_source_tree', 'interface_ips', 'is_valid_netbios_char',
'ldb', 'nttime2string', 'nttime2unix', 'os', 'param', 'read_and_sub_
file', 'samba', 'set_debug_level', 'setup_file', 'source_tree_topdir',
'strcasecmp_m', 'strstr_m', 'substitute_var', 'sys', 'unix2nttime',
'valid_netbios_name', 'version']

So, we used the dir() function by passing an argument with it (for example, samba),
and so the output was different. If we call it without passing arguments, it returns
the names in the current scope (best effort [67]); but, with arguments (and depending
on the argument), it may return the module's attributes or its class attributes. Thus
we can dig deeper and get more information using the dir() function on one of
the preceding attributes and look deeper into the Samba module. We are making
progress, and now let's go one step further. We will continue to use the dir()
function, but now we will pass one of the names we received in the previous output
as an extra argument:

http://docs.python.org/2/library/functions.html#dir

The Samba 4 Python Scripting Interface

[242]

>>> dir(samba.MAX_NETBIOS_NAME_LEN)

['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__coerce__',
'__delattr__', '__div__', '__divmod__', '__doc__', '__float__', '__
floordiv__', '__format__', '__getattribute__', '__getnewargs__', '__
hash__', '__hex__', '__index__', '__init__', '__int__', '__invert__',
'__long__', '__lshift__', '__mod__', '__mul__', '__neg__', '__new__',
'__nonzero__', '__oct__', '__or__', '__pos__', '__pow__', '__radd__',
'__rand__', '__rdiv__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__',
'__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__
rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__
sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_
length', 'conjugate', 'denominator', 'imag', 'numerator', 'real']

We recognize the methods from the preceding output, and so MAX_NETBIOS_NAME_LEN
should be an int object. We can confirm this by just issuing the following command:

>>> dir(int)

['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__coerce__',
'__delattr__', '__div__', '__divmod__', '__doc__', '__float__', '__
floordiv__', '__format__', '__getattribute__', '__getnewargs__', '__
hash__', '__hex__', '__index__', '__init__', '__int__', '__invert__',
'__long__', '__lshift__', '__mod__', '__mul__', '__neg__', '__new__',
'__nonzero__', '__oct__', '__or__', '__pos__', '__pow__', '__radd__',
'__rand__', '__rdiv__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__',
'__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__
rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__
sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_
length', 'conjugate', 'denominator', 'imag', 'numerator', 'real']

>>>

Bingo[62]! Any similarity is not just mere coincidence. Before we continue looking
deeper, let's just print the integer number to recognize MAX_NETBIOS_NAME_LEN:

>>> print samba.MAX_NETBIOS_NAME_LEN

15

>>>

Chapter 9

[243]

That is another beautiful feature of the Python language: we just used print and the
int object, and we got the result (that is not so simple for some other programming
languages). It's really intuitive and as you start to play with the language, you will
see that it's really simple, and that is one of the reasons we have so many hackers
addicted to it. So, in the preceding code, we have the samba package defining the
maximum name length for NetBIOS[63]. Thus, we can use it just as we implement
any program to execute an administrative task and validate the machine's NetBIOS
name, for example. As a learning example, let's dig even deeper and use another
important built-in function called help() on the Python interpreter, following the
same utilization pattern of the dir() function. Have a look at the following example:

>>> help(int)

Help on class int in module __builtin__:

class int(object)

 | int(x[, base]) -> integer

 |

 | Convert a string or number to an integer, if possible. A floating
point

 | argument will be truncated towards zero (this does not include a
string

 | representation of a floating point number!) When converting a
string, use

 | the optional base. It is an error to supply a base when converting a

 | non-string. If base is zero, the proper base is guessed based on the

 | string content. If the argument is outside the integer range a

 | long object will be returned instead.

 |

 | Methods defined here:

 |

 | __abs__(...)

 | x.__abs__() <==> abs(x)

 |

 ...

The Samba 4 Python Scripting Interface

[244]

In the preceding code, we have used the help function to show us the documentation
for the Int class. At the end of the code, we can see that we have listed the methods
available for any object of that class, and if we want to, we can use the help() method
for specific methods to know how we can use it:

>>> help(int.__add__)

Help on wrapper_descriptor:

__add__(...)

 x.__add__(y) <==> x+y

(END)

 >>>

We can use the methods in a very straightforward way and we can see them in
action as follows (for example, print samba.MAX_NETBIOS_NAME_LEN+5):

>>> print samba.MAX_NETBIOS_NAME_LEN.__add__(5)

20

>>>

In our findings, we were expecting a function called generate_random_password
that can be handy if the name suggests exactly what it does. Let's take a look at the
documentation for it as follows:

>>> help (samba.generate_random_password)

Help on built-in function generate_random_password in module samba._glue:

generate_random_password(...)

 generate_random_password(min, max) -> string

 Generate random password with a length >= min and <= max.

(END)

>>>

It seems really easy to use—actually too easy to be true—so let's try it:

>>> print(samba.generate_random_password(15, 20))

ccOy$fxyY[T49k-c

That's it! We just call it by passing a minimum and a maximum length for the new
generated password, and it's done. The extra aspect of this function is that it will
generate a password that satisfies the minimum requirements for the Microsoft
Windows OS (for example, special characters). We can create a quick and dirty
Python script to use a handy function. First, let's use the quit() method in our
Python interpreter as follows:

Chapter 9

[245]

>>> quit()

leal@addc:~$

The classes and methods are case sensitive, so we need to pay attention
when searching and using specific functions, or we may get the results
or information about a subject that is different from the one we are
really running a search for.

