
grep
Pocket Reference

John Bambenek and Agnieszka Klus

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

grep Pocket Reference
by John Bambenek and Agnieszka Klus

Copyright © 2009 John Bambenek and Agnieszka Klus. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-
bastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://safari
.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Editor: Isabel Kunkle
Copy Editor: Genevieve d’Entremont
Production Editor: Loranah Dimant
Proofreader: Loranah Dimant
Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
January 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. grep Pocket Reference, the im-
age of an elegant hyla tree frog, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-15360-1

[TM]

1231511981

http://safari.oreilly.com
http://safari.oreilly.com

Contents

grep Pocket Reference 1
Introduction 1
Conceptual Overview 5
Introduction to Regular Expressions 7
grep Basics 24
Basic Regular Expressions (grep or grep -G) 27
Extended Regular Expressions (egrep or grep -E) 38
Fixed Strings (fgrep or grep -F) 41
Perl-Style Regular Expressions (grep -P) 43
Introduction to grep-Relevant Environment Variables 49
Choosing Between grep Types and Performance Considerations 54
Advanced Tips and Tricks with grep 57
References 67

Index 69

v

grep Pocket Reference

Introduction
Chances are that if you’ve worked for any length of time on a
Linux system, either as a system administrator or as a devel-
oper, you’ve used the grep command. The tool is installed by
default on almost every installation of Linux, BSD, and Unix,
regardless of distribution, and is even available for Windows
(with wingrep or via Cygwin).

GNU and the Free Software Foundation distribute grep as part
of their suite of open source tools. Other versions of grep are
distributed for other operating systems, but this book focuses
primarily on the GNU version, as it is the most prevalent at this
point.

The grep command lets the user find text in a given file or out-
put quickly and easily. By giving grep a string to search for, it
will print out only lines that contain that string and can print
the corresponding line numbers for that text. The “simple” use
of the command is well-known, but there are a variety of more
advanced uses that make grep a powerful search tool.

1

The purpose of this book is to pack all the information an ad-
ministrator or developer could ever want into a small guide that
can be carried around. Although the “simple” uses of grep do
not require much education, the advanced applications and the
use of regular expressions can become quite complicated. The
name of the tool is actually an acronym for “Global Regular-
Expression Print,” which gives an indication of its purpose.

GNU grep is actually a combination of four different tools, each
with its unique style of finding text: basic regular expressions,
extended regular expressions, fixed strings, and Perl-style reg-
ular expression. There are other implementations of grep-like
programs such as agrep, zipgrep, and “grep-like” functions
in .NET, PHP, and SQL. This guide will describe the particular
options and strengths of each style.

The official website for grep is http://www.gnu.org/software/
grep/. It contains information about the project and some brief
documentation. The source code for grep is only 712 KB, and
the current version at the time of this writing is 2.5.3. This
pocket reference is current to that version, but the information
will be generally valid for earlier and later versions.

As an important note, the current version of grep that ships
with Mac OS X 10.5.5 is 2.5.1; however, most of the options
in this book will still work for that version. There are other
“grep” programs as well, in addition to the one from GNU, and
these are typically the ones installed by default under HP-UX,
AIX, and older versions of Solaris. For the most part, the reg-
ular expression syntax is very similar between these versions,
but the options differ. This book deals exclusively with the
GNU version because it is more robust and powerful than other
versions.

Conventions Used in This Book
The following typographical conventions are used in this book:

2 | grep Pocket Reference

http://www.gnu.org/software/grep/
http://www.gnu.org/software/grep/

Italic
Indicates commands, new terms, URLs, email addresses,
filenames, file extensions, pathnames, directories, and
Unix utilities.

Constant width
Indicates options, switches, variables, attributes, keys,
functions, types, classes, namespaces, methods, modules,
properties, parameters, values, objects, events, event han-
dlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width italic
Shows text that should be replaced with user-supplied
values.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing
a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “grep Pocket Reference by John Bambenek and
Agnieszka Klus. Copyright 2009 John Bambenek and
Agnieszka Klus, 978-0-596-15360-1.”

If you feel your use of code examples falls outside fair use or
the permission given here, feel free to contact us at
permissions@oreilly.com.

Introduction | 3

Safari® Books Online
When you see a Safari® Books Online icon on
the cover of your favorite technology book, that
means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books,
cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at:

http://www.oreilly.com/catalog/9780596153601

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource
Centers, and the O’Reilly Network, see our website at:

http://www.oreilly.com

4 | grep Pocket Reference

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596153601
http://www.oreilly.com

Acknowledgments

From John Bambenek
I would like to thank Isabel Kunkle and the rest of the O’Reilly
team behind the editing and production of this book. My wife
and son deserve thanks for their support and love as I comple-
ted this project. My coauthor, Agnieszka, has been invaluable
in making an onerous task of writing a book more manageable;
she contributed greatly to this project. Brian Krebs of The
Washington Post deserves credit for the idea of writing this
book. My time at the Internet Storm Center has let me work
with some of the best in the information security industry, and
their feedback has been extremely helpful during the technical
review process. A particular note of thanks goes out to Charles
Hamby, Mark Hofman, and Donald Smith. And last, Merry
Anne’s Diner in downtown Champaign, Illinois deserves
thanks for letting me show up for hours in the middle of the
night to take up one of their tables as I wrote this.

From Agnieszka Klus
First, I want to thank my coauthor, John Bambenek, for the
opportunity to work on this book. It certainly has been a lit-
erary adventure for me. It has opened windows of opportunity
and given me a chance to peek into a world I would otherwise
have not been able to. I also would like to thank my family and
friends for their support and patience.

Conceptual Overview
The grep command provides a variety of ways to find strings
of text in a file or stream of output. For example, it is possible
to find every instance of a specified word or string in a file. This
could be useful for grabbing particular log entries out of volu-
minous system logs, as one example. It is possible to search for
certain patterns in files, such as the typical pattern of a credit
card number. This flexibility makes grep a powerful tool for

Conceptual Overview | 5

finding the presence (or absence) of information in files. There
are two ways to provide input to grep, each with its own par-
ticular uses.

First, grep can be used to search a given file or files on a system.
For instance, files on a disk can be searched for the presence
(or absence) of specific content. grep also can be used to send
output from another command that grep will then search for
the desired content. For instance, grep could be used to pick
out important information from a command that otherwise
produces an excessive amount of output.

While searching text files, grep could be employed to search
for a particular string throughout all files in an entire filesystem.
For instance, Social Security numbers follow a known pattern,
so it is possible to search every text file on a system to find
occurrences of these numbers in its files (e.g., for academic
environments in order to comply with federal privacy laws).
The default behavior is to return the filename and the line of
text that contains the string, but it is possible to include line
numbers as well.

Additionally, grep can examine command output to look for
occurrences of a string. For instance, a system administrator
may run a script to update software on a system that has a large
amount of “debugging” information and may only care to see
error messages. In this case, the grep command could search
for a string (i.e., “ERROR”) that indicates errors, filtering out
information that the administrator does not want to see.

Generally, the grep command is designed to search only text
output or text files. The command will let you search binary
(or other nontext) files, but the utility is limited in that regard.
Tricks for searching binary files for information with grep (i.e.,
using the strings command) are covered in the last section
(“Advanced Tips and Tricks with grep” on page 57).

Although it is usually possible to integrate grep into manipu-
lating text or doing “search and replace” operations, it is not
the most efficient way to get the job done. Instead, the sed and
awk programs are more useful for these kinds of functions.

6 | grep Pocket Reference

There are two basic ways to search with grep: searching for
fixed strings and searching for patterns of text. Searching for
fixed strings is pretty straightforward. Pattern searching, how-
ever, can get complicated very quickly, depending on how var-
iable that desired pattern is. To search for text with variable
content, use regular expressions.

Introduction to Regular Expressions
Regular expressions, the source of the letters “re” in “grep,”
are the foundation for creating a powerful and flexible text-
processing tool. Expressions can add, delete, segregate, and
generally manipulate all kinds of text and data. They are simple
statements that enhance a user’s ability to process files, espe-
cially when combined with other commands. If applied prop-
erly, regular expressions can significantly simplify a tall task.

Many different commands in the Unix/Linux world use some
form of regular expressions in addition to some programming
languages. For instance, the sed and awk commands use regu-
lar expressions not only to find information, but also to
manipulate it.

There are actually many different varieties of regular expres-
sions. For instance, Java and Perl both have their own syntax
for regular expressions. Some applications have their own ver-
sions of regular expressions, such as Sendmail and Oracle.
GNU grep uses the GNU version of regular expressions, which
is very similar (but not identical) to POSIX regular expressions.

In fact, most of the varieties of regular expressions are very
similar, but they do have key differences. For instance, some
of the escapes, metacharacters, or special operators will behave
differently depending on which type of regular expressions you
are using. The subtle differences between the varieties can lead
to drastically different results when using the same expression
under different regular expression types. This book will only
touch on the regular expressions that are used by grep and Perl-
style grep (grep -P).

Introduction to Regular Expressions | 7

Usually, regular expressions are included in the grep command
in the following format:

grep [options] [regexp] [filename]

Regular expressions are comprised of two types of characters:
normal text characters, called literals, and special characters,
such as the asterisk (*), called metacharacters. An escape
sequence allows you to use metacharacters as literals or to
identify special characters or conditions (such as word boun-
daries or “tab characters”). The desired string that someone
hopes to find is a target string. A regular expression is the par-
ticular search pattern that is entered to find a particular target
string. It may be the same as the target string, or it may include
some of the regular expression functionality discussed next.

Quotation Marks and Regular Expressions
It is customary to place the regular expression (or regxp) inside
single quotation marks (the symbol on the keyboard under-
neath the double quote, not underneath the tilde [~] key).
There are a few reasons for this. The first is that normally Unix
shells interpret the space as an end of argument and the start
of a new one. In the format just shown, you see the syntax of
the grep command where a space separates the regexp from the
filename. What if the string you wish to search for has a “space”
character? The quotes tell grep (or another Unix command)
where the argument starts and stops when spaces or other spe-
cial characters are involved.

The other reason is that various types of quotes can signify
different things with shell commands such as grep. For in-
stance, using the single quote underneath the tilde key (also
called the backtick) tells the shell to execute everything inside
those quotes as a command and then use that as the string. For
instance:

grep `whoami` filename

would run the whoami command (which returns the username
that is running the shell on Unix systems) and then use that

8 | grep Pocket Reference

string to search. For instance, if I were logged in with username
“bambenek”, grep would search filename for the use of
“bambenek”.

Double quotes, however, work the same as the single quotes,
but with one important difference. With double quotes, it be-
comes possible to use environment variables as part of a search
pattern:

grep "$HOME" filename

The environment variable HOME is normally the absolute path
of the logged-in user’s home directory. The grep command just
shown would determine the meaning of the variable HOME and
then search on that string. If you place $HOME in single quotes,
it would not recognize it as an environment variable.

It is important to craft the regular expression with the right
type of quotation marks because different types can yield
wildly different results. Beginning and ending quotes must be
the same or an error will be generated, letting you know that
your syntax is incorrect. Note that it is possible to combine the
use of different quotation marks to combine functionality. This
will be discussed later in the section “Advanced Tips and Tricks
with grep” on page 57.

Metacharacters
In addition to quotation marks, the position and combination
of other special characters produce different effects on the reg-
ular expression. For example, the following command searches
the file name.list for the letter ‘e’ followed by ‘a’:

grep -e 'e[a]' name.list

But by simply adding the caret symbol, ^, you change the
entire meaning of the expression. Now you are searching for
the ‘e’ followed by anything that is not the letter ‘a’:

grep -e 'e[^a]' name.list

Introduction to Regular Expressions | 9

Since metacharacters help define the manipulation, it is im-
portant to be familiar with them. Table 1 has a list of regularly
used special characters and their meanings.

