
®

A P R A C T I C A L U S E R ’ S G U I D E T O W O R K I N G

S M A R T E R O N T H E C O M M A N D L I N E

D A V E K E R R

E
F

F
E

C
T

IV
E

 S
H

E
L

L
K

E
R

R

E F F E C T I V E
S H E L L

EFFECTIVE SHELL

®

San Francisco

E F F E C T I V E
S H E L L

A P r a c t i c a l U s e r ’s G u i d e
t o Wo r k i n g S m a r t e r o n

t h e C o m m a n d L i n e

by Dave Kerr

EFFECTIVE SHELL. Copyright © 2025 by Dave Kerr.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States
(CC BY-NC-SA 3.0 US) license. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/3.0/
us/deed.en or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Some rights reserved.

When attributing this work, you must credit the author as follows: “Dave Kerr, published by No Starch Press® Inc.,”
provide a link to the license, and indicate if changes were made. You may not use the material for commercial
purposes. For ShareAlike purposes, if you transform or build upon the material, you must distribute your
contributions under the same license as the original.

Translations of this work are not covered under this license; all translation rights are reserved by the publisher.
For permission to translate this work, please contact rights@nostarch.com.

Moral rights of the author have been asserted.

First printing

29 28 27 26 25 1 2 3 4 5

ISBN-13: 978-1-7185-0414-1 (print)
ISBN-13: 978-1-7185-0415-8 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Rachel Monaghan
Cover Design: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Mitch Frazier
Copyeditors: James Brook and Rachel Monaghan
Proofreader: Daniel Wolff
Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2024048644

For permissions beyond the scope of this license or customer service inquiries, please contact info@nostarch.com.
For information on distribution, bulk sales, or corporate sales: sales@nostarch.com. To report counterfeit copies
or piracy: counterfeit@nostarch.com. The authorized representative in the EU for product safety and compliance
is EU Compliance Partner, Pärnu mnt. 139b-14, 11317 Tallinn, Estonia, hello@eucompliancepartner.com, +3375690241.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather than
use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

[E]

®

https://creativecommons.org/licenses/by-nc-sa/3.0/us/deed.en

For Mum and Dad, who always got me books

About the Author
Dave Kerr is a technology consultant and software engineer who helps teams
design and launch new products, scale high-performance systems, and
modernize complex platforms. Passionate about automation, site reliability
engineering, and developer experience, he loves coding, mentoring, pub-
lishing, contributing to open source, and writing. When he’s not in the shell,
he’s in the mountains or rock climbing.

About the Technical Reviewer
Mitch Frazier is a programmer who works for Emerson Electric doing mostly
embedded systems programming in C. He also occasionally writes code in
Golang, Python, Tcl, JavaScript, and bash. He previously worked for Linux
Journal, both as a technical editor and as a system administrator.

B R I E F C O N T E N T S

Acknowledgments . xxi

Introduction . xxiii

PART I: CORE SKILLS . 1

Chapter 1: Flying on the Command Line . 3

Chapter 2: Thinking in Pipelines . 13

Chapter 3: Finding Files and Folders . 31

PART II: MANIPULATING TEXT AND STREAMS . . 45

Chapter 4: Regular Expression Essentials . 47

Chapter 5: Getting to Grips with grep . 61

Chapter 6: Slicing and Dicing Text . 71

Chapter 7: Advanced Text Manipulation with sed . 83

Chapter 8: Building Commands on the Fly . 99

PART III: SHELL SCRIPTING . 107

Chapter 9: Shell Script Fundamentals . 109

Chapter 10: Using Variables to Store, Read, and Manipulate Data 121

Chapter 11: Mastering Conditional Logic . 141

Chapter 12: Using Loops with Files and Folders . 155

Chapter 13: Functions, Parameters, and Error Handling . 173

Chapter 14: Useful Patterns for Shell Scripts . 189

x Brief Contents

PART IV: BUILDING YOUR TOOLKIT . 205

Chapter 15: Configuring Your Shell . . 207

Chapter 16: Customizing Your Command Prompt . 221

Chapter 17: Managing Your Dot Files . 237

Chapter 18: Controlling Changes with Git . 249

Chapter 19: Managing Remote Git Repositories and Sharing Dot Files 275

PART V: ADVANCED TECHNIQUES . 295

Chapter 20: Shell Expansion . 297

Chapter 21: Alternatives to Shell Scripting . 313

Chapter 22: The Secure Shell . 327

Chapter 23: The Power of Terminal Editors . . 343

Chapter 24: Mastering the Multiplexer . 363

Afterword: Generative AI and the Shell . 377

Appendix A: Setup . 381

Appendix B: Shell Basics . 393

Index . . 421

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xxi

INTRODUCTION	 xxiii
What Is the Shell? . xxiv
Who Should Read This Book . xxv
What’s in This Book? . xxv
How to Read This Book . xxix
Bugs and Suggestions . xxx
Sample Files and Online Resources . xxx

PART I: CORE SKILLS	 1

1
FLYING ON THE COMMAND LINE	 3
Basic Navigation Techniques . 4

Go to the Beginning or End of a Line . 4
Move Back or Forward One Word . . 4
Delete a Word . 5
Delete a Line . 5
Undo a Change . . 6

Search Commands . 6
Editing in Place . . 7
Other Useful Shortcuts . 9

Clear the Screen . 9
View Your Command History . . 9
Show All Shortcuts . 10
Transpose Text . 10

Summary . 11

2
THINKING IN PIPELINES	 13
The IPO Pattern . . 14

Streams . 15
stdin, stdout, and stderr . . 15

Pipelines in Action . . 17
Standard Input Applications . 18
Standard Output Applications . 21
Standard Error Applications . 23
Redirection with Both stdout and stderr . 26

The T-Pipe . . 27
Pipelines and the Unix Philosophy . 28
Summary . 29

xii Contents in Detail

3
FINDING FILES AND FOLDERS	 31
Searching with the find Command . 31
Refining a Search with find . 33

Searching for Only Files or Folders . . 33
Searching by File or Folder Name . 34
Searching by Path . 35
Specifying More Than One Search Option . 35
Running Case-Insensitive Searches . 36
Grouping Parts of an Expression . 36
Excluding Search Results with the NOT Operator . 38

Acting on Search Results . 38
Printing Paths . . 39
Deleting Files . 39
Executing Commands . 39
Confirming Commands Before Execution . . 40

Handling Symbolic Links . 40
Going Further with find . 41
Summary . 43

PART II: MANIPULATING TEXT AND STREAMS	 45

4
REGULAR EXPRESSION ESSENTIALS	 47
Regexes in a Nutshell . 48
Building Regexes . 48

Regex Engines . 50
Quantifiers . 51
Character Sets and Metacharacters . 52
Anchors . 55
Capture Groups . . 56
Lazy and Greedy Expressions . 57

Advanced Regex Concepts . 57
Backtracking . 58
Lookarounds . 58
Atomic Groups . 59

Summary . 59

5
GETTING TO GRIPS WITH GREP	 61
What Exactly Is grep? . 62
Searching Through Text . 63
Using grep with Regular Expressions . 64
Advanced grep Features . 65

Making a Search Case-Insensitive . 66
Getting Additional Context for Search Results . 66
Searching Through Multiple Files . 67
Filtering and Piping grep Output . 68
Combining grep with other Commands . . 69

Contents in Detail xiii

Alternatives to grep . 69
Summary . 70

6
SLICING AND DICING TEXT	 71
Extracting Heads and Tails . 71
Replacing Text . 74
Cutting Text . 75
Reversing Text . . 78
Sorting Text and Removing Duplicate Lines . 79
Paging Through Text . 80
Summary . 81

7
ADVANCED TEXT MANIPULATION WITH SED	 83
Transformations with sed . 84

Replacing Text . 84
Applying Multiple Expressions . 85
Stripping Comments . 89
Appending Text . 89
Prepending Text . 90
Extracting Information . . 91

Advanced Applications . 92
Restructuring Text . 92
Creating Template Files . 96
Editing in Place . 96

Alternatives to sed . . 97
Summary . 97

8
BUILDING COMMANDS ON THE FLY	 99
Introducing xargs . 100
Handling Whitespace, Special Characters, and Tracing . 101
Customizing How xargs Processes Input Lines . 102
Organizing the Parameters for Commands . . 103
Running Commands Interactively . . 105
Running a Command for Each Input . 106
Summary . 106

PART III: SHELL SCRIPTING	 107

9
SHELL SCRIPT FUNDAMENTALS	 109
Why Shell Scripts? . 110
Creating a Basic Shell Script . 110

Adding Code Comments . . 111
Adding and Formatting Commands . 112
Pipelining Commands . . 113

xiv Contents in Detail

Making Shell Scripts Executable . . 115
Specifying What Program Should Run a Script . 116
Sourcing Shell Scripts . 117

Installing Scripts Locally . 118
Summary . 120

10
USING VARIABLES TO STORE, READ, AND MANIPULATE DATA	 121
Understanding Variable Scope: Environment vs. Shell Variables 122
Exporting Shell Variables as Environment Variables . 123
Variable Syntax . 124

Quoting Variables and Values . 124
Using Braces to Reference Variables Explicitly . 127

Common Variable Operations . 127
Storing a Command’s Output in a Variable . 127
Managing Multiple Values with Arrays . 128
Storing Complex Data with Associative Arrays . 130
Expanding Shell Parameters . 130
Reading and Storing User Input in Variables . 132
Performing Arithmetic Operations . 135

Enhancing the common Command with Variables . 137
Summary . 139

11
MASTERING CONDITIONAL LOGIC	 141
The if Statement . 142
The test Command . 143

Using test Operators with Expressions and Files . 143
Checking Multiple test Conditions Simultaneously . . 145

Combining Statements on a Single Line . 145
The else Clause . . 146
The elif Clause . 146
The case Statement . 148
Conditional Expressions . 149
Chaining Commands . . 151
Extending the common Command to Handle Different Shells 152
Summary . 154

12
USING LOOPS WITH FILES AND FOLDERS	 155
The for Loop . 156

Looping Through Arrays . 157
Splitting Loop Input into Words . 157
Looping Through Files and Folders . 160
Looping Through find Command Results . 162
Iterating with C-Style Loops . 163
Looping over Sequences . 164

The while Loop . 165
Looping Through the Lines in a File . . 166
Looping Forever . 168

Contents in Detail xv

The until Loop . 168
The continue and break Statements . 169
Creating Compact Loops . 170
Updating the common Command to Loop Through Results . 171
Summary . 172

13
FUNCTIONS, PARAMETERS, AND ERROR HANDLING	 173
Creating a Function . . 174

Variables in Functions . 174
Variable Scoping . 175

Passing Parameters to Functions . 177
Using Array Operators in Parameter Variables . . 179
Shifting Parameters . . 179

Function Return Values . 180
Writing Results to Standard Output . . 181
Avoiding Pitfalls with Command Output . 182
Returning Status Codes . 183

Error Handling . 185
Simplifying the common Command with Functions . . 187
Summary . 188

14
USEFUL PATTERNS FOR SHELL SCRIPTS	 189
Ensuring Exit on Failure . 190
Debugging Shell Scripts with the Trace Option . 191
Checking for Existing Variables or Functions . 192
Unsetting Values . 193
Trapping Signals and Events . . 193
Processing Complex Script Parameters . . 195
Adding Syntax Highlighting . 197
Checking the Operating System . 199
Checking for Installed Programs . 200
Showing a Menu . 200
Running Commands in Subshells . 201
Anti-patterns . 201

Omitting Shebangs . . 202
Configuring Options in Shebangs . 203
Using Complex Logic in Shell Scripts . 203

Summary . 204

PART IV: BUILDING YOUR TOOLKIT	 205

15
CONFIGURING YOUR SHELL	 207
Interactive Shells . 207

The Default Shell Startup File . 208
Common Startup File Customizations . 209

xvi Contents in Detail

Non-interactive Shells . 214
Understanding Shell Script Behavior . 214
Loading a Startup File with BASH_ENV . 216

Login Shells . 216
Checking Whether You’re in a Login Shell . . 217
Loading the Shell Startup Files . 217

Changing Your Shell . 219
Summary . 220

16
CUSTOMIZING YOUR COMMAND PROMPT	 221
The Command Prompt Structure . 222

The Prompt String . . 223
Escape Sequences . 223

Adding Color and Text Formatting to Your Prompt . 225
Adding Data to the Command Prompt . 228
Additional Shell Prompt Variables . 229

PS2	 . 229
PS3	 . 230
PS4	 . 230
PROMPT_DIRTRIM . 230
PROMPT_COMMAND . 231

Writing a Shell Script to Customize the Command Prompt . 231
Summary . 235

17
MANAGING YOUR DOT FILES	 237
Dot Files Defined . . 238
The Default Shell Dot File . 238
Creating Your Own Dot Files . 241

Creating the Dot Files Folder . 241
Creating shell.sh . 241
Adding Custom Configuration . 242

Testing the Shell Dot File . . 244
Sourcing the Shell Dot File . 245
Sourcing Files from a Folder . 245
A Dot File Installation Script . 247
Summary . 248

18
CONTROLLING CHANGES WITH GIT	 249
What Is Git? . . 250
Creating a Git Repository . 250
Adding and Resetting Changes to the Index . 251
Committing Changes . 254
Working with Branches . 257

Creating Branches . 257
Performing Fast-Forward Merges . 260
Performing Recursive Merges and Handling Diverged Branches 261

The Git Log . 262

Contents in Detail xvii

Resolving Conflicts . 264
Managing Files in Your Repository . 267

Deleting Files . 267
Restoring and Renaming Files . 268

Restoring Your Working Tree . 270
Git Command Quick Reference . 272
Summary . 273

19
MANAGING REMOTE GIT REPOSITORIES AND
SHARING DOT FILES	 275
Getting Started with GitHub . 276

Creating a Repository . . 276
Pushing Changes . 280
Fetching Changes . 281
Pulling Changes . . 284

Sharing Your Dot Files . 285
Collaborating with Other Users . . 286

Forking . 286
Making Pull Requests . 287

Writing a Shell Function to Open a Pull Request . 288
Showing Git Information in the Command Prompt . 290
Diving Deeper into Git . 291
Git at a Glance: A Recap of Key Concepts and Commands . 293
Summary . 294

PART V: ADVANCED TECHNIQUES	 295

20
SHELL EXPANSION	 297
Shell Expansion Operations . 298

Brace Expansion . 298
Tilde Expansion . 299
Parameter Expansion . 299
Command Substitution . 305
Arithmetic Expansion . 306
Word Splitting . 306
Pathname Expansion . 309

Summary . 311

21
ALTERNATIVES TO SHELL SCRIPTING	 313
When to Avoid Shell Scripting . 314
Choosing a Programming Language . 314
Characteristics of Shell-Friendly Tools . 315
Writing a Dictionary Lookup Tool in Python . 316

Defining the Tool’s Basic Structure . 317
Downloading the Definition . 319
Formatting the Output . 321

xviii Contents in Detail

Installing the Lookup Tool . 324
Improving the Lookup Tool . 325
Summary . 325

22
THE SECURE SHELL	 327
What Is SSH? . 327
Creating a Key Pair . . 328
Setting Up an AWS Account . . 329
Creating a Virtual Machine on AWS . 331

Choose an Amazon Machine Image . 333
Choose an Instance Type . 333
Review the Instance Launch . 333

Using SSH to Connect to a Virtual Machine . 335
Dealing with Key Permission Errors . 336
Configuring SSH Hosts . 337
Running SSH Commands . 338
Handling Disconnections . 339
Transferring Files with scp . 339
Summary . 341

23
THE POWER OF TERMINAL EDITORS	 343
Why Use a Terminal Editor? . 344
Getting Started with Vim . 345

Building a Cheatsheet . . 347
Creating a File . . 348

Navigating Through Text . 350
Adding a Command Count . 352
Inserting Text at Specific Positions . 352
Operating on a Range of Text . . 354
Searching for Text Patterns . 355
Editing Commands . 358
Updating and Styling Your Vim Cheatsheet . 359
Going Further with Vim . 360

Vimtutor . 361
Vimcasts . 361
Practical Vim and Modern Vim . 361

Summary . 361

24
MASTERING THE MULTIPLEXER	 363
Benefits of Using a Multiplexer . 365
Installing tmux . . 365
Window Management with tmux . 367

Creating and Moving Between Panes . 367
Zooming Panes . 367
Creating and Moving Between Windows . 367

Session Management with tmux . 368
Starting a New Session . 368
Attaching and Detaching from Sessions . 368

Contents in Detail xix

Configuring tmux . 369
Setting the Default Shell . 370
Specifying the Working Directory . . 370
Naming and Numbering Windows . 370
Splitting Windows More Intuitively . 371
Sending Commands to Nested Sessions . 371
Enabling Mouse Support . . 371
Interfacing with Vim . 372
Setting Advanced Configuration . 372

Collaboration with tmux . . 372
A tmux Quick Guide . 373
Next Steps with tmux . 375
Summary . 375

AFTERWORD
GENERATIVE AI AND THE SHELL	 377
Installing and Running the Terminal AI Tool . 378
Chatting with ChatGPT . 378
Copying or Saving Results . 379
Executing AI-Generated Scripts . 379
Redirecting Responses to a File . 380
The Shell of the Future . 380

A
SETUP	 381
Accessing the Shell . 381

Microsoft Windows . 381
macOS . 382
Linux . 382

Configuring the Shell . 382
Microsoft Windows . 383
macOS . 390
Linux . 392

B
SHELL BASICS	 393
Navigating Your Filesystem . 393

Identifying the Working Directory . . 394
Listing the Contents of the Working Directory . . 394
Changing the Directory . . 395
Returning to the Home Directory . 396
Using Absolute and Relative Paths . 397
Moving Around Efficiently . 397

Managing Your Files and Folders . 400
Downloading a File . 400
Unzipping a File . 402
Deleting a File . 403
Viewing a Directory Tree . . 404
Copying a File . . 404
Renaming and Moving Files . 405
Creating a Folder . . 407

xx Contents in Detail

Creating a File . . 408
Working with Wildcards . 409
Deleting a Folder . 409
Showing Text Content . 410
Zipping a File . 411

The Clipboard . 412
Mastering Clipboard Essentials . 412
Creating Custom Clipboard Commands . 413
Copying and Pasting with pbcopy and pbpaste . . 414

Getting Help . . 415
Using the Manual . . 415
Summarizing Output with tldr . 418
Accessing Online Cheat Sheets . 420

INDEX	 421

Over 2024, progress on this book ground almost to a halt as I fought through
an extremely challenging collapse in my health. I cannot imagine how hard
it must be for people to face times like these alone, and I cannot express how
grateful I am to have had the care and love of so many wonderful people.

Michelle, Mum, Dad, and James, words fail me beyond thank you. Whitney
and Judy, your kindness and compassion never failed to lift me and give me
courage. Rob, Kov, and Ellie, you were wonderful friends and brought joy
into the year. Dr. Downie, Dr. Wilson, Dr. Orum, and Dr. Kumar, you have
all been amazing.

I also want to thank those who made this book possible: Bill, who believed
in the idea; Jill, who guided us through the journey; Rachel, who taught me
how to write; Jennifer, who never stopped making it better; Mitch, from whom
I learned so much; and the rest of the team—this wouldn’t have happened
without you.

A C K N O W L E D G M E N T S

I N T R O D U C T I O N

I’ve been lucky enough to spend many
years working as a software engineer, and

I’ve worked with data scientists, data engi-
neers, site reliability engineers, and technolo-

gists of all sorts. One trait that stands out in great
technologists is their ability to make their tools work
for them by stitching the tools together in creative
ways to suit their unique styles and needs. This book
will help you do just that by using the shell.

This isn’t a book on shell scripting or Linux administration. Each chap-
ter presents a set of techniques to help you work more efficiently, under-
stand your system in more depth, and craft your environment to suit your
individual workflow. This book doesn’t ask you to totally change the way
you work or to drop your current tooling. Instead, it brings together a set
of skills that you can add to your toolkit and incorporate as you like. But
before you can do that, you need to understand what exactly the shell is and
why you might want to use it.

xxiv Introduction

What Is the Shell?
The shell is the simple, text-based interface used to control a computer or a
program. In Windows, it looks like this:

Here’s what it looks like on a Mac:

And here’s what it looks like on Fedora, a popular Linux distribution
(this book focuses on the Linux shell):

There are several reasons why you might want to use the shell instead
of a graphical user interface (GUI), the visual point-and-click interface you’re
probably using now:

•	 Using the shell can help you learn more about your computer’s inter-
nals. This can be really helpful if you’re a technology professional or if
you simply want to better understand how your computer works.

•	 There are some scenarios where you have to use a shell. Not every pro-
gram or system can be operated with a GUI.

•	 Often, it’s more efficient to use the shell. Some operations that are time-
consuming or repetitive to perform using the GUI are much faster to
perform in a shell. You can also write shell scripts to automate such
operations.

Introduction xxv

•	 The simplicity of the shell’s text-based interface makes it a distraction-
free environment to work in.

Investing just a few hours in learning to use the shell for your computer
can have an enormous impact on your productivity. It can also make your
work more fun, allowing you to maintain a state of creative flow and work
more effectively.

Who Should Read This Book
This book’s primary audience will be readers who have some basic
programming knowledge and familiarity with the command line on a
Windows, macOS, or Linux system. If you’re totally new to the shell envi-
ronment, be sure to start with the book’s appendixes before you dive in
to Chapter 1. There, you’ll learn fundamentals such as setting up the
shell on your system and navigating the files and folders on your machine.
Afterward, you should be better equipped to follow along with the book
and get the most out of its examples.

Developers, data scientists, and engineers should find almost every chap-
ter of this book immediately applicable in their day-to-day work. Whether
you use Python, Golang, JavaScript, .NET, Java, or another language, an
integrated development environment (IDE) or the terminal, the skills you’ll
learn here will improve your ability to quickly solve problems by using a
simple, adaptable, and general-purpose toolkit.

Site reliability engineers, system administrators, and DevSecOps profes-
sionals will also find essential tips and tricks. If you regularly administer
remote machines, connect to containers, or manage clusters or cloud envi-
ronments, you’ll find many techniques to help you work more efficiently.

What’s in This Book?
Each chapter presents a stand-alone set of techniques that you should be
able to apply immediately. I have focused on keeping the information to
the essentials that enable you to use the skill rather than giving an exhaus-
tive description of every possible feature. This should allow you to pick up
the book, read a chapter over coffee, and try out the skills straightaway.
Depending on your familiarity with and comfort in the shell, you can gener-
ally skip straight to chapters you’re interested in rather than having to read
the book in order. The exception is Part III of the book, where you’ll pro-
gressively build and enhance a shell script as you pick up new techniques in
each chapter. Numerous cross-references throughout the book will point
you in the right direction if you get stuck or need a refresher on a topic.

Part I, Core Skills, introduces essential concepts and techniques that
you’ll use again and again in your everyday work.

Chapter 1: Flying on the Command Line   This chapter introduces key-
board shortcuts and commands for entering and manipulating text on

xxvi Introduction

the command line quickly and easily. You’ll learn navigation techniques
like moving forward and backward through a line or word, as well as how
to search your shell history and access your text editor from the shell.

Chapter 2: Thinking in Pipelines   This chapter explores the pipeline,
the pattern that all command line programs follow to handle input
and output. It also introduces basic redirection, a process that allows you
to send a program’s output to a file or use a file’s contents as program
input. These concepts will be essential in more advanced chapters.

Chapter 3: Finding Files and Folders   Using the shell to search for
files and folders makes quick work of a task that can be tedious in a
GUI environment. In this chapter, you’ll meet the built-in find com-
mand and learn all about how this versatile tool can make your search
operations more efficient.

Part II, Manipulating Text and Streams, demonstrates techniques for
working with text, whether it’s in code, data, or configuration files.

Chapter 4: Regular Expression Essentials   Regular expressions, or
regexes, have a reputation for being complex but can hugely simplify
many tasks, such as finding and altering text patterns across a file. In
this chapter, you’ll learn about regex fundamentals such as character
sets and capture groups, and see several practical examples that will
make regexes more approachable. This foundation will prepare you to
use regexes with the shell tools introduced in the following chapters.

Chapter 5: Getting to Grips with grep   The grep tool is a real work-
horse for shell users. Once you’ve learned how to use it, you’ll find
yourself turning to it again and again. This chapter explains how to
use grep to find and filter text in files, as well as how to combine grep
with regexes and pipelines for more complex search operations.

Chapter 6: Slicing and Dicing Text   Searching and filtering aren’t the
only text operations you can perform in the shell. This chapter walks
you through several techniques for manipulating text, introducing
commands such as head, tail, sort, and uniq to extract, sort, and dedu-
plicate (remove duplicates from) text.

Chapter 7: Advanced Text Manipulation with sed   The powerful
stream editor utility sed allows you to manipulate text in more sophisti-
cated ways by specifying expressions, or sets of operations you want it to
perform. You’ll learn how to combine expressions to remove or replace
parts of a line in a configuration file, among other examples. You’ll also
see some advanced sed applications, such as editing a file in place and
combining sed with grep and regexes to restructure text.

Chapter 8: Building Commands on the Fly   This chapter introduces
the xargs command, which you’ll combine with techniques from earlier
chapters to dynamically build complex commands by converting input
into command arguments. With xargs, you can pass data to other com-
mands you’ve worked with, and you can even preview the commands

Introduction xxvii

you construct before executing them. This chapter will lay the ground-
work for the next part of the book, where you’ll turn your commands
into shell scripts.

Part III, Shell Scripting, is a crash course in the art of automating
sequences of commands with shell scripts. You’ll apply the techniques from
previous chapters and add several more skills to build tools and scripts that
perform complex operations efficiently.

Chapter 9: Shell Script Fundamentals   In this chapter, you’ll write
a basic script to build a command called common that will output the
shell commands you use most often. You’ll learn how to add, format,
and chain commands; how to make shell scripts executable; and how
to install your scripts locally. In the following chapters, you’ll extend
the common script with additional features to make it more powerful and
user-friendly.

Chapter 10: Using Variables to Store, Read, and Manipulate Data  
Variables in shell scripts allow you to store and reuse values instead
of repeating them, which makes your scripts easier to maintain and
reduces the risk of errors. In this chapter, you’ll learn how to create
and format variables to read user input, perform arithmetic operations,
and more. You’ll update your common command script with variables to
configure how much of the shell history it reads and how many com-
mands it returns.

Chapter 11: Mastering Conditional Logic   By this point, you’ll be a
pretty solid shell scripter! In this chapter, you’ll learn how adding con-
ditional logic to your scripts, using tools like if and case statements,
allows you to control how they behave in different scenarios. You’ll also
work with more advanced constructs like conditional expressions with
regexes. To see how conditional logic works in practice, you’ll update
the common command so that it can determine whether you’re using bash
or the Z shell and, based on that condition, read the appropriate his-
tory file.

Chapter 12: Using Loops with Files and Folders   This chapter demon-
strates one of the most practical applications of scripts: running loop
operations over sets of files and folders to efficiently execute repetitive
tasks. Loops run a sequence of commands based on whether certain
conditions are met, and as such are a form of conditional logic. You’ll
learn how to use for loops, while loops, and until loops to iterate over
different parts of the filesystem, and then add loops to your common
script to return more user-friendly output.

Chapter 13: Functions, Parameters, and Error Handling   Functions
are another invaluable tool for reducing repetition in your scripts,
and in this chapter you’ll learn how to create them, pass parameters
to them, and work with the values they return. The chapter also covers
some ways to handle errors in the event that a command or function

xxviii Introduction

in your script fails. Then you’ll restructure the common script with error
handling logic and functions to make the code more readable and
maintainable.

Chapter 14: Useful Patterns for Shell Scripts   To close the section
on shell scripting, this chapter looks at some conventions you may find
useful when working with your own or other people’s scripts, includ-
ing debugging with the trace option, adding syntax highlighting, and
checking for the presence of a specific operating system, program, or
command. You’ll also see examples of anti-patterns—shell practices
that are common but ill advised.

Part IV, Building Your Toolkit, delves into techniques for customizing
your environment to your specific needs and preferences. You’ll build and
extend a personal library of customizations and configurations that you can
share across your machines or with others.

Chapter 15: Configuring Your Shell   In this chapter, you’ll learn
about the three types of shells and their startup behaviors, how their
different shell configuration files work, and how to change the default
shell settings in the ~/.bashrc file.

Chapter 16: Customizing Your Command Prompt   This chapter shows
you how to change the command prompt to display only the information
you want to see. You’ll learn how to use the PS1 variable, escape sequences,
and ANSI formatting to control both the content and look of your com-
mand prompt. Finally, you’ll create a script that allows you to set your own
command prompt theme from a list that you can extend over time.

Chapter 17: Managing Your Dot Files   As you customize different
aspects of your shell and environment, you’ll need a place to store that
configuration. In this chapter, you’ll learn how to create and organize
these configuration files, known as dot files, so that you can easily track
changes over time and keep them separated from system settings. You’ll
also learn how to use your dot files across different shells.

Chapter 18: Controlling Changes with Git   In this chapter, you’ll use
Git, a popular version control tool, to manage your personal configura-
tion settings. You’ll create a virtual storage space known as a repository
and learn Git syntax to track and make changes, resolve conflicting
changes, and remove or rename files from the command line.

Chapter 19: Managing Remote Git Repositories and Sharing Dot
Files   You’ll use the web-based platform GitHub in this chapter to
publish your local Git repository to a remote repository so that you
can share your configuration across machines or with other users.

Part V, Advanced Techniques, explores how to work more effectively
in the shell environment. You’ll gain a deeper understanding of shell
mechanics, learn when to use alternatives to shell scripts, and master pow-
erful terminal-based tools for remote access, text editing, and workspace
management.

Introduction xxix

Chapter 20: Shell Expansion   Shell syntax has oddities that can be
confusing. This chapter delves a little deeper into how the shell inter-
prets and transforms commands, showing ways to use this behavior
to your advantage, such as creating multiple files with less typing and
quickly selecting groups of files by their names.

Chapter 21: Alternatives to Shell Scripting   This chapter will help
you identify when it’s appropriate to move from a simple shell script to
a more sophisticated solution. You’ll explore options other than shell
scripting and then use the popular Python programming language to
build a tool that looks up a definition in an online dictionary—a task
that would be quite complex in the shell.

Chapter 22: The Secure Shell   This chapter introduces the Secure
Shell (SSH), a network protocol that allows you to securely connect to
remote machines. You’ll learn how to configure SSH, create a cloud-
based virtual machine on Amazon Web Services, and connect to the
virtual machine from your local computer.

Chapter 23: The Power of Terminal Editors   Text editors that run
in the shell can take your productivity to a whole new level. In this
chapter, you’ll meet the Vim editor and see how it can greatly speed up
many of your everyday tasks. For example, with Vim you can quickly
write detailed messages for your Git commits and edit shell commands
without having to leave your terminal, helping you maintain your flow.

Chapter 24: Mastering the Multiplexer   A terminal multiplexer allows
you to run multiple shell sessions and programs. This chapter will focus
on the tmux multiplexer, showing you how to organize your tmux work-
space with windows and panes, configure tmux to match your workflow,
and use tmux for remote work and real-time collaboration.

Excitement and development around generative AI have increased
enormously over the past few years. In the book’s afterword, we look at how
this technology can bring us to new levels of efficiency in the shell, a tool
that lets you directly interact with AI systems from the shell, and what the
future might hold.

Appendixes A and B cover setup instructions and shell navigation
basics, respectively. Although this content is targeted primarily to novices,
more advanced users may also find some useful tips and tricks here.

How to Read This Book
Commands that you can enter into your shell, such as grep, are shown as
monospaced text. Paths to files and folders, such as the ~/effective-shell folder,
are shown in italics.

In code examples, the dollar sign ($) command prompt indicates where
you start typing. The text that you enter is shown in monospace bold:

$ echo ″my shell is $SHELL″
my shell is /bin/bash

xxx Introduction

The output of commands, such as my shell is /bin/bash in this example,
is shown in regular monospace.

In examples of navigating through text, the cursor position is indicated
with gray shading:

This cursor is at the beginning of the line.

This book assumes that you are using a bash-like shell, which is installed
by default on most Linux systems. Given the popularity of the Z shell (zsh),
which is now the default for macOS, I’ll call out Z shell–specific variations
in a note like so:

N O T E 	 Z shell specifics are highlighted like this.

Bugs and Suggestions
I’ve made every effort to keep samples bug-free and cross-platform. However,
tools and operating systems change, and it’s impossible to catch every issue.
If you find a bug, or if you have any suggestions, please open an issue in the
GitHub repository at https://github.com/dwmkerr/effective-shell.

Sample Files and Online Resources
Effective Shell started as a free and open source book available at https://
effective-shell.com. Updates to this site have been infrequent while I have been
working on the book; however, it is now ready for a refresh! Check the web-
site occasionally to see updates and new chapters, or to see animated ver-
sions of many of the samples.

All code samples are available to download from https://effective-shell.com/
downloads/effective-shell.zip. Better yet, install the samples from the shell as
follows:

$ curl effective.sh | sh

Ready to master the command line and have some fun in the process?
Let’s get started.

https://effective-shell.com/downloads/effective-shell.zip

PART I
C O R E S K I L L S

1
F LY I N G O N T H E C O M M A N D L I N E

Being able to rapidly move around the
shell and manipulate text on the command

line is critical to being an effective shell user.
As you spend more time in the shell and start

composing larger and more complex commands, it’s
especially important that you can work efficiently. In
this chapter, we’ll look at some techniques to help you
do just that. Before long, you’ll be navigating the com-
mand line at lightning speed.

To see this chapter’s examples in action, go to https://effective-shell.com,
where you’ll find animated images of each technique. I encourage you to
also try them out as you go along.

4 Chapter 1

Basic Navigation Techniques
In this section, we’ll look at a number of shortcuts you can use to maneuver
the cursor. To begin, use the following command to write the quote to a
text file:

$ echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

Once you have executed this command by pressing enter, the quote
will be written to a file called note.txt.

The shortcuts introduced in this chapter allow you to move around and
manipulate the command line much more quickly and efficiently than if
you were using only the arrow keys or delete key.

To work through the examples in this section, press the up arrow key,
which will bring the command back up in your shell with the cursor at the
end of the line.

Go to the Beginning or End of a Line
You can quickly jump to the beginning of the text, no matter where your
cursor is currently positioned, with ctrl-A:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

The shortcut ctrl-E takes you to the end of the line:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

These are two of the most useful shortcuts, and I highly recommend
that you incorporate them into your regular shell usage.

Move Back or Forward One Word
You can also quickly jump backward or forward one word at a time. Use
alt-B to move back one word:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

In this example, using alt-B once takes you back one word to the
start of txt. Using it a second time takes you to the start of note. The shell
uses the dot (.) character as a word separator; therefore, note and txt are
treated as two separate words (they could also be separated by a space or
some other non-alphanumeric symbol).

To go back to the beginning of the line (if you are not there already),
use ctrl-A:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

Flying on the Command Line 5

Now use alt-F to go forward one word at a time:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt

Notice that these shortcuts not only jump over each space between
the words but also differentiate between symbols and actual words. In this
example, the cursor moves from the beginning of the line to the end of the
word echo, which is the space that follows it. The space and the quotes that
follow echo are two sequential characters that are not part of a word, so the
next time alt-F is pressed, the cursor moves to the end of the next word
(the space after When).

Delete a Word
To quickly delete a word, place the cursor at the end of it and use ctrl-W.
If your cursor is at the end of the line as in the following example, pressing
ctrl-W would work like so:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >>
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin
echo ″When you light a candle, you also cast a shadow.″ - Ursula Le

If the cursor is halfway through a word, ctrl-W will delete only from
the beginning of the word to the cursor position:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a dow.″ - Ursula Le Guin >> note.txt

To delete the next word or character to the right, use alt-D:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a , you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a also cast a shadow.″ - Ursula Le Guin >> note.txt

Notice that ctrl-W defines a word as any nonspace character, whereas
alt-D defines a word as only alphanumeric characters. This is because
under the hood different “delete word” functions are available in the shell,
and the default keyboard shortcuts use different variants for deleting a
word and deleting the next word.

You can look up how each shortcut works by running man bash to open
the man page for bash and searching for “commands for moving.”

Delete a Line
In bash, you can delete everything from the current cursor position to the
beginning of the line with ctrl-U:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
Ursula Le Guin >> note.txt

6 Chapter 1

N O T E 	 If you’re using the Z shell, this key combination will delete the entire line regardless of
where your cursor is. If you’re not sure what shell you’re using, look at the prompt next
to your cursor. If it starts with a hash mark (#) or dollar sign ($), it’s probably bash. If
it starts with a percent symbol (%), it’s probably the Z shell. On most Linux machines,
your shell will be bash by default. On macOS systems from 2019 onward, it will be the
Z shell. To see exactly what shell you have, run echo $SHELL.

To delete everything from the cursor to the end of the line, use ctrl-K:

echo ″When you light a candle, you also cast a shadow.″ - Ursula Le Guin >> note.txt
echo ″When you light a candle, you also cast a shadow.″

This should work the same way in bash and the Z shell.

Undo a Change
Bash also has an undo shortcut: ctrl-_ (underscore) will undo the most
recent change.

If you find yourself repeatedly using the arrow or delete keys, refer back
to this section to remind yourself of the shortcuts. They’ll save you a lot of
time in the long run!

Search Commands
Once you have the basic navigation commands down, the next essential
shortcuts are search commands. Starting with the current line, you can
search backward or forward in your command history with ctrl-R and
ctrl-S, respectively.

Let’s look at an example. Run these commands on three separate lines
to create nine empty files:

$ touch file1 file2 file3
$ touch file4 file5 file6
$ touch file7 file8 file9

Now press ctrl-R to start searching, and you’ll see a search prompt in
your shell. Because you’re searching backward, the prompt tells you that
you’re doing a reverse search. At the prompt, enter file and press ctrl-R
repeatedly:

(reverse-i-search)`file′: touch file7 file8 file9
(reverse-i-search)`file′: touch file7 file8 file9
(reverse-i-search)`file′: touch file7 file8 file9
(reverse-i-search)`file′: touch file4 file5 file6

The shell will search the previous commands for the term file, jump-
ing farther back each time you press ctrl-R. This is quite hard to visualize

Flying on the Command Line 7

in printed text, so be sure to try it out in your shell. When the shell reaches
the end of the search and can’t find any more file entries, the prompt will
change to something like:

(failed reverse-i-search)

Press enter to get back to the regular prompt. Searching forward with
ctrl-S works in much the same way.

If your code lines are long, these two shortcuts are often the fastest ways
to move to the desired location in the current line. You can also use them
to quickly search through your entire command history. For example, to
find your last mkdir (“make directory”) command, press ctrl-R, enter mkdir,
and then press ctrl-R again to search backward through all mkdir com-
mands stored in your history.

A quick way to test this is also to search for echo. If you’ve been using the
echo command to enter the quote as in the earlier examples, it should be
the first result that the reverse search finds.

When you find the command you want, just press enter to execute it.
If you want to edit the command first, use the left or right arrow keys to go
back into normal editing mode. This would be useful if, say, you want to
rerun a long commandname command but on a different file. You can search for
commandname and then change the filename.

If you want to cancel the search completely, press ctrl-G. The search
prompt will disappear, and whatever you had in the command prompt
before you started searching will be returned.

Editing in Place
When working with a long or complex command, you might find it easier
to use a text editor instead of the shell. You could just copy the command,
paste it into your favorite editor, edit it, and then paste it back into the shell.
However, in most cases you can open your text editor right inside the shell.

The default editor for the shell is often set to Vim, which you’ll see in
detail in Chapter 23. Before going any further, set your editor to nano,
which is more user-friendly, like so:

$ export EDITOR=nano

If this command doesn’t make sense at the moment, don’t worry—it
will soon. You’ll also learn more about customizing shell features such as
the default editor in Chapter 15.

Now that you’ve set the default editor to nano, you need to enter two
shortcut combinations to open it: first, press ctrl-X to signal to the shell
that you’re about to enter a command, and then press ctrl-E to edit in
place. If you don’t have any unexecuted code on your command line, the
text editor will be empty when it opens; otherwise, it will show your current
command.

8 Chapter 1

Let’s see this in action. Begin entering a command to write the list of
programs in your /usr/bin folder to a file:

$ ls -al /usr/bin >> binaries.txt

But instead of pressing enter to execute this code, press ctrl-X, ctrl-E
to edit it in place (see Figure 1-1).

Figure 1-1: The “edit in place” functionality in nano

The nano editor uses keyboard shortcuts to save, close, cut, copy, paste,
and so on. These shortcuts are shown at the bottom of the screen. You won’t
be able to click any buttons or menus.

Now you can edit the command text by deleting characters and typing
new ones. Save your changes with ctrl-S, and exit the editor with ctrl-X.
The shell will then run the edited command. You can see the most recent
command by pressing the up arrow. If you want to discard your changes
without running the command, close the editor without saving.

N O T E 	 If the editor does not look like the screenshot in Figure 1-1, you may have opened Vim
by mistake. If so, type :q! and press enter to exit Vim, then enter export EDITOR=nano
to change the default editor for your shell.

Keep in mind that the ctrl-X, ctrl-E shortcut opens the shell’s default
editor, which might not be the one you expect. For example, your shell is
unlikely to use Visual Studio Code for editing commands unless you configure
it to do so, even if you have set it as your editor for shell scripts. The default
editor will be one that works inside a shell, because the shell doesn’t assume
that you have a windowing system running that can open a full-featured
editor like Visual Studio Code, Notepad++, or other popular editors.

Flying on the Command Line 9

As you saw at the beginning of this section, you can override the shell’s
default editor by setting the EDITOR environment variable (see Chapter 10 for
more on variables). On my personal machine, I use Vim as my command
line editor. To check which editor you’re using, enter the following:

$ echo $EDITOR
vim

For now, I wouldn’t recommend changing your editor to a graphical
one like Visual Studio Code for a couple of reasons. First, some interfaces,
like a virtual machine or Raspberry Pi, won’t have a desktop system to run
a graphical editor, so you’ll need to be familiar with a shell-based editor.
Second, an external graphical editor runs in a separate window, meaning
you’ve moved out of the shell and away from where you’re working. Effective
shell users want as few interruptions as possible between coming up with an
idea, entering the text, and running a command.

We’ll look at some more advanced editors in Chapter 23.

Other Useful Shortcuts
There are a few other shortcuts that, while they don’t fit into the categories
we’ve looked at so far, are just as handy.

Clear the Screen
The shortcut ctrl-L clears the screen but doesn’t affect anything unex-
ecuted in your current line. This is very helpful if you have a lot of “noisy”
output on the screen and want to clean it up.

View Your Command History
Running the history command prints the recent history of commands
you’ve entered:

$ history
 1 pwd
 2 ls
 3 git status
 4 clear
 5 curl effective.sh | sh
 ...

You’ll get a numbered list of your command history, with the latest at
the bottom. By default, the shell saves about 10,000 lines of history.

N O T E 	 This command works even if you’ve used ctrl-L to clear the screen.

10 Chapter 1

If you want to rerun any of the commands in your history, enter an
exclamation mark (!) and the command’s number like so:

$!5
effective-shell: preparing to install the ′effective-shell.com′ samples...

The 5 corresponds to the command curl effective.sh | sh, which
installs the effective-shell samples. Most shells maintain your command his-
tory in a history file, and this number is just the line number from that file.
You can find the history file’s location by running:

$ echo $HISTFILE
/home/dwmkerr/.bash_history

Where the history file is kept depends on your shell, configuration, and
operating system, but in most cases the HISTFILE variable will find it for you.

Show All Shortcuts
The bindkey command returns a list of all keyboard shortcuts:

$ bindkey
″^@″ set-mark-command
″^A″ beginning-of-line
″^B″ backward-char
″^D″ delete-char-or-list
″^E″ end-of-line
″^F″ forward-char
″^G″ send-break
″^H″ backward-delete-char
″^I″ expand-or-complete
″^J″ accept-line
″^K″ kill-line
″^L″ clear-screen
...

This is an extremely useful command if you forget a specific keyboard
shortcut or even if you just want to see the shortcuts available to you. If
bindkey doesn’t work for you, try using the alternative form bind -p.

Transpose Text
Transposing text just means swapping it with some other text. Using the
alt-T shortcut transposes the two words before the cursor:

$ cp destination source
$ cp source destination

Using the ctrl-T shortcut will transpose the two letters before the
cursor.

Flying on the Command Line 11

Summary
In this chapter, you learned shortcuts for maneuvering your cursor in the
shell, which allows you to edit your code quickly and easily. You also saw
how to list and search your command history, edit in place with the shell’s
default text editor, and take advantage of other techniques to work more
efficiently on the command line.

In the next chapter, we’ll look at how to find files and folders on your
system, a process that is often complex and time-consuming even in a GUI
environment but is a snap with the shell.

2
T H I N K I N G I N P I P E L I N E S

Understanding pipelines and how input
and output work for command line pro-

grams is critical to using the shell effectively.
In this chapter, we’ll look at how programs

handle input and output, and then you’ll learn
how to chain multiple commands together with pipe-
lines. I’ll also share some tips and tricks for using pipe-
lines that I hope will make your life easier. Finally, I’ll
briefly touch on the “Unix philosophy,” an approach to
building programs that enables you to efficiently per-
form highly complex tasks. Learning these concepts
will open up a new world in terms of what you can do
with the shell.

14 Chapter 2

N O T E 	 If you’re new to the command line or just need a refresher, make sure to read the
appendixes before you start this chapter.

The IPO Pattern
Most programs that are designed to be used in the shell or a Linux-like
system use a pattern known as input-process-output (IPO), which means “take
input, process it in some way, and then produce output” (see Figure 2-1). In
fact, many programs outside of the shell and Linux can be said to use this
pattern.

Input Process Output

Figure 2-1: The IPO pattern

In the shell, when we use the output of one program as the input of
another, we are using a pattern known as a pipeline. Figure 2-2 shows a more
concrete example of a pipeline using the sort (“sort lines alphabetically”)
command, which sorts the input in alphabetical order. You can see this in
action by running sort in a shell.

Mouse sort Dog
Dog Cat

Cat Mouse

Figure 2-2: The sort program takes the
input, sorts it, and outputs the result.

Start the sort program, enter some text, and then press ctrl-D (which
appears in the shell as ^D) like so:

$ sort
dogs
chase
cats
and
cats
chase
mice
^D

The ^D command signifies the end of transmission (EOT), telling the
program that you’ve finished entering your input. The shell then sorts that
input and returns the alphabetically ordered output:

and
cats
cats
chase

Thinking in Pipelines 15

chase
dogs
mice

Behind the scenes, sort is using two special channels of data called stdin
and stdout. These channels, known as streams, are critical to how programs
and the shell work.

Streams
A stream is nothing more than a flow of data. A YouTube video is a stream.
Your browser doesn’t download the entire video and start playing from
beginning to end; instead, it streams the data, downloading only what it
needs to play the current frame and the next few seconds. If you skip to a
later part of a video, you don’t download all the frames in between—you
just start streaming the video from the later location.

Streams in Linux and the shell work the same way. Say I write a pro-
gram that reads text from a large file and searches for a certain word. In
general, it won’t read the entire file and then search through it for the
word; rather, it will stream the file into the program, reading a line or two
at a time and searching in just those lines before moving on to the next
couple of lines. This is far more efficient, as reading the entire file into
the program’s memory would take unnecessary time and resources. For
example, you could read a file that is larger than the computer’s total avail-
able memory and still search through it, even though the entire file is never
loaded at once, just a chunk of it at a time.

Streams allow you to easily process input and output. You can read
from files, network locations, special devices, or keyboards as input streams,
and you can write to files, screens, network locations, or a printer as output
streams. These are just examples; you can use many other different types of
inputs and outputs.

Streams are an incredibly powerful abstraction that means programs
don’t need to know anything about the internet, the printer, the network,
or even how files are stored—they just need to know how to read from or
write to a stream. The device’s operating system and drivers will handle
turning the stream into files, print output, or whatever is needed.

stdin, stdout, and stderr
Every program has access to the three special streams—stdin, stdout, and
stderr—shown in Figure 2-3.

stdin
0

Process

stdout
1

stderr
2

Figure 2-3: Programs have access
to three special streams: stdin, stdout,
and stderr.

16 Chapter 2

The stdin (standard input) stream is where programs read their input
from; by default, in most cases this will be the input from the keyboard.
The stdout (standard output) stream is where programs write their output to;
the default in most cases will be the screen. Finally, the stderr (standard error)
stream is where programs write error messages to, which is typically the
screen (just like stdout). You might sometimes see these streams referred to
as files, which is partly accurate. The system can treat them just like files—
opening them, reading them, writing to them, and so on.

N O T E 	 Many programs don’t require you to make any configuration to use these three spe-
cial streams, as they’re used by default. You’re free to choose how a program will read
input and write output, and some programs might not follow these conventions.
Chapter 21 will cover how to write tools that follow these conventions and how to cus-
tomize the storage of input and output.

When you run programs in a shell, the shell attaches your keyboard to
the program’s stdin and attaches the terminal’s display to stdout and stderr,
as shown in Figure 2-4. Thus, by default, your key presses are taken as input,
and any output or errors are delivered to the screen.

stdin
0

Process

stdout
1

stderr
2

Shell

Figure 2-4: A shell program generally attaches your keyboard
to stdin and sends stdout and stderr to the screen.

Here you can see the beauty of streams. Your program doesn’t need to
know that it’s getting its input from the keyboard; it just receives informa-
tion via stdin. You use the keyboard to type text, which is streamed into the
program’s input. The program writes its output to the stdout and stderr
streams, and the shell streams this output as text on the screen. But you
could just as easily pass other types of input to the program, such as files,
and it will work; you’ll see how to do this in the next section.

Each stream has a special number, shown in gray in Figures 2-3 and 2-4,
known as the file descriptor. Whenever you open a file, the operating system
allocates it a new file descriptor to keep track of any files in use. The descrip-
tors 0, 1, and 2 are reserved for stdin, stdout, and stderr, respectively. To check
this, run the following command:

$ ls -al /dev/std*
lrwxrwxrwx 1 root root 15 Apr 2 19:01 /dev/stderr -> /proc/self/fd/2
lrwxrwxrwx 1 root root 15 Apr 2 19:01 /dev/stdin -> /proc/self/fd/0
lrwxrwxrwx 1 root root 15 Apr 2 19:01 /dev/stdout -> /proc/self/fd/1

Here you list the contents of the /dev directory and filter the output to
just files that start with std by using the wildcard asterisk (*). Each stream’s
special file descriptor appears at the end of its line.

Thinking in Pipelines 17

Pipelines in Action
A pipeline is a way to connect streams by chaining simple commands
together to perform more complex tasks. Let’s look at an example from
the book’s resources: simpsons-characters.txt is a simple file containing a few
lines of text you can use to practice commands.

N O T E 	 If you haven’t done so already, download the book’s sample files from https://
effective-shell.com/downloads/effective-shell.zip. To install this chapter’s
samples to the ~/effective-shell folder, run this command:

$ curl effective.sh | sh

First, use the cat (“concatenate”) command to write the contents of
simpsons-characters.txt to the screen:

$ cat ~/effective-shell/text/simpsons-characters.txt
Artie Ziff
Kirk Van Houten
Timothy Lovejoy
Artie Ziff
Nick Riviera
Seymore Skinner
Hank Scorpio
Timothy Lovejoy
John Frink
Cletus Spuckler
Ruth Powers
Artie Ziff
Agnes Skinner
Helen Lovejoy

Next, you’ll clean this data up by sorting it and removing duplicates.
To do so, you pipe the output of the cat command into the sort command
to alphabetize it and then pipe that output into the uniq (“omit duplicate
lines”) command to remove duplicates:

$ cat ~/effective-shell/text/simpsons-characters.txt | sort | uniq
Agnes Skinner
Artie Ziff
Cletus Spuckler
Hank Scorpio
Helen Lovejoy
John Frink
Kirk Van Houten
Nick Riviera
Ruth Powers
Seymore Skinner
Timothy Lovejoy

You’ll see more of sort and uniq in Chapter 6. Note that when you used
sort in the previous example, you were providing keyboard input. In this

https://effective-shell.com/downloads/effective-shell.zip

18 Chapter 2

case, the sort command has used the output of the cat program (and you
didn’t have to tell the sort command to do so). It just reads from the input
stream, no matter where that comes from.

The pipe operator (|) has a very specific meaning in the shell: it attaches
the stdout of the first command (in this case, cat) to the stdin of the second
(sort). In other words, the shell is connecting one stream to another, so this
is a pipeline, as shown in Figure 2-5.

stdin
pipe

stdout
sortcat file.txt

stdin
pipe

stdout
sort

stdout

file.txt

Figure 2-5: The pipeline is used to sort and deduplicate text.

As you can see, a pipeline is just a set of programs connected with
pipes—easy! You can pipe as many programs together as you like.

Pipelines let you create complex sequences of operations that work
quickly, even on very large files, because programs can read and process
one chunk at a time. This kind of efficiency was particularly critical in the
early days of Unix, when memory and resources were limited, and it’s still
essential today when you’re working with large files or streams that might
be slow to read, such as files you are downloading from the internet.

Next, we’ll look at each stream in a little more detail by exploring some
of their common uses in pipelines for practical, day-to-day work.

Standard Input Applications
Figure 2-6 shows some of the common sources of standard input for various
programs.

The shell
echo

Files
cat

Clipboard
pbpaste

Filtered input
head, tail, grep

Many more!
ls, ps, find, git, head, curl

(Processing) Output

Figure 2-6: Common sources for standard input for pipelines

This list is by no means exhaustive; in fact, with a bit of tinkering, you
can make almost anything work as the input to almost anything else. Let’s
review each of these sources one by one.

Thinking in Pipelines 19

Using Output from Shell Code as Input

Anything that is written as output from one command can be used as input
to another program. Try this example:

$ echo ″Hello everyone!″ | sed ′s/Hello/Goodbye/′
Goodbye everyone!

Here you use echo program to write a message to stdout. This is piped
to the sed (“stream editor”) command. The parameters for sed are s/Hello/
Goodbye, which instruct it to substitute (s) the text Hello with the text Goodbye.
Chapter 7 discusses the sed command in detail.

Using Files as Input

As you’ve seen, you can use files as input to a pipeline. Earlier you used cat
to write the simpsons-characters.txt file to stdout. In many cases, however, you
don’t need to use cat; lots of programs accept the filepath as a parameter,
so you can just tell the program to open the file directly. Let’s look at an
example.

First, use cat as usual to read the file, and then pipe the output to the
wc (“word count”) command to count the number of lines:

$ cat ~/effective-shell/text/simpsons-characters.txt | wc -l
 14

Even though the wc program stands for “word count,” it can count
words, lines, characters, and bytes. Passing it the -1 option indicates you
want to count lines. Note that, unlike most shell programs, the wc program
indents its output.

Now try the simpler version. Pass the filepath directly to the wc program
like so:

$ wc -l ~/effective-shell/text/simpsons-characters.txt
 14 /Users/dwmkerr/playground/text/simpsons-characters.txt

Passing a filepath as an argument to wc eliminates the need to use cat
or piping to provide input. But keep in mind that not all programs use the
same conventions or parameter names for providing file input.

You might have noticed that the output in the two examples is different.
The second command returns both the line count and the path of the pro-
vided file as output. In the first command, since you just provided a stream
of text to stdin, the wc program doesn’t know where it came from; the input
might have been a file, the keyboard, or a web address, for all it knows.

As a shorter form of the first command, you can also provide files as
stdin with the left angle bracket (<):

$ wc -l < ~/effective-shell/text/simpsons-characters.txt
 14

20 Chapter 2

The < operator redirects the standard input of a program to come from
the given file. This is a stream redirection operator, and we’ll see some others
in this chapter.

For readability, I tend to use cat when building pipelines so that it’s
immediately clear where the data comes from, as the pipeline reads from
left to right. This is just a personal preference, so feel free to use whichever
option suits you best.

Now here’s a cool trick to get the word count information of whatever
text you enter after the wc command:

$ wc /dev/stdin
one two three
^D 1 3 14 /dev/stdin

First, you run wc and tell it that the file to read from is the special /dev/
stdin file (that is, the stdin stream). Next, you enter some text (one two three)
and press ctrl-D to let the program know you’re done (remember, ctrl-D
means “end of transmission”). Since you didn’t specify an option such as -l
to tell wc what you’d like to count, the program returns everything it can
count—the number of lines, words, and bytes it read from its input—followed
by where it read the input from.

If a program offers the option to specify a filepath but not to read from
standard input, you can often trick it into doing the latter by providing the
filepath of stdin.

Using Clipboard Content as Input

You can use clipboard content in pipelines too. In your text editor, type
this is not a palindrome and copy that text to your clipboard. Then run
the following:

$ xclip -o | rev | xclip

This pipeline uses the xclip (“clipboard”) command with the -o
(“output”) flag to paste the contents of the clipboard to stdout, pipes it
to rev (“reverse text”), and then pipes the output to xclip, which, when
run without the -o flag, copies the reversed text to the clipboard. When
you run xclip -o again, you should see this output:

emordnilap a ton si siht

N O T E 	 The xclip command should be installed on most Linux distributions that use a
windowing system. For instructions on how to access the clipboard on a macOS or
Windows machine, see Appendix B.

Processing the text on your clipboard in the shell can be very useful for
building more complex commands or formatting data you have copied.

Thinking in Pipelines 21

Filtering Input

You can use a pipeline to filter input. For example, say you’re a data scientist
and you have a huge data file called 100GBFile.csv in your current directory.
You can use pipes to show just the first part of that file:

$ head -n 100 100GBFile.csv > 100linefile.csv

The head command displays the number of lines you specify with the -n
parameter. In this case, it grabs the first 100 lines of your file and puts them
into a smaller, more manageable file whose name you designate after the
right angle bracket (>), which is another stream redirection symbol.

There are lots of other ways to filter input, as you’ll see in Part II.

Standard Output Applications
Figure 2-7 shows some of the ways you can work with standard output.

Display
less, more

Filter
grep

File
>

Append
>>

Many more!
pipe

(Processing)

Standard
output

Input

Figure 2-7: Common uses for standard output in pipelines

You’ve seen some of these outputs before, but here I’ll go into a bit
more detail.

Displaying Onscreen

Displaying output simply means the results are shown on the screen, like
much of what you’ve seen so far. When you’re working with the shell interac-
tively, keying in commands, it’s helpful to see the program’s output onscreen.
For, say, scheduled tasks that run overnight, however, writing to the screen
is less useful. It’s unlikely that you would be watching the screen then, so it
would be better to write the output to a file you can read later, as described
shortly.

Sometimes you’ll get a lot of output that’s inconvenient to scroll through
in the terminal. In these cases, you can use the pager program less as follows:

$ ls /usr/bin /usr/local/bin /usr/sbin | less

22 Chapter 2

This command lists the contents of two commonly used folders that
store commands and then pipes the results to the less pager. The result-
ing list of commands is long, so it would be hard to search through the list
if it were printed directly to the terminal. By passing it to the pager tool,
you’ll see only enough of the output that can fit on the screen. You can
press the D and U keys to move through the output one “page” at a time,
and the / and ? keys to search forward and backward through the output,
respectively.

Piping into your pager is a useful trick. Read more about pagers in
“Getting Help” on page 415.

Redirecting to a File

When you want to store some output, perhaps to review it later or because
it’s too big even for the pager, you’ll likely want to pipe it to a file. As noted
earlier, this is also a good method when you have jobs running in the back-
ground or on a timer, such as backup jobs that run nightly, as you probably
won’t have a terminal attached to the program to see the output when the
overnight job is running.

To pipe the standard output of a program and write it to a file, use the
shell’s built-in redirection operator, >, as follows:

$ echo ″Here′s some data″ > some_file.txt

It’s that easy! This command will create the file some_file.txt if it doesn’t
exist but will overwrite the file’s contents if it does. Now when you open
some_file.txt, it will contain the text Here′s some data.

Appending to a File

If you want to add new content to a file instead of overwriting it, you use
double right angle brackets (>>), known as the append redirection operator,
like so:

$ echo ″Tuesday was good″ >> diary.txt
$ echo ″Wednesday was better!″ >> diary.txt
$ echo ″Thursday suuucks″ >> diary.txt
$ cat diary.txt
Tuesday was good
Wednesday was better!
Thursday suuucks

In the first line, you use echo to write some text to the file diary.txt. The
append redirection operator will append to the file if it exists and create it
otherwise. Then, in the two subsequent echo commands, you add more text
to that file.

Appending to a file is extremely useful in many scenarios—for exam-
ple, when you might want to build or update a log of events over time.

Thinking in Pipelines 23

Standard Error Applications
It’s good practice for programs to write error messages to the stderr stream
rather than to the stdout stream. This allows you to differentiate between
normal messages and messages indicating problems.

Let’s see the stderr stream in action. Enter these two commands, one of
which will cause an error:

$ mkdir ~/effective-shell/new-folder
$ mkdir ~/effective-shell/new-folder
mkdir: /home/dwmkerr/effective-shell/new-folder: File Exists

In the first call to mkdir, the folder is created successfully. The second
call, however, returns an error because the folder already exists. There’s no
real difference in how stdout and stderr behave in this case; stderr is just a
particular channel for error messages. However, when working with these
two streams, it’s important to know that, by default, the pipe operator acts
on stdout, not stderr. If you want to use stderr in pipelines, you have to tell
the shell this explicitly.

Let’s look at an example of the default behavior in action. Say you want
to make your error message more obvious by making all the text uppercase
with the tr (“translate characters”) program. First, here’s an example of
how tr works on some regular stdout content:

$ echo ′Be quiet, this is a library!′ | tr ′[:lower:]′ ′[:upper:]′
BE QUIET, THIS IS A LIBRARY!

This command successfully translates all the lowercase characters to
uppercase.

N O T E 	 You’ll see how tr works in a lot more detail in Part II.

Now try using tr to set the mkdir error message in all caps:

$ mkdir ~/playground/new-folder | tr ′[:lower:]′ ′[:upper:]′
mkdir: /Users/dwmkerr/playground/new-folder: File exists

You can see that this doesn’t work. That’s because the shell’s pipe opera-
tor explicitly pipes to stdout, not stderr. That means your error output
isn’t being piped through the tr program; the mkdir command is writing
the error message to stderr, and the shell writes the content of stderr to
the screen, totally bypassing tr (see Figure 2-8).

stdin
pipe

stdout
tr

stdout
01 1

mkdir

stderr
2

Figure 2-8: How the shell manages the mkdir command’s stderr output

24 Chapter 2

To get different output behavior from stderr, you must explicitly redi-
rect its content. Figure 2-9 shows some common options for where you
might send stderr.

. . . to stdout
2>&1

. . . to a file
2>./errors.txt

. . . to /dev/null
2>/dev/null

. . . append!
2>>./errors.txt

. . . all to a file
>output.txt2>&1

(Processing)

Standard
error

Input

Figure 2-9: Common options for dealing with stderr

If you’ve done some shell scripting before, this might be an “aha” moment.
Some of the obscure sequences shown in Figure 2-9, like 2>&1, might look
familiar to you. We’re about to go over exactly what they mean if you haven’t
guessed yet.

Redirecting to Standard Output

To pipe the error output to another command, you first redirect stderr to
stdout, and then you can use a pipeline as usual, because the other com-
mand will be reading its stdin from the first program’s stdout, not stderr.
This redirection requires some more complicated-looking syntax: the 2>&1
sequence. Let’s break it down:

•	 The 2 is the stderr file descriptor.

•	 The redirect symbol (>) tells the shell that you want to redirect the file
with descriptor 2, which is stderr.

•	 The ampersand (&) tells the shell that the character that follows will be
a file descriptor.

•	 The 1 is the stdout file descriptor.

In summary, this command says, “Take the standard error stream
and pipe it to standard output.” You don’t need the ampersand before the
first descriptor, because the shell supports output redirection only for file
descriptors, so an additional ampersand would be superfluous (and would
cause unintended side effects).

To make the error message go through the tr command, redirect stderr
to stdout like so:

$ mkdir ~/effective-shell/new-folder 2>&1 | tr ′[:lower:]′ ′[:upper:]′
MKDIR: /USERS/DWMKERR/PLAYGROUND/NEW-FOLDER: FILE EXISTS

Thinking in Pipelines 25

The error message will go to stdout and then be piped to tr, as shown
in Figure 2-10.

stdin
pipe

stdout
tr

stdout
01 1

mkdir

stderr redirect
2>&1

2

Figure 2-10: Redirecting stderr to stdout

To make sure you remember the slightly obscure & that references a file
descriptor, see what happens when you don’t include it:

$ cat some-file-that-might-not-exist 2>1

The shell writes stderr to a new file named 1 rather than the file that
has the 1 descriptor.

Redirecting to a File

You can also redirect the standard error stream to a file with the > operator:

$ mkdir ~/effective-shell/new-folder 2>./errors.txt

This command redirects all content from stderr to a file called ./errors.txt.
You’ll often use this approach when running programs and logging any error
output to a logfile for later review.

N O T E 	 You might notice I often put the special dot folder and a slash before filenames. This
has become a habit over years of working with the shell; the dot-slash makes it very
clear and unambiguous to anyone reading your code that they are seeing a filepath
rather than a command or some other resource. You can omit the dot and slash in this
and other commands, and they will still work.

Writing to a File

If you want to keep error messages but not see them on the screen straight-
away, you can write the error output to a file with the > operator:

$ mkdir ~/effective-shell/new-folder 2>./errors.log

This is the same approach you used for stdout, except that you’re explic-
itly saying you want to redirect file descriptor 2 (stderr) to a file. Like that
operation, this one will create the file if it doesn’t exist and overwrite it if
it does.

Redirecting to null

Sometimes you just don’t want to see the errors at all. For example, earlier
you created a new-folder directory with mkdir and the command failed because

26 Chapter 2

the directory already existed. Say you don’t care about that error, because it
just means your task is already done.

The special file /dev/null is used for just this purpose. When you write to
this file, the operating system discards the input. To see this in action, run
the mkdir command and redirect the stderr stream with file descriptor 2 to
the null file:

$ mkdir ~/effective-shell/new-folder 2>/dev/null

This redirects all errors to a black hole named /dev/null so that you won’t
see them on the screen or anywhere else. You can also use the null file to dis-
card the stdout from programs.

Keep in mind that you should use this trick with caution. Make sure
you really do want that output to disappear, because once it’s gone, it’s
gone forever.

Appending to a File

You can also use standard error redirection to append to files:

$ mkdir ~/effective-shell/new-folder 2>>./all-errors.log

This can be useful if you’re maintaining a file of all errors that have
occurred when running a program or even a sequence of operations. As
you saw earlier, you use >> to append rather than overwrite. This operation
creates the file if it doesn’t exist and writes the content to the end of the file
if it does exist.

Redirection with Both stdout and stderr
There is an important subtlety you should be aware of when redirecting
stdout and stderr together. For example, if you want to write both stdout
and stderr to a file, you might try this:

$ ls /usr/bin /nothing 2>&1 > all-output.txt
cannot access ′/nothing′

This command writes stdout to all-output.txt, but stderr is still written to
the screen, not the file. The reason is that bash (and most bash-like shells)
processes redirections from left to right, and when you redirect, you duplicate
the source. This is complex, so let’s break it down:

•	 The sequence 2>&1 ensures that the file descriptor 2 (stderr) is also writ-
ten to 1 (stdout), which is currently the terminal.

•	 The sequence > all-output.txt duplicates the file with descriptor 1 (stdout)
and writes it to a file called all-output.txt. The > character is a convenient
shorthand for 1> (that is, redirecting the standard output).

Thinking in Pipelines 27

As you can see, at the time of the first redirection, you’re redirecting
to the screen, not to a file. The redirection to a file is the subsequent state-
ment since the redirection is processed from left to right.

To write everything to the file, try this:

$ ls /usr/bin /nothing > all-output.txt 2>&1

This command will work in a way that is more sensible in most cases.
Notice the difference?

•	 The > operator redirects stdout to the file all-output.txt.

•	 The 2>&1 sequence redirects stderr to stdout, which has already been
redirected to a file.

This behavior can be tough to remember, so it’s worth experimenting
with it. Brian Storti’s blog post “Understanding Shell Script’s idiom: 2>&1”
at https://www.brianstorti.com/understanding-shell-script-idiom-redirect/ gives a
very detailed description of this behavior. There are many variations you
can play with, and you’ll see more as you go through the book.

The T-Pipe
I can’t talk about pipelines without briefly mentioning the T-pipe, which
splits the stream in two so it can easily be sent to two different directions.
For example, you can stream content to the display as well as to a file like so:

$ cat ~/effective-shell/text/simpsons-characters.txt | sort | tee sorted.txt

This command alphabetically sorts the simpsons-character.txt file and
saves it to sorted.txt but also shows it onscreen. This way, you can quickly con-
firm the results without opening the file.

The T-pipe can be used for more complicated work too. Try this:

$ cat ~/effective-shell/text/simpsons-characters.txt | sort | tee sorted.txt | uniq | grep ′^A′

Here you create a command to sort the list of Simpsons characters,
remove duplicates with the uniq command, and then use grep to filter
the results to names that start with A. (The grep tool allows you to search
through and match patterns in text; Chapter 5 covers it in detail.) The tee
command in the middle creates a T-pipe, which pipes the results of the sort
command to the sorted.txt file before they go to the rest of the pipeline. In
other words, the sorted.txt file contains the content after the sorting opera-
tion but before the deduplicate and filter operations; the rest of the output
will continue through the pipeline as normal, as Figure 2-11 illustrates.

28 Chapter 2

sortcat file.txt uniq

file.txt

tee sorted.txt

sorted.txt

Figure 2-11: How the tee command splits a stream

You can see that tee splits off the output at a certain point and saves it
in a separate file.

If you can visualize a T-pipe, it’s easy to remember this useful command.
You can use it in any number of more complex pipelines or scenarios to
write content to a file that would otherwise go straight to another program
or to the display.

Pipelines and the Unix Philosophy
Getting comfortable with pipelines opens a whole world of possibilities. As
you’ve seen, pipelines let you manipulate the flow of data in streams, chain-
ing programs together to handle complex operations.

The day before I wrote this chapter, I was working with a data file called
data.dat that included empty lines and comments. I needed to find out how
many unique data points the file contained; it took less than a minute to
put together this working command:

$ cat data.dat | sort | uniq | grep -v ′^#′ | wc -l

I didn’t have to install some special program to do exactly what I
needed; I just incrementally built a pipeline, adding each section one by
one and writing to the screen each time, until I got the results I was look-
ing for.

N O T E 	 With the correct options, sed could likely do this in a single operation, but I’d prob-
ably spend a lot longer googling the right options for it!

My thought process went as follows:

1. 	 First, I use cat data.dat to write the content of the file to stdout. In
many cases, this isn’t necessary—you could simply pass the data.dat file
as a parameter to the first command—but I find it easier to break up
each step into the smallest possible chunks.

2. 	 I use sort to put all the blank and duplicate lines together.

3. 	 I pipe to uniq to remove duplicate lines.

Thinking in Pipelines 29

4. 	 I use grep -v ′^#′ to get rid of all the comments by finding lines that start
with a hash mark (#). I’m counting unique data points, not comments.
The -v (“invert”) flag for grep inverts the results of the expression—so in
this case, it will show lines that don’t start with a hash mark (that is, lines
that aren’t comments).

5. 	 Finally, wc -l counts the number of remaining lines, all of which should
now be unique.

There may well be better ways to handle this task, as this one’s not per-
fect: if there are blank lines in the file, this method will remove all but one
of them rather than all of them. However, piping gave me a quick-and-dirty
solution in less than a minute.

Of course, as your needs grow, you might want to build scripts (see
Chapter 9) or use a programming language, but this approach illustrates
a core tenet of the Unix philosophy: chaining together lots of small, simple
programs that each do one thing well in order to accomplish a more com-
plex task.

N O T E 	 While the Unix philosophy might seem intuitive or obvious today, it was ground-
breaking when introduced in 1978. It vastly simplified how programmers wrote code,
making programs far more flexible to work with and yielding powerful results from
existing tools. The fact that it is still relevant, with very few differences from how it
was conceived in the 1970s, is a testament to what a remarkable design philosophy it
is. See https://en.wikipedia.org/wiki/Unix_philosophy for more details.

Summary
This chapter introduced standard streams, redirection, pipelines, and other
concepts that are fundamental not only to using the shell effectively but
also to really understanding how computer programs work.

Don’t worry if this feels like a lot to take in: you’ll see more examples
throughout the book that will reinforce these concepts. You can also revisit
this chapter to review various topics as you progress. Many of the programs
you’ve seen here, such as sed, tr, and grep, are workhorses you’ll encounter
again and again, particularly in Part II.

In the next chapter, you’ll learn how to use the shell to efficiently locate
folders and files on your system and then work with those search results.

3
F I N D I N G F I L E S A N D F O L D E R S

Searching through a system to find files
or folders can be a complex and time-

consuming process, even with a graphical
user interface. In this chapter, we’ll make

such searches a snap by using the shell instead.
You’ll also learn how to perform actions on the search
results, such as deleting them or running commands
on them.

Searching with the find Command
The find (“find files and folders”) command is used both to search for files
and folders and to perform operations on the search results. Let’s see it in
action by searching through the ~/effective-shell samples folder. First, if you
haven’t done so already, run the following command to install the samples:

$ curl effective.sh | sh

32 Chapter 3

To use find, your commands should have the following structure:

find options starting-point expression

The options are parameters you can set to change how find works. The
starting-point is the folder or set of folders that find should search in, and
the expression allows you to build more complex search patterns (you’ll see
these patterns in detail shortly).

The starting-point is the only part of the find command that’s required,
which means the simplest use of find looks like this:

$ find ~/effective-shell
.
./text
./text/simpsons-characters.txt
./scripts
./scripts/show-info.sh
./websites
./websites/simple
./websites/simple/index.html
./websites/simple/styles.css
./websites/simple/code.js
...

The find command lists the full hierarchy of files and folders contained
in the given directory—in this case, ~/effective-shell.

You can specify multiple directories with find, and it will display all
the folders, subfolders, and files for all of those directories. Here’s how you
could use find to show some of the tools installed on a system:

$ find /usr/bin /usr/sbin
/usr/bin
/usr/bin/fwupdtool
/usr/bin/gnome-keyring
...
/usr/sbin
/usr/sbin/cupsd
/usr/sbin/pppdump
...

This command returns all of the files and folders in both the /usr/bin
and /usr/sbin directories.

Now that you’ve seen the most basic use of find, let’s look at what else it
can do.

Finding Files and Folders 33

Refining a Search with find
You can use a search expression with the find command to narrow down
the results it returns. For example, you can search for only files or folders,
or for files with a certain name. In this section, you’ll continue working
with the ~/effective-shell folder to explore some common ways to refine your
searches, so move there now:

$ cd ~/effective-shell

From this point on, you can pass find the dot (.) folder as the directory
to search through. The dot folder is the current working directory. If the dot
folder is unfamiliar to you, see “Navigating with the Dot and Double-Dot
Folders” in Appendix B for more information.

Searching for Only Files or Folders
You can add -type to your find command to filter your search only to files
(f), like so:

$ find . -type f
./text/simpsons-characters.txt
./scripts/show-info.sh
./websites/simple/index.html
./websites/simple/styles.css
./websites/simple/code.js
...

When you specify -type, you’re providing a search expression. The -type
parameter is called a test and is used to filter the search results to those that
match a specific format.

To return only folders, use the following command (d is for directory):

$ find . -type d
.
./text
./scripts
./websites
./websites/simple
...

By default, the find command displays folders that are normally hidden,
such as the dot folder.

34 Chapter 3

Searching by File or Folder Name
Use the -name test as follows to search for files or folders by name:

$ find . -name ″simpsons-characters.txt″
./text/simpsons-characters.txt

You can also use wildcards to search for any file or folder name contain-
ing a particular series of characters:

$ find . -name ″*log*″
./logs
./logs/web-server-logs.txt
./logs/apm-logs
./logs/apm-logs/apm05.logs
./logs/apm-logs/apm02.logs
./logs/apm-logs/apm03.logs
./logs/apm-logs/apm00.logs
./logs/apm-logs/apm01.logs
./logs/apm-logs/apm04.logs

Including the asterisk (*) wildcard before and after log finds files and
folders with log anywhere in their name. Using wildcards like this is known
as supplying a pattern. You can read this pattern as “find any characters
(including none) followed by the characters log, followed by any other char-
acters (including none).”

Try running the command without the wildcards:

$ find . -name ″log″

This time, find doesn’t return any of the .logs files and folders, because none
of them match the exact pattern log.

The -name test is very specific; it will match only files or folders with the
name provided. Try finding the apm00.logs file like so:

$ find . -name ″apm00.logs″
./logs/apm-logs/apm00.logs

Now try searching for apm-logs instead:

$ find . -name ″apm-logs″
./logs/apm-logs

The find command displays the folder named apm-logs but not the files in
that folder.

Even if you use a wildcard pattern, you get the same results:

$ find . -name ″*apm-logs*″
./logs/apm-logs

Finding Files and Folders 35

Since none of the files in the apm-logs folder have apm-logs in their name,
find doesn’t show them even though apm-logs appears in their path.

Not only is it important to be precise with the name you provide, but
you also must be sure to use quotes when building your patterns. For exam-
ple, this command

$ find . -name ″*log*″

will give different output from this command:

$ find . -name *log*

In the first case, the quotation marks explicitly tell the shell to pass the
text *log* to the find command, and find then interprets the wildcards.

In the second case without the quotes, the shell itself interprets the wild-
cards and then passes those results to find, which is quite different. This is
how the shell expands the wildcard code:

$ parameter=(*log*)
$ echo $parameter
logs

Without quotes, the shell changes *log* to the only file or folder in the cur-
rent folder (effective-shell) that matches the name, which is logs. Wrapping the
parameter in quotes tells the shell not to interfere with the text. Chapter 20
describes shell expansion behavior in more detail. The takeaway for now is
simply don’t forget the quotes.

Searching by Path
By using the -path test with wildcards, you can search for patterns in a file-
path and display all the files with any matching path:

$ find . -path ″*apm-logs*″
./logs/apm-logs
./logs/apm-logs/apm05.logs
./logs/apm-logs/apm02.logs
./logs/apm-logs/apm03.logs
./logs/apm-logs/apm00.logs
./logs/apm-logs/apm01.logs
./logs/apm-logs/apm04.logs

Again, you must be very specific: without the wildcards, find wouldn’t
return anything, because none of the results have the exact path apm-logs.

Specifying More Than One Search Option
You can define multiple search options by using AND or OR expressions to
combine parameters.

36 Chapter 3

AND Expressions

Combining the -type and -name parameters allows you to run a more specific
search, where find must match the given -type test and the given -name test.
For example, you can search for only files that end in .logs as follows:

$ find . -type f -name ″*.logs″
./logs/apm-logs/apm05.logs
./logs/apm-logs/apm02.logs
./logs/apm-logs/apm03.logs
./logs/apm-logs/apm00.logs
./logs/apm-logs/apm01.logs
./logs/apm-logs/apm04.logs

This AND-style search returns only the items that match both criteria.
You can explicitly create an AND expression by using the -and operator
between the tests, but it’s not necessary as tests are AND expressions by
default.

OR Expressions

To perform an OR search, returning items that match either pattern you
specify, use the -or operator like so:

$ find . -name ″*.js″ -or -name ″*.html″
./websites/simple/index.html
./websites/simple/code.js
./programs/web-server/web-server.js

In this case, find displays results that match either of the name expres-
sions, returning all files that end in either an .html or a .js extension.

Running Case-Insensitive Searches
The searches you’ve run so far have been case sensitive, which can uninten-
tionally restrict your results. To run a case-insensitive search instead, use
the -iname test:

$ find . -name ″*.js″ -or -name ″*.Js″ -or -name ″*.jS″ -or name ″*.JS″
$ find . -iname ″*.js″

These two commands are identical, but I know which one I’d rather type.
In addition to using -iname for case-insensitive name searches, you can

use the -ipath test to run case-insensitive path searches.

Grouping Parts of an Expression
You can group parts of an expression using parentheses to run a more com-
plex search:

$ find . \(-name ″*.js″ -or -name ″*.html″ \) -a -path ″*programs*″
./programs/web-server/web-server.js

Finding Files and Folders 37

The backslashes (\) before the parentheses are needed because paren-
theses have a special meaning in the shell. The backslash escapes the paren-
theses; that is, it tells the shell to treat these characters literally and pass
them directly to the find command.

ESCA PING SPECI A L CH A R AC T ERS

In the shell, some characters, like $, *, and (, have special meanings. Escaping
tells the shell to ignore those meanings and instead treat the characters as plain-
text. To escape, use a backslash before the special character, as in \$, *, and \(.

Escape special characters whenever you want the shell to treat them liter-
ally rather than interpreting them itself. For example

echo ″\$HOME″

prints the literal text $HOME, not the value of the variable HOME, whereas

echo ″$HOME″

prints the value of the variable HOME, which in my case would be /home/
dwmkerr.

In the previous example, the parentheses group the first two expres-
sions, which means find interprets the command as “find files with names
that match *.js or *.html.” The rest of the expression reads as “and their
path must include the text programs.”

Leaving out the parentheses changes the meaning:

$ find . -name ″*.js″ -or -name ″*.html″ -and -path ″*programs*″
./programs/web-server/web-server.js
./websites/simple/code.js

This expression now reads as “find files with names that match *.js,
or find files with names that match *.html and are in a directory with programs
in the name.” Think of the order of operations in mathematics, where
operations within parentheses are evaluated before the rest of the expres-
sion, which means moving the parentheses will affect the result. If you’re
unsure what will be evaluated first, add the parentheses to set the order
to be on the safe side.

The distinction in these two cases is subtle. Grouping expressions with
parentheses not only ensures an operation runs as expected but also makes
your intent clearer for anyone reading your code.

38 Chapter 3

Excluding Search Results with the NOT Operator
You can use the -not operator to build expressions that exclude certain
results:

$ find . -name ″*.js″ -and -not -path ″*programs*″
./websites/simple/code.js

This expression finds files that match the pattern *.js but excludes
results that have programs in the path.

W H Y DOES F IND H AV E W E IR D PA R A ME T ERS?

The find command frustrated me for years because its parameters don’t follow
the standard patterns that we shell users have come to expect. For example,
why does it use -name instead of -n or --name? This convention for parameters
is based on the Portable Operating System Interface (POSIX) syntax standards,
which you can read more about at https://www.gnu.org/software/libc/manual/
html_node/Argument-Syntax.html.

The reason is that the -name, -and, -or, -ipath, and similar constructs
aren’t parameters, per se, but parts of a mini search language that’s used to
build a search expression. An expression can contain options, tests, and actions
that are far more complex than what you’d normally put into a function’s param-
eters—which is why a search expression operates more like a distinct language.
As mentioned, the parameters in the example expressions in this chapter so
far are actually tests that let you specify how to find files and folders, but as
you’ll see shortly, you can also use actions in expressions to operate on your
search results. For further details, run man find to access the man page for this
command.

Acting on Search Results
Expressions using the find command can also specify an action—that is,
they tell find what it should do with the results. You might use find not only
to search for a file or folder but also to do something with it, such as delete,
copy, edit, or move it.

I won’t go into as much detail on these actions as I did for search
expressions (in Chapter 8, you’ll learn about the xargs command, which has
much more flexible capabilities for performing actions on files), but we’ll
look at the basics. You’ll likely encounter these operations elsewhere, so it’s
good to be familiar with them.

Finding Files and Folders 39

Printing Paths
If you don’t specify an action when running find, it displays or prints the
results onscreen. If the command is part of a pipeline, it outputs to the next
stage. You can explicitly specify the -print action as follows:

$ find ~ -name ″*.tmp″ -print
/home/dwmkerr/commands1.tmp
/home/dwmkerr/commands2.tmp
/home/dwmkerr/commands3.tmp

This is equivalent to running find ~ -name ″*.tmp″ (in other words, leav-
ing off -print, since that’s the default behavior), so it’s unlikely that you’d
need to use this expression in practice.

Deleting Files
You can use the -delete action to delete the files and folders returned
from find:

$ find ~ -name ″*.tmp″ -delete

While this can be a convenient way to delete files, use this action with
extreme caution. This command does not ask for confirmation or show
what has been deleted, so it’s easy to delete something accidentally.

The -delete action also deletes the children of a folder before the folder
itself, which can cause unexpected behavior. Chapter 17 will provide a safer
and more convenient solution.

Executing Commands
The -exec action allows you to execute a command on each search result,
such as counting the number of words in the files returned from a find
operation:

$ find ~/effective-shell -name ″*.txt″ -exec wc -w {} \;
29 /home/dwmkerr/effective-shell/text/simpsons-characters.txt
20 /home/dwmkerr/effective-shell/quotes/iain-banks.txt
16 /home/dwmkerr/effective-shell/quotes/ursula-le-guin.txt
10373 /home/dwmkerr/effective-shell/logs/web-server-logs.txt

First, find searches for files with the *.txt pattern in their names in the
effective-shell folder. Then the -exec action tells find to execute a command
on each result. The wc -w {} command calls the wc (“word count”) com-
mand using the -w (“show word count”) flag. The find command replaces
the braces ({}) with the paths of the file(s) or folder(s) it finds. The semico-
lon signifies the end of the -exec command. Because the semicolon has a
special meaning in the shell, it’s escaped with a backslash.