Now, just type the following command in the shell prompt:

leal@addc:~$ python -c "import samba; \

print(samba.generate_random_password(15, 15))"

7LuApNZi4JWx!f-

leal@addc:~$

Cool, isn't it? If you have some issues with creating random passwords or want to
create a batch of users and one specific password for each one, this function can be a
good partner for the job. I'm sure you already have many ideas about how to explore
these Samba 4 Python bindings, and in the next section we will take this to a new level!

The generate_random_password function is implemented on the
samba._glue function where Python bindings for miscellaneous
Samba functions reside (for example, help (samba._glue)).

Understanding the power of Python and
the Samba 4 Server
Now that we already know how to explore the Python interpreter and the Samba
4 Python bindings, we will explore another great feature of the open source
community: the source code. I think a general rule for learning programming, and
it really works for me, is to actually look at the source code and learn from the
examples. The Samba 4 source code has a lot of examples and scripts used to run
tests on the compiled server, which we can use to learn many things. The example
code combined with our technique to explore the modules and documentation
should be sufficient for us to create a full piece of code that we can be proud of.

The Samba 4 Python Scripting Interface

[246]

It seems there was a bug on Debian GNU/Linux-based distributions regarding
the libauth4.so library [64]. If you face any issues loading some Samba 4 Python
bindings, try to install the libdcerpc-server0 package (for example, apt-get
install libdcerpc-server0). The idea is to show an approach where we can go
from zero to hero. So, the assumption is that we do not know much about Python
programming. We just need some understanding of the working of the Samba 4
Server, and some knowledge about operating system and programming languages in
general. We want to try our luck with the Samba development for our own utilization
and maybe to help the community and make our contribution to the future.

Our objective is to implement a Python script that can be used to query our
Samba Server, and for that, we have some idea of the functions we need to use to
accomplish our task (for example, connection/authentication and query/search).
What I normally do for such tasks is first use the Python interpreter to explore and
test the modules and functions and flex the muscles as hard as I can. The point
here is to try your best to understand the internals of the language you're learning;
because that can give you excellent results if you can actually figure out how it
works. Secondly, as it is not possible to fully understand the concepts directly from
the documentation or if it is just missing that glue to simply make everything make
sense, then it's time to look at some examples and dig into the source code to see
how the developers have actually implemented it. We cannot forget that every
open source community has discussion mailing lists and IRC channels where many
enthusiasts are willing to help everybody [72]. I think that the most important point
is that everyone is different, and so I will go through a procedure that has worked
for me, but feel free to adapt to your personal preference; the essential point is to be
loyal to whatever works for you and makes you feel more comfortable and confident.

Don't be afraid to make mistakes, or being restricted to some programming
conventions and all that stuff from the beginning. If you develop something that is
useful for others, more experienced programmers will help you with tips on how to
conform to any rules or make your code more readable. This comes with practice and
time, so take your time and keep going! We already have some idea of the modules
and functions available on the samba package, but what we have not discussed yet
is some underlying implementations of packages, modules, and functions in Python
[66]; this is a little over the top for our discussion here, so we will leave that theory
for the reader as an exercise for the reader.

The dir() function tries its best to gather information from the object's
__dict__ attribute, if one has been defined, and its type object.[67].

https://bugs.launchpad.net/ubuntu/+source/samba4/+bug/1048338
https://lists.samba.org/
http://docs.python.org/2/tutorial/modules.html
http://docs.python.org/2/library/functions.html#dir

Chapter 9

[247]

So, we cannot always have a complete picture of what is available just by using
dir(), and if we look at the preceding reference about modules and the import()
function, we will see that importing one package will not necessarily import all
modules. In the references [65], we have a link for the online documentation about
the Python API on Samba.

No more talk, let's code! To find our example source codes to learn about specific
functions and techniques, we can execute the following script to first find the Python
scripts on the Samba 4 source code tree:

leal@addc:~$ find workspace/samba-4.0.9/ -type f -name *.py –print

...

workspace/samba-4.0.9/buildtools/wafadmin/Tools/misc.py

workspace/samba-4.0.9/buildtools/wafadmin/Tools/gdc.py

workspace/samba-4.0.9/buildtools/wafadmin/TaskGen.py

workspace/samba-4.0.9/buildtools/wafadmin/ansiterm.py

workspace/samba-4.0.9/buildtools/wafadmin/Logs.py

workspace/samba-4.0.9/buildtools/wafadmin/__init__.py

workspace/samba-4.0.9/buildtools/wafadmin/3rdparty/go.py

workspace/samba-4.0.9/buildtools/wafadmin/3rdparty/boost.py

...

leal@addc:~$ find workspace/samba-4.0.9/ -type f -name *.py -print | wc
–l

478

leal@addc:~$

As we can see in the preceding code, we have 478 Python scripts on the Samba 4
source code tree, and that is a good start. Many of them can be good sources of
information about utilizing the Samba 4 Python bindings though some may not be
of direct use to us at this stage. So, one tip is to actually try to find examples in the
source tree, as they are more likely to have the information we need at the moment.
A good guess is trying to find exactly these (for instance, examples):

leal@addc:~$ cd workspace/samba-4.0.9/ && echo OK

OK

leal@addc:~$ find ./ -type f -name *.py -print | grep -i example

./python/examples/winreg.py

./python/examples/netbios.py

./python/examples/dnsserver.py

./python/examples/samr.py

http://www.samba.org/~jelmer/samba4/pydoctor/

The Samba 4 Python Scripting Interface

[248]