Table 1. Regular expression metacharactersa

Metacharacter Name Matches

Items to match a single character

. Dot Any one character

[...] Character class Any character listed in brackets

[^...] Negated character
class

Any character not listed in brackets

\char Escape character The character after the slash literally; used
when you want to search for a “special” char-
acter, such as “$” (i.e., use “\$”)

Items that match a position

^ Caret Start of a line

$ Dollar sign End of a line

\< Backslash less-than Start of a word

\> Backslash greater-
than

End of a word

The quantifiers

? Question mark Optional; considered a quantifier

* Asterisk Any number (including zero); sometimes
used as general wildcard

+ Plus One or more of the preceding expression

{N} Match exactly Match exactly N times

{N,} Match at least Match at least N times

{min,max} Specified range Match between min and max times

Other

| Alternation Matches either expression given

- Dash Indicates a range

(...) Parentheses Used to limit scope of alternation

10 | grep Pocket Reference

Metacharacter Name Matches

\1, \2, ... Backreference Matches text previously matched within pa-
rentheses (e.g., first set, second set, etc.)

\b Word boundary Batches characters that typically mark the
end of a word (e.g., space, period, etc.)

\B Backslash This is an alternative to using “\\” to match
a backslash, used for readability

\w Word character This is used to match any “word” character
(i.e., any letter, number, and the underscore
character)

\W Non-word character This matches any character that isn’t used in
words (i.e., not a letter, number, or
underscore)

\` Start of buffer Matches the start of a buffer sent to grep

\' End of buffer Matches the end of a buffer sent to grep

a From Jeffrey E.F. Friedl’s Mastering Regular Expressions (O’Reilly), with
some additions

The table references something known as the escape character.
There are times when you will be required to search for a literal
character that is usually used as a metacharacter. For example,
suppose you are looking for amounts that contain the dollar
sign within price.list:

grep '[1-9]$' price.list

As a result, the search will try to match the numbers at the end
of the line. This is certainly something you do not want. By
using the escape character, annotated by the backslash (\), you
avoid such confusion:

grep '[1-9]\$' price.list

The metacharacter $ becomes a literal, and therefore is
searched in price.list as a string.

For instance, take a text file (price.list) that has the following
content:

Introduction to Regular Expressions | 11

123
123$

Using the two commands just shown yields the following
results:

$ grep '[1-9]\$' price.list
123$
$ grep '[1-9]$' price.list
123

In the first example, the command looked for the actual dollar-
sign character. In the second example, the dollar sign had its
special metacharacter’s meaning and matched the end of line,
and so would match only those lines that ended in a number.
The meaning of these special characters needs to be kept in
mind because they can make a significant difference in how a
search is processed.

Here is a brief rundown of the regular expression metachar-
acters, along with some examples to make it clear how they are
used:

. (any single character)
The “dot” character is one of the few types of wildcards
available in regular expressions. This particular wildcard
will match any single character. This is useful if a user
wishes to craft a search pattern with some characters in
the middle of it that are not known to the user. For in-
stance, the following grep pattern would match “red”,
“rod”, “red”, “rzd”, and so on:

'r.d'

This “dot” character can be used repeatedly at whatever
interval is necessary to find the desired content.

[...] (character class)
The “character class” tool is one of the more flexible tools,
and it comes up again and again when using regular ex-
pressions. There are two basic ways to use character
classes: to specify a range and to specify a list of characters.
An important point is that a character class will match
only one character:

12 | grep Pocket Reference

'[a-f]'
'[aeiou]'

The first pattern will look for any letter between “a” and
“f”. Ranges can be uppercase letters, lowercase letters, or
numbers. A combination of ranges can also be used, for
instance, [a-fA-F0-5]. The second example will search for
any of the given characters, in this case vowels. A character
class can also include a list of special characters, but they
can’t be used as a range.

[^...] (negation)
The “negation” character class allows a user to search for
anything but a specific character or set of characters. For
instance, a user who doesn’t like even numbers could use
the following search pattern:

'..[^24680]'

This will look for any three-character pattern that does
not end in an even number. Any list or range of characters
can be placed inside a negated character class.

\ (escape)
The “escape” is one of the metacharacters that can have
multiple meanings depending on how it is used. When
placed before another metacharacter, it signifies to treat
that character as the literal symbol instead of its special
meaning. (It also can be used in combination with other
characters, such as b or ', to convey a special meaning.
Those specific combinations are covered later.) Take the
following two examples:

'.'
'\.'

The first example would match any single character and
would return every piece of text in a file. The second ex-
ample would only match the actual “period” character.
The escape tells the regular expression to ignore the
metacharacter’s special meaning and process it normally.

Introduction to Regular Expressions | 13

^ (start of line)
When a carat is used outside of a character class, it no
longer means negation; instead, it means the beginning of
a line. If used by itself, it will match every single line on
the screen because each line has a beginning. More useful
is when a user wishes to match lines of text that begin with
a certain pattern:

'^red'

This pattern would match all lines that begin with “red”,
not just the ones that contain the word “red”. This is use-
ful for structured communication or programming lan-
guages, for example, where lines may begin with specific
strings that contain important information (such as
#DEFINE in C). However, the meaning is lost if it is not at
the beginning of a line.

$ (end of line)
As discussed earlier, the dollar sign character matches the
end of a line. Used alone, it will match every line in a
stream except the final line, which is terminated by an
“end of file” character instead of an “end of line” charac-
ter. This is useful for finding strings that have a desired
meaning at the end of a line. For instance:

'-$'

would find all lines whose last character is a dash, as is
typical for words that are hyphenated when they are too
long to fit on one line. This expression would find only
those lines with hyphenated words split between lines.

\< (start of word)
If a user wished to craft a search pattern that matches
based on the start of a word and the pattern was likely to
recur inside a word (but not at the beginning), this par-
ticular escape could be used. For instance, take the fol-
lowing example:

'\<un'

14 | grep Pocket Reference

This pattern would match words starting with the prefix
“un”, such as “unimaginable,” “undetected,” or “under-
valued.” It would not match words such as “funding,”
“blunder,” or “sun.” It detects the beginning of a word by
looking for a space or another “separation” that indicates
the beginning of a new word (a period, comma, etc.).

\> (end of word)
Similar to the previous escape, this one will match at the
end of a word. After the characters, it looks for a “sepa-
ration” character that indicates the end of a word (a space,
tab, period, comma, etc.). For example:

'ing\>'

would match words that end in “ing” (e.g., “spring”), not
words that simply contain “ing” (e.g., “kingdom”).

* (general wildcard)
The asterisk is probably by far the most-used metachar-
acter. It is a general wildcard classed as a quantifier that
is specifically used for repetitious patterns. For some
metacharacters, you can assign minimum and maximum
boundaries that manipulate the quantity outputted from
the pattern, but the asterisk does not place any limits or
boundaries. There are no limits to how many spaces there
can be before or after the character. Suppose a user wants
to know whether a particular installer’s different formats
are described in a file. The results of this simple command:

'install.*file'

the results should output all the lines that contain “install”
(with any amount of text in between) and then “file”. It is
necessary to use the period character; otherwise, it will
match only “installfile” instead of iterations of “install”
and “file” with characters in between.

- (range)
When used inside a bracketed character class, the dash
character specifies a range of values instead of a raw list
of values. When the dash is used outside of a bracketed

Introduction to Regular Expressions | 15

character class, it is interpreted as the literal dash charac-
ter, without its special value.

'[0-5]'

\# (backreferences)
Backreferences allow you to reuse a previously matched
pattern to determine future matches. The format for a
backreference is \ followed by the pattern number in the
sequence (from left to right) that is being referenced.
Backreferences are covered in more detail in the section
“Advanced Tips and Tricks with grep” on page 57.

\b (word boundary)
The \b escape refers to any character that indicates a word
has started or ended (similar to \> and \<, discussed ear-
lier). In this case, it doesn’t matter whether it is the be-
ginning or end of the word; it simply looks for punctuation
or spacing. This is particularly useful when you are search-
ing for a string that can be a standalone word or a set of
characters within another, unrelated word:

'\bheart\b'

This would match the exact word “heart” and nothing
more (not “disheartening”, not “hearts”, etc.). If you are
searching for a particular word, numerical value, or string
and do not want to match when those words or values are
part of another value, it is necessary to use either \b, \>,
or \<.

\B (backslash)
The \B escape is a peculiar case because it isn’t an escape
itself, but rather an alias for another one. In this case, \B
is identical to \\, namely, to interpret the slash character
literally in a search pattern instead of with its special
meaning. The purpose of this alias is to make a search
pattern a little more readable and to avoid double-slashes,
which could have ambiguous meaning in complicated
expressions.

'c:\Bwindows'

16 | grep Pocket Reference

This example would search for the string “c:\windows”.

\w and \W (word or non-word characters)
The \w and \W escapes go hand in hand because their
meanings are opposite. \w will match any “word” charac-
ter and is equivalent to ''[a-zA-Z0-9_]''. The \W escape
will match every other character (including non-printable
ones) that does not fall into the “word character” cate-
gory. This can be useful in parsing structured files where
text is interposed with special characters (e.g., :, $, %,
etc.).

\` (start of buffer)
This escape, like the “start of line” escape, will match the
start of a buffer as it is fed to whatever is processing the
regular expression. Because grep works with lines, a buffer
and a line tend to be synonymous (but not always). This
escape is used in the same way as the “start of line” escape
discussed earlier.

\' (end of buffer)
This escape is similar to the “end of line” escape, except
that it looks for the end of a buffer that is fed to whatever
is processing the regular expression. In both cases of start
and end of buffer escapes, their usage is extremely rare,
and it is easier to simply use start and end of line instead.

The following is a list of metacharacters used in extended reg-
ular expressions:

? (optional match)
The use of the question mark has a different meaning than
it does in typical filename wildcard usage (GLOB). In
GLOB, ? means any single character. In regular expres-
sions, it means that the preceding character (or string if
placed after a subpattern) is an “optional” matching pat-
tern. This allows for multiple match conditions with a
single regular expression pattern. For instance:

'colors?'

Introduction to Regular Expressions | 17

would match both “color” and “colors”. The “s” character
is an optional match, so if it is not present, it does not
cause a failing condition on the pattern.

+ (repetitive match)
The plus sign indicates that the regular expression is look-
ing for a match of one or more of the previous character
(or subpattern). For instance:

'150+'

would match 150 with any number of additional zeroes
(e.g., 1500, 15000, 1500000, etc.).

{N} (match exactly N times)
Brackets, when placed after a character, indicate a specific
number of repetitions to search for. For instance:

'150{3}\b'

would match 15 followed by 3 zeroes. So 1500 would not
match, but 15000 would. Note the use of the \b “word
boundary” escape. In this case, if the desired match is
precisely “15000” and there is not a check for a word
boundary “150000”, “150002345” or “15000asdf” would
match also because they all contain the desired search
string of “15000”.

{N,} (match at least N times)
Like the previous example, putting a number and a
comma after it indicates the regular expression will search
for at least N number of repetitions. For instance:

'150{3,}\b'

would match “15” followed by at least three zeroes, and
so “15”, “150”, and “1500” would not match. Use the
word boundary escape to avoid cases where a precise
match of a specific number is desired. (e.g.,
“1500003456”, “15000asdf”, etc.). The use of \b clarifies
the meaning.

18 | grep Pocket Reference

{N,M} (match between N and M times)
If you wish to match some numbers between two values
of repetitions, it is possible to specify both between the
braces separated by a comma. For instance:

'150{2,3}\b'

would match “1500” and “15000” and nothing else.

| (alternation)
The “pipe” character specifies alternation inside a regular
expression. Think of it as a way of giving the regular
expression a choice of match conditions with a single ex-
pression. For example:

'apple|orange|banana|peach'

would match any of the strings given, regardless of
whether the others are also within the scope of the search.
In this case, if the text includes “apple” or “orange” or
“banana” or “peach”, it will match that content.

() (subpattern)
The last important feature of extended regular expressions
is the ability to create subpatterns. This allows for regular
expressions that repeat entire strings, use alternation on
entire strings, to have backreferences work, and to make
regular expressions more readable:

'(red|blue) plate'
'(150){3}'

The first example will match either “red plate” or “blue
plate”. Without the parentheses, the regular expression
''red|blue plate'' would match “red” (note the lack of
the word “plate”) or “blue plate”. Parenthetical
subpatterns help limit the scope of alternation.

In the second example, the regular expression will match
on “150150150”. Without parentheses, it would match
“15000”. Parentheses make it possible to match on repe-
tition of entire strings instead of single characters.

Introduction to Regular Expressions | 19

Metacharacters generally are universal between the different
grep commands, such as egrep, fgrep, and grep -P. However,
there are instances in which a character carries a different con-
notation. Any differences will be discussed within the section
pertaining to that command.