40 Chapter 3

The wc command works only on files, not folders. To avoid getting an error
in the unlikely event there is a folder that has .txt in its name, add -type f to
the pattern to return only files. The final expression looks like this:

$ find ~/effective-shell -type f -name ″*.txt″ -exec wc -w {} \;

This command displays the number of words in the .txt files it finds and
skips over any folders it encounters.

Confirming Commands Before Execution
The -ok action works just like -exec but asks for confirmation before execut-
ing each command. To find and then confirm you want to delete .txt files,
run the following:

$ find ~/effective-shell -name ″*.txt″ -ok rm {} \;
< rm ... /home/dwmkerr/effective-shell/text/simpsons-characters.txt > ? n
< rm ... /home/dwmkerr/effective-shell/quotes/iain-banks.txt > ? n
< rm ... /home/dwmkerr/effective-shell/quotes/ursula-le-guin.txt > ? n
< rm ... /home/dwmkerr/effective-shell/logs/web-server-logs.txt > ? n

This command prints each search result to the screen alongside a
request asking whether you want to proceed. Entering n means that the rm
(“remove file”) command won’t be executed for the given file; entering y
runs the command on that file.

The -ok parameter is flexible with its input: pressing enter without
typing anything is equivalent to saying “okay”; you can also enter yes, no, or
even 0 (for no) and 1 (for yes).

If there’s only one find action you learn, -ok should be it. Being able to
search for files, run an action, and confirm that you’re okay with the action
proceeding can save you from making careless mistakes.

Handling Symbolic Links
Symbolic links, or symlinks, are like shortcuts to files or folders. They’re worth
mentioning here because of how find handles them.

Compare the output of these two commands:

$ find /usr/bin
/usr/bin
/usr/bin/uux
/usr/bin/cpan
/usr/bin/BuildStrings
/usr/bin/loads.d
/usr/bin/write
...
$ find /bin
/bin

It appears that /usr/bin contains files that /bin does not. However, if you run
ls /bin, you’ll see that it does indeed contain the same files as /usr/bin.

Finding Files and Folders 41

N O T E 	 If you’re using macOS, run find /tmp rather than find /bin to see the same behavior.

The reason for this result is that /bin is a symlink (a link to another
folder) and /usr/bin is not. To prove this, run the following command:

$ ls -l / /usr | grep bin
lrwxrwxrwx 1 root root 7 Aug 7 18:06 bin -> usr/bin
lrwxrwxrwx 1 root root 8 Aug 7 18:06 sbin -> usr/sbin
drwxr-xr-x 2 root root 40960 Jan 25 17:17 bin
drwxr-xr-x 2 root root 20480 Jan 25 16:42 sbin

The output on the far right shows that the root bin and sbin folders are
actually just symlinks to usr/bin and usr/sbin, respectively. (The -> symbols
indicate that folders are links to another location.)

By default, the find command won’t return the location that the sym-
link points to; it displays only the symlink itself as the result. If you want to
return what the symlinks are linked to, add the -L (“follow links”) option:

$ find -L /bin
/bin
/bin/fwupdtool
/bin/gnome-keyring
/bin/dpkg-gencontrol
/bin/prltoolsd
...

It’s important to understand these alternative ways of treating symlinks.
For example, you might want to find all the symlinks in a folder and delete
them, in which case you’d want find to return the symlinks themselves (oth-
erwise, you’d delete what they point to). Or you might want to check the
size of a set of files, including any files that are linked to. In that case, you’d
want find to return the files the symlinks point to.

To read more about the actions you can perform with the find com-
mand, open its man page with man find.

Going Further with find
The find command is incredibly powerful. Going into detail on all of the
options or potential ways to combine them could fill another book, but here
are a few handy commands that show how versatile find can be:

Find large files

Use the -size test to search by file size:

$ find / -size +1G -500G

The + and – options allow you to set minimum and maximum sizes.

42 Chapter 3

Find recently modified files

Use the -mtime test with a number of days to find recently modified files:

$ find . -not -path ″*/\.*″ -mtime -2

This example returns only files that have been modified in the last two
days. The -not -path test skips dot files and folders that are normally
hidden.

Find files that have had permissions changed

Use the -ctime test to find files with recently changed attributes, such as
permissions:

$ find ~/.ssh -ctime -30

This example returns files whose permissions have been changed in the
past 30 days.

Find executable scripts and make them non-executable

You can also search by permissions. Here’s how to find and modify
executable files:

$ find ~ -perm /a=x -exec chmod -x {} +

The -perm test with the /a=x pattern searches for files where all users
(individual users, file owners, and group owners) have executable
permissions—that is, users for whom the x (“executable”) bit is set.
Combining this with chmod -x removes the x bit, making the files non-
executable. (The chmod command means “change permissions.”)

Ending the command with + rather than ; means that find will pass
all the files to chmod at the same time and execute it only once on the
entire set, rather than once for each file. This approach is slightly faster
and highlights that there are options for running the command speci-
fied by the -exec action.

Sometimes, running a command once with all of the find results as
a single set of parameters is not just faster but essential. For example,
suppose you wanted to create a single ZIP file containing three files
found by find. If you used +, the find command would build the fol-
lowing zip command: zip archive.zip file1 file2 file3. If you instead
used ;, the find command would build the following zip commands: zip
archive.zip file1, zip archive.zip file2, and zip archive.zip file3.

Finding Files and Folders 43

Find empty folders and remove them after confirmation

The -empty test finds empty folders like so:

$ find ~ -maxdepth 3 -type d -empty -ok rmdir {} \;

The -maxdepth parameter allows you to limit the search to only three
folders deep. By adding -ok, you’ll be able to confirm whether rmdir
should delete the folders.

Summary
The examples in this chapter have just scratched the surface of what find can
do, but they’ve equipped you with the essentials. When you’re comfortable
with the techniques covered here, you can continue to build on your knowl-
edge of find and discover just how powerful and versatile it can be.

The next chapter marks the start of Part II, where you’ll learn how
to manipulate text and streams from the command line. We’ll begin by
expanding on this chapter’s discussion of using patterns to match text: it’s
time to meet regular expressions.

PART II
M A N I P U L A T I N G T E X T

A N D S T R E A M S

4
R E G U L A R E X P R E S S I O N

E S S E N T I A L S

Many of the tools I’ll introduce in this
part of the book support regular expressions,

or regexes: special patterns for identifying
and matching text, such as phone numbers

or parameters from a command. But before you
can start using regexes in the shell, it’s important to
understand the basics of how they work. Regexes have
a reputation for complexity that can be intimidating,
but this chapter will offer tips and techniques to make
them manageable. You’ll learn all about regex syntax,
including quantifiers, metacharacters, and capture
groups, and see examples of regexes in action. With
this foundation, you’ll be well equipped to put regexes
into practice in the chapters that follow.

48 Chapter 4

Regexes in a Nutshell
Regexes allow you to specify extremely precise descriptions for the struc-
ture of text. You might use regexes to find all text that matches a particular
format, such as an email address, a credit card number, or a ZIP code. This
means that when you become familiar with them, you can define very spe-
cific patterns for text and then search for, replace, or alter this text.

Regexes are notorious for being complex, and it’s true that their syntax
can be initially overwhelming. For many years I avoided them for that very
reason, but over time I discovered that, used carefully, they can be incred-
ibly powerful and useful.

To see why they have a reputation for complexity, let’s look at a par-
ticularly complicated regex. Say you want to see whether an arbitrary string
matches the structure of a valid email address. A quick search on the inter-
net returns this regex:

(?:[a-z0-9!#$%&′*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&′*+/=?^_`{|}~-]+)*|″
(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0
b\x0c\x0e-\x7f])*″)@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
(?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]
?[0-9]))\.){3}(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9])|[a-z0-9-]
*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09
\x0b\x0c\x0e-\x7f])+)\])

This is horrendously complex—and I’ve already split the expression
into multiple lines so that it fits on the page! This regex is so long that it’s
almost impossible for even an experienced user to parse, and attempting
to change or modify it would risk breaking the whole expression.

Many people see examples like this and understandably decide that
regexes are something they simply can’t or won’t learn. However, and as
you’ll see in this chapter, you have ways to use and manage regexes without
getting overwhelmed.

Building Regexes
Regexes do not have to be—and, in most cases, shouldn’t be—as complex
as the previous example. My general advice for regexes is start simple and
add complexity only if you need it.

You can build regexes by using an iterative process, starting with basic
expressions, then adding more features as needed. For example, here’s how
you might build up a regex to validate an email address with some test data:

1. 	 Create a short list of valid email addresses.
2. 	 Add some items to the list that look valid at a glance but aren’t quite

right—for example, @effective-shell.com (which is missing content before
the at sign).

Regular Expression Essentials 49

3. 	 Build a regex that matches a correct email address.

4. 	 Refine the expression to eliminate the invalid addresses.
5. 	 Repeat the previous step until most invalid addresses are eliminated.

In most cases, this process will be sufficient. Let’s try it out, starting
with the test data in Listing 4-1.

$ cat ~/effective-shell/data/email-addresses.txt
dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
whatever123@😂.com
dave@kerr@effective.shell.com

Listing 4-1: Test data for email validation regex

Some of the addresses shown in Listing 4-1 are valid (but may be pre-
ceded or followed by other text), some are not, and some you might not
be sure about, such as the address that includes an emoji. This address is
valid if the mail server can handle Unicode characters such as emoji, but it’s
probably not a good address to use, as some mail programs or servers will
reject it.

Now let’s look at how to accurately match the address format. First,
break down the email address into the following very rough structure:

1. 	 Any set of characters
2. 	 An at sign (@)
3. 	 Any set of characters

That regex would look like this:

.*@.*

The dot (.) matches any character, and the asterisk (*) means “any
number of times.” This means that the .* part matches any number of char-
acters up until the next pattern in the expression is matched. The next pat-
tern here is the @, so this expression will match any characters until the first
@ is found.

The final .* section is the same as the first, so it matches any characters
any number of times. All in all, this regex matches any number of charac-
ters, up to an at sign, then any number of other characters.

You’ll test this regex and others in this chapter using the invaluable
website Regular Expressions 101 (https://regex101.com). This website not only
lets you test regexes but also breaks down what each part of the expression

50 Chapter 4

does. Paste the test data from Listing 4-1 into the Test String section, and
paste the regex into the Regular Expression box. My results are shown in
Figure 4-1.

Figure 4-1: Testing the email validation regex with the data from Listing 4-1 at Regular
Expressions 101

The site will highlight in blue the lines that match the pattern in the
regex. Some of the matches are valid email addresses, but some are not, so
this regex is not yet discriminating enough when validating email addresses.
The results here give you clues about how to refine your regex. The site also
shows which part of each line corresponds to which part of the expression.
But perhaps the most useful feature is the Explanation section on the right,
which describes exactly what each character does.

Note that the website alternates shades of blue as a helpful indicator
that separate lines are separate matches versus one multiline chunk of text.
You can match for multiple lines of text, but you’re not doing that in this
example.

N O T E 	 From this point onward, rather than showing screenshots of the results, I’ll highlight
the matched part of the text in bold. Be sure to continue running the examples in
Regular Expressions 101 as you follow along so you can see a breakdown of how each
part of the text is matched and what each character in the regex means.

Now that you have a basic pattern that matches the valid addresses, you
can refine it to eliminate invalid addresses.

Regex Engines
To complicate the world of regexes even further, different implementa-
tions of regex engines process regexes in slightly different ways. In Regular
Expressions 101, you’ll notice a list of “flavors” on the left, each represent-
ing a slightly different dialect. In general, you don’t need to worry about
this since you’re not using highly complex expressions that will vary from
engine to engine. The expressions you’ll use are known as extended regular
expressions and are Perl-compatible. In later chapters, you’ll see how to spec-
ify the flavor of regexes you use in commands.

Regular Expression Essentials 51

For now, just be aware if you go deeper that some shortcuts and special
functions may not be available in every engine or every regex flavor. If you’d
like to learn more, run man re pattern.

Quantifiers
The regex you’re using is very simple. The complexity of regexes tends to
come in when you need to accommodate edge cases: inputs that are unusual
but possible and thus need to be accounted for. You have to be very explicit
about what you can and cannot allow. You saw this with the email address
example: it’s not enough to just look for something before and after an at
sign—you need to check for dots and invalid characters as well.

Next, you’ll refine this expression to eliminate some of the invalid
addresses. You’ll start with the text @yahoo.com, which isn’t a valid email
address since it doesn’t have anything before the at sign. The current regex
matches this invalid text because it allows any characters before and after
the at sign any number of times—which includes zero times!

You need to change the number of characters allowed before and after
the at sign to be at least one. To do this, you’ll use a different quantifier, the
regex element that specifies how many characters are allowed for that part
of the pattern. Table 4-1 offers a quick reference guide for regex quantifiers.

Table 4-1: Regex Quantifiers

Quantifier Meaning

* Any number of characters

+ At least one character

? Between zero and one character

{n} Exactly n occurrences of the character

{n,} n or more occurrences of the character

{n,m} Between n and m occurrences of the character

Currently, you’re using the * quantifier to allow any number of charac-
ters. Replacing the asterisk with the plus sign (+) specifies that at least one
character is required before and after the at sign:

.+@.+

Enter this new regex in Regular Expressions 101. You should get the
following matches:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com

52 Chapter 4

@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

As you can see, your new and improved regex has eliminated some
invalid addresses: test123.effective-shell.com, @yahoo.com, and dave@.

Character Sets and Metacharacters
To make your regex more accurate, you need to be more specific in what
you match—for example, you shouldn’t accept a dot before the at sign. To
refine what you match, you can use a character set, a group of allowed char-
acters that you build yourself, or a metacharacter, a predefined character set
that represents a particular range of characters.

Take the address dave@kerr@effective.shell.com as an example. This is
clearly invalid, as it has two at symbols. The reason that it matches the cur-
rent regex is because you’re using the . metacharacter before and after the
at sign. The . metacharacter means “any character except a newline,” which
includes the at sign.

You have a few ways to make your regex more explicit with character
sets or metacharacters. Let’s go over the options.

Specifying Ranges

One option is to create a character set by specifying the acceptable ranges of
characters the text can match. You start and end a character set with square
brackets, then use letters or numbers separated by hyphens to denote a
range of characters, like so:

[A-Z]

This character set includes the full uppercase alphabet, A to Z.
A character set can contain multiple ranges, in which case any charac-

ters within any of the ranges are valid:

[A-Za-z0-9]

This character set matches any uppercase letter A to Z, any lowercase let-
ter a to z, and the digits 0 to 9. Notice that you don’t put spaces between
the ranges. Replace the dot metacharacters in your current regex with this
range like so:

[A-Za-z0-9]+@[A-Za-z0-9]+

Plug this in, and you should get the following matches:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com

Regular Expression Essentials 53

dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

You can see the difference. You’re getting closer, but the expression is
starting to get a bit unwieldy. A cleaner option is to use a metacharacter to
represent this range of characters. For example, the metacharacter \w repre-
sents all uppercase and lowercase letters and all digits 0 to 9 (the w is short
for word). Therefore, you can shorten your current expression like this:

\w+@\w+

This shorter regex will return the same matches as the longer version did.
Table 4-2 lists other common metacharacters that will come in handy for
creating character sets. You can find many other metacharacters in the
man re_pattern man page.

Table 4-2: Regex Metacharacters

Metacharacter Meaning

. Any character except for a line break

\w Any word (alphanumeric) character, including the underscore;
shorthand for [a-zA-Z0-9_]

\W Any non-word character, which is anything not in the \w set
above

\s Any whitespace character (such as a space or tab)

\S Any non-whitespace character

\d Any digit character [0-9]

\D Any non-digit character

Still, the current expression fails to match the valid email address
dave@effective-shell.com and other valid addresses because your character set
doesn’t allow for special characters like the hyphen. You’ll tackle that next.

Adding Special Characters

To include more characters in the match, you can add them directly to your
character set—for example, the following pattern adds the +. Even though
characters like + and * are metacharacters with a special meaning, as long
as they are between square brackets, they are treated as their literal equiva-
lents. There’s one exception to this case: the hyphen (-), which can be used
to form ranges (such as [a-z]):

[\w\-.]+@[\w\-.]+

54 Chapter 4

Now your character set includes both the dot and the hyphen. Plug this
in, and you should see more accurate matches:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

However, the final address has been incorrectly matched at the beginning
because there’s a second at sign in the second half of the address.

Negating Characters

You can use the circumflex (̂) to negate a character set when you want to
build a character set that doesn’t match a pattern. Try building your email
validation regex with negated characters like so:

[^\s@]+@[^\s@]+

The character set [^\s@] excludes whitespace and at signs; the \s
metacharacter means “any non-whitespace character.”

This expression returns the following matches:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

Notice that this pattern matches more addresses than the previous one.
This is because the character set you’re using is larger than the \w set, as it
covers any characters that aren’t explicitly excluded, including the emoji
and the second @ in the final line.

Regular Expression Essentials 55

ESCA PING CH A R AC T ERS

If you want to use a character like the circumflex or square bracket, just escape
it. Simply put a backslash (\) before the relevant character, and it will be inter-
preted literally, as in these examples:

[\[\]]+  Matches a left or right square bracket, [or]

\^\+  Matches the circumflex, followed by the plus sign, ^+

Anchors
You might have noticed that the expression [^\s@]+@[^\s@]+ returns two
matches that include text before and after the email address:

to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>

To match text only in lines that don’t include any extra characters before
or after the email address, you can use anchors: regex syntax characters that
represent particular parts of a string, such as the start or end of a line.

To match lines that contain only a complete email address, use the cir-
cumflex (̂) start-of-line anchor and the dollar sign ($) end-of-line anchor.
Remember that in a character set (anything between square brackets), the
circumflex negates the characters. Outside of a character set, it indicates
the start of a line:

^[^\s@]+@[^\s@]+$

You should get these matches now:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

56 Chapter 4

This expression says that the text you’re matching must start at the begin-
ning of the line and must finish at the end of the line. In other words, do not
match an address if it has any text before or after it on the line. Anchors allow
you to create expressions that match patterns of text at certain points on a line.

As another example, to match any line that starts with the letters to: you
could use this expression:

^to:

Here’s the result:

dave@effective-shell.com
dave@effective-shell
to: dave@effective-shell.com
dave@effective-shell.com <Dave Kerr>
test123.effective-shell.com
@yahoo.com
dave@
whatever123@😂.com
dave@kerr@effective.shell.com

You’ll see the start-of-line and end-of-line anchors used quite often, as
they are extremely helpful for making a regex more specific.

Capture Groups
You can break up your expression into smaller parts with capture groups.
Then you will have the option of performing operations on either the
entire match or only the part specified in a capture group. This can be
useful if you want to not just match text but also extract or change certain
parts of it.

Consider this example:

(.+)@(.+)

Each capture group is surrounded by parentheses, so this example
shows one full expression holding two capture groups. If you run this
against just one line of the sample text, dave@effective-shell.com, it returns
the following match:

dave@effective-shell.com

The full expression matches the whole line, but there are actually three
matches here:

dave@effective-shell.com   The first match in an expression is always the
complete match.

dave   The first capture group (.+) matches everything before the at sign.

effective-shell.com   The second capture group (.+) matches everything
after the at sign.

Regular Expression Essentials 57

You’ll see how to use capture groups directly in the shell in Chapter 7,
so I won’t go into further detail now.

Lazy and Greedy Expressions
Regexes can be lazy (the regex stops searching as soon as it finds a match)
or greedy (the regex continues until it finds no further matches).

Regexes are greedy by default; if you are matching a pattern, the regex
will capture as much as it possibly can, all the way to the last match. As an
example, let’s look at how you might capture the contents of an HTML tag:

<.+>

This text is bold.

The regex <.+> matches against a left angle bracket, then at least one
character, and then a right angle bracket. Because regexes are greedy by
default, this expression continues beyond the first match (the opening
 tag) and matches the text all the way until the last angle bracket on
the line (in the closing tag).

To create a lazy expression, you can use the question mark (?) after the
+ quantifier. This means that the expression will capture as few characters
as possible until it finds the end of the pattern:

<.+?>

This text is bold.

In this example, the regex has actually captured two results: the con-
tents of the two sets of opening and closing angle brackets. Because the
expression <.+?> is lazy, it matches until the first closing bracket it finds,
yielding quite different results than the greedy version.

Lazy quantifiers are a shortcut. To get the same results without using
the lazy quantifier, you’d use an expression like this:

<[^>]+>

This text is bold.

In this case, you’re using the ^ for negation to specify “any character
that is not a closing brace.”

Advanced Regex Concepts
Understanding the basics of quantifiers, character sets, metacharacters,
and capture groups is sufficient for you to follow the regex-related exam-
ples in this book. However, you might encounter some more advanced
topics or terms in the wild. I’ll give a brief overview of some of those here,
but if you’ve had your fill of regexes for now, you can safely skip to the next
chapter.

58 Chapter 4

Backtracking
Backtracking refers to how a regex engine tries to identify a greedy match. In
the simplest terms, if a regex finds a potential match only to subsequently
realize it’s not a full match, it will back up and re-evaluate the text from
the beginning. It’s possible to inadvertently write a regex that looks simple
but causes so much backtracking that it requires exponential processing to
evaluate the input string. In the worst-case scenario, known as catastrophic
backtracking, the processing power involved in trying to match a deceptively
complex pattern can cause system failures or even lead to exploits.

N O T E 	 There’s a fascinating write-up by John Graham-Cumming about how catastrophic
backtracking led to a severe Cloudflare outage in 2019; search for “details of the
Cloudflare outage on July 2, 2019” at https://blog.cloudflare.com.

Very broad and greedy expressions such as .+ (match anything at least
once) can be susceptible to catastrophic backtracking. For example, the
expression <.+> is greedy and would need to backtrack at the end of the test
string <abc>hello</ab> and start again, whereas the expression <.+?> is lazy
and wouldn’t need to. With highly complex and long strings, this can have a
huge performance impact.

Be sure to test your expressions with short and long strings to see if
there’s a noticeable performance difference. Regular Expressions 101
and other tools can show you if your expression is consuming too many
resources. To avoid unnecessary consumption, match more explicit charac-
ters and make expressions lazy when you can.

Lookarounds
Lookarounds are special constructs that match a pattern only if it comes
before (a lookahead) or after (a lookbehind) another specified pattern. There
are also negative lookaheads and lookbehinds, which essentially say, “Find
me a pattern that’s not preceded or followed by another specific pattern.”

As an example, the expression \d+(?=€) matches one or more digits as
long as they precede a euro symbol: the \d metacharacter indicates digits,
the + quantifier specifies at least one, and the (?=€) part is a positive looka-
head that says to return a match only if the pattern comes before the euro
symbol.

I have yet to find a situation where I’ve really needed a lookaround. For
example, I would write the expression \d+(?=€) more simply as:

\d+€

This regex uses a capture group to match one or more digits that pre-
cede a euro symbol.

Regular Expression Essentials 59

Atomic Groups
Atomic groups are an advanced construct used to avoid backtracking.
Lookarounds are atomic groups. Essentially, when an atomic group is
matched, the regex stops trying to match and all backtracking ceases.
This provides a “get out” clause to avoid catastrophic backtracking.

Atomic groups are a somewhat polarizing topic, but, as with look-
arounds, I’ve yet to find a situation in my years of engineering that was
genuinely simplified by the use of atomic groups. My advice is this: if you
find you need to use a highly complex expression, break up the input first
and then process it in multiple steps. That will likely make your code easier
for others to read and understand.

USING R EGE X ES IN DIF F ER EN T L A NGUAGES

Most of the features you’ve seen in this chapter will work the same regardless
of whether you’re using bash, JavaScript, Perl, Python, Golang, or another
language, but as you move into more sophisticated features, you may find that
some tools use slightly different syntaxes. These differences generally affect
only advanced features such as named capture groups (a special syntax that
allows you to give capture groups a descriptive name). Wherever you might
encounter these differences in this book, I’ve tried to call it out. You can also
quickly check how a regex works with different tools by using a website like
Regular Expressions 101.

I recommend keeping your expressions as simple as possible. If they’re get-
ting too complex, break up your input or break up the processing into smaller
chunks. This will help ensure they work as you expect, no matter what tool
you’re using.

Remember, too, that a regex isn’t the only way to validate input. For exam-
ple, you might use a regex to quickly confirm that an email address on a web
form at least has the correct structure but then use a more sophisticated check
later (such as sending the user an activation email) to confirm that the address
is legitimate.

Summary
This chapter has given you a basic grounding in regular expressions.
Knowing only a few core concepts—like character sets, quantifiers, and
capture groups—is plenty for most people. The Regular Expressions 101
website is a superb way to learn and check your regexes to get more com-
fortable with the basics.

Now that you’ve learned the theory, you’re ready to put it into practice.
In the upcoming chapters, you’ll see how you can work with text in the shell
by using both regexes and a variety of other tools.

5
G E T T I N G T O G R I P S W I T H G R E P

The grep command is an essential tool
for shell users that enables you to search

through and filter text. Once you know
how to use it, you’ll find yourself turning to it

again and again. In this chapter, you’ll see how to
use grep to search for simple sequences of characters,
how to combine it with regexes for more targeted text
searches, and how to determine when it’s the right
tool for the job—and when it’s not.

62 Chapter 5

What Exactly Is grep?
While a tool that searches through text sounds pretty basic, a quick check
of the grep man page suggests that it might actually be quite complex:

$ man grep

GREP(1) User Commands GREP(1)

NAME
 grep, egrep, fgrep, rgrep - print lines that match patterns

SYNOPSIS
 grep [OPTION...] PATTERNS [FILE...]
 grep [OPTION...] -e PATTERNS ... [FILE...]
 grep [OPTION...] -f PATTERN_FILE ... [FILE...]

DESCRIPTION
 grep searches for PATTERNS in each FILE. PATTERNS is one or more
 patterns separated by newline characters, and grep prints each line
 that matches a pattern. Typically PATTERNS should be quoted when grep
 is used in a shell command.

 A FILE of ″-″ stands for standard input. If no FILE is given,
 recursive searches examine the working directory, and nonrecursive
 searches read standard input.

 In addition, the variant programs egrep, fgrep and rgrep are the same
 as grep -E, grep -F, and grep -r, respectively. These variants are
 deprecated, but are provided for backward compatibility.

This command has many options and alternative forms (egrep, zgrep,
and so on). It’s a great deal to absorb, so you might want to try the tldr tool
for the concise version (if you’re not familiar with tldr, see “Summarizing
Output with tldr” on page 418):

$ tldr grep

 grep

 Matches patterns in input text.
 Supports simple patterns and regular expressions.

Much better—this summary explains that grep is used to match patterns
in files. An even simpler description is that grep lets you search through or fil-
ter text. And you’re not limited to searching in files: you can search through
any text content. You can search for literal text, such as the word error, or for
patterns of text by using regular expressions (covered in Chapter 4).

The grep command is such a commonly used tool that it has become a
verb in tech circles. You might be asked to “grep” for something, meaning
to search for it. The name comes from a command used in the original ed
text editor to search for text, g/re/p, where the g indicated that the com-
mand would run globally (that is, on all lines), the re referred to searching

Getting to Grips with grep 63

with a regular expression, and the p specified that the results should be
printed.

Now, let’s put grep to work and search through your shell command
history.

Searching Through Text
Most shells keep a history of the commands you enter in a special file. When
you use the up and down arrow keys (or the ctrl-R shortcut, described in
Chapter 1) in the shell to look through commands you entered earlier, your
shell is looking through this history file under the hood.

The file storing the history can vary from shell to shell. For example, on
my system, my bash history is in the ~/.bash_history file. Most bash-like shells
provide a built-in environment variable called HISTFILE that you can use to
find your history file like so:

$ echo $HISTFILE
/home/dwmkerr/.bash_history

The location of your history file will vary from distribution to distribu-
tion. As mentioned, this file contains a list of the commands you’ve exe-
cuted in your shell. You can check it like so:

$ cat $HISTFILE
...
cat ~/.ssh/config
ssh bastion.cloudops
help echo
help cd
exit

The history file is typically many lines long, and it shows some of the
commands I ran recently, but I’ve shortened it here for the sake of brevity.

Now try using grep to search through this file for lines containing the
text man as follows:

$ grep man $HISTFILE

This command returns all of the commands in the shell history that
include the matching text (shown in bold):

...
man socket
k describe services eventstoredb-http-management
man cal
gcb refactor/performance/standardize-eventstore
vi src/tests/handlers/test_comman>d_handlers.py
gco src/handlers/command_handlers.py
gcb feat/performance/use-eventstore-writer
nvim performance.md
man grep

64 Chapter 5

What if you use a different shell or forget where the history file lives? In
that case, you can use the history (“show history”) command, which prints
out each line of the history file, along with the line number. This approach
might be a little more intuitive than trying to remember where the history
file is stored or the name of the HISTFILE variable.

The history command writes to stdout. If you don’t give grep a source file,
it will search through stdin. This means you can use a pipeline and just grep
the output of the history command. (For more on pipelines, stdin, and stdout,
see Chapter 2.) Here’s how you could search the history for the text man:

$ history | grep man
...
 9125 man socket
 9188 k describe services eventstoredb-http-management
 9211 man cal
 9341 gcb refactor/performance/standardize-eventstore
 9344 vi src/tests/handlers/test_command_handlers.py
 9347 gco src/handlers/command_handlers.py
 9352 gcb feat/performance/use-eventstore-writer
 9355 nvim performance.md
10002 man grep

This demonstrates an important feature of grep: you can search through any
text you pipe to it.

The number before each command is the line number of the command
in the history file. These numbers are useful because you can rerun any
command from the history file by entering an exclamation point followed
by the line number. For example, entering

$!9355

reruns line 9355 of the history. In my case, this is the nvim performance.md
command, which opens a Markdown file I was working on in my text editor.

Using grep with Regular Expressions
The preceding output shows that searching through my history didn’t just
find times I executed the man command; it also found any line containing man.

What if you want to find only the lines that start with man? To search for
a pattern like this, you can use a regular expression:

$ history | grep ″[0-9]\+ man″

...
 9125 man socket
 9211 man cal
10002 man grep

This regex is made up of the following components:

Getting to Grips with grep 65

[0-9]\+   At least one number in the range 0 to 9

 man   Two spaces and the letters man

N O T E 	 Chapter 4 covers the basics of regexes that you’ll need to understand for the rest of the
chapter.

You might wonder why there’s a slash before the plus sign (+). By
default, grep uses basic regular expressions, which have a slightly different
syntax from the extended regular expressions that are explained and used in
Chapter 4. In addition to the plus sign, the ?, {, |, (, and) characters must
be escaped with a backslash in basic regexes.

If you prefer to work with extended regexes, you can use the -E (“extended”)
flag as follows:

$ history | grep -E ″[0-9]+ man″

Or you can use the egrep tool, which uses extended regexes by default:

$ history | egrep ″[0-9]+ man″

I recommend always using extended regexes (egrep or grep -E) because
they are widely supported and the most commonly used syntax in regex
resources and examples online. To learn more about the difference
between the slightly old-fashioned basic regexes and the more modern
extended regexes, run man re_format to check out the regexes man page.

You may notice people using the -P (“Perl”) option to enable Perl-
compatible regexes. Perl regexes offer advanced features and are often con-
sidered the most versatile and powerful flavor of regex, widely adopted in
modern programming tools and libraries. However, not all versions of grep
and egrep offer this option. In general, the expressions shown here are also
Perl-compatible.

Advanced grep Features
To illustrate some of the more advanced features of grep, we’ll use files from
the ~/effective-shell sample folder. If you haven’t done so already, install the
book’s samples like so:

$ curl effective.sh | sh

Then move into the ~/effective-shell folder:

$ cd ~/effective-shell

All of the following examples will assume you’re in this folder.

66 Chapter 5

Making a Search Case-Insensitive
One of the most common parameters I use with grep is the -i (“case-
insensitive”) parameter shown in this example:

grep -i err somefile

The -i parameter makes the search case insensitive, so it’s a very quick
way to scan through a file for text matching the letters err—in other words,
to find error messages in logfiles, regardless of whether they’re uppercase
or lowercase.

You can try this out with some of the logfiles in the logs folder:

$ grep -i err ./logs/web-server-logs.txt

...
2025-07-01T12:50:30.594Z: info - ...-stderr-redirect.png′...
2025-07-01T12:50:31.827Z: error - Unhandled Error EACCES trying to read
2025-07-01T12:50:31.827Z: error - Unhandled Error EACCES trying to read
2025-07-01T12:50:31.827Z: error - Unhandled Error EACCES trying to read
2025-07-01T12:50:31.848Z: error - Unhandled Error EACCES trying to read
2025-07-01T12:50:31.849Z: error - Unhandled Error EACCES trying to read

This trick is very useful. You could even adapt it to search for warnings
or other types of messages in a logfile. (The lines in this logfile have been
shortened for brevity.)

Getting Additional Context for Search Results
There are three really useful parameters for grep, which you can easily
remember with the letters ABC. The first, the -A (“after”) parameter,
prints a given number of lines after each line matching the search:

$ grep host -A 3 ./programs/web-server/web-server.js

 host: process.env.HOST || ′localhost′,
 port: process.env.PORT || getOptionalEnvInt(′PORT′, 8080),
 root: process.env.ROOT || process.cwd(),
 defaultPage: ′index.html′,
--
 httpServer.listen({ host: config.host, port: config.port });
 log.info(`Server running on: ${config.host}:${config.port}`);
}
main();

This example returns the three lines after each occurrence of the word
host in the web-server.js script. It quickly shows how something you search for
might be used, because you can see the lines after each match.

Similarly, the -B (“before”) parameter prints a specified number of lines
that come before a match, which is useful if you’re searching through error
messages and want to see the code that caused an error, as shown here:

Getting to Grips with grep 67

$ grep throw -B 5 ./programs/web-server/web-server.js

// Helper to return an optional numeric environment variable or the default.
function getOptionalEnvInt(name, defaultValue) {
 const val = process.env[name];
 if (!val) return defaultValue;
 const intVal = parseInt(val, 10);
 if (isNaN(intVal)) throw new Error(`...`);

This example shows any line containing the word throw as well as the five
lines that came before it.

Finally, the -C (“context”) parameter is the most useful, as it provides
a specified number of lines before and after each match. In this example,
I search through my history to see what commands I ran before and after
I used the git init command to create a new repository (note that because
git init is more than one word, you need to surround it with single quota-
tion marks to search for the entire command, including the space between
the words):

$ history | grep -C 5 ′git init′

 5802 git push --follow-tags && git push origin
 5803 cd ../java-maven-standard-version-sample
 5804 rm -rg .git
 5805 rm -rf git
 5806 rm -rf .idea
 5807 git init -h
 5808 git remote add origin git@github.com:dwmkerr/java-maven-standard-version-sample.git
 5809 git push origin -u
 5810 git push -u origin
 5811 git push --set-upstream origin master
 5812 git rm --cached tpm

The matching command is in line 5807, with git init in bold. Now I can
easily see the lines around the matching text, or the context of the match,
to remind myself what I was doing the last time I ran this command. (See
Chapter 18 for more details on the git init command.)

Finally, don’t forget to capitalize the ABC flags. Knowing how to use
them to find the context for a match can be a lifesaver when you’re quickly
searching through text.

Searching Through Multiple Files
Everything you’ve searched through so far has been a single file, but say
you want to search a bunch of files at once. How can you identify where the
matches come from?

There’s a useful pair of flags for just this purpose. The -H (“header”)
parameter shows the filename before each match. If you provide grep with
a single file, the header isn’t shown. If you provide multiple files, however,
the header is enabled by default. You can ensure the header is not shown by
using the -h (“hide header”) parameter. The -n (“line number”) parameter

68 Chapter 5

displays the line number for the match. Here’s how you might combine
these parameters to search through several files at once:

$ grep -H -n ERROR ./logs/apm-logs/*.logs

The -H parameter makes showing a header explicit. If the apm-logs
folder had only one logfile, the header wouldn’t be shown. Including the
flag (or the opposite flag, -h) ensures you’ll get the behavior you want.

Each line of output (shortened for brevity) now shows the filename
and line number (bolded) for the matching text:

...

./logs/apm-logs/apm02.logs:34893:2020-11-27T12:24:37.429Z ERROR [request] 401...

./logs/apm-logs/apm02.logs:34906:2020-11-27T12:25:11.415Z ERROR [request] 401...

You can take this even further with the -r (“recursive”) flag:

$ grep -r -H -n -i error ./logs

This tells grep to search recursively and case insensitively, looking in every
child folder of the logs folder.

You also may see commands like this written with the parameters com-
bined like so:

$ grep -rHni error ./logs

All four parameters are combined into a single -rHni. This form is more con-
cise and fairly common in practice; however, not all commands support it, and
keeping each parameter separate improves clarity, so I prefer that approach.

Filtering and Piping grep Output
The -v (“invert”) parameter tells grep to exclude lines that match the pattern;
essentially, it makes the search work like a filter. For example, you could
enter the following command to search your logfiles and exclude any mes-
sages that contain the term debug:

$ grep -v debug ./logs/web-server.logs

Remember, you can always pipe a series of grep commands together.
Rather than trying to work out the perfect pattern to search for exactly
what you want, you can compose a pipeline of grep commands:

$ grep -i error -r ./logs | grep -i -v memory | grep -i -v ′not found′

This set of small, simple commands is chained together to execute a
sophisticated operation:

1. 	 Recursively search for the text error in the ./logs folder.
2. 	 Exclude any result that matches memory.
3. 	 Exclude any result that matches not found.

Getting to Grips with grep 69

This is the essence of the Unix philosophy: chaining together a few sim-
ple tools that each do one thing well to compose a more complex workflow.
Let’s look at a few more examples of grep pipelines.

Combining grep with other Commands
The grep command, just like most of the tools in this section, works on stdin
by default, which means you can easily grep anything that gets written to
the screen. This section demonstrates a few simple examples to show you
how easy it is to use grep pipelines to perform more complex tasks by com-
bining it with other commands. I don’t explain each command in detail.
Instead, I highlight some parameters you haven’t seen yet to reinforce the
idea that as you become more familiar with grep, you’ll use it more often to
handle all kinds of tasks.

•	 Show all processes, then filter the list to only vim processes:

ps -a | grep vim

•	 Search through all of the yaml files in the k8s folder for the text password;
show three lines of context, the filename, and the line number; and
print the output in the pager so that it’s easy to search through:

grep -H -C 3 -R password ./k8s/**/*.yaml | less

•	 Search through all of the installed programs for programs with zip in
the name:

ls -al /usr/bin /bin /usr/local/bin | grep zip

•	 Show the last 10 grep commands entered in the shell:

history | grep grep | tail -n 10

You’ll see a lot more examples of grep in action throughout the book.

Alternatives to grep
The grep command has been around for a long time, and over the years
a number of alternatives have been developed. Most of these alternatives
are designed either to be faster so that you can search through files more
quickly or to be easier so that you don’t have to remember too many flags.

In general, I’d avoid alternatives unless you encounter a situation where
using grep genuinely limits what you can do or hampers performance.
Alternatives can have a steep learning curve, may not be present or con-
sistent across platforms, and are less likely to be available if you’re writing
scripts or instructions for others.

70 Chapter 5

If you decide you want to add some more text-searching tools to your
toolkit, three potential options are ripgrep, ag, and ack, each of which
enhances performance and adds functionality. Before you install them,
however, it’s best to master the core grep functionality first.

Summary
If you need to find or filter text, grep should be your go-to tool. In this chap-
ter, you used grep to search for simple sequences of characters and then
combined it with regexes to search for patterns in text. You also learned
how using grep with parameters and pipelines can help you accomplish
more complex tasks.

In the next chapter, you’ll move beyond simply searching for text by
learning how to manipulate it directly from the shell.

6
S L I C I N G A N D D I C I N G T E X T

In Chapter 5 you learned how to use the
grep command to search through and filter

text. In this chapter, we’ll look at some of the
many commands you can use to manipulate text.

We’ll start with the basics, such as cutting and replac-
ing text, and move on to some of the more sophisti-
cated commands in the next chapter.

Extracting Heads and Tails
The commands head and tail are very simple but incredibly useful. As their
names imply, the head command outputs the first part of a file, and the tail
command outputs the last part of a file. Once you start using these com-
mands, you’ll wonder how you lived without them!

72 Chapter 6

To install this chapter’s samples to the ~/effective-shell folder, run this
command:

$ curl effective.sh | sh

Let’s start with head. Imagine you’ve been sent a large data file and you
don’t know exactly what’s in it. To take a quick look at the first part of its
contents, run the head command as follows:

$ head ~/effective-shell/data/top100.csv
″Rank″,″Rating″,″Title″,″Reviews″
″1″,″97″,″Black Panther (2018)″,″515″
″2″,″94″,″Avengers: Endgame (2019)″,″531″
″3″,″93″,″Us (2019)″,″536″
″4″,″97″,″Toy Story 4 (2019)″,″445″
″5″,″99″,″Lady Bird (2017)″,″393″
″6″,″100″,″Citizen Kane (1941)″,″94″
″7″,″97″,″Mission: Impossible - Fallout (2018)″,″430″
″8″,″98″,″The Wizard of Oz (1939)″,″120″
″9″,″96″,″The Irishman (2019)″,″441″

The head command shows only the first 10 lines of a file. In this case,
the first few lines tell you that this is a comma-separated values (CSV)
file that contains a list of movies. This list consists of the top 100 films on
Rotten Tomatoes at the time of writing, with the score, tomato meter, name,
and number of votes. You’ll use this sample file a lot in this chapter to learn
about text manipulation.

To specify the number of lines you want to see, use the -n (“number”)
flag with the number of your choice:

$ head -n 3 ~/effective-shell/data/top100.csv
″Rank″,″Rating″,″Title″,″Reviews″
″1″,″97″,″Black Panther (2018)″,″515″
″2″,″94″,″Avengers: Endgame (2019)″,″531″

This command returns only the first three lines.
The tail command works in the same way but for the end of a file. This

command is more useful when you’re looking at content that changes over
time, like logfiles where you probably want to see only the most recent entries.

To view the 10 most recent commands you’ve entered in your shell, use
tail with HISTFILE like so:

$ tail $HISTFILE
ls
ln -s $(pwd) ~/effective-shell
cat ~/effective-shell/data/top100.csv
head -n 3 ~/effective-shell/data/top100.csv
head ~/effective-shell/data/top100.csv
gcd
git stash
gcd
git stash pop
tail $HISTFILE

Slicing and Dicing Text 73

The HISTFILE variable locates your history file, and tail returns the last
10 commands from that file.

Just like with head, you can limit the number of lines tail returns by
specifying a number with the -n flag:

$ tail -n 3 $HISTFILE
gcd
git stash pop
tail $HISTFILE

Now you see only the last three commands from the history file.
You can also use the tail command to show the changes to a file in real

time. Add the -f (“follow”) flag to follow the contents of the history file and
see when a new line is added to the file:

$ tail -f $HISTFILE

Then, in another terminal window, start entering commands. You’ll
see that the tail command in the first window writes the updates to the
terminal as you enter them. (Note that on Linux systems the history file
is updated only when the shell updates.) Press ctrl-C to close the tail
program.

Though it’s unlikely you’ll use tail to follow your shell history file in
practice, it works as an example. A more common use case is to run tail on
a logfile that is being written while some kind of process is running. This
lets you see the log entries as they are added to the file in real time.

Another trick I use a lot with tail is to strip the first line, or header,
from a file with the -n +2 parameter. The plus sign (+) indicates that you
want to return everything from the line number specified (2, in this case)
onward. Here’s how you might use it:

$ head ~/effective-shell/data/top100.csv | tail -n +2
″1″,″97″,″Black Panther (2018)″,″515″
″2″,″94″,″Avengers: Endgame (2019)″,″531″
″3″,″93″,″Us (2019)″,″536″
″4″,″97″,″Toy Story 4 (2019)″,″445″
″5″,″99″,″Lady Bird (2017)″,″393″
″6″,″100″,″Citizen Kane (1941)″,″94″
″7″,″97″,″Mission: Impossible - Fallout (2018)″,″430″
″8″,″98″,″The Wizard of Oz (1939)″,″120″
″9″,″96″,″The Irishman (2019)″,″441″

This command pipes the results of the head command into tail -n +2 to
grab everything from the second line onward, removing the heading line so
that you see only the films, not the column names Rank, Rating, Title, and
Reviews.

You’ll use head and tail quite a lot when working with text. These two
crucial tools can really help you be efficient, especially when you combine
them with other commands or run them in pipelines (which are described
in detail in Chapter 2).

74 Chapter 6

Replacing Text
Next up is the tr (“translate characters”) command, which you saw in
Chapter 2. This program is very simple, and I use it most often to perform
a simple substitution of characters.

To see how tr works, you can create a list of each of the column names
in the Rotten Tomatoes CSV file like so:

$ head -n 1 ~/effective-shell/data/top100.csv | tr ′,′ ′\n′
″Rank″
″Rating″
″Title″
″Reviews″

The head -n 1 command extracts the first line of the file: the column
names. The results are then piped to the tr command, which replaces the
first specified character, a comma (,), with the second, a newline (\n). In
the output, the column titles are now separated by line breaks instead of by
commas.

Now say you want to remove the quotes from the column names:

$ head -n 1 ~/effective-shell/data/top100.csv | tr ′,′ ′\n′ | tr -d ′″′
Rank
Rating
Title
Reviews

Here the tr command, along with the -d (“delete”) flag, removes the
specified character (quotation marks, in this example) from each column
name. Again, you’re piping commands together. (For more on pipelines,
see Chapter 2.) You’ll see this technique—chaining together lots of simple
commands in a pipeline to perform more complex operations—again and
again throughout the book.

Remember that the tr command works on characters. For example, the
following command might not work as you expect:

$ echo ″Welcome to the shell″ | tr ′shell′ ′machine′
Wcicomc to tac macii

The reason for this output is that you’re specifying character replace-
ments, so the shell interprets this command as follows:

s -> m
h -> a
e -> c
l -> h
l -> i

In other words, it thinks you want to replace the first letter of shell with
the first letter in machine, the second letter of shell with the second letter of
machine, and so on.

Slicing and Dicing Text 75

N O T E 	 There are several ways to replace entire words or perform more complex operations,
such as using the sed or awk commands. I’ll cover them in more detail in the following
chapter.

You can also use tr with character classes, which define a set of characters
to match on within square brackets ([]). This is easiest to explain with an
example:

$ echo ″Use your inside voice...″ | tr ′[[:lower:]]′ ′[[:upper:]]′
USE YOUR INSIDE VOICE...

In this case, tr transforms characters in the lower character class (lower-
case characters) to the upper character class (uppercase characters).

Another way to translate characters is to specify ranges:

$ echo ″Use your inside voice...″ | tr ′a-z′ ′A-Z′
USE YOUR INSIDE VOICE...

This example also changes characters from lowercase to uppercase but
by using the ranges a-z and A-Z instead of the character classes.

I won’t go further into character classes here, but you can find out more
about them with man 7 regex.

Cutting Text
The cut (“remove section from line”) command splits a line of text around
every instance of a given delimiter. This is one way to use it:

$ cut -d ′,′ -f 3 ~/effective-shell/data/top100.csv | head
″Title″
″Black Panther (2018)″
″Avengers: Endgame (2019)″
″Us (2019)″
″Toy Story 4 (2019)″
″Lady Bird (2017)″
″Citizen Kane (1941)″
″Mission: Impossible - Fallout (2018)″
″The Wizard of Oz (1939)″
″The Irishman (2019)″

With the -d (“delimiter”) flag, you choose a delimiter to cut the text
with, then use the -f (“field”) flag to choose which field you want to see. In
this case, you’re splitting on the comma character and showing the third
field: the Title column. Notice that the short versions of a flag are often just
the first letter of the long option, so in this case -d is short for --delimiter,
whereas in the earlier tr example it was short for --delete. Each command
knows how to process its own particular parameters correctly. You can
always run man command_name for an explanation of each parameter.

This application of the cut command can be extraordinarily useful. For
example, you could use it to work with Kubernetes pods you have running

76 Chapter 6

on a cluster. To do so, first you need to run the kubectl command to return
the pod information (don’t worry if you don’t recognize this command; it’s
just an example of a command that produces some complex output for you
to slice and dice):

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
elastic-operator-0 1/1 Running 0 35d
elk-apm-server-65b698fb8c-rzncz 1/1 Running 0 13d
elk-es-default-0 1/1 Running 0 35d
elk-kb-6f8bb6457b-bbbnn 1/1 Running 0 35d
filebeat-beat-filebeat-ccgl7 1/1 Running 1 13d
filebeat-beat-filebeat-dvf2l 1/1 Running 2 13d
filebeat-beat-filebeat-mnpms 1/1 Running 329 13d
kube-state-metrics-5cb57bdc45-mqv9d 1/1 Running 0 35d
metricbeat-beat-metricbeat-2xm7t 1/1 Running 6103 35d
metricbeat-beat-metricbeat-96dkt 1/1 Running 6097 35d
metricbeat-beat-metricbeat-n7kxm 1/1 Running 6109 35d

Now, to get just the pod names, you can cut the lines on the space char-
acter. Note that the cut command “cuts” on each delimiter character, not on
a sequence of them. In this case, you can grab the first field like so:

$ kubectl get pods | cut -d′ ′ -f 1
NAME
elastic-operator-0
elk-apm-server-65b698fb8c-rzncz
elk-es-default-0
elk-kb-6f8bb6457b-bbbnn
filebeat-beat-filebeat-ccgl7
filebeat-beat-filebeat-dvf2l
filebeat-beat-filebeat-mnpms
kube-state-metrics-5cb57bdc45-mqv9d
metricbeat-beat-metricbeat-2xm7t
metricbeat-beat-metricbeat-96dkt
metricbeat-beat-metricbeat-n7kxm

Then, to strip the first line, you specify the tail -n +2 command to show
everything from the second line onward:

$ kubectl get pods | cut -d′ ′ -f 1 | tail -n +2
elastic-operator-0
elk-apm-server-65b698fb8c-rzncz
elk-es-default-0
elk-kb-6f8bb6457b-bbbnn
filebeat-beat-filebeat-ccgl7
filebeat-beat-filebeat-dvf2l
filebeat-beat-filebeat-mnpms
kube-state-metrics-5cb57bdc45-mqv9d
metricbeat-beat-metricbeat-2xm7t
metricbeat-beat-metricbeat-96dkt
metricbeat-beat-metricbeat-n7kxm

Slicing and Dicing Text 77

Bingo: you’ve removed the heading line. If you followed along with the
examples in the previous chapter, you might have spotted that you could
also just filter the content with grep to get the same result:

$ kubectl get pods | cut -d′ ′ -f 1 | grep -v NAME
elastic-operator-0
elk-apm-server-65b698fb8c-rzncz
elk-es-default-0
elk-kb-6f8bb6457b-bbbnn
filebeat-beat-filebeat-ccgl7
filebeat-beat-filebeat-dvf2l
filebeat-beat-filebeat-mnpms
kube-state-metrics-5cb57bdc45-mqv9d
metricbeat-beat-metricbeat-2xm7t
metricbeat-beat-metricbeat-96dkt
metricbeat-beat-metricbeat-n7kxm

Using grep with the -v flag returns all lines except the ones that
match—the NAME line in this case. With just a few simple shell commands,
you often have many ways to accomplish the same goal.

Another way to use cut is by slicing a number of characters from each
line. Take a look at this sample web logfile:

$ tail ~/effective-shell/logs/web-server-logs.txt
2025-07-01T12:50:52.721Z: info - Request: GET /en.search.min.1f83b222e24a227c0f5763727cb9e4f...
2025-07-01T12:50:52.722Z: info - Serving file ′../../../website/public/en.search.min.1f83b22...
2025-07-01T12:50:52.762Z: info - Request: GET /svg/menu.svg
2025-07-01T12:50:52.763Z: info - Serving file ′../../../website/public/svg/menu.svg′...
2025-07-01T12:50:52.763Z: info - Request: GET /svg/calendar.svg
2025-07-01T12:50:52.764Z: info - Serving file ′../../../website/public/svg/calendar.svg′...
2025-07-01T12:50:52.765Z: info - Request: GET /svg/edit.svg
2025-07-01T12:50:52.766Z: info - Serving file ′../../../website/public/svg/edit.svg′...
2025-07-01T12:50:52.784Z: info - Request: GET /fonts/roboto-v19-latin-300italic.woff2
2025-07-01T12:50:52.785Z: info - Serving file ′../../../website/public/fonts/roboto-v19-lati...

With the -c (“characters”) flag, you can specify the characters in the
line you want to see. To extract only the characters 12 to 19, which is the
time part of each line, run the following command:

$ tail -n 3 ~/effective-shell/logs/web-server-logs.txt | cut -c 12-19
12:50:52
12:50:52
12:50:52

You can also use -c to extract everything from a specific point onward:

$ tail -n 3 ~/effective-shell/logs/web-server-logs.txt | cut -c 27-
info - Serving file ′../../../website/public/svg/edit.svg′...
info - Request: GET /fonts/roboto-v19-latin-300italic.woff2
info - Serving file ′../../../website/public/fonts/roboto-v19-latin-300italic.woff2′...

Cutting from the 27th character onward (-c 27-) removes the time-
stamp and leaves just the log message.

78 Chapter 6

As a nice trick, you can use the same syntax to split by fields, as in this
example from the Rotten Tomatoes CSV file:

$ tail -n 3 ~/effective-shell/data/top100.csv | cut -d′,′ -f 3-
″Pinocchio (1940)″,″55″
″Chinatown (1974)″,″75″
″The Dark Knight (2008)″,″342″

This returns the third field, Title, onward. To output just the second
and third fields, specify them like so:

$ tail -n 3 ~/effective-shell/data/top100.csv | cut -d′,′ -f 2,3
″100″,″Pinocchio (1940)″
″99″,″Chinatown (1974)″
″94″,″The Dark Knight (2008)″

You can do a surprising amount with the cut tool. As I introduce more
complex tools later on, like sed and awk, you’ll see other ways to accomplish
the same goals. But I often find that by filtering down the content with grep
first, I can cut my way to what I need without using the more complex tools.

Reversing Text
The rev (“reverse”) command simply reverses the given input:

$ echo ″A nut for a jar of tuna″ | rev
anut fo raj a rof tun A

At first glance this doesn’t seem very useful, but now try this:

$ pwd | rev | cut -d/ -f 1 | rev
effective-shell

This command reverses the current working directory, cuts the first
folder, and then reverses it again. Here is what’s happening at each stage:

pwd /Users/dwmkerr/effective-shell
rev llehs-evitceffe/rrekmwd/sresU/
cut -d′/′ -f 1 llehs-evitceffe
rev effective-shell

This neat trick extracts all of the text from the first character to the
first forward slash (/). This action would be much harder to do without
reversing the text first, because you don’t know how many levels are in the
directory. This way, you can simply extract the last folder without knowing
how many precede it.

You probably won’t use this technique very often in real-world scenar-
ios, but it’s a good reminder that you can often do more than you think by
piping together simple commands.

Slicing and Dicing Text 79

Sorting Text and Removing Duplicate Lines
Two other commands that can be really helpful are sort (“sort lines alpha-
betically”) and uniq (“omit duplicate lines”), both of which were introduced
in Chapter 2. You can combine sort with the other commands and flags
you’ve been working with:

$ cut -d′,′ -f 3 ~/effective-shell/data/top100.csv | sort | head
″12 Years a Slave (2013)″
″A Hard Day′s Night (1964)″
″A Night at the Opera (1935)″
″A Quiet Place (2018)″
″A Star Is Born (2018)″
″Alien (1979)″
″All About Eve (1950)″
″Argo (2012)″
″Arrival (2016)″
″Avengers: Endgame (2019)″

Here you’ve grabbed the third field in the CSV file (Title), sorted its
contents alphabetically, and then displayed the first 10 values.

You can reverse the direction of sort with the -r (“reverse”) flag:

$ cut -d′,′ -f 3 ~/effective-shell/data/top100.csv | sort -r | head
″Zootopia (2016)″
″Wonder Woman (2017)″
″Won′t You Be My Neighbor? (2018)″
″Widows (2018)″
″War for the Planet of the Apes (2017)″
″Us (2019)″
″Up (2009)″
″Toy Story 4 (2019)″
″Toy Story 3 (2010)″
″Toy Story 2 (1999)″

There are quite a few other options for sort; to see them, run man sort.
The uniq command removes duplicate lines from a stream of text—but

only when they are next to each other, so you’ll often have to sort first. You
can use uniq to get all unique error messages in a logfile like so:

$ cut -c 27- ~/effective-shell/logs/web-server-logs.txt | grep error | sort | uniq
error - Unhandled error EACCES trying to read ′../../../website/public/docs/part-1-transiti...
error - Unhandled error EACCES trying to read ′../../../website/public/svg/calendar.svg′, r...
error - Unhandled error EACCES trying to read ′../../../website/public/svg/edit.svg′, retur...
info - Request: GET /docs/1-getting-started/images/ls-applications-windows-error.png
info - Request: GET /docs/part-1-transitioning-to-the-shell/3-managing-your-files/images/rm...
info - Serving file ′../../../website/public/docs/1-getting-started/images/ls-applications-...
info - Serving file ′../../../website/public/docs/part-1-transitioning-to-the-shell/3-manag...

80 Chapter 6

Let’s break this command down:

cut -c 27- ~/effective-shell/logs/web-server-logs.txt   Extracts log mes-
sages from a logfile, skipping the timestamp (the date and time that
starts each line)

grep error   Filters down to lines containing the word error

sort   Alphabetically sorts the output

uniq   Shows only unique values, removing any adjacent duplicates

If you had thousands of errors in the file, this powerful technique
would ensure that you see only distinct errors, not all of them.

Paging Through Text
The pager is a shell program that lets you interactively read a file by moving
backward and forward one page at a time. (A page in this context is a sec-
tion of the output that fits on the screen rather than overflowing it.) If you
want to see a little bit of a large file, or if you’re trying to build a pipeline
and want to see intermediate results (perhaps before you use head or tail),
you can use the pager to see and move through output without filling your
screen and terminal with too much text.

N O T E 	 For more information about the pager, see “Getting Help” on page 415.

One common pager program is less (“open a file for interactive read-
ing”). When viewing the sorted list of films, for example, you might run the
following:

$ cut -d′,′ -f 3 ~/effective-shell/data/top100.csv | sort | less

Here’s a sample page of the resulting output:

″Jaws (1975)″
″King Kong (1933)″
″La Grande Illusion (Grand Illusion) (1938)″
″La La Land (2016)″
″Lady Bird (2017)″
″Laura (1944)″
:

Slicing and Dicing Text 81

You’ve cut out the film names from the data file, sorted them, and then
piped the results into less so that you can page through the data to ensure
it is correct.

The less prompt (:) at the bottom of the screen indicates that you can
use the keyboard to enter commands. You can press the spacebar to move
to the next page. You can type u to move up or d to move down; or you can
use the up and down arrow keys. To exit the pager, you type q. You can find
all of these commands (and others) by running man less.

Summary
This chapter explored several tools and techniques for working with text.
You saw how to extract only the first or final parts of a text file; translate
characters; cut, sort, and reverse text; remove duplicate adjacent lines of
output; and page through the results of a large file. You’ll return to these
basics again and again as you work with data in the shell.

In the next chapter, you’ll learn how to perform more advanced text
manipulation with the sed command.

7
A D V A N C E D T E X T

M A N I P U L A T I O N W I T H S E D

Chapter 6 introduced some simple com-
mands for working with text. Now we’ll

look at a more sophisticated and powerful
command: sed. You can use sed to quickly solve

problems and perform advanced manipulation of
text, such as removing or replacing specific lines in
a file. You’ll see several common ways to use it, work
through some practical examples, and learn when you
might want to consider using tools like awk or a pro-
gramming language instead.

The sed (“stream editor”) command, as briefly defined in Chapter 2,
takes input from a text stream (which in many cases is simply a file or the
output of another command), performs operations on the text, and then
writes the output to stdout. It’s an extremely effective tool for making com-
plex transformations. That said, operations with sed can look a little intimi-
dating at first, so we’ll start with the basics. You’ll soon see just how valuable
this tool can be.

84 Chapter 7

Transformations with sed
Rather than dissecting every nuance of sed, I’m going to show some real-
world examples of how you can use the program. This approach not only
allows you to see its functionality in easier-to-digest chunks but also keeps
the exercises practical and relevant.

Replacing Text
First, install this chapter’s samples to the ~/effective-shell folder:

$ curl effective.sh | sh

The effective-shell/scripts folder includes an example script called backup
-config.sh that copies a set of commonly used configuration files for various
cloud providers to a backup folder. To view it, run the following:

$ cd ~/effective-shell/scripts
$ cat backup-config.sh
#!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
cp ~/.aliyun/config.json ~/backup/settings/aliyun/
cp ~/.aws/config ~/backup/settings/aws/
cp ~/.aws/credentials ~/backup/settings/aws/
cp ~/.azure/config ~/backup/settings/azure/
cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
cp ~/.ssh/config ~/backup/settings/ssh/
cp ~/.ssh/id_rsa ~/backup/settings/ssh/
cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

To change the backup folder (which is ~/backup/settings), you could
open the configuration file and edit each line, but that process would be
time-consuming and error-prone. Instead, you can use sed to change the
name of the backup folder across the file. Note that in this example you’re
not actually changing the file, just outputting to the console what the
changes would look like.

To change part of the path of the backup folder from settings to
configuration, run the following command:

$ sed ′s/settings/configuration/′ backup-config.sh
#!/usr/bin/env bash

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
cp ~/.aliyun/config.json ~/backup/configuration/aliyun/
cp ~/.aws/config ~/backup/configuration/aws/
cp ~/.aws/credentials ~/backup/configuration/aws/
cp ~/.azure/config ~/backup/configuration/azure/

Advanced Text Manipulation with sed 85

cp ~/.config/gcloud/credentials.db ~/backup/configuration/gcloud/
cp ~/.ssh/config ~/backup/configuration/ssh/
cp ~/.ssh/id_rsa ~/backup/configuration/ssh/
cp ~/.ssh/id_rsa.pub ~/backup/configuration/ssh/

This example shows the basics of how sed works. You give sed an expression,
which describes a set of operations you want to perform, and it applies that
expression to the file you specify. As with most commands we’ve covered, it
can apply the expression to input from stdin or from a specific file.

Let’s look at the expression s/settings/configuration/ in detail:

s   Indicates that you want to run the substitute function, which
replaces text

/   Denotes the start of the term or pattern you are searching for

settings   Represents the pattern itself, which in this case is just the
literal text settings

/   Denotes the start of the text to replace the pattern with

configuration   Indicates the text to replace the search pattern with

/   Denotes the end of the replacement (note that you can also add
flags after this slash; we’ll look at some flags shortly)

You can provide a regular expression (described in detail in Chapter 4)
as the search pattern. By default, sed uses basic regular expressions. To use
extended regexes, add the -E (“use extended regular expressions”) flag as
follows:

$ sed -E ′s/settings/configuration/′ backup-config.sh

For an overview of the differences between basic and extended regexes,
run man re_pattern to access the man pages describing them.

Applying Multiple Expressions
You can use the -e (“expression”) parameter to supply multiple expressions
to sed. For example, to delete your backup folders, you could run two substi-
tutions as follows:

1. 	 Replace the cp command with the rmdir command.
2. 	 Remove the first parameter, the source file for cp, since rmdir doesn’t

need it. With this expression, you’re removing everything up to the sec-
ond tilde (~).

W A R N I N G 	 If you use rm -r instead of rmdir, which is very common, you run the risk of mak-
ing a big mistake: passing the source file for the cp command as the first parameter
to remove. In other words, running rm -r would delete both the source files for the
backup and the backup folder itself! This is one place where using rmdir over rm
makes more sense: it won’t delete the source files if you make a mistake.

86 Chapter 7

Let’s break down these steps to see what each one does in detail.

Replacing Text on Specific Lines

You’ll start with the first expression, changing cp to rmdir:

$ sed -e ′s/cp/rmdir/′ backup-config.sh
#!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, grmdir, and ssh config and credentials.
rmdir ~/.aliyun/config.json ~/backup/settings/aliyun/
rmdir ~/.aws/config ~/backup/settings/aws/
rmdir ~/.aws/credentials ~/backup/settings/aws/
rmdir ~/.azure/config ~/backup/settings/azure/
rmdir ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
rmdir ~/.ssh/config ~/backup/settings/ssh/
rmdir ~/.ssh/id_rsa ~/backup/settings/ssh/
rmdir ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

Here you’ve provided a single expression with the -e parameter. In this
case, the -e parameter is superfluous because you have only one expression,
but you’ll be adding the second expression shortly.

This code has changed all the cp commands to rmdir. But did you notice
the bug? It has also changed the letters cp in the comment from this

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.

to this (bolded for emphasis):

Copy over alicloud, aws, azure, grmdir, and ssh config and credentials.

It isn’t the worst bug in the world, but you can avoid it by changing the
expression to run only on lines that start with the letters cp like so:

$ sed -e ′/^cp/s/cp/rmdir/′ backup-config.sh
#!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
rmdir ~/.aliyun/config.json ~/backup/settings/aliyun/
rmdir ~/.aws/config ~/backup/settings/aws/
rmdir ~/.aws/credentials ~/backup/settings/aws/
rmdir ~/.azure/config ~/backup/settings/azure/
rmdir ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
rmdir ~/.ssh/config ~/backup/settings/ssh/
rmdir ~/.ssh/id_rsa ~/backup/settings/ssh/
rmdir ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

Advanced Text Manipulation with sed 87

Before the s indicating your substitution, you’ve now included an address
that tells sed which lines it should apply the expression to. The address here
is /^cp, a regular expression meaning “any line starting with cp.”

Let’s break down the /^cp/s/cp/rmdir/ expression:

/^cp   An address to find lines starting with cp

/s   The substitution function for replacing text

/cp   The pattern—in this case, the literal text cp

/rmdir   The text that should replace each occurrence of cp at the begin-
ning of a line

/   The end of the replacement

To summarize, this expression operates on lines starting with the text
cp and replaces cp with the text rmdir. The forward slash (/) tells sed where
the address—that is, what the search and replace expression will work
on—starts and ends. Some people use a hash mark (#) or pipe (|) rather
than a forward slash to delimit expressions, typically because they want to
use the forward slash as part of a pattern.

Because sed uses regular expressions by default, you could also write
the preceding command as follows:

$ sed -E -e ′s/^cp/rmdir/′ backup-config.sh

This command doesn’t specify an address, but the pattern to match in
the substitution, ^cp, means the same thing as the address you just used:
“any line starting with the text cp.” I find the previous version clearer, as the
address is the first thing you see in the expression.

USING SED A DDR ESSES

Addresses can be used in many sed functions and are quite sophisticated. Here
are a few examples:

/test  Any line matching the pattern test

/test/!  Any line not matching test

/6  Line six

/$  The last line

/1,10  Lines 1 to 10

/1,10!  Lines except 1 to 10

Run man sed to learn more about addresses.

88 Chapter 7

Removing Parts of a Line

The next step is to remove the first parameter (the source file) that you
used for the original cp command because you don’t want rmdir to delete
the source file, only the destination folder (the second parameter).
Essentially, you want to change the structure of the line from cp <file
to back up> <backup folder> to rmdir <backup folder>. To do so, apply a new
expression:

$ sed -E -e ′/^cp/s/cp/rmdir/′ -e ′/^rmdir/s/~[^]+ //′ backup-config.sh
#!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
rmdir ~/backup/settings/aliyun/
rmdir ~/backup/settings/aws/
rmdir ~/backup/settings/aws/
rmdir ~/backup/settings/azure/
rmdir ~/backup/settings/gcloud/
rmdir ~/backup/settings/ssh/
rmdir ~/backup/settings/ssh/
rmdir ~/backup/settings/ssh/

Here’s the breakdown of the /^rmdir/s/~[^]+ // expression:

/^rmdir   Use an address that matches lines starting with rmdir.

/s   Use the substitution function to replace text.

/~[^]+   Search for the tilde and any sequence of one or more non-
space characters up until the first space character.

/   Replace with no content.

/   End the replacement.

In this example, you don’t include a replacement. The replacement
part of the expression is empty, as indicated by the two forward slashes with
nothing between them at the end of the expression. This command means
you search for a tilde, match everything up until the next space, and then
replace it with nothing—in other words, remove it!

Note the use of the -E flag to tell sed to use extended regexes. This way,
you can use the plus sign (+) without escaping it with a backslash (\) first. In
general, I recommend always using extended regular expressions; they’re
more commonly used and will be more familiar than basic regexes, espe-
cially if you work with programming languages as well as the shell (most
programming languages that support regexes use extended regexes).

Let’s look at a few other ways to use sed for some common tasks.

Advanced Text Manipulation with sed 89

Stripping Comments
The script you’ve used so far includes comments (the text that follows the
hash mark). To remove comments, as well as any whitespace that precedes
them, use sed as follows:

$ sed -E ′s/\s*#.*$//′ backup-config.sh
mkdir ~/backup
cp ~/.aliyun/config.json ~/backup/settings/aliyun/
cp ~/.aws/config ~/backup/settings/aws/
cp ~/.aws/credentials ~/backup/settings/aws/
cp ~/.azure/config ~/backup/settings/azure/
cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
cp ~/.ssh/config ~/backup/settings/ssh/
cp ~/.ssh/id_rsa ~/backup/settings/ssh/
cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

This command removes the comments at the beginning of the file,
as well as the comment after the cp ~/.ssh/id_rsa line. The regex matches
any hash mark and strips everything following it as well as the whitespace
before it.

To delete the lines that used to contain comments and are now empty,
use the d function:

$ sed -E -e ′s/#.*$//′ -e ′/^\s*$/d′ backup-config.sh
mkdir ~/backup
cp ~/.aliyun/config.json ~/backup/settings/aliyun/
cp ~/.aws/config ~/backup/settings/aws/
cp ~/.aws/credentials ~/backup/settings/aws/
cp ~/.azure/config ~/backup/settings/azure/
cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
cp ~/.ssh/config ~/backup/settings/ssh/
cp ~/.ssh/id_rsa ~/backup/settings/ssh/
cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

This function is applied to all lines matching the line pattern, which in
this case is a regular expression (̂ *$) that matches any line made up only
of space characters, including zero space characters (that is, empty lines).

Appending Text
In a regular expression, the dollar sign ($) represents the end of a line. If
you want to add content to the end of lines, simply search for $ and replace
it with whatever you want to end the line with. For example, to add a semi-
colon to the end of every line, simply enter sed s/$/;/. To do that only on
certain lines, use a line pattern to limit where to apply the expression.

You could use this technique to make sure the script doesn’t fail if one
of the cp commands fails by adding || true at the end of the command
(you’ll understand why this works after running the example).

90 Chapter 7

The following command strips comments, deletes empty lines, and then
adds the text || true to the end of each line:

$ sed -E -e ′s/#.*$//′ -e ′/^ *$/d′ -e ′/^cp/s/$/ || true/′ backup-config.sh
#!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
cp ~/.aliyun/config.json ~/backup/settings/aliyun/ || true
cp ~/.aws/config ~/backup/settings/aws/ || true
cp ~/.aws/credentials ~/backup/settings/aws/ || true
cp ~/.azure/config ~/backup/settings/azure/ || true
cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/ || true
cp ~/.ssh/config ~/backup/settings/ssh/ || true
cp ~/.ssh/id_rsa ~/backup/settings/ssh/ || true
cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/ || true

If a cp command fails, the shell sees || true, which tells it to “pass this
step whether or not the command fails.” This little trick ensures that the
entire script won’t fail if one of the cp commands fails. (You’ll see more of it
in Chapter 11.)

Prepending Text
In a regular expression, the caret (̂) represents the start of a line. You can
apply the same trick as with the dollar sign to add two more hash marks
to the start of any comment line (that is, any line already beginning with a
hash mark):

$ sed -E -e ′/#/s/^/##/′ backup-config.sh
###!/usr/bin/env bash

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp, and ssh config and credentials.
cp ~/.aliyun/config.json ~/backup/settings/aliyun/
cp ~/.aws/config ~/backup/settings/aws/
cp ~/.aws/credentials ~/backup/settings/aws/
cp ~/.azure/config ~/backup/settings/azure/
cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/
cp ~/.ssh/config ~/backup/settings/ssh/
cp ~/.ssh/id_rsa ~/backup/settings/ssh/
cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/

Now you’ll use echo or write the cp command to the screen. Replace the
start of the line with an echo command and the end of the line with a quote,
like so:

$ sed -E -e ′/^cp/s/$/″/′ -e ′/″$/s/^/echo ″/′ backup-config.sh
#!/usr/bin/env bash

Advanced Text Manipulation with sed 91

Make sure you have a backup directory.
mkdir ~/backup

Copy over alicloud, aws, azure, gcp and ssh config and credentials.
echo ″cp ~/.aliyun/config.json ~/backup/settings/aliyun/″
echo ″cp ~/.aws/config ~/backup/settings/aws/″
echo ″cp ~/.aws/credentials ~/backup/settings/aws/″
echo ″cp ~/.azure/config ~/backup/settings/azure/″
echo ″cp ~/.config/gcloud/credentials.db ~/backup/settings/gcloud/″
echo ″cp ~/.ssh/config ~/backup/settings/ssh/″
echo ″cp ~/.ssh/id_rsa ~/backup/settings/ssh/″
echo ″cp ~/.ssh/id_rsa.pub ~/backup/settings/ssh/″

You’ve now tweaked the script so that it doesn’t actually copy the files; it
just prints out the commands to the screen. The sed command you’ve writ-
ten also demonstrates the importance of the order of the expressions: the
second expression is applied after the first. If you’re using multiple expres-
sions, make sure that an earlier expression doesn’t alter the line such that it
breaks the next expression.

Extracting Information
What if you want to extract some information from lines in a file? Move into
the data folder, which contains a file about movies called top100.csv that you
may have seen in the previous chapter:

$ cd ~/effective-shell/data
$ head -n 3 top100.csv
″Rank″,″Rating″,″Title″,″Reviews″
″1″,″97″,″Black Panther (2018)″,″515″
″2″,″94″,″Avengers: Endgame (2019)″,″531″

To create a regular expression that finds the year for each movie, match
all numeric values between parentheses like so:

$ head -n 3 data/top100.csv | sed -E ′s/.*\(([0-9]+)\).*/\1/′
″Rank″,″Rating″,″Title″,″Reviews″
2018
2019

This command matches any text, captures any digits enclosed in paren-
theses (which in each case is the year the movie came out), and then prints
the year to the screen with the \1 construct, which means “the first match.”
(See Chapter 4 for more about capture groups.)

You can also easily exclude the first line (the column heading) as follows:

$ sed -E -e ′1d′ -e ′s/.*\(([0-9]+)\).*/\1/′ data/top100.csv
2018
2019

Adding the 1d expression will delete the first line.

92 Chapter 7

Advanced Applications
You’ve seen the basics of what sed can do, so now we’ll explore some of the
more sophisticated applications of the stream editor.

Restructuring Text
For this example, you’ll use the ~/effective-shell/docs/chapter7.md file, which
starts with the following text:

$ cd ~/effective-shell/docs
$ head chapter7.md

title: ″Advanced Text Manipulation″
slug: ″advanced-text-manipulation″
weight: 14

Chapter 7 - Advanced Text Manipulation

Chapter 6 introduced some simple commands to work with text...
...

This file has quite a complex structure—one that would be hard to
manipulate without a sophisticated tool like sed.

This file starts with some YAML (Yet Another Markup Language) text
in a key-value format. The key is specified first, and the value follows after
the colon (:). Values can be surrounded by single or double quotes or not at
all. If you’re not familiar with key-value format, that’s okay; this example is
being used primarily to demonstrate more advanced sed techniques.

Let’s say the goal is to write a sed command that shows each of the key-
value pairs and adds quotes around any value that doesn’t already have
them. You’ll use grep (covered in Chapter 5) to quickly build a regex to find
the key-value pairs, and once you’ve verified that the regex works, you’ll use
it in your sed command.

First, you need to extract the keys. As you build the expression required,
you’re going to pipe the results to head to show only the first 10 lines (a
preview of the results); otherwise, the command would show more output
than fits on the screen (I’ve bolded the matches throughout this section
for clarity):

$ grep -E ′[^:]+:′ chapter7.md | head
title: ″Advanced Text Manipulation″
slug: advanced-text-manipulation
weight: 14
Let′s say we have a script that is used to back up some local files
to an Amazon S3 bucket. We can see a script like this here:
...

Advanced Text Manipulation with sed 93

Well, this kind of worked. The first three matches are correct. The com-
mand found the keys, but it also found any line that includes a colon.

The pattern [^:]+: means “find at least one character that is not the
: character but is followed by the : character.” This simple expression finds
everything before the first colon, including any text in the rest of the file that
contains a colon. The text beginning on the fourth line is just a sentence
from the chapter.

To improve on it, you could tell the shell not to include lines that have
space characters before the colon and be explicit that the pattern you’re
searching for must appear at the start of the line:

$ grep -E ′^[^:]+:′ chapter7.md | head
title: ″Advanced Text Manipulation″
slug: advanced-text-manipulation
weight: 14
″2″,″94″,″Avengers: Endgame (2019)″,″531″

Much better. The pattern now starts with the caret (̂), which means
“start of line,” followed by [^:] to search for “anything that is not a colon
or space.” But notice this command also found a film title from the text,
because just like the YAML, this line doesn’t have any space characters
before the colon.

To improve the pattern further, you could eliminate lines that have
quotation marks before the colon, as quotes are not valid in YAML key
names. The updated pattern looks like this:

$ grep -E ′^[^: ″]+:′ chapter7.md | head
title: ″Advanced Text Manipulation″
slug: advanced-text-manipulation
weight: 14

By refining the regex, you’ve ensured that now grep will find only the
YAML keys. Using grep is a quick way to iteratively build your regex until it
does what you need it to. Now you can take this regex and use it in sed.

BUIL DING R EGUL A R E X PR ESSIONS

I was a holdout for years, but now I readily acknowledge that regexes are
incredibly useful if you take the time to learn them. Exercises like these are a
great way to do so. Start simple and add the elements you need bit by bit to
learn exactly what each one does.

Avoid just searching online for the perfect expression; the ones you find
will often be very long (because they are bulletproof, hopefully, and cover
every possible edge case). If you’re building an expression that is critical to get
right, then by all means search online for help if you need it, but for day-to-day
tasks, practice makes perfect. See Chapter 4, which goes into regexes in detail.

94 Chapter 7

To start using this regex in sed, first print all lines that match the
pattern:

$ sed -E -n ′/^[^: ″]+:/p′ chapter7.md
title: ″Advanced Text Manipulation″
slug: advanced-text-manipulation
weight: 14

You’ve made two critical additions to sed here. The first is the -n (“no
automatic printing”) flag, which means sed won’t show output unless you
explicitly tell it to. The second is the p (“print”) function, which will print
any lines that match the pattern.

Without these additions, sed will output the whole file to the screen.
Adding these options make sed behave like grep: it will show only the lines
that match, which is useful when you’re still building the command and just
want to see the lines you’re going to change.

Now, to put the result in quotes, you need to find lines where the value
is not already quoted:

$ sed -E -n ′/^[^: ″]+: +[^″]+$/p′ chapter7.md
slug: advanced-text-manipulation
weight: 14

Let’s break down the /^[^: ″]+: +[^″]+$/p expression:

/^[^ :″]+:   Match the start of a line and then any characters that are
not a space, a colon, or a quote but are followed by a colon and a space.

 +[^″]+$   Match at least one space and then any set of characters that
don’t contain a quote, all the way to the end of the line.

The pattern is working: it found the two unquoted keys. Now you’ll get
it to print the substitution.

First, you’ll surround the key and value parts in parentheses to make
them capture groups, or chunks of text you can use in the substitution. Here’s
an example that shows how to output the first capture group:

$ sed -E -n ′s/(^[^: ″]+:)(+[^″]+$)/Key is ″\1″/p′ chapter7.md
Key is ″slug:″
Key is ″weight:″

Remember, you’re not just searching for a pattern; you’re using the
s function to substitute all the matched text with Key is ″\1″. The \1 means
“the first match,” or what you found in the first capture group.

You could just as easily show the second capture group, or the value,
like so:

$ sed -E -n ′s/(^[^: ″]+:)(+[^″]+$)/Value is ″\2″/p′ chapter7.md
Value is ″ advanced-text-manipulation″
Value is ″ 14″

Advanced Text Manipulation with sed 95

These examples don’t quite split up the expression properly. The first
capture group contains the colon, and the second contains the space that
follows the colon. The colon and space are the separators for the key-value
pair, so rather than capture them as part of the key or value, you’ll make a
third capture group to capture the separator:

$ sed -E -n ′s/(^[^: ″]+)(: +)([^″]+$)/Key ″\1″, Value ″\3″, Separator ″\2″/p′ chapter7.md
Key ″slug″, Value ″advanced-text-manipulation″, Separator ″: ″
Key ″weight″, Value ″14″, Separator ″: ″

At this point, the sed and p expression has been able to exactly capture
the key, separator, and value.

Now, to tie it together, you can add quotes around the unquoted values:

$ sed -E -n ′s/(^[^: ″]+)(: +)([^″]+$)/\1\2″\3″/p′ chapter7.md
slug: ″advanced-text-manipulation″
weight: ″14″

Awesome! Now you can take the lines that were missing quotes; break
them up into keys, values, and separators; and then rewrite them in the cor-
rect format with the quotes added.

If you wanted to change the file, you could remove the -n flag in order
to write out everything, which means you’d no longer need the p option at
the end of the substitution. Now, run the substitution and write the results
to a file called updated.md as follows:

$ sed -E ′s/(^[^: ″]+)(: +)([^″]+$)/\1\2″\3″/′ chapter7.md > updated.md

Then you can use head to check the top of the file you’ve created to con-
firm that it looks right:

$ head -n 10 updated.md

title: ″Advanced Text Manipulation″
slug: ″advanced-text-manipulation″
weight: ″15″

All the values in the YAML at the top of the file are now surrounded
with quotes. You’ve found a very specific pattern in a large file, substituted
text to match what you need, and then saved the results.

This example has just scratched the surface of what you can do with sed,
but you’ve seen that you can accomplish an incredible amount even with
the basic tools. For example, if you didn’t want to quote values that are only
numbers, just change the pattern like so:

$ sed -E -n ′/(^[^: ″]+:)(+[^″0-9]+$)/p′ chapter7.md
slug: advanced-text-manipulation

All you’ve done is change the value pattern from [^″] (“anything except
quotes”) to [^0-9] (“anything except quotes and digits”).

96 Chapter 7

Creating Template Files
Another technique I’ve found useful again and again is to use sed’s text
replacement capabilities to create a basic templating system. For this exam-
ple, you’ll use the ~/effective-shell/templates/credentials.sh file, which contains a
username and password:

$ cd ~/effective-shell/templates
$ cat credentials.sh
USERNAME=admin
PASSWORD=ThisIsVerySensitive!

Say you don’t want to store the password in the file itself since it might
be sensitive. You could define an easy-to-find pattern as a placeholder in the
file, then replace it with sed.

In the templates folder, you’ll also find a template version of the file,
which includes a placeholder for the password text:

$ cat credentials.template.sh
USERNAME=admin
PASSWORD=%PASSWORD%

Apply the substitution as follows:

$ sed -e ′s/%PASSWORD%/secret/′ credentials.template.sh
USERNAME=admin
PASSWORD=secret

This command has searched for the pattern and replaced it with the
provided value. Note that if you find yourself creating template files like
this, you might find the envsubst (“substitute environment variables”) com-
mand useful to explore.

Editing in Place
The sed command includes an “in place” feature that allows you to directly
change the file you pass it:

$ sed -i ′.bak′ ′s/staging/production/′ test.txt

This command performs the substitutions and puts them in a new
file with a .bak extension. To overwrite the existing file instead, do the
following:

$ sed -i ′s/staging/production/′ test.txt

In this case, you’re not appending anything to the name of the over-
written file; instead, you’re replacing the original file.

Advanced Text Manipulation with sed 97

The -i (“in place”) flag works differently on some systems (such as
macOS), so I generally prefer to output the result of sed to a new file and
then replace the old one. However, it’s useful to know what this flag is and
how it is used, as you’ll see it often in scripts and online examples.

Alternatives to sed
The stream editor is very powerful, but it’s not the right solution for every
scenario. Here are a couple of common alternatives:

awk

If you’re researching how to perform more complex text-based opera-
tions, you’ll often see awk in the mix as a potential solution.

The awk tool is very sophisticated and has its own language to sup-
port complex text manipulation. My advice is to first master sed and
then turn to awk if you regularly find that you need more than sed can
offer.

Programming languages

If I have tasks that are too complex for me to solve with my fairly basic
knowledge of sed, I will generally write a small program in Python,
Node.js, or another high-level and expressive language to do the work,
and call that instead. This code will often be easier to maintain and
understand than an extremely complex sed expression, but you’ll have
to decide on a case-by-case basis when to move from a shell command
to a programming language. (See Chapter 21 for an example of a com-
plex operation that uses a Python script rather than the shell.)

Summary
In this chapter, you learned all about sed, the stream editor tool, and how to
write expressions for it to transform or otherwise manipulate text. You got a
closer look at regular expressions, saw how to apply line patterns to control
which lines of text sed operates on, and explored using patterns and cap-
ture groups to extract information.