./lib/dnspython/examples/mx.py

./lib/dnspython/examples/reverse_name.py

./lib/dnspython/examples/ddns.py

./lib/dnspython/examples/e164.py

./lib/dnspython/examples/reverse.py

./lib/dnspython/examples/zonediff.py

./lib/dnspython/examples/xfr.py

./lib/dnspython/examples/name.py

./examples/logon/ntlogon/ntlogon.py

./examples/scripts/vfs/media_harmony/trigger_avid_update.py

./examples/scripts/shares/python/SambaParm.py

./examples/scripts/shares/python/SambaConfig.py

./examples/scripts/shares/python/smbparm.py

./examples/scripts/shares/python/generate_parm_table.py

./examples/scripts/shares/python/modify_samba_config.py

./source3/stf/example.py

leal@addc:~$

So, the preceding output has some interesting Python scripts for us to look at when
seeking some light to be shed on specific functions. Usually, another good keyword
to use when looking for examples is test. In the implementation of tests, we need to
use the components, so we can try another filter in the first output as follows:

leal@addc:~$ cd workspace/samba-4.0.9/ && echo OK

OK

 leal@addc:~$ find ./ -type f -name *.py -print | grep -i test

...

./python/samba/tests/libsmb_samba_internal.py

./python/samba/tests/upgrade.py

./python/samba/tests/dsdb.py

./python/samba/tests/ntacls.py

./python/samba/tests/gensec.py

./python/samba/tests/getopt.py

./python/samba/tests/policy.py

...

leal@addc:~$

Chapter 9

[249]

Well, as we find some test folders and our first task before executing queries is to
connect/authenticate to the server, let's add another filter:

leal@addc:~$ cd workspace/samba-4.0.9/ && echo OK

OK

leal@addc:~$ find ./ -type f -name *.py -print | grep -i test | grep auth

./python/samba/tests/auth.py

./auth/credentials/tests/bind.py

./source3/torture/test_ntlm_auth.py

leal@addc:~$

The preceding output is really encouraging as we have just two files: one named
bind the other named auth. Let's start looking at the bind.py script, and after going
through the script's source code, we can quickly see the following excerpt (the file
has just 42 lines):

ldb = samba.tests.connect_samdb(host, credentials=creds, lp=lp, ldap_
only=True)

The nice part about the preceding line of code is that it is not strange for us as we
already know something about the samba.tests.connect_samdb construction.
This is sufficient, I would say, to know that we need to focus on the connect_samdb
part and not on samba.tests. So, let's look for that definition in the source tree:

leal@addc:~$ cd workspace/samba-4.0.9/ && echo OK

OK

leal@addc:~$ find ./ -type f -name *.py -exec grep -q "def connect_samdb"
'{}' \; -print

./python/samba/tests/__init__.py

leal@addc:~$

Looking inside the Python script file in the preceding code, we can identify the
following relevant lines (inside the connect_samdb definition):

leal@addc:~$

...

 return SamDB(url=samdb_url,

 lp=lp,

 session_info=session_info,

 credentials=credentials,

 flags=flags,

 options=ldb_options)

...

leal@addc:~$

The Samba 4 Python Scripting Interface

[250]

That's it! We have found the function definition that the bind.py script was calling
and that function is doing the magic. Now that we know the exact method we need
to call (for example, SamDB), let's look at the beginning of the same Python script file
to find out which modules we need to load:

...

import samba

from samba import param

from samba.samdb import SamDB

Now we have something to start with to write our Python script; for now, just create
a file (for example, ch9.py) with the following content:

#!/usr/bin/python

#byLeal

Chapter 9 Example Script

Loading...

import samba

from samba import param

from samba.samdb import SamDB

Binding...

cx = (url='ldap://localhost',

 lp=lp,

 session_info=session_info,

 credentials=credentials,

 flags=flags,

 options=ldb_options)

As we can see in the preceding code, we have just changed the URL variable as it
is the only information we know for now and we do not know yet exactly what
the others are and how to properly configure them. So, let's continue looking at
the __init__.py python script and look for the initialization of these variables
to understand them and finish the first part of our code. At the beginning of the
connect_samdb function, we have some interesting information as follows:

:param samdb_url: Url for database to connect to.

:param lp: Optional loadparm object

:param session_info: Optional session information

Chapter 9

[251]

:param credentials: Optional credentials, defaults to anonymous.

:param flags: Optional LDB flags

:param ldap_only: If set, only remote LDAP connection will be created.

The preceding code gives us information about every variable; most of them are
optional, so we will take them out of the running for now, except for the credentials
function as we know that our server needs authentication. We can look at the code
for initializing them and as authentication should be our next step, when we look for
credentials in the code, we find the following:

..

 if credentials is None:

 credentials = cmdline_credentials

..