POSIX Character Classes
Additionally, regular expressions come with a set of POSIX
character definitions that create shortcuts to find certain
classes of characters. Table 2 shows a list of these shortcuts and
what they signify. POSIX is basically a set of standards created
by the Institute of Electrical and Electronics Engineers (IEEE)
to describe how Unix-style operating systems should behave.
It is very old, but much of its content is still used. Among other
things, POSIX has definitions on how regular expressions
should work with shell utilities such as grep.

Table 2. POSIX character definitions

POSIX definition Contents of character definition

[:alpha:] Any alphabetical character, regardless of case

[:digit:] Any numerical character

[:alnum:] Any alphabetical or numerical character

[:blank:] Space or tab characters

[:xdigit:] Hexadecimal characters; any number or A–F or a–f

[:punct:] Any punctuation symbol

[:print:] Any printable character (not control characters)

[:space:] Any whitespace character

[:graph:] Exclude whitespace characters

[:upper:] Any uppercase letter

[:lower:] Any lowercase letter

[:cntrl:] Control characters

Many of these POSIX definitions are more readable equivalents
of character classes. For instance, [:upper:] can be also written

20 | grep Pocket Reference

as [A-Z] and uses less characters to do so. There aren’t good
character class equivalents for some other classes, such as
[:cntrl:]. To use these in a regular expression, simply place
them the same way you would place a character class. It is im-
portant to note that one placement of these POSIX character
definitions will match only one single character. To match rep-
etitions of character classes, you would have to repeat the def-
inition. For instance:

'[:digit:]'
'[:digit:][:digit:][:digit:]'
'[:digit:]{3}'

In the first example, any single numerical character will be
matched. In the second example, only three-digit numbers (or
longer) will be matched. The third example is a cleaner, shorter
way of writing the second example. Many regular expressions
enthusiasts try to accomplish as much as possible with as few
keystrokes as possible. Show them the second example, and
they may cringe. The third example is a more efficient way of
accomplishing the same thing.

Crafting a Regular Expression
Like algebra, grep has rules of precedence for processing. Rep-
etition is processed before concatenation. Concatenation is
processed before alternation. Strings are concatenated by sim-
ply being next to each other inside the regular expression—
there is no special character to signify concatenation.

For instance, take the following regular expression:

'pat{2}ern|red'

In this example, the repetition is processed first, yielding two
“t”s. Then, the strings are concatenated, producing “pattern”
on one side of the pipe and “red” on the other. Next, the al-
ternation is processed, creating a regular expression that will
search for “pattern” or “red”. However, what if you wanted to
search for “patpatern” and “red” or “pattern” or “pattred”?

Introduction to Regular Expressions | 21

In this case, just like in algebra, parentheses will “override”
the rules of precedence. For example:

2 + 3 / 5
(2 + 3) / 5

These two mathematical equations yield different results be-
cause of the parentheses. The concept is the same here:

'(pat){2}ern|red'
'pat{2}(ern|red)'

The first example will concatenate “pat” first and then repeat
it twice, yielding “patpatern” and “red” as the search strings.
The second example will process the alternation subpattern
first, so the regular expression will search for “pattern” and
“pattred”. Using parentheses can help you fine-tune your reg-
ular expression to match specific content based on how you
construct it. Even if the rules of precedence don’t need to be
overruled for a particular regular expression, sometimes it
makes sense to use parentheses for enhanced readability.

A regular expression can continue as long as the single quote
is not closed. For instance:

$ grep 'patt
> ern' filename

Here the single quote was not ended before the user pressed
Return right after the second “t” (no space was pressed). The
next line shows a > prompt, which indicates it is still waiting
for the string to be completed before it processes the command.
As long as you keep pressing Return, it will keep giving you the
prompt until you either press Ctrl-C to break or close the
quote, at which point it will process the command. This allows
for long regular expressions to be typed in on the command
line (or a shell script) without cramming them all on one line,
potentially making them less than readable.

In this case, the regular expression searches for the word “pat-
tern”. The command ignores returns and does not input those
into the regular expression itself, so it is possible to hit Enter
in the middle of a word and pick up right where you left off.

22 | grep Pocket Reference

Concern for readability is important because “space” keys
aren’t easily visible, which makes this example a great con-
tender for subpatterns, to help make the regular expression
more understandable.

It is also possible to use several different groupings of strings
with their own quotation marks. For instance:

'patt''ern'

would search for the word “pattern”, just as if it were typed
with the expected regular expression of ''pattern''. This ex-
ample isn’t a very practical one, and there is no compelling
reason ever to do that with just text. However, when combin-
ing different quotation types, this technique makes it possible
to take advantage of each quotation type to produce a regular
expression using environment variables and/or output from
commands. For example:

$ echo $HOME
/home/bambenek
$ whoami
bambenek

shows that the environment variable $HOME is set to /home/
bambenek and that the output of the command whoami is
“bambenek”. So, the following regular expression:

'username:'`whoami`' and home directory
is '"$HOME"

would match on the string “username:bambenek and home
directory is /home/bambenek” by inserting in the output from
the whoami command and the setting for the environment var-
iable $HOME. This is a quick overview of regular expressions and
how they can be used. There are entire books devoted to the
complexities of regular expressions, but this primer is enough
to get you started on what you need to know in order to use
the grep command.

Introduction to Regular Expressions | 23

grep Basics
There are two ways to employ grep. The first examines files as
follows:

grep regexp filename

grep searches for the designated regexp in the given file
(filename). The second method of employing grep is when it
examines “standard input.” For example:

cat filename | grep regexp

In this case, the cat command will display the contents of a file.
The output of this command is “piped” into the grep com-
mand, which will then display only those lines that contain the
given regexp. The two commands just shown have identical
results because the cat command simply passes the file un-
changed, but the second form is valuable for “grepping” other
commands that alter their input.

When grep is called without a filename argument and without
being passed any input, it will let you type in text and will re-
peat it once it gets a line that contains the regexp. To exit,
press Ctrl-D.

At times, the output is remarkably large and hard to scroll
through in a terminal. This is usually the case with large files
that tend to have repetitious phrases, such as an error log. In
these cases, piping the output to the more or less commands
will “paginate” it so that only one screen of text is shown at a
time:

grep regexp filename | more

Another option to make the output easier to look at is to redi-
rect the results into a new file and then open the output file in
a text editor at a later time:

grep regexp filename > newfilename

Also, it may be advantageous to look for lines that contain sev-
eral patterns instead of just one. In the following example, the
text file editinginfo contains a date, a username, and the file

24 | grep Pocket Reference

that was edited by that user on the given date. If an adminis-
trator was interested in just the files edited by “Smith”, he
would type the following:

cat editinginfo | grep Smith

The output would look like:

May 20, 2008 Smith hi.txt
June 21, 2008 Smith world.txt
 .
 .

An administrator may wish to match multiple patterns, which
can be accomplished by “chaining” grep commands together.
We are now familiar with the cat filename | grep regexp com-
mand and what it does. By piping the second grep, along with
any number of piped grep commands, you create a very refined
search:

cat filename | grep regexp | grep regexp2

In this case, the command looks for lines in filename that have
both regexp and regexp2. More specifically, grep will search for
regexp2 in the results of the grep search for regexp. Using the
previous example, if an administrator wanted to see every date
that Smith edited any file except hi.txt, he could issue the fol-
lowing command:

cat editinginfo | grep Smith | grep -v hi.txt

The following output would result:

June 21, 2008 Smith world.txt

It is important to note that “chaining” grep commands is inef-
ficient most of the time. Often, a regular expression can be
crafted to combine several conditions into a single search.

For instance, instead of the previous example, which combines
three different commands, the same could be accomplished
with:

grep Smith | grep -v hi.txt

Using the pipe character will run one command and give the
results of that command to the next command in the sequence.

grep Basics | 25

In this case, grep searches for lines with “Smith” in them and
sends those results to the next grep command, which excludes
lines that have “hi.txt”. When a search can be accomplished
using fewer commands or with fewer decisions having to be
made, the more efficiently it will behave. For small files, per-
formance isn’t an issue, but when searching through gigabyte-
sized logfiles, performance can be an important consideration.

There is a case to be made for piping commands when you wish
to search through content that is continually streaming. For
instance, if you want to monitor a logfile in real-time for speci-
fied content, she could use the following command:

tail -f /var/log/messages | grep WARNING

This command would open up the last 10 lines of
the /var/log/messages files (usually the main system logfile on
a Linux system), but keep the file open and print all content
placed into the file as long as it is running (the -f option to
tail is often called “follow”). So the command just shown
would look for any entry that has the string “WARNING” in
it, display it to the console, and disregard all other messages.

As an important note, grep will search through a line and once
it sees a newline, it will restart the entire search on the next
line. This means that if you are searching for a sentence with
grep, there is a very real possibility that a newline character in
the middle of the sentence in the file will prevent you from
finding that sentence directly. Even specifying the newline
character in the search pattern will not alleviate this problem.
Some text editors and productivity applications simply wrap
words on lines without placing a newline character, so search-
ing is not pointless in these cases, but it is an important limi-
tation to keep in mind.

To get details about the regular expression implementation on
your specific machine, check the regex and re_format man-
pages. It is important to note, however, that not all the func-
tions and abilities of regular expressions are built-in to grep.
For instance, search and replace is not available. More

26 | grep Pocket Reference

importantly, there are some useful escape characters that seem
to be missing by default.

For instance, \d is an escape sequence to match any numeric
character (0 through 9) in some regular expressions. However,
this does not seem to be available with grep under standard
distribution and compile options (with the exception of Perl-
style grep, to be covered later). This guide attempts to cover
what is available by default in a standard installation and at-
tempts to be the authoritative resource on the abilities and
limits of grep.

The grep program is actually a package of four different
pattern-matching programs that use different regular-
expression models. Each pattern-matching system has its
strengths and weaknesses, and each will be discussed in detail
in the following sections. We’ll start with the original model,
which we’ll call basic grep.

Basic Regular Expressions (grep or grep -G)
This section focuses on basic grep. Most of the flags for basic
grep apply equally to the other versions, which we’ll discuss
later.

Basic grep, or grep -G, is the default pattern matching type that
is used when calling grep. grep interprets the given set of pat-
terns as a basic regular expression when it executes the com-
mand. This is the default grep program that is called, so the
-G option is almost always redundant.

Like any command, grep comes with a handful of options that
control both the matches found and the way grep displays the
results. The GNU version of grep offers most of the options
listed in the following subsections.

Basic Regular Expressions (grep or grep -G) | 27

Match Control
-e pattern, --regexp=pattern

grep -e -style doc.txt

Ensures that grep recognizes the pattern as the regular ex-
pression argument. Useful if the regular expression begins
with a hyphen, which makes it look like an option. In this
case, grep will look for lines that match “-style”.

-f file, --file=file

grep -f pattern.txt searchhere.txt

Takes patterns from file. This option allows you to input
all the patterns you want to match into a file, called
pattern.txt here. Then, grep searches for all the patterns
from pattern.txt in the designated file searchhere.txt. The
patterns are additive; that is, grep returns every line that
matches any pattern. The pattern file must list one pattern
per line. If pattern.txt is empty, nothing will match.

-i, --ignore-case

grep -i 'help' me.txt

Ignores capitalization in the given regular expressions,
either via the command line or in a file of regular expres-
sions specified by the -f option. The example here would
search the file me.txt for a string “help” with any iteration
of lower- and uppercase letters in the word (“HELP”,
“HelP”, etc.). A similar but obsolete synonym to this op-
tion is -y.

-v, --invert-match

grep -v oranges filename

Returns lines that do not match, instead of lines that do.
In this case, the output would be every line in filename
that does not contain the pattern “oranges”.

28 | grep Pocket Reference

-w, --word-regexp

grep -w 'xyz' filename

Matches only when the input text consists of full words.
In this example, it is not enough for a line to contain the
three letters “xyz” in a row; there must actually be spaces
or punctuation around them. Letters, digits, and the
underscore character are all considered part of a word; any
other character is considered a word boundary, as are the
start and end of the line. This is the equivalent of putting
\b at the beginning and end of the regular expression.

-x, --line-regexp

grep -x 'Hello, world!' filename

Like -w, but must match an entire line. This example
matches only lines that consist entirely of “Hello, world!”.
Lines that have additional content will not be matched.
This can be useful for parsing logfiles for specific content
that might include cases you are not interested in seeing.