In the next chapter, you’ll meet xargs, a tool that enables you to manip-
ulate text and then execute it as a shell command.

8
B U I L D I N G C O M M A N D S

O N T H E F LY

This chapter will introduce you to the
xargs command, a powerful tool that

enables you to build and modify commands
dynamically. If you’ve been following along

with the previous chapters on text manipulation,
some of these techniques will be familiar. Instead
of simply manipulating existing text, however, now
you’ll be leveling up your skills by actually creating
and executing new commands to perform complex
operations.

100 Chapter 8

Introducing xargs
The xargs (“build and execute commands”) command takes input, uses that
input to create commands, and then executes those commands. I tend to
remember it as “execute with arguments,” as xargs sounds a little odd! Some
people pronounce the command “x-args,” and others pronounce it “zargs.”

It’s probably easiest to understand how xargs works with some examples.
To start, you’ll use it to build a set of commands that will remove any empty
files from a folder. First, install this chapter’s samples to the ~/effective-shell
folder:

$ curl effective.sh | sh

You’ll use touch (“create files and set access times”) to create some empty
files that you’ll be cleaning up later:

$ mkdir -p ~/effective-shell/tmp
$ cd ~/effective-shell/tmp
$ touch file{1..100}.txt

If the file you specify doesn’t exist, touch creates it; otherwise, touch updates
the file’s last modified or last accessed time. This code uses a nice shell trick
called brace expansion, in which the shell expands file{1..100}.txt to file1.txt,
file2.txt, and so on, all the way to file100.txt. Brace expansion is just one feature
of a rich set of capabilities called shell expansion, which Chapter 20 describes
in detail.

Now you can search for empty files with the find (“find files and folders”)
command like so (see Chapter 3 for more on the find command):

$ find . -empty
file1.txt
file2.txt
file3.txt
file4.txt
file5.txt
...

To delete each empty file that find returned, pipe the list of files to the
rm (“remove file”) command:

$ find . -empty | rm
rm: missing operand
Try ′rm --help′ for more information.

Uh-oh, what’s going on here? The issue is that rm doesn’t actually read
the list of files from stdin, so you have to pass it that list as a parameter. This
is where xargs can help. See what happens when you pass the list to xargs:

$ find . -empty | xargs
./file40.txt ./file8.txt ./file35.txt ./file81.txt ...

Building Commands on the Fly 101

By default, xargs takes the input, separates each line with a space, and
passes the list of files to the echo command. The echo command then writes
the list out to the screen.

You can change the command that xargs passes the arguments to as
follows:

$ find . -empty | xargs echo rm
rm ./file40.txt ./file8.txt ./file35.txt ./file81.txt ...

This tells xargs to pass the output to the echo command with rm as its
first argument, which writes out rm followed by the list of files. Putting echo
before whatever command you want to run is a useful way to check the com-
mand before committing to running it.

Enter the following to finish the job and delete each file:

$ find . -empty | xargs rm

Finally, run ls to confirm that the files have been deleted.
As you’ve seen, xargs constructs and executes a command with argu-

ments from standard input. This is a great way to build complex commands
dynamically. Let’s see how you can take it further.

Handling Whitespace, Special Characters, and Tracing
One common challenge with xargs is how to deal with whitespace. To see
what I mean, create three files with spaces in their names like so:

$ touch ″chapter ″{1,2,3}.md
$ find . -type f
./chapter 1.md
./chapter 2.md
./chapter 3.md

Then try deleting these files with rm:

$ find . -type f | xargs rm
rm: cannot remove ′./chapter′: No such file or directory
rm: cannot remove ′1.md′: No such file or directory
...

What went wrong here? Use the -t (“trace”) option to show the com-
mand that xargs actually tried to run:

$ find . -type f | xargs -t rm
rm ./chapter 1.md ./chapter 2.md ./chapter 3.md

Hopefully you can spot the error: the filenames include a space, and
since you haven’t enclosed them in quotes, rm thinks you’re providing six
files to delete rather than three.

102 Chapter 8

Fortunately, find works well with xargs since they’re part of the same
package of tools (called findutils), and there’s a special pair of options that
can deal with this problem. For find, you’ll use the -print0 action, and for
xargs, you’ll use the -0 option:

$ find . -type f -print0 | xargs -0 -t rm
rm './chapter 1.md' './chapter 2.md' './chapter 3.md'

The find command’s default action is -print (“print to stdout”), which
writes out the path of each item found, followed by a newline. The -print0
(“print to stdout followed by NUL”) action is very similar but instead writes
out each item followed by a special “null” character (normally represented
as \0 or NUL). This null character is a bit like a line ending or whitespace
character. Using it to separate the filenames and telling xargs to delimit its
input with null fixes the issue of having spaces in the filenames.

After telling find to end each result with a special null character, you
use the -0 (“use NUL as separators”) option to tell xargs that this character
is what separates each line of input.

N O T E 	 The NUL character is the ASCII character 0 and is often used in programming to
represent null or “nothing at all,” as opposed to the digit zero used when printing to
the screen, which is represented by decimal number 30 (or hexadecimal 48). To see the
ASCII table, run man ascii.

Don’t worry if you don’t really understand these internals. If you’re a
computer programmer, they might make sense since this is how strings in
programming languages like C work, but otherwise all you need to know
is that they prevent the xargs program from getting confused when it sees
spaces, tabs, quotes, newlines, and the like in a filename.

I recommend always pairing up the -print0 action with the -0 option
so you won’t get caught out by odd filenames. And remember that you can
always use the -t option to trace what xargs is doing!

Customizing How xargs Processes Input Lines
In the examples you’ve seen so far, every input to xargs has come in on its
own line or separated by NULs. For instance, after creating five files, this
call to find writes five lines of output, one for each file found:

$ touch ″file″{1..5}
$ find . -type f
./file1
./file2
./file3
./file4
./file5

Building Commands on the Fly 103

However, when this output is piped to xargs as input, xargs combines
all five lines and passes them as a set of arguments to a single command
execution:

$ find . -type f | xargs echo
./file1 ./file2 ./file3 ./file4 ./file5

You don’t need to provide echo to xargs since that’s the default behavior,
but I’ve added it here for clarity. What’s important to note is that echo is
called just once with all five files as arguments.

You can modify this behavior by using the -L (“max lines”) parameter
to specify how many input lines xargs processes per command execution.
The following command, for example, ensures that the echo command exe-
cutes for each line of input rather than all lines:

$ find . -type f | xargs -L 1 echo
./file1
./file2
./file3
./file4
./file5

Now echo is called five times rather than just once.
Processing all arguments in a single command execution is typically

faster, but there are limits to how many arguments a command can handle
at once. The -L flag helps you work around this limitation by breaking the
input into smaller chunks.

Let’s look at another example. This command processes three lines at
a time:

$ find . -type f | xargs -L 3 echo
./file1 ./file2 ./file3
./file4 ./file5

Specifying L -3 means echo will run twice, processing three files the first
time and the remaining two files the second time. If there were seven input
files, it would run three times: twice with three files and once with one file.

You might not use the -L parameter very often, but it’s important to
understand what it does because many of the other options you’ll use imply
-L 1. You’ll see these options in the next set of examples.

Organizing the Parameters for Commands
You’ve probably noticed by now that xargs puts the arguments it is given at
the end of the command you write. For example, if the command you pro-
vide is rm, the parameters follow the rm command that is written.

104 Chapter 8

But what if you need the arguments to go somewhere other than the
end of the command? For example, what if you wanted to copy every text
file in a folder to another location? In that case, you need the first param-
eter of copy to be the source file and the last parameter to be the destination
folder.

Here’s how you might start building this command:

$ find . -name "*.txt" -print0 | xargs -0 -t cp ~/backups
cp /home/dwmkerr/backups ./file2.txt ./file3.txt ./file1.txt
cp: target './file1.txt' is not a directory

Obviously, this went wrong. The problem is that the destination loca-
tion for the files has to be the last parameter, but xargs has made it the first
parameter and put the list of files at the end of the command.

To fix this issue, you can tell xargs where to put the list of arguments
with the -I (“replace string”) parameter:

$ find . -name "*.txt" -print0 | xargs -0 -t -I {} cp {} ~/backups
cp ./file2.txt /home/dwmkerr/backups
cp ./file3.txt /home/dwmkerr/backups
cp ./file1.txt /home/dwmkerr/backups

This code sets the replacement string to a pair of braces ({}), which tells
xargs “every time you see {} in the command string, replace it with your out-
put.” The {} is the first parameter for cp, which xargs expands to the list of
files, ensuring that the cp command is constructed properly.

Using the -I parameter automatically implies -L 1, which means the
resulting command is run once for each individual input line. This is help-
ful because xargs can perform the replacement multiple times. To see why
this only makes sense with -L 1, look at this command:

$ find . -name "*.txt" -print0 | xargs -0 -t -I {} cp {} {}.backup
cp ./file2.txt ./file2.txt.backup
cp ./file3.txt ./file3.txt.backup
cp ./file1.txt ./file1.txt.backup

This uses the replacement string {} twice: once for the source file and
once to create a new destination file with the same name but ending with
.backup. Note that {} includes the full path, so files in subdirectories would
be expanded like this:

bash
cp ./tmp/file1.txt ./tmp/file1.txt.backup

This may not be what you want if you’re trying to put all backups in the
current directory.

Processing all files at once with a single cp command wouldn’t work
because cp can have only one destination argument. By automatically using
-L 1, xargs ensures that each input file gets its own separate cp command.

Building Commands on the Fly 105

W H Y BR ACES?

Braces are commonly used as placeholders in xargs examples and man pages
because they match the convention used by the find command’s -exec option:

$ find . -type f -empty -exec stat {} \;

The {} placeholder is built in to the -exec syntax; that is, it‘s the default
behavior for the -exec option. With xargs, you must explicitly set both the -I
flag and the replacement string to get similar behavior.

While {} is the default replacement string, you can specify another
sequence of characters if you wish:

$ env | xargs -I % echo "You have env var: % set!"
You have env var: SHELL=/bin/bash set!
You have env var: COLORTERM=truecolor set!
You have env var: EDITOR=vi set!

Here, % is used as the replacement string instead, which can come in handy
when a command you are building already contains braces.

As you can see, the -I flag’s ability to insert arguments anywhere in a
command makes xargs much more versatile, enabling file operations and
custom command structures that wouldn’t be possible with the default
argument placement.

Running Commands Interactively
The -p (“prompt”) option tells xargs to ask you to confirm each command
before running it. To test this, enter the following command to create a new
pics folder in your home directory:

$ mkdir -p ~/pics

Now move to the pictures folder and interactively copy its contents to the
new pics folder. For each picture, you’ll be asked to enter y (“yes”) to con-
firm and run the command or n (“no”) to skip the command:

$ cd ~/effective-shell/pictures
$ ls | xargs -t -I {} -p cp {} ~/pics/{}
cp .notes /home/dwmkerr/pics.notes?...n
cp laos-gch.JPG /home/dwmkerr/pics/laos-gch.JPG?...y
cp nepal-mardi-himal.jpeg /home/dwmkerr/pics/nepal-mardi-himal.jpeg?...y

106 Chapter 8

This example shows how easily you can sort through a collection of
photos or other files and interactively decide whether to copy each one. As a
bonus, xargs tells you exactly what command it’s planning to run, making it
much easier to spot mistakes in commands before they’re executed.

Running a Command for Each Input
If you want to run a command for each value in a string that’s separated by
a specific character, you can use the -d (“delimiter”) parameter to specify
how xargs should break up the input. As an example, say you want to run a
command for each path in the PATH variable (the set of folders the shell will
use to search for commands). Here’s how this variable is structured:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin...

A single line of text shows each path separated by a colon (:). To pass
each path to xargs, you’d have to split this string up into multiple lines.
Instead, you can use the -d parameter to tell xargs that each input is sepa-
rated by a colon:

$ echo $PATH | xargs -d ':' -p -L 1 ls
ls /usr/local/sbin ?...n
ls /usr/local/bin ?...n

The -L 1 and -p parameters ensure one command will be run for each
input folder and display both a preview of the command and a prompt for
confirmation before showing each folder’s contents.

Summary
This chapter introduced xargs, a powerful utility that allows you to dynami-
cally build complex commands. You can use it to preview how the resulting
command will look, prompt for confirmation before executing a command,
control how many commands are run, and more.

With the examples you’ve seen in this chapter, you’ll be well equipped
to use xargs in your day-to-day work. If you’re interested in reading about
more options for the xargs command, run man xargs.

This concludes Part II of the book, which introduced essential skills to
manipulate text, search through and operate on files, and dynamically cre-
ate commands that you can run interactively.

In the next part of the book, you’ll learn how to write and run your
own programs to automate tasks and tackle complex operations from the
command line: it’s time to meet shell scripting.

PART III
S H E L L S C R I P T I N G

9
S H E L L S C R I P T F U N D A M E N T A L S

In this chapter, you’ll learn how to build
shell scripts, text files made up of commands

that run in sequence, allowing you to auto-
mate tasks and perform complex workflows.

In addition, you’ll explore different ways to run
scripts, how to structure shell script files, and how to
install scripts locally.

Even if you’re already familiar with shell scripts, I suggest you skim
this chapter to make sure you understand the core concepts, particularly
the section “Specifying What Program Should Run a Script” on page 116,
which describes how to make your scripts more portable. Also, you’ll be iter-
ating and improving on the basic shell script you create in this chapter later
in Chapters 10 through 14, so you should familiarize yourself with it before
skipping ahead.

110 Chapter 9

Why Shell Scripts?
As soon as you find yourself repeating the same sequence of commands in a
shell, it’s time to consider saving those commands to a file and running the
file instead.

Saving commands as a shell script has a number of benefits. It saves
time since you don’t have to type the commands whenever you want to run
them. You can use your favorite editor to build the script file, and you can
add comments to describe what you’re trying to achieve (which will make it
far easier for you or others to update the script over time). You can also eas-
ily share these script files, meaning you can copy them to other machines
and run them in different locations or share them with people who might
find them useful.

Creating a Basic Shell Script
To learn how to build and structure a shell script, you’ll create a script that
shows your “common” commands—that is, those you run most often in
your shell. You’ll enhance this basic script throughout the following chap-
ters as you learn new techniques.

If you’ve been reading this book sequentially, many of the commands
and techniques you’ll use will already be familiar to you. You’re just piec-
ing them together in one place, which is the essence of the script-building
process.

The script will do the following:

1. 	 Read the commands from the shell history.
2. 	 Sort the commands and count the number of duplicates to get an accu-

rate total of how many times each command was run.

3. 	 Sort this list to show the most commonly run commands.
4. 	 Print the results to the screen.

If you haven’t done so already, install this chapter’s samples to the
~/effective-shell folder:

$ curl effective.sh | sh

First, you’ll create a place to hold your scripts and a file for the script
itself. Enter the following commands to create a folder called scripts in your
home directory, and add a new empty file to it called common.v1.sh:

$ mkdir -p ~/scripts
$ touch ~/scripts/common.v1.sh

The mkdir command creates a directory. The -p (“create parent direc-
tories if needed”) flag stops the command from returning an error if the

Shell Script Fundamentals 111

directory already exists. The touch command creates an empty file with the
given name.

Adding Code Comments
Now that you’ve created your script file, you’ll add some helpful comments
to explain what the code does. Comments are notes you add to a script or pro-
gram to help the reader (or your future self) understand what is going on.
Any text that follows a hash mark (#) is a comment. The shell ignores com-
ments whether you type them in a script or directly on the command line.

Here are a few examples of how comments can be used:

This is a comment - use this to describe what you′re trying to do.

echo ″Hello Shell″ # Comments can also go at the end of a line.

You can also ″comment out″ a line of code so the shell ignores it:
echo ″Goodbye Shell″

The first comment takes up a whole line, the second comment is a
briefer explanation at the end of a line, and the third comment demon-
strates “commenting out” code—that is, putting a hash mark in front of a
command so that it won’t be executed.

Open your common.v1.sh file. Shell scripts are plaintext only, so you’ll
need to use a basic text editor like Gedit on Linux, Notepad on Windows,
TextEdit on macOS, or a code editor like Visual Studio Code, Sublime Text,
or Notepad++ to work with them. You can also edit files directly in the shell
by using a terminal editor or Vim (see Chapter 23).

Add the following text to the beginning of the file:

Inform the user of the output they can expect.
echo ″common commands:″

The first line is a comment explaining your intention (namely, inform-
ing the user of the output they should expect from this script). Then echo
prints the text common commands: to the screen. Once the script is finished, the
commonly used commands will follow this title line.

Comments are most useful when they describe why you’re doing some-
thing rather than what you’re doing. After all, the “what” should be clear
from the commands themselves, but your intent might not always be. That’s
why Inform the user of the output they can expect is a stronger comment
than, say, Print ″common commands:″ to the screen would be.

If you don’t come from a programming background, many of these
comments might seem a little obvious. But as you write more and more
code, you’ll realize that something that seemed obvious to you when you
wrote it can look surprisingly baffling even just a few days later.

From this point on, I’ll use comments to explain what you’re trying to
accomplish with each section of your script.

112 Chapter 9

Adding and Formatting Commands
Next, you’ll add some commands to the common.v1.sh file. If you’ve installed
the book’s examples, copy and paste the commands from the ~/effective-shell/
scripts/common.v1.sh file (be sure to add the backslashes and line breaks,
which I’ll discuss in a moment) or just directly edit your file so that it looks
like this:

Inform the user of the output they can expect.
echo ″common commands:″

Show the most commonly used commands.
tail ~/.bash_history -n 1000 \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n 10

This short script takes the last 1,000 lines of the ~/.bash_history file and
performs various operations joined into a pipeline to show the most com-
monly used commands.

Rather than having one long line for the pipeline, you’re breaking it
into multiple lines using the backslash (\) as a continuation character, which
tells the shell that the command continues across more than one line.

You can break commands up into as many lines as you like. However,
the continuation character must be the last character on the line. If you
add something after it (such as a comment), the command will fail.

Next, we’ll take a closer look at each component of the script so far.
Before proceeding, make sure to read the box about how to follow along.

FOL LOW ING A LONG W IT H T HIS CH A P T ER’S E X A MPL ES

For the shell script you’re writing in this chapter, you can either use your own
history file, in which case your output will differ from what’s shown here, or you
can use the simplified history file at ~/effective-shell/data/history.txt, which will
make it a little easier to understand what’s happening at each step. Here’s how
to do the latter:

$ cp ~/.bash_history ~/.bash_history.backup
$ cp ~/effective-shell/data/history.txt ~/.bash_history
$ history -c
$ history -r

First, you make a copy of your history file (so that you can restore it later)
and then replace it with the book’s sample history file. Using the history com-
mand with the -c (“clear”) and -r (“reload”) parameters tells the shell to reload
the history file so that your bash history will match the one shown here.

Shell Script Fundamentals 113

When you’re ready to restore your original history, run the following
commands:

$ mv ~/.bash_history.backup ~/.bash_history
$ history -c
$ history -r

Let’s begin with the tail command and then look in turn at each com-
mand in the pipeline acting on its output.

Pipelining Commands
First, the tail command reads up to 1,000 of the most recent commands in
your history file:

$ tail -n 1000 ~/.bash_history
vi README.md
git status
git checkout main
git status
restart-shell
git status
open .
vi README.md
open .

Next, the sort command puts duplicate lines next to each other so that
you can easily count them later:

$ tail ~/.bash_history -n 1000 \
> | sort
git checkout main
git status
git status
git status
open .
open .
restart-shell
vi README.md
vi README.md

Notice that when you enter the backslash continuation character and
press enter, the shell starts a new line with the right angle bracket (>).
Anything you add after this symbol is “ joined” to the previous line, as with
the sort command here.

Next, uniq removes duplicate adjacent lines. Combining it with the -c
(“show count”) flag precedes each remaining line with some whitespace and

114 Chapter 9

the number of times the command occurred in the input (that is, the count
of each command):

$ tail ~/.bash_history -n 1000 \
> | sort history.txt \
> | uniq -c
 1 git checkout main
 3 git status
 2 open .
 1 restart-shell
 2 vi README.md

The sed command removes the whitespace just added by the uniq -c
command (for more on sed, see Chapter 7):

$ tail ~/.bash_history -n 1000 \
> | sort history.txt \
> | uniq -c
> | sed ′s/^ *//′
1 git checkout main
3 git status
2 open .
1 restart-shell
2 vi README.md

Now you have a list of the commands from the history along with a
count of how many times they’ve each been used. Using the sort command
with the -n (“numerical sort”) flag and the -r (“reverse”) flag sorts the list in
descending order to make it more readable:

$ tail ~/.bash_history -n 1000 \
> | sort history.txt \
> | uniq -c
> | sed ′s/^ *//′
> | sort -n -r
3 git status
2 vi README.md
2 open .
1 restart-shell
1 git checkout main

The list of commands is now displayed with the most commonly used
first, then the next, and so on.

N O T E 	 The -n flag tells sort to treat numbers as numerical values instead of as text, which
ensures that larger numbers (such as 100) are correctly ordered before smaller ones
(like 10), which wouldn’t happen in the default text-based sort.

Shell Script Fundamentals 115

Finally, head -n 10 limits the results to the first 10 items, or the 10 most
commonly used commands:

$ tail ~/.bash_history -n 1000 \
> | sort history.txt \
> | uniq -c
> | sed ′s/^ *//′
> | sort -n -r
> | head -n 10
3 git status
2 vi README.md
2 open .
1 restart-shell
1 git checkout main

Now, rather than entering each command in the pipeline, you can run
the following shell command to execute the script:

$ sh ~/scripts/common.v1.sh

The sh command starts a new shell. When you pass the path of a shell
script as a parameter, sh runs that script and then exits.

This isn’t the only way to run a shell script, however. You can also make
it executable.

Making Shell Scripts Executable
To make a shell script executable, you must change its permissions with the
chmod (“change permissions”) command:

$ chmod +x ~/scripts/common.v1.sh

The +x option tells chmod to add the executable permission to the
script (under the hood, this changes the file mode, hence the name chmod).
Now you can simply enter its path into the shell and run it like any other
command:

$ ~/scripts/common.v1.sh

In this example, the shell used to execute the script will depend on
your system configuration. For example, bash will run the script in a new
bash instance, whereas the Z shell typically runs scripts in sh (which may in
turn be linked to another shell on your system).

Fortunately, there’s a way to avoid this type of ambiguity and explicitly
state what program should run your script.

116 Chapter 9

Specifying What Program Should Run a Script
A shebang is a special construct that tells the system what program it should
use to run a script. The shebang is composed of the hash mark (#) and the
exclamation point (!) and is placed at the beginning of the file.

Here’s how the common.v1.sh file would look with the shebang (although
not required, it’s common practice to add a blank line following the she-
bang line):

#!/usr/bin/sh

Inform the user of the output they can expect.
echo ″common commands:″

...

Immediately after the shebang, you write the full path to the program
that should be used to open the file—in this case, that’s the sh program.

To write a script that should run in Python, you could use the shebang
as follows:

#!/usr/bin/python3

print(′Hello from Python′)

Or to explicitly use bash to run a script, you might write:

#!/usr/bin/bash

echo ″Hello from bash″

There’s one catch. This technique works only if the user running the
script has the program installed in the location specified after the shebang.
If they don’t, the script will fail to run.

If you don’t know where a program is installed, you can use the env
(“set or print environment and execute command”) command. While env is
often used to display environment variables, you can also use it to find and
run programs when you don’t know their exact location on your system. It
searches through the directories listed in your PATH variable to find the path
of the command to execute.

For example, here’s how you can use env to run the Python program:

$ env python3
Python 3.13.0 (main, Oct 7 2024, 05:02:14)

[GCC 9.3.0] on linux
Type ″help″, ″copyright″, ″credits″ or ″license″ for more information.
>>>

In this case, env works out the path for the python3 command on your system.

Shell Script Fundamentals 117

To use env in a shebang, specify the full path to env (which should be the
same on all Unix-like systems) and then provide the program name like so:

#!/usr/bin/env bash

echo ″Hello from bash″

Here’s another example:

#!/usr/bin/env ruby

puts ′Hello from Ruby′

Combining a shebang with the env command like this is generally the
safest and most portable way to specify how a shell script should run.

Sourcing Shell Scripts
Sourcing a shell script—that is, loading its contents into your current shell
session and running commands there—is quite different from executing it.
Executing a shell script creates a new shell as a child process of the current
session. This means that if you change something in the environment, such
as a variable, it won’t affect the original shell environment (the one that ran
the script). If your script crashes or exits the shell, it will only crash or exit
the shell it is running in; your original shell will remain active.

When you source a script, however, you can change the current shell
session directly and—if you’re not careful—even end the shell process.

Let’s look at an example. Create a script called set_editor.sh that sets the
EDITOR environment variable to the nano text editor as follows (this script is
also available at ~/effective-shell/scripts/set_editor.sh):

EDITOR=nano
echo ″Editor changed to: $EDITOR″

Check what your current editor is and then use the source (“execute
commands from a file”) command to load the set_editor.sh file:

$ echo $EDITOR
vim
$ source ~/effective-shell/scripts/set_editor.sh
Editor changed to: nano
$ echo $EDITOR
nano

Running echo $EDITOR a second time confirms that your editor has been
changed from Vim to nano in the current shell rather than in a new one.

N O T E 	 You can use a slightly more concise syntax to source a script: dot notation. When
the shell sees a dot (.) character, it will source the file that follows the dot just as if
you’d spelled out the word source. In other words, . ~/effective-shell/scripts/show
-info.sh is equivalent to source ~/effective-shell/scripts/show-info.sh.

118 Chapter 9

Now make the script executable and execute it to see the difference
between sourcing and executing:

$ echo $EDITOR
vim
$ chmod +x ~/effective-shell/scripts/set_editor.sh
$ ~/effective-shell/scripts/set_editor.sh
Editor changed to: nano
$ echo $EDITOR
vim

Notice that although you changed the EDITOR environment variable in
your script, the change has not persisted in the current shell; you’re still
using the Vim editor, not nano. This is because each shell (and in fact, each
process) gets its own copy of the environment.

To demonstrate this even more clearly, try it using the show-info.sh script
from the scripts folder. This script contains the pstree (“show process tree”)
command, which shows the current process and its parent process.

First, source the script:

$ source ~/effective-shell/scripts/show-info.sh
bash
 └─pstree -l -a -s 2169

This output is simple: your shell (the bash process) has run the pstree
command.

Now see what happens when you execute the script:

$ ~/effective-shell/scripts/show-info.sh
bash
 └─sh /home/ubuntu/effective-shell/scripts/showpstree.sh
 └─pstree -l -a -s 2240

This time the pstree command was run as a child sh process. In other words,
bash has run the show-info.sh script in a child shell.

In most cases, you’ll want to execute a script in its own shell so that if
the script changes the environment, exits, or crashes, your original shell
is unaffected. You’ll typically only source a shell script when you want to
change the current shell—for example, to configure certain shell behaviors.

Installing Scripts Locally
Before we wrap up this discussion of shell script fundamentals, you’ll install
your script locally to make it even more convenient and easy to run. Your
common.v1.sh script (with the added shebang) should currently look like this:

Shell Script Fundamentals 119

#!/usr/bin/env sh

Inform the user of the output they can expect.
echo ″common commands:″

Show the most commonly used commands.
tail -n 1000 ~/.bash_history \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n 10

If you didn’t run chmod earlier to make your script executable, do so now:

$ chmod +x ~/scripts/common.v1.sh

To install this script as a local command that you can run easily, you
can create a symbolic link to it in the /usr/local/bin folder:

$ sudo ln -s ~/scripts/common.v1.sh /usr/local/bin/common

A symbolic link is like a shortcut in Windows and other operating sys-
tems. In this example, the ln (“create link”) command creates a symbolic
link called common in your /usr/local/bin folder, pointing to your script. The
sudo (“run command as superuser”) command will ask for your password;
this command is needed on most systems to grant permission to change the
contents of this folder.

N O T E 	 Using the /usr/local/bin folder rather than the /usr/bin folder is just a con-
vention. In general, the /usr/bin folder is for commands installed with package
manager tools like apt on Debian-based distributions or Homebrew on macOS. The
/usr/local/bin folder is typically used for commands you create and manage your-
self on your local machine.

Now you can run the common command from any folder without having
to specify its path:

$ common
common commands:
3 git status
2 vi README.md
...

When the shell sees a command, it searches through the folders in the
PATH environment variable to find the command. Because /usr/local/bin is
one of the folders in PATH, and that’s where you put your symbolic link, the
shell finds and runs your script when you type the common command.

120 Chapter 9

Summary
In this chapter, you’ve learned how to create and run a shell script, how
comments work, how to handle multiline commands, how shebangs and
the env command work, how to make a shell script executable, and how to
install scripts locally. Several topics we’ve touched on here—using dot nota-
tion, customizing the shell by sourcing scripts, and installing custom com-
mands on your system—are covered in more depth in Chapter 15.

In the next chapter, you’ll level up your shell scripting skills by learning
how to add logic to your scripts. You’ll then apply that new knowledge to
enhance the basic common.v1.sh script you’ve built here.

10
U S I N G V A R I A B L E S T O S T O R E ,

R E A D , A N D M A N I P U L A T E D A T A

A variable is a named container that stores
data such as text, numbers, or command

output. If you’re reading this book in order,
you’ve already seen variables a few times; for

example, you may have used EDITOR and HISTFILE
to specify your text editor and get your recent shell
history, respectively. In this chapter, you’ll learn all
about how to use variables in your shell scripts to
configure system settings, prompt for and read user
input, calculate arithmetic values, and more. I’ll walk
you through the different types of variables, syntax
conventions, and operations commonly performed with variables. Finally,
you’ll apply this knowledge to update your basic script from Chapter 9.

Let’s begin by looking at the two main categories of variables: environ-
ment and shell variables.

122 Chapter 10

Understanding Variable Scope: Environment vs. Shell
Variables

Variables can be broadly categorized by their scope, or where they can be
accessed. An environment variable is shared across your shell session and any
commands you run. By convention, environment variables appear in all
uppercase letters, and they often contain useful values that describe your
system and how it is configured, like those listed in Table 10-1.

Table 10-1: Commonly Used Environment Variables

Variable Description

SHELL The current shell, such as bash

USER The current user (on my machine, this is dwmkerr)

HOME The current user’s home directory (on my machine, this is /home/dwmkerr)

To use the value of a variable in the shell, you start with the dollar sign
($) to specify the variable name:

$ echo ″Your pager is: $PAGER″
Your pager is: less

The PAGER variable specifies what pager program the shell should use—
in this case, the less program.

To see a list of the environment variables currently set in your system,
use the env (“set or print environment and execute command”) command:

$ env
SHELL=/bin/zsh
LSCOLORS=ExFxBxDxCxegedabagacad
COLORTERM=truecolor
PYENV_SHELL=bash
...

This list will vary depending on the operating system you are using and
its configuration, but it will often be quite long.

Unlike environment variables, shell variables aren’t shared across pro-
grams but exist only within your current shell session. These variables let
you store temporary values for use in scripts or at the command line. To
create or set a shell variable, enter the name you want to use followed by
an equal sign (=) and the value to assign within double quotes:

$ name=″Dave″
$ location=″Singapore″
$ echo ″Hello $name in $location″
Hello Dave in Singapore

This command creates two variables: one called name with the value
Dave, and one called location with the value Singapore. As with environment

Using Variables to Store, Read, and Manipulate Data 123

variables, when you want to use the value of a shell variable in a command,
you put a dollar sign before it.

It’s best practice to use lowercase for shell variables to distinguish them
from environment variables. This convention also helps reduce the risk of
overwriting the value of an environment variable, which can have unex-
pected results.

For example, in this snippet I accidentally overwrite the USER variable:

USER=″Dave Kerr″

Now, if I try to go to my home directory with cd /home/$USER, this com-
mand will fail because my system expects USER to be my username, dwmkerr,
but I’ve set it to something else. Instead of /home/dwmkerr, my system is look-
ing for a directory named /home/Dave Kerr, which doesn’t exist.

Fortunately, if you overwrite an environment variable like this, the
impact is limited to the script you’re running or your current shell session;
other running programs won’t be affected.

Exporting Shell Variables as Environment Variables
By default, shell variables are isolated to the current process. That means
if you run another process from your shell, such as another shell script or
program, by design your shell variables won’t be inherited by that child pro-
cess. But what if you want them to be?

In that case, you can use the export (“set export attribute”) built-in
keyword to tell the shell to export the variable as an environment variable.
Environment variables are always inherited by child processes, so if you
need to pass along certain values or settings to a child process, you’ll likely
want to export your shell variable.

As an example, say you want to be able to have programs run in a
“debug mode” where they display more diagnostic information to the user.
You could set the following variable to activate this option:

$ export DEBUG_MODE=1

The export keyword promotes the DEBUG_MODE shell variable to an envi-
ronment variable so that it’s accessible to any child processes. (Notice the
all-caps convention here since you’re using an environment variable.) Now,
any new program you create can just check the value of DEBUG_MODE to deter-
mine whether to output the extra diagnostic information. You can test it out
by running a new shell with the sh command:

$ sh -c ′echo ″Debug Mode is: ${DEBUG_MODE}″′

The -c (“command”) parameter tells the sh program you’re providing a
literal command that will run in its own process (often called a subshell). Don’t
worry if the echo command doesn’t totally make sense to you right now; we’ll
unpack it in the next section. The takeaway for now is that the subshell can
access the value of the DEBUG_MODE variable to run in debug mode. Without

124 Chapter 10

the export keyword, DEBUG_MODE would remain a shell variable, invisible to any
child processes.

Variable Syntax
You might have noticed that the echo command in the preceding example
appears within single quotation marks and the DEBUG_MODE variable appears
within braces ({}). These are two of the syntactical conventions you should
be aware of when writing and referencing variables in your shell scripts.
This section will cover these and other types of variable syntax.

Quoting Variables and Values
One topic often causes a lot of confusion for new shell users: When should
you surround a variable with quotes? While it might sound like a purely
stylistic question, quotes (or the lack thereof) can dramatically change how
your script works.

Single Quotes

There are two main scenarios in which you use single quotes. The first is
when you want to use special characters in a variable declaration without
the shell trying to interpret them:

$ message=′ ~~ Save $$$ on with ** ″this deal″ ** ! ~~ ′
$ echo ″$message″
 ~~ Save $$$ on with ** ″this deal″ ** ! ~~

When special characters or variables appear within single quotes, the
shell treats them literally. In this example, the shell hasn’t tried to interpret
the tilde (~) as /home/dwmkerr or the asterisks (*) as a wildcard pattern, and
it hasn’t tried to use the dollar sign to reference a variable.

Let’s revisit the export example from the previous section:

$ sh -c ′echo ″Debug Mode is: ${DEBUG_MODE}″′

The single quotes around ′echo ″Debug Mode is: ${DEBUG_MODE}″′ prevent
the current shell from expanding the DEBUG_MODE variable (that is, replacing
it with its value, 1) so that it will pass the variable to the child process liter-
ally. When the child process inherits the current shell’s environment, it
effectively receives this command:

echo ″Debug Mode is: ${DEBUG_MODE}″

Because the child process’s input is not surrounded with single quotes, the
child process expands and uses the DEBUG_MODE value to run in debug mode.

The second primary way to use single quotes is for ANSI C quoting,
which allows you to include special characters that are used in the C

Using Variables to Store, Read, and Manipulate Data 125

programming language. To use ANSI C quoting, you put a dollar sign
before the open quote:

$ message1=′Hello\nWorld′
$ echo ″Message 1: $message1″
Message 1: Hello\nWorld
$ message2=$′Hello\nWorld′
$ echo ″Message 2: $message2″
Message 2: Hello
World

In the message1 value, the newline escape sequence \n is interpreted
incorrectly as literal text. But the message2 value, where you use ANSI C
quoting instead, displays correctly.

Double Quotes

Double quotes allow you to combine literal text and variable values in one
declaration:

$ deal=″Buy one get one free″
$ message=″Deal is ′$deal′ - save \$″
$ echo ″$message″
Deal is ′Buy one get one free′ - save $

When you set the message variable, the shell doesn’t treat the single
quotes around $deal as special characters, because the whole value has been
enclosed in double quotes. Instead of using $deal literally, the shell per-
forms parameter expansion, replacing the deal variable with its value in the
output. The backslash before the last dollar sign is an escape character: it tells
the shell you want to use a literal dollar sign at the end of the message. In
the output, the backslash is omitted.

Although expansion is the shell’s default behavior, the double quotes
are required here to ensure the shell expands only what you intend and
ignores the rest.

No Quotes

If you leave out quotes altogether when declaring a variable, the shell will
try to expand it by default:

$ home=~
$ echo ″My home is: $home″
My home is: /home/dwmkerr

Here, the shell has expanded the tilde (~) to the home directory. See
what happens when you add quotes around the tilde:

$ tilde=″~″
$ echo ″A tilde is: $tilde″
A tilde is: ~

126 Chapter 10

Now the shell uses the literal value: the tilde character.
In addition to the tilde expansion shown here, the shell can perform

these types of expansion:

Brace expansion   Expands values between braces, such as touch
file{1,2,3} into touch file1 file2 file3

Parameter and variable expansion   Expands terms that start with a
dollar sign into parameter values, such as echo $SHELL into echo /usr/bin/
sh (as you’ve seen, using double quotes as in echo ″$SHELL″ also works for
parameter expansion)

Command substitution   Evaluates the contents of $(command) sequences
to run commands in a subshell, as in echo $(date) to echo the results of
the date command (using double quotes as in echo ″$(date)″ also works
for command substitution)

Arithmetic expansion   Evaluates the contents of $((expression))
sequences to perform basic mathematical operations, such as 4 * 4 in
square=$((4 * 4))

Word splitting   Splits up text and input into “words,” or sequences of
text that you can run operations such as loops over (a more complex
topic covered in Chapter 12)

Pathname expansion   Expands wildcards and special characters in
pathnames, such as ls *.txt to return all filenames that include .txt

Later in this chapter, I’ll talk more about parameter expansion in
the section “Expanding Shell Parameters” on page 130, and more about
arithmetic expansion in “Performing Arithmetic Operations” on page 135.
Brace expansion and other types of shell expansion are covered in more
detail in Chapter 20.

QUOT ING RUL ES OF T HUMB

Quoting can seem confusing, but remember these tips and you’ll generally be
on the right path:

•	 Use double quotes most of the time: they handle variables and subshells for
you and don’t do complex operations like word splitting.

•	 Use single quotes for literal values.

•	 Use no quotes if you want to use all shell expansion features.

Hopefully you’re a little clearer now on when to use each type of quot-
ing, but if you ever need a reminder, run man bash and search for the text
QUOTING.

Using Variables to Store, Read, and Manipulate Data 127

Using Braces to Reference Variables Explicitly
When you append text directly to a variable name, the shell can’t tell where
the variable name ends and the additional text begins. For example:

$ echo ″Creating backup folder at: ′$USER_backup′″
$ mkdir $USER_backup
Creating backup folder at: ′′
usage: mkdir [-pv] [-m mode] directory ...

Rather than creating a folder called dwmkerr_backup (which is my USER
variable followed by the text _backup), this script fails because it’s looking
for a variable named USER_backup, which does not exist.

To avoid such errors, you can surround the variable name with braces
to refer to a variable more explicitly:

$ echo ″Creating backup folder at: ′${USER}_backup′″
$ mkdir ″${USER}_backup″
Creating backup folder at: ′dwmkerr_backup′

Now the script correctly interprets the command and creates the dwmkerr
_backup folder.

If there’s ever any potential ambiguity with a variable name, enclose
it with braces to be on the safe side. This is exactly why DEBUG_MODE was
enclosed in braces when you launched the shell earlier to run a child pro-
cess in debug mode. Some people always use braces to be as explicit as pos-
sible about the variable name and reduce the risk of mistakes if someone
comes along later to edit or change the code.

To improve this script further, you could create a new variable that
holds the backup directory:

$ backupdir=″${USER}_backup″
$ echo ″Creating backup folder at: ′${backupdir}′″
$ mkdir ″${backupdir}″

Creating the backupdir variable saves you from having to repeat the
${USER}_backup text each time you want to use it.

Common Variable Operations
Now that you’ve got the syntax down, you’re ready to see how you can put
variables to use in your shell scripts. This section will walk you through
some of the most common operations you’ll perform with variables.

Storing a Command’s Output in a Variable
You can use a subshell to store a command’s output in a variable using the
following format:

variable=$(command)

128 Chapter 10

Say you’re creating a variable to hold a user’s password but you want to
mask the password onscreen by replacing the characters with asterisks:

$ password=″somethingsecret″
$ masked_password=$(echo ″$password″ | sed ′s/./*/g′)
$ echo ″Setting password ′${masked_password}′...″
Setting password ′***************′...

First, you define a variable called password with the value somethingsecret.
Then you use sed (covered in Chapter 7) to replace each letter with an aster-
isk for privacy, storing that output in another variable called masked_password.
Finally, you print a message to the screen that displays the masked password.

Managing Multiple Values with Arrays
Arrays are variables that can store multiple values, which make them useful
for working with sequences of values such as numbers, sets of files, or collec-
tions of user input. To create an array, give it a descriptive name followed by
the equal sign, and then enclose the array values in parentheses:

$ days=(″Monday″ ″Tuesday″ ″Wednesday″ ″Thursday″ ″Friday″ ″Saturday″ ″Sunday″)

Once you’ve defined your array, you can retrieve an element at a given
index (position) by putting the index between square brackets and sur-
rounding the entire expression in braces:

$ echo ″The first day is: ${days[0]}″
The first day is: Monday
$ echo ″The last day is: ${days[6]}″
The last day is: Sunday

In the first example, you specify an index of 0 to print the value of the
first element of the array. In the second example, specifying an index of 6
prints the value of the last element of the array.

N O T E 	 Arrays in bash start at index 0, whereas arrays in the Z shell start at index 1. Therefore,
the first item in a Z shell array is in position 1, the second is in position 2, and so on.
Keep this distinction in mind; otherwise, you may read the wrong element of an array
by mistake.

Braces are required when you’re using array expressions to read values
but not when you’re setting array values (as with the days array at the start of
the section). This is consistent with what you’ve seen so far with other types
of variables: you read values using the dollar sign and braces and set values
with just the variable name.

Using Variables to Store, Read, and Manipulate Data 129

There are many different ways to access an array’s elements or to per-
form operations on an array. Table 10-2 lists some of the most common
array operations. You’ll find even more in Chapter 11.

Table 10-2: Common Array Operations

Operation Syntax Example

Create array array=() $ days=(″Monday″ ″Tuesday″ ″Wednesday″
″Thursday″ ″Friday″ ″Saturday″
″Sunday″)

Get array element ${array[index]} $ echo ${days[2]}
Wednesday

Get all elements ${array[@]} $ echo ${days[@]}
Monday Tuesday Wednesday Thursday
Friday Saturday Sunday

Set array element ${array[index]}=value $ days[0]=″Mon″

Get a subset of elements ${array[@]:start:number} $ echo ${days[@]:5:2}
Saturday Sunday

Get array indexes ${!array[@]} $ echo ${!days[@]}
0 1 2 3 4 5 6

Get array length ${#array[@]} $ echo ${#days[@]}
7

Append to array array+=(val1 val2 valN) $ days+=(″Birthday ″); echo ${days[@]}
Monday Tuesday Wednesday Thursday
Friday Saturday Sunday Birthday

Arrays in bash can be sparse, meaning you can have “gaps” in your array.
As an example, here’s how you could create and show a leaderboard that
contains only a few scores:

$ leaderboard=()
$ leaderboard[0]=″First Place: Alice″
$ leaderboard[4]=″Fifth Place: Bob″
$ leaderboard[8]=″Ninth Place: Eve″
$ echo ${leaderboard[0]}
First Place: Alice
$ echo ${!leaderboard[@]}
0 4 8

You begin by creating an empty array named leaderboard. Then, you use
“set array element” syntax to assign values to a few indexes (remember that
bash array indexes start from 0!), use the “get array element” syntax to show
the person in the lead, and finally use the “get array indexes” syntax to
show which positions in the leaderboard have been filled.

130 Chapter 10

Storing Complex Data with Associative Arrays
More recent versions of bash support associative arrays, in which you asso-
ciate a string (known as a key) with each element, rather than a numeric
index. This creates a key-value structure similar to the dictionaries you
might have seen in other languages.

To create an associative array, use the declare (“set variable”) command
with the -A (“associative array”) flag followed by the array name you want
to use:

$ declare -A book

Now you can use the “set array element” syntax to specify some details
about the book array:

$ book[title]=″Effective Shell″
$ book[author]=″Dave Kerr″

Here you’re setting title and author as keys and assigning them the string
values Effective Shell and Dave Kerr, respectively. Now you can refer to these
elements of the array by name, rather than number, which can be far more
convenient:

$ echo ″Book details: ${book[title]} - ${book[author]}″
Book details: Effective Shell - Dave Kerr

If you find yourself regularly using associative arrays, however, there’s a
good chance you’re trying to do something more complex than is suitable
for a shell script. See Chapter 21 for some alternative options.

Expanding Shell Parameters
In most examples thus far, you’ve seen simple shell parameter expansion
where the variable is expanded into its value like so:

$ echo ″My shell is ${SHELL}″
My shell is: /usr/bin/sh

But shell parameter expansion isn’t just about replacing variables with
their values. You can also use it to transform or manipulate variables in vari-
ous ways. Let’s look at some of the most common ones.

Returning the Variable Length

The ${#var} operator returns the length of a variable:

$ var=″The quick brown fox jumps over the lazy dog″
$ length=${#var}
$ echo ″Length: $length″
Length: 43

Using Variables to Store, Read, and Manipulate Data 131

You begin by defining a var variable with the value The quick brown fox
jumps over the lazy dog. Next, you use parameter expansion to count the
characters in var (including the spaces) and store that number in length,
whose value then gets printed to the screen.

Returning a Default Value

The ${var:-default} operator returns the value of the var variable or the text
default if var isn’t found:

$ read -p ″Enter your username: ″ user
Enter your username: dave
$ username=${user:-$USER}
$ echo ″Username: $username″
Username: dave

First, the read command (which you’ll learn about shortly) prompts
the user for their username and stores that input in the user variable. The
next line uses parameter expansion to set username with a default value,
essentially saying, “If user has a value, use that; otherwise, use the USER
value.” Because I entered dave, that value is stored in username and printed
to the screen.

Let’s see what happens if I press enter without providing a username:

$ read -p ″Enter your username: ″ user
Enter your username:
$ username=${user:-$USER}
$ echo ″Username: $username″
Username: dwmkerr

Now the value of USER (which on my system is dwmkerr) is printed instead.

Returning a Substring

The ${var:start:count} operator returns a subset of the string the var
variable contains, starting at position start and extracting up to count
characters:

$ path=″~/effective-shell″
$ echo ″First part of the path: ${path:0:2}″
First part of the path: ~/
$ echo ″Last part of the path: ${path:2}″
Last part of the path: effective-shell

The first line creates a path variable with the value ~/effective-shell,
and the second line uses parameter expansion to extract a substring: :0
starts at the first character and :2 extracts two characters, so ${path:0:2}
returns ~/. In the third line, :2 starts at the third character (position 2) but
no count is specified, so the shell returns everything from start to the end,
printing effective-shell.

132 Chapter 10

Transforming to Uppercase

The ${var^^} operator returns the value of var in all uppercase:

$ message=″don′t shout″
$ echo ${message^^}
DON′T SHOUT

This one’s fairly self-explanatory: ${message^^} tells the shell to put the
value of the message variable, don′t shout, in all caps.

Transforming to Lowercase

The ${var,,} operator returns the value of var in all lowercase:

$ message=″DON′T SHOUT″
$ echo ${message,,}
don′t shout

Again, this operation is intuitive: it takes the all-caps value of message
and sets it to lowercase.

Using Variable Indirection

The ${!var_name} operator returns the value of the variable with the name
specified in the var_name variable:

$ read -p ″Enter a variable name: ″ var_name
Enter a variable name: SHELL
$ echo ″The value of ′${var_name}′ is: ${!var_name}″
The value of ′SHELL′ is /bin/bash

First, you use read to prompt the user, storing their input—in this case,
SHELL—in the var_name variable. Then, ${!var_name} tells the shell to look at
what’s in var_name (SHELL) and get the value of the variable by that name—
that is, the value of SHELL, which is /bin/bash.

This technique, called indirection, lets you access variables dynamically
when their names are stored in other variables. This operation is useful if
you want to get the value of a variable but don’t know the variable’s name.

There are several other options for shell parameter expansion. If
you’re interested in seeing the full list, run man bash and search for the text
expansion.

Reading and Storing User Input in Variables
The read (“read from standard input”) command reads a line of text from
stdin and stores that value in a variable called REPLY. Here it is in action:

$ echo ″What is your name?″
$ read

Using Variables to Store, Read, and Manipulate Data 133

When you run read, the shell will wait for you to key in some input.
Enter a name, and then press enter.

What is your name?
$ Dave

If you don’t press enter, read will keep reading until it reaches the end
of a line. You could also press ctrl-D to signal the end of transmission.

You can then use REPLY to display the stored text:

$ echo ″Hello, ${REPLY}″
Hello, Dave

While REPLY is the default variable for storing input, you can also specify
your own variable name.

Reading into a Custom Variable

To tell the read command to store the input it reads into a variable other
than REPLY, specify your preferred variable name after the command, like so:

$ echo ″What is your name?″
$ read name

Remember, the dollar sign applies only when you want to use the vari-
able, not when you want to set the variable, so it’s not used for name here.

In general, you should provide a variable name for read as it will make
your script a little easier to understand. Not every user will know that the
REPLY variable is the default location, so they might find it confusing if you
don’t explicitly specify a variable name.

Providing a variable name also demonstrates good coding practices.
Variable names should be descriptive, indicating what the variables are
likely to be used for, which makes your scripts easier to follow and maintain
over time.

Prompting for Input

Before you run the read command, you can prompt for input with the echo
command, as shown earlier, or with the -p (“prompt”) parameter:

$ read -p ″Please enter your name: ″ name
Please enter your name: Dave
$ echo ″$name″
Dave

134 Chapter 10

N O T E 	 If you’re using the Z shell, this command will fail, as zsh doesn’t use the -p parameter
for a prompt. Instead, insert a question mark before the line of text prompting the user:

% read ″?Please enter your name: ″ name
% Please enter your name: Dave
$ echo ″$name″
Dave

The command prompts the user for their name, stores that value in the name variable,
and then prints it to the screen.

Hiding Input

You can use the -s (“silent”) flag to hide input as it’s being entered, which is
useful in cases such as keeping a password private:

$ read -s -p ″Enter a new password: ″ password
Enter a new password:
$ masked_password=$(echo ″$password″ | sed ′s/./*/g′)
$ echo ″″
$ echo ″Your password is: $masked_password″
Your password is: ********

When you run this read command, you’ll be prompted for input just as
in the previous examples, and the shell will store that input in the password
variable; however, because you’ve used the -s flag, the shell won’t print what
you type or add a newline when you press enter. The empty echo command
writes a newline before the output so that it doesn’t appear on the same line
as your password; otherwise, it would appear as follows:

Enter a new password: Your password is: ********.

As you saw in the section “Storing a Command’s Output in a Variable”
on page 127, in the second echo command you’re using sed to replace each
character in the password with an asterisk, creating a masked version of the
password that you can print to the screen.

Limiting Input

There may be times when you don’t want to require the user to press enter
to indicate that they’ve finished entering input, such as having them enter y
for “yes” or n for “no.” You can handle this case in a couple of ways. The first
is to use the -n (“number of characters”) parameter to limit the number of
characters that are read:

$ read -n 1 -p ″Continue? (y/n): ″ yesorno
Continue? (y/n): n

Using the -n flag with the value 1 tells read to accept only a single charac-
ter. You can see what the user entered by running the following commands:

Using Variables to Store, Read, and Manipulate Data 135

$ echo ″″
$ echo ″You typed: ${yesorno}″
You typed: n

Like the -s flag for hiding input, the -n flag does not add a newline
automatically, so you need to write an empty echo command to insert one.
Otherwise, the output would look very confusing, like this:

Continue? (y/n): nYou typed: n

The same issue would occur if you used read -n 2 to have the user type
no: read would read two characters, but it would not add the newline it auto-
matically inserts when the user presses enter.

N O T E 	 Any time you use the -n or -s flag for read operations, you should write an empty
newline to separate the output from the input.

The second way to limit input is to use the -d (“delimiter”) flag to spec-
ify a character that indicates when read should stop reading input:

$ read -d ′X′ -p ″Enter your favorite word (then X): ″ word
Enter your favorite word (then X): shellX
$ echo ″″
$ echo ″Your favorite word is: ${word}″
Your favorite word is: shell

The -d ′X′ parameter tells read to read up until it finds an X. Keep in
mind that this can be confusing for users: if they press enter, expecting to
end the input, read will read it as a newline and continue waiting for an X.
Be explicit in your prompt so the user knows to finish their input with the
delimiter you’ve set. Better yet, avoid potential confusion altogether by stick-
ing with the default newline delimiter and having the user press enter, or
use sed to extract everything from their input up to the point you want.

To view other options for the read command, type help read.

Performing Arithmetic Operations
Variables are frequently used for arithmetic operations, and fortunately the
shell has some built-in features to help you perform them.

You might assume that you can use symbols like the plus sign (+) directly
in your math-based scripts, but they don’t always perform as expected. For
example, here’s what happens if you try to add two numbers together with
the plus sign:

$ read -p ″Enter a number: ″ number1
Enter a number: 23
$ read -p ″Enter another number: ″ number2
Enter another number: 34
$ sum=$number1+$number2
$ echo ″The sum of $number1 and $number2 is $sum″
The sum of 23 and 34 is 23 + 34

136 Chapter 10

This result is obviously not the sum of 23 and 34 and likely not what you
were looking for. Instead of adding the values together, the shell uses the +
to concatenate—that is, join together—the two strings.

To tell the shell that you want to perform an arithmetic operation, use
the double parentheses syntax as follows:

$ read -p ″Enter a number: ″ number1
Enter a number: 23
$ read -p ″Enter another number: ″ number2
Enter another number: 34
$ sum=$(($number1+$number2))
$ echo ″The sum of $number1 and $number2 is $sum″
The sum of 23 and 34 is 57

Surrounding the addition operation in two sets of parentheses returns
the result you were looking for. This syntax, known as arithmetic expansion, is
part of the set of shell expansion features mentioned earlier in this chapter.

N O T E 	 Dollar signs are optional before variable names within double parentheses, as are
spaces around the plus sign and other arithmetic operators. However, if you inten-
tionally want to perform a concatenation operation like the first example, you must
omit the spaces around the plus sign.

You can also use the let keyword as follows to tell the shell you want to
perform an arithmetic operation:

$ let sum=″$number1+$number2″

While I’ve included the let keyword here for completeness, I recom-
mend using the double parentheses syntax since it is more common.

The plus sign is just one arithmetic operator you can use with variables
in the shell. Table 10-3 lists several other arithmetic operators and how
they’re used.

Table 10-3: Arithmetic Operators

Operator Description Example

+ Addition echo $((3+4))
prints 7

- Subtraction echo $((4-2))
prints 2

* Multiplication echo $((4*2))
prints 8

/ Division echo $((4/2))
prints 2

** Exponent echo $((4**3))
prints 64

Using Variables to Store, Read, and Manipulate Data 137

Operator Description Example

% Modulus echo $((7%3))
prints 1

++i Prefix increment i=1; echo $((++i))
prints 1, i is set to 2

i++ Postfix increment i=1; echo $((i++))
prints 2, i is set to 2

--i Prefix decrement i=3; echo $((--i))
prints 3, i is set to 2

i-- Postfix decrement i=3; echo $((i--))
prints 2, i is set to 2

i+=n Increment i=3; echo $((i+=3))
prints 6, i is set to 6

i-=n Decrement i=3; echo $((i-=2))
prints 1, i is set to 1

Let’s look at another example. You can combine mathematical opera-
tors to convert a value in degrees Celsius to Fahrenheit as follows:

$ read -p ″Enter a value in Celsius: ″ celsius
Enter a value in Celsius: 12
$ fahrenheit=$(((celsius * 9/5) + 32))
$ echo ″${celsius} degrees Celsius is ${fahrenheit} degrees Fahrenheit″
12 degrees Celsius is 53 degrees Fahrenheit

First, read stores the input temperature in the celsius variable. Next,
arithmetic expansion tells the shell to multiply celsius by 9, divide that
result by 5, add 32, and then store the result in the fahrenheit variable.
Finally, the echo command prints the result to the screen.

Note that the shell’s arithmetic uses only integers (whole numbers), so
12°C shows as 53°F rather than 53.6°F. If you need to be able to use deci-
mals, consider a more full-featured programming language, as discussed in
Chapter 21.

Also notice the use of parentheses in (celsius * 9/5) to specify the
order in which the calculations should be performed (that is, the order
of operations). Using parentheses this way is a good habit to get into as it
makes your scripts clearer to the reader. The default order of operations is
detailed in the man page; to access it, enter man bash and search for the text
^ARITHMETIC\ EVALUATION (be sure to include the backslash to escape the space
between the words). This page also lists the complete set of available arith-
metic operators.

Enhancing the common Command with Variables
With your new understanding of variables, you can improve the common com-
mand from Chapter 9 by extracting certain values into variables so that you
can more easily change them. If you’ve forgotten the example or haven’t

138 Chapter 10

read that chapter yet, it’s located at ~/effective-shell/scripts/common.v1.sh. To
install the sample files to the ~/effective-shell folder, run this command:

$ curl effective.sh | sh

The common.v1.sh script currently looks like this:

common.v1.sh # Inform the user of the output they can expect.
echo ″common commands:″

Show the most commonly used commands.
tail ~/.bash_history -n 1000 \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n 10

To improve on this script, you’ll create variables for the number of
lines of history to search and for the number of commands to show. Create
a copy of the common.v1.sh script, save it as common.v2.sh, and update it as
follows:

common.v2.sh # Inform the user of the output they can expect.
echo ″common commands:″

The following variables control how the command runs.
history_lines=1000 # The number of lines of history to search through
command_count=10 # The number of common commands to show

Show the most commonly used commands.
tail ~/.bash_history -n ${history_lines} \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n ${command_count}

By replacing the static values 1000 and 10 with the shell variables
history_lines and command_count, respectively, you’ve made the script easier
to understand and maintain. The variables have descriptive names, and if
you need to update these values later, you’ll only need to change the script
in one place rather than hunting through the code for every instance.

To replace the installed common command with this new one, update the
symlink in your /usr/local/bin folder as follows:

$ sudo ln -sf $HOME/effective-shell/scripts/common.v2.sh /usr/local/bin/common

Note the use of the -f (“force”) flag to ln to force the creation of the
symlink even though one already exists at this location.

Using Variables to Store, Read, and Manipulate Data 139

Summary
In this chapter, you learned all about variables—what they are, why they’re
useful, how to create and format them properly, and how to use them in
your shell scripts to perform common operations like storing and reading
user input.

A few new constructs from this chapter will appear again and again
throughout the book. I’ve summarized them here so you’ll recognize them
more easily:

${variable}   Gets the value of variable. The braces surround the vari-
able name.

$(echo ″$VARIABLE″)   Runs the echo command in a subshell. The paren-
theses indicate that you’re running a subshell.

$(($number1 + $number2))   Adds the values in the variables number1 and
number2. The double parentheses indicate that you’re performing an
arithmetic operation.

The next chapter discusses adding conditional logic to scripts (that
is, running commands only when certain conditions are met). With this
incredibly powerful technique, you’ll be able to create much more sophisti-
cated scripts.

11
M A S T E R I N G C O N D I T I O N A L L O G I C

A shell script normally executes commands
in sequence, but what if you wanted it to

act differently under certain circumstances?
Enter conditional logic, which lets you control

how your scripts behave based on specific con-
ditions, such as how a user responds to a query or
whether certain files exist. In this chapter, you’ll learn
how to use tools like if statements and case state-
ments to have your scripts check conditions and run
different commands based on the results. We’ll also
cover more advanced constructs such as using condi-
tional expressions with regular expressions and chain-
ing commands to make your scripts more flexible and
responsive.

142 Chapter 11

The if Statement
You can use an if statement to perform operations in shell scripts only
when certain conditions are met. The if statement has the following
structure:

if test-commands
then
 conditional-command 1
 conditional-command 2
 conditional-command n
fi

The statement begins with the if command and then specifies one or
many conditions to test. Following that is the then keyword and the com-
mands to be run if the conditions are met. If the results of the test-commands
are all 0 (indicating success), each conditional-command in the then block will
be run. The fi keyword (if written backward) closes the if statement.

To get a better idea of how the if statement is used, let’s look at a simple
example:

if mkdir ~/backups
then
 echo ″Successfully created the ′backups′ folder″
fi

First, the mkdir command tries to create a folder. As long as you don’t
already have a folder called backups in your home directory, mkdir will return
0 and the conditional echo command will execute, returning the following
output:

Successfully created the ′backups′ folder

If you run the script again, though, the mkdir command will fail because
the directory already exists. In that case, it returns 1 (indicating failure)
and the echo command won’t be executed. You’ll also see an error message
from the mkdir command:

mkdir: /home/dwmkerr/backups: File exists

You might be surprised that the result of the test commands has to be
0 for the conditional commands to run. This is the opposite of how most
programming languages work, where 0 normally would be considered false
(meaning the test command failed and the conditional commands would
not run). In computer programs that run in the shell, however, 0 generally
means success, and any nonzero value typically indicates an error code. The
error code indicates the type of error; for example, code 1 means “general
error,” but code 127 means “command not found.” Different programs can
also specify their own error codes.

Mastering Conditional Logic 143

The test Command
The test (“evaluate expression”) command checks whether a certain con-
dition is true before the shell attempts to run the commands in the then
block. As long as the condition is true, test returns 0 to indicate success and
the shell will run the conditional commands.

You could improve the preceding if statement with test to create the
backups folder only if it doesn’t already exist. Whereas in the previous exam-
ple mkdir failed with an error if the backups folder was already present, test
will simply skip the mkdir command altogether if the condition returns false.
Here’s how the if statement looks with the test command:

if ! test -d ~/backups
then
 echo ″Creating backups folder″
 mkdir ~/backups
fi

The test command evaluates the expression -d ~/backups, where -d (“file
exists and is a directory”) checks to see whether the provided path is a direc-
tory. Since you want to create the directory only if it does not exist, you use
the not operator (!) to “invert” the result of test.

Instead of entering test explicitly, you can surround an expression with
square brackets:

if ! [-d ~/backups]
then
 echo ″Creating backups folder″
 mkdir ~/backups
fi

The shell will evaluate this expression exactly the same way as the previ-
ous one. This square bracket syntax is frequently used as a shorthand for
test and can make your scripts far more compact. Be sure to include a space
before and after the opening and closing square brackets.

Using test Operators with Expressions and Files
You can use many operators in a test expression. Table 11-1 lists some of the
most common ones.

Table 11-1: Common Operators for test Expressions

Expression part Meaning

-n True if the length of a string is nonzero

-z True if the length of a string is 0

″$var″ True if the variable var is set and is not empty

s1 = s2 True if the strings s1 and s2 are identical

s1 != s2 True if the strings s1 and s2 are not identical
(continued)

144 Chapter 11

Expression part Meaning

n1 -eq n2 True if the numbers n1 and n2 are equal

n1 -ne n2 True if the numbers n1 and n2 are not equal

n1 -lt n2 True if the number n1 is less than n2

n1 -le n2 True if the number n1 is less than or equal to n2

n1 -gt n2 True if the number n1 is greater than n2

n1 -ge n2 True if the number n1 is greater than or equal to n2

The test command also provides a number of operators that specifi-
cally work with the filesystem, which are very handy when building shell
scripts. You’ve already seen the -d operator. Table 11-2 lists some other use-
ful options.

Table 11-2: Common test Operators for Files

Expression part Meaning

-d True if the file exists and is a folder

-e True if the file exists, regardless of the file type

-f True if the file exists and is a regular file

-L True if the file exists and is a symlink

-r True if the file exists and is readable

-s True if the file exists and has a size greater than zero

-w True if the file exists and is writable

-x True if the file exists and is executable; if it is a directory,
checks if it can be searched

file1 -nt file2 True if file1 exists and is newer than file2

file1 -ot file2 True if file1 exists and is older than file2

file1 -ef file2 True if file1 and file2 exist and are the same file

Earlier you saw the ! operator in action to invert the test result. You can
place the operator either before or after the test command, so

if ! test -d ~/backups

is equivalent to:

if test ! -d ~/backups

To see all of the many operators available for the test command, run
man test.

Table 11-1: Common Operators for test Expressions (continued)

Mastering Conditional Logic 145

Checking Multiple test Conditions Simultaneously
You’ll often want to check more than one test condition at a time. To do so,
you can use the and (&&) and or (||) operators:

if [$year -ge 1980] && [$year -lt 1990]; then
 echo ″$year is in the 1980s″
fi

This script checks to see whether the value of the variable year is greater
than or equal to (-ge) 1980 and less than (-lt) 1990, effectively searching
within a range of years.

Alternatively, you could use the -a (“and”) and -o (“or”) operators.
Here’s how the previous script looks using the -a operator:

if [$year -ge 1980 -a $year -lt 1990]; then
 echo ″$year is in the 1980s″
fi

This form of the and and or operators can lead to some subtle problems,
so I don’t recommend using them. However, it’s important to be able to rec-
ognize them, since you might see them in someone else’s script.

You will also likely see the following syntax, which uses double square
brackets to indicate a conditional expression:

if [[$year -ge 1980 && $year -lt 1990]]; then
 echo ″$year is in the 1980s″
fi

You’ll learn all about this format in “Conditional Expressions” on page 149.

Combining Statements on a Single Line
You might have noticed the use of the semicolon in the previous examples
where you checked multiple test conditions. By default, the shell assumes
that each individual line is a single statement, so if you want to put more
than one statement on a line, you need to let it know where one statement
ends and another starts. That’s where the semicolon comes in. The shell
interprets the semicolon as a “command separator” symbol.

You’ll often see if and then statements on the same line like this:

if ! [-d ~/backups]; then
 mkdir ~/backups
fi

In this example, then doesn’t require a semicolon because it is a keyword
rather than a command.

146 Chapter 11

If you hadn’t included a semicolon after the if command, the shell
would have assumed that the entire line was a single statement, giving you
the following error:

bash: syntax error near unexpected token `fi′

You can put as many statements on a single line as you like. You could
even write the script like so:

if ! test -d ~/backups; then mkdir ~/backups; fi

However, I suggest you start by writing if statements with if and then on
separate lines. Once you’re more familiar with the syntax, you can combine
the lines if you prefer, but generally speaking, keeping commands on sepa-
rate lines makes your scripts more readable for other users.

The else Clause
The else clause defines a series of statements that should be executed if the
condition in the if statement is not true. For example, the following script
tells the user whether they’ve installed the common command:

if [-e /usr/local/bin/common]
then
 echo ″The ′common′ command has been installed in the local bin folder.″
else
 echo ″The ′common′ command has not been installed in the local bin folder.″
fi

The -e (“file or folder exists”) operator checks whether a file or folder
exists in the location /usr/local/bin/common (see Chapter 9 for a full discus-
sion of the common command).

If you run the script and you haven’t installed the common command,
you’ll see the following output:

The ′common′ command has not been installed in the local bin folder.

Note that you still need to use the fi keyword to close an if statement
with a nested else statement.

The elif Clause
The elif (short for “else if”) clause creates additional checks and defines
statements that should run if other conditions are true.

This example updates the preceding script to check whether the common
command is executable, using the -x (“is executable”) operator:

Mastering Conditional Logic 147

if [-x /usr/local/bin/common]; then
 echo ″The ′common′ command has been installed and is executable.″
elif [-e /usr/local/bin/common]; then
 echo ″The ′common′ command has been installed and is not executable.″
else
 echo ″The ′common′ command has not been installed.″
fi

The message you see will depend on whether you have installed the
common command in your local binaries folder and whether the script is
executable. If you want to see all of the various messages this snippet can
output, experiment with the following code to add or remove common or to
change its executable permissions. These statements allow you to test each
condition in the previous example:

Create a link to the ″common″ command in the local binaries folder.
sudo ln -s $HOME/effective-shell/scripts/common.v1.sh /usr/local/bin/common

Remove the ″executable″ flag from the ″common″ command.
chmod -x $HOME/effective-shell/scripts/common.v1.sh

Add the ″executable″ flag to the ″common″ command.
chmod +x $HOME/effective-shell/scripts/common.v1.sh

Remove the link to the ″common″ command from the local binaries folder.
sudo rm /usr/local/bin/common

The elif statement looks very similar to the if statement. The statement
takes a set of commands, which could be normal shell commands or test
commands.

It’s very important to consider the order in which the if and elif state-
ments will be executed. If the previous script were written like this, it wouldn’t
have worked:

if [-e /usr/local/bin/common]; then
 echo ″The ′common′ command has been installed and is executable.″
elif [-x /usr/local/bin/common]; then
 echo ″The ′common′ command has been installed and is not executable.″
else
 echo ″The ′common′ command has not been installed.″
fi

This script first checks whether the file exists. If it does, the -e operator
returns true and the check in the elif statement does not run. This means
you’ll never successfully evaluate the statements in the elif block, because
for the file to be executable, it must exist, so the first condition in the if
statement will always take precedence.

148 Chapter 11

The case Statement
If you find yourself writing overly complex if statements, a case statement
might simplify your code. A case statement works by matching an expression
against different patterns. Here’s the general structure:

case expression in
 pattern1)
 pattern1-commands
 ;;
 *)
 default-commands
 ;;
esac

The expression is the value you want to test against pattern1. If pattern1
matches, its associated commands run. The *) pattern uses the asterisk (*)
wildcard to match anything not matched by previous patterns, causing the
default commands to run. The double semicolon (;;) tells the shell when the
commands for a specific case end. The indentation shown here is optional
but is considered best practice as it makes it easier to quickly see the patterns
and their associated commands. As with if and fi, to close the case state-
ment you use esac (case reversed).

Of course, this is a basic example that you could probably handle with
an if statement, so let’s look at a more likely scenario. Here’s how you’d struc-
ture a case statement that checks an expression against multiple patterns:

case expression in
 pattern1)
 pattern1-commands
 ;;
 pattern2 | pattern3)
 pattern2and3-commands
 ;;
 *)
 default-commands
 ;;
esac

The pipe (|) lets you test more than one pattern at a time: if expression
matches either pattern2 or pattern3, the corresponding commands will run.

Typically, you’ll provide the case statement with a variable to check
against a number of values. For example, you could use case to check
whether a variable contains a yes or no response:

read -p ″Yes or no: ″ response
case ″${response}″ in
 y | Y | yes | ok)
 echo ″You said yes ″
 ;;

Mastering Conditional Logic 149

 n | N | no)
 echo ″You said no ″
 ;;
 *)
 echo ″′${response}′ is not a valid response″
 ;;
esac

Note that this also handles case *), where the user types something
other than the acceptable input, and runs the default command to tell
them they’ve entered an invalid response.

The preceding example uses very simple text patterns, but you can
make them more sophisticated:

read -p ″Yes or no: ″ response
case ″${response}″ in
 [yY]*)
 echo ″You have (probably!) confirmed″
 ;;
 [nN]*)
 echo ″You have (probably!) denied″
 ;;
 *)
 echo ″′${response}′ is not a valid response″
 ;;
esac

The [yY]* pattern means either the y or the Y character followed by zero
or more characters, so this statement will match replies like yes, YES, and
yay. There’s a similar pattern for the negative response. These patterns look
a bit like regular expressions, but they actually are shell globs (patterns that
include wildcards, as I’ll discuss in Chapter 12).

Even if they take more lines to write than the equivalent if statements,
case statements can make your code more readable, so they’re often worth
the bit of added complexity.

Conditional Expressions
Conditional expressions are a feature of bash and bash-like shells that offer
a more sophisticated way of performing conditional checks. Conditional
expressions use two square brackets rather than one, as in this example
from earlier in the chapter:

if [[$year -ge 1980 && $year -lt 1990]]; then
 echo ″$year is in the 1980s″
fi

The conditional expression in this if statement allows you to test mul-
tiple conditions simultaneously in a more concise format than plain test

150 Chapter 11

commands. Conditional expressions have a number of other advantages
over test commands:

•	 You can use the && and || operators without the potential problems that
using them with test can cause.

•	 If you use an || expression and the left-hand side of the expression is
true, the right-hand side won’t be evaluated. This isn’t always the case
with older versions of test when you use the -o operator, which is a sub-
tle difference but one that can help avoid incorrect behavior.

•	 If you use a && expression and the left-hand side of the expression is
false, the right-hand side won’t be evaluated. As with the || operator,
this is useful to know in case you’re expecting the right-hand side to
always be evaluated.

•	 Numbers are correctly compared even if they’re in different formats
(for example, you can compare hexadecimal and octal numbers, which
does not work in the standard test expression).

•	 You can use the incredibly useful =~ operator to include a regular
expression (regex) in your condition. We’ll look at this shortly.

Some people prefer to use single square brackets so that their script is
more portable, as the double square brackets are specific to bash and bash-
like shells. Others prefer the double-bracket syntax so that they can take
advantage of the additional features it provides.

The following example determines whether the user’s shell is the Z
shell by checking whether the shell’s path ends with zsh:

zsh_regex=″zsh$″
if [[$SHELL =~ $zsh_regex]]; then
 echo ″It looks like your shell ′$SHELL′ is Z shell″
fi

First, this conditional expression defines a variable called zsh_regex to
store the zsh$ regex pattern, where zsh matches the literal text zsh and $
matches the end of the line.

N O T E 	 It’s a good practice to declare the regex in a variable rather than include it directly in
the expression; otherwise, you’d have to escape special characters like the dollar sign.

The =~ operator is then used to compare the value in SHELL against the
value in the zsh_regex variable. If the result is true (the user’s shell path ends
with zsh), the shell prints the following confirmation message:

It looks like your shell ′/bin/zsh′ is Z shell

Any time you use the =~ operator, matches are automatically stored in
the BASH_REMATCH array. The item at index 0 is always the full matched text
(so, in the previous example, BASH_REMATCH[0] would contain zsh). But if you
use capture groups in your regex to help extract text, additional items will
be added to the BASH_REMATCH array. A capture group is a part of a regex that

Mastering Conditional Logic 151

“captures” or remembers the matched text so you can reference it later (see
Chapter 4 for more on capture groups and regexes in general).

Let’s look at an example. You can get the name of the current shell
binary as follows:

shell_regex=″.*\/(.+)$″
if [[$SHELL =~ $shell_regex]]; then
 echo ″Your shell binary is: ${BASH_REMATCH[1]}″
 echo ″BASH_REMATCH is: ${BASH_REMATCH[*]}″
else
 echo ″Unable to extract your shell binary″
fi

In this example, the regular expression .*\/(.+)$ has a single capture
group denoted with parentheses, which captures everything from the final
forward slash to the end of the line. Therefore, if SHELL is /bin/bash, then
/bin/bash (the full match) is stored at index 0 in the BASH_REMATCH array, and
bash (the capture group match) is stored at index 1. Then the shell prints
the BASH_REMATCH array to illustrate what was captured. If there’s no match
on the regex pattern, the else clause prints an alternative message.

I get the following output on my machine:

Your shell binary is: bash
BASH_REMATCH is: /bin/bash bash

For more details on conditional expressions, enter man bash and search
for \[\[(two square brackets, each escaped with a backslash). For more
about how arrays work and how to print all of an array’s elements, see
Chapter 10.

Chaining Commands
One final conditional logic technique is chaining commands together in the
shell (that is, running a command based on the result of a previous one).
Here’s one way it works:

mkdir -p ~/backups && cd ~/backups

In this case, two commands are being chained together with the &&
operator. The shell runs the cd command only if the mkdir command suc-
ceeds; that is, it evaluates the result of mkdir, and if mkdir is successful, the
shell runs the cd command. Both commands must succeed for the overall
result to be true. In pseudocode, it looks like this:

if command1; then
 command2
fi

If command1 fails, the shell doesn’t need to evaluate command2. The overall
result must be false because the first command has already failed.

152 Chapter 11

Contrast this to the || operator:

[-d ~/backups] || mkdir ~/backups

In this case, mkdir is evaluated only if the first command fails. Here’s the
pseudocode:

if ! command1; then
 command2
fi

If command1 succeeds, the shell doesn’t need to evaluate command2 because
the result is already true. However, if command1 fails, the shell must evaluate
command2 to see if it succeeds.

In summary, here’s how command chaining works:

Run command1; if it succeeds, run command2.
command1 && command2

Run command1; if it fails, run command2.
command1 || command2

This syntax is common in shell scripts because it’s very succinct. It’s also
very useful when you’re using the shell interactively. For example, this com-
mand is almost second nature to me:

make build && make deploy

Here I’m using the make (“build programs”) command. If the build step
for a project succeeds, I want to run the deploy step. But obviously I don’t
want to run the deploy step if the build step fails!

Compare this example to the following command:

make build; make deploy

In this case, the two commands are separated by a semicolon, and the
second command will always run, regardless of whether the first succeeds.

Extending the common Command to Handle Different Shells
With your new knowledge of conditional logic, you can continue updating
the common command from Chapters 9 and 10. This time, you’ll update it to
check whether the user is using bash or the Z shell and then, based on that
result, search appropriately through the history for the most commonly
used commands.

If you haven’t done so yet, install the sample files to the ~/effective-shell
folder like so:

$ curl effective.sh | sh

Mastering Conditional Logic 153

Here’s the common.v2.sh command from the previous chapter:

Inform the user of the output they can expect.
echo ″common commands:″

The following variables control how the command runs.
history_lines=1000 # The number of lines of history to search through
command_count=10 # The number of common commands to show

Show the most commonly used commands.
tail ~/.bash_history -n ${history_lines} \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n \
 | tail -n ${command_count}

And here’s a new version of the script called common.v3.sh that checks
what the currently running shell is and then reads from the appropriate
command history file:

The following variables control how the command runs.
shell_binary=″″ # You′ll work out what shell you′re in later.
history_file=″″ # You′ll work out the history file later.
history_lines=1000 # The number of lines of history to search through
command_count=10 # The number of common commands to show

Check whether you can determine the name of the shell binary.
shell_regex=″([^/]+$)″
if [[$SHELL =~ $shell_regex]]; then
 # Depending on the name of the shell binary, set the history filepath.
 shell_binary=${BASH_REMATCH[1]}
 if [[$shell_binary == ″bash″]]; then
 history_file=~/.bash_history
 elif [[$shell_binary == ″zsh″]]; then
 history_file=~/.zsh_history
 fi
fi
If you are searching through the bash history, you can look at the history file
to get the most common commands.
if [[$shell_binary == ″bash″]]; then
 # Show the most commonly used commands.
 tail ″${history_file}″ -n ${history_lines} \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n ${command_count}
elif [[$shell_binary == ″zsh″]]; then
 # Z shell history lines look like this:
 # : 1621135004:0;uname -a
 # Run the same command as above, and extract everything _after_ the
 # semicolon, which is the command text.

154 Chapter 11

 tail ″${history_file}″ -n ${history_lines} \
 | cut -d′;′ -f2 \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n ${command_count}
else
 # Show a warning to the user that you don′t know where the history file
 # is for their shell.
 echo ″Sorry, I don′t know where to find the history for ′${SHELL}′″
fi

This script first sets up two new variables: shell_binary to store which
shell you’re using, and history_file to store the path to your history file.
Then it checks whether it can extract the name of the shell binary from the
shell path. If it can, it stores its name and its associated history in the SHELL
and HISTFILE variables, respectively.

Then, when the script searches through the history, it checks the shell
binary using the same conditional expression with the regex and capture
group that you saw earlier in the chapter. If the shell is bash, the script runs
the usual tail command. If the shell is zsh, it runs a similar command that
accounts for the fact that the Z shell history file has some extra content that
needs to be removed. If the shell is neither bash nor zsh, an error message is
shown to the user.

This example demonstrates several good shell script practices: using
more variables and if statements, nesting if statements (putting one if
statement inside another), including conditional expressions, and mak-
ing comments very descriptive. Each comment gives clear information on
what you’re trying to accomplish, which should make the script easier to
maintain.

If you want to replace the common command you have installed with this
new one, update the symlink in your /usr/local/bin folder:

$ sudo ln -sf $HOME/effective-shell/scripts/common.v3.sh /usr/local/bin/common

The -f (“force”) flag forces the creation of the symlink even though one
already exists at this location.

Summary
In this chapter, you learned about if statements, the test command,
and operators that allow you to perform conditional logic. You also saw
examples of more advanced constructs like case statements, conditional
expressions with regexes, and chained commands. You can find the docu-
mentation for conditional logic on the bash man page; run man bash and
search for GRAMMAR.

In the next chapter, we’ll explore another crucial logical feature of the
shell: loops.

12
U S I N G L O O P S W I T H

F I L E S A N D F O L D E R S

A loop is a fundamental programming con-
struct that performs a sequence of opera-

tions based on whether certain conditions
are met. You can run loops over multiple

items, such as files, folders, variables, or the results
of a command, and then perform actions on these
items. Loops allow you to efficiently execute repetitive
tasks, saving time and reducing the risk of errors in
your scripts.

In this chapter, you’ll learn all about for, while, and until loops and how
to use them to work with files and folders. You’ll then revisit the common com-
mand you created in Chapter 9 by adding some loops to make your script
more efficient.

156 Chapter 12

To follow along with the chapter’s examples, you’ll need to install the
book’s sample files to the ~/effective-shell folder:

$ curl effective.sh | sh

Let’s get started.

The for Loop
A for loop executes a sequence of commands for every item in a list and has
the following structure:

for name in words
do
 conditional-command 1
 conditional-command 2
 conditional-command n
done

The for loop defines a variable called name, and that variable will take
on each value from the list of items during each iteration of the loop. The
list name words comes from the for loop documentation. There’s a technical
(and complex) reason for this name, as I’ll explain shortly. The do keyword
begins the block of commands to execute for each item. Finally, the done
keyword closes the for loop. This is inconsistent with the shell syntax for the
if statement, which is closed with if backward (fi), and the case statement,
which is closed with case backward (esac). The shell is an old platform, so it
has some oddities like this.

Here’s a simple example of how the for loop works:

for item in ~/effective-shell/*
do
 echo ″Found: $item″
done

This code loops through every item in the effective-shell folder, one at a
time, storing its filepath in the item variable and then printing the item’s
name to the screen at each iteration.

You should see output like the following when you run this loop:

Found: /home/dwmkerr/effective-shell/data
Found: /home/dwmkerr/effective-shell/docs
Found: /home/dwmkerr/effective-shell/logs
Found: /home/dwmkerr/effective-shell/pictures
Found: /home/dwmkerr/effective-shell/programs
Found: /home/dwmkerr/effective-shell/quotes
Found: /home/dwmkerr/effective-shell/scripts
Found: /home/dwmkerr/effective-shell/templates
Found: /home/dwmkerr/effective-shell/text
Found: /home/dwmkerr/effective-shell/websites

Using Loops with Files and Folders 157

Notice how the shell is smart enough to expand the wildcard expression
in the for loop (the asterisk in ~/effective-shell/*). Just as you can use wild-
cards in commands such as ls, cp, or mv, you can use them in for loops—in
fact, you can use them in any statement.

Also notice how the loop implicitly creates the item variable from the
name provided (remember, you omit the dollar sign when you’re setting a
variable). There’s no need to explicitly assign a variable value since the vari-
able declaration is built in to the for loop syntax.

Looping Through Arrays
You can easily loop through the items in an array with a for loop as well:

days=(″Monday″ ″Tuesday″ ″Wednesday″ ″Thursday″ ″Friday″ ″Saturday″ ″Sunday″)
for day in ${days[@]}
do
 echo -n ″$day, ″
done
echo ″happy days!″

To loop through every item in the array, you use the ${days[@]} syntax
to specify “all elements.” The -n (“don’t output a trailing newline”) flag tells
the echo command not to write each day on its own line.

If you run these commands, you’ll get the following output:

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, happy days!

See Chapter 10 to review the syntax for the most common array operations.

Splitting Loop Input into Words
Type the following in your shell to see the for loop documentation:

$ help for
for: for NAME [in WORDS ...] ; do COMMANDS; done
 Execute commands for each member in a list.
...

The term WORDS refers to the list of items that the loop processes one by
one. The shell automatically splits the input into separate items (or words)
based on whitespace or other delimiters, and the loop iterates over each one.

The following example illustrates this behavior:

sentence=″What can the harvest hope for, if not for the care of the Reaper Man?″
for word in $sentence
do
 echo ″$word″
done

The sentence variable is set explicitly since it’s outside the for loop.
Then, in the for loop, the shell splits the value of sentence into separate
words based on the spaces between them, storing each in the word variable.

158 Chapter 12

Here’s the resulting output:

What
can
the
harvest
hope
for,
if
not
for
the
care
of
the
Reaper
Man?

The reason the shell splits up loop input into words is that it’s a text-based
environment, and its designers have taken that into account when building
its functionality. Most of the time when you’re running shell commands in a
terminal, those commands simply output text. Thus, if you want to be able
to use their output in constructs like loops, the shell has to decide how to
split up that output.