When we look for cmdline_credentials, we find the following:

cmdline_credentials = None

This is really not encouraging, so let's take a look at the Python interpreter to see
whether or not we can figure out how to set the credentials without command-line
parsing at this stage by running the following code:

leal@addc:~$ python

>>> from samba.credentials import Credentials

>>> dir(Credentials)

['__class__', '__cmp__', '__delattr__', '__doc__', '__format__', '__
getattribute__', '__hash__', '__init__', '__new__', '__reduce__', '__
reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__
subclasshook__', 'authentication_requested', 'get_bind_dn', 'get_domain',
'get_gensec_features', 'get_named_ccache', 'get_nt_hash', 'get_password',
'get_realm', 'get_username', 'get_workstation', 'guess', 'is_anonymous',
'parse_string', 'set_anonymous', 'set_bind_dn', 'set_cmdline_callbacks',
'set_domain', 'set_gensec_features', 'set_kerberos_state', 'set_krb_
forwardable', 'set_machine_account', 'set_password', 'set_realm', 'set_
username', 'set_workstation', 'wrong_password']

>>>quit()

leal@addc:~$

The Samba 4 Python Scripting Interface

[252]

The class has methods to set the username and password, and that should be
everything we need. So, with the new things we learned, our updated code would
look like the following:

#!/usr/bin/python

Chapter 9 Example Script

Loading...

import samba

from samba import param

from samba.samdb import SamDB

from samba.credentials import Credentials

badge = Credentials()

badge.set_username('Administrator')

badge.set_password('w1ndow$$!')

Binding...

cx = SamDB(url='ldap://localhost',

 credentials=badge)

Let us now test the preceding code:

leal@addc:~$ chmod 755 ch9.py && OK

OK

leal@addc:~$./ch9.py

PANIC: assert failed at ../lib/param/loadparm.c(3790): lp_ctx != NULL

PANIC: assert failed: lp_ctx != NULL

Aborted

leal@addc:~$

Chapter 9

[253]

We are on a mission and the preceding message is pretty interesting because it's
related to the loadparm.c code and we had a loadparm argument (for example,
object) in SamDB, but it was marked as optional. Based on the PANIC action in the
preceding code (assertion failure, lp_ctx != NULL), it looks like one of two options:
a bug or a false statement. If the lp object is optional, the Samba code seems to have
a bug; on the other hand, if the lp object is really needed, the information about
it being optional is a false statement. Well, looking for an answer to this situation,
I found this reference [68], where developers are discussing it and the bottom
line is that the lp object seems not to be optional at all as it loads some important
definitions of the environment needed for many subsystems (credentials included).
In the same link, we know the typical construction for using the lp object for the
credentials that are mentioned as follows:

creds.guess(lp)

 In the file __initi__.py the variable lp is defined at the function
env_loadparm() like this:

def env_loadparm():

 lp = param.LoadParm()

Going back to our updated code, initializing the lp object (LoadParm()), and adding
the lp object to the credentials and the SamDB call, we get the following code:

#!/usr/bin/python

Chapter 9 Example Script

Loading...

import samba

from samba import param

from samba.samdb import SamDB

from samba.credentials import Credentials

lp = param.LoadParm()

badge = Credentials()

badge.guess(lp)

badge.set_username('Administrator')

badge.set_password('w1ndow$$!')

http://marc.info/?l=samba-technical&m=12971232081795

The Samba 4 Python Scripting Interface

[254]

Binding...

cx = SamDB(url='ldap://localhost',

 lp=lp,

 credentials=badge)

Upon executing the preceding code, we get:

leal@addc:~$./ch9.py && echo OK

OK

leal@addc:~$

The preceding code is executed without errors, which is a good signal. Now that we
have an authenticated connection, we can go to the next phase: performing a query.
So, let's take a look at the SamDB call using our old friend dir() to see whether or not
we have a search method using the following code:

leal@addc:~$ python

>>> from samba.samdb import SamDB

>>> dir(SamDB.search)

['__call__', '__class__', '__delattr__', '__doc__', '__format__', '__
get__', '__getattribute__', '__hash__', '__init__', '__name__', '__
new__', '__objclass__', '__reduce__', '__reduce_ex__', '__repr__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__']

>>>

We have it, so let's take a look at its documentation as follows:

>>> help(SamDB.search)

Help on method_descriptor:

search(...)

 S.search(base=None, scope=None, expression=None, attrs=None,
controls=None) -> msgs

 Search in a database.

 :param base: Optional base DN to search

 :param scope: Search scope (SCOPE_BASE, SCOPE_ONELEVEL or SCOPE_
SUBTREE)

 :param expression: Optional search expression

 :param attrs: Attributes to return (defaults to all)

 :param controls: Optional list of controls

 :return: Iterator over Message objects

(END)

>>>

Chapter 9

[255]

We have everything we needed to know! Now let's execute our search, and in order
to do so, we just add the following code to our Python script (leaving some optional
parameters out of the equation):

Search...

search_result = cx.search('DC=poa,DC=msdcbrz,DC=eall,DC=com,DC=br',

 scope=2,

 expression='(objectClass=user)',

 attrs=["samaccountname"])

 Let's test it to see if everything still executes without error:

leal@addc:~$./ch9.py && echo OK

OK

leal@addc:~$

In this case, we use the dir() function by just passing SamDB as an argument. We will
see that it has one method named domain_dn. If we call it, we would get the following
result: poa,DC=msdcbrz,DC=eall,DC=com,DC=br. Well, based on the documentation
of the function, we need to iterate our search_result function to print all the attribute
values we queried (for example, samaccountname/usernames). We can accomplish
this in Python using a for loop, calling the get method on our results as follows:

Results...

for username in search_result:

 print("User: %s" % username.get("samaccountname", idx=0))

We need to just add the preceding code to our ch9.py script and execute it like the
following example to see the result:

leal@addc:~$./ch9.py && echo OK

...