General Output Control
-c, --count

grep -c contact.html access.log

Instead of the normal output, you receive just a count of
how many lines matched in each input file. In the example
here, grep will simply return the number of times the
contact.html file was accessed through a web server’s ac-
cess log.

grep -c -v contact.html access.log

This example returns a count of all the lines that do not
match the given string. In this case, it would be every time
someone accessed a file that wasn’t contact.html on the
web server.

Basic Regular Expressions (grep or grep -G) | 29

--color[=WHEN], --colour[=WHEN]

grep -color[=auto] regexp filename

Assuming the terminal can support color, grep will color-
ize the pattern in the output. This is done by surrounding
the matched (nonempty) string, matching lines, context
lines, filenames, line numbers, byte offsets, and separators
with escape sequences that the terminal recognizes as
color markers. Color is defined by the environment vari-
able GREP_COLORS (discussed later). WHEN has three options:
never, always, and auto.

-l, --files-with-matches

grep -l "ERROR:" *.log

Instead of normal output, prints just the names of input
files containing the pattern. As with -L, the search stops
on the first match. If an administrator is simply interested
in the filenames that contain a pattern without seeing all
the matching lines, this option performs that function.
This can make grep more efficient by stopping the search
as soon as it finds a matching pattern instead of continuing
to search an entire file. This is often referred to as “lazy
matching.”

-L, --files-without-match

grep -L 'ERROR:' *.log

Instead of normal output, prints just the names of input
files that contain no matches. For instance, the example
prints all the logfiles that contain no reports of errors. This
is an efficient use of grep because it stops searching each
file once it finds any match, instead of continuing to search
the entire file for multiple matches.

-m NUM, --max-count=NUM

grep -m 10 'ERROR:' *.log

This option tells grep to stop reading a file after NUM lines
are matched (in this example, only 10 lines that contain
“ERROR:”). This is useful for reading large files where

30 | grep Pocket Reference

repetition is likely, such as logfiles. If you simply want to
see whether strings are present without flooding the ter-
minal, use this option. This helps to distinguish between
pervasive and intermittent errors, as in the example here.

-o, --only-matching

grep -o pattern filename

Prints only the text that matches, instead of the whole line
of input. This is particularly useful when implementing
grep to examine a disk partition or a binary file for the
presence of multiple patterns. This would output the pat-
tern that was matched without the content that would
cause problems for the terminal.

-q, --quiet, --silent

grep -q pattern filename

Suppresses output. The command still conveys useful in-
formation because the grep command’s exit status (0 for
success if a match is found, 1 for no match found, 2 if the
program cannot run because of an error) can be checked.
The option is used in scripts to determine the presence of
a pattern in a file without displaying unnecessary output.

-s, --no-messages

grep -s pattern filename

Silently discards any error messages resulting from non-
existent files or permission errors. This is helpful for
scripts that search an entire filesystem without root per-
missions, and thus will likely encounter permissions er-
rors that may be undesirable. On the other side, it also will
suppress useful diagnostic information, which could
mean that problems may not be discovered.

Output Line Prefix Control
-b, --byte-offset

grep -b pattern filename

Basic Regular Expressions (grep or grep -G) | 31

Displays the byte offset of each matching text instead of
the line number. The first byte in the file is byte 0, and
invisible line-terminating characters (the newline in Unix)
are counted. Because entire lines are printed by default,
the number displayed is the byte offset of the start of the
line. This is particularly useful for binary file analysis,
constructing (or reverse-engineering) patches, or other
tasks where line numbers are meaningless.

grep -b -o pattern filename

A -o option prints the offset along with the matched pat-
tern itself and not the whole matched line containing the
pattern. This causes grep to print the byte offset of the start
of the matched string instead of the matched line.

-H, --with-filename

grep -H pattern filename

Includes the name of the file before each line printed, and
is the default when more than one file is input to the
search. This is useful when searching only one file and you
want the filename to be contained in the output. Note that
this uses the relative (not absolute) paths and filenames.

-h, --no-filename

grep -h pattern *

The opposite of -H. When more than one file is involved,
it suppresses printing the filename before each output. It
is the default when only one file or standard input is in-
volved. This is useful for suppressing filenames when
searching entire directories.

--label=LABEL

gzip -cd file.gz | grep --label=LABEL pattern

When the input is taken from standard input (for instance,
when the output of another file is redirected into grep),
the --label option will prefix the line with LABEL. In this
example, the gzip command displays the contents of the

32 | grep Pocket Reference

uncompressed file inside file.gz and then passes that to
grep.

-n, --line-number

grep -n pattern filename

Includes the line number of each line displayed, where the
first line of the file is 1. This can be useful in code debug-
ging, allowing you to go into the file and specify a partic-
ular line number to start editing.

-T, --initial-tab

grep -T pattern filename

Inserts a tab before each matching line, putting the tab
between the information generated by grep and the match-
ing lines. This option is useful for clarifying the layout. For
instance, it can separate line numbers, byte offsets, labels,
etc., from the matching text.

-u, --unix-byte-offsets

grep -u -b pattern filename

This option only works under the MS-DOS and Microsoft
Windows platforms and needs to be invoked with -b. This
option will compute the byte-offset as if it were running
under a Unix system and strip out carriage return
characters.

-Z, --null

grep -Z pattern filename

Prints an ASCII NUL (a zero byte) after each filename.
This is useful when processing filenames that may contain
special characters (such as carriage returns).

Context Line Control
-A NUM, --after-context=NUM

grep -A 3 Copyright filename

Basic Regular Expressions (grep or grep -G) | 33

Offers a context for matching lines by printing the NUM
lines that follow each match. A group separator (--) is
placed between each set of matches. In this case, it will
print the next three lines after the matching line. This is
useful when searching through source code, for instance.
The example here will print three lines after any line that
contains “Copyright”, which is typically at the top of
source code files.

-B NUM, --before-context=NUM

grep -B 3 Copyright filename

Same concept as the -A NUM option, except that it prints
the lines before the match instead of after it. In this case,
it will print the three lines before the matching line. This
is useful when searching through source code, for in-
stance. The example here will print three lines before any
line that contains “Copyright”, which is typically at the
top of source code files.

-C NUM, -NUM, --context=NUM

grep -C 3 Copyright filename

The -C NUM option operates as if the user entered both the
-A NUM and -B NUM options. It will display NUM lines before
and after the match. A group separator (--) is placed be-
tween each set of matches. In this case, three lines above
and below the matching line will be printed. Again, this is
useful when searching through source code, for instance.
The example here will print three lines before and after
any line that contains “Copyright”, which is typically at
the top of source code files.

File and Directory Selection
-a, --text

grep -a pattern filename

Equivalent to the --binary-files=text option, allowing a
binary file to be processed as if it were a text file.

34 | grep Pocket Reference

--binary-files=TYPE

grep --binary-files=TYPE pattern filename

TYPE can be either binary, without-match, or text. When
grep first examines a file, it determines whether the file is
a “binary” file (a file primarily composed of non-human-
readable text) and changes its output accordingly. By
default, a match in a binary file causes grep to display sim-
ply the message “Binary file somefile.bin matches.” The
default behavior can also be specified with the
--binary-files=binary option.

When TYPE is without-match, grep does not search the bi-
nary file and proceeds as if it had no matches (equivalent
to the -l option). When TYPE is text, the binary file is pro-
cessed like text (equivalent to the -a option). When TYPE
is without-match, grep will simply skip those files and not
search through them. Sometimes --binary-files=text
outputs binary garbage and the terminal may interpret
some of that garbage as commands, which in turn can
render the terminal unreadable until reset. To recover
from this, use the commands tput init and tput reset.

-D ACTION, --devices=ACTION

grep -D read 123-45-6789 /dev/hda1

If the input file is a special file, such as a FIFO or a socket,
this flag tells grep how to proceed. By default, grep will
process these files as if they were normal files on a system.
If ACTION is set to skip, grep will silently ignore them. The
example will search an entire disk partition for the fake
Social Security number shown. When ACTION is set to read,
grep will read through the device as if it were a normal file.

-d ACTION, --directories=ACTION

grep -d ACTION pattern path

This flag tells grep how to process directories submitted
as input files. When ACTION is read, this reads the directory
as if it were a file. recurse searches the files within that

Basic Regular Expressions (grep or grep -G) | 35

directory (same as the -R option), and skip skips the di-
rectory without searching it.

--exclude=GLOB

grep --exclude=PATTERN path

Refines the list of input files by telling grep to ignore files
whose names match the specified pattern. PATTERN can be
an entire filename or can contain the typical “file-
globbing” wildcards the shell uses when matching files
(*, ? and []). For instance, --exclude=*.exe will skip all
files ending in .exe.

--exclude-from=FILE

grep --exclude-from=FILE path

Similar to the --exclude option, except that it takes a list
of patterns from a specified filename, which lists each pat-
tern on a separate line. grep will ignore all files that match
any lines in the list of patterns given.

--exclude-dir=DIR

grep --exclude-dir=DIR pattern path

Any directories in the path matching the pattern DIR will
be excluded from recursive searches. In this case, the ac-
tual directory name (relative name or absolute path name)
has to be included to be ignored. This option also must be
used with the -r option or the -d recurse option in order
to be relevant.

-l

grep -l pattern filename

Same as the --binary-files=without-match option. When
grep finds a binary file, it will assume there is no match in
the file.

--include=GLOB

grep --include=*.log pattern filename

Limits searches to input files whose names match the
given pattern (in this case, files ending in .log). This option

36 | grep Pocket Reference

is particularly useful when searching directories using the
-R option. Files not matching the given pattern will be ig-
nored. An entire filename can be specified, or can contain
the typical “file-globbing” wildcards the shell uses when
matching files (*, ? and []).

-R, -r, --recursive

grep -R pattern path
grep -r pattern path

Searches all files underneath each directory submitted as
an input file to grep.

Other Options
--line-buffered

grep --line-buffered pattern filename

Uses line buffering for the output. Line buffering output
usually leads to a decrease in performance. The default
behavior of grep is to use unbuffered output. This is gen-
erally a matter of preference.

--mmap

grep --mmap pattern filename

Uses the mmap() function instead of the read() function to
process data. This can lead to a performance improvement
but may cause errors if there is an I/O problem or the file
shrinks while being searched.

-U, --binary

grep -U pattern filename

An MS-DOS/Windows-specific option that causes grep to
treat all files as binary. Normally, grep would strip out
carriage returns before doing pattern matching; this op-
tion overrides that behavior. This does, however, require
you to be more thoughtful when writing patterns. For in-
stance, if content in a file contains the pattern but has a

Basic Regular Expressions (grep or grep -G) | 37

newline character in the middle, a search for that pattern
will not find the content.

-V, --version
Simply outputs the version information about grep and
then exits.

-z, --null-data

grep -z pattern

Input lines are treated as though each one ends with a zero
byte, or the ASCII NUL character, instead of a newline.
Similar to the -Z or --null options, except this option
works with input, not output.

One final limitation of basic grep: the “extended” regular ex-
pressions metacharacters—?, +, {, }, |, (, and)—do not work
with basic grep. The functions provided by those characters
exist if you preface them with an escape. More on that in the
next section.

Extended Regular Expressions (egrep
or grep -E)
grep -E and egrep are the same exact command. The commands
search files for patterns that have been interpreted as extended
regular expressions. An extended regular expression goes be-
yond just using the previously mentioned options; it uses ad-
ditional metacharacters to create more complex and powerful
search strings. As far as command-line options, grep -E and
grep take the same ones—the only differences are in how they
process the search pattern:

?
? in an expression carries the meaning of optional. Any
character preceding the question mark may or may not
appear in the target string. For example, say you are look-
ing for the word “behavior”, which can also be written as

38 | grep Pocket Reference

“behaviour”. Instead of using the or (|) option, you can
use the command:

egrep 'behaviou?r' filename

As a result, the search is successful for both “behavior”
and “behaviour” because it will treat the presence or ab-
sence of the letter “u” the same way.