For example, see how the ls command writes its output:

$ ls ~/effective-shell
data docs logs pictures programs quotes scripts templates text websites

The output from the ls program is plaintext. It’s not an array; it’s just a
set of filenames separated by spaces. What would you expect the shell to do
if you ran the following command?

files=$(ls ~/effective-shell)
for file in $files
do
 echo ″Found: $file″
done

Here’s the output:

Found: data
Found: docs
Found: logs
Found: pictures
Found: programs
Found: quotes
Found: scripts
Found: templates
Found: text
Found: websites

Using Loops with Files and Folders 159

You can see why the shell splits up words in a sentence: it assumes that
you want to loop over each word and is splitting the output into sensible
“chunks.”

N O T E 	 If you’re using the Z shell, the sentence will not be split up into words. To see the same
results in zsh, you’d define the set of words as an array.

When you operate in a shell for day-to-day work, you don’t have to use
the more specific syntax that you’d use in a programming language. The
main advantage of the shell is that it lets you write short statements and
work with files quickly. It’s not designed as a general-purpose programming
tool, which is why it makes assumptions like this.

WOR D SPL IT T ING A ND E X PA NSION BEH AV IOR

As you’ve seen, the shell will split the words in a loop by default, as shown here:

$ sentence=″Here are some words″
$ for word in $sentence; do echo ″$word″; done
Here
are
some
words

However, wrapping the sentence variable in quotes will prevent the word
splitting:

$ sentence=″Here are some words″
$ for word in ″$sentence″; do echo ″$word″; done
Here are some words

In the first example, because the sentence variable is not quoted, it follows
the standard rules for shell expansion. In the second example, the sentence
variable is quoted, which typically means that it is treated literally—but param-
eter expansion is an exception. In this case, quoting the sentence variable
allows parameter expansion to take place without word splitting.

Let’s look at another example demonstrating some expansion behavior you
might not expect. This for loop uses a wildcard to list files:

$ touch file\ with\ spaces.test
$ for file in *.test; do echo ″Found: $file″; done
Found: file with spaces.test

In this case, *.test isn’t quoted, so why doesn’t word splitting happen?
The reason is that the shell applies expansions in a certain order:

1.	 Brace expansion

2.	 Tilde expansion
(continued)

160 Chapter 12

3.	 Parameter and variable expansion

4.	 Command substitution

5.	 Arithmetic expansion

6.	 Word splitting

7.	 Pathname expansion (wildcard expansion)

Word splitting happens before pathname expansion, and pathname
expansion is what replaces the asterisk with the list of files. At the point that
pathname expansion happens, word splitting has already been applied, so it
won’t be applied again.

In most circumstances, you’ll probably want to quote your variables so that
the shell won’t perform word splitting on them. But if you do want expansion
and splitting to occur, don’t quote the text. For more on quoting syntax, see
Chapter 10.

Looping Through Files and Folders
One of the most common scenarios for using a for loop is to run operations
on a set of files or folders. As you saw earlier in this chapter, using a wild-
card pattern in the for loop statement is a simple way to do this:

for script in ~/effective-shell/scripts/*.sh
do
 echo ″Found script: $script″
done

The output looks something like this:

Found script: /home/dwmkerr/effective-shell/scripts/common.mac.sh
Found script: /home/dwmkerr/effective-shell/scripts/common.sh
Found script: /home/dwmkerr/effective-shell/scripts/common.v1.sh
Found script: /home/dwmkerr/effective-shell/scripts/common.v2.sh
Found script: /home/dwmkerr/effective-shell/scripts/common.v3.sh
Found script: /home/dwmkerr/effective-shell/scripts/show-info.sh

You must be careful when using a wildcard, however. By default, if the
shell doesn’t find anything matching a wildcard pattern, it does not expand it.
Consider this example:

for script in ~/bad-shell/scripts/*.sh
do
 echo ″Found script: $script″
done

Using Loops with Files and Folders 161

You might think the logical result is that nothing is printed. There’s no
bad-shell folder, so the pattern shouldn’t find any files. But instead, it returns
the following output:

Found script: ~/bad-shell/scripts/*.sh

By default, if a shell glob (a pattern that includes a wildcard) doesn’t match
any files, the shell simply leaves the pattern as is. That’s why, instead of find-
ing no files, the loop actually runs once, storing the literal string ~/bad-shell/
scripts/*.sh in the script variable and then printing that value to the screen.

There are two ways to deal with this problem. The first is to enable the
nullglob (“return null for unmatched globs”) command:

shopt -s nullglob
for script in ~/bad-shell/scripts/*.sh
do
 echo ″Found script: $script″
done

The shopt (“set and unset shell option”) command allows you to config-
ure shell options like nullglob, which changes the shell behavior so that if a
wildcard pattern doesn’t match any results, its value is set to a null string.

N O T E 	 There’s a good reason that the shell does not return null by default for an unmatched
glob. As an example, ls *.nothing-here shows a warning that *.nothing-here
doesn’t exist. If the glob automatically expanded to an empty string, it would be
equivalent to running ls with no arguments, so ls would list the current directory
(its default behavior when no path is specified). See the StackExchange discussion at
https://unix.stackexchange.com/questions/204803/why-is-nullglob-not
-default for more on this topic.

The second way to deal with the unmatched glob problem is to just use
a test command, which is more readable than the shopt solution. Here’s how
it would look using the square bracket notation for the test command:

for script in ~/bad-shell/scripts/*.sh
do
 # If the file or folder doesn′t exist, skip it.
 if ! [-e ″$script″]; then continue; fi
 echo ″Found script: $script″
done

The -e (“exists”) operator in a test command checks whether the
file exists. If it does not exist, as denoted by the ! operator, the continue
(“resume loop”) statement executes, skipping the current item in the loop
and moving to the next one.

162 Chapter 12

Looping Through find Command Results
If the files you’re trying to loop through are too complex to match with a
shell pattern, you can use the find command to narrow them down, then
loop through the results. (See Chapter 3 for more on the find command.)

The following example uses the find command to run a loop that prints
every symlink in the user’s home directory. But before running the loop, it
creates a symlink with a space, which causes some interesting output:

Create a symlink (with a space) to ″effective-shell″.
ln -s ~/effective-shell ~/effective\ shell
Find all symlinks and print each one.
links=$(find ~ -type l -maxdepth 1)
for link in $links
do
 echo ″Found Link: $link″
done

If you run this script, the specific links you see will depend on how your
system is set up, but you’ll also see results like these:

...
Found Link: /home/dwmkerr/effective
Found Link: shell
...

The problem is that the shell has performed word splitting at the space
in the path /home/dwmkerr/effective shell. As a result, it looks like two links
have been found: /home/dwmkerr/effective and shell. This is a persistent head-
ache for anyone who needs to build shell scripts.

You can solve the problem in a number of ways, but the most common
solution is to temporarily change the delimiter the shell uses to split text
into words, using a special variable called IFS (“internal field separator”).
The IFS variable tells the shell what characters to use as delimiters when
splitting text into words. By default, IFS uses whitespace, which includes
spaces, tabs, and newlines. Telling it to split only on newlines solves the issue
of files with spaces in their paths:

Save the current value of IFS, so you can restore it later. Split on newlines.
old_ifs=$IFS
IFS=$′\n′
Find all symlinks and print each one.
links=$(find ~ -type l -maxdepth 1)
for link in $links
do
 echo ″Found Link: $link″
done
Restore the original value of IFS.
IFS=$old_ifs

Using Loops with Files and Folders 163

Now the find command will put each file it finds on its own line and will
not split up files with spaces or other whitespace in their names. If you run
this command, you should see this output:

...
Found Link: /home/dwmkerr/effective shell
...

The symlink correctly appears with a space in its name.

N O T E 	 Be careful when changing the IFS variable as it could cause subsequent commands
to behave in unexpected ways. This is why you first copy the current value into a
variable (old_ifs), then change it, and then set it back after you have run your com-
mands. In general, if you are changing the IFS variable, it’s a good sign you might be
doing something that would be better done with a programming language.

This solution will cover you in most cases, but it’s not ideal for several
reasons:

•	 It’s verbose. You must store the current value of the IFS variable and
then reset it later.

•	 It’s not quite foolproof. On some systems, filenames can have a newline
character, so this script would fail for those files.

•	 You must use the ANSI C quoting syntax—surrounding the variable
with single quotes—to set IFS to a newline (see “Quoting Variables and
Values” on page 124 for more about quoting syntax).

•	 If someone reading the code doesn’t know what IFS is, the entire script
will be difficult for them to follow.

For these reasons, it’s probably best not to use a shell script in this case.
No solution is particularly clean or simple, so you might be better off with a
programming language. See Chapter 21 for more details on alternatives to
shell scripting.

Iterating with C-Style Loops
If you’ve used programming languages like C, C++, Python, or Java, you
may be familiar with this “C-style” loop structure (note the spaces between
the expressions and the parentheses):

for ((expression1 ; expression2 ; expression3))
do
 command 1
 command 2
 command n
done

This loop structure runs with three arithmetic expressions: an initialize
expression, which typically sets up the loop’s initial state; the conditional

164 Chapter 12

expression, which checks whether the loop is complete; and the iterate
expression, which is evaluated after the loop commands are completed.

The following C-style for loop iterates through five numbers:

for ((i = 1; i <= 5; i++))
do
 echo ″Loop ${i}″
done

First, this code sets a counter, an iterator variable named i, to 1 (the
initialize expression). On each iteration through the loop, it checks whether
i is less than or equal to 5 (the conditional expression), and if so, prints the
loop number. Finally, at the end of the iteration, it adds 1 to i (the iterate
expression).

Let’s break it down step-by-step:

First iteration

1. 	 Set i to 1.
2. 	 Check if 1 <= 5. Yes, so enter the loop.

3. 	 Execute echo ″Loop 1″ to print Loop 1.

4. 	 Increment i to 2.

Second iteration

1. 	 Check if 2 <= 5. Yes, so continue.

2. 	 Execute echo ″Loop 2″ to print Loop 2.

3. 	 Increment i to 3.

And so on until:

Sixth iteration

1. 	 Check if 6 <= 5. No, so exit the loop.

The output of this script is as follows:

Loop 1
Loop 2
Loop 3
Loop 4
Loop 5

C-style loops can be a convenient way to run more complex loops than
ones that iterate over a simple set of words.

Looping over Sequences
It’s also common to use a for loop with brace expansion, which you may
remember from Chapter 10. As a quick refresher on how it works, this
example uses brace expansion and touch to create three files:

Using Loops with Files and Folders 165

touch {coffee,tea,milkshake}-menu.txt

Running ls -1 *-menu.txt returns the following output:

coffee-menu.txt
milkshake-menu.txt
tea-menu.txt

Now let’s see brace expansion in a for loop:

for i in {1..10}
do
 echo ″Loop ${i}″
done

This code loops through the numbers 1 to 10 and then prints a list of loop
numbers.

You can also use brace expansion to loop through a sequence of val-
ues or a range of numbers. You can even specify the increment used in a
sequence like so:

for i in {0..25..5}
do
 echo ″Loop ${i}″
done

The first value, 0, is the starting value of the sequence; the second, 25, is
the ending value of the sequence; and the third, 5, is the increment (step)
between values. Here’s the output of this loop:

Loop 0
Loop 5
Loop 10
Loop 15
Loop 20
Loop 25

Next, we’ll turn to another kind of loop that builds on the discussion of
conditional logic in Chapter 11.

The while Loop
The while loop executes commands until a certain condition is met. It has
the following structure:

while test-commands
do
 conditional-command 1
 conditional-command 2
 conditional-command n
done

166 Chapter 12

As long as the test commands return 0, indicating success, the loop will
run the conditional commands. After the conditional commands have been
run, the loop returns to the beginning and evaluates the test commands
again.

The following example uses a while loop to generate a list of random
numbers:

Create an empty array of random numbers.
random_numbers=()
As long as the length of the array is less than 5, continue to loop.
while [${#random_numbers[@]} -lt 5]
do
 # Get a random number; ask the user if they want to add it to the array.
 random_number=$RANDOM
 read -p ″Add $random_number to the list? (y/n): ″ choice

 # If the user chose ″y″, add the random number to the array.
 if [″$choice″ = ″y″]; then random_numbers+=($random_number); fi
done

Show the contents of the array.
echo ″Random Numbers: ${random_numbers[@]}″

This script begins by initializing an empty array called random_numbers.
Inside the while loop, the script generates a random number using the
shell’s built-in RANDOM variable, which produces a pseudorandom integer
between 0 and 32,767. The user is then prompted to decide whether to add
this random number to the array by entering a y or n response. If they enter
y, the += operator appends the number to the array.

The while loop continues until the array contains exactly five elements.
At that point, the loop terminates, and the echo command prints the values
in the array:

Add 14718 to the list? (y/n): y
Add 2646 to the list? (y/n): n
Add 11898 to the list? (y/n): y
Add 31506 to the list? (y/n): y
Add 32436 to the list? (y/n): y
Add 6803 to the list? (y/n): n
Add 25811 to the list? (y/n): y
Random Numbers: 14718 11898 31506 32436 25811

You typically use a while loop when you don’t know how many iterations
will be needed (as in this case, where you don’t know how many times the
user will enter y), and you need to reevaluate at each iteration whether you
should continue to loop.

Looping Through the Lines in a File
You can use a while loop to iterate through each line in a file, without hav-
ing to load the entire file into memory:

Using Loops with Files and Folders 167

while read line; do
 echo ″Read: $line″
done < ~/effective-shell/data/top100.csv

This example uses shell redirection to redirect the contents of the
~/effective-shell/data/top100.csv file into the read command in the while loop.
The read command will read the file, line by line, until it finds the final line.

The output will look like this:

Read: ″Rank″,″Rating″,″Title″,″Reviews″
Read: ″1″,″97″,″Black Panther (2018)″,″515″
Read: ″2″,″94″,″Avengers: Endgame (2019)″,″531″
...

This script has some issues, however:

•	 If the last line of the file doesn’t end with a newline, it is not read.

•	 Backslashes will be treated as escape sequences, leading to broken
output.

•	 Leading whitespace will be removed.

It’s possible to work around these challenges, but the resulting script is
a lot harder to read:

while IFS=″″ read -r line || [-n ″$line″]; do
 echo ″Read: $line″
done < ~/effective-shell/data/top100.csv

This approach requires some complex tricks to avoid each issue:

•	 The || [-n ″$line″] test checks that the line being read isn’t zero
length. As long as it’s not, the loop continues iterating, ensuring that
the read command reads the last line of the file even if it doesn’t have a
newline.

•	 The -r (“do not escape”) option for read ensures that backlashes are not
interpreted as escape sequences.

•	 IFS=″″ temporarily disables any word splitting in the loop, preserving
any leading whitespace.

However, this code still has potential issues. For example, if commands
in the loop read from stdin, the loop will have errors. Check out Chapter 21
for some better ways to read files.

I’ve included this example only because it’s something you’re likely to
come across in scripts written by others. It also might be useful for simple
scenarios where you’re fairly sure of the structure of the file you are read-
ing. But generally speaking, this is a case where you should consider using a
programming language to create a more maintainable solution.

168 Chapter 12

Looping Forever
Sometimes you might want a while loop to loop forever, which is known
as an infinite loop. For instance, you could be writing a script that reads an
option from the user, processes it, and then starts again.

This example demonstrates an infinite loop for a simple text-based
game menu. The loop uses the true command, which always returns a suc-
cessful status, ensuring the loop continues indefinitely:

while true
do
 echo ″1) Move forward″
 echo ″2) Move backward″
 echo ″3) Turn left″
 echo ″4) Turn right″
 echo ″5) Explore″
 echo ″0) Quit″

 read -p ″What will you do: ″ choice
 if [″$choice″ -eq 0]; then
 exit
 fi
 # The rest of the game logic would go here.
 # ...
done

Inside the loop, the script displays a menu of options for the user. If the
user selects option 0 to quit, the exit command terminates the entire script.
Otherwise, the loop repeats, allowing the user to continue interacting with
the menu.

This example shows a common pattern for an infinite loop: offering a
menu of options that the user can call repeatedly until they decide to quit.

The until Loop
The until loop operates similarly to the while loop, except that it runs until
the test commands return success. The structure of the until loop is just
like the while loop:

until test-commands
do
 conditional-command 1
 conditional-command 2
 conditional-command n
done

As long as the test commands do not return success, the loop will run
the conditional commands. After the conditional commands have been run,
the loop returns to the beginning and evaluates the test commands again.

Using Loops with Files and Folders 169

Here’s an example of an until loop that builds a random number at
least 15 characters long:

Create an empty random number string; you′ll build it up in the loop.
random_number=″″
Keep looping until the random number is at least 15 characters long.
until [″${#random_number}″ -ge 15]
do
 random_number+=$RANDOM
done
echo ″Random Number: ${random_number}″

The script initializes the variable random_number as an empty string. Then,
in each loop iteration, ${#random_number} (the parameter expansion syntax
you saw in Chapter 11) checks the string length, and random_number+=$RANDOM
appends a new random number to the string. When the string’s length is
greater than or equal to 15 characters, the loop stops.

When you run this script, you should see something like this:

Random Number: 364272371462227929

In general, I recommend using while loops rather than until loops.
Programming languages commonly feature while loops, so anyone read-
ing the code will likely be familiar with them, whereas until loops are a bit
rarer.

You can easily turn any until loop into a while loop simply by inverting
your test commands. For example, you could rewrite the previous until loop
like so:

random_number=″″
while [″${#random_number}″ -lt 15]
do
 random_number+=$RANDOM
done
echo ″Random Number: ${random_number}″

This changes the condition from -ge 15 (greater than or equal to 15) to
-lt 15 (less than 15). The while loop version of the script will probably be a
little easier for most readers to parse.

The continue and break Statements
As mentioned earlier in the chapter, the continue statement can be used to
skip an iteration in a loop. The break (“exit loop”) statement can be used to
stop running the loop altogether.

When you use the continue statement, you’re telling the shell that you
want to stop processing the current iteration of the loop and move on to the
next iteration. You can use as many continue statements as you like in a loop.

170 Chapter 12

Here’s an example of a script that lets users show the contents of a
directory:

echo ″For each folder, choose y/n to show contents, or c to cancel.″
for entry in ~/*
do
 # If the file is not a directory, or it cannot be searched, skip it.
 if ! [-d ″$entry″] || ! [-x ″$entry″]; then continue; fi
 # Ask the user if they want to see the contents.
 read -p ″Show: $entry? [y/n/c]: ″ choice
 # If the user chose ″c″ for cancel, break.
 if [″$choice″ = ″c″]; then break; fi
 # If the user chose ″y″ to show contents, list them.
 if [″$choice″ = ″y″]; then ls ″$entry ″; fi
done

If the directory is empty, the continue statement skips to the next direc-
tory. If the directory is not empty, the user is able to choose whether to show
its contents, not show its contents, or cancel the operation. If the user can-
cels the operation, the break statement stops the loop from iterating.

Using break and continue statements can simplify your loops; without
them, it would be much harder to write loops like this one.

Creating Compact Loops
In this chapter’s examples, I’ve split the loop constructs so that there’s only
one statement per line. But just as with the if statement, you can combine
any of these lines, as long as you use a semicolon to let the shell know where
each statement ends.

You’ll often see the do keyword on the same line as the for or while
statement:

for script in *.sh; do
 touch ″$script″
done

If you’re simply typing in a terminal rather than writing a script, you
might write the loop on a single line like so:

for script in *.sh; do touch ″$script″; done

This one-liner updates the last accessed time and last modified time of all
files that end with *.sh in the current folder.

N O T E 	 As with the if statement, I recommend keeping each statement on its own line until
you are 100 percent familiar with its syntax. When writing a loop is second nature,
you can use the more compact syntax where appropriate.

When you’re running the shell interactively (that is, typing in the shell
rather than writing a shell script), you can still use multiple lines. If you

Using Loops with Files and Folders 171

type for script in *.sh and press enter, the shell will let you enter the next
line. You can keep adding lines (you’ll see the prompt > to indicate that you
can enter more input) until you type done and press enter:

$ for script in *.sh
> do touch ″$script″
> done

Now it’s time to apply what you’ve learned so far in this chapter to the
common command script described in previous chapters.

Updating the common Command to Loop Through Results
Chapter 11 ended with the common.v3.sh script, which shows common com-
mands from the user’s shell history. If you need a refresher on what’s in the
script, view it in your pager as follows:

$ less ~/effective-shell/scripts/common.v3.sh

Now you’ll add a loop to the script to iterate through each command
found and display its position in the list of results. The file is a little larger
now, so I’ll show only the key changes you’ll make.

First, you’ll use shell parameter expansion to run a subshell and store
the common commands in a variable:

Store the most recently used commands in the ″commands″ variable.
commands=$(tail ~/.bash_history -n ${history_lines} \
 | sort \
 | uniq -c \
 | sed ′s/^ *//′ \
 | sort -n -r \
 | head -n ${command_count})

Now you can loop through this new commands variable at the end of the
script and show a number before each command:

Print each command, showing its order in the list.
Commands are separated by newlines, so temporarily change IFS to loop over
each line of the commands.
counter=1
old_ifs=$IFS
IFS=$′\n′
for command in $commands
do
 echo ″$counter: $command″
 counter=$((counter + 1))
done
IFS=$old_ifs

You’ve initialized a counter variable to 1 and set it to increment by 1 at
each iteration of the loop. You’re also applying what you learned earlier

172 Chapter 12

about the IFS variable to temporarily change the delimiter to a newline so
that each command appears on its own line and word splitting won’t be
applied. After closing the for loop, you restore IFS to its original value.

Now when you run this command, each of the common commands is
printed with both its order in the list and its count:

$ common
1: 135 gst
2: 73 vi
3: 47 gc
4: 40 ls
5: 37 ga .
6: 27 gpo
7: 25 gl
8: 24 gpr
9: 21 gcm
10: 17 make dev

This addition could be useful if you wanted to extend the script fur-
ther to allow the user to enter a number to execute the command at that
position.

The updated script is at ~/effective-shell/scripts/common.v4.sh. To update
your symlink to point to this version, run the ln command with the -s flag
as follows:

$ sudo ln -sf ~/effective-shell/scripts/common.v4.sh /usr/local/bin/common

As in previous chapters, you’re using the -f (“force”) flag to ln to force
the creation of the symlink, overwriting the one that already exists at this
location.

Summary
In this chapter, you learned how to use different types of loops in the shell
to iterate over values in an array, words in a sentence, files and folders, and
even the results of commands. You also learned how word splitting works,
as well as the role of the IFS variable. Loops are a crucial part of the effec-
tive shell user’s toolkit, and you’ll likely find yourself using them often to
streamline your tasks.

In the next chapter, we’ll look at functions and parameters—two
other programming must-haves that add structure and functionality to
your shell scripts.

13
F U N C T I O N S , P A R A M E T E R S ,

A N D E R R O R H A N D L I N G

Functions let you structure commands into
logical blocks, reducing repetition, thus

making your scripts more efficient and eas-
ier to read and manage. In this chapter, you’ll

learn exactly what functions are, how to create them
and pass parameters to them, and what to do with the
values returned from the functions you write. We’ll
also cover how to handle errors that can result when
a command in your functions or elsewhere in your
script fails. The tools and techniques you pick up in
this chapter will help you build even more powerful
scripts.

174 Chapter 13

Creating a Function
A function is a set of commands that you define once and then can call
at any time within your script. A function definition has the following
structure:

function-name() {
 function-command 1
 function-command 2
 function-command n
}

First, you specify the name of the function followed by empty paren-
theses, and then, between a pair of braces ({}), you list the commands to
execute when you call the function.

Here’s a very simple function in action:

title() {
 echo ″My Script version 1.0″
}

This script defines a function called title that prints out a message.
You call this function the same way you call any command in the shell,

by entering its name and pressing enter:

$ title
My Script version 1.0″

In some scripts, you might see functions defined with the function
keyword:

function title() {
 echo ″My Script version 1.0″
}

This is somewhat less standard, however, so I don’t recommend it. If you
do use the function keyword, adding parentheses after the function name is
optional.

Variables in Functions
A function can read and write to any variables in the current shell session:

Set some variables.
title=″My Cool Script″
version=″1.2″
succeeded=0

Create a function that writes a message and changes a variable.
write_title() {
 # You can create and read variables within a function...
1 title_message=″${title} - version ${version}″
2 echo ″${title_message}″

Functions, Parameters, and Error Handling 175

 # ...and set them as well.
3 succeeded=1
}

Show the value of ″succeeded″ before and after the function call.
4 echo ″Succeeded: ${succeeded}″

write_title
5 echo ″Succeeded: ${succeeded}″

echo ″Title Message: ${title_message}″

This script assigns three variables and then creates a function called
write_title, which reads the title and version variables and stores their val-
ues in a new title_message variable 1.

The next part of the script prints the initial value of succeeded, which is
0 4, and calls the write_title function to print title_message to the screen 2
and set the value of succeeded to 1 3. Finally, the script prints the new value
of succeeded followed by the title_message again 5.

Here’s the output of this script:

Succeeded: 0
My Cool Script - version 1.2
Succeeded: 1
Title Message: My Cool Script - version 1.2

As this script shows, functions can work with variables in multiple ways:
they can define new variables, use the variables available in the shell, and
overwrite variable values.

Variable Scoping
In the preceding script, the shell was able to read the value of the title
_message variable even though that variable was set in the write_title func-
tion. If you come from a programming background, you might find this
behavior odd. The reason for it is that shell scripting uses dynamic scoping,
where variables are visible to any code that runs after they were created,
regardless of their scope (that is, where they were defined in the code).
Many common programming languages, such as Python, JavaScript, C,
and Java, use an alternative mechanism called lexical scoping, where a vari-
able’s visibility is determined by where it’s defined, preventing you from
using it outside its scope. Lexical scoping can reduce errors by ensuring
that if you define a variable in a function, you won’t accidentally overwrite
a variable of the same name that’s being used elsewhere.

By default, all variables in shell scripting are globally scoped, meaning
they can be used anywhere. However, you can use the local keyword to
define a locally scoped variable, meaning one that is available to the current
function (and, thanks to dynamic scoping, to any functions it calls directly
or indirectly):

run_loop() {
 local count=0

176 Chapter 13

 for i in {1..10}; do
 # Update the counter.
 count=$((count + 1))
 done
 echo ″Count is: ${count}″
}

This code defines a run_loop function that creates a locally scoped count
variable. The counter starts at 0 and increments by 1 at each iteration of the
for loop. After 10 iterations, the loop ends and the value of count is printed.

Here’s what happens when you run this function:

$ run_loop
Count is: 10
$ echo ″Count: ${count}″
Count:

Because you declared the count variable with the local keyword, it’s
available to the run_loop function and any functions run_loop calls. If you try
to access count outside of those contexts, however, it is undefined.

In general, you should use local variables inside functions, which can
help you avoid problems where calling a function can have unintended side
effects. Consider this example, where you set a count variable and then call
the previous run_loop function:

Set a count variable somewhere in the script.
count=3

Call the ″run_loop″ function.
run_loop

Write out the value of ″count″.
echo ″The ′count′ variable is: ${count}″

The output of this script is:

Count is: 10
The ′count′ variable is: 3

Even though you’ve defined a variable named count in the run_loop func-
tion, it doesn’t overwrite the count value you set outside of the function (3 in
this case) since it is locally scoped. If you had defined the count variable
without the local keyword when you created the run_loop function, however,
running this script would give you the following output:

Count is: 10
The ′count′ variable is: 10

Without the local keyword, calling run_loop overwrites the count vari-
able defined outside of the function. Others reading your script might not
expect this behavior and will be unpleasantly surprised when calling your
function overwrites the variables they’re using.

Functions, Parameters, and Error Handling 177

Passing Parameters to Functions
Parameters are input values that can make your shell functions more flex-
ible. Instead of having to write separate functions for each value you need,
you can reuse the function with different parameters. You can pass any
number of parameters to a shell function. This simple sum function takes
two parameters and adds them together:

sum() {
 local value1=$1
 local value2=$2
 local result=$((value1 + value2))
 echo ″The sum of ${value1} and ${value2} is ${result}″
}

You can pass parameters to the sum function as follows:

$ sum 3 6
The sum of 3 and 6 is 9
$ sum 10 33
The sum of 10 and 33 is 43

When you pass parameters into a shell function, they’re automati-
cally stored in special built-in variables known as parameter variables. In
this script, the parameter variables 1 and 2 contain the first and second
parameters, respectively. At the beginning of the function, putting 1 and 2
into local variables with slightly more descriptive names (value1 and value2)
makes the script more readable. The function could also have been written
like so:

Create a function that calculates the sum of two numbers.
sum() {
 echo ″The sum of $1 and $2 is $(($1 + $2))″
}

For a short and simple function, you might just use the parameter vari-
ables directly like this. However, for anything more complex than a one-line
script, I recommend creating a local variable with a more descriptive name
for the sake of readability.

The shell provides several other parameter variables in addition to 1
and 2. Table 13-1 lists some of the most common ones.

Table 13-1: Common Parameter Variables

Parameter variable Description

0 The name of the shell script, which the shell provides
automatically.

- The options that have been set in the shell.

1 The first parameter.

2 The second parameter.
(continued)

178 Chapter 13

Parameter variable Description

n The nth parameter (this starts from position 1, because posi-
tion 0 is always reserved for the name of the shell script itself).

{11} The 11th parameter; if the parameter is more than one digit,
you must surround it with braces.

The number of parameters.

@ The full set of parameters expanded as a list and then split
into words. When @ is used inside double quotes (″$@″), each
parameter becomes a separate word in the list but no further
word splitting is applied.

* The full set of parameters expanded and then split into words.
When * is used inside double quotes (″$*″), the result is a
single word, with each parameter separated by the first char-
acter of IFS (or a space if IFS is not set).

{@:start:count} A subset of count parameters starting at parameter number
start.

The behavior of the @ and * parameter variables is essentially identical
unless they are surrounded by double quotes. As an example, given three
parameters

beagle
greyhound
german shepherd

both * and @ would result in four words:

beagle
greyhound
german
shepherd

However, ″$@″ would result in three words (the same as the original
parameters):

beagle
greyhound
german shepherd

And ″$*″ would result in one word, with the first character of IFC (usu-
ally a space, as shown here) separating the parameters in that word:

beagle greyhound german shepherd

Let’s look at the @ parameter in action. Here’s how you could update
the preceding sum function with the @ and # parameter variables:

Create a function that sums a set of numbers.
sum() {

Table 13-1: Common Parameter Variables (continued)

Functions, Parameters, and Error Handling 179

 local total=0
 for value in $@; do
 total=$((total + value))
 done

 # Write out the result.
 echo ″Summed $# values for a total of: ${total}″
}

You can call this updated function with any number of parameters:

$ sum 1 2 3 4 5
Summed 5 values for a total of: 15

The @ variable expands into the full list of parameters, allowing you to
process them all in a single loop. Without @, you’d have to explicitly refer-
ence each parameter with 1, 2, and so on, as in the previous example. The
variable contains the number of parameters provided to the function.

Because the @ variable isn’t in double quotes, you could just as easily
have used * since, without double quotes, @ and * behave the same way.

Using Array Operators in Parameter Variables
If you’ve read Chapter 10, you might notice that parameter variables are
similar to the array operators used to get the members or the length of an
array. This function combines the “get a subset of elements” array operator
(known as an array slice) and the @ parameter variable:

Show the top ″n″ values of a set.
show_top() {
 local n=$1
 local values=${@:2:n}
 echo ″Top ${n} values: ${values}″
}

As with the sum function, you can call show_top with any number of
parameters:

$ show_top 3 10 20 30 40 50
Top 3 values: 10 20 30

Using the array slice on the @ variable returns a subset of the full array of
parameters. This script is a little odd to read in that when you set the values
variable, you need to “skip” past the first positional parameter because that
parameter indicates the number of values to show (3, in this case), so the sub-
set starts at the second parameter (10).

Shifting Parameters
You can use the shift (“shift positional parameters”) command to remove
some parameters from the beginning of the positional parameters array
and move the remaining parameters to take their place.

180 Chapter 13

The following example uses shift with the show_top function:

Show the top ″n″ values of a set.
show_top() {
 # Grab the number of values to show, then shift.
 local n=$1
 shift

 # Get the set of values to show.

 local values=${@:1:n}
 echo ″Top ${n} values: ${values}″
}

Notice that you’re starting in position 1 now. Arrays normally start at 0,
but @ indexing starts at 1 because the shell always sets 0 to the name of the
script. After getting the value of the first parameter, you shift, removing it
from the list of positional parameters so that you can deal with the remain-
ing parameters.

This approach has the same effect as specifying ${@:2:n} from the previ-
ous example: skipping the first parameter and starting at the second. As you
can see, the output of the function is the same as before:

$ show_top 3 10 20 30 40 50
Top 3 values: 10 20 30

In a scenario where you have multiple parameters that precede a list,
using shift can make your code more readable. If you find you’re having to
write a lot of complex code to shift parameters around, however, you might
be better off using a programming language rather than the shell. See
Chapter 21 for alternatives.

Function Return Values
A return value is what a function “gives back” when it finishes running, such
as the result of a calculation or a success or failure status. You can return a
value from a shell function in two ways. The first is simply to set the value of
a variable like so:

is_even() {
 local number=$1

 # A number is even when you divide it by 2 and there is no remainder.
 # Set ″result″ to 1 if the parameter is even and to 0 otherwise.
 if [$((number % 2)) -eq 0]; then
 result=1
 else
 result=0
 fi
}

Functions, Parameters, and Error Handling 181

This function returns a value by setting a variable called result to 1 if
the parameter provided to the function is even, and 0 if it is odd.

Here’s how you could use the is_even function to check whether the
number 33 is even:

$ is_even 33
$ echo ″Result is: $result″
Result is: 0

You could set any number of variables within your function definition to
return values. In general, though, you should avoid this method of return-
ing values. Because result is a global variable, it would overwrite the value of
another variable of the same name in your script when you call this function.
Declaring result with local would avoid that problem, but then you’d have no
way to retrieve its value elsewhere in your script, making it fairly useless.

A safer and more common way to return a value from a function is to
write its result to stdout.

Writing Results to Standard Output
If you write the result of a function to stdout (that is, print it to the screen),
you can access that return value in a far more readable way:

lowercase() {
 local all_parameters=″$@″
 # Translate all uppercase characters in the input to lowercase.
 echo ″$all_parameters ″ | tr ′[:upper:]′ ′[:lower:]′
}

This example defines a function named lowercase. It then creates a local
variable called all_parameters, which is set to @, the parameter variable that
contains all the parameters provided to the function. Next, lowercase writes
these parameters to the tr (“translate characters”) command and tells it to
translate uppercase letters to lowercase letters. The final output is then writ-
ten to stdout.

If you source the preceding script (that is, load it into your current shell
session, as described in Chapter 9), you can call lowercase and capture its
output into a variable simply by executing the function like so:

$ result=$(lowercase ″Don′t SHOUT!″)
$ echo ″$result″
don′t shout!

This captures the output of the lowercase function into the result vari-
able. The $(function) syntax means “execute this function in a subshell”
(covered in Chapter 10).

If you have a programming background, it might seem strange to
return the result of a function by writing to stdout. Remember, however,
that the shell is a text-based interface to the computer system. The major-
ity of shell commands that provide output (ls, find, cat, and so on) write
it to the screen. When you echo a result from a function, you’re really just

182 Chapter 13

following the Unix standard of writing the results of a program to the
screen.

Running the lowercase function directly in a shell prints the output to
the screen:

$ lowercase ″PLEASE don′t SHOUT!″
please don′t shout!

Shell functions are designed to behave in a similar way as shell com-
mands: they write their output to stdout. It’s up to the person calling the
function to decide whether to display that output, capture it into a variable,
or pass it to another command (see the discussion of pipelines in Chapter 2).

Avoiding Pitfalls with Command Output
Writing the results of a function to stdout is a tried-and-tested method
of returning values. However, you need to be careful, as this example
demonstrates:

This function creates a temporary folder for today and returns its path.
temp_today() {
 # Get today′s date in the format YYYY-MM-DD.
 local today=$(date +″%Y-%m-%d″)

 # Create a temporary directory for today and return it.
 tmpdir_today=″/tmp/${today}″
 echo ″Creating folder ′${tmpdir_today}′...″
 mkdir -p ″${tmpdir_today}″
 echo ″${tmpdir_today}″
}

The temp_today function creates a temporary folder whose name is based
on the current date, but if you try to grab the result of the function and
change to that folder

Go to today′s temporary folder.
folder=$(temp_today)
cd ″${folder}″

the script fails, with the following output:

′Creating folder \′/tmp/2025-05-28\′...\n/tmp/2025-05-28′: No such file or directory

What’s going on here?
The problem is that the temp_today is outputting two results: the status

message and the folder path. When you capture the folder’s output with
folder=$(temp_today), you’re capturing all of that output, not just the folder
path. As a result, when you run cd ″${folder}″, the shell sees the entire
string, including the status message, and the cd command fails because it’s
trying to change into a directory that doesn’t exist.

Remember, any command you call in a function that might write to
stdout could cause problems by writing text to your output. Take a look at

Functions, Parameters, and Error Handling 183

another example, a function called command_exists that uses type (“display
information about command”) to check whether a given command is avail-
able on the system:

command_exists() {
 if type ″$1″; then
 echo ″1″
 else
 echo ″0″
 fi
}

Here’s what happens when you try to store the result of the command_exists
function in a variable:

$ result=$(command_exists ″touch″)
$ echo ″Result is: ${result}″
Result is: touch is hashed (/usr/bin/touch)
1

The result variable should have been set to 1 or 0. However, type does
two separate things—writes a message to stdout and returns the success/
failure status—so result=$(command_exists ″touch″) captures all of that out-
put. That’s why the result variable ends up containing the text touch is
hashed (/usr/bin/touch) in addition to the status code 1 you expected.

Chapter 2 explains that you can discard a command’s output by redi-
recting it to the null file. You can use this trick within your functions to stop
commands from “polluting” your function’s output:

command_exists() {
 if type ″$1″ >> /dev/null; then
 echo ″1″
 else
 echo ″0″
 fi
}

This command discards the text output from type instead of capturing
it, so now if you run the command_exists function, you’ll see only the status
code in the result.

Returning Status Codes
The return (“return from shell function”) command causes a function to
exit with a given status code. You might remember from Chapter 11 that
when a command runs successfully, it should return a status code of 0,
whereas any nonzero status code is an error code.

Here’s how you might rewrite the command_exists function from the pre-
vious example to set a status code:

command_exists() {
 if type ″$1″ >> /dev/null; then
 return 0

184 Chapter 13

 else
 return 1
 fi
}

Now you can use command_exists in an if statement like so:

if command_exists ″common″; then
 echo ″The ′common′ command is installed on your system″
else
 echo ″The ′common′ command is not installed on your system″
fi

If the type command succeeds (meaning the common command exists),
command_exists returns 0 and prints the first message; otherwise, it returns 1
and prints the second message.

Many shells will allow you to set values only from 0 to 255, and, again,
most users will expect a command to return 0 for success and a nonzero
value for a failure. If you need to provide output for a command beyond a
status code, you should write it to stdout or, if you must, set the value of a
global variable.

The status code of the most recently executed command is always avail-
able in the ? variable. Here’s how you could use it:

$ type ″test″
test is a shell builtin
$ echo ″Result: $?″
Result: 0

The test command returns 0 to indicate that it executed successfully
and also writes a message to stdout.

PA R A ME T ERS A ND S TAT US CODES FOR SCR IP T S

Everything you’ve learned about parameters applies to scripts themselves. You
can pass parameters to scripts and read them with special variables such as
1 and 2. The only difference is that instead of using the return command, you
use the exit (“exit the shell”) command to exit a script with a status code.

Be careful with the exit command, however. If you’re running a script (that
is, working in a non-interactive shell), exit will simply close the subshell the
script is running in. But if you type exit in an interactive shell, it will end your
session or close your terminal window.

You’ve learned a lot about what you can do with functions and how they
can make your scripts more efficient and manageable. But even the most
well-crafted script can sometimes cause unexpected errors, so let’s look at
some ways to handle those next.

Functions, Parameters, and Error Handling 185

Error Handling
If a command in your function or elsewhere in your script fails, the script
will still continue to run, which can easily lead to issues. Let’s look at an
example and then see how to avoid this kind of problem.

Create a script called today.sh that makes a new temporary folder for the
current date and puts a symlink to that folder in your home directory:

#!/usr/bin/env sh

Get today′s date in the format YYYY-MM-DD.
today=$(date +″%Y-%m-%d″)

Create a path to today′s temp folder and then make sure the folder exists.
temp_path=″/tmp/${today}″
mkdir -p ″${temp_path}″

Now make a symlink to the folder in your homedir.
ln -sf ″${temp_path}″ ″${HOME}/today″

Write out the path you created.
echo ″${temp_path}″

Now make the script executable and then run it as follows:

$ chmod +x ./today.sh
$./today.sh
/tmp/2025-05-28

You’ve successfully created a new folder in /tmp with the current date as
its name, created a symlink called /today in your home directory to point to
that temp folder, and then printed out the folder’s path.

Let’s see what happens if one of the commands in the script fails. First,
delete both the symlink and the temp folder you just created:

$ rm -rf ~/today
$ rm ″/tmp/$(date +″%Y-%m-%d″)″

Now use the touch command to create a file in the same location where
the today command will try to create its today folder:

$ touch ″/tmp/$(date +′%Y-%m-%d′)″

If you run the script now, you’ll see a problem:

$./today.sh
mkdir: /tmp/2025-05-28: Not a directory
/tmp/2025-05-28
$ cd ~/today
bash: cd: /home/dwmkerr/today: Not a directory

186 Chapter 13

The mkdir command fails because there’s a file already in the location
where you’re trying to create the today folder. But the script keeps run-
ning and creates a symlink to this file rather than to the today folder as
expected. Then, when you try to move to the today folder, you get another
error because it’s a link to a file, not a folder.

In general, if a command fails in your shell script, you probably want
the entire script to stop executing. Otherwise, you can get this cascading
effect as commands continue to return even after the failure, which can
cause all sorts of unexpected behavior.

To tell the shell to exit when a command fails, use the set (“set option”)
command, which turns shell options on and off, with the -e (“exit if any
command exits with a nonzero status”) option:

#!/usr/bin/env sh

Exit if any command fails.
set -e

...

Now clean up your folder again:

$ rm -rf ~/today

And finally, create the same file that caused the failure and rerun the
script:

$ touch ″/tmp/$(date +″%Y-%m-%d″)″
$./today.sh
mkdir: /tmp/2025-05-28: Not a directory

In this case, the script stops running as soon as the mkdir command fails, so
the symlink is never created.

When you call set to set a shell option, the special $- (“shell options”)
parameter is updated to include the option you’ve added. Calling set -e
will prepend the letter e to the value of $-. You can run echo $- to see which
options have been set.

N O T E 	 The set -e option affects only the final command of a pipeline. This means that if
you have a pipeline like this one

grep ′[:space:]*#′ ~/effective-shell/scripts/common.sh | tr ′a-z′ ′A-Z′

the script will still run if the grep command fails. To ensure that the shell terminates
if a command in a pipeline fails, you must set the pipefail option:

set -o pipefail

Chapter 14 covers set -e and set -o pipefail in more detail.

Functions, Parameters, and Error Handling 187

If you set up your scripts to fail on errors (which is always a good idea),
make sure to properly handle commands that you suspect might fail. For
example, if you want to delete a file in a script but don’t want to stop if the
deletion fails for some reason, you could use an if block to “catch” the error
and show a warning:

if ! rm ~/my-file.text; then
 echo ″warning: unable to delete file″
fi

Another option is to use a conditional expression:

rm ~/my-file.txt || true

This expression always evaluates to true so it will not stop the script if
the rm command throws an error.

For more on if statements and conditional expressions, see Chapter 11.

Simplifying the common Command with Functions
Now let’s turn back to the common command script (introduced in Chapter 9),
which shows the most commonly used commands from your shell history.
Chapter 12 left off with the common.v4.sh file, the latest version of the script.

If you haven’t yet looked at the past few chapters or need a refresher on
what’s in the script, install the sample files to your effective-shell folder like so:

$ curl effective.sh | sh

Then open the common.v4.sh file in your editor.
Let’s make a couple more changes based on what you’ve learned in this

chapter. First, make sure to exit the script if one of the commands fails by
putting this line at the top of your script:

Exit if any command fails.
set -e

Next, update the script on line 7 to store the first parameter provided
to the script in a variable called command_count:

...
command_count=${1:-10} # The number of common commands to show
...

The 1 variable indicates the first parameter, but you’re also using
shell parameter expansion (described in Chapter 10) to provide a default
value to use if the first parameter is not set. In this case, the default is set
to 10 commands.

Currently, the script shows the count (that is, the number of times the
command appears in the history) before the command’s name. Change this

188 Chapter 13

behavior by defining a function that writes each command as a numbered
line of text with the count after the command name:

write_command_then_count() {
 # Get the command and count, which currently looks like:
 # ′43 git commit′
 # Then write the command with the count afterward.
 local line=″$1″
 local count=$(echo ″${line}″ | cut -d′ ′ -f1)
 local command=$(echo ″${line}″ | cut -d′ ′ -f2-)
 echo ″${command} (${count})″
}

You can then rewrite the for loop to make it a little cleaner:

counter=0
for command in $commands
do
 echo ″$counter: $(write_command_then_count ″$command″)″
 counter=$((counter + 1))
done

Now when you run the common command, you can optionally provide the
number of commands to show as a parameter:

$ common 5
common commands:
1: gst (139)
2: vi (74)
3: gc (42)
4: ga . (36)
5: gl (31)

Notice that the count comes after the command name in the output.
This revised script is in ~/effective-shell/scripts/common.v5.sh. To update

your link to point to that version, run the ln command with the -s and -f
flags:

$ sudo ln -sf ~/effective-shell/scripts/common.v5.sh /usr/local/bin/common

Summary
In this chapter, you’ve learned all about how to use functions to provide
more structure to your shell scripts, as well as how to use parameters, work
with return values from functions, interpret status codes, and handle some
common errors that you might encounter in your scripts.

In the next and final chapter of Part III, we’ll look at some more
advanced techniques that you’ll find useful when writing shell scripts.

14
U S E F U L P A T T E R N S

F O R S H E L L S C R I P T S

To close this part of the book, we’re going
to look at some common patterns you’ll

encounter in shell scripts. You’ll find these
standard practices useful when building your

own scripts, and you’ll likely come across them in
scripts others have written as well. You’ll also learn
about anti-patterns, or approaches that you might see
in the wild but should generally avoid.

Although this chapter focuses on patterns that are useful in scripts,
keep in mind that you can also apply them interactively when you are work-
ing in the shell. Even if you don’t expect to write scripts yourself, you’ll find
it helpful to understand these techniques as you operate in the shell.

190 Chapter 14

Ensuring Exit on Failure
Chapter 13 explained that, by default, shell scripts will continue to execute
if a command fails. This behavior makes sense for an interactive shell,
where you wouldn’t want the shell to close if a command fails. For a shell
script, however, continuing to run after an error has occurred will most
likely cause unexpected behavior.

Two options override this default behavior:

set -e   Ensures that the shell script will exit if a command fails

set -o pipefail   Ensures that the shell script will exit if any command
in a pipeline fails

In a pipeline, the set -e option causes the script to exit only if the final
command in the pipeline fails. Thus, for most pipelines, you’ll want to use
the pipefail option instead to ensure that the script exits if any command
fails.

Here’s an example showing why these options are useful:

Create the effective-shell folder.
mkdir -p ~/effective-shell

Download and untar the effective-shell samples.
samples_uri=′https://https://effective-shell.com/downloads/effective-shell-samples.tar.gz′
$ wget -c ″${samples_uri}″ -O - | tar -xz -C ~/effective-shell

Without the set -e option, if the mkdir -p command fails, the script
will continue to run. Specifically, it will attempt to download and untar a
file into a nonexistent folder. Why might mkdir -p fail? Although mkdir -p
succeeds even if the folder exists, it still fails if there’s a file in the loca-
tion specified, if you don’t have the right permissions to create the folder,
and so on. You must be careful even with commands you assume will run
successfully.

The second part of this snippet uses the wget (“web get”) command to
download the samples and pipe the results to tar to extract them. In this
case, if you’ve only set set -e and wget fails (for example, if the address is
wrong or you’re offline), the shell will continue trying to run the script’s
subsequent commands and call tar, which won’t work as expected.

If you have a command that you suspect might fail, but you want to con-
tinue execution even if it does fail, use the OR operator (||):

Remove the shell configuration.
rm ″$HOME/.shell.sh″ || true

As described in Chapter 11, the OR conditional operator ensures that
even if the rm command fails for some reason, the statement’s overall result
will be true and the script won’t exit.

Useful Patterns for Shell Scripts 191

Debugging Shell Scripts with the Trace Option
Tracing is an incredibly useful debugging technique in which the shell writes
each statement to stdout before evaluating it, letting you see the commands
that will be run. To enable tracing, use the set (“set option”) command with
the -x (“trace”) option.

The following example shows the technique applied in the today.sh
script, which creates a temporary folder for the current date:

today.sh creates a ″today″ symlink in the home directory folder to a fresh
temporary folder each day.

Enable tracing in the script.
set -x

Get today′s date in the format YYYY-MM-DD.
today=$(date +″%Y-%m-%d″)

Create a path to today′s temp folder and then make sure the folder exists.
temp_path=″/tmp/${today}″
mkdir -p ″${temp_path}″

Now make a symlink to the folder in your homedir.
ln -sf ″${temp_path}″ ″${HOME}/today″

Disable tracing now that you are done with the work.
set +x

Write out the path you created.
echo ″${temp_path}″

The set -x command enables tracing early on in the script, and set +x
disables it toward the end. You generally don’t want to leave tracing on once
you’ve finished debugging as it can slow down execution, clutter your script,
and potentially expose sensitive information.

Running this script should return the following output:

$ ~/effective-shell/scripts/today.sh
++ date +%Y-%m-%d
+ today=2025-05-29
+ temp_path=/tmp/2025-05-29
+ mkdir -p /tmp/2025-05-29
+ ln -sf /tmp/2025-05-29 /home/dwmkerr/today
+ set +x
/tmp/2025-05-29

The shell writes each command to stdout before executing it. The
parameters are expanded, making it far easier to see what’s going on and
to troubleshoot issues.

192 Chapter 14

The plus signs (+) differentiate the trace lines from the script’s nor-
mal output. The final line of output in this example doesn’t begin with a
plus sign, because it’s actual output from the echo command, rather than a
trace line.

The number of plus signs on each line indicates the level of indirection,
which is how many subshells are running. Each subshell is traced on its
own line. This makes tracing complex commands that execute subshells far
easier:

$ set -x
$ echo ″Name of home folder is $(basename $(echo ~))″
+++ echo /home/dwmkerr
++ basename /home/dwmkerr
+ echo ′Name of home folder is dwmkerr′
Name of home folder is dwmkerr

Tracing shows each command in the order in which it runs, with each
additional plus sign indicating another nesting level. This example has
three levels of indirection: the main shell (+) runs the final echo command,
the first subshell (++) runs the basename command, and the second subshell
(+++) runs the innermost echo command.

I often start my shell scripts with a snippet like this:

Fail on errors in commands or in pipelines.
set -e
set -o pipefail

Uncomment the next line to enable tracing to debug the script.
set -x

This combines the first two patterns you’ve seen: failing on errors and
tracing a script.

Checking for Existing Variables or Functions
You can optionally use the declare (“set variable values and attributes”) com-
mand to explicitly declare that you’re creating a variable. Sometimes this
command is required—for example, when you want to create an associative
array (as discussed in Chapter 10).

The declare command has a number of options, but a particularly use-
ful one is -p (“display attributes and value”), which shows all variables of a
certain type. For example, you can show all of the associative arrays that
have been created like so:

$ declare -p -A
declare -A BASH_ALIASES=()
declare -A BASH_CMDS=()
...

Useful Patterns for Shell Scripts 193

You can also use declare within an if...else statement to check whether
a variable has been set:

if declare -p -A my_options 2>1 /dev/null; then
 echo ″′my_options′ exists″
else
 echo ″′my_options′ does not exist″
fi

Unless you want declare to print a message if the variable doesn’t exist,
you need to silence its error output by sending the output to /dev/null as
shown here.

You can also use these declare tricks to show all declared functions, to
show the value of a function, or to check whether a function exists.

Unsetting Values
Use the unset (“unset variables or functions”) command to clean up vari-
ables and functions you no longer need:

Remove the ″is_even″ function from the shell session.
unset -f is_even

Unsetting shell variables and functions is important, especially in .bashrc
or .bash_profile files. These files are sourced at shell startup to apply custom-
izations, so leaving unnecessary values can inadvertently clash with other
configurations or scripts. Chapter 15 covers the .bashrc and .bash_profile shell
initialization files and many other details about configuring your shell.

Note that if a user simply runs the script in a subshell, no variables will
be retained unless they were set with EXPORT.

Trapping Signals and Events
The trap (“trap signals and events”) command specifies commands to
run when the shell receives certain signals or when a particular condition
occurs, such as the script exiting or a function returning.

One very common use for traps is to create a cleanup function that
runs when the script is interrupted—for example, when the user cancels
the script’s execution by pressing ctrl-C (which sends the INT, or “inter-
rupt,” signal):

Create a temporary folder for the effective-shell download.
source=″https://effective-shell.com/downloads/effective-shell-samples.tar.gz″
tmp_dir=$(mktemp -d 2>/dev/null || mktemp -d -t ′effective-shell′)
tmp_tar=″${tmp_dir}/effective-shell.tar.gz″

Define a cleanup function to call when the script exits or is canceled.
cleanup() {
 if [-e ″${tmp_tar}″]; then rm ″${tmp_tar}″; fi
 if [-d ″${tmp_dir}″]; then rm -rf ″${tmp_dir}″; fi

194 Chapter 14

}

Clean up on interrupt or terminate signals and on exit.
trap ″cleanup″ INT TERM EXIT

Download the samples.
curl --fail --compressed -q -s ″${source}″ -o ″${tmp_tar}″

Extract the samples.
tar -xzf ″${tmp_tar}″ -C ″${tmp_dir}″

This script sets a trap to clean up a temporary folder when a script exits
or is interrupted. It begins by defining a function called cleanup and then
uses the trap command to ensure that cleanup will be called if the INT or TERM
signal is sent, or the script exits.

Using trap can be very useful in scripts that take a while to execute. For
example, this script downloads the effective-shell samples from the internet,
so if the user is having connectivity issues, they may end up canceling the
script because the download is taking too long. The trap command ensures
that the temporary folder is cleaned up.

N O T E 	 You may see INT written as SIGINT in some cases. The SIG at the beginning of a signal
name is optional but not supported in all shells, and a signal number can be used
instead. Thus, SIGINT, INT, and 2 are all equivalent options for the trap command.
INT is the most portable and easiest to read, so that’s what I recommend using. Run
man signal to look up all signals and their signal numbers.

You can also use traps to discourage a user from interrupting your
script, as in this example:

interrupt_count=0
on_interrupt() {
 if [$interrupt_count -lt 1]; then
 echo ″Canceling this operation can cause errors.″
 echo ″Press Ctrl-C again if you are sure you want to cancel.″
 interrupt_count=$((interrupt_count + 1))
 else
 # Convention is to use the status code 130 for interrupted scripts.
 echo ″Canceling long operation″
 exit 130
 fi
}

trap on_interrupt INT

total_time=0
while true; do
 echo ″Long operation: ${total_time} seconds elapsed″
 sleep 3
 total_time=$((total_time + 3))
done

Useful Patterns for Shell Scripts 195

When running this script, the user must press ctrl-C twice to cancel
the operation:

$ ~/effective-shell/scripts/long-operation.sh
Long operation: 0 seconds elapsed
Long operation: 3 seconds elapsed
Long operation: 6 seconds elapsed
^CCanceling this operation can cause errors.
Press Ctrl-C again if you are sure you want to cancel.
Long operation: 9 seconds elapsed
Long operation: 12 seconds elapsed
^CCanceling long operation

Asking the user to confirm cancellation can help them avoid stopping
the operation by accident. The warning message also tells them what might
happen if they cancel the script before it finishes executing.

The following list describes some other specifics about the trap com-
mand you should be aware of:

•	 You can use trap -l or kill -l to list the signals available, but special
conditions such as EXIT and RETURN won’t be listed. To find those, enter
help trap in your shell.

•	 To stop a signal from being processed, use trap ″″ SIGNAL, which means
that the shell won’t execute any commands when it receives the signal
specified.

•	 To reset a trap, run trap - SIGNAL, which will remove any trap handler.

•	 Test your traps by sending a signal explicitly to your script with kill -s
SIGNAL.

Processing Complex Script Parameters
The getopts (“parse option arguments”) command makes it much easier
to handle the options that users set when calling your scripts. It takes two
parameters. The first is an option string, which defines what options are
allowed. This string starts with a colon followed by one or more letters,
where any letter followed by a colon expects you to provide a value. The
second parameter is the name of the variable that will store each option as
getopts processes it.

You typically use getopts in a while loop with a case statement to iterate
through each option and determine what it should do.

Say you want to update the common command from the previous chapters
to support the -h (“help”) and -e (“execute”) parameters. The processing
could look like this:

Helper function to show how the command should be invoked
show_help() {
 echo ″usage:″
 echo ″ common [-h] [-e <command_number>] count″
}

196 Chapter 14

Process the options.
1 while getopts ″:he:″ option; do

 case ${option} in

 # Handle the ″help″ option.
 h)
 show_help
 exit 0
 ;;

 # Handle the ″execute command″ option by storing the value provided
 # for the option.
 e)
 execute_command=${OPTARG}
 ;;

 # If you have an invalid argument, warn and fail.
 2 \?)
 echo ″The value ′${OPTARG}′ is not a valid option″
 exit 1
 ;;

 # If you are missing a required argument, warn and exit.
 3 :)
 echo ″The option ′${OPTARG}′ requires an argument″
 ;;
 esac
done

First you call the getopts command with an option string and iterate
through the results in a while loop 1. Notice in the option string :he: that
e is followed by a colon, meaning it expects an argument.

If you set an invalid option letter, the value of the option variable is set
to \? 2, and you can handle this in your case statement.

If you provide a letter that expects an argument but fail to specify that
argument, the value of the option variable is set to : 3, and you can also
handle this in your case statement.

In more complex scenarios, you might see scripts that use multiple
loops to process sets of options. It’s common to end complex option pro-
cessing with the following line:

shift $((OPTIND - 1))

The ${OPTIND} variable stores the index of the last option processed.
Shifting this value by one removes the processed options from the $@ (“all
parameters”) array so that getopts won’t try to process them again.

The ~/effective-shell/scripts/common.sh script processes parameters with the
getopts command. You can use this script as a template to help you write your
own scripts. If you haven’t already, install this script and the sample files with:

$ curl effective.sh | sh

Useful Patterns for Shell Scripts 197

Adding Syntax Highlighting
You can use certain escape sequences (character combinations that tell the
shell how to format output) to color the text displayed in the shell. This
technique is sometimes called syntax highlighting:

green=′\e[0;32m′
reset=′\e[0m′
echo -e ″Do you like ${green}apples${reset}?″

On most terminals, you’ll see the following output with the word apples
rendered in green:

Do you like apples?

The sequence \e[0;32m means “set the text color to green.” The sequence
\e[0m means “reset the text color.” These codes are ANSI escape sequences
that have been defined to control how content in a terminal is formatted.
There are a number of formatting options, such as foreground and back-
ground colors, bold, and underline. Search online for “ANSI color codes” to
find all of the possible codes.

It’s important to provide the -e flag to the echo command so that it cor-
rectly processes the color code escape sequences. In fact, a better option is
to use the printf (“format and print arguments”) command, as it behaves
more consistently across different versions of Unix and Linux:

printf ″Do you like ${green}apples${reset}?″

Syntax highlighting can be helpful for a user in an interactive shell, but
there are certain circumstances where you wouldn’t want to use color codes.
Let’s walk through an example that shows why.

This rainbow function writes out a message in several colors:

rainbow() {
 local message=″$1″
 local reset=′\e[0m′
 for ((color=31; color<=37; color++))
 do
 color_code=″\\e[0;${color}m″
 printf ″${color} - ${color_code}${message}${reset}\n″
 done
}

In most terminals, running this function displays the color code fol-
lowed by the word hello in the corresponding color:

$ rainbow hello
31 - hello
32 - hello
33 - hello
34 - hello
35 - hello

198 Chapter 14

36 - hello
37 - hello

Here’s what you get when you write the rainbow output to a file:

$ rainbow hello >> text.txt
$ cat -v text.txt
31 - ^[[0;31mhello^[[0m
32 - ^[[0;32mhello^[[0m
33 - ^[[0;33mhello^[[0m
34 - ^[[0;34mhello^[[0m
35 - ^[[0;35mhello^[[0m
36 - ^[[0;36mhello^[[0m
37 - ^[[0;37mhello^[[0m

The -v parameter tells cat to make escape characters visible. If you
open the file in a text editor, you’ll see the escape characters there.

The problem with the rainbow function is that it adds the color escape
sequences even when you’re writing the results to a file. In most cases, this
is not going to be what you want. Commands like ls don’t include color
codes when writing their output to a file.

There is no entirely foolproof way to avoid this issue, but the most com-
mon approach is to check whether the output is going to a terminal device
with the -t expression of the test or [command (as Chapter 11 explained,
[expression] and test expression are equivalent):

if [-t 1]; then
 echo ″We are writing to a terminal″
else
 echo ″We are not writing to a terminal″
fi

The -t test returns success if the provided file descriptor is associated
with a terminal. The 1 in this example is the file descriptor for the stdout
stream (if this is unfamiliar, refer to Chapter 2).

You could use this test in the rainbow function as follows:

rainbow () {
 local message=″$1″
 local reset=′\e[0m′
 for ((color=31; color<=37; color++))
 do
 color_code=″\\e[0;${color}m″
 if [-t 1]; then
 printf ″${color} - ${color_code}${message}${reset}\n″
 else
 printf ″${color} - ${message}\n″
 fi
 done
}

Useful Patterns for Shell Scripts 199

Now when you run

$ rainbow test > text.txt

the output file won’t contain the ANSI escape sequences. To find out more
about the -t test, run man test.

As a final formatting tip, you can use the tput (“query terminfo data-
base”) command to look up escape sequences in a slightly more user-
friendly and readable fashion:

bold=$(tput bold) # Set format to ″bold″.
green=$(tput setaf 2) # Set ansi foreground to green.
reset=$(tput sgr0) # Reset the colors.
echo -e ″Do you like ${bold}${green}apples${reset}?″

Executing this code in my terminal returns the following output, with
the word apples in bold green text:

Do you like apples?

The ~/effective-shell/scripts/common.sh script includes colorized output and
also checks to see whether color codes should be printed, so you can use it
as a reference for your own scripts.

Although the tput codes are still not entirely intuitive, they can be more
readable than the raw ANSI escape sequences. The tput command will fail
if a feature (such as the bold format) is not available, allowing you to build
scripts that can adapt to different terminal capabilities.

Checking the Operating System
Different flavors of Unix and Linux are sometimes inconsistent in their
behavior. While it’s ideal to write scripts that can be used across systems,
it’s not always possible. Sometimes you need to check for a specific operat-
ing system and then take the appropriate action.

You can use a case statement with the uname (“show operating system
name”) command as follows to check the operating system (Chapter 11
covers case in depth):

case ″$(uname)″ in
 Darwin)
 os=″macOS″
 ;;

 Linux)
 os=″Linux″
 ;;

 CYGWIN*|MINGW32*|MSYS*|MINGW*)
 os=″Windows″
 ;;

200 Chapter 14

 SunOS)
 os=″Solaris″
 ;;

 *)
 echo ″Unsupported operating system″
 exit 1
 ;;
esac
echo ″Your OS is: ${os}″

The ~/effective-shell/scripts/common.sh script checks to see whether the
operating system is macOS. If so, it temporarily aliases the text commands,
such as sed, to their GNU equivalents because the macOS versions of the
commands are based on BSD and have slightly different parameters. Refer
to common.sh when writing shell scripts that need to work with both macOS
and Linux.

Checking for Installed Programs
There are many different ways to determine whether a command is available.
The most correct and portable option is to use command -v as shown here:

if ! command -v ″curl″ >/dev/null 2>&1; then
 echo ″′curl′ is not installed, please install and try again″
fi

When you use command, you silence error output and stdout; otherwise,
you’d see either an error message if the command doesn’t exist or the
details of the command if it does exist.

The ~/effective-shell/scripts/common.sh script checks to see whether certain
GNU versions of tools are installed when it’s running on macOS. You can
refer to it as a guide if you need to check for the presence of commands in
your scripts.

Showing a Menu
The select command prints a menu and allows the user to make a selection.
It’s not part of the POSIX standard, but it’s available in bash and most bash-
like shells. The following example uses select to ask a user to pick their
favorite fruit from a list:

select fruit in Apple Banana Cherry Durian
do
 echo ″You chose: $fruit″
 echo ″This is item number: $REPLY″
done

Useful Patterns for Shell Scripts 201

Running these commands produces the following output:

1) Apple
2) Banana
3) Cherry
4) Durian
#? 1
You chose: Apple
This is item number: 1
#? 3
You chose: Cherry
This is item number: 3
#? 4
You chose: Durian
This is item number: 4
#? ^D

Notice that select runs just like an infinite loop: after the shell executes
the statements in the select body, it prompts for a selection again. The user
can tell the shell they’re done sending input by pressing ctrl-D, which is
the ASCII EOT (“end of transmission”) character, or ctrl-C to quit.

You’ll normally see select used with a case statement to process the
selection.

Running Commands in Subshells
You can run commands in subshells to avoid inadvertently changing the
state of your current script. One application for this nice little trick is to
change the current directory for a specific command without affecting the
current directory for the shell:

(mkdir -p ~/new-project; cd ~/new-project; touch README.md)

The parentheses indicate that these commands are run in a subshell.
As a result, the directory is changed only in the subshell, not in the current
shell, which means you don’t need to change back to the previous directory
after the commands have completed.

This sequence of commands creates a new folder (mkdir -p ensures that
the command won’t fail if the folder exists), changes to that folder, and
then creates a new file called README.md. The current folder for the shell
remains unchanged.

Anti-patterns
Anti-patterns are common practices that should be avoided. This sec-
tion describes a few you might encounter in the wild and why they’re
problematic.

202 Chapter 14

Omitting Shebangs
Some shell scripts do not have a shebang (the #! character sequence) at the
top. The shebang allows you to be very explicit about which shell is required
to run your script, so you should always include it.

For example, if you see a shebang like this

#!/usr/bin/env sh

you would assume that this script can run on any POSIX-compliant shell;
that is, it is as compatible as possible. However, if you see this

#!/usr/bin/env bash

you would assume that this script is bash-specific and uses “bash-isms,” such
as the if [[conditional]] construct.

Finally, if you see a shebang like this

#!/usr/bin/env zsh

you would expect that this script has been explicitly written for use with the
Z shell.

If you omit a shebang in your script, the intended behavior is ambigu-
ous. For example, at the time of writing, if you run a shell script without a
shebang from bash, the script will run in a new instance of bash. However,
if you run a shell script without a shebang from the Z shell, the Z shell will
use sh from your path, which could be a symlink to dash, bash, or another
shell, depending on your system.

If you want to experiment, create a script such as the ~/effective-shell/
scripts/nobang.sh script, which looks like this:

nobang: This script shows an anti-pattern of not using a shebang in a shell
script. It shows the process tree for the shell that runs the script:
pstree $$

After running this script from macOS, you should see something like
the following output:

-+= 00001 root /sbin/launchd
 \-+= 07995 dwmkerr tmux
 \-+= 31195 dwmkerr /bin/zsh
 \-+= 49833 dwmkerr sh ./samples/script/nobang.sh
 \-+- 49834 dwmkerr pstree -p 49833
 \--- 49835 root ps -axwwo user,pid,ppid,pgid,command

Although I ran this script from a Z shell session, it was executed with sh,
which is the Bourne shell (version 3 on my system).

The only time you should omit the shebang is when you expect the
script to be sourced (a topic introduced in Chapter 9 and discussed further
in Part IV).

Useful Patterns for Shell Scripts 203

Configuring Options in Shebangs
Sometimes you’ll see shell scripts with shebangs that contain options like so:

#!/usr/bin/bash -ex

Script contents below...

In this case, the -ex flags are passed to the bash program, enabling the
“exit on error” and “trace” options.

But just because you can specify program arguments in a script’s she-
bang doesn’t mean you should. Doing so is risky for two reasons.

First, this pattern requires you to know the path to the shell. If you’ve
read Chapter 9, you know that you should use #!/usr/bin/env to search PATH
for the shell program rather than assume you know where the user has it
installed.

Second, not all parameters are handled consistently across operating
systems. For example, on some Unix systems, the following shebang will run
bash with the -e parameter:

#!/usr/bin/env bash -e

However, on many Unix distributions, only one parameter is passed, in
which case the -e parameter would be silently ignored. That would be very
confusing for anyone reading your code. A workaround to handle these
issues is to use the -S (“split”) parameter for env, but again, this may be con-
fusing for the reader.

Using Complex Logic in Shell Scripts
Although it’s been around for decades, the shell has changed remarkably
little. This is a testament to the genius of the design of Unix systems and
the shell in general.

However, the shell is often not the best choice for complex logic or
work. Shell scripts are great for automating simple tasks and creating utili-
ties to help you streamline your work, but they come with many challenges.
The syntax can be confusing, making scripts work across multiple systems
can be challenging, and not many features are available to help you write
robust code.

Perhaps the biggest anti-pattern in shell scripts is simply letting them
get too large and trying to do too much with them. At a certain point, you’ll
almost certainly be able to create a more portable, effective, and maintain-
able solution to your problem by using a dedicated programming language
like Python (which is available on almost all systems) or one of the many
other languages at your disposal.

This is a topic I’ll discuss in detail in Chapter 21, but for now I suggest
applying this rule of thumb: as soon as your script starts to get longer than
a page or takes more than a few minutes to think through, you’re probably
reaching the point where a programming language would be a better option.

204 Chapter 14

Summary
This chapter described several useful patterns you can incorporate into
your shell scripts to make you an even more effective shell user. You learned
how to handle certain user behaviors, add syntax highlighting to shell out-
put, check for the operating system and installed programs, and more. You
also saw a few anti-patterns—bad habits you might find in others’ scripts but
should avoid in your own.

In Part IV, you’ll learn how to customize your shell and environment so
they’re better suited for your particular needs and use cases.

PART IV
B U I L D I N G Y O U R T O O L K I T

15
C O N F I G U R I N G Y O U R S H E L L

Once you have the fundamentals of the
shell down, you’re ready to start customiz-

ing it to suit your specific needs and prefer-
ences. This chapter introduces the various shell

configuration files, explains how they work, and cov-
ers the many ways you can configure your shell with
the options that work best for you.

Interactive Shells
An interactive shell is any shell that has its input, output, and error standard
streams (stdin, stdout, and stderr, respectively) connected to a terminal,
which really just means that an interactive shell is one you interact with
through a keyboard and monitor. When you enter commands using the
shell or a terminal emulator like GNOME Terminal or KDE’s Konsole,
you’re running an interactive shell.

208 Chapter 15

The Default Shell Startup File
When an interactive shell starts, one of the operations it performs is to run
all of the commands in the file ~/.bashrc. This startup file is what you’ll use
most often to configure your shell.

The rc in the filename stands for “run commands” (some people also
refer to it as “run configuration”). This is a convention from the early days
of Unix, and you’ll find that many tools on Unix and Linux have startup
files that end in rc. For example, the Vim text editor program loads the
~/.vimrc file when it starts (Chapter 23 discusses Vim in detail).

The ~/.bashrc file is in your home directory, so it’s your personal bash
configuration file. You can use another file, /etc/bash.bashrc, to configure
bash for all users. Having one configuration file that is used globally and
another for local, per-user customizations is another common feature of
Unix and Linux systems.

N O T E 	 The Z shell uses the ~/.zshrc file for per-user configuration and /etc/zsh/zshrc for
global configuration. The paths are different, but the concepts are the same. Other
shells may use different paths, which you should be able to find in the shell’s man
pages.

We’ll explore some other shell startup files later in the chapter, but for
now we’ll focus on ~/.bashrc. Here are some of the commands in the ~/.bashrc
file on a clean Ubuntu installation (to learn how to set up a free Ubuntu
virtual machine, see Appendix A):

If not running interactively, don′t do anything.
case $- in
 i) ;;
 *) return;;
esac

Don′t put duplicate lines or lines starting with space in the history.
See bash(1) for more options.
HISTCONTROL=ignoreboth

Append to the history file; don′t overwrite it.
shopt -s histappend

For setting history length, see HISTSIZE and HISTFILESIZE in bash(1).
HISTSIZE=1000
HISTFILESIZE=2000

...

some more ls aliases
alias ll=′ls -alF′
alias la=′ls -A′
alias l=′ls -CF′

...

Configuring Your Shell 209

I’ve omitted parts of the file in this snippet to focus on the most inter-
esting areas. The first part of the file checks to see if the shell is running
interactively. Only interactive shells should be customized, so if the shell
isn’t running interactively, then return (“exit function or sourced script”) is
called to stop processing the configuration file. Since this file is sourced by
the shell—that is, executed by the current shell’s environment—you must
use return to stop processing it. If you use exit instead, the shell will close
as soon as it reads this file on startup, which is definitely not what you want.
(For more on sourcing, see Chapter 9.)

Next, the file sets up some of the configuration for the shell’s history
features, defining variables such as HISTSIZE (the number of commands to
store in the history) and setting some shell options with the shopt (“set and
unset shell option”) command.

The following part of the file defines aliases, convenient shorthands for
shell commands. For example, la is an alias for ls -A (“list all directories”), sav-
ing you a few keystrokes. This is exactly the sort of configuration that makes
sense to keep in the ~/.bashrc file, since users can modify aliases to suit their
preferences. But there are many other customizations you can add as well.

Common Startup File Customizations
You can add any commands you like to the ~/.bashrc file, and they’ll be
run when the shell starts up. Let’s look at some of the most common
configurations.

Saving Time with Aliases

You just saw a few built-in aliases, but you can also create your own if you
find yourself typing the same series of keystrokes again and again:

Start a web server.
alias serve=″python3 -m SimpleHTTPServer 3000″

Open vim without loading the vimrc.
alias vimnilla=′vi -u NONE′

Run the kubectl command with one character.
alias k=′kubectl′

Quickly go to GitHub repositories.
alias gocode=′cd ~/repos/github/dwmkerr′

This example creates four aliases: one to run a web server, one to open
a text editor without loading any extensions, one to shorten a command
name, and one to move to a folder.

You might also use aliases to change the behavior of existing com-
mands. For example, you can change the rm command to automatically ask
for confirmation before a file is deleted:

Always run ″rm″ in interactive mode.
alias rm=′rm -i′

210 Chapter 15

Keep in mind, however, that the more you customize existing com-
mands, the greater the risk that tutorials and samples you follow may not
work as expected, since they’ll expect the command’s default behavior.

Adding Functions to Streamline Operations

If you regularly run specific sets of commands or more complex operations,
you can use functions to add them to your ~/.bashrc file, like so:

Restart the shell.
restart-shell() {
 exec -l $SHELL
}

Make a directory (don′t fail if it exists) and move into it in one line.
function mkd {
 mkdir -p -- ″$1″ && cd -P -- ″$1″;
}

Cut, but in reverse, for example:
$ echo ″One;Two;Three;Four;Five″ | revcut -d′;′ -f2
-> Four
function revcut {
 rev | cut ″$@″ | rev
}

This example creates one function that restarts the shell, one that
makes a directory and immediately moves to it, and one that works like the
cut command in reverse.

You can find out more about functions in Chapter 13.

Creating a Local bin Directory for Custom Commands

Many users find it useful to create a bin directory in their home folder to
store their own commands and scripts. You can create a local bin directory
with this command:

$ mkdir -p ~/bin

You can then update your ~/.bashrc file to add this directory to the PATH
variable (the variable the shell uses to search for executable files), which
allows you to run the shell scripts or commands bin contains as if they were
system-wide executables:

Add the local bin directory to the PATH if it exists.
if [-d ″$HOME/bin″]; then
 export PATH=″$HOME/bin:$PATH″
fi

Configuring Your Shell 211

To test this out, you’ll add a command from the book’s sample files to
bin. First, install the sample files to your effective-shell folder as follows:

$ curl effective.sh | sh

The sample scripts include a script called common, which shows com-
monly used commands. Add it to your bin directory like so:

$ ln -s $HOME/effective-shell/scripts/common.sh $HOME/bin/common

You can now run this command like so:

$ common

This convention ensures that your personal executable scripts or pro-
grams are kept separate from the system-provided bin folders, such as /usr/
local/bin (which on some systems would require you to have administrative
privileges to modify).

Setting Shell Options

The ~/.bashrc file is the ideal place to configure your shell using shell options,
settings that control how your shell works. These settings can add new short-
hands to navigate folders with the cd command, tweak how the shell history
file is managed, and more.

This example uses the shopt command with the -s (“set”) parameter to
set the autocd (“execute directory names as commands”) in your ~/.bashrc file:

shopt -s autocd

You can also set this option directly in your shell if you are running
interactively:

$ shopt -s autocd

You can now quickly go to a directory by entering its name and pressing
enter:

$ ~/effective-shell
cd -- /Users/dwmkerr/effective-shell

You can unset an option by using the -u (“unset option”) parameter:

$ shopt -u autocd

To list all available options, run shopt with the -p (“print options and
status”) parameter. Table 15-1 lists some of the most useful options.

212 Chapter 15

Table 15-1: Common Shell Options

Option Description

autocd Allows you to enter a directory name as a command to have
the shell change (cd) to it

cdable_vars Allows you to change directory (cd) into a variable, such as
repos=~/repos; cd repos

cdspell Tries to correct typos in the cd command

checkjobs Shows the status of stopped and running jobs before exiting
the shell

cmdhist Saves multiline commands in the shell history as single entries,
rather than one entry per line

dirspell Tries to correct typos during directory name autocompletion

globstar Enables the double asterisk (**) pattern for recursive direc-
tory matching (for example, **/*.py matches .py files in all
subdirectories)

histappend Appends new entries to ~/.bash_history when the shell exits,
rather than overwriting the file

To look up an option in the manual, run man bash and search for the
option name.

Configuring Environment Variables

You can set the values of environment variables used by the shell and other
tools in your ~/.bashrc file. For example, you could change your default text
editor and add a new folder named ~/commands to your PATH like so:

export EDITOR=″nano″
export PATH=″$PATH:$HOME/commands″

A number of environment variables can change how the shell works,
such as the EDITOR variable shown here and the PAGER variable, which sets
your default pager. To learn which environment variables you can set to
configure a specific tool or command, see the tool’s man page.

Sourcing Additional Configuration Files

Another common pattern for the ~/.bashrc file is to source another con-
figuration file. Say you’re storing a set of commonly used functions in a file
called shell-functions.sh. You could source this file as part of your shell con-
figuration like so:

Load my common shell functions.
source ~/shell-functions.sh

In fact, a lot of the shell startup files do exactly this. For example, the
default ~/.bashrc file on Ubuntu has these lines:

Configuring Your Shell 213

if [-f ~/.bash_aliases]; then
 . ~/.bash_aliases
fi

This code uses the -f (“file exists”) test to check whether a file named
~/.bash_aliases exists. If it does, the shell sources it using the dot operator.
Dot sourcing is covered in Chapter 9, and tests are detailed in Chapter 11.

Setting Shell Startup Commands

You might always want to run particular commands when you start a shell.
For example, say you want to create a temporary folder based on the cur-
rent date that’s linked to ~/today and updated daily. To do that, you could
add the following commands to the ~/.bashrc file:

Get today′s date in the format YYYY-MM-DD.
today=$(date +″%Y-%m-%d″)

Create a path to today′s temp folder and then make sure the folder exists.
temp_path=″/tmp/${today}″
mkdir -p ″${temp_path}″

Now make a symlink to the folder in your homedir.
ln -sf ″${temp_path}″ ″${HOME}/today″

Now, whenever you start a new shell, it creates a folder with today’s date
in the /tmp directory, as well as a link to this folder at ~/today. This configu-
ration is a convenient way to create a temporary working folder for each day
that you can go back and refer to in the future if needed.

Avoiding Shell Configuration Pitfalls

There are a few guidelines and best practices to bear in mind when custom-
izing your shell with the ~/.bashrc file:

Don’t print output

It’s considered bad practice to print output during shell startup. Avoid
running commands like echo or printf. If you call commands that write
to stdout, silence the output by piping it to /dev/null.

Don’t run long operations

You might have written a cool script that pulls down information
on stocks or weather from a website, ready to show in your shell. But
avoid running anything in a startup file that could take a lot of time.
Otherwise, you’ll encounter a delay every time you start your shell.
This can really slow you down, defeating the whole purpose of using
the shell.

214 Chapter 15

Be careful not to break things

Don’t run so many commands that you might cause errors or failures
on startup. Excessive startup commands can make your shell slow and
difficult to use, and it can also be hard to debug complex startup logic.

Clean up after yourself

Remember, any variables you set will be set for all shells that read the
startup file. If there are variables that you need only while the file is
processing, consider using the unset command (covered in Chapter 14)
to unset them after startup.

Expect your startup commands to be run multiple times

Write your startup files with the assumption that they will be run mul-
tiple times. If you start a new shell from your current shell, your startup
files will be loaded again, so make sure they won’t cause errors when
run multiple times.

In most cases, you’ll only need to work with the ~/.bashrc file to con-
figure your shell. However, the shell actually uses a number of different
configuration files or startup files, such as /etc/profile, ~/.bash_profile, and
~/.bash_logout. Which files are used depends on whether you’re starting an
interactive shell, a non-interactive shell, or a login shell. You’re familiar
with interactive shells by now, so let’s look at the other two types.

Non-interactive Shells
Any shell that does not have its stdin, stdout, and stderr attached to a termi-
nal is generally called a non-interactive shell. The most common example of
non-interactive shells you’ve seen so far are shells that run shell scripts. Let’s
take a closer look.

Understanding Shell Script Behavior
The book’s sample files include a script called showpstree.sh that shows some
information about the current process.

To run it, enter its name and press enter:

$./effective-shell/scripts/showpstree.sh

N O T E 	 This script requires a tool called pstree. If pstree is not installed on your system, when
you run this script you’ll see an error along with instructions on how to install it. For
example, if you’re running macOS and pstree isn’t installed, you’ll see this output:

error: pstree not installed, try:
 brew install pstree

Follow the instructions to install the tool, and then run the script again.

Configuring Your Shell 215

You should see output similar to the following:

systemd
 └─sshd
 └─sshd
 └─sshd
 └─bash
 └─sh ./effective-shell/scripts/showpstree.sh
 └─pstree -a -s 1675

This output is the process tree for the shell process in which the script is
running—that is, the current process, its parent, its parent’s parent, and so
on, all the way to the main process, which runs the entire operating system.
The process tree will look different depending on what system you’re using.
We’ll focus on the final three processes highlighted in bold:

•	 The bash shell is the interactive shell that you are currently running.
You entered the command to run the showpstree.sh script in this shell.

•	 The sh shell is a new, non-interactive shell that the current interactive
shell creates to run the showpstree.sh script.

•	 The pstree (“show process tree”) command runs in the showpstree.sh
script.

When you run a shell script using a command like sh, bash, or zsh, it
runs in a new, non-interactive shell, and this is a really important point
to remember. If the script causes an error, it won’t close the current shell
you’re using, as each script essentially runs in its own “clean” shell. Because
this new shell is non-interactive, anything you define in ~/.bashrc won’t be
loaded, so aliases or other customizations you’ve added won’t be available.

You’ll see the following lines in the default ~/.bashrc file in many distri-
butions (including Ubuntu, as you saw at the beginning of the chapter):

If not running interactively, don′t do anything.
case $- in
 i) ;;
 *) return;;
esac

To recap, this case statement checks the current shell parameters (which
are stored in the $- variable) to see whether the i (“interactive”) parameter
is present. If it’s not present, the return command runs. This check ensures
that even if a non-interactive shell does load the ~/.bashrc file for some rea-
son, it stops reading the file right away.

You could even change the preceding example to display the text
INTERACTIVE if the shell is running interactively:

If running interactively, let the user know.
If not running interactively, don′t do anything.
case $- in
 i) echo ″INTERACTIVE″;;
 *) return;;
esac

216 Chapter 15

This is a good way to become more familiar with interactive and non-
interactive shells, but I recommend deleting this echo command when
you’re done with it, as shell startup files generally shouldn’t show output.
(However, showing output can be useful for debugging purposes when
you’re building and testing your script.) If you need a refresher on how the
case statement works, see Chapter 11.

Another way to show a non-interactive shell in action is to simply invoke
the shell program with a specified command like so:

$ sh -c ′echo $((5 + 5))′
10

This example starts the sh program and provides a command via the -c
(“command”) flag, which launches a non-interactive shell.