User: djfox

User: joliu

User: kakim

User: lamei

User: root

OK

leal@addc:~$

The Samba 4 Python Scripting Interface

[256]

The preceding output is something we are very familiar with, and so we are sure that
our first script using the new Samba 4 Python bindings is fully working! How many
lines of code were needed? 18 (without blank lines and comments).With 18 lines of
code, we could create a useful script, and that just shows how important these Samba
4 Python bindings are. They leverage the participation of new individuals that are just
starting with the programming, without them requiring a lot of knowledge, and this is
really important to incentivize more and more people to feel capable of helping.

Summary
In this chapter, we learned the importance of the open source community and were
introduced to the Samba 4 Python bindings. We used the Python interpreter to
explore the Samba 4 Python bindings in a very intuitive way as well as learning some
essential Python functions to get insights about packages, modules, and functions/
methods. In the end, we learned how to use the source code to help us understand
specific functions and implementation details. We used all these components to
implement a step-by-step procedure in creating our first Python script that makes
use of some Samba 4 Python bindings (for example, to connect to the Samba 4 Server
at the local host, authenticate, and execute a simple query listing usernames from
the base). We provided users a full, working example that can be useful for anyone
who wants to start participating and collaborating, which is a real need for any open
source community.

References
The following are the references used in this book:

[1] http://www.samba.org/samba/docs/man/manpages/idmap_rid.8.html

[2] http://www.opengroup.org/rfc/mirror-rfc/rfc86.0.txt

[3] http://wiki.samba.org/index.php/Samba4/FAQ

[4] http://technet.microsoft.com/en-us/library/cc773062(WS.10).aspx

[5] http://technet.microsoft.com/en-us/library/cc731620(v=ws.10).aspx

[6] http://technet.microsoft.com/en-us/library/cc771290(WS.10).aspx

[7] http://msdn.microsoft.com/en-us/library/windows/desktop/
aa384649(v=vs.85).aspx

[8] http://technet.microsoft.com/en-us/library/cc753343(v=ws.10).aspx

[9] http://technet.microsoft.com/en-us/library/cc772168(v=ws.10).aspx

[10] http://support.microsoft.com/kb/276382/en-us?fr=1

[11] http://support.microsoft.com/kb/555636/en-us?fr=1

[12] http://blog.frli.se/p/dsct.html

[13] http://technet.microsoft.com/en-us/library/cc759550(v=ws.10).aspx

[14] http://wiki.samba.org/index.php/Samba4/HOWTO/Join_a_domain_as_a_DC

[15] http://wiki.samba.org/index.php/Samba

[16] http://www.samba.org/samba/history/samba-4.0.0.html

[17] http://en.wikipedia.org/wiki/DevOps

http://msdn.microsoft.com/en-us/library/windows/desktop/aa384649(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa384649(v=vs.85).aspx

References

[258]

[18] https://www.samba.org/samba/news/releases/4.0.0.html

[19] http://technet.microsoft.com/en-us/library/ff625695%28v=ws.10%29.
aspx

[20] http://support.microsoft.com/kb/2709568

[21] http://msdn.microsoft.com/en-us/library/windows/hardware/
hh706306%28v=vs.85%29.aspx

[22] http://www.cups.org

[23] http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-
a2ec-0282c047d201/Pointandprint.doc

[24] https://wiki.samba.org/index.php/Samba_as_a_print_server

[25] http://www.cups.org/documentation.php/options.html

[26] http://pen.iana.org/pen/PenApplication.page

[27] http://en.wikipedia.org/wiki/Database_schema

[28] http://technet.microsoft.com/en-us/library/cc759633%28v=ws.10%29.
aspx

[29] http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.
aspx

[30] http://msdn.microsoft.com/en-US/library/ms675087.aspx

[31] http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.
aspx

[32] http://msdn.microsoft.com/en-us/library/cc223360.aspx

[33] http://wiki.samba.org/index.php/Samba4/Schema_extenstions

[34] http://technet.microsoft.com/en-us/library/cc961740.aspx

[35] http://msdn.microsoft.com/en-us/library/windows/desktop/
ms676902%28v=vs.85%29.aspx

[36] http://msdn.microsoft.com/en-us/library/windows/desktop/
ms677291%28v=vs.85%29.aspx

[37] http://www.oid-info.com/cgi-bin/display?nb=42768&father_
oid=1.3.6.1.4.1&action=display

http://technet.microsoft.com/en-us/library/ff625695%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/ff625695%28v=ws.10%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh706306%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/hh706306%28v=vs.85%29.aspx
http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
http://download.microsoft.com/download/5/c/3/5c331f2d-3c1e-40b8-a2ec-0282c047d201/Pointandprint.doc
http://technet.microsoft.com/en-us/library/cc759633%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc759633%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc756876%28v=ws.10%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms676902%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms676902%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms677291%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms677291%28v=vs.85%29.aspx
http://www.oid-info.com/cgi-bin/display?nb=42768&father_oid=1.3.6.1.4.1&action=display
http://www.oid-info.com/cgi-bin/display?nb=42768&father_oid=1.3.6.1.4.1&action=display

Appendix

[259]

[38] http://technet.microsoft.com/en-us/library/cc731968%28v=ws.10%29.
aspx

[39] https://bugzilla.samba.org/show_bug.cgi?id=6714

[40] http://technet.microsoft.com/en-us/library/testing-for-active-
directory-schema-extension-conflicts%28v=ws.10%29.aspx