+
The plus sign will look at the previous character and allow
an unlimited amount of repetitions when it looks for
matching strings. For instance, the following command
would match both “pattern1” and “pattern11111”, but
would not match “pattern”:

egrep 'pattern1+' filename

{n,m}
The braces are used to determine how many times a pat-
tern needs to be repeated before a match occurs. For in-
stance, instead of searching for “patternnnn”, you could
enter the following command:

egrep 'pattern{4}' filename

This will match any string that contains “patternnnn”
without going through the trouble of typing out repeated
strings. In order to match at least four repetitions, you
would use the following command:

egrep 'pattern{4,}' filename

On the other hand, look at the following example:

egrep 'pattern{,4}' filename

Despite the fact that it would fit in with the conventions
already used, this is not valid. The command just shown
would result in no matches because the ability to have “no
more than X” matches is not available.

To match between four and six repetitions, use the
following:

egrep 'pattern{4,6}' filename

Extended Regular Expressions (egrep or grep -E) | 39

|
Used in a regular expression, this character signifies “or.”
As a result, pipe (|) allows you to combine several patterns
into one expression. For example, suppose you need to
find either of two names in file. You could issue the fol-
lowing command:

egrep 'name1|name2' filename

It would match on lines containing either “name1” or
“name2”.

()
Parentheses can be used to “group” particular strings of
text for the purposes of backreferences, alternation, or
simply readability. Additionally, the use of parentheses
can help resolve any ambiguity in precisely what the user
wants the search pattern to do. Patterns placed inside pa-
rentheses are often called subpatterns.

Also parentheses put limits on pipe (|). This allows the
user to more tightly define which strings are part of or in
scope of the “or” operation. For instance, to search for
lines that contain either “pattern” or “pattarn”, you would
use the following command:

egrep 'patt(a|e)rn' filename

Without the parentheses, the search pattern would be
patta|ern, which would match if the string “patta” or
“ern” is found, a very different outcome than the inten-
tion.

In basic regular expressions, the backslash (\) negates the
metacharacter’s behavior and forces the search to match the
character in a literal sense. The same happens in egrep, but
there is an exception. The metacharacter { is not supported by
the traditional egrep. Although some versions interpret \{ lit-
erally, it should be avoided in egrep patterns. Instead, [{]
should be used to match the character without invoking the
special meaning.

40 | grep Pocket Reference

It is not precisely true that basic grep does not have these
metacharacters as well. It does, but they cannot be used
directly. Each of the special metacharacters in extended regular
expressions needs to be prefaced by an escape to draw out its
special meaning. Note that this is the reverse of normal escap-
ing behavior, which usually strips special meaning.

Table 3 illustrates how to use the extended regular expressions
metacharacters with basic grep.

Table 3. Basic versus extended regular expressions comparison

Basic regular expressions Extended regular expressions

'\(red\)' '(red)'

'a\{1,3\}' 'a{1,3}'

'behaviou\?r' 'behaviou?r'

'pattern\+' 'pattern+'

From Table 3, you get the idea why people would prefer to just
use extended grep when they want to use extended regular ex-
pressions. Convenience aside, it is also easy to forget to place
a necessary escape in basic regular expressions, which would
cause the pattern to silently not return any matches. An ideal
regular expression should be clear and use as few characters as
possible.

Fixed Strings (fgrep or grep -F)
In the following section, we discuss grep -F, or fgrep. fgrep is
known as fixed string or fast grep. It is known as “fast grep”
because of the great performance it has compared to grep and
egrep. It accomplishes this by dropping regular expressions al-
together and looking for a defined string pattern. It is useful
for searching for specific static content in a precise manner,
similar to the way Google operates.

The command to evoke fgrep is:

fgrep string_pattern filename

Fixed Strings (fgrep or grep -F) | 41

By design, fgrep was intended to operate fast and free of inten-
sive functions; as a result, it can take a more limited set of
command-line options. The most common ones are:

-b

fgrep -b string_pattern filename

Shows the block number where the string_pattern was
found. Because entire lines are printed by default, the byte
number displayed is the byte offset of the start of the line.

-c

fgrep -c string_pattern filename

This counts the number of lines that contain one or more
instances of the string_pattern.

-e, -string

fgrep -e string_pattern filename

Used for the search of more than one pattern or when the
string_pattern begins with hyphen. Though you can use
a newline character to specify more than one string, in-
stead you could use multiple -e options, which is useful
in scripting:

fgrep -e string_pattern1
-e string_pattern2 filename

-f file

fgrep -f newfile string_pattern filename

Outputs the results of the search into a new file instead of
printing directly to the terminal. This is unlike the behav-
ior of the -f option in grep; there it specifies a search pat-
tern input file.

-h

fgrep -h string_pattern filename

When the search is done in more than one file, using -h
stops fgrep from displaying filenames before the matched
output.

42 | grep Pocket Reference

-i

fgrep -i string_pattern filename

The -i option tells fgrep to ignore capitalization contained
in the string_pattern when matching the pattern.

-l

fgrep -l string_pattern filename

Displays the files containing the string_pattern but not
the matching lines themselves.

-n

fgrep -n string_pattern filename

Prints out the line number before the line that matches the
given string_pattern.

-v

fgrep -v string_pattern filename

Matches any lines that do not contain the given
string_pattern.

-x

fgrep -x string_pattern filename

Prints out the lines that match the string_pattern in their
entirety. This is the default behavior of fgrep, so usually it
does not need to be specified.

Perl-Style Regular Expressions (grep -P)
Perl-style regular expressions use the Perl-Compatible Regular
Expressions (PCRE) library to interpret the pattern and
perform searches. As the name implies, this style uses Perl’s
implementation of regular expressions. Perl has an advantage
because the language was optimized for text searching and
manipulation. As a result, PCRE can be more efficient and far
more function-rich for finding content. The consequence is
that it can be horribly messy and complex. To put it another

Perl-Style Regular Expressions (grep -P) | 43

way, using PCRE to find information is like using a weed
whacker on yourself to do brain surgery: it gets the job done
with minimum of effort, but it is an awful mess.

The specific search features and options with PCRE are not
dependent upon grep itself, but use the libpcre library and the
underlying version of Perl. This means that it can be highly
variable between machines and operating systems. Usually the
pcrepattern or pcre manpages will provide machine-specific
information on the options that are available on your machine.
What follows is a general set of PCRE search functions that
should be available on most machines.

Also note that Perl-style regular expressions may or may not
be present by default on your operating system. Fedora and
Red Hat–based systems tend to include them (assuming you
install the PCRE library), but Debian, for instance, does not
enable Perl-style regular expressions by default in their grep
package. Instead, they ship a pcregrep program, which pro-
vides very similar functionality to grep -P. Individuals can, of
course, compile their own grep binary that does include PCRE
support should they be so inclined.

To test whether Perl-style regular expression support is built-
in to your version of grep, run the following command (or
something like it):

$ grep -P test /bin/ls
grep: The -P option is not supported

This usually means that when grep was built it could not find
the libpcre library or that it was intentionally disabled with the
--disable-perl-regexp configuration option when it was com-
piled. The solution is to either install libpcre and recompile
grep or find an applicable package for your operating system.

The general form of using Perl-style grep is:

grep -P options pattern file

44 | grep Pocket Reference

It is important to note that, unlike grep -F and grep -E, there is
no “pgrep” command. The pgrep command is used to search
for running processes on a machine. All the same command-
line options that are present for grep will work with grep -P;
the only difference is how the pattern is processed. PCRE pro-
vides additional metacharacters and character classes that can
be used enhance search functionality. Other than the addi-
tional metacharacters and classes, the pattern is constructed in
the same way as a typical regular expression.

This section covers only four aspects of PCRE options: char-
acter types, octal searching, character properties, and PCRE
options.

Character Types
Although there is some overlap here with standard grep, PCRE
comes with its own set of escapes that provide a more robust
set of matching. Table 4 contains the list of escapes available
under PCRE.

Table 4. PCRE-specific escapes

\a Matches the “alarm” character (HEX 07)

\cX Matches Ctrl-X, where X is any letter

\e Matches escape character (HEX 1B)

\f Matches form feed character (HEX 0C)

\n Matches newline character (HEX 0A)

\r Matches carriage return (HEX 0D)

\t Matches tab character (HEX 09)

\d Any decimal digit

\D Any non-decimal character

\s Any whitespace character

\S Any non-whitespace character

\w Any “word” character

\W Any “non-word” character

Perl-Style Regular Expressions (grep -P) | 45

\b Matches when at word boundary

\B Matches when not at word boundary

\A Matches when at start of subject

\Z Matches when at end of subject or before newline

\z Matches when at end of subject

\G Matches at first matching position

Octal Searching
To search for octal charters, use the / metacharacter followed
by the octal number of the metacharacter. For instance, to
search for “space”, use /40 or /040. However, this is one of the
areas where PCRE can be ambiguous if you aren’t careful.
The / metacharacter can also be used for backreference (a ref-
erence to a previous pattern given to PCRE).

For instance, /1 is a backreference to the first pattern in a list,
not octal character 1. To be free of ambiguity, the easiest way
is to specify the octal character as a three-digit number. Up to
777 is permitted in UTF-8 mode. All single-digit numbers given
after the slash are interpreted as a backreference, and if there
have been more than XX patterns, then \XX is interpreted as a
backreference as well.

Additionally, PCRE can search from a character in hex format
or a string of characters represented in hex format. \x0b will
search for the hex character 0b, for example. To search for a
hex string, simply use \x{0b0b....}, where the string is con-
tained within the braces.

Character Properties
Additionally, PCRE comes with a set of functions that will
search for characters based on their property. This comes in
two particular flavors, language and character type. To use this,
the \p or \P sequence is used. \p searches if a given property is

46 | grep Pocket Reference

present, whereas \P matches any character where it is not
present.

To search for the presence (or absence) of characters that be-
long to a certain language, for example, you would use
\p{Greek} to find Greek characters. \P{Greek}, on the other
hand, would match any character that is not part of the Greek
character set. For a complete list of languages available, consult
the manpage for the particular pcrepattern implementation on
your system.

The other set of properties refers to the attributes of a given
character (uppercase, punctuation, etc.). The capital letter rep-
resents the major grouping of characters, and the small letter
refers to the subgroup. If only the capital letter is specified
(e.g., /p{L}), all subgroups are matched. Table 5 shows the
complete list of property codes.

Table 5. PCRE character properties

C Other No Other number

Cc Control P Punctuation

Cf Format Pc Connector punctuation

Cn Unassigned Pd Dash punctuation

Co Private use Pe Close punctuation

Cs Surrogate Pf Final punctuation

L Letter Pi Initial punctuation

Ll Lowercase Po Other punctuation

Lm Modifier Ps Open punctuation

Lo Other letter S Symbol

Lt Title case Sc Currency symbol

Lu Uppercase Sk Modifier symbol

M Mark Sm Mathematical symbol

Mc Spacing mark So Other symbol

Me Enclosing mark Z Separator

Mn Non-spacing mark Zl Line separator

Perl-Style Regular Expressions (grep -P) | 47

N Number Zp Paragraph separator

Nd Decimal Zs Space separator

Nl Letter number

These properties allows for creating more robust patterns with
fewer characters based on a large number of properties. One
important note, however: if pcre is compiled by hand, the
--enable-unicode-properties configuration option must be
used to compile in support for these options. Some libpcre
packages (i.e., Fedora or Debian packages) have this built-in
(especially internationally minded ones), but others do not. To
check whether support is built-in to pcre, run the following (or
something like it):

$ grep -P '\p{Cc}' /bin/ls
grep: support for \P, \p, and \X has not been compiled

That error message about support being compiled in has to do
with pcre and not grep, which is not exactly intuitive. The
solution is to either find a better package or compile your own
with the correct options.

PCRE Options
Finally, there are four different options that can alter the way
PCRE looks for text: PCRE_CASELESS (i), PCRE_MULTILINE (m),
PCRE_DOTALL (s), and PCRE_EXTENDED (x). PCRE_CASELESS will
match patterns regardless of differences in capitalization. By
default, PCRE treats a line of text as one line, even if several
\n characters are present. PCRE_MULTILINE will allow for
treating those \n characters as lines, so if $ or ^ is used, it will
search lines based on the presence of \n and actual hard lines
in the search string.

PCRE_DOTALL causes PCRE to interpret the . (dot) metacharacter
to include newlines when it does “wildcard” matching.
PCRE_EXTENDED is useful for including comments (placed within
unescaped # characters) in complicated search strings.