Loading a Startup File with BASH_ENV
Why don’t non-interactive shells load the ~/.bashrc configuration file by
default? First, it doesn’t make sense for scripts to rely on user-level custom-
izations. If one user has an alias and refers to it in a script, then the script
won’t run for another user unless they have the same alias. The second rea-
son is performance: the shell can start much more quickly if it doesn’t need
to load configurations or customizations before running a script.

If you need to load a startup file for a non-interactive shell, set the BASH
_ENV variable to the startup file’s path:

$ BASH_ENV=″~/my_custom_startup_file.sh″ bash

In general, however, you should avoid this approach, as shell commands
and scripts should be written so that they can operate without requiring
startup file configuration.

Login Shells
When you log in to a computer with a shell, entering credentials such as a
username and password, you’re using a login shell. Login shells normally run
some initial setup of your environment, such as setting the PATH variable, to
provide the bare minimum configuration required to work with the system.

For systems that don’t have a graphical user interface, any shell you cre-
ate will be a child of the login shell and thus will inherit the login shell’s
configuration. For systems with graphical user interfaces, such as KDE and
GNOME, when you log in, the desktop manager normally uses the same
configuration as for a login shell, setting variables like PATH just as if you had
logged in at the command line.

Configuring Your Shell 217

Checking Whether You’re in a Login Shell
Not all systems provide you with a login shell by default. You can deter-
mine whether your shell is a login shell by examining the 0 variable, which
holds the parameters that were used to start the shell. By convention, if the
parameter starts with a dash (-), you can assume you’re in a login shell. Try
it out like so:

$ echo ″$0″
-bash

In this case, the parameter used to start the shell was -bash, indicating
that you’re in a login shell. If you see something like bash or zsh instead,
you’re likely in a standard interactive shell that is a child of the login shell.

Run a new bash instance from your login shell to see the difference:

$ echo ″$0″
-bash
$ bash
$ echo ″$0″
bash
$ exit

The shell you started in was a login shell. The shell you created with the
command bash was a child interactive shell, not a login shell.

Login shells are normally interactive shells (although it’s possible to
run a non-interactive login shell, it’s quite rare). The distinction between
login shells and interactive shells more generally is for historical reasons
around performance optimization. In the early days of Unix, when execut-
ing any commands could be time-consuming, the login shell would perform
the most essential configuration only once, when a user logged in. Since
all subsequent shell processes would inherit the login configuration, they
could start more quickly and then load the user-specific configuration.

Loading the Shell Startup Files
When a login shell starts, the shell loads and executes commands from the
/etc/profile file, the profile file containing essential, system-wide configura-
tion. This file is often used to configure settings like the PATH environment
variable, which can have different values depending on your operating
system.

The shell will then attempt to read each of the following user-specific
profile files in order:

1. 	 ~/.bash_profile
2. 	 ~/.bash_login

3. 	 ~/.profile

If the shell finds a file that’s readable, it executes that file’s commands
and doesn’t attempt to read the others.

218 Chapter 15

N O T E 	 Operating systems handle profile loading differently; for example, macOS starts a
login shell when you run Terminal, while Linux desktop environments typically load
/etc/profile through their display manager. There’s a very good discussion on this
topic on StackExchange at https://unix.stackexchange.com/questions/119627/
why-are-interactive-shells-on-osx-login-shells-by-default.

When a login shell closes, it will run any commands in the ~/.bash_logout
file. However, users might forcibly terminate the shell process, which means
that you can’t be sure this file will always be sourced as the shell exits.

The configuration performed by these startup files varies from distribu-
tion to distribution, but in general they will do at least the following:

•	 Set the PATH variable to include the appropriate folders for tools for your
distribution.

•	 Set the shell prompt, the characters to the left of the cursor prompting
you for input (such as ~$ when you’re in the home folder, or ~# if you’re
in the home folder as a superuser—that is, a user with permissions to
modify the system with the sudo command).

•	 Set up autocompletion (the feature that allows you to press tab to see
suggestions when entering commands).

•	 Load the /etc/bash.bashrc and ~/.bashrc files.

There are very few circumstances in which you should change any of
these files. Think of them as an essential operating system–specific configu-
ration that makes a login shell functional.

A SHEL L CONF IGUR AT ION CHE AT SHEE T

The various configuration files can be confusing for many people. But now
that you understand the different types of shells, these files are actually quite
straightforward.

•	 When an interactive shell starts, it attempts to load the “run commands”
(rc) files /etc/bash.bashrc and ~/.bashrc (if they exist), which contain the
shell configuration for all users and for a specific user, respectively.

•	 When a non-interactive shell starts, it doesn’t load any configuration files,
unless one has been specified in the BASH_ENV variable.

•	 In most cases, when you log in to a machine or change user, a login shell
starts, and the following steps take place:

1.	 The shell attempts to load the profile file, which generally is used to
implement essential system-wide configuration.

2.	 The profile file typically loads the rc files, which apply user-level
customizations.

Configuring Your Shell 219

To wrap up this chapter, I’ll touch on how to check and change your
default shell. While changing your shell isn’t something I encourage for
novices, you should know how to do it in case you need to access another
shell’s features or overcome script compatibility issues in your current shell.

Changing Your Shell
To see what your current default shell is, check the /etc/passwd file like so:

$ grep ′dwmkerr′ /etc/passwd
dwmkerr:x:1001:1001:Dave Kerr,,,:/home/dwmkerr:/bin/bash

The /etc/passwd file keeps track of the local user accounts on the system.
The final item on the line is the current user’s shell.

When you log in, your shell is set in the SHELL environment variable. You
can write this value out with the echo command:

$ echo ″My shell is: $SHELL″
My shell is: /bin/bash

You have a few ways to change your shell. However, before you do so,
make sure that the shell you want to use is in the list of available shells at
/etc/shells:

$ cat /etc/shells
/etc/shells: valid login shells
/bin/sh
/bin/bash
/usr/bin/bash
/bin/rbash
/usr/bin/rbash
/bin/dash
/usr/bin/dash
/usr/bin/tmux

If the shell you want to use is not listed in /etc/shells, you’ll need to add it;
search online for installation instructions for your specific shell.

Once the shell you want to use is in /etc/shells, you can run the chsh
(“change shell”) command to change the shell:

$ chsh -s /bin/sh dwmkerr

The -s (“shell”) parameter specifies the shell path, followed by the user-
name you’re changing the shell for.

N O T E 	 On many systems, users can change their own shell as long as it’s in the /etc/shells
list. To change the shell for another user or to use a shell that is not in the /etc/shells
list, you’ll need to run the chsh command using sudo.

220 Chapter 15

You can also change the shell for a user by editing the /etc/passwd file
(you must be using sudo to do this) or by starting the shell from your login
shell (for example, by running sh from your bash session).

Here’s an end-to-end example showing how you would install zsh and
set it for the current user on a Debian-based system:

Elevate privileges to superuser.
sudo su

Update the apt databases and install ″zsh″.
apt update -y
apt install zsh

Add ″zsh″ to the list of shells.
echo ″/bin/zsh″ >> /etc/shells

Return to normal user mode.
exit

Change the current user′s shell to ″zsh″.
chsh -s ″/bin/zsh″ $USER

Changing your shell is an advanced topic, and not without risk. If you
don’t properly configure the shell you’re changing to, you could lock yourself
out of your account. Always test that the new shell works before you set it!

Summary
In this chapter, you learned how to customize your shell configuration with
the ~/.bashrc file. You saw how interactive, non-interactive, and login shells
differ, as well as how they load startup files. You can find all of the details
on how the shell starts up and loads configuration files by entering man bash
and searching for ^INVOCATION.

In the next chapter, we’ll take a deeper dive into the command prompt
and explore how to customize it to suit your preferences.

16
C U S T O M I Z I N G Y O U R
C O M M A N D P R O M P T

The previous chapter covered numerous
options for configuring certain shell fea-

tures, and this chapter extends that topic
with a specific focus on the command prompt,

the text shown to the left of your cursor indicating
that the shell is waiting for you to type a command.
You’ll learn how to customize your command prompt
to show only the information you want to see, and
you’ll explore a script that allows you to set a com-
mand prompt theme from a list you can extend over
time. This script will even handle the differences
between bash-like shells and the Z shell, ensuring a
consistent command prompt across shells.

222 Chapter 16

Each operating system and Linux distribution comes with its own con-
figuration for the command prompt, but the default often looks something
like this:

dwmkerr@effective-shell-ubuntu-24:~$

This is the prompt on an Ubuntu virtual machine I have set up. If you
want to set up a free virtual machine yourself, follow the guide in Appendix A.

This prompt consists of the following components:

dwmkerr   The name of the current user

@   A separator between the username field and the following field

effective-shell-ubuntu   The hostname of the machine

:   A colon that separates the hostname from the next field

~   The current working directory

$   The prompt itself (a dollar sign indicates a normal user rather than
a root user)

When I change directory, the prompt is updated:

dwmkerr@effective-shell-ubuntu-24:~$ cd effective-shell
dwmkerr@effective-shell-ubuntu-24:~/effective-shell$

If I change to the root user (or superuser) with the sudo command, the
username changes to root and the dollar sign ($) changes to a hash mark (#):

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ sudo su
root@effective-shell-ubuntu-24:/home/dwmkerr/effective-shell#

The hash mark is a useful reminder that you’re running commands as
the root user. You always want to be careful when doing so, as you could eas-
ily break features or functions by changing system files.

As useful as these out-of-the-box fields are, however, you might want to
customize the prompt to include information that’s even more relevant to
you. Let’s get started!

The Command Prompt Structure
The structure of the command prompt is specified in the PS1 (“Prompt
String 1”) shell prompt variable. The shell uses this variable to write out
the command prompt.

To see the contents of this variable, use echo or printf to write it to the
screen:

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ echo $PS1
\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\
[\033[01;34m\]\w\[\033[00m\]\$

Customizing Your Command Prompt 223

This might look extremely complicated, but don’t worry: by the time
you’ve finished this chapter, you’ll understand what this mess of special
characters means.

The Prompt String
You can use the PS1 variable to set your own prompt string like so:

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ PS1=″---> ″
---> echo ″Look at my new prompt!″
---> Look at my new prompt!

The shell will use the contents of the PS1 variable to display the prompt.
In this example, I’ve changed the prompt string from $ to --->. As you can
see in the echo command, once you set PS1 in the shell, the prompt immedi-
ately changes.

Escape Sequences
While simple text works for a basic command prompt, you can also specify
escape sequences in the PS1 variable to further customize how the prompt
string looks. These are listed in Table 16-1.

Table 16-1: PS1 Escape Sequences

Sequence Meaning

\a The special “beep” character that tells the shell to play a beep sound
through the speakers

\d The date in “Weekday Month Date” format (for example, Tue May 26)

\D{format} The date in a format specified by the format value (for a description,
enter man strftime 3)

\e An ASCII escape character (033) used to print special characters

\h The hostname up to the first dot (.)

\H The hostname

\j The number of jobs currently managed by the shell

\l The name of the shell’s terminal device

\n A newline character

\r A carriage return character

\s The name of the shell (for example, -bash)

\t The current time in 24-hour HH:MM:SS format

\T The current time in 12-hour HH:MM:SS format

\@ The current time in 12-hour am/pm format

\A The current time in 24-hour HH:MM format

\u The username of the current user

\v The version of bash (for example, 5.0)
(continued)

224 Chapter 16

Sequence Meaning

\V The release of bash with the patch level (for example, 5.0.17)

\w The current working directory, with HOME abbreviated with a tilde (~)

\W The current working directory name (rather than the entire path, as
in \w)

\! The history number of this command

\# The command number of this command

\$ The prompt itself (this is a dollar sign unless you’re a superuser, in
which case the hash mark is used instead)

\nnn The character corresponding to the octal number nnn, used to show
special characters

\\ A literal backslash (\)

\[The “start of non-printing characters” sequence

\] The “end of non-printing characters” sequence

Some of these sequences are reasonably self-explanatory, but some are
a little more complex. You’ll use some of them now to experiment with cus-
tomizing the prompt.

N O T E 	 The Z shell uses different sequences. I suggest that you follow this chapter to under-
stand how bash-like shells work, and then you can apply the same techniques using
the Z shell. Later in this chapter, I’ll introduce a function that automatically con-
verts the prompt into the Z shell format if needed; see “Writing a Shell Script to
Customize the Command Prompt” on page 231.

To change the prompt, simply set the PS1 variable with any escape
sequences you choose:

dwmkerr@effective-shell-ubuntu-24:~$ PS1=′\d \@ \$ ′
Sun Jun 06 12:43 PM $

This example specifies the \d (current date), \@ (current time in am/pm
format), and \$ (prompt) escape sequences, followed by a space. Note that
you have to use single quotes to specify the value of the PS1 variable; other-
wise, the shell would see the dollar sign and assume you’re trying to use a
variable. For a reminder on how quoting works, see Chapter 10.

Now say you want to show the number of jobs, the command number,
and then the prompt:

Sun Jun 06 04:43 AM $ PS1=′[\j] (\#) \$ ′
[0] (4) $ sleep 10 &
[1] 27598
[1] (5) $ sleep 10 &
[2] 27600
[2] (6) $ sleep 10 &
[3] 27601
[3] (7) $

Table 16-1: PS1 Escape Sequences (continued)

Customizing Your Command Prompt 225

This example sets the \j (current job) sequence and surrounds it with
square brackets. Then it specifies the # (command number), surrounded
by parentheses, followed by the \$ (prompt). It also starts some background
jobs that run the sleep (“wait for a number of seconds”) command so that
you can see that the number of jobs is changing. The square brackets and
the parentheses are simply formatting characters to distinguish between
the job number and command number, making the prompt more read-
able. Again, because you’ve used single quotes to set the value of the
PS1 variable, the shell knows to treat these and the dollar sign as literal
characters.

If you’re following along and trying this out in your own shell, you
might have noticed that there aren’t any colors for the new prompts being
set; everything is displayed in white. You’ll change that next.

Adding Color and Text Formatting to Your Prompt
Earlier in the chapter, you saw that the default prompt on systems like
Ubuntu contains lots of special characters. Here it is again:

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ echo $PS1
\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\
[\033[01;34m\]\w\[\033[00m\]\$

You might recognize some of these characters, such as \u for the user-
name and \h for the host. The character sequences that start with \033 or
\e are ANSI escape sequences. ANSI stands for American National Standards
Institute, an organization established to set common standards for comput-
ing platforms.

In the early days of Unix, each vendor developed their own special
characters to control how output was formatted. Since these characters
varied from platform to platform, it was challenging to create scripts or
functionality that worked across multiple platforms. To deal with this, ANSI
defined a common set of codes that could be printed to a terminal to con-
trol the output’s visual style.

You can use these ANSI escape sequences to format your output. First,
you enter \033 or \e, both of which represent the escape key. The \033
sequence is the escape key code written in octal (base-8) format, and the
\e sequence is simply an alternative way of writing the escape key. The two
options have the same result. When a terminal sees them, it knows that the
following sequence of characters defines the formatting. Table 16-2 shows
some of the formats you can use.

226 Chapter 16

Table 16-2: ANSI Formatting Sequences

Sequence Meaning

Foreground color
\033[30m Set foreground to black.

\033[31m Set foreground to red.

\033[32m Set foreground to green.

\033[33m Set foreground to yellow.

\033[34m Set foreground to blue.

\033[35m Set foreground to magenta.

\033[36m Set foreground to cyan.

\033[37m Set foreground to white (normally shown as light gray).

Foreground color (bold)

\033[1;30m Set foreground to bright black (gray, or bold black).

\033[1;31m Set foreground to bright red (or bold red).

\033[1;32m Set foreground to bright green (or bold green).

\033[1;33m Set foreground to bright yellow (or bold yellow).

\033[1;34m Set foreground to bright blue (or bold blue).

\033[1;35m Set foreground to bright purple (or bold purple).

\033[1;36m Set foreground to bright cyan (or bold cyan).

\033[1;37m Set foreground to bright white (or bold white).

Background color
\033[0;40m Set background to black.

\033[0;41m Set background to red.

\033[0;42m Set background to green.

\033[0;43m Set background to brown.

\033[0;44m Set background to blue.

\033[0;45m Set background to purple.

\033[0;46m Set background to cyan.

\033[0;47m Set background to white (normally light gray).

Background color (bold)

\033[1;40m Set foreground to bright black (gray, or bold black).

\033[1;41m Set foreground to bright red (or bold red).

\033[1;42m Set foreground to bright green (or bold green).

\033[1;43m Set foreground to bright yellow (or bold yellow).

\033[1;44m Set foreground to bright blue (or bold blue).

\033[1;45m Set foreground to bright purple (or bold purple).

\033[1;46m Set foreground to bright cyan (or bold cyan).

\033[1;47m Set foreground to bright white (or bold white).

Customizing Your Command Prompt 227

Notice that each sequence starts with the escape character (the backslash),
followed by the [or [1; options, which use the normal color or the bright
color, respectively. (How “bright” appears depends on your terminal; in many
modern terminals, the bright text is the same color but in bold.) You can also
use [0; to clear any changes to the foreground or background before you
set the new color. Next, you can choose from eight colors for the foreground,
specified by the characters ranging from 30m to 37m. The sequences in the
range 40m to 47m set the background color. The sequence 0m resets the colors.

When you write text that uses escape sequences, you need to tell the
shell to process them properly. You can use the printf command or the echo
-e command to do so, but printf is a better choice since not all systems sup-
port the -e parameter for echo:

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ printf ″\033[31mRED\033[0m\n″
dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ printf ″\033[1;31mBRIGHT RED\033[0m\n″
dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ printf ″\033[0;30m\033[42mBLACK ON GREEN
\033[0m\n″

These commands output the following text:

RED
LIGHT RED
BLACK ON GREEN

The colors of the foreground and background should change on each
line. The precise formatting will depend on the terminal you use.

With your new knowledge of ANSI escape sequences, you can update
the PS1 variable to show a prompt in color. Try the following combination:

dwmkerr@effective-shell-ubuntu-24:~/effective-shell$ PS1=′\033[34m\u \033[32m\W
\033[37m\$ \033[0m′

This example sets the prompt to show the username in blue and the
name of the current working directory in green, followed by a white $
prompt symbol. Finally, the reset sequence makes sure that the text you
type afterward won’t have its color changed. This prompt will be shown in
color on modern terminals.

There is one snag here. If you set your prompt this way and press the up
and down arrows to cycle through your previously entered commands, your
shell prompt might get overwritten. This is because you need to tell the shell
that the color and formatting sequences are non-printing characters—that
is, that the sequences don’t actually produce written text in the terminal.

To deal with this, surround each color sequence with the special char-
acters \[and \] to tell the shell when a non-printing sequence starts and
ends, as shown here:

PS1=′\[\033[34m\]\u \[\033[32m\]\W \[\033[37m\]\$ \[\033[0m\]′

228 Chapter 16

Phew! That’s a lot of work just to change the color of the prompt.
Fortunately, later in this chapter we’ll walk through a script that will make
it far easier to work with colors and text formatting.

Adding Data to the Command Prompt
When you set the PS1 variable, you’re simply setting it to a string. This string
could be anything:

dwmkerr@effective-shell-ubuntu-24:~$ PS1=′-Ready?---> ′
-Ready?--->

You don’t have to limit yourself to the special sequences you’ve seen so
far in this chapter; you can run any commands you’d like to build a com-
mand prompt. For example, you could use the ls (“list directory contents”)
and wc (“word count”) commands to count the number of files and folders
in the current directory and show that in the prompt:

dwmkerr@effective-shell-ubuntu-24:~$ PS1=″$(ls -al | wc -l | tr -d ′[:space:]′) \\$ ″
32 $

This prompt shows that 32 files and folders are in the current directory.
The $() notation runs a subshell that lists the contents of the current direc-
tory and then pipes them to wc -l, which counts the number of lines. The
result is piped into tr -d ′[:space:] to remove the whitespace around the
line count.

To use the $() notation or any shell variable, you have to use double
quotes in the string; otherwise, the shell will write out those characters liter-
ally. And because you’re using double quotes, you need an extra backslash
before the last \$ character to escape it so that the shell doesn’t try to treat
it as a variable.

However, this PS1 configuration has a subtle bug. Try changing directo-
ries as I do here:

32 $ cd effective-shell/
32 $ touch newfile{1..10}
32 $

Although I changed to the effective-shell directory, the count still showed
as 32. This was suspicious, so I tried creating 10 new files . . . but the count
still shows as 32.

The reason for this is that 32 was the number of files and folders in the
current directory at the time I set the PS1 variable. I changed the PS1 vari-
able once, but what I really need is for the shell to count the files each time
the prompt is shown.

Fortunately, there’s a special syntax for this. Add a \ in front of the $ for
the subshell like so:

32 $ PS1=″\$(ls -al | wc -l | tr -d ′[:space:]′) \\$ ″

Customizing Your Command Prompt 229

This syntax tells the shell that it should evaluate the subshell each time
the prompt is shown:

32 $ touch newfile{1..10}
42 $

Now the prompt shows the correct count. This is where the real power
of the PS1 variable comes into play. Because you set PS1 by using the shell
itself, you can run any commands that you find useful and integrate their
output into your command prompt.

Additional Shell Prompt Variables
PS1 isn’t the only shell prompt variable you can use to configure your
prompt. Table 16-3 lists some others available to you.

Table 16-3: Other Shell Prompt Variables

Name Purpose

PS2 Indicates a continuation and is set to > by default

PS3 Specifies the prompt used by the select command and is nor-
mally not set, so the default #? is used

PS4 Specifies the prompt used when tracing with set -x and is
normally set to +

PROMPT_DIRTRIM Limits the number of directories shown when using \w or \W in
your prompt

PROMPT_COMMAND Specifies the set of commands you want to run before the
prompt is shown

Let’s take a look at each in more detail.

PS2
If you have a long line of text in the shell, you can start a continuation by
entering a backslash:

$ echo ″This is a really really \
> long \
> long line of text″
This is a really really long long line of text

When you press enter after entering a backslash, you’ll see the right
angle bracket (>), which reminds you that you’re not entering a new com-
mand but instead continuing the current command on a new line. To
change the > prompt, set the PS2 option:

$ PS2=″... ″
$ echo ″This is a really really \
... long \

230 Chapter 16

... long line of text″
This is a really really long long line of text

Now an ellipsis (...) begins each line instead of the right angle bracket.
When setting the PS2 option, including a space after the prompt will make
your code more readable.

PS3
PS3 allows you to specify the prompt used by the select command:

$ PS3=″Your choice? : ″
$ select fruit in Apples Pears; do echo ″$fruit″; done
1) Apples
2) Pears
Your choice? :

The PS3 variable isn’t set by default. If you don’t set it, the select state-
ment uses #? for the prompt.

PS4
When you enable tracing with the -x option, each traced line starts with a
plus sign (+) by default:

$ set -x
$ echo ″The date is $(date)″
++ date
+ echo ′The date is Sun 08 Jun 2025 08:49:07 AM UTC′
The date is Sun 08 Jun 2025 08:49:07 AM UTC

To change the + prompt, set the PS4 option:

$ PS4=′debug-> ′
$ set -x
$ echo ″The date is $(date)″
debug-> date
debug-> echo ′The date is Sun 08 Jun 2025 08:49:07 AM UTC′
The date is Sun 08 Jun 2025 08:49:07 AM UTC

For more about tracing, see “Debugging Shell Scripts with the Trace
Option” on page 191.

PROMPT_DIRTRIM
If you set a value in the PROMPT_DIRTRIM variable and then use the \w sequence
in a prompt string, the shell won’t show the entire contents of the working
directory; instead, it will limit the number of folders it shows to the value in
PROMPT_DIRTRIM and use an ellipsis for the rest.

For example, if I was in the folder ~/effective-shell/logs/apm-logs and set my
PROMPT_DIRTRIM to 2, my command prompt on Debian would look like this:

Customizing Your Command Prompt 231

dwmkerr@effective-shell-ubuntu-24:~/.../logs/apm-logs$

Only the last two parts of the path to my working directory are shown.
This technique can be helpful to avoid the prompt becoming too long and
difficult to read.

PROMPT_COMMAND
You can use the PROMPT_COMMAND variable to specify a command or a set of
commands to run before the prompt is shown. PROMPT_COMMAND is commonly
used as follows to save and reload the shell command history before each
command is run:

PROMPT_COMMAND=″history -a; history -c; history -r; $PROMPT_COMMAND″

This example uses the history (“display or manipulate history list”)
command three times: first with -a to append the lines from the current ses-
sion to the history file, then with -c to clear the shell history in the session,
and finally with -r to reload it.

For many shells, the command history is updated only when the shell is
closed. The change to the PROMPT_COMMAND here ensures that even if the shell
is terminated unexpectedly, each command you’ve executed still gets writ-
ten to the history.

Writing a Shell Script to Customize the Command Prompt
Now you’ll put all this new knowledge into action in a script that makes
customizing your command prompt far more intuitive. Writing a script will
make it much easier to customize your shell prompt for a couple of reasons.
First, rather than having to remember each of the color sequences, you can
store them in variables to make them easier to refer to. Second, you can run
any commands you’d like to show extra information in your prompt. To get
started, open your text editor and save a new file as set_ps1.sh.

You’ll find the full script at ~/effective-shell/scripts/set_ps1.sh. To install the
book’s samples, run this command:

$ curl effective.sh | sh

The set_ps1.sh script is quite long, so I’ll go through it bit by bit:

Keep track of the original PS1 value.
_original_ps1=″${PS1}″

set_ps1() {
 # Foreground colors:
 local fg_black=$(tput setaf 0) # \033[30m
 local fg_red=$(tput setaf 1) # \033[31m
 local fg_green=$(tput setaf 2) # \033[32m
 local fg_yellow=$(tput setaf 3) # \033[33m

232 Chapter 16

 local fg_blue=$(tput setaf 4) # \033[34m
 local fg_magenta=$(tput setaf 5) # \033[35m
 local fg_cyan=$(tput setaf 6) # \033[36m
 local fg_white=$(tput setaf 7) # \033[37m

 # Background colors:
 local bg_black=$(tput setab 0) # \033[40m
 local bg_red=$(tput setab 1) # \033[41m
 local bg_green=$(tput setab 2) # \033[42m
 local bg_yellow=$(tput setab 3) # \033[43m
 local bg_blue=$(tput setab 4) # \033[44m
 local bg_magenta=$(tput setab 5) # \033[45m
 local bg_cyan=$(tput setab 6) # \033[46m
 local bg_white=$(tput setab 7) # \033[47m

First, you store the current value of PS1 in a variable named _original_ps1.
This way, if you change the PS1 variable later, you can change it back to its
original setting. The underscore (_) in the variable name is a convention
indicating that this variable is used internally in the script.

Next, you define a function called set_ps1, using the tput (“query terminfo
database”) command to get the exact escape sequences for the foreground
and background colors. For easy reference, the escape sequences appear as
comments to the right of each command, and you store them in local vari-
ables with descriptive names (see Chapter 10).

Now you’ll get the escape sequences for some of the other formatting
options, such as bold (which will be bright on some terminals):

 # Text styles and reset. Note that on some terminals ″bold″ will produce
 # light colors for bright colors, and on others it will show the text
 # in bold.
 local bold=$(tput bold) # \033[1m
 local dim=$(tput dim) # \033[2m
 local start_underline=$(tput smul) # \033[4m
 local stop_underline=$(tput mmul) # \033[24m
 local reset=$(tput sgr0) # \033[0m

After this, you use a case statement to set the PS1 variable based on the
value of the first parameter you provided to the function:

 # Depending on the name of the theme provided, set the prompt.
 case $1 in
 debian)
 # Debian/Ubuntu style:
 # \u@\h - username@host (bold/green)
 # \w - working directory (bold/blue)
 # \$ - prompt (# if root, otherwise $) (bold/white)
 PS1=″\[${bold}${fg_green}\]\u@\h:\[${fg_blue}\]\w\[${fg_white}\]\\$\[${reset}\] ″
 ;;

 datetime)
 # A style that shows the date and time:
 # \D{%Y-%m-%d} - the year/month/date (in white)
 # \@ - the time (in green)

Customizing Your Command Prompt 233

 # \$ - prompt (# if root, otherwise $) (bold/white)
 PS1=″\[${fg_white}\]\D{%Y-%m-%d} \[${bold}${fg_green}\]\@\[${fg_white}\]
 \\$\[${reset}\] ″
 ;;

 # Add your own themes here!

 *)
 # Restore PS1 to its original value.
 PS1=″${_original_ps1}″
 ;;
 esac

 # If in the Z shell, convert the PS1 to use the Z shell format.
 [-n ″$ZSH_VERSION″] && PS1=$(_to_zsh ″$PS1″)
}

You begin by checking the first parameter of the function $1. If it
matches the string debian, you set the PS1 variable to a format like the one
used by Debian Linux distributions. If the first parameter matches the
string datetime, you set PS1 to a prompt that shows the current date and time.
If any other value is used, you reset the PS1 variable to its original value.

Before completing the function, you check whether ZSH_VERSION is set to
determine whether the user is in a Z shell. If so, the _to_zsh function con-
verts the PS1 string into the format used by zsh. For readability, I have not
included the _to_zsh function in this listing, but you can see how it works by
opening the file from the book’s samples. Essentially, this function converts
bash-specific prompt string constructs into Z shell–compatible ones.

Finally, the } character ends the function definition.

T HE Z SHEL L A ND OH-M Y-Z SH

The Z shell differs considerably from bash and bash-like shells in how it han-
dles the PS1 variable. In the Z shell, there’s no need for the \[or \] sequences,
there are built-in color variables (such as $fg[red] for red), and the special
sequences differ (for example, rather than \u for username, the Z shell uses
%n). Thus, although the set_ps1 function in set_ps1.sh converts the PS1 string to
the Z shell format if needed, this conversion isn’t perfect since some sequences
don’t have a Z shell equivalent. To customize a Z shell prompt, enter man zshmisc
and search for PROMPT\ SEQUENCES.

Z shell users might also consider the very popular Oh-My-Zsh project, a
collection of themes and plug-ins that add extra aliases, functions, autocomple-
tions, and more to the shell. One of its most popular features is its large assort-
ment of themes for customizing how the prompt looks. Before using Oh-My-Zsh
themes, however, be sure you’ve learned how the fundamentals work so you
can understand what’s going on under the hood of this package.

(continued)

234 Chapter 16

You might also realize that you don’t need to install an additional package
to get the styling you want. As you’ll see shortly, my own shell prompt includes
information on Git and the working directory (trimmed to show a maximum of
three entries), but it requires only a few lines of setup and works consistently in
bash-like shells and the Z shell. This is very similar to the debian theme you just
set in set_ps1.sh.

Notice how much easier it is to specify the values for the PS1 string when
you’ve defined the colors and formatting in variables! You still need to wrap
the formatting characters with \[and \] to make sure that the shell knows
how long the command prompt is, but this is far easier to read than the
examples you saw before that provided the ANSI escape sequences.

To use this script, simply source it into your current session and then
change the prompt by calling the set_ps1 function:

dwmkerr@effective-shell-ubuntu-24:~$ source ~/effective-shell/scripts/set_ps1.sh
dwmkerr@effective-shell-ubuntu-24:~$ set_ps1 datetime
2025-06-08 04:10 PM $ set_ps1 debian
dwmkerr@effective-shell-ubuntu-24:~$

This script has a placeholder in the case statement for you to add your
own themes for use in your shell. For example, here’s one theme I often use:

git)
 # A style that shows some Git information

 # Build a string that shows:
 # - The branch (underlined if ″main″) in green
 # - A red exclamation mark if any local changes are not committed
 # - An indicator of the number of stashed items, if any.
 _git_info() {
 # Git details:
 local git_branch_name=″$(git branch --show-current)″
 local git_any_local_changes=″$(git status --porcelain=v1 2>/dev/null)″
 local git_stash_count=″$(git rev-list --walk-reflogs --count \
 refs/stash -- 2>/dev/null)″ # Ignore error when no stashes
 local git_info=″″
 if [″${git_branch_name}″ = ″main″]; then
 git_info=″${bold}${fg_green}${start_underline}${git_branch_name}${reset}″
 else
 git_info=″${bold}${fg_green}${git_branch_name}${reset}″
 fi
 if ! [-z ″${git_any_local_changes}″]; then
 # Note that you have to be careful to put the exclamation mark
 # in single quotes so that it is not expanded to the last command!
 git_info=″${git_info} ${bold}${fg_red}″′!′″${reset}″
 fi
 if [″${git_stash_count:-0}″ -gt 0]; then
 git_info=″${git_info} ${bold}${fg_yellow}${git_stash_count} in stash${reset}″

Customizing Your Command Prompt 235

 fi
 printf ″${git_info}″
 }

 # Now show a Debian-style prompt with the Git info above it.
 PS1=″\$(_git_info)\n\\[${bold}${fg_green}\]\u@\h:\[${fg_blue}\]\w\[${fg_white}\]
 \\$\[${reset}\] ″
;;

Don’t worry if you’re not familiar with Git; you’ll see it in Chapter 18.
The takeaway from this snippet is that you can add almost any information
you might find useful to your command prompt. When I run set_ps1 git,
my prompt looks like this:

feat/chapter-16-customizing-your-command-prompt ! 3 in stash
dwmkerr@effective-shell-ubuntu-24:~/repos/github/dwmkerr/effective-shell$

My prompt is now spread across two lines: the first shows me the Git
branch I’m on, a red exclamation point for any changes I haven’t yet saved,
and the number of items I have in my stash; the second shows the standard
Debian prompt.

Here you can see the power of customizing the command prompt. You
can show exactly the information you want to see in your day-to-day work.

This code has been slightly simplified for readability, but you can see
the original version in the ~/effective-shell/scripts/set_ps1.sh file. Now you can
build your own themes and easily change between them in the shell.

If you want to always source this file into your shell on startup, just add
the following to ~/.bashrc (for more on configuring this startup file, see
Chapter 15):

$ source ″~/effective-shell/scripts/set_ps1.sh″

You could also set the default PS1 variable immediately after sourcing
the script if you like:

$ # Source the set_ps1 function and set the ″theme″ to Debian.
$ source ″~/effective-shell/scripts/set_ps1.sh″
$ set_ps1 ″debian″

Enjoy playing around with prompt customization! It can be a lot of fun,
and the options are almost limitless.

Summary
In this chapter, you learned how to customize the command prompt with
the PS1 variable, familiarized yourself with the shell’s escape sequences for
useful information (such as \u for the current user), and practiced configur-
ing the prompt’s text formatting. You also explored a script that makes con-
figuring the command prompt a little more intuitive and manageable.

236 Chapter 16

In the next chapter, you’ll see some sensible ways to organize files like
the _set_ps1.sh script and the ~/.bashrc file so that you can easily manage
your customizations and share them across different machines.

For further information on controlling the command prompt, run man
bash and search for ^PROMPTING on bash-like shells, or run man zshmisc and
search for PROMPT\ SEQUENCES on the Z shell.

17
M A N A G I N G Y O U R D O T F I L E S

As you build up more and more customiza-
tions for your shell and environment, it’s

increasingly important to find a way to man-
age them effectively. In this chapter, you’ll learn

how to organize your configuration files (also known
as dot files) so that you can easily make changes over
time and build up a library of scripts and features for
your preferred shell. In addition, you’ll see how you
can use your dot files across different shells.

I’ll begin by discussing how to manage your customizations for bash,
but we’ll also go over solutions that work across many shells. This includes
the Z shell. So if you’re a Z shell user, don’t worry: all of this guidance will
apply to your environment as well.

In this chapter you’ll be creating some files and folders, but if you just
want to see the results, install the samples. You can find them in the
~/effective-shell/dotfiles folder.

238 Chapter 17

To install the samples to the ~/effective-shell folder, run this command:

$ curl effective.sh | sh

Dot Files Defined
Any file or folder on your system that starts with a dot (.) is a dot file. On
many systems, dot files are hidden by default. This means that they won’t
show up when you run commands like ls unless you provide flags, such as
-a (“show all files and folders”). In desktop environments such as GNOME,
KDE, and macOS, dot files are hidden by default.

Dot files are often used “behind the scenes” as configuration or system
files. This is why they’re hidden by default: everyday users shouldn’t have to
worry about dot files or their contents.

You’ll often see dot files in your home directory, where the dot marks
them as hidden to distinguish them from your personal files and folders.
When there are configuration files outside your home directory, the dot isn’t
normally used, because it’s clear from the folder in which the file resides
that it’s a configuration file.

As an example, a user’s personal bash configuration is stored in ~/.bashrc,
but the global bash configuration applied to all users is stored in /etc/bash.bashrc.
The second configuration file doesn’t need the dot, because the /etc folder is
where configuration is kept; thus, there’s no need to differentiate it from the
user’s personal files.

Nowadays, when someone says “my dot files,” they typically mean the
configuration files in their home directory, like ~/.bashrc. In a sense, your
dot files are a bit like your personal settings for your computer. On a desk-
top environment, your settings might control your theme or wallpaper. On
a shell, your settings will be files like ~/.bashrc for your shell configuration,
~/.ssh/config for your SSH configuration (see Chapter 22), and so on.

You’ll likely change your dot files over time to suit your preferences, so
we’ll look at some sensible ways to organize and structure them. You’ll need
to be able to easily distinguish between them and the default configuration
provided by the system, so let’s begin by reviewing that.

The Default Shell Dot File
On many platforms, the default ~/.bashrc file will contain a number of
customizations out of the box. Let’s take a look at a few snippets from the
~/.bashrc file that comes with Ubuntu 20 as an example (the contents of
your own machine’s ~/.bashrc file may differ depending on your distribu-
tion). Some of this may be familiar to you from Chapter 15.

There are a number of options here that relate to the shell history:
making it slightly larger than the default, appending to the history file
rather than overwriting it, and so on:

Managing Your Dot Files 239

Don′t put duplicate lines or lines starting with space in the history.
See bash(1) for more options.
HISTCONTROL=ignoreboth

Append to the history file; don′t overwrite it.
shopt -s histappend

For setting history length, see HISTSIZE and HISTFILESIZE in bash(1).
HISTSIZE=1000
HISTFILESIZE=2000

In the following snippet, the shopt -s globstar command has been com-
mented out so that users can quickly uncomment it to enable pathname
expansion across subdirectories:

If set, the pattern ″**″ used in a pathname expansion context will
match all files and zero or more directories and subdirectories.
shopt -s globstar

This rather complex-looking code determines whether the shell sup-
ports color, and if so, updates the command prompt appropriately:

Set a fancy prompt (non-color, unless you know you want color).
case ″$TERM″ in
 xterm-color|*-256color) color_prompt=yes;;
esac

Uncomment for a colored prompt, if the terminal has the capability; turned
off by default to not distract the user: the focus in a terminal window
should be on the output of commands, not on the prompt.
force_color_prompt=yes

if [-n ″$force_color_prompt″]; then
 if [-x /usr/bin/tput] && tput setaf 1 >&/dev/null; then
 # We have color support; assume it′s compliant with ECMA-48
 # (ISO/IEC-6429). (Lack of such support is extremely rare, and such
 # a case would tend to support setf rather than setaf.)
 color_prompt=yes
 else
 color_prompt=
 fi
fi

if [″$color_prompt″ = yes]; then
 1 PS1=′${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\
 [\033[00m\]\$ ′
else
 PS1=′${debian_chroot:+($debian_chroot)}\u@\h:\w\$ ′
fi
unset color_prompt force_color_prompt
Enable color support of ls, and also add handy aliases.
if [-x /usr/bin/dircolors]; then
 test -r ~/.dircolors && eval ″$(dircolors -b ~/.dircolors)″ || eval ″$(dircolors -b)″
 alias ls=′ls --color=auto′

240 Chapter 17

 #alias dir=′dir --color=auto′
 #alias vdir=′vdir --color=auto′

 alias grep=′grep --color=auto′
 alias fgrep=′fgrep --color=auto′
 alias egrep=′egrep --color=auto′
fi

The debian_chroot variable is set when you’ve run the chroot (“change
root”) command as a superuser 1. The chroot command allows you to cre-
ate an isolated filesystem tree to run programs in a container-like environ-
ment sometimes called a jail. This is an advanced topic and beyond the
scope of this book, but the debian_chroot command in the PS1 variable helps
make it clear that you’re running in a “changed root” environment in the
shell.

If the shell supports color, the following aliases for ls display its output
in color:

Some more ls aliases:
alias ll=′ls -alF′
alias la=′ls -A′
alias l=′ls -CF′

Add an ″alert″ alias for long-running commands like so:
sleep 10; alert
alias alert=′notify-send --urgency=low -i ″$([$? = 0] && echo terminal || echo error)″
″$(history|tail -n1|sed -e ′\′′s/^\s*[0-9]\+\s*//;s/[;&|]\s*alert$//′\′′)″′

Alias definitions:
You may want to put all your additions into a separate file like
~/.bash_aliases, instead of adding them here directly.
See /usr/share/doc/bash-doc/examples in the bash-doc package.

if [-f ~/.bash_aliases]; then
 . ~/.bash_aliases
fi

The configuration file adds other aliases as shortcuts for useful com-
mands and also sources the ~/.bash_aliases file if it exists. A number of other
configuration commands are likely to be set in the file, such as for the bash
autocompletion feature.

You could add your own customizations to this file (as discussed in
Chapter 15), and many people do. However, if you keep your changes in
your own configuration file instead, then you can easily differentiate them
from the out-of-the-box configuration settings. Let’s walk through how to
create this file.

Managing Your Dot Files 241

Creating Your Own Dot Files
Keeping your shell customizations in your own dot file not only helps you
distinguish between your personal configuration settings and those pro-
vided by the system, but it also makes it easier to share the file across differ-
ent machines. All you need to do is copy the file to each machine you want
it on and source it from the ~/.bashrc file.

Another great benefit is that you can then source your dot file in differ-
ent shells if you want to, or you can check in the dot file for the shell type
and then load a configuration specifically for that shell.

Creating the Dot Files Folder
It’s entirely possible (and quite likely) that over time you’ll build up a col-
lection of many dot files—some might be used for the shell, such as a file to
set your favorite aliases or functions, and some might be for other tools—so
you’ll need a way to keep things organized. I’ll show you a technique to man-
age your dot files that I’ve found useful. As I walk through the process, feel
free to customize or adapt it to suit your preferences.

First, create a folder called ~/dotfiles for your personal configuration files:

$ mkdir ~/dotfiles

Keeping your dot files in a single folder will make it easier for you to
package them up and share them, track changes to them, and update them
later.

Creating shell.sh
Now you’re ready to create your own shell configuration file in the dotfiles
folder:

$ touch ~/dotfiles/shell.sh

You can call this file whatever you like; it really comes down to personal
preference. But here are a few points about the name I have suggested,
shell.sh:

•	 I haven’t put a dot in front of the name. This is because I don’t actually
want this file to be hidden within the ~/dotfiles folder; I want to see this
file when I look in the folder.

•	 I haven’t used the name of a shell program in this file. I want to make
this file work with any shell that I regularly use. Whether I’m using zsh,
bash, or sh, this file should still be able to load.

•	 I’ve put .sh at the end of the filename. This isn’t really needed or even
common in the world of Linux or Unix, but it makes it immediately
clear to the reader (or any program that opens the file) that this is a
shell script.

242 Chapter 17

Adding Custom Configuration
Now you’ll edit the ~/dotfiles/shell.sh file to add some configuration that
might be useful for your shell:

There′s no shebang in this script. This script sets the preferred shell
configuration and should be able to be sourced from any bash-like shell or
from the Z shell.

If the shell is not running interactively, do not continue loading this file.
case $- in
 i) ;;
 *) return;;
esac

The file starts with a comment clearly explaining why it doesn’t have a
shebang and that it should be available for sourcing from any bash-like shell
or the Z shell. Then you perform a quick check on the parameters the shell
was started with, which are available in the $- (“shell options”) parameter,
to see if the i (“interactive”) parameter is set. (See Chapter 13 for more on
shell options.) If the interactive parameter isn’t set, you call return to stop
loading the script.

It’s standard to change the shell configuration only when you’re run-
ning interactively; non-interactive shells should not be customized like this
(for an explanation of why, refer to Chapter 15).

Setting the Preferred Editor

Next, you’ll set your preferred editor:

Set your editor. Some tools use VISUAL and some use EDITOR.
VISUAL=nano
EDITOR=nano

The shell and command line programs use two variables to run an editor.
The first variable is EDITOR, which originally referred to a line mode editor—that
is, one that doesn’t take up the whole screen. This was useful in the days of
printed output before screens were used. The second variable, VISUAL, speci-
fies the editor to use for full-screen terminal editing. Some programs use
EDITOR and others use VISUAL, so it’s best to set both.

I’ve used the nano editor in this example as it’s available on many distribu-
tions and is a little easier than vi or emacs, but you can use whatever you like.
For my personal dot files, I use Vim, which you’ll see in detail in Chapter 23.

At this stage, you can start to go a bit over the top. For example, here’s
an alternative way to set the editor to the first one available in an array of
your preferred editors:

Set your preferred editor to the first one available in the following array.
preferred_editors=(nano vi)
for editor in ${preferred_editors[@]}; do
 if command -v ″${editor}″ >/dev/null 2>&1; then

Managing Your Dot Files 243

 # Note that VISUAL can be a full-screen terminal editor. On legacy
 # systems EDITOR was normally a line mode editor, but there is
 # generally no need to differentiate them anymore.
 VISUAL=″$(command -v ${editor})″
 EDITOR=″${VISUAL}″
 break
 fi
done
unset editor preferred_editors

This script specifies an array of editors, checks each to see if it’s loaded,
sets it if so, and looks for the next editor in the list otherwise. (For a reminder
on how to check whether a command is available, see “Checking for Installed
Programs” on page 200.) This is completely excessive and unnecessary. But
the great thing about your dot files is—they’re yours! If you want to do this,
that’s absolutely fine. If you want to check to see if Sublime Text or Visual
Studio Code is installed and use that, it’s not a problem. This is your personal
configuration file, so do what works for you.

Cleaning Up Variables and Configuring Keyboard Shortcuts

Notice that in shell.sh, I clean up every shell variable after I use it with unset
(discussed in Chapter 14). This is a good habit to get into: try to leave the
environment as pristine as possible after sourcing the file.

Another useful option to set is stty -ixon:

Allows you to use Ctrl-S to perform forward search by disabling the start
and stop output control signals, which are not needed on modern systems.
stty -ixon

This command tells the terminal driver that you don’t need to control
transmission with the ctrl-S (start) and ctrl-Q (stop) commands, mean-
ing you can instead use ctrl-S to perform a forward search of the shell
command history.

Working with Folders

Now you’ll configure some sensible settings for working with folders:

Set a shell option, but don′t fail if it doesn′t exist.
safe_set() { shopt -s ″$1″ >/dev/null 2>&1 || true; }

Set some options to make working with folders a little easier. Note that
you send all output to ″/dev/null″ since startup files shouldn′t write to
the terminal and older shells might not have these options.
safe_set autocd # Enter a folder name to change (cd) to it.
safe_set cdspell # Fix minor spelling issues with ″cd″.
safe_set dirspell # Fix minor spelling issues for commands.
safe_set cdable_vars # Allow ″cd varname″ to switch directory.

Uncomment the following to be able to change (cd) to directories that are
not just relative to the current location. For example, if the following

244 Chapter 17

was uncommented, you could do ″cd my_project″ from anywhere if my_project
is in the repos folder.
CDPATH=″~:~/repos″

If you run this script on an older shell, some of these options might not
be available. This is why you’ve created a safe_set function that will execute
if the shopt function fails and will pipe any output to /dev/null. You can use
these settings or remove them—it’s up to you. I’ve also left a comment on
how to use the CDPATH shell variable so that you can change directory (cd)
to relative folders outside of your current path. Be careful with this option,
though, as it can be a bit confusing: if you forget the CDPATH settings you have
saved, you might be surprised when you change to a directory based on the
customized CDPATH.

Setting Shell History Options

Finally, you’ll set some common shell options and variables to fine-tune how
the history works:

Configure the history to make it large and support multiline commands.
safe_set histappend # Append to instead of overwrite the history file.
safe_set cmdhist # Record multiline commands as one entry only.
PROMPT_COMMAND=′history -a′ # Before prompting, save the history.
HISTSIZE=10000 # Store up to 10,000 commands per session.
HISTFILESIZE=100000 # Store up to 100,000 commands for all sessions.
HISTCONTROL=″ignorespace:ignoredup″ # Uncomment to ignore duplicate commands or
 # commands starting with a space.
HISTIGNORE=″ls:history″ # Uncomment to not record certain commands.
HISTTIMEFORMAT=′%F %T ′ # Uncomment to add a timestamp for commands.

At this stage, you’ve got a sensible set of basic options for your shell that
should work in bash or bash-like shells, as well as in the Z shell.

Now we’ll look at how to test this file before you source it.

Testing the Shell Dot File
Fortunately, there’s a really easy way to test that the shell dot file runs with-
out errors. From your shell, run the following command:

$ sh -iex ~/dotfiles/shell.sh
+ case $- in
+ EDITOR=vi
+ VISUAL=vi
+ safe_set autocd
+ shopt -s autocd
...

Managing Your Dot Files 245

You’re running a shell program (in this case, sh) and passing three
flags: i to make the shell interactive (the script runs only in interactive
shells, so you need this flag to test it), e to cause the shell to exit if a com-
mand fails, and x to set the tracing output.

By running this script in a shell this way, you can see exactly what’s being
run. If there’s an error, you’ll see the tracing stop at the point where it
occurs. You could perform the same test with other shells, such as bash or zsh.

This is a great way to verify that the script works as expected before you
commit to sourcing it as part of your shell startup—which you’ll do next.

Sourcing the Shell Dot File
Rather than having your shell startup file load the dot files from the ~/dotfiles
folder, you’ll create a symlink in your home directory that points to your
~/dotfiles/shell.sh file (later on, you’ll see this makes it a little easier to load):

$ ln -sf ″$HOME/dotfiles/shell.sh″ ″$HOME/.shell.sh″

Note the use of the -f (“force”) flag to force the creation of the symlink
even if one already exists at this location.

Now all you need to do is add the following lines to your ~/.bashrc (or for
the Z shell, ~/.zshrc) file:

Source shell configuration if it exists.
[-r ~/.shell.sh] && source ~/.shell.sh

This command performs the -r (“does file exist and is it readable?”)
test to check whether you have a ~/.shell.sh file. If the file exists, the com-
mand sources it.

You’re going to make a couple more changes and then bring this all
together by creating one final script that performs the preceding steps for
you. If this is enough dot file configuration for you, feel free to stop now.
But if you’d like to go deeper, we’ll look at loading additional files next.

Sourcing Files from a Folder
Linux and Unix systems commonly store multiple configuration files for a
program in a dedicated folder in the user’s home directory (although many
distributions now prefer using ~/.config or ~/.local instead of littering the
home directory). This pattern became popular as configuration files grew
larger and more complex, and system designers needed a way to spread
their configuration across multiple files. The convention is to append a .d
(for directory) to the folder name to differentiate it from the configuration
files it contains.

246 Chapter 17

Table 17-1 shows some common examples of configuration files and
folders.

Table 17-1: Common Configuration File Examples

Configuration file Configuration directory Description

/etc/crontab /etc/cron.d Configuration for scheduled
tasks

/etc/bash_completion /etc/bash_completion.d Configuration for bash
autocomplete

/etc/sudoers /etc/sudoers.d Configuration for superusers

You’ll follow this practice for your shell configuration. Say you want to
customize your command prompt when you start the shell. You could put
the set_ps1.sh file (from Chapter 16) in your shell configuration folder, load
it, and then use it to set the PS1 variable in your shell configuration file,
shell.sh.

First, make a folder to hold your shell configuration files:

$ mkdir ~/dotfiles/shell.d

Then copy over your ~/effective-shell/scripts/set_ps1.sh file:

$ cp ~/effective-shell/scripts/set_ps1.sh ~/dotfiles/shell.d

Now update the shell.sh file to source all of the files in the ~/.shell.d
folder (the new code is shown in bold):

If the shell is not running interactively, do not continue loading this file.
case $- in
 i) ;;
 *) return;;
esac

Source any files in your ~/.shell.d folder.
if [-d ~/.shell.d && -x ~/.shell.d]; then
 for shellfile in ~/.shell.d/*; do
 [-r ″$shellfile″] && source ″$shellfile″
 done
 unset shellfile
fi

After testing to see whether the shell is interactive, you use the -d test
to ensure that .shell.d exists and is a directory and the -x test to ensure the
directory can be searched. As long as these two tests pass, you loop through
each file in the directory. Then, using the -r test, you determine whether
the file can be read, and source it if so.

At the end of the shell.sh file, you can now call the set_ps1 function to set
your theme:

Managing Your Dot Files 247

Set the theme. Do not fail if the function doesn′t exist.
set_ps1 ″debian″ || true

Finally, create a symlink in your home directory for the shell configura-
tion files:

$ ln -sf ″$HOME/dotfiles/shell.d″ ″$HOME/.shell.d″

Congratulations! You’ve successfully created a dotfiles folder to store
your configuration, added symlinks in your home directory that point to it,
and updated your ~/.bashrc or ~/.zshrc files to load your shell configuration.

To see the new links you’ve created, run the ls command like so (I’ve
abbreviated the output to make it more readable):

$ ls -al ~ | grep shell
lrwxr-xr-x dwmkerr .shell.d -> /home/dwmkerr/dotfiles/shell.d
lrwxr-xr-x dwmkerr .shell.sh -> /home/dwmkerr/dotfiles/shell.sh

Now you’ll combine all this functionality into a script that installs the
dot files locally for you.

A Dot File Installation Script
You can easily use a shell script to run the manual steps you just performed
to set up the links for your dot files:

#!/usr/bin/env sh

This script installs the dot files locally. Note that it should be run
from the dotfiles folder so that the links are set properly.

Create links for the shell configuration.
ln -sf ″$PWD/shell.sh″ ″$HOME/.shell.sh″
ln -sf ″$PWD/shell.d″ ″$HOME/.shell.d″

Source your shell configuration in any local shell config files.
config_files=(~/.bashrc ~/.zshrc)
for config_file in ${config_files[@]}; do
 # Skip config files that don′t exist.
 [-r ″${config_file}″] || continue

 # If you don′t have the ″source ~/.shell.d ″ line in your config, add it.
 source_command=″[-r ~/.shell.sh] && source ~/.shell.sh″
 if ! grep -q -F ″${source_command}″ ″${config_file}″; then
 echo ″.shell.sh is not sourced in ′${config_file}′ adding now...″
 echo ″${source_command}″ >> ″${config_file}″
 fi
done

248 Chapter 17

This script creates the symlinks to your dot files and loops through a set
of shell configuration files, adding a line to source ~/.shell.sh in the configu-
ration file if it doesn’t exist.

The grep -q command searches through the shell configuration file
for the line that sources your dot file. It returns 0 if it finds a result and 1
otherwise, meaning you can easily use it in an if statement. The -F (“fixed
strings”) flag tells grep that it can treat the string you’re matching against as
a plaintext string; it doesn’t need to interpret the dots or square brackets as
special characters for matching.

Run this script from the ~/dotfiles folder as follows:

$ cd ~/dotfiles
$./install.sh
.shell.sh is not sourced in ′/home/dwmkerr/.bashrc′ adding this now...

And that’s it! You now have a ~/dotfiles folder with your configuration, a
sensible set of options for the shell, and the ability to quickly configure your
dot files for different shells.

In addition to the dot files you’ve just created, you can find this installa-
tion script in the ~/effective-shell/dotfiles folder with the book’s sample files.

Summary
This chapter has demonstrated some sensible configuration settings for
shells. You learned how to keep your own settings separated from the system-
provided configuration file as well as how to manage your configuration
files and folders in a dotfiles folder. You also ran a simple script to install the
dot files for the local user.

The next chapter will introduce Git, a version control tool you can use
to easily manage changes to files like dot files over time. Git will also enable
you to share your dot files across machines.

18
C O N T R O L L I N G C H A N G E S

W I T H G I T

Git is a popular version control tool you
can use to manage changes to text, code,

or any other type of file you might be work-
ing with. Many developers and teams use Git

as a tool to allow users to contribute, collaborate, and
publish their projects. In this chapter, we’ll look at Git
operations that allow you to quickly and easily work
with Git repositories, which are virtual storage spaces
for your projects. You’ll use the dotfiles folder (introduced in the previous
chapter) to track and manage changes with Git from the command line.

Before diving into the specifics of working with Git, let’s go a little
deeper into what exactly it is and how it came to be.

250 Chapter 18

What Is Git?
Any files or folders you work with regularly, such as your personal configu-
ration files (dot files), will change over time—things get added, deleted,
updated, moved around, and so on. Git is a version control system that allows
you to track such changes, maintaining a history of the changes that have
been made: when, by whom, and why. You can also maintain multiple
branches of your files and folders—that is, working environments where you
can make changes without affecting the current “main” set of files.

Git was written by Linux creator Linus Torvalds in 2005 and has since
been enhanced by many others. “Git” is slang for an annoying person;
Torvalds has joked that he always names projects after himself, first Linux
and then Git. There were many version control systems around before Git,
such as CVS (Concurrent Versions System) and SVN (Subversion, a system
similar to CVS but with some improvements). There were also a number of
proprietary and commercial solutions.

In recent years, Git has become the most widely used version control
system globally, and many highly popular software collaboration systems—
such as GitHub, GitLab, and Bitbucket—use Git as their underlying version
control system and add other features on top.

Creating a Git Repository
All of the information about a set of files or folders for which you’re track-
ing changes is stored in a Git repository. In this section, you’ll create a Git
repository to track changes to your dotfiles folder (discussed in Chapter 17),
which stores simple shell configurations. You can read about how to create
this folder in Chapter 17, or you can download the book’s sample files to get
a copy of it.

To install the samples to the ~/effective-shell folder, run the following
command:

$ curl effective.sh | sh

Then you can copy the ~/effective-shell/dotfiles folder to your home direc-
tory, where you’ll create your Git repository and start using the Git com-
mands, by running the following command:

$ cp -r ~/effective-shell/dotfiles ~/dotfiles

Whether you installed the ~/dotfiles folder from the book’s samples or
have your own version from the previous chapter, move into it in your home
directory like so:

$ cd ~/dotfiles

Controlling Changes with Git 251

Now create a Git repository with the git init (“initialize Git reposi-
tory”) command and choose a branch name for it with the git checkout
command:

$ git init
Initialized empty Git repository in /home/dwmkerr/dotfiles/.git/
$ git checkout -b main

You’ll see the git checkout command in detail soon. For now, it’s enough
to know that you’ve initialized a new Git repository and chosen the name
main for the first branch. You can name it anything you want, but you might
want to call it main to follow along with the chapter and because the name
main or master is the convention for the primary branch.

If you’re using Git 2.2 or later, you can initialize a repository and set the
branch name with a single command:

$ git init -b main

If you get the error message error: unknown switch ′b′, it means you’re
using a version of Git earlier than 2.2 that doesn’t support the -b (“initial
branch name”) flag. Search online for “how to install Git” to get the latest
version.

Adding and Resetting Changes to the Index
You now have an empty Git repository, so you can use the git status (“show
the working tree status”) command to show some information on the files
in the working tree, which is the folder that Git is tracking changes to (in
your case, ~/dotfiles):

$ git status
On branch main

No commits yet

Untracked files:
 (use ″git add <file>...″ to include in what will be committed)
 install.sh
 shell.d/
 shell.sh

nothing added to commit but untracked files present (use ″git add″ to track)

First, git status tells you the name of the branch you’re on. Next, it tells
you there are no commits, or tracked sets of changes, and then lists three
files that are untracked: the install.sh and shell.sh files and the shell.d folder.

252 Chapter 18

Since you want to use Git to track changes to these files, you need to
add them to the repository. To do that, use the git add (“add file contents to
index”) command:

$ git add .

The git add command takes a list of filepaths. Here, you’ve used the dot
folder to represent the entire current directory. Now take a look at the sta-
tus again:

$ git status
On branch main

No commits yet

Changes to be committed:
 (use ″git rm --cached <file>...″ to unstage)
 new file: install.sh
 new file: shell.d/set_ps1.sh
 new file: shell.sh

Git tells you that you have three new files ready to be committed. At the
moment, these files are in the index, or staging area, which refers to the set
of changes you’re preparing to commit. These changes are not yet stored in
the repository. When you add files to the index, you’re “staging” changes,
and when you remove files from it, you’re “unstaging” changes.

Think of the index as a holding area where you can build up a set
of changes that you eventually want to record in the repository. You can
add more files to the index before saving, or committing, them to the
repository.

Figure 18-1 visualizes what you’ve done so far.

Working tree

Index

~/dotfiles

~/dotfiles/.git/index

Git repository

~/dotfiles/.git

git add

main branch

Staging
Three items

shell.sh
install.sh
shell.d/

Figure 18-1: The git add command tells Git to track changes
in the working tree and adds them to the index.

To recap: your working tree is the folder associated with your Git reposi-
tory (~/dotfiles), and your index is initially empty. When you ran the git add
command, you told Git you wanted to add three files to the repository. At

Controlling Changes with Git 253

this point, your index has three files in it, but your repository doesn’t have
any commits recorded yet.

What if you realize that you don’t want to add one of these files to the
repository after all? To remove a file from the index—that is, to unstage
it—you use the git reset (“reset changes”) command. Try resetting the
~/dotfiles/shell.d/set_ps1.sh file and then check the status:

$ git reset shell.d/set_ps1.sh
$ git status
On branch main

No commits yet

Changes to be committed:
 (use ″git rm --cached <file>...″ to unstage)
 new file: install.sh
 new file: shell.sh

Untracked files:
 (use ″git add <file>...″ to include in what will be committed)
 shell.d/

The git reset command has removed a change from the index, telling
Git that you don’t want to stage the shell.d/set_ps1.sh file. Git now tells you
there are two files in the index and one that isn’t tracked.

Figure 18-2 shows this step.

Working tree

Index

~/dotfiles

~/dotfiles/.git/index

Git repository

~/dotfiles/.git

git add

main branch

git reset shell.d/set_ps1.sh

Staging
Three items

Staging
Two items

shell.sh
install.sh
shell.d/

Figure 18-2: The git reset command removes items from the index but does not affect the
working tree.

You can also reset changes with the git rm --cached (“remove changes
from index”) command. However, I think this is a little harder to work
with, as you have to remember to use the --cached flag to tell Git that you’re
removing from the index and not from the repository. You’ll see the git rm
command a little later in the chapter.

Remember, at this point you haven’t changed a single file! Nothing
you’ve done has changed the content of any of the files in the working tree.

254 Chapter 18

The only thing that has changed in the Git repository is the index: the cur-
rent set of files that you’re staging.

To save these changes, you need to commit them.

Committing Changes
Once you’re happy with the set of changes in the index, you commit them
as follows:

$ git commit

Now your shell editor will open, prompting you to enter a message
describing your changes:

Please enter the commit message for your changes. Lines starting
with ″#″ will be ignored, and an empty message aborts the commit.
#
On branch main
#
Initial commit
#
Changes to be committed:
new file: install.sh
new file: shell.sh
#
Untracked files:
shell.d/
#

Type a short description like this one:

add the ″install″ and ″shell″ scripts
Please enter the commit message for your changes. Lines starting
with ″#″ will be ignored, and an empty message cancels the commit.
#
On branch main
#
Initial commit
#
Changes to be committed:
new file: install.sh
new file: shell.sh
#
Untracked files:
shell.d/
#

Below the cursor is some information starting with a hash mark (#);
these are comments Git conveniently provides to tell you the status of the
index, so they won’t be stored in the commit message.

Controlling Changes with Git 255

If you are using the nano editor, save the file with ctrl-W and close the
editor with ctrl-X. If you’re using a different editor, use the corresponding
save and close commands instead.

After closing the editor, you’ll see a confirmation below the git commit
command:

$ git commit
[main (root-commit) 01e7a10] add the ″install″ and ″shell″ scripts
 2 files changed, 90 insertions(+)
 create mode 100755 install.sh
 create mode 100644 shell.sh

This message tells you that two files have changed and 90 lines have
been added. It also lists the files you’ve added. At this point you’ve made
your first commit, as shown in Figure 18-3.

Working tree

Index

~/dotfiles

~/dotfiles/.git/index

Git repository

~/dotfiles/.git

git add

main branch

git reset

shell.d/set_ps1.sh

git commit

Staging
Three items

Staging
Two items

Staging
Empty

Commit
#1

shell.sh
install.sh
shell.d/

shell.sh
install.sh

Figure 18-3: The git commit command commits changes to the repository.

You’ve staged a set of changes and then committed them, so now you
have a single commit in your repository. Your files are still unchanged, but
the Git repository now has a single commit in it that tracks the two files you
added.

Now run git status again:

$ git status
On branch main
Untracked files:
 (use ″git add <file>...″ to include in what will be committed)
 shell.d/

nothing added to commit but untracked files present (use ″git add″ to track)

The git status command tells you you’re still on the main branch and
that there’s one file that isn’t tracked. Now create a second commit with

256 Chapter 18

git add to add the shell.d/set_ps1.sh file back to the index. When you run
the git commit command, enter a message with the -m (“commit message”)
parameter to describe the commit:

$ git add .
$ git commit -m ″add the ′shell.d′ folder″
[main d7e1bb9] add the ′shell.d′ folder
 1 file changed, 228 insertions(+)
 create mode 100644 shell.d/set_ps1.sh

Using the -m parameter for the git commit command allows you to pro-
vide a commit message inline, so Git knows it doesn’t need to open your
editor.

With this second commit, your timeline will look like Figure 18-4.

Working tree

Index

~/dotfiles

~/dotfiles/.git/index

Git repository

~/dotfiles/.git

git add

main branch

git reset

shell.d/set_ps1.sh

git commit

git add

shell.d/set_ps1.sh

shell.d/set_ps1.sh

git commit

Staging
Three items

Staging
Two items

shell.sh
install.sh
shell.d/

Staging
Empty

shell.sh
install.sh

Commit
#1

Staging
One item

Staging
Empty

Commit
#2

Figure 18-4: Making a second commit to add shell.d/set_ps1.sh back to the index

Run git status one more time to confirm that everything in the working
tree is tracked in Git:

$ git status
On branch main
nothing to commit, working tree clean

The concepts of the index, the working tree, and the Git repository
itself can take a bit of getting used to. If you haven’t used Git before and
this seems like a lot to take on board, don’t worry. People often find Git
quite challenging at first. As you use it more, all these concepts will become
more familiar and intuitive.

Controlling Changes with Git 257

CON V EN T IONS FOR COMMIT MESSAGES

You can use any text you like for a commit message. However, there are a
couple of best practices to bear in mind:

•	 Try to keep the first line—known as the subject line—to 50 characters
or fewer. Keeping it short will make it easier to look through the log of
changes later and see what each commit means.

•	 If you want to add more detail, leave a blank line after the subject line and
then include as much text as you like. Common convention is to wrap the
text at 80 characters so that it will fit in a typical shell window.

There are many articles available online with further guidance on writing
your commit messages. You can explore these articles as you get more famil-
iar with Git. My primary recommendation is to make sure that your commit
message makes sense; it should describe what the change is and (ideally) the
reason for it. Over time, it’s easy to forget why you made certain changes, so
writing clear commit messages will save you a lot of time in the long run and
make it easier for others to work with your repository.

Working with Branches
Branches provide a convenient way to work on a set of changes and record
these changes with commits, without affecting the primary (main or master)
and other branches. Your branch can then be merged back to the primary
branch.

When others work in your repository, they also typically work in a branch
and later submit a request to merge it into the primary branch. This section
will take a closer look at branches and how these processes work.

Creating Branches
The commits you’ve made so far have been on the main branch. You can cre-
ate new branches and make commits on them in order to save a series of
changes that are isolated from the main branch.

You can create branches with the git branch (“list, create, or delete
branches”) command or the git checkout (“switch branches or restore work-
ing tree”) command:

$ git checkout -b aliases
Switched to a new branch ′aliases′
$ git status
On branch aliases
nothing to commit, working tree clean

258 Chapter 18

Here you’re using the git checkout command to switch to another
branch. The -b (“new branch”) option tells Git that you want to create a
new branch, and you’ve specified aliases as its name. Running the git status
command shows the new branch name.

Now create a new file that includes an alias for the git status command,
and then run git status to check the status of the working tree:

$ echo ′alias gs=″git status″′ >> ./shell.d/git_aliases.sh
$ git status
On branch aliases
Untracked files:
 (use ″git add <file>...″ to include in what will be committed)
 shell.d/git_aliases.sh

nothing added to commit but untracked files present (use ″git add″ to track)

Excellent! You have a new file, shell.d/git_aliases.sh, and Git knows that it
is not currently tracked. Stage this file and then commit it as follows:

$ git add .
$ git commit -m ″add alias ′gs′ for ′git status′″

[aliases f61369d] add alias ′gs′ for ′git status′
 1 file changed, 1 insertion(+)
 create mode 100644 shell.d/git_aliases.sh

If you were to load your new shell.d/git_aliases.sh configuration file into
your shell, you would now be able to use gs as an alias (shorthand) for git
status. For more on assigning aliases and loading configuration files, see
Chapter 15.

Your current series of commits looks like Figure 18-5.

Git repository

~/dotfiles/.git

main branch Commit
#1

main branch

aliases branch

Commit
#2

Commit
#3

git checkout –b

shell.d/git_aliases.sh

Figure 18-5: The git checkout -b command creates a new aliases branch to which you
commit the git_aliases.sh file.

Your new ~/dotfiles/shell.d/git_aliases.sh file has been committed to the
aliases branch.

You can switch branches simply by passing the name of the branch you
want to switch to as the parameter to the git checkout command. Switch
back to the main branch and then use the tree command to view your work-
ing tree:

Controlling Changes with Git 259

$ git checkout main
Switched to branch ′main′
$ tree
.
├── install.sh
├── shell.d
│ └── set_ps1.sh
└── shell.sh

When you look at your working tree back on the main branch, you can
see that the git_aliases.sh file isn’t there. This is because the commit you just
made was on the alias branch instead. To get back to that branch, just run
git checkout with aliases as the parameter, and then run tree again:

$ git checkout aliases
Switched to branch ′aliases′
$ tree
.
├── install.sh
├── shell.d
│ ├── git_aliases.sh
│ └── set_ps1.sh
└── shell.sh

And there’s the git_aliases.sh file!
You can always go back to the last branch you were on by running git

checkout - (just like you can use cd - to change to the last directory you visited).
Now add another alias to the file and commit it:

$ echo ′alias gcm=″git checkout main″′ >> ./shell.d/git_aliases.sh
$ git add .
$ git commit -m ″add alias ′gcm′ for ′git checkout main′″
[aliases b9ae0ad] add alias ′gcm′ for ′git checkout main′
 1 file changed, 1 insertion(+)

Here you’ve added the alias gcm for the get checkout main command. Your
branches should now look like Figure 18-6.

Git repository

~/dotfiles/.git

main branch Commit
#1

main branch

aliases branch

Commit
#2

Commit
#3

Commit
#4

git checkout –b

alias gcm='git checkout main'

Figure 18-6: Adding two commits to the aliases branch

You can create as many branches as you’d like. Just remember that
when you run git checkout -b, you branch from the current branch (and in
fact, the current HEAD, which you’ll see a little later).

260 Chapter 18

If you want to create a branch without switching to it, run git branch
new_branch. This command will create a branch from your current position
but won’t move into it.

Performing Fast-Forward Merges
Sometimes you’ll want to take the changes from one branch and bring
them into another. To do this, you use the git merge (“ join two or more
branches”) command.

To merge the changes from the aliases branch into the main branch of
the repository, first you check out the branch you want to merge into, and
then you run git merge:

$ git checkout main
$ git merge aliases
Updating d7e1bb9..b9ae0ad
Fast-forward
 shell.d/git_aliases.sh | 2 ++
 1 file changed, 2 insertions(+)
 create mode 100644 shell.d/git_aliases.sh

When you run the git merge command, Git tells you what type of merge
it has performed. In this case, it’s a fast-forward merge, which is the sim-
plest type. When Git tries to merge the two branches, it sees that each of
the commits on the aliases branch can be applied sequentially to the main
branch, as shown in Figure 18-7. In other words, the aliases branch’s com-
mits follow directly after the main branch’s commits, with no diverging
changes.

Git repository

~/dotfiles/.git

main branch Commit
#1

main branch

aliases branch

Commit
#2

git merge

Commit
#3

Commit
#4

git checkout –b

Figure 18-7: How Git prepares for a fast-forward merge

Once the merge is complete, your branches should look like Figure 18-8.

Git repository

~/dotfiles/.git

main branch Commit
#1

main branch
aliases branch

Commit
#2

Commit
#3

Commit
#4

Figure 18-8: The result of the fast-forward merge

The main and aliases branches now contain the same set of commits.
With the simplest merge case behind us, we’ll now look at a slightly

more complicated merge scenario: merging branches that have diverged.

Controlling Changes with Git 261

Performing Recursive Merges and Handling Diverged Branches
Now you’ll be creating a set of commits where your branches have diverged—
that is, each branch has its own new commits. First, check out a new branch
called more_aliases, and add two new empty files, shell.d/bash_aliases.sh and
shell.d/zsh_aliases.sh, as separate commits:

Create a branch called ″more_aliases,″ add a file to it, then commit.
$ git checkout -b more_aliases
$ touch ./shell.d/bash_aliases.sh
$ git add .
$ git commit -m ″add a file to store ′bash′ aliases″

Create another file, add it, then commit.
$ touch ./shell.d/zsh_aliases.sh
$ git add .
$ git commit -m ″add a file to store ′zsh′ aliases″

Now go back to your main branch and change a file:

Go back to the ″main″ branch, and add and commit another file.
$ git checkout main
$ echo ′alias gm=″git merge″′ >> ./shell.d/git_aliases.sh
$ git commit -a -m ″add the ′gm′ alias for ′git merge′″

You’ve added a new alias called gm to the shell.d/git_aliases.sh file. Adding
the -a (“all changes”) flag to the git commit command allows you to add the
changes to the index and commit them in a single command.

Your branches now look like Figure 18-9.

Git repository

~/dotfiles/.git

main branch Commit
#4

main branch

more_aliases branch

Commit
#7

Commit
#5

Commit
#6

Figure 18-9: Two diverged branches: main and more_aliases

Merge the more_aliases branch into the main branch as you did before:

$ git merge more_aliases

Since Git will be creating a new commit on the main branch that brings
in the changes from the bash_aliases branch, your shell editor will open and
show a default commit message:

merge branch ′more_aliases′
Please enter a commit message to explain why this merge is needed,
especially if it merges an updated upstream into a topic branch.

262 Chapter 18

#
Lines starting with ″#″ will be ignored, and an empty message will abort
the commit.

The default commit message simply explains that this commit merges
the branch named more_aliases. Change it or leave it as is, and then save the
file. You should see the following output:

$ git merge more_aliases
Merge made by the ′recursive′ strategy.
 shell.d/bash_aliases.sh | 0
 shell.d/zsh_aliases.sh | 0
 2 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 shell.d/bash_aliases.sh
 create mode 100644 shell.d/zsh_aliases.sh

Git now tells you that you’ve made a merge. Your branches should look
like Figure 18-10.

Git repository

~/dotfiles/.git

main branch Commit
#4

main branch

more_aliases branch

more_aliases
branch

Commit
#7

Merge
commit

#8
main branch

git merge

Commit
#5

Commit
#6

Figure 18-10: The result of a recursive merge of two diverged branches

At this stage, the main and more_aliases branches have the full set of
changes that you made to each branch. Git merged the two branches and
created a new commit that joins them.

The difference between a fast-forward merge and a recursive merge
can be summarized as follows: in a fast-forward merge, the primary branch
simply moves forward to include another branch’s commits, creating a lin-
ear history, whereas a recursive merge combines parallel changes from both
branches into a new merge commit, creating a more complex, nonlinear
history.

The Git Log
In the figures you’ve seen so far, each commit is numbered to make the
process easier for you to follow. In reality, Git doesn’t use a number for
commits; instead, it uses a Secure Hash Algorithm (SHA), or simply hash, a
sequence of letters and numbers that uniquely identify each commit. The
SHA will become increasingly important as you use it more and more
throughout this chapter to reference exact commits.

To see the log of commits and their SHAs (highlighted in bold in the
following example), use the git log (“show commit logs”) command:

Controlling Changes with Git 263

$ git log
commit 138b40418d5658bc64421e7bcf2680c8339f8350 (HEAD)
Merge: a95bd90 a51ae1a
Author: Dave Kerr <dwmkerr@gmail.com>
Date: Tue Jun 10 21:00:28 2025 +0800

 Merge branch ′more_aliases′

commit a95bd90e3656b2e55b8708193d387c80c282a6ad
Author: Dave Kerr <dwmkerr@gmail.com>
Date: Tue Jun 10 21:00:22 2025 +0800

 add the ′gm′ alias for ′git merge′

commit a51ae1aa42432c2f391ca782c1c20b3793c232ab (more_aliases)
Author: Dave Kerr <dwmkerr@gmail.com>
Date: Tue Jun 10 20:53:01 2025 +0800

 add a file to store ′zsh′ aliases

You can see that the log shows each commit, its SHA, the branch it was
on, the message, the date, and more.

To see a more compact log, use the --oneline (“show one line per com-
mit”) flag as follows. Again, the SHA is highlighted in bold. In the compact
log, only the first seven characters of the SHA are shown:

$ git log --oneline
138b404 (HEAD) Merge branch ′more_aliases′
a95bd90 add the ′gm′ alias for ′git merge′
a51ae1a (more_aliases) add a file to store ′zsh′ aliases
63ea74f add a file to store ′bash′ aliases
b9ae0ad (aliases) add alias ′gcm′ for ′git checkout main′
f61369d add alias ′gs′ for ′git status′
d7e1bb9 add the ′shell.d′ folder
01e7a10 add the ′install′ and ′shell′ scripts

When you run this command yourself, it will be a little easier to read, as
the output uses different colors for the SHAs and the branch names.

You can even see a graph view, showing the branches you’ve made
and when they branched off and were merged back, by passing the --graph
(“show commit graph”) flag:

$ git log --oneline --graph
* 138b404 (HEAD) Merge branch ′more_aliases′
| \
| * a51ae1a (more_aliases) add a file to store ′zsh′ aliases
| * 63ea74f add a file to store ′bash′ aliases
* | a95bd90 add the ′gm′ alias for ′git merge′
|/
* b9ae0ad (aliases) add alias ′gcm′ for ′git checkout main′
* f61369d add alias ′gs′ for ′git status′
* d7e1bb9 add the ′shell.d′ folder
* 01e7a10 add the ′install′ and ′shell′ scripts

264 Chapter 18

Each commit is shown with an asterisk (*). Notice when you created the
more_aliases branch and when you merged it back in, indicated by the back-
slash (\) and forward slash (/), respectively.

The Git log is a very useful tool to help you understand the changes
that have happened in the repository.

Resolving Conflicts
One of the most important features of any version control system is the
ability to manage conflicts, or changes that contradict each other for some
reason. When conflicts occur between a set of changes, Git cannot merge
them until you manually intervene to tell it which of the changes takes
precedence.

Here are a few common scenarios that might lead to merge conflicts:

•	 In one branch a file is deleted, and in another branch the file is
changed. When Git merges the changes, should it delete the file or
keep the version with the changes?

•	 In one branch a file is edited, and in another branch the same part of
the file is edited but in a different way. Which edit should Git keep? Or
should it keep both?

•	 In one branch you’ve added content to the end of a file, and in another
branch you’ve added different content at the end of the same file. Which
of these changes should come first?

A lot of the time, you can avoid conflicts by making sure that you don’t
keep branches for too long. If other people are merging changes into the
main branch while you’re working on another branch, you are “drifting”
from the main branch. You should either regularly update your branch with
the changes in main or merge your changes into main.

Version control systems have many different ways to manage conflicts.
To see how Git does it, you’ll intentionally cause a conflict.

First, create a branch that adds a new alias to the git_aliases.sh file:

Create a ″glog_alias″ branch and commit a file.
$ git checkout -b glog_alias
$ echo ′alias glog=″git log --graph --oneline″′ >> ./shell.d/git_aliases.sh
$ git commit -a -m ″add the ′glog′ alias″

Now go back to main and add an alias with the same name:

Go back to ″main″ and commit a change to the same file as the last one.
$ git checkout main
$ echo ′alias glog=″git log″′ >> ./shell.d/git_aliases.sh
$ git commit -a -m ″add the ′glog′ alias″

You’ve changed the shell.d/git_aliases.sh file in two branches, so if you try
to merge them, you’ll get a conflict message:

Controlling Changes with Git 265

$ git merge glog_alias

Auto-merging shell.d/git_aliases.sh
CONFLICT (content): Merge conflict in shell.d/git_aliases.sh
Automatic merge failed; fix conflicts and then commit the result.

When Git cannot automatically consolidate the changes into a single
merge commit, it terminates the merge process. No new commits have been
made, so the conflicting files with their changes remain in the index. Now
you have to manually fix these files.

Check the current status:

$ git status
On branch main
You have unmerged paths.
 (fix conflicts and run ″git commit″)
 (use ″git merge --abort″ to abort the merge)

Unmerged paths:
 (use ″git add <file>...″ to mark resolution)
 both modified: shell.d/git_aliases.sh

no changes added to commit (use ″git add″ and/or ″git commit -a″)

Git shows that you’re currently in the process of trying to fix a merge
conflict. It tells you that you need to fix the shell.d/git_aliases.sh file, then use
git add to stage the changes and commit the result.

When you open the shell.d/git_aliases.sh file in an editor, you’ll see the
changes, along with some special sequences (highlighted in bold):

alias gs=″git status″
alias gcm=″git checkout main″
alias gm=″git merge″
<<<<<<< HEAD
alias glog=″git log″
=======
alias glog=″git log --graph --oneline″
>>>>>>> glog_alias

The <<<<<< HEAD line is shown before changes in the current branch, the
======= line is a separator, and the >>>>>> glog_alias line indicates that every-
thing after the ======= line reflects the changes in the glog_alias branch.
Many modern editors will immediately recognize the sequence of symbols
that Git uses to indicate conflicts and highlight them.

You can see why Git hasn’t been able to merge these changes: each
branch has a new line, and Git doesn’t know which one is correct. Rather
than assuming that the most recent change should take priority, Git asks
you to choose.

266 Chapter 18

In your editor, update the file to look like this:

alias gs=″git status″
alias gcm=″git checkout main″
alias gm=″git merge″
alias glog=″git log --graph --oneline″

You’ve chosen the version of the glog alias in the glog_alias branch. You
could have chosen the version in the main branch instead or replaced this
content with a new line. Here’s how you could rename the glog alias for the
glog_alias branch instead of deleting glog for the main branch:

alias gs=″git status″
alias gcm=″git checkout main″
alias gm=″git merge″
alias glog=″git log″
alias ggraph=″git log --graph --oneline″

You can make any changes you like—just be sure to remove the lines
that start with <<<, ===, and >>>. You don’t even have to use the changes from
one of the branches; you could remove the lines altogether or add com-
pletely new ones. As long as you change the file so that the merged result
makes sense, Git can proceed.

Now you can use git add to mark the file as resolved:

$ git add shell.d/git_aliases.sh

Run git commit, and the editor will open, showing a sensible default
commit message:

Merge branch ′glog_alias′

Conflicts:
shell.d/git_aliases.sh
#
It looks like you may be committing a merge.
If this is not correct, please run
git update-ref -d MERGE_HEAD
and try again.

Please enter the commit message for your changes. Lines starting
with ″#″ will be ignored, and an empty message aborts the commit.
#
On branch main

The message is just like the earlier merge commit message, but the
comments show a little more information (the files that were in conflict).
Save the file and close the editor to complete the commit.

Your Git log will now show this new merge commit:

Controlling Changes with Git 267

$ git log --graph --oneline
* 2532277 (HEAD -> main) Merge branch ′glog_alias′
|\
| * a8cbb15 (glog_alias) add the ′glog′ alias
* | 31548e4 add the ′glog′ alias
|/
* 138b404 Merge branch ′more_aliases′
|\
| * a51ae1a (more_aliases) add a file to store ′zsh′ aliases
| * 63ea74f add a file to store ′bash′ aliases
* | a95bd90 add the ′gm′ alias for ′git merge′
|/
* b9ae0ad (aliases) add alias ′gcm′ for ′git checkout main′
* f61369d add alias ′gs′ for ′git status′
* d7e1bb9 add the ′shell.d′ folder
* 01e7a10 add the ′install′ and ′shell′ scripts

Dealing with conflicts can be extremely complicated. We’ve only scratched
the surface here, but a wealth of information is available online if you’d like
to go deeper.

GIT WOR KF LOW S

Git has a number of workflows that you can use to combine changes across
branches. There are workflows that allow you to create a single, coherent his-
tory between two branches rather than creating a merge commit, options to
“squash” all of the commits from one branch into another, and more.

 Going into them is beyond the scope of this book, but it’s useful to know
that you have a lot of resources available to you for controlling how branches
are merged. As you become more familiar with the basics of Git, I recommend
searching online for “Git merge strategies” or “Git workflows.” You’ll find many
articles that go into further detail.

Managing Files in Your Repository
Now that you’ve seen how to create a repository, add files, work with branches,
and manage merges, we’ll take a look at some of the other common opera-
tions you might do with the files in your repository.

Deleting Files
It’s quite simple to remove files from your Git repository. You can either
ask Git to do it for you or just delete the file yourself and then tell Git that
you’ve done so.