[41] https://oss.oracle.com/projects/ocfs/

[42] http://www.gluster.org/about

[43] http://ctdb.samba.org/

[44] http://www.gluster.org/community/documentation/index.php/Getting_
started_common_criteria

[45] http://www.gluster.org/community/documentation/index.php/
GlusterFS_Concepts

[46] http://en.wikipedia.org/wiki/Heartbeat_network

[47] http://en.wikipedia.org/wiki/RAID

[48] http://anonscm.debian.org/gitweb/?p=pkg-samba/samba.git;a=blob_
plain;f=debian/samba.samba-ad-dc.init;h=3132d2e367675f822342a5b7bc2e5
0c046aa3b8f;hb=HEAD

[49] http://tdb.samba.org

[50] http://www.debian.org/releases/stable/i386/release-notes/ch-
upgrading.html

[51] http://support.microsoft.com/kb/297510

[52] http://ctdb.samba.org/manpages/ctdb-tunables.7.html

[53] http://www.microsoft.com/resources/documentation/windows/xp/all/
proddocs/en-us/xcopy.mspx?mfr=true

[54] http://www.samba.org/~tridge/ctdb_movies/

[55] http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/
locking.html

[56] http://www.freebsd.org/cgi/query-pr.cgi?pr=54383

[57] http://www.brasport.com.br/informatica-e-tecnologia/banco-de-
dados-br-2/zfs-para-usuarios-opensolaris-windows-mac-e-linux-br.html

http://technet.microsoft.com/en-us/library/cc731968%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc731968%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/testing-for-active-directory-schema-extension-conflicts%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/testing-for-active-directory-schema-extension-conflicts%28v=ws.10%29.aspx
http://www.gluster.org/community/documentation/index.php/Getting_started_common_criteria
http://www.gluster.org/community/documentation/index.php/Getting_started_common_criteria
http://www.gluster.org/community/documentation/index.php/GlusterFS_Concepts
http://www.gluster.org/community/documentation/index.php/GlusterFS_Concepts
http://anonscm.debian.org/gitweb/?p=pkg-samba/samba.git;a=blob_plain;f=debian/samba.samba-ad-dc.init;h=3132d2e367675f822342a5b7bc2e50c046aa3b8f;hb=HEAD
http://anonscm.debian.org/gitweb/?p=pkg-samba/samba.git;a=blob_plain;f=debian/samba.samba-ad-dc.init;h=3132d2e367675f822342a5b7bc2e50c046aa3b8f;hb=HEAD
http://anonscm.debian.org/gitweb/?p=pkg-samba/samba.git;a=blob_plain;f=debian/samba.samba-ad-dc.init;h=3132d2e367675f822342a5b7bc2e50c046aa3b8f;hb=HEAD
http://www.debian.org/releases/stable/i386/release-notes/ch-upgrading.html
http://www.debian.org/releases/stable/i386/release-notes/ch-upgrading.html
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/xcopy.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/xcopy.mspx?mfr=true
http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/locking.html
http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/locking.html
http://www.brasport.com.br/informatica-e-tecnologia/banco-de-dados-br-2/zfs-para-usuarios-opensolaris-windows-mac-e-linux-br.html
http://www.brasport.com.br/informatica-e-tecnologia/banco-de-dados-br-2/zfs-para-usuarios-opensolaris-windows-mac-e-linux-br.html

References

[260]

[58] http://en.wikipedia.org/wiki/ZFS

[59] http://www.python.org

[60] http://wiki.illumos.org/display/illumos/illumos+Home

[61] http://www.python.org/about/

[62] http://en.wikipedia.org/wiki/Bingo_%28U.S.%29

[63] http://support.microsoft.com/kb/909264

[64] https://bugs.launchpad.net/ubuntu/+source/samba4/+bug/1048338

[65] http://www.samba.org/~jelmer/samba4/pydoctor/

[66] http://docs.python.org/2/tutorial/modules.html

[67] http://docs.python.org/2/library/functions.html#dir

[68] [PATCH] Add LoadParm optional parameter for Py_Credentials at
http://marc.info/?l=samba-technical&m=129712320817955

[69] http://www.freebsd.org

[70] http://www.eall.com.br/

[71] http://www.samba.org/samba/team/

[72] https://lists.samba.org/

[73] https://wiki.debian.org/sudo

http://marc.info/?t=129607243400005&r=1&w=2
http://marc.info/?l=samba-technical&m=129712320817955

Index
Symbols
--adminpass argument 27
-c option 120
--domain argument 27
-E option 168
-f option 120
-L option 168
-p option 168
--realm argument 27
-r option 100
-v option 168

A
Access Control Lists (ACL's) 177
Active Directory Domain Controller.