48 | grep Pocket Reference

To enable these options, place the given option letter inside
parentheses with a beginning question mark. For instance, to
craft a pattern that will search for the word “copyright” in a
caseless format, you would use the following pattern:

'(?i)copyright'

Any combination of letters can be used inside the parentheses.
These options can be placed so that they operate on only part
of the search string: simply place them at the beginning of the
part of the string where the option should take effect. To negate
an option, preface the letter with a - (hyphen). For example:

'Copy(?i)righ(?-i)t'

This would match “CopyRIGHt”, “CopyrIgHt”, and “Copy-
right”, but it would not match “COPYright” or “CopyrighT”.

'(?imsx)copy(?-sx)right'

This would set all the PCRE options we’ve discussed, but once
it reaches the “r” character, PCRE_DOTALL and PCRE_EXTENDED
would be turned off.

If using Perl-based regular expressions seems complicated,
that’s because it is. There is far more to it than can be discussed
here, but the chief advantage with PCRE is its flexibility and
power, which goes well beyond what regular expressions can
do. The downside is the great deal of complexity and ambiguity
that can be involved.

Introduction to grep-Relevant
Environment Variables
In previous examples, we came across the concept of environ-
ment variables and their effect on grep. Environment variables
allow you to customize the default options and behavior of
grep by defining the environment settings of the shell, thereby
making your life easier. Issue an env command in a terminal to
output all the current parameters. The following is an example
of what you might see:

Introduction to grep-Relevant Environment Variables | 49

$ env
USER=user
LOGNAME=user
HOME=/home/user
PATH=/usr/local/sbin:/usr/local/bin:/usr
/sbin:/usr/bin:/sbin:/bin:/usr/X11R6/bin:.
SHELL=/usr/local/bin/tcsh
OSTYPE=linux
LS_COLORS=no=0:fi=0:di=36:ln=33:ex=32
:bd=0:cd=0:pi=0:so=0:do=0:or=31
VISUAL=vi
EDITOR=vi
MANPATH=/usr/local/man:/usr/man:/usr
/share/man:/usr/X11R6/man
...

By manipulating the .profile file in your home directory, you
can make permanent changes to the variables. For example,
using the output just shown, suppose you decide to change
your EDITOR from vi to vim. In .profile, type:

setenv EDITOR vim

After writing out the changes, this permanently ensures vim
will be the default editor for each session that uses
this .profile. The previous examples use some of the built-in
variables, but if you are code-savvy, there is no limit (save for
your imagination) on the variables you create and set.

To reiterate, grep is a powerful search tool because of the many
options available to the user. Variables are no different. There
are several specific options, which we describe in detail later.
However, it should be noted that grep falls back onto C locale
when the variables LC_foo, LC_ALL, or LANG are not set, when
the local catalog is not installed, or when the national language
support (NLS) is not complied.

To start off, “locale” is the convention used for communicating
in a particular language. For example, when you set the varia-
ble LANG or language to English, you are using the conventions
tied in with the English language for interacting with the sys-
tem. When the computer starts up, it defaults to the conven-
tions set up in the kernel, but these settings can be changed.

50 | grep Pocket Reference

LC_ALL is not actually a variable, but rather a macro that allows
you to “set locale” for all purposes. Although LC_foo is a locale-
specific setting for a variety of character sets, foo can be re-
placed by ALL, COLLATE, CTYPE, MONETARY, or TIME, to name a few.
These are then set to create the overall language conventions
for the environment, but it becomes possible to use one lan-
guage’s conventions for money and another for time
conventions.

How is this related to grep? For instance, many of the POSIX
character classes depend on which specific locale is being used.
PCRE also borrows heavily from locale settings, especially for
the character classes it uses. Because grep is designed for
searching for text in text files, the way language is processed
on a machine matters, and that is determined by the locale.

For most users, leaving the locale settings as the default is fine.
Users who wish to search in other languages or want to work
in a different language than the system environment might
want to change these.

Now that we have familiarized ourselves with the concept of
the locale, the environment variables specific to grep are:

GREP_OPTIONS
This variable overrides the “compiled” default options for
grep. This is as if they were placed in the command line as
options themselves. For example, suppose you want to
create a variable for the option --binary-files and set it
to text. Therefore, --binary-files automatically implies
--binary-files=text, without the need to write it out.
However, --binary-files can be overridden by specific
and different variables (--binary-files=without-match,
for example).

This option is especially useful for scripting, where a set
of “default options” can be specified once in the environ-
ment variables and it never has to be referenced again.
There is one gotcha, though: any options set with
GREP_OPTIONS will be interpreted as though they were put
on the command line. This means that command-line

Introduction to grep-Relevant Environment Variables | 51

options don’t override the environment variable, and if
they conflict, grep will produce an error. For instance:

$ export GREP_OPTIONS=-E
$ grep -G '(red)' test
grep: conflicting matchers specified

Some care and consideration needs to be taken when put-
ting options into this environment variable, and it is al-
most always best to set only those options that are of a
general nature (for instance, how to handle binary files or
devices, whether to use color, etc.).

GREP_COLORS (or GREP_COLOR for older versions)
This variable specifies the color to be used for highlighting
the matching pattern. This is invoked with the
--color[=WHEN] option, where WHEN is never, auto, or
always. The setting should be a two-digit number from the
list in Table 6 that corresponds to the specific color.

Table 6. List of color options

Color Color code

Black 0;30

Dark gray 1;30

Blue 0;34

Light blue 1;34

Green 0;32

Light green 1;32

Cyan 0;36

Light cyan 1;36

Red 0;31

Light red 1;31

Purple 0;35

Light purple 1;35

Brown 0;33

Yellow 1;33

52 | grep Pocket Reference

Color Color code

Light gray 0;37

White 1;37

The colors need to be specified in a particular syntax be-
cause the highlighting covers additional fields as well, not
just matching words. The default setting is as follows:

GREP_COLORS='ms=01;31:mc=01;31:sl=:
cx=:fn=35:ln=32:bn=32:se=36'

If the desired color starts with 0 (as with 0;30, which is
black), the 0 can be discarded to shorten the setting.
Where settings are left blank, the default terminal color
normal text is used. ms stands for matching string (i.e., the
pattern you enter), mc is matching context (i.e., lines
shown with the -C option), sl is for the color of selected
lines, cx is the color for selected context, fn is the color for
the filename (when shown), ln is the color for line num-
bers (when shown), bn is for byte numbers (when shown),
and se is for separator color.

LC_ALL, LC_COLLATE, LANG
These variables have to be specified in that order, but ul-
timately they determine the collating or an arrangement
in the proper sequence of the expressed ranges. For in-
stance, this could be the sequence of letters for alphabet-
izing.

LC_ALL, LC_CTYPE, LANG
These variables determine LC_CTYPE, or the type of char-
acters to be used by grep. For example, which characters
are whitespace, which will be a form feed, and so on.

LC_ALL, LC_MESSAGES, LANG
These variables determine the MESSAGES locale and which
language grep will use for the messages that it outputs.
This is a prime example of where grep falls back on the C
locale’s default, which is American English.

Introduction to grep-Relevant Environment Variables | 53

POSIXLY_CORRECT
When set, grep follows the POSIX.2 requirements that
state any options following filenames are treated as file-
names themselves. Otherwise, those options are treated
as if they are moved before filenames and treated as op-
tions. For instance, grep -E string filename -C 3 would
interpret “-C 3” as filenames instead of as an option. Ad-
ditionally, POSIX.2 states that any unrecognized options
be labeled as “illegal”—by default, under GNU grep, these
are treated as “invalid.”

Choosing Between grep Types and
Performance Considerations
Now that we have gone over all four grep programs, the ques-
tion is how should you determine which to employ for a given
task. For most routine uses, people tend to use the standard
grep command (grep -G) because performance isn’t an issue
when searching small files and when complex search patterns
aren’t necessary. Generally, the basic grep is the default choice
for most people, and so the question becomes when it makes
sense to use something else.

When to Use grep -E
Although almost everything can be done in grep -G that can be
done in grep -E, the latter has the advantage of accomplishing
the task in fewer characters, without the counterintuitive
escaping discussed earlier. All of the extra functionality in ex-
tended regular expressions has to do with quantifiers or sub-
patterns. Additionally, if any significant use of backreferences
is needed, extended regular expressions are ideal.

54 | grep Pocket Reference

When to Use grep -F
There is one prerequisite to using grep -F, and if a user cannot
meet that requirement, grep -F is simply not an option.
Namely, any search pattern for grep -F cannot contain any
metacharacters, escapes, wildcards, or alternations. Its per-
formance is faster, but at the expense of functionality.

That said, grep -F is extremely useful for quickly searching large
amounts of data for tightly defined strings, making it the ideal
tool to search through immense logfiles quickly. In fact, it is
fairly easy to develop a robust “log watching” script with grep
-F and a good text file listing of important words or phrases
that should be pulled out of logfiles for analysis.

Another good use for grep -F is searching through mail logs and
mail folders to ensure delivery of emails to users, especially on
systems with many mail accounts. This is made possible by
assigning every email message a unique Message ID. For
instance:

grep -FHr MESSAGE-ID /var/mail

This command will search for the fixed string MESSAGE-ID for
all files inside /var/mail (and recurse any subdirectories), and
then display the match and also the filename. This is a quick,
down-and-dirty way to see which users have a particular mes-
sage sitting in their mailbox. The real bonus is that this infor-
mation can be verified without ever having to look inside a
user’s mailbox and deal with the privacy issues of reading other
people’s mail. In reality, you may wish to search mailbox
directories and spam folders, which typically aren’t stored un-
der /var/mail, but you get the point of how this works.

When to Use grep -P
Perl-style regular expressions are hands-down the most
powerful of all the styles presented in this book. They are also
the most complicated, prone to user-error, and potentially ca-
pable of bogging down a system’s performance if not done

Choosing Between grep Types and Performance Considerations | 55

correctly. However, it is clearly the superior style out of all the
regular expression formats used in this book.

For this reason, many applications prefer to use PCRE instead
of GNU regular expressions. For instance, the popular intru-
sion detection system snort uses PCRE to match bad packets
on the wire. The patterns are written intelligently so that there
can be very little packet loss, even though a single machine can
search all the packets going through a fully loaded 100 MB or
GB interface. As has been said before, writing a regular expres-
sion well tends to be more important than the particular regular
expression format you use.

Some people simply prefer to use grep -P as their default (for
instance, by specifying -P inside their GREP_OPTIONS environ-
ment variable). If searching is going to be done in an “interna-
tional” way, the PCRE language character classes make this far
easier. PCRE comes with a many more character classes for
finely tuning a regular expression, beyond what is possible with
the POSIX definitions, for instance. Most importantly, the
ability to use the various PCRE options (e.g., PCRE_MULTILINE)
allows searching in more powerful ways than GNU regular
expressions.

For simple to moderately complex regular expressions, grep
-E suffices. However, there are limitations, and those may push
a user toward PCRE. It is a trade-off between complexity and
functionality. PCRE also helps users craft regular expressions
that can be almost immediately transferred directly into Perl
scripts (or transferred from Perl scripts) without having to go
through a great deal of translation.

Performance Implications
For most routine uses, grep performance is not an issue. Even
megabyte-long files can be searched quickly using any of the
specific grep programs without any noticeable performance
difference. Obviously, the larger the file, the longer the search
takes. For searching through gigabytes or terabytes of data
when performance is a consideration, grep -F is likely the

56 | grep Pocket Reference

desired solution, but only if it is possible to craft the search
pattern without using any metacharacters, alternations, or
backreferences. This is not always the case.

The more “choices” given to grep, the longer a particular search
takes. For instance, using many alternations causes grep to
search lines multiple times instead of just once. This may be
necessary for a given search pattern, but occasionally alterna-
tion can be rewritten as a character class. For instance:

grep -E '(0|2|4|6|8)' filename
grep -E '[02468]' filename

Comparing the two examples, the second one performs better
because no alternation is used and so lines do not have to be
searched multiple times. Avoid alternation when other alter-
natives exist that accomplish the same thing.

By far, the biggest cause of performance slowdowns when us-
ing grep is the use of backreferences. The time it takes grep to
run a command increases almost exponentially with the use of
additional backreferences. Backreferences can, in effect,
become handy aliases to previous subpatterns; however,
performance will suffer. Backreferences should not be used if
performance is a concern and when subpatterns are not using
alternation for this reason. See the next section for a more de-
tailed discussion of backreferences.