268 Chapter 18

Let’s see both ways in action. First, use the git rm (“remove files from
the working tree and index”) command:

$ git rm install.sh
rm ′install.sh′

This removes the file from your working tree and stages it for deletion
at the same time, which you can confirm with git status:

$ git status
On branch main
Changes to be committed:
 (use ″git restore --staged <file>...″ to unstage)
 deleted: install.sh

The deletion is only in the index at this point, so you need to run git
commit to commit it.

Sometimes you’ll have already deleted files outside of Git (using rm or
another tool):

$ rm install.sh
$ git status
On branch main
Changes not staged for commit:
 (use ″git add/rm <file>...″ to update what will be committed)
 (use ″git restore <file>...″ to discard changes in working directory)
 deleted: install.sh

At this point, Git knows the file is missing, but the deletion isn’t yet
staged, because you haven’t explicitly told Git that you want to remove this
file as part of your commit. To confirm that you want to remove the file,
you’ll still need to run the git rm command:

$ git rm install.sh

You could also run git add install.sh, which is like saying, “Stage my
change to install.sh”; that is, you’re adding a change to the index. (I often
just run git add . to add all of my changes, including deletions, to the
index.)

Now you can make any other changes you like, stage them, and then
commit.

Restoring and Renaming Files
To restore a file that’s been modified or deleted but not yet committed, you
can use git checkout HEAD filepath like so:

$ git checkout HEAD install.sh

HEAD tells Git you want to check out the file from the current commit (in
this case, the most recent commit on main).

Controlling Changes with Git 269

Another method for restoring a file uses git reset:

$ git reset .
Unstaged changes after reset:
D install.sh
$ git checkout .
Updated 1 path from the index

First, git reset . resets all of the changes to the index, and then git
checkout . checks out all of the files in the current commit. Be careful with
this approach, however, as it will also reset any other changes you’ve made. I
prefer the first method as it is more explicit and restores only one file.

What if you want to rename a file? Try renaming the install.sh file to
install_dotfiles.sh like so and then check its status:

$ mv install.sh install_dotfiles.sh
$ git status
Changes not staged for commit:
 (use ″git add/rm <file>...″ to update what will be committed)
 (use ″git restore <file>...″ to discard changes in working directory)
 deleted: install.sh

Untracked files:
 (use ″git add <file>...″ to include in what will be committed)
 install_dotfiles.sh

no changes added to commit (use ″git add″ and/or ″git commit -a″)

You’ve renamed the install.sh file, but when you run git status, Git
tells you that the file is missing and there’s a new untracked file. But Git is
smart enough to know when you move a file, so if you run git add . to add
all changes in the working tree to the index, Git will recognize that you
haven’t deleted and added a file but instead renamed it:

$ git add .
$ git status
On branch main
Changes to be committed:
 (use ″git restore --staged <file>...″ to unstage)
 renamed: install.sh -> install_dotfiles.sh

Now restore the install_dotfiles.sh file by renaming it back to install.sh
and add these changes:

$ mv install_dotfiles.sh install.sh
$ git add .
$ git status
On branch main
nothing to commit, working tree clean

270 Chapter 18

You can also use the git mv (“move or rename a file”) command to move
or rename a file and stage the changes in one go:

$ git mv install.sh install_dotfiles.sh
Changes to be committed:
 (use ″git restore --staged <file>...″ to unstage)
 renamed: install.sh -> install_dotfiles.sh

You can also revert the name change with git mv:

$ git mv install_dotfiles.sh install.sh
$ git status
On branch main
nothing to commit, working tree clean

These commands work equally well with folders or lists of files and
folders.

Restoring Your Working Tree
You’ve already seen how to use the git checkout command to switch
branches, but you can also use it to restore your working tree to a certain
point in your commit history. This is extremely useful if you want to see
how your files looked at an earlier point in time or restore your files to a
previous state.

Take a quick look at your Git log so far:

$ git log --graph --oneline
* 2532277 (HEAD -> main) Merge branch ′glog_alias′
|\
| * a8cbb15 (glog_alias) add the ′glog′ alias
* | 31548e4 add the ′glog′ alias
|/
* 138b404 Merge branch ′more_aliases′
|\
| * a51ae1a (more_aliases) add a file to store ′zsh′ aliases
| * 63ea74f add a file to store ′bash′ aliases
* | a95bd90 add the ′gm′ alias for ′git merge′
|/
* b9ae0ad (aliases) add alias ′gcm′ for ′git checkout main′
* f61369d add alias ′gs′ for ′git status′
* d7e1bb9 add the ′shell.d′ folder
* 01e7a10 add the ′install′ and ′shell′ scripts

Controlling Changes with Git 271

The Git log shows the first 7 characters of the SHA for each commit.
You can check out any commit by providing its SHA this way. You don’t
need to enter all 40 characters of the SHA, only enough to uniquely iden-
tify it (4 or 5 is generally plenty).

Notice that the most recent commit is marked with the text HEAD. Earlier
in the chapter, HEAD meant the most recent commit of a branch, but in this
context HEAD refers to where Git is currently “pointing.”

Figure 18-11 visualizes your Git log, with the commits, branches, and
HEAD, as it appears currently.

01e7a10 d7e1bb9 f61369d b9ae0ad a95bd90

63ea74f a51ae1a

138b404 31548e4

a8cbb15

2532277

main branch
HEAD

more_aliases branch glog_aliases branch

Add the install
and shell scripts.

Add the
shell.d folder.

Add the
shell.d folder.

Add alias gs for
git statusd7e1bb9.

Add a file to
store bash aliases.

Add a file to
store zsh aliases.

Merge branch
more_aliases.

Add the
glog alias.

Merge branch
glog_alias.

Add the gm alias
for git merge.

Figure 18-11: The commits, branches, and HEAD of your current Git log

To restore the working tree to the state of any of these commits, run git
checkout commit_sha, as in this example (remember, you only need to enter
enough characters from the SHA for it to be uniquely identified):

$ git checkout f61369d
Note: switching to ′f61369d′.

You are in ′detached HEAD′ state. You can look around, make experimental
changes, and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

This snippet moves your HEAD to the third commit in your repository. If
you look at the files in your working tree now, you’ll see that they’re in the

272 Chapter 18

exact state they were in when you made your third commit. The HEAD has
moved where indicated in Figure 18-12.

01e7a10 d7e1bb9 f61369d b9ae0ad a95bd90

63ea74f a51ae1a

138b404 31548e4

a8cbb15

2532277

main branch
HEAD

more_aliases branch glog_aliases branch

Add the install
and shell scripts.

Add the
shell.d folder.

Add the
shell.d folder.

Add alias gs for
git statusd7e1bb9.

Add a file to
store bash aliases.

Add a file to
store zsh aliases.

Merge branch
more_aliases.

Add the
glog alias.

Merge branch
glog_alias.

Add the gm alias
for git merge.

Figure 18-12: A detached HEAD in the current Git log

The warning that you’re in “detached HEAD state” sounds more sinister
than it is! It’s telling you that your current position in the history is not at
the “tip” of a branch, so you won’t be able to make a new commit without
starting a new branch first.

To move back to the tip of a branch, use git checkout branch:

$ git checkout main

Now you’re back at the tip of your main branch.
Git has a very convenient syntax you can use to move backward. Specify

a branch name, SHA, or HEAD, and then use a tilde (~), followed by the num-
ber of commits you want to move backward:

$ git checkout HEAD~1

This command moves the HEAD backward one commit. This is useful if
you realize you’ve made a mistake in a recent commit and need to go back-
ward to fix it.

Remember, running git checkout branch moves the HEAD to the tip of the
branch by default.

Git Command Quick Reference
You’ve seen a lot of commands in this chapter, so I’ve summarized them in
Table 18-1 as a quick reference for you.

Controlling Changes with Git 273

Table 18-1: Common Git Commands

Command Description

git init Initialize a new Git repository.

git status Show the status of the working tree and index.

git add files Stage files. You can use patterns and wildcards.

git reset files Unstage files. You can use patterns and wildcards.

git rm --cached files Unstage files. You can use patterns and wildcards.

git commit Create a commit from the current index. The shell will
open for the commit message.

git commit -m ′message′ Create a commit with the given message.

git commit -a Stage and commit all changes in the working tree.

git checkout branch Check out a branch.

git checkout -b branch Create and check out a new branch named branch.

git branch name Create a branch named name, but do not change the
current branch.

git branch -m new_name Change the current branch name to new_name.

git merge branch Merge the branch named branch into the current
branch.

git log Show the commit log.

git log --oneline --branch Show the log of commits, one line per commit, with
the branch graph.

git rm files Stage the removal of files. You can use patterns
and wildcards.

git mv source destination Stage the movement of source to destination.

git checkout 8342bec Check out the commit that has an SHA starting with
8432bec.

git checkout HEAD~1 Move the current HEAD back one commit.

git checkout branch~3 Check out branch, then move back three commits
from the tip of the branch.

You’ll encounter some of these again in Chapter 19, where you’ll extend
your Git skills with GitHub, an online Git collaboration platform.

Summary
In this chapter, we’ve looked at some of the core concepts behind Git, such
as the repository, the working tree, and the index. You saw how to stage,
unstage, and commit changes; create and merge branches; deal with con-
flicts; and remove and rename files.

In the next chapter, you’ll learn how to work with remote repositories,
which allow you to share your changes publicly, collaborate with other users
on projects, and download your customizations to other machines you use.

19
M A N A G I N G R E M O T E

G I T R E P O S I T O R I E S A N D
S H A R I N G D O T F I L E S

In this chapter, you’ll learn how to upload
a local Git repository to a remote reposi-

tory. You’ll use the popular site GitHub
to host your repository. GitHub allows you to

share your repositories, collaborate with other users,
and access your code across different machines. To
explore some of its capabilities, you’ll set up a reposi-
tory for your dot files so that you can quickly set up
any machine with your personal configuration.

To follow along with the code in this chapter, be sure to install the
sample files or refer to the previous chapter for instructions on creating a
local Git repository.

276 Chapter 19

Run the following command to install the samples to the ~/effective-shell
folder:

$ curl effective.sh | sh

First, copy the version of the dotfiles folder from Chapter 18 to your
home directory and then change the current directory to dotfiles:

$ cp -r ~/effective-shell/repositories/chapter-19-dotfiles ~/dotfiles
$ cd ~/dotfiles

This folder contains the Git repository with the exact set of changes
from the previous chapter.

Getting Started with GitHub
If you followed along with Chapter 18, so far all of the changes you’ve made
are stored in a local Git repository. In other words, the repository’s files are
stored on your local machine in a folder named .git wherever you initialized
the repository. You’ll never need to directly access the files in this folder;
you’ll always use the git command to work with the repository.

A remote Git repository (often just called a remote), in contrast, is
located on another machine. You can send and retrieve your changes to
and from a remote repository as a backup method. You can share this
remote with other people so that they can collaborate on it, or you can
download it to other machines you work on.

A number of services allow you to host public repositories (which any-
one can view) and private repositories (which have more restricted access).

To see how remotes work, you’ll create a repository in GitHub, an
extremely popular Git provider and online collaboration platform that is
free for individuals to use.

Creating a Repository
First, you’ll need to sign up for a GitHub account at https://github.com. Once
you’ve done that, click the arrow by the plus sign at the top right, as shown
in Figure 19-1 (note that your home page might look different, depending
on the type of GitHub account you have, but the plus sign should be in the
same place).

Managing Remote Git Repositories and Sharing Dot Files 277

Figure 19-1: GitHub’s opening page gives you the option to create a repository.

Choose Create a Repository. You’ll be asked to provide a name for your
repository. Since I’m going to use this repository to host my dot files, I’ve
chosen dotfiles (see Figure 19-2).

Figure 19-2: Naming the new repository

278 Chapter 19

If you don’t want members of the public to be able to see your reposi-
tory, choose Private (not pictured).

If you already have a local repository, don’t check any of the boxes
under Initialize This Repository With. You want to create an empty reposi-
tory that you’ll then push your changes to.

Once you’re finished, click Create Repository at the bottom. You
should see some commands for configuring your local repository to point
to your new remote (see Figure 19-3).

Figure 19-3: The setup page for the new repository

Since you already have a repository, you’ll follow the instructions in the
section that has the heading “. . . or push an existing repository from the
command line.” Click the clipboard icon to copy the commands. Then paste
them in your shell to run them from the ~/dotfiles folder like so:

Managing Remote Git Repositories and Sharing Dot Files 279

$ git remote add origin https://github.com/dwmkerr-effective-shell/dotfiles.git
$ git branch -M main
$ git push -u origin main

Username for ′https://github.com′: dwmkerr+effective-shell@gmail.com
Password for ′https://dwmkerr+effective-shell@gmail.com@github.com′:
Enumerating objects: 39, done.
Counting objects: 100% (39/39), done.
Delta compression using up to 16 threads
Compressing objects: 100% (36/36), done.
Writing objects: 100% (39/39), 12.83 KiB | 1.83 MiB/s, done.
Total 39 (delta 7), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (7/7), done.
To https://github.com/dwmkerr-effective-shell/dotfiles.git
 * [new branch] main -> main
Branch ′main′ set up to track remote branch ′main′ from ′origin′.

The first command tells Git that you’d like to add a new remote called
origin at the provided address. The remote in this case is the repository you’ve
just created in GitHub. The second command renames the current branch
to main, but because your current branch is already called main, nothing has
changed and no output is displayed. Finally, the third command pushes
your main branch to the origin remote. You’ll see what the -u (“set upstream”)
flag does shortly. When you run this command, you’ll be prompted for your
username and password before the local changes are pushed to the remote
repository.

USING SSH KE YS INS T E A D OF PA SS WOR DS

To keep this example simple, I’ve authenticated with a username and password.
However, I strongly recommend that you set up an SSH (Secure Shell Protocol)
key as soon as possible to authenticate with GitHub. SSH keys are far more
secure than usernames and passwords.

GitHub has an excellent guide on how to set up SSH keys at https://docs
.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh.
I also discuss how to do so in Chapter 22.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh

280 Chapter 19

Now refresh your browser, and you should see your dotfiles repository
with all of the changes you’ve made so far (see Figure 19-4).

Figure 19-4: The initial view of the dotfiles repository with all changes implemented

You can view all of the files and folders you’ve created, your commit his-
tory, your log messages, and more.

Before you make too many changes, though, you need to be aware of
three important commands when working with remotes: git push, git fetch,
and git pull.

Pushing Changes
You’ve already used the git push command once. This command pushes the
changes you’ve made locally to a remote. It’s a common convention to call
the primary remote that you work with origin, but you can use any name
you want. You can also have multiple remotes. For example, you could sign
up with GitLab, another Git services provider, create a repository there, and
add it as a remote called gitlab.

You can show your remotes with the git remote (“managed remote repos-
itories”) command like so:

$ git remote -v
origin https://github.com/dwmkerr-effective-shell/dotfiles.git (fetch)
origin https://github.com/dwmkerr-effective-shell/dotfiles.git (push)

Managing Remote Git Repositories and Sharing Dot Files 281

Running git remote with the -v (“verbose”) parameter will show each
remote, along with the address used when you push changes and when you
fetch changes (which we’ll look at next).

Earlier, you used this command to push your changes:

$ git push -u origin main

The -u (“set upstream”) option tells Git that you want to associate your
local main branch with the remote main branch. This way, you don’t need to
specify the remote name for each subsequent git push command: Git knows
to push changes to the upstream branch called main in the origin remote.

Fetching Changes
The git fetch (“get remote changes”) command downloads all of the
changes that have been made to the remote. It does not, however, change
your local branch or working copy. It just means that Git is aware of the
most recent changes to the remote. To see what I mean, run the command:

$ git fetch

There won’t be any output, because the remote hasn’t changed. Now
you’ll make a change to the remote to see how git fetch works. Open the
repository in the GitHub website. You should see a message suggesting that
you add a README file, as shown in Figure 19-5.

Figure 19-5: GitHub’s message prompting you to add a README file

282 Chapter 19

Click Add a README and add a description of your project.
By convention, if a repository has a file named README.md, then the

contents of this file will be shown on the repository home page; it typically
includes instructions on how to use the repository. The .md file extension
refers to Markdown, a plaintext language that allows you to add styles like
headings, bullets, and code formatting (search online for “GitHub Flavored
Markdown” to find out about the syntax). The contents of the README.md
file are shown in Figure 19-6.

Figure 19-6: The contents of the README Markdown file

Once you’re happy with the file’s content and styling (you can click
Preview to see how it will look, as shown in Figure 19-7), scroll down to add
a commit message.

Figure 19-7: The GitHub README commit page

Finally, click Commit New File, and you’ll be taken back to the reposi-
tory page, where you should see the README.md file (see Figure 19-8).

Managing Remote Git Repositories and Sharing Dot Files 283

Figure 19-8: The dotfiles repository home page with your updated README.md file

You’ve created a commit on the origin remote, so when you run git
fetch now, you should see that the remote has changed:

$ git fetch
remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), 962 bytes | 240.00 KiB/s, done.
From https://github.com/dwmkerr-effective-shell/dotfiles
 2532277..4a28994 main -> origin/main

When you run git fetch, Git looks at the upstream branch associated
with the current branch and checks to see if there are any changes. If so, it
downloads the information about those changes but doesn’t change your
local copy or working tree. If you run git log, you won’t see the new commit
that includes the README.md file, because you haven’t yet checked out this
commit.

284 Chapter 19

At the moment, your repository looks like Figure 19-9.

01e7a10 d7e1bb9 f61369d b9ae0ad a95bd90 138b404 31548e4 4a289942532277

main branch
HEAD

Upstream main branch

Merge branch
glog alias.

Add simple
README file.

01e7a10 d7e1bb9 f61369d b9ae0ad a95bd90 138b404 31548e4 2532277

origin remote

local

Figure 19-9: The current local main and upstream main branch

The local branch HEAD is still exactly where it was before you ran git
fetch. However, because you ran git fetch, Git knows that your upstream
branch has changed. In fact, it even told you what the changes are: notice
that the message includes the text 2532277..4a28994 main -> origin/main,
which means “new commits from 532277 to 4a28994 have been fetched for
main,” which tracks origin/main.

To update your local branch with this (and any other) new commits,
merge these changes:

$ git merge origin/main

You can also directly bring any changes from the remote into your local
branch without fetching first with the git pull command, which we’ll look
at next.

Pulling Changes
The git pull (“download from remote”) command integrates the changes
from a remote into the current branch. Because you’ve already told Git
what the upstream branch for the main branch is, running git pull without
any parameters will move to the latest commit:

$ git pull
Updating 2532277..4a28994
Fast-forward
 README.md | 13 +++++++++++++
 1 file changed, 13 insertions(+)
 create mode 100644 README.md

The git pull command tells you what commit you’ve moved from and to
and gives a summary of the files that have changed. You can see that a file
named README.md has been created, which you can confirm by checking
your local files as follows:

Managing Remote Git Repositories and Sharing Dot Files 285

$ ls
README.md install.sh shell.d shell.sh

Finally, check the graph view of your commit log:

$ git log --graph --oneline
* 4a28994 (HEAD -> main, origin/main) add a simple ′README′ file
* 2532277 Merge branch ′glog_alias′
|\
| * a8cbb15 (glog_alias) add the ′glog′ alias
* | 31548e4 add the ′glog′ alias
|/
* 138b404 Merge branch ′more_aliases′
|\
| * a51ae1a (more_aliases) add a file to store ′zsh′ aliases
| * 63ea74f add a file to store ′bash′ aliases
* | a95bd90 add the ′gm′ alias for ′git merge′
|/
* b9ae0ad (aliases) add alias ′gcm′ for ′git checkout main′
* f61369d (more_changes) add alias ′gs′ for ′git status′
* d7e1bb9 add the ′shell.d′ folder
* 01e7a10 add the ′install′ and ′shell′ scripts

You can see that your HEAD is at the tip of the main branch, and that this
is also the tip of the origin remote’s main branch.

You can pull any branch into your current branch—just provide the
name of a remote and the name of a branch:

git pull remote_name branch_name

If you don’t provide any parameters to git pull, it will pull from the
upstream branch. But you can also use git pull to merge other branches
into your current branch.

Congratulations! If you’ve followed along with this chapter and the
previous one, you’ve now created a local repository, staged and unstaged
changes to and from the index, created commits, created branches, han-
dled merging and merge conflicts, and set up a remote and synchronized
changes with it. Now we’ll look at how you can share your repository with
other GitHub users or other machines.

Sharing Your Dot Files
Hosting your dot files on GitHub is a very convenient way of making them
accessible anywhere and to anyone you wish. Making your GitHub dotfiles
repository public will allow people to copy your code or propose changes.
When you create a new repository with your GitHub account, it is public by
default. You can also make your repository private, meaning that only you
and collaborators you invite can see and make changes to it.

286 Chapter 19

You might also want to share your repository to another machine so
that your custom configuration settings will carry over. To clone your dotfiles
repository onto another machine, use this one-line command:

$ git clone git://github.com/your_username/dotfiles.git

The git clone (“download a repository”) command downloads the
repository into the current folder. If your repository is private, you’ll have
to authenticate to be able to do this, but if your repository is public, you or
anyone else can download your dot files.

Once you’ve downloaded your dot files, simply run the install.sh script
from the dotfiles folder to set up the shell startup files on the new machine.

Search online for “dot files,” and you’ll find many articles on the topic
as well as users who have shared their dot files online—look to these for
inspiration!

Collaborating with Other Users
Forking and pull requests are features offered by popular Git hosting ser-
vices like GitHub, Bitbucket, and GitLab. They’re not actually Git features
but have become so widely used that you’re likely to hear them referred to
as such when working with online Git repositories.

Forking
A fork is a copy of a Git repository. Typically, you fork a repository if you
want to make a copy of someone else’s code and work on it yourself.

I’ve created a simple dotfiles repository on GitHub that you can use as a
starting point for your own dot file configuration. You’ll use this to see how
forking works.

First, open up the GitHub project that you’d like to fork, which in this
case is at https://github.com/effective-shell/dotfiles. Click Fork at the top right of
the screen (see Figure 19-10).

Managing Remote Git Repositories and Sharing Dot Files 287

Figure 19-10: The effective-shell/dotfiles repository with the Fork option shown at the
top right

When you click Fork, GitHub will create a copy of the repository in
your own account. You can now clone this repository, make changes to it,
and work on it as if it were your own. The original repository is tracked by
GitHub, meaning that you can update from it at any time.

Making Pull Requests
If you make some improvements to the forked dotfiles repository and want
to share them back, you can click Create Pull Request. A pull request is a
request to merge a set of changes from one branch into another or from
one fork into the original repository.

288 Chapter 19

Typically, when you open a pull request, the project maintainer will
review the changes, make suggestions, or discuss your proposal and then
either merge the pull request or reject it. In Figure 19-11, I am opening a
pull request from my clone of the dotfiles repository to the original dotfiles
repository to add an uninstall script.

Figure 19-11: Opening a pull request to add an uninstall.sh file

This model of forking and making pull requests is really just a nice user
interface on top of Git’s underlying capabilities to track remotes and man-
age branches. Services like GitHub offer functionality to discuss changes,
run arbitrary pipelines that project maintainers might create to test the
code, and more.

GitHub has become a remarkably popular site for people to collaborate
on projects together. At the time of writing, the microsoft/vscode repository
for the popular Visual Studio Code open source editor has had contribu-
tions from more than 19,000 individuals!

Writing a Shell Function to Open a Pull Request
When you push a branch to a remote on GitHub, GitLab, Bitbucket, or a
number of other Git services providers, you’ll see a message in the com-
mand prompt with a link to open a pull request:

$ git push -u origin fix/fix-shell-configuration
...
remote:
remote: Create a pull request for ′fix/fix-shell-configuration′ on GitHub by visiting:
remote: https://github.com/dwmkerr/dotfiles/pull/new/fix/fix-shell-configuration
...

Managing Remote Git Repositories and Sharing Dot Files 289

You can write a shell function that runs the git push command, reads its
output, and, if it finds a web address, opens it in a browser. In fact, the dotfiles
repository at https://github.com/effective-shell/dotfiles does exactly this—just run
the command gpr to open a pull request!

The gpr function is actually quite straightforward, as you can see in the
following code (note that some of the comments and syntax formatting
code have been removed for legibility):

gpr() {
 # Get the current branch name, or use HEAD if you cannot get it.
 branch=$(git symbolic-ref -q HEAD)
 branch=${branch##refs/heads/}
 branch=${branch:-HEAD}

 # Pushing takes a little while, so let the user know you′re working.
 printf ″Opening pull request for ${branch}...\n″

 # Push to origin, grabbing the output but then echoing it back.
 push_output=`git push origin -u ${branch} 2>&1`
 printf ″\n${push_output}″

 # If there′s anything that starts with http, it′s a good guess it′ll be a
 # link to GitHub/GitLab/whatever. So open the first link found.
 link=$(echo ${push_output} | grep -o ′http.*′ | head -n1 | sed -e ′s/[[:space:]]*$//′)
 if [${link}]; then
 printf ″\nOpening: ${GREEN}${link}${RESET}...″
 python3 -mwebbrowser ${link}
 fi
}

This snippet first gets the name of the current branch, or HEAD if you
can’t work the name out. (Technically, it gets the reference for HEAD or exits
with a nonzero status and no output if HEAD refers to a detached state; the
two commands that follow in the script then clean up this output.) It then
runs the git push origin command and records the output of the command
into a variable called push_output.

Once the push command has completed, this function writes its output
to the screen, uses grep and sed to search for the first hyperlink, and then
opens the link in a browser with Python.

N O T E 	 Another option worth exploring if you use GitHub regularly is GitHub CLI, called
gh, which allows you to open a pull request directly in GitHub. The program offers
many other ways to work with GitHub from the command line. You can find GitHub
CLI at https://cli.github.com.

I use the gpr function many times every day, and it has been a real
time-saver.

290 Chapter 19

Showing Git Information in the Command Prompt
Chapter 16 covered how to customize the command prompt by setting the
PS1 variable. As you start using Git more, you might find it convenient to
show some information about the repository in your prompt.

For example, as I am writing this chapter, my command prompt looks
like this (but with syntax highlighting applied):

github/dwmkerr/effective-shell feat/managing-git-remotes ! 1 in stash
$

I spread my prompt over two lines, with the prompt indicator as the
only character on the second line to keep my cursor from becoming too
indented. Here’s the breakdown of each component:

github/dwmkerr/effective-shell  Indicates my current folder and up to
two parent folders in blue

feat/managing-git-remotes  Indicates my current Git branch (if I am in a
Git repository) in green

!  Appears in red if I have uncommitted changes

1 in stash  Appears in yellow if I have anything in my Git stash

N O T E 	 A Git stash is a temporary storage space that saves your uncommitted changes so
you can switch to a different task and come back to them later. Stashes are a more
advanced feature and will be discussed briefly later in the chapter.

You can try out this style of command prompt by calling the set_ps1
function:

$ source ~/dotfiles/shell.d/set_ps1.sh
$ set_ps1 dwmkerr

The style name is dwmkerr since it’s my personal configuration, but feel
free to create your own. To change back to your previous prompt, just run
set_ps1 again without any parameters.

If you’re interested in showing Git information in your command prompt,
take a look at the set_ps1.sh file to see the full details. The following snippet
shows how to get this Git information:

_git_info() {
 # Don′t write anything if you′re not in a folder tracked by Git.

 1 if ! [″$(git rev-parse --is-inside-work-tree 2>/dev/null)″ == ″true″]
 then
 return
 fi

 # Get the branch name, changes, and number of stashes.
 2 local git_branch_name=″$(git branch --show-current)″
 3 local git_any_local_changes=″$(git status --porcelain=v1 2>/deb/null)″
 4 local git_stash_count=″$(git rev-list --walk-reflogs --count \

Managing Remote Git Repositories and Sharing Dot Files 291

 refs/stash -- 2>/dev/null)″ # Ignore error when no stashes.
 local git_info=″″
 if [″${git_branch_name}″ = ″main″]; then
 git_info=″${fg_green}${start_underline}${git_branch_name}${reset}″
 else
 git_info=″${fg_green}${git_branch_name}${reset}″
 fi
 if ! [-z ″${git_any_local_changes}″]; then
 # Make sure to put the exclamation mark in single quotes
 # so that it is not expanded to the last command!
 git_info=″${git_info} ${fg_red}″′!′″${reset}″
 fi
 if [″${git_stash_count:-0}″ -gt 0]; then
 git_info=″${git_info} ${fg_yellow}${git_stash_count} in stash${reset}″
 fi
 printf ″${git_info}″
}

First, git rev-parse 1 checks whether you’re in a folder that is part of
a Git working tree. If you’re not in a Git working tree, nothing is shown.
Next, git branch --show-current gets the current branch name 2. In the fol-
lowing line, git status checks to see if there are any changes 3, using the
--porcelain=v1 option to generate a machine-readable status (which is easier
to use in scripts). Then, the git rev-list command checks the number of
stash revisions 4. As you can see, there are many advanced Git commands
available to get data about a repository.

The rest of the script is formatting only: underlining the branch name
if it’s the main branch, showing the exclamation mark if you have changes,
and so on.

N O T E 	 This example uses the snippet ″′!′″ to write an exclamation mark in the output. The
double quotes indicate that you’re creating a string, and the single quotes around the
exclamation point tell the shell to treat it literally. Without the single quotes, the shell
interprets an exclamation point as “rerun last command.”

If you’ll be using Git a lot, feel free to use this script as a starting point
for your own command prompt customizations.

Diving Deeper into Git
Git has a reputation for being complicated or overwhelming, but this is
somewhat unfair. Version control of files is itself an inherently complex
topic; no matter what tool you use, there are always challenges with manag-
ing changes across environments, dealing with conflicts, integrating work,
and the like. The basic Git functionality is incredibly good at making 99 per-
cent of this work simple and straightforward, and Git gives you the tools to
make the other 1 percent at least manageable.

But we’ve only scratched the surface of Git in this chapter. It’s an amaz-
ingly powerful tool, and I can’t recommend highly enough that you take the
time to really learn how the commands work. Many people use a graphical

292 Chapter 19

tool to work with Git, and this is perfectly fine if it works for you. But to be
an effective shell user, you should spend some time using the command line
to get familiar with the core Git commands.

Once you’re feeling more confident with those commands, I suggest
learning about the following topics:

•	 The .gitignore file, a special file you can use to tell Git not to track cer-
tain changes

•	 The .gitconfig file, Git’s own dot file, which you can use to fine-tune Git
configuration

•	 Tags, labels you can add to commits to track releases for projects or
other metadata

•	 The git diff command, which lets you see changes between branches,
commits, the index and the working tree, and more

•	 The git stash command, which lets you temporarily save and reset
any changes to the working tree without having to create a branch or
commit; stashes are useful if you need to quickly go back to a “clean”
working tree (perhaps to work on another branch) and then bring the
changes back later

•	 The git clean command, which helps you remove unneeded files from
your working tree

•	 Interactive staging for files, parts of files (called hunks), or even individual
lines directly from the shell, which can be invaluable for making sure
that exactly the right changes are going into the index

•	 Patch staging or checkout with the git add -p command, which allows
you to review and edit changes interactively as you stage them

•	 Merge strategies such as squashing (combining multiple commits into
one), which can be very useful when you’re working with branches

•	 Rebasing, a merge workflow that can also help in other scenarios, such
as having multiple people working on a repository and integrating com-
plex changes

•	 Commit and tag signing, a great solution for security-sensitive users that
allows you to use special keys to sign your commits and improve your
repository security

•	 GitHub flow, a common workflow used with GitHub projects (see https://
docs.github.com/en/get-started/using-github/github-flow)

Many articles and online books on Git are available. I also recommend
the excellent book Pro Git by Scott Chacon and Ben Straub (Apress, 2014).

Managing Remote Git Repositories and Sharing Dot Files 293

Git at a Glance: A Recap of Key Concepts and Commands
To wrap things up, I’ll summarize what you’ve learned throughout the
chapter. First, Figure 19-12 offers an overview of a typical Git workflow.

Working tree

Index

Top branch

git add git reset

git commit

Main branch

Remote branch

Forked repository

git checkout –b git merge

git push

Create fork

git fetch

Pull request

git pull

git init

Create a
local repo.

git clone

Download a
remote repo.

git checkout

Move the HEAD.

Figure 19-12: A typical Git workflow

The key concepts introduced in this chapter including the following:

Working tree   The folder you’re working in and tracking changes to

Index   The staging area for building commits

Repository   The full set of all commits, branches, and metadata

Fork   A copy of an entire repository, including its history and all
branches

Pull request   A request to merge one branch into another, or a branch
in a fork to the upstream branch

Finally, Table 19-1 summarizes the core commands you’ll use to work
with Git.

294 Chapter 19

Table 19-1: Core Git Commands

Command Description

git init Creates a local repository

git clone Downloads a remote repository or creates a new copy
of a local repository

git add Stages a change from the working tree to the index

git reset Unstages a change from the index

git commit Creates a new commit

git checkout -b Creates a new branch

git merge Merges a branch into the current branch

git checkout Moves the current HEAD to a new branch or commit

git push Pushes changes to an upstream branch

git fetch Retrieves information about changes to a remote

git pull Downloads and merges changes from a remote

For everything else Git, see the manual at https://git-scm.com/docs.

Summary
In this chapter, you saw how to use GitHub to host a remote repository; how
to push, fetch, and pull changes; and how remotes work. You also learned
about making pull requests, creating forks, and showing Git information on
the command line. And you were introduced to some of the more advanced
topics that you might want to explore as you continue to use Git.

Although we’ve only scratched the surface of what Git can do, you
should now have the tools to work with repositories, share content like your
dot files, collaborate with others, and manage your own changes.

This concludes Part IV, where you’ve added to your shell toolkit several
customizations and configurations that you can share across machines or
with other users. In the next part of the book, we’ll look at some advanced
techniques that can help you level up your skills as a shell user.

PART V
A D V A N C E D T E C H N I Q U E S

When the shell receives a command from
the user or from a shell script, it splits the

command into words and performs several
operations that determine how the command is

interpreted. Collectively, these operations are known
as shell expansion. Although you’ve probably already
encountered many of these operations in action
throughout the book, seeing all of them together in
one place will help you better understand what exactly
the shell does with the commands you give it.

20
S H E L L E X P A N S I O N

298 Chapter 20

Using shell expansion techniques can make your workflow more effi-
cient. For example, you can use brace expansion to create multiple files
with fewer keystrokes, or use pathname expansion to delete all files with
names that start with the same letters. I’ll introduce the full set of shell
expansion operations in this chapter along with practical examples on how
to use them.

Shell Expansion Operations
The shell performs its seven expansion operations in the following order:

Brace expansion   Expands values between braces, such as file{1..3}
into file1 file2 file3

Tilde expansion   Expands the tilde (~) into the full path for the home
directory, such as ~/effective-shell into /home/dwmkerr/effective-shell

Parameter expansion   Expands terms that start with a dollar sign ($)
into parameter values, such as $HOME into the value of the variable
named HOME

Command substitution   Evaluates the contents of $(command)
sequences, which are used to run commands in a subshell

Arithmetic expansion   Evaluates the contents of $((expression))
sequences, which are used to perform basic mathematical operations

Word splitting   Splits up text and input into “words,” or sequences of
text that you can run operations such as loops over

Pathname expansion   Expands wildcards and special characters in
pathnames, such as file*.txt into filename.txt and fileserver.txt

This order of operations is important to keep in mind, as it affects
how the command is executed. I’ll talk more about this in “Pathname
Expansion” on page 309.

For more information on these operations in the man pages, run man
bash and search for the text ^EXPANSION.

Brace Expansion
Brace expansion, the first shell expansion operation performed, expands a
simple expression representing a sequence or range of characters.

The following example expands a set of words or characters:

mkdir /tmp/{one,two,three}

The line above is expanded to:
mkdir /tmp/one /tmp/two /tmp/three

Brace expansion provides an efficient way to perform operations on
multiple files or folders at once.

You can also create sequences of numbers or characters:

Shell Expansion 299

touch file{1..5}.txt

The line above is expanded to:
touch file1.txt file2.txt file3.txt file4.txt file5.txt

As well as specifying the start and end of a sequence, you can specify an
increment. You might see this type of expansion used in for loops:

for x in {0..10..2}; do print $x; done

The line above is expanded to:
for x in 0 2 4 6 8 10; do print $x; done

With its ability to create sequences, handle multiple paths, and gener-
ate file patterns, brace expansion can save you some keystrokes and help
prevent errors in your shell scripts.

Tilde Expansion
If a word starts with a tilde, the shell performs tilde expansion to expand ~
into the value of the HOME variable:

cd ~/effective-shell

The line above is expanded to:
cd $HOME/effective-shell

This is subsequently expanded to the user′s home directory, for example:
cd /home/dwmkerr/effective-shell

You can change the HOME variable to another location if you prefer, and
the tilde will expand to that value. If you unset the HOME variable, the tilde
will always expand to the current user’s home directory configured by the
system (typically in the /etc/passwd file, discussed in Chapter 15):

unset HOME
cd ~/effective-shell

The line above is expanded to the system-defined home directory:
cd /home/dwmkerr/effective-shell

Whether using the default HOME path or a custom value, tilde expansion
gives you a useful shorthand for referencing home directories in your shell
commands and scripts.

Parameter Expansion
The dollar sign indicates that the shell is going to perform parameter
expansion, which expands variables or the parameters of a script. (With
slight alterations, the dollar sign can also be used to indicate command sub-
stitution or arithmetic expansion, as you’ll see shortly.)

300 Chapter 20

In its simplest form, parameter expansion replaces the name of a vari-
able or parameter with its value:

fruit=apples
echo ″I like $fruit″

The line above is expanded to:
echo ″I like apples″

When using parameter expansion, it’s a good idea to surround the
parameter name with braces to be as unambiguous as possible:

echo ″My backup folder is: ${HOME}_backup″

The line above is expanded to:
echo ″My backup folder is: /home/dwmkerr_backup″

Here’s the same operation without the braces:

echo ″My backup folder is: $HOME_backup″

The line above is expanded to:
echo ″My backup folder is: ″

The expansion doesn’t work as expected in this case, because the shell
is trying to expand a parameter with the name HOME_backup rather than using
a parameter named HOME and then adding the text _backup to its value. The
braces used in the first example remove any ambiguity, making it clear to
the shell that the parameter name is HOME.

A number of additional features are available to make parameter
expansion even more convenient.

Set Default Values

The expression ${parameter:-default} will expand to the value of parameter,
but if that value isn’t set, the default value is used instead. This is handy
when you want to provide a “default” value for the shell to use if a param-
eter is not set:

$ backup_location=${BACKUP_DIR:-~/backup}
$ echo ″Backing up to: ${backup_location}″
Backing up to: /home/dwmkerr/backup

In this example, if BACKUP_DIR isn’t set, then backup_location will be set to
the default value provided, which is ~/backup. Notice that the first line of
this example also uses tilde expansion to specify the user’s home directory.

Assign Default Values

The expression ${parameter:=default} will expand to the value of parameter,
but if that value isn’t set, the default value is used instead. In this case,

Shell Expansion 301

parameter is also set to default, so the expression works just like the previous
one but sets the parameter at the same time.

$: ${BACKUP_DIR:=~/backup}
$ echo ″Backing up to: ${BACKUP_DIR}″
Backing up to: /home/dwmkerr/backup

In this example, the first line starts with a colon (:), which is a shell
expression for “no operation,” and it means “Don’t try to execute the result
of the following command but do expand it.” If the variable BACKUP_DIR isn’t
set, it will be set to the default value provided, which is ~/backup.

Display an Error If a Value Is Null or Unset

The expression ${parameter:?message} tells the shell to expand to the value
of parameter, but if that value is null or unset, to instead write message to stderr
and exit (unless the shell is interactive, in which case the shell isn’t closed).

You can use this operation to put a guard in place to ensure that a
script exits if a value isn’t set. To try it out, you’ll need to unset the BACKUP
_DIR parameter if you set it in the previous example:

$ unset BACKUP_DIR

Now run the following:

$ backup_location=${BACKUP_DIR:?Please set BACKUP_DIR to use this script}
bash: BACKUP_DIR: Please set BACKUP_DIR to use this script

This script copies the ~/effective-shell folder to the folder set in the BACKUP
_DIR parameter. However, because BACKUP_DIR is no longer set, the script will
exit, set the error status, and show an error message telling you to set the
variable.

Use an Alternate Value

The expression ${parameter:+alternate} expands to an empty string if
parameter is null or unset. If parameter has a value, the value of alternate
is used instead. You will often see this kind of expression used to condi-
tionally add parameters to commands:

$ SHOW_HIDDEN=1
$ ls ${SHOW_HIDDEN:+-a} ~
.bash_rc
...

In this case, if the SHOW_HIDDEN parameter has been set, its value is replaced
with the string -a in the ls ~ command to list all files in the user’s home
folder, including hidden files. The alternate value expression is a convenient
way to translate a variable into a parameter or flag.

302 Chapter 20

Specify Offset and Length

The ${parameter:offset} expression tells the shell to expand only a subset of
a parameter’s value. In this case, the shell will expand the value of parameter
but skip offset number of characters from the beginning:

$ echo ″My home folder name is: ${HOME:6}″
My home folder name is: dwmkerr

Only my home folder name (dwmkerr) is displayed now, rather than
the full path (/home/dwmkerr). You can also specify how many char-
acters should be used by providing a length value in the expression
${parameter:offset:length} like so:

$ error_message=″file not found: did you enter the right path?
$ echo ″${error_message:0:14}″
file not found

Now, the first 14 characters of the parameter error_message will be
shown.

The offset and length values can also be used with arrays:

$ days=(″Monday″ ″Tuesday″ ″Wednesday″ ″Thursday″ ″Friday″ ″Saturday″
″Sunday″)
$ echo ″${days[@]:2:3}″
Tuesday Wednesday Thursday

However, when using this technique with arrays, you must specify the
array name followed by [@] to indicate that you want to work with all of the
members of the array. Otherwise, the expression would use only the first
element of the array.

Expand Variable Names

The ${!name*} expression evaluates to the name of every parameter that
starts with the text name. You can use this expression to find the full set of
parameters that match a certain pattern.

How might this be useful? To tidy up scripts, for one thing. This exam-
ple shows how the script that downloads the book’s sample files creates
some variables and then tidies up after itself:

_es_download_folder=~/downloads
_es_backup_folder=~/backups
_es_download_address=https://effective-shell.com/downloads/effective-shell-samples.tar.gz

(For brevity, the code that downloads and installs the samples is omitted.)

Now clean up any variables you created.
for var_name in ${!_es_*}
do

Shell Expansion 303

 echo ″Cleaning up: ${var_name}...″
 unset ${var_name}
done

Any variable created in this script that starts with _es_ will be automati-
cally cleaned up at the end of the script. The output of this script will look
similar to the following:

Cleaning up: _es_download_folder...
Cleaning up: _es_backup_folder...
...

This is a rather advanced technique but a useful one for keeping your
scripts organized and easier to maintain.

Expand an Array

Array expansion is partly covered in Chapter 10. The expression ${!array[@]}
expands to the indices (or keys, in the case of an associative array) for each
item in an array:

$ days=(″Monday″ ″Tuesday″ ″Wednesday″ ″Thursday″ ″Friday″ ″Saturday″
″Sunday″)
$ echo ″${!days[@]}″
0 1 2 3 4 5 6

Now, you can loop over or perform other operations on the indices of
the array.

Find the Length of a Parameter or an Array

The ${#parameter} expression expands to the length of the value in the
parameter named parameter:

$ word=″Supercalifragilisticexpialidocious″
$ echo ″Length of word: ${#word} characters″
Length of word: 34 characters

You can also use this expression to find the length of an array; simply
append [@] like so:

$ days=(″Monday″ ″Tuesday″ ″Wednesday″ ″Thursday″ ″Friday″ ″Saturday″
″Sunday″)
$ echo ″There are ${#days[@]} days in the array″
There are 7 days in the array

You may have noticed a pattern by this point: you can perform many
parameter expansions on an array simply by appending [@] to the param-
eter name. The [@] translates to “all of the array members,” so without it,
the shell uses only the first element of the array.

304 Chapter 20

Remove a Pattern from the Beginning

You can use the ${parameter#pattern} expression to expand the value of
parameter, removing pattern from the front of its value:

$ address=https://effective-shell.com
$ echo ″Address: ${address#https://}″
Address: effective-shell.com

To tell the shell to remove as many sequential matches of pattern as pos-
sible, use the ${parameter##pattern} expression. This strips out all the charac-
ters up to a certain point in a parameter:

$ folder=/home/dwmkerr/backups/2025-4-19
$ echo ″Today′s backup folder is: ${folder##*/}″
Today′s backup folder is: 2025-4-19

Notice this example uses an asterisk (*) in the pattern, telling the shell
to strip as many possible characters from the beginning of the parameter
until it finds the final forward slash (/).

Remove a Pattern from the End

The ${parameter%pattern} expression works exactly like the preceding expres-
sion but removes text from the end of a parameter instead:

$ echo ″My working directory is: ${PWD}″
My working directory is: /home/dwmkerr/repos/github/dwmkerr/effective-shell
$ echo ″My parent folder is: ${PWD%/*}″
My parent folder is: /home/dwmkerr/repos/github/dwmkerr

Again, the * wildcard in the pattern tells the shell to remove all of the
text from the end of the parameter, up to and including the first forward
slash (/) it finds.

To remove as many matches as possible, use the expression ${parameter
%%pattern} like so:

$ archive=effective-shell.tar.gz
$ echo ″Name of archive is: ${archive%%.*}″
Name of archive is: effective-shell

Notice that the character removal doesn’t stop at the first period (.);
the shell removes as many characters as possible until it finds the last
period.

N O T E 	 One way to remember that the hash mark (#) pattern removes from the beginning and
the percent sign (%) pattern removes from the end is to look at the keyboard: the # is on
the left and the % is on the right.

Shell Expansion 305

Replace a Pattern

You can replace a pattern in a parameter with the expression ${parameter/
pattern/string} as follows:

$ message=″Hello Dave″
$ echo ″${message/Hello/Goodbye}″
Goodbye Dave

There are pattern replacement options that can control things like the
number of replacements performed and how arrays are treated. I wouldn’t
recommend making overly complex replacements using these types of
expressions, however, as they can be quite challenging for readers to parse
and can also vary from shell to shell. Instead, use a command like tr or sed
to make what’s going on very clear.

Convert to Lowercase or Uppercase

You can use the ${parameter^^} expression to convert the value of parameter to
uppercase or ${parameter,,} to convert it to lowercase:

$ message=″Hello Reader″
$ echo ″${message^^}″
HELLO READER
$ echo ″${message,,}″
hello reader

You can find alternative ways to manipulate text in Chapters 6 and 7.

Use Parameter Indirection

To get the value of a parameter that has an arbitrary name, you can use the
${!parameter_name} expression:

$ parameter_name=″HOME″
$ echo ″${!parameter_name}″
/home/dwmkerr

This example returns the value of the parameter whose name is stored
in parameter_name. This expression can be very useful if you are writing
scripts that will work with arbitrary or variable parameter names.

For more examples of using parameter expansion with the parameters
of functions or scripts, see Chapter 10.

Command Substitution
Command substitution, the second form of expansion that starts with a dol-
lar sign, instructs the shell to run a specific command. The syntax is simply
$(command).

306 Chapter 20

You’ve seen command substitution throughout the book. In this exam-
ple, it is used to expand the date command to print the current date:

$ echo ″The date is: $(date)″
The date is: Tue Feb 25 16:49:07 +08 2025

Your scripts or commands may be easier to manage if you store the
results of a command in a variable like so:

$ archives=$(find ~/downloads -type f -name ″*.tar.gz″)

Here you’re storing the results of the find operation in the parameter
named archives.

You might see an alternative syntax for command substitution in which
the command is surrounded by backticks (`) instead of parentheses:

$ archives=`find ~/downloads -type f -name ″*.tar.gz″`

However, I suggest avoiding the backtick syntax because it doesn’t allow
you to easily nest commands like so: result=$(command1 $(command2)).

Arithmetic Expansion
The final form of shell expansion that starts with a dollar sign is arithmetic
expansion, which can be used to perform simple arithmetic operations:

$ echo ″The result of 23*4 is: $((23*4))″
The result of 23*4 is: 92

Arithmetic expansion is covered in detail in Chapter 10.

Word Splitting
Word splitting is the process by which the shell attempts to split the result
of parameter expansion, command substitution, and arithmetic expansion
into separate items, or words. The shell applies word splitting to any expan-
sion that starts with a dollar sign and does not appear within double quotes.
This rule can cause confusion, so let’s take a look at word splitting in detail
and see when it’s useful and when it can be problematic.

To show word splitting in action, this script prints a set of days:

days=″Monday Tuesday Wednesday Thursday Friday Saturday Sunday″
for day in ″$days″
do
 echo ″${day}″
done

Notice that there are different numbers of space characters between
each day in the days variable.

Shell Expansion 307

Here’s the output of this script:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

The expression for day in ″$days″ uses shell parameter expansion to
expand the days parameter. Because $days appears in quotes, the shell pre-
serves the spaces between the days instead of applying word splitting. When
it loops through the days parameter, it sees only one value: the original line
of text, including the spaces.

This version of the script does not surround $days in quotes:

days=″Monday Tuesday Wednesday Thursday Friday Saturday Sunday″
for day in $days
do
 echo ″${day}″
done

Its output is as follows:

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

In this case, word splitting has occurred. The shell is performing the
following operations:

1. 	 It searches through each character in the input.

2. 	 Every time it encounters the separator character set in the IFS (“inter-
nal field separator”) special variable, it splits the word.

3. 	 If there are multiple instances of a separator character, it uses the first
and skips all of the additional characters.

Word splitting and the IFS variable are discussed in Chapter 12, but let’s
see them in action by breaking down exactly what the shell is doing in this
example.

By default, the IFS variable is set to <space><tab><newline>, meaning those
are the characters the shell will use to split an expression into words. When
there are multiple instances of these characters in a row (such as the five
spaces after the Wednesday value), the shell treats them as a single delimiter
and applies the splitting accordingly.

308 Chapter 20

The fact that the shell uses spaces, tabs, and newlines as internal field
separators can sometimes cause confusion, particularly if you have a list of
files as a parameter value:

programs=″/usr/bin/bash /usr/bin/zshell /usr/bin/new shell″
for program in $programs
do
 echo ″${program}″
done

This script outputs the following:

/usr/bin/bash
/usr/bin/zshell
/usr/bin/new
shell

The final value in the programs variable, /usr/bin/new shell, has a space
in its name, so it has been split into two words. You could avoid this issue by
temporarily changing the value of IFS to a different character and separat-
ing your parameter value accordingly:

programs=″/usr/bin/bash;/usr/bin/zshell;/usr/bin/new shell″
OLDIFS=$IFS
IFS=′;′
for program in $programs
do
 echo ″${program}″
done
IFS=$OLDIFS

Here’s the output:

/usr/bin/bash
/usr/bin/zshell
/usr/bin/new shell

This script separates the programs with a semicolon (;), saves the origi-
nal value of IFS into a parameter called OLDIFS, changes IFS to use the semi-
colon as a separator, runs the loop (which correctly splits the programs and
preserves the space in the last program name), and then changes IFS back
to its original value.

N O T E 	 Other programs or commands might expect IFS to be set to the default value, so
change it only when you must, and always make sure to revert it to its original value
immediately afterward.

If you look at the contents of the PATH variable, which specifies the loca-
tions where the shell should search for commands, you can see that they are
actually separated by colons:

Shell Expansion 309

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

The results you see will vary depending on your operating system. But
the fact that they are separated by colons means that you can easily change
IFS to a colon character to get each path, even if it contains spaces:

OLDIFS=$IFS
IFS=″:″
for path in $PATH
do
 echo ″${path}″
done
IFS=$OLDIFS

The output of this script should look something like this:

/usr/local/sbin
/usr/local/bin
/usr/sbin
/usr/bin
/sbin
/bin
/usr/games
/usr/local/games

You’ll learn a little more about how the shell can sometimes split up
a filename with spaces (or even newlines) in the path when we look at the
final shell expansion operation: pathname expansion.

Pathname Expansion
When the shell encounters an asterisk, a question mark, or an open square
bracket ([) at the beginning of an expression, it knows to apply pathname
expansion, the expansion that occurs when you use wildcards or patterns in
shell scripts to expand a list of paths:

$ ls ~/downloads/*.tar.gz
/home/dwmkerr/downloads/aspnetcore-runtime-3.1.18-osx-x64 (1).tar.gz
/home/dwmkerr/downloads/aspnetcore-runtime-3.1.18-osx-x64.tar.gz
/home/dwmkerr/downloads/dotnet-sdk-3.1.412-osx-x64.tar.gz
/home/dwmkerr/downloads/effective-shell-playground.tar.gz
/home/dwmkerr/downloads/effective-shell-samples (1).tar.gz
/home/dwmkerr/downloads/effective-shell-samples (2).tar.gz
/home/dwmkerr/downloads/effective-shell-samples.tar.gz

This script shows all of the files in the ~/downloads folder that match the
pattern *.tar.gz. The results you see will depend on what you have in your
own ~/downloads folder.

Remember that the shell performs all of the types of expansion described
in this chapter in order. This means that word splitting is performed before
pathname expansion—so if you loop through the results of an expanded

310 Chapter 20

path, word splitting will not be performed on those results. You can see this in
the following script:

for $path in ~/downloads/*.tar.gz
do
 echo ″${path}″
done

Here’s the output:

/home/dwmkerr/downloads/aspnetcore-runtime-3.1.18-osx-x64 (1).tar.gz
/home/dwmkerr/downloads/aspnetcore-runtime-3.1.18-osx-x64.tar.gz
/home/dwmkerr/downloads/dotnet-sdk-3.1.412-osx-x64.tar.gz
/home/dwmkerr/downloads/effective-shell-playground.tar.gz
/home/dwmkerr/downloads/effective-shell-samples (1).tar.gz
/home/dwmkerr/downloads/effective-shell-samples (2).tar.gz
/home/dwmkerr/downloads/effective-shell-samples.tar.gz

Note that the spaces in the pathnames have been preserved. Because
pathname expansion happens after word splitting, the expanded paths are
left as is.

In addition to using the asterisk as a wildcard character, you can use
the question mark, which means “any single character,” for pathname
expansion. You can also use expressions such as [abc] to match on a range
of characters. For details on using these special characters, run man bash.

One feature of pathname expansion that might surprise you is what
happens if the shell finds no files that match the pattern, as in this example:

$ echo ~/effective-shell/*.txt
/home/dwmkerr/effective-shell/*.txt

There are no files in the ~/effective-shell folder that match the pattern
*.txt, so the shell has left the wildcard expression as is. This is why you
should always check the results of the expansion before assuming the shell
has found a file!

For example, to run the touch command on a set of files and handle the
case where no files are found, you could do the following:

for file in ~/effective-shell/*.txt; do
 # If the file or folder doesn′t exist, skip it.
 if ! [-e ″$file″]; then continue; fi
 touch ″$file″
done

This script first checks to see whether the file or folder exists with the
-e (“exists”) test. If the file or folder doesn’t exist, the shell skips through
the loop. For more examples of this pattern, see Chapter 12.

Pathname expansion has limitations, so if you need a more sophisti-
cated way to search for a set of files, consult Chapter 3.

Shell Expansion 311

Summary
This chapter went into the lower-level details of how shell expansion works,
exploring the seven types of expansion the shell performs on the input it is
provided.

With this additional knowledge on shell expansion, I hope you’ll be
more comfortable with topics like word splitting and how empty results
from filename expansion are treated, both of which are often sources of
confusion for shell users.

In the next chapter, we’ll examine some of the limitations of shell
scripting and useful alternatives you should become familiar with.

21
A L T E R N A T I V E S T O
S H E L L S C R I P T I N G

Sometimes being an effective shell user
means recognizing when a shell script is

not the right tool for the job and you need
a more powerful programming language

instead. In this chapter, we’ll look at scenarios where
shell scripting may not be ideal, explore the pros and
cons of alternative approaches, and identify what
constitutes a shell-friendly tool. Then you’ll create a
real-world tool to look up a word’s definition using an
online dictionary. This type of tool would be complex
to produce with a shell script but is a snap with the
Python programming language.

314 Chapter 21

When to Avoid Shell Scripting
Shell scripts often can’t be beat as a quick way to solve a simple problem.
When you add in the handy tools that you’ve seen across this book, such as
sed for advanced text manipulation, they can be even more powerful. But
there are some scenarios where you might want to avoid using a shell script:

•	 If the problem you’re solving requires complex logic that would be bet-
ter handled by a full programming language

•	 If a program needs to be used or maintained by others who may not be
very familiar with shell scripting

•	 If you need portability across different systems, since complex scripts
may rely on tools that aren’t available everywhere

Shell scripts are occasionally the only sensible tool to use. For example,
if you wanted to show the shell’s options and let the user toggle them on
and off, a shell script would be ideal. In that scenario, a script written in
Python or another programming language would be needlessly complex
since it wouldn’t have direct access to the shell environment.

But in general, as soon as a shell script gets longer than about a page of
code, you’re at a good point to consider using an alternative tool.

Choosing a Programming Language
There are hundreds of programming languages that can help you solve
technical problems. But, as just mentioned, not all of them are ideal alter-
natives to a shell script. Before proceeding with a programming language,
ask yourself the following questions:

•	 Is the language designed for handling the kind of problem I want to
solve? Does it support console-based input and output? Is it easy to write
shell-style tools in this language?

•	 Is the language simple and popular? Can others understand or adapt
the script without too much intervention?

•	 Is the programming language going to be available on almost any
machine? Simple shell scripts run almost anywhere without the need
for other tools. Will the language offer this functionality?

Based on the answers, some candidates jump to mind as alternatives for
shell scripts:

Python   The Python language is installed by default on almost every
Linux system, highly popular, and simple to use and read. It also works
well for input-process-output programs.

Node.js   While Node.js is a runtime environment and not a language
itself, it uses the popular JavaScript language and is event-driven, mean-
ing it can be very fast. But the version installed across systems varies
considerably, and this can cause headaches for script sharing.

Alternatives to Shell Scripting 315

Ruby   Also installed on many systems by default, Ruby is a simple lan-
guage that is highly popular but perhaps less well known than Python.

Go   Go is a widely used language with simple syntax and built-in con-
currency. Its self-contained binaries run uniformly across platforms,
making it a robust alternative for command line tools once its toolchain
is installed.

C   The C language is great for working with low-level system libraries,
and most platforms have a C compiler installed. But it requires compi-
lation, may behave quite differently on different systems, and is fairly
complex for others to use.

Perl   Installed almost universally on any system, Perl is a very powerful
language. It’s not as popular as it used to be, however, so it’s perhaps
less likely to be understood by other users.

Now, when you’re writing complex tools or programs, the criteria will
change. You want to use a language and platform that really suit the problem
you’re solving or that are already being used by your team. For more complex
programs that will be used in the shell and have a lot of functionality—
options, parameters, and so on—languages like Rust, Java, and C# are often
popular choices, in addition to the languages already mentioned.

But since in this chapter we’re looking at alternatives for writing simple
tools that work well in the shell, we’re going to stick to one of the common
choices: Python. Given its almost universal presence on systems, its huge
(and increasing) popularity, and its robust standard library (which allows
you to use many features without requiring users to download additional
packages), Python is an excellent choice for writing shell-friendly tools.

Characteristics of Shell-Friendly Tools
When you’re writing a tool for the shell, following the conventions set by
other shell tools will make your tool more intuitive for others to use. It will
also allow users to combine your tool with other tools (for example, with
piping) to build more complex workflows.

The following capabilities make for a shell-friendly tool:

Reading from standard input   This allows you to pipe inputs from
other tools into your programs (see Chapter 2 for more on pipelines).
You also want to be able to read and process line by line in case the
input is very large.

Writing to standard output   This sounds obvious, but it means making
sure that your output can be read by a human operator and (ideally) be
processed by other tools, such as cut, sed, and rev. It also means think-
ing about how color will or will not be used in output and avoiding
superfluous output (such as titles and version numbers) that makes pro-
cessing more difficult.

316 Chapter 21

Specifying options using sensibly defined flags   There are many con-
ventions for flags and parameters, and adhering to them (rather than
inventing your own) will make your tool easier to use. For example, the
-h flag is commonly used to show help. For a detailed description of how
options should be specified for GNU tools, see http://www.gnu.org/prep/
standards/html_node/Option-Table.html#Option-Table.

Running on different systems   Shell users are used to being able
to use tools like grep and sed in a similar way across platforms. A
well-written tool should provide the same kind of cross-platform
portability.

Handling errors by using shell idioms   Shell-friendly tools use 0 as
a status code to indicate success and define error codes in their docu-
mentation so that users know how to handle exceptional circumstances;
your tool should do the same.

Many other conventions and practices may apply, but these are some of
the fundamentals.

Writing a Dictionary Lookup Tool in Python
To practice writing a shell-friendly tool, you’re going to create a simple pro-
gram that reads a word and shows its definition, using the Free Dictionary
API (https://dictionaryapi.dev).

This is a good example of a tool that would be overly complex to write
with a shell script. You need to handle input, parse and process it, make
HTTP requests to download pages from the internet, parse and process
those requests, format the output, and provide some options for the user
to control how the output looks. A highly experienced shell programmer
could likely create this tool with a shell script without breaking a sweat, but
it would be much harder for a less experienced scripter. In contrast, Python
is easy to write and read, has a wealth of online learning resources, and is
available on almost any platform.

The requirements for the tool are as follows:

1. 	 Allow the user to provide a set of words from a text file or standard
input.

2. 	 Look up the definitions of those words.

3. 	 Write the words and their definitions to standard output, giving the
user the option to format how this output looks.

4. 	 Offer help to the user on how to use the tool.

You’ll stick to “raw” Python, using only the standard library so that
users won’t have to install any packages to make this tool work.

Alternatives to Shell Scripting 317

HEL P — I DON’T KNOW PY T HON!

Don’t worry if you don’t know Python; you’ll learn the basics as you go through
the chapter. All of the chapters in this part of the book will likely stretch you and
require some additional learning and experimentation. I’ll explain as much as
I can as I go through the chapter, but you should be able to take away the key
lessons without being familiar with the Python language.

All of the files you’ll see in this section are in the ~/effective-shell/programs/
lookup folder. To install the sample files to your ~/effective-shell folder, run this
command:

$ curl effective.sh | sh

Before proceeding, you’ll need to make sure you have Python installed.
There are two commonly used versions of Python. Python 3 is the latest ver-
sion at the time of writing and what you’ll use for this script. Python 2 was
sunsetted (support and improvements were discontinued) in January 2020.
Many people still use it, and a lot of code is written in it, but where possible,
you should update Python 2 code to Python 3.

Check that Python 3 is installed by running the following:

$ python3 --version

N O T E 	 In general I recommend making it clear that you’re using Python 3 by running the
python3 command, as in this example. On many systems, the python command points
to python3 by default, but it is safer to be explicit.

Otherwise, the command outputs the currently installed version of
Python on your system. If you see a message like command not found: python3,
then you need to install Python. Go to https://www.python.org/downloads/ for
instructions.

Defining the Tool’s Basic Structure
As explained in Chapter 2, shell tools take input, process it, and produce
output. You’ll start with this input-process-output structure to create a first
draft of the tool. This version won’t perform any processing—it’ll just take
the input and produce simple output—but it will give you a working starting
point to which you can incrementally add more features in later versions.

318 Chapter 21

At this stage, I’ll share the code in the form of snippets. View the files
in the ~/effective-shell/programs/lookup/ folder o see the full code as it evolves.
Open a text file, save it as lookup-v1.py, and enter the code in Listing 21-1.

lookup-v1.py import sys

Read standard input until nothing is left to read.
while True:
 # Read a line of input.
 word = sys.stdin.readline()

 # If the user presses Ctrl-D to end transmission, readline returns an
 # empty string and you can stop reading.
 if not word:
 break

 # If the input is an empty line or whitespace, skip it.
 if word.isspace():
 continue

 # Add the word to your list of lookups, and strip any whitespace from
 # the beginning and end of it. For now, you don′t have a definition.
 word = word.strip()
 definition = ′′

 # Write the result.
 print(″{} - {}″.format(word, definition))

Listing 21-1: Creating the structure for the dictionary tool

Now, to test the program, you’ll run it, type some words, and then press
ctrl-D to signal end of transmission (that you’ve finished entering input):

$ python3 ~/effective-shell/programs/lookup/lookup-v1.py
$ one
one -
$ two
two -
$ three
three -

The program successfully reads your input and writes out a result for
each word. (Note that you can also press ctrl-C to close the program.)

You can also test that the program can receive input piped from a file:

$ cat ~/effective-shell/data/words.txt | python3 ~/effective-shell/programs/lookup/lookup-v1.py
louche -
liana -
lieder -
Manchu -
Nankeen -
naevi -
Ness -

Alternatives to Shell Scripting 319

You have a program that can read from standard input, either interac-
tively or from a file! Now let’s break down the code section by section.

First, you create a loop that will run continuously, reading lines from
standard input:

while True:
 # Read a line of input.
 word = sys.stdin.readline()

If the input is completely empty, you’ve either reached the end of the
file piped to stdin or the user has entered input directly and signaled the
end of transmission with ctrl-D:

 if not word:
 break
 if word.isspace():
 continue

If the input is just whitespace, such as a newline or tab, you skip it.
Now you record the value of the word stripped of any surrounding

whitespace and set the definition to an empty string, which you’ll fill in
later:

 stripped_word = word.strip()
 definition = ′′

Then you write out the word, a hyphen surrounded by spaces, and the
definition:

 print(stripped_word, ″-″, definition)

In the next version of the script, you’ll download the definition from
the online dictionary.

Downloading the Definition
Now that you’ve got the list of words, you can download the definition of
each one from the Free Dictionary API. This site searches a number of
online dictionaries, including Wiktionary.

Add the new function shown in Listing 21-2 and then save your updated
script as lookup-v2.py.

import json
import subprocess
import urllib.parse

def search_for_word(word):
 # Encode the word for HTML.
 encoded_word = urllib.parse.quote(word.encode(″utf8″))

 # Construct the URL required to load the definition.
 url = ″https://api.dictionaryapi.dev/api/v2/entries/en/{}″.format(encoded_word)

320 Chapter 21

 command = [″curl″, url]

 # Run the ″curl″ command to retrieve the definition.
 result = subprocess.run(command,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE,
 text=True)

 # If there was an error, show it as the definition.
 if result.returncode != 0:
 return ″error: ″ + result.stderr

 # Now try to parse the data.
 data = json.loads(result.stdout)

 # Grab the first value from ″meanings″. If it doesn′t exist in the response,
 # then the word was not found.
 try:
 return data[0][″meanings″][0][″definitions″][0][″definition″]
 except KeyError:
 return ″definition not found!″

Listing 21-2: Adding the definition lookup functionality

This script uses a fairly rough-and-ready way to get the definition of a
word from an online resource. In a nutshell, it does the following:

1. 	 Builds the correct URL needed to use the Free Dictionary API to
search for the word

2. 	 Sends a request to the dictionary API, using the curl tool to look up
the word

3. 	 Decodes the response, returning either the definition or the text
definition not found! if no definition was found

With this new function, you can update the main loop of your program
to look like this:

 # Strip whitespace from the word and find the definition.
 stripped_word = word.strip()
 definition = search_for_word(stripped_word)

 # Write the result.
 print(stripped_word, ″-″, definition)

Pass some test words into the program. Your output should look like this:

Alternatives to Shell Scripting 321

$ cat ~/effective-shell/data/words.txt | python3 ~/effective-shell/programs/lookup/lookup-v2.py
louche - To make (an alcoholic beverage, e.g. absinthe or ouzo) cloudy by mixing it with water,
due to the presence of anethole.
This is known as the ouzo effect.
liana - A climbing woody vine, usually tropical.
lieder - An art song, sung in German and accompanied on the piano.
Manchu – definition not found!
Nankeen - A type of cotton cloth originally from Nanking in China.
naevi - A pigmented, raised, or otherwise abnormal area on the skin...
Ness - A promontory; a cape or headland. (Frequently used as a suffix in placenames.)

Pretty cool—your program can find a reasonable definition for most of
the words in the test dataset!

You can find this version in its entirety at ~/effective-shell/programs/lookup/
lookup-v2.py.

W H Y CUR L?

This program uses the curl command to download the definition of a word
from the dictionary API. You might be wondering why it doesn’t use the native
Python capabilities, such as the urllib library, to make the request to down-
load the word. Originally this sample did use urllib, but recently the Free
Dictionary API was updated in a way that makes using urllib a lot more com-
plex. Rather than complicating the sample tool or using third-party libraries,
you’re instead calling the curl command, which keeps the code simple.

For your own programs, I recommend looking at the urllib, urllib2, or
requests modules as more “Pythonic” ways to make HTTP requests.

Your program is working quite well, but you can improve on it by mak-
ing the output a little friendlier to read.

Formatting the Output
To make the output more readable, you can show the word in a different
color than the definition, separate the definition with a colon (which will
make it easier for you to process it with other tools), and even limit the defi-
nition’s length so that it fits on the screen. For the last item, you’ll give the
user the option to provide a crop value—a maximum number of characters
for each output line. You’ll use a special module in Python called argparse to
specify and parse the crop argument.

322 Chapter 21

Add the code in Listing 21-3 to the beginning of your script and rename
it lookup-v3.py.

lookup-v3.py import argparse

parser = argparse.ArgumentParser()
parser.add_argument(
 ′-c′, ′--crop′,
 help=′crop the output line length′,
 type=int,
 nargs=′?′,
 const=80, # Default value if -c is supplied
 default=None) # Default value if -c is not supplied
args = parser.parse_args()

Listing 21-3: Defining the crop argument with argparse

This code defines an optional argument named crop that can be pro-
vided with or without a number. You’ll see it in action shortly.

N O T E 	 The argparse module is very sophisticated and can handle many different types of
arguments and options. To learn more about it, see its documentation at https://
docs.python.org/3/library/argparse.html.

Now add a function that writes the dictionary definition in a nicer way,
as shown in Listing 21-4.

def write_definition(word, definition):
 # Check if stdout is a terminal, and if it is, color the output.
 is_terminal = sys.stdout.isatty()

 # Separate the word and the definition with a colon and a space.
 separator = ″: ″

 # If the ″crop″ argument is set, use it.
 if args.crop:
 output_length = len(word) + len(separator) + len(definition)
 if output_length > args.crop:
 # You need to chop some letters off the end of the definition,
 # but leave space for ′...′ to indicate the output is cropped.
 new_length = len(definition) - 3 - (output_length - args.crop)
 definition = definition[:new_length] + ′...′

 # If in a terminal, make the word green and the separator white.
 if is_terminal:
 word = ″\033[92m″ + word + ″\033[0m″
 separator = ″\033[37m″ + separator + ″\033[0m″

 # Write out the word, separator, and definition.
 print(word + separator + definition)

Listing 21-4: Formatting the code output with color and punctuation

Alternatives to Shell Scripting 323

The write_definition() code first checks to see whether stdout is a ter-
minal. This is useful because if the user is in a terminal, you can show color
codes, but if the output is something like a file, you can skip them (since
they would look messy in the resulting file). Then, if the user specifies a
value for the crop argument, you do some arithmetic to shorten the defini-
tion if needed.

The weird-looking character sequences such as /033[92m are ANSI con-
trol codes to set the output color; you can read all about them in Chapter 14.

Finally, you can update your main loop to call the write_definition()
function, as shown in Listing 21-5.

 # Strip whitespace from the word and find the definition.
 stripped_word = word.strip()
 definition = search_for_word(stripped_word)

 # Write the result.
 write_definition(stripped_word, definition)

Listing 21-5: Updating the main loop to call the write_definition function

Your program can now look up definitions, print the output in color,
and crop the output as needed:

$ cat ./effective-shell/data/words.txt | python3 ./effective-shell/programs
/lookup/lookup-v3.py -c 60
louche: To make (an alcoholic beverage, e.g. absinthe or ...
liana: A climbing woody vine, usually tropical.
lieder: An art song, sung in German and accompanied on th...
Manchu: definition not found!
Nankeen: A type of cotton cloth originally from Nanking i...
naevi: A pigmented, raised or otherwise abnormal area on ...
Ness: A promontory; a cape or headland. (Frequently used ...

An added benefit of using the argparse module is that your program
automatically gets a --help or -h option so the user can find instructions:

$ python3 ./samples/programs/lookup/lookup-v3.py -h
usage: lookup-v3.py [-h] [-c [CROP]]

optional arguments:
 -h, --help show this help message and exit
 -c [CROP], --crop [CROP]
 crop the output line length

We’ve really just scratched the surface of what you can do here. You can
find this version of the program in full at ~/effective-shell/programs/lookup/
lookup-v3.py.

324 Chapter 21

Installing the Lookup Tool
The great thing about a Python script like the one you just built is that it
is stand-alone. Anyone can install it on their system with very little effort.

All you need to do is first tell the shell that it can execute the script
using the python3 program. To do this, put a shebang at the top of the file
like so:

#!/usr/bin/env python3

...the rest of the code goes here but has been omitted for brevity.

This shebang uses the env program to locate the python3 program. This
is important, as python3 might be installed in different locations on different
systems. You can read more about how to use env in shebangs in Chapter 9.

Now that you have a shebang, you can make the file executable using
the chmod program and link to it from your local bin folder:

$ chmod +x ~/effective-shell/programs/lookup/lookup.py
$ sudo ln -s ~/effective-shell/programs/lookup/lookup.py /usr/local/bin/lookup

To review how to use the chmod and ln tools to install scripts, see Chapter 9.
You’re putting the symlink to the tool in the folder /usr/local/bin as this

folder is conventionally used to store user-installed programs (rather than
/usr/bin, which is where programs installed by package managers will go).

N O T E 	 Administrator privileges are required to install programs to the /usr/local/bin
folder. Some users prefer to create a folder in their home directory, such as ~/bin,
and then keep their personal programs there. The ~/bin folder is then added to the
PATH variable in the shell configuration file. See “Creating a Local bin Directory for
Custom Commands” on page 210 for more details.

With the tool now installed, you can run it like so:

$ lookup -c -- effective shell
effective: A soldier fit for duty
shell: A hard external covering of an animal.

The final version of the script, lookup.py, includes some additional fea-
tures, one of which is the -- (“end of options”) marker, the Linux conven-
tion to indicate that the list of flags is complete and that what follows is
the list of positional parameters. If you didn’t include this marker, the tool
would think that you’re providing effective as the value of the -c flag. Many
Linux tools support this separator; enter man bash to find out more.

Alternatives to Shell Scripting 325

Improving the Lookup Tool
One of the fun aspects of coding is thinking about all of the exciting
features you can add! The final version of the script, which is in the
~/effective-shell/programs/lookup/lookup.py file, includes the following
features:

More robust error handling   Adds exception handlers in the key
places where the program might fail

Graceful handling of ctrl-C   Ensures the program closes cleanly on
ctrl-C without a noisy error message (see KeyboardInterrupt in the code
for this)

More detailed help   Includes examples in the help text (see argparse in
the code)

Ability to look up multiple words   Allows you to provide multiple
words as parameters to the lookup command and get a definition for
each one

Here are a few other features I considered including that you could add
as a coding and learning exercise:

A browse flag   Opens the user’s browser to the full definition online

Man pages   Installs a man page for the tool, meaning a user could run
man lookup

Clearer interactive mode   Shows a prompt and instructions when
stdin is a terminal, meaning the user is interactive

A --verbose flag   Shows detailed error messages

If you find yourself writing more complex command line tools in
Python, check out Click (https://click.palletsprojects.com/en/8.0.x/), a popular
package among Python developers that’s used by several large and well-
established projects. The Typer package (https://typer.tiangolo.com) is also
worth exploring.

Summary
This chapter examined when and why you might consider alternatives to
shell scripts. You learned what makes a tool shell-friendly and used the
highly accessible and popular Python programming language to write a
simple but useful dictionary tool.

In the next chapter, you’ll learn how to use the shell to connect to and
work on machines besides your local computer, such as those in the cloud
or on a network. This gives you the convenience and flexibility of accessing
files and features that aren’t available to you locally, and allows you to man-
age and administer other machines.

22
T H E S E C U R E S H E L L

So far you’ve been using the shell to oper-
ate on your local machine. But you can

also use the Secure Shell (SSH) protocol to
open a secure network connection to a remote

machine and use the shell to work on that machine.
In this chapter, you’ll learn how to set up the credentials and keys

required for secure remote connections, how to create a virtual machine
in the cloud, and how to connect to that machine from your local com-
puter using the ssh program. I’ll also show you how to configure SSH to
make it easier to work with.

What Is SSH?
SSH is a protocol that has been used for decades to establish a secure con-
nection to a remote machine, either on your network or across the internet.
The ssh program is the “secure shell” that helps you establish SSH connec-
tions, manage credentials, and open a shell on a remote machine.

328 Chapter 22

To use SSH, you’ll need a private key and a public key, known as a key
pair, to manage authentication. A detailed description of key pairs, cryp-
tography, and the mechanics of SSH is beyond the scope of this book,
but if you’re interested in learning more, I highly recommend Applied
Cryptography: Protocols, Algorithms, and Source Code in C by Bruce Schneier
(Wiley, 2015). All you need to know for the purposes of this chapter is how
to create a key pair and use it to authenticate to a remote machine.

Creating a Key Pair
You’ll use the OpenSSH authentication key utility ssh-keygen to create a key
pair to communicate with a server on Amazon Web Services (AWS). AWS
is a cloud services provider you’ll use to create a free virtual machine to
connect to. AWS requires that you use a particular format known as Privacy
Enhanced Mail (PEM). To specify the PEM format, move to the ~/.ssh folder,
which is where users often store their SSH keys:

$ cd ~/.ssh

Then run the command ssh-keygen with the -m (“key format”) param-
eter to set PEM as the format like so:

$ ssh-keygen -m PEM

When you run this command, you’ll be asked where you’d like to save
the file. Keep the default location (the ~/.ssh folder) but name the key pair
effective-shell:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/dwmkerr/.ssh/id_rsa): effective-shell
Enter passphrase (empty for no passphrase):

When prompted to provide an optional passphrase, simply press enter
twice to skip it. Since you won’t be using the server or the key for any partic-
ularly sensitive data in this chapter’s exercises, you don’t need a passphrase.
In the future, however, be sure to add a passphrase if you’re creating keys to
encrypt sensitive data. You’ll be required to enter that passphrase each time
you load the key; this added security measure ensures that if someone were
to steal your private key, they would need your passphrase to open it.

Once you’ve pressed enter twice, you’ll see the final output:

Your identification has been saved in effective-shell
Your public key has been saved in effective-shell.pub
The key fingerprint is:
SHA256:HcqIl3ZhRz9jvhYO3g64FEYT3mAoDc6P4mnh4aKuY08 dwmkerr@macbook
The key′s randomart image is:

The Secure Shell 329

+---[RSA 3072]----+
| .o .+ . |
| o. oo = . |
| o. * + = |
| + * * + o |
| + o * S o |
| + = o + + o |
|. *E o = |
|o+. . . + |
|*o.. . . |
+----[SHA256]-----+

N O T E 	 The randomart is designed to provide a more user-friendly way to identify a key.
If you have many keys, the randomart supposedly makes it easier to pick the one you
want. That said, I’ve yet to meet anyone who remembers their randomart, so you can
safely ignore it for now!

You should have two new files, your public key and your private key:

$ ls | grep effective
effective-shell
effective-shell.pub

The public key is the file with the .pub extension. You’ll be sharing this
key with a virtual machine in the cloud. Let’s look at how to set that up.

Setting Up an AWS Account
You’ll create the virtual machine with AWS, which is probably the most
popular cloud services provider. If you already have an AWS account, you
can skip to the next section. If not, keep reading.

Go to https://aws.amazon.com/free/ and click Create a Free Account, as
shown in Figure 22-1.

Figure 22-1: Signing up for a free AWS account

When you sign up, you’ll be asked to provide several personal details,
as well as credit card details. Make sure you select the Basic Support Plan,
which is free.

330 Chapter 22

AVOIDING CR EDIT CA R D BIL L S

Amazon requires your credit card details in case you use paid services. In this
chapter, you’ll be using free-tier services, but be very careful when experiment-
ing or playing with other services on AWS, as most of them have associated
costs. These are generally low, and safeguards are in place to ensure you don’t
accidentally create expensive resources, but keep your AWS credentials very
secure. If someone has access to them, they could run up a substantial bill on
your account.

Once you’ve signed up successfully, you should see the “Congratulations!”
message shown in Figure 22-2. Click Go to the AWS Management Console.

Figure 22-2: After activating your account, go to the Management Console.

You’ll be asked for your password again, and after providing it, you’ll
officially have an AWS account that you can use to run services in the cloud.
Now you’ll create a virtual machine to connect to.

The Secure Shell 331

Creating a Virtual Machine on AWS
Using the search bar in the AWS Management Console, search for “EC2.”
This is the name AWS uses for its virtual machine services. You should be
taken to the EC2 dashboard, where you’ll upload your public key so that
you can use it when creating your virtual machine. Select Key Pairs as
shown in Figure 22-3.

Figure 22-3: Preparing to upload your key pair from the EC2 dashboard

On the page that opens, choose ActionsImport Key Pair, as shown in
Figure 22-4.

Figure 22-4: Importing the key pair

Give the key pair a sensible name like effective-shell, and upload your
public key file, which will be in ~/.ssh/effective-shell.pub if you’ve been follow-
ing along so far. Alternatively, you can open that file on your local machine,
copy its contents, and paste them as shown in Figure 22-5.

332 Chapter 22

Figure 22-5: Pasting your public key

Click Import Key Pair, and you’ll be returned to the EC2 dashboard.
From there, choose Launch Instance, as shown in Figure 22-6. An instance
refers to a virtual server in the cloud.

Figure 22-6: Launching a virtual server in the cloud

Next, you’ll need to specify some details for the virtual machine that
AWS is creating for you.

The Secure Shell 333

Choose an Amazon Machine Image
First, choose the appropriate Amazon Machine Image (AMI) for your ver-
sion of Linux. Be sure to select one that is labeled as “Free Tier Eligible.”

Choose an Instance Type
Make sure the default instance type, t2.micro, is selected. This is free-tier
eligible and more than powerful enough for your needs.

Click Review and Launch since you won’t need to configure any of the
advanced options.

Review the Instance Launch
You’ll see the warning “your security group is open to the world” on the
Review Instance Launch page, informing you that anyone who knows the
address of your instance can try to connect to it. Since you’re not putting
anything sensitive on your instance, you can safely ignore this warning.

Click the Launch button on the bottom right, and another screen
should pop up. Don’t dismiss this screen—this is where you’ll choose your
key pair! Make sure the key pair you just imported is selected, as shown in
Figure 22-7.

Figure 22-7: Selecting your key pair before launching your virtual machine

You’ll be required to select the checkbox labeled “I acknowledge that
I have access to the private key.” AWS is warning you that if you don’t have
the private key associated with the public key you’ve uploaded, you can’t
connect to the instance.

334 Chapter 22

Select the box and then click Launch Instances.
Launching the instance will take a few seconds. Click the View Instances

button when it’s done.
Select the checkbox next to this new instance, as shown in Figure 22-8.

Figure 22-8: Selecting the virtual machine to connect to

Once you’ve selected the instance, click the Connect button. In the
screen that pops up, choose SSH Client (see Figure 22-9).

Figure 22-9: Instructions for connecting to the virtual machine

Keep this browser window open, as it contains the details you need for
the next steps.

The Secure Shell 335

SHU T DOW N YOUR V IR T UA L M ACHINE

W HEN YOU’R E DONE!

When you’ve finished experimenting with your virtual machine, power it
down by selecting it in the AWS Console and choosing Instance State4Stop
Instance. When you’re completely finished with the instance, choose Instance
State4Terminate. You shouldn’t be billed for this instance, as it’s in the free tier,
but better safe than sorry!

Using SSH to Connect to a Virtual Machine
In the SSH Client tab of the Connect to Instance page shown in Figure 22-9,
you should see the address of the machine you’ve created. AWS gives you
some hints here about how to connect, even showing the specific command
you’ll run with ssh.

Using the details for my new virtual machine, I would run this
command:

ssh -i ~/.ssh/effective-shell ec2-user@ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com

This includes three pieces of information:

•	 The credentials for the user I’m connecting with, indicated by the -i
(“identity file”) flag, which provides my private key file

•	 The username for that user, which is the ec2-user part of the command
before the @

•	 The hostname, or address of the machine, which follows the @

Now run the ssh program from your own shell to open a connection to
your virtual machine.

When I run this command, I get the following warning:

The authenticity of host ′ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com
(13.213.71.135)′ can′t be established.
ED25519 key fingerprint is SHA256:8wq6Xu4xEk/BO3diae+BWUFTTKunzvCz4XidFYpl6F8.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

My SSH client tells me that I haven’t connected to this machine before
and asks me to confirm that I want to proceed. Once I confirm, my SSH cli-
ent will record the machine’s IP address and hostname so that when I con-
nect in the future, it will recognize the machine. If the IP address changes,
my SSH client will warn me—a useful security feature to protect against
someone swapping the machine you’re connecting to for another one!