See AD Domain Controller
Active Directory schema

extending 187-200
Active Directory schema configuration

exporting 185, 186
Active Directory schema extension

about 182-184
testing 200-207
validating 200-208

Active Directory Services (ADS) 130
Active Directory Services Interfaces Editor

tool (adsiedit.msc) 191
Active Directory Users and Computers

(ADUC) 191
AD DC. See AD Domain Controller
AD DC replacement

about 101-115
backup data and live data, comparing

98-101

considerations 90
directory entries, exporting 96-98
DNS validations, starting 121-125
planning 91-95

AD Domain Controller
about 20-22
Debian 7 GNU/Linux, joining into 59-66
Samba 4, provisioning as 26-30

AD service
configuration checklist 24
planning, points 20-23

ADSI Edit tool 195
Application Programming Interface

(API) 51
auto role 50

B
backup data

comparing, against live data 98-101
bash_profile file 26
Battery of Tests and Validations

(BTVA) 138

C
Change Domain Controller... option 94
CIFS 163
CIFS protocol version 163, 164
Classic Primary Domain Controller 51
Clustered Trivial Database. See CTDB
Common Internet File System. See CIFS
Common UNIX Printing System

(CUPS) 166

[262]

configuration
Samba 4 server's dependencies 9-14

configure command 212
connect_samdb function 250
CTDB

about 209
integrating 218-225

CUPS
URL 167
used for configuring printer, on Samba 4

Server host 166-168

D
Debian 7.0 (Wheezy)

installing 8, 9
Debian 7 GNU/Linux

preparing 210, 212
joining, into Active Directory Domain

59-66
DHCP 25
DHCP server

about 14
starting 116, 117

dir() command 240, 241
directory entries

exporting 96, 98
directory replications 82-87
dir() function 240-243
Distinguished Name (DN) 188
Domain Controller (DC) 50
domain provision 27
Dynamic Host Configuration Protocol

(DHCP) 14

E
encrypted passwords option 50
enum groups option 58
enum users option 58
Extended Attributes (XATTR) 177

F
files

sharing, Samba 4 used 176-178

Flexible Single Master Operation
(FSMO) 113, 203

fstab file 11

G
generate_random_password function 245
get method 255
GlusterFS

configuring, for high availability 212-218
integrating 218-226

GNU/Linux systems 51-54
GPOs. See Group Policies
Group Policies

created, by user 73-76
creating 79-81
linking to OUs, by users 76-79
on Samba 4 66

Group Policies Objects. See Group Policies
GUID 93

H
help() function 243
highly available file server

tests, executing on 226-236
validations, executing on 226-236

I
import command

of Samba 4 Server, using 241
import function 241
installation

Debian 7.0 (Wheezy) 8, 9
Samba 4 Server 15, 16
Samba 4 Server's dependencies 9
Samba 4 Server, validations 16

Internet Assigned Numbers Authority
(IANA) 183

Internet Printing Protocol (IPP) 166

K
Kerberos Key Distribution Center (KDC)

128

[263]

L
ldapsearch utility 33

M
mailing lists

URL 165
Mean Time to Recover/Repair (MTTR) 90
Member Server role 50
member servers

tests, upgrading 159-161
upgrade approach, deciding for 149-153
validations, upgrading 159-161

Microsoft AD network
printer, sharing on 169, 170

Microsoft Windows Point and Print Samba
Server

configuration 170-176
Microsoft Windows print driver

kernel mode 166
user mode 166
version 3 166
version 4 166

N
Name Service Switch (NSS) 49, 52
naming context (NC) 112
Netbios Backup Domain Controller

(NBDC) 51
Network Address Translation (NAT) 8 53
network service 25
Network Time Protocol (NTP) 13, 25
NSS libraries

configuring 54-59
ntdsutil utility 92
NT-FSA architecture 165

O
Oracle Cluster File System (OCFS) 212
Organizational Units (OU) 95 21, 23

P
PAM

about 49-52
configuring 54, 55

pam_hostscheck module 187
PDC

tests, upgrading 153-158
validations, upgrading 153-158

Pluggable Authentication Modules. See
PAM

Point and Print feature 170-176
print$ share 171
printer

configuring, on Samba 4 Server host
166-168

sharing, on Microsoft AD network 169
Private Enterprise Number (PEN) 183
profiles share

adding, to configuration 148
Python

and Samba 4 Server 245-256
Python bindings 241, 243
Python interface

of Samba 4 Server, using 239, 241
python-samba module 241
python-samba package 240

Q
quit() method 244

R
references

URL 257-260
Relational Database Management System

(RDBMS) schema 182
Relative Distinguished Names (RDN) 188
reload option 177
Remote Sever Administration Tools (RSAT)

bundle 92
reverse zone

configuring 148
rid backend 57

[264]

S
Samba

and winbind daemons, disabling 144, 145
and winbind daemons, stopping 144
upgradation, considerations 129
upgradation procedure, executing 142, 143
version 3 and version 4, differentiating

between 128
version, upgradation 127

Samba 4
about 81
configuration file, editing 146, 147
configuration, validating 31-47
file daemons 164
Group Policies 66-72
print server daemons 164, 165
provisioning, as AD Domain Controller

26-30
Python bindings 241-245
used, for sharing files 176-178

Samba 4 Server
and Python 245-255
installing 15, 16
integrating 219-226
Python interface, using 239, 241

Samba 4 Server host
printer configuring, CUPS used 166, 167

Samba 4 Server, dependencies
configuring 13-15
installing 9-11

Samba 4 Server, roles
Active Directory Domain Controller 51
auto 50
Classic Primary Domain Controller 51
Member Server 50
Netbios Backup Domain Controller 51
standalone 50

Samba 4 software
roles 50

Samba 4 status
checking, URL 82

samba_dnsupdate command 103
samba package 241
Samba software 238
samba-tool 108
samba-tool argument 27

samba-tool command 26
samba-tool utility 122
Server Manager tool 41
Server Properties option 172
smbcontrol command 177
SMB protocol version 163, 164
SRV record 31
standalone role 50
Storage Area Network (SAN) 212