In closing, among grep -G, grep -E, and grep -P, there is not
much of a performance impact; it depends mostly on how the
regular expression itself is constructed. That said, grep -P
provides the most opportunities for slower performance but
also the most flexibility to match a wide variety of content.

Advanced Tips and Tricks with grep
As mentioned earlier, grep can be used in very powerful ways
to search for content in files or across a filesystem. It is possible
to use previous matches to search later strings (called
backreferences). There are also a variety of tricks to search

Advanced Tips and Tricks with grep | 57

nonpublic personal information and even find binary strings
in binary files. The following sections discuss some advanced
tips and tricks.

Backreferences
The grep program has the ability to match based on multiple
previous conditions. For instance, if you want to find all lines
that repeatedly use a particular set of words, a single grep pat-
tern will not work; however, it is possible to do this with the
use of backreferences.

Suppose you wish to find any line that has multiple instances
of the words “red”, “blue”, or “green”. Imagine the following
text file:

The red dog fetches the green ball.
The green dog fetches the blue ball.
The blue dog fetches the blue ball.

Only the third line repeats the use of the same color. A regular
expression pattern of ''(red|green|blue)*(red|green|
blue)'' would return all three lines. To overcome this problem,
you could use backreferences:

grep -E '(red|green|blue).*\1' filename

This command matches only the third line, as intended. For
extended regular expressions, only a single digit can be used to
specify a backreference (i.e., you can only refer back to the
ninth backreference). Using Perl-style regular expressions, the-
oretically you can have many more (at least two digits).

This could be used to validate XML syntax (i.e., the “opening”
and “closing” tags are the same), HTML syntax (match all lines
with the various opening and closing “heading” tags, such as
<h1>, <h2>, etc.), or even to analyze writing for pointless repe-
tition of buzzwords.

It is important to note that backreferences require the use of
parentheses to determine reference numbers. grep will read the
search pattern from left to right, and starting with the first par-
enthetical subpattern it finds, it will start numbering from 1.

58 | grep Pocket Reference

Typically, backreferences are used when a subpattern contains
alternation, as in the previous example. It is not required, how-
ever, for a subpattern to actually contain alternation. For in-
stance, assuming there is a large subpattern that you wish to
refer back to later in the regular expression, you could use a
backreference as an artificial “alias” for that subpattern with-
out having to type out the entire pattern multiple times. For
instance:

grep -E '(I am the very model of a
modern major general.).*\1' filename

would search for repetitions of the sentence “I am the very
model of a modern major general.” separated by any amount
of optional content. This certainly reduces the number of key-
strokes and makes the regular expression more manageable,
but it also causes some performance considerations as
discussed previously. The user needs to weigh the benefits of
convenience with performance, depending on what she is try-
ing to accomplish.

Binary File Searching
Up to this point, it seems that grep could only be used to search
for text strings in text files. This is what it is most used for, but
grep can also search for strings in binary files.

It is important to note that “text” files exist on computers
mostly for human readability. Computers talk purely in binary
and machine code. The entire ASCII character set consists of
255 characters, of which only about 60 are “human-readable.”
However, many computer programs contain text strings as
well. For instance, “help” screens, filenames, error messages,
and expected user input may appear as text inside binary files.

The grep command does not distinguish to any great extent
between searching text or binary files. As long as you feed it
patterns (even binary patterns), it will happily search any file
for the patterns you tell it to search. It does do an initial check
to see if a file is binary and alters the way it displays results
accordingly (unless you manually specify other behavior):

Advanced Tips and Tricks with grep | 59

bash$ grep help /bin/ls
Binary file /bin/ls matches

This command searches for the string “help” in the binary file
ls. Instead of showing the line where the text appears, it simply
indicates that a match was found. The reason again relates to
the fact that computer programs are in binary and therefore
not human-readable. There are no “lines” in programs, for in-
stance. Binary files don’t add line breaks because they would
alter the code—they are simply a feature to make text files more
readable, which is why grep tells you only whether there is a
match. To get an idea of the kind of text that is in a binary file,
you can use the strings command. For instance, strings /bin/
ls would list all the text strings in the ls command.

There is another way to search binary files that is specific for
binary data as well. In this case, you need to rely on some tricks,
because you cannot type in binary data directly with a normal
keyboard. Instead, you need to use a special form of a regular
expression to type in the hexadecimal equivalent of the data
you want to search. For instance, if you wanted to search a
binary file that had a hexadecimal string of ABAA, you would
type the following command:

bash$ grep '[\xabaa]' test.hex
Binary file test.hex matches

The general format is to type /x and then the hexadecimal
string you wish to match. There is no real limit to the size of
the string you can enter. This type of searching could be useful
in malware analysis. For instance, the metasploit framework
(http://www.metasploit.org) can generate binary payloads to
exploit remote machines. This payload could be used to
establish a remote shell, add accounts, or accomplish other
malicious activity.

Using hexadecimal searching, it would be possible to deter-
mine from binary strings which of the metasploit payloads
were being used in an actual attack. Additionally, if you could
determine a unique hexadecimal string that was used in a virus,
you could create a basic virus scanner using grep. In fact, many

60 | grep Pocket Reference

http://www.metasploit.org

older virus scanners did more or less this very thing by search-
ing for unique binary strings in files against a list of known bad
hexadecimal signatures.

Many buffer overflows or exploit payloads are written in C,
and it is typical to write out each hexadecimal digit in C with
the \x escape. For instance, take the following buffer overflow
exploit payload:

"\xeb\x17\x5e\x89\x76\x08\x31\xc0\x88\x46
\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e
\x08\x31\xd2\xcd\x80\xe8\xe4\xff\xff\xff
\x2f\x62\x69\x6e\x2f\x73\x68\x58";

It may be more advantageous to write the regular expression
in the same way instead of typing out the entire hexadecimal
string, if for no other reason than to allow for copying and
pasting from exploit code. Either way could work—it is your
preference. The exploit just shown works against Red Hat 5
and 6 machines (not Enterprise Red Hat), so this particular
code is useless, but it is not hard to find exploit code in the wild.

As an interesting aside, this method does not seem to work for
searching files that are recognized as text files. For instance, if
you tried to search for text in a text file using the hexadecimal
equivalent of the ASCII codes, grep would not find the content.
Searching for hexadecimal strings works only for files that
grep recognizes as “binary.”

Useful Recipes
The following is a quick list of useful grep recipes to find certain
classes of content. Because the availability of Perl-based regular
expressions varies, the list will use extended grep-style recipes,
even though Perl would be quicker in many cases.

Typing these commands in on the command line and returning
the default output to the screen may not make much sense if
the desire is to search for sensitive information on a partition.
It would make more sense to use the -l and -r options to

Advanced Tips and Tricks with grep | 61

recurse through an entire filesystem and display matching fil-
enames instead of entire lines.

For many recipes, it makes sense to place \b before and after
the string. This ensures that the content has some sort of
whitespace before and after it, preventing the case in which you
are looking for a 9-digit number that appears to be a Social
Security number but get false-positive matches on 29-digit
numbers.

Finally, these patterns (and potentially others that may make
sense) can be put into a file and used as a list of input patterns
given to grep, so all of them are searched for at the same time.

IP addresses
$ grep -E '\b[0-9]{1,3}(\.[0-9]{1,3}){3}
\b' patterns

123.24.45.67
312.543.121.1

This pattern will help point out IP addresses in a file. It is im-
portant to note that [0–9] could have just as easily been re-
placed with [:digit:] for better readability. However, most
users tend to prefer less keystrokes compared to readability
when given the choice. A second note is that this will also find
strings that aren’t valid IP addresses, such as the second one
listed in the example. Regular expressions work on individual
characters, and there is not a good way to tell grep to search
for a range of values from 1–255. In this case, there may be false
positives. A more complicated formula to ensure that false
positives are not registered looks like:

$ grep -E '\b((25[0-5]|2[0-4][0-9]|[01]?
[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|
[01]?[0-9][0-9]?)\b' patterns

In this case, it makes sure to find IP addresses with an octet
between 0–255 by establishing a combination of patterns that
would work. This does guarantee only matching IP addresses,
but it is more complicated and has lower performance.

62 | grep Pocket Reference

MAC addresses
$ grep -Ei '\b[0-9a-f]{2}
(:[0-9a-f]{2}){5}\b' patterns

ab:14:ed:41:aa:00

In this case, the additional -i option is added so no regard is
given to capitalization. As with the IP recipe, [:xdigit:] could
be used in place of [0–9a–f] if better readability is desired.

Email addresses
$ grep -Ei '\b[a-z0-9]{1,}@*\.
(com|net|org|uk|mil|gov|edu)\b' patterns

test@some.com
test@some.edu
test@some.co.uk

The list shown here is only a partial subset of top-level domains
that are currently approved for use. For instance, one may wish
to search for only U.S.-based addresses, so the .uk result may
not make much sense. Perhaps identifying obvious spammers
in the mail logs is the goal, in which case searching for
the .info top-level domain may be advised (we have never met
anyone who has gotten legitimate email from that top-level
domain). The pattern shown is basically a starting point for
customization.

U.S.-based phone numbers
$ grep -E '\b(\(|)[0-9]{3}
(\)|-|\)-|)[0-9]{3}(-|)[0-9]{4}\b'
 patterns

(312)-555-1212
(312) 555-1212
312-555-1212
3125551212

In this case, the pattern is a little more complex because of the
wide variety of U.S.-based phone numbers. There may be
spaces, dashes, parentheses, or nothing at all. Note the way the

Advanced Tips and Tricks with grep | 63

parentheses indicate the presence of varying characters, in-
cluding no character at all.

Social Security numbers
$ grep -E '\b[0-9]{3}(|-|)
[0-9]{2}(|-|)[0-9]{4}\b' patterns

333333333
333 33 3333
333-33-3333

Social Security numbers are the key to an individual’s identity
in the United States, so the use of this identifier is becoming
increasingly restricted. Many organizations now actively
search all files on a system for Social Security numbers using
tools such as Spider. This tool is not much more sophisticated
than a list of these grep recipes. In this case, however, the pat-
tern is far simpler than the one for phone numbers.

Credit card numbers
For most credit card numbers, this expression works:

$ grep -E '\b[0-9]{4}((|-|)
[0-9]{4}){3}\b' patterns

1234 5678 9012 3456
1234567890123456
1234-5678-9012-3456

American Express card numbers would be caught by this
expression:

$ grep -E '\b[0-9]{4}(|-|)
[0-9]{6}(|-|)[0-9]{5}\b' patterns

1234-567890-12345
123456789012345
1234 567890 12345

There are two versions because American Express uses a dif-
ferent pattern than other credit cards. However, the basic idea
remains the same: looking for groupings of numbers that fit
the general pattern of a credit card number.

64 | grep Pocket Reference

Copyright-protected or confidential material
Finally, many organizations have internal data classifications
that make it easy to identify privileged information within an
organization. Hopefully, these data classifications come with
required text that must be displayed in the document. Those
strings can simply be put in as search patterns in grep (or
fgrep) to quickly identify where protected information may re-
side on a disk, especially on those machines where that infor-
mation does not belong.

Most file formats with text are not true ASCII files, but usually
the text content can be located and identified within the file.
For instance, you can use grep to search for the presence of
certain strings in Word files, even though these files aren’t
viewable in a terminal.

For instance, if your corporation uses the tag “ACME Corp.—
Proprietary and Confidential,” you could use the following
command to locate files that have this content:

fgrep -l 'ACME Corp. -
Proprietary and Confidential' patterns

Searching through large numbers of files
Like many shell commands, the grep command will process a
large number of files in a given command. For instance, grep
sometext * will examine every filename in the current directory
for “sometext”. However, there is a limit to the number of files
that can be handled in a single command. If you ask grep to
process too many files, it will produce an error saying “Too
Many Files” or the equivalent (depending on your shell).

A tool called xargs can get around this limitation. To invoke
it, however, requires some circumspection. For instance, to
search every file on a system for “ABCDEFGH”, you would use
the following command:

find / -print | xargs grep 'ABCDEFGH'

This will search every file on a machine for the string
“ABCDEFGH”, but will not run into the typical errors that

Advanced Tips and Tricks with grep | 65

result when too many files are open. Usually this limit is a
function of the kernel that allows only so many pages of mem-
ory to be devoted to command-line arguments. Short of re-
compiling the kernel for a larger value, using xargs is your best
bet.