336 Chapter 22

Type yes and press enter to continue connecting, and you should see
bash running in your AWS Linux virtual machine:

Warning: Permanently added ′ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com′ (ED25519)
to the list of known hosts.

 __| __|_)
 _| (/ Amazon Linux 2 AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-2/
[ec2-user@ip-172-31-23-196 ~]$

If you see this welcome message from AWS, you’re successfully run-
ning a shell on your virtual machine via the ssh program from your local
machine!

You can see the shell being used currently by checking the SHELL
variable:

[ec2-user@ip-172-31-23-196 ~]$ echo $SHELL
/bin/bash

Now you’re ready to run any commands that you like on this machine.
At this point, you might install programs, manipulate files, and more.
When you’re ready to disconnect, run the exit command to close the con-
nection to the virtual machine.

Now let’s look at some things you can do with SSH to make accessing
these machines even easier.

Dealing with Key Permission Errors
When you try to use a private key to connect to a virtual machine, you
might see an error message like this:

@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions 0644 for ′my-key.pem′ are too open.
It is recommended that your private key files are NOT accessible by others.
This private key will be ignored.
bad permissions: ignore key: my-key.pem
Permission denied (publickey).

In this case, the server is warning you that other users could open your
private key. You can verify this vulnerability by checking the file permis-
sions like so:

$ ls -al
-rw-r--r-- 1 dwmkerr 1103 Apr 19 12:02 my-key.pem

The Secure Shell 337

The permissions are -rw-r--r--, which translates to the following:

-rw  Read and write for the owner, which is the dwmkerr user

-r-  Read to the group the owner belongs to, which is the dwmkerr group

-r--  Read to all users

This is not ideal: other users on the system would be allowed to open
the file, and members of the same group would be allowed to read the file
as well. There’s a quick fix for this, fortunately. Set the permissions to read
and write for the owner only:

$ chmod 400 my-key.pem
$ ls -al
-rw------- 1 dwmkerr dwmkerr 1103 Apr 19 12:02 my-key.pem

This chmod (“change file permissions”) command sets the permissions
to 400, which means read and write for the current user. Once you make
this change, you’ll be able to use ssh to connect to the server without it com-
plaining about the permissions on your key.

Configuring SSH Hosts
It can be difficult to remember details about your virtual machines, such as
the hostname, key location, and username. To make it easier and quicker to
connect, you can create an entry in your SSH config file to store this informa-
tion. This file is a dot file, a user-specific configuration file just like the ones
discussed in Chapter 17, and is typically located at ~/.ssh/config.

To create an entry for my virtual machine, I would add the following
text to my ~/.ssh/config file:

Host effective-shell-aws-linux
 HostName ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com
 User ec2-user
 IdentityFile ″~/.ssh/effective-shell.pem″

The first part of this configuration is the host alias—that is, how you’ll
refer to the host when you want to connect to it. Use a short but descriptive
name for maximum convenience (effective-shell-aws-linux, in my case).
After the alias is a group of settings, each indented by a tab or two spaces
(the indentation is not required but can help make the file more readable):

HostName  The full address of the host

User  The name of the user to connect as

IdentityFile  The path to the private key file used to connect

Now if I want to connect to the virtual machine, I can simply run the
following command:

ssh effective-shell-aws-linux

338 Chapter 22

In fact, the ssh program supports shell completion, so I can just type ssh
and a few letters of the hostname, followed by the tab key, and the shell will
suggest the hosts from my config:

ssh e<tab> # When I press Tab, the shell expands this to:
ssh effective-shell-aws-linux

Many other options are available for the SSH config file; you can run man
ssh_config to see them all. You’ll also see some other options in Chapter 24.

Running SSH Commands
You don’t need to actually run a shell on a remote machine over SSH to
execute commands. You can simply provide the commands that you want to
run to the ssh program, and it will execute them on the server.

Here’s an example:

$ ssh effective-shell-aws-linux ′curl effective.sh | ES_EXISTING_FOLDER_ACTION=o sh′
...
effective-shell: installed samples version 0.25.1 to ′/home/ec2-user/effective-shell′
effective-shell: read ′effective shell′ online at: effective-shell.com

You’re downloading and running the effective-shell samples installer on
the server. Now, normally when you install the samples, the installer will ask
you whether to overwrite, delete, or keep the existing samples. This means
that it will be requesting input from the terminal. But because the ssh
program isn’t actually attaching stdin to the remote machine, you use the
ES_EXISTING_FOLDER_ACTION=0 option instead to tell the installer to overwrite
the samples.

If you want to be able to interact with the server by using your terminal
to provide input, you can use the -t (“request TTY”) parameter as follows:

$ ssh -t effective-shell-aws-linux ′curl effective.sh | sh′
...
effective-shell: downloaded samples, version 0.25.1
effective-shell: preparing to install the ′effective-shell.com′ samples...
effective-shell: the ′/home/ec2-user/effective-shell′ folder already exists, would you like to:
effective-shell: [d]elete - remove the existing folder
effective-shell: [o]verwrite - extract over the existing folder
effective-shell: [q]uit
Your choice (d/o/q): d

In this example, my terminal is attached to the remote server via SSH,
so I can use the keyboard to provide input to the installer script.

The Secure Shell 339

Handling Disconnections
If you are regularly using ssh to connect to remote machines, you’ll soon
encounter the pain of disconnections, or losing network connectivity. You
might not even notice that you’ve been disconnected; more commonly,
the ssh session simply freezes and stops responding to any input at all.
Annoyingly, often the shell is so unresponsive that you can’t even unfreeze
it with ctrl-D or ctrl-C. In these cases, you can use the escape sequence
enter ~ . to end the broken session.

In Chapter 24 we’ll look at some ways to improve upon this technique,
but for now, if you forget the “enter tilde dot” escape sequence, it’s easiest to
just close your terminal program.

When you disconnect from your SSH session, the commands you’re
running will also be terminated because your shell sends the “hang up”
signal. Again, this can be frustrating if you want to keep a program run-
ning on the server. You’ll learn how to work around this behavior as well in
Chapter 24.

Transferring Files with scp
You can use the scp (“OpenSSH secure file copy”) program as follows to
copy files to and from any remote machine you have access to:

scp parameters source destination

Many of the parameters you might provide to scp are the same as those
for the ssh command, such as -i for the identity file. The source and desti-
nation are normally a pair of designations: one local, one remote. However,
you can also copy between two remote machines.

Here’s an example of how an scp command might look:

scp -i ~/.ssh/my-project.pem ~/project/output.zip dwmkerr@myserver.com:~

•	 The -i flag specifies the path to a key.

•	 The source is a file called output.zip on the local machine.

•	 The destination is a server with the hostname myserver.com, connect-
ing with a user named dwmkerr, and putting the file in the user’s home
folder.

The following scp example copies the downloads/backup.zip folder to the
local ~/backups folder:

scp -P 8022 effective-shell.com:~/downloads/backup.zip ~/backups

340 Chapter 22

•	 No username or credentials are specified, so the current user’s name is
used (unless there’s a matching entry in the ~/.ssh/config file), and any
keys that are loaded in the SSH agent will be used to try to authenti-
cate. The SSH agent is the key manager for SSH; it keeps keys and certif-
icates in memory so that they can be reused without the key exchange
having to be run for each message. The ssh program uses the SSH
agent to get the keys required to exchange messages.

•	 The -P (“port number”) flag specifies port 8022, rather than the default
port, 22.

To see scp in action, you’ll copy the dictionary lookup tool you created
in Chapter 21 to your server. Then you’ll run it, save some definitions, and
copy them back to your local machine.

N O T E 	 If you haven’t read Chapter 21, you can find the lookup.py file in ~/effective-shell/
programs/lookup. You’ll need to install the book’s sample files first by running the
following command:

$ curl effective.sh | sh

First, use scp to copy the lookup program to your remote machine:

$ cd ~/effective-shell/samples
$ scp ./programs/lookup/lookup.py effective-shell-aws-linux:~
lookup.py 100% 4485 10.5KB/s 00:00

You’ve provided the path to the local file, the server you want to copy it
to, and the file’s location (which is the home directory).

Note that because you’ve created the alias effective-shell-aws-linux in
your SSH config, you can use this alias for scp as well as ssh. Connect to the
server now and run the script:

$ ssh effective-shell-aws-linux
Last login: Tue Apr 8 19:03:00 2022 from bb116-15-249-218.singnet.com.sg

 __| __|_)
 _| (/ Amazon Linux 2 AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-2/
[ec2-user@ip-172-31-23-196 ~]$./lookup.py cryptography
cryptography: The discipline concerned with communication security (e.g.,
confidentiality of messages, integrity of messages, sender authentication,
non-repudiation of messages, and many other related issues), regardless
of the used medium such as pencil and paper or computers.

Your lookup program has been copied to your server, and you’ve suc-
cessfully run it to find a definition for the word cryptography.

Save this definition and close your connection to the server, then copy
the definition back to your local machine:

The Secure Shell 341

[ec2-user@ip-172-31-23-196 ~]$ chmod +x ./lookup.py
[ec2-user@ip-172-31-23-196 ~]$./lookup.py cryptography > definition.txt
[ec2-user@ip-172-31-23-196 ~]$ exit
logout
Connection to ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com closed.

$ scp effective-shell-aws-linux:~/defintion.txt .
definition.txt 100% 277 1.0KB/s 00:00

$ cat definition.txt
cryptography: The discipline concerned with communication security (e.g.,
confidentiality of messages, integrity of messages, sender authentication,
non-repudiation of messages, and many other related issues), regardless
of the used medium such as pencil and paper or computers.

Before running the script on the server, you use the chmod command to
ensure the script can be executed. That’s all there is to it! Copying files and
folders to and from remote machines is remarkably easy to do with scp once
you know the basics of how ssh works.

You can perform many other operations with scp; to learn more about
the tool, run man scp.

Summary
In this chapter, we discussed the SSH protocol and how keys are used to
protect connections to remote servers. You learned how to set up an AWS
account, create a virtual machine with a given public key, connect to it with
the ssh program, and configure SSH with an alias to make future connec-
tions faster. You also saw some of the challenges of network connectivity
(Chapter 24 will show you some techniques to handle these) and learned
how to copy files to and from remote machines.

Now that you can connect to remote servers, you need to know how
to work within them. The next chapter will cover terminal editors, which
allow you to rapidly work with text without leaving the shell, making them
the perfect solution for remote machines or systems without a desktop
environment.

23
T H E P O W E R O F

T E R M I N A L E D I T O R S

A terminal editor is a text editor that runs
in the shell, optimized for a keyboard

rather than a mouse. It is sometimes the
only option for working on remote machines

or systems without a desktop environment. But even
when you have a desktop-based editor available, run-
ning a terminal editor from the shell can be more
efficient for many text manipulation tasks.

Some of the most popular terminal editors are Vim, Emacs, and GNU
nano. This chapter will focus on Vim, showing you a few features that will
hopefully pique your interest in diving deeper into its capabilities.

Many users find terminal editors initially hard to use, and some editors—
including Vim—have a reputation for being highly complex. So let’s start by
discussing why you’d want to use one at all.

344 Chapter 23

Why Use a Terminal Editor?
Many technologists are familiar with desktop environment text editors,
such as Visual Studio Code, Notepad++, and Sublime. Software engineers
will likely be familiar with integrated development environments (IDEs) like
Visual Studio and the JetBrains family of IDEs, which include dedicated
environments for many languages, such as C# or Java.

With such a selection of powerful and user-friendly text-editing options
available, why would you choose to use a terminal editor?

There are many reasons, but perhaps the most compelling is that you
won’t always have a desktop environment available. If you’re working on
a remote server with ssh as described in Chapter 22, there may not be a
desktop environment running that can open a graphical tool. The easiest
option available for you to edit text, code, or scripts in such an environment
could be a terminal editor because the terminal is your main interface to
the server. You also might not have easy access to a desktop environment if
you’re editing a file in a lightweight Linux environment such as a Docker
container.

Here are some other good reasons to become familiar with terminal
editors:

Minimal flow disruptions   If you’re working in a shell already and
need to edit text, being able to quickly do so without leaving the shell—
and ideally without even having to touch the mouse—allows you to
maintain your flow while you work.

Editing efficiency   Once you get over the initial learning curve, you
can be incredibly efficient at editing text using editors such as Vim and
Emacs. Vim in particular is designed to keep your fingers on the home
row of the keyboard as much as possible so you can manipulate text
very quickly.

Customization options   You can customize terminal editors to suit
your working style and then manage those customizations through dot
files that you share across environments, as described in Chapter 17.

Extendability to graphical editors and other tools   If you learn how
to use Vim or Emacs and become adept at their idioms, you can install
plug-ins in your graphical editors or IDEs that enable you to edit text
with the same commands. There are even browser plug-ins that let
you navigate web pages with Vim-style movement commands. This lets
you bring your efficiency with keyboard interfaces to modern desktop
editors.

All in all, it’s extremely useful to get to grips with at least the basics
of terminal editors. You’ll be more efficient when working with remote
machines and editing text from the shell, and you might even find that an
editor like Vim replaces your other tools for many tasks.

The Power of Terminal Editors 345

Getting Started with Vim
Vim is an extremely popular editor that comes installed on most Linux dis-
tributions out of the box. But its style of editing, called modal editing, can be
a bit confusing at first. In fact, I’ve chosen Vim because of its reputation as
the most complex terminal text editor. However, you’ll soon find that, with
an hour or two of practice, it’s quite straightforward to use Vim for simple
tasks. Just a little knowledge can make you more effective, and the more
time you invest in learning, the more efficient you’ll become.

KE Y BOA R D SHOR TCU T S A ND CA SE SENSIT I V IT Y IN V IM

Vim relies heavily on case-sensitive keyboard shortcuts. To avoid confusion, this
book uses the following shortcuts:

•	 <C-u>: Press the ctrl key at the same time as the lowercase u

•	 <C-U>: Press the ctrl key at the same time as an uppercase U (ctrl-shift-c)

Vim commands are also case sensitive. For example, the sequence 2w has a
different meaning than the sequence 2W. Be sure to use the correct case when
following the examples in this chapter.

To open Vim, run the vi command:

$ vi

~
~
~
~
~ VIM - Vi IMproved
~
~ version 8.2.4314
~ by Bram Moolenaar et al.
~ Modified by <bugzilla@redhat.com>
~ Vim is open source and freely distributable
~
~ Help poor children in Uganda!
~ type :help iccf<Enter> for information
~
~ type :q<Enter> to exit
~ type :help<Enter> or <F1> for on-line help
~ type :help version8<Enter> for version info
~

346 Chapter 23

~
~
~
~
 0,0-1 All

When Vim starts, it either displays the file that it has been asked to
open or, if no file has been provided (as in this example), shows a welcome
message. The working area that you will edit text in is called a buffer. Later,
you will see how to commit your changes back to disk by saving this buffer
to a file.

As a modal text editor, Vim runs in various modes, and the keyboard
has different functions in each one. Vim starts in normal mode (sometimes
called command mode). This means that you’ll use the keyboard to enter
commands, not text. To use the keyboard to input text as you would in
a normal text editor, you need to use the i (“insert”) command to enter
insert mode:

i

The position of the cursor in the code block is indicated in gray. In
the Vim samples, the exact keystrokes that you type are shown in bold on
the first line, and the results that you’ll see in Vim are shown on the follow-
ing line(s). In insert mode, each character you type will be inserted at the
cursor.

Now try entering some text:

Hello Vim!

When you enter insert mode, the status bar at the bottom of the screen
shows you what mode Vim is in:

Hello Vim!
~
~
~
-- INSERT -- 1,11 All

Note that when Vim is in command mode, the status isn’t shown; since
it’s the default, you can assume Vim is in that mode unless it tells you
otherwise.

To return to command mode, you can press <C-c> or esc. Remember
that <C-c> means that you press the ctrl key and enter a lowercase c at the
same time. In Vim, keys you press together like this are called chords and
keys you press one after the other are called sequences.

Exit insert mode with the <C-c> chord. Notice that the -- INSERT -- text
in the status bar is no longer shown, indicating that you’re back in com-
mand mode.

The Power of Terminal Editors 347

In command mode, the keystrokes you enter are used to manipulate
text or move around. To perform an administrative task, such as saving a
file or calling another program, you need to change to ex mode (ex is short
for “execute”) with the ex command, which is a colon (:), like so:

:
:

Ex mode is a bit like insert mode but for writing commands. Let’s
use the q! (“quit without saving”) command to close Vim. Enter the com-
mand now:

q!
:q!

Any keystrokes you enter in ex mode will display on the status line,
showing the text for the command you’re building. At this point, your ter-
minal should look like this:

Hello Vim!
~
~
~
:q!

The status line is showing you that q! is your current command. Press
enter to execute the command, and Vim will close.

You’ve now seen the basics of modal editing with Vim’s command,
insert, and ex modes. You’ve also learned how to close Vim, which is
famously a task that Vim novices struggle with! Now you’ll start building
your own Vim cheatsheet to explore more of what it can do.

Building a Cheatsheet
Building a Vim cheatsheet is a great way to showcase what Vim can do while
documenting your learning as you go along. You’ll extend your personal
cheatsheet over time with the commands that you find most useful.

Start by creating a folder to store the cheatsheet and initializing an
empty Git repository to track changes to it:

$ mkdir ~/vim-cheatsheet
$ cd ~/vim-cheatsheet
$ git init -b main
Initialized empty Git repository in /home/dwmkerr/vim-cheatsheet/.git/

Here you’ve created a vim-cheatsheet folder, moved into it, and initialized
an empty Git repository with a primary branch named main.

For more information on how Git works, see Chapter 18.

348 Chapter 23

Creating a File
Now open Vim and tell it that you want to work on a file named cheatsheet.md:

$ vi cheatsheet.md

~
~
″cheatsheet.md″ [New] 0,0-1 All

The text you’re editing in Vim is called a buffer, which you can think of
as a view on a file. When you open a file, you’re loading the content into a
buffer, which is what Vim shows. When you want to create a new file, you
enter text in a new buffer and then save it when you’re ready.

Vim shows you in the status line that you have a buffer named cheatsheet
.md and that it is new—that is, you haven’t yet saved it.

The file extension md is short for Markdown, a plaintext format that
is great for documentation. You write text normally, but you can also use
special characters to format that text, such as the hash mark (#) for head-
ings and the hyphen (-) for bullets. Markdown is rendered in a very reader-
friendly way when viewed in environments like GitHub.

Enter insert mode:

i

Create a title for your cheatsheet:

Vim cheatsheet
Vim cheatsheet

Then exit insert mode and enter command mode:

<C-c>
Vim cheatsheet

Remember, you can also press esc to return to command mode—just
use whichever option feels most comfortable to you.

Now you’ll use the w (“write”) ex mode command to save the file. Enter
:w and press enter. The Vim status line should confirm that it has written
the buffer to disk:

Vim cheatsheet
~
~
~
″cheatsheet.md″ [New] 1L, 17B written 1,16 All

Exit Vim by entering :q and then pressing enter. Now add this new
cheatsheet file to your repository:

The Power of Terminal Editors 349

$ git add cheatsheet.md

Next, you’ll tell your shell to use Vim as your text editor, since you’ll be
using Vim to work with Git for the rest of this chapter:

$ export EDITOR=vi
$ git commit

Please enter the commit message for your changes. Lines starting
with ″#″ will be ignored, and an empty message aborts the commit.
#
Committer: dwmkerr
#
On branch main
#
Initial commit
#
Changes to be committed:
new file: cheatsheet.md
#
~
~
″~/vim-cheatsheet/.git/COMMIT_EDITMSG″ 13L, 325B 1,0-1 All

When you’re more familiar with Vim, using it to work with Git reposito-
ries and commands without leaving the shell will start to feel more natural
and efficient.

Git has opened Vim to ask you to provide a commit message. Git has
also provided some helpful information on the changes you’re committing,
such as that you have a new file called cheatsheet.md in the commit.

Now use Vim to enter a commit message. Start by entering insert mode:

i

Enter your commit message:

add the cheatsheet
add the cheatsheet

Then exit insert mode and enter command mode:

<C-c>
add the cheatsheet

Now type :wq to write and quit, and Git will use the message you’ve pro-
vided for the commit:

1 file changed, 1 insertion(+)
create mode 100644 cheatsheet.md

350 Chapter 23

Congratulations! You’ve used Vim to create the initial cheatsheet file as
well as to quickly set the Git commit message—all without leaving your shell!

Navigating Through Text
Vim commands that move the cursor are called motions, and understanding
how they work is key to navigating Vim buffers efficiently. Table 23-1 lists
what I think are the most essential motions. Remember that these motions
are used in normal (command) mode, not insert or ex mode.

Table 23-1: Essential Vim Motions

Motion Usage

gg Go to the beginning of the buffer.

G Go to the end of the buffer.

0 Go to the beginning of the line (note that this
is a zero, not a capital letter O).

$ Go to the end of the line.

w Go forward one word.

b Go backward one word.

h Go left.

j Go down.

k Go up.

l Go right.

) Go forward one sentence.

(Go backward one sentence.

Let’s see a few of these motions in action. Open your cheatsheet in Vim:

$ vi cheatsheet.md

To give yourself some text to play with, update the file so that it looks as
follows:

Vim cheatsheet

Vim motions

Vim motions are commands used to move the cursor.

Make sure to use the <C-c> chord to exit insert mode and enter com-
mand mode before entering the following keystrokes.

Go to the beginning of the buffer:

The Power of Terminal Editors 351

gg
Vim cheatsheet

Vim motions

Go right:

l
Vim cheatsheet

Vim motions

Go left:

h
Vim cheatsheet

Vim motions

Go down:

j
Vim cheatsheet

Vim motions

Go up:

k
Vim cheatsheet

Vim motions

The hjkl motions—move left, down, up, and right, respectively—are
all next to each other on the home row of the keyboard for the right hand.
Although it takes a little getting used to, once you use the hjkl keys instead
of the arrow keys to move around, you’ll wonder how you lived without
them. Being able to navigate without moving your right hand from the
home row is a huge time-saver.

Try out some other motions, starting by going to the end of a line:

$
Vim cheatsheet

Now go to the beginning of the line:

0
Vim cheatsheet

352 Chapter 23

Move forward by one word:

w
Vim cheatsheet

Go backward by one word:

b
Vim cheatsheet

In Vim, a word is a sequence of characters separated by whitespace or
punctuation. For example, # Vim cheatsheet consists of three words: #, Vim,
and cheatsheet.

Adding a Command Count
For many Vim commands, you can provide a count indicating how many
times the command should be run. This makes motions far more flexible;
instead of typing jjjjj to move down five lines, for example, you can just
type 5j.

See how the cursor moves when you add counts to motion commands.
Go to the beginning of a buffer like so:

gg
Vim cheatsheet

Vim motions

Go down three lines:

3j
Vim cheatsheet

Vim motions

Move forward three words:

3w
Vim cheatsheet

Vim motions

Now that you know how to move the cursor with motions, you can move
to wherever you want to insert text. But, as you might have guessed, Vim has
a way to streamline that task as well.

Inserting Text at Specific Positions
As you learned earlier, you can use the i command to enter insert mode to
type text. However, Vim has a set of commands, listed in Table 23-2, that

The Power of Terminal Editors 353

enter insert mode in specific positions—saving you from moving around
unnecessarily.

Table 23-2: Essential “Enter Insert Mode” Commands

Command Usage

i Insert at cursor.

I Insert before the first non-whitespace character in the
current line.

a Append text after the cursor.

A Append text at the end of the current line.

o Open a new line below the position.

O Open a new line above the current line.

These commands allow you to quickly enter insert mode just where you
like. To try them out, start by going to the beginning of the buffer:

gg
Vim cheatsheet

Open a new line below the current line:

o
Vim cheatsheet

Enter text, then enter command mode:

Hello<C-c>
Vim cheatsheet
Hello

Enter insert mode before the first non-whitespace character in the line:

I
Vim cheatsheet
Hello

Enter text, then enter command mode:

Welcome and <C-c>
Vim cheatsheet
Welcome and Hello

Append text to the end of a line:

A
Vim cheatsheet
Welcome and Hello

354 Chapter 23

Enter text, then enter command mode:

Vim!<C-c>
Vim cheatsheet
Welcome and Hello Vim!

Open a new line above the current line, then enter command mode:

O<C-c>
Vim cheatsheet

Welcome and Hello Vim!

Using the <C-c> chord to quickly go back into command mode after
inserting text should start to become habit as you use Vim. It’s faster to
enter small amounts of text and then go back to command mode to reposi-
tion the cursor than it is to enter lots of text and use the arrow keys to move
around in insert mode.

Operating on a Range of Text
A Vim operator is any command that can be applied to a range of text.
You can combine operators with counts and motions to rapidly manipu-
late a specific part of the buffer. Table 23-3 lists some particularly useful
operators.

Table 23-3: Essential Vim Operators

Operator Usage

c Change the range—that is, delete the characters and
move into insert mode at the beginning of the range.

d Delete the range.

y Yank the range—that is, copy it to a register (Vim’s ver-
sion of a clipboard) ready to paste later.

g~ Invert the range case (change uppercase characters to
lowercase characters and vice versa).

gU Make the range uppercase (“go upper”).

gu Make the range lowercase (“go lower”).

! Send the range through an external program.

You can use operators with a motion to alter a range of text. Try out
these examples, starting by entering insert mode, typing some text, chang-
ing to command mode, and then moving to the beginning of the line:

iWelcome to Vim!<C-c>0
Welcome to Vim!

The Power of Terminal Editors 355

Move forward one word:

w
Welcome to Vim!

Change two words. Remember, in Vim, a word is a sequence of charac-
ters separated by whitespace or punctuation, so to Vim! is three words: to,
Vim, and !:

c2w
Welcome !

Enter new text, then enter command mode:

the Terminal Editor<C-c>
Welcome the Terminal Editor!

Move to the beginning of the line, convert all characters to uppercase
through to the end of the line (again, the first character is a zero, not a
capital letter O):

0gU$
WELCOME THE TERMINAL EDITOR!

You’re starting to get an idea of just how powerful modal editing is. It
enables you to express complex changes to text, operate on ranges of text,
and move in the buffer with just a few keystrokes.

You can also quickly apply these operators to the current line—just
type them twice, as shown in Table 23-4.

Table 23-4: Operators That Act on the Current Line

Operator Usage

cc Change current line—that is, delete the line and move into
insert mode at the beginning of the line.

dd Delete the current line.

yy Yank the current line.

g~~ Change the case for the current line.

gUU Make the current line uppercase.

guu Make the current line lowercase.

Searching for Text Patterns
Some of the most powerful motions are those that search for a specific
character. With these search motions, you can quickly select a range of char-
acters for an operator to perform on. Table 23-5 describes a few of the most
essential search motions.

356 Chapter 23

Table 23-5: Essential Search Motions

Motion Usage

fcharacter Move forward to (onto) character.

Fcharacter Move backward to (onto) character.

tcharacter Move forward to just before character.

Tcharacter Move backward to just before character.

Now take a look at these motions in action by quickly moving around
a little bit of Python code. Open a new line with o, then type a line of text,
exit insert mode, and move to the beginning of the line:

def search_for_word(word):<C-c>0
def search_for_word(word):

Move forward onto (as follows:

f(
def search_for_word(word):

Move backward onto d twice:

2Fd
def search_for_word(word):

Move forward to just before the first underscore (_):

t_
def search_for_word(word):

Move backward to just before the f:

Tf
def search_for_word(word):

The difference between the f (“find”) and t (“to”) motions is that the
former positions your cursor directly on the specified character, while the
latter moves your cursor to right before that character. When you use Tf to
move backward to before the f, your cursor ends up on the space between
def and search because the space is what comes before the f when you’re
moving backward through the text.

As with any motion, you can add a count to indicate how many times
you want the motion to run. You can also use the semicolon (;) to move to
the next result and the comma (,) to move to the previous result.

Two other powerful motions you should know about are i (“inside”)
and a (“around”), which are useful when you want to change content within

The Power of Terminal Editors 357

square brackets, parentheses, braces, and so on. If you use ca), you’re saying
“change around parentheses,” which removes both the parentheses and the
text between them and puts you into insert mode at the position they previ-
ously occupied. In comparison, ci{ says “change inside braces,” removing
the text between the braces but keeping the braces themselves.

Try this out, starting again by moving forward onto the first open
parenthesis:

f(
def search_for_word(word):

Change the text inside parentheses, leaving the parentheses themselves:

ci)
def search_for_word():

Enter some text, then return to command mode:

word = ″default″<C-c>
def search_for_word(word = ″default″):

Change around quotes, deleting both the quotes themselves and the
text they contain:

ca″
def search_for_word(word =):

Enter text, then return to command mode:

′sample′<C-c>
def search_for_word(word = ′sample′):

N O T E 	 When you use an open brace or parenthesis, Vim will add a space before and after
the text you insert. When you use a closing brace or parenthesis, no additional spaces
are added.

You can also combine the a and i motions with operators. Move forward
onto the first (again:

f(
def search_for_word(word = ′sample′):

Now convert all characters from the current position until the next clos-
ing parenthesis to uppercase:

gUi)
def search_for_word(WORD = ′SAMPLE′):

358 Chapter 23

The i) motion specifies the range inside parentheses (from the first
non-whitespace character to the closing parenthesis) for gU to transform, so
after the operation, the cursor ends up on the first character of the upper-
case text.

By now, you’ve seen how Vim motions can help you navigate through
and work with text more easily. But they’re not just useful in Vim; as you’ll
see next, they can also help you efficiently edit your shell commands.

Editing Commands
As another example of how you can use Vim in your day-to-day work, you’ll
enter a shell command that includes a mistake and use Vim to fix it.

First, make sure your shell’s editor is set to Vim:

$ EDITOR=vi

N O T E 	 Chapter 15 describes how you can set your preferred editor in your shell configuration
file so you don’t have to type this command each time you open a new shell.

Enter the following line of text in the shell (but don’t press enter to
execute it yet!):

$ git commit -m ′added more detail on motions′

This command will commit file changes—but you haven’t added any
changes yet. Rather than fixing the command by backspacing, adding the
missing part, and then re-entering this text (which is time consuming),
you’ll open the current shell command line in Vim and fix it there.

Press ctrl-X, ctrl-E to tell the shell to open the current line in your
configured text editor:

git commit -m ′added more detail on motions′
~
~
~
″/tmp/bash-fc-5094983766″ 1L, 45B 1,1 All

Now fix up the command with your new Vim skills. First, enter insert mode:

i
git commit -m ′added more detail on motions′

The Power of Terminal Editors 359

Add your text, then enter command mode:

git add . && <C-c>
git add . && git commit -m ′added more detail on motions′

Enter the wq (“write and quit”) command:

:wq

Press enter to execute the command. Vim will close, and the shell then
runs the command git add . to add changes, and git commit completes
successfully.

Updating and Styling Your Vim Cheatsheet
At this stage, you can update your cheatsheet with any notes you find rel-
evant. Here are the first few lines of mine:

Vim cheatsheet

Vim motions

Vim motions are commands used to move the cursor. Essential motions are:

* `hjkl` - move the cursor left/down/up/right
* `w` - forward one word
* `b` - back one word
* `(` - back one sentence
* `)` - forward one sentence
* `0` - beginning of line
* `$` - end of line
* `gg` - beginning of buffer
* `G` - end of buffer

Motions can take a `{count}` to indicate how many motions you want to make,
such as `3w` to move forward three words.

Three new Markdown syntax features are used here:

•	 The double hash marks (##) indicate a subheading.

•	 The asterisk (*) indicates an item in a bulleted list (as noted earlier, you
can also use a hyphen for this).

•	 Any text within backticks (`) indicates code and should be rendered in
monospaced type.

360 Chapter 23

These simple formatting features will make your cheatsheet look profes-
sional when it is viewed on GitHub or in a suitable editor. Figure 23-1 shows
how mine looks on GitHub.

Figure 23-1: My Vim cheatsheet in GitHub

For more Markdown styling tips, see https://www.markdownguide.org/
basic-syntax/.

Going Further with Vim
Vim is a huge topic, and we’ve barely scratched the surface, but I’ve tried
to focus on the features that you can use most immediately. As you use Vim
more, I suggest researching the following features in this order:

1. 	 The dot command to repeat your last change

2. 	 Visual mode to highlight text selections

3. 	 Yank and paste and registers to extend basic clipboard behavior

4. 	 Search and replace to make changes across your files more efficiently

5. 	 The ~/.vimrc file to customize Vim’s behavior
6. 	 Macros to automate complex sequences of commands

You can see how I manage my own Vim configuration at https://github
.com/dwmkerr/dotfiles. I also recommend exploring the following resources to
continue your Vim journey.

https://github.com/dwmkerr/dotfiles

The Power of Terminal Editors 361

Vimtutor
Vim comes installed with the very useful vimtutor program. You can run this
program to open Vim with a special file that describes Vim’s functionality
and shows examples so you can follow along and see features in action.

Use this program regularly while you’re learning Vim to test your prog-
ress and refresh your skills!

Vimcasts
Drew Neil’s excellent website Vimcasts (http://vimcasts.org) has some superb vid-
eos on how to use Vim, from the basics to some really advanced functionality.

Drew is an extremely skilled Vim user and does a great job of making a
complex subject easy to follow.

Practical Vim and Modern Vim
If you’re enjoying using Vim, Drew’s books Practical Vim, 2nd edition
(Pragmatic Bookshelf, 2015), and Modern Vim (Pragmatic Bookshelf,
2018) should be on your bookshelf! They are truly excellent and, just
like Drew’s Vimcasts, make a complex subject much more user-friendly.

Summary
This chapter introduced you to the basics of the Vim terminal editor:
changing among the insert, command, and ex modes; working with
motions and operators; and using Vim from within your shell. While ter-
minal editors are sometimes the only choice when you don’t have access to
a desktop environment, they can also be the better choice, allowing you to
handle many tasks without ever having to touch the mouse.

In the next and final chapter, we’ll look at another powerful tool that
will boost your productivity even more: the terminal multiplexer.

24
M A S T E R I N G T H E M U L T I P L E X E R

A terminal multiplexer is a tool that lets you
run multiple programs and shell sessions

independently. You can switch between
tasks, keep processes running in the back-

ground, and disconnect and reconnect without losing
any settings or work in progress. These features are
invaluable for multitasking and remote work. In this
chapter, you’ll learn how to use the popular terminal
multiplexer tmux to handle everyday tasks and cus-
tomize it to your needs.

Multiplexer sessions are containers that can hold multiple shell sessions
and other programs, which persist independently of the terminal connec-
tion. You connect to your multiplexer sessions with your terminal using a
shell, and when you exit your shell, the sessions continue running in the
background. Users can switch between sessions, save them, resume them,
and even invite others to join one to allow collaboration. Multiplexers also

364 Chapter 24

normally offer window management capabilities, allowing you to break your
terminal into separate panes, tabs, or windows.

Figure 24-1 shows a multiplexer in action—the one I’m using as I write
this chapter.

Figure 24-1: The tmux multiplexer I used while writing this book

I’m running the tmux multiplexer in my terminal. I’ve split the window
into three panes: a large one on the left containing the text for the chapter,
and two smaller ones on the right. The upper-right pane builds the Effective
Shell website in real time while I am writing and checks for errors, and the
lower-right pane contains a sample script I am working on.

When I want to switch between tasks, I don’t need to start or stop
any of the programs. Instead, I can just switch between the panes in my
multiplexer.

At the bottom of the screen are two tabs: website-and-repo, which con-
tains the website and the windows I’m currently working in, and manuscript,
which has some windows for the book draft.

If I close my shell, the tmux server continues running the sessions,
and I can reopen my terminal and resume. If I close my computer, when I
restart, my multiplexer will restart these programs for me so I can pick up
where I left off.

Mastering the Multiplexer 365

Benefits of Using a Multiplexer
While it’s not essential to know how to use a multiplexer, it can certainly
help you become a more effective shell user. Here are some of the key
benefits:

Window management   As noted previously, multiplexers support mul-
tiple windows, tabs, and panes, allowing you to arrange your workspace
exactly how you want it. You can also save your window configuration
and use it later. You can even organize different windows into different
sessions, which means you can switch between several running projects
at once, each with a layout configured to your needs.

Session persistence   A multiplexer runs your programs indepen-
dently from your terminal, so if your terminal crashes or freezes, your
programs still run. You can run a multiplexer on a remote machine to
manage your programs, and even if your connection to the machine is
reset, the programs won’t stop running. You can simply reconnect to
the session later and pick up where you left off. Session persistence is
incredibly useful—if you use the shell a lot, you’ll wonder how you lived
without it!

Configuration options   Multiplexers offer many configuration options
to allow you to customize how you run and interface with your pro-
grams, allowing you to set up the ideal environment for maximum
effectiveness.

Collaboration capabilities   A multiplexer is a client/server program.
This means you as a user are a client and connect to a server that runs
the multiplexer. But other users can connect as well, so you can easily
collaborate with them to share your own work, connect to theirs, or
work together on a shared remote machine.

We’ll look at a few of the most immediately useful features of multiplex-
ers in this chapter. Though it won’t be a comprehensive discussion, it should
be enough to help you decide whether to investigate further on your own
and add a multiplexer to your toolkit.

Installing tmux
The two most popular multiplexers are probably GNU Screen and tmux.
GNU Screen was created in the late 1980s and has been used widely ever
since. It is preinstalled on many Linux systems.

A more modern multiplexer created in 2007, tmux has most of the
features of GNU Screen, is also open source, and adds some very useful
features to make it a little more user-friendly. However, tmux will not work
with msys2 or Cygwin.

For the rest of this chapter, we’ll look at tmux in detail. I’ve chosen
tmux rather than Screen because I think its user-friendliness makes it a bet-
ter option for multiplexer newcomers. Once you’re comfortable with tmux,
you might decide to switch to GNU Screen; if you do, it will be very familiar.

366 Chapter 24

To check if tmux is already installed on your machine, run this
command:

$ tmux -V
tmux 3.2a

If it isn’t installed or you don’t have version 3 or higher, you’ll need
to install the latest version of tmux with the package manager for your
system. The package name on most distributions is just tmux. For example,
on a Debian-based distribution, you would install tmux with the following
command:

$ apt install -y tmux

On a Mac you would use:

$ brew install tmux

Once you’ve installed tmux, run it by entering the tmux command.

T MU X KE Y BOA R D SHOR TCU T S

Like Vim, tmux relies heavily on case-sensitive keyboard shortcuts. For exam-
ple, pressing ctrl and b (lowercase) is different from pressing ctrl-shift-B
(uppercase).

This book uses the standard tmux documentation format for shortcuts,
where the caret (^) and prefix C are both equivalent to the ctrl key:

•	 ^b or C-b: ctrl with lowercase b

•	 ^B or C-B: ctrl with uppercase B

In tmux, most commands start with a sequence called the prefix (or leader)
so that tmux’s keyboard shortcuts will not clash with the shortcuts of any pro-
grams it is running. By default, the tmux prefix is ^b (ctrl-b).

For example, to send the command Z (an uppercase Z), you would use the
sequence ^b Z or C-b Z (making sure to press shift when entering the Z).

In this chapter, I’ll consistently use the slightly more concise format ^b to
describe keyboard shortcuts and sequences. Remember, always match the case
shown in the examples.

Now let’s explore some of the things you can do with the tmux
program.

Mastering the Multiplexer 367

Window Management with tmux
We’ll begin by looking at several techniques for working with windows in
the multiplexer.

Creating and Moving Between Panes
A split separates your current window into panes that can each run their
own program. You can create a vertical split by pressing ^b followed by the
percent sign (%) or a horizontal split by pressing ^b followed by a double
quote (″). Finally, to move between panes, press ^b followed by the appropri-
ate arrow key.

Zooming Panes
You can zoom in on a pane so that it takes up the entire window by pressing
^b z. To zoom out of a pane, either move to another pane (even if it’s hid-
den) or press ^b z again.

Creating and Moving Between Windows
To run a program in an entirely new window, use the ^b c command to cre-
ate a window. To switch windows, press ^b w to choose from the list of avail-
able windows and sessions. This command is extremely useful if you have a
lot of windows to move between.

Table 24-1 lists some other useful window management commands.

Table 24-1: Handy Commands for Working with Windows

Command Description

^b n Move to the next window.

^b p Move to the previous window.

^b 0 Select the window numbered 0 (the window numbers are shown on the
bottom left next to the window name).

^b & Close the current window.

^b , Rename the current window.

^b w Show the window navigator.

N O T E 	 Remember that tmux is case sensitive, so check your caps lock key when entering these
commands.

The ^b , (“rename window”) command is very useful if you have a lot of
windows and want to give each one a descriptive name. As you’ll see in the
next section, tmux will remember these settings even if you detach (that is,
disconnect) from a session and later reattach to it.

368 Chapter 24

Session Management with tmux
Sessions in tmux are a collection of independently managed windows. They
are great for creating lots of projects: each session can be a project with the
appropriate windows and configuration for the work you’re doing.

Starting a New Session
Close your existing tmux session so that you can start fresh:

$ exit

Now restart tmux, and name the session effective-shell using the s (“ses-
sion”) parameter as follows:

$ tmux new -s effective-shell

Now you’ll create a new window and then create a new session:

Create a new window.
^b c

Enter tmux command mode.
^b :

Create a second session.
new -s my-project

Select from the list of sessions.
^b s

The ^b : command opens the tmux command pane, which is shown at
the bottom of the screen and allows you to run a tmux command. When
you open this pane, you no longer need to put tmux at the beginning of the
command to create a new session, as you can see with the my-project session.
The ^b s command opens the list of sessions. As you scan through the list
using the arrow keys, tmux gives you a preview of each session.

Attaching and Detaching from Sessions
As noted earlier, one of the great things about sessions is that you can set
them up, then detach from them to do other work. The sessions will keep
running, and you can reattach to them later. This means you can close your
terminal and reopen it and programs will still run.

If you’re in the shell and want to open tmux and attach to the last ses-
sion, run the following:

$ tmux attach

When you’re in a tmux session, you can detach from it like so:

Mastering the Multiplexer 369

^bd
detach

Because tmux is stateful (has session persistence), if you close your ter-
minal at this point, the tmux server saves your session information. Then
when you reopen a terminal, you can reattach with the same command as
before:

tmux attach

If you use tmux often, you might find you end up with lots of sessions.
To delete a session, enter ^b s to show the session list, scroll to the session
you want to delete, and press x. The tmux server will ask for confirmation
before it closes the session.

Sessions are extremely powerful for organizing your work. Table 24-2
lists some other useful commands for working with them.

Table 24-2: Handy Commands for Working with Sessions

Command Description

tmux attach Attach to the last used session.

tmux new -s name Start a new tmux session named name.

^b: new -s another-name Enter command mode and start a session named
another-name.

^b $ Rename the current session.

^b s Show the session list. Close the selected session with x.

^b) Move to the next session.

^b (Move to the previous session.

^b w Show all windows and sessions.

Now that you know how to manage multiple sessions and you under-
stand the essential commands, you might want to fine-tune tmux to suit
your preferences.

Configuring tmux
The out-of-the-box configuration for tmux is normally fine for everyday use.
However, if you find yourself using tmux a lot, adding some customizations
can make it work better for you.

The program’s configuration pattern follows the very standard, Unix-
style dot file structure. (If you’re not familiar with dot files, see Chapter 17.)
To begin configuring tmux, create a file named .tmux.conf in your home
directory:

$ touch ~/.tmux.conf

370 Chapter 24

Now open this file in your preferred editor so you can start adding
some customizations. I’ll walk you through the ones I find most useful.

Setting the Default Shell
First, you’ll tell tmux to use your current shell program (for example, if
you’re using the Z shell, tmux will know to open windows with the Z shell):

Set the default shell, and set the default command to use our shell (this
means sourcing things properly, showing the correct PS1, and so on).
set -g default-shell $SHELL
set -g default-command $SHELL

With these settings, tmux will also source your shell dot files so that
each window it opens has the same command prompt (set in the PS1 vari-
able) and configuration as your standard shell.

Specifying the Working Directory
When you create a new window with ^b c, tmux will open it in the home
directory by default. In general, I prefer to have the window open in my
current working directory. Make this change as follows:

Open new panes and splits in the same working directory.
bind c new-window -c ″#pane_current_path″

This simple command saves you a step every time you open a new
window.

Naming and Numbering Windows
By default, tmux tries to be smart and changes the name of each window to
the program that window is currently running. I find it distracting to have
window names change as I use them, so I disable this automatic renaming
behavior. In general, I rename a window as soon as I’ve opened it and give it
a descriptive name instead.

I also set tmux to number windows from 1 rather than 0, and to
renumber them when I create or delete any windows so that the number-
ing remains sequential, without gaps. If you don’t do this, you’ll rapidly get
into double-digit numbers, which are harder to select (you can only use ^b
window-number to select windows 0 through 9).

Configure these settings like so:

Set the name of the window initially, but then don′t let tmux change it.
The name can still be set at any time with: ^b ,
set-option -g allow-rename off

Start windows and panes at 1.
set -g base-index 1

Mastering the Multiplexer 371

set -g pane-base-index 1

When windows are added or removed, renumber them sequentially.
set -g renumber-windows on

Splitting Windows More Intuitively
I’ve always found ^b % and ^b ″ odd commands for splitting, and still to this
day I regularly mix them up. Instead, I use ^b - to make a vertical split and
^b | to make a horizontal split. The direction of the hyphen or pipe is a
much easier way to remember what kind of split I’ll be making. Here’s how
to change this:

Split panes using | and -
bind | split-window -h -c ″#pane_current_path″
bind - split-window -v -c ″#pane_current_path″

Sending Commands to Nested Sessions
I’m almost never not in a tmux session. This means that if I open a nested
session—for example, by using ssh to connect to a virtual machine and run-
ning tmux there—I have trouble sending commands to the nested tmux.
Using ^b c opens the new window on my machine, not in the nested session.
By using bind-key b send-prefix, I can use ^b b to send a command to the
nested session:

Use ^b b to send the command to a nested session. This means if you are
using tmux and then use ssh to connect to another machine that is also
running tmux, you can run commands in this nested session using ^b b command.
bind-key b send-prefix

This might sound fiddly, but you’ll get a sense of how useful it can be in
“Collaboration with tmux” on page 372.

Enabling Mouse Support
If you have a mouse (which will normally be the case if you’re working with
your local machine), you can enable it for tmux so that you can drag panes
to resize them, select panes and windows, and more.

If you want to really get into the mouseless flow, however, disable this
option like so:

Enable mouse mode (tmux 2.1 and above).
set -g mouse on

This configuration will force you to learn the commands!

372 Chapter 24

Interfacing with Vim
I set a number of configuration options to help tmux interface more seam-
lessly with Vim, and I also use Vim directions rather than arrow keys to
move around. This means I use ^b j to go to the pane below and ^b l to go
to the pane to the right.

I’ve also configured a number of key bindings to make resizing panes
more intuitive to Vim users, as well as to enable Vim-style text selection.

These more advanced options are of interest only to Vim users, how-
ever, so if you want to learn more, see my dot files project at https://github
.com/dwmkerr/dotfiles.

Setting Advanced Configuration
We’ve really only touched on the most basic configuration options here,
as you can customize tmux in almost any way imaginable. For example,
you can change the visual style of the status bar, the colors, the informa-
tion shown, and more. And there are plug-in managers for tmux to make it
easier to install plug-ins for even more customizability.

These are more advanced configuration settings, however, so I recom-
mend exploring them only after you’re familiar with “vanilla” tmux. To see
the available options, run man tmux or search for any of the excellent online
guides on how to configure the program.

Collaboration with tmux
So far, you’ve run all of these sessions on your local machine. This is great
for organizing your local work. But you can also run tmux on another
machine or server, then connect to it from your machine like so:

ssh -t effective-shell-aws-linux tmux attach

The ssh program allows you to run a command on the server—in this
case, the tmux attach command. If you ask ssh to run a command, by default
it won’t connect the input of your terminal to the server. The idea is that
sometimes you’re just using ssh to run one-off commands and don’t need
to stay connected. But for this command, you actually want to stay attached
to the server, so you use the -t (“request TTY”) flag to attach your terminal
input to the SSH session.

You can set up your SSH config file to automatically attach to the tmux
session. This is how I set up my ~/.ssh/config file entry for the virtual machine
created in Chapter 22:

Host effective-shell-aws-linux
 HostName ec2-13-213-71-135.ap-southeast-1.compute.amazonaws.com
 User ec2-user
 IdentityFile ~/.ssh/effective-shell
 RequestTTY yes # Ensure that you attach your terminal input.
 RemoteCommand tmux attach # Attach to the tmux session.

https://github.com/dwmkerr/dotfiles

Mastering the Multiplexer 373

With this configuration, when you use ssh to connect to the effective
-shell-aws-linux box, you’ll run the tmux attach command and attach your
terminal. To connect to tmux on the server now, you only need to run the
following:

ssh effective-shell-aws-linux

At this point, you’re connected to the server and running tmux. You
can run commands and background jobs, create windows, work with nested
tmux sessions, and so on. Because all of these operations are running a
tmux session, you can disconnect and resume later without losing any work.

A tmux Quick Guide
To quickly see all of the tmux commands, run the ^b ? command. The out-
put of this command will look something like this (remember that tmux
also uses C for ctrl):

C-b C-b Send the prefix key
C-b C-o Rotate through the panes
C-b C-z Suspend the current client
C-b Space Select next layout
C-b ! Break pane to a new window
C-b ″ Split window vertically
C-b # List all paste buffers
C-b $ Rename current session
C-b % Split window horizontally
C-b & Kill current window
C-b ′ Prompt for window index to select
C-b (Switch to previous client
C-b) Switch to next client
C-b , Rename current window
C-b . Move the current window
C-b / Describe key binding
C-b 0 Select window 0
C-b 1 Select window 1
...

Table 24-3 offers a handy reference of common commands.

Table 24-3: tmux Command Quick Reference

Command Description

Essentials
tmux ls List sessions.

tmux new [-s name] Start a new tmux session (optionally named name).

tmux attach [-t name] Attach to the last used session or the target session
named name.

(continued)

374 Chapter 24

Next Steps with tmux
As you start to use tmux more, you’ll realize you can do some truly incred-
ible things with a multiplexer. Selecting text from the shell without touch-
ing the mouse, seamlessly integrating tmux splits and Vim splits, sending
commands to multiple machines at once, using plug-in managers to add
advanced features—the list goes on.

The tmux program also lets you rapidly resize, swap, or reorder panes;
break a pane into its own window or session; and more. These commands
are probably the next ones to learn. If you’ve enabled mouse mode, you
can also resize panes with the mouse if desired. In a similar way to how a
modern integrated development environment allows you to customize your
windows and layout to suit the work you’re doing, tmux lets you customize,
lay out, and manage almost any set of programs you might need.

I highly recommend using tmux as part of your standard workflow.
Get familiar with the basic features shown in this chapter and then, as you
start to encounter limitations and want to do more, explore some of the
great books and blog posts out there that go into more advanced features.
In particular, Brian Hogan’s excellent book tmux 3: Productive Mouse-Free
Development (Pragmatic Bookshelf, 2025) is suitable for anyone, from begin-
ner to expert, and will help you take your tmux skills to the next level.

You can also see how I manage my own tmux configuration at https://
github.com/dwmkerr/dotfiles.

Summary
This chapter introduced you to the tmux terminal multiplexer. You learned
how to manage windows, panes, and sessions; how to configure tmux to suit
your personal working style; and how to use tmux to manage sessions on
remote machines and even collaborate in real time with other users.

At this point, you’ve learned the basics of the shell, optimized your
setup for working with it, customized your shell configuration, and created
several scripts and programs. You’ve also explored some really sophisticated
topics like SSH, Vim, and terminal editors. You’ve truly become an effec-
tive shell user! As you use these techniques more and more, they’ll become
more natural, and you should find that you’re able to work in the shell
quickly, efficiently, and without disruptions to your flow.

There are many other topics to explore as you spend more time in the
shell. The final part of this book looks at the future of the shell and genera-
tive AI. Check out https://effective-shell.com for even more topics and tutorials.
Good luck with your journey!

Table 24-3: tmux Command Quick Reference (continued)

Command Description

tmux kill-session [-t name] Kill a session named name. If name is not specified,
the current session is killed.

tmux kill-session -a Kill all sessions except the current session.

^b d Detach from current session.

^b : new -s another-name Enter command mode, start the session named
another-name.

^b ? Show command help.

Session management
^b $ Rename the current session.

^b s Show the session list. Close sessions with x.

^b) Move to the next session.

^b (Move to the previous session.

^b w Show all windows and all sessions.

Window management
^b n Move to the next window.

^b p Move to the previous window.

^b 0 Select the window numbered 0 (use the number of
any window from the status pane).

^b & Close the current window.

^b , Rename the current window.

^b w Show the window navigator.

^b $ Kill the current window.

Splits and panes
^b % Create a horizontal split.

^b ″ Create a vertical split.

^b <arrow> Move to the pane in the direction of the arrow key.

^b z Zoom in to or out of a pane.

^b ! Convert pane to window.

Mastering the Multiplexer 375

Next Steps with tmux
As you start to use tmux more, you’ll realize you can do some truly incred-
ible things with a multiplexer. Selecting text from the shell without touch-
ing the mouse, seamlessly integrating tmux splits and Vim splits, sending
commands to multiple machines at once, using plug-in managers to add
advanced features—the list goes on.

The tmux program also lets you rapidly resize, swap, or reorder panes;
break a pane into its own window or session; and more. These commands
are probably the next ones to learn. If you’ve enabled mouse mode, you
can also resize panes with the mouse if desired. In a similar way to how a
modern integrated development environment allows you to customize your
windows and layout to suit the work you’re doing, tmux lets you customize,
lay out, and manage almost any set of programs you might need.

I highly recommend using tmux as part of your standard workflow.
Get familiar with the basic features shown in this chapter and then, as you
start to encounter limitations and want to do more, explore some of the
great books and blog posts out there that go into more advanced features.
In particular, Brian Hogan’s excellent book tmux 3: Productive Mouse-Free
Development (Pragmatic Bookshelf, 2025) is suitable for anyone, from begin-
ner to expert, and will help you take your tmux skills to the next level.

You can also see how I manage my own tmux configuration at https://
github.com/dwmkerr/dotfiles.

Summary
This chapter introduced you to the tmux terminal multiplexer. You learned
how to manage windows, panes, and sessions; how to configure tmux to suit
your personal working style; and how to use tmux to manage sessions on
remote machines and even collaborate in real time with other users.

At this point, you’ve learned the basics of the shell, optimized your
setup for working with it, customized your shell configuration, and created
several scripts and programs. You’ve also explored some really sophisticated
topics like SSH, Vim, and terminal editors. You’ve truly become an effec-
tive shell user! As you use these techniques more and more, they’ll become
more natural, and you should find that you’re able to work in the shell
quickly, efficiently, and without disruptions to your flow.

There are many other topics to explore as you spend more time in the
shell. The final part of this book looks at the future of the shell and genera-
tive AI. Check out https://effective-shell.com for even more topics and tutorials.
Good luck with your journey!

Table 24-3: tmux Command Quick Reference (continued)

A F T E R W O R D

G E N E R A T I V E A I A N D T H E S H E L L

Excitement and development around gen-
erative AI have increased enormously over

the past few years. Many of us are finding
that tools like ChatGPT can help us with tasks

such as writing code, looking up how to execute cer-
tain operations, and tracking down the root causes
of errors. Unfortunately, when you’re working in the
shell, accessing AI tools typically requires you to
switch to a web browser, disrupting your flow. I found
this annoying enough that I wrote a tool call Terminal AI that allows you
to query ChatGPT directly from your shell and get results tailored to your
environment.

In this afterword, I’ll walk you through a few ways of using Terminal
AI to maintain your workflow and effectiveness as a shell user. Given the
pace at which generative AI is evolving, there will likely be many more
options available to you by the time you’re reading this.

378 Afterword ﻿

Installing and Running the Terminal AI Tool
Before you can install Terminal AI, you’ll need to install the npm (“Node
Package Manager”) program, which is part of the toolkit for the Node.js
programming language. Follow the installation instructions for your oper-
ating system and hardware at https://nodejs.org/en/download. Once you’ve
installed npm, install Terminal AI like so:

$ npm install -g @dwmkerr/terminal-ai

The -g (“global”) flag tells npm to install Terminal AI globally so that you
can call it from any location. Terminal AI installs a tool named ai, which you
run as follows:

$ ai
Welcome to Terminal AI!

An API key must be configured so that Terminal AI can talk to ChatGPT.
Enter your key below, or for instructions check:
 https://github.com/dwmkerr/terminal-ai#api-key

? API Key:

You’ll be prompted for an API key to talk to ChatGPT. For instruc-
tions on creating this key, search online for “ChatGPT API Key” or visit
the Terminal AI project home page at https://github.com/dwmkerr/terminal-ai.
Once you enter your key, you’ll be able to use the tool.

Chatting with ChatGPT
Now you can run the ai command and start chatting with the tool. Here are
some example queries:

$ ai
chat: What′s my current shell and OS?
chatgpt: Your current shell is /bin/bash and your operating system is linux.

chat: Show 5 largest files in pwd recursively.
chatgpt: To display the 5 largest files in the current directory recursively,
you can use the following command:

find . -type f -exec du -h {} + | sort -rh | head -n 5

chat: Is it possible to print a colored message in a shell script?
chatgpt: Yes, you can print colored text in a shell script using ANSI
escape codes.

chat: Can you show me how to print ″Hello″ in red?
chatgpt: Here is an example of how you can print ″Hello″ in red using

Afterword 379

ANSI escape codes in a Bash script:

 #!/bin/bash

 RED=′\033[0;31m′
 NC=′\033[0m′

 echo -e ″${RED}Hello${NC}″

Save the script in a file, make it executable, and run it in your
terminal to see the colored output.

When you’ve finished your conversation, press ctrl-C to quit.

Copying or Saving Results
You’ll likely use Terminal AI to create code you wish to execute. The ai tool
allows you to quicky copy the most recent answer to your clipboard or save it
to a file. To see this in action, run a simple query to create a code snippet:

$ ai -- ″code output only - python to create a folder if it doesn′t exist″
import os

 folder_name = ″example_folder″
 if not os.path.exists(folder_name):
 os.makedirs(folder_name)

(Reply below or press Enter for more options...)
chat: <Enter>

At the prompt, press enter instead of typing a reply. You’ll see a menu
that gives you the option to copy the code to the clipboard, save it to a file,
execute it, or continue the chat:

? What next?:
> Reply
 Copy Response
 Save Response
 Execute Response
 Quit

Use the up and down arrows (or enter j and k if you remember your
Vim shortcuts!) to select an option.

Executing AI-Generated Scripts
If you choose the Execute Response option from the ai menu, ai opens the
response in your default editor so that you can review or change the gener-
ated code. Once you close your editor, you’ll be asked to confirm whether
you want to execute the script. Before doing so, check the script carefully to
make sure it will do what you expect.

380 Afterword ﻿

The following query, which writes a shell script to find the largest file in
a folder, demonstrates this process:

$ ai -- ″code: shell script for largest file in working directory, showing size″
chatgpt:

 #!/bin/bash

 # List files in current directory with sizes.
 ls -lh | awk ′{print $9, $5}′ | grep -v ^total | sort -k 2 -n | tail -n 1

✔ Verify your script - AI can make mistakes!
✔ Are you sure you want to execute this code? Yes
answer.txt 642B

? chat:

The code part of the command is a hint Terminal AI uses to tell ChatGPT
to write only code, with no explanation. Pressing enter again at the chat
prompt will show you the next set of available actions.

Redirecting Responses to a File
Like any good command line tool, ai allows you to redirect input and out-
put to and from other programs. For example, you can repeat the previous
query but send its results to a file like so:

$ ai -- ″code: shell script for largest file in working directory, showing size″ > find.sh

This command redirects the results to a new file called find.sh, which you
could review and execute later.

The Shell of the Future
The possibilities are endless for using ChatGPT and other large language
models (LLMs) in your day-to-day work. Given that LLMs are trained on
public data (such as the full set of public repositories on GitHub and other
locations), their answers to programming-related questions tend to be very
reliable. That said, remember to check any AI-generated code before run-
ning it to avoid unexpected effects.

I wrote the Terminal AI tool for fun to show you how easily you can
integrate ChatGPT into a shell-oriented workflow, and I’m adding new fea-
tures to it regularly. A host of other tools, code editors like Cursor (https://
cursor.com), and various platforms are currently building on AI technology
as well. I encourage you to explore as many as you can to become an even
more effective shell user.

A
S E T U P

If you’re new to the shell, this appendix will
walk you through how to access the shell on

your machine, configure your system, and
install some software to set up a simple and

standardized shell environment.
You can skip this appendix if you are already comfortable running a

shell in a terminal program and have a recent version of bash or a bash-like
shell installed.

Accessing the Shell
The name of the shell program you’ll use and the way you access it will dif-
fer depending on your operating system.

Microsoft Windows
A number of shell programs are available for Windows. You’ll be using
Command Prompt, the basic shell program that comes preinstalled in
Windows.

382 Appendix ﻿A

To open Command Prompt, click the Windows icon to open the Start
menu and type command prompt in the search box.

When Command Prompt opens, type whoami and press enter. You should
see the username of the logged-in user, as shown on the second line here:

C:\Users\dave>whoami
davekerr9d36\dave

That’s all there is to it! You’ve still got some configuration to do to
make Command Prompt behave more like a Linux shell, which this book
uses as the standard, but you’ll learn about that in the next section.

macOS
If you’re using a Mac, you’ll use the Terminal program to open your shell.
Press -spacebar and then type terminal.

When Terminal opens, type whoami and then press return. You should
see the username of the logged-in user, as shown on the second line here:

% whoami
dwmkerr

That’s it! In the next section, you’ll make some minor configuration
changes to keep things consistent with the examples in the book.

Linux
If you’re using a Linux or Unix system, I’ll assume that you’re familiar
enough with it to open a shell. Your specific shell (known as a terminal in
Linux, not to be confused with the Terminal program in macOS) should
not affect how you use this book, but note that most of the book’s examples
use bash version 5.

Configuring the Shell
Shells can vary enormously between different systems. In general, Linux sys-
tems tend to use bash and require little configuration. macOS is based on
BSD Unix and differs under the hood from most Linux systems. Windows is
completely unrelated to either Linux or Unix and operates in a fundamen-
tally different way from both of them.

In this book, I assume that you are using a “Linux-like” system—that
is, one that operates like a modern Linux distribution. This is a deliberate
choice. Once you’re comfortable using a Linux-like shell, you can gener-
ally apply the techniques shown here to macOS with no difficulties. For
Windows, the techniques are not necessarily transferable immediately,

Setup 383

but they’re still valuable to know. Windows is increasingly making its own
shell environment more Linux-like with the Windows Subsystem for Linux
(WSL). However, WSL does require some setup, which I’ll describe shortly.

This section will ensure that you’re running a Linux-like setup, prefer-
ably with the latest version of the popular bash program. If you are familiar
with bash but prefer to use another shell, that’s fine—most of the book will
work with any modern shell. However, if you have no preference, I recom-
mend following the guidelines given here.

Microsoft Windows
Because Windows isn’t anything like Linux under the hood, it takes a few
steps to get a shell working. You have three options.

Option 1: Install Linux Tools

Installing Linux tools is probably the easiest option and the one I would
recommend for most users. You’ll be able to run a Linux-like shell when you
choose to, but it won’t interfere with your day-to-day computer usage.

To get a Linux-esque experience on a Windows machine, you’ll install
Cygwin. Cygwin provides a large set of programs that are designed to work
on Windows and are generally available on Linux systems.

Go to https://www.cygwin.com to download the Cygwin installer. Start
the installation. When prompted to choose a download source, make sure
Install from Internet (the default) is selected, as shown in Figure A-1, and
then click Next.

Figure A-1: Installing Cygwin from the internet

In the Select Root Install Directory dialog, leave the default location
selected and select All Users (see Figure A-2). Click Next.

384 Appendix A﻿

Figure A-2: Choosing where and for whom to install Cygwin

In the next dialog, Cygwin will ask you where to install downloaded
packages, whether a proxy is needed, and what download sites to use. Leave
these options at their default settings unless you know what you’re doing
and why you’d need to change them.

Once Cygwin has downloaded the list of available packages, it will ask
which packages you want to install. Choose the default option, All, and
click Next.

When Cygwin has finished installing, you’ll have a link to open Cygwin
available on the desktop and the Start menu. You can click this link to start
using bash. Or, if you prefer, you can open Command Prompt as described
in “Accessing the Shell” on page 381 and type the command bash --norc to
start a bash session.

Option 2: Run a Virtual Machine

Using a virtual machine is the best option if you want to practice with the
shell but keep it completely separate from your main computer and files.
Virtual machines are a great way to create a Linux sandbox, an isolated envi-
ronment where you can safely experiment without affecting the rest of your
system.

There are many ways to run a virtual machine on Windows. For this
example, you’ll use a free Oracle tool called VirtualBox to host a virtual
machine on which you’ll install the popular Ubuntu distribution of Linux.

First, go to https://ubuntu.com/download/desktop and start downloading
the latest version of Ubuntu’s Desktop Edition (which at the time of writ-
ing is version 22.04.4). The file is quite large, so the download might take a
while. In the meantime, you can install VirtualBox.

Go to https://www.virtualbox.org/wiki/Downloads and download the
VirtualBox installer for “Windows hosts.” Run it and click Next from the
first screen to start the installation setup.

Setup 385

First, you’ll be asked to configure the installation options. The defaults,
shown in Figure A-3, should be fine for most users. Click Next.

Figure A-3: Setting up the VirtualBox features

The installation might take a few minutes. You should see a progress
bar indicating the status. When the installation is complete, click Next.

Open VirtualBox and choose New to create a new virtual machine.
For Name, enter Ubuntu, and for ISO Image, select the Ubuntu image you
downloaded. Check the Skip Unattended Installation box, as shown in
Figure A-4, and then click Next.

Figure A-4: Setting up your new virtual machine

386 Appendix A ﻿

The Hardware screen allows you to set the memory and the number of
processors for the machine. Leave these options at their default settings,
shown in Figure A-5, and click Next.

Figure A-5: New virtual machine hardware options

You’ll be prompted to set up a virtual hard disk. I recommend the
default options for most users (see Figure A-6). Click Next.

Figure A-6: Setting up a virtual hard disk

Finally, you should see the Summary screen shown in Figure A-7. Click
Finish.

Setup 387

Figure A-7: The Summary screen for your virtual machine

After a few minutes, you should see your new virtual machine in the
main VirtualBox window. Select the machine and click the Start button
(the green arrow). It may take a few minutes for the first startup to com-
plete. You’ll be presented with a black-and-white screen with some options,
but you can safely ignore this, and the Ubuntu installer will automatically
run after a couple of minutes.

N O T E 	 If this step fails, you may need to go to Turn Windows Features On or Off in the con-
trol panel and disable the Hyper-V and Windows Sandbox features.

When the Ubuntu installer starts up, choose Install Ubuntu, as shown
in Figure A-8.

388 Appendix ﻿A

Figure A-8: The Ubuntu installer main page

The next series of screens allow you to configure language preferences,
which components are installed, and more. You can leave these options at
their default settings. In the Installation Type dialog, shown in Figure A-9,
choose Erase Disk and Install Ubuntu. This won’t remove any of the data
on your Windows machine; it will just ensure that you have a clean installa-
tion on your virtual machine. Click Install Now.

Figure A-9: Choosing the installation type

Setup 389

When you see a pop-up message reading “Write the changes to disk,”
choose Continue.

The final step, shown in Figure A-10, is to choose a name for the com-
puter, a username, and a password. You can use any values you like here,
but make sure to record your username and password as you’ll need them
to log in later on. Click Continue to start the installation.

Figure A-10: Setting your Ubuntu login credentials

The installation might take a little while. When it is complete, you’ll
need to restart. If you get the error “Please remove installation medium,”
power off the machine and restart it. After that, you should be able to log in
to the machine with the credentials you specified earlier.

Once you’ve logged in, click the applications icon on the bottom left
of the screen. Type terminal in the search box to find and then launch the
Terminal application.

You are now running bash in the Terminal program. You can run the
whoami command to show the current user or bash --version to see the ver-
sion of bash that’s installed.

Congratulations! You now have a virtual machine running Ubuntu and
bash, and you’re ready to start experimenting with the shell.

Option 3: Set Up the Windows Subsystem for Linux

WSL is a set of features that allows users to install a Linux distribution on
their Windows machine. This is a great way to use bash without having to
set up a virtual machine. And it’s the best option for power users or experts
who want to use the latest WSL features and build their skills with the plat-
form as soon as possible.

First, go to StartCommand Prompt4Run as Administrator. At the
command prompt, enter the following:

$ wsl --install

390 Appendix A﻿

You’ll be asked to enter your password. For any pop-ups that appear
asking for permissions, click Yes.

Next, open the Microsoft Store and type Ubuntu in the search box. Click
Get to install the Ubuntu app. Once it is installed, choose Open from the
Microsoft Store page or search for Ubuntu in the Start menu to open it.
The app will take a few minutes to initialize. If you get an error message,
restart Windows. To complete the setup, enter a username and password
when prompted.

Now you should have a running Ubuntu environment on your machine,
as shown in Figure A-11.

Figure A-11: Completing the setup

You’re done! Now you can open the Ubuntu app at any time to use
Ubuntu on Windows, with bash as the interface.

macOS
If you’re a Mac user, you can probably run the standard Terminal program
and follow the material in this book without making any changes. However,
the version of bash that comes installed by default on macOS is version 3.2.x,
which is out of date, so I strongly suggest that you upgrade it. Not only that,
but as of macOS Catalina, the default shell is the Z shell. While the Z shell
should work fine for all of this book’s examples, you might want to switch to
bash to be on the safe side (you can always change it back later).

To install the right software, you’ll use Homebrew, which is free and
open source. Homebrew is a package manager, a tool used to install software
on your computer from the shell. It’s kind of like the App Store but for shell
users.

Setup 391

First, go to https://brew.sh and follow the instructions to install Homebrew
(see Figure A-12).

Figure A-12: The Homebrew installation instructions on its home page

In most cases, this will require opening the Terminal program and run-
ning a snippet like this:

% /bin/bash -c ″$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)″

N O T E 	 The exact code might have changed since the time of this writing, so check the website
for the latest instructions. Be sure to use double quotes; otherwise, this command
won’t work properly.

Once Homebrew is installed, install bash by running the following com-
mand in the shell:

% brew install bash

The brew command uses the newly installed Homebrew tool to install
the bash program.

392 Appendix A﻿

Next, you need to update your Terminal preferences to use the version
of bash you’ve just installed, rather than the default. Open the Terminal
program, go to Terminal4SettingsGeneral, and set the shell location to
/usr/local/bin/bash (see Figure A-13).

Figure A-13: Updating your Terminal settings to use the newly updated
version of bash

Once you’ve made this change, open a new Terminal window and run
echo $BASH_VERSION to confirm that it’s running the latest version of bash,
which should be version 5 or greater.

There’s a more sophisticated way to change your system’s default shell:
with the special chsh (“change shell”) command. Chapter 15 goes over this
approach.

Linux
If you’re running Linux, I assume you can open a terminal and set up the
appropriate shell. You’ll be able to follow along with the content in this
book with any recent bash-like shell.

B
S H E L L B A S I C S

Performing basic operations in the shell—
such as navigating your filesystem, manag-

ing files and folders, copying and pasting
text, and getting help—can be a bit daunting

at first. This appendix is a quick-start guide to build
your confidence with these tasks.

You can skip this appendix if you’re comfortable running a shell, if you
know what bash is, and if you can run basic commands like ls and cd.

Navigating Your Filesystem
Switching from a graphical user interface (GUI) to the shell can take
some getting used to. We’ll start by taking a look at how to navigate your
filesystem and get information on files and folders using the shell.

This section will introduce the pwd, ls, pushd, popd, and cd commands,
as well as the related concepts of directories, stacks, and paths. To follow

394 Appendix B

along, make sure you’ve downloaded and installed the Effective Shell samples
and tools by running this command:

$ curl effective.sh | sh

Note that the exact output you see will differ slightly from mine to
reflect your user and system information.

Identifying the Working Directory
When you open a folder in a GUI, you can see its contents and interact with
them (for example, by copying or moving files). In the shell, the same prin-
ciple applies: you’re always working in a specific folder or directory. This is
the working directory, and any command you type will run here unless you
specify otherwise.

To find out your current working directory, use the pwd (“print working
directory”) command:

$ pwd
/home/dwmkerr

Your output may be formatted slightly differently depending on your
operating system.

Listing the Contents of the Working Directory
In a GUI environment like the folder system on Windows and macOS, files
and folders in the current directory are normally represented as icons. In
the shell, you don’t have this graphical view, so instead you use the ls (“list
directory contents”) command to see the files and folders in your working
directory:

$ ls
Desktop Downloads fontconfig Pictures Templates
Documents effective-shell Music Public Videos

Again, you’ll see different files and folders specific to your system.
Commands like ls and pwd can be combined with options that modify

how they work. For example, using the -l (“long”) option with ls lists the
directory’s contents with some extra detail:

Shell Basics 395

$ ls -l
total 40
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 2 19:18 Desktop
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 2 19:18 Documents
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 2 19:18 Downloads
drwxr-xr-x 13 dwmkerr dwmkerr 4096 Apr 3 18:02 effective-shell
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 3 14:07 fontconfig
...

Adding the -l option indicates that you want more information than
just the filenames and folder names, such as who owns the file or folder and
when it was last modified. Many GUIs have a similar option.

Changing the Directory
To move to a new directory in the shell, you run the cd (“change directory”)
command. Here I move to my pictures folder within the effective-shell folder:

$ cd effective-shell/pictures

My working directory is now /home/dwmkerr/effective-shell/pictures, which I
can confirm by running pwd again:

$ pwd
/home/dwmkerr/effective-shell/pictures

Another common operation is to show all of the files in a directory,
including any hidden files. In Linux systems, any file that starts with a dot
is considered a hidden file and normally isn’t shown when you list the con-
tents of a folder or view the folder in a GUI.

To list all of the files in a folder, including hidden files, you use the ls
command with both the -l option and the -a (“all”) option. Here I list all of
the files in my pictures folder:

$ ls -al
total 2364
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 3 16:43 .
drwxr-xr-x 12 dwmkerr dwmkerr 4096 Apr 3 18:42 ..
-rw-r--r-- 1 dwmkerr dwmkerr 1899165 Apr 3 16:43 laos-gch.JPG
-rw-r--r-- 1 dwmkerr dwmkerr 504568 Apr 3 16:43 nepal-mardi-himal.jpeg
-rw-r--r-- 1 dwmkerr dwmkerr 61 Apr 3 16:43 .notes

396 Appendix B ﻿

The -a option tells the ls command not to hide files that start with a
dot. As you can see, my pictures folder contains a hidden .notes file, as well
as two special folders that I’ll describe in “Navigating with the Dot and
Double-Dot Folders” on page 397.

You might notice a pattern here: shell commands are typically very
short, making them easier to enter quickly, and they’re often made up of
the first letters of the description of their purpose.

OP T IONS, PA R A ME T ERS, F L AGS, A ND A RGUMEN T S

You’ve seen two options so far: the -l and -a options for the ls command.
Options are sometimes referred to as flags, parameters, or arguments. In most
cases—and in this book—the terms are used interchangeably, although flag
generally means a simple option you can switch on or off. Don’t worry too
much about which word is used; they all just refer to ways you can modify a
command’s default behavior.

Returning to the Home Directory
The home directory is a special folder where a user can keep their personal
files, apart from the system files or files shared by all users.

In most systems, every user has their own home directory, and the con-
tents of this directory are accessible only to that user. Generally, you can’t
see the contents of another user’s home directory (unless you’re a system
administrator who updates the security settings to allow this, which would
be very unlikely in practice). When you open a shell, it starts in the home
directory by default. In most of the examples you’ve seen so far, my working
directory has been my home directory, /home/dwmkerr.

You’ll likely use your home directory a lot since that’s where most of
your personal files will be. You can always move back to your home direc-
tory, no matter where you are, by running the cd command without any
parameters. There’s also a special shorthand you can use for it: the tilde (~).
For example, I could shorten the command

cd /home/dwmkerr/effective-shell

to this:

cd ~/effective-shell

As you can imagine, using the tilde shortcut can save you a lot of key-
strokes over time.

Now that you can move around to different folders, let’s talk a bit about
how paths work.

Shell Basics 397

Using Absolute and Relative Paths
A path is the location of a file or folder within the filesystem structure.
There are two types of paths: absolute and relative.

An absolute path gives the exact location of a file—for example, /home/
dwmkerr/effective-shell. Absolute paths always start with a slash. The first slash
represents the root of the filesystem, or the single folder that every other
folder lives in. If you come from a Windows background, you might be used
to drives, such as c:/ or d:/, instead of roots. On Linux, all files and folders
live within one single root folder.

A relative path is expressed in relation to your current working directory,
rather than the root, and does not start with a slash. For example, the rela-
tive path of a file in the /home/dwmkerr/effective-shell/pictures folder would be
effective-shell/pictures/laos-gch.jpg.

If I wanted to move into my pictures folder from a working directory
other than my home directory, I would use an absolute path:

$ cd /home/dwmkerr/effective-shell/pictures

If I were already in my home directory (/home/dwmkerr), I could use a
relative path instead:

$ cd effective-shell/pictures

As a rule of thumb, use relative paths to save yourself some typing when
you want to move to a location within the current working directory. Use
absolute paths when you need to move to somewhere completely outside
your current working directory.

Moving Around Efficiently
You can use a few tricks to speed up your navigation and quickly move to
particular directories.

Navigating with the Dot and Double-Dot Folders

When you combine the ls command with the -a and -l flags to list all the
contents of a folder in detail, you’ll see two extra entries in the output: . (a
single dot) and .. (two dots). These are two special folders that are added
by the system but are typically hidden. Let’s see how they work.

First, I’ll list all of the files in my effective-shell folder in detail:

$ ls -al ~/effective-shell
total 52
drwxr-xr-x 12 dwmkerr dwmkerr 4096 Apr 3 19:54 .
drwxr-xr-x 18 dwmkerr dwmkerr 4096 Apr 3 19:54 ..
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 3 19:00 data
drwxr-xr-x 2 dwmkerr dwmkerr 4096 Apr 3 19:00 docs
drwxr-xr-x 3 dwmkerr dwmkerr 4096 Apr 3 19:00 logs
...

398 Appendix B ﻿

Displaying the output in a detailed list reveals the dot and double-dot
folders. The dot folder represents the current folder, so in this case it’s
essentially an alias for the effective-shell folder. The dot folder can be useful
because sometimes you’ll want a quick way to say, “Right here—the folder
I’m in right now!” in a command. For example, to copy the effective-shell
folder to the backups folder, I can do the following:

$ cp -r . ~/backups

The cp command is the copy command. The -r (“recursive”) option
tells the shell to copy recursively, meaning it will copy the given folder and
all of its contents. I’ll discuss the cp command in more detail in “Copying
a File” on page 404 and the box “Copy and Move Tips” on page 406. But
one thing to note for now is that copying requires you to specify both the
source folder and the destination folder. In this case, instead of typing out
the full path of the source folder, I’ve used . to say “copy the current folder
to ~/backups.”

The double-dot folder is a shortcut to the folder just above the current
folder in the file hierarchy, known as the parent folder. You’ll use this short-
cut frequently. For example, to quickly jump to the parent of the current
working directory, you can type the following:

$ cd ..

This command tells the cd command to move “up” to the parent folder.
The double-dot folder can also be helpful to specify paths outside of your

current working directory. Say I’m currently in the /home/dave/Downloads
folder. I can use this shortened command to move to the /home/dave/effective
-shell folder:

$ cd ../effective-shell

This is like saying, “Go up one level to the /home/dave folder, then move into
the effective-shell folder.”

Because every folder has a dot and a double-dot folder, you can chain
these commands together. For example, if I were in the /home/dwmkerr/
effective-shell/pictures folder, I could move to /home like so:

$ cd ../../..

This tells the shell to move up three folders from the current working
directory.

Going Back to the Previous Directory

The cd command has a special option that lets you quickly go back to the
previous working directory:

$ cd -

Shell Basics 399

Running this command again would return you to the working directory
where you started.

N O T E 	 You can also move to the last directory, second-to-last directory, and third-to-last
directory with the commands cd -1, cd -2, and cd -3 (and so on), respectively.

The cd - command only really works to toggle between the directory
you were in last and the one you’re in now. If you need to go back and forth
multiple times between folders or through a history of directories, using
pushd and popd is a better option.

Pushing and Popping the Working Directory

You can quickly move from one location to another and back again with the
pushd and popd commands. The pushd (“push directory”) command moves
you to a new folder but keeps a record of your current working directory.
This way, you can easily move back afterward, using the popd (“pop direc-
tory”) command. Let’s look at this in practice.

Say I’m in my pictures folder and I want to quickly check my Downloads
folder:

1 $ pwd
/home/dwmkerr/effective-shell/pictures

2 $ pushd ~/Downloads
$ pwd
/home/dwmkerr/Downloads

3 $ ls
New-Wallpaper.jpeg
effective-shell.zip

4 $ popd
$ pwd
/home/dwmkerr/effective-shell/pictures

Let’s break this down. First, I show my current working directory with
the pwd command 1. Then I “push” the Downloads folder 2 and show my
working directory again to verify that I’m now working in Downloads. I use
ls to check which files are in this folder 3. Finally, I “pop” back to where
I started, pictures, and use the pwd command once again to confirm the
move 4.

You might be familiar with the concepts of pushing and popping if
you’ve ever studied computing or programming, but if not, you’re probably
wondering where these terms come from. They have to do with the directory
stack, the structure the shell uses to keep track of your current working
directory. You can picture the directory stack as a stack of plates in a cafeteria.
You can easily put plates on top of that stack but not in the middle or at the
bottom. When you remove plates, you start by removing the top plate, then
the next, and so on.

Take a look at Figure B-1, which illustrates the directory stack for the
previous example.

400 Appendix B ﻿

~/Downloads

~/effective-shell/pictures
pushd ~/Downloads popd

Figure B-1: The pushd and popd directory stack

When I used the pushd command, the shell recorded my current work-
ing directory (/home/dwmkerr/effective-shell/pictures) and then “pushed” the
new location (the Downloads folder) to the top of the stack. Then, when
I used the popd command, the shell “popped” Downloads off the top and
moved to the location beneath it in the stack, the pictures folder. The item at
the top of the stack is always your current working directory.

You can also run pushd without providing any parameters to swap the
top two items on the stack. This is a handy trick to quickly switch between
two directories you’re working in regularly.

Now that you’ve seen some ways to move around your system more effi-
ciently, let’s take a look at how you can manage your files and folders.

Managing Your Files and Folders
In this section, you’ll learn how to manipulate files and folders in the shell
as you would in a GUI. Once you can organize your files, you’ll be well on
your way to using the shell more effectively for day-to-day tasks. Here you’ll
learn to download, unzip, copy, move, rename, and delete files.

Downloading a File
First, you’ll download a playground area you can work in to avoid messing
with your own personal files as you practice. I’ve created an Effective Shell play-
ground folder and made it available as a ZIP file at https://effective-shell.com/
downloads/effective-shell.zip. You could open a browser, download the file, unzip
it, and start from there, but since this appendix is all about how to handle
everyday tasks in your shell, you’ll do it from the command line instead:

$ cd
$ wget https://effective-shell.com/downloads/effective-shell.zip

--2025-01-18 16:45:37-- https://effective-shell.com/downloads/effective-shell.zip
Resolving effective-shell.com (effective-shell.com)... 185.199.110.153, 185.199.111.153,
185.199.108.153, ...
Connecting to effective-shell.com (effective-shell.com)|185.199.110.153|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4881890 (4.7M) [application/zip]
Saving to: ‘effective-shell.zip’

effective-shell.zip
100%[==>
4.66M 1.70MB/s in 2.7s

2025-01-18 16:45:42 (1.70 MB/s) - ‘effective-shell.zip’ saved [4881890/4881890]

Shell Basics 401

First, using the cd command with no parameters moves you to your
home directory. Then, the wget (“web get”) command downloads the play-
ground content at the given web address to your working directory. It also
shows a progress indicator, which is especially useful if you’re downloading
a large file.

COMM A ND NOT FOUND ER RORS

Not every command is available out of the box on every system. If you get a
command not found error for wget or any other command covered in this sec-
tion, install it for your particular system like so (if you’re using the Windows
Subsystem for Linux, follow the instructions for the flavor of Linux you have
installed):

Debian, Ubuntu, Mint

sudo apt install update
sudo apt install -y command

RHEL, Fedora, CentOS

sudo yum install command

SuSE, OpenSusE

sudo zipper install command

Arch/MSYS2

sudo pacman -S command

macOS

brew install command

Cygwin

setup-x86_64.exe -q –P command

Be sure to replace command with the missing one when you run this in your
shell. If your distribution isn’t listed here, check its documentation for instructions
on installing packages.

402 Appendix B ﻿

To specify a particular folder in which to download a file, use wget with
the -O (“output file”) parameter followed by the destination path:

$ wget https://effective-shell.com/downloads/effective-shell.zip -O ~/effective-shell.zip

To check that the file has downloaded, use the ls command with the
tilde shortcut and the asterisk (*) wildcard character to see all the ZIP files
in your home directory:

$ ls ~/*.zip
/home/dwmkerr/effective-shell.zip

Congratulations! You’ve successfully downloaded the ZIP file to your
home directory.