U
upgradation

considerations 129
plan, establishing 130-133
procedure, executing 142-144
tests, creating 133
validations, creating 133-141

users
allowing, to create Group Policies 73-76
allowing, to link Group Policies to OUs

76-79

V
Version 3, Samba

and version 4 Samba, differentiation 128
Virtual IPs (VIPs) 213
Volume Shadow Copy Service (VSS) 91

W
Winbind 52
winbind daemons

and Samba, disabling 144, 145

Thank you for buying
Implementing Samba 4

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering OpenLDAP
ISBN: 978-1-84719-102-1 Paperback: 484 pages

Configuring, Securing, and Integrating Directory
Services

1.	 Up-to-date with the latest OpenLDAP release.

2.	 Installing and configuring the OpenLDAP server.

3.	 Synchronizing multiple OpenLDAP servers
over the network.

4.	 Creating custom LDAP schemas to model your
own information.

5.	 Integrating OpenLDAP with web applications.

CentOS 6 Linux Server Cookbook
ISBN: 978-1-84951-902-1 Paperback: 374 pages

A practical guide to installing, configuring, and
administering the CentOS community-based
enterprise server

1.	 Delivering comprehensive insight into CentOS
server with a series of starting points that show
you how to build, configure, maintain, and deploy
the latest edition of one of the world's most
popular community based enterprise servers.

2.	 Providing beginners and more experienced
individuals alike with the opportunity to
enhance their knowledge by delivering instant
access to a library of recipes that addresses all
aspects of CentOS server and put you in control.

Please check www.PacktPub.com for information on our titles

Python Network Programming
Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1.	 Demonstrates how to write various besopke
client/server networking applications using
standard and popular third-party
Python libraries.

2.	 Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

Active Directory Disaster Recovery
ISBN: 978-1-84719-327-8 Paperback: 252 pages

Expert guidance on planning and implementing
Active Directory disaster recovery plans

1.	 Essential disaster recovery planning/response
book.

2.	 Configure and strengthen Active Directory to
increase resilience.

3.	 Practical diagnosis of failures.

4.	 Design and implement an organizational
Disaster Recovery plan.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Installing the Samba 4 Server
	Installing Debian 7.0 (Wheezy)
	Installing and configuring Samba 4 Server's dependencies
	Installing Samba 4 Server step-by-step
	Basic validations of the Samba's installation
	Summary

	Chapter 2 Provisioning Samba 4 as AD Domain Controller
	Highlighting the planning points for
an AD service
	Acquiring information for deploying
an AD service
	Availability, performance, and replication for the network service

	Provisioning Samba 4 as AD Domain Controller
	Validating the Samba 4 configuration

	Summary

	Chapter 3: Managing the Samba Active Directory Server
	Understanding the possible roles of the Samba 4 Server on the network
	Implementing the AD authentication and authorization for GNU/Linux systems
	Configuring the PAM and NSS libraries
	Joining the Debian 7 GNU/Linux into our Active Directory Domain

	Starting with basic concepts for Group Policies on Samba 4
	Allowing a user to create Group Policies
	Allowing a user to link Group Policies to OUs
	Creating a Group Policy

	Trust relationships and replication with Samba 4
	Summary

	Chapter 4: Replacing a Microsoft Windows Active Directory Server
	Key points to consider before replacing an AD DC
	Planning the replacement – tests and validations
	Exporting directory entries
	Comparing backup data against live data
	Replacing the Active Directory Domain Controller

	Replacement tests and validations
	Summary

	Chapter 5: Upgrading from Samba Server Version 3
	Distinguishing between Samba Versions 3 and 4
	Key points of consideration before the upgrade
	Establishing an upgrade plan
	Creating tests and validations before the upgrade
	Executing the Samba Server upgrade procedure
	Stopping and disabling Samba and winbind daemons
	Editing the Samba 4 configuration file
	Configuring the reverse zone
	Adding the profiles share to the configuration

	Deciding upgrade approach for member servers
	Upgrading tests and validations for the PDC
	Upgrading tests and validations for Member Servers

	Summary

	Chapter 6: Printing and File Services
	Introducing SMB/CIFS protocol versions and Samba 4
	Introducing the Samba 4 file and print server daemons
	Introducing Microsoft Windows print driver Versions 3 and 4
	Configuring a printer on the Samba 4 Server host using CUPS
	Sharing the printer on a Microsoft AD network using Samba
	Introducing Microsoft Windows Point and Print Samba Server configuration
	Sharing files using Samba 4
	Summary

	Chapter 7: Extending the Active Directory Schema Using Samba 4
	Planning an Active Directory schema extension
	Exporting the current Active Directory schema configuration
	Extending the Active Directory schema in practice
	Extending the Active Directory schema

	Testing and validating the Samba 4 Active Directory schema extension

	Summary

	Chapter 8: Implementing a Highly Available Distributed File Server
	Preparing the Debian GNU/Linux environment
	Configuring GlusterFS for high availability and scalability
	Integrating CTDB, GlusterFS, and the Samba 4 Server
	Executing tests and validations on the highly available file server
	Summary

	Chapter 9: The Samba 4 Python Scripting Interface
	Open source development and collaborative work
	Exploring and using the Python interface of the Samba 4 Server
	Introducing Samba 4 Python bindings
	Understanding the power of Python and the Samba 4 Server
	Summary

	Appendix : References
	Index