Matching strings across multiple lines
At the start of this book, we said that grep cannot match strings
if they span multiple lines, but that isn’t precisely true. Al-
though most versions of grep cannot handle multiple lines
easily, grep -P can overcome this in multiline mode. For in-
stance, take the following file:

red
dog

Normal grep tricks, even specifying the newline character, will
not match if you want to search for a line with “red” and the
following line “dog”.

$ grep -E 'red\ndog' test
$ grep -G 'red\ndog' test
$ grep -F 'red\ndog' test

However, this is possible if you use PCRE_MULTILINE with grep
-P:

$ grep -P '(?m)red\ndog' test
red
dog

This allows a user to overcome the limitation in grep where it
will examine only individual lines. This is also one of the many
reasons why grep -P tends to be used for more powerful search-
ing applications.

Finally, there are many websites and forums out there where
you can find useful regular expression patterns for particular
applications. Odds are that others have used regular expres-
sions and grep to pull content out of that same application. The
possibilities are endless.

66 | grep Pocket Reference

References
• re_format(7) manpage

• regex(3) manpage

• grep(1) manpage

• pcre(3) manpage

• pcrepattern(3) manpage

• Friedl, Jeffery E.F. (2006). Mastering Regular Expres-
sions. O’Reilly Media, Inc.

References | 67

Index

Symbols
" (double quotes), using

regular expressions
and, 9

$ (dollar sign), end of line
character, 10, 14

' (single quotes), using regular
expressions, 8

() (parentheses)
extended regular

expressions, 40
precedence in regular

expressions, 22
subpatterns, 19

() parentheses, 10
* (asterisk) quantifier, 8, 10,

15
+ (plus) quantifier, 10, 18

extended regular
expressions and, 39

- (dashes), indicating ranges,
10, 15

. (dot), 10, 12
> (redirects), 24
? (question mark) quantifier,

10, 17
optional expressions, 38

[...] (character classes), 10,
12

[^...] (negated character
class), 10, 13

\ (backslashes), 11, 16, 40
\ escape characters, 10, 11,

13
\' (end of buffer), 11, 17
\< (backslash less-than), 10
\< (start of word), 14
\> (backslash greater-than),

10
\> (end of word), 15
\` (start of buffer), 11, 17
^ (caret), as a start of line, 9,

10, 14
` (backticks), 8
{min,max} quantifier, 10

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

69

| (pipe), 10, 19
chaining commands and,

25
extended regular

expressions, 40
standard output, grepping,

24

A
\a (alarm) PCRE escape, 45
\A character, 46
-A flag, 34
-a flag, 34
--after-context option, 34
agrep, 2
AIX (Solaris), 2
alarm (\a) PCRE escape, 45
[:alnum:] POSIX definition,

20
[:alpha:] POSIX definition,

20
ASCII character set, 59
asterisk (*) quantifier, 8, 10,

15
awk command, 7

B
\b (word boundary), 11, 16,

46
\B character, 46
-b flag, 32

fgrep, 42
-B flag, 34
backreferences, 11, 16, 58
backslash greater-than (\>),

10
backslash less-than (\<), 10
backslashes (\), 11, 16, 40

backticks (`), 8
--before-context option, 34
binary files, 6, 59
--binary option, 37
--binary-files option, 35
[:blank:] POSIX definition,

20
--byte-offset option, 32

C
-C flag, 34
-c flag (fgrep), 42
caret (^), as a start of line, 9,

10, 14
cat command, grepping

standard output, 24
“chaining” commands, 25
character classes ([...]), 10,

12
[:cntrl:] POSIX definition, 20
--color option, 30

options, 52
--colour option, 30
command output, 6
concatenation, writing regular

expressions and, 21
confidential material, 65
context line control, 34
--context option, 34
copyright-protected material,

65
credit card numbers, 64
Ctrl-C, breaking quotes, 22
Ctrl-D, exiting grep, 24
\cX PCRE escape, 45
Cygwin, 1

70 | Index

D
\d (decimal digit) character,

45
\D (non-decimal) character,

45
\d escape sequence, 27
-D flag, 35
-d flag, 35
dashes (-), indicating ranges,

10, 15
decimal digit (\d) character,

45
--devices option, 35
[:digit:] POSIX definition, 20
--directories option, 35
--disable-perl-regexp

configuration, 44
dollar sign ($), end of line

character, 10, 14
dot (.), 10, 12
double quotes ("), using

regular expressions
and, 9

E
-e flag, 28

fgrep, 42
-E option, 38–41, 54
\e PCRE escape, 45
egrep, 38–41, 40
email addresses, 63
--enable-unicode-properties

configuration option,
48

end of buffer (\'), 11, 17
end of line ($) character, 10,

14

end of word (\>), 15
env command, 49
environment variables, 49–54
escape characters, 10, 11, 13
escape sequences (regular

expressions), 8
--exclude option, 36
--exclude-dir option, 36
--exclude-from option, 36
extended regular expressions,

38–41

F
\f (form feed) PCRE escape,

45
-f flag, 28

fgrep, 42
-F option, 41–43, 55

performance implications
and, 56

Fedora operating system, 44
--file option, 28
files, searching, 6
--files-with-matches option,

30
--files-without-match option,

30
flags, 27–38

general output control,
29–32

form feed (\f) PCRE escape,
45

Free Software Foundation, 1

G
\G character, 46
-G option, 27–38, 54

Index | 71

general output control, 29–
32

GLOB wildcards, 17
“Global Regular-Expression

Print”, 2
GNU, 1

regular expressions, 7, 56
[:graph:] POSIX definition,

20
GREP_COLORS variable, 52
GREP_OPTIONS variable,

51, 56

H
-H flag, 32
-h flag, 32

fgrep, 42
hexadecimal strings, 60
$HOME environment

variable, 9
HP-UX (Solaris), 2

I
i (PCRE_CASELESS), 48
-i flag, 28

fgrep, 43
IEEE (Institute of Electrical

and Electronics
Engineers), 20

--ignore-case option, 28
--include option, 36
--initial-tab option, 33
Institute of Electrical and

Electronics Engineers
(IEEE), 20

--invert-match option, 28
IP addresses, 62

J
Java, using regular

expressions, 7

L
-l flag, 30, 36, 61

fgrep, 43
-L flag, 30
--label option, 32
LANG environment variable,

50
LC_ALL environment

variable, 50
LC_COLLATE environment

variable, 53
LC_CTYPE environment

variable, 53
LC_MESSAGES environment

variable, 53
less command, 24
libpcre program, 44
--line-buffered option, 37
--line-number option, 33
--line-regexp option, 29
literals (regular expressions),

8
[:lower:] POSIX definition,

20

M
m (PCRE_MULTILINE), 48
-m flag, 30
MAC addresses, 63
Mac OS X, 2
--max-count option, 30
metacharacters, 8, 9–20
--mmap option, 37

72 | Index

mmap() function, 37
more command, 24

N
\n (newline) PCRE escape, 45
-n flag, 33

fgrep, 43
{N,} quantifier, 10, 18
national language support

(NLS), 50
negated character class

([^...]), 10, 13
newline (\n) PCRE escape, 45
NLS (national language

support), 50
--no-filename option, 32
--no-messages option, 31
non-decimal (\D) character,

45
non-whitespace (\S)

character, 45
non-word character (\W), 11,

17, 45
--null option, 33
--null-data option, 38
{N} quantifier, 10, 18

O
-o flag, 31
octal searching, 46
--only-matching option, 31
optional expression (?), 38
“optional” pattern matching,

17
Oracle, 7
output control, 29–32

P
-P option, 43–49, 55
parentheses (()), 10

extended regular
expressions, 40

precedence in regular
expressions, 22

subpatterns, 19
PCRE (Perl-Compatible

Regular Expressions),
43, 46

character properties, 46
octal searching, 46
options, 48
when to use, 56

pcre manpage, 44
pcrepattern, 47
pcrepattern manpage, 44
PCRE_CASELESS (i), 48
PCRE_DOTALL (s), 48
PCRE_EXTENDED (x), 48
PCRE_MULTILINE (m), 48
Perl-Compatible Regular

Expressions (PCRE),
43, 46

character properties, 46
options, 48
when to use, 56

Perl-style regular expressions,
7, 43–49

backreferences and, 58
octal searching, 46
when to use, 55

phone numbers, 63
pipe (|), 10, 19

chaining commands and,
25

Index | 73

extended regular
expressions, 40

standard output, grepping,
24

plus (+) quantifier, 10, 18
extended regular

expressions and, 39
POSIX character classes, 20
POSIXLY_CORRECT

environment variable,
54

[:print:] POSIX definition, 20
.profile file, 50
[:punct:] POSIX definition,

20

Q
-q flag, 31
question mark (?) quantifier,

10, 17
optional expressions, 38

--quiet option, 31

R
\r (return carriage) PCRE

escape, 45
-R flag, 37
-r flag, 37, 61
ranges, matching characters

with, 13, 15
read() function, 37
--recursive option, 37
Red Hat operating system, 44
redirects (>), 24
regexp (see regular

expressions)
--regexp flag, 28
regular expressions, 7–24

crafting, 21–24
extended, 38–41
flags, 27–38
metacharacters, 9–20
Perl-style, 43–49
POSIX character classes,

20
quotation marks, 8

repetitive match (+) character,
10, 18

return carriage (\r) PCRE
escape, 45

S
\S (non-whitespace)

character, 45
s (PCRE_DOTALL), 48
\s (whitespace) character, 45
-s flag, 31
sed command, 7
Sendmail, 7
--silent option, 31
single quotes ('), using regular

expressions and, 8
Social Security numbers, 64
Solaris, 2
[:space:] POSIX definition,

20
“standard input”, grepping,

24
start of buffer (\`), 11, 17
start of line (^), 9, 10
start of word (\<), 14
--string option, 42
strings command, 6
subpatterns, 19

74 | Index

T
\t (tab) character, 45
-T flag, 33
tab (\t) character, 45
tail command, 26
target strings, 8
text files, searching, 6
--text option, 34
tput init command, 35
tput reset command, 35

U
-u flag, 33
-U option, 37
U.S.-based phone numbers,

63
--unix-byte-offsets option, 33
[:upper:] POSIX definition,

20

V
-v flag, 28

fgrep, 43
-V flag, 38
--version option, 38

W
\W (non-word character), 11,

17, 45
\w (word character), 11, 17,

45
-w flag, 29
whitespace (\s) character, 45
whoami command, 8, 23
wildcards, 8, 10, 15

--exclude option, 36
Windows, 1

wingrep, 1
--with-filename option, 32
word boundary (\b), 11, 16,

46
word character (\w), 11, 17,

45
--word-regexp option, 29

X
x (PCRE_EXTENDED), 48
\x excape, 61
-x flag, 29

fgrep, 43
[:xdigit:] POSIX definition,

20

Z
\Z character, 46
\z character, 46
-Z flag, 33
-z flag, 38
zipgrep, 2

Index | 75

	Table of Contents
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments
	From John Bambenek
	From Agnieszka Klus

	Conceptual Overview
	Introduction to Regular Expressions
	Quotation Marks and Regular Expressions
	Metacharacters
	POSIX Character Classes
	Crafting a Regular Expression

	grep Basics
	Basic Regular Expressions (grep or grep -G)
	Match Control
	General Output Control
	Output Line Prefix Control
	Context Line Control
	File and Directory Selection
	Other Options

	Extended Regular Expressions (egrep or grep -E)
	Fixed Strings (fgrep or grep -F)
	Perl-Style Regular Expressions (grep -P)
	Character Types
	Octal Searching
	Character Properties
	PCRE Options

	Introduction to grep-Relevant Environment Variables
	Choosing Between grep Types and Performance Considerations
	When to Use grep -E
	When to Use grep -F
	When to Use grep -P
	Performance Implications

	Advanced Tips and Tricks with grep
	Backreferences
	Binary File Searching
	Useful Recipes
	IP addresses
	MAC addresses
	Email addresses
	U.S.-based phone numbers
	Social Security numbers
	Credit card numbers
	Copyright-protected or confidential material
	Searching through large numbers of files
	Matching strings across multiple lines

	References
	Index