N O T E 	 You’ll learn more about wildcard characters in “Working with Wildcards” on
page 409.

Unzipping a File
You know this download is a ZIP file because it ends in .zip, but say the
extension was missing. To learn more about a file, you can use the file
(“determine file type”) command with the file location like so:

$ file ~/effective-shell.zip
/home/dwmkerr/effective-shell.zip: Zip archive data, at least v1.0 to extract

The output of the file command will vary based on the type of file.
This output tells you that the file is a ZIP archive (a collection of files and
folders bundled together into one file for easier sharing) that has been
compressed with version 1 of the ZIP format. To extract the files and folders
this archive contains, you’ll need to unzip it.

First, use cd ~ to navigate to the directory the file is in, which should
be the home directory. Then unzip the playground folder with the unzip
(“unzip archive”) command:

$ unzip effective-shell.zip

Archive: /home/dwmkerr/effective-shell.zip
 creating: effective-shell /
 creating: effective-shell /data/
 inflating: effective-shell /data/top100.csv
...

Running unzip prints the name of each file and folder as it unzips. To
check that the folder has been unzipped, use ls to list the contents of the
current working directory:

Shell Basics 403

$ ls
...
effective-shell.zip
effective-shell
...

You should see a folder named effective-shell in the list, as well as the
effective-shell.zip file you downloaded. This confirms that you’ve successfully
unzipped the playground file and now have a folder named effective-shell
containing its contents. You no longer need the ZIP file, so read on to learn
how to delete it.

Deleting a File
Now that you’ve extracted the contents of the ZIP file you downloaded,
delete it with the rm (“remove”) command as follows:

$ rm ~/effective-shell.zip

If you were to list the contents of the working directory now, you’d no
longer see the ZIP file.

W A R N I N G 	 Be very careful with the rm command. Unlike in a GUI environment, deleted files
aren’t moved into a recycle bin where you could still retrieve them if you needed to;
they’re gone forever. In Chapter 15, you’ll see some ways to customize this behavior,
but as a rule of thumb, only use the rm command to remove files you want to delete
for good.

By default, the rm command deletes only files, so it will fail if you try to
delete a folder:

$ rm ~/effective-shell
rm: /home/dwmkerr/effective-shell: is a directory

You’ll see how to delete a folder shortly.
You can use the -i (“interactive”) flag with the rm command to delete

interactively, meaning you’ll be shown a prompt for each file in the target
directory and offered the option to delete it or not:

$ rm -i ./effective-shell/data/*
rm: remove regular file ‘effective-shell/data/top100.csv’?

Notice the use of the wildcard * to find all the file types in the data
folder (see “Working with Wildcards” on page 409 for more on this charac-
ter). When the shell asks you to confirm that you want to delete a file, enter
y to delete it or n to keep it.

404 Appendix B﻿

Viewing a Directory Tree
The useful command tree allows you to see a treelike view of a directory
and its contents, similar to a GUI representation of a filesystem.

N O T E 	 The tree command is not installed on all systems by default, so if you get a command
not found error message when you try to run it, follow the installation instructions in
the “Command Not Found Errors” box on page 401.

Let’s take a look at the playground folder:

$ tree ~/effective-shell

/home/dwmkerr/effective-shell
├── data
│ └── top100.csv
├── logs
│ ├── apm-logs
│ │ ├── apm00.logs
│ │ ├── apm01.logs
├── pictures
│ ├── laos-gch.JPG
│ └── nepal-mardi-himal.jpeg
├── programs
│ └── web-server
│ └── web-server.js
├── quotes
│ ├── iain-banks.txt
│ └── ursula-le-guin.txt
...

11 directories, 18 files

I’ve abbreviated this output for readability, so on your system you’ll
likely see a lot more files and folders.

If you want more information about a particular file, you can use the
file command, as mentioned earlier.

Copying a File
I talked briefly about the cp command in “Navigating with the Dot and
Double-Dot Folders” on page 397. The cp command takes the form

cp source destination

where source is the name of the file you want to copy and destination is the
new location and name for the file.

Shell Basics 405

Now you’ll try it out to make a copy of one of the files in the pictures
folder. First, move to the pictures folder and then list its contents:

$ cd ~/effective-shell/pictures
$ ls
laos-gch.JPG nepal-mardi-himal.jpeg

Then, use cp as follows to make a copy of the loas-gch.JPG photo:

$ cp laos-gch.JPG laos-gch-copy.JPG

You can confirm that you’ve made a copy by listing the contents of the
current working directory:

$ ls
laos-gch-copy.JPG
laos-gch.JPG
nepal-mardi-himal.jpeg

You can use relative or absolute paths for the source and destination
files.

Renaming and Moving Files
The mv (“move”) command renames or moves files, and like cp it follows the
form source destination. To rename your newly copied image file with the
extension .jpeg, run the following:

$ mv laos-gch-copy.JPG laos-gch-copy.jpeg

Then run ls again to see the results:

$ ls
laos-gch-copy.jpeg
laos-gch.JPG
nepal-mardi-himal.jpeg

As you can see, your copied file has been renamed, or “moved” into the
same folder under a new name. You can also use mv to move a file to another
folder and change its name in one step. Move your copied image file to the
tmp folder and change its name again like so:

$ mv laos-gch-copy.jpeg /tmp/climbing-photo-backup.jpeg

You’ve moved the loas-gch-copy.jpeg file from pictures to tmp and renamed
it to climbing-photo-backup.jpeg in one operation.

406 Appendix B ﻿

COPY A ND MOV E T IP S

You’ll see the copy and move commands a lot throughout the book, so let’s go
over a few tips to make working with them easier.

First, remember that the cp and mv commands both have the basic structure
source destination. When you’re copying or moving (renaming) a file inside
the working directory, you don’t need to provide a destination folder path:

cp file1 file2
mv file1 filenew

The first command makes a copy of file1 in the working directory and
names it file2. The second command renames file1 to filenew in the working
directory.

If you’re copying or moving a file to a different folder, you don’t need to
provide the new filename unless you want to rename the file; you can just pro-
vide the destination folder path:

cp filenew ~/backups
mv file3 ~/backups

The first command copies filenew from the working directory to the backups
folder in your home directory. The second command moves file3 from the work-
ing directory to the backups folder in your home directory. In both cases, the
filename doesn’t change because you haven’t specified a new one.

When copying a folder, you must add the -r flag to copy the folder and
all of its contents; otherwise, only the folder itself would be copied. Here’s an
example:

cp -r ~/backups ~/backups.old

This makes a copy of the backups folder, including all of its contents, in your
home directory and names it backups.old.

The mv command doesn’t require the -r flag:

mv somefolder newfolder

This command renames the somefolder folder to newfolder in the working direc-
tory; none of the folder’s contents are lost.

Finally, remember that you can mix and match relative and absolute paths:

cp -r /home/dwmkerr/backups ./backups
mv scripts/test-script.sh /tmp

Shell Basics 407

In the first example, I’m copying the backups folder from my home direc-
tory to my current working directory. The source path (the first parameter) is an
absolute path, as indicated by the opening slash, and the destination path (the
second parameter) is a relative path that explicitly uses the dot folder.

In the second example, I’m moving a file from the scripts folder in my cur-
rent working directory to the system’s tmp folder. The first path is relative; the
second is absolute.

In general, when using these commands, use the form you find easiest to
type and understand.

Creating a Folder
The mkdir (“make directory”) command creates a new folder. Move back
into the ~/effective-shell folder and run mkdir to create a new folder called
photos as follows:

$ cd ~/effective-shell
$ mkdir photos

Then run tree like so to see the results:

$ tree -L 1
.
├── data
├── logs
├── pictures
├── photos
├── programs
├── quotes
├── scripts
├── text
└── websites

9 directories, 0 files

The -L (“level”) parameter specifies how many levels of folders you want
to see. By setting the level to 1, you’re indicating that you want to see only
the immediate children (subfolders) of the effective-shell folder. You can also
see that you’ve successfully created the new photos folder. Running ls -l
would show you that the new photos folder has a more recent date than the
others.

Now you’ll organize your photos by year and topic. Say you want to
create a 2019 subfolder containing an outdoors subfolder, which in turn con-
tains a climbing subfolder, so that you have the folder structure photos/2019/
outdoors/climbing. In most GUIs, you’d have to create each subfolder one

408 Appendix B ﻿

at a time. In the shell, however, you can create nested folders with a single
command:

$ mkdir -p photos/2019/outdoors/climbing
$ tree photos
photos
└── 2019
 └── outdoors
 └── climbing

directories, 0 files

The -p flag means “create intermediate directories,” but it’s easier to
remember as “-p for parent”: you’re creating the climbing folder and its par-
ent folders as well.

You’re starting to see how working in a shell can be more efficient than
using your GUI. Now create another set of directories for 2020 climbing
photos:

$ mkdir -p photos/2020/outdoors/climbing
$ tree photos
photos
├── 2019
│ └── outdoors
│ └── climbing
└── 2020
 └── outdoors
 └── climbing

6 directories, 0 files

Notice that mkdir did not delete or replace the photos directory. If you
provide the -p flag, mkdir will check whether the parent directories already
exist and create them only if need be. If you don’t include the -p flag, but
the parent directory already exists, the shell assumes you’re making a mis-
take and shows an error.

Creating a File
The purpose of the touch (“create files and set access times”) command is
twofold: it’s used to create a new file without any content and to update
an existing file’s timestamp, a record of the last time someone opened or
changed (“touched”) the file. Here’s how it works:

$ touch ~/my-notes.txt

This command creates a new, empty file in the home directory called
my-notes.txt. If a file by that name had already existed, touch would simply
have updated its “last access” and “last modified” times to the current time.
You can see the last modified time by running ls -l:

Shell Basics 409

$ ls -l ~
...
-rw-r--r-- 1 dwmkerr staff 1899165 Aug 21 22:20 my-notes.txt
...

The last modified time—which, in this case, is the same as the file cre-
ation time—is 11:20 pm on August 21.

Using touch is just one way to create a file in the shell; you’ll see many
others throughout the book.

Working with Wildcards
A wildcard is a special symbol that represents more than one character.
The most common wildcard is the asterisk, which represents any sequence
of characters. You’ve seen it already, such as in “Downloading a File” on
page 400, where you used ls ~/*.zip to find files that end in .zip in your
home directory. Now you’ll use it to copy all the files from the pictures
folder into the photos/2019/outdoors/climbing folder:

$ cp pictures/* photos/2019/outdoors/climbing/

$ tree photos
photos
├── 2019
│ └── outdoors
│ └── climbing
│ ├── laos-gch-copy.jpeg
│ ├── laos-gch.JPG
│ └── nepal-mardi-himal.jpeg
└── 2020
 └── outdoors
 └── climbing

6 directories, 3 files

Here the * represents everything and anything, so everything from
pictures is copied. You can also use wildcards to filter on file type, as you did
with *.zip earlier, or to filter on filename, such as l* for any files starting with
l (which would match laos-gch-copy.jpeg and laos-gch.JPG but not nepal-mardi
-himal.jpeg, which contains two ls but doesn’t start with one). You’ll learn
about other wildcards throughout the book.

Deleting a Folder
The rmdir (“remove directory”) command deletes folders. Now that you have
your more organized photos/2019/outdoors/climbing folder, you can delete the
pictures folder:

$ rmdir pictures
rmdir: pictures: Directory not empty

410 Appendix B ﻿

As you can see, rmdir will fail if the directory isn’t empty to prevent you
from unintentionally deleting any files or folders it contains. To remedy
this, use a wildcard to delete all the files in the pictures folder, then delete
the folder itself:

$ rm pictures/*
$ rmdir pictures

The pictures folder has now been deleted. You can also delete the folder
and its contents with one single command by using the -r parameter:

$ rm -r pictures

You can use whichever method you prefer. Most people use rm -r as it
will delete the folder whether it’s empty or not, but I suggest you use rmdir to
be certain you don’t delete files unintentionally—it gives you a bit of a safety
net and reminds you to check the files inside first!

One final folder trick: if you decide you don’t want the 2020/outdoors/
climbing directory, you can use rmdir -p to remove the empty folder and any
empty parents:

$ rmdir -p photos/2020/outdoors/climbing
rmdir: photos: Directory not empty

$ tree photos
photos
└── 2019
 └── outdoors
 └── climbing
 ├── laos-gch-copy.jpeg
 ├── laos-gch.JPG
 └── nepal-mardi-himal.jpeg

3 directories, 3 files

This command deleted 2020/outdoors/climbing but stopped at the photos
folder because that folder still contains 2019 and its subfolders.

Showing Text Content
The cat (“concatenate”) command writes out the contents of one or many
text files. This is a handy way to see the text in a file without leaving the
shell. For example, the effective-shell playground’s quotes folder contains two
.txt files:

$ ls quotes
iain-banks.txt ursula-le-guin.txt

Using cat, write out the contents of the ursula-le-guin.txt file to the
screen like so:

Shell Basics 411

$ cat quotes/ursula-le-guin.txt
″What sane person could live in this world and not be crazy?″
- Ursula K. Le Guin

You can give the cat command many files, and it will write them all out.
To write out all the text from all the quotes files, use the * wildcard:

$ cat quotes/*
″The trouble with writing fiction is that it has to make sense, whereas real life doesn′t.″
- Iain M. Banks
″What sane person could live in this world and not be crazy?″
- Ursula K. Le Guin

You can also use the cat command to join, or concatenate, the contents
of many files together:

$ cat quotes/* > quotes/all-quotes.txt

This command moves the content of all the quotes files into a single
all-quotes.txt file. You can check the folder’s contents with tree quotes or ls
quotes.

The > is a redirection operator that tells the shell to write to a file instead
of to the screen. If the file you’re moving the content to doesn’t exist, the
shell will create it for you. Redirection is a big theme in Part I, and you’ll be
seeing a lot more of the cat command there as well.

Zipping a File
Earlier you used the unzip command to extract the zipped playground file
you downloaded. You’ve made a lot of changes to the playground folder
since then, so you’ll finish off this section by using the zip command to zip
up the whole folder:

$ zip -r new-playground.zip .

The -r flag tells zip to zip the folder you specify and all of its contents.
As its first parameter, the zip command takes the name and location of
the file you want to create—in this example, new-playground.zip. Then you
pass the files or folders you want to zip. Here, the dot folder specifies that
you want to zip the current folder, so make sure you’re in the top-level
effective-shell folder before you execute the command.

You can also give zip more than one file or folder. To zip both the quotes
and the photos folders, run this command:

$ zip -r images-and-words.zip photos quotes

The more you use zip and the other commands I’ve described here, the
more familiar the parameters will become. But if you get stuck, help is read-
ily available. See “Getting Help” on page 415.

412 Appendix B ﻿

The Clipboard
Different shell environments and operating systems manage the clipboard
in different ways. Being able to quickly copy and paste to and from the shell
is essential to using it effectively. This section will explain how the clipboard
works on different systems and how to create your own clipboard commands
that will work across systems.

Mastering Clipboard Essentials
You’re probably familiar with the common keyboard shortcuts to copy and
paste content to and from the clipboard: ctrl-C and ctrl-V on Linux and
Windows, and z-C and z-V on macOS. However, these commands don’t
work the same way in every shell. For example, here I’ve tried to use ctrl-V
a few times to paste into a terminal on Ubuntu:

$ ^V^V^V

Instead of pasting the contents of the clipboard into the shell, this key
combination has written the characters ^V to the terminal. Why is this?

One reason is historical (the shell has been around for a long time, so
you’ll see this answer a lot). Using ctrl in a shell sends a signal—a special
command the shell uses to control programs. Specifically, by using ctrl
you’re signaling your intention to perform an action rather than enter text
with your next keystroke. Most modern operating systems have adopted this
convention. For example, ctrl-S is used almost universally as a shortcut for
the save command.

Modern shells tend to follow the conventions established by earlier
shells to ensure a consistent experience for users. Both ctrl-C and ctrl-V
have long had specific meanings in the shell that predate the current copy
and paste shortcuts. Using ctrl-C cancels a running program by telling the
shell to send an interrupt signal to the program, which terminates it. You’ll
see signals again and again throughout the book.

What about ctrl-V? This is the fancy-sounding verbatim insert com-
mand. It tells the shell to write out the subsequent keystroke directly to the
screen rather than interpreting it as a ctrl command. By using ctrl-V, you
can write out special characters like the escape key, left or right keys, and
even the ctrl-V combination itself as in the previous example.

If you type ctrl-V twice, the shell writes out the text ^V. The caret or
hat symbol (̂) represents ctrl. The first ctrl-V tells the shell to write out
the following command, so the second ctrl-V is written out verbatim, mean-
ing the text representation of the command is displayed.

You can try writing out some different sequences. You’ll see various
odd-looking symbols for special keys like the alt key.

Because the shell is already using the keyboard combinations you’d
normally use for clipboard commands, you’ll need alternatives for those
functions. Follow the instructions I’ve provided next for your particular
platform.

Shell Basics 413

Windows

If you’re using Command Prompt, then the usual shortcuts will work fine.
However, if you are using Windows Subsystem for Linux (WSL) and bash,
you will need to tweak the configuration.

To set up an alternative, go to Properties4Options, select Use
Ctrl+Shift+C/V as Copy/Paste, and click OK. You can now use ctrl-
shift-C for copy and ctrl-shift-V for paste. To select text, hold down the
right mouse button and drag over it.

Linux

On most Linux systems, you’ll be using GNOME Terminal or KDE’s
Konsole, which means that you can use ctrl-shift-C for copy and ctrl-
shift-V for paste. To select text, hold down the right mouse button and
drag over it, or right-click the text.

macOS

Mac users can just use z-C for copy and z -V for paste. The shell doesn’t
recognize the special Mac command character z, so these shortcuts don’t
clash with any existing ones. To select text, hold down the left mouse but-
ton and drag over it.

Creating Custom Clipboard Commands
Copying and pasting text to and from the clipboard is useful, but you can
do a lot more. With a couple of basic commands, you can hugely expand
your capabilities and make everyday tasks far easier to accomplish. However,
there’s one small hurdle to clear first: the clipboard is accessed in different
ways on Windows, Linux, and macOS. In other words, there’s no standard
tool you can use across all three platforms to manage the clipboard.

To address this problem, I’ll walk Windows and Linux users through
creating two clipboard commands that will work across platforms: pbcopy
and pbpaste. If you’re a Mac user, you don’t need to do anything; pbcopy and
pbpaste are built in to macOS.

Windows

Assuming you’re using WSL, you’ll need to run the following two
commands:

$ alias pbcopy=″clip.exe″
$ alias pbpaste=″powershell.exe -command Get-Clipboard | tr -d ′\r′ | head -n -1″

Don’t worry for now about how these commands work; by the time
you’ve gone through the book, they should make perfect sense.

414 Appendix B ﻿

Linux

On Linux, first you’ll install the xclip program and then set up the pbcopy
and pbpaste commands to use it:

$ sudo apt install -y xclip
$ alias pbcopy=″xclip -selection c″
$ alias pbpaste=″xclip -selection c -o″

If you’re already confident with how xclip works and want to use it
directly, there’s no need to run these commands.

For both Windows and Linux, you’ve used the alias command to create
pbcopy and pbpaste. In bash (and most shells), an alias is a shortcut for a lon-
ger command.

N O T E 	 You’ll need to repeat these instructions every time you close and reopen your terminal.
Chapter 15 explains how to make permanent customizations to your shell so that you
don’t have to repeat this setup.

Copying and Pasting with pbcopy and pbpaste
Now you can use the pbcopy and pbpaste commands to access the clipboard
from the shell.

The ~/effective-shell folder contains a text file with the names of some
characters from the TV show The Simpsons. Open simpsons-characters.txt in
your text editor and copy the following text from it:

Kirk Van Houten
Timothy Lovejoy
Artie Ziff

Then paste it into the shell as follows:

$ pbpaste
Kirk Van Houten
Timothy Lovejoy
Artie Ziff

Rather than copying the text by opening your text editor (which breaks
you out of your shell flow), you could use the cat command to write the
entire contents of the simpsons-characters.txt file to the screen and then manu-
ally select the text and copy it. However, this approach is fiddly and wouldn’t
be convenient if the file was large and you had to scroll to find text.

Instead, you’ll use a pipeline to pass the output of the cat command into
the pbcopy command:

$ cat ~/effective-shell/text/simpsons-characters.txt | pbcopy

Now try pasting—you should see the contents of the file.

Shell Basics 415

The | symbol is the pipe operator, which is used to “chain” commands
together in a pipeline. Here, the pipe tells the shell to take the output from
the command on the left and send it straight to the input of the program
on the right. Pipelines are covered in detail in Chapter 2, and you’ll see
them in use throughout the book.

Getting Help
Being able to access help quickly, without jumping to a browser and disrupt-
ing your flow, is one of the most crucial things you can do to become an
effective shell user. A wealth of information is available directly in the shell,
only a few keystrokes away.

This section will introduce you to the man (“manual”) command, the
standard help system available on all Unix-like systems. You’ll also learn
about a useful tool you can install called tldr, which might be more helpful
for day-to-day use. Finally, we’ll take a look at the cht.sh site for those cir-
cumstances when you do need to access a browser for help.

Using the Manual
The man command can help you with tools, commands, and concepts. Most
tools you encounter in the shell have manual pages (man pages for short)
available.

The most basic way to get help with a command is by entering the com-
mand name as the first parameter of man:

$ man cp

CP(1) BSD General Commands Manual CP(1)

NAME
 cp -- copy files

SYNOPSIS
 cp [-R [-H | -L | -P]] [-fi | -n] [-apvX] source_file target_file
 cp [-R [-H | -L | -P]] [-fi | -n] [-apvX] source_file ...
 target_directory

DESCRIPTION
 In the first synopsis form, the cp utility copies the contents of the
 source_file to the target_file. In the second synopsis form, the
 contents of each named source_file is copied to the destination
 target_directory. The names of the files themselves are not changed. If
 cp detects an attempt to copy a file to itself, the copy will fail.

...

This opens the man page for the cp command, detailing all of its com-
mand line options and specifics on how to use it. This information can be
rather lengthy, but fortunately the shell includes a feature to help you navi-
gate it.

416 Appendix B ﻿

QUICKLY CHECKING PA R A ME T ERS

If you just need to check what parameters are available for a command, you
can often skip the man page. Simply enter the name of the command followed
by a hyphen (-) and then press tab. Try it out by entering mkdir - and then
pressing tab. You should see the following output:

-m -- set permission mode
-p -- make parent directories as needed
-v -- print message for each created directory

This convenient shortcut gives you only the information you need and thus can
be much easier to navigate than a man page.

The Pager

The shell uses a tool called a pager that allows you to use the arrow keys to
scroll through content that doesn’t easily fit on a screen, such as man pages.
In other words, the pager provides the keyboard interface to look through
the file.

On most systems, this pager is the less program. These are the most
common commands for navigating through files with less:

d  Scroll down half a page.

u  Scroll up half a page.

j/k  Scroll down or up a line. You can also use the arrow keys for this.

q  Quit.

/searchterm  Search for the text specified after the forward slash.

n  When searching, find the next occurrence.

N  When searching, find the previous occurrence.

Alternative pagers are available (on many Unix-like systems, you’ll have
less, more, and most), but in general, less will provide what you need.

Builtins

Sometimes you will look up a command in the manual and get the “built-
ins” page:

$ man cd
BUILTIN(1) BSD General Commands Manual BUILTIN(1)

NAME
 builtin, !, %, ., :, @, {, }, alias, alloc, bg, bind, bindkey, break,
 breaksw, builtins, case, cd, chdir, command, complete, continue,

...

Shell Basics 417

This happens when the command you are looking up—cd, in this
case—is a built-in shell command rather than a program with a man page.
Most shells still offer a way to get help with such commands. For example,
bash has the help command:

$ help cd
cd: cd [-L|[-P [-e]] [-@]] [dir]
 Change the shell working directory.

 Change the current directory to DIR. The default DIR is the value of the
 HOME shell variable.

...

N O T E 	 The Z shell doesn’t have an equivalent of the help command for builtins. Instead, it
has a set of man pages. To get help on builtins, use man zshbuiltins. Type man zsh
and press tab to see a list of suggested topics.

This is all I’ll say about help for now, but you’ll see it used where appro-
priate throughout the book.

Manual Sections

In man pages, you’ll often see tools listed with numbers after them. Take a
look at man less as an example:

$ man less
LESS(1) LESS(1)

NAME
 less - opposite of more
...

The number after less is the manual’s section, which is used to catego-
rize certain help topics. On most Unix-like systems, you can find the section
definitions in the manual documentation by running man man. Here’s a snip-
pet of what you might see:

- **Section 1 - Executable programs or shell commands
- **Section 2 - System calls (functions provided by the kernel)
- **Section 3 - Library calls (functions within program libraries)
- **Section 4 - Special files (usually found in `/dev`)
- **Section 5 - File formats and conventions (e.g. `/etc/passwd`)
Section 6 - Games
Section 7 - Miscellaneous (including macro packages and conventions), e.g. `man(7)`,`groff(7)`
Section 8 - System administration commands (usually only for root)
Section 9 - Kernel routines (Non standard)

418 Appendix B ﻿

You can specify which section of the manual to search (for example, if
there’s an entry in multiple sections) by running the following:

$ man sectionnumber searchterm

To get more information about a section itself, open its intro page like so:

$ man 1 intro

INTRO(1) BSD General Commands Manual INTRO(1)

NAME
 intro -- introduction to general commands (tools and utilities)

DESCRIPTION
 Section one of the manual contains most of the commands which comprise...

In general, you won’t need to worry about the section specifics unless
you’re looking for a tool that has an entry in more than one section or you
need to look up the section number that appeared in online or offline
documentation for the tool.

Man Page Titles and Summaries

You can search man page titles and summaries like so:

$ man -k cpu
cpuwalk.d(1m) - Measure which CPUs a process runs on. Uses DTrace
dispqlen.d(1m) - dispatcher queue length by CPU. Uses DTrace
gasm(n), grammar::me::cpu::gasm(n) - ME assembler

You can also use the apropos or whatis commands to search through the
manuals. However, for simplicity’s sake, just remember man -k!

Summarizing Output with tldr
Say you want to compress some files. You know you can do this with the zip
command, but you’ve forgotten the syntax, so you run man zip as follows:

$ man zip
ZIP(1L) ZIP(1L)

NAME
 zip - package and compress (archive) files

SYNOPSIS
 zip [-aABcdDeEfFghjklLmoqrRSTuvVwXyz!@$] [--longoption ...] [-b path] [-n suffixes]
 [-t date] [-tt date] [zipfile [file ...]] [-xi list]

Shell Basics 419

 zipcloak (see separate man page)

 zipnote (see separate man page)

 zipsplit (see separate man page)

 Note: Command line processing in zip has been changed to support long options and
 handle all options and arguments more consistently. Some old command lines that
 depend on command line inconsistencies may no longer work.

DESCRIPTION
 zip is a compression and file packaging utility for Unix, VMS, MSDOS, OS/2, Windows
 9x/NT/XP, Minix, Atari, Macintosh, Amiga, and Acorn RISC OS. It is analogous to a
 combination of the Unix commands tar(1) and compress(1) and is compatible with PKZIP
 (Phil Katz’s ZIP for MSDOS systems).

 A companion program (unzip(1L)) unpacks zip archives. The zip and unzip(1L) programs
 can work with archives produced by PKZIP (supporting most PKZIP features up to PKZIP
 version 4.6), and PKZIP and PKUNZIP can work with archives produced by zip (with some
 exceptions, notably streamed archives, but recent changes in the zip file standard
 may facilitate better compatibility). zip version 3.0 is compatible with PKZIP 2.04

Wow, that’s a lot of detail—and this is just the first page of about 30!
Now compare that to this output from the tldr (short for “too long,

didn’t read”) tool:

$ tldr zip
zip

Package and compress (archive) files into a Zip archive.
See also: `unzip`.
More information: <https://manned.org/zip>.

- Add files/directories to a specific archive ([r]ecursively):
 zip -r path/to/compressed.zip path/to/file_or_directory1 path/to/file_or_directory2 ...

- Remove files/directories from a specific archive ([d]elete):
 zip -d path/to/compressed.zip path/to/file_or_directory1 path/to/file_or_directory2 ...

The first example is exactly what you’re looking for. More information
is shown later on, and for some more complex details, you might have to go
to the manual, but this is great for the basics.

The tldr tool is available on most package managers, including Homebrew
and Apt. It’s open source and community maintained. You can find instruc-
tions for installing it at https://tldr.sh.

420 Appendix B ﻿

Accessing Online Cheat Sheets
One final resource well worth sharing is cheat.sh (https://www.cheat.sh), a fan-
tastic online collection of “cheatsheets” covering tools, programming lan-
guages, and more. But its real beauty lies in how it integrates into the shell.
To see what I mean, run the following command:

$ curl cht.sh
 ___| |__ ___ __ _| |_ ___| |__ \ \ The only cheat sheet you need
 / __| ′_ \ / _ \/ _` | __| / __| ′_ \ \ \ Unified access to the best
| (__| | | | __/ (_| | |_ ___ \ | | |/ / community driven documentation
 ___|_| |_|___|__,_|__(_)___/_| |_/_/ repositories of the world

+------------------------+ +------------------------+ +------------------------+
$ curl cheat.sh/ls		$ cht.sh btrfs		$ cht.sh lua/:learn
$ curl cht.sh/btrfs		$ cht.sh tar~list		Learn any* programming
$ curl cht.sh/tar~list				language not leaving
$ curl https://cht.sh				your shell
				*) any of 60
+-- queries with curl ---+ +- own optional client --+ +- learn, learn, learn! -+				
+------------------------+ +------------------------+ +------------------------+				
$ cht.sh go/f<tab><tab>		$ cht.sh --shell		$ cht.sh go zip lists
go/for go/func		cht.sh> help		Ask any question using
$ cht.sh go/for		...		cht.sh or curl cht.sh:
...				/go/zip+lists
				(use /,+ when curling)
+---- TAB-completion ----+ +-- interactive shell ---+ +- programming questions-+				
+------------------------+ +------------------------+ +------------------------+				
$ curl cht.sh/:help		$ vim prg.py		$ time curl cht.sh/
see /:help and /:intro	
for usage information		zip lists _		real 0m0.075s
and README.md on GitHub		<leader>KK		
for the details		*awesome*		
start here				
+--- self-documented ----+ +- queries from editor! -+ +---- instant answers ---+

The curl command, which you’ll see again and again, is a tool for down-
loading content from the web. If you load cheat.sh (or its shortened version,
cht.sh) from the shell, you get a text version of the website. You can then
look at all sorts of content by following the guide shown.

The cheat.sh website aggregates many data sources—including tldr.
This means you can get information on tools without even having to install
them locally.

Now that can be a real time saver!

Symbols
& (ampersand), 24
&& (and) operator, 145
* (asterisk)

parameter variable, 178
regex quantifier, 51
wildcard character, 16, 34, 49, 124,

264, 304, 359, 402
@ (at sign), 49, 51–52

parameter variable, 178, 179
\ (backslash), 37, 55, 88, 112, 264

looping through lines in a file, 167
starting continuation using, 229

` (backtick), 306, 359
{} (braces), 104, 105

in variable syntax, 127
in xargs examples and man pages, 105

^ (caret or circumflex), 55, 90, 93,
366, 412

: (colon), 106, 347
, (comma), 74, 356
- (dash or hyphen), 53, 217, 348, 416
$ (dollar sign), 122, 133, 222

end-of-line anchor, 55, 298
parameter expansion, 298, 299–300
in regular expressions, 89

. (dot) character, 4, 49

./ (dot-slash), 25
″ (double quotes), 125, 126
>> (double right angle brackets), 22, 26
;; (double semicolon), 148
! (exclamation mark), 10
/ (forward slash), 78, 87, 264, 304
(hash mark), 29, 87, 111, 348

in command prompt, 222
parameter variable, 178

(hash marks, double), 359
|| (or) operator, 145, 150, 152, 167, 190
% (percent sign), 6, 367
. (period), 304

| (pipe) operator, 415
+ (plus sign), 51, 73, 88, 135, 192, 229
? (question mark), 57, 126

searching for files or folders using, 35
as wildcard, 310

> (redirect symbol), 24, 25, 27
> (right angle bracket), 113, 229
; (semicolon), 39, 145–146, 152,

308, 356
#! (shebang), 116–117

configuring options in, 203
to locate python3 program, 324
omitting, 202

′ (single quote), 124–125, 126
[] (square brackets), 75

in command prompt, 225
in conditional expressions, 150

~ (tilde), 88, 125–126, 272, 298,
299, 396

A
absolute paths, 397
ack tool, 70
actions in find expressions, 38
addresses in sed functions, 87
ag tool, 70
ai command, 378–379
AI-generated scripts, 379–380
alias command, 414
aliases, 209, 414

with different users, 216
saving time with, 209–210

all parameters array ($a), 196
alternate value in parameter

expansion, 301
Amazon Web Services, 328

creating virtual machine on, 331–335
credit card use for paid services

from, 330
setting up account, 329–330

I N D E X

422 Index

ampersand (&), 24
anchors in regexes, 55–56
AND expressions, 36
and (&&) operator, 145
angle bracket (>), 113, 229
ANSI C quoting, 124–125
ANSI escape sequences, 197, 199,

225, 227
ANSI formatting sequences, 226
anti-patterns for shell scripts,

201–203
configuring options in

shebangs, 203
omitting shebangs, 202
using complex logic, 203

appending
to files, 22, 26
text with sed, 89–90

append redirection operator (>>),
22, 26

Applied Cryptography (Schneier), 328
apropos command, 418
Apt package manager, 419
argparse Python module, 321
arguments, use of term, 396
arithmetic expansion, 126, 136,

298, 306
arithmetic operations, 135–137
arrays

associative, 130
expanding, 303
finding length of, 303
looping through with for loop, 157
overview, 128–129
sparse, 129
using operators in parameter

variables, 179
ASCII EOT (end of transmission)

character, 201
asterisk (*)

parameter variable, 178
regex quantifier, 51
wildcard character, 16, 34, 49, 124,

264, 304, 359, 402
atomic groups, 59
awk standard output applications as

alternative to sed, 97
AWS. See Amazon Web Services

B
backslash (\), 37, 55, 88, 112, 264

looping through lines in a file, 167
starting continuation using, 229

backtick (`), 306, 359
backtracking, 58, 59
basename command, 192
BASH_ENV variable, 216, 218
-bash parameter, 217
BASH_REMATCH array, 151
basics of shell, 393–420

clipboard, 412–415
getting help, 415–420

accessing online cheat sheets, 420
summarizing output with tldr,

418–419
using manual, 415–418

managing files and folders, 400–412
copying files, 404–405
creating files, 408–409
creating folders, 407–408
deleting files, 403
deleting folders, 409–410
downloading files, 400–402
renaming and moving files,

405–407
showing text content, 410–411
unzipping files, 402–403
viewing directory tree, 404
working with wildcards, 409
zipping files, 411

navigating filesystem, 393–400
changing directory, 395–396
going back to previous directory,

398–399
identifying working directory, 394
listing contents of working

directory, 394–395
navigating with dot and double-

dot folders, 397–398
pushing and popping working

directory, 399–400
returning to home directory, 396
using absolute and relative

paths, 397
bin directory for custom commands,

210–211
bindkey command, 10

Index 423

bind -p command, 10
brace expansion, 100, 126, 159,

164–165, 298–299
braces ({}), 104, 105

in variable syntax, 127
in xargs examples and man pages, 105

branches in Git, 250, 257–262
creating, 257–260
diverged, 261–262
merges

fast-forward, 260
recursive, 261–262

resolving conflicts between, 263–267
break statements, 169–170
brew command, 391
BSD Unix, 382
bugs, GitHub repository for

reporting, xxx
builtins, 416–417

C
C (programming language), 315
capture groups, 56–57, 94, 150
caret or circumflex (^), 55, 90, 93,

366, 412
case-insensitive searches

with find, 36
with grep, 66

case sensitivity in Vim, 346
case statement, 148–149, 196, 199
cat (concatenate) command, 17, 410,

411, 414
catastrophic backtracking, 58
cd command, 211, 398, 401
CDPATH settings, 244
Chacon, Scott, 292
chaining commands, 151–152
character classes, 75
characters

counting number of, 19
lowercase, translating to uppercase, 23
sequences of, creating, 298–299

character sets and metacharacters,
52–57

adding special characters, 53–54
negating characters, 54–55
specifying ranges, 52–53

ChatGPT, 378–379, 380

cheat sheets
accessing online, 420
Vim example, 347, 359–360

chmod command, 42, 115, 119, 337, 341
chords in Vim, 346
chroot command, 240
chsh command, 219, 391
clearing screen, 9
Click Python package, 325
clipboard, 412–415

content as standard input, 20
copying and pasting with pbcopy and

pbpaste, 414–415
creating custom commands, 413–414
essentials, 412–413

collaboration techniques, 286–288
forking, 286–287
making pull requests, 287–288
using multiplexer, 365
using tmux, 372–373

colon (:), 106, 347
color

adding to command prompt,
225–228

adding to text displayed in shell,
197–199

comma (,), 74, 356
command history

searching through, 6–7
viewing, shortcut for, 9–10

command line, 3–11
editing in place, 7–9
navigation techniques, 4–6
searching through command history,

6–7
shortcuts, 9–10

command mode in Vim, 346
“command not found” error

message, 401
command prompt, 221–235

adding color and text formatting to,
225–228

adding data to, 228–229
shell prompt variables, 229–231
showing Git information in, 290–291
structure of, 222–225
writing shell script to customize,

231–235

424 Index

commands. See also command prompt;
common command functions; xargs
command

building, 99–106
handling whitespace, special

characters, and tracing,
101–102

organizing parameters, 103–105
xargs, 100–103

built-in shell commands, 416–417
chaining, 151–152
connecting. See pipelines
custom, 413–414
determining whether available, 200
differentiating filepaths from, 25
executing on search results, 39–40
format of in this book, xxix–xxx
Git

quick reference, 272–273
recap, 293–294

in history file, rerunning, 10
output

in functions, 182–183
storing in variables, 127–128

running, 105–106
SSH, 338
in subshells, 201
too many on startup, 214

searching for using grep, 63
searching through command history,

6–7
sending to nested sessions, tmux

configuration, 371
in shell scripts, 112–115
shell startup, 210–214
using Vim, 352, 358–359

command substitution, 126, 298,
305–306

comments
adding to shell scripts, 111
stripping with sed, 89

committing changes in Git, 254–257
commit messages, conventions for, 257
commit signing, 292

common command, 119, 146, 147, 195
enhancing with variables, 137–138
extending to handle different shells,

152–154

simplifying with functions, 187–188
updating to loop through results,

171–172
compact loops, creating, 170–171
complex logic, problems requiring, 314
concatenating

contents of files, 411
strings, 136

conditional expressions, 149–151
conditional logic, 141–154

case statement, 148–149
chaining commands, 151–152
combining statements on single line,

145–146
conditional expressions, 149–151
elif clause, 146–147
else clause, 146
extending common command to

handle different shells, 152–154
if statements, 142
test command, 143–145

configuration files. See dot files
configuring shell

changing shell, 219–220
interactive shells, 207–214

common startup file
customizations, 209–214

default shell startup file, 208–209
in Linux, 392
login shells, 216–217
in macOS, 390–392
in Microsoft Windows, 383–392

installing Linux tools, 383–384
running virtual machine, 384–389
Windows Subsystem for Linux,

389–390
non-interactive shells, 214–216

conflicts in Git, resolving, 264–267
connecting commands. See pipelines
content, adding to file, 22
continuation character, 112
continuations, 229
continue statements, 169–170
copying

files, 404–405
with pbcopy, 414–415

counting words lines, characters, and
bytes, 19

Index 425

count variable, 176
cp command, 86, 87, 88, 89, 157, 398,

404, 406, 415
cryptography, 340
C-style loops, iterating with, 163–164
ctrl-C, handling, 325
curl command, 320, 321, 420
cursor, maneuvering, 4–6
Cursor tool website, 380
cut command, 75
cutting text, 75–78
Cygwin, 383–384

D
dash (-), 53, 217, 348, 416
date command, 306
debian_chroot variable, 240
debugging with trace option,

191–192
declare command, 130, 192
default shell

dot file, 238–240
setting in tmux, 370
startup file, 208–209

-delete action, 39
deleting

files, 403
folders, 409–410
interactively, 403

dictionary lookup tool
improving, 325
installing, 324
writing in Python, 316–323

defining basic structure, 317–319
downloading definition, 319–321
formatting output, 321–323

directories
changing, 395–396
directory stack, 399
directory tree, viewing, 404
home directory, returning to, 396
previous directory, going back to,

398–399
working directory

identifying, 394
listing contents of, 394–395
pushing and popping, 399–400

disconnections in SSH, 339

diverged branches, handling in Git,
261–262

do keyword, 169
dollar sign ($), 122, 133, 222

end-of-line anchor, 55, 298
parameter expansion, 298, 299–300
in regular expressions, 89

dot (.) character, 4, 49
dot files, 237–248

custom, creating, 241–244
cleaning up variables and

configuring keyboard
shortcuts, 243

creating folder for, 241
creating shell.sh, 241
setting preferred editor, 242–243
setting shell history options, 244
working with folders, 243–244

default shell dot file, 238–240
defined, 238
installation script, 247–248
location of, 238, 245
sharing on GitHub, 285–286
sourcing from folder, 245–247
testing, 244–245

dot folder, 33
navigating with, 397–398

dot notation to source scripts, 117
dot-slash (./), 25
double-dot folders, navigating with,

397–398
double quotes (″), 125, 126
double right angle brackets (>>), 22, 26
double semicolon (;;), 148
downloading files, 400–402
duplicates, removing, 17, 79–80
dynamic scoping, 175

E
echo command, 22, 90, 103, 134, 137,

142, 166, 192, 214, 216, 219
editing in place, 7–9, 96–97
editors, setting in dot file, 242–243
EDITOR variable, 9, 212, 242
elif clause, 146–147
else clause, 146
Emacs, 344
empty folders, finding and removing, 43

426 Index

end of transmission (EOT), 14
engines, regex, 50–52
env (set or print environment and

execute command) command, 116,
117, 122

environment variables
configuring, 212
scope of, 122–123
shell variables as, 123–124

envsubst (substitute environment
variables) command, 96

errors, 183, 325
in functions, 185–187
logging, 25
in parameter expansion, 301
redirecting to null, 25–26
standard, 23–26
suppressing display of, 26

escape character, 125
escape sequences

coloring text displayed in shell using,
197–199

customizing command prompt,
223–225

escaping
regex characters, 55
special characters, 37

events, trapping, 193–195
exclamation mark (!), 10
ex command in Vim, 347
-exec action, 39, 42
executable scripts, making non-

executable, 42
exit command, 168, 184, 336
exit on failure, ensuring, 190
expansion operations, 297–311. See also

parameter expansion
arithmetic expansion, 306
brace expansion, 298–299
command substitution, 305–306
pathname expansion, 309–310
tilde expansion, 299
word splitting, 306–309

export keyword, 123, 124
expressions

in case statements, 148
grouping parts of, 36–37
in sed, 85

extended regular expressions, 50

extracting
information with sed, 91
text, first and last part of file, 71–73

F
failure, ensuring exit on, 190
fast-forward merges in Git, 260
fetching changes in GitHub, 281–284
file command, 402
file descriptor, 16
filepaths, differentiating from

commands, 25
files. See also finding files and folders;

streams
adding content to, 22
appending to, 22, 26
with changed permissions, finding, 42
configuration files, sourcing

additional, 212–213
copying, 404–405
creating, 348–350, 408–409
deleting, 403
downloading, 400–402
extracting text from, 71–73
looping through with for loop,

160–161
moving, 405–407
redirecting to, 22, 25, 380
renaming, 405–407
in repositories, 267–270
running operations on set of,

160–161
sample, xxx
searching through, 67–68
showing text content, 410–411
startup files

customizing, 209–214
default, 208–209
loading, 216–219

template, creating with sed, 96
transferring with scp, 339–341
unzipping, 402–403
using as input, 19–20
writing to, 25
zipping, 411

filesystem, navigating, 393–400
changing directory, 395–396
with dot and double-dot folders,

397–398

Index 427

going back to previous directory,
398–399

identifying working directory, 394
listing contents of working directory,

394–395
pushing and popping working

directory, 399–400
returning to home directory, 396
using absolute and relative paths, 397

filtering
search results using grep, 68–69
standard input, 21

find command, 39, 306
extra options, 41–43
searching by file or folder name, 34–35
searching by path, 35
searching for only files or folders, 33
searching with, 31–32

finding files and folders, 31–43
acting on search results, 38–40
excluding search results with NOT

operator, 38
grouping parts of expression, 36–37
handling symbolic links, 40–41
large files, 41
recently modified files, 42
running case-insensitive searches, 36
specifying multiple search options,

35–36
flags, use of term, 396
folders. See also finding files and folders

copying text from to another
location, 104–105

dot files
configuring options for working

with folders, 243–244
creating folders for, 241

empty, finding and removing, 43
looping through with for loop,

160–161
managing in shell, 400–412

creating, 407–408
deleting, 409–410
viewing directory tree, 404
working with wildcards, 409

navigating with dot and double-dot
folders, 397–398

running operations on set of, 160–161
searching for, 33–35

forking in Git, 286–287, 293
for loop, 156–164

iterating with C-style loops, 163–164
looping over sequences, 164–165
looping through arrays, 157
looping through files and folders,

160–161
looping through find command

results, 162–163
splitting loop input into words, 157–160
wildcards in, 157, 160–161

for statement, 170
forward slash (/), 78, 87, 264, 304
function keyword, 174
functions, 173–188. See also commands

adding to startup file of interactive
shells, 210

checking for existing, 192–193
creating, 174–176
error handling, 185–187
making more flexible, 177
to open pull request, 288–289
passing parameters to, 177–180
return values, 180–184
simplifying common command with,

187–188
unneeded, cleaning up, 193

G
getopts command, 195, 196
Git, 249–273

adding and resetting changes to
index, 251–254

branches, 257–262
creating, 257–260
diverged, 261–262
performing fast-forward merges, 260
performing recursive merges,

261–262
commands, 272–273, 294, 297

git add, 252, 256, 273, 294
git branch, 257, 273
git checkout, 251, 257, 258, 259,

269, 270, 294
git clean, 292
git clone, 294
git commit, 255, 256, 261, 268,

273, 294
git diff, 292

428 Index

Git (continued)
commands (continued)

git fetch, 280, 281, 283–284, 294
git init, 67, 251, 273, 294
git log, 262, 273
git merge, 260, 294
git mv, 270
git pull, 280, 284, 294
git push, 280–281, 289, 294
git remote, 280–281
git reset, 253, 269, 273, 294
git rev-list, 291
git rm, 268, 273
git status, 251, 255, 257–258,

268, 273, 292
committing changes, 254–257
creating repositories, 250–251
definition of, 250
log, 262–264
managing files in repositories, 267–270
remote repositories, 275–294

collaborating on, 286–288
key concepts and commands,

293–294
sharing dot files, 285–286
showing Git information in

command prompt, 290–291
writing shell function to open pull

request, 288–289
resolving conflicts, 264–267
restoring working tree, 270–272
workflows in, 267

GitHub, 276–285
changes

fetching, 281–284
pulling, 284–285
pushing, 280–281

creating repositories, 276–280
forking with, 286–287
making pull requests, 287–288
Vim cheatsheet in, 360

globally scoped variables, 175
globs, 149, 161
GNOME Terminal, 413
GNU Screen multiplexer, 365
Go programming language, 314
Graham-Cumming, John, 58
graphical user interface (GUI), xxiv,

393–395

greedy regexes, 57, 58
grep command, 61–70

advanced features, 65–69
combining with other

commands, 69
filtering and piping of commands,

68–69
getting additional context for

search results, 66–67
making search case-insensitive, 66
searching through multiple files,

67–68
alternatives to, 69–70
definition, 62–63
origin of name, 62
pipelines and, 69
recursive searching using, 68
searching through text, 63–64
using with regular expressions,

64–65
GUI (graphical user interface), xxiv,

393–395

H
hash mark (#), 29, 87, 111, 348

in command prompt, 222
parameter variable, 178

head command, 21, 73
help, getting, 415–420

accessing online cheat sheets, 420
summarizing output with tldr,

418–419
using manual, 415–418

--help option, 323
highlighting of syntax, 197–199
HISTFILE variable, 10, 62, 64, 154
history

rerunning commands in, 10
searching using grep, 63
setting options in dot files, 244
using with shell scripts, 112–113

history command, 64
Hogan, Brian, 375
Homebrew, 390–391, 419
home directory, returning to, 396
HOME variable, 122, 299
host alias, 337
HostName setting, 337
hosts, SSH configuring, 337–338

Index 429

hunks, interactive staging for, 292
hyphen. See dash

I
IdentityFile setting, 337
IDEs (integrated development

environments), 344
if command, 146
if...else statement, 193
IFS (internal field separator) variable,

162, 163, 307, 308
if statement, 142, 146, 148–149, 154,

184, 187
index

in Git, 251–254, 293
retrieving element after defining

array, 128
indirection, 132, 192
infinite loop, 168
input, standard, 18–21

clipboard content as, 20
files as, 19–20
filtering as, 21
output from shell code as, 19

input, user
hiding, 134
limiting, 134–135
prompting for, 133–134
reading, 132–133

into custom variable, 133
input-process-output (IPO) pattern,

14–16
insert mode in Vim, 346
installed programs, checking for, 200
integrated development environments

(IDEs), 344
interactive shells, 207–214, 218

default shell startup file, 208–209
distinction between login shells

and, 217
startup file customizations,

209–214
adding functions, 210
configuring environment

variables, 212
creating local bin directory for

custom commands, 210–211
pitfalls, 213–214
shell options, 211–212

shell startup commands, 213
sourcing additional configuration

files, 212–213
using aliases, 209–210

interactive staging (Git), 292
interrupt signal, 412
IPO (input-process-output) pattern,

14–16
iterate expression (i), 164

J
jail, 240
Java, 315
JavaScript, 314

K
keyboard

input from, 16
shortcuts

configuring in dot files, 243
in Vim, 346

keys, 130
creating pair, 328–329
dealing with permission errors,

336–337
key-value format, 92
Konsole, 413

L
large files, finding, 41
large language models (LLMs), 380
lazy regexes, 57
less program, 21–22, 80, 122, 416
let keyword, 136
level of indirection, 192
lexical scoping variables, 175
line mode editors, 242
lines

combining statements on single,
145–146

counting number of, 19
deleting, 5–6
input, customizing processing of in

xargs, 102–103
looping through in files, 166–167
moving to beginning or end of, 4
removing parts of with sed, 88
replacing text on with sed, 86–87
of text, removing duplicate, 79–80

430 Index

Linux
clipboard essentials, 413
creating custom commands, 414
shell

accessing, 382
configuring, 392

LLMs (large language models), 380
ln (create link) command, 119
local keyword, 175, 176
locally scoped variables, 175
log, Git, 262–264
logging errors, 25
logic, conditional. See conditional logic
login shells, 216–217
lookaround, 58
lookbehind, 58
lookup command, 325
loops, 155–172

adding to common command, 171–172
compact, creating, 170–171
continue and break statements, 169–170
for, 156–164

iterating with C-style loops, 163–164
looping over sequences, 164–165
looping through arrays, 157
looping through files and folders,

160–161
looping through find command

results, 162–163
splitting loop input into words,

157–160
while, 165–169

lowercase
converting parameter value to, 305
searching files regardless of case

using grep, 66
transforming variable value to, 132
translating to uppercase, 23

lowercase function, 181–182
lower character class, 75
ls command, 157, 228, 394, 397, 402

M
macOS

accessing shell, 382
appearance of shell in, xxiv
clipboard essentials, 413
configuring shell, 390–392

main branch, 257–264, 266, 281,
285, 291

man command, 64, 415
manual pages (man pages), 325,

415–418
builtins, 416–417
man page titles and summaries, 418
pager, 416
sections, 417–418

Markdown styling tips website, 360
menu, showing in bash, 200–201
merges (Git)

fast-forward, 260
recursive, 261–262

metacharacters. See character sets
and metacharacters

Microsoft Windows
accessing shell, 381–382
appearance of shell in, xxiv
clipboard essentials, 413
configuring shell, 383–392

installing Linux tools, 383–384
running virtual machine, 384–389
setting up Windows Subsystem for

Linux, 389–390
creating custom commands, 413

mkdir command, 7, 23–26, 407–408
modal editing, 345
Modern Vim (Neil), 361
modified files, finding, 42
motions in Vim, 350, 356–357
mouse support, enabling in tmux, 371
multiplexer, 363–375. See also tmux

benefits of, 365
session management, 368–369
window management, 367

mv command, 157, 406

N
nano editor, 242
navigation techniques using cursor, 4–6

deleting lines, 5–6
deleting words, 5
moving back or forward one word,

4–6
moving to beginning or end of line, 4
undoing changes, 6

Neil, Drew, 361

Index 431

nested sessions, sending commands to
in tmux, 371

nesting of if statements, 154
network connectivity, losing, 339
newlines

character for, 74
when looping through lines in a

file, 167
word splitting and, 162

Node.js, 97, 314
non-interactive shells, 214–216
normal mode in Vim, 346
NOT operator, to exclude search

results, 38
npm (Node Package Manager)

program, 378
null, redirecting errors to, 25–26
nullglob command, 161
numbers, sequences of, 298–299

O
offset, specifying in parameter

expansion, 302
Oh-My-Zsh project, 233–234
-ok action, 40
OpenSSH, 328
operating system, checking,

199–100
operations

running on set of files or folders,
160–161

in Vim, 354–355
operators in test command, 143–144
options

common shell options, 212
use of term, 396

option strings, 195
or (||) operator, 145, 150, 152,

167, 190
OR expressions, 36
output

avoiding printing during shell
startup, 213

of commands
in functions, 182–183
storing in variables, 127–128

printing during shell startup, 213
from shell code as input, 19

standard
appending to files, 22
displaying onscreen, 21–22
redirecting standard error to,

24–25
redirecting to files, 22
writing results of function to,

181–182
storing, 22
summarizing with tldr, 418–419

P
package manager, 390
pager

paging through text, 80–81
scrolling through man pages, 416

PAGER variable, 122, 212
Panes (Tmux), 367
parameter expansion, 299–300

arrays, expanding, 303
converting to lowercase or

uppercase, 305
default values, 300–301
displaying error if value is null or

unset, 301
finding length of parameter or

array, 303
patterns, removing/replacing, 304
specifying offset and length, 302
using alternate value, 301
using parameter indirection, 305
variable names, expanding,

302–303
parameters

available, checking for, 416
for commands, organizing with

xargs, 103–105
expanding, 130–132
of find command, 38
passing to functions, 177–180
passing to scripts, 184
processing complex script, 195–196
term usage, 396
variables of, common, 177–178

parentheses
in command prompt, 225
grouping parts of expression using,

36–37

432 Index

passwords, using SSH keys instead of, 279
pasting with pbpaste, 414–415
patch staging (Git), 292
pathname expansion, 126, 160, 298
paths

absolute and relative, 397
pathname expansion, 309–310
searching by, 35
in search results, printing, 39

PATH variable, 106, 116, 119, 210, 216,
217, 218, 308

patterns
in parameter expansion, 304–305
supplying, 34

pbcopy command, 413, 414–415
pbpaste command, 413, 414–415
PEM (Privacy Enhanced Mail), 328
percent sign (%), 6, 367
period (.), 304
Perl, 315
permissions, changed, 42
pipefail option, 190
pipelines, 13–31

commands in, 113–115
composing for grep commands, 68–69
example of, 17–18
exiting script when commands fail, 190
filtering input, 21
grep command and, 69
input-process-output (IPO) pattern,

14–16
redirection with both stdout and

stderr, 26–27
in standard error applications, 23–26
in standard input applications, 18–21
in standard output applications,

21–22
T-pipe, 27–28
and Unix philosophy, 28–29
using with copying and pasting,

414–415
placeholders in xargs examples and

man pages, 105
playground folder, 400
plus sign (+), 51, 73, 88, 135,

192, 229
popd command, 399–400
portability across systems, 314

Practical Vim (Neil), 361
prepending text with sed, 90–91
-print (print to stdout) action, 102
-print action, 39
-print0 action, 102
printf command, 197, 214
printing output during shell startup,

avoiding, 213
Privacy Enhanced Mail (PEM), 328
profile loading, differences in

depending on operating
systems, 218

Pro Git (Chacon, Straub), 292
programming languages

alternatives to sed, 97
choosing, 314–315

programs
connecting. See pipelines
installed, checking for, 200

prompting for input, 133–134
prompt string, customizing, 223
prompt variables, 229–231

PROMPT_COMMAND, 229, 231
PROMPT_DIRTRIM, 229, 230–231
PS1, 222–225, 227–229, 232,

233–234, 240
PS2, 229–230
PS3, 229, 230
PS4, 229, 230

pstree command, 118
pulling changes from GitHub, 284–285

making pull requests, 287–288
writing shell function to open pull

requests, 288–289
pushing

changes to GitHub, 280–281
working directory, 398–400

pwd (print working directory)
command, 394

Python, 97, 314, 315
dictionary lookup tool in

improving, 325
installing, 324
writing, 316–323

Q
q! (quit without saving) command, 347
quantifiers in regex, 51–52

Index 433

question mark (?), 57, 126
searching for files or folders

using, 35
as wildcard, 310

quotes in variable syntax, 124–126

R
randomart, 329
RANDOM variable, 166
rc (run commands), 208
read command, 131, 133, 134, 135, 167
rebasing (Git), 292
recursive merges (Git), 261–262
redirecting

with both stdout and stderr, 26–27
in standard error applications, 24–26
standard output to file, 22
symbol (>), 24, 25, 27

redirection operator, 411
regexes (regular expressions), 47–59

advanced concepts, 57–59
to avoid backtracking, 59
basic, 65
breaking up into smaller parts, 56
building, 48–57, 93

anchors, 55–56
capture groups, 56–57
character sets and metacharacters,

52–57
lazy and greedy expressions, 57
quantifiers, 51–52
regex engines, 50–52

complexity of, 48
conditional expressions and, 150–151
continuing until finds no further

matches, 57
edge cases and, 51
for email validation, 48–49
engines, 50–52
escaping characters in, 55
extended, 65
identifying greedy matches, 58
matching patterns of text at certain

points on a line, 55–56
online, 93
overview, 48–52
Regular Expressions 101 website,

49–50, 51, 58, 59

stopping search as soon as finds
match, 57

testing, 49–50
using grep with, 64–65
using in different languages, 59
using with sed, 85–94

relative paths, using, 397
remotes, Git, 276
REPLY variable, 133
repositories, Git, 293

creating, 250–251, 276–280
managing files, 267–270

deleting, 267–268
restoring and renaming,

268–270
requests module, 321
resources, online, xxx
restructuring text with sed, 92–95
return values of functions, 180–184

avoiding pitfalls with command
output, 182–183

returning status codes, 183–184
writing to standard output,

181–182
rev (reverse) command, 78
reversing text, 78
rev tool, 315
right angle bracket (>), 113, 229
ripgrep tool, 70
rm command, 40, 100, 101, 103, 190,

209, 403
rmdir command, 85–88, 409–410
root of filesystem, 397
Ruby, 314
Rust, 315

S
sample files, xxx
sandbox, Linux, 384
Schneier, Bruce, 328
scp program, transferring files with,

339–341
screen, clearing, 9
scripting alternatives, 313–325

characteristics of shell-friendly tools,
315–316

choosing programming language,
314–315

434 Index

scripting alternatives (continued)
dictionary lookup tool, writing in

Python, 316–323
defining basic structure, 317–319
downloading definition, 319–321
formatting output, 321–323

whether to use, 314
scripts, xxiv, 109–120

AI-generated, executing, 379–380
behavior of, 214–216
benefits of, 110–115
creating, 110–118

adding and formatting
commands, 112–113

adding code comments, 111
making shell scripts executable, 115
pipelining commands, 113–115
sourcing shell scripts, 117–118
specifying program to run script,

116–117
customizing command prompt,

231–235
executable scripts, 42
for installing dot files, 247–248
installing locally, 118–119
patterns for, 189–204

adding syntax highlighting,
197–199

anti-patterns, 201–203
checking for existing variables or

functions, 192–193
checking for installed

programs, 200
checking operating system, 199–100
debugging with trace option,

191–192
ensuring exit on failure, 190
processing complex parameters,

195–196
running commands in

subshells, 201
showing menu, 200–201
trapping signals and events,

193–195
unsetting values, 193

tidying up, 302–303
using history file with, 112–113

search expression, 33

searching
through command history, 6–7
with find command

case-insensitive, 36
by file or folder name, 34–35
introduction to, 31–32
for only files or folders, 33
by path, 35

with grep
case-insensitive, 66
through multiple files, 67–68
through text, 63–64

by path, 35
specifying multiple options, 35–36

search motions in Vim, 355–356
search results

acting on, 38–40
excluding with NOT operator, 38
getting additional context with grep,

66–67
Secure Hash Algorithm (SHA),

262–263, 270
secure shell. See SSH
sed command, 19, 83–98, 114, 134,

315, 316
advanced applications

creating template files, 96
editing in place, 96–97
restructuring text, 92–95

alternatives to, 97
text manipulation with, 83–98
transformations with

appending text, 89–90
applying multiple expressions,

85–88
extracting information, 91
prepending text, 90–91
replacing text, 84–85
stripping comments, 89

using addresses in sed functions, 87
using regexes with, 85–94

select command, 200, 229
semicolon (;), 39, 145–146, 152, 308, 356
sequences

looping over, 164–165
of numbers or characters, creating,

298–299
in Vim, 346

Index 435

session management with tmux, 365,
368–369

set (set option) command, 186
SHA (Secure Hash Algorithm),

262–263, 270
sh command, 114, 123
shebang (#!), 116–117

configuring options in, 203
to locate python3 program, 324
omitting, 202

shell. See also basics of shell;
configuring shell

accessing, 381–382
configuration cheat sheet, 218
future of, 380
idioms, handling errors using, 316
overview, xxiv–xxv
reasons for using, xxiv

shell-friendly tools, characteristics of,
315–316

shell options ($-) parameter, 242
SHELL variable, 122, 154, 219, 336
shifting parameters, 179–180
shopt command, 161, 209
shortcuts. See also symbolic links

(symlinks)
clear screen, 9
for maneuvering cursor, 4–6
show all, 10
transpose text, 10
view command history, 9–10

signals, trapping, 193–195
single quote (′), 124–125, 126
sleep command, 225
sort command, 17, 28, 79, 113, 114
sorting text, 79–80
sourcing shell scripts, 117–118
spaces. See whitespace
sparse arrays, 129
special characters

escaping, 37
handling in xargs, 101–102

splitting
loop input into words, 157–160
streams, 27–28	
text into words, 126, 159–160, 298,

306–309
in txux, 367

square brackets ([]), 75
in command prompt, 225
in conditional expressions, 150

squashing (Git), 292
SSH, 327–341

configuring hosts, 337–338
connecting to virtual machine, 335–336
creating a key pair, 328–329
creating virtual machine on AWS,

331–335
definition of, 327–328
handling disconnections, 339
key permission errors, dealing with,

336–337
keys, 279
running commands, 338
setting up AWS account, 329–330
transferring files with scp, 339–341

ssh-keygen OpenSSH authentication
key utility, 328

ssh program, 336, 338, 339, 372
standard error, 23–26

appending to file, 26
redirecting, 24–26
writing to file, 25

standard input, 18–21
clipboard content, 20
files, 19–20
filtering input, 21
output from shell code as, 19
reading from, 315

standard output, 21–22
appending to file, 22
displaying onscreen, 21–22
redirecting standard error to, 24–25
redirecting to file, 22
writing to, 315

startup commands, 213–214
startup files

for default shell, 208–209
interactive shells, 209–214

adding functions, 210
configuring environment

variables, 212
creating local bin directory for

custom commands, 210–211
pitfalls to avoid, 213–214
setting shell options, 211–212

436 Index

startup files (continued)
interactive shells (continued)

setting shell startup commands, 213
sourcing additional configuration

files, 212–213
using aliases, 209–210

loading for login shell, 217–219
loading with BASH_ENV, non-

interactive shells, 216
statements, combining on single line,

145–146
status codes, returning in functions,

183–184
stderr stream

input-process-output (IPO) pattern,
15–16

and stdout, redirection with both,
26–27

stdin stream, 15–16
stdout stream

input-process-output (IPO) pattern,
15–16

and stderr, redirection with both,
26–27

storing output, 22
Storti, Brian, 27
Straub, Ben, 292
stream redirection operator, 20
streams

input-process-output (IPO) pattern, 15
splitting in two, 27–28

stripping comments with sed, 89
subject line of commit messages, 257
subshells, 123, 201
substring, returning, 131
sudo (run command as superuser)

command, 119
summaries of man pages, 418
symbolic links (symlinks), 40–41, 119
syntax

highlighting, adding, 197–199
of variables, 124–127

using braces, 127
using quotes, 124–126

T
tabs, word splitting and, 162
tags, 292

tail command, 72–73, 113, 154
template files, creating with sed, 96
Terminal AI, 377–380

chatting with ChatGPT, 378–379
copying or saving results, 379
executing AI-generated scripts,

379–380
installing and running, 378
redirecting responses to files, 380
shell of future, 380

terminal editors, 343–361. See also Vim
adding command count, 352
editing commands, 358–359
inserting text at specific positions,

352–354
navigating through text, 350–352
operating on range of text, 354–355
reasons to use, 344
searching for text patterns, 355–358

test command, 143–145, 161
advantages of conditional

expressions over, 150
checking multiple conditions

simultaneously, 145
operators for expressions and files,

143–144
text

appending with sed, 89–90
displayed in shell, coloring, 197–199
formatting, adding to command

prompt, 225–228
inserting at specific positions using

Vim, 352–354
navigating through using Vim,

350–352
operating on range of using Vim,

354–355
patterns, searching for using Vim,

355–358
prepending with sed, 90–91
replacing with sed, 84–85

on specific lines, 86–87
restructuring with sed, 92–95
searching through using grep, 63–64
showing content of files, 410–411
splitting into words, 298
transposing shortcut, 10

text editor. See terminal editors

Index 437

text manipulation, 71–81. See also
sed command

cutting text, 75–78
extracting first and last part of file,

71–73
paging through text, 8–81
replacing text, 74–75
reversing text, 78
with sed, 83–98
sorting text and removing duplicate

lines, 79–80
tilde (~), 88, 125–126, 272, 298, 299, 396
tldr tool, 62, 415, 418–419
tmux

collaboration with, 372–373
commands in, 373–374
configuring, 369–372
installing, 365–366
keyboard shortcuts, 366
quick guide, 373–374
session management with, 368–369
session persistence, 365
window management with, 367

tmux 3: Productive Mouse-Free Development
(Hogan), 375

Torvalds, Linus, 250
touch command, 408
T-pipe, 27–28
tput command, 199
trace option, debugging with, 191–192
tracing, handling in xargs, 101–102
transposing text, shortcuts for, 10
trap command, 193
trapping signals and events, 193–195
tr command, 23–25, 74, 181
tree, working, 270–272
tree command, 258–259, 407
Typer package, 325

U
Ubuntu’s Desktop Edition, 384
uname command, 199
undoing changes, 6
uniq (omit duplicate lines) command,

17, 27–28, 79, 113
unset command, 193
unsetting values, 193
until loop, 168–169

unzip command, 402, 411
unzipping files, 402–403
uppercase

converting parameter value to, 305
searching files regardless of case, 66
transforming variable value to, 132
translating lowercase characters to, 23

upper character class, 75
urllib library, 321
user input. See input, user
User setting, 337
USER variable, 122

V
values variable, 179
variables, 121–139

checking for existing, 192–193
cleaning up in dot files, 243
common operations, 127–137

arrays, 128–129
associative arrays, 130
expanding shell parameters,

130–132
performing arithmetic operations,

135–137
storing command’s output in

variables, 127–128
user input, reading and storing in

variables, 132–135
common parameter values, 177–178
configuring environment

variables, 212
enhancing common command with

variables, 137–138
environment variables, 123–124
expanding names of, 302–303
in functions, 174–175
indirection, 132
returning default value of, 131
returning length of, 130–131
scope of

environment vs. shell variables,
122–123

in functions, 175–176
syntax, 124–127
transforming value of to uppercase/

lowercase, 132
unneeded, cleaning up, 193

438 Index

verbatim insert command, 412
version control system. See Git
Vim, 345–350, 360–361

adding command count, 352
buffers, 346, 348
case sensitivity in, 345
configuring tmux to interface

with, 372
editing commands, 358–359
“enter insert mode”

commands, 353
keyboard shortcuts in, 345
motions in, 350, 356–357
operators in, 354–355
text

inserting at specific positions,
352–354

navigating through, 350–352
operating on range of, 354–355
searching for patterns in,

355–358
updating and styling cheat sheet,

359–360
Vimcasts website, 361
vimtutor program, 361

VirtualBox, 384–385
virtual machine

creating on AWS, 331–335
shutting down, 335
using SSH to connect to, 335–336

VISUAL variable, 242

W
website-and-repo tab of tmux

multiplexer, 364
wget command, 190, 401–402
whatis command, 418
while loop, 165–169, 195

looping forever, 168
looping through lines in files,

166–167
until loop, 168–169

while statement, 170
whitespace

handling in xargs, 101–102
when looping through lines in a

file, 167
word splitting and, 162

whoami command, 389
wildcards, 409

character (*), 16, 34, 49, 124, 264,
304, 359, 402

in for loops, 157, 160–161
in pathnames, expanding, 298
searching for files or folders using, 34

windows
creating and moving between, 367
managing using multiplexer, 365
naming and numbering, 370–371
splitting, 371
zooming panes, 367

Windows, Microsoft. See Microsoft
Windows

Windows Subsystem for Linux (WSL),
383, 389–390, 413

words
counting number of, 19
deleting, 5
moving back or forward one word,

4–6
splitting text into, 126, 159–160, 298,

306–309
in Vim, 352

working directory
identifying, 394
listing contents of, 394–395
pushing and popping, 399–400
specifying in tmux

configuration, 370
working tree in Git, 251, 270–272, 293
wq (write and quit) command, 359
WSL (Windows Subsystem for Linux),

383, 389–390, 413

X
xargs command

braces used as placeholders, 105
handling whitespace, special

characters, and tracing, 101–102
input lines, 102–103
organizing parameters for

commands, 103–105
overview, 99–101
running commands, 105–106

xclip command, 20

Index 439

Z
ZIP file

containing files found, 42
unzipping, 402
zipping, 411

Z shell, 233–234, 390
zsh_regex variable, 150

Effective Shell is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://nostarch.com/effective-shell for errata and more information.

NO STARCH PRESS

THE BOOK OF BATCH SCRIPTING
From Fundamentals to Advanced
Automation
BY jack MCLARNEY
488 pp., $59.99
isbn 978-1-7185-0342-7

AUTOMATE THE BORING STUFF
WITH PYTHON, 3RD EDITION
Practical Programming for Total
Beginners
BY al SWEIGART
672 pp., $59.99
isbn 978-1-7185-0340-3

POWERSHELL® FOR SYSADMINS
Workflow Automation Made Easy
BY ADAM BERTRAM
320 pp., $39.99
isbn 978-1-59327-918-9

DEVOPS FOR THE DESPERATE
A Hands-On Survival Guide
BY BRADLEY SMITH
176 pp., $29.99
isbn 978-1-7185-0248-2

HOW LINUX WORKS,
3RD EDITION
What Every Superuser Should Know
BY BRIAN WARD
464 pp., $49.99
isbn 978-1-7185-0040-2

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
BY william SHOTTS
504 pp., $39.95
isbn 978-1-59327-952-3

More no-nonsense books from

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com
WEB:
www.nostarch.com

®

A P R A C T I C A L U S E R ’ S G U I D E T O W O R K I N G

S M A R T E R O N T H E C O M M A N D L I N E

D A V E K E R R

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

®

E
F

F
E

C
T

IV
E

 S
H

E
L

L
K

E
R

R

M A S T E R T H E T O O L S .

B U I L D T H E W O R K F L O W .

O W N T H E S H E L L .

Effective Shell is the hands-on guide for developers
who want to master the command line—not just to
get around, but to build a fast, fl exible, and portable
development environment.

This isn’t a tour of shell commands. It’s a blueprint for
creating workfl ows that scale across machines, teams,
and projects. You’ll go from keystroke-level effi ciency
to composing powerful pipelines, writing reliable
scripts, and automating common development tasks.
Then you’ll take it further: managing your confi guration
with Git, customizing your shell setup, and working
seamlessly across remote sessions using tools like Vim
and tmux.

By the end, your shell won’t just be a tool; it’ll be an
extension of your thinking.

You’ll learn how to:

• Find, fi lter, and reshape data using grep, regular
expressions, and shell pipelines

• Write scripts that automate setup, confi guration,
and repetitive tasks

• Create Python-based CLI tools to pull and process
structured data

• Manage your environment with Git and version-
controlled dot fi les

• Edit quickly with Vim and multitask effi ciently using
terminal multiplexers

• Use AI tools to generate commands, debug faster,
and enhance automation

Rather than prescribing a one-size-fi ts-all toolkit, Effective
Shell teaches you the tools, practices, and strategies to
build a shell environment that fi ts the way you work—
effi cient, portable, and entirely yours.

Whether you’re leveling up from the basics or refi ning
your craft, this book will help you think clearly, automate
confi dently, and work more effectively in the shell.

A B O U T T H E A U T H O R

Dave Kerr is a software engineer and consultant with over
15 years of experience helping teams design modern
platforms, scale infrastructure, and automate everything
from deployment to developer onboarding. He has led
high-stakes engineering initiatives, from launching digital
banks to building telco backends, and today focuses
on agentic AI, developer experience, and open source.
Outside the terminal, you’ll fi nd him in the mountains or
clinging to a rock face.

E F F E C T I V E
S H E L L

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	What Is the Shell?
	Who Should Read This Book
	What’s in This Book?
	How to Read This Book
	Bugs and Suggestions
	Sample Files and Online Resources

	Part I: Core Skills
	Chapter 1: Flying on the Command Line
	Basic Navigation Techniques
	Go to the Beginning or End of a Line
	Move Back or Forward One Word
	Delete a Word
	Delete a Line
	Undo a Change

	Search Commands
	Editing in Place
	Other Useful Shortcuts
	Clear the Screen
	View Your Command History
	Show All Shortcuts
	Transpose Text

	Summary

	Chapter 2: Thinking in Pipelines
	The IPO Pattern
	Streams
	stdin, stdout, and stderr

	Pipelines in Action
	Standard Input Applications
	Standard Output Applications
	Standard Error Applications
	Redirection with Both stdout and stderr

	The T-Pipe
	Pipelines and the Unix Philosophy
	Summary

	Chapter 3: Finding Files and Folders
	Searching with the find Command
	Refining a Search with find
	Searching for Only Files or Folders
	Searching by File or Folder Name
	Searching by Path
	Specifying More Than One Search Option
	Running Case-Insensitive Searches
	Grouping Parts of an Expression
	Excluding Search Results with the NOT Operator

	Acting on Search Results
	Printing Paths
	Deleting Files
	Executing Commands
	Confirming Commands Before Execu

	Handling Symbolic Links
	Going Further with find
	Summary

	Part II: Manipulating Text and Streams
	Chapter 4: Regular Expression Essentials
	Regexes in a Nutshell
	Building Regexes
	Regex Engines
	Quantifiers
	Character Sets and Metacharacters
	Anchors
	Capture Groups
	Lazy and Greedy Expressions

	Advanced Regex Concepts
	Backtracking
	Lookarounds
	Atomic Groups

	Summary

	Chapter 5: Getting to Grips with grep
	What Exactly Is grep?
	Searching Through Text
	Using grep with Regular Expressions
	Advanced grep Features
	Making a Search Case-Insensitive
	Getting Additional Context for Search Results
	Searching Through Multiple Files
	Filtering and Piping grep Output
	Combining grep with other Commands

	Alternatives to grep
	Summary

	Chapter 6: Slicing and Dicing Text
	Extracting Heads and Tails
	Replacing Text
	Cutting Text
	Reversing Text
	Sorting Text and Removing Duplicate Lines
	Paging Through Text
	Summary

	Chapter 7: Advanced Text Manipulation with sed
	Transformations with sed
	Replacing Text
	Applying Multiple Expressions
	Stripping Comments
	Appending Text
	Prepending Text
	Extracting Information

	Advanced Applications
	Restructuring Text
	Creating Template Files
	Editing in Place

	Alternatives to sed
	Summary

	Chapter 8: Building Commands on the Fly
	Introducing xargs
	Handling Whitespace, Special Characters, and Tracing
	Customizing How xargs Processes Input Lines
	Organizing the Parameters for Commands
	Running Commands Interactively
	Running a Command for Each Input
	Summary

	Part III: Shell Scripting
	Chapter 9: Shell Script Fundamentals
	Why Shell Scripts?
	Creating a Basic Shell Script
	Adding Code Comments
	Adding and Formatting Commands
	Pipelining Commands
	Making Shell Scripts Executable
	Specifying What Program Should Run a Script
	Sourcing Shell Scripts

	Installing Scripts Locally
	Summary

	Chapter 10: Using Variables to Store, Read, and Manipulate Data
	Understanding Variable Scope: Environment vs. Shell Variables
	Exporting Shell Variables as Environment Variables
	Variable Syntax
	Quoting Variables and Values
	Using Braces to Reference Variables Explicitly

	Common Variable Operations
	Storing a Command’s Output in a Variable
	Managing Multiple Values with Arrays
	Storing Complex Data with Associative Arrays
	Expanding Shell Parameters
	Reading and Storing User Input in Variables
	Performing Arithmetic Operations

	Enhancing the common Command with Variables
	Summary

	Chapter 11: Mastering Conditional Logic
	The if Statement
	The test Command
	Checking Multiple test Conditions Simultaneously

	Combining Statements on a Single Line
	The else Clause
	The elif Clause
	The case Statement
	Conditional Expressions
	Chaining Commands
	Extending the common Command to Handle Different Shells
	Summary

	Chapter 12: Using Loops with Files and Folders
	The for Loop
	Looping Through Arrays
	Splitting Loop Input into Words
	Looping Through Files and Folders
	Looping Through find Command Results
	Iterating with C-Style Loops
	Looping over Sequences

	The while Loop
	Looping Through the Lines in a File
	Looping Forever

	The until Loop
	The continue and break Statements
	Creating Compact Loops
	Updating the common Command to Loop Through Results
	Summary

	Chapter 13: Functions, Parameters, and Error Handling
	Creating a Function
	Variables in Functions
	Variable Scoping

	Passing Parameters to Functions
	Using Array Operators in Parameter Variables
	Shifting Parameters

	Function Return Values
	Writing Results to Standard Output
	Avoiding Pitfalls with Command Output
	Returning Status Codes

	Error Handling
	Simplifying the common Command with Functions
	Summary

	Chapter 14: Useful Patterns for Shell Scripts
	Ensuring Exit on Failure
	Debugging Shell Scripts with the Trace Option
	Checking for Existing Variables or Functions
	Unsetting Values
	Trapping Signals and Events
	Processing Complex Script Parameters
	Adding Syntax Highlighting
	Checking the Operating System
	Checking for Installed Programs
	Showing a Menu
	Running Commands in Subshells
	Anti-patterns
	Omitting Shebangs
	Configuring Options in Shebangs
	Using Complex Logic in Shell Scripts

	Summary

	Part IV: Building Your Toolkit
	Chapter 15: Configuring Your Shell
	Interactive Shells
	The Default Shell Startup File
	Common Startup File Customizations

	Non-interactive Shells
	Understanding Shell Script Behavior
	Loading a Startup File with BASH_ENV

	Login Shells
	Checking Whether You’re in a Login Shell
	Loading the Shell Startup Files

	Changing Your Shell
	Summary

	Chapter 16: Customizing Your Command Prompt
	The Command Prompt Structure
	The Prompt String
	Escape Sequences

	Adding Color and Text Formatting to Your Prompt
	Adding Data to the Command Prompt
	Additional Shell Prompt Variables
	PS2
	PS3
	PS4
	PROMPT_DIRTRIM
	PROMPT_COMMAND

	Writing a Shell Script to Customize the Command Prompt
	Summary

	Chapter 17: Managing Your Dot Files
	Dot Files Defined
	The Default Shell Dot File
	Creating Your Own Dot File
	Creating the Dot Files Folder
	Creating shell.sh
	Adding Custom Configuration

	Testing the Shell Dot File
	Sourcing the Shell Dot File
	Sourcing Files from a Folder
	A Dot File Installation Script
	Summary

	Chapter 18: Controlling Changes with Git
	What Is Git?
	Creating a Git Repository
	Adding and Resetting Changes to the Index
	Committing Changes
	Working with Branches
	Creating Branches
	Performing Fast-Forward Merges
	Performing Recursive Merges and Handling Diverged Branches

	The Git Log
	Resolving Conflicts
	Managing Files in Your Repository
	Deleting Files
	Restoring and Renaming Files

	Restoring Your Working Tree
	Git Command Quick Reference
	Summary

	Chapter 19: Managing Remote Git Repositories and Sharing Dot Files
	Getting Started with GitHub
	Creating a Repository
	Pushing Changes
	Fetching Changes
	Pulling Changes

	Sharing Your Dot Files
	Collaborating with Other Users
	Forking
	Making Pull Requests

	Writing a Shell Function to Open a Pull Request
	Showing Git Information in the Command Prompt
	Diving Deeper into Git
	Git at a Glance: A Recap of Key Concepts and Commands
	Summary

	Part V: Advanced Techniques
	Chapter 20: Shell Expansion
	Shell Expansion Operations
	Brace Expansion
	Tilde Expansion
	Parameter Expansion
	Command Substitution
	Arithmetic Expansion
	Word Splitting
	Pathname Expansion

	Summary

	Chapter 21: Alternatives to Shell Scripting
	When to Avoid Shell Scripting
	Choosing a Programming Language
	Characteristics of Shell-Friendly Tools
	Writing a Dictionary Lookup Tool in Python
	Defining the Tool’s Basic Structure
	Downloading the Definition
	Formatting the Output

	Installing the Lookup Tool
	Improving the Lookup Tool
	Summary

	Chapter 22: The Secure Shell
	What Is SSH?
	Creating a Key Pair
	Setting Up an AWS Account
	Creating a Virtual Machine on AWS
	Choose an Amazon Machine Image
	Choose an Instance Type
	Review the Instance Launch

	Using SSH to Connect to a Virtual Machine
	Dealing with Key Permission Errors
	Configuring SSH Hosts
	Running SSH Commands
	Handling Disconnections
	Transferring Files with scp
	Summary

	Chapter 23: The Power of Terminal Editors
	Why Use a Terminal Editor?
	Getting Started with Vim
	Building a Cheatsheet
	Creating a File

	Navigating Through Text
	Adding a Command Count
	Inserting Text at Specific Positions
	Operating on a Range of Text
	Searching for Text Patterns
	Editing Commands
	Updating and Styling Your Vim Cheatsheet
	Going Further with Vim
	Vimtutor
	Vimcasts
	Practical Vim and Modern Vim

	Summary

	Chapter 24: Mastering the Multiplexer
	Benefits of Using a Multiplexer
	Installing tmux
	Window Management with tmux
	Creating and Moving Between Panes
	Zooming Panes
	Creating and Moving Between Windows

	Session Management with tmux
	Starting a New Session
	Attaching and Detaching from Sessions

	Configuring tmux
	Setting the Default Shell
	Specifying the Working Directory
	Naming and Numbering Windows
	Splitting Windows More Intuitively
	Sending Commands to Nested Sessions
	Enabling Mouse Support
	Interfacing with Vim
	Setting Advanced Configuration

	Collaboration with tmux
	A tmux Quick Guide
	Next Steps with tmux
	Summary

	Afterword: Generative AI and the Shell
	Installing and Running the Terminal AI Tool
	Chatting with ChatGPT
	Copying or Saving Results
	Executing AI-Generated Scripts
	Redirecting Responses to a File
	The Shell of the Future

	Appendix A: Setup
	Accessing the Shell
	Microsoft Windows
	macOS
	Linux

	Configuring the Shell
	Microsoft Windows
	macOS
	Linux

	Appendix B: Shell Basics
	Navigating Your Filesystem
	Identifying the Working Directory
	Listing the Contents of the Working Directory
	Changing the Directory
	Returning to the Home Directory
	Using Absolute and Relative Paths
	Moving Around Efficiently

	Managing Your Files and Folders
	Downloading a File
	Unzipping a File
	Deleting a File
	Viewing a Directory Tree
	Copying a File
	Renaming and Moving Files
	Creating a Folder
	Creating a File
	Working with Wildcards
	Deleting a Folder
	Showing Text Content
	Zipping a File

	The Clipboard
	Mastering Clipboard Essentials
	Creating Custom Clipboard Commands
	Copying and Pasting with pbcopy and pbpaste

	Getting Help
	Using the Manual
	Summarizing Output with tldr
	Accessing Online Cheat Sheets

	Index
	Colophon
	Resources
	Back Cover

